1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Exp_Atag
; use Exp_Atag
;
32 with Exp_Ch2
; use Exp_Ch2
;
33 with Exp_Ch3
; use Exp_Ch3
;
34 with Exp_Ch6
; use Exp_Ch6
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Dist
; use Exp_Dist
;
37 with Exp_Imgv
; use Exp_Imgv
;
38 with Exp_Pakd
; use Exp_Pakd
;
39 with Exp_Strm
; use Exp_Strm
;
40 with Exp_Tss
; use Exp_Tss
;
41 with Exp_Util
; use Exp_Util
;
42 with Freeze
; use Freeze
;
43 with Gnatvsn
; use Gnatvsn
;
44 with Itypes
; use Itypes
;
46 with Namet
; use Namet
;
47 with Nmake
; use Nmake
;
48 with Nlists
; use Nlists
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Ch6
; use Sem_Ch6
;
56 with Sem_Ch7
; use Sem_Ch7
;
57 with Sem_Ch8
; use Sem_Ch8
;
58 with Sem_Eval
; use Sem_Eval
;
59 with Sem_Res
; use Sem_Res
;
60 with Sem_Util
; use Sem_Util
;
61 with Sinfo
; use Sinfo
;
62 with Snames
; use Snames
;
63 with Stand
; use Stand
;
64 with Stringt
; use Stringt
;
65 with Tbuild
; use Tbuild
;
66 with Ttypes
; use Ttypes
;
67 with Uintp
; use Uintp
;
68 with Uname
; use Uname
;
69 with Validsw
; use Validsw
;
71 package body Exp_Attr
is
73 -----------------------
74 -- Local Subprograms --
75 -----------------------
77 function Build_Array_VS_Func
79 Nod
: Node_Id
) return Entity_Id
;
80 -- Build function to test Valid_Scalars for array type A_Type. Nod is the
81 -- Valid_Scalars attribute node, used to insert the function body, and the
82 -- value returned is the entity of the constructed function body. We do not
83 -- bother to generate a separate spec for this subprogram.
85 function Build_Disp_Get_Task_Id_Call
(Actual
: Node_Id
) return Node_Id
;
86 -- Build a call to Disp_Get_Task_Id, passing Actual as actual parameter
88 function Build_Record_VS_Func
90 Nod
: Node_Id
) return Entity_Id
;
91 -- Build function to test Valid_Scalars for record type A_Type. Nod is the
92 -- Valid_Scalars attribute node, used to insert the function body, and the
93 -- value returned is the entity of the constructed function body. We do not
94 -- bother to generate a separate spec for this subprogram.
96 procedure Compile_Stream_Body_In_Scope
101 -- The body for a stream subprogram may be generated outside of the scope
102 -- of the type. If the type is fully private, it may depend on the full
103 -- view of other types (e.g. indexes) that are currently private as well.
104 -- We install the declarations of the package in which the type is declared
105 -- before compiling the body in what is its proper environment. The Check
106 -- parameter indicates if checks are to be suppressed for the stream body.
107 -- We suppress checks for array/record reads, since the rule is that these
108 -- are like assignments, out of range values due to uninitialized storage,
109 -- or other invalid values do NOT cause a Constraint_Error to be raised.
110 -- If we are within an instance body all visibility has been established
111 -- already and there is no need to install the package.
113 -- This mechanism is now extended to the component types of the array type,
114 -- when the component type is not in scope and is private, to handle
115 -- properly the case when the full view has defaulted discriminants.
117 -- This special processing is ultimately caused by the fact that the
118 -- compiler lacks a well-defined phase when full views are visible
119 -- everywhere. Having such a separate pass would remove much of the
120 -- special-case code that shuffles partial and full views in the middle
121 -- of semantic analysis and expansion.
123 procedure Expand_Access_To_Protected_Op
127 -- An attribute reference to a protected subprogram is transformed into
128 -- a pair of pointers: one to the object, and one to the operations.
129 -- This expansion is performed for 'Access and for 'Unrestricted_Access.
131 procedure Expand_Fpt_Attribute
136 -- This procedure expands a call to a floating-point attribute function.
137 -- N is the attribute reference node, and Args is a list of arguments to
138 -- be passed to the function call. Pkg identifies the package containing
139 -- the appropriate instantiation of System.Fat_Gen. Float arguments in Args
140 -- have already been converted to the floating-point type for which Pkg was
141 -- instantiated. The Nam argument is the relevant attribute processing
142 -- routine to be called. This is the same as the attribute name, except in
143 -- the Unaligned_Valid case.
145 procedure Expand_Fpt_Attribute_R
(N
: Node_Id
);
146 -- This procedure expands a call to a floating-point attribute function
147 -- that takes a single floating-point argument. The function to be called
148 -- is always the same as the attribute name.
150 procedure Expand_Fpt_Attribute_RI
(N
: Node_Id
);
151 -- This procedure expands a call to a floating-point attribute function
152 -- that takes one floating-point argument and one integer argument. The
153 -- function to be called is always the same as the attribute name.
155 procedure Expand_Fpt_Attribute_RR
(N
: Node_Id
);
156 -- This procedure expands a call to a floating-point attribute function
157 -- that takes two floating-point arguments. The function to be called
158 -- is always the same as the attribute name.
160 procedure Expand_Loop_Entry_Attribute
(N
: Node_Id
);
161 -- Handle the expansion of attribute 'Loop_Entry. As a result, the related
162 -- loop may be converted into a conditional block. See body for details.
164 procedure Expand_Min_Max_Attribute
(N
: Node_Id
);
165 -- Handle the expansion of attributes 'Max and 'Min, including expanding
166 -- then out if we are in Modify_Tree_For_C mode.
168 procedure Expand_Pred_Succ_Attribute
(N
: Node_Id
);
169 -- Handles expansion of Pred or Succ attributes for case of non-real
170 -- operand with overflow checking required.
172 procedure Expand_Update_Attribute
(N
: Node_Id
);
173 -- Handle the expansion of attribute Update
175 function Get_Index_Subtype
(N
: Node_Id
) return Entity_Id
;
176 -- Used for Last, Last, and Length, when the prefix is an array type.
177 -- Obtains the corresponding index subtype.
179 procedure Find_Fat_Info
181 Fat_Type
: out Entity_Id
;
182 Fat_Pkg
: out RE_Id
);
183 -- Given a floating-point type T, identifies the package containing the
184 -- attributes for this type (returned in Fat_Pkg), and the corresponding
185 -- type for which this package was instantiated from Fat_Gen. Error if T
186 -- is not a floating-point type.
188 function Find_Stream_Subprogram
190 Nam
: TSS_Name_Type
) return Entity_Id
;
191 -- Returns the stream-oriented subprogram attribute for Typ. For tagged
192 -- types, the corresponding primitive operation is looked up, else the
193 -- appropriate TSS from the type itself, or from its closest ancestor
194 -- defining it, is returned. In both cases, inheritance of representation
195 -- aspects is thus taken into account.
197 function Full_Base
(T
: Entity_Id
) return Entity_Id
;
198 -- The stream functions need to examine the underlying representation of
199 -- composite types. In some cases T may be non-private but its base type
200 -- is, in which case the function returns the corresponding full view.
202 function Get_Stream_Convert_Pragma
(T
: Entity_Id
) return Node_Id
;
203 -- Given a type, find a corresponding stream convert pragma that applies to
204 -- the implementation base type of this type (Typ). If found, return the
205 -- pragma node, otherwise return Empty if no pragma is found.
207 function Is_Constrained_Packed_Array
(Typ
: Entity_Id
) return Boolean;
208 -- Utility for array attributes, returns true on packed constrained
209 -- arrays, and on access to same.
211 function Is_Inline_Floating_Point_Attribute
(N
: Node_Id
) return Boolean;
212 -- Returns true iff the given node refers to an attribute call that
213 -- can be expanded directly by the back end and does not need front end
214 -- expansion. Typically used for rounding and truncation attributes that
215 -- appear directly inside a conversion to integer.
217 -------------------------
218 -- Build_Array_VS_Func --
219 -------------------------
221 function Build_Array_VS_Func
223 Nod
: Node_Id
) return Entity_Id
225 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
226 Func_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'V');
227 Comp_Type
: constant Entity_Id
:= Component_Type
(A_Type
);
228 Body_Stmts
: List_Id
;
229 Index_List
: List_Id
;
232 function Test_Component
return List_Id
;
233 -- Create one statement to test validity of one component designated by
234 -- a full set of indexes. Returns statement list containing test.
236 function Test_One_Dimension
(N
: Int
) return List_Id
;
237 -- Create loop to test one dimension of the array. The single statement
238 -- in the loop body tests the inner dimensions if any, or else the
239 -- single component. Note that this procedure is called recursively,
240 -- with N being the dimension to be initialized. A call with N greater
241 -- than the number of dimensions simply generates the component test,
242 -- terminating the recursion. Returns statement list containing tests.
248 function Test_Component
return List_Id
is
254 Make_Indexed_Component
(Loc
,
255 Prefix
=> Make_Identifier
(Loc
, Name_uA
),
256 Expressions
=> Index_List
);
258 if Is_Scalar_Type
(Comp_Type
) then
261 Anam
:= Name_Valid_Scalars
;
265 Make_If_Statement
(Loc
,
269 Make_Attribute_Reference
(Loc
,
270 Attribute_Name
=> Anam
,
272 Then_Statements
=> New_List
(
273 Make_Simple_Return_Statement
(Loc
,
274 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
)))));
277 ------------------------
278 -- Test_One_Dimension --
279 ------------------------
281 function Test_One_Dimension
(N
: Int
) return List_Id
is
285 -- If all dimensions dealt with, we simply test the component
287 if N
> Number_Dimensions
(A_Type
) then
288 return Test_Component
;
290 -- Here we generate the required loop
294 Make_Defining_Identifier
(Loc
, New_External_Name
('J', N
));
296 Append
(New_Occurrence_Of
(Index
, Loc
), Index_List
);
299 Make_Implicit_Loop_Statement
(Nod
,
302 Make_Iteration_Scheme
(Loc
,
303 Loop_Parameter_Specification
=>
304 Make_Loop_Parameter_Specification
(Loc
,
305 Defining_Identifier
=> Index
,
306 Discrete_Subtype_Definition
=>
307 Make_Attribute_Reference
(Loc
,
308 Prefix
=> Make_Identifier
(Loc
, Name_uA
),
309 Attribute_Name
=> Name_Range
,
310 Expressions
=> New_List
(
311 Make_Integer_Literal
(Loc
, N
))))),
312 Statements
=> Test_One_Dimension
(N
+ 1)),
313 Make_Simple_Return_Statement
(Loc
,
314 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
316 end Test_One_Dimension
;
318 -- Start of processing for Build_Array_VS_Func
321 Index_List
:= New_List
;
322 Body_Stmts
:= Test_One_Dimension
(1);
324 -- Parameter is always (A : A_Typ)
326 Formals
:= New_List
(
327 Make_Parameter_Specification
(Loc
,
328 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_uA
),
330 Out_Present
=> False,
331 Parameter_Type
=> New_Occurrence_Of
(A_Type
, Loc
)));
335 Set_Ekind
(Func_Id
, E_Function
);
336 Set_Is_Internal
(Func_Id
);
339 Make_Subprogram_Body
(Loc
,
341 Make_Function_Specification
(Loc
,
342 Defining_Unit_Name
=> Func_Id
,
343 Parameter_Specifications
=> Formals
,
345 New_Occurrence_Of
(Standard_Boolean
, Loc
)),
346 Declarations
=> New_List
,
347 Handled_Statement_Sequence
=>
348 Make_Handled_Sequence_Of_Statements
(Loc
,
349 Statements
=> Body_Stmts
)));
351 if not Debug_Generated_Code
then
352 Set_Debug_Info_Off
(Func_Id
);
355 Set_Is_Pure
(Func_Id
);
357 end Build_Array_VS_Func
;
359 ---------------------------------
360 -- Build_Disp_Get_Task_Id_Call --
361 ---------------------------------
363 function Build_Disp_Get_Task_Id_Call
(Actual
: Node_Id
) return Node_Id
is
364 Loc
: constant Source_Ptr
:= Sloc
(Actual
);
365 Typ
: constant Entity_Id
:= Etype
(Actual
);
366 Subp
: constant Entity_Id
:= Find_Prim_Op
(Typ
, Name_uDisp_Get_Task_Id
);
370 -- _Disp_Get_Task_Id (Actual)
373 Make_Function_Call
(Loc
,
374 Name
=> New_Occurrence_Of
(Subp
, Loc
),
375 Parameter_Associations
=> New_List
(Actual
));
376 end Build_Disp_Get_Task_Id_Call
;
378 --------------------------
379 -- Build_Record_VS_Func --
380 --------------------------
384 -- function _Valid_Scalars (X : T) return Boolean is
386 -- -- Check discriminants
388 -- if not X.D1'Valid_Scalars or else
389 -- not X.D2'Valid_Scalars or else
395 -- -- Check components
397 -- if not X.C1'Valid_Scalars or else
398 -- not X.C2'Valid_Scalars or else
404 -- -- Check variant part
408 -- if not X.C2'Valid_Scalars or else
409 -- not X.C3'Valid_Scalars or else
416 -- if not X.Cn'Valid_Scalars or else
424 -- end _Valid_Scalars;
426 -- If the record type is an unchecked union, we can only check components
427 -- in the invariant part, given that there are no discriminant values to
430 function Build_Record_VS_Func
432 Nod
: Node_Id
) return Entity_Id
434 Loc
: constant Source_Ptr
:= Sloc
(R_Type
);
435 Func_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'V');
436 X
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_X
);
438 function Make_VS_Case
441 Discrs
: Elist_Id
:= New_Elmt_List
) return List_Id
;
442 -- Building block for variant valid scalars. Given a Component_List node
443 -- CL, it generates an 'if' followed by a 'case' statement that compares
444 -- all components of local temporaries named X and Y (that are declared
445 -- as formals at some upper level). E provides the Sloc to be used for
446 -- the generated code.
450 L
: List_Id
) return Node_Id
;
451 -- Building block for variant validate scalars. Given the list, L, of
452 -- components (or discriminants) L, it generates a return statement that
453 -- compares all components of local temporaries named X and Y (that are
454 -- declared as formals at some upper level). E provides the Sloc to be
455 -- used for the generated code.
461 -- <Make_VS_If on shared components>
464 -- when V1 => <Make_VS_Case> on subcomponents
466 -- when Vn => <Make_VS_Case> on subcomponents
469 function Make_VS_Case
472 Discrs
: Elist_Id
:= New_Elmt_List
) return List_Id
474 Loc
: constant Source_Ptr
:= Sloc
(E
);
475 Result
: constant List_Id
:= New_List
;
480 Append_To
(Result
, Make_VS_If
(E
, Component_Items
(CL
)));
482 if No
(Variant_Part
(CL
))
483 or else Is_Unchecked_Union
(R_Type
)
488 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(CL
)));
494 Alt_List
:= New_List
;
495 while Present
(Variant
) loop
497 Make_Case_Statement_Alternative
(Loc
,
498 Discrete_Choices
=> New_Copy_List
(Discrete_Choices
(Variant
)),
500 Make_VS_Case
(E
, Component_List
(Variant
), Discrs
)));
501 Next_Non_Pragma
(Variant
);
505 Make_Case_Statement
(Loc
,
507 Make_Selected_Component
(Loc
,
508 Prefix
=> Make_Identifier
(Loc
, Name_X
),
509 Selector_Name
=> New_Copy
(Name
(Variant_Part
(CL
)))),
510 Alternatives
=> Alt_List
));
522 -- not X.C1'Valid_Scalars
524 -- not X.C2'Valid_Scalars
530 -- or a null statement if the list L is empty
534 L
: List_Id
) return Node_Id
536 Loc
: constant Source_Ptr
:= Sloc
(E
);
539 Field_Name
: Name_Id
;
544 return Make_Null_Statement
(Loc
);
549 C
:= First_Non_Pragma
(L
);
550 while Present
(C
) loop
551 Def_Id
:= Defining_Identifier
(C
);
552 Field_Name
:= Chars
(Def_Id
);
554 -- The tags need not be checked since they will always be valid
556 -- Note also that in the following, we use Make_Identifier for
557 -- the component names. Use of New_Occurrence_Of to identify
558 -- the components would be incorrect because wrong entities for
559 -- discriminants could be picked up in the private type case.
561 -- Don't bother with abstract parent in interface case
563 if Field_Name
= Name_uParent
564 and then Is_Interface
(Etype
(Def_Id
))
568 -- Don't bother with tag, always valid, and not scalar anyway
570 elsif Field_Name
= Name_uTag
then
573 elsif Ekind
(Def_Id
) = E_Discriminant
574 and then Is_Unchecked_Union
(R_Type
)
578 -- Don't bother with component with no scalar components
580 elsif not Scalar_Part_Present
(Etype
(Def_Id
)) then
583 -- Normal case, generate Valid_Scalars attribute reference
586 Evolve_Or_Else
(Cond
,
589 Make_Attribute_Reference
(Loc
,
591 Make_Selected_Component
(Loc
,
593 Make_Identifier
(Loc
, Name_X
),
595 Make_Identifier
(Loc
, Field_Name
)),
596 Attribute_Name
=> Name_Valid_Scalars
)));
603 return Make_Null_Statement
(Loc
);
607 Make_Implicit_If_Statement
(E
,
609 Then_Statements
=> New_List
(
610 Make_Simple_Return_Statement
(Loc
,
612 New_Occurrence_Of
(Standard_False
, Loc
))));
619 Def
: constant Node_Id
:= Parent
(R_Type
);
620 Comps
: constant Node_Id
:= Component_List
(Type_Definition
(Def
));
621 Stmts
: constant List_Id
:= New_List
;
622 Pspecs
: constant List_Id
:= New_List
;
624 -- Start of processing for Build_Record_VS_Func
628 Make_Parameter_Specification
(Loc
,
629 Defining_Identifier
=> X
,
630 Parameter_Type
=> New_Occurrence_Of
(R_Type
, Loc
)));
633 Make_VS_If
(R_Type
, Discriminant_Specifications
(Def
)));
634 Append_List_To
(Stmts
, Make_VS_Case
(R_Type
, Comps
));
637 Make_Simple_Return_Statement
(Loc
,
638 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
641 Make_Subprogram_Body
(Loc
,
643 Make_Function_Specification
(Loc
,
644 Defining_Unit_Name
=> Func_Id
,
645 Parameter_Specifications
=> Pspecs
,
646 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
647 Declarations
=> New_List
,
648 Handled_Statement_Sequence
=>
649 Make_Handled_Sequence_Of_Statements
(Loc
, Statements
=> Stmts
)),
650 Suppress
=> Discriminant_Check
);
652 if not Debug_Generated_Code
then
653 Set_Debug_Info_Off
(Func_Id
);
656 Set_Is_Pure
(Func_Id
);
658 end Build_Record_VS_Func
;
660 ----------------------------------
661 -- Compile_Stream_Body_In_Scope --
662 ----------------------------------
664 procedure Compile_Stream_Body_In_Scope
670 C_Type
: constant Entity_Id
:= Base_Type
(Component_Type
(Arr
));
671 Curr
: constant Entity_Id
:= Current_Scope
;
672 Install
: Boolean := False;
673 Scop
: Entity_Id
:= Scope
(Arr
);
677 and then not In_Open_Scopes
(Scop
)
678 and then Ekind
(Scop
) = E_Package
683 -- The component type may be private, in which case we install its
684 -- full view to compile the subprogram.
686 -- The component type may be private, in which case we install its
687 -- full view to compile the subprogram. We do not do this if the
688 -- type has a Stream_Convert pragma, which indicates that there are
689 -- special stream-processing operations for that type (for example
690 -- Unbounded_String and its wide varieties).
692 Scop
:= Scope
(C_Type
);
694 if Is_Private_Type
(C_Type
)
695 and then Present
(Full_View
(C_Type
))
696 and then not In_Open_Scopes
(Scop
)
697 and then Ekind
(Scop
) = E_Package
698 and then No
(Get_Stream_Convert_Pragma
(C_Type
))
704 -- If we are within an instance body, then all visibility has been
705 -- established already and there is no need to install the package.
707 if Install
and then not In_Instance_Body
then
709 Install_Visible_Declarations
(Scop
);
710 Install_Private_Declarations
(Scop
);
712 -- The entities in the package are now visible, but the generated
713 -- stream entity must appear in the current scope (usually an
714 -- enclosing stream function) so that itypes all have their proper
723 Insert_Action
(N
, Decl
);
725 Insert_Action
(N
, Decl
, Suppress
=> All_Checks
);
730 -- Remove extra copy of current scope, and package itself
733 End_Package_Scope
(Scop
);
735 end Compile_Stream_Body_In_Scope
;
737 -----------------------------------
738 -- Expand_Access_To_Protected_Op --
739 -----------------------------------
741 procedure Expand_Access_To_Protected_Op
746 -- The value of the attribute_reference is a record containing two
747 -- fields: an access to the protected object, and an access to the
748 -- subprogram itself. The prefix is a selected component.
750 Loc
: constant Source_Ptr
:= Sloc
(N
);
752 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
755 E_T
: constant Entity_Id
:= Equivalent_Type
(Btyp
);
756 Acc
: constant Entity_Id
:=
757 Etype
(Next_Component
(First_Component
(E_T
)));
761 -- Start of processing for Expand_Access_To_Protected_Op
764 -- Within the body of the protected type, the prefix designates a local
765 -- operation, and the object is the first parameter of the corresponding
766 -- protected body of the current enclosing operation.
768 if Is_Entity_Name
(Pref
) then
769 -- All indirect calls are external calls, so must do locking and
770 -- barrier reevaluation, even if the 'Access occurs within the
771 -- protected body. Hence the call to External_Subprogram, as opposed
772 -- to Protected_Body_Subprogram, below. See RM-9.5(5). This means
773 -- that indirect calls from within the same protected body will
774 -- deadlock, as allowed by RM-9.5.1(8,15,17).
776 Sub
:= New_Occurrence_Of
(External_Subprogram
(Entity
(Pref
)), Loc
);
778 -- Don't traverse the scopes when the attribute occurs within an init
779 -- proc, because we directly use the _init formal of the init proc in
782 Curr
:= Current_Scope
;
783 if not Is_Init_Proc
(Curr
) then
784 pragma Assert
(In_Open_Scopes
(Scope
(Entity
(Pref
))));
786 while Scope
(Curr
) /= Scope
(Entity
(Pref
)) loop
787 Curr
:= Scope
(Curr
);
791 -- In case of protected entries the first formal of its Protected_
792 -- Body_Subprogram is the address of the object.
794 if Ekind
(Curr
) = E_Entry
then
798 (Protected_Body_Subprogram
(Curr
)), Loc
);
800 -- If the current scope is an init proc, then use the address of the
801 -- _init formal as the object reference.
803 elsif Is_Init_Proc
(Curr
) then
805 Make_Attribute_Reference
(Loc
,
806 Prefix
=> New_Occurrence_Of
(First_Formal
(Curr
), Loc
),
807 Attribute_Name
=> Name_Address
);
809 -- In case of protected subprograms the first formal of its
810 -- Protected_Body_Subprogram is the object and we get its address.
814 Make_Attribute_Reference
(Loc
,
818 (Protected_Body_Subprogram
(Curr
)), Loc
),
819 Attribute_Name
=> Name_Address
);
822 -- Case where the prefix is not an entity name. Find the
823 -- version of the protected operation to be called from
824 -- outside the protected object.
830 (Entity
(Selector_Name
(Pref
))), Loc
);
833 Make_Attribute_Reference
(Loc
,
834 Prefix
=> Relocate_Node
(Prefix
(Pref
)),
835 Attribute_Name
=> Name_Address
);
839 Make_Attribute_Reference
(Loc
,
841 Attribute_Name
=> Name_Access
);
843 -- We set the type of the access reference to the already generated
844 -- access_to_subprogram type, and declare the reference analyzed, to
845 -- prevent further expansion when the enclosing aggregate is analyzed.
847 Set_Etype
(Sub_Ref
, Acc
);
848 Set_Analyzed
(Sub_Ref
);
852 Expressions
=> New_List
(Obj_Ref
, Sub_Ref
));
854 -- Sub_Ref has been marked as analyzed, but we still need to make sure
855 -- Sub is correctly frozen.
857 Freeze_Before
(N
, Entity
(Sub
));
860 Analyze_And_Resolve
(N
, E_T
);
862 -- For subsequent analysis, the node must retain its type. The backend
863 -- will replace it with the equivalent type where needed.
866 end Expand_Access_To_Protected_Op
;
868 --------------------------
869 -- Expand_Fpt_Attribute --
870 --------------------------
872 procedure Expand_Fpt_Attribute
878 Loc
: constant Source_Ptr
:= Sloc
(N
);
879 Typ
: constant Entity_Id
:= Etype
(N
);
883 -- The function name is the selected component Attr_xxx.yyy where
884 -- Attr_xxx is the package name, and yyy is the argument Nam.
886 -- Note: it would be more usual to have separate RE entries for each
887 -- of the entities in the Fat packages, but first they have identical
888 -- names (so we would have to have lots of renaming declarations to
889 -- meet the normal RE rule of separate names for all runtime entities),
890 -- and second there would be an awful lot of them.
893 Make_Selected_Component
(Loc
,
894 Prefix
=> New_Occurrence_Of
(RTE
(Pkg
), Loc
),
895 Selector_Name
=> Make_Identifier
(Loc
, Nam
));
897 -- The generated call is given the provided set of parameters, and then
898 -- wrapped in a conversion which converts the result to the target type
899 -- We use the base type as the target because a range check may be
903 Unchecked_Convert_To
(Base_Type
(Etype
(N
)),
904 Make_Function_Call
(Loc
,
906 Parameter_Associations
=> Args
)));
908 Analyze_And_Resolve
(N
, Typ
);
909 end Expand_Fpt_Attribute
;
911 ----------------------------
912 -- Expand_Fpt_Attribute_R --
913 ----------------------------
915 -- The single argument is converted to its root type to call the
916 -- appropriate runtime function, with the actual call being built
917 -- by Expand_Fpt_Attribute
919 procedure Expand_Fpt_Attribute_R
(N
: Node_Id
) is
920 E1
: constant Node_Id
:= First
(Expressions
(N
));
924 Find_Fat_Info
(Etype
(E1
), Ftp
, Pkg
);
926 (N
, Pkg
, Attribute_Name
(N
),
927 New_List
(Unchecked_Convert_To
(Ftp
, Relocate_Node
(E1
))));
928 end Expand_Fpt_Attribute_R
;
930 -----------------------------
931 -- Expand_Fpt_Attribute_RI --
932 -----------------------------
934 -- The first argument is converted to its root type and the second
935 -- argument is converted to standard long long integer to call the
936 -- appropriate runtime function, with the actual call being built
937 -- by Expand_Fpt_Attribute
939 procedure Expand_Fpt_Attribute_RI
(N
: Node_Id
) is
940 E1
: constant Node_Id
:= First
(Expressions
(N
));
943 E2
: constant Node_Id
:= Next
(E1
);
945 Find_Fat_Info
(Etype
(E1
), Ftp
, Pkg
);
947 (N
, Pkg
, Attribute_Name
(N
),
949 Unchecked_Convert_To
(Ftp
, Relocate_Node
(E1
)),
950 Unchecked_Convert_To
(Standard_Integer
, Relocate_Node
(E2
))));
951 end Expand_Fpt_Attribute_RI
;
953 -----------------------------
954 -- Expand_Fpt_Attribute_RR --
955 -----------------------------
957 -- The two arguments are converted to their root types to call the
958 -- appropriate runtime function, with the actual call being built
959 -- by Expand_Fpt_Attribute
961 procedure Expand_Fpt_Attribute_RR
(N
: Node_Id
) is
962 E1
: constant Node_Id
:= First
(Expressions
(N
));
963 E2
: constant Node_Id
:= Next
(E1
);
968 Find_Fat_Info
(Etype
(E1
), Ftp
, Pkg
);
970 (N
, Pkg
, Attribute_Name
(N
),
972 Unchecked_Convert_To
(Ftp
, Relocate_Node
(E1
)),
973 Unchecked_Convert_To
(Ftp
, Relocate_Node
(E2
))));
974 end Expand_Fpt_Attribute_RR
;
976 ---------------------------------
977 -- Expand_Loop_Entry_Attribute --
978 ---------------------------------
980 procedure Expand_Loop_Entry_Attribute
(N
: Node_Id
) is
981 procedure Build_Conditional_Block
985 If_Stmt
: out Node_Id
;
986 Blk_Stmt
: out Node_Id
);
987 -- Create a block Blk_Stmt with an empty declarative list and a single
988 -- loop Loop_Stmt. The block is encased in an if statement If_Stmt with
989 -- condition Cond. If_Stmt is Empty when there is no condition provided.
991 function Is_Array_Iteration
(N
: Node_Id
) return Boolean;
992 -- Determine whether loop statement N denotes an Ada 2012 iteration over
995 -----------------------------
996 -- Build_Conditional_Block --
997 -----------------------------
999 procedure Build_Conditional_Block
1002 Loop_Stmt
: Node_Id
;
1003 If_Stmt
: out Node_Id
;
1004 Blk_Stmt
: out Node_Id
)
1007 -- Do not reanalyze the original loop statement because it is simply
1010 Set_Analyzed
(Loop_Stmt
);
1013 Make_Block_Statement
(Loc
,
1014 Declarations
=> New_List
,
1015 Handled_Statement_Sequence
=>
1016 Make_Handled_Sequence_Of_Statements
(Loc
,
1017 Statements
=> New_List
(Loop_Stmt
)));
1019 if Present
(Cond
) then
1021 Make_If_Statement
(Loc
,
1023 Then_Statements
=> New_List
(Blk_Stmt
));
1027 end Build_Conditional_Block
;
1029 ------------------------
1030 -- Is_Array_Iteration --
1031 ------------------------
1033 function Is_Array_Iteration
(N
: Node_Id
) return Boolean is
1034 Stmt
: constant Node_Id
:= Original_Node
(N
);
1038 if Nkind
(Stmt
) = N_Loop_Statement
1039 and then Present
(Iteration_Scheme
(Stmt
))
1040 and then Present
(Iterator_Specification
(Iteration_Scheme
(Stmt
)))
1042 Iter
:= Iterator_Specification
(Iteration_Scheme
(Stmt
));
1045 Of_Present
(Iter
) and then Is_Array_Type
(Etype
(Name
(Iter
)));
1049 end Is_Array_Iteration
;
1053 Pref
: constant Node_Id
:= Prefix
(N
);
1054 Base_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Pref
));
1055 Exprs
: constant List_Id
:= Expressions
(N
);
1059 Installed
: Boolean;
1061 Loop_Id
: Entity_Id
;
1062 Loop_Stmt
: Node_Id
;
1063 Result
: Node_Id
:= Empty
;
1065 Temp_Decl
: Node_Id
;
1066 Temp_Id
: Entity_Id
;
1068 -- Start of processing for Expand_Loop_Entry_Attribute
1071 -- Step 1: Find the related loop
1073 -- The loop label variant of attribute 'Loop_Entry already has all the
1074 -- information in its expression.
1076 if Present
(Exprs
) then
1077 Loop_Id
:= Entity
(First
(Exprs
));
1078 Loop_Stmt
:= Label_Construct
(Parent
(Loop_Id
));
1080 -- Climb the parent chain to find the nearest enclosing loop. Skip
1081 -- all internally generated loops for quantified expressions and for
1082 -- element iterators over multidimensional arrays because the pragma
1083 -- applies to source loop.
1087 while Present
(Loop_Stmt
) loop
1088 if Nkind
(Loop_Stmt
) = N_Loop_Statement
1089 and then Nkind
(Original_Node
(Loop_Stmt
)) = N_Loop_Statement
1090 and then Comes_From_Source
(Original_Node
(Loop_Stmt
))
1095 Loop_Stmt
:= Parent
(Loop_Stmt
);
1098 Loop_Id
:= Entity
(Identifier
(Loop_Stmt
));
1101 Loc
:= Sloc
(Loop_Stmt
);
1103 -- Step 2: Transform the loop
1105 -- The loop has already been transformed during the expansion of a prior
1106 -- 'Loop_Entry attribute. Retrieve the declarative list of the block.
1108 if Has_Loop_Entry_Attributes
(Loop_Id
) then
1110 -- When the related loop name appears as the argument of attribute
1111 -- Loop_Entry, the corresponding label construct is the generated
1112 -- block statement. This is because the expander reuses the label.
1114 if Nkind
(Loop_Stmt
) = N_Block_Statement
then
1115 Decls
:= Declarations
(Loop_Stmt
);
1117 -- In all other cases, the loop must appear in the handled sequence
1118 -- of statements of the generated block.
1122 (Nkind
(Parent
(Loop_Stmt
)) = N_Handled_Sequence_Of_Statements
1124 Nkind
(Parent
(Parent
(Loop_Stmt
))) = N_Block_Statement
);
1126 Decls
:= Declarations
(Parent
(Parent
(Loop_Stmt
)));
1129 -- Transform the loop into a conditional block
1132 Set_Has_Loop_Entry_Attributes
(Loop_Id
);
1133 Scheme
:= Iteration_Scheme
(Loop_Stmt
);
1135 -- Infinite loops are transformed into:
1138 -- Temp1 : constant <type of Pref1> := <Pref1>;
1140 -- TempN : constant <type of PrefN> := <PrefN>;
1143 -- <original source statements with attribute rewrites>
1148 Build_Conditional_Block
(Loc
,
1150 Loop_Stmt
=> Relocate_Node
(Loop_Stmt
),
1156 -- While loops are transformed into:
1158 -- function Fnn return Boolean is
1160 -- <condition actions>
1161 -- return <condition>;
1166 -- Temp1 : constant <type of Pref1> := <Pref1>;
1168 -- TempN : constant <type of PrefN> := <PrefN>;
1171 -- <original source statements with attribute rewrites>
1172 -- exit when not Fnn;
1177 -- Note that loops over iterators and containers are already
1178 -- converted into while loops.
1180 elsif Present
(Condition
(Scheme
)) then
1182 Func_Decl
: Node_Id
;
1183 Func_Id
: Entity_Id
;
1187 -- Wrap the condition of the while loop in a Boolean function.
1188 -- This avoids the duplication of the same code which may lead
1189 -- to gigi issues with respect to multiple declaration of the
1190 -- same entity in the presence of side effects or checks. Note
1191 -- that the condition actions must also be relocated to the
1192 -- wrapping function.
1195 -- <condition actions>
1196 -- return <condition>;
1198 if Present
(Condition_Actions
(Scheme
)) then
1199 Stmts
:= Condition_Actions
(Scheme
);
1205 Make_Simple_Return_Statement
(Loc
,
1206 Expression
=> Relocate_Node
(Condition
(Scheme
))));
1209 -- function Fnn return Boolean is
1214 Func_Id
:= Make_Temporary
(Loc
, 'F');
1216 Make_Subprogram_Body
(Loc
,
1218 Make_Function_Specification
(Loc
,
1219 Defining_Unit_Name
=> Func_Id
,
1220 Result_Definition
=>
1221 New_Occurrence_Of
(Standard_Boolean
, Loc
)),
1222 Declarations
=> Empty_List
,
1223 Handled_Statement_Sequence
=>
1224 Make_Handled_Sequence_Of_Statements
(Loc
,
1225 Statements
=> Stmts
));
1227 -- The function is inserted before the related loop. Make sure
1228 -- to analyze it in the context of the loop's enclosing scope.
1230 Push_Scope
(Scope
(Loop_Id
));
1231 Insert_Action
(Loop_Stmt
, Func_Decl
);
1234 -- Transform the original while loop into an infinite loop
1235 -- where the last statement checks the negated condition. This
1236 -- placement ensures that the condition will not be evaluated
1237 -- twice on the first iteration.
1239 Set_Iteration_Scheme
(Loop_Stmt
, Empty
);
1243 -- exit when not Fnn;
1245 Append_To
(Statements
(Loop_Stmt
),
1246 Make_Exit_Statement
(Loc
,
1250 Make_Function_Call
(Loc
,
1251 Name
=> New_Occurrence_Of
(Func_Id
, Loc
)))));
1253 Build_Conditional_Block
(Loc
,
1255 Make_Function_Call
(Loc
,
1256 Name
=> New_Occurrence_Of
(Func_Id
, Loc
)),
1257 Loop_Stmt
=> Relocate_Node
(Loop_Stmt
),
1262 -- Ada 2012 iteration over an array is transformed into:
1264 -- if <Array_Nam>'Length (1) > 0
1265 -- and then <Array_Nam>'Length (N) > 0
1268 -- Temp1 : constant <type of Pref1> := <Pref1>;
1270 -- TempN : constant <type of PrefN> := <PrefN>;
1272 -- for X in ... loop -- multiple loops depending on dims
1273 -- <original source statements with attribute rewrites>
1278 elsif Is_Array_Iteration
(Loop_Stmt
) then
1280 Array_Nam
: constant Entity_Id
:=
1281 Entity
(Name
(Iterator_Specification
1282 (Iteration_Scheme
(Original_Node
(Loop_Stmt
)))));
1283 Num_Dims
: constant Pos
:=
1284 Number_Dimensions
(Etype
(Array_Nam
));
1285 Cond
: Node_Id
:= Empty
;
1289 -- Generate a check which determines whether all dimensions of
1290 -- the array are non-null.
1292 for Dim
in 1 .. Num_Dims
loop
1296 Make_Attribute_Reference
(Loc
,
1297 Prefix
=> New_Occurrence_Of
(Array_Nam
, Loc
),
1298 Attribute_Name
=> Name_Length
,
1299 Expressions
=> New_List
(
1300 Make_Integer_Literal
(Loc
, Dim
))),
1302 Make_Integer_Literal
(Loc
, 0));
1310 Right_Opnd
=> Check
);
1314 Build_Conditional_Block
(Loc
,
1316 Loop_Stmt
=> Relocate_Node
(Loop_Stmt
),
1321 -- For loops are transformed into:
1323 -- if <Low> <= <High> then
1325 -- Temp1 : constant <type of Pref1> := <Pref1>;
1327 -- TempN : constant <type of PrefN> := <PrefN>;
1329 -- for <Def_Id> in <Low> .. <High> loop
1330 -- <original source statements with attribute rewrites>
1335 elsif Present
(Loop_Parameter_Specification
(Scheme
)) then
1337 Loop_Spec
: constant Node_Id
:=
1338 Loop_Parameter_Specification
(Scheme
);
1343 Subt_Def
:= Discrete_Subtype_Definition
(Loop_Spec
);
1345 -- When the loop iterates over a subtype indication with a
1346 -- range, use the low and high bounds of the subtype itself.
1348 if Nkind
(Subt_Def
) = N_Subtype_Indication
then
1349 Subt_Def
:= Scalar_Range
(Etype
(Subt_Def
));
1352 pragma Assert
(Nkind
(Subt_Def
) = N_Range
);
1359 Left_Opnd
=> New_Copy_Tree
(Low_Bound
(Subt_Def
)),
1360 Right_Opnd
=> New_Copy_Tree
(High_Bound
(Subt_Def
)));
1362 Build_Conditional_Block
(Loc
,
1364 Loop_Stmt
=> Relocate_Node
(Loop_Stmt
),
1370 Decls
:= Declarations
(Blk
);
1373 -- Step 3: Create a constant to capture the value of the prefix at the
1374 -- entry point into the loop.
1376 Temp_Id
:= Make_Temporary
(Loc
, 'P');
1378 -- Preserve the tag of the prefix by offering a specific view of the
1379 -- class-wide version of the prefix.
1381 if Is_Tagged_Type
(Base_Typ
) then
1382 Tagged_Case
: declare
1383 CW_Temp
: Entity_Id
;
1388 -- CW_Temp : constant Base_Typ'Class := Base_Typ'Class (Pref);
1390 CW_Temp
:= Make_Temporary
(Loc
, 'T');
1391 CW_Typ
:= Class_Wide_Type
(Base_Typ
);
1394 Make_Object_Declaration
(Loc
,
1395 Defining_Identifier
=> CW_Temp
,
1396 Constant_Present
=> True,
1397 Object_Definition
=> New_Occurrence_Of
(CW_Typ
, Loc
),
1399 Convert_To
(CW_Typ
, Relocate_Node
(Pref
)));
1400 Append_To
(Decls
, Aux_Decl
);
1403 -- Temp : Base_Typ renames Base_Typ (CW_Temp);
1406 Make_Object_Renaming_Declaration
(Loc
,
1407 Defining_Identifier
=> Temp_Id
,
1408 Subtype_Mark
=> New_Occurrence_Of
(Base_Typ
, Loc
),
1410 Convert_To
(Base_Typ
, New_Occurrence_Of
(CW_Temp
, Loc
)));
1411 Append_To
(Decls
, Temp_Decl
);
1417 Untagged_Case
: declare
1418 Temp_Expr
: Node_Id
;
1423 -- Generate a nominal type for the constant when the prefix is of
1424 -- a constrained type. This is achieved by setting the Etype of
1425 -- the relocated prefix to its base type. Since the prefix is now
1426 -- the initialization expression of the constant, its freezing
1427 -- will produce a proper nominal type.
1429 Temp_Expr
:= Relocate_Node
(Pref
);
1430 Set_Etype
(Temp_Expr
, Base_Typ
);
1433 -- Temp : constant Base_Typ := Pref;
1436 Make_Object_Declaration
(Loc
,
1437 Defining_Identifier
=> Temp_Id
,
1438 Constant_Present
=> True,
1439 Object_Definition
=> New_Occurrence_Of
(Base_Typ
, Loc
),
1440 Expression
=> Temp_Expr
);
1441 Append_To
(Decls
, Temp_Decl
);
1445 -- Step 4: Analyze all bits
1447 Installed
:= Current_Scope
= Scope
(Loop_Id
);
1449 -- Depending on the pracement of attribute 'Loop_Entry relative to the
1450 -- associated loop, ensure the proper visibility for analysis.
1452 if not Installed
then
1453 Push_Scope
(Scope
(Loop_Id
));
1456 -- The analysis of the conditional block takes care of the constant
1459 if Present
(Result
) then
1460 Rewrite
(Loop_Stmt
, Result
);
1461 Analyze
(Loop_Stmt
);
1463 -- The conditional block was analyzed when a previous 'Loop_Entry was
1464 -- expanded. There is no point in reanalyzing the block, simply analyze
1465 -- the declaration of the constant.
1468 if Present
(Aux_Decl
) then
1472 Analyze
(Temp_Decl
);
1475 Rewrite
(N
, New_Occurrence_Of
(Temp_Id
, Loc
));
1478 if not Installed
then
1481 end Expand_Loop_Entry_Attribute
;
1483 ------------------------------
1484 -- Expand_Min_Max_Attribute --
1485 ------------------------------
1487 procedure Expand_Min_Max_Attribute
(N
: Node_Id
) is
1489 -- Min and Max are handled by the back end (except that static cases
1490 -- have already been evaluated during semantic processing, although the
1491 -- back end should not count on this). The one bit of special processing
1492 -- required in the normal case is that these two attributes typically
1493 -- generate conditionals in the code, so check the relevant restriction.
1495 Check_Restriction
(No_Implicit_Conditionals
, N
);
1497 -- In Modify_Tree_For_C mode, we rewrite as an if expression
1499 if Modify_Tree_For_C
then
1501 Loc
: constant Source_Ptr
:= Sloc
(N
);
1502 Typ
: constant Entity_Id
:= Etype
(N
);
1503 Expr
: constant Node_Id
:= First
(Expressions
(N
));
1504 Left
: constant Node_Id
:= Relocate_Node
(Expr
);
1505 Right
: constant Node_Id
:= Relocate_Node
(Next
(Expr
));
1507 function Make_Compare
(Left
, Right
: Node_Id
) return Node_Id
;
1508 -- Returns Left >= Right for Max, Left <= Right for Min
1514 function Make_Compare
(Left
, Right
: Node_Id
) return Node_Id
is
1516 if Attribute_Name
(N
) = Name_Max
then
1520 Right_Opnd
=> Right
);
1525 Right_Opnd
=> Right
);
1529 -- Start of processing for Min_Max
1532 -- If both Left and Right are side effect free, then we can just
1533 -- use Duplicate_Expr to duplicate the references and return
1535 -- (if Left >=|<= Right then Left else Right)
1537 if Side_Effect_Free
(Left
) and then Side_Effect_Free
(Right
) then
1539 Make_If_Expression
(Loc
,
1540 Expressions
=> New_List
(
1541 Make_Compare
(Left
, Right
),
1542 Duplicate_Subexpr_No_Checks
(Left
),
1543 Duplicate_Subexpr_No_Checks
(Right
))));
1545 -- Otherwise we generate declarations to capture the values.
1547 -- The translation is
1550 -- T1 : constant typ := Left;
1551 -- T2 : constant typ := Right;
1553 -- (if T1 >=|<= T2 then T1 else T2)
1558 T1
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', Left
);
1559 T2
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', Right
);
1563 Make_Expression_With_Actions
(Loc
,
1564 Actions
=> New_List
(
1565 Make_Object_Declaration
(Loc
,
1566 Defining_Identifier
=> T1
,
1567 Constant_Present
=> True,
1568 Object_Definition
=>
1569 New_Occurrence_Of
(Etype
(Left
), Loc
),
1570 Expression
=> Relocate_Node
(Left
)),
1572 Make_Object_Declaration
(Loc
,
1573 Defining_Identifier
=> T2
,
1574 Constant_Present
=> True,
1575 Object_Definition
=>
1576 New_Occurrence_Of
(Etype
(Right
), Loc
),
1577 Expression
=> Relocate_Node
(Right
))),
1580 Make_If_Expression
(Loc
,
1581 Expressions
=> New_List
(
1583 (New_Occurrence_Of
(T1
, Loc
),
1584 New_Occurrence_Of
(T2
, Loc
)),
1585 New_Occurrence_Of
(T1
, Loc
),
1586 New_Occurrence_Of
(T2
, Loc
)))));
1590 Analyze_And_Resolve
(N
, Typ
);
1593 end Expand_Min_Max_Attribute
;
1595 ----------------------------------
1596 -- Expand_N_Attribute_Reference --
1597 ----------------------------------
1599 procedure Expand_N_Attribute_Reference
(N
: Node_Id
) is
1600 Loc
: constant Source_Ptr
:= Sloc
(N
);
1601 Typ
: constant Entity_Id
:= Etype
(N
);
1602 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
1603 Pref
: constant Node_Id
:= Prefix
(N
);
1604 Ptyp
: constant Entity_Id
:= Etype
(Pref
);
1605 Exprs
: constant List_Id
:= Expressions
(N
);
1606 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attribute_Name
(N
));
1608 procedure Rewrite_Stream_Proc_Call
(Pname
: Entity_Id
);
1609 -- Rewrites a stream attribute for Read, Write or Output with the
1610 -- procedure call. Pname is the entity for the procedure to call.
1612 ------------------------------
1613 -- Rewrite_Stream_Proc_Call --
1614 ------------------------------
1616 procedure Rewrite_Stream_Proc_Call
(Pname
: Entity_Id
) is
1617 Item
: constant Node_Id
:= Next
(First
(Exprs
));
1618 Item_Typ
: constant Entity_Id
:= Etype
(Item
);
1619 Formal
: constant Entity_Id
:= Next_Formal
(First_Formal
(Pname
));
1620 Formal_Typ
: constant Entity_Id
:= Etype
(Formal
);
1621 Is_Written
: constant Boolean := Ekind
(Formal
) /= E_In_Parameter
;
1624 -- The expansion depends on Item, the second actual, which is
1625 -- the object being streamed in or out.
1627 -- If the item is a component of a packed array type, and
1628 -- a conversion is needed on exit, we introduce a temporary to
1629 -- hold the value, because otherwise the packed reference will
1630 -- not be properly expanded.
1632 if Nkind
(Item
) = N_Indexed_Component
1633 and then Is_Packed
(Base_Type
(Etype
(Prefix
(Item
))))
1634 and then Base_Type
(Item_Typ
) /= Base_Type
(Formal_Typ
)
1638 Temp
: constant Entity_Id
:= Make_Temporary
(Loc
, 'V');
1644 Make_Object_Declaration
(Loc
,
1645 Defining_Identifier
=> Temp
,
1646 Object_Definition
=> New_Occurrence_Of
(Formal_Typ
, Loc
));
1647 Set_Etype
(Temp
, Formal_Typ
);
1650 Make_Assignment_Statement
(Loc
,
1651 Name
=> New_Copy_Tree
(Item
),
1653 Unchecked_Convert_To
1654 (Item_Typ
, New_Occurrence_Of
(Temp
, Loc
)));
1656 Rewrite
(Item
, New_Occurrence_Of
(Temp
, Loc
));
1660 Make_Procedure_Call_Statement
(Loc
,
1661 Name
=> New_Occurrence_Of
(Pname
, Loc
),
1662 Parameter_Associations
=> Exprs
),
1665 Rewrite
(N
, Make_Null_Statement
(Loc
));
1670 -- For the class-wide dispatching cases, and for cases in which
1671 -- the base type of the second argument matches the base type of
1672 -- the corresponding formal parameter (that is to say the stream
1673 -- operation is not inherited), we are all set, and can use the
1674 -- argument unchanged.
1676 if not Is_Class_Wide_Type
(Entity
(Pref
))
1677 and then not Is_Class_Wide_Type
(Etype
(Item
))
1678 and then Base_Type
(Item_Typ
) /= Base_Type
(Formal_Typ
)
1680 -- Perform a view conversion when either the argument or the
1681 -- formal parameter are of a private type.
1683 if Is_Private_Type
(Base_Type
(Formal_Typ
))
1684 or else Is_Private_Type
(Base_Type
(Item_Typ
))
1687 Unchecked_Convert_To
(Formal_Typ
, Relocate_Node
(Item
)));
1689 -- Otherwise perform a regular type conversion to ensure that all
1690 -- relevant checks are installed.
1693 Rewrite
(Item
, Convert_To
(Formal_Typ
, Relocate_Node
(Item
)));
1696 -- For untagged derived types set Assignment_OK, to prevent
1697 -- copies from being created when the unchecked conversion
1698 -- is expanded (which would happen in Remove_Side_Effects
1699 -- if Expand_N_Unchecked_Conversion were allowed to call
1700 -- Force_Evaluation). The copy could violate Ada semantics in
1701 -- cases such as an actual that is an out parameter. Note that
1702 -- this approach is also used in exp_ch7 for calls to controlled
1703 -- type operations to prevent problems with actuals wrapped in
1704 -- unchecked conversions.
1706 if Is_Untagged_Derivation
(Etype
(Expression
(Item
))) then
1707 Set_Assignment_OK
(Item
);
1711 -- The stream operation to call may be a renaming created by an
1712 -- attribute definition clause, and may not be frozen yet. Ensure
1713 -- that it has the necessary extra formals.
1715 if not Is_Frozen
(Pname
) then
1716 Create_Extra_Formals
(Pname
);
1719 -- And now rewrite the call
1722 Make_Procedure_Call_Statement
(Loc
,
1723 Name
=> New_Occurrence_Of
(Pname
, Loc
),
1724 Parameter_Associations
=> Exprs
));
1727 end Rewrite_Stream_Proc_Call
;
1729 -- Start of processing for Expand_N_Attribute_Reference
1732 -- Do required validity checking, if enabled. Do not apply check to
1733 -- output parameters of an Asm instruction, since the value of this
1734 -- is not set till after the attribute has been elaborated, and do
1735 -- not apply the check to the arguments of a 'Read or 'Input attribute
1736 -- reference since the scalar argument is an OUT scalar.
1738 if Validity_Checks_On
and then Validity_Check_Operands
1739 and then Id
/= Attribute_Asm_Output
1740 and then Id
/= Attribute_Read
1741 and then Id
/= Attribute_Input
1746 Expr
:= First
(Expressions
(N
));
1747 while Present
(Expr
) loop
1748 Ensure_Valid
(Expr
);
1754 -- Ada 2005 (AI-318-02): If attribute prefix is a call to a build-in-
1755 -- place function, then a temporary return object needs to be created
1756 -- and access to it must be passed to the function. Currently we limit
1757 -- such functions to those with inherently limited result subtypes, but
1758 -- eventually we plan to expand the functions that are treated as
1759 -- build-in-place to include other composite result types.
1761 if Ada_Version
>= Ada_2005
1762 and then Is_Build_In_Place_Function_Call
(Pref
)
1764 Make_Build_In_Place_Call_In_Anonymous_Context
(Pref
);
1766 -- Ada 2005 (AI-318-02): Specialization of the previous case for prefix
1767 -- containing build-in-place function calls whose returned object covers
1770 elsif Ada_Version
>= Ada_2005
1771 and then Present
(Unqual_BIP_Iface_Function_Call
(Pref
))
1773 Make_Build_In_Place_Iface_Call_In_Anonymous_Context
(Pref
);
1776 -- If prefix is a protected type name, this is a reference to the
1777 -- current instance of the type. For a component definition, nothing
1778 -- to do (expansion will occur in the init proc). In other contexts,
1779 -- rewrite into reference to current instance.
1781 if Is_Protected_Self_Reference
(Pref
)
1783 (Nkind_In
(Parent
(N
), N_Index_Or_Discriminant_Constraint
,
1784 N_Discriminant_Association
)
1785 and then Nkind
(Parent
(Parent
(Parent
(Parent
(N
))))) =
1786 N_Component_Definition
)
1788 -- No action needed for these attributes since the current instance
1789 -- will be rewritten to be the name of the _object parameter
1790 -- associated with the enclosing protected subprogram (see below).
1792 and then Id
/= Attribute_Access
1793 and then Id
/= Attribute_Unchecked_Access
1794 and then Id
/= Attribute_Unrestricted_Access
1796 Rewrite
(Pref
, Concurrent_Ref
(Pref
));
1800 -- Remaining processing depends on specific attribute
1802 -- Note: individual sections of the following case statement are
1803 -- allowed to assume there is no code after the case statement, and
1804 -- are legitimately allowed to execute return statements if they have
1805 -- nothing more to do.
1809 -- Attributes related to Ada 2012 iterators
1811 when Attribute_Constant_Indexing
1812 | Attribute_Default_Iterator
1813 | Attribute_Implicit_Dereference
1814 | Attribute_Iterable
1815 | Attribute_Iterator_Element
1816 | Attribute_Variable_Indexing
1820 -- Internal attributes used to deal with Ada 2012 delayed aspects. These
1821 -- were already rejected by the parser. Thus they shouldn't appear here.
1823 when Internal_Attribute_Id
=>
1824 raise Program_Error
;
1830 when Attribute_Access
1831 | Attribute_Unchecked_Access
1832 | Attribute_Unrestricted_Access
1834 Access_Cases
: declare
1835 Ref_Object
: constant Node_Id
:= Get_Referenced_Object
(Pref
);
1836 Btyp_DDT
: Entity_Id
;
1838 function Enclosing_Object
(N
: Node_Id
) return Node_Id
;
1839 -- If N denotes a compound name (selected component, indexed
1840 -- component, or slice), returns the name of the outermost such
1841 -- enclosing object. Otherwise returns N. If the object is a
1842 -- renaming, then the renamed object is returned.
1844 ----------------------
1845 -- Enclosing_Object --
1846 ----------------------
1848 function Enclosing_Object
(N
: Node_Id
) return Node_Id
is
1853 while Nkind_In
(Obj_Name
, N_Selected_Component
,
1854 N_Indexed_Component
,
1857 Obj_Name
:= Prefix
(Obj_Name
);
1860 return Get_Referenced_Object
(Obj_Name
);
1861 end Enclosing_Object
;
1863 -- Local declarations
1865 Enc_Object
: constant Node_Id
:= Enclosing_Object
(Ref_Object
);
1867 -- Start of processing for Access_Cases
1870 Btyp_DDT
:= Designated_Type
(Btyp
);
1872 -- Handle designated types that come from the limited view
1874 if From_Limited_With
(Btyp_DDT
)
1875 and then Has_Non_Limited_View
(Btyp_DDT
)
1877 Btyp_DDT
:= Non_Limited_View
(Btyp_DDT
);
1880 -- In order to improve the text of error messages, the designated
1881 -- type of access-to-subprogram itypes is set by the semantics as
1882 -- the associated subprogram entity (see sem_attr). Now we replace
1883 -- such node with the proper E_Subprogram_Type itype.
1885 if Id
= Attribute_Unrestricted_Access
1886 and then Is_Subprogram
(Directly_Designated_Type
(Typ
))
1888 -- The following conditions ensure that this special management
1889 -- is done only for "Address!(Prim'Unrestricted_Access)" nodes.
1890 -- At this stage other cases in which the designated type is
1891 -- still a subprogram (instead of an E_Subprogram_Type) are
1892 -- wrong because the semantics must have overridden the type of
1893 -- the node with the type imposed by the context.
1895 if Nkind
(Parent
(N
)) = N_Unchecked_Type_Conversion
1896 and then Etype
(Parent
(N
)) = RTE
(RE_Prim_Ptr
)
1898 Set_Etype
(N
, RTE
(RE_Prim_Ptr
));
1902 Subp
: constant Entity_Id
:=
1903 Directly_Designated_Type
(Typ
);
1905 Extra
: Entity_Id
:= Empty
;
1906 New_Formal
: Entity_Id
;
1907 Old_Formal
: Entity_Id
:= First_Formal
(Subp
);
1908 Subp_Typ
: Entity_Id
;
1911 Subp_Typ
:= Create_Itype
(E_Subprogram_Type
, N
);
1912 Set_Etype
(Subp_Typ
, Etype
(Subp
));
1913 Set_Returns_By_Ref
(Subp_Typ
, Returns_By_Ref
(Subp
));
1915 if Present
(Old_Formal
) then
1916 New_Formal
:= New_Copy
(Old_Formal
);
1917 Set_First_Entity
(Subp_Typ
, New_Formal
);
1920 Set_Scope
(New_Formal
, Subp_Typ
);
1921 Etyp
:= Etype
(New_Formal
);
1923 -- Handle itypes. There is no need to duplicate
1924 -- here the itypes associated with record types
1925 -- (i.e the implicit full view of private types).
1928 and then Ekind
(Base_Type
(Etyp
)) /= E_Record_Type
1930 Extra
:= New_Copy
(Etyp
);
1931 Set_Parent
(Extra
, New_Formal
);
1932 Set_Etype
(New_Formal
, Extra
);
1933 Set_Scope
(Extra
, Subp_Typ
);
1936 Extra
:= New_Formal
;
1937 Next_Formal
(Old_Formal
);
1938 exit when No
(Old_Formal
);
1940 Set_Next_Entity
(New_Formal
,
1941 New_Copy
(Old_Formal
));
1942 Next_Entity
(New_Formal
);
1945 Set_Next_Entity
(New_Formal
, Empty
);
1946 Set_Last_Entity
(Subp_Typ
, Extra
);
1949 -- Now that the explicit formals have been duplicated,
1950 -- any extra formals needed by the subprogram must be
1953 if Present
(Extra
) then
1954 Set_Extra_Formal
(Extra
, Empty
);
1957 Create_Extra_Formals
(Subp_Typ
);
1958 Set_Directly_Designated_Type
(Typ
, Subp_Typ
);
1963 if Is_Access_Protected_Subprogram_Type
(Btyp
) then
1964 Expand_Access_To_Protected_Op
(N
, Pref
, Typ
);
1966 -- If prefix is a type name, this is a reference to the current
1967 -- instance of the type, within its initialization procedure.
1969 elsif Is_Entity_Name
(Pref
)
1970 and then Is_Type
(Entity
(Pref
))
1977 -- If the current instance name denotes a task type, then
1978 -- the access attribute is rewritten to be the name of the
1979 -- "_task" parameter associated with the task type's task
1980 -- procedure. An unchecked conversion is applied to ensure
1981 -- a type match in cases of expander-generated calls (e.g.
1984 if Is_Task_Type
(Entity
(Pref
)) then
1986 First_Entity
(Get_Task_Body_Procedure
(Entity
(Pref
)));
1987 while Present
(Formal
) loop
1988 exit when Chars
(Formal
) = Name_uTask
;
1989 Next_Entity
(Formal
);
1992 pragma Assert
(Present
(Formal
));
1995 Unchecked_Convert_To
(Typ
,
1996 New_Occurrence_Of
(Formal
, Loc
)));
1999 elsif Is_Protected_Type
(Entity
(Pref
)) then
2001 -- No action needed for current instance located in a
2002 -- component definition (expansion will occur in the
2005 if Is_Protected_Type
(Current_Scope
) then
2008 -- If the current instance reference is located in a
2009 -- protected subprogram or entry then rewrite the access
2010 -- attribute to be the name of the "_object" parameter.
2011 -- An unchecked conversion is applied to ensure a type
2012 -- match in cases of expander-generated calls (e.g. init
2015 -- The code may be nested in a block, so find enclosing
2016 -- scope that is a protected operation.
2023 Subp
:= Current_Scope
;
2024 while Ekind_In
(Subp
, E_Loop
, E_Block
) loop
2025 Subp
:= Scope
(Subp
);
2030 (Protected_Body_Subprogram
(Subp
));
2032 -- For a protected subprogram the _Object parameter
2033 -- is the protected record, so we create an access
2034 -- to it. The _Object parameter of an entry is an
2037 if Ekind
(Subp
) = E_Entry
then
2039 Unchecked_Convert_To
(Typ
,
2040 New_Occurrence_Of
(Formal
, Loc
)));
2045 Unchecked_Convert_To
(Typ
,
2046 Make_Attribute_Reference
(Loc
,
2047 Attribute_Name
=> Name_Unrestricted_Access
,
2049 New_Occurrence_Of
(Formal
, Loc
))));
2050 Analyze_And_Resolve
(N
);
2055 -- The expression must appear in a default expression,
2056 -- (which in the initialization procedure is the right-hand
2057 -- side of an assignment), and not in a discriminant
2062 while Present
(Par
) loop
2063 exit when Nkind
(Par
) = N_Assignment_Statement
;
2065 if Nkind
(Par
) = N_Component_Declaration
then
2069 Par
:= Parent
(Par
);
2072 if Present
(Par
) then
2074 Make_Attribute_Reference
(Loc
,
2075 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2076 Attribute_Name
=> Attribute_Name
(N
)));
2078 Analyze_And_Resolve
(N
, Typ
);
2083 -- If the prefix of an Access attribute is a dereference of an
2084 -- access parameter (or a renaming of such a dereference, or a
2085 -- subcomponent of such a dereference) and the context is a
2086 -- general access type (including the type of an object or
2087 -- component with an access_definition, but not the anonymous
2088 -- type of an access parameter or access discriminant), then
2089 -- apply an accessibility check to the access parameter. We used
2090 -- to rewrite the access parameter as a type conversion, but that
2091 -- could only be done if the immediate prefix of the Access
2092 -- attribute was the dereference, and didn't handle cases where
2093 -- the attribute is applied to a subcomponent of the dereference,
2094 -- since there's generally no available, appropriate access type
2095 -- to convert to in that case. The attribute is passed as the
2096 -- point to insert the check, because the access parameter may
2097 -- come from a renaming, possibly in a different scope, and the
2098 -- check must be associated with the attribute itself.
2100 elsif Id
= Attribute_Access
2101 and then Nkind
(Enc_Object
) = N_Explicit_Dereference
2102 and then Is_Entity_Name
(Prefix
(Enc_Object
))
2103 and then (Ekind
(Btyp
) = E_General_Access_Type
2104 or else Is_Local_Anonymous_Access
(Btyp
))
2105 and then Ekind
(Entity
(Prefix
(Enc_Object
))) in Formal_Kind
2106 and then Ekind
(Etype
(Entity
(Prefix
(Enc_Object
))))
2107 = E_Anonymous_Access_Type
2108 and then Present
(Extra_Accessibility
2109 (Entity
(Prefix
(Enc_Object
))))
2111 Apply_Accessibility_Check
(Prefix
(Enc_Object
), Typ
, N
);
2113 -- Ada 2005 (AI-251): If the designated type is an interface we
2114 -- add an implicit conversion to force the displacement of the
2115 -- pointer to reference the secondary dispatch table.
2117 elsif Is_Interface
(Btyp_DDT
)
2118 and then (Comes_From_Source
(N
)
2119 or else Comes_From_Source
(Ref_Object
)
2120 or else (Nkind
(Ref_Object
) in N_Has_Chars
2121 and then Chars
(Ref_Object
) = Name_uInit
))
2123 if Nkind
(Ref_Object
) /= N_Explicit_Dereference
then
2125 -- No implicit conversion required if types match, or if
2126 -- the prefix is the class_wide_type of the interface. In
2127 -- either case passing an object of the interface type has
2128 -- already set the pointer correctly.
2130 if Btyp_DDT
= Etype
(Ref_Object
)
2131 or else (Is_Class_Wide_Type
(Etype
(Ref_Object
))
2133 Class_Wide_Type
(Btyp_DDT
) = Etype
(Ref_Object
))
2138 Rewrite
(Prefix
(N
),
2139 Convert_To
(Btyp_DDT
,
2140 New_Copy_Tree
(Prefix
(N
))));
2142 Analyze_And_Resolve
(Prefix
(N
), Btyp_DDT
);
2145 -- When the object is an explicit dereference, convert the
2146 -- dereference's prefix.
2150 Obj_DDT
: constant Entity_Id
:=
2152 (Directly_Designated_Type
2153 (Etype
(Prefix
(Ref_Object
))));
2155 -- No implicit conversion required if designated types
2158 if Obj_DDT
/= Btyp_DDT
2159 and then not (Is_Class_Wide_Type
(Obj_DDT
)
2160 and then Etype
(Obj_DDT
) = Btyp_DDT
)
2164 New_Copy_Tree
(Prefix
(Ref_Object
))));
2165 Analyze_And_Resolve
(N
, Typ
);
2176 -- Transforms 'Adjacent into a call to the floating-point attribute
2177 -- function Adjacent in Fat_xxx (where xxx is the root type)
2179 when Attribute_Adjacent
=>
2180 Expand_Fpt_Attribute_RR
(N
);
2186 when Attribute_Address
=> Address
: declare
2187 Task_Proc
: Entity_Id
;
2190 -- If the prefix is a task or a task type, the useful address is that
2191 -- of the procedure for the task body, i.e. the actual program unit.
2192 -- We replace the original entity with that of the procedure.
2194 if Is_Entity_Name
(Pref
)
2195 and then Is_Task_Type
(Entity
(Pref
))
2197 Task_Proc
:= Next_Entity
(Root_Type
(Ptyp
));
2199 while Present
(Task_Proc
) loop
2200 exit when Ekind
(Task_Proc
) = E_Procedure
2201 and then Etype
(First_Formal
(Task_Proc
)) =
2202 Corresponding_Record_Type
(Ptyp
);
2203 Next_Entity
(Task_Proc
);
2206 if Present
(Task_Proc
) then
2207 Set_Entity
(Pref
, Task_Proc
);
2208 Set_Etype
(Pref
, Etype
(Task_Proc
));
2211 -- Similarly, the address of a protected operation is the address
2212 -- of the corresponding protected body, regardless of the protected
2213 -- object from which it is selected.
2215 elsif Nkind
(Pref
) = N_Selected_Component
2216 and then Is_Subprogram
(Entity
(Selector_Name
(Pref
)))
2217 and then Is_Protected_Type
(Scope
(Entity
(Selector_Name
(Pref
))))
2221 External_Subprogram
(Entity
(Selector_Name
(Pref
))), Loc
));
2223 elsif Nkind
(Pref
) = N_Explicit_Dereference
2224 and then Ekind
(Ptyp
) = E_Subprogram_Type
2225 and then Convention
(Ptyp
) = Convention_Protected
2227 -- The prefix is be a dereference of an access_to_protected_
2228 -- subprogram. The desired address is the second component of
2229 -- the record that represents the access.
2232 Addr
: constant Entity_Id
:= Etype
(N
);
2233 Ptr
: constant Node_Id
:= Prefix
(Pref
);
2234 T
: constant Entity_Id
:=
2235 Equivalent_Type
(Base_Type
(Etype
(Ptr
)));
2239 Unchecked_Convert_To
(Addr
,
2240 Make_Selected_Component
(Loc
,
2241 Prefix
=> Unchecked_Convert_To
(T
, Ptr
),
2242 Selector_Name
=> New_Occurrence_Of
(
2243 Next_Entity
(First_Entity
(T
)), Loc
))));
2245 Analyze_And_Resolve
(N
, Addr
);
2248 -- Ada 2005 (AI-251): Class-wide interface objects are always
2249 -- "displaced" to reference the tag associated with the interface
2250 -- type. In order to obtain the real address of such objects we
2251 -- generate a call to a run-time subprogram that returns the base
2252 -- address of the object.
2254 -- This processing is not needed in the VM case, where dispatching
2255 -- issues are taken care of by the virtual machine.
2257 elsif Is_Class_Wide_Type
(Ptyp
)
2258 and then Is_Interface
(Underlying_Type
(Ptyp
))
2259 and then Tagged_Type_Expansion
2260 and then not (Nkind
(Pref
) in N_Has_Entity
2261 and then Is_Subprogram
(Entity
(Pref
)))
2264 Make_Function_Call
(Loc
,
2265 Name
=> New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
2266 Parameter_Associations
=> New_List
(
2267 Relocate_Node
(N
))));
2272 -- Deal with packed array reference, other cases are handled by
2275 if Involves_Packed_Array_Reference
(Pref
) then
2276 Expand_Packed_Address_Reference
(N
);
2284 when Attribute_Alignment
=> Alignment
: declare
2288 -- For class-wide types, X'Class'Alignment is transformed into a
2289 -- direct reference to the Alignment of the class type, so that the
2290 -- back end does not have to deal with the X'Class'Alignment
2293 if Is_Entity_Name
(Pref
)
2294 and then Is_Class_Wide_Type
(Entity
(Pref
))
2296 Rewrite
(Prefix
(N
), New_Occurrence_Of
(Entity
(Pref
), Loc
));
2299 -- For x'Alignment applied to an object of a class wide type,
2300 -- transform X'Alignment into a call to the predefined primitive
2301 -- operation _Alignment applied to X.
2303 elsif Is_Class_Wide_Type
(Ptyp
) then
2305 Make_Attribute_Reference
(Loc
,
2307 Attribute_Name
=> Name_Tag
);
2309 New_Node
:= Build_Get_Alignment
(Loc
, New_Node
);
2311 -- Case where the context is a specific integer type with which
2312 -- the original attribute was compatible. The function has a
2313 -- specific type as well, so to preserve the compatibility we
2314 -- must convert explicitly.
2316 if Typ
/= Standard_Integer
then
2317 New_Node
:= Convert_To
(Typ
, New_Node
);
2320 Rewrite
(N
, New_Node
);
2321 Analyze_And_Resolve
(N
, Typ
);
2324 -- For all other cases, we just have to deal with the case of
2325 -- the fact that the result can be universal.
2328 Apply_Universal_Integer_Attribute_Checks
(N
);
2336 -- We compute this if a packed array reference was present, otherwise we
2337 -- leave the computation up to the back end.
2339 when Attribute_Bit
=>
2340 if Involves_Packed_Array_Reference
(Pref
) then
2341 Expand_Packed_Bit_Reference
(N
);
2343 Apply_Universal_Integer_Attribute_Checks
(N
);
2350 -- We compute this if a component clause was present, otherwise we leave
2351 -- the computation up to the back end, since we don't know what layout
2354 -- Note that the attribute can apply to a naked record component
2355 -- in generated code (i.e. the prefix is an identifier that
2356 -- references the component or discriminant entity).
2358 when Attribute_Bit_Position
=> Bit_Position
: declare
2362 if Nkind
(Pref
) = N_Identifier
then
2363 CE
:= Entity
(Pref
);
2365 CE
:= Entity
(Selector_Name
(Pref
));
2368 if Known_Static_Component_Bit_Offset
(CE
) then
2370 Make_Integer_Literal
(Loc
,
2371 Intval
=> Component_Bit_Offset
(CE
)));
2372 Analyze_And_Resolve
(N
, Typ
);
2375 Apply_Universal_Integer_Attribute_Checks
(N
);
2383 -- A reference to P'Body_Version or P'Version is expanded to
2386 -- pragma Import (C, Vnn, "uuuuT");
2388 -- Get_Version_String (Vnn)
2390 -- where uuuu is the unit name (dots replaced by double underscore)
2391 -- and T is B for the cases of Body_Version, or Version applied to a
2392 -- subprogram acting as its own spec, and S for Version applied to a
2393 -- subprogram spec or package. This sequence of code references the
2394 -- unsigned constant created in the main program by the binder.
2396 -- A special exception occurs for Standard, where the string returned
2397 -- is a copy of the library string in gnatvsn.ads.
2399 when Attribute_Body_Version
2403 E
: constant Entity_Id
:= Make_Temporary
(Loc
, 'V');
2408 -- If not library unit, get to containing library unit
2410 Pent
:= Entity
(Pref
);
2411 while Pent
/= Standard_Standard
2412 and then Scope
(Pent
) /= Standard_Standard
2413 and then not Is_Child_Unit
(Pent
)
2415 Pent
:= Scope
(Pent
);
2418 -- Special case Standard and Standard.ASCII
2420 if Pent
= Standard_Standard
or else Pent
= Standard_ASCII
then
2422 Make_String_Literal
(Loc
,
2423 Strval
=> Verbose_Library_Version
));
2428 -- Build required string constant
2430 Get_Name_String
(Get_Unit_Name
(Pent
));
2433 for J
in 1 .. Name_Len
- 2 loop
2434 if Name_Buffer
(J
) = '.' then
2435 Store_String_Chars
("__");
2437 Store_String_Char
(Get_Char_Code
(Name_Buffer
(J
)));
2441 -- Case of subprogram acting as its own spec, always use body
2443 if Nkind
(Declaration_Node
(Pent
)) in N_Subprogram_Specification
2444 and then Nkind
(Parent
(Declaration_Node
(Pent
))) =
2446 and then Acts_As_Spec
(Parent
(Declaration_Node
(Pent
)))
2448 Store_String_Chars
("B");
2450 -- Case of no body present, always use spec
2452 elsif not Unit_Requires_Body
(Pent
) then
2453 Store_String_Chars
("S");
2455 -- Otherwise use B for Body_Version, S for spec
2457 elsif Id
= Attribute_Body_Version
then
2458 Store_String_Chars
("B");
2460 Store_String_Chars
("S");
2464 Lib
.Version_Referenced
(S
);
2466 -- Insert the object declaration
2468 Insert_Actions
(N
, New_List
(
2469 Make_Object_Declaration
(Loc
,
2470 Defining_Identifier
=> E
,
2471 Object_Definition
=>
2472 New_Occurrence_Of
(RTE
(RE_Unsigned
), Loc
))));
2474 -- Set entity as imported with correct external name
2476 Set_Is_Imported
(E
);
2477 Set_Interface_Name
(E
, Make_String_Literal
(Loc
, S
));
2479 -- Set entity as internal to ensure proper Sprint output of its
2480 -- implicit importation.
2482 Set_Is_Internal
(E
);
2484 -- And now rewrite original reference
2487 Make_Function_Call
(Loc
,
2489 New_Occurrence_Of
(RTE
(RE_Get_Version_String
), Loc
),
2490 Parameter_Associations
=> New_List
(
2491 New_Occurrence_Of
(E
, Loc
))));
2494 Analyze_And_Resolve
(N
, RTE
(RE_Version_String
));
2501 -- Transforms 'Ceiling into a call to the floating-point attribute
2502 -- function Ceiling in Fat_xxx (where xxx is the root type)
2504 when Attribute_Ceiling
=>
2505 Expand_Fpt_Attribute_R
(N
);
2511 -- Transforms 'Callable attribute into a call to the Callable function
2513 when Attribute_Callable
=>
2515 -- We have an object of a task interface class-wide type as a prefix
2516 -- to Callable. Generate:
2517 -- callable (Task_Id (Pref._disp_get_task_id));
2519 if Ada_Version
>= Ada_2005
2520 and then Ekind
(Ptyp
) = E_Class_Wide_Type
2521 and then Is_Interface
(Ptyp
)
2522 and then Is_Task_Interface
(Ptyp
)
2525 Make_Function_Call
(Loc
,
2527 New_Occurrence_Of
(RTE
(RE_Callable
), Loc
),
2528 Parameter_Associations
=> New_List
(
2529 Make_Unchecked_Type_Conversion
(Loc
,
2531 New_Occurrence_Of
(RTE
(RO_ST_Task_Id
), Loc
),
2532 Expression
=> Build_Disp_Get_Task_Id_Call
(Pref
)))));
2535 Rewrite
(N
, Build_Call_With_Task
(Pref
, RTE
(RE_Callable
)));
2538 Analyze_And_Resolve
(N
, Standard_Boolean
);
2544 -- Transforms 'Caller attribute into a call to either the
2545 -- Task_Entry_Caller or the Protected_Entry_Caller function.
2547 when Attribute_Caller
=> Caller
: declare
2548 Id_Kind
: constant Entity_Id
:= RTE
(RO_AT_Task_Id
);
2549 Ent
: constant Entity_Id
:= Entity
(Pref
);
2550 Conctype
: constant Entity_Id
:= Scope
(Ent
);
2551 Nest_Depth
: Integer := 0;
2558 if Is_Protected_Type
(Conctype
) then
2559 case Corresponding_Runtime_Package
(Conctype
) is
2560 when System_Tasking_Protected_Objects_Entries
=>
2563 (RTE
(RE_Protected_Entry_Caller
), Loc
);
2565 when System_Tasking_Protected_Objects_Single_Entry
=>
2568 (RTE
(RE_Protected_Single_Entry_Caller
), Loc
);
2571 raise Program_Error
;
2575 Unchecked_Convert_To
(Id_Kind
,
2576 Make_Function_Call
(Loc
,
2578 Parameter_Associations
=> New_List
(
2580 (Find_Protection_Object
(Current_Scope
), Loc
)))));
2585 -- Determine the nesting depth of the E'Caller attribute, that
2586 -- is, how many accept statements are nested within the accept
2587 -- statement for E at the point of E'Caller. The runtime uses
2588 -- this depth to find the specified entry call.
2590 for J
in reverse 0 .. Scope_Stack
.Last
loop
2591 S
:= Scope_Stack
.Table
(J
).Entity
;
2593 -- We should not reach the scope of the entry, as it should
2594 -- already have been checked in Sem_Attr that this attribute
2595 -- reference is within a matching accept statement.
2597 pragma Assert
(S
/= Conctype
);
2602 elsif Is_Entry
(S
) then
2603 Nest_Depth
:= Nest_Depth
+ 1;
2608 Unchecked_Convert_To
(Id_Kind
,
2609 Make_Function_Call
(Loc
,
2611 New_Occurrence_Of
(RTE
(RE_Task_Entry_Caller
), Loc
),
2612 Parameter_Associations
=> New_List
(
2613 Make_Integer_Literal
(Loc
,
2614 Intval
=> Int
(Nest_Depth
))))));
2617 Analyze_And_Resolve
(N
, Id_Kind
);
2624 -- Transforms 'Compose into a call to the floating-point attribute
2625 -- function Compose in Fat_xxx (where xxx is the root type)
2627 -- Note: we strictly should have special code here to deal with the
2628 -- case of absurdly negative arguments (less than Integer'First)
2629 -- which will return a (signed) zero value, but it hardly seems
2630 -- worth the effort. Absurdly large positive arguments will raise
2631 -- constraint error which is fine.
2633 when Attribute_Compose
=>
2634 Expand_Fpt_Attribute_RI
(N
);
2640 when Attribute_Constrained
=> Constrained
: declare
2641 Formal_Ent
: constant Entity_Id
:= Param_Entity
(Pref
);
2643 function Is_Constrained_Aliased_View
(Obj
: Node_Id
) return Boolean;
2644 -- Ada 2005 (AI-363): Returns True if the object name Obj denotes a
2645 -- view of an aliased object whose subtype is constrained.
2647 ---------------------------------
2648 -- Is_Constrained_Aliased_View --
2649 ---------------------------------
2651 function Is_Constrained_Aliased_View
(Obj
: Node_Id
) return Boolean is
2655 if Is_Entity_Name
(Obj
) then
2658 if Present
(Renamed_Object
(E
)) then
2659 return Is_Constrained_Aliased_View
(Renamed_Object
(E
));
2661 return Is_Aliased
(E
) and then Is_Constrained
(Etype
(E
));
2665 return Is_Aliased_View
(Obj
)
2667 (Is_Constrained
(Etype
(Obj
))
2669 (Nkind
(Obj
) = N_Explicit_Dereference
2671 not Object_Type_Has_Constrained_Partial_View
2672 (Typ
=> Base_Type
(Etype
(Obj
)),
2673 Scop
=> Current_Scope
)));
2675 end Is_Constrained_Aliased_View
;
2677 -- Start of processing for Constrained
2680 -- Reference to a parameter where the value is passed as an extra
2681 -- actual, corresponding to the extra formal referenced by the
2682 -- Extra_Constrained field of the corresponding formal. If this
2683 -- is an entry in-parameter, it is replaced by a constant renaming
2684 -- for which Extra_Constrained is never created.
2686 if Present
(Formal_Ent
)
2687 and then Ekind
(Formal_Ent
) /= E_Constant
2688 and then Present
(Extra_Constrained
(Formal_Ent
))
2692 (Extra_Constrained
(Formal_Ent
), Sloc
(N
)));
2694 -- If the prefix is an access to object, the attribute applies to
2695 -- the designated object, so rewrite with an explicit dereference.
2697 elsif Is_Access_Type
(Etype
(Pref
))
2699 (not Is_Entity_Name
(Pref
) or else Is_Object
(Entity
(Pref
)))
2702 Make_Explicit_Dereference
(Loc
, Relocate_Node
(Pref
)));
2703 Analyze_And_Resolve
(N
, Standard_Boolean
);
2706 -- For variables with a Extra_Constrained field, we use the
2707 -- corresponding entity.
2709 elsif Nkind
(Pref
) = N_Identifier
2710 and then Ekind
(Entity
(Pref
)) = E_Variable
2711 and then Present
(Extra_Constrained
(Entity
(Pref
)))
2715 (Extra_Constrained
(Entity
(Pref
)), Sloc
(N
)));
2717 -- For all other entity names, we can tell at compile time
2719 elsif Is_Entity_Name
(Pref
) then
2721 Ent
: constant Entity_Id
:= Entity
(Pref
);
2725 -- (RM J.4) obsolescent cases
2727 if Is_Type
(Ent
) then
2731 if Is_Private_Type
(Ent
) then
2732 Res
:= not Has_Discriminants
(Ent
)
2733 or else Is_Constrained
(Ent
);
2735 -- It not a private type, must be a generic actual type
2736 -- that corresponded to a private type. We know that this
2737 -- correspondence holds, since otherwise the reference
2738 -- within the generic template would have been illegal.
2741 if Is_Composite_Type
(Underlying_Type
(Ent
)) then
2742 Res
:= Is_Constrained
(Ent
);
2749 -- For access type, apply access check as needed
2751 if Is_Access_Type
(Ptyp
) then
2752 Apply_Access_Check
(N
);
2755 -- If the prefix is not a variable or is aliased, then
2756 -- definitely true; if it's a formal parameter without an
2757 -- associated extra formal, then treat it as constrained.
2759 -- Ada 2005 (AI-363): An aliased prefix must be known to be
2760 -- constrained in order to set the attribute to True.
2762 if not Is_Variable
(Pref
)
2763 or else Present
(Formal_Ent
)
2764 or else (Ada_Version
< Ada_2005
2765 and then Is_Aliased_View
(Pref
))
2766 or else (Ada_Version
>= Ada_2005
2767 and then Is_Constrained_Aliased_View
(Pref
))
2771 -- Variable case, look at type to see if it is constrained.
2772 -- Note that the one case where this is not accurate (the
2773 -- procedure formal case), has been handled above.
2775 -- We use the Underlying_Type here (and below) in case the
2776 -- type is private without discriminants, but the full type
2777 -- has discriminants. This case is illegal, but we generate
2778 -- it internally for passing to the Extra_Constrained
2782 -- In Ada 2012, test for case of a limited tagged type,
2783 -- in which case the attribute is always required to
2784 -- return True. The underlying type is tested, to make
2785 -- sure we also return True for cases where there is an
2786 -- unconstrained object with an untagged limited partial
2787 -- view which has defaulted discriminants (such objects
2788 -- always produce a False in earlier versions of
2789 -- Ada). (Ada 2012: AI05-0214)
2792 Is_Constrained
(Underlying_Type
(Etype
(Ent
)))
2794 (Ada_Version
>= Ada_2012
2795 and then Is_Tagged_Type
(Underlying_Type
(Ptyp
))
2796 and then Is_Limited_Type
(Ptyp
));
2800 Rewrite
(N
, New_Occurrence_Of
(Boolean_Literals
(Res
), Loc
));
2803 -- Prefix is not an entity name. These are also cases where we can
2804 -- always tell at compile time by looking at the form and type of the
2805 -- prefix. If an explicit dereference of an object with constrained
2806 -- partial view, this is unconstrained (Ada 2005: AI95-0363). If the
2807 -- underlying type is a limited tagged type, then Constrained is
2808 -- required to always return True (Ada 2012: AI05-0214).
2814 not Is_Variable
(Pref
)
2816 (Nkind
(Pref
) = N_Explicit_Dereference
2818 not Object_Type_Has_Constrained_Partial_View
2819 (Typ
=> Base_Type
(Ptyp
),
2820 Scop
=> Current_Scope
))
2821 or else Is_Constrained
(Underlying_Type
(Ptyp
))
2822 or else (Ada_Version
>= Ada_2012
2823 and then Is_Tagged_Type
(Underlying_Type
(Ptyp
))
2824 and then Is_Limited_Type
(Ptyp
))),
2828 Analyze_And_Resolve
(N
, Standard_Boolean
);
2835 -- Transforms 'Copy_Sign into a call to the floating-point attribute
2836 -- function Copy_Sign in Fat_xxx (where xxx is the root type)
2838 when Attribute_Copy_Sign
=>
2839 Expand_Fpt_Attribute_RR
(N
);
2845 -- Transforms 'Count attribute into a call to the Count function
2847 when Attribute_Count
=> Count
: declare
2849 Conctyp
: Entity_Id
;
2851 Entry_Id
: Entity_Id
;
2856 -- If the prefix is a member of an entry family, retrieve both
2857 -- entry name and index. For a simple entry there is no index.
2859 if Nkind
(Pref
) = N_Indexed_Component
then
2860 Entnam
:= Prefix
(Pref
);
2861 Index
:= First
(Expressions
(Pref
));
2867 Entry_Id
:= Entity
(Entnam
);
2869 -- Find the concurrent type in which this attribute is referenced
2870 -- (there had better be one).
2872 Conctyp
:= Current_Scope
;
2873 while not Is_Concurrent_Type
(Conctyp
) loop
2874 Conctyp
:= Scope
(Conctyp
);
2879 if Is_Protected_Type
(Conctyp
) then
2880 case Corresponding_Runtime_Package
(Conctyp
) is
2881 when System_Tasking_Protected_Objects_Entries
=>
2882 Name
:= New_Occurrence_Of
(RTE
(RE_Protected_Count
), Loc
);
2885 Make_Function_Call
(Loc
,
2887 Parameter_Associations
=> New_List
(
2889 (Find_Protection_Object
(Current_Scope
), Loc
),
2890 Entry_Index_Expression
2891 (Loc
, Entry_Id
, Index
, Scope
(Entry_Id
))));
2893 when System_Tasking_Protected_Objects_Single_Entry
=>
2895 New_Occurrence_Of
(RTE
(RE_Protected_Count_Entry
), Loc
);
2898 Make_Function_Call
(Loc
,
2900 Parameter_Associations
=> New_List
(
2902 (Find_Protection_Object
(Current_Scope
), Loc
)));
2905 raise Program_Error
;
2912 Make_Function_Call
(Loc
,
2913 Name
=> New_Occurrence_Of
(RTE
(RE_Task_Count
), Loc
),
2914 Parameter_Associations
=> New_List
(
2915 Entry_Index_Expression
(Loc
,
2916 Entry_Id
, Index
, Scope
(Entry_Id
))));
2919 -- The call returns type Natural but the context is universal integer
2920 -- so any integer type is allowed. The attribute was already resolved
2921 -- so its Etype is the required result type. If the base type of the
2922 -- context type is other than Standard.Integer we put in a conversion
2923 -- to the required type. This can be a normal typed conversion since
2924 -- both input and output types of the conversion are integer types
2926 if Base_Type
(Typ
) /= Base_Type
(Standard_Integer
) then
2927 Rewrite
(N
, Convert_To
(Typ
, Call
));
2932 Analyze_And_Resolve
(N
, Typ
);
2935 ---------------------
2936 -- Descriptor_Size --
2937 ---------------------
2939 when Attribute_Descriptor_Size
=>
2941 -- Attribute Descriptor_Size is handled by the back end when applied
2942 -- to an unconstrained array type.
2944 if Is_Array_Type
(Ptyp
)
2945 and then not Is_Constrained
(Ptyp
)
2947 Apply_Universal_Integer_Attribute_Checks
(N
);
2949 -- For any other type, the descriptor size is 0 because there is no
2950 -- actual descriptor, but the result is not formally static.
2953 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
2955 Set_Is_Static_Expression
(N
, False);
2962 -- This processing is shared by Elab_Spec
2964 -- What we do is to insert the following declarations
2967 -- pragma Import (C, enn, "name___elabb/s");
2969 -- and then the Elab_Body/Spec attribute is replaced by a reference
2970 -- to this defining identifier.
2972 when Attribute_Elab_Body
2973 | Attribute_Elab_Spec
2975 -- Leave attribute unexpanded in CodePeer mode: the gnat2scil
2976 -- back-end knows how to handle these attributes directly.
2978 if CodePeer_Mode
then
2983 Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'E');
2987 procedure Make_Elab_String
(Nod
: Node_Id
);
2988 -- Given Nod, an identifier, or a selected component, put the
2989 -- image into the current string literal, with double underline
2990 -- between components.
2992 ----------------------
2993 -- Make_Elab_String --
2994 ----------------------
2996 procedure Make_Elab_String
(Nod
: Node_Id
) is
2998 if Nkind
(Nod
) = N_Selected_Component
then
2999 Make_Elab_String
(Prefix
(Nod
));
3000 Store_String_Char
('_');
3001 Store_String_Char
('_');
3002 Get_Name_String
(Chars
(Selector_Name
(Nod
)));
3005 pragma Assert
(Nkind
(Nod
) = N_Identifier
);
3006 Get_Name_String
(Chars
(Nod
));
3009 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
3010 end Make_Elab_String
;
3012 -- Start of processing for Elab_Body/Elab_Spec
3015 -- First we need to prepare the string literal for the name of
3016 -- the elaboration routine to be referenced.
3019 Make_Elab_String
(Pref
);
3020 Store_String_Chars
("___elab");
3021 Lang
:= Make_Identifier
(Loc
, Name_C
);
3023 if Id
= Attribute_Elab_Body
then
3024 Store_String_Char
('b');
3026 Store_String_Char
('s');
3031 Insert_Actions
(N
, New_List
(
3032 Make_Subprogram_Declaration
(Loc
,
3034 Make_Procedure_Specification
(Loc
,
3035 Defining_Unit_Name
=> Ent
)),
3038 Chars
=> Name_Import
,
3039 Pragma_Argument_Associations
=> New_List
(
3040 Make_Pragma_Argument_Association
(Loc
, Expression
=> Lang
),
3042 Make_Pragma_Argument_Association
(Loc
,
3043 Expression
=> Make_Identifier
(Loc
, Chars
(Ent
))),
3045 Make_Pragma_Argument_Association
(Loc
,
3046 Expression
=> Make_String_Literal
(Loc
, Str
))))));
3048 Set_Entity
(N
, Ent
);
3049 Rewrite
(N
, New_Occurrence_Of
(Ent
, Loc
));
3052 --------------------
3053 -- Elab_Subp_Body --
3054 --------------------
3056 -- Always ignored. In CodePeer mode, gnat2scil knows how to handle
3057 -- this attribute directly, and if we are not in CodePeer mode it is
3058 -- entirely ignored ???
3060 when Attribute_Elab_Subp_Body
=>
3067 -- Elaborated is always True for preelaborated units, predefined units,
3068 -- pure units and units which have Elaborate_Body pragmas. These units
3069 -- have no elaboration entity.
3071 -- Note: The Elaborated attribute is never passed to the back end
3073 when Attribute_Elaborated
=> Elaborated
: declare
3074 Elab_Id
: constant Entity_Id
:= Elaboration_Entity
(Entity
(Pref
));
3077 if Present
(Elab_Id
) then
3080 Left_Opnd
=> New_Occurrence_Of
(Elab_Id
, Loc
),
3081 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)));
3083 Analyze_And_Resolve
(N
, Typ
);
3085 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
3093 when Attribute_Enum_Rep
=> Enum_Rep
: declare
3097 -- Get the expression, which is X for Enum_Type'Enum_Rep (X) or
3100 if Is_Non_Empty_List
(Exprs
) then
3101 Expr
:= First
(Exprs
);
3106 -- If the expression is an enumeration literal, it is replaced by the
3109 if Nkind
(Expr
) in N_Has_Entity
3110 and then Ekind
(Entity
(Expr
)) = E_Enumeration_Literal
3113 Make_Integer_Literal
(Loc
, Enumeration_Rep
(Entity
(Expr
))));
3115 -- If this is a renaming of a literal, recover the representation
3116 -- of the original. If it renames an expression there is nothing to
3119 elsif Nkind
(Expr
) in N_Has_Entity
3120 and then Ekind
(Entity
(Expr
)) = E_Constant
3121 and then Present
(Renamed_Object
(Entity
(Expr
)))
3122 and then Is_Entity_Name
(Renamed_Object
(Entity
(Expr
)))
3123 and then Ekind
(Entity
(Renamed_Object
(Entity
(Expr
)))) =
3124 E_Enumeration_Literal
3127 Make_Integer_Literal
(Loc
,
3128 Enumeration_Rep
(Entity
(Renamed_Object
(Entity
(Expr
))))));
3130 -- If not constant-folded above, Enum_Type'Enum_Rep (X) or
3131 -- X'Enum_Rep expands to
3135 -- This is simply a direct conversion from the enumeration type to
3136 -- the target integer type, which is treated by the back end as a
3137 -- normal integer conversion, treating the enumeration type as an
3138 -- integer, which is exactly what we want. We set Conversion_OK to
3139 -- make sure that the analyzer does not complain about what otherwise
3140 -- might be an illegal conversion.
3143 Rewrite
(N
, OK_Convert_To
(Typ
, Relocate_Node
(Expr
)));
3147 Analyze_And_Resolve
(N
, Typ
);
3154 when Attribute_Enum_Val
=> Enum_Val
: declare
3156 Btyp
: constant Entity_Id
:= Base_Type
(Ptyp
);
3159 -- X'Enum_Val (Y) expands to
3161 -- [constraint_error when _rep_to_pos (Y, False) = -1, msg]
3164 Expr
:= Unchecked_Convert_To
(Ptyp
, First
(Exprs
));
3167 Make_Raise_Constraint_Error
(Loc
,
3171 Make_Function_Call
(Loc
,
3173 New_Occurrence_Of
(TSS
(Btyp
, TSS_Rep_To_Pos
), Loc
),
3174 Parameter_Associations
=> New_List
(
3175 Relocate_Node
(Duplicate_Subexpr
(Expr
)),
3176 New_Occurrence_Of
(Standard_False
, Loc
))),
3178 Right_Opnd
=> Make_Integer_Literal
(Loc
, -1)),
3179 Reason
=> CE_Range_Check_Failed
));
3182 Analyze_And_Resolve
(N
, Ptyp
);
3189 -- Transforms 'Exponent into a call to the floating-point attribute
3190 -- function Exponent in Fat_xxx (where xxx is the root type)
3192 when Attribute_Exponent
=>
3193 Expand_Fpt_Attribute_R
(N
);
3199 -- transforme X'External_Tag into Ada.Tags.External_Tag (X'tag)
3201 when Attribute_External_Tag
=>
3203 Make_Function_Call
(Loc
,
3205 New_Occurrence_Of
(RTE
(RE_External_Tag
), Loc
),
3206 Parameter_Associations
=> New_List
(
3207 Make_Attribute_Reference
(Loc
,
3208 Attribute_Name
=> Name_Tag
,
3209 Prefix
=> Prefix
(N
)))));
3211 Analyze_And_Resolve
(N
, Standard_String
);
3213 -----------------------
3214 -- Finalization_Size --
3215 -----------------------
3217 when Attribute_Finalization_Size
=> Finalization_Size
: declare
3218 function Calculate_Header_Size
return Node_Id
;
3219 -- Generate a runtime call to calculate the size of the hidden header
3220 -- along with any added padding which would precede a heap-allocated
3221 -- object of the prefix type.
3223 ---------------------------
3224 -- Calculate_Header_Size --
3225 ---------------------------
3227 function Calculate_Header_Size
return Node_Id
is
3230 -- Universal_Integer
3231 -- (Header_Size_With_Padding (Pref'Alignment))
3234 Convert_To
(Universal_Integer
,
3235 Make_Function_Call
(Loc
,
3237 New_Occurrence_Of
(RTE
(RE_Header_Size_With_Padding
), Loc
),
3239 Parameter_Associations
=> New_List
(
3240 Make_Attribute_Reference
(Loc
,
3241 Prefix
=> New_Copy_Tree
(Pref
),
3242 Attribute_Name
=> Name_Alignment
))));
3243 end Calculate_Header_Size
;
3249 -- Start of Finalization_Size
3252 -- An object of a class-wide type first requires a runtime check to
3253 -- determine whether it is actually controlled or not. Depending on
3254 -- the outcome of this check, the Finalization_Size of the object
3255 -- may be zero or some positive value.
3257 -- In this scenario, Pref'Finalization_Size is expanded into
3259 -- Size : Integer := 0;
3261 -- if Needs_Finalization (Pref'Tag) then
3263 -- Universal_Integer
3264 -- (Header_Size_With_Padding (Pref'Alignment));
3267 -- and the attribute reference is replaced with a reference to Size.
3269 if Is_Class_Wide_Type
(Ptyp
) then
3270 Size
:= Make_Temporary
(Loc
, 'S');
3272 Insert_Actions
(N
, New_List
(
3275 -- Size : Integer := 0;
3277 Make_Object_Declaration
(Loc
,
3278 Defining_Identifier
=> Size
,
3279 Object_Definition
=>
3280 New_Occurrence_Of
(Standard_Integer
, Loc
),
3281 Expression
=> Make_Integer_Literal
(Loc
, 0)),
3284 -- if Needs_Finalization (Pref'Tag) then
3286 -- Universal_Integer
3287 -- (Header_Size_With_Padding (Pref'Alignment));
3290 Make_If_Statement
(Loc
,
3292 Make_Function_Call
(Loc
,
3294 New_Occurrence_Of
(RTE
(RE_Needs_Finalization
), Loc
),
3296 Parameter_Associations
=> New_List
(
3297 Make_Attribute_Reference
(Loc
,
3298 Prefix
=> New_Copy_Tree
(Pref
),
3299 Attribute_Name
=> Name_Tag
))),
3301 Then_Statements
=> New_List
(
3302 Make_Assignment_Statement
(Loc
,
3303 Name
=> New_Occurrence_Of
(Size
, Loc
),
3304 Expression
=> Calculate_Header_Size
)))));
3306 Rewrite
(N
, New_Occurrence_Of
(Size
, Loc
));
3308 -- The prefix is known to be controlled at compile time. Calculate
3309 -- Finalization_Size by calling function Header_Size_With_Padding.
3311 elsif Needs_Finalization
(Ptyp
) then
3312 Rewrite
(N
, Calculate_Header_Size
);
3314 -- The prefix is not an object with controlled parts, so its
3315 -- Finalization_Size is zero.
3318 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
3321 -- Due to cases where the entity type of the attribute is already
3322 -- resolved the rewritten N must get re-resolved to its appropriate
3325 Analyze_And_Resolve
(N
, Typ
);
3326 end Finalization_Size
;
3332 when Attribute_First
=>
3334 -- If the prefix type is a constrained packed array type which
3335 -- already has a Packed_Array_Impl_Type representation defined, then
3336 -- replace this attribute with a direct reference to 'First of the
3337 -- appropriate index subtype (since otherwise the back end will try
3338 -- to give us the value of 'First for this implementation type).
3340 if Is_Constrained_Packed_Array
(Ptyp
) then
3342 Make_Attribute_Reference
(Loc
,
3343 Attribute_Name
=> Name_First
,
3345 New_Occurrence_Of
(Get_Index_Subtype
(N
), Loc
)));
3346 Analyze_And_Resolve
(N
, Typ
);
3348 -- For access type, apply access check as needed
3350 elsif Is_Access_Type
(Ptyp
) then
3351 Apply_Access_Check
(N
);
3353 -- For scalar type, if low bound is a reference to an entity, just
3354 -- replace with a direct reference. Note that we can only have a
3355 -- reference to a constant entity at this stage, anything else would
3356 -- have already been rewritten.
3358 elsif Is_Scalar_Type
(Ptyp
) then
3360 Lo
: constant Node_Id
:= Type_Low_Bound
(Ptyp
);
3362 if Is_Entity_Name
(Lo
) then
3363 Rewrite
(N
, New_Occurrence_Of
(Entity
(Lo
), Loc
));
3372 -- Compute this if component clause was present, otherwise we leave the
3373 -- computation to be completed in the back-end, since we don't know what
3374 -- layout will be chosen.
3376 when Attribute_First_Bit
=> First_Bit_Attr
: declare
3377 CE
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
3380 -- In Ada 2005 (or later) if we have the non-default bit order, then
3381 -- we return the original value as given in the component clause
3382 -- (RM 2005 13.5.2(3/2)).
3384 if Present
(Component_Clause
(CE
))
3385 and then Ada_Version
>= Ada_2005
3386 and then Reverse_Bit_Order
(Scope
(CE
))
3389 Make_Integer_Literal
(Loc
,
3390 Intval
=> Expr_Value
(First_Bit
(Component_Clause
(CE
)))));
3391 Analyze_And_Resolve
(N
, Typ
);
3393 -- Otherwise (Ada 83/95 or Ada 2005 or later with default bit order),
3394 -- rewrite with normalized value if we know it statically.
3396 elsif Known_Static_Component_Bit_Offset
(CE
) then
3398 Make_Integer_Literal
(Loc
,
3399 Component_Bit_Offset
(CE
) mod System_Storage_Unit
));
3400 Analyze_And_Resolve
(N
, Typ
);
3402 -- Otherwise left to back end, just do universal integer checks
3405 Apply_Universal_Integer_Attribute_Checks
(N
);
3409 --------------------------------
3410 -- Fixed_Value, Integer_Value --
3411 --------------------------------
3415 -- fixtype'Fixed_Value (integer-value)
3416 -- inttype'Fixed_Value (fixed-value)
3420 -- fixtype (integer-value)
3421 -- inttype (fixed-value)
3425 -- We do all the required analysis of the conversion here, because we do
3426 -- not want this to go through the fixed-point conversion circuits. Note
3427 -- that the back end always treats fixed-point as equivalent to the
3428 -- corresponding integer type anyway.
3430 when Attribute_Fixed_Value
3431 | Attribute_Integer_Value
3434 Make_Type_Conversion
(Loc
,
3435 Subtype_Mark
=> New_Occurrence_Of
(Entity
(Pref
), Loc
),
3436 Expression
=> Relocate_Node
(First
(Exprs
))));
3437 Set_Etype
(N
, Entity
(Pref
));
3440 -- Note: it might appear that a properly analyzed unchecked
3441 -- conversion would be just fine here, but that's not the case,
3442 -- since the full range checks performed by the following call
3445 Apply_Type_Conversion_Checks
(N
);
3451 -- Transforms 'Floor into a call to the floating-point attribute
3452 -- function Floor in Fat_xxx (where xxx is the root type)
3454 when Attribute_Floor
=>
3455 Expand_Fpt_Attribute_R
(N
);
3461 -- For the fixed-point type Typ:
3467 -- Result_Type (System.Fore (Universal_Real (Type'First)),
3468 -- Universal_Real (Type'Last))
3470 -- Note that we know that the type is a non-static subtype, or Fore
3471 -- would have itself been computed dynamically in Eval_Attribute.
3473 when Attribute_Fore
=>
3476 Make_Function_Call
(Loc
,
3478 New_Occurrence_Of
(RTE
(RE_Fore
), Loc
),
3480 Parameter_Associations
=> New_List
(
3481 Convert_To
(Universal_Real
,
3482 Make_Attribute_Reference
(Loc
,
3483 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
3484 Attribute_Name
=> Name_First
)),
3486 Convert_To
(Universal_Real
,
3487 Make_Attribute_Reference
(Loc
,
3488 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
3489 Attribute_Name
=> Name_Last
))))));
3491 Analyze_And_Resolve
(N
, Typ
);
3497 -- Transforms 'Fraction into a call to the floating-point attribute
3498 -- function Fraction in Fat_xxx (where xxx is the root type)
3500 when Attribute_Fraction
=>
3501 Expand_Fpt_Attribute_R
(N
);
3507 when Attribute_From_Any
=> From_Any
: declare
3508 P_Type
: constant Entity_Id
:= Etype
(Pref
);
3509 Decls
: constant List_Id
:= New_List
;
3513 Build_From_Any_Call
(P_Type
,
3514 Relocate_Node
(First
(Exprs
)),
3516 Insert_Actions
(N
, Decls
);
3517 Analyze_And_Resolve
(N
, P_Type
);
3520 ----------------------
3521 -- Has_Same_Storage --
3522 ----------------------
3524 when Attribute_Has_Same_Storage
=> Has_Same_Storage
: declare
3525 Loc
: constant Source_Ptr
:= Sloc
(N
);
3527 X
: constant Node_Id
:= Prefix
(N
);
3528 Y
: constant Node_Id
:= First
(Expressions
(N
));
3533 -- Rhe expressions for their addresses
3537 -- Rhe expressions for their sizes
3540 -- The attribute is expanded as:
3542 -- (X'address = Y'address)
3543 -- and then (X'Size = Y'Size)
3545 -- If both arguments have the same Etype the second conjunct can be
3549 Make_Attribute_Reference
(Loc
,
3550 Attribute_Name
=> Name_Address
,
3551 Prefix
=> New_Copy_Tree
(X
));
3554 Make_Attribute_Reference
(Loc
,
3555 Attribute_Name
=> Name_Address
,
3556 Prefix
=> New_Copy_Tree
(Y
));
3559 Make_Attribute_Reference
(Loc
,
3560 Attribute_Name
=> Name_Size
,
3561 Prefix
=> New_Copy_Tree
(X
));
3564 Make_Attribute_Reference
(Loc
,
3565 Attribute_Name
=> Name_Size
,
3566 Prefix
=> New_Copy_Tree
(Y
));
3568 if Etype
(X
) = Etype
(Y
) then
3571 Left_Opnd
=> X_Addr
,
3572 Right_Opnd
=> Y_Addr
));
3578 Left_Opnd
=> X_Addr
,
3579 Right_Opnd
=> Y_Addr
),
3582 Left_Opnd
=> X_Size
,
3583 Right_Opnd
=> Y_Size
)));
3586 Analyze_And_Resolve
(N
, Standard_Boolean
);
3587 end Has_Same_Storage
;
3593 -- For an exception returns a reference to the exception data:
3594 -- Exception_Id!(Prefix'Reference)
3596 -- For a task it returns a reference to the _task_id component of
3597 -- corresponding record:
3599 -- taskV!(Prefix)._Task_Id, converted to the type Task_Id defined
3601 -- in Ada.Task_Identification
3603 when Attribute_Identity
=> Identity
: declare
3604 Id_Kind
: Entity_Id
;
3607 if Ptyp
= Standard_Exception_Type
then
3608 Id_Kind
:= RTE
(RE_Exception_Id
);
3610 if Present
(Renamed_Object
(Entity
(Pref
))) then
3611 Set_Entity
(Pref
, Renamed_Object
(Entity
(Pref
)));
3615 Unchecked_Convert_To
(Id_Kind
, Make_Reference
(Loc
, Pref
)));
3617 Id_Kind
:= RTE
(RO_AT_Task_Id
);
3619 -- If the prefix is a task interface, the Task_Id is obtained
3620 -- dynamically through a dispatching call, as for other task
3621 -- attributes applied to interfaces.
3623 if Ada_Version
>= Ada_2005
3624 and then Ekind
(Ptyp
) = E_Class_Wide_Type
3625 and then Is_Interface
(Ptyp
)
3626 and then Is_Task_Interface
(Ptyp
)
3629 Unchecked_Convert_To
3630 (Id_Kind
, Build_Disp_Get_Task_Id_Call
(Pref
)));
3634 Unchecked_Convert_To
(Id_Kind
, Concurrent_Ref
(Pref
)));
3638 Analyze_And_Resolve
(N
, Id_Kind
);
3645 -- Image attribute is handled in separate unit Exp_Imgv
3647 when Attribute_Image
=>
3649 -- Leave attribute unexpanded in CodePeer mode: the gnat2scil
3650 -- back-end knows how to handle this attribute directly.
3652 if CodePeer_Mode
then
3656 Expand_Image_Attribute
(N
);
3662 -- X'Img is expanded to typ'Image (X), where typ is the type of X
3664 when Attribute_Img
=>
3665 Expand_Image_Attribute
(N
);
3671 when Attribute_Input
=> Input
: declare
3672 P_Type
: constant Entity_Id
:= Entity
(Pref
);
3673 B_Type
: constant Entity_Id
:= Base_Type
(P_Type
);
3674 U_Type
: constant Entity_Id
:= Underlying_Type
(P_Type
);
3675 Strm
: constant Node_Id
:= First
(Exprs
);
3683 Cntrl
: Node_Id
:= Empty
;
3684 -- Value for controlling argument in call. Always Empty except in
3685 -- the dispatching (class-wide type) case, where it is a reference
3686 -- to the dummy object initialized to the right internal tag.
3688 procedure Freeze_Stream_Subprogram
(F
: Entity_Id
);
3689 -- The expansion of the attribute reference may generate a call to
3690 -- a user-defined stream subprogram that is frozen by the call. This
3691 -- can lead to access-before-elaboration problem if the reference
3692 -- appears in an object declaration and the subprogram body has not
3693 -- been seen. The freezing of the subprogram requires special code
3694 -- because it appears in an expanded context where expressions do
3695 -- not freeze their constituents.
3697 ------------------------------
3698 -- Freeze_Stream_Subprogram --
3699 ------------------------------
3701 procedure Freeze_Stream_Subprogram
(F
: Entity_Id
) is
3702 Decl
: constant Node_Id
:= Unit_Declaration_Node
(F
);
3706 -- If this is user-defined subprogram, the corresponding
3707 -- stream function appears as a renaming-as-body, and the
3708 -- user subprogram must be retrieved by tree traversal.
3711 and then Nkind
(Decl
) = N_Subprogram_Declaration
3712 and then Present
(Corresponding_Body
(Decl
))
3714 Bod
:= Corresponding_Body
(Decl
);
3716 if Nkind
(Unit_Declaration_Node
(Bod
)) =
3717 N_Subprogram_Renaming_Declaration
3719 Set_Is_Frozen
(Entity
(Name
(Unit_Declaration_Node
(Bod
))));
3722 end Freeze_Stream_Subprogram
;
3724 -- Start of processing for Input
3727 -- If no underlying type, we have an error that will be diagnosed
3728 -- elsewhere, so here we just completely ignore the expansion.
3734 -- Stream operations can appear in user code even if the restriction
3735 -- No_Streams is active (for example, when instantiating a predefined
3736 -- container). In that case rewrite the attribute as a Raise to
3737 -- prevent any run-time use.
3739 if Restriction_Active
(No_Streams
) then
3741 Make_Raise_Program_Error
(Sloc
(N
),
3742 Reason
=> PE_Stream_Operation_Not_Allowed
));
3743 Set_Etype
(N
, B_Type
);
3747 -- If there is a TSS for Input, just call it
3749 Fname
:= Find_Stream_Subprogram
(P_Type
, TSS_Stream_Input
);
3751 if Present
(Fname
) then
3755 -- If there is a Stream_Convert pragma, use it, we rewrite
3757 -- sourcetyp'Input (stream)
3761 -- sourcetyp (streamread (strmtyp'Input (stream)));
3763 -- where streamread is the given Read function that converts an
3764 -- argument of type strmtyp to type sourcetyp or a type from which
3765 -- it is derived (extra conversion required for the derived case).
3767 Prag
:= Get_Stream_Convert_Pragma
(P_Type
);
3769 if Present
(Prag
) then
3770 Arg2
:= Next
(First
(Pragma_Argument_Associations
(Prag
)));
3771 Rfunc
:= Entity
(Expression
(Arg2
));
3775 Make_Function_Call
(Loc
,
3776 Name
=> New_Occurrence_Of
(Rfunc
, Loc
),
3777 Parameter_Associations
=> New_List
(
3778 Make_Attribute_Reference
(Loc
,
3781 (Etype
(First_Formal
(Rfunc
)), Loc
),
3782 Attribute_Name
=> Name_Input
,
3783 Expressions
=> Exprs
)))));
3785 Analyze_And_Resolve
(N
, B_Type
);
3790 elsif Is_Elementary_Type
(U_Type
) then
3792 -- A special case arises if we have a defined _Read routine,
3793 -- since in this case we are required to call this routine.
3796 Typ
: Entity_Id
:= P_Type
;
3798 if Present
(Full_View
(Typ
)) then
3799 Typ
:= Full_View
(Typ
);
3802 if Present
(TSS
(Base_Type
(Typ
), TSS_Stream_Read
)) then
3803 Build_Record_Or_Elementary_Input_Function
3804 (Loc
, Typ
, Decl
, Fname
, Use_Underlying
=> False);
3805 Insert_Action
(N
, Decl
);
3807 -- For normal cases, we call the I_xxx routine directly
3810 Rewrite
(N
, Build_Elementary_Input_Call
(N
));
3811 Analyze_And_Resolve
(N
, P_Type
);
3818 elsif Is_Array_Type
(U_Type
) then
3819 Build_Array_Input_Function
(Loc
, U_Type
, Decl
, Fname
);
3820 Compile_Stream_Body_In_Scope
(N
, Decl
, U_Type
, Check
=> False);
3822 -- Dispatching case with class-wide type
3824 elsif Is_Class_Wide_Type
(P_Type
) then
3826 -- No need to do anything else compiling under restriction
3827 -- No_Dispatching_Calls. During the semantic analysis we
3828 -- already notified such violation.
3830 if Restriction_Active
(No_Dispatching_Calls
) then
3835 Rtyp
: constant Entity_Id
:= Root_Type
(P_Type
);
3839 -- Read the internal tag (RM 13.13.2(34)) and use it to
3840 -- initialize a dummy tag value. We used to generate:
3842 -- Descendant_Tag (String'Input (Strm), P_Type);
3844 -- which turns into a call to String_Input_Blk_IO. However,
3845 -- if the input is malformed, that could try to read an
3846 -- enormous String, causing chaos. So instead we call
3847 -- String_Input_Tag, which does the same thing as
3848 -- String_Input_Blk_IO, except that if the String is
3849 -- absurdly long, it raises an exception.
3851 -- This value is used only to provide a controlling
3852 -- argument for the eventual _Input call. Descendant_Tag is
3853 -- called rather than Internal_Tag to ensure that we have a
3854 -- tag for a type that is descended from the prefix type and
3855 -- declared at the same accessibility level (the exception
3856 -- Tag_Error will be raised otherwise). The level check is
3857 -- required for Ada 2005 because tagged types can be
3858 -- extended in nested scopes (AI-344).
3860 -- Note: we used to generate an explicit declaration of a
3861 -- constant Ada.Tags.Tag object, and use an occurrence of
3862 -- this constant in Cntrl, but this caused a secondary stack
3866 Make_Function_Call
(Loc
,
3868 New_Occurrence_Of
(RTE
(RE_Descendant_Tag
), Loc
),
3869 Parameter_Associations
=> New_List
(
3870 Make_Function_Call
(Loc
,
3873 (RTE
(RE_String_Input_Tag
), Loc
),
3874 Parameter_Associations
=> New_List
(
3875 Relocate_Node
(Duplicate_Subexpr
(Strm
)))),
3877 Make_Attribute_Reference
(Loc
,
3878 Prefix
=> New_Occurrence_Of
(P_Type
, Loc
),
3879 Attribute_Name
=> Name_Tag
)));
3881 Set_Etype
(Expr
, RTE
(RE_Tag
));
3883 -- Now we need to get the entity for the call, and construct
3884 -- a function call node, where we preset a reference to Dnn
3885 -- as the controlling argument (doing an unchecked convert
3886 -- to the class-wide tagged type to make it look like a real
3889 Fname
:= Find_Prim_Op
(Rtyp
, TSS_Stream_Input
);
3890 Cntrl
:= Unchecked_Convert_To
(P_Type
, Expr
);
3891 Set_Etype
(Cntrl
, P_Type
);
3892 Set_Parent
(Cntrl
, N
);
3895 -- For tagged types, use the primitive Input function
3897 elsif Is_Tagged_Type
(U_Type
) then
3898 Fname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Input
);
3900 -- All other record type cases, including protected records. The
3901 -- latter only arise for expander generated code for handling
3902 -- shared passive partition access.
3906 (Is_Record_Type
(U_Type
) or else Is_Protected_Type
(U_Type
));
3908 -- Ada 2005 (AI-216): Program_Error is raised executing default
3909 -- implementation of the Input attribute of an unchecked union
3910 -- type if the type lacks default discriminant values.
3912 if Is_Unchecked_Union
(Base_Type
(U_Type
))
3913 and then No
(Discriminant_Constraint
(U_Type
))
3916 Make_Raise_Program_Error
(Loc
,
3917 Reason
=> PE_Unchecked_Union_Restriction
));
3922 -- Build the type's Input function, passing the subtype rather
3923 -- than its base type, because checks are needed in the case of
3924 -- constrained discriminants (see Ada 2012 AI05-0192).
3926 Build_Record_Or_Elementary_Input_Function
3927 (Loc
, U_Type
, Decl
, Fname
);
3928 Insert_Action
(N
, Decl
);
3930 if Nkind
(Parent
(N
)) = N_Object_Declaration
3931 and then Is_Record_Type
(U_Type
)
3933 -- The stream function may contain calls to user-defined
3934 -- Read procedures for individual components.
3941 Comp
:= First_Component
(U_Type
);
3942 while Present
(Comp
) loop
3944 Find_Stream_Subprogram
3945 (Etype
(Comp
), TSS_Stream_Read
);
3947 if Present
(Func
) then
3948 Freeze_Stream_Subprogram
(Func
);
3951 Next_Component
(Comp
);
3958 -- If we fall through, Fname is the function to be called. The result
3959 -- is obtained by calling the appropriate function, then converting
3960 -- the result. The conversion does a subtype check.
3963 Make_Function_Call
(Loc
,
3964 Name
=> New_Occurrence_Of
(Fname
, Loc
),
3965 Parameter_Associations
=> New_List
(
3966 Relocate_Node
(Strm
)));
3968 Set_Controlling_Argument
(Call
, Cntrl
);
3969 Rewrite
(N
, Unchecked_Convert_To
(P_Type
, Call
));
3970 Analyze_And_Resolve
(N
, P_Type
);
3972 if Nkind
(Parent
(N
)) = N_Object_Declaration
then
3973 Freeze_Stream_Subprogram
(Fname
);
3981 when Attribute_Invalid_Value
=>
3982 Rewrite
(N
, Get_Simple_Init_Val
(Ptyp
, N
));
3988 when Attribute_Last
=>
3990 -- If the prefix type is a constrained packed array type which
3991 -- already has a Packed_Array_Impl_Type representation defined, then
3992 -- replace this attribute with a direct reference to 'Last of the
3993 -- appropriate index subtype (since otherwise the back end will try
3994 -- to give us the value of 'Last for this implementation type).
3996 if Is_Constrained_Packed_Array
(Ptyp
) then
3998 Make_Attribute_Reference
(Loc
,
3999 Attribute_Name
=> Name_Last
,
4000 Prefix
=> New_Occurrence_Of
(Get_Index_Subtype
(N
), Loc
)));
4001 Analyze_And_Resolve
(N
, Typ
);
4003 -- For access type, apply access check as needed
4005 elsif Is_Access_Type
(Ptyp
) then
4006 Apply_Access_Check
(N
);
4008 -- For scalar type, if low bound is a reference to an entity, just
4009 -- replace with a direct reference. Note that we can only have a
4010 -- reference to a constant entity at this stage, anything else would
4011 -- have already been rewritten.
4013 elsif Is_Scalar_Type
(Ptyp
) then
4015 Hi
: constant Node_Id
:= Type_High_Bound
(Ptyp
);
4017 if Is_Entity_Name
(Hi
) then
4018 Rewrite
(N
, New_Occurrence_Of
(Entity
(Hi
), Loc
));
4027 -- We compute this if a component clause was present, otherwise we leave
4028 -- the computation up to the back end, since we don't know what layout
4031 when Attribute_Last_Bit
=> Last_Bit_Attr
: declare
4032 CE
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
4035 -- In Ada 2005 (or later) if we have the non-default bit order, then
4036 -- we return the original value as given in the component clause
4037 -- (RM 2005 13.5.2(3/2)).
4039 if Present
(Component_Clause
(CE
))
4040 and then Ada_Version
>= Ada_2005
4041 and then Reverse_Bit_Order
(Scope
(CE
))
4044 Make_Integer_Literal
(Loc
,
4045 Intval
=> Expr_Value
(Last_Bit
(Component_Clause
(CE
)))));
4046 Analyze_And_Resolve
(N
, Typ
);
4048 -- Otherwise (Ada 83/95 or Ada 2005 or later with default bit order),
4049 -- rewrite with normalized value if we know it statically.
4051 elsif Known_Static_Component_Bit_Offset
(CE
)
4052 and then Known_Static_Esize
(CE
)
4055 Make_Integer_Literal
(Loc
,
4056 Intval
=> (Component_Bit_Offset
(CE
) mod System_Storage_Unit
)
4058 Analyze_And_Resolve
(N
, Typ
);
4060 -- Otherwise leave to back end, just apply universal integer checks
4063 Apply_Universal_Integer_Attribute_Checks
(N
);
4071 -- Transforms 'Leading_Part into a call to the floating-point attribute
4072 -- function Leading_Part in Fat_xxx (where xxx is the root type)
4074 -- Note: strictly, we should generate special case code to deal with
4075 -- absurdly large positive arguments (greater than Integer'Last), which
4076 -- result in returning the first argument unchanged, but it hardly seems
4077 -- worth the effort. We raise constraint error for absurdly negative
4078 -- arguments which is fine.
4080 when Attribute_Leading_Part
=>
4081 Expand_Fpt_Attribute_RI
(N
);
4087 when Attribute_Length
=> Length
: declare
4092 -- Processing for packed array types
4094 if Is_Array_Type
(Ptyp
) and then Is_Packed
(Ptyp
) then
4095 Ityp
:= Get_Index_Subtype
(N
);
4097 -- If the index type, Ityp, is an enumeration type with holes,
4098 -- then we calculate X'Length explicitly using
4101 -- (0, Ityp'Pos (X'Last (N)) -
4102 -- Ityp'Pos (X'First (N)) + 1);
4104 -- Since the bounds in the template are the representation values
4105 -- and the back end would get the wrong value.
4107 if Is_Enumeration_Type
(Ityp
)
4108 and then Present
(Enum_Pos_To_Rep
(Base_Type
(Ityp
)))
4113 Xnum
:= Expr_Value
(First
(Expressions
(N
)));
4117 Make_Attribute_Reference
(Loc
,
4118 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
4119 Attribute_Name
=> Name_Max
,
4120 Expressions
=> New_List
4121 (Make_Integer_Literal
(Loc
, 0),
4125 Make_Op_Subtract
(Loc
,
4127 Make_Attribute_Reference
(Loc
,
4128 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
4129 Attribute_Name
=> Name_Pos
,
4131 Expressions
=> New_List
(
4132 Make_Attribute_Reference
(Loc
,
4133 Prefix
=> Duplicate_Subexpr
(Pref
),
4134 Attribute_Name
=> Name_Last
,
4135 Expressions
=> New_List
(
4136 Make_Integer_Literal
(Loc
, Xnum
))))),
4139 Make_Attribute_Reference
(Loc
,
4140 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
4141 Attribute_Name
=> Name_Pos
,
4143 Expressions
=> New_List
(
4144 Make_Attribute_Reference
(Loc
,
4146 Duplicate_Subexpr_No_Checks
(Pref
),
4147 Attribute_Name
=> Name_First
,
4148 Expressions
=> New_List
(
4149 Make_Integer_Literal
(Loc
, Xnum
)))))),
4151 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)))));
4153 Analyze_And_Resolve
(N
, Typ
, Suppress
=> All_Checks
);
4156 -- If the prefix type is a constrained packed array type which
4157 -- already has a Packed_Array_Impl_Type representation defined,
4158 -- then replace this attribute with a reference to 'Range_Length
4159 -- of the appropriate index subtype (since otherwise the
4160 -- back end will try to give us the value of 'Length for
4161 -- this implementation type).s
4163 elsif Is_Constrained
(Ptyp
) then
4165 Make_Attribute_Reference
(Loc
,
4166 Attribute_Name
=> Name_Range_Length
,
4167 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
)));
4168 Analyze_And_Resolve
(N
, Typ
);
4173 elsif Is_Access_Type
(Ptyp
) then
4174 Apply_Access_Check
(N
);
4176 -- If the designated type is a packed array type, then we convert
4177 -- the reference to:
4180 -- xtyp'Pos (Pref'Last (Expr)) -
4181 -- xtyp'Pos (Pref'First (Expr)));
4183 -- This is a bit complex, but it is the easiest thing to do that
4184 -- works in all cases including enum types with holes xtyp here
4185 -- is the appropriate index type.
4188 Dtyp
: constant Entity_Id
:= Designated_Type
(Ptyp
);
4192 if Is_Array_Type
(Dtyp
) and then Is_Packed
(Dtyp
) then
4193 Xtyp
:= Get_Index_Subtype
(N
);
4196 Make_Attribute_Reference
(Loc
,
4197 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
4198 Attribute_Name
=> Name_Max
,
4199 Expressions
=> New_List
(
4200 Make_Integer_Literal
(Loc
, 0),
4203 Make_Integer_Literal
(Loc
, 1),
4204 Make_Op_Subtract
(Loc
,
4206 Make_Attribute_Reference
(Loc
,
4207 Prefix
=> New_Occurrence_Of
(Xtyp
, Loc
),
4208 Attribute_Name
=> Name_Pos
,
4209 Expressions
=> New_List
(
4210 Make_Attribute_Reference
(Loc
,
4211 Prefix
=> Duplicate_Subexpr
(Pref
),
4212 Attribute_Name
=> Name_Last
,
4214 New_Copy_List
(Exprs
)))),
4217 Make_Attribute_Reference
(Loc
,
4218 Prefix
=> New_Occurrence_Of
(Xtyp
, Loc
),
4219 Attribute_Name
=> Name_Pos
,
4220 Expressions
=> New_List
(
4221 Make_Attribute_Reference
(Loc
,
4223 Duplicate_Subexpr_No_Checks
(Pref
),
4224 Attribute_Name
=> Name_First
,
4226 New_Copy_List
(Exprs
)))))))));
4228 Analyze_And_Resolve
(N
, Typ
);
4232 -- Otherwise leave it to the back end
4235 Apply_Universal_Integer_Attribute_Checks
(N
);
4239 -- Attribute Loop_Entry is replaced with a reference to a constant value
4240 -- which captures the prefix at the entry point of the related loop. The
4241 -- loop itself may be transformed into a conditional block.
4243 when Attribute_Loop_Entry
=>
4244 Expand_Loop_Entry_Attribute
(N
);
4250 -- Transforms 'Machine into a call to the floating-point attribute
4251 -- function Machine in Fat_xxx (where xxx is the root type).
4252 -- Expansion is avoided for cases the back end can handle directly.
4254 when Attribute_Machine
=>
4255 if not Is_Inline_Floating_Point_Attribute
(N
) then
4256 Expand_Fpt_Attribute_R
(N
);
4259 ----------------------
4260 -- Machine_Rounding --
4261 ----------------------
4263 -- Transforms 'Machine_Rounding into a call to the floating-point
4264 -- attribute function Machine_Rounding in Fat_xxx (where xxx is the root
4265 -- type). Expansion is avoided for cases the back end can handle
4268 when Attribute_Machine_Rounding
=>
4269 if not Is_Inline_Floating_Point_Attribute
(N
) then
4270 Expand_Fpt_Attribute_R
(N
);
4277 -- Machine_Size is equivalent to Object_Size, so transform it into
4278 -- Object_Size and that way the back end never sees Machine_Size.
4280 when Attribute_Machine_Size
=>
4282 Make_Attribute_Reference
(Loc
,
4283 Prefix
=> Prefix
(N
),
4284 Attribute_Name
=> Name_Object_Size
));
4286 Analyze_And_Resolve
(N
, Typ
);
4292 -- The only case that can get this far is the dynamic case of the old
4293 -- Ada 83 Mantissa attribute for the fixed-point case. For this case,
4300 -- ityp (System.Mantissa.Mantissa_Value
4301 -- (Integer'Integer_Value (typ'First),
4302 -- Integer'Integer_Value (typ'Last)));
4304 when Attribute_Mantissa
=>
4307 Make_Function_Call
(Loc
,
4309 New_Occurrence_Of
(RTE
(RE_Mantissa_Value
), Loc
),
4311 Parameter_Associations
=> New_List
(
4312 Make_Attribute_Reference
(Loc
,
4313 Prefix
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
4314 Attribute_Name
=> Name_Integer_Value
,
4315 Expressions
=> New_List
(
4316 Make_Attribute_Reference
(Loc
,
4317 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
4318 Attribute_Name
=> Name_First
))),
4320 Make_Attribute_Reference
(Loc
,
4321 Prefix
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
4322 Attribute_Name
=> Name_Integer_Value
,
4323 Expressions
=> New_List
(
4324 Make_Attribute_Reference
(Loc
,
4325 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
4326 Attribute_Name
=> Name_Last
)))))));
4328 Analyze_And_Resolve
(N
, Typ
);
4334 when Attribute_Max
=>
4335 Expand_Min_Max_Attribute
(N
);
4337 ----------------------------------
4338 -- Max_Size_In_Storage_Elements --
4339 ----------------------------------
4341 when Attribute_Max_Size_In_Storage_Elements
=> declare
4342 Typ
: constant Entity_Id
:= Etype
(N
);
4345 Conversion_Added
: Boolean := False;
4346 -- A flag which tracks whether the original attribute has been
4347 -- wrapped inside a type conversion.
4350 -- If the prefix is X'Class, we transform it into a direct reference
4351 -- to the class-wide type, because the back end must not see a 'Class
4352 -- reference. See also 'Size.
4354 if Is_Entity_Name
(Pref
)
4355 and then Is_Class_Wide_Type
(Entity
(Pref
))
4357 Rewrite
(Prefix
(N
), New_Occurrence_Of
(Entity
(Pref
), Loc
));
4361 Apply_Universal_Integer_Attribute_Checks
(N
);
4363 -- The universal integer check may sometimes add a type conversion,
4364 -- retrieve the original attribute reference from the expression.
4368 if Nkind
(Attr
) = N_Type_Conversion
then
4369 Attr
:= Expression
(Attr
);
4370 Conversion_Added
:= True;
4373 pragma Assert
(Nkind
(Attr
) = N_Attribute_Reference
);
4375 -- Heap-allocated controlled objects contain two extra pointers which
4376 -- are not part of the actual type. Transform the attribute reference
4377 -- into a runtime expression to add the size of the hidden header.
4379 if Needs_Finalization
(Ptyp
)
4380 and then not Header_Size_Added
(Attr
)
4382 Set_Header_Size_Added
(Attr
);
4385 -- P'Max_Size_In_Storage_Elements +
4386 -- Universal_Integer
4387 -- (Header_Size_With_Padding (Ptyp'Alignment))
4391 Left_Opnd
=> Relocate_Node
(Attr
),
4393 Convert_To
(Universal_Integer
,
4394 Make_Function_Call
(Loc
,
4397 (RTE
(RE_Header_Size_With_Padding
), Loc
),
4399 Parameter_Associations
=> New_List
(
4400 Make_Attribute_Reference
(Loc
,
4402 New_Occurrence_Of
(Ptyp
, Loc
),
4403 Attribute_Name
=> Name_Alignment
))))));
4405 -- Add a conversion to the target type
4407 if not Conversion_Added
then
4409 Make_Type_Conversion
(Loc
,
4410 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
4411 Expression
=> Relocate_Node
(Attr
)));
4419 --------------------
4420 -- Mechanism_Code --
4421 --------------------
4423 when Attribute_Mechanism_Code
=>
4425 -- We must replace the prefix in the renamed case
4427 if Is_Entity_Name
(Pref
)
4428 and then Present
(Alias
(Entity
(Pref
)))
4430 Set_Renamed_Subprogram
(Pref
, Alias
(Entity
(Pref
)));
4437 when Attribute_Min
=>
4438 Expand_Min_Max_Attribute
(N
);
4444 when Attribute_Mod
=> Mod_Case
: declare
4445 Arg
: constant Node_Id
:= Relocate_Node
(First
(Exprs
));
4446 Hi
: constant Node_Id
:= Type_High_Bound
(Etype
(Arg
));
4447 Modv
: constant Uint
:= Modulus
(Btyp
);
4451 -- This is not so simple. The issue is what type to use for the
4452 -- computation of the modular value.
4454 -- The easy case is when the modulus value is within the bounds
4455 -- of the signed integer type of the argument. In this case we can
4456 -- just do the computation in that signed integer type, and then
4457 -- do an ordinary conversion to the target type.
4459 if Modv
<= Expr_Value
(Hi
) then
4464 Right_Opnd
=> Make_Integer_Literal
(Loc
, Modv
))));
4466 -- Here we know that the modulus is larger than type'Last of the
4467 -- integer type. There are two cases to consider:
4469 -- a) The integer value is non-negative. In this case, it is
4470 -- returned as the result (since it is less than the modulus).
4472 -- b) The integer value is negative. In this case, we know that the
4473 -- result is modulus + value, where the value might be as small as
4474 -- -modulus. The trouble is what type do we use to do the subtract.
4475 -- No type will do, since modulus can be as big as 2**64, and no
4476 -- integer type accommodates this value. Let's do bit of algebra
4479 -- = modulus - (-value)
4480 -- = (modulus - 1) - (-value - 1)
4482 -- Now modulus - 1 is certainly in range of the modular type.
4483 -- -value is in the range 1 .. modulus, so -value -1 is in the
4484 -- range 0 .. modulus-1 which is in range of the modular type.
4485 -- Furthermore, (-value - 1) can be expressed as -(value + 1)
4486 -- which we can compute using the integer base type.
4488 -- Once this is done we analyze the if expression without range
4489 -- checks, because we know everything is in range, and we want
4490 -- to prevent spurious warnings on either branch.
4494 Make_If_Expression
(Loc
,
4495 Expressions
=> New_List
(
4497 Left_Opnd
=> Duplicate_Subexpr
(Arg
),
4498 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
4501 Duplicate_Subexpr_No_Checks
(Arg
)),
4503 Make_Op_Subtract
(Loc
,
4505 Make_Integer_Literal
(Loc
,
4506 Intval
=> Modv
- 1),
4512 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Arg
),
4514 Make_Integer_Literal
(Loc
,
4515 Intval
=> 1))))))));
4519 Analyze_And_Resolve
(N
, Btyp
, Suppress
=> All_Checks
);
4526 -- Transforms 'Model into a call to the floating-point attribute
4527 -- function Model in Fat_xxx (where xxx is the root type).
4528 -- Expansion is avoided for cases the back end can handle directly.
4530 when Attribute_Model
=>
4531 if not Is_Inline_Floating_Point_Attribute
(N
) then
4532 Expand_Fpt_Attribute_R
(N
);
4539 -- The processing for Object_Size shares the processing for Size
4545 when Attribute_Old
=> Old
: declare
4546 Typ
: constant Entity_Id
:= Etype
(N
);
4547 CW_Temp
: Entity_Id
;
4554 -- Generating C code we don't need to expand this attribute when
4555 -- we are analyzing the internally built nested postconditions
4556 -- procedure since it will be expanded inline (and later it will
4557 -- be removed by Expand_N_Subprogram_Body). It this expansion is
4558 -- performed in such case then the compiler generates unreferenced
4559 -- extra temporaries.
4561 if Modify_Tree_For_C
4562 and then Chars
(Current_Scope
) = Name_uPostconditions
4567 -- Climb the parent chain looking for subprogram _Postconditions
4570 while Present
(Subp
) loop
4571 exit when Nkind
(Subp
) = N_Subprogram_Body
4572 and then Chars
(Defining_Entity
(Subp
)) = Name_uPostconditions
;
4574 -- If assertions are disabled, no need to create the declaration
4575 -- that preserves the value. The postcondition pragma in which
4576 -- 'Old appears will be checked or disabled according to the
4577 -- current policy in effect.
4579 if Nkind
(Subp
) = N_Pragma
and then not Is_Checked
(Subp
) then
4583 Subp
:= Parent
(Subp
);
4586 -- 'Old can only appear in a postcondition, the generated body of
4587 -- _Postconditions must be in the tree (or inlined if we are
4588 -- generating C code).
4592 or else (Modify_Tree_For_C
and then In_Inlined_Body
));
4594 Temp
:= Make_Temporary
(Loc
, 'T', Pref
);
4596 -- Set the entity kind now in order to mark the temporary as a
4597 -- handler of attribute 'Old's prefix.
4599 Set_Ekind
(Temp
, E_Constant
);
4600 Set_Stores_Attribute_Old_Prefix
(Temp
);
4602 -- Push the scope of the related subprogram where _Postcondition
4603 -- resides as this ensures that the object will be analyzed in the
4606 if Present
(Subp
) then
4607 Push_Scope
(Scope
(Defining_Entity
(Subp
)));
4609 -- No need to push the scope when generating C code since the
4610 -- _Postcondition procedure has been inlined.
4612 else pragma Assert
(Modify_Tree_For_C
);
4613 pragma Assert
(In_Inlined_Body
);
4617 -- Locate the insertion place of the internal temporary that saves
4620 if Present
(Subp
) then
4623 -- Generating C, the postcondition procedure has been inlined and the
4624 -- temporary is added before the first declaration of the enclosing
4627 else pragma Assert
(Modify_Tree_For_C
);
4629 while Nkind
(Ins_Nod
) /= N_Subprogram_Body
loop
4630 Ins_Nod
:= Parent
(Ins_Nod
);
4633 Ins_Nod
:= First
(Declarations
(Ins_Nod
));
4636 -- Preserve the tag of the prefix by offering a specific view of the
4637 -- class-wide version of the prefix.
4639 if Is_Tagged_Type
(Typ
) then
4642 -- CW_Temp : constant Typ'Class := Typ'Class (Pref);
4644 CW_Temp
:= Make_Temporary
(Loc
, 'T');
4645 CW_Typ
:= Class_Wide_Type
(Typ
);
4647 Insert_Before_And_Analyze
(Ins_Nod
,
4648 Make_Object_Declaration
(Loc
,
4649 Defining_Identifier
=> CW_Temp
,
4650 Constant_Present
=> True,
4651 Object_Definition
=> New_Occurrence_Of
(CW_Typ
, Loc
),
4653 Convert_To
(CW_Typ
, Relocate_Node
(Pref
))));
4656 -- Temp : Typ renames Typ (CW_Temp);
4658 Insert_Before_And_Analyze
(Ins_Nod
,
4659 Make_Object_Renaming_Declaration
(Loc
,
4660 Defining_Identifier
=> Temp
,
4661 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
4663 Convert_To
(Typ
, New_Occurrence_Of
(CW_Temp
, Loc
))));
4669 -- Temp : constant Typ := Pref;
4671 Insert_Before_And_Analyze
(Ins_Nod
,
4672 Make_Object_Declaration
(Loc
,
4673 Defining_Identifier
=> Temp
,
4674 Constant_Present
=> True,
4675 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
4676 Expression
=> Relocate_Node
(Pref
)));
4679 if Present
(Subp
) then
4683 -- Ensure that the prefix of attribute 'Old is valid. The check must
4684 -- be inserted after the expansion of the attribute has taken place
4685 -- to reflect the new placement of the prefix.
4687 if Validity_Checks_On
and then Validity_Check_Operands
then
4688 Ensure_Valid
(Pref
);
4691 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
4694 ----------------------
4695 -- Overlaps_Storage --
4696 ----------------------
4698 when Attribute_Overlaps_Storage
=> Overlaps_Storage
: declare
4699 Loc
: constant Source_Ptr
:= Sloc
(N
);
4701 X
: constant Node_Id
:= Prefix
(N
);
4702 Y
: constant Node_Id
:= First
(Expressions
(N
));
4705 X_Addr
, Y_Addr
: Node_Id
;
4706 -- the expressions for their integer addresses
4708 X_Size
, Y_Size
: Node_Id
;
4709 -- the expressions for their sizes
4714 -- Attribute expands into:
4716 -- if X'Address < Y'address then
4717 -- (X'address + X'Size - 1) >= Y'address
4719 -- (Y'address + Y'size - 1) >= X'Address
4722 -- with the proper address operations. We convert addresses to
4723 -- integer addresses to use predefined arithmetic. The size is
4724 -- expressed in storage units. We add copies of X_Addr and Y_Addr
4725 -- to prevent the appearance of the same node in two places in
4729 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
4730 Make_Attribute_Reference
(Loc
,
4731 Attribute_Name
=> Name_Address
,
4732 Prefix
=> New_Copy_Tree
(X
)));
4735 Unchecked_Convert_To
(RTE
(RE_Integer_Address
),
4736 Make_Attribute_Reference
(Loc
,
4737 Attribute_Name
=> Name_Address
,
4738 Prefix
=> New_Copy_Tree
(Y
)));
4741 Make_Op_Divide
(Loc
,
4743 Make_Attribute_Reference
(Loc
,
4744 Attribute_Name
=> Name_Size
,
4745 Prefix
=> New_Copy_Tree
(X
)),
4747 Make_Integer_Literal
(Loc
, System_Storage_Unit
));
4750 Make_Op_Divide
(Loc
,
4752 Make_Attribute_Reference
(Loc
,
4753 Attribute_Name
=> Name_Size
,
4754 Prefix
=> New_Copy_Tree
(Y
)),
4756 Make_Integer_Literal
(Loc
, System_Storage_Unit
));
4760 Left_Opnd
=> X_Addr
,
4761 Right_Opnd
=> Y_Addr
);
4764 Make_If_Expression
(Loc
, New_List
(
4770 Left_Opnd
=> New_Copy_Tree
(X_Addr
),
4772 Make_Op_Subtract
(Loc
,
4773 Left_Opnd
=> X_Size
,
4774 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))),
4775 Right_Opnd
=> Y_Addr
),
4780 Left_Opnd
=> New_Copy_Tree
(Y_Addr
),
4782 Make_Op_Subtract
(Loc
,
4783 Left_Opnd
=> Y_Size
,
4784 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))),
4785 Right_Opnd
=> X_Addr
))));
4787 Analyze_And_Resolve
(N
, Standard_Boolean
);
4788 end Overlaps_Storage
;
4794 when Attribute_Output
=> Output
: declare
4795 P_Type
: constant Entity_Id
:= Entity
(Pref
);
4796 U_Type
: constant Entity_Id
:= Underlying_Type
(P_Type
);
4804 -- If no underlying type, we have an error that will be diagnosed
4805 -- elsewhere, so here we just completely ignore the expansion.
4811 -- Stream operations can appear in user code even if the restriction
4812 -- No_Streams is active (for example, when instantiating a predefined
4813 -- container). In that case rewrite the attribute as a Raise to
4814 -- prevent any run-time use.
4816 if Restriction_Active
(No_Streams
) then
4818 Make_Raise_Program_Error
(Sloc
(N
),
4819 Reason
=> PE_Stream_Operation_Not_Allowed
));
4820 Set_Etype
(N
, Standard_Void_Type
);
4824 -- If TSS for Output is present, just call it
4826 Pname
:= Find_Stream_Subprogram
(P_Type
, TSS_Stream_Output
);
4828 if Present
(Pname
) then
4832 -- If there is a Stream_Convert pragma, use it, we rewrite
4834 -- sourcetyp'Output (stream, Item)
4838 -- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
4840 -- where strmwrite is the given Write function that converts an
4841 -- argument of type sourcetyp or a type acctyp, from which it is
4842 -- derived to type strmtyp. The conversion to acttyp is required
4843 -- for the derived case.
4845 Prag
:= Get_Stream_Convert_Pragma
(P_Type
);
4847 if Present
(Prag
) then
4849 Next
(Next
(First
(Pragma_Argument_Associations
(Prag
))));
4850 Wfunc
:= Entity
(Expression
(Arg3
));
4853 Make_Attribute_Reference
(Loc
,
4854 Prefix
=> New_Occurrence_Of
(Etype
(Wfunc
), Loc
),
4855 Attribute_Name
=> Name_Output
,
4856 Expressions
=> New_List
(
4857 Relocate_Node
(First
(Exprs
)),
4858 Make_Function_Call
(Loc
,
4859 Name
=> New_Occurrence_Of
(Wfunc
, Loc
),
4860 Parameter_Associations
=> New_List
(
4861 OK_Convert_To
(Etype
(First_Formal
(Wfunc
)),
4862 Relocate_Node
(Next
(First
(Exprs
)))))))));
4867 -- For elementary types, we call the W_xxx routine directly. Note
4868 -- that the effect of Write and Output is identical for the case
4869 -- of an elementary type (there are no discriminants or bounds).
4871 elsif Is_Elementary_Type
(U_Type
) then
4873 -- A special case arises if we have a defined _Write routine,
4874 -- since in this case we are required to call this routine.
4877 Typ
: Entity_Id
:= P_Type
;
4879 if Present
(Full_View
(Typ
)) then
4880 Typ
:= Full_View
(Typ
);
4883 if Present
(TSS
(Base_Type
(Typ
), TSS_Stream_Write
)) then
4884 Build_Record_Or_Elementary_Output_Procedure
4885 (Loc
, Typ
, Decl
, Pname
);
4886 Insert_Action
(N
, Decl
);
4888 -- For normal cases, we call the W_xxx routine directly
4891 Rewrite
(N
, Build_Elementary_Write_Call
(N
));
4899 elsif Is_Array_Type
(U_Type
) then
4900 Build_Array_Output_Procedure
(Loc
, U_Type
, Decl
, Pname
);
4901 Compile_Stream_Body_In_Scope
(N
, Decl
, U_Type
, Check
=> False);
4903 -- Class-wide case, first output external tag, then dispatch
4904 -- to the appropriate primitive Output function (RM 13.13.2(31)).
4906 elsif Is_Class_Wide_Type
(P_Type
) then
4908 -- No need to do anything else compiling under restriction
4909 -- No_Dispatching_Calls. During the semantic analysis we
4910 -- already notified such violation.
4912 if Restriction_Active
(No_Dispatching_Calls
) then
4917 Strm
: constant Node_Id
:= First
(Exprs
);
4918 Item
: constant Node_Id
:= Next
(Strm
);
4921 -- Ada 2005 (AI-344): Check that the accessibility level
4922 -- of the type of the output object is not deeper than
4923 -- that of the attribute's prefix type.
4925 -- if Get_Access_Level (Item'Tag)
4926 -- /= Get_Access_Level (P_Type'Tag)
4931 -- String'Output (Strm, External_Tag (Item'Tag));
4933 -- We cannot figure out a practical way to implement this
4934 -- accessibility check on virtual machines, so we omit it.
4936 if Ada_Version
>= Ada_2005
4937 and then Tagged_Type_Expansion
4940 Make_Implicit_If_Statement
(N
,
4944 Build_Get_Access_Level
(Loc
,
4945 Make_Attribute_Reference
(Loc
,
4948 Duplicate_Subexpr
(Item
,
4950 Attribute_Name
=> Name_Tag
)),
4953 Make_Integer_Literal
(Loc
,
4954 Type_Access_Level
(P_Type
))),
4957 New_List
(Make_Raise_Statement
(Loc
,
4959 RTE
(RE_Tag_Error
), Loc
)))));
4963 Make_Attribute_Reference
(Loc
,
4964 Prefix
=> New_Occurrence_Of
(Standard_String
, Loc
),
4965 Attribute_Name
=> Name_Output
,
4966 Expressions
=> New_List
(
4967 Relocate_Node
(Duplicate_Subexpr
(Strm
)),
4968 Make_Function_Call
(Loc
,
4970 New_Occurrence_Of
(RTE
(RE_External_Tag
), Loc
),
4971 Parameter_Associations
=> New_List
(
4972 Make_Attribute_Reference
(Loc
,
4975 (Duplicate_Subexpr
(Item
, Name_Req
=> True)),
4976 Attribute_Name
=> Name_Tag
))))));
4979 Pname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Output
);
4981 -- Tagged type case, use the primitive Output function
4983 elsif Is_Tagged_Type
(U_Type
) then
4984 Pname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Output
);
4986 -- All other record type cases, including protected records.
4987 -- The latter only arise for expander generated code for
4988 -- handling shared passive partition access.
4992 (Is_Record_Type
(U_Type
) or else Is_Protected_Type
(U_Type
));
4994 -- Ada 2005 (AI-216): Program_Error is raised when executing
4995 -- the default implementation of the Output attribute of an
4996 -- unchecked union type if the type lacks default discriminant
4999 if Is_Unchecked_Union
(Base_Type
(U_Type
))
5000 and then No
(Discriminant_Constraint
(U_Type
))
5003 Make_Raise_Program_Error
(Loc
,
5004 Reason
=> PE_Unchecked_Union_Restriction
));
5009 Build_Record_Or_Elementary_Output_Procedure
5010 (Loc
, Base_Type
(U_Type
), Decl
, Pname
);
5011 Insert_Action
(N
, Decl
);
5015 -- If we fall through, Pname is the name of the procedure to call
5017 Rewrite_Stream_Proc_Call
(Pname
);
5024 -- For enumeration types with a standard representation, Pos is
5025 -- handled by the back end.
5027 -- For enumeration types, with a non-standard representation we generate
5028 -- a call to the _Rep_To_Pos function created when the type was frozen.
5029 -- The call has the form
5031 -- _rep_to_pos (expr, flag)
5033 -- The parameter flag is True if range checks are enabled, causing
5034 -- Program_Error to be raised if the expression has an invalid
5035 -- representation, and False if range checks are suppressed.
5037 -- For integer types, Pos is equivalent to a simple integer
5038 -- conversion and we rewrite it as such
5040 when Attribute_Pos
=> Pos
: declare
5041 Etyp
: Entity_Id
:= Base_Type
(Entity
(Pref
));
5044 -- Deal with zero/non-zero boolean values
5046 if Is_Boolean_Type
(Etyp
) then
5047 Adjust_Condition
(First
(Exprs
));
5048 Etyp
:= Standard_Boolean
;
5049 Set_Prefix
(N
, New_Occurrence_Of
(Standard_Boolean
, Loc
));
5052 -- Case of enumeration type
5054 if Is_Enumeration_Type
(Etyp
) then
5056 -- Non-standard enumeration type (generate call)
5058 if Present
(Enum_Pos_To_Rep
(Etyp
)) then
5059 Append_To
(Exprs
, Rep_To_Pos_Flag
(Etyp
, Loc
));
5062 Make_Function_Call
(Loc
,
5064 New_Occurrence_Of
(TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
5065 Parameter_Associations
=> Exprs
)));
5067 Analyze_And_Resolve
(N
, Typ
);
5069 -- Standard enumeration type (do universal integer check)
5072 Apply_Universal_Integer_Attribute_Checks
(N
);
5075 -- Deal with integer types (replace by conversion)
5077 elsif Is_Integer_Type
(Etyp
) then
5078 Rewrite
(N
, Convert_To
(Typ
, First
(Exprs
)));
5079 Analyze_And_Resolve
(N
, Typ
);
5088 -- We compute this if a component clause was present, otherwise we leave
5089 -- the computation up to the back end, since we don't know what layout
5092 when Attribute_Position
=> Position_Attr
: declare
5093 CE
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
5096 if Present
(Component_Clause
(CE
)) then
5098 -- In Ada 2005 (or later) if we have the non-default bit order,
5099 -- then we return the original value as given in the component
5100 -- clause (RM 2005 13.5.2(2/2)).
5102 if Ada_Version
>= Ada_2005
5103 and then Reverse_Bit_Order
(Scope
(CE
))
5106 Make_Integer_Literal
(Loc
,
5107 Intval
=> Expr_Value
(Position
(Component_Clause
(CE
)))));
5109 -- Otherwise (Ada 83 or 95, or default bit order specified in
5110 -- later Ada version), return the normalized value.
5114 Make_Integer_Literal
(Loc
,
5115 Intval
=> Component_Bit_Offset
(CE
) / System_Storage_Unit
));
5118 Analyze_And_Resolve
(N
, Typ
);
5120 -- If back end is doing things, just apply universal integer checks
5123 Apply_Universal_Integer_Attribute_Checks
(N
);
5131 -- 1. Deal with enumeration types with holes.
5132 -- 2. For floating-point, generate call to attribute function.
5133 -- 3. For other cases, deal with constraint checking.
5135 when Attribute_Pred
=> Pred
: declare
5136 Etyp
: constant Entity_Id
:= Base_Type
(Ptyp
);
5140 -- For enumeration types with non-standard representations, we
5141 -- expand typ'Pred (x) into
5143 -- Pos_To_Rep (Rep_To_Pos (x) - 1)
5145 -- If the representation is contiguous, we compute instead
5146 -- Lit1 + Rep_to_Pos (x -1), to catch invalid representations.
5147 -- The conversion function Enum_Pos_To_Rep is defined on the
5148 -- base type, not the subtype, so we have to use the base type
5149 -- explicitly for this and other enumeration attributes.
5151 if Is_Enumeration_Type
(Ptyp
)
5152 and then Present
(Enum_Pos_To_Rep
(Etyp
))
5154 if Has_Contiguous_Rep
(Etyp
) then
5156 Unchecked_Convert_To
(Ptyp
,
5159 Make_Integer_Literal
(Loc
,
5160 Enumeration_Rep
(First_Literal
(Ptyp
))),
5162 Make_Function_Call
(Loc
,
5165 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
5167 Parameter_Associations
=>
5169 Unchecked_Convert_To
(Ptyp
,
5170 Make_Op_Subtract
(Loc
,
5172 Unchecked_Convert_To
(Standard_Integer
,
5173 Relocate_Node
(First
(Exprs
))),
5175 Make_Integer_Literal
(Loc
, 1))),
5176 Rep_To_Pos_Flag
(Ptyp
, Loc
))))));
5179 -- Add Boolean parameter True, to request program errror if
5180 -- we have a bad representation on our hands. If checks are
5181 -- suppressed, then add False instead
5183 Append_To
(Exprs
, Rep_To_Pos_Flag
(Ptyp
, Loc
));
5185 Make_Indexed_Component
(Loc
,
5188 (Enum_Pos_To_Rep
(Etyp
), Loc
),
5189 Expressions
=> New_List
(
5190 Make_Op_Subtract
(Loc
,
5192 Make_Function_Call
(Loc
,
5195 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
5196 Parameter_Associations
=> Exprs
),
5197 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)))));
5200 Analyze_And_Resolve
(N
, Typ
);
5202 -- For floating-point, we transform 'Pred into a call to the Pred
5203 -- floating-point attribute function in Fat_xxx (xxx is root type).
5204 -- Note that this function takes care of the overflow case.
5206 elsif Is_Floating_Point_Type
(Ptyp
) then
5207 Expand_Fpt_Attribute_R
(N
);
5208 Analyze_And_Resolve
(N
, Typ
);
5210 -- For modular types, nothing to do (no overflow, since wraps)
5212 elsif Is_Modular_Integer_Type
(Ptyp
) then
5215 -- For other types, if argument is marked as needing a range check or
5216 -- overflow checking is enabled, we must generate a check.
5218 elsif not Overflow_Checks_Suppressed
(Ptyp
)
5219 or else Do_Range_Check
(First
(Exprs
))
5221 Set_Do_Range_Check
(First
(Exprs
), False);
5222 Expand_Pred_Succ_Attribute
(N
);
5230 -- Ada 2005 (AI-327): Dynamic ceiling priorities
5232 -- We rewrite X'Priority as the following run-time call:
5234 -- Get_Ceiling (X._Object)
5236 -- Note that although X'Priority is notionally an object, it is quite
5237 -- deliberately not defined as an aliased object in the RM. This means
5238 -- that it works fine to rewrite it as a call, without having to worry
5239 -- about complications that would other arise from X'Priority'Access,
5240 -- which is illegal, because of the lack of aliasing.
5242 when Attribute_Priority
=> Priority
: declare
5244 Conctyp
: Entity_Id
;
5245 New_Itype
: Entity_Id
;
5246 Object_Parm
: Node_Id
;
5248 RT_Subprg_Name
: Node_Id
;
5251 -- Look for the enclosing concurrent type
5253 Conctyp
:= Current_Scope
;
5254 while not Is_Concurrent_Type
(Conctyp
) loop
5255 Conctyp
:= Scope
(Conctyp
);
5258 pragma Assert
(Is_Protected_Type
(Conctyp
));
5260 -- Generate the actual of the call
5262 Subprg
:= Current_Scope
;
5263 while not Present
(Protected_Body_Subprogram
(Subprg
)) loop
5264 Subprg
:= Scope
(Subprg
);
5267 -- Use of 'Priority inside protected entries and barriers (in both
5268 -- cases the type of the first formal of their expanded subprogram
5271 if Etype
(First_Entity
(Protected_Body_Subprogram
(Subprg
))) =
5274 -- In the expansion of protected entries the type of the first
5275 -- formal of the Protected_Body_Subprogram is an Address. In order
5276 -- to reference the _object component we generate:
5278 -- type T is access p__ptTV;
5281 New_Itype
:= Create_Itype
(E_Access_Type
, N
);
5282 Set_Etype
(New_Itype
, New_Itype
);
5283 Set_Directly_Designated_Type
(New_Itype
,
5284 Corresponding_Record_Type
(Conctyp
));
5285 Freeze_Itype
(New_Itype
, N
);
5288 -- T!(O)._object'unchecked_access
5291 Make_Attribute_Reference
(Loc
,
5293 Make_Selected_Component
(Loc
,
5295 Unchecked_Convert_To
(New_Itype
,
5297 (First_Entity
(Protected_Body_Subprogram
(Subprg
)),
5299 Selector_Name
=> Make_Identifier
(Loc
, Name_uObject
)),
5300 Attribute_Name
=> Name_Unchecked_Access
);
5302 -- Use of 'Priority inside a protected subprogram
5306 Make_Attribute_Reference
(Loc
,
5308 Make_Selected_Component
(Loc
,
5311 (First_Entity
(Protected_Body_Subprogram
(Subprg
)),
5313 Selector_Name
=> Make_Identifier
(Loc
, Name_uObject
)),
5314 Attribute_Name
=> Name_Unchecked_Access
);
5317 -- Select the appropriate run-time subprogram
5319 if Number_Entries
(Conctyp
) = 0 then
5320 RT_Subprg_Name
:= New_Occurrence_Of
(RTE
(RE_Get_Ceiling
), Loc
);
5322 RT_Subprg_Name
:= New_Occurrence_Of
(RTE
(RO_PE_Get_Ceiling
), Loc
);
5326 Make_Function_Call
(Loc
,
5327 Name
=> RT_Subprg_Name
,
5328 Parameter_Associations
=> New_List
(Object_Parm
));
5332 -- Avoid the generation of extra checks on the pointer to the
5333 -- protected object.
5335 Analyze_And_Resolve
(N
, Typ
, Suppress
=> Access_Check
);
5342 when Attribute_Range_Length
=>
5344 -- The only special processing required is for the case where
5345 -- Range_Length is applied to an enumeration type with holes.
5346 -- In this case we transform
5352 -- X'Pos (X'Last) - X'Pos (X'First) + 1
5354 -- So that the result reflects the proper Pos values instead
5355 -- of the underlying representations.
5357 if Is_Enumeration_Type
(Ptyp
)
5358 and then Has_Non_Standard_Rep
(Ptyp
)
5363 Make_Op_Subtract
(Loc
,
5365 Make_Attribute_Reference
(Loc
,
5366 Attribute_Name
=> Name_Pos
,
5367 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
5368 Expressions
=> New_List
(
5369 Make_Attribute_Reference
(Loc
,
5370 Attribute_Name
=> Name_Last
,
5372 New_Occurrence_Of
(Ptyp
, Loc
)))),
5375 Make_Attribute_Reference
(Loc
,
5376 Attribute_Name
=> Name_Pos
,
5377 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
5378 Expressions
=> New_List
(
5379 Make_Attribute_Reference
(Loc
,
5380 Attribute_Name
=> Name_First
,
5382 New_Occurrence_Of
(Ptyp
, Loc
))))),
5384 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)));
5386 Analyze_And_Resolve
(N
, Typ
);
5388 -- For all other cases, the attribute is handled by the back end, but
5389 -- we need to deal with the case of the range check on a universal
5393 Apply_Universal_Integer_Attribute_Checks
(N
);
5400 when Attribute_Read
=> Read
: declare
5401 P_Type
: constant Entity_Id
:= Entity
(Pref
);
5402 B_Type
: constant Entity_Id
:= Base_Type
(P_Type
);
5403 U_Type
: constant Entity_Id
:= Underlying_Type
(P_Type
);
5413 -- If no underlying type, we have an error that will be diagnosed
5414 -- elsewhere, so here we just completely ignore the expansion.
5420 -- Stream operations can appear in user code even if the restriction
5421 -- No_Streams is active (for example, when instantiating a predefined
5422 -- container). In that case rewrite the attribute as a Raise to
5423 -- prevent any run-time use.
5425 if Restriction_Active
(No_Streams
) then
5427 Make_Raise_Program_Error
(Sloc
(N
),
5428 Reason
=> PE_Stream_Operation_Not_Allowed
));
5429 Set_Etype
(N
, B_Type
);
5433 -- The simple case, if there is a TSS for Read, just call it
5435 Pname
:= Find_Stream_Subprogram
(P_Type
, TSS_Stream_Read
);
5437 if Present
(Pname
) then
5441 -- If there is a Stream_Convert pragma, use it, we rewrite
5443 -- sourcetyp'Read (stream, Item)
5447 -- Item := sourcetyp (strmread (strmtyp'Input (Stream)));
5449 -- where strmread is the given Read function that converts an
5450 -- argument of type strmtyp to type sourcetyp or a type from which
5451 -- it is derived. The conversion to sourcetyp is required in the
5454 -- A special case arises if Item is a type conversion in which
5455 -- case, we have to expand to:
5457 -- Itemx := typex (strmread (strmtyp'Input (Stream)));
5459 -- where Itemx is the expression of the type conversion (i.e.
5460 -- the actual object), and typex is the type of Itemx.
5462 Prag
:= Get_Stream_Convert_Pragma
(P_Type
);
5464 if Present
(Prag
) then
5465 Arg2
:= Next
(First
(Pragma_Argument_Associations
(Prag
)));
5466 Rfunc
:= Entity
(Expression
(Arg2
));
5467 Lhs
:= Relocate_Node
(Next
(First
(Exprs
)));
5469 OK_Convert_To
(B_Type
,
5470 Make_Function_Call
(Loc
,
5471 Name
=> New_Occurrence_Of
(Rfunc
, Loc
),
5472 Parameter_Associations
=> New_List
(
5473 Make_Attribute_Reference
(Loc
,
5476 (Etype
(First_Formal
(Rfunc
)), Loc
),
5477 Attribute_Name
=> Name_Input
,
5478 Expressions
=> New_List
(
5479 Relocate_Node
(First
(Exprs
)))))));
5481 if Nkind
(Lhs
) = N_Type_Conversion
then
5482 Lhs
:= Expression
(Lhs
);
5483 Rhs
:= Convert_To
(Etype
(Lhs
), Rhs
);
5487 Make_Assignment_Statement
(Loc
,
5489 Expression
=> Rhs
));
5490 Set_Assignment_OK
(Lhs
);
5494 -- For elementary types, we call the I_xxx routine using the first
5495 -- parameter and then assign the result into the second parameter.
5496 -- We set Assignment_OK to deal with the conversion case.
5498 elsif Is_Elementary_Type
(U_Type
) then
5504 Lhs
:= Relocate_Node
(Next
(First
(Exprs
)));
5505 Rhs
:= Build_Elementary_Input_Call
(N
);
5507 if Nkind
(Lhs
) = N_Type_Conversion
then
5508 Lhs
:= Expression
(Lhs
);
5509 Rhs
:= Convert_To
(Etype
(Lhs
), Rhs
);
5512 Set_Assignment_OK
(Lhs
);
5515 Make_Assignment_Statement
(Loc
,
5517 Expression
=> Rhs
));
5525 elsif Is_Array_Type
(U_Type
) then
5526 Build_Array_Read_Procedure
(N
, U_Type
, Decl
, Pname
);
5527 Compile_Stream_Body_In_Scope
(N
, Decl
, U_Type
, Check
=> False);
5529 -- Tagged type case, use the primitive Read function. Note that
5530 -- this will dispatch in the class-wide case which is what we want
5532 elsif Is_Tagged_Type
(U_Type
) then
5533 Pname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Read
);
5535 -- All other record type cases, including protected records. The
5536 -- latter only arise for expander generated code for handling
5537 -- shared passive partition access.
5541 (Is_Record_Type
(U_Type
) or else Is_Protected_Type
(U_Type
));
5543 -- Ada 2005 (AI-216): Program_Error is raised when executing
5544 -- the default implementation of the Read attribute of an
5545 -- Unchecked_Union type. We replace the attribute with a
5546 -- raise statement (rather than inserting it before) to handle
5547 -- properly the case of an unchecked union that is a record
5550 if Is_Unchecked_Union
(Base_Type
(U_Type
)) then
5552 Make_Raise_Program_Error
(Loc
,
5553 Reason
=> PE_Unchecked_Union_Restriction
));
5554 Set_Etype
(N
, B_Type
);
5558 if Has_Discriminants
(U_Type
)
5560 (Discriminant_Default_Value
(First_Discriminant
(U_Type
)))
5562 Build_Mutable_Record_Read_Procedure
5563 (Loc
, Full_Base
(U_Type
), Decl
, Pname
);
5565 Build_Record_Read_Procedure
5566 (Loc
, Full_Base
(U_Type
), Decl
, Pname
);
5569 -- Suppress checks, uninitialized or otherwise invalid
5570 -- data does not cause constraint errors to be raised for
5571 -- a complete record read.
5573 Insert_Action
(N
, Decl
, All_Checks
);
5577 Rewrite_Stream_Proc_Call
(Pname
);
5584 -- Ref is identical to To_Address, see To_Address for processing
5590 -- Transforms 'Remainder into a call to the floating-point attribute
5591 -- function Remainder in Fat_xxx (where xxx is the root type)
5593 when Attribute_Remainder
=>
5594 Expand_Fpt_Attribute_RR
(N
);
5600 -- Transform 'Result into reference to _Result formal. At the point
5601 -- where a legal 'Result attribute is expanded, we know that we are in
5602 -- the context of a _Postcondition function with a _Result parameter.
5604 when Attribute_Result
=>
5605 Rewrite
(N
, Make_Identifier
(Loc
, Chars
=> Name_uResult
));
5606 Analyze_And_Resolve
(N
, Typ
);
5612 -- The handling of the Round attribute is quite delicate. The processing
5613 -- in Sem_Attr introduced a conversion to universal real, reflecting the
5614 -- semantics of Round, but we do not want anything to do with universal
5615 -- real at runtime, since this corresponds to using floating-point
5618 -- What we have now is that the Etype of the Round attribute correctly
5619 -- indicates the final result type. The operand of the Round is the
5620 -- conversion to universal real, described above, and the operand of
5621 -- this conversion is the actual operand of Round, which may be the
5622 -- special case of a fixed point multiplication or division (Etype =
5625 -- The exapander will expand first the operand of the conversion, then
5626 -- the conversion, and finally the round attribute itself, since we
5627 -- always work inside out. But we cannot simply process naively in this
5628 -- order. In the semantic world where universal fixed and real really
5629 -- exist and have infinite precision, there is no problem, but in the
5630 -- implementation world, where universal real is a floating-point type,
5631 -- we would get the wrong result.
5633 -- So the approach is as follows. First, when expanding a multiply or
5634 -- divide whose type is universal fixed, we do nothing at all, instead
5635 -- deferring the operation till later.
5637 -- The actual processing is done in Expand_N_Type_Conversion which
5638 -- handles the special case of Round by looking at its parent to see if
5639 -- it is a Round attribute, and if it is, handling the conversion (or
5640 -- its fixed multiply/divide child) in an appropriate manner.
5642 -- This means that by the time we get to expanding the Round attribute
5643 -- itself, the Round is nothing more than a type conversion (and will
5644 -- often be a null type conversion), so we just replace it with the
5645 -- appropriate conversion operation.
5647 when Attribute_Round
=>
5649 Convert_To
(Etype
(N
), Relocate_Node
(First
(Exprs
))));
5650 Analyze_And_Resolve
(N
);
5656 -- Transforms 'Rounding into a call to the floating-point attribute
5657 -- function Rounding in Fat_xxx (where xxx is the root type)
5658 -- Expansion is avoided for cases the back end can handle directly.
5660 when Attribute_Rounding
=>
5661 if not Is_Inline_Floating_Point_Attribute
(N
) then
5662 Expand_Fpt_Attribute_R
(N
);
5669 -- Transforms 'Scaling into a call to the floating-point attribute
5670 -- function Scaling in Fat_xxx (where xxx is the root type)
5672 when Attribute_Scaling
=>
5673 Expand_Fpt_Attribute_RI
(N
);
5675 -------------------------
5676 -- Simple_Storage_Pool --
5677 -------------------------
5679 when Attribute_Simple_Storage_Pool
=>
5681 Make_Type_Conversion
(Loc
,
5682 Subtype_Mark
=> New_Occurrence_Of
(Etype
(N
), Loc
),
5683 Expression
=> New_Occurrence_Of
(Entity
(N
), Loc
)));
5684 Analyze_And_Resolve
(N
, Typ
);
5690 when Attribute_Object_Size
5692 | Attribute_Value_Size
5693 | Attribute_VADS_Size
5700 -- Processing for VADS_Size case. Note that this processing
5701 -- removes all traces of VADS_Size from the tree, and completes
5702 -- all required processing for VADS_Size by translating the
5703 -- attribute reference to an appropriate Size or Object_Size
5706 if Id
= Attribute_VADS_Size
5707 or else (Use_VADS_Size
and then Id
= Attribute_Size
)
5709 -- If the size is specified, then we simply use the specified
5710 -- size. This applies to both types and objects. The size of an
5711 -- object can be specified in the following ways:
5713 -- An explicit size object is given for an object
5714 -- A component size is specified for an indexed component
5715 -- A component clause is specified for a selected component
5716 -- The object is a component of a packed composite object
5718 -- If the size is specified, then VADS_Size of an object
5720 if (Is_Entity_Name
(Pref
)
5721 and then Present
(Size_Clause
(Entity
(Pref
))))
5723 (Nkind
(Pref
) = N_Component_Clause
5724 and then (Present
(Component_Clause
5725 (Entity
(Selector_Name
(Pref
))))
5726 or else Is_Packed
(Etype
(Prefix
(Pref
)))))
5728 (Nkind
(Pref
) = N_Indexed_Component
5729 and then (Component_Size
(Etype
(Prefix
(Pref
))) /= 0
5730 or else Is_Packed
(Etype
(Prefix
(Pref
)))))
5732 Set_Attribute_Name
(N
, Name_Size
);
5734 -- Otherwise if we have an object rather than a type, then
5735 -- the VADS_Size attribute applies to the type of the object,
5736 -- rather than the object itself. This is one of the respects
5737 -- in which VADS_Size differs from Size.
5740 if (not Is_Entity_Name
(Pref
)
5741 or else not Is_Type
(Entity
(Pref
)))
5742 and then (Is_Scalar_Type
(Ptyp
)
5743 or else Is_Constrained
(Ptyp
))
5745 Rewrite
(Pref
, New_Occurrence_Of
(Ptyp
, Loc
));
5748 -- For a scalar type for which no size was explicitly given,
5749 -- VADS_Size means Object_Size. This is the other respect in
5750 -- which VADS_Size differs from Size.
5752 if Is_Scalar_Type
(Ptyp
)
5753 and then No
(Size_Clause
(Ptyp
))
5755 Set_Attribute_Name
(N
, Name_Object_Size
);
5757 -- In all other cases, Size and VADS_Size are the sane
5760 Set_Attribute_Name
(N
, Name_Size
);
5765 -- If the prefix is X'Class, transform it into a direct reference
5766 -- to the class-wide type, because the back end must not see a
5767 -- 'Class reference.
5769 if Is_Entity_Name
(Pref
)
5770 and then Is_Class_Wide_Type
(Entity
(Pref
))
5772 Rewrite
(Prefix
(N
), New_Occurrence_Of
(Entity
(Pref
), Loc
));
5775 -- For X'Size applied to an object of a class-wide type, transform
5776 -- X'Size into a call to the primitive operation _Size applied to
5779 elsif Is_Class_Wide_Type
(Ptyp
) then
5781 -- No need to do anything else compiling under restriction
5782 -- No_Dispatching_Calls. During the semantic analysis we
5783 -- already noted this restriction violation.
5785 if Restriction_Active
(No_Dispatching_Calls
) then
5790 Make_Function_Call
(Loc
,
5792 New_Occurrence_Of
(Find_Prim_Op
(Ptyp
, Name_uSize
), Loc
),
5793 Parameter_Associations
=> New_List
(Pref
));
5795 if Typ
/= Standard_Long_Long_Integer
then
5797 -- The context is a specific integer type with which the
5798 -- original attribute was compatible. The function has a
5799 -- specific type as well, so to preserve the compatibility
5800 -- we must convert explicitly.
5802 New_Node
:= Convert_To
(Typ
, New_Node
);
5805 Rewrite
(N
, New_Node
);
5806 Analyze_And_Resolve
(N
, Typ
);
5809 -- Case of known RM_Size of a type
5811 elsif (Id
= Attribute_Size
or else Id
= Attribute_Value_Size
)
5812 and then Is_Entity_Name
(Pref
)
5813 and then Is_Type
(Entity
(Pref
))
5814 and then Known_Static_RM_Size
(Entity
(Pref
))
5816 Siz
:= RM_Size
(Entity
(Pref
));
5818 -- Case of known Esize of a type
5820 elsif Id
= Attribute_Object_Size
5821 and then Is_Entity_Name
(Pref
)
5822 and then Is_Type
(Entity
(Pref
))
5823 and then Known_Static_Esize
(Entity
(Pref
))
5825 Siz
:= Esize
(Entity
(Pref
));
5827 -- Case of known size of object
5829 elsif Id
= Attribute_Size
5830 and then Is_Entity_Name
(Pref
)
5831 and then Is_Object
(Entity
(Pref
))
5832 and then Known_Esize
(Entity
(Pref
))
5833 and then Known_Static_Esize
(Entity
(Pref
))
5835 Siz
:= Esize
(Entity
(Pref
));
5837 -- For an array component, we can do Size in the front end if the
5838 -- component_size of the array is set.
5840 elsif Nkind
(Pref
) = N_Indexed_Component
then
5841 Siz
:= Component_Size
(Etype
(Prefix
(Pref
)));
5843 -- For a record component, we can do Size in the front end if
5844 -- there is a component clause, or if the record is packed and the
5845 -- component's size is known at compile time.
5847 elsif Nkind
(Pref
) = N_Selected_Component
then
5849 Rec
: constant Entity_Id
:= Etype
(Prefix
(Pref
));
5850 Comp
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
5853 if Present
(Component_Clause
(Comp
)) then
5854 Siz
:= Esize
(Comp
);
5856 elsif Is_Packed
(Rec
) then
5857 Siz
:= RM_Size
(Ptyp
);
5860 Apply_Universal_Integer_Attribute_Checks
(N
);
5865 -- All other cases are handled by the back end
5868 Apply_Universal_Integer_Attribute_Checks
(N
);
5870 -- If Size is applied to a formal parameter that is of a packed
5871 -- array subtype, then apply Size to the actual subtype.
5873 if Is_Entity_Name
(Pref
)
5874 and then Is_Formal
(Entity
(Pref
))
5875 and then Is_Array_Type
(Ptyp
)
5876 and then Is_Packed
(Ptyp
)
5879 Make_Attribute_Reference
(Loc
,
5881 New_Occurrence_Of
(Get_Actual_Subtype
(Pref
), Loc
),
5882 Attribute_Name
=> Name_Size
));
5883 Analyze_And_Resolve
(N
, Typ
);
5886 -- If Size applies to a dereference of an access to
5887 -- unconstrained packed array, the back end needs to see its
5888 -- unconstrained nominal type, but also a hint to the actual
5889 -- constrained type.
5891 if Nkind
(Pref
) = N_Explicit_Dereference
5892 and then Is_Array_Type
(Ptyp
)
5893 and then not Is_Constrained
(Ptyp
)
5894 and then Is_Packed
(Ptyp
)
5896 Set_Actual_Designated_Subtype
(Pref
,
5897 Get_Actual_Subtype
(Pref
));
5903 -- Common processing for record and array component case
5905 if Siz
/= No_Uint
and then Siz
/= 0 then
5907 CS
: constant Boolean := Comes_From_Source
(N
);
5910 Rewrite
(N
, Make_Integer_Literal
(Loc
, Siz
));
5912 -- This integer literal is not a static expression. We do
5913 -- not call Analyze_And_Resolve here, because this would
5914 -- activate the circuit for deciding that a static value
5915 -- was out of range, and we don't want that.
5917 -- So just manually set the type, mark the expression as
5918 -- non-static, and then ensure that the result is checked
5919 -- properly if the attribute comes from source (if it was
5920 -- internally generated, we never need a constraint check).
5923 Set_Is_Static_Expression
(N
, False);
5926 Apply_Constraint_Check
(N
, Typ
);
5936 when Attribute_Storage_Pool
=>
5938 Make_Type_Conversion
(Loc
,
5939 Subtype_Mark
=> New_Occurrence_Of
(Etype
(N
), Loc
),
5940 Expression
=> New_Occurrence_Of
(Entity
(N
), Loc
)));
5941 Analyze_And_Resolve
(N
, Typ
);
5947 when Attribute_Storage_Size
=> Storage_Size
: declare
5948 Alloc_Op
: Entity_Id
:= Empty
;
5952 -- Access type case, always go to the root type
5954 -- The case of access types results in a value of zero for the case
5955 -- where no storage size attribute clause has been given. If a
5956 -- storage size has been given, then the attribute is converted
5957 -- to a reference to the variable used to hold this value.
5959 if Is_Access_Type
(Ptyp
) then
5960 if Present
(Storage_Size_Variable
(Root_Type
(Ptyp
))) then
5962 Make_Attribute_Reference
(Loc
,
5963 Prefix
=> New_Occurrence_Of
(Typ
, Loc
),
5964 Attribute_Name
=> Name_Max
,
5965 Expressions
=> New_List
(
5966 Make_Integer_Literal
(Loc
, 0),
5969 (Storage_Size_Variable
(Root_Type
(Ptyp
)), Loc
)))));
5971 elsif Present
(Associated_Storage_Pool
(Root_Type
(Ptyp
))) then
5973 -- If the access type is associated with a simple storage pool
5974 -- object, then attempt to locate the optional Storage_Size
5975 -- function of the simple storage pool type. If not found,
5976 -- then the result will default to zero.
5978 if Present
(Get_Rep_Pragma
(Root_Type
(Ptyp
),
5979 Name_Simple_Storage_Pool_Type
))
5982 Pool_Type
: constant Entity_Id
:=
5983 Base_Type
(Etype
(Entity
(N
)));
5986 Alloc_Op
:= Get_Name_Entity_Id
(Name_Storage_Size
);
5987 while Present
(Alloc_Op
) loop
5988 if Scope
(Alloc_Op
) = Scope
(Pool_Type
)
5989 and then Present
(First_Formal
(Alloc_Op
))
5990 and then Etype
(First_Formal
(Alloc_Op
)) = Pool_Type
5995 Alloc_Op
:= Homonym
(Alloc_Op
);
5999 -- In the normal Storage_Pool case, retrieve the primitive
6000 -- function associated with the pool type.
6005 (Etype
(Associated_Storage_Pool
(Root_Type
(Ptyp
))),
6006 Attribute_Name
(N
));
6009 -- If Storage_Size wasn't found (can only occur in the simple
6010 -- storage pool case), then simply use zero for the result.
6012 if not Present
(Alloc_Op
) then
6013 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
6015 -- Otherwise, rewrite the allocator as a call to pool type's
6016 -- Storage_Size function.
6021 Make_Function_Call
(Loc
,
6023 New_Occurrence_Of
(Alloc_Op
, Loc
),
6025 Parameter_Associations
=> New_List
(
6027 (Associated_Storage_Pool
6028 (Root_Type
(Ptyp
)), Loc
)))));
6032 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
6035 Analyze_And_Resolve
(N
, Typ
);
6037 -- For tasks, we retrieve the size directly from the TCB. The
6038 -- size may depend on a discriminant of the type, and therefore
6039 -- can be a per-object expression, so type-level information is
6040 -- not sufficient in general. There are four cases to consider:
6042 -- a) If the attribute appears within a task body, the designated
6043 -- TCB is obtained by a call to Self.
6045 -- b) If the prefix of the attribute is the name of a task object,
6046 -- the designated TCB is the one stored in the corresponding record.
6048 -- c) If the prefix is a task type, the size is obtained from the
6049 -- size variable created for each task type
6051 -- d) If no Storage_Size was specified for the type, there is no
6052 -- size variable, and the value is a system-specific default.
6055 if In_Open_Scopes
(Ptyp
) then
6057 -- Storage_Size (Self)
6061 Make_Function_Call
(Loc
,
6063 New_Occurrence_Of
(RTE
(RE_Storage_Size
), Loc
),
6064 Parameter_Associations
=>
6066 Make_Function_Call
(Loc
,
6068 New_Occurrence_Of
(RTE
(RE_Self
), Loc
))))));
6070 elsif not Is_Entity_Name
(Pref
)
6071 or else not Is_Type
(Entity
(Pref
))
6073 -- Storage_Size (Rec (Obj).Size)
6077 Make_Function_Call
(Loc
,
6079 New_Occurrence_Of
(RTE
(RE_Storage_Size
), Loc
),
6080 Parameter_Associations
=>
6082 Make_Selected_Component
(Loc
,
6084 Unchecked_Convert_To
(
6085 Corresponding_Record_Type
(Ptyp
),
6086 New_Copy_Tree
(Pref
)),
6088 Make_Identifier
(Loc
, Name_uTask_Id
))))));
6090 elsif Present
(Storage_Size_Variable
(Ptyp
)) then
6092 -- Static Storage_Size pragma given for type: retrieve value
6093 -- from its allocated storage variable.
6097 Make_Function_Call
(Loc
,
6098 Name
=> New_Occurrence_Of
(
6099 RTE
(RE_Adjust_Storage_Size
), Loc
),
6100 Parameter_Associations
=>
6103 Storage_Size_Variable
(Ptyp
), Loc
)))));
6105 -- Get system default
6109 Make_Function_Call
(Loc
,
6112 RTE
(RE_Default_Stack_Size
), Loc
))));
6115 Analyze_And_Resolve
(N
, Typ
);
6123 when Attribute_Stream_Size
=>
6125 Make_Integer_Literal
(Loc
, Intval
=> Get_Stream_Size
(Ptyp
)));
6126 Analyze_And_Resolve
(N
, Typ
);
6132 -- 1. Deal with enumeration types with holes.
6133 -- 2. For floating-point, generate call to attribute function.
6134 -- 3. For other cases, deal with constraint checking.
6136 when Attribute_Succ
=> Succ
: declare
6137 Etyp
: constant Entity_Id
:= Base_Type
(Ptyp
);
6140 -- For enumeration types with non-standard representations, we
6141 -- expand typ'Succ (x) into
6143 -- Pos_To_Rep (Rep_To_Pos (x) + 1)
6145 -- If the representation is contiguous, we compute instead
6146 -- Lit1 + Rep_to_Pos (x+1), to catch invalid representations.
6148 if Is_Enumeration_Type
(Ptyp
)
6149 and then Present
(Enum_Pos_To_Rep
(Etyp
))
6151 if Has_Contiguous_Rep
(Etyp
) then
6153 Unchecked_Convert_To
(Ptyp
,
6156 Make_Integer_Literal
(Loc
,
6157 Enumeration_Rep
(First_Literal
(Ptyp
))),
6159 Make_Function_Call
(Loc
,
6162 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
6164 Parameter_Associations
=>
6166 Unchecked_Convert_To
(Ptyp
,
6169 Unchecked_Convert_To
(Standard_Integer
,
6170 Relocate_Node
(First
(Exprs
))),
6172 Make_Integer_Literal
(Loc
, 1))),
6173 Rep_To_Pos_Flag
(Ptyp
, Loc
))))));
6175 -- Add Boolean parameter True, to request program errror if
6176 -- we have a bad representation on our hands. Add False if
6177 -- checks are suppressed.
6179 Append_To
(Exprs
, Rep_To_Pos_Flag
(Ptyp
, Loc
));
6181 Make_Indexed_Component
(Loc
,
6184 (Enum_Pos_To_Rep
(Etyp
), Loc
),
6185 Expressions
=> New_List
(
6188 Make_Function_Call
(Loc
,
6191 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
6192 Parameter_Associations
=> Exprs
),
6193 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)))));
6196 Analyze_And_Resolve
(N
, Typ
);
6198 -- For floating-point, we transform 'Succ into a call to the Succ
6199 -- floating-point attribute function in Fat_xxx (xxx is root type)
6201 elsif Is_Floating_Point_Type
(Ptyp
) then
6202 Expand_Fpt_Attribute_R
(N
);
6203 Analyze_And_Resolve
(N
, Typ
);
6205 -- For modular types, nothing to do (no overflow, since wraps)
6207 elsif Is_Modular_Integer_Type
(Ptyp
) then
6210 -- For other types, if argument is marked as needing a range check or
6211 -- overflow checking is enabled, we must generate a check.
6213 elsif not Overflow_Checks_Suppressed
(Ptyp
)
6214 or else Do_Range_Check
(First
(Exprs
))
6216 Set_Do_Range_Check
(First
(Exprs
), False);
6217 Expand_Pred_Succ_Attribute
(N
);
6225 -- Transforms X'Tag into a direct reference to the tag of X
6227 when Attribute_Tag
=> Tag
: declare
6229 Prefix_Is_Type
: Boolean;
6232 if Is_Entity_Name
(Pref
) and then Is_Type
(Entity
(Pref
)) then
6233 Ttyp
:= Entity
(Pref
);
6234 Prefix_Is_Type
:= True;
6237 Prefix_Is_Type
:= False;
6240 if Is_Class_Wide_Type
(Ttyp
) then
6241 Ttyp
:= Root_Type
(Ttyp
);
6244 Ttyp
:= Underlying_Type
(Ttyp
);
6246 -- Ada 2005: The type may be a synchronized tagged type, in which
6247 -- case the tag information is stored in the corresponding record.
6249 if Is_Concurrent_Type
(Ttyp
) then
6250 Ttyp
:= Corresponding_Record_Type
(Ttyp
);
6253 if Prefix_Is_Type
then
6255 -- For VMs we leave the type attribute unexpanded because
6256 -- there's not a dispatching table to reference.
6258 if Tagged_Type_Expansion
then
6260 Unchecked_Convert_To
(RTE
(RE_Tag
),
6262 (Node
(First_Elmt
(Access_Disp_Table
(Ttyp
))), Loc
)));
6263 Analyze_And_Resolve
(N
, RTE
(RE_Tag
));
6266 -- Ada 2005 (AI-251): The use of 'Tag in the sources always
6267 -- references the primary tag of the actual object. If 'Tag is
6268 -- applied to class-wide interface objects we generate code that
6269 -- displaces "this" to reference the base of the object.
6271 elsif Comes_From_Source
(N
)
6272 and then Is_Class_Wide_Type
(Etype
(Prefix
(N
)))
6273 and then Is_Interface
(Underlying_Type
(Etype
(Prefix
(N
))))
6276 -- (To_Tag_Ptr (Prefix'Address)).all
6278 -- Note that Prefix'Address is recursively expanded into a call
6279 -- to Base_Address (Obj.Tag)
6281 -- Not needed for VM targets, since all handled by the VM
6283 if Tagged_Type_Expansion
then
6285 Make_Explicit_Dereference
(Loc
,
6286 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
6287 Make_Attribute_Reference
(Loc
,
6288 Prefix
=> Relocate_Node
(Pref
),
6289 Attribute_Name
=> Name_Address
))));
6290 Analyze_And_Resolve
(N
, RTE
(RE_Tag
));
6295 Make_Selected_Component
(Loc
,
6296 Prefix
=> Relocate_Node
(Pref
),
6298 New_Occurrence_Of
(First_Tag_Component
(Ttyp
), Loc
)));
6299 Analyze_And_Resolve
(N
, RTE
(RE_Tag
));
6307 -- Transforms 'Terminated attribute into a call to Terminated function
6309 when Attribute_Terminated
=> Terminated
: begin
6311 -- The prefix of Terminated is of a task interface class-wide type.
6313 -- terminated (Task_Id (_disp_get_task_id (Pref)));
6315 if Ada_Version
>= Ada_2005
6316 and then Ekind
(Ptyp
) = E_Class_Wide_Type
6317 and then Is_Interface
(Ptyp
)
6318 and then Is_Task_Interface
(Ptyp
)
6321 Make_Function_Call
(Loc
,
6323 New_Occurrence_Of
(RTE
(RE_Terminated
), Loc
),
6324 Parameter_Associations
=> New_List
(
6325 Make_Unchecked_Type_Conversion
(Loc
,
6327 New_Occurrence_Of
(RTE
(RO_ST_Task_Id
), Loc
),
6328 Expression
=> Build_Disp_Get_Task_Id_Call
(Pref
)))));
6330 elsif Restricted_Profile
then
6332 Build_Call_With_Task
(Pref
, RTE
(RE_Restricted_Terminated
)));
6336 Build_Call_With_Task
(Pref
, RTE
(RE_Terminated
)));
6339 Analyze_And_Resolve
(N
, Standard_Boolean
);
6346 -- Transforms System'To_Address (X) and System.Address'Ref (X) into
6347 -- unchecked conversion from (integral) type of X to type address.
6350 | Attribute_To_Address
6353 Unchecked_Convert_To
(RTE
(RE_Address
),
6354 Relocate_Node
(First
(Exprs
))));
6355 Analyze_And_Resolve
(N
, RTE
(RE_Address
));
6361 when Attribute_To_Any
=> To_Any
: declare
6362 P_Type
: constant Entity_Id
:= Etype
(Pref
);
6363 Decls
: constant List_Id
:= New_List
;
6369 Relocate_Node
(First
(Exprs
))), Decls
));
6370 Insert_Actions
(N
, Decls
);
6371 Analyze_And_Resolve
(N
, RTE
(RE_Any
));
6378 -- Transforms 'Truncation into a call to the floating-point attribute
6379 -- function Truncation in Fat_xxx (where xxx is the root type).
6380 -- Expansion is avoided for cases the back end can handle directly.
6382 when Attribute_Truncation
=>
6383 if not Is_Inline_Floating_Point_Attribute
(N
) then
6384 Expand_Fpt_Attribute_R
(N
);
6391 when Attribute_TypeCode
=> TypeCode
: declare
6392 P_Type
: constant Entity_Id
:= Etype
(Pref
);
6393 Decls
: constant List_Id
:= New_List
;
6395 Rewrite
(N
, Build_TypeCode_Call
(Loc
, P_Type
, Decls
));
6396 Insert_Actions
(N
, Decls
);
6397 Analyze_And_Resolve
(N
, RTE
(RE_TypeCode
));
6400 -----------------------
6401 -- Unbiased_Rounding --
6402 -----------------------
6404 -- Transforms 'Unbiased_Rounding into a call to the floating-point
6405 -- attribute function Unbiased_Rounding in Fat_xxx (where xxx is the
6406 -- root type). Expansion is avoided for cases the back end can handle
6409 when Attribute_Unbiased_Rounding
=>
6410 if not Is_Inline_Floating_Point_Attribute
(N
) then
6411 Expand_Fpt_Attribute_R
(N
);
6418 when Attribute_Update
=>
6419 Expand_Update_Attribute
(N
);
6425 -- The processing for VADS_Size is shared with Size
6431 -- For enumeration types with a standard representation, and for all
6432 -- other types, Val is handled by the back end. For enumeration types
6433 -- with a non-standard representation we use the _Pos_To_Rep array that
6434 -- was created when the type was frozen.
6436 when Attribute_Val
=> Val
: declare
6437 Etyp
: constant Entity_Id
:= Base_Type
(Entity
(Pref
));
6440 if Is_Enumeration_Type
(Etyp
)
6441 and then Present
(Enum_Pos_To_Rep
(Etyp
))
6443 if Has_Contiguous_Rep
(Etyp
) then
6445 Rep_Node
: constant Node_Id
:=
6446 Unchecked_Convert_To
(Etyp
,
6449 Make_Integer_Literal
(Loc
,
6450 Enumeration_Rep
(First_Literal
(Etyp
))),
6452 (Convert_To
(Standard_Integer
,
6453 Relocate_Node
(First
(Exprs
))))));
6457 Unchecked_Convert_To
(Etyp
,
6460 Make_Integer_Literal
(Loc
,
6461 Enumeration_Rep
(First_Literal
(Etyp
))),
6463 Make_Function_Call
(Loc
,
6466 (TSS
(Etyp
, TSS_Rep_To_Pos
), Loc
),
6467 Parameter_Associations
=> New_List
(
6469 Rep_To_Pos_Flag
(Etyp
, Loc
))))));
6474 Make_Indexed_Component
(Loc
,
6475 Prefix
=> New_Occurrence_Of
(Enum_Pos_To_Rep
(Etyp
), Loc
),
6476 Expressions
=> New_List
(
6477 Convert_To
(Standard_Integer
,
6478 Relocate_Node
(First
(Exprs
))))));
6481 Analyze_And_Resolve
(N
, Typ
);
6483 -- If the argument is marked as requiring a range check then generate
6486 elsif Do_Range_Check
(First
(Exprs
)) then
6487 Generate_Range_Check
(First
(Exprs
), Etyp
, CE_Range_Check_Failed
);
6495 -- The code for valid is dependent on the particular types involved.
6496 -- See separate sections below for the generated code in each case.
6498 when Attribute_Valid
=> Valid
: declare
6499 Btyp
: Entity_Id
:= Base_Type
(Ptyp
);
6502 Save_Validity_Checks_On
: constant Boolean := Validity_Checks_On
;
6503 -- Save the validity checking mode. We always turn off validity
6504 -- checking during process of 'Valid since this is one place
6505 -- where we do not want the implicit validity checks to intefere
6506 -- with the explicit validity check that the programmer is doing.
6508 function Make_Range_Test
return Node_Id
;
6509 -- Build the code for a range test of the form
6510 -- Btyp!(Pref) in Btyp!(Ptyp'First) .. Btyp!(Ptyp'Last)
6512 ---------------------
6513 -- Make_Range_Test --
6514 ---------------------
6516 function Make_Range_Test
return Node_Id
is
6520 -- The prefix of attribute 'Valid should always denote an object
6521 -- reference. The reference is either coming directly from source
6522 -- or is produced by validity check expansion.
6524 -- If the prefix denotes a variable which captures the value of
6525 -- an object for validation purposes, use the variable in the
6526 -- range test. This ensures that no extra copies or extra reads
6527 -- are produced as part of the test. Generate:
6529 -- Temp : ... := Object;
6530 -- if not Temp in ... then
6532 if Is_Validation_Variable_Reference
(Pref
) then
6533 Temp
:= New_Occurrence_Of
(Entity
(Pref
), Loc
);
6535 -- Otherwise the prefix is either a source object or a constant
6536 -- produced by validity check expansion. Generate:
6538 -- Temp : constant ... := Pref;
6539 -- if not Temp in ... then
6542 Temp
:= Duplicate_Subexpr
(Pref
);
6547 Left_Opnd
=> Unchecked_Convert_To
(Btyp
, Temp
),
6551 Unchecked_Convert_To
(Btyp
,
6552 Make_Attribute_Reference
(Loc
,
6553 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
6554 Attribute_Name
=> Name_First
)),
6556 Unchecked_Convert_To
(Btyp
,
6557 Make_Attribute_Reference
(Loc
,
6558 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
6559 Attribute_Name
=> Name_Last
))));
6560 end Make_Range_Test
;
6562 -- Start of processing for Attribute_Valid
6565 -- Do not expand sourced code 'Valid reference in CodePeer mode,
6566 -- will be handled by the back-end directly.
6568 if CodePeer_Mode
and then Comes_From_Source
(N
) then
6572 -- Turn off validity checks. We do not want any implicit validity
6573 -- checks to intefere with the explicit check from the attribute
6575 Validity_Checks_On
:= False;
6577 -- Retrieve the base type. Handle the case where the base type is a
6578 -- private enumeration type.
6580 if Is_Private_Type
(Btyp
) and then Present
(Full_View
(Btyp
)) then
6581 Btyp
:= Full_View
(Btyp
);
6584 -- Floating-point case. This case is handled by the Valid attribute
6585 -- code in the floating-point attribute run-time library.
6587 if Is_Floating_Point_Type
(Ptyp
) then
6588 Float_Valid
: declare
6592 function Get_Fat_Entity
(Nam
: Name_Id
) return Entity_Id
;
6593 -- Return entity for Pkg.Nam
6595 --------------------
6596 -- Get_Fat_Entity --
6597 --------------------
6599 function Get_Fat_Entity
(Nam
: Name_Id
) return Entity_Id
is
6600 Exp_Name
: constant Node_Id
:=
6601 Make_Selected_Component
(Loc
,
6602 Prefix
=> New_Occurrence_Of
(RTE
(Pkg
), Loc
),
6603 Selector_Name
=> Make_Identifier
(Loc
, Nam
));
6605 Find_Selected_Component
(Exp_Name
);
6606 return Entity
(Exp_Name
);
6609 -- Start of processing for Float_Valid
6612 -- The C and AAMP back-ends handle Valid for fpt types
6614 if Modify_Tree_For_C
or else Float_Rep
(Btyp
) = AAMP
then
6615 Analyze_And_Resolve
(Pref
, Ptyp
);
6616 Set_Etype
(N
, Standard_Boolean
);
6620 Find_Fat_Info
(Ptyp
, Ftp
, Pkg
);
6622 -- If the prefix is a reverse SSO component, or is possibly
6623 -- unaligned, first create a temporary copy that is in
6624 -- native SSO, and properly aligned. Make it Volatile to
6625 -- prevent folding in the back-end. Note that we use an
6626 -- intermediate constrained string type to initialize the
6627 -- temporary, as the value at hand might be invalid, and in
6628 -- that case it cannot be copied using a floating point
6631 if In_Reverse_Storage_Order_Object
(Pref
)
6632 or else Is_Possibly_Unaligned_Object
(Pref
)
6635 Temp
: constant Entity_Id
:=
6636 Make_Temporary
(Loc
, 'F');
6638 Fat_S
: constant Entity_Id
:=
6639 Get_Fat_Entity
(Name_S
);
6640 -- Constrained string subtype of appropriate size
6642 Fat_P
: constant Entity_Id
:=
6643 Get_Fat_Entity
(Name_P
);
6646 Decl
: constant Node_Id
:=
6647 Make_Object_Declaration
(Loc
,
6648 Defining_Identifier
=> Temp
,
6649 Aliased_Present
=> True,
6650 Object_Definition
=>
6651 New_Occurrence_Of
(Ptyp
, Loc
));
6654 Set_Aspect_Specifications
(Decl
, New_List
(
6655 Make_Aspect_Specification
(Loc
,
6657 Make_Identifier
(Loc
, Name_Volatile
))));
6663 Make_Assignment_Statement
(Loc
,
6665 Make_Explicit_Dereference
(Loc
,
6667 Unchecked_Convert_To
(Fat_P
,
6668 Make_Attribute_Reference
(Loc
,
6670 New_Occurrence_Of
(Temp
, Loc
),
6672 Name_Unrestricted_Access
))),
6674 Unchecked_Convert_To
(Fat_S
,
6675 Relocate_Node
(Pref
)))),
6677 Suppress
=> All_Checks
);
6679 Rewrite
(Pref
, New_Occurrence_Of
(Temp
, Loc
));
6683 -- We now have an object of the proper endianness and
6684 -- alignment, and can construct a Valid attribute.
6686 -- We make sure the prefix of this valid attribute is
6687 -- marked as not coming from source, to avoid losing
6688 -- warnings from 'Valid looking like a possible update.
6690 Set_Comes_From_Source
(Pref
, False);
6692 Expand_Fpt_Attribute
6693 (N
, Pkg
, Name_Valid
,
6695 Make_Attribute_Reference
(Loc
,
6696 Prefix
=> Unchecked_Convert_To
(Ftp
, Pref
),
6697 Attribute_Name
=> Name_Unrestricted_Access
)));
6700 -- One more task, we still need a range check. Required
6701 -- only if we have a constraint, since the Valid routine
6702 -- catches infinities properly (infinities are never valid).
6704 -- The way we do the range check is simply to create the
6705 -- expression: Valid (N) and then Base_Type(Pref) in Typ.
6707 if not Subtypes_Statically_Match
(Ptyp
, Btyp
) then
6710 Left_Opnd
=> Relocate_Node
(N
),
6713 Left_Opnd
=> Convert_To
(Btyp
, Pref
),
6714 Right_Opnd
=> New_Occurrence_Of
(Ptyp
, Loc
))));
6718 -- Enumeration type with holes
6720 -- For enumeration types with holes, the Pos value constructed by
6721 -- the Enum_Rep_To_Pos function built in Exp_Ch3 called with a
6722 -- second argument of False returns minus one for an invalid value,
6723 -- and the non-negative pos value for a valid value, so the
6724 -- expansion of X'Valid is simply:
6726 -- type(X)'Pos (X) >= 0
6728 -- We can't quite generate it that way because of the requirement
6729 -- for the non-standard second argument of False in the resulting
6730 -- rep_to_pos call, so we have to explicitly create:
6732 -- _rep_to_pos (X, False) >= 0
6734 -- If we have an enumeration subtype, we also check that the
6735 -- value is in range:
6737 -- _rep_to_pos (X, False) >= 0
6739 -- (X >= type(X)'First and then type(X)'Last <= X)
6741 elsif Is_Enumeration_Type
(Ptyp
)
6742 and then Present
(Enum_Pos_To_Rep
(Btyp
))
6747 Make_Function_Call
(Loc
,
6749 New_Occurrence_Of
(TSS
(Btyp
, TSS_Rep_To_Pos
), Loc
),
6750 Parameter_Associations
=> New_List
(
6752 New_Occurrence_Of
(Standard_False
, Loc
))),
6753 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
6757 (Type_Low_Bound
(Ptyp
) /= Type_Low_Bound
(Btyp
)
6759 Type_High_Bound
(Ptyp
) /= Type_High_Bound
(Btyp
))
6761 -- The call to Make_Range_Test will create declarations
6762 -- that need a proper insertion point, but Pref is now
6763 -- attached to a node with no ancestor. Attach to tree
6764 -- even if it is to be rewritten below.
6766 Set_Parent
(Tst
, Parent
(N
));
6770 Left_Opnd
=> Make_Range_Test
,
6776 -- Fortran convention booleans
6778 -- For the very special case of Fortran convention booleans, the
6779 -- value is always valid, since it is an integer with the semantics
6780 -- that non-zero is true, and any value is permissible.
6782 elsif Is_Boolean_Type
(Ptyp
)
6783 and then Convention
(Ptyp
) = Convention_Fortran
6785 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
6787 -- For biased representations, we will be doing an unchecked
6788 -- conversion without unbiasing the result. That means that the range
6789 -- test has to take this into account, and the proper form of the
6792 -- Btyp!(Pref) < Btyp!(Ptyp'Range_Length)
6794 elsif Has_Biased_Representation
(Ptyp
) then
6795 Btyp
:= RTE
(RE_Unsigned_32
);
6799 Unchecked_Convert_To
(Btyp
, Duplicate_Subexpr
(Pref
)),
6801 Unchecked_Convert_To
(Btyp
,
6802 Make_Attribute_Reference
(Loc
,
6803 Prefix
=> New_Occurrence_Of
(Ptyp
, Loc
),
6804 Attribute_Name
=> Name_Range_Length
))));
6806 -- For all other scalar types, what we want logically is a
6809 -- X in type(X)'First .. type(X)'Last
6811 -- But that's precisely what won't work because of possible
6812 -- unwanted optimization (and indeed the basic motivation for
6813 -- the Valid attribute is exactly that this test does not work).
6814 -- What will work is:
6816 -- Btyp!(X) >= Btyp!(type(X)'First)
6818 -- Btyp!(X) <= Btyp!(type(X)'Last)
6820 -- where Btyp is an integer type large enough to cover the full
6821 -- range of possible stored values (i.e. it is chosen on the basis
6822 -- of the size of the type, not the range of the values). We write
6823 -- this as two tests, rather than a range check, so that static
6824 -- evaluation will easily remove either or both of the checks if
6825 -- they can be -statically determined to be true (this happens
6826 -- when the type of X is static and the range extends to the full
6827 -- range of stored values).
6829 -- Unsigned types. Note: it is safe to consider only whether the
6830 -- subtype is unsigned, since we will in that case be doing all
6831 -- unsigned comparisons based on the subtype range. Since we use the
6832 -- actual subtype object size, this is appropriate.
6834 -- For example, if we have
6836 -- subtype x is integer range 1 .. 200;
6837 -- for x'Object_Size use 8;
6839 -- Now the base type is signed, but objects of this type are bits
6840 -- unsigned, and doing an unsigned test of the range 1 to 200 is
6841 -- correct, even though a value greater than 127 looks signed to a
6842 -- signed comparison.
6844 elsif Is_Unsigned_Type
(Ptyp
) then
6845 if Esize
(Ptyp
) <= 32 then
6846 Btyp
:= RTE
(RE_Unsigned_32
);
6848 Btyp
:= RTE
(RE_Unsigned_64
);
6851 Rewrite
(N
, Make_Range_Test
);
6856 if Esize
(Ptyp
) <= Esize
(Standard_Integer
) then
6857 Btyp
:= Standard_Integer
;
6859 Btyp
:= Universal_Integer
;
6862 Rewrite
(N
, Make_Range_Test
);
6865 -- If a predicate is present, then we do the predicate test, even if
6866 -- within the predicate function (infinite recursion is warned about
6867 -- in Sem_Attr in that case).
6870 Pred_Func
: constant Entity_Id
:= Predicate_Function
(Ptyp
);
6873 if Present
(Pred_Func
) then
6876 Left_Opnd
=> Relocate_Node
(N
),
6877 Right_Opnd
=> Make_Predicate_Call
(Ptyp
, Pref
)));
6881 Analyze_And_Resolve
(N
, Standard_Boolean
);
6882 Validity_Checks_On
:= Save_Validity_Checks_On
;
6889 when Attribute_Valid_Scalars
=> Valid_Scalars
: declare
6893 if Present
(Underlying_Type
(Ptyp
)) then
6894 Ftyp
:= Underlying_Type
(Ptyp
);
6899 -- Replace by True if no scalar parts
6901 if not Scalar_Part_Present
(Ftyp
) then
6902 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
6904 -- For scalar types, Valid_Scalars is the same as Valid
6906 elsif Is_Scalar_Type
(Ftyp
) then
6908 Make_Attribute_Reference
(Loc
,
6909 Attribute_Name
=> Name_Valid
,
6912 -- For array types, we construct a function that determines if there
6913 -- are any non-valid scalar subcomponents, and call the function.
6914 -- We only do this for arrays whose component type needs checking
6916 elsif Is_Array_Type
(Ftyp
)
6917 and then Scalar_Part_Present
(Component_Type
(Ftyp
))
6920 Make_Function_Call
(Loc
,
6922 New_Occurrence_Of
(Build_Array_VS_Func
(Ftyp
, N
), Loc
),
6923 Parameter_Associations
=> New_List
(Pref
)));
6925 -- For record types, we construct a function that determines if there
6926 -- are any non-valid scalar subcomponents, and call the function.
6928 elsif Is_Record_Type
(Ftyp
)
6929 and then Present
(Declaration_Node
(Ftyp
))
6930 and then Nkind
(Type_Definition
(Declaration_Node
(Ftyp
))) =
6934 Make_Function_Call
(Loc
,
6936 New_Occurrence_Of
(Build_Record_VS_Func
(Ftyp
, N
), Loc
),
6937 Parameter_Associations
=> New_List
(Pref
)));
6939 -- Other record types or types with discriminants
6941 elsif Is_Record_Type
(Ftyp
) or else Has_Discriminants
(Ptyp
) then
6943 -- Build expression with list of equality tests
6951 X
:= New_Occurrence_Of
(Standard_True
, Loc
);
6952 C
:= First_Component_Or_Discriminant
(Ptyp
);
6953 while Present
(C
) loop
6954 if not Scalar_Part_Present
(Etype
(C
)) then
6956 elsif Is_Scalar_Type
(Etype
(C
)) then
6959 A
:= Name_Valid_Scalars
;
6966 Make_Attribute_Reference
(Loc
,
6967 Attribute_Name
=> A
,
6969 Make_Selected_Component
(Loc
,
6971 Duplicate_Subexpr
(Pref
, Name_Req
=> True),
6973 New_Occurrence_Of
(C
, Loc
))));
6975 Next_Component_Or_Discriminant
(C
);
6981 -- For all other types, result is True
6984 Rewrite
(N
, New_Occurrence_Of
(Standard_Boolean
, Loc
));
6987 -- Result is always boolean, but never static
6989 Analyze_And_Resolve
(N
, Standard_Boolean
);
6990 Set_Is_Static_Expression
(N
, False);
6997 -- Value attribute is handled in separate unit Exp_Imgv
6999 when Attribute_Value
=>
7000 Exp_Imgv
.Expand_Value_Attribute
(N
);
7006 -- The processing for Value_Size shares the processing for Size
7012 -- The processing for Version shares the processing for Body_Version
7018 -- Wide_Image attribute is handled in separate unit Exp_Imgv
7020 when Attribute_Wide_Image
=>
7021 -- Leave attribute unexpanded in CodePeer mode: the gnat2scil
7022 -- back-end knows how to handle this attribute directly.
7024 if CodePeer_Mode
then
7028 Exp_Imgv
.Expand_Wide_Image_Attribute
(N
);
7030 ---------------------
7031 -- Wide_Wide_Image --
7032 ---------------------
7034 -- Wide_Wide_Image attribute is handled in separate unit Exp_Imgv
7036 when Attribute_Wide_Wide_Image
=>
7037 -- Leave attribute unexpanded in CodePeer mode: the gnat2scil
7038 -- back-end knows how to handle this attribute directly.
7040 if CodePeer_Mode
then
7044 Exp_Imgv
.Expand_Wide_Wide_Image_Attribute
(N
);
7050 -- We expand typ'Wide_Value (X) into
7053 -- (Wide_String_To_String (X, Wide_Character_Encoding_Method))
7055 -- Wide_String_To_String is a runtime function that converts its wide
7056 -- string argument to String, converting any non-translatable characters
7057 -- into appropriate escape sequences. This preserves the required
7058 -- semantics of Wide_Value in all cases, and results in a very simple
7059 -- implementation approach.
7061 -- Note: for this approach to be fully standard compliant for the cases
7062 -- where typ is Wide_Character and Wide_Wide_Character, the encoding
7063 -- method must cover the entire character range (e.g. UTF-8). But that
7064 -- is a reasonable requirement when dealing with encoded character
7065 -- sequences. Presumably if one of the restrictive encoding mechanisms
7066 -- is in use such as Shift-JIS, then characters that cannot be
7067 -- represented using this encoding will not appear in any case.
7069 when Attribute_Wide_Value
=>
7071 Make_Attribute_Reference
(Loc
,
7073 Attribute_Name
=> Name_Value
,
7075 Expressions
=> New_List
(
7076 Make_Function_Call
(Loc
,
7078 New_Occurrence_Of
(RTE
(RE_Wide_String_To_String
), Loc
),
7080 Parameter_Associations
=> New_List
(
7081 Relocate_Node
(First
(Exprs
)),
7082 Make_Integer_Literal
(Loc
,
7083 Intval
=> Int
(Wide_Character_Encoding_Method
)))))));
7085 Analyze_And_Resolve
(N
, Typ
);
7087 ---------------------
7088 -- Wide_Wide_Value --
7089 ---------------------
7091 -- We expand typ'Wide_Value_Value (X) into
7094 -- (Wide_Wide_String_To_String (X, Wide_Character_Encoding_Method))
7096 -- Wide_Wide_String_To_String is a runtime function that converts its
7097 -- wide string argument to String, converting any non-translatable
7098 -- characters into appropriate escape sequences. This preserves the
7099 -- required semantics of Wide_Wide_Value in all cases, and results in a
7100 -- very simple implementation approach.
7102 -- It's not quite right where typ = Wide_Wide_Character, because the
7103 -- encoding method may not cover the whole character type ???
7105 when Attribute_Wide_Wide_Value
=>
7107 Make_Attribute_Reference
(Loc
,
7109 Attribute_Name
=> Name_Value
,
7111 Expressions
=> New_List
(
7112 Make_Function_Call
(Loc
,
7115 (RTE
(RE_Wide_Wide_String_To_String
), Loc
),
7117 Parameter_Associations
=> New_List
(
7118 Relocate_Node
(First
(Exprs
)),
7119 Make_Integer_Literal
(Loc
,
7120 Intval
=> Int
(Wide_Character_Encoding_Method
)))))));
7122 Analyze_And_Resolve
(N
, Typ
);
7124 ---------------------
7125 -- Wide_Wide_Width --
7126 ---------------------
7128 -- Wide_Wide_Width attribute is handled in separate unit Exp_Imgv
7130 when Attribute_Wide_Wide_Width
=>
7131 Exp_Imgv
.Expand_Width_Attribute
(N
, Wide_Wide
);
7137 -- Wide_Width attribute is handled in separate unit Exp_Imgv
7139 when Attribute_Wide_Width
=>
7140 Exp_Imgv
.Expand_Width_Attribute
(N
, Wide
);
7146 -- Width attribute is handled in separate unit Exp_Imgv
7148 when Attribute_Width
=>
7149 Exp_Imgv
.Expand_Width_Attribute
(N
, Normal
);
7155 when Attribute_Write
=> Write
: declare
7156 P_Type
: constant Entity_Id
:= Entity
(Pref
);
7157 U_Type
: constant Entity_Id
:= Underlying_Type
(P_Type
);
7165 -- If no underlying type, we have an error that will be diagnosed
7166 -- elsewhere, so here we just completely ignore the expansion.
7172 -- Stream operations can appear in user code even if the restriction
7173 -- No_Streams is active (for example, when instantiating a predefined
7174 -- container). In that case rewrite the attribute as a Raise to
7175 -- prevent any run-time use.
7177 if Restriction_Active
(No_Streams
) then
7179 Make_Raise_Program_Error
(Sloc
(N
),
7180 Reason
=> PE_Stream_Operation_Not_Allowed
));
7181 Set_Etype
(N
, U_Type
);
7185 -- The simple case, if there is a TSS for Write, just call it
7187 Pname
:= Find_Stream_Subprogram
(P_Type
, TSS_Stream_Write
);
7189 if Present
(Pname
) then
7193 -- If there is a Stream_Convert pragma, use it, we rewrite
7195 -- sourcetyp'Output (stream, Item)
7199 -- strmtyp'Output (Stream, strmwrite (acttyp (Item)));
7201 -- where strmwrite is the given Write function that converts an
7202 -- argument of type sourcetyp or a type acctyp, from which it is
7203 -- derived to type strmtyp. The conversion to acttyp is required
7204 -- for the derived case.
7206 Prag
:= Get_Stream_Convert_Pragma
(P_Type
);
7208 if Present
(Prag
) then
7210 Next
(Next
(First
(Pragma_Argument_Associations
(Prag
))));
7211 Wfunc
:= Entity
(Expression
(Arg3
));
7214 Make_Attribute_Reference
(Loc
,
7215 Prefix
=> New_Occurrence_Of
(Etype
(Wfunc
), Loc
),
7216 Attribute_Name
=> Name_Output
,
7217 Expressions
=> New_List
(
7218 Relocate_Node
(First
(Exprs
)),
7219 Make_Function_Call
(Loc
,
7220 Name
=> New_Occurrence_Of
(Wfunc
, Loc
),
7221 Parameter_Associations
=> New_List
(
7222 OK_Convert_To
(Etype
(First_Formal
(Wfunc
)),
7223 Relocate_Node
(Next
(First
(Exprs
)))))))));
7228 -- For elementary types, we call the W_xxx routine directly
7230 elsif Is_Elementary_Type
(U_Type
) then
7231 Rewrite
(N
, Build_Elementary_Write_Call
(N
));
7237 elsif Is_Array_Type
(U_Type
) then
7238 Build_Array_Write_Procedure
(N
, U_Type
, Decl
, Pname
);
7239 Compile_Stream_Body_In_Scope
(N
, Decl
, U_Type
, Check
=> False);
7241 -- Tagged type case, use the primitive Write function. Note that
7242 -- this will dispatch in the class-wide case which is what we want
7244 elsif Is_Tagged_Type
(U_Type
) then
7245 Pname
:= Find_Prim_Op
(U_Type
, TSS_Stream_Write
);
7247 -- All other record type cases, including protected records.
7248 -- The latter only arise for expander generated code for
7249 -- handling shared passive partition access.
7253 (Is_Record_Type
(U_Type
) or else Is_Protected_Type
(U_Type
));
7255 -- Ada 2005 (AI-216): Program_Error is raised when executing
7256 -- the default implementation of the Write attribute of an
7257 -- Unchecked_Union type. However, if the 'Write reference is
7258 -- within the generated Output stream procedure, Write outputs
7259 -- the components, and the default values of the discriminant
7260 -- are streamed by the Output procedure itself. If there are
7261 -- no default values this is also erroneous.
7263 if Is_Unchecked_Union
(Base_Type
(U_Type
)) then
7264 if (not Is_TSS
(Current_Scope
, TSS_Stream_Output
)
7265 and not Is_TSS
(Current_Scope
, TSS_Stream_Write
))
7266 or else No
(Discriminant_Default_Value
7267 (First_Discriminant
(U_Type
)))
7270 Make_Raise_Program_Error
(Loc
,
7271 Reason
=> PE_Unchecked_Union_Restriction
));
7272 Set_Etype
(N
, U_Type
);
7277 if Has_Discriminants
(U_Type
)
7279 (Discriminant_Default_Value
(First_Discriminant
(U_Type
)))
7281 Build_Mutable_Record_Write_Procedure
7282 (Loc
, Full_Base
(U_Type
), Decl
, Pname
);
7284 Build_Record_Write_Procedure
7285 (Loc
, Full_Base
(U_Type
), Decl
, Pname
);
7288 Insert_Action
(N
, Decl
);
7292 -- If we fall through, Pname is the procedure to be called
7294 Rewrite_Stream_Proc_Call
(Pname
);
7297 -- Component_Size is handled by the back end, unless the component size
7298 -- is known at compile time, which is always true in the packed array
7299 -- case. It is important that the packed array case is handled in the
7300 -- front end (see Eval_Attribute) since the back end would otherwise get
7301 -- confused by the equivalent packed array type.
7303 when Attribute_Component_Size
=>
7306 -- The following attributes are handled by the back end (except that
7307 -- static cases have already been evaluated during semantic processing,
7308 -- but in any case the back end should not count on this).
7310 -- The back end also handles the non-class-wide cases of Size
7312 when Attribute_Bit_Order
7313 | Attribute_Code_Address
7314 | Attribute_Definite
7316 | Attribute_Null_Parameter
7317 | Attribute_Passed_By_Reference
7318 | Attribute_Pool_Address
7319 | Attribute_Scalar_Storage_Order
7323 -- The following attributes are also handled by the back end, but return
7324 -- a universal integer result, so may need a conversion for checking
7325 -- that the result is in range.
7328 | Attribute_Max_Alignment_For_Allocation
7330 Apply_Universal_Integer_Attribute_Checks
(N
);
7332 -- The following attributes should not appear at this stage, since they
7333 -- have already been handled by the analyzer (and properly rewritten
7334 -- with corresponding values or entities to represent the right values)
7336 when Attribute_Abort_Signal
7337 | Attribute_Address_Size
7338 | Attribute_Atomic_Always_Lock_Free
7341 | Attribute_Compiler_Version
7342 | Attribute_Default_Bit_Order
7343 | Attribute_Default_Scalar_Storage_Order
7350 | Attribute_Fast_Math
7351 | Attribute_First_Valid
7352 | Attribute_Has_Access_Values
7353 | Attribute_Has_Discriminants
7354 | Attribute_Has_Tagged_Values
7356 | Attribute_Last_Valid
7357 | Attribute_Library_Level
7358 | Attribute_Lock_Free
7359 | Attribute_Machine_Emax
7360 | Attribute_Machine_Emin
7361 | Attribute_Machine_Mantissa
7362 | Attribute_Machine_Overflows
7363 | Attribute_Machine_Radix
7364 | Attribute_Machine_Rounds
7365 | Attribute_Maximum_Alignment
7366 | Attribute_Model_Emin
7367 | Attribute_Model_Epsilon
7368 | Attribute_Model_Mantissa
7369 | Attribute_Model_Small
7371 | Attribute_Partition_ID
7373 | Attribute_Restriction_Set
7374 | Attribute_Safe_Emax
7375 | Attribute_Safe_First
7376 | Attribute_Safe_Large
7377 | Attribute_Safe_Last
7378 | Attribute_Safe_Small
7380 | Attribute_Signed_Zeros
7382 | Attribute_Storage_Unit
7383 | Attribute_Stub_Type
7384 | Attribute_System_Allocator_Alignment
7385 | Attribute_Target_Name
7386 | Attribute_Type_Class
7387 | Attribute_Type_Key
7388 | Attribute_Unconstrained_Array
7389 | Attribute_Universal_Literal_String
7390 | Attribute_Wchar_T_Size
7391 | Attribute_Word_Size
7393 raise Program_Error
;
7395 -- The Asm_Input and Asm_Output attributes are not expanded at this
7396 -- stage, but will be eliminated in the expansion of the Asm call, see
7397 -- Exp_Intr for details. So the back end will never see these either.
7399 when Attribute_Asm_Input
7400 | Attribute_Asm_Output
7405 -- Note: as mentioned earlier, individual sections of the above case
7406 -- statement assume there is no code after the case statement, and are
7407 -- legitimately allowed to execute return statements if they have nothing
7408 -- more to do, so DO NOT add code at this point.
7411 when RE_Not_Available
=>
7413 end Expand_N_Attribute_Reference
;
7415 --------------------------------
7416 -- Expand_Pred_Succ_Attribute --
7417 --------------------------------
7419 -- For typ'Pred (exp), we generate the check
7421 -- [constraint_error when exp = typ'Base'First]
7423 -- Similarly, for typ'Succ (exp), we generate the check
7425 -- [constraint_error when exp = typ'Base'Last]
7427 -- These checks are not generated for modular types, since the proper
7428 -- semantics for Succ and Pred on modular types is to wrap, not raise CE.
7429 -- We also suppress these checks if we are the right side of an assignment
7430 -- statement or the expression of an object declaration, where the flag
7431 -- Suppress_Assignment_Checks is set for the assignment/declaration.
7433 procedure Expand_Pred_Succ_Attribute
(N
: Node_Id
) is
7434 Loc
: constant Source_Ptr
:= Sloc
(N
);
7435 P
: constant Node_Id
:= Parent
(N
);
7439 if Attribute_Name
(N
) = Name_Pred
then
7445 if not Nkind_In
(P
, N_Assignment_Statement
, N_Object_Declaration
)
7446 or else not Suppress_Assignment_Checks
(P
)
7449 Make_Raise_Constraint_Error
(Loc
,
7453 Duplicate_Subexpr_Move_Checks
(First
(Expressions
(N
))),
7455 Make_Attribute_Reference
(Loc
,
7457 New_Occurrence_Of
(Base_Type
(Etype
(Prefix
(N
))), Loc
),
7458 Attribute_Name
=> Cnam
)),
7459 Reason
=> CE_Overflow_Check_Failed
));
7461 end Expand_Pred_Succ_Attribute
;
7463 -----------------------------
7464 -- Expand_Update_Attribute --
7465 -----------------------------
7467 procedure Expand_Update_Attribute
(N
: Node_Id
) is
7468 procedure Process_Component_Or_Element_Update
7473 -- Generate the statements necessary to update a single component or an
7474 -- element of the prefix. The code is inserted before the attribute N.
7475 -- Temp denotes the entity of the anonymous object created to reflect
7476 -- the changes in values. Comp is the component/index expression to be
7477 -- updated. Expr is an expression yielding the new value of Comp. Typ
7478 -- is the type of the prefix of attribute Update.
7480 procedure Process_Range_Update
7485 -- Generate the statements necessary to update a slice of the prefix.
7486 -- The code is inserted before the attribute N. Temp denotes the entity
7487 -- of the anonymous object created to reflect the changes in values.
7488 -- Comp is range of the slice to be updated. Expr is an expression
7489 -- yielding the new value of Comp. Typ is the type of the prefix of
7490 -- attribute Update.
7492 -----------------------------------------
7493 -- Process_Component_Or_Element_Update --
7494 -----------------------------------------
7496 procedure Process_Component_Or_Element_Update
7502 Loc
: constant Source_Ptr
:= Sloc
(Comp
);
7507 -- An array element may be modified by the following relations
7508 -- depending on the number of dimensions:
7510 -- 1 => Expr -- one dimensional update
7511 -- (1, ..., N) => Expr -- multi dimensional update
7513 -- The above forms are converted in assignment statements where the
7514 -- left hand side is an indexed component:
7516 -- Temp (1) := Expr; -- one dimensional update
7517 -- Temp (1, ..., N) := Expr; -- multi dimensional update
7519 if Is_Array_Type
(Typ
) then
7521 -- The index expressions of a multi dimensional array update
7522 -- appear as an aggregate.
7524 if Nkind
(Comp
) = N_Aggregate
then
7525 Exprs
:= New_Copy_List_Tree
(Expressions
(Comp
));
7527 Exprs
:= New_List
(Relocate_Node
(Comp
));
7531 Make_Indexed_Component
(Loc
,
7532 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
7533 Expressions
=> Exprs
);
7535 -- A record component update appears in the following form:
7539 -- The above relation is transformed into an assignment statement
7540 -- where the left hand side is a selected component:
7542 -- Temp.Comp := Expr;
7544 else pragma Assert
(Is_Record_Type
(Typ
));
7546 Make_Selected_Component
(Loc
,
7547 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
7548 Selector_Name
=> Relocate_Node
(Comp
));
7552 Make_Assignment_Statement
(Loc
,
7554 Expression
=> Relocate_Node
(Expr
)));
7555 end Process_Component_Or_Element_Update
;
7557 --------------------------
7558 -- Process_Range_Update --
7559 --------------------------
7561 procedure Process_Range_Update
7567 Index_Typ
: constant Entity_Id
:= Etype
(First_Index
(Typ
));
7568 Loc
: constant Source_Ptr
:= Sloc
(Comp
);
7572 -- A range update appears as
7574 -- (Low .. High => Expr)
7576 -- The above construct is transformed into a loop that iterates over
7577 -- the given range and modifies the corresponding array values to the
7580 -- for Index in Low .. High loop
7581 -- Temp (<Index_Typ> (Index)) := Expr;
7584 Index
:= Make_Temporary
(Loc
, 'I');
7587 Make_Loop_Statement
(Loc
,
7589 Make_Iteration_Scheme
(Loc
,
7590 Loop_Parameter_Specification
=>
7591 Make_Loop_Parameter_Specification
(Loc
,
7592 Defining_Identifier
=> Index
,
7593 Discrete_Subtype_Definition
=> Relocate_Node
(Comp
))),
7595 Statements
=> New_List
(
7596 Make_Assignment_Statement
(Loc
,
7598 Make_Indexed_Component
(Loc
,
7599 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
7600 Expressions
=> New_List
(
7601 Convert_To
(Index_Typ
,
7602 New_Occurrence_Of
(Index
, Loc
)))),
7603 Expression
=> Relocate_Node
(Expr
))),
7605 End_Label
=> Empty
));
7606 end Process_Range_Update
;
7610 Aggr
: constant Node_Id
:= First
(Expressions
(N
));
7611 Loc
: constant Source_Ptr
:= Sloc
(N
);
7612 Pref
: constant Node_Id
:= Prefix
(N
);
7613 Typ
: constant Entity_Id
:= Etype
(Pref
);
7616 CW_Temp
: Entity_Id
;
7621 -- Start of processing for Expand_Update_Attribute
7624 -- Create the anonymous object to store the value of the prefix and
7625 -- capture subsequent changes in value.
7627 Temp
:= Make_Temporary
(Loc
, 'T', Pref
);
7629 -- Preserve the tag of the prefix by offering a specific view of the
7630 -- class-wide version of the prefix.
7632 if Is_Tagged_Type
(Typ
) then
7635 -- CW_Temp : Typ'Class := Typ'Class (Pref);
7637 CW_Temp
:= Make_Temporary
(Loc
, 'T');
7638 CW_Typ
:= Class_Wide_Type
(Typ
);
7641 Make_Object_Declaration
(Loc
,
7642 Defining_Identifier
=> CW_Temp
,
7643 Object_Definition
=> New_Occurrence_Of
(CW_Typ
, Loc
),
7645 Convert_To
(CW_Typ
, Relocate_Node
(Pref
))));
7648 -- Temp : Typ renames Typ (CW_Temp);
7651 Make_Object_Renaming_Declaration
(Loc
,
7652 Defining_Identifier
=> Temp
,
7653 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
7655 Convert_To
(Typ
, New_Occurrence_Of
(CW_Temp
, Loc
))));
7661 -- Temp : Typ := Pref;
7664 Make_Object_Declaration
(Loc
,
7665 Defining_Identifier
=> Temp
,
7666 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
7667 Expression
=> Relocate_Node
(Pref
)));
7670 -- Process the update aggregate
7672 Assoc
:= First
(Component_Associations
(Aggr
));
7673 while Present
(Assoc
) loop
7674 Comp
:= First
(Choices
(Assoc
));
7675 Expr
:= Expression
(Assoc
);
7676 while Present
(Comp
) loop
7677 if Nkind
(Comp
) = N_Range
then
7678 Process_Range_Update
(Temp
, Comp
, Expr
, Typ
);
7680 Process_Component_Or_Element_Update
(Temp
, Comp
, Expr
, Typ
);
7689 -- The attribute is replaced by a reference to the anonymous object
7691 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
7693 end Expand_Update_Attribute
;
7699 procedure Find_Fat_Info
7701 Fat_Type
: out Entity_Id
;
7702 Fat_Pkg
: out RE_Id
)
7704 Rtyp
: constant Entity_Id
:= Root_Type
(T
);
7707 -- All we do is use the root type (historically this dealt with
7708 -- VAX-float .. to be cleaned up further later ???)
7712 if Fat_Type
= Standard_Short_Float
then
7713 Fat_Pkg
:= RE_Attr_Short_Float
;
7715 elsif Fat_Type
= Standard_Float
then
7716 Fat_Pkg
:= RE_Attr_Float
;
7718 elsif Fat_Type
= Standard_Long_Float
then
7719 Fat_Pkg
:= RE_Attr_Long_Float
;
7721 elsif Fat_Type
= Standard_Long_Long_Float
then
7722 Fat_Pkg
:= RE_Attr_Long_Long_Float
;
7724 -- Universal real (which is its own root type) is treated as being
7725 -- equivalent to Standard.Long_Long_Float, since it is defined to
7726 -- have the same precision as the longest Float type.
7728 elsif Fat_Type
= Universal_Real
then
7729 Fat_Type
:= Standard_Long_Long_Float
;
7730 Fat_Pkg
:= RE_Attr_Long_Long_Float
;
7733 raise Program_Error
;
7737 ----------------------------
7738 -- Find_Stream_Subprogram --
7739 ----------------------------
7741 function Find_Stream_Subprogram
7743 Nam
: TSS_Name_Type
) return Entity_Id
7745 Base_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
7746 Ent
: constant Entity_Id
:= TSS
(Typ
, Nam
);
7748 function Is_Available
(Entity
: RE_Id
) return Boolean;
7749 pragma Inline
(Is_Available
);
7750 -- Function to check whether the specified run-time call is available
7751 -- in the run time used. In the case of a configurable run time, it
7752 -- is normal that some subprograms are not there.
7754 -- I don't understand this routine at all, why is this not just a
7755 -- call to RTE_Available? And if for some reason we need a different
7756 -- routine with different semantics, why is not in Rtsfind ???
7762 function Is_Available
(Entity
: RE_Id
) return Boolean is
7764 -- Assume that the unit will always be available when using a
7765 -- "normal" (not configurable) run time.
7767 return not Configurable_Run_Time_Mode
or else RTE_Available
(Entity
);
7770 -- Start of processing for Find_Stream_Subprogram
7773 if Present
(Ent
) then
7777 -- Stream attributes for strings are expanded into library calls. The
7778 -- following checks are disabled when the run-time is not available or
7779 -- when compiling predefined types due to bootstrap issues. As a result,
7780 -- the compiler will generate in-place stream routines for string types
7781 -- that appear in GNAT's library, but will generate calls via rtsfind
7782 -- to library routines for user code.
7784 -- Note: In the case of using a configurable run time, it is very likely
7785 -- that stream routines for string types are not present (they require
7786 -- file system support). In this case, the specific stream routines for
7787 -- strings are not used, relying on the regular stream mechanism
7788 -- instead. That is why we include the test Is_Available when dealing
7789 -- with these cases.
7791 if not Is_Predefined_Unit
(Current_Sem_Unit
) then
7792 -- Storage_Array as defined in package System.Storage_Elements
7794 if Is_RTE
(Base_Typ
, RE_Storage_Array
) then
7796 -- Case of No_Stream_Optimizations restriction active
7798 if Restriction_Active
(No_Stream_Optimizations
) then
7799 if Nam
= TSS_Stream_Input
7800 and then Is_Available
(RE_Storage_Array_Input
)
7802 return RTE
(RE_Storage_Array_Input
);
7804 elsif Nam
= TSS_Stream_Output
7805 and then Is_Available
(RE_Storage_Array_Output
)
7807 return RTE
(RE_Storage_Array_Output
);
7809 elsif Nam
= TSS_Stream_Read
7810 and then Is_Available
(RE_Storage_Array_Read
)
7812 return RTE
(RE_Storage_Array_Read
);
7814 elsif Nam
= TSS_Stream_Write
7815 and then Is_Available
(RE_Storage_Array_Write
)
7817 return RTE
(RE_Storage_Array_Write
);
7819 elsif Nam
/= TSS_Stream_Input
and then
7820 Nam
/= TSS_Stream_Output
and then
7821 Nam
/= TSS_Stream_Read
and then
7822 Nam
/= TSS_Stream_Write
7824 raise Program_Error
;
7827 -- Restriction No_Stream_Optimizations is not set, so we can go
7828 -- ahead and optimize using the block IO forms of the routines.
7831 if Nam
= TSS_Stream_Input
7832 and then Is_Available
(RE_Storage_Array_Input_Blk_IO
)
7834 return RTE
(RE_Storage_Array_Input_Blk_IO
);
7836 elsif Nam
= TSS_Stream_Output
7837 and then Is_Available
(RE_Storage_Array_Output_Blk_IO
)
7839 return RTE
(RE_Storage_Array_Output_Blk_IO
);
7841 elsif Nam
= TSS_Stream_Read
7842 and then Is_Available
(RE_Storage_Array_Read_Blk_IO
)
7844 return RTE
(RE_Storage_Array_Read_Blk_IO
);
7846 elsif Nam
= TSS_Stream_Write
7847 and then Is_Available
(RE_Storage_Array_Write_Blk_IO
)
7849 return RTE
(RE_Storage_Array_Write_Blk_IO
);
7851 elsif Nam
/= TSS_Stream_Input
and then
7852 Nam
/= TSS_Stream_Output
and then
7853 Nam
/= TSS_Stream_Read
and then
7854 Nam
/= TSS_Stream_Write
7856 raise Program_Error
;
7860 -- Stream_Element_Array as defined in package Ada.Streams
7862 elsif Is_RTE
(Base_Typ
, RE_Stream_Element_Array
) then
7864 -- Case of No_Stream_Optimizations restriction active
7866 if Restriction_Active
(No_Stream_Optimizations
) then
7867 if Nam
= TSS_Stream_Input
7868 and then Is_Available
(RE_Stream_Element_Array_Input
)
7870 return RTE
(RE_Stream_Element_Array_Input
);
7872 elsif Nam
= TSS_Stream_Output
7873 and then Is_Available
(RE_Stream_Element_Array_Output
)
7875 return RTE
(RE_Stream_Element_Array_Output
);
7877 elsif Nam
= TSS_Stream_Read
7878 and then Is_Available
(RE_Stream_Element_Array_Read
)
7880 return RTE
(RE_Stream_Element_Array_Read
);
7882 elsif Nam
= TSS_Stream_Write
7883 and then Is_Available
(RE_Stream_Element_Array_Write
)
7885 return RTE
(RE_Stream_Element_Array_Write
);
7887 elsif Nam
/= TSS_Stream_Input
and then
7888 Nam
/= TSS_Stream_Output
and then
7889 Nam
/= TSS_Stream_Read
and then
7890 Nam
/= TSS_Stream_Write
7892 raise Program_Error
;
7895 -- Restriction No_Stream_Optimizations is not set, so we can go
7896 -- ahead and optimize using the block IO forms of the routines.
7899 if Nam
= TSS_Stream_Input
7900 and then Is_Available
(RE_Stream_Element_Array_Input_Blk_IO
)
7902 return RTE
(RE_Stream_Element_Array_Input_Blk_IO
);
7904 elsif Nam
= TSS_Stream_Output
7905 and then Is_Available
(RE_Stream_Element_Array_Output_Blk_IO
)
7907 return RTE
(RE_Stream_Element_Array_Output_Blk_IO
);
7909 elsif Nam
= TSS_Stream_Read
7910 and then Is_Available
(RE_Stream_Element_Array_Read_Blk_IO
)
7912 return RTE
(RE_Stream_Element_Array_Read_Blk_IO
);
7914 elsif Nam
= TSS_Stream_Write
7915 and then Is_Available
(RE_Stream_Element_Array_Write_Blk_IO
)
7917 return RTE
(RE_Stream_Element_Array_Write_Blk_IO
);
7919 elsif Nam
/= TSS_Stream_Input
and then
7920 Nam
/= TSS_Stream_Output
and then
7921 Nam
/= TSS_Stream_Read
and then
7922 Nam
/= TSS_Stream_Write
7924 raise Program_Error
;
7928 -- String as defined in package Ada
7930 elsif Base_Typ
= Standard_String
then
7932 -- Case of No_Stream_Optimizations restriction active
7934 if Restriction_Active
(No_Stream_Optimizations
) then
7935 if Nam
= TSS_Stream_Input
7936 and then Is_Available
(RE_String_Input
)
7938 return RTE
(RE_String_Input
);
7940 elsif Nam
= TSS_Stream_Output
7941 and then Is_Available
(RE_String_Output
)
7943 return RTE
(RE_String_Output
);
7945 elsif Nam
= TSS_Stream_Read
7946 and then Is_Available
(RE_String_Read
)
7948 return RTE
(RE_String_Read
);
7950 elsif Nam
= TSS_Stream_Write
7951 and then Is_Available
(RE_String_Write
)
7953 return RTE
(RE_String_Write
);
7955 elsif Nam
/= TSS_Stream_Input
and then
7956 Nam
/= TSS_Stream_Output
and then
7957 Nam
/= TSS_Stream_Read
and then
7958 Nam
/= TSS_Stream_Write
7960 raise Program_Error
;
7963 -- Restriction No_Stream_Optimizations is not set, so we can go
7964 -- ahead and optimize using the block IO forms of the routines.
7967 if Nam
= TSS_Stream_Input
7968 and then Is_Available
(RE_String_Input_Blk_IO
)
7970 return RTE
(RE_String_Input_Blk_IO
);
7972 elsif Nam
= TSS_Stream_Output
7973 and then Is_Available
(RE_String_Output_Blk_IO
)
7975 return RTE
(RE_String_Output_Blk_IO
);
7977 elsif Nam
= TSS_Stream_Read
7978 and then Is_Available
(RE_String_Read_Blk_IO
)
7980 return RTE
(RE_String_Read_Blk_IO
);
7982 elsif Nam
= TSS_Stream_Write
7983 and then Is_Available
(RE_String_Write_Blk_IO
)
7985 return RTE
(RE_String_Write_Blk_IO
);
7987 elsif Nam
/= TSS_Stream_Input
and then
7988 Nam
/= TSS_Stream_Output
and then
7989 Nam
/= TSS_Stream_Read
and then
7990 Nam
/= TSS_Stream_Write
7992 raise Program_Error
;
7996 -- Wide_String as defined in package Ada
7998 elsif Base_Typ
= Standard_Wide_String
then
8000 -- Case of No_Stream_Optimizations restriction active
8002 if Restriction_Active
(No_Stream_Optimizations
) then
8003 if Nam
= TSS_Stream_Input
8004 and then Is_Available
(RE_Wide_String_Input
)
8006 return RTE
(RE_Wide_String_Input
);
8008 elsif Nam
= TSS_Stream_Output
8009 and then Is_Available
(RE_Wide_String_Output
)
8011 return RTE
(RE_Wide_String_Output
);
8013 elsif Nam
= TSS_Stream_Read
8014 and then Is_Available
(RE_Wide_String_Read
)
8016 return RTE
(RE_Wide_String_Read
);
8018 elsif Nam
= TSS_Stream_Write
8019 and then Is_Available
(RE_Wide_String_Write
)
8021 return RTE
(RE_Wide_String_Write
);
8023 elsif Nam
/= TSS_Stream_Input
and then
8024 Nam
/= TSS_Stream_Output
and then
8025 Nam
/= TSS_Stream_Read
and then
8026 Nam
/= TSS_Stream_Write
8028 raise Program_Error
;
8031 -- Restriction No_Stream_Optimizations is not set, so we can go
8032 -- ahead and optimize using the block IO forms of the routines.
8035 if Nam
= TSS_Stream_Input
8036 and then Is_Available
(RE_Wide_String_Input_Blk_IO
)
8038 return RTE
(RE_Wide_String_Input_Blk_IO
);
8040 elsif Nam
= TSS_Stream_Output
8041 and then Is_Available
(RE_Wide_String_Output_Blk_IO
)
8043 return RTE
(RE_Wide_String_Output_Blk_IO
);
8045 elsif Nam
= TSS_Stream_Read
8046 and then Is_Available
(RE_Wide_String_Read_Blk_IO
)
8048 return RTE
(RE_Wide_String_Read_Blk_IO
);
8050 elsif Nam
= TSS_Stream_Write
8051 and then Is_Available
(RE_Wide_String_Write_Blk_IO
)
8053 return RTE
(RE_Wide_String_Write_Blk_IO
);
8055 elsif Nam
/= TSS_Stream_Input
and then
8056 Nam
/= TSS_Stream_Output
and then
8057 Nam
/= TSS_Stream_Read
and then
8058 Nam
/= TSS_Stream_Write
8060 raise Program_Error
;
8064 -- Wide_Wide_String as defined in package Ada
8066 elsif Base_Typ
= Standard_Wide_Wide_String
then
8068 -- Case of No_Stream_Optimizations restriction active
8070 if Restriction_Active
(No_Stream_Optimizations
) then
8071 if Nam
= TSS_Stream_Input
8072 and then Is_Available
(RE_Wide_Wide_String_Input
)
8074 return RTE
(RE_Wide_Wide_String_Input
);
8076 elsif Nam
= TSS_Stream_Output
8077 and then Is_Available
(RE_Wide_Wide_String_Output
)
8079 return RTE
(RE_Wide_Wide_String_Output
);
8081 elsif Nam
= TSS_Stream_Read
8082 and then Is_Available
(RE_Wide_Wide_String_Read
)
8084 return RTE
(RE_Wide_Wide_String_Read
);
8086 elsif Nam
= TSS_Stream_Write
8087 and then Is_Available
(RE_Wide_Wide_String_Write
)
8089 return RTE
(RE_Wide_Wide_String_Write
);
8091 elsif Nam
/= TSS_Stream_Input
and then
8092 Nam
/= TSS_Stream_Output
and then
8093 Nam
/= TSS_Stream_Read
and then
8094 Nam
/= TSS_Stream_Write
8096 raise Program_Error
;
8099 -- Restriction No_Stream_Optimizations is not set, so we can go
8100 -- ahead and optimize using the block IO forms of the routines.
8103 if Nam
= TSS_Stream_Input
8104 and then Is_Available
(RE_Wide_Wide_String_Input_Blk_IO
)
8106 return RTE
(RE_Wide_Wide_String_Input_Blk_IO
);
8108 elsif Nam
= TSS_Stream_Output
8109 and then Is_Available
(RE_Wide_Wide_String_Output_Blk_IO
)
8111 return RTE
(RE_Wide_Wide_String_Output_Blk_IO
);
8113 elsif Nam
= TSS_Stream_Read
8114 and then Is_Available
(RE_Wide_Wide_String_Read_Blk_IO
)
8116 return RTE
(RE_Wide_Wide_String_Read_Blk_IO
);
8118 elsif Nam
= TSS_Stream_Write
8119 and then Is_Available
(RE_Wide_Wide_String_Write_Blk_IO
)
8121 return RTE
(RE_Wide_Wide_String_Write_Blk_IO
);
8123 elsif Nam
/= TSS_Stream_Input
and then
8124 Nam
/= TSS_Stream_Output
and then
8125 Nam
/= TSS_Stream_Read
and then
8126 Nam
/= TSS_Stream_Write
8128 raise Program_Error
;
8134 if Is_Tagged_Type
(Typ
) and then Is_Derived_Type
(Typ
) then
8135 return Find_Prim_Op
(Typ
, Nam
);
8137 return Find_Inherited_TSS
(Typ
, Nam
);
8139 end Find_Stream_Subprogram
;
8145 function Full_Base
(T
: Entity_Id
) return Entity_Id
is
8149 BT
:= Base_Type
(T
);
8151 if Is_Private_Type
(BT
)
8152 and then Present
(Full_View
(BT
))
8154 BT
:= Full_View
(BT
);
8160 -----------------------
8161 -- Get_Index_Subtype --
8162 -----------------------
8164 function Get_Index_Subtype
(N
: Node_Id
) return Node_Id
is
8165 P_Type
: Entity_Id
:= Etype
(Prefix
(N
));
8170 if Is_Access_Type
(P_Type
) then
8171 P_Type
:= Designated_Type
(P_Type
);
8174 if No
(Expressions
(N
)) then
8177 J
:= UI_To_Int
(Expr_Value
(First
(Expressions
(N
))));
8180 Indx
:= First_Index
(P_Type
);
8186 return Etype
(Indx
);
8187 end Get_Index_Subtype
;
8189 -------------------------------
8190 -- Get_Stream_Convert_Pragma --
8191 -------------------------------
8193 function Get_Stream_Convert_Pragma
(T
: Entity_Id
) return Node_Id
is
8198 -- Note: we cannot use Get_Rep_Pragma here because of the peculiarity
8199 -- that a stream convert pragma for a tagged type is not inherited from
8200 -- its parent. Probably what is wrong here is that it is basically
8201 -- incorrect to consider a stream convert pragma to be a representation
8202 -- pragma at all ???
8204 N
:= First_Rep_Item
(Implementation_Base_Type
(T
));
8205 while Present
(N
) loop
8206 if Nkind
(N
) = N_Pragma
8207 and then Pragma_Name
(N
) = Name_Stream_Convert
8209 -- For tagged types this pragma is not inherited, so we
8210 -- must verify that it is defined for the given type and
8214 Entity
(Expression
(First
(Pragma_Argument_Associations
(N
))));
8216 if not Is_Tagged_Type
(T
)
8218 or else (Is_Private_Type
(Typ
) and then T
= Full_View
(Typ
))
8228 end Get_Stream_Convert_Pragma
;
8230 ---------------------------------
8231 -- Is_Constrained_Packed_Array --
8232 ---------------------------------
8234 function Is_Constrained_Packed_Array
(Typ
: Entity_Id
) return Boolean is
8235 Arr
: Entity_Id
:= Typ
;
8238 if Is_Access_Type
(Arr
) then
8239 Arr
:= Designated_Type
(Arr
);
8242 return Is_Array_Type
(Arr
)
8243 and then Is_Constrained
(Arr
)
8244 and then Present
(Packed_Array_Impl_Type
(Arr
));
8245 end Is_Constrained_Packed_Array
;
8247 ----------------------------------------
8248 -- Is_Inline_Floating_Point_Attribute --
8249 ----------------------------------------
8251 function Is_Inline_Floating_Point_Attribute
(N
: Node_Id
) return Boolean is
8252 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attribute_Name
(N
));
8254 function Is_GCC_Target
return Boolean;
8255 -- Return True if we are using a GCC target/back-end
8256 -- ??? Note: the implementation is kludgy/fragile
8262 function Is_GCC_Target
return Boolean is
8264 return not CodePeer_Mode
8265 and then not Modify_Tree_For_C
;
8268 -- Start of processing for Is_Inline_Floating_Point_Attribute
8271 -- Machine and Model can be expanded by the GCC and AAMP back ends only
8273 if Id
= Attribute_Machine
or else Id
= Attribute_Model
then
8274 return Is_GCC_Target
;
8276 -- Remaining cases handled by all back ends are Rounding and Truncation
8277 -- when appearing as the operand of a conversion to some integer type.
8279 elsif Nkind
(Parent
(N
)) /= N_Type_Conversion
8280 or else not Is_Integer_Type
(Etype
(Parent
(N
)))
8285 -- Here we are in the integer conversion context
8287 -- Very probably we should also recognize the cases of Machine_Rounding
8288 -- and unbiased rounding in this conversion context, but the back end is
8289 -- not yet prepared to handle these cases ???
8291 return Id
= Attribute_Rounding
or else Id
= Attribute_Truncation
;
8292 end Is_Inline_Floating_Point_Attribute
;