Update Copyright years in gcc/config/epiphany .
[official-gcc.git] / gcc / tree-ssa-uninit.c
blobcdfcd5a87001b6b050451ba5ae28d9735e3a8f44
1 /* Predicate aware uninitialized variable warning.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2010 Free Software
3 Foundation, Inc.
4 Contributed by Xinliang David Li <davidxl@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "function.h"
31 #include "gimple-pretty-print.h"
32 #include "bitmap.h"
33 #include "pointer-set.h"
34 #include "tree-flow.h"
35 #include "gimple.h"
36 #include "tree-inline.h"
37 #include "hashtab.h"
38 #include "tree-pass.h"
39 #include "diagnostic-core.h"
41 /* This implements the pass that does predicate aware warning on uses of
42 possibly uninitialized variables. The pass first collects the set of
43 possibly uninitialized SSA names. For each such name, it walks through
44 all its immediate uses. For each immediate use, it rebuilds the condition
45 expression (the predicate) that guards the use. The predicate is then
46 examined to see if the variable is always defined under that same condition.
47 This is done either by pruning the unrealizable paths that lead to the
48 default definitions or by checking if the predicate set that guards the
49 defining paths is a superset of the use predicate. */
52 /* Pointer set of potentially undefined ssa names, i.e.,
53 ssa names that are defined by phi with operands that
54 are not defined or potentially undefined. */
55 static struct pointer_set_t *possibly_undefined_names = 0;
57 /* Bit mask handling macros. */
58 #define MASK_SET_BIT(mask, pos) mask |= (1 << pos)
59 #define MASK_TEST_BIT(mask, pos) (mask & (1 << pos))
60 #define MASK_EMPTY(mask) (mask == 0)
62 /* Returns the first bit position (starting from LSB)
63 in mask that is non zero. Returns -1 if the mask is empty. */
64 static int
65 get_mask_first_set_bit (unsigned mask)
67 int pos = 0;
68 if (mask == 0)
69 return -1;
71 while ((mask & (1 << pos)) == 0)
72 pos++;
74 return pos;
76 #define MASK_FIRST_SET_BIT(mask) get_mask_first_set_bit (mask)
79 /* Return true if T, an SSA_NAME, has an undefined value. */
81 bool
82 ssa_undefined_value_p (tree t)
84 tree var = SSA_NAME_VAR (t);
86 if (!var)
88 /* Parameters get their initial value from the function entry. */
89 else if (TREE_CODE (var) == PARM_DECL)
90 return false;
91 /* When returning by reference the return address is actually a hidden
92 parameter. */
93 else if (TREE_CODE (var) == RESULT_DECL && DECL_BY_REFERENCE (var))
94 return false;
95 /* Hard register variables get their initial value from the ether. */
96 else if (TREE_CODE (var) == VAR_DECL && DECL_HARD_REGISTER (var))
97 return false;
99 /* The value is undefined iff its definition statement is empty. */
100 return (gimple_nop_p (SSA_NAME_DEF_STMT (t))
101 || (possibly_undefined_names
102 && pointer_set_contains (possibly_undefined_names, t)));
105 /* Checks if the operand OPND of PHI is defined by
106 another phi with one operand defined by this PHI,
107 but the rest operands are all defined. If yes,
108 returns true to skip this this operand as being
109 redundant. Can be enhanced to be more general. */
111 static bool
112 can_skip_redundant_opnd (tree opnd, gimple phi)
114 gimple op_def;
115 tree phi_def;
116 int i, n;
118 phi_def = gimple_phi_result (phi);
119 op_def = SSA_NAME_DEF_STMT (opnd);
120 if (gimple_code (op_def) != GIMPLE_PHI)
121 return false;
122 n = gimple_phi_num_args (op_def);
123 for (i = 0; i < n; ++i)
125 tree op = gimple_phi_arg_def (op_def, i);
126 if (TREE_CODE (op) != SSA_NAME)
127 continue;
128 if (op != phi_def && ssa_undefined_value_p (op))
129 return false;
132 return true;
135 /* Returns a bit mask holding the positions of arguments in PHI
136 that have empty (or possibly empty) definitions. */
138 static unsigned
139 compute_uninit_opnds_pos (gimple phi)
141 size_t i, n;
142 unsigned uninit_opnds = 0;
144 n = gimple_phi_num_args (phi);
145 /* Bail out for phi with too many args. */
146 if (n > 32)
147 return 0;
149 for (i = 0; i < n; ++i)
151 tree op = gimple_phi_arg_def (phi, i);
152 if (TREE_CODE (op) == SSA_NAME
153 && ssa_undefined_value_p (op)
154 && !can_skip_redundant_opnd (op, phi))
155 MASK_SET_BIT (uninit_opnds, i);
157 return uninit_opnds;
160 /* Find the immediate postdominator PDOM of the specified
161 basic block BLOCK. */
163 static inline basic_block
164 find_pdom (basic_block block)
166 if (block == EXIT_BLOCK_PTR)
167 return EXIT_BLOCK_PTR;
168 else
170 basic_block bb
171 = get_immediate_dominator (CDI_POST_DOMINATORS, block);
172 if (! bb)
173 return EXIT_BLOCK_PTR;
174 return bb;
178 /* Find the immediate DOM of the specified
179 basic block BLOCK. */
181 static inline basic_block
182 find_dom (basic_block block)
184 if (block == ENTRY_BLOCK_PTR)
185 return ENTRY_BLOCK_PTR;
186 else
188 basic_block bb = get_immediate_dominator (CDI_DOMINATORS, block);
189 if (! bb)
190 return ENTRY_BLOCK_PTR;
191 return bb;
195 /* Returns true if BB1 is postdominating BB2 and BB1 is
196 not a loop exit bb. The loop exit bb check is simple and does
197 not cover all cases. */
199 static bool
200 is_non_loop_exit_postdominating (basic_block bb1, basic_block bb2)
202 if (!dominated_by_p (CDI_POST_DOMINATORS, bb2, bb1))
203 return false;
205 if (single_pred_p (bb1) && !single_succ_p (bb2))
206 return false;
208 return true;
211 /* Find the closest postdominator of a specified BB, which is control
212 equivalent to BB. */
214 static inline basic_block
215 find_control_equiv_block (basic_block bb)
217 basic_block pdom;
219 pdom = find_pdom (bb);
221 /* Skip the postdominating bb that is also loop exit. */
222 if (!is_non_loop_exit_postdominating (pdom, bb))
223 return NULL;
225 if (dominated_by_p (CDI_DOMINATORS, pdom, bb))
226 return pdom;
228 return NULL;
231 #define MAX_NUM_CHAINS 8
232 #define MAX_CHAIN_LEN 5
234 /* Computes the control dependence chains (paths of edges)
235 for DEP_BB up to the dominating basic block BB (the head node of a
236 chain should be dominated by it). CD_CHAINS is pointer to a
237 dynamic array holding the result chains. CUR_CD_CHAIN is the current
238 chain being computed. *NUM_CHAINS is total number of chains. The
239 function returns true if the information is successfully computed,
240 return false if there is no control dependence or not computed. */
242 static bool
243 compute_control_dep_chain (basic_block bb, basic_block dep_bb,
244 vec<edge> *cd_chains,
245 size_t *num_chains,
246 vec<edge> *cur_cd_chain)
248 edge_iterator ei;
249 edge e;
250 size_t i;
251 bool found_cd_chain = false;
252 size_t cur_chain_len = 0;
254 if (EDGE_COUNT (bb->succs) < 2)
255 return false;
257 /* Could use a set instead. */
258 cur_chain_len = cur_cd_chain->length ();
259 if (cur_chain_len > MAX_CHAIN_LEN)
260 return false;
262 for (i = 0; i < cur_chain_len; i++)
264 edge e = (*cur_cd_chain)[i];
265 /* cycle detected. */
266 if (e->src == bb)
267 return false;
270 FOR_EACH_EDGE (e, ei, bb->succs)
272 basic_block cd_bb;
273 if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL))
274 continue;
276 cd_bb = e->dest;
277 cur_cd_chain->safe_push (e);
278 while (!is_non_loop_exit_postdominating (cd_bb, bb))
280 if (cd_bb == dep_bb)
282 /* Found a direct control dependence. */
283 if (*num_chains < MAX_NUM_CHAINS)
285 cd_chains[*num_chains] = cur_cd_chain->copy ();
286 (*num_chains)++;
288 found_cd_chain = true;
289 /* check path from next edge. */
290 break;
293 /* Now check if DEP_BB is indirectly control dependent on BB. */
294 if (compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
295 num_chains, cur_cd_chain))
297 found_cd_chain = true;
298 break;
301 cd_bb = find_pdom (cd_bb);
302 if (cd_bb == EXIT_BLOCK_PTR)
303 break;
305 cur_cd_chain->pop ();
306 gcc_assert (cur_cd_chain->length () == cur_chain_len);
308 gcc_assert (cur_cd_chain->length () == cur_chain_len);
310 return found_cd_chain;
313 typedef struct use_pred_info
315 gimple cond;
316 bool invert;
317 } *use_pred_info_t;
321 /* Converts the chains of control dependence edges into a set of
322 predicates. A control dependence chain is represented by a vector
323 edges. DEP_CHAINS points to an array of dependence chains.
324 NUM_CHAINS is the size of the chain array. One edge in a dependence
325 chain is mapped to predicate expression represented by use_pred_info_t
326 type. One dependence chain is converted to a composite predicate that
327 is the result of AND operation of use_pred_info_t mapped to each edge.
328 A composite predicate is presented by a vector of use_pred_info_t. On
329 return, *PREDS points to the resulting array of composite predicates.
330 *NUM_PREDS is the number of composite predictes. */
332 static bool
333 convert_control_dep_chain_into_preds (vec<edge> *dep_chains,
334 size_t num_chains,
335 vec<use_pred_info_t> **preds,
336 size_t *num_preds)
338 bool has_valid_pred = false;
339 size_t i, j;
340 if (num_chains == 0 || num_chains >= MAX_NUM_CHAINS)
341 return false;
343 /* Now convert the control dep chain into a set
344 of predicates. */
345 typedef vec<use_pred_info_t> vec_use_pred_info_t_heap;
346 *preds = XCNEWVEC (vec_use_pred_info_t_heap, num_chains);
347 *num_preds = num_chains;
349 for (i = 0; i < num_chains; i++)
351 vec<edge> one_cd_chain = dep_chains[i];
353 has_valid_pred = false;
354 for (j = 0; j < one_cd_chain.length (); j++)
356 gimple cond_stmt;
357 gimple_stmt_iterator gsi;
358 basic_block guard_bb;
359 use_pred_info_t one_pred;
360 edge e;
362 e = one_cd_chain[j];
363 guard_bb = e->src;
364 gsi = gsi_last_bb (guard_bb);
365 if (gsi_end_p (gsi))
367 has_valid_pred = false;
368 break;
370 cond_stmt = gsi_stmt (gsi);
371 if (gimple_code (cond_stmt) == GIMPLE_CALL
372 && EDGE_COUNT (e->src->succs) >= 2)
374 /* Ignore EH edge. Can add assertion
375 on the other edge's flag. */
376 continue;
378 /* Skip if there is essentially one succesor. */
379 if (EDGE_COUNT (e->src->succs) == 2)
381 edge e1;
382 edge_iterator ei1;
383 bool skip = false;
385 FOR_EACH_EDGE (e1, ei1, e->src->succs)
387 if (EDGE_COUNT (e1->dest->succs) == 0)
389 skip = true;
390 break;
393 if (skip)
394 continue;
396 if (gimple_code (cond_stmt) != GIMPLE_COND)
398 has_valid_pred = false;
399 break;
401 one_pred = XNEW (struct use_pred_info);
402 one_pred->cond = cond_stmt;
403 one_pred->invert = !!(e->flags & EDGE_FALSE_VALUE);
404 (*preds)[i].safe_push (one_pred);
405 has_valid_pred = true;
408 if (!has_valid_pred)
409 break;
411 return has_valid_pred;
414 /* Computes all control dependence chains for USE_BB. The control
415 dependence chains are then converted to an array of composite
416 predicates pointed to by PREDS. PHI_BB is the basic block of
417 the phi whose result is used in USE_BB. */
419 static bool
420 find_predicates (vec<use_pred_info_t> **preds,
421 size_t *num_preds,
422 basic_block phi_bb,
423 basic_block use_bb)
425 size_t num_chains = 0, i;
426 vec<edge> *dep_chains = 0;
427 vec<edge> cur_chain = vNULL;
428 bool has_valid_pred = false;
429 basic_block cd_root = 0;
431 typedef vec<edge> vec_edge_heap;
432 dep_chains = XCNEWVEC (vec_edge_heap, MAX_NUM_CHAINS);
434 /* First find the closest bb that is control equivalent to PHI_BB
435 that also dominates USE_BB. */
436 cd_root = phi_bb;
437 while (dominated_by_p (CDI_DOMINATORS, use_bb, cd_root))
439 basic_block ctrl_eq_bb = find_control_equiv_block (cd_root);
440 if (ctrl_eq_bb && dominated_by_p (CDI_DOMINATORS, use_bb, ctrl_eq_bb))
441 cd_root = ctrl_eq_bb;
442 else
443 break;
446 compute_control_dep_chain (cd_root, use_bb,
447 dep_chains, &num_chains,
448 &cur_chain);
450 has_valid_pred
451 = convert_control_dep_chain_into_preds (dep_chains,
452 num_chains,
453 preds,
454 num_preds);
455 /* Free individual chain */
456 cur_chain.release ();
457 for (i = 0; i < num_chains; i++)
458 dep_chains[i].release ();
459 free (dep_chains);
460 return has_valid_pred;
463 /* Computes the set of incoming edges of PHI that have non empty
464 definitions of a phi chain. The collection will be done
465 recursively on operands that are defined by phis. CD_ROOT
466 is the control dependence root. *EDGES holds the result, and
467 VISITED_PHIS is a pointer set for detecting cycles. */
469 static void
470 collect_phi_def_edges (gimple phi, basic_block cd_root,
471 vec<edge> *edges,
472 struct pointer_set_t *visited_phis)
474 size_t i, n;
475 edge opnd_edge;
476 tree opnd;
478 if (pointer_set_insert (visited_phis, phi))
479 return;
481 n = gimple_phi_num_args (phi);
482 for (i = 0; i < n; i++)
484 opnd_edge = gimple_phi_arg_edge (phi, i);
485 opnd = gimple_phi_arg_def (phi, i);
487 if (TREE_CODE (opnd) != SSA_NAME)
489 if (dump_file && (dump_flags & TDF_DETAILS))
491 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
492 print_gimple_stmt (dump_file, phi, 0, 0);
494 edges->safe_push (opnd_edge);
496 else
498 gimple def = SSA_NAME_DEF_STMT (opnd);
500 if (gimple_code (def) == GIMPLE_PHI
501 && dominated_by_p (CDI_DOMINATORS,
502 gimple_bb (def), cd_root))
503 collect_phi_def_edges (def, cd_root, edges,
504 visited_phis);
505 else if (!ssa_undefined_value_p (opnd))
507 if (dump_file && (dump_flags & TDF_DETAILS))
509 fprintf (dump_file, "\n[CHECK] Found def edge %d in ", (int)i);
510 print_gimple_stmt (dump_file, phi, 0, 0);
512 edges->safe_push (opnd_edge);
518 /* For each use edge of PHI, computes all control dependence chains.
519 The control dependence chains are then converted to an array of
520 composite predicates pointed to by PREDS. */
522 static bool
523 find_def_preds (vec<use_pred_info_t> **preds,
524 size_t *num_preds, gimple phi)
526 size_t num_chains = 0, i, n;
527 vec<edge> *dep_chains = 0;
528 vec<edge> cur_chain = vNULL;
529 vec<edge> def_edges = vNULL;
530 bool has_valid_pred = false;
531 basic_block phi_bb, cd_root = 0;
532 struct pointer_set_t *visited_phis;
534 typedef vec<edge> vec_edge_heap;
535 dep_chains = XCNEWVEC (vec_edge_heap, MAX_NUM_CHAINS);
537 phi_bb = gimple_bb (phi);
538 /* First find the closest dominating bb to be
539 the control dependence root */
540 cd_root = find_dom (phi_bb);
541 if (!cd_root)
542 return false;
544 visited_phis = pointer_set_create ();
545 collect_phi_def_edges (phi, cd_root, &def_edges, visited_phis);
546 pointer_set_destroy (visited_phis);
548 n = def_edges.length ();
549 if (n == 0)
550 return false;
552 for (i = 0; i < n; i++)
554 size_t prev_nc, j;
555 edge opnd_edge;
557 opnd_edge = def_edges[i];
558 prev_nc = num_chains;
559 compute_control_dep_chain (cd_root, opnd_edge->src,
560 dep_chains, &num_chains,
561 &cur_chain);
562 /* Free individual chain */
563 cur_chain.release ();
565 /* Now update the newly added chains with
566 the phi operand edge: */
567 if (EDGE_COUNT (opnd_edge->src->succs) > 1)
569 if (prev_nc == num_chains
570 && num_chains < MAX_NUM_CHAINS)
571 num_chains++;
572 for (j = prev_nc; j < num_chains; j++)
574 dep_chains[j].safe_push (opnd_edge);
579 has_valid_pred
580 = convert_control_dep_chain_into_preds (dep_chains,
581 num_chains,
582 preds,
583 num_preds);
584 for (i = 0; i < num_chains; i++)
585 dep_chains[i].release ();
586 free (dep_chains);
587 return has_valid_pred;
590 /* Dumps the predicates (PREDS) for USESTMT. */
592 static void
593 dump_predicates (gimple usestmt, size_t num_preds,
594 vec<use_pred_info_t> *preds,
595 const char* msg)
597 size_t i, j;
598 vec<use_pred_info_t> one_pred_chain;
599 fprintf (dump_file, msg);
600 print_gimple_stmt (dump_file, usestmt, 0, 0);
601 fprintf (dump_file, "is guarded by :\n");
602 /* do some dumping here: */
603 for (i = 0; i < num_preds; i++)
605 size_t np;
607 one_pred_chain = preds[i];
608 np = one_pred_chain.length ();
610 for (j = 0; j < np; j++)
612 use_pred_info_t one_pred
613 = one_pred_chain[j];
614 if (one_pred->invert)
615 fprintf (dump_file, " (.NOT.) ");
616 print_gimple_stmt (dump_file, one_pred->cond, 0, 0);
617 if (j < np - 1)
618 fprintf (dump_file, "(.AND.)\n");
620 if (i < num_preds - 1)
621 fprintf (dump_file, "(.OR.)\n");
625 /* Destroys the predicate set *PREDS. */
627 static void
628 destroy_predicate_vecs (size_t n,
629 vec<use_pred_info_t> * preds)
631 size_t i, j;
632 for (i = 0; i < n; i++)
634 for (j = 0; j < preds[i].length (); j++)
635 free (preds[i][j]);
636 preds[i].release ();
638 free (preds);
642 /* Computes the 'normalized' conditional code with operand
643 swapping and condition inversion. */
645 static enum tree_code
646 get_cmp_code (enum tree_code orig_cmp_code,
647 bool swap_cond, bool invert)
649 enum tree_code tc = orig_cmp_code;
651 if (swap_cond)
652 tc = swap_tree_comparison (orig_cmp_code);
653 if (invert)
654 tc = invert_tree_comparison (tc, false);
656 switch (tc)
658 case LT_EXPR:
659 case LE_EXPR:
660 case GT_EXPR:
661 case GE_EXPR:
662 case EQ_EXPR:
663 case NE_EXPR:
664 break;
665 default:
666 return ERROR_MARK;
668 return tc;
671 /* Returns true if VAL falls in the range defined by BOUNDARY and CMPC, i.e.
672 all values in the range satisfies (x CMPC BOUNDARY) == true. */
674 static bool
675 is_value_included_in (tree val, tree boundary, enum tree_code cmpc)
677 bool inverted = false;
678 bool is_unsigned;
679 bool result;
681 /* Only handle integer constant here. */
682 if (TREE_CODE (val) != INTEGER_CST
683 || TREE_CODE (boundary) != INTEGER_CST)
684 return true;
686 is_unsigned = TYPE_UNSIGNED (TREE_TYPE (val));
688 if (cmpc == GE_EXPR || cmpc == GT_EXPR
689 || cmpc == NE_EXPR)
691 cmpc = invert_tree_comparison (cmpc, false);
692 inverted = true;
695 if (is_unsigned)
697 if (cmpc == EQ_EXPR)
698 result = tree_int_cst_equal (val, boundary);
699 else if (cmpc == LT_EXPR)
700 result = INT_CST_LT_UNSIGNED (val, boundary);
701 else
703 gcc_assert (cmpc == LE_EXPR);
704 result = (tree_int_cst_equal (val, boundary)
705 || INT_CST_LT_UNSIGNED (val, boundary));
708 else
710 if (cmpc == EQ_EXPR)
711 result = tree_int_cst_equal (val, boundary);
712 else if (cmpc == LT_EXPR)
713 result = INT_CST_LT (val, boundary);
714 else
716 gcc_assert (cmpc == LE_EXPR);
717 result = (tree_int_cst_equal (val, boundary)
718 || INT_CST_LT (val, boundary));
722 if (inverted)
723 result ^= 1;
725 return result;
728 /* Returns true if PRED is common among all the predicate
729 chains (PREDS) (and therefore can be factored out).
730 NUM_PRED_CHAIN is the size of array PREDS. */
732 static bool
733 find_matching_predicate_in_rest_chains (use_pred_info_t pred,
734 vec<use_pred_info_t> *preds,
735 size_t num_pred_chains)
737 size_t i, j, n;
739 /* trival case */
740 if (num_pred_chains == 1)
741 return true;
743 for (i = 1; i < num_pred_chains; i++)
745 bool found = false;
746 vec<use_pred_info_t> one_chain = preds[i];
747 n = one_chain.length ();
748 for (j = 0; j < n; j++)
750 use_pred_info_t pred2
751 = one_chain[j];
752 /* can relax the condition comparison to not
753 use address comparison. However, the most common
754 case is that multiple control dependent paths share
755 a common path prefix, so address comparison should
756 be ok. */
758 if (pred2->cond == pred->cond
759 && pred2->invert == pred->invert)
761 found = true;
762 break;
765 if (!found)
766 return false;
768 return true;
771 /* Forward declaration. */
772 static bool
773 is_use_properly_guarded (gimple use_stmt,
774 basic_block use_bb,
775 gimple phi,
776 unsigned uninit_opnds,
777 struct pointer_set_t *visited_phis);
779 /* Returns true if all uninitialized opnds are pruned. Returns false
780 otherwise. PHI is the phi node with uninitialized operands,
781 UNINIT_OPNDS is the bitmap of the uninitialize operand positions,
782 FLAG_DEF is the statement defining the flag guarding the use of the
783 PHI output, BOUNDARY_CST is the const value used in the predicate
784 associated with the flag, CMP_CODE is the comparison code used in
785 the predicate, VISITED_PHIS is the pointer set of phis visited, and
786 VISITED_FLAG_PHIS is the pointer to the pointer set of flag definitions
787 that are also phis.
789 Example scenario:
791 BB1:
792 flag_1 = phi <0, 1> // (1)
793 var_1 = phi <undef, some_val>
796 BB2:
797 flag_2 = phi <0, flag_1, flag_1> // (2)
798 var_2 = phi <undef, var_1, var_1>
799 if (flag_2 == 1)
800 goto BB3;
802 BB3:
803 use of var_2 // (3)
805 Because some flag arg in (1) is not constant, if we do not look into the
806 flag phis recursively, it is conservatively treated as unknown and var_1
807 is thought to be flowed into use at (3). Since var_1 is potentially uninitialized
808 a false warning will be emitted. Checking recursively into (1), the compiler can
809 find out that only some_val (which is defined) can flow into (3) which is OK.
813 static bool
814 prune_uninit_phi_opnds_in_unrealizable_paths (
815 gimple phi, unsigned uninit_opnds,
816 gimple flag_def, tree boundary_cst,
817 enum tree_code cmp_code,
818 struct pointer_set_t *visited_phis,
819 bitmap *visited_flag_phis)
821 unsigned i;
823 for (i = 0; i < MIN (32, gimple_phi_num_args (flag_def)); i++)
825 tree flag_arg;
827 if (!MASK_TEST_BIT (uninit_opnds, i))
828 continue;
830 flag_arg = gimple_phi_arg_def (flag_def, i);
831 if (!is_gimple_constant (flag_arg))
833 gimple flag_arg_def, phi_arg_def;
834 tree phi_arg;
835 unsigned uninit_opnds_arg_phi;
837 if (TREE_CODE (flag_arg) != SSA_NAME)
838 return false;
839 flag_arg_def = SSA_NAME_DEF_STMT (flag_arg);
840 if (gimple_code (flag_arg_def) != GIMPLE_PHI)
841 return false;
843 phi_arg = gimple_phi_arg_def (phi, i);
844 if (TREE_CODE (phi_arg) != SSA_NAME)
845 return false;
847 phi_arg_def = SSA_NAME_DEF_STMT (phi_arg);
848 if (gimple_code (phi_arg_def) != GIMPLE_PHI)
849 return false;
851 if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
852 return false;
854 if (!*visited_flag_phis)
855 *visited_flag_phis = BITMAP_ALLOC (NULL);
857 if (bitmap_bit_p (*visited_flag_phis,
858 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def))))
859 return false;
861 bitmap_set_bit (*visited_flag_phis,
862 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
864 /* Now recursively prune the uninitialized phi args. */
865 uninit_opnds_arg_phi = compute_uninit_opnds_pos (phi_arg_def);
866 if (!prune_uninit_phi_opnds_in_unrealizable_paths (
867 phi_arg_def, uninit_opnds_arg_phi,
868 flag_arg_def, boundary_cst, cmp_code,
869 visited_phis, visited_flag_phis))
870 return false;
872 bitmap_clear_bit (*visited_flag_phis,
873 SSA_NAME_VERSION (gimple_phi_result (flag_arg_def)));
874 continue;
877 /* Now check if the constant is in the guarded range. */
878 if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
880 tree opnd;
881 gimple opnd_def;
883 /* Now that we know that this undefined edge is not
884 pruned. If the operand is defined by another phi,
885 we can further prune the incoming edges of that
886 phi by checking the predicates of this operands. */
888 opnd = gimple_phi_arg_def (phi, i);
889 opnd_def = SSA_NAME_DEF_STMT (opnd);
890 if (gimple_code (opnd_def) == GIMPLE_PHI)
892 edge opnd_edge;
893 unsigned uninit_opnds2
894 = compute_uninit_opnds_pos (opnd_def);
895 gcc_assert (!MASK_EMPTY (uninit_opnds2));
896 opnd_edge = gimple_phi_arg_edge (phi, i);
897 if (!is_use_properly_guarded (phi,
898 opnd_edge->src,
899 opnd_def,
900 uninit_opnds2,
901 visited_phis))
902 return false;
904 else
905 return false;
909 return true;
912 /* A helper function that determines if the predicate set
913 of the use is not overlapping with that of the uninit paths.
914 The most common senario of guarded use is in Example 1:
915 Example 1:
916 if (some_cond)
918 x = ...;
919 flag = true;
922 ... some code ...
924 if (flag)
925 use (x);
927 The real world examples are usually more complicated, but similar
928 and usually result from inlining:
930 bool init_func (int * x)
932 if (some_cond)
933 return false;
934 *x = ..
935 return true;
938 void foo(..)
940 int x;
942 if (!init_func(&x))
943 return;
945 .. some_code ...
946 use (x);
949 Another possible use scenario is in the following trivial example:
951 Example 2:
952 if (n > 0)
953 x = 1;
955 if (n > 0)
957 if (m < 2)
958 .. = x;
961 Predicate analysis needs to compute the composite predicate:
963 1) 'x' use predicate: (n > 0) .AND. (m < 2)
964 2) 'x' default value (non-def) predicate: .NOT. (n > 0)
965 (the predicate chain for phi operand defs can be computed
966 starting from a bb that is control equivalent to the phi's
967 bb and is dominating the operand def.)
969 and check overlapping:
970 (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
971 <==> false
973 This implementation provides framework that can handle
974 scenarios. (Note that many simple cases are handled properly
975 without the predicate analysis -- this is due to jump threading
976 transformation which eliminates the merge point thus makes
977 path sensitive analysis unnecessary.)
979 NUM_PREDS is the number is the number predicate chains, PREDS is
980 the array of chains, PHI is the phi node whose incoming (undefined)
981 paths need to be pruned, and UNINIT_OPNDS is the bitmap holding
982 uninit operand positions. VISITED_PHIS is the pointer set of phi
983 stmts being checked. */
986 static bool
987 use_pred_not_overlap_with_undef_path_pred (
988 size_t num_preds,
989 vec<use_pred_info_t> *preds,
990 gimple phi, unsigned uninit_opnds,
991 struct pointer_set_t *visited_phis)
993 unsigned int i, n;
994 gimple flag_def = 0;
995 tree boundary_cst = 0;
996 enum tree_code cmp_code;
997 bool swap_cond = false;
998 bool invert = false;
999 vec<use_pred_info_t> the_pred_chain;
1000 bitmap visited_flag_phis = NULL;
1001 bool all_pruned = false;
1003 gcc_assert (num_preds > 0);
1004 /* Find within the common prefix of multiple predicate chains
1005 a predicate that is a comparison of a flag variable against
1006 a constant. */
1007 the_pred_chain = preds[0];
1008 n = the_pred_chain.length ();
1009 for (i = 0; i < n; i++)
1011 gimple cond;
1012 tree cond_lhs, cond_rhs, flag = 0;
1014 use_pred_info_t the_pred
1015 = the_pred_chain[i];
1017 cond = the_pred->cond;
1018 invert = the_pred->invert;
1019 cond_lhs = gimple_cond_lhs (cond);
1020 cond_rhs = gimple_cond_rhs (cond);
1021 cmp_code = gimple_cond_code (cond);
1023 if (cond_lhs != NULL_TREE && TREE_CODE (cond_lhs) == SSA_NAME
1024 && cond_rhs != NULL_TREE && is_gimple_constant (cond_rhs))
1026 boundary_cst = cond_rhs;
1027 flag = cond_lhs;
1029 else if (cond_rhs != NULL_TREE && TREE_CODE (cond_rhs) == SSA_NAME
1030 && cond_lhs != NULL_TREE && is_gimple_constant (cond_lhs))
1032 boundary_cst = cond_lhs;
1033 flag = cond_rhs;
1034 swap_cond = true;
1037 if (!flag)
1038 continue;
1040 flag_def = SSA_NAME_DEF_STMT (flag);
1042 if (!flag_def)
1043 continue;
1045 if ((gimple_code (flag_def) == GIMPLE_PHI)
1046 && (gimple_bb (flag_def) == gimple_bb (phi))
1047 && find_matching_predicate_in_rest_chains (
1048 the_pred, preds, num_preds))
1049 break;
1051 flag_def = 0;
1054 if (!flag_def)
1055 return false;
1057 /* Now check all the uninit incoming edge has a constant flag value
1058 that is in conflict with the use guard/predicate. */
1059 cmp_code = get_cmp_code (cmp_code, swap_cond, invert);
1061 if (cmp_code == ERROR_MARK)
1062 return false;
1064 all_pruned = prune_uninit_phi_opnds_in_unrealizable_paths (phi,
1065 uninit_opnds,
1066 flag_def,
1067 boundary_cst,
1068 cmp_code,
1069 visited_phis,
1070 &visited_flag_phis);
1072 if (visited_flag_phis)
1073 BITMAP_FREE (visited_flag_phis);
1075 return all_pruned;
1078 /* Returns true if TC is AND or OR */
1080 static inline bool
1081 is_and_or_or (enum tree_code tc, tree typ)
1083 return (tc == BIT_IOR_EXPR
1084 || (tc == BIT_AND_EXPR
1085 && (typ == 0 || TREE_CODE (typ) == BOOLEAN_TYPE)));
1088 typedef struct norm_cond
1090 vec<gimple> conds;
1091 enum tree_code cond_code;
1092 bool invert;
1093 } *norm_cond_t;
1096 /* Normalizes gimple condition COND. The normalization follows
1097 UD chains to form larger condition expression trees. NORM_COND
1098 holds the normalized result. COND_CODE is the logical opcode
1099 (AND or OR) of the normalized tree. */
1101 static void
1102 normalize_cond_1 (gimple cond,
1103 norm_cond_t norm_cond,
1104 enum tree_code cond_code)
1106 enum gimple_code gc;
1107 enum tree_code cur_cond_code;
1108 tree rhs1, rhs2;
1110 gc = gimple_code (cond);
1111 if (gc != GIMPLE_ASSIGN)
1113 norm_cond->conds.safe_push (cond);
1114 return;
1117 cur_cond_code = gimple_assign_rhs_code (cond);
1118 rhs1 = gimple_assign_rhs1 (cond);
1119 rhs2 = gimple_assign_rhs2 (cond);
1120 if (cur_cond_code == NE_EXPR)
1122 if (integer_zerop (rhs2)
1123 && (TREE_CODE (rhs1) == SSA_NAME))
1124 normalize_cond_1 (
1125 SSA_NAME_DEF_STMT (rhs1),
1126 norm_cond, cond_code);
1127 else if (integer_zerop (rhs1)
1128 && (TREE_CODE (rhs2) == SSA_NAME))
1129 normalize_cond_1 (
1130 SSA_NAME_DEF_STMT (rhs2),
1131 norm_cond, cond_code);
1132 else
1133 norm_cond->conds.safe_push (cond);
1135 return;
1138 if (is_and_or_or (cur_cond_code, TREE_TYPE (rhs1))
1139 && (cond_code == cur_cond_code || cond_code == ERROR_MARK)
1140 && (TREE_CODE (rhs1) == SSA_NAME && TREE_CODE (rhs2) == SSA_NAME))
1142 normalize_cond_1 (SSA_NAME_DEF_STMT (rhs1),
1143 norm_cond, cur_cond_code);
1144 normalize_cond_1 (SSA_NAME_DEF_STMT (rhs2),
1145 norm_cond, cur_cond_code);
1146 norm_cond->cond_code = cur_cond_code;
1148 else
1149 norm_cond->conds.safe_push (cond);
1152 /* See normalize_cond_1 for details. INVERT is a flag to indicate
1153 if COND needs to be inverted or not. */
1155 static void
1156 normalize_cond (gimple cond, norm_cond_t norm_cond, bool invert)
1158 enum tree_code cond_code;
1160 norm_cond->cond_code = ERROR_MARK;
1161 norm_cond->invert = false;
1162 norm_cond->conds.create (0);
1163 gcc_assert (gimple_code (cond) == GIMPLE_COND);
1164 cond_code = gimple_cond_code (cond);
1165 if (invert)
1166 cond_code = invert_tree_comparison (cond_code, false);
1168 if (cond_code == NE_EXPR)
1170 if (integer_zerop (gimple_cond_rhs (cond))
1171 && (TREE_CODE (gimple_cond_lhs (cond)) == SSA_NAME))
1172 normalize_cond_1 (
1173 SSA_NAME_DEF_STMT (gimple_cond_lhs (cond)),
1174 norm_cond, ERROR_MARK);
1175 else if (integer_zerop (gimple_cond_lhs (cond))
1176 && (TREE_CODE (gimple_cond_rhs (cond)) == SSA_NAME))
1177 normalize_cond_1 (
1178 SSA_NAME_DEF_STMT (gimple_cond_rhs (cond)),
1179 norm_cond, ERROR_MARK);
1180 else
1182 norm_cond->conds.safe_push (cond);
1183 norm_cond->invert = invert;
1186 else
1188 norm_cond->conds.safe_push (cond);
1189 norm_cond->invert = invert;
1192 gcc_assert (norm_cond->conds.length () == 1
1193 || is_and_or_or (norm_cond->cond_code, NULL));
1196 /* Returns true if the domain for condition COND1 is a subset of
1197 COND2. REVERSE is a flag. when it is true the function checks
1198 if COND1 is a superset of COND2. INVERT1 and INVERT2 are flags
1199 to indicate if COND1 and COND2 need to be inverted or not. */
1201 static bool
1202 is_gcond_subset_of (gimple cond1, bool invert1,
1203 gimple cond2, bool invert2,
1204 bool reverse)
1206 enum gimple_code gc1, gc2;
1207 enum tree_code cond1_code, cond2_code;
1208 gimple tmp;
1209 tree cond1_lhs, cond1_rhs, cond2_lhs, cond2_rhs;
1211 /* Take the short cut. */
1212 if (cond1 == cond2)
1213 return true;
1215 if (reverse)
1217 tmp = cond1;
1218 cond1 = cond2;
1219 cond2 = tmp;
1222 gc1 = gimple_code (cond1);
1223 gc2 = gimple_code (cond2);
1225 if ((gc1 != GIMPLE_ASSIGN && gc1 != GIMPLE_COND)
1226 || (gc2 != GIMPLE_ASSIGN && gc2 != GIMPLE_COND))
1227 return cond1 == cond2;
1229 cond1_code = ((gc1 == GIMPLE_ASSIGN)
1230 ? gimple_assign_rhs_code (cond1)
1231 : gimple_cond_code (cond1));
1233 cond2_code = ((gc2 == GIMPLE_ASSIGN)
1234 ? gimple_assign_rhs_code (cond2)
1235 : gimple_cond_code (cond2));
1237 if (TREE_CODE_CLASS (cond1_code) != tcc_comparison
1238 || TREE_CODE_CLASS (cond2_code) != tcc_comparison)
1239 return false;
1241 if (invert1)
1242 cond1_code = invert_tree_comparison (cond1_code, false);
1243 if (invert2)
1244 cond2_code = invert_tree_comparison (cond2_code, false);
1246 cond1_lhs = ((gc1 == GIMPLE_ASSIGN)
1247 ? gimple_assign_rhs1 (cond1)
1248 : gimple_cond_lhs (cond1));
1249 cond1_rhs = ((gc1 == GIMPLE_ASSIGN)
1250 ? gimple_assign_rhs2 (cond1)
1251 : gimple_cond_rhs (cond1));
1252 cond2_lhs = ((gc2 == GIMPLE_ASSIGN)
1253 ? gimple_assign_rhs1 (cond2)
1254 : gimple_cond_lhs (cond2));
1255 cond2_rhs = ((gc2 == GIMPLE_ASSIGN)
1256 ? gimple_assign_rhs2 (cond2)
1257 : gimple_cond_rhs (cond2));
1259 /* Assuming const operands have been swapped to the
1260 rhs at this point of the analysis. */
1262 if (cond1_lhs != cond2_lhs)
1263 return false;
1265 if (!is_gimple_constant (cond1_rhs)
1266 || TREE_CODE (cond1_rhs) != INTEGER_CST)
1267 return (cond1_rhs == cond2_rhs);
1269 if (!is_gimple_constant (cond2_rhs)
1270 || TREE_CODE (cond2_rhs) != INTEGER_CST)
1271 return (cond1_rhs == cond2_rhs);
1273 if (cond1_code == EQ_EXPR)
1274 return is_value_included_in (cond1_rhs,
1275 cond2_rhs, cond2_code);
1276 if (cond1_code == NE_EXPR || cond2_code == EQ_EXPR)
1277 return ((cond2_code == cond1_code)
1278 && tree_int_cst_equal (cond1_rhs, cond2_rhs));
1280 if (((cond1_code == GE_EXPR || cond1_code == GT_EXPR)
1281 && (cond2_code == LE_EXPR || cond2_code == LT_EXPR))
1282 || ((cond1_code == LE_EXPR || cond1_code == LT_EXPR)
1283 && (cond2_code == GE_EXPR || cond2_code == GT_EXPR)))
1284 return false;
1286 if (cond1_code != GE_EXPR && cond1_code != GT_EXPR
1287 && cond1_code != LE_EXPR && cond1_code != LT_EXPR)
1288 return false;
1290 if (cond1_code == GT_EXPR)
1292 cond1_code = GE_EXPR;
1293 cond1_rhs = fold_binary (PLUS_EXPR, TREE_TYPE (cond1_rhs),
1294 cond1_rhs,
1295 fold_convert (TREE_TYPE (cond1_rhs),
1296 integer_one_node));
1298 else if (cond1_code == LT_EXPR)
1300 cond1_code = LE_EXPR;
1301 cond1_rhs = fold_binary (MINUS_EXPR, TREE_TYPE (cond1_rhs),
1302 cond1_rhs,
1303 fold_convert (TREE_TYPE (cond1_rhs),
1304 integer_one_node));
1307 if (!cond1_rhs)
1308 return false;
1310 gcc_assert (cond1_code == GE_EXPR || cond1_code == LE_EXPR);
1312 if (cond2_code == GE_EXPR || cond2_code == GT_EXPR ||
1313 cond2_code == LE_EXPR || cond2_code == LT_EXPR)
1314 return is_value_included_in (cond1_rhs,
1315 cond2_rhs, cond2_code);
1316 else if (cond2_code == NE_EXPR)
1317 return
1318 (is_value_included_in (cond1_rhs,
1319 cond2_rhs, cond2_code)
1320 && !is_value_included_in (cond2_rhs,
1321 cond1_rhs, cond1_code));
1322 return false;
1325 /* Returns true if the domain of the condition expression
1326 in COND is a subset of any of the sub-conditions
1327 of the normalized condtion NORM_COND. INVERT is a flag
1328 to indicate of the COND needs to be inverted.
1329 REVERSE is a flag. When it is true, the check is reversed --
1330 it returns true if COND is a superset of any of the subconditions
1331 of NORM_COND. */
1333 static bool
1334 is_subset_of_any (gimple cond, bool invert,
1335 norm_cond_t norm_cond, bool reverse)
1337 size_t i;
1338 size_t len = norm_cond->conds.length ();
1340 for (i = 0; i < len; i++)
1342 if (is_gcond_subset_of (cond, invert,
1343 norm_cond->conds[i],
1344 false, reverse))
1345 return true;
1347 return false;
1350 /* NORM_COND1 and NORM_COND2 are normalized logical/BIT OR
1351 expressions (formed by following UD chains not control
1352 dependence chains). The function returns true of domain
1353 of and expression NORM_COND1 is a subset of NORM_COND2's.
1354 The implementation is conservative, and it returns false if
1355 it the inclusion relationship may not hold. */
1357 static bool
1358 is_or_set_subset_of (norm_cond_t norm_cond1,
1359 norm_cond_t norm_cond2)
1361 size_t i;
1362 size_t len = norm_cond1->conds.length ();
1364 for (i = 0; i < len; i++)
1366 if (!is_subset_of_any (norm_cond1->conds[i],
1367 false, norm_cond2, false))
1368 return false;
1370 return true;
1373 /* NORM_COND1 and NORM_COND2 are normalized logical AND
1374 expressions (formed by following UD chains not control
1375 dependence chains). The function returns true of domain
1376 of and expression NORM_COND1 is a subset of NORM_COND2's. */
1378 static bool
1379 is_and_set_subset_of (norm_cond_t norm_cond1,
1380 norm_cond_t norm_cond2)
1382 size_t i;
1383 size_t len = norm_cond2->conds.length ();
1385 for (i = 0; i < len; i++)
1387 if (!is_subset_of_any (norm_cond2->conds[i],
1388 false, norm_cond1, true))
1389 return false;
1391 return true;
1394 /* Returns true of the domain if NORM_COND1 is a subset
1395 of that of NORM_COND2. Returns false if it can not be
1396 proved to be so. */
1398 static bool
1399 is_norm_cond_subset_of (norm_cond_t norm_cond1,
1400 norm_cond_t norm_cond2)
1402 size_t i;
1403 enum tree_code code1, code2;
1405 code1 = norm_cond1->cond_code;
1406 code2 = norm_cond2->cond_code;
1408 if (code1 == BIT_AND_EXPR)
1410 /* Both conditions are AND expressions. */
1411 if (code2 == BIT_AND_EXPR)
1412 return is_and_set_subset_of (norm_cond1, norm_cond2);
1413 /* NORM_COND1 is an AND expression, and NORM_COND2 is an OR
1414 expression. In this case, returns true if any subexpression
1415 of NORM_COND1 is a subset of any subexpression of NORM_COND2. */
1416 else if (code2 == BIT_IOR_EXPR)
1418 size_t len1;
1419 len1 = norm_cond1->conds.length ();
1420 for (i = 0; i < len1; i++)
1422 gimple cond1 = norm_cond1->conds[i];
1423 if (is_subset_of_any (cond1, false, norm_cond2, false))
1424 return true;
1426 return false;
1428 else
1430 gcc_assert (code2 == ERROR_MARK);
1431 gcc_assert (norm_cond2->conds.length () == 1);
1432 return is_subset_of_any (norm_cond2->conds[0],
1433 norm_cond2->invert, norm_cond1, true);
1436 /* NORM_COND1 is an OR expression */
1437 else if (code1 == BIT_IOR_EXPR)
1439 if (code2 != code1)
1440 return false;
1442 return is_or_set_subset_of (norm_cond1, norm_cond2);
1444 else
1446 gcc_assert (code1 == ERROR_MARK);
1447 gcc_assert (norm_cond1->conds.length () == 1);
1448 /* Conservatively returns false if NORM_COND1 is non-decomposible
1449 and NORM_COND2 is an AND expression. */
1450 if (code2 == BIT_AND_EXPR)
1451 return false;
1453 if (code2 == BIT_IOR_EXPR)
1454 return is_subset_of_any (norm_cond1->conds[0],
1455 norm_cond1->invert, norm_cond2, false);
1457 gcc_assert (code2 == ERROR_MARK);
1458 gcc_assert (norm_cond2->conds.length () == 1);
1459 return is_gcond_subset_of (norm_cond1->conds[0],
1460 norm_cond1->invert,
1461 norm_cond2->conds[0],
1462 norm_cond2->invert, false);
1466 /* Returns true of the domain of single predicate expression
1467 EXPR1 is a subset of that of EXPR2. Returns false if it
1468 can not be proved. */
1470 static bool
1471 is_pred_expr_subset_of (use_pred_info_t expr1,
1472 use_pred_info_t expr2)
1474 gimple cond1, cond2;
1475 enum tree_code code1, code2;
1476 struct norm_cond norm_cond1, norm_cond2;
1477 bool is_subset = false;
1479 cond1 = expr1->cond;
1480 cond2 = expr2->cond;
1481 code1 = gimple_cond_code (cond1);
1482 code2 = gimple_cond_code (cond2);
1484 if (expr1->invert)
1485 code1 = invert_tree_comparison (code1, false);
1486 if (expr2->invert)
1487 code2 = invert_tree_comparison (code2, false);
1489 /* Fast path -- match exactly */
1490 if ((gimple_cond_lhs (cond1) == gimple_cond_lhs (cond2))
1491 && (gimple_cond_rhs (cond1) == gimple_cond_rhs (cond2))
1492 && (code1 == code2))
1493 return true;
1495 /* Normalize conditions. To keep NE_EXPR, do not invert
1496 with both need inversion. */
1497 normalize_cond (cond1, &norm_cond1, (expr1->invert));
1498 normalize_cond (cond2, &norm_cond2, (expr2->invert));
1500 is_subset = is_norm_cond_subset_of (&norm_cond1, &norm_cond2);
1502 /* Free memory */
1503 norm_cond1.conds.release ();
1504 norm_cond2.conds.release ();
1505 return is_subset ;
1508 /* Returns true if the domain of PRED1 is a subset
1509 of that of PRED2. Returns false if it can not be proved so. */
1511 static bool
1512 is_pred_chain_subset_of (vec<use_pred_info_t> pred1,
1513 vec<use_pred_info_t> pred2)
1515 size_t np1, np2, i1, i2;
1517 np1 = pred1.length ();
1518 np2 = pred2.length ();
1520 for (i2 = 0; i2 < np2; i2++)
1522 bool found = false;
1523 use_pred_info_t info2
1524 = pred2[i2];
1525 for (i1 = 0; i1 < np1; i1++)
1527 use_pred_info_t info1
1528 = pred1[i1];
1529 if (is_pred_expr_subset_of (info1, info2))
1531 found = true;
1532 break;
1535 if (!found)
1536 return false;
1538 return true;
1541 /* Returns true if the domain defined by
1542 one pred chain ONE_PRED is a subset of the domain
1543 of *PREDS. It returns false if ONE_PRED's domain is
1544 not a subset of any of the sub-domains of PREDS (
1545 corresponding to each individual chains in it), even
1546 though it may be still be a subset of whole domain
1547 of PREDS which is the union (ORed) of all its subdomains.
1548 In other words, the result is conservative. */
1550 static bool
1551 is_included_in (vec<use_pred_info_t> one_pred,
1552 vec<use_pred_info_t> *preds,
1553 size_t n)
1555 size_t i;
1557 for (i = 0; i < n; i++)
1559 if (is_pred_chain_subset_of (one_pred, preds[i]))
1560 return true;
1563 return false;
1566 /* compares two predicate sets PREDS1 and PREDS2 and returns
1567 true if the domain defined by PREDS1 is a superset
1568 of PREDS2's domain. N1 and N2 are array sizes of PREDS1 and
1569 PREDS2 respectively. The implementation chooses not to build
1570 generic trees (and relying on the folding capability of the
1571 compiler), but instead performs brute force comparison of
1572 individual predicate chains (won't be a compile time problem
1573 as the chains are pretty short). When the function returns
1574 false, it does not necessarily mean *PREDS1 is not a superset
1575 of *PREDS2, but mean it may not be so since the analysis can
1576 not prove it. In such cases, false warnings may still be
1577 emitted. */
1579 static bool
1580 is_superset_of (vec<use_pred_info_t> *preds1,
1581 size_t n1,
1582 vec<use_pred_info_t> *preds2,
1583 size_t n2)
1585 size_t i;
1586 vec<use_pred_info_t> one_pred_chain;
1588 for (i = 0; i < n2; i++)
1590 one_pred_chain = preds2[i];
1591 if (!is_included_in (one_pred_chain, preds1, n1))
1592 return false;
1595 return true;
1598 /* Comparison function used by qsort. It is used to
1599 sort predicate chains to allow predicate
1600 simplification. */
1602 static int
1603 pred_chain_length_cmp (const void *p1, const void *p2)
1605 use_pred_info_t i1, i2;
1606 vec<use_pred_info_t> const *chain1
1607 = (vec<use_pred_info_t> const *)p1;
1608 vec<use_pred_info_t> const *chain2
1609 = (vec<use_pred_info_t> const *)p2;
1611 if (chain1->length () != chain2->length ())
1612 return (chain1->length () - chain2->length ());
1614 i1 = (*chain1)[0];
1615 i2 = (*chain2)[0];
1617 /* Allow predicates with similar prefix come together. */
1618 if (!i1->invert && i2->invert)
1619 return -1;
1620 else if (i1->invert && !i2->invert)
1621 return 1;
1623 return gimple_uid (i1->cond) - gimple_uid (i2->cond);
1626 /* x OR (!x AND y) is equivalent to x OR y.
1627 This function normalizes x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3)
1628 into x1 OR x2 OR x3. PREDS is the predicate chains, and N is
1629 the number of chains. Returns true if normalization happens. */
1631 static bool
1632 normalize_preds (vec<use_pred_info_t> *preds, size_t *n)
1634 size_t i, j, ll;
1635 vec<use_pred_info_t> pred_chain;
1636 vec<use_pred_info_t> x = vNULL;
1637 use_pred_info_t xj = 0, nxj = 0;
1639 if (*n < 2)
1640 return false;
1642 /* First sort the chains in ascending order of lengths. */
1643 qsort (preds, *n, sizeof (void *), pred_chain_length_cmp);
1644 pred_chain = preds[0];
1645 ll = pred_chain.length ();
1646 if (ll != 1)
1648 if (ll == 2)
1650 use_pred_info_t xx, yy, xx2, nyy;
1651 vec<use_pred_info_t> pred_chain2 = preds[1];
1652 if (pred_chain2.length () != 2)
1653 return false;
1655 /* See if simplification x AND y OR x AND !y is possible. */
1656 xx = pred_chain[0];
1657 yy = pred_chain[1];
1658 xx2 = pred_chain2[0];
1659 nyy = pred_chain2[1];
1660 if (gimple_cond_lhs (xx->cond) != gimple_cond_lhs (xx2->cond)
1661 || gimple_cond_rhs (xx->cond) != gimple_cond_rhs (xx2->cond)
1662 || gimple_cond_code (xx->cond) != gimple_cond_code (xx2->cond)
1663 || (xx->invert != xx2->invert))
1664 return false;
1665 if (gimple_cond_lhs (yy->cond) != gimple_cond_lhs (nyy->cond)
1666 || gimple_cond_rhs (yy->cond) != gimple_cond_rhs (nyy->cond)
1667 || gimple_cond_code (yy->cond) != gimple_cond_code (nyy->cond)
1668 || (yy->invert == nyy->invert))
1669 return false;
1671 /* Now merge the first two chains. */
1672 free (yy);
1673 free (nyy);
1674 free (xx2);
1675 pred_chain.release ();
1676 pred_chain2.release ();
1677 pred_chain.safe_push (xx);
1678 preds[0] = pred_chain;
1679 for (i = 1; i < *n - 1; i++)
1680 preds[i] = preds[i + 1];
1682 preds[*n - 1].create (0);
1683 *n = *n - 1;
1685 else
1686 return false;
1689 x.safe_push (pred_chain[0]);
1691 /* The loop extracts x1, x2, x3, etc from chains
1692 x1 OR (!x1 AND x2) OR (!x1 AND !x2 AND x3) OR ... */
1693 for (i = 1; i < *n; i++)
1695 pred_chain = preds[i];
1696 if (pred_chain.length () != i + 1)
1697 return false;
1699 for (j = 0; j < i; j++)
1701 xj = x[j];
1702 nxj = pred_chain[j];
1704 /* Check if nxj is !xj */
1705 if (gimple_cond_lhs (xj->cond) != gimple_cond_lhs (nxj->cond)
1706 || gimple_cond_rhs (xj->cond) != gimple_cond_rhs (nxj->cond)
1707 || gimple_cond_code (xj->cond) != gimple_cond_code (nxj->cond)
1708 || (xj->invert == nxj->invert))
1709 return false;
1712 x.safe_push (pred_chain[i]);
1715 /* Now normalize the pred chains using the extraced x1, x2, x3 etc. */
1716 for (j = 0; j < *n; j++)
1718 use_pred_info_t t;
1719 xj = x[j];
1721 t = XNEW (struct use_pred_info);
1722 *t = *xj;
1724 x[j] = t;
1727 for (i = 0; i < *n; i++)
1729 pred_chain = preds[i];
1730 for (j = 0; j < pred_chain.length (); j++)
1731 free (pred_chain[j]);
1732 pred_chain.release ();
1733 /* A new chain. */
1734 pred_chain.safe_push (x[i]);
1735 preds[i] = pred_chain;
1737 return true;
1742 /* Computes the predicates that guard the use and checks
1743 if the incoming paths that have empty (or possibly
1744 empty) definition can be pruned/filtered. The function returns
1745 true if it can be determined that the use of PHI's def in
1746 USE_STMT is guarded with a predicate set not overlapping with
1747 predicate sets of all runtime paths that do not have a definition.
1748 Returns false if it is not or it can not be determined. USE_BB is
1749 the bb of the use (for phi operand use, the bb is not the bb of
1750 the phi stmt, but the src bb of the operand edge). UNINIT_OPNDS
1751 is a bit vector. If an operand of PHI is uninitialized, the
1752 corresponding bit in the vector is 1. VISIED_PHIS is a pointer
1753 set of phis being visted. */
1755 static bool
1756 is_use_properly_guarded (gimple use_stmt,
1757 basic_block use_bb,
1758 gimple phi,
1759 unsigned uninit_opnds,
1760 struct pointer_set_t *visited_phis)
1762 basic_block phi_bb;
1763 vec<use_pred_info_t> *preds = 0;
1764 vec<use_pred_info_t> *def_preds = 0;
1765 size_t num_preds = 0, num_def_preds = 0;
1766 bool has_valid_preds = false;
1767 bool is_properly_guarded = false;
1769 if (pointer_set_insert (visited_phis, phi))
1770 return false;
1772 phi_bb = gimple_bb (phi);
1774 if (is_non_loop_exit_postdominating (use_bb, phi_bb))
1775 return false;
1777 has_valid_preds = find_predicates (&preds, &num_preds,
1778 phi_bb, use_bb);
1780 if (!has_valid_preds)
1782 destroy_predicate_vecs (num_preds, preds);
1783 return false;
1786 if (dump_file)
1787 dump_predicates (use_stmt, num_preds, preds,
1788 "\nUse in stmt ");
1790 has_valid_preds = find_def_preds (&def_preds,
1791 &num_def_preds, phi);
1793 if (has_valid_preds)
1795 bool normed;
1796 if (dump_file)
1797 dump_predicates (phi, num_def_preds, def_preds,
1798 "Operand defs of phi ");
1800 normed = normalize_preds (def_preds, &num_def_preds);
1801 if (normed && dump_file)
1803 fprintf (dump_file, "\nNormalized to\n");
1804 dump_predicates (phi, num_def_preds, def_preds,
1805 "Operand defs of phi ");
1807 is_properly_guarded =
1808 is_superset_of (def_preds, num_def_preds,
1809 preds, num_preds);
1812 /* further prune the dead incoming phi edges. */
1813 if (!is_properly_guarded)
1814 is_properly_guarded
1815 = use_pred_not_overlap_with_undef_path_pred (
1816 num_preds, preds, phi, uninit_opnds, visited_phis);
1818 destroy_predicate_vecs (num_preds, preds);
1819 destroy_predicate_vecs (num_def_preds, def_preds);
1820 return is_properly_guarded;
1823 /* Searches through all uses of a potentially
1824 uninitialized variable defined by PHI and returns a use
1825 statement if the use is not properly guarded. It returns
1826 NULL if all uses are guarded. UNINIT_OPNDS is a bitvector
1827 holding the position(s) of uninit PHI operands. WORKLIST
1828 is the vector of candidate phis that may be updated by this
1829 function. ADDED_TO_WORKLIST is the pointer set tracking
1830 if the new phi is already in the worklist. */
1832 static gimple
1833 find_uninit_use (gimple phi, unsigned uninit_opnds,
1834 vec<gimple> *worklist,
1835 struct pointer_set_t *added_to_worklist)
1837 tree phi_result;
1838 use_operand_p use_p;
1839 gimple use_stmt;
1840 imm_use_iterator iter;
1842 phi_result = gimple_phi_result (phi);
1844 FOR_EACH_IMM_USE_FAST (use_p, iter, phi_result)
1846 struct pointer_set_t *visited_phis;
1847 basic_block use_bb;
1849 use_stmt = USE_STMT (use_p);
1850 if (is_gimple_debug (use_stmt))
1851 continue;
1853 visited_phis = pointer_set_create ();
1855 if (gimple_code (use_stmt) == GIMPLE_PHI)
1856 use_bb = gimple_phi_arg_edge (use_stmt,
1857 PHI_ARG_INDEX_FROM_USE (use_p))->src;
1858 else
1859 use_bb = gimple_bb (use_stmt);
1861 if (is_use_properly_guarded (use_stmt,
1862 use_bb,
1863 phi,
1864 uninit_opnds,
1865 visited_phis))
1867 pointer_set_destroy (visited_phis);
1868 continue;
1870 pointer_set_destroy (visited_phis);
1872 if (dump_file && (dump_flags & TDF_DETAILS))
1874 fprintf (dump_file, "[CHECK]: Found unguarded use: ");
1875 print_gimple_stmt (dump_file, use_stmt, 0, 0);
1877 /* Found one real use, return. */
1878 if (gimple_code (use_stmt) != GIMPLE_PHI)
1879 return use_stmt;
1881 /* Found a phi use that is not guarded,
1882 add the phi to the worklist. */
1883 if (!pointer_set_insert (added_to_worklist,
1884 use_stmt))
1886 if (dump_file && (dump_flags & TDF_DETAILS))
1888 fprintf (dump_file, "[WORKLIST]: Update worklist with phi: ");
1889 print_gimple_stmt (dump_file, use_stmt, 0, 0);
1892 worklist->safe_push (use_stmt);
1893 pointer_set_insert (possibly_undefined_names, phi_result);
1897 return NULL;
1900 /* Look for inputs to PHI that are SSA_NAMEs that have empty definitions
1901 and gives warning if there exists a runtime path from the entry to a
1902 use of the PHI def that does not contain a definition. In other words,
1903 the warning is on the real use. The more dead paths that can be pruned
1904 by the compiler, the fewer false positives the warning is. WORKLIST
1905 is a vector of candidate phis to be examined. ADDED_TO_WORKLIST is
1906 a pointer set tracking if the new phi is added to the worklist or not. */
1908 static void
1909 warn_uninitialized_phi (gimple phi, vec<gimple> *worklist,
1910 struct pointer_set_t *added_to_worklist)
1912 unsigned uninit_opnds;
1913 gimple uninit_use_stmt = 0;
1914 tree uninit_op;
1916 /* Don't look at virtual operands. */
1917 if (virtual_operand_p (gimple_phi_result (phi)))
1918 return;
1920 uninit_opnds = compute_uninit_opnds_pos (phi);
1922 if (MASK_EMPTY (uninit_opnds))
1923 return;
1925 if (dump_file && (dump_flags & TDF_DETAILS))
1927 fprintf (dump_file, "[CHECK]: examining phi: ");
1928 print_gimple_stmt (dump_file, phi, 0, 0);
1931 /* Now check if we have any use of the value without proper guard. */
1932 uninit_use_stmt = find_uninit_use (phi, uninit_opnds,
1933 worklist, added_to_worklist);
1935 /* All uses are properly guarded. */
1936 if (!uninit_use_stmt)
1937 return;
1939 uninit_op = gimple_phi_arg_def (phi, MASK_FIRST_SET_BIT (uninit_opnds));
1940 if (SSA_NAME_VAR (uninit_op) == NULL_TREE)
1941 return;
1942 warn_uninit (OPT_Wmaybe_uninitialized, uninit_op, SSA_NAME_VAR (uninit_op),
1943 SSA_NAME_VAR (uninit_op),
1944 "%qD may be used uninitialized in this function",
1945 uninit_use_stmt);
1950 /* Entry point to the late uninitialized warning pass. */
1952 static unsigned int
1953 execute_late_warn_uninitialized (void)
1955 basic_block bb;
1956 gimple_stmt_iterator gsi;
1957 vec<gimple> worklist = vNULL;
1958 struct pointer_set_t *added_to_worklist;
1960 calculate_dominance_info (CDI_DOMINATORS);
1961 calculate_dominance_info (CDI_POST_DOMINATORS);
1962 /* Re-do the plain uninitialized variable check, as optimization may have
1963 straightened control flow. Do this first so that we don't accidentally
1964 get a "may be" warning when we'd have seen an "is" warning later. */
1965 warn_uninitialized_vars (/*warn_possibly_uninitialized=*/1);
1967 timevar_push (TV_TREE_UNINIT);
1969 possibly_undefined_names = pointer_set_create ();
1970 added_to_worklist = pointer_set_create ();
1972 /* Initialize worklist */
1973 FOR_EACH_BB (bb)
1974 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1976 gimple phi = gsi_stmt (gsi);
1977 size_t n, i;
1979 n = gimple_phi_num_args (phi);
1981 /* Don't look at virtual operands. */
1982 if (virtual_operand_p (gimple_phi_result (phi)))
1983 continue;
1985 for (i = 0; i < n; ++i)
1987 tree op = gimple_phi_arg_def (phi, i);
1988 if (TREE_CODE (op) == SSA_NAME
1989 && ssa_undefined_value_p (op))
1991 worklist.safe_push (phi);
1992 pointer_set_insert (added_to_worklist, phi);
1993 if (dump_file && (dump_flags & TDF_DETAILS))
1995 fprintf (dump_file, "[WORKLIST]: add to initial list: ");
1996 print_gimple_stmt (dump_file, phi, 0, 0);
1998 break;
2003 while (worklist.length () != 0)
2005 gimple cur_phi = 0;
2006 cur_phi = worklist.pop ();
2007 warn_uninitialized_phi (cur_phi, &worklist, added_to_worklist);
2010 worklist.release ();
2011 pointer_set_destroy (added_to_worklist);
2012 pointer_set_destroy (possibly_undefined_names);
2013 possibly_undefined_names = NULL;
2014 free_dominance_info (CDI_POST_DOMINATORS);
2015 timevar_pop (TV_TREE_UNINIT);
2016 return 0;
2019 static bool
2020 gate_warn_uninitialized (void)
2022 return warn_uninitialized != 0;
2025 struct gimple_opt_pass pass_late_warn_uninitialized =
2028 GIMPLE_PASS,
2029 "uninit", /* name */
2030 OPTGROUP_NONE, /* optinfo_flags */
2031 gate_warn_uninitialized, /* gate */
2032 execute_late_warn_uninitialized, /* execute */
2033 NULL, /* sub */
2034 NULL, /* next */
2035 0, /* static_pass_number */
2036 TV_NONE, /* tv_id */
2037 PROP_ssa, /* properties_required */
2038 0, /* properties_provided */
2039 0, /* properties_destroyed */
2040 0, /* todo_flags_start */
2041 0 /* todo_flags_finish */