[Ada] Empty CUDA_Global procedures when compiling for host
[official-gcc.git] / gcc / expmed.h
blob93cd6316f0dd965707addae7567a9016ccde9c26
1 /* Target-dependent costs for expmed.c.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef EXPMED_H
21 #define EXPMED_H 1
23 #include "insn-codes.h"
25 enum alg_code {
26 alg_unknown,
27 alg_zero,
28 alg_m, alg_shift,
29 alg_add_t_m2,
30 alg_sub_t_m2,
31 alg_add_factor,
32 alg_sub_factor,
33 alg_add_t2_m,
34 alg_sub_t2_m,
35 alg_impossible
38 /* Indicates the type of fixup needed after a constant multiplication.
39 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
40 the result should be negated, and ADD_VARIANT means that the
41 multiplicand should be added to the result. */
42 enum mult_variant {basic_variant, negate_variant, add_variant};
44 bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
45 struct algorithm *, enum mult_variant *, int);
47 /* This structure holds the "cost" of a multiply sequence. The
48 "cost" field holds the total rtx_cost of every operator in the
49 synthetic multiplication sequence, hence cost(a op b) is defined
50 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
51 The "latency" field holds the minimum possible latency of the
52 synthetic multiply, on a hypothetical infinitely parallel CPU.
53 This is the critical path, or the maximum height, of the expression
54 tree which is the sum of rtx_costs on the most expensive path from
55 any leaf to the root. Hence latency(a op b) is defined as zero for
56 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
58 struct mult_cost {
59 short cost; /* Total rtx_cost of the multiplication sequence. */
60 short latency; /* The latency of the multiplication sequence. */
63 /* This macro is used to compare a pointer to a mult_cost against an
64 single integer "rtx_cost" value. This is equivalent to the macro
65 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
66 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
67 || ((X)->cost == (Y) && (X)->latency < (Y)))
69 /* This macro is used to compare two pointers to mult_costs against
70 each other. The macro returns true if X is cheaper than Y.
71 Currently, the cheaper of two mult_costs is the one with the
72 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
73 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
74 || ((X)->cost == (Y)->cost \
75 && (X)->latency < (Y)->latency))
77 /* This structure records a sequence of operations.
78 `ops' is the number of operations recorded.
79 `cost' is their total cost.
80 The operations are stored in `op' and the corresponding
81 logarithms of the integer coefficients in `log'.
83 These are the operations:
84 alg_zero total := 0;
85 alg_m total := multiplicand;
86 alg_shift total := total * coeff
87 alg_add_t_m2 total := total + multiplicand * coeff;
88 alg_sub_t_m2 total := total - multiplicand * coeff;
89 alg_add_factor total := total * coeff + total;
90 alg_sub_factor total := total * coeff - total;
91 alg_add_t2_m total := total * coeff + multiplicand;
92 alg_sub_t2_m total := total * coeff - multiplicand;
94 The first operand must be either alg_zero or alg_m. */
96 struct algorithm
98 struct mult_cost cost;
99 short ops;
100 /* The size of the OP and LOG fields are not directly related to the
101 word size, but the worst-case algorithms will be if we have few
102 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
103 In that case we will generate shift-by-2, add, shift-by-2, add,...,
104 in total wordsize operations. */
105 enum alg_code op[MAX_BITS_PER_WORD];
106 char log[MAX_BITS_PER_WORD];
109 /* The entry for our multiplication cache/hash table. */
110 struct alg_hash_entry {
111 /* The number we are multiplying by. */
112 unsigned HOST_WIDE_INT t;
114 /* The mode in which we are multiplying something by T. */
115 machine_mode mode;
117 /* The best multiplication algorithm for t. */
118 enum alg_code alg;
120 /* The cost of multiplication if ALG_CODE is not alg_impossible.
121 Otherwise, the cost within which multiplication by T is
122 impossible. */
123 struct mult_cost cost;
125 /* Optimized for speed? */
126 bool speed;
129 /* The number of cache/hash entries. */
130 #if HOST_BITS_PER_WIDE_INT == 64
131 #define NUM_ALG_HASH_ENTRIES 1031
132 #else
133 #define NUM_ALG_HASH_ENTRIES 307
134 #endif
136 #define NUM_MODE_INT \
137 (MAX_MODE_INT - MIN_MODE_INT + 1)
138 #define NUM_MODE_PARTIAL_INT \
139 (MIN_MODE_PARTIAL_INT == E_VOIDmode ? 0 \
140 : MAX_MODE_PARTIAL_INT - MIN_MODE_PARTIAL_INT + 1)
141 #define NUM_MODE_VECTOR_INT \
142 (MIN_MODE_VECTOR_INT == E_VOIDmode ? 0 \
143 : MAX_MODE_VECTOR_INT - MIN_MODE_VECTOR_INT + 1)
145 #define NUM_MODE_IP_INT (NUM_MODE_INT + NUM_MODE_PARTIAL_INT)
146 #define NUM_MODE_IPV_INT (NUM_MODE_IP_INT + NUM_MODE_VECTOR_INT)
148 struct expmed_op_cheap {
149 bool cheap[2][NUM_MODE_IPV_INT];
152 struct expmed_op_costs {
153 int cost[2][NUM_MODE_IPV_INT];
156 /* Target-dependent globals. */
157 struct target_expmed {
158 /* Each entry of ALG_HASH caches alg_code for some integer. This is
159 actually a hash table. If we have a collision, that the older
160 entry is kicked out. */
161 struct alg_hash_entry x_alg_hash[NUM_ALG_HASH_ENTRIES];
163 /* True if x_alg_hash might already have been used. */
164 bool x_alg_hash_used_p;
166 /* Nonzero means divides or modulus operations are relatively cheap for
167 powers of two, so don't use branches; emit the operation instead.
168 Usually, this will mean that the MD file will emit non-branch
169 sequences. */
170 struct expmed_op_cheap x_sdiv_pow2_cheap;
171 struct expmed_op_cheap x_smod_pow2_cheap;
173 /* Cost of various pieces of RTL. Note that some of these are indexed by
174 shift count and some by mode. */
175 int x_zero_cost[2];
176 struct expmed_op_costs x_add_cost;
177 struct expmed_op_costs x_neg_cost;
178 struct expmed_op_costs x_shift_cost[MAX_BITS_PER_WORD];
179 struct expmed_op_costs x_shiftadd_cost[MAX_BITS_PER_WORD];
180 struct expmed_op_costs x_shiftsub0_cost[MAX_BITS_PER_WORD];
181 struct expmed_op_costs x_shiftsub1_cost[MAX_BITS_PER_WORD];
182 struct expmed_op_costs x_mul_cost;
183 struct expmed_op_costs x_sdiv_cost;
184 struct expmed_op_costs x_udiv_cost;
185 int x_mul_widen_cost[2][NUM_MODE_INT];
186 int x_mul_highpart_cost[2][NUM_MODE_INT];
188 /* Conversion costs are only defined between two scalar integer modes
189 of different sizes. The first machine mode is the destination mode,
190 and the second is the source mode. */
191 int x_convert_cost[2][NUM_MODE_IP_INT][NUM_MODE_IP_INT];
194 extern struct target_expmed default_target_expmed;
195 #if SWITCHABLE_TARGET
196 extern struct target_expmed *this_target_expmed;
197 #else
198 #define this_target_expmed (&default_target_expmed)
199 #endif
201 /* Return a pointer to the alg_hash_entry at IDX. */
203 static inline struct alg_hash_entry *
204 alg_hash_entry_ptr (int idx)
206 return &this_target_expmed->x_alg_hash[idx];
209 /* Return true if the x_alg_hash field might have been used. */
211 static inline bool
212 alg_hash_used_p (void)
214 return this_target_expmed->x_alg_hash_used_p;
217 /* Set whether the x_alg_hash field might have been used. */
219 static inline void
220 set_alg_hash_used_p (bool usedp)
222 this_target_expmed->x_alg_hash_used_p = usedp;
225 /* Compute an index into the cost arrays by mode class. */
227 static inline int
228 expmed_mode_index (machine_mode mode)
230 switch (GET_MODE_CLASS (mode))
232 case MODE_INT:
233 return mode - MIN_MODE_INT;
234 case MODE_PARTIAL_INT:
235 /* If there are no partial integer modes, help the compiler
236 to figure out this will never happen. See PR59934. */
237 if (MIN_MODE_PARTIAL_INT != VOIDmode)
238 return mode - MIN_MODE_PARTIAL_INT + NUM_MODE_INT;
239 break;
240 case MODE_VECTOR_INT:
241 /* If there are no vector integer modes, help the compiler
242 to figure out this will never happen. See PR59934. */
243 if (MIN_MODE_VECTOR_INT != VOIDmode)
244 return mode - MIN_MODE_VECTOR_INT + NUM_MODE_IP_INT;
245 break;
246 default:
247 break;
249 gcc_unreachable ();
252 /* Return a pointer to a boolean contained in EOC indicating whether
253 a particular operation performed in MODE is cheap when optimizing
254 for SPEED. */
256 static inline bool *
257 expmed_op_cheap_ptr (struct expmed_op_cheap *eoc, bool speed,
258 machine_mode mode)
260 int idx = expmed_mode_index (mode);
261 return &eoc->cheap[speed][idx];
264 /* Return a pointer to a cost contained in COSTS when a particular
265 operation is performed in MODE when optimizing for SPEED. */
267 static inline int *
268 expmed_op_cost_ptr (struct expmed_op_costs *costs, bool speed,
269 machine_mode mode)
271 int idx = expmed_mode_index (mode);
272 return &costs->cost[speed][idx];
275 /* Subroutine of {set_,}sdiv_pow2_cheap. Not to be used otherwise. */
277 static inline bool *
278 sdiv_pow2_cheap_ptr (bool speed, machine_mode mode)
280 return expmed_op_cheap_ptr (&this_target_expmed->x_sdiv_pow2_cheap,
281 speed, mode);
284 /* Set whether a signed division by a power of 2 is cheap in MODE
285 when optimizing for SPEED. */
287 static inline void
288 set_sdiv_pow2_cheap (bool speed, machine_mode mode, bool cheap_p)
290 *sdiv_pow2_cheap_ptr (speed, mode) = cheap_p;
293 /* Return whether a signed division by a power of 2 is cheap in MODE
294 when optimizing for SPEED. */
296 static inline bool
297 sdiv_pow2_cheap (bool speed, machine_mode mode)
299 return *sdiv_pow2_cheap_ptr (speed, mode);
302 /* Subroutine of {set_,}smod_pow2_cheap. Not to be used otherwise. */
304 static inline bool *
305 smod_pow2_cheap_ptr (bool speed, machine_mode mode)
307 return expmed_op_cheap_ptr (&this_target_expmed->x_smod_pow2_cheap,
308 speed, mode);
311 /* Set whether a signed modulo by a power of 2 is CHEAP in MODE when
312 optimizing for SPEED. */
314 static inline void
315 set_smod_pow2_cheap (bool speed, machine_mode mode, bool cheap)
317 *smod_pow2_cheap_ptr (speed, mode) = cheap;
320 /* Return whether a signed modulo by a power of 2 is cheap in MODE
321 when optimizing for SPEED. */
323 static inline bool
324 smod_pow2_cheap (bool speed, machine_mode mode)
326 return *smod_pow2_cheap_ptr (speed, mode);
329 /* Subroutine of {set_,}zero_cost. Not to be used otherwise. */
331 static inline int *
332 zero_cost_ptr (bool speed)
334 return &this_target_expmed->x_zero_cost[speed];
337 /* Set the COST of loading zero when optimizing for SPEED. */
339 static inline void
340 set_zero_cost (bool speed, int cost)
342 *zero_cost_ptr (speed) = cost;
345 /* Return the COST of loading zero when optimizing for SPEED. */
347 static inline int
348 zero_cost (bool speed)
350 return *zero_cost_ptr (speed);
353 /* Subroutine of {set_,}add_cost. Not to be used otherwise. */
355 static inline int *
356 add_cost_ptr (bool speed, machine_mode mode)
358 return expmed_op_cost_ptr (&this_target_expmed->x_add_cost, speed, mode);
361 /* Set the COST of computing an add in MODE when optimizing for SPEED. */
363 static inline void
364 set_add_cost (bool speed, machine_mode mode, int cost)
366 *add_cost_ptr (speed, mode) = cost;
369 /* Return the cost of computing an add in MODE when optimizing for SPEED. */
371 static inline int
372 add_cost (bool speed, machine_mode mode)
374 return *add_cost_ptr (speed, mode);
377 /* Subroutine of {set_,}neg_cost. Not to be used otherwise. */
379 static inline int *
380 neg_cost_ptr (bool speed, machine_mode mode)
382 return expmed_op_cost_ptr (&this_target_expmed->x_neg_cost, speed, mode);
385 /* Set the COST of computing a negation in MODE when optimizing for SPEED. */
387 static inline void
388 set_neg_cost (bool speed, machine_mode mode, int cost)
390 *neg_cost_ptr (speed, mode) = cost;
393 /* Return the cost of computing a negation in MODE when optimizing for
394 SPEED. */
396 static inline int
397 neg_cost (bool speed, machine_mode mode)
399 return *neg_cost_ptr (speed, mode);
402 /* Subroutine of {set_,}shift_cost. Not to be used otherwise. */
404 static inline int *
405 shift_cost_ptr (bool speed, machine_mode mode, int bits)
407 return expmed_op_cost_ptr (&this_target_expmed->x_shift_cost[bits],
408 speed, mode);
411 /* Set the COST of doing a shift in MODE by BITS when optimizing for SPEED. */
413 static inline void
414 set_shift_cost (bool speed, machine_mode mode, int bits, int cost)
416 *shift_cost_ptr (speed, mode, bits) = cost;
419 /* Return the cost of doing a shift in MODE by BITS when optimizing for
420 SPEED. */
422 static inline int
423 shift_cost (bool speed, machine_mode mode, int bits)
425 return *shift_cost_ptr (speed, mode, bits);
428 /* Subroutine of {set_,}shiftadd_cost. Not to be used otherwise. */
430 static inline int *
431 shiftadd_cost_ptr (bool speed, machine_mode mode, int bits)
433 return expmed_op_cost_ptr (&this_target_expmed->x_shiftadd_cost[bits],
434 speed, mode);
437 /* Set the COST of doing a shift in MODE by BITS followed by an add when
438 optimizing for SPEED. */
440 static inline void
441 set_shiftadd_cost (bool speed, machine_mode mode, int bits, int cost)
443 *shiftadd_cost_ptr (speed, mode, bits) = cost;
446 /* Return the cost of doing a shift in MODE by BITS followed by an add
447 when optimizing for SPEED. */
449 static inline int
450 shiftadd_cost (bool speed, machine_mode mode, int bits)
452 return *shiftadd_cost_ptr (speed, mode, bits);
455 /* Subroutine of {set_,}shiftsub0_cost. Not to be used otherwise. */
457 static inline int *
458 shiftsub0_cost_ptr (bool speed, machine_mode mode, int bits)
460 return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub0_cost[bits],
461 speed, mode);
464 /* Set the COST of doing a shift in MODE by BITS and then subtracting a
465 value when optimizing for SPEED. */
467 static inline void
468 set_shiftsub0_cost (bool speed, machine_mode mode, int bits, int cost)
470 *shiftsub0_cost_ptr (speed, mode, bits) = cost;
473 /* Return the cost of doing a shift in MODE by BITS and then subtracting
474 a value when optimizing for SPEED. */
476 static inline int
477 shiftsub0_cost (bool speed, machine_mode mode, int bits)
479 return *shiftsub0_cost_ptr (speed, mode, bits);
482 /* Subroutine of {set_,}shiftsub1_cost. Not to be used otherwise. */
484 static inline int *
485 shiftsub1_cost_ptr (bool speed, machine_mode mode, int bits)
487 return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub1_cost[bits],
488 speed, mode);
491 /* Set the COST of subtracting a shift in MODE by BITS from a value when
492 optimizing for SPEED. */
494 static inline void
495 set_shiftsub1_cost (bool speed, machine_mode mode, int bits, int cost)
497 *shiftsub1_cost_ptr (speed, mode, bits) = cost;
500 /* Return the cost of subtracting a shift in MODE by BITS from a value
501 when optimizing for SPEED. */
503 static inline int
504 shiftsub1_cost (bool speed, machine_mode mode, int bits)
506 return *shiftsub1_cost_ptr (speed, mode, bits);
509 /* Subroutine of {set_,}mul_cost. Not to be used otherwise. */
511 static inline int *
512 mul_cost_ptr (bool speed, machine_mode mode)
514 return expmed_op_cost_ptr (&this_target_expmed->x_mul_cost, speed, mode);
517 /* Set the COST of doing a multiplication in MODE when optimizing for
518 SPEED. */
520 static inline void
521 set_mul_cost (bool speed, machine_mode mode, int cost)
523 *mul_cost_ptr (speed, mode) = cost;
526 /* Return the cost of doing a multiplication in MODE when optimizing
527 for SPEED. */
529 static inline int
530 mul_cost (bool speed, machine_mode mode)
532 return *mul_cost_ptr (speed, mode);
535 /* Subroutine of {set_,}sdiv_cost. Not to be used otherwise. */
537 static inline int *
538 sdiv_cost_ptr (bool speed, machine_mode mode)
540 return expmed_op_cost_ptr (&this_target_expmed->x_sdiv_cost, speed, mode);
543 /* Set the COST of doing a signed division in MODE when optimizing
544 for SPEED. */
546 static inline void
547 set_sdiv_cost (bool speed, machine_mode mode, int cost)
549 *sdiv_cost_ptr (speed, mode) = cost;
552 /* Return the cost of doing a signed division in MODE when optimizing
553 for SPEED. */
555 static inline int
556 sdiv_cost (bool speed, machine_mode mode)
558 return *sdiv_cost_ptr (speed, mode);
561 /* Subroutine of {set_,}udiv_cost. Not to be used otherwise. */
563 static inline int *
564 udiv_cost_ptr (bool speed, machine_mode mode)
566 return expmed_op_cost_ptr (&this_target_expmed->x_udiv_cost, speed, mode);
569 /* Set the COST of doing an unsigned division in MODE when optimizing
570 for SPEED. */
572 static inline void
573 set_udiv_cost (bool speed, machine_mode mode, int cost)
575 *udiv_cost_ptr (speed, mode) = cost;
578 /* Return the cost of doing an unsigned division in MODE when
579 optimizing for SPEED. */
581 static inline int
582 udiv_cost (bool speed, machine_mode mode)
584 return *udiv_cost_ptr (speed, mode);
587 /* Subroutine of {set_,}mul_widen_cost. Not to be used otherwise. */
589 static inline int *
590 mul_widen_cost_ptr (bool speed, machine_mode mode)
592 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
594 return &this_target_expmed->x_mul_widen_cost[speed][mode - MIN_MODE_INT];
597 /* Set the COST for computing a widening multiplication in MODE when
598 optimizing for SPEED. */
600 static inline void
601 set_mul_widen_cost (bool speed, machine_mode mode, int cost)
603 *mul_widen_cost_ptr (speed, mode) = cost;
606 /* Return the cost for computing a widening multiplication in MODE when
607 optimizing for SPEED. */
609 static inline int
610 mul_widen_cost (bool speed, machine_mode mode)
612 return *mul_widen_cost_ptr (speed, mode);
615 /* Subroutine of {set_,}mul_highpart_cost. Not to be used otherwise. */
617 static inline int *
618 mul_highpart_cost_ptr (bool speed, machine_mode mode)
620 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
621 int m = mode - MIN_MODE_INT;
622 gcc_assert (m < NUM_MODE_INT);
624 return &this_target_expmed->x_mul_highpart_cost[speed][m];
627 /* Set the COST for computing the high part of a multiplication in MODE
628 when optimizing for SPEED. */
630 static inline void
631 set_mul_highpart_cost (bool speed, machine_mode mode, int cost)
633 *mul_highpart_cost_ptr (speed, mode) = cost;
636 /* Return the cost for computing the high part of a multiplication in MODE
637 when optimizing for SPEED. */
639 static inline int
640 mul_highpart_cost (bool speed, machine_mode mode)
642 return *mul_highpart_cost_ptr (speed, mode);
645 /* Subroutine of {set_,}convert_cost. Not to be used otherwise. */
647 static inline int *
648 convert_cost_ptr (machine_mode to_mode, machine_mode from_mode,
649 bool speed)
651 int to_idx = expmed_mode_index (to_mode);
652 int from_idx = expmed_mode_index (from_mode);
654 gcc_assert (IN_RANGE (to_idx, 0, NUM_MODE_IP_INT - 1));
655 gcc_assert (IN_RANGE (from_idx, 0, NUM_MODE_IP_INT - 1));
657 return &this_target_expmed->x_convert_cost[speed][to_idx][from_idx];
660 /* Set the COST for converting from FROM_MODE to TO_MODE when optimizing
661 for SPEED. */
663 static inline void
664 set_convert_cost (machine_mode to_mode, machine_mode from_mode,
665 bool speed, int cost)
667 *convert_cost_ptr (to_mode, from_mode, speed) = cost;
670 /* Return the cost for converting from FROM_MODE to TO_MODE when optimizing
671 for SPEED. */
673 static inline int
674 convert_cost (machine_mode to_mode, machine_mode from_mode,
675 bool speed)
677 return *convert_cost_ptr (to_mode, from_mode, speed);
680 extern int mult_by_coeff_cost (HOST_WIDE_INT, machine_mode, bool);
681 extern rtx emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
682 machine_mode mode, machine_mode compare_mode,
683 int unsignedp, rtx x, rtx y, int normalizep,
684 machine_mode target_mode);
686 /* Arguments MODE, RTX: return an rtx for the negation of that value.
687 May emit insns. */
688 extern rtx negate_rtx (machine_mode, rtx);
690 /* Arguments MODE, RTX: return an rtx for the flipping of that value.
691 May emit insns. */
692 extern rtx flip_storage_order (machine_mode, rtx);
694 /* Expand a logical AND operation. */
695 extern rtx expand_and (machine_mode, rtx, rtx, rtx);
697 /* Emit a store-flag operation. */
698 extern rtx emit_store_flag (rtx, enum rtx_code, rtx, rtx, machine_mode,
699 int, int);
701 /* Like emit_store_flag, but always succeeds. */
702 extern rtx emit_store_flag_force (rtx, enum rtx_code, rtx, rtx,
703 machine_mode, int, int);
705 extern void canonicalize_comparison (machine_mode, enum rtx_code *, rtx *);
707 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
708 replace division by D, and put the least significant N bits of the result
709 in *MULTIPLIER_PTR and return the most significant bit. */
710 extern unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
711 int, unsigned HOST_WIDE_INT *,
712 int *, int *);
714 #ifdef TREE_CODE
715 extern rtx expand_variable_shift (enum tree_code, machine_mode,
716 rtx, tree, rtx, int);
717 extern rtx expand_shift (enum tree_code, machine_mode, rtx, poly_int64, rtx,
718 int);
719 #ifdef GCC_OPTABS_H
720 extern rtx expand_divmod (int, enum tree_code, machine_mode, rtx, rtx,
721 rtx, int, enum optab_methods = OPTAB_LIB_WIDEN);
722 #endif
723 #endif
725 extern void store_bit_field (rtx, poly_uint64, poly_uint64,
726 poly_uint64, poly_uint64,
727 machine_mode, rtx, bool);
728 extern rtx extract_bit_field (rtx, poly_uint64, poly_uint64, int, rtx,
729 machine_mode, machine_mode, bool, rtx *);
730 extern rtx extract_low_bits (machine_mode, machine_mode, rtx);
731 extern rtx expand_mult (machine_mode, rtx, rtx, rtx, int, bool = false);
732 extern rtx expand_mult_highpart_adjust (scalar_int_mode, rtx, rtx, rtx,
733 rtx, int);
735 #endif // EXPMED_H