1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2015 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
30 #include "diagnostic-core.h"
32 #include "fold-const.h"
33 #include "stor-layout.h"
36 #include "insn-config.h"
45 #include "insn-codes.h"
48 #include "langhooks.h"
51 struct target_expmed default_target_expmed
;
53 struct target_expmed
*this_target_expmed
= &default_target_expmed
;
56 static void store_fixed_bit_field (rtx
, unsigned HOST_WIDE_INT
,
57 unsigned HOST_WIDE_INT
,
58 unsigned HOST_WIDE_INT
,
59 unsigned HOST_WIDE_INT
,
61 static void store_fixed_bit_field_1 (rtx
, unsigned HOST_WIDE_INT
,
62 unsigned HOST_WIDE_INT
,
64 static void store_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
65 unsigned HOST_WIDE_INT
,
66 unsigned HOST_WIDE_INT
,
67 unsigned HOST_WIDE_INT
,
69 static rtx
extract_fixed_bit_field (machine_mode
, rtx
,
70 unsigned HOST_WIDE_INT
,
71 unsigned HOST_WIDE_INT
, rtx
, int);
72 static rtx
extract_fixed_bit_field_1 (machine_mode
, rtx
,
73 unsigned HOST_WIDE_INT
,
74 unsigned HOST_WIDE_INT
, rtx
, int);
75 static rtx
lshift_value (machine_mode
, unsigned HOST_WIDE_INT
, int);
76 static rtx
extract_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
77 unsigned HOST_WIDE_INT
, int);
78 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, machine_mode
, rtx_code_label
*);
79 static rtx
expand_smod_pow2 (machine_mode
, rtx
, HOST_WIDE_INT
);
80 static rtx
expand_sdiv_pow2 (machine_mode
, rtx
, HOST_WIDE_INT
);
82 /* Return a constant integer mask value of mode MODE with BITSIZE ones
83 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
84 The mask is truncated if necessary to the width of mode MODE. The
85 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
88 mask_rtx (machine_mode mode
, int bitpos
, int bitsize
, bool complement
)
90 return immed_wide_int_const
91 (wi::shifted_mask (bitpos
, bitsize
, complement
,
92 GET_MODE_PRECISION (mode
)), mode
);
95 /* Test whether a value is zero of a power of two. */
96 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
97 (((x) & ((x) - (unsigned HOST_WIDE_INT) 1)) == 0)
99 struct init_expmed_rtl
120 rtx pow2
[MAX_BITS_PER_WORD
];
121 rtx cint
[MAX_BITS_PER_WORD
];
125 init_expmed_one_conv (struct init_expmed_rtl
*all
, machine_mode to_mode
,
126 machine_mode from_mode
, bool speed
)
128 int to_size
, from_size
;
131 to_size
= GET_MODE_PRECISION (to_mode
);
132 from_size
= GET_MODE_PRECISION (from_mode
);
134 /* Most partial integers have a precision less than the "full"
135 integer it requires for storage. In case one doesn't, for
136 comparison purposes here, reduce the bit size by one in that
138 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
139 && exact_log2 (to_size
) != -1)
141 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
142 && exact_log2 (from_size
) != -1)
145 /* Assume cost of zero-extend and sign-extend is the same. */
146 which
= (to_size
< from_size
? all
->trunc
: all
->zext
);
148 PUT_MODE (all
->reg
, from_mode
);
149 set_convert_cost (to_mode
, from_mode
, speed
,
150 set_src_cost (which
, to_mode
, speed
));
154 init_expmed_one_mode (struct init_expmed_rtl
*all
,
155 machine_mode mode
, int speed
)
157 int m
, n
, mode_bitsize
;
158 machine_mode mode_from
;
160 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
162 PUT_MODE (all
->reg
, mode
);
163 PUT_MODE (all
->plus
, mode
);
164 PUT_MODE (all
->neg
, mode
);
165 PUT_MODE (all
->mult
, mode
);
166 PUT_MODE (all
->sdiv
, mode
);
167 PUT_MODE (all
->udiv
, mode
);
168 PUT_MODE (all
->sdiv_32
, mode
);
169 PUT_MODE (all
->smod_32
, mode
);
170 PUT_MODE (all
->wide_trunc
, mode
);
171 PUT_MODE (all
->shift
, mode
);
172 PUT_MODE (all
->shift_mult
, mode
);
173 PUT_MODE (all
->shift_add
, mode
);
174 PUT_MODE (all
->shift_sub0
, mode
);
175 PUT_MODE (all
->shift_sub1
, mode
);
176 PUT_MODE (all
->zext
, mode
);
177 PUT_MODE (all
->trunc
, mode
);
179 set_add_cost (speed
, mode
, set_src_cost (all
->plus
, mode
, speed
));
180 set_neg_cost (speed
, mode
, set_src_cost (all
->neg
, mode
, speed
));
181 set_mul_cost (speed
, mode
, set_src_cost (all
->mult
, mode
, speed
));
182 set_sdiv_cost (speed
, mode
, set_src_cost (all
->sdiv
, mode
, speed
));
183 set_udiv_cost (speed
, mode
, set_src_cost (all
->udiv
, mode
, speed
));
185 set_sdiv_pow2_cheap (speed
, mode
, (set_src_cost (all
->sdiv_32
, mode
, speed
)
186 <= 2 * add_cost (speed
, mode
)));
187 set_smod_pow2_cheap (speed
, mode
, (set_src_cost (all
->smod_32
, mode
, speed
)
188 <= 4 * add_cost (speed
, mode
)));
190 set_shift_cost (speed
, mode
, 0, 0);
192 int cost
= add_cost (speed
, mode
);
193 set_shiftadd_cost (speed
, mode
, 0, cost
);
194 set_shiftsub0_cost (speed
, mode
, 0, cost
);
195 set_shiftsub1_cost (speed
, mode
, 0, cost
);
198 n
= MIN (MAX_BITS_PER_WORD
, mode_bitsize
);
199 for (m
= 1; m
< n
; m
++)
201 XEXP (all
->shift
, 1) = all
->cint
[m
];
202 XEXP (all
->shift_mult
, 1) = all
->pow2
[m
];
204 set_shift_cost (speed
, mode
, m
, set_src_cost (all
->shift
, mode
, speed
));
205 set_shiftadd_cost (speed
, mode
, m
, set_src_cost (all
->shift_add
, mode
,
207 set_shiftsub0_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub0
, mode
,
209 set_shiftsub1_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub1
, mode
,
213 if (SCALAR_INT_MODE_P (mode
))
215 for (mode_from
= MIN_MODE_INT
; mode_from
<= MAX_MODE_INT
;
216 mode_from
= (machine_mode
)(mode_from
+ 1))
217 init_expmed_one_conv (all
, mode
, mode_from
, speed
);
219 if (GET_MODE_CLASS (mode
) == MODE_INT
)
221 machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
222 if (wider_mode
!= VOIDmode
)
224 PUT_MODE (all
->zext
, wider_mode
);
225 PUT_MODE (all
->wide_mult
, wider_mode
);
226 PUT_MODE (all
->wide_lshr
, wider_mode
);
227 XEXP (all
->wide_lshr
, 1) = GEN_INT (mode_bitsize
);
229 set_mul_widen_cost (speed
, wider_mode
,
230 set_src_cost (all
->wide_mult
, wider_mode
, speed
));
231 set_mul_highpart_cost (speed
, mode
,
232 set_src_cost (all
->wide_trunc
, mode
, speed
));
240 struct init_expmed_rtl all
;
241 machine_mode mode
= QImode
;
244 memset (&all
, 0, sizeof all
);
245 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
247 all
.pow2
[m
] = GEN_INT ((HOST_WIDE_INT
) 1 << m
);
248 all
.cint
[m
] = GEN_INT (m
);
251 /* Avoid using hard regs in ways which may be unsupported. */
252 all
.reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
253 all
.plus
= gen_rtx_PLUS (mode
, all
.reg
, all
.reg
);
254 all
.neg
= gen_rtx_NEG (mode
, all
.reg
);
255 all
.mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
256 all
.sdiv
= gen_rtx_DIV (mode
, all
.reg
, all
.reg
);
257 all
.udiv
= gen_rtx_UDIV (mode
, all
.reg
, all
.reg
);
258 all
.sdiv_32
= gen_rtx_DIV (mode
, all
.reg
, all
.pow2
[5]);
259 all
.smod_32
= gen_rtx_MOD (mode
, all
.reg
, all
.pow2
[5]);
260 all
.zext
= gen_rtx_ZERO_EXTEND (mode
, all
.reg
);
261 all
.wide_mult
= gen_rtx_MULT (mode
, all
.zext
, all
.zext
);
262 all
.wide_lshr
= gen_rtx_LSHIFTRT (mode
, all
.wide_mult
, all
.reg
);
263 all
.wide_trunc
= gen_rtx_TRUNCATE (mode
, all
.wide_lshr
);
264 all
.shift
= gen_rtx_ASHIFT (mode
, all
.reg
, all
.reg
);
265 all
.shift_mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
266 all
.shift_add
= gen_rtx_PLUS (mode
, all
.shift_mult
, all
.reg
);
267 all
.shift_sub0
= gen_rtx_MINUS (mode
, all
.shift_mult
, all
.reg
);
268 all
.shift_sub1
= gen_rtx_MINUS (mode
, all
.reg
, all
.shift_mult
);
269 all
.trunc
= gen_rtx_TRUNCATE (mode
, all
.reg
);
271 for (speed
= 0; speed
< 2; speed
++)
273 crtl
->maybe_hot_insn_p
= speed
;
274 set_zero_cost (speed
, set_src_cost (const0_rtx
, mode
, speed
));
276 for (mode
= MIN_MODE_INT
; mode
<= MAX_MODE_INT
;
277 mode
= (machine_mode
)(mode
+ 1))
278 init_expmed_one_mode (&all
, mode
, speed
);
280 if (MIN_MODE_PARTIAL_INT
!= VOIDmode
)
281 for (mode
= MIN_MODE_PARTIAL_INT
; mode
<= MAX_MODE_PARTIAL_INT
;
282 mode
= (machine_mode
)(mode
+ 1))
283 init_expmed_one_mode (&all
, mode
, speed
);
285 if (MIN_MODE_VECTOR_INT
!= VOIDmode
)
286 for (mode
= MIN_MODE_VECTOR_INT
; mode
<= MAX_MODE_VECTOR_INT
;
287 mode
= (machine_mode
)(mode
+ 1))
288 init_expmed_one_mode (&all
, mode
, speed
);
291 if (alg_hash_used_p ())
293 struct alg_hash_entry
*p
= alg_hash_entry_ptr (0);
294 memset (p
, 0, sizeof (*p
) * NUM_ALG_HASH_ENTRIES
);
297 set_alg_hash_used_p (true);
298 default_rtl_profile ();
300 ggc_free (all
.trunc
);
301 ggc_free (all
.shift_sub1
);
302 ggc_free (all
.shift_sub0
);
303 ggc_free (all
.shift_add
);
304 ggc_free (all
.shift_mult
);
305 ggc_free (all
.shift
);
306 ggc_free (all
.wide_trunc
);
307 ggc_free (all
.wide_lshr
);
308 ggc_free (all
.wide_mult
);
310 ggc_free (all
.smod_32
);
311 ggc_free (all
.sdiv_32
);
320 /* Return an rtx representing minus the value of X.
321 MODE is the intended mode of the result,
322 useful if X is a CONST_INT. */
325 negate_rtx (machine_mode mode
, rtx x
)
327 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
330 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
335 /* Adjust bitfield memory MEM so that it points to the first unit of mode
336 MODE that contains a bitfield of size BITSIZE at bit position BITNUM.
337 If MODE is BLKmode, return a reference to every byte in the bitfield.
338 Set *NEW_BITNUM to the bit position of the field within the new memory. */
341 narrow_bit_field_mem (rtx mem
, machine_mode mode
,
342 unsigned HOST_WIDE_INT bitsize
,
343 unsigned HOST_WIDE_INT bitnum
,
344 unsigned HOST_WIDE_INT
*new_bitnum
)
348 *new_bitnum
= bitnum
% BITS_PER_UNIT
;
349 HOST_WIDE_INT offset
= bitnum
/ BITS_PER_UNIT
;
350 HOST_WIDE_INT size
= ((*new_bitnum
+ bitsize
+ BITS_PER_UNIT
- 1)
352 return adjust_bitfield_address_size (mem
, mode
, offset
, size
);
356 unsigned int unit
= GET_MODE_BITSIZE (mode
);
357 *new_bitnum
= bitnum
% unit
;
358 HOST_WIDE_INT offset
= (bitnum
- *new_bitnum
) / BITS_PER_UNIT
;
359 return adjust_bitfield_address (mem
, mode
, offset
);
363 /* The caller wants to perform insertion or extraction PATTERN on a
364 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
365 BITREGION_START and BITREGION_END are as for store_bit_field
366 and FIELDMODE is the natural mode of the field.
368 Search for a mode that is compatible with the memory access
369 restrictions and (where applicable) with a register insertion or
370 extraction. Return the new memory on success, storing the adjusted
371 bit position in *NEW_BITNUM. Return null otherwise. */
374 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern
,
375 rtx op0
, HOST_WIDE_INT bitsize
,
376 HOST_WIDE_INT bitnum
,
377 unsigned HOST_WIDE_INT bitregion_start
,
378 unsigned HOST_WIDE_INT bitregion_end
,
379 machine_mode fieldmode
,
380 unsigned HOST_WIDE_INT
*new_bitnum
)
382 bit_field_mode_iterator
iter (bitsize
, bitnum
, bitregion_start
,
383 bitregion_end
, MEM_ALIGN (op0
),
384 MEM_VOLATILE_P (op0
));
385 machine_mode best_mode
;
386 if (iter
.next_mode (&best_mode
))
388 /* We can use a memory in BEST_MODE. See whether this is true for
389 any wider modes. All other things being equal, we prefer to
390 use the widest mode possible because it tends to expose more
391 CSE opportunities. */
392 if (!iter
.prefer_smaller_modes ())
394 /* Limit the search to the mode required by the corresponding
395 register insertion or extraction instruction, if any. */
396 machine_mode limit_mode
= word_mode
;
397 extraction_insn insn
;
398 if (get_best_reg_extraction_insn (&insn
, pattern
,
399 GET_MODE_BITSIZE (best_mode
),
401 limit_mode
= insn
.field_mode
;
403 machine_mode wider_mode
;
404 while (iter
.next_mode (&wider_mode
)
405 && GET_MODE_SIZE (wider_mode
) <= GET_MODE_SIZE (limit_mode
))
406 best_mode
= wider_mode
;
408 return narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
,
414 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
415 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
416 offset is then BITNUM / BITS_PER_UNIT. */
419 lowpart_bit_field_p (unsigned HOST_WIDE_INT bitnum
,
420 unsigned HOST_WIDE_INT bitsize
,
421 machine_mode struct_mode
)
423 if (BYTES_BIG_ENDIAN
)
424 return (bitnum
% BITS_PER_UNIT
== 0
425 && (bitnum
+ bitsize
== GET_MODE_BITSIZE (struct_mode
)
426 || (bitnum
+ bitsize
) % BITS_PER_WORD
== 0));
428 return bitnum
% BITS_PER_WORD
== 0;
431 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
432 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
433 Return false if the access would touch memory outside the range
434 BITREGION_START to BITREGION_END for conformance to the C++ memory
438 strict_volatile_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
439 unsigned HOST_WIDE_INT bitnum
,
440 machine_mode fieldmode
,
441 unsigned HOST_WIDE_INT bitregion_start
,
442 unsigned HOST_WIDE_INT bitregion_end
)
444 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (fieldmode
);
446 /* -fstrict-volatile-bitfields must be enabled and we must have a
449 || !MEM_VOLATILE_P (op0
)
450 || flag_strict_volatile_bitfields
<= 0)
453 /* Non-integral modes likely only happen with packed structures.
455 if (!SCALAR_INT_MODE_P (fieldmode
))
458 /* The bit size must not be larger than the field mode, and
459 the field mode must not be larger than a word. */
460 if (bitsize
> modesize
|| modesize
> BITS_PER_WORD
)
463 /* Check for cases of unaligned fields that must be split. */
464 if (bitnum
% modesize
+ bitsize
> modesize
)
467 /* The memory must be sufficiently aligned for a MODESIZE access.
468 This condition guarantees, that the memory access will not
469 touch anything after the end of the structure. */
470 if (MEM_ALIGN (op0
) < modesize
)
473 /* Check for cases where the C++ memory model applies. */
474 if (bitregion_end
!= 0
475 && (bitnum
- bitnum
% modesize
< bitregion_start
476 || bitnum
- bitnum
% modesize
+ modesize
- 1 > bitregion_end
))
482 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
483 bit number BITNUM can be treated as a simple value of mode MODE. */
486 simple_mem_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
487 unsigned HOST_WIDE_INT bitnum
, machine_mode mode
)
490 && bitnum
% BITS_PER_UNIT
== 0
491 && bitsize
== GET_MODE_BITSIZE (mode
)
492 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (op0
))
493 || (bitnum
% GET_MODE_ALIGNMENT (mode
) == 0
494 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode
))));
497 /* Try to use instruction INSV to store VALUE into a field of OP0.
498 BITSIZE and BITNUM are as for store_bit_field. */
501 store_bit_field_using_insv (const extraction_insn
*insv
, rtx op0
,
502 unsigned HOST_WIDE_INT bitsize
,
503 unsigned HOST_WIDE_INT bitnum
,
506 struct expand_operand ops
[4];
509 rtx_insn
*last
= get_last_insn ();
510 bool copy_back
= false;
512 machine_mode op_mode
= insv
->field_mode
;
513 unsigned int unit
= GET_MODE_BITSIZE (op_mode
);
514 if (bitsize
== 0 || bitsize
> unit
)
518 /* Get a reference to the first byte of the field. */
519 xop0
= narrow_bit_field_mem (xop0
, insv
->struct_mode
, bitsize
, bitnum
,
523 /* Convert from counting within OP0 to counting in OP_MODE. */
524 if (BYTES_BIG_ENDIAN
)
525 bitnum
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
527 /* If xop0 is a register, we need it in OP_MODE
528 to make it acceptable to the format of insv. */
529 if (GET_CODE (xop0
) == SUBREG
)
530 /* We can't just change the mode, because this might clobber op0,
531 and we will need the original value of op0 if insv fails. */
532 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
533 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
534 xop0
= gen_lowpart_SUBREG (op_mode
, xop0
);
537 /* If the destination is a paradoxical subreg such that we need a
538 truncate to the inner mode, perform the insertion on a temporary and
539 truncate the result to the original destination. Note that we can't
540 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
541 X) 0)) is (reg:N X). */
542 if (GET_CODE (xop0
) == SUBREG
543 && REG_P (SUBREG_REG (xop0
))
544 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0
)),
547 rtx tem
= gen_reg_rtx (op_mode
);
548 emit_move_insn (tem
, xop0
);
553 /* There are similar overflow check at the start of store_bit_field_1,
554 but that only check the situation where the field lies completely
555 outside the register, while there do have situation where the field
556 lies partialy in the register, we need to adjust bitsize for this
557 partial overflow situation. Without this fix, pr48335-2.c on big-endian
558 will broken on those arch support bit insert instruction, like arm, aarch64
560 if (bitsize
+ bitnum
> unit
&& bitnum
< unit
)
562 warning (OPT_Wextra
, "write of %wu-bit data outside the bound of "
563 "destination object, data truncated into %wu-bit",
564 bitsize
, unit
- bitnum
);
565 bitsize
= unit
- bitnum
;
568 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
569 "backwards" from the size of the unit we are inserting into.
570 Otherwise, we count bits from the most significant on a
571 BYTES/BITS_BIG_ENDIAN machine. */
573 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
574 bitnum
= unit
- bitsize
- bitnum
;
576 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
578 if (GET_MODE (value
) != op_mode
)
580 if (GET_MODE_BITSIZE (GET_MODE (value
)) >= bitsize
)
582 /* Optimization: Don't bother really extending VALUE
583 if it has all the bits we will actually use. However,
584 if we must narrow it, be sure we do it correctly. */
586 if (GET_MODE_SIZE (GET_MODE (value
)) < GET_MODE_SIZE (op_mode
))
590 tmp
= simplify_subreg (op_mode
, value1
, GET_MODE (value
), 0);
592 tmp
= simplify_gen_subreg (op_mode
,
593 force_reg (GET_MODE (value
),
595 GET_MODE (value
), 0);
599 value1
= gen_lowpart (op_mode
, value1
);
601 else if (CONST_INT_P (value
))
602 value1
= gen_int_mode (INTVAL (value
), op_mode
);
604 /* Parse phase is supposed to make VALUE's data type
605 match that of the component reference, which is a type
606 at least as wide as the field; so VALUE should have
607 a mode that corresponds to that type. */
608 gcc_assert (CONSTANT_P (value
));
611 create_fixed_operand (&ops
[0], xop0
);
612 create_integer_operand (&ops
[1], bitsize
);
613 create_integer_operand (&ops
[2], bitnum
);
614 create_input_operand (&ops
[3], value1
, op_mode
);
615 if (maybe_expand_insn (insv
->icode
, 4, ops
))
618 convert_move (op0
, xop0
, true);
621 delete_insns_since (last
);
625 /* A subroutine of store_bit_field, with the same arguments. Return true
626 if the operation could be implemented.
628 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
629 no other way of implementing the operation. If FALLBACK_P is false,
630 return false instead. */
633 store_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
634 unsigned HOST_WIDE_INT bitnum
,
635 unsigned HOST_WIDE_INT bitregion_start
,
636 unsigned HOST_WIDE_INT bitregion_end
,
637 machine_mode fieldmode
,
638 rtx value
, bool fallback_p
)
643 while (GET_CODE (op0
) == SUBREG
)
645 /* The following line once was done only if WORDS_BIG_ENDIAN,
646 but I think that is a mistake. WORDS_BIG_ENDIAN is
647 meaningful at a much higher level; when structures are copied
648 between memory and regs, the higher-numbered regs
649 always get higher addresses. */
650 int inner_mode_size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)));
651 int outer_mode_size
= GET_MODE_SIZE (GET_MODE (op0
));
654 /* Paradoxical subregs need special handling on big endian machines. */
655 if (SUBREG_BYTE (op0
) == 0 && inner_mode_size
< outer_mode_size
)
657 int difference
= inner_mode_size
- outer_mode_size
;
659 if (WORDS_BIG_ENDIAN
)
660 byte_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
661 if (BYTES_BIG_ENDIAN
)
662 byte_offset
+= difference
% UNITS_PER_WORD
;
665 byte_offset
= SUBREG_BYTE (op0
);
667 bitnum
+= byte_offset
* BITS_PER_UNIT
;
668 op0
= SUBREG_REG (op0
);
671 /* No action is needed if the target is a register and if the field
672 lies completely outside that register. This can occur if the source
673 code contains an out-of-bounds access to a small array. */
674 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
677 /* Use vec_set patterns for inserting parts of vectors whenever
679 if (VECTOR_MODE_P (GET_MODE (op0
))
681 && optab_handler (vec_set_optab
, GET_MODE (op0
)) != CODE_FOR_nothing
682 && fieldmode
== GET_MODE_INNER (GET_MODE (op0
))
683 && bitsize
== GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
684 && !(bitnum
% GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
686 struct expand_operand ops
[3];
687 machine_mode outermode
= GET_MODE (op0
);
688 machine_mode innermode
= GET_MODE_INNER (outermode
);
689 enum insn_code icode
= optab_handler (vec_set_optab
, outermode
);
690 int pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
692 create_fixed_operand (&ops
[0], op0
);
693 create_input_operand (&ops
[1], value
, innermode
);
694 create_integer_operand (&ops
[2], pos
);
695 if (maybe_expand_insn (icode
, 3, ops
))
699 /* If the target is a register, overwriting the entire object, or storing
700 a full-word or multi-word field can be done with just a SUBREG. */
702 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
703 && ((bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)) && bitnum
== 0)
704 || (bitsize
% BITS_PER_WORD
== 0 && bitnum
% BITS_PER_WORD
== 0)))
706 /* Use the subreg machinery either to narrow OP0 to the required
707 words or to cope with mode punning between equal-sized modes.
708 In the latter case, use subreg on the rhs side, not lhs. */
711 if (bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
713 sub
= simplify_gen_subreg (GET_MODE (op0
), value
, fieldmode
, 0);
716 emit_move_insn (op0
, sub
);
722 sub
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
723 bitnum
/ BITS_PER_UNIT
);
726 emit_move_insn (sub
, value
);
732 /* If the target is memory, storing any naturally aligned field can be
733 done with a simple store. For targets that support fast unaligned
734 memory, any naturally sized, unit aligned field can be done directly. */
735 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, fieldmode
))
737 op0
= adjust_bitfield_address (op0
, fieldmode
, bitnum
/ BITS_PER_UNIT
);
738 emit_move_insn (op0
, value
);
742 /* Make sure we are playing with integral modes. Pun with subregs
743 if we aren't. This must come after the entire register case above,
744 since that case is valid for any mode. The following cases are only
745 valid for integral modes. */
747 machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
748 if (imode
!= GET_MODE (op0
))
751 op0
= adjust_bitfield_address_size (op0
, imode
, 0, MEM_SIZE (op0
));
754 gcc_assert (imode
!= BLKmode
);
755 op0
= gen_lowpart (imode
, op0
);
760 /* Storing an lsb-aligned field in a register
761 can be done with a movstrict instruction. */
764 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
765 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
766 && optab_handler (movstrict_optab
, fieldmode
) != CODE_FOR_nothing
)
768 struct expand_operand ops
[2];
769 enum insn_code icode
= optab_handler (movstrict_optab
, fieldmode
);
771 unsigned HOST_WIDE_INT subreg_off
;
773 if (GET_CODE (arg0
) == SUBREG
)
775 /* Else we've got some float mode source being extracted into
776 a different float mode destination -- this combination of
777 subregs results in Severe Tire Damage. */
778 gcc_assert (GET_MODE (SUBREG_REG (arg0
)) == fieldmode
779 || GET_MODE_CLASS (fieldmode
) == MODE_INT
780 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
781 arg0
= SUBREG_REG (arg0
);
784 subreg_off
= bitnum
/ BITS_PER_UNIT
;
785 if (validate_subreg (fieldmode
, GET_MODE (arg0
), arg0
, subreg_off
))
787 arg0
= gen_rtx_SUBREG (fieldmode
, arg0
, subreg_off
);
789 create_fixed_operand (&ops
[0], arg0
);
790 /* Shrink the source operand to FIELDMODE. */
791 create_convert_operand_to (&ops
[1], value
, fieldmode
, false);
792 if (maybe_expand_insn (icode
, 2, ops
))
797 /* Handle fields bigger than a word. */
799 if (bitsize
> BITS_PER_WORD
)
801 /* Here we transfer the words of the field
802 in the order least significant first.
803 This is because the most significant word is the one which may
805 However, only do that if the value is not BLKmode. */
807 unsigned int backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
808 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
812 /* This is the mode we must force value to, so that there will be enough
813 subwords to extract. Note that fieldmode will often (always?) be
814 VOIDmode, because that is what store_field uses to indicate that this
815 is a bit field, but passing VOIDmode to operand_subword_force
817 fieldmode
= GET_MODE (value
);
818 if (fieldmode
== VOIDmode
)
819 fieldmode
= smallest_mode_for_size (nwords
* BITS_PER_WORD
, MODE_INT
);
821 last
= get_last_insn ();
822 for (i
= 0; i
< nwords
; i
++)
824 /* If I is 0, use the low-order word in both field and target;
825 if I is 1, use the next to lowest word; and so on. */
826 unsigned int wordnum
= (backwards
827 ? GET_MODE_SIZE (fieldmode
) / UNITS_PER_WORD
830 unsigned int bit_offset
= (backwards
831 ? MAX ((int) bitsize
- ((int) i
+ 1)
834 : (int) i
* BITS_PER_WORD
);
835 rtx value_word
= operand_subword_force (value
, wordnum
, fieldmode
);
836 unsigned HOST_WIDE_INT new_bitsize
=
837 MIN (BITS_PER_WORD
, bitsize
- i
* BITS_PER_WORD
);
839 /* If the remaining chunk doesn't have full wordsize we have
840 to make sure that for big endian machines the higher order
842 if (new_bitsize
< BITS_PER_WORD
&& BYTES_BIG_ENDIAN
&& !backwards
)
843 value_word
= simplify_expand_binop (word_mode
, lshr_optab
,
845 GEN_INT (BITS_PER_WORD
850 if (!store_bit_field_1 (op0
, new_bitsize
,
852 bitregion_start
, bitregion_end
,
854 value_word
, fallback_p
))
856 delete_insns_since (last
);
863 /* If VALUE has a floating-point or complex mode, access it as an
864 integer of the corresponding size. This can occur on a machine
865 with 64 bit registers that uses SFmode for float. It can also
866 occur for unaligned float or complex fields. */
868 if (GET_MODE (value
) != VOIDmode
869 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_INT
870 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_PARTIAL_INT
)
872 value
= gen_reg_rtx (int_mode_for_mode (GET_MODE (value
)));
873 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
876 /* If OP0 is a multi-word register, narrow it to the affected word.
877 If the region spans two words, defer to store_split_bit_field. */
878 if (!MEM_P (op0
) && GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
880 op0
= simplify_gen_subreg (word_mode
, op0
, GET_MODE (op0
),
881 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
883 bitnum
%= BITS_PER_WORD
;
884 if (bitnum
+ bitsize
> BITS_PER_WORD
)
889 store_split_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
890 bitregion_end
, value
);
895 /* From here on we can assume that the field to be stored in fits
896 within a word. If the destination is a register, it too fits
899 extraction_insn insv
;
901 && get_best_reg_extraction_insn (&insv
, EP_insv
,
902 GET_MODE_BITSIZE (GET_MODE (op0
)),
904 && store_bit_field_using_insv (&insv
, op0
, bitsize
, bitnum
, value
))
907 /* If OP0 is a memory, try copying it to a register and seeing if a
908 cheap register alternative is available. */
911 if (get_best_mem_extraction_insn (&insv
, EP_insv
, bitsize
, bitnum
,
913 && store_bit_field_using_insv (&insv
, op0
, bitsize
, bitnum
, value
))
916 rtx_insn
*last
= get_last_insn ();
918 /* Try loading part of OP0 into a register, inserting the bitfield
919 into that, and then copying the result back to OP0. */
920 unsigned HOST_WIDE_INT bitpos
;
921 rtx xop0
= adjust_bit_field_mem_for_reg (EP_insv
, op0
, bitsize
, bitnum
,
922 bitregion_start
, bitregion_end
,
926 rtx tempreg
= copy_to_reg (xop0
);
927 if (store_bit_field_1 (tempreg
, bitsize
, bitpos
,
928 bitregion_start
, bitregion_end
,
929 fieldmode
, orig_value
, false))
931 emit_move_insn (xop0
, tempreg
);
934 delete_insns_since (last
);
941 store_fixed_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
942 bitregion_end
, value
);
946 /* Generate code to store value from rtx VALUE
947 into a bit-field within structure STR_RTX
948 containing BITSIZE bits starting at bit BITNUM.
950 BITREGION_START is bitpos of the first bitfield in this region.
951 BITREGION_END is the bitpos of the ending bitfield in this region.
952 These two fields are 0, if the C++ memory model does not apply,
953 or we are not interested in keeping track of bitfield regions.
955 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
958 store_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
959 unsigned HOST_WIDE_INT bitnum
,
960 unsigned HOST_WIDE_INT bitregion_start
,
961 unsigned HOST_WIDE_INT bitregion_end
,
962 machine_mode fieldmode
,
965 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
966 if (strict_volatile_bitfield_p (str_rtx
, bitsize
, bitnum
, fieldmode
,
967 bitregion_start
, bitregion_end
))
969 /* Storing of a full word can be done with a simple store.
970 We know here that the field can be accessed with one single
971 instruction. For targets that support unaligned memory,
972 an unaligned access may be necessary. */
973 if (bitsize
== GET_MODE_BITSIZE (fieldmode
))
975 str_rtx
= adjust_bitfield_address (str_rtx
, fieldmode
,
976 bitnum
/ BITS_PER_UNIT
);
977 gcc_assert (bitnum
% BITS_PER_UNIT
== 0);
978 emit_move_insn (str_rtx
, value
);
984 str_rtx
= narrow_bit_field_mem (str_rtx
, fieldmode
, bitsize
, bitnum
,
986 gcc_assert (bitnum
+ bitsize
<= GET_MODE_BITSIZE (fieldmode
));
987 temp
= copy_to_reg (str_rtx
);
988 if (!store_bit_field_1 (temp
, bitsize
, bitnum
, 0, 0,
989 fieldmode
, value
, true))
992 emit_move_insn (str_rtx
, temp
);
998 /* Under the C++0x memory model, we must not touch bits outside the
999 bit region. Adjust the address to start at the beginning of the
1001 if (MEM_P (str_rtx
) && bitregion_start
> 0)
1003 machine_mode bestmode
;
1004 HOST_WIDE_INT offset
, size
;
1006 gcc_assert ((bitregion_start
% BITS_PER_UNIT
) == 0);
1008 offset
= bitregion_start
/ BITS_PER_UNIT
;
1009 bitnum
-= bitregion_start
;
1010 size
= (bitnum
+ bitsize
+ BITS_PER_UNIT
- 1) / BITS_PER_UNIT
;
1011 bitregion_end
-= bitregion_start
;
1012 bitregion_start
= 0;
1013 bestmode
= get_best_mode (bitsize
, bitnum
,
1014 bitregion_start
, bitregion_end
,
1015 MEM_ALIGN (str_rtx
), VOIDmode
,
1016 MEM_VOLATILE_P (str_rtx
));
1017 str_rtx
= adjust_bitfield_address_size (str_rtx
, bestmode
, offset
, size
);
1020 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
,
1021 bitregion_start
, bitregion_end
,
1022 fieldmode
, value
, true))
1026 /* Use shifts and boolean operations to store VALUE into a bit field of
1027 width BITSIZE in OP0, starting at bit BITNUM. */
1030 store_fixed_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1031 unsigned HOST_WIDE_INT bitnum
,
1032 unsigned HOST_WIDE_INT bitregion_start
,
1033 unsigned HOST_WIDE_INT bitregion_end
,
1036 /* There is a case not handled here:
1037 a structure with a known alignment of just a halfword
1038 and a field split across two aligned halfwords within the structure.
1039 Or likewise a structure with a known alignment of just a byte
1040 and a field split across two bytes.
1041 Such cases are not supposed to be able to occur. */
1045 machine_mode mode
= GET_MODE (op0
);
1046 if (GET_MODE_BITSIZE (mode
) == 0
1047 || GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (word_mode
))
1049 mode
= get_best_mode (bitsize
, bitnum
, bitregion_start
, bitregion_end
,
1050 MEM_ALIGN (op0
), mode
, MEM_VOLATILE_P (op0
));
1052 if (mode
== VOIDmode
)
1054 /* The only way this should occur is if the field spans word
1056 store_split_bit_field (op0
, bitsize
, bitnum
, bitregion_start
,
1057 bitregion_end
, value
);
1061 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
1064 store_fixed_bit_field_1 (op0
, bitsize
, bitnum
, value
);
1067 /* Helper function for store_fixed_bit_field, stores
1068 the bit field always using the MODE of OP0. */
1071 store_fixed_bit_field_1 (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1072 unsigned HOST_WIDE_INT bitnum
,
1080 mode
= GET_MODE (op0
);
1081 gcc_assert (SCALAR_INT_MODE_P (mode
));
1083 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1084 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1086 if (BYTES_BIG_ENDIAN
)
1087 /* BITNUM is the distance between our msb
1088 and that of the containing datum.
1089 Convert it to the distance from the lsb. */
1090 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1092 /* Now BITNUM is always the distance between our lsb
1095 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1096 we must first convert its mode to MODE. */
1098 if (CONST_INT_P (value
))
1100 unsigned HOST_WIDE_INT v
= UINTVAL (value
);
1102 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1103 v
&= ((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1;
1107 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
1108 && v
== ((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1)
1109 || (bitsize
== HOST_BITS_PER_WIDE_INT
1110 && v
== (unsigned HOST_WIDE_INT
) -1))
1113 value
= lshift_value (mode
, v
, bitnum
);
1117 int must_and
= (GET_MODE_BITSIZE (GET_MODE (value
)) != bitsize
1118 && bitnum
+ bitsize
!= GET_MODE_BITSIZE (mode
));
1120 if (GET_MODE (value
) != mode
)
1121 value
= convert_to_mode (mode
, value
, 1);
1124 value
= expand_binop (mode
, and_optab
, value
,
1125 mask_rtx (mode
, 0, bitsize
, 0),
1126 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1128 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
1129 bitnum
, NULL_RTX
, 1);
1132 /* Now clear the chosen bits in OP0,
1133 except that if VALUE is -1 we need not bother. */
1134 /* We keep the intermediates in registers to allow CSE to combine
1135 consecutive bitfield assignments. */
1137 temp
= force_reg (mode
, op0
);
1141 temp
= expand_binop (mode
, and_optab
, temp
,
1142 mask_rtx (mode
, bitnum
, bitsize
, 1),
1143 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1144 temp
= force_reg (mode
, temp
);
1147 /* Now logical-or VALUE into OP0, unless it is zero. */
1151 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
1152 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1153 temp
= force_reg (mode
, temp
);
1158 op0
= copy_rtx (op0
);
1159 emit_move_insn (op0
, temp
);
1163 /* Store a bit field that is split across multiple accessible memory objects.
1165 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1166 BITSIZE is the field width; BITPOS the position of its first bit
1168 VALUE is the value to store.
1170 This does not yet handle fields wider than BITS_PER_WORD. */
1173 store_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1174 unsigned HOST_WIDE_INT bitpos
,
1175 unsigned HOST_WIDE_INT bitregion_start
,
1176 unsigned HOST_WIDE_INT bitregion_end
,
1180 unsigned int bitsdone
= 0;
1182 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1184 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1185 unit
= BITS_PER_WORD
;
1187 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1189 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1190 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1191 again, and we will mutually recurse forever. */
1192 if (MEM_P (op0
) && GET_MODE_BITSIZE (GET_MODE (op0
)) > 0)
1193 unit
= MIN (unit
, GET_MODE_BITSIZE (GET_MODE (op0
)));
1195 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1196 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1197 that VALUE might be a floating-point constant. */
1198 if (CONSTANT_P (value
) && !CONST_INT_P (value
))
1200 rtx word
= gen_lowpart_common (word_mode
, value
);
1202 if (word
&& (value
!= word
))
1205 value
= gen_lowpart_common (word_mode
,
1206 force_reg (GET_MODE (value
) != VOIDmode
1208 : word_mode
, value
));
1211 while (bitsdone
< bitsize
)
1213 unsigned HOST_WIDE_INT thissize
;
1215 unsigned HOST_WIDE_INT thispos
;
1216 unsigned HOST_WIDE_INT offset
;
1218 offset
= (bitpos
+ bitsdone
) / unit
;
1219 thispos
= (bitpos
+ bitsdone
) % unit
;
1221 /* When region of bytes we can touch is restricted, decrease
1222 UNIT close to the end of the region as needed. If op0 is a REG
1223 or SUBREG of REG, don't do this, as there can't be data races
1224 on a register and we can expand shorter code in some cases. */
1226 && unit
> BITS_PER_UNIT
1227 && bitpos
+ bitsdone
- thispos
+ unit
> bitregion_end
+ 1
1229 && (GET_CODE (op0
) != SUBREG
|| !REG_P (SUBREG_REG (op0
))))
1235 /* THISSIZE must not overrun a word boundary. Otherwise,
1236 store_fixed_bit_field will call us again, and we will mutually
1238 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1239 thissize
= MIN (thissize
, unit
- thispos
);
1241 if (BYTES_BIG_ENDIAN
)
1243 /* Fetch successively less significant portions. */
1244 if (CONST_INT_P (value
))
1245 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1246 >> (bitsize
- bitsdone
- thissize
))
1247 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1250 int total_bits
= GET_MODE_BITSIZE (GET_MODE (value
));
1251 /* The args are chosen so that the last part includes the
1252 lsb. Give extract_bit_field the value it needs (with
1253 endianness compensation) to fetch the piece we want. */
1254 part
= extract_fixed_bit_field (word_mode
, value
, thissize
,
1255 total_bits
- bitsize
+ bitsdone
,
1261 /* Fetch successively more significant portions. */
1262 if (CONST_INT_P (value
))
1263 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1265 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1267 part
= extract_fixed_bit_field (word_mode
, value
, thissize
,
1268 bitsdone
, NULL_RTX
, 1);
1271 /* If OP0 is a register, then handle OFFSET here.
1273 When handling multiword bitfields, extract_bit_field may pass
1274 down a word_mode SUBREG of a larger REG for a bitfield that actually
1275 crosses a word boundary. Thus, for a SUBREG, we must find
1276 the current word starting from the base register. */
1277 if (GET_CODE (op0
) == SUBREG
)
1279 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
)
1280 + (offset
* unit
/ BITS_PER_WORD
);
1281 machine_mode sub_mode
= GET_MODE (SUBREG_REG (op0
));
1282 if (sub_mode
!= BLKmode
&& GET_MODE_SIZE (sub_mode
) < UNITS_PER_WORD
)
1283 word
= word_offset
? const0_rtx
: op0
;
1285 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1286 GET_MODE (SUBREG_REG (op0
)));
1287 offset
&= BITS_PER_WORD
/ unit
- 1;
1289 else if (REG_P (op0
))
1291 machine_mode op0_mode
= GET_MODE (op0
);
1292 if (op0_mode
!= BLKmode
&& GET_MODE_SIZE (op0_mode
) < UNITS_PER_WORD
)
1293 word
= offset
? const0_rtx
: op0
;
1295 word
= operand_subword_force (op0
, offset
* unit
/ BITS_PER_WORD
,
1297 offset
&= BITS_PER_WORD
/ unit
- 1;
1302 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1303 it is just an out-of-bounds access. Ignore it. */
1304 if (word
!= const0_rtx
)
1305 store_fixed_bit_field (word
, thissize
, offset
* unit
+ thispos
,
1306 bitregion_start
, bitregion_end
, part
);
1307 bitsdone
+= thissize
;
1311 /* A subroutine of extract_bit_field_1 that converts return value X
1312 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1313 to extract_bit_field. */
1316 convert_extracted_bit_field (rtx x
, machine_mode mode
,
1317 machine_mode tmode
, bool unsignedp
)
1319 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1322 /* If the x mode is not a scalar integral, first convert to the
1323 integer mode of that size and then access it as a floating-point
1324 value via a SUBREG. */
1325 if (!SCALAR_INT_MODE_P (tmode
))
1329 smode
= mode_for_size (GET_MODE_BITSIZE (tmode
), MODE_INT
, 0);
1330 x
= convert_to_mode (smode
, x
, unsignedp
);
1331 x
= force_reg (smode
, x
);
1332 return gen_lowpart (tmode
, x
);
1335 return convert_to_mode (tmode
, x
, unsignedp
);
1338 /* Try to use an ext(z)v pattern to extract a field from OP0.
1339 Return the extracted value on success, otherwise return null.
1340 EXT_MODE is the mode of the extraction and the other arguments
1341 are as for extract_bit_field. */
1344 extract_bit_field_using_extv (const extraction_insn
*extv
, rtx op0
,
1345 unsigned HOST_WIDE_INT bitsize
,
1346 unsigned HOST_WIDE_INT bitnum
,
1347 int unsignedp
, rtx target
,
1348 machine_mode mode
, machine_mode tmode
)
1350 struct expand_operand ops
[4];
1351 rtx spec_target
= target
;
1352 rtx spec_target_subreg
= 0;
1353 machine_mode ext_mode
= extv
->field_mode
;
1354 unsigned unit
= GET_MODE_BITSIZE (ext_mode
);
1356 if (bitsize
== 0 || unit
< bitsize
)
1360 /* Get a reference to the first byte of the field. */
1361 op0
= narrow_bit_field_mem (op0
, extv
->struct_mode
, bitsize
, bitnum
,
1365 /* Convert from counting within OP0 to counting in EXT_MODE. */
1366 if (BYTES_BIG_ENDIAN
)
1367 bitnum
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
1369 /* If op0 is a register, we need it in EXT_MODE to make it
1370 acceptable to the format of ext(z)v. */
1371 if (GET_CODE (op0
) == SUBREG
&& GET_MODE (op0
) != ext_mode
)
1373 if (REG_P (op0
) && GET_MODE (op0
) != ext_mode
)
1374 op0
= gen_lowpart_SUBREG (ext_mode
, op0
);
1377 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1378 "backwards" from the size of the unit we are extracting from.
1379 Otherwise, we count bits from the most significant on a
1380 BYTES/BITS_BIG_ENDIAN machine. */
1382 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1383 bitnum
= unit
- bitsize
- bitnum
;
1386 target
= spec_target
= gen_reg_rtx (tmode
);
1388 if (GET_MODE (target
) != ext_mode
)
1390 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1391 between the mode of the extraction (word_mode) and the target
1392 mode. Instead, create a temporary and use convert_move to set
1395 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target
), ext_mode
))
1397 target
= gen_lowpart (ext_mode
, target
);
1398 if (GET_MODE_PRECISION (ext_mode
)
1399 > GET_MODE_PRECISION (GET_MODE (spec_target
)))
1400 spec_target_subreg
= target
;
1403 target
= gen_reg_rtx (ext_mode
);
1406 create_output_operand (&ops
[0], target
, ext_mode
);
1407 create_fixed_operand (&ops
[1], op0
);
1408 create_integer_operand (&ops
[2], bitsize
);
1409 create_integer_operand (&ops
[3], bitnum
);
1410 if (maybe_expand_insn (extv
->icode
, 4, ops
))
1412 target
= ops
[0].value
;
1413 if (target
== spec_target
)
1415 if (target
== spec_target_subreg
)
1417 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1422 /* A subroutine of extract_bit_field, with the same arguments.
1423 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1424 if we can find no other means of implementing the operation.
1425 if FALLBACK_P is false, return NULL instead. */
1428 extract_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1429 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1430 machine_mode mode
, machine_mode tmode
,
1434 machine_mode int_mode
;
1437 if (tmode
== VOIDmode
)
1440 while (GET_CODE (op0
) == SUBREG
)
1442 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1443 op0
= SUBREG_REG (op0
);
1446 /* If we have an out-of-bounds access to a register, just return an
1447 uninitialized register of the required mode. This can occur if the
1448 source code contains an out-of-bounds access to a small array. */
1449 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
1450 return gen_reg_rtx (tmode
);
1453 && mode
== GET_MODE (op0
)
1455 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
1457 /* We're trying to extract a full register from itself. */
1461 /* See if we can get a better vector mode before extracting. */
1462 if (VECTOR_MODE_P (GET_MODE (op0
))
1464 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1466 machine_mode new_mode
;
1468 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1469 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1470 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1471 new_mode
= MIN_MODE_VECTOR_FRACT
;
1472 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1473 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1474 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1475 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1476 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1477 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1479 new_mode
= MIN_MODE_VECTOR_INT
;
1481 for (; new_mode
!= VOIDmode
; new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1482 if (GET_MODE_SIZE (new_mode
) == GET_MODE_SIZE (GET_MODE (op0
))
1483 && targetm
.vector_mode_supported_p (new_mode
))
1485 if (new_mode
!= VOIDmode
)
1486 op0
= gen_lowpart (new_mode
, op0
);
1489 /* Use vec_extract patterns for extracting parts of vectors whenever
1491 if (VECTOR_MODE_P (GET_MODE (op0
))
1493 && optab_handler (vec_extract_optab
, GET_MODE (op0
)) != CODE_FOR_nothing
1494 && ((bitnum
+ bitsize
- 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
1495 == bitnum
/ GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
1497 struct expand_operand ops
[3];
1498 machine_mode outermode
= GET_MODE (op0
);
1499 machine_mode innermode
= GET_MODE_INNER (outermode
);
1500 enum insn_code icode
= optab_handler (vec_extract_optab
, outermode
);
1501 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1503 create_output_operand (&ops
[0], target
, innermode
);
1504 create_input_operand (&ops
[1], op0
, outermode
);
1505 create_integer_operand (&ops
[2], pos
);
1506 if (maybe_expand_insn (icode
, 3, ops
))
1508 target
= ops
[0].value
;
1509 if (GET_MODE (target
) != mode
)
1510 return gen_lowpart (tmode
, target
);
1515 /* Make sure we are playing with integral modes. Pun with subregs
1518 machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
1519 if (imode
!= GET_MODE (op0
))
1522 op0
= adjust_bitfield_address_size (op0
, imode
, 0, MEM_SIZE (op0
));
1523 else if (imode
!= BLKmode
)
1525 op0
= gen_lowpart (imode
, op0
);
1527 /* If we got a SUBREG, force it into a register since we
1528 aren't going to be able to do another SUBREG on it. */
1529 if (GET_CODE (op0
) == SUBREG
)
1530 op0
= force_reg (imode
, op0
);
1532 else if (REG_P (op0
))
1535 imode
= smallest_mode_for_size (GET_MODE_BITSIZE (GET_MODE (op0
)),
1537 reg
= gen_reg_rtx (imode
);
1538 subreg
= gen_lowpart_SUBREG (GET_MODE (op0
), reg
);
1539 emit_move_insn (subreg
, op0
);
1541 bitnum
+= SUBREG_BYTE (subreg
) * BITS_PER_UNIT
;
1545 HOST_WIDE_INT size
= GET_MODE_SIZE (GET_MODE (op0
));
1546 rtx mem
= assign_stack_temp (GET_MODE (op0
), size
);
1547 emit_move_insn (mem
, op0
);
1548 op0
= adjust_bitfield_address_size (mem
, BLKmode
, 0, size
);
1553 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1554 If that's wrong, the solution is to test for it and set TARGET to 0
1557 /* Get the mode of the field to use for atomic access or subreg
1560 if (SCALAR_INT_MODE_P (tmode
))
1562 machine_mode try_mode
= mode_for_size (bitsize
,
1563 GET_MODE_CLASS (tmode
), 0);
1564 if (try_mode
!= BLKmode
)
1567 gcc_assert (mode1
!= BLKmode
);
1569 /* Extraction of a full MODE1 value can be done with a subreg as long
1570 as the least significant bit of the value is the least significant
1571 bit of either OP0 or a word of OP0. */
1573 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
1574 && bitsize
== GET_MODE_BITSIZE (mode1
)
1575 && TRULY_NOOP_TRUNCATION_MODES_P (mode1
, GET_MODE (op0
)))
1577 rtx sub
= simplify_gen_subreg (mode1
, op0
, GET_MODE (op0
),
1578 bitnum
/ BITS_PER_UNIT
);
1580 return convert_extracted_bit_field (sub
, mode
, tmode
, unsignedp
);
1583 /* Extraction of a full MODE1 value can be done with a load as long as
1584 the field is on a byte boundary and is sufficiently aligned. */
1585 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, mode1
))
1587 op0
= adjust_bitfield_address (op0
, mode1
, bitnum
/ BITS_PER_UNIT
);
1588 return convert_extracted_bit_field (op0
, mode
, tmode
, unsignedp
);
1591 /* Handle fields bigger than a word. */
1593 if (bitsize
> BITS_PER_WORD
)
1595 /* Here we transfer the words of the field
1596 in the order least significant first.
1597 This is because the most significant word is the one which may
1598 be less than full. */
1600 unsigned int backwards
= WORDS_BIG_ENDIAN
;
1601 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1605 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1606 target
= gen_reg_rtx (mode
);
1608 /* In case we're about to clobber a base register or something
1609 (see gcc.c-torture/execute/20040625-1.c). */
1610 if (reg_mentioned_p (target
, str_rtx
))
1611 target
= gen_reg_rtx (mode
);
1613 /* Indicate for flow that the entire target reg is being set. */
1614 emit_clobber (target
);
1616 last
= get_last_insn ();
1617 for (i
= 0; i
< nwords
; i
++)
1619 /* If I is 0, use the low-order word in both field and target;
1620 if I is 1, use the next to lowest word; and so on. */
1621 /* Word number in TARGET to use. */
1622 unsigned int wordnum
1624 ? GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
- i
- 1
1626 /* Offset from start of field in OP0. */
1627 unsigned int bit_offset
= (backwards
1628 ? MAX ((int) bitsize
- ((int) i
+ 1)
1631 : (int) i
* BITS_PER_WORD
);
1632 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1634 = extract_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
1635 bitsize
- i
* BITS_PER_WORD
),
1636 bitnum
+ bit_offset
, 1, target_part
,
1637 mode
, word_mode
, fallback_p
);
1639 gcc_assert (target_part
);
1642 delete_insns_since (last
);
1646 if (result_part
!= target_part
)
1647 emit_move_insn (target_part
, result_part
);
1652 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1653 need to be zero'd out. */
1654 if (GET_MODE_SIZE (GET_MODE (target
)) > nwords
* UNITS_PER_WORD
)
1656 unsigned int i
, total_words
;
1658 total_words
= GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
;
1659 for (i
= nwords
; i
< total_words
; i
++)
1661 (operand_subword (target
,
1662 backwards
? total_words
- i
- 1 : i
,
1669 /* Signed bit field: sign-extend with two arithmetic shifts. */
1670 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1671 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1672 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1673 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1676 /* If OP0 is a multi-word register, narrow it to the affected word.
1677 If the region spans two words, defer to extract_split_bit_field. */
1678 if (!MEM_P (op0
) && GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
1680 op0
= simplify_gen_subreg (word_mode
, op0
, GET_MODE (op0
),
1681 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
1682 bitnum
%= BITS_PER_WORD
;
1683 if (bitnum
+ bitsize
> BITS_PER_WORD
)
1687 target
= extract_split_bit_field (op0
, bitsize
, bitnum
, unsignedp
);
1688 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1692 /* From here on we know the desired field is smaller than a word.
1693 If OP0 is a register, it too fits within a word. */
1694 enum extraction_pattern pattern
= unsignedp
? EP_extzv
: EP_extv
;
1695 extraction_insn extv
;
1697 /* ??? We could limit the structure size to the part of OP0 that
1698 contains the field, with appropriate checks for endianness
1699 and TRULY_NOOP_TRUNCATION. */
1700 && get_best_reg_extraction_insn (&extv
, pattern
,
1701 GET_MODE_BITSIZE (GET_MODE (op0
)),
1704 rtx result
= extract_bit_field_using_extv (&extv
, op0
, bitsize
, bitnum
,
1705 unsignedp
, target
, mode
,
1711 /* If OP0 is a memory, try copying it to a register and seeing if a
1712 cheap register alternative is available. */
1715 if (get_best_mem_extraction_insn (&extv
, pattern
, bitsize
, bitnum
,
1718 rtx result
= extract_bit_field_using_extv (&extv
, op0
, bitsize
,
1726 rtx_insn
*last
= get_last_insn ();
1728 /* Try loading part of OP0 into a register and extracting the
1729 bitfield from that. */
1730 unsigned HOST_WIDE_INT bitpos
;
1731 rtx xop0
= adjust_bit_field_mem_for_reg (pattern
, op0
, bitsize
, bitnum
,
1732 0, 0, tmode
, &bitpos
);
1735 xop0
= copy_to_reg (xop0
);
1736 rtx result
= extract_bit_field_1 (xop0
, bitsize
, bitpos
,
1738 mode
, tmode
, false);
1741 delete_insns_since (last
);
1748 /* Find a correspondingly-sized integer field, so we can apply
1749 shifts and masks to it. */
1750 int_mode
= int_mode_for_mode (tmode
);
1751 if (int_mode
== BLKmode
)
1752 int_mode
= int_mode_for_mode (mode
);
1753 /* Should probably push op0 out to memory and then do a load. */
1754 gcc_assert (int_mode
!= BLKmode
);
1756 target
= extract_fixed_bit_field (int_mode
, op0
, bitsize
, bitnum
,
1758 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1761 /* Generate code to extract a byte-field from STR_RTX
1762 containing BITSIZE bits, starting at BITNUM,
1763 and put it in TARGET if possible (if TARGET is nonzero).
1764 Regardless of TARGET, we return the rtx for where the value is placed.
1766 STR_RTX is the structure containing the byte (a REG or MEM).
1767 UNSIGNEDP is nonzero if this is an unsigned bit field.
1768 MODE is the natural mode of the field value once extracted.
1769 TMODE is the mode the caller would like the value to have;
1770 but the value may be returned with type MODE instead.
1772 If a TARGET is specified and we can store in it at no extra cost,
1773 we do so, and return TARGET.
1774 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1775 if they are equally easy. */
1778 extract_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1779 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1780 machine_mode mode
, machine_mode tmode
)
1784 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1785 if (GET_MODE_BITSIZE (GET_MODE (str_rtx
)) > 0)
1786 mode1
= GET_MODE (str_rtx
);
1787 else if (target
&& GET_MODE_BITSIZE (GET_MODE (target
)) > 0)
1788 mode1
= GET_MODE (target
);
1792 if (strict_volatile_bitfield_p (str_rtx
, bitsize
, bitnum
, mode1
, 0, 0))
1794 /* Extraction of a full MODE1 value can be done with a simple load.
1795 We know here that the field can be accessed with one single
1796 instruction. For targets that support unaligned memory,
1797 an unaligned access may be necessary. */
1798 if (bitsize
== GET_MODE_BITSIZE (mode1
))
1800 rtx result
= adjust_bitfield_address (str_rtx
, mode1
,
1801 bitnum
/ BITS_PER_UNIT
);
1802 gcc_assert (bitnum
% BITS_PER_UNIT
== 0);
1803 return convert_extracted_bit_field (result
, mode
, tmode
, unsignedp
);
1806 str_rtx
= narrow_bit_field_mem (str_rtx
, mode1
, bitsize
, bitnum
,
1808 gcc_assert (bitnum
+ bitsize
<= GET_MODE_BITSIZE (mode1
));
1809 str_rtx
= copy_to_reg (str_rtx
);
1812 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
1813 target
, mode
, tmode
, true);
1816 /* Use shifts and boolean operations to extract a field of BITSIZE bits
1817 from bit BITNUM of OP0.
1819 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1820 If TARGET is nonzero, attempts to store the value there
1821 and return TARGET, but this is not guaranteed.
1822 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1825 extract_fixed_bit_field (machine_mode tmode
, rtx op0
,
1826 unsigned HOST_WIDE_INT bitsize
,
1827 unsigned HOST_WIDE_INT bitnum
, rtx target
,
1833 = get_best_mode (bitsize
, bitnum
, 0, 0, MEM_ALIGN (op0
), word_mode
,
1834 MEM_VOLATILE_P (op0
));
1836 if (mode
== VOIDmode
)
1837 /* The only way this should occur is if the field spans word
1839 return extract_split_bit_field (op0
, bitsize
, bitnum
, unsignedp
);
1841 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
1844 return extract_fixed_bit_field_1 (tmode
, op0
, bitsize
, bitnum
,
1848 /* Helper function for extract_fixed_bit_field, extracts
1849 the bit field always using the MODE of OP0. */
1852 extract_fixed_bit_field_1 (machine_mode tmode
, rtx op0
,
1853 unsigned HOST_WIDE_INT bitsize
,
1854 unsigned HOST_WIDE_INT bitnum
, rtx target
,
1857 machine_mode mode
= GET_MODE (op0
);
1858 gcc_assert (SCALAR_INT_MODE_P (mode
));
1860 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1861 for invalid input, such as extract equivalent of f5 from
1862 gcc.dg/pr48335-2.c. */
1864 if (BYTES_BIG_ENDIAN
)
1865 /* BITNUM is the distance between our msb and that of OP0.
1866 Convert it to the distance from the lsb. */
1867 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1869 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
1870 We have reduced the big-endian case to the little-endian case. */
1876 /* If the field does not already start at the lsb,
1877 shift it so it does. */
1878 /* Maybe propagate the target for the shift. */
1879 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1882 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, bitnum
, subtarget
, 1);
1884 /* Convert the value to the desired mode. */
1886 op0
= convert_to_mode (tmode
, op0
, 1);
1888 /* Unless the msb of the field used to be the msb when we shifted,
1889 mask out the upper bits. */
1891 if (GET_MODE_BITSIZE (mode
) != bitnum
+ bitsize
)
1892 return expand_binop (GET_MODE (op0
), and_optab
, op0
,
1893 mask_rtx (GET_MODE (op0
), 0, bitsize
, 0),
1894 target
, 1, OPTAB_LIB_WIDEN
);
1898 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1899 then arithmetic-shift its lsb to the lsb of the word. */
1900 op0
= force_reg (mode
, op0
);
1902 /* Find the narrowest integer mode that contains the field. */
1904 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1905 mode
= GET_MODE_WIDER_MODE (mode
))
1906 if (GET_MODE_BITSIZE (mode
) >= bitsize
+ bitnum
)
1908 op0
= convert_to_mode (mode
, op0
, 0);
1915 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitnum
))
1917 int amount
= GET_MODE_BITSIZE (mode
) - (bitsize
+ bitnum
);
1918 /* Maybe propagate the target for the shift. */
1919 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1920 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1923 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
1924 GET_MODE_BITSIZE (mode
) - bitsize
, target
, 0);
1927 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1931 lshift_value (machine_mode mode
, unsigned HOST_WIDE_INT value
,
1934 return immed_wide_int_const (wi::lshift (value
, bitpos
), mode
);
1937 /* Extract a bit field that is split across two words
1938 and return an RTX for the result.
1940 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1941 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1942 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1945 extract_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1946 unsigned HOST_WIDE_INT bitpos
, int unsignedp
)
1949 unsigned int bitsdone
= 0;
1950 rtx result
= NULL_RTX
;
1953 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1955 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1956 unit
= BITS_PER_WORD
;
1958 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1960 while (bitsdone
< bitsize
)
1962 unsigned HOST_WIDE_INT thissize
;
1964 unsigned HOST_WIDE_INT thispos
;
1965 unsigned HOST_WIDE_INT offset
;
1967 offset
= (bitpos
+ bitsdone
) / unit
;
1968 thispos
= (bitpos
+ bitsdone
) % unit
;
1970 /* THISSIZE must not overrun a word boundary. Otherwise,
1971 extract_fixed_bit_field will call us again, and we will mutually
1973 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1974 thissize
= MIN (thissize
, unit
- thispos
);
1976 /* If OP0 is a register, then handle OFFSET here.
1978 When handling multiword bitfields, extract_bit_field may pass
1979 down a word_mode SUBREG of a larger REG for a bitfield that actually
1980 crosses a word boundary. Thus, for a SUBREG, we must find
1981 the current word starting from the base register. */
1982 if (GET_CODE (op0
) == SUBREG
)
1984 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1985 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1986 GET_MODE (SUBREG_REG (op0
)));
1989 else if (REG_P (op0
))
1991 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
1997 /* Extract the parts in bit-counting order,
1998 whose meaning is determined by BYTES_PER_UNIT.
1999 OFFSET is in UNITs, and UNIT is in bits. */
2000 part
= extract_fixed_bit_field (word_mode
, word
, thissize
,
2001 offset
* unit
+ thispos
, 0, 1);
2002 bitsdone
+= thissize
;
2004 /* Shift this part into place for the result. */
2005 if (BYTES_BIG_ENDIAN
)
2007 if (bitsize
!= bitsdone
)
2008 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2009 bitsize
- bitsdone
, 0, 1);
2013 if (bitsdone
!= thissize
)
2014 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2015 bitsdone
- thissize
, 0, 1);
2021 /* Combine the parts with bitwise or. This works
2022 because we extracted each part as an unsigned bit field. */
2023 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
2029 /* Unsigned bit field: we are done. */
2032 /* Signed bit field: sign-extend with two arithmetic shifts. */
2033 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
2034 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2035 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
2036 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2039 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2040 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2041 MODE, fill the upper bits with zeros. Fail if the layout of either
2042 mode is unknown (as for CC modes) or if the extraction would involve
2043 unprofitable mode punning. Return the value on success, otherwise
2046 This is different from gen_lowpart* in these respects:
2048 - the returned value must always be considered an rvalue
2050 - when MODE is wider than SRC_MODE, the extraction involves
2053 - when MODE is smaller than SRC_MODE, the extraction involves
2054 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
2056 In other words, this routine performs a computation, whereas the
2057 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2061 extract_low_bits (machine_mode mode
, machine_mode src_mode
, rtx src
)
2063 machine_mode int_mode
, src_int_mode
;
2065 if (mode
== src_mode
)
2068 if (CONSTANT_P (src
))
2070 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2071 fails, it will happily create (subreg (symbol_ref)) or similar
2073 unsigned int byte
= subreg_lowpart_offset (mode
, src_mode
);
2074 rtx ret
= simplify_subreg (mode
, src
, src_mode
, byte
);
2078 if (GET_MODE (src
) == VOIDmode
2079 || !validate_subreg (mode
, src_mode
, src
, byte
))
2082 src
= force_reg (GET_MODE (src
), src
);
2083 return gen_rtx_SUBREG (mode
, src
, byte
);
2086 if (GET_MODE_CLASS (mode
) == MODE_CC
|| GET_MODE_CLASS (src_mode
) == MODE_CC
)
2089 if (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (src_mode
)
2090 && MODES_TIEABLE_P (mode
, src_mode
))
2092 rtx x
= gen_lowpart_common (mode
, src
);
2097 src_int_mode
= int_mode_for_mode (src_mode
);
2098 int_mode
= int_mode_for_mode (mode
);
2099 if (src_int_mode
== BLKmode
|| int_mode
== BLKmode
)
2102 if (!MODES_TIEABLE_P (src_int_mode
, src_mode
))
2104 if (!MODES_TIEABLE_P (int_mode
, mode
))
2107 src
= gen_lowpart (src_int_mode
, src
);
2108 src
= convert_modes (int_mode
, src_int_mode
, src
, true);
2109 src
= gen_lowpart (mode
, src
);
2113 /* Add INC into TARGET. */
2116 expand_inc (rtx target
, rtx inc
)
2118 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2120 target
, 0, OPTAB_LIB_WIDEN
);
2121 if (value
!= target
)
2122 emit_move_insn (target
, value
);
2125 /* Subtract DEC from TARGET. */
2128 expand_dec (rtx target
, rtx dec
)
2130 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2132 target
, 0, OPTAB_LIB_WIDEN
);
2133 if (value
!= target
)
2134 emit_move_insn (target
, value
);
2137 /* Output a shift instruction for expression code CODE,
2138 with SHIFTED being the rtx for the value to shift,
2139 and AMOUNT the rtx for the amount to shift by.
2140 Store the result in the rtx TARGET, if that is convenient.
2141 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2142 Return the rtx for where the value is. */
2145 expand_shift_1 (enum tree_code code
, machine_mode mode
, rtx shifted
,
2146 rtx amount
, rtx target
, int unsignedp
)
2149 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2150 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2151 optab lshift_optab
= ashl_optab
;
2152 optab rshift_arith_optab
= ashr_optab
;
2153 optab rshift_uns_optab
= lshr_optab
;
2154 optab lrotate_optab
= rotl_optab
;
2155 optab rrotate_optab
= rotr_optab
;
2156 machine_mode op1_mode
;
2157 machine_mode scalar_mode
= mode
;
2159 bool speed
= optimize_insn_for_speed_p ();
2161 if (VECTOR_MODE_P (mode
))
2162 scalar_mode
= GET_MODE_INNER (mode
);
2164 op1_mode
= GET_MODE (op1
);
2166 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2167 shift amount is a vector, use the vector/vector shift patterns. */
2168 if (VECTOR_MODE_P (mode
) && VECTOR_MODE_P (op1_mode
))
2170 lshift_optab
= vashl_optab
;
2171 rshift_arith_optab
= vashr_optab
;
2172 rshift_uns_optab
= vlshr_optab
;
2173 lrotate_optab
= vrotl_optab
;
2174 rrotate_optab
= vrotr_optab
;
2177 /* Previously detected shift-counts computed by NEGATE_EXPR
2178 and shifted in the other direction; but that does not work
2181 if (SHIFT_COUNT_TRUNCATED
)
2183 if (CONST_INT_P (op1
)
2184 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2185 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (scalar_mode
)))
2186 op1
= GEN_INT ((unsigned HOST_WIDE_INT
) INTVAL (op1
)
2187 % GET_MODE_BITSIZE (scalar_mode
));
2188 else if (GET_CODE (op1
) == SUBREG
2189 && subreg_lowpart_p (op1
)
2190 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1
)))
2191 && SCALAR_INT_MODE_P (GET_MODE (op1
)))
2192 op1
= SUBREG_REG (op1
);
2195 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2196 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2197 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2200 && CONST_INT_P (op1
)
2201 && IN_RANGE (INTVAL (op1
), GET_MODE_BITSIZE (scalar_mode
) / 2 + left
,
2202 GET_MODE_BITSIZE (scalar_mode
) - 1))
2204 op1
= GEN_INT (GET_MODE_BITSIZE (scalar_mode
) - INTVAL (op1
));
2206 code
= left
? LROTATE_EXPR
: RROTATE_EXPR
;
2209 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2210 Note that this is not the case for bigger values. For instance a rotation
2211 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2212 0x04030201 (bswapsi). */
2214 && CONST_INT_P (op1
)
2215 && INTVAL (op1
) == BITS_PER_UNIT
2216 && GET_MODE_SIZE (scalar_mode
) == 2
2217 && optab_handler (bswap_optab
, HImode
) != CODE_FOR_nothing
)
2218 return expand_unop (HImode
, bswap_optab
, shifted
, NULL_RTX
,
2221 if (op1
== const0_rtx
)
2224 /* Check whether its cheaper to implement a left shift by a constant
2225 bit count by a sequence of additions. */
2226 if (code
== LSHIFT_EXPR
2227 && CONST_INT_P (op1
)
2229 && INTVAL (op1
) < GET_MODE_PRECISION (scalar_mode
)
2230 && INTVAL (op1
) < MAX_BITS_PER_WORD
2231 && (shift_cost (speed
, mode
, INTVAL (op1
))
2232 > INTVAL (op1
) * add_cost (speed
, mode
))
2233 && shift_cost (speed
, mode
, INTVAL (op1
)) != MAX_COST
)
2236 for (i
= 0; i
< INTVAL (op1
); i
++)
2238 temp
= force_reg (mode
, shifted
);
2239 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2240 unsignedp
, OPTAB_LIB_WIDEN
);
2245 for (attempt
= 0; temp
== 0 && attempt
< 3; attempt
++)
2247 enum optab_methods methods
;
2250 methods
= OPTAB_DIRECT
;
2251 else if (attempt
== 1)
2252 methods
= OPTAB_WIDEN
;
2254 methods
= OPTAB_LIB_WIDEN
;
2258 /* Widening does not work for rotation. */
2259 if (methods
== OPTAB_WIDEN
)
2261 else if (methods
== OPTAB_LIB_WIDEN
)
2263 /* If we have been unable to open-code this by a rotation,
2264 do it as the IOR of two shifts. I.e., to rotate A
2266 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2267 where C is the bitsize of A.
2269 It is theoretically possible that the target machine might
2270 not be able to perform either shift and hence we would
2271 be making two libcalls rather than just the one for the
2272 shift (similarly if IOR could not be done). We will allow
2273 this extremely unlikely lossage to avoid complicating the
2276 rtx subtarget
= target
== shifted
? 0 : target
;
2277 rtx new_amount
, other_amount
;
2281 if (op1
== const0_rtx
)
2283 else if (CONST_INT_P (op1
))
2284 other_amount
= GEN_INT (GET_MODE_BITSIZE (scalar_mode
)
2289 = simplify_gen_unary (NEG
, GET_MODE (op1
),
2290 op1
, GET_MODE (op1
));
2291 HOST_WIDE_INT mask
= GET_MODE_PRECISION (scalar_mode
) - 1;
2293 = simplify_gen_binary (AND
, GET_MODE (op1
), other_amount
,
2294 gen_int_mode (mask
, GET_MODE (op1
)));
2297 shifted
= force_reg (mode
, shifted
);
2299 temp
= expand_shift_1 (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2300 mode
, shifted
, new_amount
, 0, 1);
2301 temp1
= expand_shift_1 (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2302 mode
, shifted
, other_amount
,
2304 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2305 unsignedp
, methods
);
2308 temp
= expand_binop (mode
,
2309 left
? lrotate_optab
: rrotate_optab
,
2310 shifted
, op1
, target
, unsignedp
, methods
);
2313 temp
= expand_binop (mode
,
2314 left
? lshift_optab
: rshift_uns_optab
,
2315 shifted
, op1
, target
, unsignedp
, methods
);
2317 /* Do arithmetic shifts.
2318 Also, if we are going to widen the operand, we can just as well
2319 use an arithmetic right-shift instead of a logical one. */
2320 if (temp
== 0 && ! rotate
2321 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2323 enum optab_methods methods1
= methods
;
2325 /* If trying to widen a log shift to an arithmetic shift,
2326 don't accept an arithmetic shift of the same size. */
2328 methods1
= OPTAB_MUST_WIDEN
;
2330 /* Arithmetic shift */
2332 temp
= expand_binop (mode
,
2333 left
? lshift_optab
: rshift_arith_optab
,
2334 shifted
, op1
, target
, unsignedp
, methods1
);
2337 /* We used to try extzv here for logical right shifts, but that was
2338 only useful for one machine, the VAX, and caused poor code
2339 generation there for lshrdi3, so the code was deleted and a
2340 define_expand for lshrsi3 was added to vax.md. */
2347 /* Output a shift instruction for expression code CODE,
2348 with SHIFTED being the rtx for the value to shift,
2349 and AMOUNT the amount to shift by.
2350 Store the result in the rtx TARGET, if that is convenient.
2351 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2352 Return the rtx for where the value is. */
2355 expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2356 int amount
, rtx target
, int unsignedp
)
2358 return expand_shift_1 (code
, mode
,
2359 shifted
, GEN_INT (amount
), target
, unsignedp
);
2362 /* Output a shift instruction for expression code CODE,
2363 with SHIFTED being the rtx for the value to shift,
2364 and AMOUNT the tree for the amount to shift by.
2365 Store the result in the rtx TARGET, if that is convenient.
2366 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2367 Return the rtx for where the value is. */
2370 expand_variable_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2371 tree amount
, rtx target
, int unsignedp
)
2373 return expand_shift_1 (code
, mode
,
2374 shifted
, expand_normal (amount
), target
, unsignedp
);
2378 /* Indicates the type of fixup needed after a constant multiplication.
2379 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2380 the result should be negated, and ADD_VARIANT means that the
2381 multiplicand should be added to the result. */
2382 enum mult_variant
{basic_variant
, negate_variant
, add_variant
};
2384 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2385 const struct mult_cost
*, machine_mode mode
);
2386 static bool choose_mult_variant (machine_mode
, HOST_WIDE_INT
,
2387 struct algorithm
*, enum mult_variant
*, int);
2388 static rtx
expand_mult_const (machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2389 const struct algorithm
*, enum mult_variant
);
2390 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2391 static rtx
extract_high_half (machine_mode
, rtx
);
2392 static rtx
expmed_mult_highpart (machine_mode
, rtx
, rtx
, rtx
, int, int);
2393 static rtx
expmed_mult_highpart_optab (machine_mode
, rtx
, rtx
, rtx
,
2395 /* Compute and return the best algorithm for multiplying by T.
2396 The algorithm must cost less than cost_limit
2397 If retval.cost >= COST_LIMIT, no algorithm was found and all
2398 other field of the returned struct are undefined.
2399 MODE is the machine mode of the multiplication. */
2402 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2403 const struct mult_cost
*cost_limit
, machine_mode mode
)
2406 struct algorithm
*alg_in
, *best_alg
;
2407 struct mult_cost best_cost
;
2408 struct mult_cost new_limit
;
2409 int op_cost
, op_latency
;
2410 unsigned HOST_WIDE_INT orig_t
= t
;
2411 unsigned HOST_WIDE_INT q
;
2412 int maxm
, hash_index
;
2413 bool cache_hit
= false;
2414 enum alg_code cache_alg
= alg_zero
;
2415 bool speed
= optimize_insn_for_speed_p ();
2417 struct alg_hash_entry
*entry_ptr
;
2419 /* Indicate that no algorithm is yet found. If no algorithm
2420 is found, this value will be returned and indicate failure. */
2421 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2422 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2424 if (cost_limit
->cost
< 0
2425 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2428 /* Be prepared for vector modes. */
2429 imode
= GET_MODE_INNER (mode
);
2430 if (imode
== VOIDmode
)
2433 maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (imode
));
2435 /* Restrict the bits of "t" to the multiplication's mode. */
2436 t
&= GET_MODE_MASK (imode
);
2438 /* t == 1 can be done in zero cost. */
2442 alg_out
->cost
.cost
= 0;
2443 alg_out
->cost
.latency
= 0;
2444 alg_out
->op
[0] = alg_m
;
2448 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2452 if (MULT_COST_LESS (cost_limit
, zero_cost (speed
)))
2457 alg_out
->cost
.cost
= zero_cost (speed
);
2458 alg_out
->cost
.latency
= zero_cost (speed
);
2459 alg_out
->op
[0] = alg_zero
;
2464 /* We'll be needing a couple extra algorithm structures now. */
2466 alg_in
= XALLOCA (struct algorithm
);
2467 best_alg
= XALLOCA (struct algorithm
);
2468 best_cost
= *cost_limit
;
2470 /* Compute the hash index. */
2471 hash_index
= (t
^ (unsigned int) mode
^ (speed
* 256)) % NUM_ALG_HASH_ENTRIES
;
2473 /* See if we already know what to do for T. */
2474 entry_ptr
= alg_hash_entry_ptr (hash_index
);
2475 if (entry_ptr
->t
== t
2476 && entry_ptr
->mode
== mode
2477 && entry_ptr
->mode
== mode
2478 && entry_ptr
->speed
== speed
2479 && entry_ptr
->alg
!= alg_unknown
)
2481 cache_alg
= entry_ptr
->alg
;
2483 if (cache_alg
== alg_impossible
)
2485 /* The cache tells us that it's impossible to synthesize
2486 multiplication by T within entry_ptr->cost. */
2487 if (!CHEAPER_MULT_COST (&entry_ptr
->cost
, cost_limit
))
2488 /* COST_LIMIT is at least as restrictive as the one
2489 recorded in the hash table, in which case we have no
2490 hope of synthesizing a multiplication. Just
2494 /* If we get here, COST_LIMIT is less restrictive than the
2495 one recorded in the hash table, so we may be able to
2496 synthesize a multiplication. Proceed as if we didn't
2497 have the cache entry. */
2501 if (CHEAPER_MULT_COST (cost_limit
, &entry_ptr
->cost
))
2502 /* The cached algorithm shows that this multiplication
2503 requires more cost than COST_LIMIT. Just return. This
2504 way, we don't clobber this cache entry with
2505 alg_impossible but retain useful information. */
2517 goto do_alg_addsub_t_m2
;
2519 case alg_add_factor
:
2520 case alg_sub_factor
:
2521 goto do_alg_addsub_factor
;
2524 goto do_alg_add_t2_m
;
2527 goto do_alg_sub_t2_m
;
2535 /* If we have a group of zero bits at the low-order part of T, try
2536 multiplying by the remaining bits and then doing a shift. */
2541 m
= floor_log2 (t
& -t
); /* m = number of low zero bits */
2545 /* The function expand_shift will choose between a shift and
2546 a sequence of additions, so the observed cost is given as
2547 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2548 op_cost
= m
* add_cost (speed
, mode
);
2549 if (shift_cost (speed
, mode
, m
) < op_cost
)
2550 op_cost
= shift_cost (speed
, mode
, m
);
2551 new_limit
.cost
= best_cost
.cost
- op_cost
;
2552 new_limit
.latency
= best_cost
.latency
- op_cost
;
2553 synth_mult (alg_in
, q
, &new_limit
, mode
);
2555 alg_in
->cost
.cost
+= op_cost
;
2556 alg_in
->cost
.latency
+= op_cost
;
2557 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2559 best_cost
= alg_in
->cost
;
2560 std::swap (alg_in
, best_alg
);
2561 best_alg
->log
[best_alg
->ops
] = m
;
2562 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2565 /* See if treating ORIG_T as a signed number yields a better
2566 sequence. Try this sequence only for a negative ORIG_T
2567 as it would be useless for a non-negative ORIG_T. */
2568 if ((HOST_WIDE_INT
) orig_t
< 0)
2570 /* Shift ORIG_T as follows because a right shift of a
2571 negative-valued signed type is implementation
2573 q
= ~(~orig_t
>> m
);
2574 /* The function expand_shift will choose between a shift
2575 and a sequence of additions, so the observed cost is
2576 given as MIN (m * add_cost(speed, mode),
2577 shift_cost(speed, mode, m)). */
2578 op_cost
= m
* add_cost (speed
, mode
);
2579 if (shift_cost (speed
, mode
, m
) < op_cost
)
2580 op_cost
= shift_cost (speed
, mode
, m
);
2581 new_limit
.cost
= best_cost
.cost
- op_cost
;
2582 new_limit
.latency
= best_cost
.latency
- op_cost
;
2583 synth_mult (alg_in
, q
, &new_limit
, mode
);
2585 alg_in
->cost
.cost
+= op_cost
;
2586 alg_in
->cost
.latency
+= op_cost
;
2587 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2589 best_cost
= alg_in
->cost
;
2590 std::swap (alg_in
, best_alg
);
2591 best_alg
->log
[best_alg
->ops
] = m
;
2592 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2600 /* If we have an odd number, add or subtract one. */
2603 unsigned HOST_WIDE_INT w
;
2606 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2608 /* If T was -1, then W will be zero after the loop. This is another
2609 case where T ends with ...111. Handling this with (T + 1) and
2610 subtract 1 produces slightly better code and results in algorithm
2611 selection much faster than treating it like the ...0111 case
2615 /* Reject the case where t is 3.
2616 Thus we prefer addition in that case. */
2619 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2621 op_cost
= add_cost (speed
, mode
);
2622 new_limit
.cost
= best_cost
.cost
- op_cost
;
2623 new_limit
.latency
= best_cost
.latency
- op_cost
;
2624 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2626 alg_in
->cost
.cost
+= op_cost
;
2627 alg_in
->cost
.latency
+= op_cost
;
2628 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2630 best_cost
= alg_in
->cost
;
2631 std::swap (alg_in
, best_alg
);
2632 best_alg
->log
[best_alg
->ops
] = 0;
2633 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2638 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2640 op_cost
= add_cost (speed
, mode
);
2641 new_limit
.cost
= best_cost
.cost
- op_cost
;
2642 new_limit
.latency
= best_cost
.latency
- op_cost
;
2643 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2645 alg_in
->cost
.cost
+= op_cost
;
2646 alg_in
->cost
.latency
+= op_cost
;
2647 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2649 best_cost
= alg_in
->cost
;
2650 std::swap (alg_in
, best_alg
);
2651 best_alg
->log
[best_alg
->ops
] = 0;
2652 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2656 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2657 quickly with a - a * n for some appropriate constant n. */
2658 m
= exact_log2 (-orig_t
+ 1);
2659 if (m
>= 0 && m
< maxm
)
2661 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2662 /* If the target has a cheap shift-and-subtract insn use
2663 that in preference to a shift insn followed by a sub insn.
2664 Assume that the shift-and-sub is "atomic" with a latency
2665 equal to it's cost, otherwise assume that on superscalar
2666 hardware the shift may be executed concurrently with the
2667 earlier steps in the algorithm. */
2668 if (shiftsub1_cost (speed
, mode
, m
) <= op_cost
)
2670 op_cost
= shiftsub1_cost (speed
, mode
, m
);
2671 op_latency
= op_cost
;
2674 op_latency
= add_cost (speed
, mode
);
2676 new_limit
.cost
= best_cost
.cost
- op_cost
;
2677 new_limit
.latency
= best_cost
.latency
- op_latency
;
2678 synth_mult (alg_in
, (unsigned HOST_WIDE_INT
) (-orig_t
+ 1) >> m
,
2681 alg_in
->cost
.cost
+= op_cost
;
2682 alg_in
->cost
.latency
+= op_latency
;
2683 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2685 best_cost
= alg_in
->cost
;
2686 std::swap (alg_in
, best_alg
);
2687 best_alg
->log
[best_alg
->ops
] = m
;
2688 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2696 /* Look for factors of t of the form
2697 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2698 If we find such a factor, we can multiply by t using an algorithm that
2699 multiplies by q, shift the result by m and add/subtract it to itself.
2701 We search for large factors first and loop down, even if large factors
2702 are less probable than small; if we find a large factor we will find a
2703 good sequence quickly, and therefore be able to prune (by decreasing
2704 COST_LIMIT) the search. */
2706 do_alg_addsub_factor
:
2707 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
2709 unsigned HOST_WIDE_INT d
;
2711 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) + 1;
2712 if (t
% d
== 0 && t
> d
&& m
< maxm
2713 && (!cache_hit
|| cache_alg
== alg_add_factor
))
2715 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2716 if (shiftadd_cost (speed
, mode
, m
) <= op_cost
)
2717 op_cost
= shiftadd_cost (speed
, mode
, m
);
2719 op_latency
= op_cost
;
2722 new_limit
.cost
= best_cost
.cost
- op_cost
;
2723 new_limit
.latency
= best_cost
.latency
- op_latency
;
2724 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2726 alg_in
->cost
.cost
+= op_cost
;
2727 alg_in
->cost
.latency
+= op_latency
;
2728 if (alg_in
->cost
.latency
< op_cost
)
2729 alg_in
->cost
.latency
= op_cost
;
2730 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2732 best_cost
= alg_in
->cost
;
2733 std::swap (alg_in
, best_alg
);
2734 best_alg
->log
[best_alg
->ops
] = m
;
2735 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
2737 /* Other factors will have been taken care of in the recursion. */
2741 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) - 1;
2742 if (t
% d
== 0 && t
> d
&& m
< maxm
2743 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
2745 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2746 if (shiftsub0_cost (speed
, mode
, m
) <= op_cost
)
2747 op_cost
= shiftsub0_cost (speed
, mode
, m
);
2749 op_latency
= op_cost
;
2751 new_limit
.cost
= best_cost
.cost
- op_cost
;
2752 new_limit
.latency
= best_cost
.latency
- op_latency
;
2753 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2755 alg_in
->cost
.cost
+= op_cost
;
2756 alg_in
->cost
.latency
+= op_latency
;
2757 if (alg_in
->cost
.latency
< op_cost
)
2758 alg_in
->cost
.latency
= op_cost
;
2759 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2761 best_cost
= alg_in
->cost
;
2762 std::swap (alg_in
, best_alg
);
2763 best_alg
->log
[best_alg
->ops
] = m
;
2764 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
2772 /* Try shift-and-add (load effective address) instructions,
2773 i.e. do a*3, a*5, a*9. */
2780 if (m
>= 0 && m
< maxm
)
2782 op_cost
= shiftadd_cost (speed
, mode
, m
);
2783 new_limit
.cost
= best_cost
.cost
- op_cost
;
2784 new_limit
.latency
= best_cost
.latency
- op_cost
;
2785 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
2787 alg_in
->cost
.cost
+= op_cost
;
2788 alg_in
->cost
.latency
+= op_cost
;
2789 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2791 best_cost
= alg_in
->cost
;
2792 std::swap (alg_in
, best_alg
);
2793 best_alg
->log
[best_alg
->ops
] = m
;
2794 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
2804 if (m
>= 0 && m
< maxm
)
2806 op_cost
= shiftsub0_cost (speed
, mode
, m
);
2807 new_limit
.cost
= best_cost
.cost
- op_cost
;
2808 new_limit
.latency
= best_cost
.latency
- op_cost
;
2809 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
2811 alg_in
->cost
.cost
+= op_cost
;
2812 alg_in
->cost
.latency
+= op_cost
;
2813 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2815 best_cost
= alg_in
->cost
;
2816 std::swap (alg_in
, best_alg
);
2817 best_alg
->log
[best_alg
->ops
] = m
;
2818 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
2826 /* If best_cost has not decreased, we have not found any algorithm. */
2827 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
2829 /* We failed to find an algorithm. Record alg_impossible for
2830 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2831 we are asked to find an algorithm for T within the same or
2832 lower COST_LIMIT, we can immediately return to the
2835 entry_ptr
->mode
= mode
;
2836 entry_ptr
->speed
= speed
;
2837 entry_ptr
->alg
= alg_impossible
;
2838 entry_ptr
->cost
= *cost_limit
;
2842 /* Cache the result. */
2846 entry_ptr
->mode
= mode
;
2847 entry_ptr
->speed
= speed
;
2848 entry_ptr
->alg
= best_alg
->op
[best_alg
->ops
];
2849 entry_ptr
->cost
.cost
= best_cost
.cost
;
2850 entry_ptr
->cost
.latency
= best_cost
.latency
;
2853 /* If we are getting a too long sequence for `struct algorithm'
2854 to record, make this search fail. */
2855 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
2858 /* Copy the algorithm from temporary space to the space at alg_out.
2859 We avoid using structure assignment because the majority of
2860 best_alg is normally undefined, and this is a critical function. */
2861 alg_out
->ops
= best_alg
->ops
+ 1;
2862 alg_out
->cost
= best_cost
;
2863 memcpy (alg_out
->op
, best_alg
->op
,
2864 alg_out
->ops
* sizeof *alg_out
->op
);
2865 memcpy (alg_out
->log
, best_alg
->log
,
2866 alg_out
->ops
* sizeof *alg_out
->log
);
2869 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2870 Try three variations:
2872 - a shift/add sequence based on VAL itself
2873 - a shift/add sequence based on -VAL, followed by a negation
2874 - a shift/add sequence based on VAL - 1, followed by an addition.
2876 Return true if the cheapest of these cost less than MULT_COST,
2877 describing the algorithm in *ALG and final fixup in *VARIANT. */
2880 choose_mult_variant (machine_mode mode
, HOST_WIDE_INT val
,
2881 struct algorithm
*alg
, enum mult_variant
*variant
,
2884 struct algorithm alg2
;
2885 struct mult_cost limit
;
2887 bool speed
= optimize_insn_for_speed_p ();
2889 /* Fail quickly for impossible bounds. */
2893 /* Ensure that mult_cost provides a reasonable upper bound.
2894 Any constant multiplication can be performed with less
2895 than 2 * bits additions. */
2896 op_cost
= 2 * GET_MODE_UNIT_BITSIZE (mode
) * add_cost (speed
, mode
);
2897 if (mult_cost
> op_cost
)
2898 mult_cost
= op_cost
;
2900 *variant
= basic_variant
;
2901 limit
.cost
= mult_cost
;
2902 limit
.latency
= mult_cost
;
2903 synth_mult (alg
, val
, &limit
, mode
);
2905 /* This works only if the inverted value actually fits in an
2907 if (HOST_BITS_PER_INT
>= GET_MODE_UNIT_BITSIZE (mode
))
2909 op_cost
= neg_cost (speed
, mode
);
2910 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2912 limit
.cost
= alg
->cost
.cost
- op_cost
;
2913 limit
.latency
= alg
->cost
.latency
- op_cost
;
2917 limit
.cost
= mult_cost
- op_cost
;
2918 limit
.latency
= mult_cost
- op_cost
;
2921 synth_mult (&alg2
, -val
, &limit
, mode
);
2922 alg2
.cost
.cost
+= op_cost
;
2923 alg2
.cost
.latency
+= op_cost
;
2924 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2925 *alg
= alg2
, *variant
= negate_variant
;
2928 /* This proves very useful for division-by-constant. */
2929 op_cost
= add_cost (speed
, mode
);
2930 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2932 limit
.cost
= alg
->cost
.cost
- op_cost
;
2933 limit
.latency
= alg
->cost
.latency
- op_cost
;
2937 limit
.cost
= mult_cost
- op_cost
;
2938 limit
.latency
= mult_cost
- op_cost
;
2941 synth_mult (&alg2
, val
- 1, &limit
, mode
);
2942 alg2
.cost
.cost
+= op_cost
;
2943 alg2
.cost
.latency
+= op_cost
;
2944 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2945 *alg
= alg2
, *variant
= add_variant
;
2947 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
2950 /* A subroutine of expand_mult, used for constant multiplications.
2951 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2952 convenient. Use the shift/add sequence described by ALG and apply
2953 the final fixup specified by VARIANT. */
2956 expand_mult_const (machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
2957 rtx target
, const struct algorithm
*alg
,
2958 enum mult_variant variant
)
2960 HOST_WIDE_INT val_so_far
;
2966 /* Avoid referencing memory over and over and invalid sharing
2968 op0
= force_reg (mode
, op0
);
2970 /* ACCUM starts out either as OP0 or as a zero, depending on
2971 the first operation. */
2973 if (alg
->op
[0] == alg_zero
)
2975 accum
= copy_to_mode_reg (mode
, CONST0_RTX (mode
));
2978 else if (alg
->op
[0] == alg_m
)
2980 accum
= copy_to_mode_reg (mode
, op0
);
2986 for (opno
= 1; opno
< alg
->ops
; opno
++)
2988 int log
= alg
->log
[opno
];
2989 rtx shift_subtarget
= optimize
? 0 : accum
;
2991 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
2994 rtx accum_target
= optimize
? 0 : accum
;
2997 switch (alg
->op
[opno
])
3000 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3001 /* REG_EQUAL note will be attached to the following insn. */
3002 emit_move_insn (accum
, tem
);
3007 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3008 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3009 add_target
? add_target
: accum_target
);
3010 val_so_far
+= (HOST_WIDE_INT
) 1 << log
;
3014 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3015 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
3016 add_target
? add_target
: accum_target
);
3017 val_so_far
-= (HOST_WIDE_INT
) 1 << log
;
3021 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3022 log
, shift_subtarget
, 0);
3023 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
3024 add_target
? add_target
: accum_target
);
3025 val_so_far
= (val_so_far
<< log
) + 1;
3029 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3030 log
, shift_subtarget
, 0);
3031 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
3032 add_target
? add_target
: accum_target
);
3033 val_so_far
= (val_so_far
<< log
) - 1;
3036 case alg_add_factor
:
3037 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3038 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3039 add_target
? add_target
: accum_target
);
3040 val_so_far
+= val_so_far
<< log
;
3043 case alg_sub_factor
:
3044 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3045 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
3047 ? add_target
: (optimize
? 0 : tem
)));
3048 val_so_far
= (val_so_far
<< log
) - val_so_far
;
3055 if (SCALAR_INT_MODE_P (mode
))
3057 /* Write a REG_EQUAL note on the last insn so that we can cse
3058 multiplication sequences. Note that if ACCUM is a SUBREG,
3059 we've set the inner register and must properly indicate that. */
3060 tem
= op0
, nmode
= mode
;
3061 accum_inner
= accum
;
3062 if (GET_CODE (accum
) == SUBREG
)
3064 accum_inner
= SUBREG_REG (accum
);
3065 nmode
= GET_MODE (accum_inner
);
3066 tem
= gen_lowpart (nmode
, op0
);
3069 insn
= get_last_insn ();
3070 set_dst_reg_note (insn
, REG_EQUAL
,
3071 gen_rtx_MULT (nmode
, tem
,
3072 gen_int_mode (val_so_far
, nmode
)),
3077 if (variant
== negate_variant
)
3079 val_so_far
= -val_so_far
;
3080 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
3082 else if (variant
== add_variant
)
3084 val_so_far
= val_so_far
+ 1;
3085 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3088 /* Compare only the bits of val and val_so_far that are significant
3089 in the result mode, to avoid sign-/zero-extension confusion. */
3090 nmode
= GET_MODE_INNER (mode
);
3091 if (nmode
== VOIDmode
)
3093 val
&= GET_MODE_MASK (nmode
);
3094 val_so_far
&= GET_MODE_MASK (nmode
);
3095 gcc_assert (val
== val_so_far
);
3100 /* Perform a multiplication and return an rtx for the result.
3101 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3102 TARGET is a suggestion for where to store the result (an rtx).
3104 We check specially for a constant integer as OP1.
3105 If you want this check for OP0 as well, then before calling
3106 you should swap the two operands if OP0 would be constant. */
3109 expand_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3112 enum mult_variant variant
;
3113 struct algorithm algorithm
;
3116 bool speed
= optimize_insn_for_speed_p ();
3117 bool do_trapv
= flag_trapv
&& SCALAR_INT_MODE_P (mode
) && !unsignedp
;
3119 if (CONSTANT_P (op0
))
3120 std::swap (op0
, op1
);
3122 /* For vectors, there are several simplifications that can be made if
3123 all elements of the vector constant are identical. */
3125 if (GET_CODE (op1
) == CONST_VECTOR
)
3127 int i
, n
= CONST_VECTOR_NUNITS (op1
);
3128 scalar_op1
= CONST_VECTOR_ELT (op1
, 0);
3129 for (i
= 1; i
< n
; ++i
)
3130 if (!rtx_equal_p (scalar_op1
, CONST_VECTOR_ELT (op1
, i
)))
3134 if (INTEGRAL_MODE_P (mode
))
3137 HOST_WIDE_INT coeff
;
3141 if (op1
== CONST0_RTX (mode
))
3143 if (op1
== CONST1_RTX (mode
))
3145 if (op1
== CONSTM1_RTX (mode
))
3146 return expand_unop (mode
, do_trapv
? negv_optab
: neg_optab
,
3152 /* If mode is integer vector mode, check if the backend supports
3153 vector lshift (by scalar or vector) at all. If not, we can't use
3154 synthetized multiply. */
3155 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
3156 && optab_handler (vashl_optab
, mode
) == CODE_FOR_nothing
3157 && optab_handler (ashl_optab
, mode
) == CODE_FOR_nothing
)
3160 /* These are the operations that are potentially turned into
3161 a sequence of shifts and additions. */
3162 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
3164 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3165 less than or equal in size to `unsigned int' this doesn't matter.
3166 If the mode is larger than `unsigned int', then synth_mult works
3167 only if the constant value exactly fits in an `unsigned int' without
3168 any truncation. This means that multiplying by negative values does
3169 not work; results are off by 2^32 on a 32 bit machine. */
3170 if (CONST_INT_P (scalar_op1
))
3172 coeff
= INTVAL (scalar_op1
);
3175 #if TARGET_SUPPORTS_WIDE_INT
3176 else if (CONST_WIDE_INT_P (scalar_op1
))
3178 else if (CONST_DOUBLE_AS_INT_P (scalar_op1
))
3181 int shift
= wi::exact_log2 (std::make_pair (scalar_op1
, mode
));
3182 /* Perfect power of 2 (other than 1, which is handled above). */
3184 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3185 shift
, target
, unsignedp
);
3192 /* We used to test optimize here, on the grounds that it's better to
3193 produce a smaller program when -O is not used. But this causes
3194 such a terrible slowdown sometimes that it seems better to always
3197 /* Special case powers of two. */
3198 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
)
3199 && !(is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
))
3200 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3201 floor_log2 (coeff
), target
, unsignedp
);
3203 fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3205 /* Attempt to handle multiplication of DImode values by negative
3206 coefficients, by performing the multiplication by a positive
3207 multiplier and then inverting the result. */
3208 if (is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
)
3210 /* Its safe to use -coeff even for INT_MIN, as the
3211 result is interpreted as an unsigned coefficient.
3212 Exclude cost of op0 from max_cost to match the cost
3213 calculation of the synth_mult. */
3214 coeff
= -(unsigned HOST_WIDE_INT
) coeff
;
3215 max_cost
= (set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
),
3217 - neg_cost (speed
, mode
));
3221 /* Special case powers of two. */
3222 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3224 rtx temp
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
3225 floor_log2 (coeff
), target
, unsignedp
);
3226 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3229 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3232 rtx temp
= expand_mult_const (mode
, op0
, coeff
, NULL_RTX
,
3233 &algorithm
, variant
);
3234 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3239 /* Exclude cost of op0 from max_cost to match the cost
3240 calculation of the synth_mult. */
3241 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), mode
, speed
);
3242 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3243 return expand_mult_const (mode
, op0
, coeff
, target
,
3244 &algorithm
, variant
);
3248 /* Expand x*2.0 as x+x. */
3249 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1
))
3252 REAL_VALUE_FROM_CONST_DOUBLE (d
, scalar_op1
);
3254 if (REAL_VALUES_EQUAL (d
, dconst2
))
3256 op0
= force_reg (GET_MODE (op0
), op0
);
3257 return expand_binop (mode
, add_optab
, op0
, op0
,
3258 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3263 /* This used to use umul_optab if unsigned, but for non-widening multiply
3264 there is no difference between signed and unsigned. */
3265 op0
= expand_binop (mode
, do_trapv
? smulv_optab
: smul_optab
,
3266 op0
, op1
, target
, unsignedp
, OPTAB_LIB_WIDEN
);
3271 /* Return a cost estimate for multiplying a register by the given
3272 COEFFicient in the given MODE and SPEED. */
3275 mult_by_coeff_cost (HOST_WIDE_INT coeff
, machine_mode mode
, bool speed
)
3278 struct algorithm algorithm
;
3279 enum mult_variant variant
;
3281 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3282 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, fake_reg
),
3284 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3285 return algorithm
.cost
.cost
;
3290 /* Perform a widening multiplication and return an rtx for the result.
3291 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3292 TARGET is a suggestion for where to store the result (an rtx).
3293 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3294 or smul_widen_optab.
3296 We check specially for a constant integer as OP1, comparing the
3297 cost of a widening multiply against the cost of a sequence of shifts
3301 expand_widening_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3302 int unsignedp
, optab this_optab
)
3304 bool speed
= optimize_insn_for_speed_p ();
3307 if (CONST_INT_P (op1
)
3308 && GET_MODE (op0
) != VOIDmode
3309 && (cop1
= convert_modes (mode
, GET_MODE (op0
), op1
,
3310 this_optab
== umul_widen_optab
))
3311 && CONST_INT_P (cop1
)
3312 && (INTVAL (cop1
) >= 0
3313 || HWI_COMPUTABLE_MODE_P (mode
)))
3315 HOST_WIDE_INT coeff
= INTVAL (cop1
);
3317 enum mult_variant variant
;
3318 struct algorithm algorithm
;
3321 return CONST0_RTX (mode
);
3323 /* Special case powers of two. */
3324 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3326 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3327 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3328 floor_log2 (coeff
), target
, unsignedp
);
3331 /* Exclude cost of op0 from max_cost to match the cost
3332 calculation of the synth_mult. */
3333 max_cost
= mul_widen_cost (speed
, mode
);
3334 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3337 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3338 return expand_mult_const (mode
, op0
, coeff
, target
,
3339 &algorithm
, variant
);
3342 return expand_binop (mode
, this_optab
, op0
, op1
, target
,
3343 unsignedp
, OPTAB_LIB_WIDEN
);
3346 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3347 replace division by D, and put the least significant N bits of the result
3348 in *MULTIPLIER_PTR and return the most significant bit.
3350 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3351 needed precision is in PRECISION (should be <= N).
3353 PRECISION should be as small as possible so this function can choose
3354 multiplier more freely.
3356 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3357 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3359 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3360 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3362 unsigned HOST_WIDE_INT
3363 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3364 unsigned HOST_WIDE_INT
*multiplier_ptr
,
3365 int *post_shift_ptr
, int *lgup_ptr
)
3367 int lgup
, post_shift
;
3370 /* lgup = ceil(log2(divisor)); */
3371 lgup
= ceil_log2 (d
);
3373 gcc_assert (lgup
<= n
);
3376 pow2
= n
+ lgup
- precision
;
3378 /* mlow = 2^(N + lgup)/d */
3379 wide_int val
= wi::set_bit_in_zero (pow
, HOST_BITS_PER_DOUBLE_INT
);
3380 wide_int mlow
= wi::udiv_trunc (val
, d
);
3382 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3383 val
|= wi::set_bit_in_zero (pow2
, HOST_BITS_PER_DOUBLE_INT
);
3384 wide_int mhigh
= wi::udiv_trunc (val
, d
);
3386 /* If precision == N, then mlow, mhigh exceed 2^N
3387 (but they do not exceed 2^(N+1)). */
3389 /* Reduce to lowest terms. */
3390 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3392 unsigned HOST_WIDE_INT ml_lo
= wi::extract_uhwi (mlow
, 1,
3393 HOST_BITS_PER_WIDE_INT
);
3394 unsigned HOST_WIDE_INT mh_lo
= wi::extract_uhwi (mhigh
, 1,
3395 HOST_BITS_PER_WIDE_INT
);
3399 mlow
= wi::uhwi (ml_lo
, HOST_BITS_PER_DOUBLE_INT
);
3400 mhigh
= wi::uhwi (mh_lo
, HOST_BITS_PER_DOUBLE_INT
);
3403 *post_shift_ptr
= post_shift
;
3405 if (n
< HOST_BITS_PER_WIDE_INT
)
3407 unsigned HOST_WIDE_INT mask
= ((unsigned HOST_WIDE_INT
) 1 << n
) - 1;
3408 *multiplier_ptr
= mhigh
.to_uhwi () & mask
;
3409 return mhigh
.to_uhwi () >= mask
;
3413 *multiplier_ptr
= mhigh
.to_uhwi ();
3414 return wi::extract_uhwi (mhigh
, HOST_BITS_PER_WIDE_INT
, 1);
3418 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3419 congruent to 1 (mod 2**N). */
3421 static unsigned HOST_WIDE_INT
3422 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3424 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3426 /* The algorithm notes that the choice y = x satisfies
3427 x*y == 1 mod 2^3, since x is assumed odd.
3428 Each iteration doubles the number of bits of significance in y. */
3430 unsigned HOST_WIDE_INT mask
;
3431 unsigned HOST_WIDE_INT y
= x
;
3434 mask
= (n
== HOST_BITS_PER_WIDE_INT
3435 ? ~(unsigned HOST_WIDE_INT
) 0
3436 : ((unsigned HOST_WIDE_INT
) 1 << n
) - 1);
3440 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3446 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3447 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3448 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3449 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3452 The result is put in TARGET if that is convenient.
3454 MODE is the mode of operation. */
3457 expand_mult_highpart_adjust (machine_mode mode
, rtx adj_operand
, rtx op0
,
3458 rtx op1
, rtx target
, int unsignedp
)
3461 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3463 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3464 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3465 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3467 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3470 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3471 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3472 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3473 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3479 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3482 extract_high_half (machine_mode mode
, rtx op
)
3484 machine_mode wider_mode
;
3486 if (mode
== word_mode
)
3487 return gen_highpart (mode
, op
);
3489 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3491 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3492 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3493 GET_MODE_BITSIZE (mode
), 0, 1);
3494 return convert_modes (mode
, wider_mode
, op
, 0);
3497 /* Like expmed_mult_highpart, but only consider using a multiplication
3498 optab. OP1 is an rtx for the constant operand. */
3501 expmed_mult_highpart_optab (machine_mode mode
, rtx op0
, rtx op1
,
3502 rtx target
, int unsignedp
, int max_cost
)
3504 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3505 machine_mode wider_mode
;
3509 bool speed
= optimize_insn_for_speed_p ();
3511 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3513 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3514 size
= GET_MODE_BITSIZE (mode
);
3516 /* Firstly, try using a multiplication insn that only generates the needed
3517 high part of the product, and in the sign flavor of unsignedp. */
3518 if (mul_highpart_cost (speed
, mode
) < max_cost
)
3520 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3521 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3522 unsignedp
, OPTAB_DIRECT
);
3527 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3528 Need to adjust the result after the multiplication. */
3529 if (size
- 1 < BITS_PER_WORD
3530 && (mul_highpart_cost (speed
, mode
)
3531 + 2 * shift_cost (speed
, mode
, size
-1)
3532 + 4 * add_cost (speed
, mode
) < max_cost
))
3534 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3535 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3536 unsignedp
, OPTAB_DIRECT
);
3538 /* We used the wrong signedness. Adjust the result. */
3539 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3543 /* Try widening multiplication. */
3544 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3545 if (widening_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3546 && mul_widen_cost (speed
, wider_mode
) < max_cost
)
3548 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3549 unsignedp
, OPTAB_WIDEN
);
3551 return extract_high_half (mode
, tem
);
3554 /* Try widening the mode and perform a non-widening multiplication. */
3555 if (optab_handler (smul_optab
, wider_mode
) != CODE_FOR_nothing
3556 && size
- 1 < BITS_PER_WORD
3557 && (mul_cost (speed
, wider_mode
) + shift_cost (speed
, mode
, size
-1)
3563 /* We need to widen the operands, for example to ensure the
3564 constant multiplier is correctly sign or zero extended.
3565 Use a sequence to clean-up any instructions emitted by
3566 the conversions if things don't work out. */
3568 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3569 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3570 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3571 unsignedp
, OPTAB_WIDEN
);
3572 insns
= get_insns ();
3578 return extract_high_half (mode
, tem
);
3582 /* Try widening multiplication of opposite signedness, and adjust. */
3583 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3584 if (widening_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3585 && size
- 1 < BITS_PER_WORD
3586 && (mul_widen_cost (speed
, wider_mode
)
3587 + 2 * shift_cost (speed
, mode
, size
-1)
3588 + 4 * add_cost (speed
, mode
) < max_cost
))
3590 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3591 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3594 tem
= extract_high_half (mode
, tem
);
3595 /* We used the wrong signedness. Adjust the result. */
3596 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3604 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3605 putting the high half of the result in TARGET if that is convenient,
3606 and return where the result is. If the operation can not be performed,
3609 MODE is the mode of operation and result.
3611 UNSIGNEDP nonzero means unsigned multiply.
3613 MAX_COST is the total allowed cost for the expanded RTL. */
3616 expmed_mult_highpart (machine_mode mode
, rtx op0
, rtx op1
,
3617 rtx target
, int unsignedp
, int max_cost
)
3619 machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
3620 unsigned HOST_WIDE_INT cnst1
;
3622 bool sign_adjust
= false;
3623 enum mult_variant variant
;
3624 struct algorithm alg
;
3626 bool speed
= optimize_insn_for_speed_p ();
3628 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3629 /* We can't support modes wider than HOST_BITS_PER_INT. */
3630 gcc_assert (HWI_COMPUTABLE_MODE_P (mode
));
3632 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3634 /* We can't optimize modes wider than BITS_PER_WORD.
3635 ??? We might be able to perform double-word arithmetic if
3636 mode == word_mode, however all the cost calculations in
3637 synth_mult etc. assume single-word operations. */
3638 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3639 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3640 unsignedp
, max_cost
);
3642 extra_cost
= shift_cost (speed
, mode
, GET_MODE_BITSIZE (mode
) - 1);
3644 /* Check whether we try to multiply by a negative constant. */
3645 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3648 extra_cost
+= add_cost (speed
, mode
);
3651 /* See whether shift/add multiplication is cheap enough. */
3652 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3653 max_cost
- extra_cost
))
3655 /* See whether the specialized multiplication optabs are
3656 cheaper than the shift/add version. */
3657 tem
= expmed_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3658 alg
.cost
.cost
+ extra_cost
);
3662 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3663 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3664 tem
= extract_high_half (mode
, tem
);
3666 /* Adjust result for signedness. */
3668 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3672 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3673 unsignedp
, max_cost
);
3677 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3680 expand_smod_pow2 (machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3682 rtx result
, temp
, shift
;
3683 rtx_code_label
*label
;
3685 int prec
= GET_MODE_PRECISION (mode
);
3687 logd
= floor_log2 (d
);
3688 result
= gen_reg_rtx (mode
);
3690 /* Avoid conditional branches when they're expensive. */
3691 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
3692 && optimize_insn_for_speed_p ())
3694 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3698 HOST_WIDE_INT masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3699 signmask
= force_reg (mode
, signmask
);
3700 shift
= GEN_INT (GET_MODE_BITSIZE (mode
) - logd
);
3702 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3703 which instruction sequence to use. If logical right shifts
3704 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3705 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3707 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3708 if (optab_handler (lshr_optab
, mode
) == CODE_FOR_nothing
3709 || (set_src_cost (temp
, mode
, optimize_insn_for_speed_p ())
3710 > COSTS_N_INSNS (2)))
3712 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3713 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3714 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3715 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3716 temp
= expand_binop (mode
, and_optab
, temp
,
3717 gen_int_mode (masklow
, mode
),
3718 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3719 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3720 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3721 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3722 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3726 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
3727 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3728 signmask
= force_reg (mode
, signmask
);
3730 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
3731 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3732 temp
= expand_binop (mode
, and_optab
, temp
,
3733 gen_int_mode (masklow
, mode
),
3734 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3735 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3736 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3742 /* Mask contains the mode's signbit and the significant bits of the
3743 modulus. By including the signbit in the operation, many targets
3744 can avoid an explicit compare operation in the following comparison
3746 wide_int mask
= wi::mask (logd
, false, prec
);
3747 mask
= wi::set_bit (mask
, prec
- 1);
3749 temp
= expand_binop (mode
, and_optab
, op0
,
3750 immed_wide_int_const (mask
, mode
),
3751 result
, 1, OPTAB_LIB_WIDEN
);
3753 emit_move_insn (result
, temp
);
3755 label
= gen_label_rtx ();
3756 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
3758 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
3759 0, OPTAB_LIB_WIDEN
);
3761 mask
= wi::mask (logd
, true, prec
);
3762 temp
= expand_binop (mode
, ior_optab
, temp
,
3763 immed_wide_int_const (mask
, mode
),
3764 result
, 1, OPTAB_LIB_WIDEN
);
3765 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
3766 0, OPTAB_LIB_WIDEN
);
3768 emit_move_insn (result
, temp
);
3773 /* Expand signed division of OP0 by a power of two D in mode MODE.
3774 This routine is only called for positive values of D. */
3777 expand_sdiv_pow2 (machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3780 rtx_code_label
*label
;
3783 logd
= floor_log2 (d
);
3786 && BRANCH_COST (optimize_insn_for_speed_p (),
3789 temp
= gen_reg_rtx (mode
);
3790 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
3791 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3792 0, OPTAB_LIB_WIDEN
);
3793 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3796 if (HAVE_conditional_move
3797 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
3802 temp2
= copy_to_mode_reg (mode
, op0
);
3803 temp
= expand_binop (mode
, add_optab
, temp2
, gen_int_mode (d
- 1, mode
),
3804 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3805 temp
= force_reg (mode
, temp
);
3807 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3808 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
3809 mode
, temp
, temp2
, mode
, 0);
3812 rtx_insn
*seq
= get_insns ();
3815 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, logd
, NULL_RTX
, 0);
3820 if (BRANCH_COST (optimize_insn_for_speed_p (),
3823 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
3825 temp
= gen_reg_rtx (mode
);
3826 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
3827 if (GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
3828 || shift_cost (optimize_insn_for_speed_p (), mode
, ushift
)
3829 > COSTS_N_INSNS (1))
3830 temp
= expand_binop (mode
, and_optab
, temp
, gen_int_mode (d
- 1, mode
),
3831 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3833 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
3834 ushift
, NULL_RTX
, 1);
3835 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3836 0, OPTAB_LIB_WIDEN
);
3837 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3840 label
= gen_label_rtx ();
3841 temp
= copy_to_mode_reg (mode
, op0
);
3842 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
3843 expand_inc (temp
, gen_int_mode (d
- 1, mode
));
3845 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
3848 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3849 if that is convenient, and returning where the result is.
3850 You may request either the quotient or the remainder as the result;
3851 specify REM_FLAG nonzero to get the remainder.
3853 CODE is the expression code for which kind of division this is;
3854 it controls how rounding is done. MODE is the machine mode to use.
3855 UNSIGNEDP nonzero means do unsigned division. */
3857 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3858 and then correct it by or'ing in missing high bits
3859 if result of ANDI is nonzero.
3860 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3861 This could optimize to a bfexts instruction.
3862 But C doesn't use these operations, so their optimizations are
3864 /* ??? For modulo, we don't actually need the highpart of the first product,
3865 the low part will do nicely. And for small divisors, the second multiply
3866 can also be a low-part only multiply or even be completely left out.
3867 E.g. to calculate the remainder of a division by 3 with a 32 bit
3868 multiply, multiply with 0x55555556 and extract the upper two bits;
3869 the result is exact for inputs up to 0x1fffffff.
3870 The input range can be reduced by using cross-sum rules.
3871 For odd divisors >= 3, the following table gives right shift counts
3872 so that if a number is shifted by an integer multiple of the given
3873 amount, the remainder stays the same:
3874 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3875 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3876 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3877 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3878 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3880 Cross-sum rules for even numbers can be derived by leaving as many bits
3881 to the right alone as the divisor has zeros to the right.
3882 E.g. if x is an unsigned 32 bit number:
3883 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3887 expand_divmod (int rem_flag
, enum tree_code code
, machine_mode mode
,
3888 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
3890 machine_mode compute_mode
;
3892 rtx quotient
= 0, remainder
= 0;
3896 optab optab1
, optab2
;
3897 int op1_is_constant
, op1_is_pow2
= 0;
3898 int max_cost
, extra_cost
;
3899 static HOST_WIDE_INT last_div_const
= 0;
3900 bool speed
= optimize_insn_for_speed_p ();
3902 op1_is_constant
= CONST_INT_P (op1
);
3903 if (op1_is_constant
)
3905 unsigned HOST_WIDE_INT ext_op1
= UINTVAL (op1
);
3907 ext_op1
&= GET_MODE_MASK (mode
);
3908 op1_is_pow2
= ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1
)
3909 || (! unsignedp
&& EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1
))));
3913 This is the structure of expand_divmod:
3915 First comes code to fix up the operands so we can perform the operations
3916 correctly and efficiently.
3918 Second comes a switch statement with code specific for each rounding mode.
3919 For some special operands this code emits all RTL for the desired
3920 operation, for other cases, it generates only a quotient and stores it in
3921 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3922 to indicate that it has not done anything.
3924 Last comes code that finishes the operation. If QUOTIENT is set and
3925 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3926 QUOTIENT is not set, it is computed using trunc rounding.
3928 We try to generate special code for division and remainder when OP1 is a
3929 constant. If |OP1| = 2**n we can use shifts and some other fast
3930 operations. For other values of OP1, we compute a carefully selected
3931 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3934 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3935 half of the product. Different strategies for generating the product are
3936 implemented in expmed_mult_highpart.
3938 If what we actually want is the remainder, we generate that by another
3939 by-constant multiplication and a subtraction. */
3941 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3942 code below will malfunction if we are, so check here and handle
3943 the special case if so. */
3944 if (op1
== const1_rtx
)
3945 return rem_flag
? const0_rtx
: op0
;
3947 /* When dividing by -1, we could get an overflow.
3948 negv_optab can handle overflows. */
3949 if (! unsignedp
&& op1
== constm1_rtx
)
3953 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS (mode
) == MODE_INT
3954 ? negv_optab
: neg_optab
, op0
, target
, 0);
3958 /* Don't use the function value register as a target
3959 since we have to read it as well as write it,
3960 and function-inlining gets confused by this. */
3961 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
3962 /* Don't clobber an operand while doing a multi-step calculation. */
3963 || ((rem_flag
|| op1_is_constant
)
3964 && (reg_mentioned_p (target
, op0
)
3965 || (MEM_P (op0
) && MEM_P (target
))))
3966 || reg_mentioned_p (target
, op1
)
3967 || (MEM_P (op1
) && MEM_P (target
))))
3970 /* Get the mode in which to perform this computation. Normally it will
3971 be MODE, but sometimes we can't do the desired operation in MODE.
3972 If so, pick a wider mode in which we can do the operation. Convert
3973 to that mode at the start to avoid repeated conversions.
3975 First see what operations we need. These depend on the expression
3976 we are evaluating. (We assume that divxx3 insns exist under the
3977 same conditions that modxx3 insns and that these insns don't normally
3978 fail. If these assumptions are not correct, we may generate less
3979 efficient code in some cases.)
3981 Then see if we find a mode in which we can open-code that operation
3982 (either a division, modulus, or shift). Finally, check for the smallest
3983 mode for which we can do the operation with a library call. */
3985 /* We might want to refine this now that we have division-by-constant
3986 optimization. Since expmed_mult_highpart tries so many variants, it is
3987 not straightforward to generalize this. Maybe we should make an array
3988 of possible modes in init_expmed? Save this for GCC 2.7. */
3990 optab1
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3991 ? (unsignedp
? lshr_optab
: ashr_optab
)
3992 : (unsignedp
? udiv_optab
: sdiv_optab
));
3993 optab2
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3995 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
3997 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3998 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3999 if (optab_handler (optab1
, compute_mode
) != CODE_FOR_nothing
4000 || optab_handler (optab2
, compute_mode
) != CODE_FOR_nothing
)
4003 if (compute_mode
== VOIDmode
)
4004 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
4005 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
4006 if (optab_libfunc (optab1
, compute_mode
)
4007 || optab_libfunc (optab2
, compute_mode
))
4010 /* If we still couldn't find a mode, use MODE, but expand_binop will
4012 if (compute_mode
== VOIDmode
)
4013 compute_mode
= mode
;
4015 if (target
&& GET_MODE (target
) == compute_mode
)
4018 tquotient
= gen_reg_rtx (compute_mode
);
4020 size
= GET_MODE_BITSIZE (compute_mode
);
4022 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4023 (mode), and thereby get better code when OP1 is a constant. Do that
4024 later. It will require going over all usages of SIZE below. */
4025 size
= GET_MODE_BITSIZE (mode
);
4028 /* Only deduct something for a REM if the last divide done was
4029 for a different constant. Then set the constant of the last
4031 max_cost
= (unsignedp
4032 ? udiv_cost (speed
, compute_mode
)
4033 : sdiv_cost (speed
, compute_mode
));
4034 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
4035 && INTVAL (op1
) == last_div_const
))
4036 max_cost
-= (mul_cost (speed
, compute_mode
)
4037 + add_cost (speed
, compute_mode
));
4039 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
4041 /* Now convert to the best mode to use. */
4042 if (compute_mode
!= mode
)
4044 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
4045 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
4047 /* convert_modes may have placed op1 into a register, so we
4048 must recompute the following. */
4049 op1_is_constant
= CONST_INT_P (op1
);
4050 op1_is_pow2
= (op1_is_constant
4051 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4053 && EXACT_POWER_OF_2_OR_ZERO_P (-UINTVAL (op1
))))));
4056 /* If one of the operands is a volatile MEM, copy it into a register. */
4058 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
4059 op0
= force_reg (compute_mode
, op0
);
4060 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
4061 op1
= force_reg (compute_mode
, op1
);
4063 /* If we need the remainder or if OP1 is constant, we need to
4064 put OP0 in a register in case it has any queued subexpressions. */
4065 if (rem_flag
|| op1_is_constant
)
4066 op0
= force_reg (compute_mode
, op0
);
4068 last
= get_last_insn ();
4070 /* Promote floor rounding to trunc rounding for unsigned operations. */
4073 if (code
== FLOOR_DIV_EXPR
)
4074 code
= TRUNC_DIV_EXPR
;
4075 if (code
== FLOOR_MOD_EXPR
)
4076 code
= TRUNC_MOD_EXPR
;
4077 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
4078 code
= TRUNC_DIV_EXPR
;
4081 if (op1
!= const0_rtx
)
4084 case TRUNC_MOD_EXPR
:
4085 case TRUNC_DIV_EXPR
:
4086 if (op1_is_constant
)
4090 unsigned HOST_WIDE_INT mh
, ml
;
4091 int pre_shift
, post_shift
;
4093 unsigned HOST_WIDE_INT d
= (INTVAL (op1
)
4094 & GET_MODE_MASK (compute_mode
));
4096 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4098 pre_shift
= floor_log2 (d
);
4101 unsigned HOST_WIDE_INT mask
4102 = ((unsigned HOST_WIDE_INT
) 1 << pre_shift
) - 1;
4104 = expand_binop (compute_mode
, and_optab
, op0
,
4105 gen_int_mode (mask
, compute_mode
),
4109 return gen_lowpart (mode
, remainder
);
4111 quotient
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4112 pre_shift
, tquotient
, 1);
4114 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4116 if (d
>= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)))
4118 /* Most significant bit of divisor is set; emit an scc
4120 quotient
= emit_store_flag_force (tquotient
, GEU
, op0
, op1
,
4121 compute_mode
, 1, 1);
4125 /* Find a suitable multiplier and right shift count
4126 instead of multiplying with D. */
4128 mh
= choose_multiplier (d
, size
, size
,
4129 &ml
, &post_shift
, &dummy
);
4131 /* If the suggested multiplier is more than SIZE bits,
4132 we can do better for even divisors, using an
4133 initial right shift. */
4134 if (mh
!= 0 && (d
& 1) == 0)
4136 pre_shift
= floor_log2 (d
& -d
);
4137 mh
= choose_multiplier (d
>> pre_shift
, size
,
4139 &ml
, &post_shift
, &dummy
);
4149 if (post_shift
- 1 >= BITS_PER_WORD
)
4153 = (shift_cost (speed
, compute_mode
, post_shift
- 1)
4154 + shift_cost (speed
, compute_mode
, 1)
4155 + 2 * add_cost (speed
, compute_mode
));
4156 t1
= expmed_mult_highpart
4158 gen_int_mode (ml
, compute_mode
),
4159 NULL_RTX
, 1, max_cost
- extra_cost
);
4162 t2
= force_operand (gen_rtx_MINUS (compute_mode
,
4165 t3
= expand_shift (RSHIFT_EXPR
, compute_mode
,
4166 t2
, 1, NULL_RTX
, 1);
4167 t4
= force_operand (gen_rtx_PLUS (compute_mode
,
4170 quotient
= expand_shift
4171 (RSHIFT_EXPR
, compute_mode
, t4
,
4172 post_shift
- 1, tquotient
, 1);
4178 if (pre_shift
>= BITS_PER_WORD
4179 || post_shift
>= BITS_PER_WORD
)
4183 (RSHIFT_EXPR
, compute_mode
, op0
,
4184 pre_shift
, NULL_RTX
, 1);
4186 = (shift_cost (speed
, compute_mode
, pre_shift
)
4187 + shift_cost (speed
, compute_mode
, post_shift
));
4188 t2
= expmed_mult_highpart
4190 gen_int_mode (ml
, compute_mode
),
4191 NULL_RTX
, 1, max_cost
- extra_cost
);
4194 quotient
= expand_shift
4195 (RSHIFT_EXPR
, compute_mode
, t2
,
4196 post_shift
, tquotient
, 1);
4200 else /* Too wide mode to use tricky code */
4203 insn
= get_last_insn ();
4205 set_dst_reg_note (insn
, REG_EQUAL
,
4206 gen_rtx_UDIV (compute_mode
, op0
, op1
),
4209 else /* TRUNC_DIV, signed */
4211 unsigned HOST_WIDE_INT ml
;
4212 int lgup
, post_shift
;
4214 HOST_WIDE_INT d
= INTVAL (op1
);
4215 unsigned HOST_WIDE_INT abs_d
;
4217 /* Since d might be INT_MIN, we have to cast to
4218 unsigned HOST_WIDE_INT before negating to avoid
4219 undefined signed overflow. */
4221 ? (unsigned HOST_WIDE_INT
) d
4222 : - (unsigned HOST_WIDE_INT
) d
);
4224 /* n rem d = n rem -d */
4225 if (rem_flag
&& d
< 0)
4228 op1
= gen_int_mode (abs_d
, compute_mode
);
4234 quotient
= expand_unop (compute_mode
, neg_optab
, op0
,
4236 else if (HOST_BITS_PER_WIDE_INT
>= size
4237 && abs_d
== (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4239 /* This case is not handled correctly below. */
4240 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4241 compute_mode
, 1, 1);
4245 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4247 ? smod_pow2_cheap (speed
, compute_mode
)
4248 : sdiv_pow2_cheap (speed
, compute_mode
))
4249 /* We assume that cheap metric is true if the
4250 optab has an expander for this mode. */
4251 && ((optab_handler ((rem_flag
? smod_optab
4254 != CODE_FOR_nothing
)
4255 || (optab_handler (sdivmod_optab
,
4257 != CODE_FOR_nothing
)))
4259 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4263 remainder
= expand_smod_pow2 (compute_mode
, op0
, d
);
4265 return gen_lowpart (mode
, remainder
);
4268 if (sdiv_pow2_cheap (speed
, compute_mode
)
4269 && ((optab_handler (sdiv_optab
, compute_mode
)
4270 != CODE_FOR_nothing
)
4271 || (optab_handler (sdivmod_optab
, compute_mode
)
4272 != CODE_FOR_nothing
)))
4273 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4275 gen_int_mode (abs_d
,
4279 quotient
= expand_sdiv_pow2 (compute_mode
, op0
, abs_d
);
4281 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4282 negate the quotient. */
4285 insn
= get_last_insn ();
4287 && abs_d
< ((unsigned HOST_WIDE_INT
) 1
4288 << (HOST_BITS_PER_WIDE_INT
- 1)))
4289 set_dst_reg_note (insn
, REG_EQUAL
,
4290 gen_rtx_DIV (compute_mode
, op0
,
4296 quotient
= expand_unop (compute_mode
, neg_optab
,
4297 quotient
, quotient
, 0);
4300 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4302 choose_multiplier (abs_d
, size
, size
- 1,
4303 &ml
, &post_shift
, &lgup
);
4304 if (ml
< (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4308 if (post_shift
>= BITS_PER_WORD
4309 || size
- 1 >= BITS_PER_WORD
)
4312 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4313 + shift_cost (speed
, compute_mode
, size
- 1)
4314 + add_cost (speed
, compute_mode
));
4315 t1
= expmed_mult_highpart
4316 (compute_mode
, op0
, gen_int_mode (ml
, compute_mode
),
4317 NULL_RTX
, 0, max_cost
- extra_cost
);
4321 (RSHIFT_EXPR
, compute_mode
, t1
,
4322 post_shift
, NULL_RTX
, 0);
4324 (RSHIFT_EXPR
, compute_mode
, op0
,
4325 size
- 1, NULL_RTX
, 0);
4328 = force_operand (gen_rtx_MINUS (compute_mode
,
4333 = force_operand (gen_rtx_MINUS (compute_mode
,
4341 if (post_shift
>= BITS_PER_WORD
4342 || size
- 1 >= BITS_PER_WORD
)
4345 ml
|= (~(unsigned HOST_WIDE_INT
) 0) << (size
- 1);
4346 mlr
= gen_int_mode (ml
, compute_mode
);
4347 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4348 + shift_cost (speed
, compute_mode
, size
- 1)
4349 + 2 * add_cost (speed
, compute_mode
));
4350 t1
= expmed_mult_highpart (compute_mode
, op0
, mlr
,
4352 max_cost
- extra_cost
);
4355 t2
= force_operand (gen_rtx_PLUS (compute_mode
,
4359 (RSHIFT_EXPR
, compute_mode
, t2
,
4360 post_shift
, NULL_RTX
, 0);
4362 (RSHIFT_EXPR
, compute_mode
, op0
,
4363 size
- 1, NULL_RTX
, 0);
4366 = force_operand (gen_rtx_MINUS (compute_mode
,
4371 = force_operand (gen_rtx_MINUS (compute_mode
,
4376 else /* Too wide mode to use tricky code */
4379 insn
= get_last_insn ();
4381 set_dst_reg_note (insn
, REG_EQUAL
,
4382 gen_rtx_DIV (compute_mode
, op0
, op1
),
4388 delete_insns_since (last
);
4391 case FLOOR_DIV_EXPR
:
4392 case FLOOR_MOD_EXPR
:
4393 /* We will come here only for signed operations. */
4394 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4396 unsigned HOST_WIDE_INT mh
, ml
;
4397 int pre_shift
, lgup
, post_shift
;
4398 HOST_WIDE_INT d
= INTVAL (op1
);
4402 /* We could just as easily deal with negative constants here,
4403 but it does not seem worth the trouble for GCC 2.6. */
4404 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4406 pre_shift
= floor_log2 (d
);
4409 unsigned HOST_WIDE_INT mask
4410 = ((unsigned HOST_WIDE_INT
) 1 << pre_shift
) - 1;
4411 remainder
= expand_binop
4412 (compute_mode
, and_optab
, op0
,
4413 gen_int_mode (mask
, compute_mode
),
4414 remainder
, 0, OPTAB_LIB_WIDEN
);
4416 return gen_lowpart (mode
, remainder
);
4418 quotient
= expand_shift
4419 (RSHIFT_EXPR
, compute_mode
, op0
,
4420 pre_shift
, tquotient
, 0);
4426 mh
= choose_multiplier (d
, size
, size
- 1,
4427 &ml
, &post_shift
, &lgup
);
4430 if (post_shift
< BITS_PER_WORD
4431 && size
- 1 < BITS_PER_WORD
)
4434 (RSHIFT_EXPR
, compute_mode
, op0
,
4435 size
- 1, NULL_RTX
, 0);
4436 t2
= expand_binop (compute_mode
, xor_optab
, op0
, t1
,
4437 NULL_RTX
, 0, OPTAB_WIDEN
);
4438 extra_cost
= (shift_cost (speed
, compute_mode
, post_shift
)
4439 + shift_cost (speed
, compute_mode
, size
- 1)
4440 + 2 * add_cost (speed
, compute_mode
));
4441 t3
= expmed_mult_highpart
4442 (compute_mode
, t2
, gen_int_mode (ml
, compute_mode
),
4443 NULL_RTX
, 1, max_cost
- extra_cost
);
4447 (RSHIFT_EXPR
, compute_mode
, t3
,
4448 post_shift
, NULL_RTX
, 1);
4449 quotient
= expand_binop (compute_mode
, xor_optab
,
4450 t4
, t1
, tquotient
, 0,
4458 rtx nsign
, t1
, t2
, t3
, t4
;
4459 t1
= force_operand (gen_rtx_PLUS (compute_mode
,
4460 op0
, constm1_rtx
), NULL_RTX
);
4461 t2
= expand_binop (compute_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4463 nsign
= expand_shift
4464 (RSHIFT_EXPR
, compute_mode
, t2
,
4465 size
- 1, NULL_RTX
, 0);
4466 t3
= force_operand (gen_rtx_MINUS (compute_mode
, t1
, nsign
),
4468 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, compute_mode
, t3
, op1
,
4473 t5
= expand_unop (compute_mode
, one_cmpl_optab
, nsign
,
4475 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4484 delete_insns_since (last
);
4486 /* Try using an instruction that produces both the quotient and
4487 remainder, using truncation. We can easily compensate the quotient
4488 or remainder to get floor rounding, once we have the remainder.
4489 Notice that we compute also the final remainder value here,
4490 and return the result right away. */
4491 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4492 target
= gen_reg_rtx (compute_mode
);
4497 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4498 quotient
= gen_reg_rtx (compute_mode
);
4503 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4504 remainder
= gen_reg_rtx (compute_mode
);
4507 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4508 quotient
, remainder
, 0))
4510 /* This could be computed with a branch-less sequence.
4511 Save that for later. */
4513 rtx_code_label
*label
= gen_label_rtx ();
4514 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4515 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4516 NULL_RTX
, 0, OPTAB_WIDEN
);
4517 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4518 expand_dec (quotient
, const1_rtx
);
4519 expand_inc (remainder
, op1
);
4521 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4524 /* No luck with division elimination or divmod. Have to do it
4525 by conditionally adjusting op0 *and* the result. */
4527 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4531 quotient
= gen_reg_rtx (compute_mode
);
4532 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4533 label1
= gen_label_rtx ();
4534 label2
= gen_label_rtx ();
4535 label3
= gen_label_rtx ();
4536 label4
= gen_label_rtx ();
4537 label5
= gen_label_rtx ();
4538 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4539 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4540 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4541 quotient
, 0, OPTAB_LIB_WIDEN
);
4542 if (tem
!= quotient
)
4543 emit_move_insn (quotient
, tem
);
4544 emit_jump_insn (targetm
.gen_jump (label5
));
4546 emit_label (label1
);
4547 expand_inc (adjusted_op0
, const1_rtx
);
4548 emit_jump_insn (targetm
.gen_jump (label4
));
4550 emit_label (label2
);
4551 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4552 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4553 quotient
, 0, OPTAB_LIB_WIDEN
);
4554 if (tem
!= quotient
)
4555 emit_move_insn (quotient
, tem
);
4556 emit_jump_insn (targetm
.gen_jump (label5
));
4558 emit_label (label3
);
4559 expand_dec (adjusted_op0
, const1_rtx
);
4560 emit_label (label4
);
4561 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4562 quotient
, 0, OPTAB_LIB_WIDEN
);
4563 if (tem
!= quotient
)
4564 emit_move_insn (quotient
, tem
);
4565 expand_dec (quotient
, const1_rtx
);
4566 emit_label (label5
);
4574 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
)))
4577 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4578 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4579 floor_log2 (d
), tquotient
, 1);
4580 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4581 gen_int_mode (d
- 1, compute_mode
),
4582 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4583 t3
= gen_reg_rtx (compute_mode
);
4584 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4585 compute_mode
, 1, 1);
4588 rtx_code_label
*lab
;
4589 lab
= gen_label_rtx ();
4590 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4591 expand_inc (t1
, const1_rtx
);
4596 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4602 /* Try using an instruction that produces both the quotient and
4603 remainder, using truncation. We can easily compensate the
4604 quotient or remainder to get ceiling rounding, once we have the
4605 remainder. Notice that we compute also the final remainder
4606 value here, and return the result right away. */
4607 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4608 target
= gen_reg_rtx (compute_mode
);
4612 remainder
= (REG_P (target
)
4613 ? target
: gen_reg_rtx (compute_mode
));
4614 quotient
= gen_reg_rtx (compute_mode
);
4618 quotient
= (REG_P (target
)
4619 ? target
: gen_reg_rtx (compute_mode
));
4620 remainder
= gen_reg_rtx (compute_mode
);
4623 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4626 /* This could be computed with a branch-less sequence.
4627 Save that for later. */
4628 rtx_code_label
*label
= gen_label_rtx ();
4629 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4630 compute_mode
, label
);
4631 expand_inc (quotient
, const1_rtx
);
4632 expand_dec (remainder
, op1
);
4634 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4637 /* No luck with division elimination or divmod. Have to do it
4638 by conditionally adjusting op0 *and* the result. */
4640 rtx_code_label
*label1
, *label2
;
4641 rtx adjusted_op0
, tem
;
4643 quotient
= gen_reg_rtx (compute_mode
);
4644 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4645 label1
= gen_label_rtx ();
4646 label2
= gen_label_rtx ();
4647 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4648 compute_mode
, label1
);
4649 emit_move_insn (quotient
, const0_rtx
);
4650 emit_jump_insn (targetm
.gen_jump (label2
));
4652 emit_label (label1
);
4653 expand_dec (adjusted_op0
, const1_rtx
);
4654 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4655 quotient
, 1, OPTAB_LIB_WIDEN
);
4656 if (tem
!= quotient
)
4657 emit_move_insn (quotient
, tem
);
4658 expand_inc (quotient
, const1_rtx
);
4659 emit_label (label2
);
4664 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4665 && INTVAL (op1
) >= 0)
4667 /* This is extremely similar to the code for the unsigned case
4668 above. For 2.7 we should merge these variants, but for
4669 2.6.1 I don't want to touch the code for unsigned since that
4670 get used in C. The signed case will only be used by other
4674 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4675 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4676 floor_log2 (d
), tquotient
, 0);
4677 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4678 gen_int_mode (d
- 1, compute_mode
),
4679 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4680 t3
= gen_reg_rtx (compute_mode
);
4681 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4682 compute_mode
, 1, 1);
4685 rtx_code_label
*lab
;
4686 lab
= gen_label_rtx ();
4687 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4688 expand_inc (t1
, const1_rtx
);
4693 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4699 /* Try using an instruction that produces both the quotient and
4700 remainder, using truncation. We can easily compensate the
4701 quotient or remainder to get ceiling rounding, once we have the
4702 remainder. Notice that we compute also the final remainder
4703 value here, and return the result right away. */
4704 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4705 target
= gen_reg_rtx (compute_mode
);
4708 remainder
= (REG_P (target
)
4709 ? target
: gen_reg_rtx (compute_mode
));
4710 quotient
= gen_reg_rtx (compute_mode
);
4714 quotient
= (REG_P (target
)
4715 ? target
: gen_reg_rtx (compute_mode
));
4716 remainder
= gen_reg_rtx (compute_mode
);
4719 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
4722 /* This could be computed with a branch-less sequence.
4723 Save that for later. */
4725 rtx_code_label
*label
= gen_label_rtx ();
4726 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4727 compute_mode
, label
);
4728 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4729 NULL_RTX
, 0, OPTAB_WIDEN
);
4730 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
4731 expand_inc (quotient
, const1_rtx
);
4732 expand_dec (remainder
, op1
);
4734 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4737 /* No luck with division elimination or divmod. Have to do it
4738 by conditionally adjusting op0 *and* the result. */
4740 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4744 quotient
= gen_reg_rtx (compute_mode
);
4745 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4746 label1
= gen_label_rtx ();
4747 label2
= gen_label_rtx ();
4748 label3
= gen_label_rtx ();
4749 label4
= gen_label_rtx ();
4750 label5
= gen_label_rtx ();
4751 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4752 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
4753 compute_mode
, label1
);
4754 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4755 quotient
, 0, OPTAB_LIB_WIDEN
);
4756 if (tem
!= quotient
)
4757 emit_move_insn (quotient
, tem
);
4758 emit_jump_insn (targetm
.gen_jump (label5
));
4760 emit_label (label1
);
4761 expand_dec (adjusted_op0
, const1_rtx
);
4762 emit_jump_insn (targetm
.gen_jump (label4
));
4764 emit_label (label2
);
4765 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
4766 compute_mode
, label3
);
4767 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4768 quotient
, 0, OPTAB_LIB_WIDEN
);
4769 if (tem
!= quotient
)
4770 emit_move_insn (quotient
, tem
);
4771 emit_jump_insn (targetm
.gen_jump (label5
));
4773 emit_label (label3
);
4774 expand_inc (adjusted_op0
, const1_rtx
);
4775 emit_label (label4
);
4776 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4777 quotient
, 0, OPTAB_LIB_WIDEN
);
4778 if (tem
!= quotient
)
4779 emit_move_insn (quotient
, tem
);
4780 expand_inc (quotient
, const1_rtx
);
4781 emit_label (label5
);
4786 case EXACT_DIV_EXPR
:
4787 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4789 HOST_WIDE_INT d
= INTVAL (op1
);
4790 unsigned HOST_WIDE_INT ml
;
4794 pre_shift
= floor_log2 (d
& -d
);
4795 ml
= invert_mod2n (d
>> pre_shift
, size
);
4796 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4797 pre_shift
, NULL_RTX
, unsignedp
);
4798 quotient
= expand_mult (compute_mode
, t1
,
4799 gen_int_mode (ml
, compute_mode
),
4802 insn
= get_last_insn ();
4803 set_dst_reg_note (insn
, REG_EQUAL
,
4804 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
4805 compute_mode
, op0
, op1
),
4810 case ROUND_DIV_EXPR
:
4811 case ROUND_MOD_EXPR
:
4815 rtx_code_label
*label
;
4816 label
= gen_label_rtx ();
4817 quotient
= gen_reg_rtx (compute_mode
);
4818 remainder
= gen_reg_rtx (compute_mode
);
4819 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
4822 quotient
= expand_binop (compute_mode
, udiv_optab
, op0
, op1
,
4823 quotient
, 1, OPTAB_LIB_WIDEN
);
4824 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 1);
4825 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4826 remainder
, 1, OPTAB_LIB_WIDEN
);
4828 tem
= plus_constant (compute_mode
, op1
, -1);
4829 tem
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
, 1, NULL_RTX
, 1);
4830 do_cmp_and_jump (remainder
, tem
, LEU
, compute_mode
, label
);
4831 expand_inc (quotient
, const1_rtx
);
4832 expand_dec (remainder
, op1
);
4837 rtx abs_rem
, abs_op1
, tem
, mask
;
4838 rtx_code_label
*label
;
4839 label
= gen_label_rtx ();
4840 quotient
= gen_reg_rtx (compute_mode
);
4841 remainder
= gen_reg_rtx (compute_mode
);
4842 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
4845 quotient
= expand_binop (compute_mode
, sdiv_optab
, op0
, op1
,
4846 quotient
, 0, OPTAB_LIB_WIDEN
);
4847 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 0);
4848 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4849 remainder
, 0, OPTAB_LIB_WIDEN
);
4851 abs_rem
= expand_abs (compute_mode
, remainder
, NULL_RTX
, 1, 0);
4852 abs_op1
= expand_abs (compute_mode
, op1
, NULL_RTX
, 1, 0);
4853 tem
= expand_shift (LSHIFT_EXPR
, compute_mode
, abs_rem
,
4855 do_cmp_and_jump (tem
, abs_op1
, LTU
, compute_mode
, label
);
4856 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4857 NULL_RTX
, 0, OPTAB_WIDEN
);
4858 mask
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4859 size
- 1, NULL_RTX
, 0);
4860 tem
= expand_binop (compute_mode
, xor_optab
, mask
, const1_rtx
,
4861 NULL_RTX
, 0, OPTAB_WIDEN
);
4862 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4863 NULL_RTX
, 0, OPTAB_WIDEN
);
4864 expand_inc (quotient
, tem
);
4865 tem
= expand_binop (compute_mode
, xor_optab
, mask
, op1
,
4866 NULL_RTX
, 0, OPTAB_WIDEN
);
4867 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4868 NULL_RTX
, 0, OPTAB_WIDEN
);
4869 expand_dec (remainder
, tem
);
4872 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4880 if (target
&& GET_MODE (target
) != compute_mode
)
4885 /* Try to produce the remainder without producing the quotient.
4886 If we seem to have a divmod pattern that does not require widening,
4887 don't try widening here. We should really have a WIDEN argument
4888 to expand_twoval_binop, since what we'd really like to do here is
4889 1) try a mod insn in compute_mode
4890 2) try a divmod insn in compute_mode
4891 3) try a div insn in compute_mode and multiply-subtract to get
4893 4) try the same things with widening allowed. */
4895 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4898 ((optab_handler (optab2
, compute_mode
)
4899 != CODE_FOR_nothing
)
4900 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4903 /* No luck there. Can we do remainder and divide at once
4904 without a library call? */
4905 remainder
= gen_reg_rtx (compute_mode
);
4906 if (! expand_twoval_binop ((unsignedp
4910 NULL_RTX
, remainder
, unsignedp
))
4915 return gen_lowpart (mode
, remainder
);
4918 /* Produce the quotient. Try a quotient insn, but not a library call.
4919 If we have a divmod in this mode, use it in preference to widening
4920 the div (for this test we assume it will not fail). Note that optab2
4921 is set to the one of the two optabs that the call below will use. */
4923 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
4924 op0
, op1
, rem_flag
? NULL_RTX
: target
,
4926 ((optab_handler (optab2
, compute_mode
)
4927 != CODE_FOR_nothing
)
4928 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4932 /* No luck there. Try a quotient-and-remainder insn,
4933 keeping the quotient alone. */
4934 quotient
= gen_reg_rtx (compute_mode
);
4935 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
4937 quotient
, NULL_RTX
, unsignedp
))
4941 /* Still no luck. If we are not computing the remainder,
4942 use a library call for the quotient. */
4943 quotient
= sign_expand_binop (compute_mode
,
4944 udiv_optab
, sdiv_optab
,
4946 unsignedp
, OPTAB_LIB_WIDEN
);
4953 if (target
&& GET_MODE (target
) != compute_mode
)
4958 /* No divide instruction either. Use library for remainder. */
4959 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4961 unsignedp
, OPTAB_LIB_WIDEN
);
4962 /* No remainder function. Try a quotient-and-remainder
4963 function, keeping the remainder. */
4966 remainder
= gen_reg_rtx (compute_mode
);
4967 if (!expand_twoval_binop_libfunc
4968 (unsignedp
? udivmod_optab
: sdivmod_optab
,
4970 NULL_RTX
, remainder
,
4971 unsignedp
? UMOD
: MOD
))
4972 remainder
= NULL_RTX
;
4977 /* We divided. Now finish doing X - Y * (X / Y). */
4978 remainder
= expand_mult (compute_mode
, quotient
, op1
,
4979 NULL_RTX
, unsignedp
);
4980 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
4981 remainder
, target
, unsignedp
,
4986 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4989 /* Return a tree node with data type TYPE, describing the value of X.
4990 Usually this is an VAR_DECL, if there is no obvious better choice.
4991 X may be an expression, however we only support those expressions
4992 generated by loop.c. */
4995 make_tree (tree type
, rtx x
)
4999 switch (GET_CODE (x
))
5002 case CONST_WIDE_INT
:
5003 t
= wide_int_to_tree (type
, std::make_pair (x
, TYPE_MODE (type
)));
5007 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT
* 2 <= MAX_BITSIZE_MODE_ANY_INT
);
5008 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (x
) == VOIDmode
)
5009 t
= wide_int_to_tree (type
,
5010 wide_int::from_array (&CONST_DOUBLE_LOW (x
), 2,
5011 HOST_BITS_PER_WIDE_INT
* 2));
5016 REAL_VALUE_FROM_CONST_DOUBLE (d
, x
);
5017 t
= build_real (type
, d
);
5024 int units
= CONST_VECTOR_NUNITS (x
);
5025 tree itype
= TREE_TYPE (type
);
5029 /* Build a tree with vector elements. */
5030 elts
= XALLOCAVEC (tree
, units
);
5031 for (i
= units
- 1; i
>= 0; --i
)
5033 rtx elt
= CONST_VECTOR_ELT (x
, i
);
5034 elts
[i
] = make_tree (itype
, elt
);
5037 return build_vector (type
, elts
);
5041 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5042 make_tree (type
, XEXP (x
, 1)));
5045 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5046 make_tree (type
, XEXP (x
, 1)));
5049 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
5052 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5053 make_tree (type
, XEXP (x
, 1)));
5056 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5057 make_tree (type
, XEXP (x
, 1)));
5060 t
= unsigned_type_for (type
);
5061 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5062 make_tree (t
, XEXP (x
, 0)),
5063 make_tree (type
, XEXP (x
, 1))));
5066 t
= signed_type_for (type
);
5067 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5068 make_tree (t
, XEXP (x
, 0)),
5069 make_tree (type
, XEXP (x
, 1))));
5072 if (TREE_CODE (type
) != REAL_TYPE
)
5073 t
= signed_type_for (type
);
5077 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5078 make_tree (t
, XEXP (x
, 0)),
5079 make_tree (t
, XEXP (x
, 1))));
5081 t
= unsigned_type_for (type
);
5082 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5083 make_tree (t
, XEXP (x
, 0)),
5084 make_tree (t
, XEXP (x
, 1))));
5088 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5089 GET_CODE (x
) == ZERO_EXTEND
);
5090 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5093 return make_tree (type
, XEXP (x
, 0));
5096 t
= SYMBOL_REF_DECL (x
);
5098 return fold_convert (type
, build_fold_addr_expr (t
));
5099 /* else fall through. */
5102 t
= build_decl (RTL_LOCATION (x
), VAR_DECL
, NULL_TREE
, type
);
5104 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5105 address mode to pointer mode. */
5106 if (POINTER_TYPE_P (type
))
5107 x
= convert_memory_address_addr_space
5108 (TYPE_MODE (type
), x
, TYPE_ADDR_SPACE (TREE_TYPE (type
)));
5110 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5111 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5112 t
->decl_with_rtl
.rtl
= x
;
5118 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5119 and returning TARGET.
5121 If TARGET is 0, a pseudo-register or constant is returned. */
5124 expand_and (machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5128 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5129 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5131 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5135 else if (tem
!= target
)
5136 emit_move_insn (target
, tem
);
5140 /* Helper function for emit_store_flag. */
5142 emit_cstore (rtx target
, enum insn_code icode
, enum rtx_code code
,
5143 machine_mode mode
, machine_mode compare_mode
,
5144 int unsignedp
, rtx x
, rtx y
, int normalizep
,
5145 machine_mode target_mode
)
5147 struct expand_operand ops
[4];
5148 rtx op0
, comparison
, subtarget
;
5150 machine_mode result_mode
= targetm
.cstore_mode (icode
);
5152 last
= get_last_insn ();
5153 x
= prepare_operand (icode
, x
, 2, mode
, compare_mode
, unsignedp
);
5154 y
= prepare_operand (icode
, y
, 3, mode
, compare_mode
, unsignedp
);
5157 delete_insns_since (last
);
5161 if (target_mode
== VOIDmode
)
5162 target_mode
= result_mode
;
5164 target
= gen_reg_rtx (target_mode
);
5166 comparison
= gen_rtx_fmt_ee (code
, result_mode
, x
, y
);
5168 create_output_operand (&ops
[0], optimize
? NULL_RTX
: target
, result_mode
);
5169 create_fixed_operand (&ops
[1], comparison
);
5170 create_fixed_operand (&ops
[2], x
);
5171 create_fixed_operand (&ops
[3], y
);
5172 if (!maybe_expand_insn (icode
, 4, ops
))
5174 delete_insns_since (last
);
5177 subtarget
= ops
[0].value
;
5179 /* If we are converting to a wider mode, first convert to
5180 TARGET_MODE, then normalize. This produces better combining
5181 opportunities on machines that have a SIGN_EXTRACT when we are
5182 testing a single bit. This mostly benefits the 68k.
5184 If STORE_FLAG_VALUE does not have the sign bit set when
5185 interpreted in MODE, we can do this conversion as unsigned, which
5186 is usually more efficient. */
5187 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (result_mode
))
5189 convert_move (target
, subtarget
,
5190 val_signbit_known_clear_p (result_mode
,
5193 result_mode
= target_mode
;
5198 /* If we want to keep subexpressions around, don't reuse our last
5203 /* Now normalize to the proper value in MODE. Sometimes we don't
5204 have to do anything. */
5205 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5207 /* STORE_FLAG_VALUE might be the most negative number, so write
5208 the comparison this way to avoid a compiler-time warning. */
5209 else if (- normalizep
== STORE_FLAG_VALUE
)
5210 op0
= expand_unop (result_mode
, neg_optab
, op0
, subtarget
, 0);
5212 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5213 it hard to use a value of just the sign bit due to ANSI integer
5214 constant typing rules. */
5215 else if (val_signbit_known_set_p (result_mode
, STORE_FLAG_VALUE
))
5216 op0
= expand_shift (RSHIFT_EXPR
, result_mode
, op0
,
5217 GET_MODE_BITSIZE (result_mode
) - 1, subtarget
,
5221 gcc_assert (STORE_FLAG_VALUE
& 1);
5223 op0
= expand_and (result_mode
, op0
, const1_rtx
, subtarget
);
5224 if (normalizep
== -1)
5225 op0
= expand_unop (result_mode
, neg_optab
, op0
, op0
, 0);
5228 /* If we were converting to a smaller mode, do the conversion now. */
5229 if (target_mode
!= result_mode
)
5231 convert_move (target
, op0
, 0);
5239 /* A subroutine of emit_store_flag only including "tricks" that do not
5240 need a recursive call. These are kept separate to avoid infinite
5244 emit_store_flag_1 (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5245 machine_mode mode
, int unsignedp
, int normalizep
,
5246 machine_mode target_mode
)
5249 enum insn_code icode
;
5250 machine_mode compare_mode
;
5251 enum mode_class mclass
;
5252 enum rtx_code scode
;
5255 code
= unsigned_condition (code
);
5256 scode
= swap_condition (code
);
5258 /* If one operand is constant, make it the second one. Only do this
5259 if the other operand is not constant as well. */
5261 if (swap_commutative_operands_p (op0
, op1
))
5263 std::swap (op0
, op1
);
5264 code
= swap_condition (code
);
5267 if (mode
== VOIDmode
)
5268 mode
= GET_MODE (op0
);
5270 /* For some comparisons with 1 and -1, we can convert this to
5271 comparisons with zero. This will often produce more opportunities for
5272 store-flag insns. */
5277 if (op1
== const1_rtx
)
5278 op1
= const0_rtx
, code
= LE
;
5281 if (op1
== constm1_rtx
)
5282 op1
= const0_rtx
, code
= LT
;
5285 if (op1
== const1_rtx
)
5286 op1
= const0_rtx
, code
= GT
;
5289 if (op1
== constm1_rtx
)
5290 op1
= const0_rtx
, code
= GE
;
5293 if (op1
== const1_rtx
)
5294 op1
= const0_rtx
, code
= NE
;
5297 if (op1
== const1_rtx
)
5298 op1
= const0_rtx
, code
= EQ
;
5304 /* If we are comparing a double-word integer with zero or -1, we can
5305 convert the comparison into one involving a single word. */
5306 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
* 2
5307 && GET_MODE_CLASS (mode
) == MODE_INT
5308 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5311 if ((code
== EQ
|| code
== NE
)
5312 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5316 /* Do a logical OR or AND of the two words and compare the
5318 op00
= simplify_gen_subreg (word_mode
, op0
, mode
, 0);
5319 op01
= simplify_gen_subreg (word_mode
, op0
, mode
, UNITS_PER_WORD
);
5320 tem
= expand_binop (word_mode
,
5321 op1
== const0_rtx
? ior_optab
: and_optab
,
5322 op00
, op01
, NULL_RTX
, unsignedp
,
5326 tem
= emit_store_flag (NULL_RTX
, code
, tem
, op1
, word_mode
,
5327 unsignedp
, normalizep
);
5329 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5333 /* If testing the sign bit, can just test on high word. */
5334 op0h
= simplify_gen_subreg (word_mode
, op0
, mode
,
5335 subreg_highpart_offset (word_mode
,
5337 tem
= emit_store_flag (NULL_RTX
, code
, op0h
, op1
, word_mode
,
5338 unsignedp
, normalizep
);
5345 if (target_mode
== VOIDmode
|| GET_MODE (tem
) == target_mode
)
5348 target
= gen_reg_rtx (target_mode
);
5350 convert_move (target
, tem
,
5351 !val_signbit_known_set_p (word_mode
,
5352 (normalizep
? normalizep
5353 : STORE_FLAG_VALUE
)));
5358 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5359 complement of A (for GE) and shifting the sign bit to the low bit. */
5360 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5361 && GET_MODE_CLASS (mode
) == MODE_INT
5362 && (normalizep
|| STORE_FLAG_VALUE
== 1
5363 || val_signbit_p (mode
, STORE_FLAG_VALUE
)))
5370 /* If the result is to be wider than OP0, it is best to convert it
5371 first. If it is to be narrower, it is *incorrect* to convert it
5373 else if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5375 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5379 if (target_mode
!= mode
)
5383 op0
= expand_unop (mode
, one_cmpl_optab
, op0
,
5384 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5385 ? 0 : subtarget
), 0);
5387 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5388 /* If we are supposed to produce a 0/1 value, we want to do
5389 a logical shift from the sign bit to the low-order bit; for
5390 a -1/0 value, we do an arithmetic shift. */
5391 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5392 GET_MODE_BITSIZE (mode
) - 1,
5393 subtarget
, normalizep
!= -1);
5395 if (mode
!= target_mode
)
5396 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5401 mclass
= GET_MODE_CLASS (mode
);
5402 for (compare_mode
= mode
; compare_mode
!= VOIDmode
;
5403 compare_mode
= GET_MODE_WIDER_MODE (compare_mode
))
5405 machine_mode optab_mode
= mclass
== MODE_CC
? CCmode
: compare_mode
;
5406 icode
= optab_handler (cstore_optab
, optab_mode
);
5407 if (icode
!= CODE_FOR_nothing
)
5409 do_pending_stack_adjust ();
5410 rtx tem
= emit_cstore (target
, icode
, code
, mode
, compare_mode
,
5411 unsignedp
, op0
, op1
, normalizep
, target_mode
);
5415 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5417 tem
= emit_cstore (target
, icode
, scode
, mode
, compare_mode
,
5418 unsignedp
, op1
, op0
, normalizep
, target_mode
);
5429 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5430 and storing in TARGET. Normally return TARGET.
5431 Return 0 if that cannot be done.
5433 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5434 it is VOIDmode, they cannot both be CONST_INT.
5436 UNSIGNEDP is for the case where we have to widen the operands
5437 to perform the operation. It says to use zero-extension.
5439 NORMALIZEP is 1 if we should convert the result to be either zero
5440 or one. Normalize is -1 if we should convert the result to be
5441 either zero or -1. If NORMALIZEP is zero, the result will be left
5442 "raw" out of the scc insn. */
5445 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5446 machine_mode mode
, int unsignedp
, int normalizep
)
5448 machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
5449 enum rtx_code rcode
;
5454 /* If we compare constants, we shouldn't use a store-flag operation,
5455 but a constant load. We can get there via the vanilla route that
5456 usually generates a compare-branch sequence, but will in this case
5457 fold the comparison to a constant, and thus elide the branch. */
5458 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
5461 tem
= emit_store_flag_1 (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
,
5466 /* If we reached here, we can't do this with a scc insn, however there
5467 are some comparisons that can be done in other ways. Don't do any
5468 of these cases if branches are very cheap. */
5469 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
5472 /* See what we need to return. We can only return a 1, -1, or the
5475 if (normalizep
== 0)
5477 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5478 normalizep
= STORE_FLAG_VALUE
;
5480 else if (val_signbit_p (mode
, STORE_FLAG_VALUE
))
5486 last
= get_last_insn ();
5488 /* If optimizing, use different pseudo registers for each insn, instead
5489 of reusing the same pseudo. This leads to better CSE, but slows
5490 down the compiler, since there are more pseudos */
5491 subtarget
= (!optimize
5492 && (target_mode
== mode
)) ? target
: NULL_RTX
;
5493 trueval
= GEN_INT (normalizep
? normalizep
: STORE_FLAG_VALUE
);
5495 /* For floating-point comparisons, try the reverse comparison or try
5496 changing the "orderedness" of the comparison. */
5497 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5499 enum rtx_code first_code
;
5502 rcode
= reverse_condition_maybe_unordered (code
);
5503 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5504 && (code
== ORDERED
|| code
== UNORDERED
5505 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5506 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5508 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5509 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5511 /* For the reverse comparison, use either an addition or a XOR. */
5513 && rtx_cost (GEN_INT (normalizep
), mode
, PLUS
, 1,
5514 optimize_insn_for_speed_p ()) == 0)
5516 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5517 STORE_FLAG_VALUE
, target_mode
);
5519 return expand_binop (target_mode
, add_optab
, tem
,
5520 gen_int_mode (normalizep
, target_mode
),
5521 target
, 0, OPTAB_WIDEN
);
5524 && rtx_cost (trueval
, mode
, XOR
, 1,
5525 optimize_insn_for_speed_p ()) == 0)
5527 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5528 normalizep
, target_mode
);
5530 return expand_binop (target_mode
, xor_optab
, tem
, trueval
,
5531 target
, INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5535 delete_insns_since (last
);
5537 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
5538 if (code
== ORDERED
|| code
== UNORDERED
)
5541 and_them
= split_comparison (code
, mode
, &first_code
, &code
);
5543 /* If there are no NaNs, the first comparison should always fall through.
5544 Effectively change the comparison to the other one. */
5545 if (!HONOR_NANS (mode
))
5547 gcc_assert (first_code
== (and_them
? ORDERED
: UNORDERED
));
5548 return emit_store_flag_1 (target
, code
, op0
, op1
, mode
, 0, normalizep
,
5552 if (!HAVE_conditional_move
)
5555 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
5556 conditional move. */
5557 tem
= emit_store_flag_1 (subtarget
, first_code
, op0
, op1
, mode
, 0,
5558 normalizep
, target_mode
);
5563 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5564 tem
, const0_rtx
, GET_MODE (tem
), 0);
5566 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
5567 trueval
, tem
, GET_MODE (tem
), 0);
5570 delete_insns_since (last
);
5574 /* The remaining tricks only apply to integer comparisons. */
5576 if (GET_MODE_CLASS (mode
) != MODE_INT
)
5579 /* If this is an equality comparison of integers, we can try to exclusive-or
5580 (or subtract) the two operands and use a recursive call to try the
5581 comparison with zero. Don't do any of these cases if branches are
5584 if ((code
== EQ
|| code
== NE
) && op1
!= const0_rtx
)
5586 tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5590 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5593 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5594 mode
, unsignedp
, normalizep
);
5598 delete_insns_since (last
);
5601 /* For integer comparisons, try the reverse comparison. However, for
5602 small X and if we'd have anyway to extend, implementing "X != 0"
5603 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5604 rcode
= reverse_condition (code
);
5605 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5606 && ! (optab_handler (cstore_optab
, mode
) == CODE_FOR_nothing
5608 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
5609 && op1
== const0_rtx
))
5611 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5612 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5614 /* Again, for the reverse comparison, use either an addition or a XOR. */
5616 && rtx_cost (GEN_INT (normalizep
), mode
, PLUS
, 1,
5617 optimize_insn_for_speed_p ()) == 0)
5619 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5620 STORE_FLAG_VALUE
, target_mode
);
5622 tem
= expand_binop (target_mode
, add_optab
, tem
,
5623 gen_int_mode (normalizep
, target_mode
),
5624 target
, 0, OPTAB_WIDEN
);
5627 && rtx_cost (trueval
, mode
, XOR
, 1,
5628 optimize_insn_for_speed_p ()) == 0)
5630 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5631 normalizep
, target_mode
);
5633 tem
= expand_binop (target_mode
, xor_optab
, tem
, trueval
, target
,
5634 INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5639 delete_insns_since (last
);
5642 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5643 the constant zero. Reject all other comparisons at this point. Only
5644 do LE and GT if branches are expensive since they are expensive on
5645 2-operand machines. */
5647 if (op1
!= const0_rtx
5648 || (code
!= EQ
&& code
!= NE
5649 && (BRANCH_COST (optimize_insn_for_speed_p (),
5650 false) <= 1 || (code
!= LE
&& code
!= GT
))))
5653 /* Try to put the result of the comparison in the sign bit. Assume we can't
5654 do the necessary operation below. */
5658 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5659 the sign bit set. */
5663 /* This is destructive, so SUBTARGET can't be OP0. */
5664 if (rtx_equal_p (subtarget
, op0
))
5667 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5670 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5674 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5675 number of bits in the mode of OP0, minus one. */
5679 if (rtx_equal_p (subtarget
, op0
))
5682 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5683 GET_MODE_BITSIZE (mode
) - 1,
5685 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5689 if (code
== EQ
|| code
== NE
)
5691 /* For EQ or NE, one way to do the comparison is to apply an operation
5692 that converts the operand into a positive number if it is nonzero
5693 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5694 for NE we negate. This puts the result in the sign bit. Then we
5695 normalize with a shift, if needed.
5697 Two operations that can do the above actions are ABS and FFS, so try
5698 them. If that doesn't work, and MODE is smaller than a full word,
5699 we can use zero-extension to the wider mode (an unsigned conversion)
5700 as the operation. */
5702 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5703 that is compensated by the subsequent overflow when subtracting
5706 if (optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)
5707 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5708 else if (optab_handler (ffs_optab
, mode
) != CODE_FOR_nothing
)
5709 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5710 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5712 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5719 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5722 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5725 /* If we couldn't do it that way, for NE we can "or" the two's complement
5726 of the value with itself. For EQ, we take the one's complement of
5727 that "or", which is an extra insn, so we only handle EQ if branches
5732 || BRANCH_COST (optimize_insn_for_speed_p (),
5735 if (rtx_equal_p (subtarget
, op0
))
5738 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5739 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5742 if (tem
&& code
== EQ
)
5743 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5747 if (tem
&& normalizep
)
5748 tem
= expand_shift (RSHIFT_EXPR
, mode
, tem
,
5749 GET_MODE_BITSIZE (mode
) - 1,
5750 subtarget
, normalizep
== 1);
5756 else if (GET_MODE (tem
) != target_mode
)
5758 convert_move (target
, tem
, 0);
5761 else if (!subtarget
)
5763 emit_move_insn (target
, tem
);
5768 delete_insns_since (last
);
5773 /* Like emit_store_flag, but always succeeds. */
5776 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5777 machine_mode mode
, int unsignedp
, int normalizep
)
5780 rtx_code_label
*label
;
5781 rtx trueval
, falseval
;
5783 /* First see if emit_store_flag can do the job. */
5784 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
5789 target
= gen_reg_rtx (word_mode
);
5791 /* If this failed, we have to do this with set/compare/jump/set code.
5792 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
5793 trueval
= normalizep
? GEN_INT (normalizep
) : const1_rtx
;
5795 && GET_MODE_CLASS (mode
) == MODE_INT
5798 && op1
== const0_rtx
)
5800 label
= gen_label_rtx ();
5801 do_compare_rtx_and_jump (target
, const0_rtx
, EQ
, unsignedp
, mode
,
5802 NULL_RTX
, NULL
, label
, -1);
5803 emit_move_insn (target
, trueval
);
5809 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
5810 target
= gen_reg_rtx (GET_MODE (target
));
5812 /* Jump in the right direction if the target cannot implement CODE
5813 but can jump on its reverse condition. */
5814 falseval
= const0_rtx
;
5815 if (! can_compare_p (code
, mode
, ccp_jump
)
5816 && (! FLOAT_MODE_P (mode
)
5817 || code
== ORDERED
|| code
== UNORDERED
5818 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
5819 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
5821 enum rtx_code rcode
;
5822 if (FLOAT_MODE_P (mode
))
5823 rcode
= reverse_condition_maybe_unordered (code
);
5825 rcode
= reverse_condition (code
);
5827 /* Canonicalize to UNORDERED for the libcall. */
5828 if (can_compare_p (rcode
, mode
, ccp_jump
)
5829 || (code
== ORDERED
&& ! can_compare_p (ORDERED
, mode
, ccp_jump
)))
5832 trueval
= const0_rtx
;
5837 emit_move_insn (target
, trueval
);
5838 label
= gen_label_rtx ();
5839 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
, NULL
,
5842 emit_move_insn (target
, falseval
);
5848 /* Perform possibly multi-word comparison and conditional jump to LABEL
5849 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5850 now a thin wrapper around do_compare_rtx_and_jump. */
5853 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, machine_mode mode
,
5854 rtx_code_label
*label
)
5856 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
5857 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
, NULL_RTX
,