1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987-2021 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Work around tree-optimization/91825. */
22 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
26 #include "coretypes.h"
38 #include "diagnostic-core.h"
39 #include "fold-const.h"
40 #include "stor-layout.h"
44 #include "langhooks.h"
45 #include "tree-vector-builder.h"
47 struct target_expmed default_target_expmed
;
49 struct target_expmed
*this_target_expmed
= &default_target_expmed
;
52 static bool store_integral_bit_field (rtx
, opt_scalar_int_mode
,
53 unsigned HOST_WIDE_INT
,
54 unsigned HOST_WIDE_INT
,
55 poly_uint64
, poly_uint64
,
56 machine_mode
, rtx
, bool, bool);
57 static void store_fixed_bit_field (rtx
, opt_scalar_int_mode
,
58 unsigned HOST_WIDE_INT
,
59 unsigned HOST_WIDE_INT
,
60 poly_uint64
, poly_uint64
,
61 rtx
, scalar_int_mode
, bool);
62 static void store_fixed_bit_field_1 (rtx
, scalar_int_mode
,
63 unsigned HOST_WIDE_INT
,
64 unsigned HOST_WIDE_INT
,
65 rtx
, scalar_int_mode
, bool);
66 static void store_split_bit_field (rtx
, opt_scalar_int_mode
,
67 unsigned HOST_WIDE_INT
,
68 unsigned HOST_WIDE_INT
,
69 poly_uint64
, poly_uint64
,
70 rtx
, scalar_int_mode
, bool);
71 static rtx
extract_integral_bit_field (rtx
, opt_scalar_int_mode
,
72 unsigned HOST_WIDE_INT
,
73 unsigned HOST_WIDE_INT
, int, rtx
,
74 machine_mode
, machine_mode
, bool, bool);
75 static rtx
extract_fixed_bit_field (machine_mode
, rtx
, opt_scalar_int_mode
,
76 unsigned HOST_WIDE_INT
,
77 unsigned HOST_WIDE_INT
, rtx
, int, bool);
78 static rtx
extract_fixed_bit_field_1 (machine_mode
, rtx
, scalar_int_mode
,
79 unsigned HOST_WIDE_INT
,
80 unsigned HOST_WIDE_INT
, rtx
, int, bool);
81 static rtx
lshift_value (machine_mode
, unsigned HOST_WIDE_INT
, int);
82 static rtx
extract_split_bit_field (rtx
, opt_scalar_int_mode
,
83 unsigned HOST_WIDE_INT
,
84 unsigned HOST_WIDE_INT
, int, bool);
85 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, machine_mode
, rtx_code_label
*);
86 static rtx
expand_smod_pow2 (scalar_int_mode
, rtx
, HOST_WIDE_INT
);
87 static rtx
expand_sdiv_pow2 (scalar_int_mode
, rtx
, HOST_WIDE_INT
);
89 /* Return a constant integer mask value of mode MODE with BITSIZE ones
90 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
91 The mask is truncated if necessary to the width of mode MODE. The
92 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
95 mask_rtx (scalar_int_mode mode
, int bitpos
, int bitsize
, bool complement
)
97 return immed_wide_int_const
98 (wi::shifted_mask (bitpos
, bitsize
, complement
,
99 GET_MODE_PRECISION (mode
)), mode
);
102 /* Test whether a value is zero of a power of two. */
103 #define EXACT_POWER_OF_2_OR_ZERO_P(x) \
104 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
106 struct init_expmed_rtl
127 rtx pow2
[MAX_BITS_PER_WORD
];
128 rtx cint
[MAX_BITS_PER_WORD
];
132 init_expmed_one_conv (struct init_expmed_rtl
*all
, scalar_int_mode to_mode
,
133 scalar_int_mode from_mode
, bool speed
)
135 int to_size
, from_size
;
138 to_size
= GET_MODE_PRECISION (to_mode
);
139 from_size
= GET_MODE_PRECISION (from_mode
);
141 /* Most partial integers have a precision less than the "full"
142 integer it requires for storage. In case one doesn't, for
143 comparison purposes here, reduce the bit size by one in that
145 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
146 && pow2p_hwi (to_size
))
148 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
149 && pow2p_hwi (from_size
))
152 /* Assume cost of zero-extend and sign-extend is the same. */
153 which
= (to_size
< from_size
? all
->trunc
: all
->zext
);
155 PUT_MODE (all
->reg
, from_mode
);
156 set_convert_cost (to_mode
, from_mode
, speed
,
157 set_src_cost (which
, to_mode
, speed
));
158 /* Restore all->reg's mode. */
159 PUT_MODE (all
->reg
, to_mode
);
163 init_expmed_one_mode (struct init_expmed_rtl
*all
,
164 machine_mode mode
, int speed
)
166 int m
, n
, mode_bitsize
;
167 machine_mode mode_from
;
169 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
171 PUT_MODE (all
->reg
, mode
);
172 PUT_MODE (all
->plus
, mode
);
173 PUT_MODE (all
->neg
, mode
);
174 PUT_MODE (all
->mult
, mode
);
175 PUT_MODE (all
->sdiv
, mode
);
176 PUT_MODE (all
->udiv
, mode
);
177 PUT_MODE (all
->sdiv_32
, mode
);
178 PUT_MODE (all
->smod_32
, mode
);
179 PUT_MODE (all
->wide_trunc
, mode
);
180 PUT_MODE (all
->shift
, mode
);
181 PUT_MODE (all
->shift_mult
, mode
);
182 PUT_MODE (all
->shift_add
, mode
);
183 PUT_MODE (all
->shift_sub0
, mode
);
184 PUT_MODE (all
->shift_sub1
, mode
);
185 PUT_MODE (all
->zext
, mode
);
186 PUT_MODE (all
->trunc
, mode
);
188 set_add_cost (speed
, mode
, set_src_cost (all
->plus
, mode
, speed
));
189 set_neg_cost (speed
, mode
, set_src_cost (all
->neg
, mode
, speed
));
190 set_mul_cost (speed
, mode
, set_src_cost (all
->mult
, mode
, speed
));
191 set_sdiv_cost (speed
, mode
, set_src_cost (all
->sdiv
, mode
, speed
));
192 set_udiv_cost (speed
, mode
, set_src_cost (all
->udiv
, mode
, speed
));
194 set_sdiv_pow2_cheap (speed
, mode
, (set_src_cost (all
->sdiv_32
, mode
, speed
)
195 <= 2 * add_cost (speed
, mode
)));
196 set_smod_pow2_cheap (speed
, mode
, (set_src_cost (all
->smod_32
, mode
, speed
)
197 <= 4 * add_cost (speed
, mode
)));
199 set_shift_cost (speed
, mode
, 0, 0);
201 int cost
= add_cost (speed
, mode
);
202 set_shiftadd_cost (speed
, mode
, 0, cost
);
203 set_shiftsub0_cost (speed
, mode
, 0, cost
);
204 set_shiftsub1_cost (speed
, mode
, 0, cost
);
207 n
= MIN (MAX_BITS_PER_WORD
, mode_bitsize
);
208 for (m
= 1; m
< n
; m
++)
210 XEXP (all
->shift
, 1) = all
->cint
[m
];
211 XEXP (all
->shift_mult
, 1) = all
->pow2
[m
];
213 set_shift_cost (speed
, mode
, m
, set_src_cost (all
->shift
, mode
, speed
));
214 set_shiftadd_cost (speed
, mode
, m
, set_src_cost (all
->shift_add
, mode
,
216 set_shiftsub0_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub0
, mode
,
218 set_shiftsub1_cost (speed
, mode
, m
, set_src_cost (all
->shift_sub1
, mode
,
222 scalar_int_mode int_mode_to
;
223 if (is_a
<scalar_int_mode
> (mode
, &int_mode_to
))
225 for (mode_from
= MIN_MODE_INT
; mode_from
<= MAX_MODE_INT
;
226 mode_from
= (machine_mode
)(mode_from
+ 1))
227 init_expmed_one_conv (all
, int_mode_to
,
228 as_a
<scalar_int_mode
> (mode_from
), speed
);
230 scalar_int_mode wider_mode
;
231 if (GET_MODE_CLASS (int_mode_to
) == MODE_INT
232 && GET_MODE_WIDER_MODE (int_mode_to
).exists (&wider_mode
))
234 PUT_MODE (all
->reg
, mode
);
235 PUT_MODE (all
->zext
, wider_mode
);
236 PUT_MODE (all
->wide_mult
, wider_mode
);
237 PUT_MODE (all
->wide_lshr
, wider_mode
);
238 XEXP (all
->wide_lshr
, 1)
239 = gen_int_shift_amount (wider_mode
, mode_bitsize
);
241 set_mul_widen_cost (speed
, wider_mode
,
242 set_src_cost (all
->wide_mult
, wider_mode
, speed
));
243 set_mul_highpart_cost (speed
, int_mode_to
,
244 set_src_cost (all
->wide_trunc
,
245 int_mode_to
, speed
));
253 struct init_expmed_rtl all
;
254 machine_mode mode
= QImode
;
257 memset (&all
, 0, sizeof all
);
258 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
260 all
.pow2
[m
] = GEN_INT (HOST_WIDE_INT_1
<< m
);
261 all
.cint
[m
] = GEN_INT (m
);
264 /* Avoid using hard regs in ways which may be unsupported. */
265 all
.reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
266 all
.plus
= gen_rtx_PLUS (mode
, all
.reg
, all
.reg
);
267 all
.neg
= gen_rtx_NEG (mode
, all
.reg
);
268 all
.mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
269 all
.sdiv
= gen_rtx_DIV (mode
, all
.reg
, all
.reg
);
270 all
.udiv
= gen_rtx_UDIV (mode
, all
.reg
, all
.reg
);
271 all
.sdiv_32
= gen_rtx_DIV (mode
, all
.reg
, all
.pow2
[5]);
272 all
.smod_32
= gen_rtx_MOD (mode
, all
.reg
, all
.pow2
[5]);
273 all
.zext
= gen_rtx_ZERO_EXTEND (mode
, all
.reg
);
274 all
.wide_mult
= gen_rtx_MULT (mode
, all
.zext
, all
.zext
);
275 all
.wide_lshr
= gen_rtx_LSHIFTRT (mode
, all
.wide_mult
, all
.reg
);
276 all
.wide_trunc
= gen_rtx_TRUNCATE (mode
, all
.wide_lshr
);
277 all
.shift
= gen_rtx_ASHIFT (mode
, all
.reg
, all
.reg
);
278 all
.shift_mult
= gen_rtx_MULT (mode
, all
.reg
, all
.reg
);
279 all
.shift_add
= gen_rtx_PLUS (mode
, all
.shift_mult
, all
.reg
);
280 all
.shift_sub0
= gen_rtx_MINUS (mode
, all
.shift_mult
, all
.reg
);
281 all
.shift_sub1
= gen_rtx_MINUS (mode
, all
.reg
, all
.shift_mult
);
282 all
.trunc
= gen_rtx_TRUNCATE (mode
, all
.reg
);
284 for (speed
= 0; speed
< 2; speed
++)
286 crtl
->maybe_hot_insn_p
= speed
;
287 set_zero_cost (speed
, set_src_cost (const0_rtx
, mode
, speed
));
289 for (mode
= MIN_MODE_INT
; mode
<= MAX_MODE_INT
;
290 mode
= (machine_mode
)(mode
+ 1))
291 init_expmed_one_mode (&all
, mode
, speed
);
293 if (MIN_MODE_PARTIAL_INT
!= VOIDmode
)
294 for (mode
= MIN_MODE_PARTIAL_INT
; mode
<= MAX_MODE_PARTIAL_INT
;
295 mode
= (machine_mode
)(mode
+ 1))
296 init_expmed_one_mode (&all
, mode
, speed
);
298 if (MIN_MODE_VECTOR_INT
!= VOIDmode
)
299 for (mode
= MIN_MODE_VECTOR_INT
; mode
<= MAX_MODE_VECTOR_INT
;
300 mode
= (machine_mode
)(mode
+ 1))
301 init_expmed_one_mode (&all
, mode
, speed
);
304 if (alg_hash_used_p ())
306 struct alg_hash_entry
*p
= alg_hash_entry_ptr (0);
307 memset (p
, 0, sizeof (*p
) * NUM_ALG_HASH_ENTRIES
);
310 set_alg_hash_used_p (true);
311 default_rtl_profile ();
313 ggc_free (all
.trunc
);
314 ggc_free (all
.shift_sub1
);
315 ggc_free (all
.shift_sub0
);
316 ggc_free (all
.shift_add
);
317 ggc_free (all
.shift_mult
);
318 ggc_free (all
.shift
);
319 ggc_free (all
.wide_trunc
);
320 ggc_free (all
.wide_lshr
);
321 ggc_free (all
.wide_mult
);
323 ggc_free (all
.smod_32
);
324 ggc_free (all
.sdiv_32
);
333 /* Return an rtx representing minus the value of X.
334 MODE is the intended mode of the result,
335 useful if X is a CONST_INT. */
338 negate_rtx (machine_mode mode
, rtx x
)
340 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
343 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
348 /* Whether reverse storage order is supported on the target. */
349 static int reverse_storage_order_supported
= -1;
351 /* Check whether reverse storage order is supported on the target. */
354 check_reverse_storage_order_support (void)
356 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
358 reverse_storage_order_supported
= 0;
359 sorry ("reverse scalar storage order");
362 reverse_storage_order_supported
= 1;
365 /* Whether reverse FP storage order is supported on the target. */
366 static int reverse_float_storage_order_supported
= -1;
368 /* Check whether reverse FP storage order is supported on the target. */
371 check_reverse_float_storage_order_support (void)
373 if (FLOAT_WORDS_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
375 reverse_float_storage_order_supported
= 0;
376 sorry ("reverse floating-point scalar storage order");
379 reverse_float_storage_order_supported
= 1;
382 /* Return an rtx representing value of X with reverse storage order.
383 MODE is the intended mode of the result,
384 useful if X is a CONST_INT. */
387 flip_storage_order (machine_mode mode
, rtx x
)
389 scalar_int_mode int_mode
;
395 if (COMPLEX_MODE_P (mode
))
397 rtx real
= read_complex_part (x
, false);
398 rtx imag
= read_complex_part (x
, true);
400 real
= flip_storage_order (GET_MODE_INNER (mode
), real
);
401 imag
= flip_storage_order (GET_MODE_INNER (mode
), imag
);
403 return gen_rtx_CONCAT (mode
, real
, imag
);
406 if (__builtin_expect (reverse_storage_order_supported
< 0, 0))
407 check_reverse_storage_order_support ();
409 if (!is_a
<scalar_int_mode
> (mode
, &int_mode
))
411 if (FLOAT_MODE_P (mode
)
412 && __builtin_expect (reverse_float_storage_order_supported
< 0, 0))
413 check_reverse_float_storage_order_support ();
415 if (!int_mode_for_size (GET_MODE_PRECISION (mode
), 0).exists (&int_mode
)
416 || !targetm
.scalar_mode_supported_p (int_mode
))
418 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode
));
421 x
= gen_lowpart (int_mode
, x
);
424 result
= simplify_unary_operation (BSWAP
, int_mode
, x
, int_mode
);
426 result
= expand_unop (int_mode
, bswap_optab
, x
, NULL_RTX
, 1);
428 if (int_mode
!= mode
)
429 result
= gen_lowpart (mode
, result
);
434 /* If MODE is set, adjust bitfield memory MEM so that it points to the
435 first unit of mode MODE that contains a bitfield of size BITSIZE at
436 bit position BITNUM. If MODE is not set, return a BLKmode reference
437 to every byte in the bitfield. Set *NEW_BITNUM to the bit position
438 of the field within the new memory. */
441 narrow_bit_field_mem (rtx mem
, opt_scalar_int_mode mode
,
442 unsigned HOST_WIDE_INT bitsize
,
443 unsigned HOST_WIDE_INT bitnum
,
444 unsigned HOST_WIDE_INT
*new_bitnum
)
446 scalar_int_mode imode
;
447 if (mode
.exists (&imode
))
449 unsigned int unit
= GET_MODE_BITSIZE (imode
);
450 *new_bitnum
= bitnum
% unit
;
451 HOST_WIDE_INT offset
= (bitnum
- *new_bitnum
) / BITS_PER_UNIT
;
452 return adjust_bitfield_address (mem
, imode
, offset
);
456 *new_bitnum
= bitnum
% BITS_PER_UNIT
;
457 HOST_WIDE_INT offset
= bitnum
/ BITS_PER_UNIT
;
458 HOST_WIDE_INT size
= ((*new_bitnum
+ bitsize
+ BITS_PER_UNIT
- 1)
460 return adjust_bitfield_address_size (mem
, BLKmode
, offset
, size
);
464 /* The caller wants to perform insertion or extraction PATTERN on a
465 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
466 BITREGION_START and BITREGION_END are as for store_bit_field
467 and FIELDMODE is the natural mode of the field.
469 Search for a mode that is compatible with the memory access
470 restrictions and (where applicable) with a register insertion or
471 extraction. Return the new memory on success, storing the adjusted
472 bit position in *NEW_BITNUM. Return null otherwise. */
475 adjust_bit_field_mem_for_reg (enum extraction_pattern pattern
,
476 rtx op0
, HOST_WIDE_INT bitsize
,
477 HOST_WIDE_INT bitnum
,
478 poly_uint64 bitregion_start
,
479 poly_uint64 bitregion_end
,
480 machine_mode fieldmode
,
481 unsigned HOST_WIDE_INT
*new_bitnum
)
483 bit_field_mode_iterator
iter (bitsize
, bitnum
, bitregion_start
,
484 bitregion_end
, MEM_ALIGN (op0
),
485 MEM_VOLATILE_P (op0
));
486 scalar_int_mode best_mode
;
487 if (iter
.next_mode (&best_mode
))
489 /* We can use a memory in BEST_MODE. See whether this is true for
490 any wider modes. All other things being equal, we prefer to
491 use the widest mode possible because it tends to expose more
492 CSE opportunities. */
493 if (!iter
.prefer_smaller_modes ())
495 /* Limit the search to the mode required by the corresponding
496 register insertion or extraction instruction, if any. */
497 scalar_int_mode limit_mode
= word_mode
;
498 extraction_insn insn
;
499 if (get_best_reg_extraction_insn (&insn
, pattern
,
500 GET_MODE_BITSIZE (best_mode
),
502 limit_mode
= insn
.field_mode
;
504 scalar_int_mode wider_mode
;
505 while (iter
.next_mode (&wider_mode
)
506 && GET_MODE_SIZE (wider_mode
) <= GET_MODE_SIZE (limit_mode
))
507 best_mode
= wider_mode
;
509 return narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
,
515 /* Return true if a bitfield of size BITSIZE at bit number BITNUM within
516 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
517 offset is then BITNUM / BITS_PER_UNIT. */
520 lowpart_bit_field_p (poly_uint64 bitnum
, poly_uint64 bitsize
,
521 machine_mode struct_mode
)
523 poly_uint64 regsize
= REGMODE_NATURAL_SIZE (struct_mode
);
524 if (BYTES_BIG_ENDIAN
)
525 return (multiple_p (bitnum
, BITS_PER_UNIT
)
526 && (known_eq (bitnum
+ bitsize
, GET_MODE_BITSIZE (struct_mode
))
527 || multiple_p (bitnum
+ bitsize
,
528 regsize
* BITS_PER_UNIT
)));
530 return multiple_p (bitnum
, regsize
* BITS_PER_UNIT
);
533 /* Return true if -fstrict-volatile-bitfields applies to an access of OP0
534 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
535 Return false if the access would touch memory outside the range
536 BITREGION_START to BITREGION_END for conformance to the C++ memory
540 strict_volatile_bitfield_p (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
541 unsigned HOST_WIDE_INT bitnum
,
542 scalar_int_mode fieldmode
,
543 poly_uint64 bitregion_start
,
544 poly_uint64 bitregion_end
)
546 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (fieldmode
);
548 /* -fstrict-volatile-bitfields must be enabled and we must have a
551 || !MEM_VOLATILE_P (op0
)
552 || flag_strict_volatile_bitfields
<= 0)
555 /* The bit size must not be larger than the field mode, and
556 the field mode must not be larger than a word. */
557 if (bitsize
> modesize
|| modesize
> BITS_PER_WORD
)
560 /* Check for cases of unaligned fields that must be split. */
561 if (bitnum
% modesize
+ bitsize
> modesize
)
564 /* The memory must be sufficiently aligned for a MODESIZE access.
565 This condition guarantees, that the memory access will not
566 touch anything after the end of the structure. */
567 if (MEM_ALIGN (op0
) < modesize
)
570 /* Check for cases where the C++ memory model applies. */
571 if (maybe_ne (bitregion_end
, 0U)
572 && (maybe_lt (bitnum
- bitnum
% modesize
, bitregion_start
)
573 || maybe_gt (bitnum
- bitnum
% modesize
+ modesize
- 1,
580 /* Return true if OP is a memory and if a bitfield of size BITSIZE at
581 bit number BITNUM can be treated as a simple value of mode MODE.
582 Store the byte offset in *BYTENUM if so. */
585 simple_mem_bitfield_p (rtx op0
, poly_uint64 bitsize
, poly_uint64 bitnum
,
586 machine_mode mode
, poly_uint64
*bytenum
)
589 && multiple_p (bitnum
, BITS_PER_UNIT
, bytenum
)
590 && known_eq (bitsize
, GET_MODE_BITSIZE (mode
))
591 && (!targetm
.slow_unaligned_access (mode
, MEM_ALIGN (op0
))
592 || (multiple_p (bitnum
, GET_MODE_ALIGNMENT (mode
))
593 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode
))));
596 /* Try to use instruction INSV to store VALUE into a field of OP0.
597 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
598 BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
599 are as for store_bit_field. */
602 store_bit_field_using_insv (const extraction_insn
*insv
, rtx op0
,
603 opt_scalar_int_mode op0_mode
,
604 unsigned HOST_WIDE_INT bitsize
,
605 unsigned HOST_WIDE_INT bitnum
,
606 rtx value
, scalar_int_mode value_mode
)
608 class expand_operand ops
[4];
611 rtx_insn
*last
= get_last_insn ();
612 bool copy_back
= false;
614 scalar_int_mode op_mode
= insv
->field_mode
;
615 unsigned int unit
= GET_MODE_BITSIZE (op_mode
);
616 if (bitsize
== 0 || bitsize
> unit
)
620 /* Get a reference to the first byte of the field. */
621 xop0
= narrow_bit_field_mem (xop0
, insv
->struct_mode
, bitsize
, bitnum
,
625 /* Convert from counting within OP0 to counting in OP_MODE. */
626 if (BYTES_BIG_ENDIAN
)
627 bitnum
+= unit
- GET_MODE_BITSIZE (op0_mode
.require ());
629 /* If xop0 is a register, we need it in OP_MODE
630 to make it acceptable to the format of insv. */
631 if (GET_CODE (xop0
) == SUBREG
)
633 /* If such a SUBREG can't be created, give up. */
634 if (!validate_subreg (op_mode
, GET_MODE (SUBREG_REG (xop0
)),
635 SUBREG_REG (xop0
), SUBREG_BYTE (xop0
)))
637 /* We can't just change the mode, because this might clobber op0,
638 and we will need the original value of op0 if insv fails. */
639 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
),
642 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
643 xop0
= gen_lowpart_SUBREG (op_mode
, xop0
);
646 /* If the destination is a paradoxical subreg such that we need a
647 truncate to the inner mode, perform the insertion on a temporary and
648 truncate the result to the original destination. Note that we can't
649 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
650 X) 0)) is (reg:N X). */
651 if (GET_CODE (xop0
) == SUBREG
652 && REG_P (SUBREG_REG (xop0
))
653 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0
)),
656 rtx tem
= gen_reg_rtx (op_mode
);
657 emit_move_insn (tem
, xop0
);
662 /* There are similar overflow check at the start of store_bit_field_1,
663 but that only check the situation where the field lies completely
664 outside the register, while there do have situation where the field
665 lies partialy in the register, we need to adjust bitsize for this
666 partial overflow situation. Without this fix, pr48335-2.c on big-endian
667 will broken on those arch support bit insert instruction, like arm, aarch64
669 if (bitsize
+ bitnum
> unit
&& bitnum
< unit
)
671 warning (OPT_Wextra
, "write of %wu-bit data outside the bound of "
672 "destination object, data truncated into %wu-bit",
673 bitsize
, unit
- bitnum
);
674 bitsize
= unit
- bitnum
;
677 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
678 "backwards" from the size of the unit we are inserting into.
679 Otherwise, we count bits from the most significant on a
680 BYTES/BITS_BIG_ENDIAN machine. */
682 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
683 bitnum
= unit
- bitsize
- bitnum
;
685 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
687 if (value_mode
!= op_mode
)
689 if (GET_MODE_BITSIZE (value_mode
) >= bitsize
)
692 /* Optimization: Don't bother really extending VALUE
693 if it has all the bits we will actually use. However,
694 if we must narrow it, be sure we do it correctly. */
696 if (GET_MODE_SIZE (value_mode
) < GET_MODE_SIZE (op_mode
))
698 tmp
= simplify_subreg (op_mode
, value1
, value_mode
, 0);
700 tmp
= simplify_gen_subreg (op_mode
,
701 force_reg (value_mode
, value1
),
706 tmp
= gen_lowpart_if_possible (op_mode
, value1
);
708 tmp
= gen_lowpart (op_mode
, force_reg (value_mode
, value1
));
712 else if (CONST_INT_P (value
))
713 value1
= gen_int_mode (INTVAL (value
), op_mode
);
715 /* Parse phase is supposed to make VALUE's data type
716 match that of the component reference, which is a type
717 at least as wide as the field; so VALUE should have
718 a mode that corresponds to that type. */
719 gcc_assert (CONSTANT_P (value
));
722 create_fixed_operand (&ops
[0], xop0
);
723 create_integer_operand (&ops
[1], bitsize
);
724 create_integer_operand (&ops
[2], bitnum
);
725 create_input_operand (&ops
[3], value1
, op_mode
);
726 if (maybe_expand_insn (insv
->icode
, 4, ops
))
729 convert_move (op0
, xop0
, true);
732 delete_insns_since (last
);
736 /* A subroutine of store_bit_field, with the same arguments. Return true
737 if the operation could be implemented.
739 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
740 no other way of implementing the operation. If FALLBACK_P is false,
741 return false instead. */
744 store_bit_field_1 (rtx str_rtx
, poly_uint64 bitsize
, poly_uint64 bitnum
,
745 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
746 machine_mode fieldmode
,
747 rtx value
, bool reverse
, bool fallback_p
)
751 while (GET_CODE (op0
) == SUBREG
)
753 bitnum
+= subreg_memory_offset (op0
) * BITS_PER_UNIT
;
754 op0
= SUBREG_REG (op0
);
757 /* No action is needed if the target is a register and if the field
758 lies completely outside that register. This can occur if the source
759 code contains an out-of-bounds access to a small array. */
760 if (REG_P (op0
) && known_ge (bitnum
, GET_MODE_BITSIZE (GET_MODE (op0
))))
763 /* Use vec_set patterns for inserting parts of vectors whenever
765 machine_mode outermode
= GET_MODE (op0
);
766 scalar_mode innermode
= GET_MODE_INNER (outermode
);
768 if (VECTOR_MODE_P (outermode
)
770 && optab_handler (vec_set_optab
, outermode
) != CODE_FOR_nothing
771 && fieldmode
== innermode
772 && known_eq (bitsize
, GET_MODE_BITSIZE (innermode
))
773 && multiple_p (bitnum
, GET_MODE_BITSIZE (innermode
), &pos
))
775 class expand_operand ops
[3];
776 enum insn_code icode
= optab_handler (vec_set_optab
, outermode
);
778 create_fixed_operand (&ops
[0], op0
);
779 create_input_operand (&ops
[1], value
, innermode
);
780 create_integer_operand (&ops
[2], pos
);
781 if (maybe_expand_insn (icode
, 3, ops
))
785 /* If the target is a register, overwriting the entire object, or storing
786 a full-word or multi-word field can be done with just a SUBREG. */
788 && known_eq (bitsize
, GET_MODE_BITSIZE (fieldmode
)))
790 /* Use the subreg machinery either to narrow OP0 to the required
791 words or to cope with mode punning between equal-sized modes.
792 In the latter case, use subreg on the rhs side, not lhs. */
794 HOST_WIDE_INT regnum
;
795 poly_uint64 regsize
= REGMODE_NATURAL_SIZE (GET_MODE (op0
));
796 if (known_eq (bitnum
, 0U)
797 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (op0
))))
799 sub
= simplify_gen_subreg (GET_MODE (op0
), value
, fieldmode
, 0);
803 sub
= flip_storage_order (GET_MODE (op0
), sub
);
804 emit_move_insn (op0
, sub
);
808 else if (constant_multiple_p (bitnum
, regsize
* BITS_PER_UNIT
, ®num
)
809 && multiple_p (bitsize
, regsize
* BITS_PER_UNIT
))
811 sub
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
816 value
= flip_storage_order (fieldmode
, value
);
817 emit_move_insn (sub
, value
);
823 /* If the target is memory, storing any naturally aligned field can be
824 done with a simple store. For targets that support fast unaligned
825 memory, any naturally sized, unit aligned field can be done directly. */
827 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, fieldmode
, &bytenum
))
829 op0
= adjust_bitfield_address (op0
, fieldmode
, bytenum
);
831 value
= flip_storage_order (fieldmode
, value
);
832 emit_move_insn (op0
, value
);
836 /* It's possible we'll need to handle other cases here for
837 polynomial bitnum and bitsize. */
839 /* From here on we need to be looking at a fixed-size insertion. */
840 unsigned HOST_WIDE_INT ibitsize
= bitsize
.to_constant ();
841 unsigned HOST_WIDE_INT ibitnum
= bitnum
.to_constant ();
843 /* Make sure we are playing with integral modes. Pun with subregs
844 if we aren't. This must come after the entire register case above,
845 since that case is valid for any mode. The following cases are only
846 valid for integral modes. */
847 opt_scalar_int_mode op0_mode
= int_mode_for_mode (GET_MODE (op0
));
848 scalar_int_mode imode
;
849 if (!op0_mode
.exists (&imode
) || imode
!= GET_MODE (op0
))
852 op0
= adjust_bitfield_address_size (op0
, op0_mode
.else_blk (),
854 else if (!op0_mode
.exists ())
857 && known_eq (ibitsize
, GET_MODE_BITSIZE (GET_MODE (op0
)))
861 value
= adjust_address (value
, GET_MODE (op0
), 0);
862 emit_move_insn (op0
, value
);
867 rtx temp
= assign_stack_temp (GET_MODE (op0
),
868 GET_MODE_SIZE (GET_MODE (op0
)));
869 emit_move_insn (temp
, op0
);
870 store_bit_field_1 (temp
, bitsize
, bitnum
, 0, 0, fieldmode
, value
,
871 reverse
, fallback_p
);
872 emit_move_insn (op0
, temp
);
876 op0
= gen_lowpart (op0_mode
.require (), op0
);
879 return store_integral_bit_field (op0
, op0_mode
, ibitsize
, ibitnum
,
880 bitregion_start
, bitregion_end
,
881 fieldmode
, value
, reverse
, fallback_p
);
884 /* Subroutine of store_bit_field_1, with the same arguments, except
885 that BITSIZE and BITNUM are constant. Handle cases specific to
886 integral modes. If OP0_MODE is defined, it is the mode of OP0,
887 otherwise OP0 is a BLKmode MEM. */
890 store_integral_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
891 unsigned HOST_WIDE_INT bitsize
,
892 unsigned HOST_WIDE_INT bitnum
,
893 poly_uint64 bitregion_start
,
894 poly_uint64 bitregion_end
,
895 machine_mode fieldmode
,
896 rtx value
, bool reverse
, bool fallback_p
)
898 /* Storing an lsb-aligned field in a register
899 can be done with a movstrict instruction. */
903 && lowpart_bit_field_p (bitnum
, bitsize
, op0_mode
.require ())
904 && known_eq (bitsize
, GET_MODE_BITSIZE (fieldmode
))
905 && optab_handler (movstrict_optab
, fieldmode
) != CODE_FOR_nothing
)
907 class expand_operand ops
[2];
908 enum insn_code icode
= optab_handler (movstrict_optab
, fieldmode
);
910 unsigned HOST_WIDE_INT subreg_off
;
912 if (GET_CODE (arg0
) == SUBREG
)
914 /* Else we've got some float mode source being extracted into
915 a different float mode destination -- this combination of
916 subregs results in Severe Tire Damage. */
917 gcc_assert (GET_MODE (SUBREG_REG (arg0
)) == fieldmode
918 || GET_MODE_CLASS (fieldmode
) == MODE_INT
919 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
920 arg0
= SUBREG_REG (arg0
);
923 subreg_off
= bitnum
/ BITS_PER_UNIT
;
924 if (validate_subreg (fieldmode
, GET_MODE (arg0
), arg0
, subreg_off
)
925 /* STRICT_LOW_PART must have a non-paradoxical subreg as
927 && !paradoxical_subreg_p (fieldmode
, GET_MODE (arg0
)))
929 arg0
= gen_rtx_SUBREG (fieldmode
, arg0
, subreg_off
);
931 create_fixed_operand (&ops
[0], arg0
);
932 /* Shrink the source operand to FIELDMODE. */
933 create_convert_operand_to (&ops
[1], value
, fieldmode
, false);
934 if (maybe_expand_insn (icode
, 2, ops
))
939 /* Handle fields bigger than a word. */
941 if (bitsize
> BITS_PER_WORD
)
943 /* Here we transfer the words of the field
944 in the order least significant first.
945 This is because the most significant word is the one which may
947 However, only do that if the value is not BLKmode. */
949 const bool backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
950 const int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
953 /* This is the mode we must force value to, so that there will be enough
954 subwords to extract. Note that fieldmode will often (always?) be
955 VOIDmode, because that is what store_field uses to indicate that this
956 is a bit field, but passing VOIDmode to operand_subword_force
959 The mode must be fixed-size, since insertions into variable-sized
960 objects are meant to be handled before calling this function. */
961 fixed_size_mode value_mode
= as_a
<fixed_size_mode
> (GET_MODE (value
));
962 if (value_mode
== VOIDmode
)
963 value_mode
= smallest_int_mode_for_size (nwords
* BITS_PER_WORD
);
965 last
= get_last_insn ();
966 for (int i
= 0; i
< nwords
; i
++)
968 /* Number of bits to be stored in this iteration, i.e. BITS_PER_WORD
969 except maybe for the last iteration. */
970 const unsigned HOST_WIDE_INT new_bitsize
971 = MIN (BITS_PER_WORD
, bitsize
- i
* BITS_PER_WORD
);
972 /* Bit offset from the starting bit number in the target. */
973 const unsigned int bit_offset
974 = backwards
^ reverse
975 ? MAX ((int) bitsize
- (i
+ 1) * BITS_PER_WORD
, 0)
977 /* Starting word number in the value. */
978 const unsigned int wordnum
980 ? GET_MODE_SIZE (value_mode
) / UNITS_PER_WORD
- (i
+ 1)
982 /* The chunk of the value in word_mode. We use bit-field extraction
983 in BLKmode to handle unaligned memory references and to shift the
984 last chunk right on big-endian machines if need be. */
986 = fieldmode
== BLKmode
987 ? extract_bit_field (value
, new_bitsize
, wordnum
* BITS_PER_WORD
,
988 1, NULL_RTX
, word_mode
, word_mode
, false,
990 : operand_subword_force (value
, wordnum
, value_mode
);
992 if (!store_bit_field_1 (op0
, new_bitsize
,
994 bitregion_start
, bitregion_end
,
996 value_word
, reverse
, fallback_p
))
998 delete_insns_since (last
);
1005 /* If VALUE has a floating-point or complex mode, access it as an
1006 integer of the corresponding size. This can occur on a machine
1007 with 64 bit registers that uses SFmode for float. It can also
1008 occur for unaligned float or complex fields. */
1009 rtx orig_value
= value
;
1010 scalar_int_mode value_mode
;
1011 if (GET_MODE (value
) == VOIDmode
)
1012 /* By this point we've dealt with values that are bigger than a word,
1013 so word_mode is a conservatively correct choice. */
1014 value_mode
= word_mode
;
1015 else if (!is_a
<scalar_int_mode
> (GET_MODE (value
), &value_mode
))
1017 value_mode
= int_mode_for_mode (GET_MODE (value
)).require ();
1018 value
= gen_reg_rtx (value_mode
);
1019 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
1022 /* If OP0 is a multi-word register, narrow it to the affected word.
1023 If the region spans two words, defer to store_split_bit_field.
1024 Don't do this if op0 is a single hard register wider than word
1025 such as a float or vector register. */
1027 && GET_MODE_SIZE (op0_mode
.require ()) > UNITS_PER_WORD
1029 || !HARD_REGISTER_P (op0
)
1030 || hard_regno_nregs (REGNO (op0
), op0_mode
.require ()) != 1))
1032 if (bitnum
% BITS_PER_WORD
+ bitsize
> BITS_PER_WORD
)
1037 store_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
1038 bitregion_start
, bitregion_end
,
1039 value
, value_mode
, reverse
);
1042 op0
= simplify_gen_subreg (word_mode
, op0
, op0_mode
.require (),
1043 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
1045 op0_mode
= word_mode
;
1046 bitnum
%= BITS_PER_WORD
;
1049 /* From here on we can assume that the field to be stored in fits
1050 within a word. If the destination is a register, it too fits
1053 extraction_insn insv
;
1056 && get_best_reg_extraction_insn (&insv
, EP_insv
,
1057 GET_MODE_BITSIZE (op0_mode
.require ()),
1059 && store_bit_field_using_insv (&insv
, op0
, op0_mode
,
1060 bitsize
, bitnum
, value
, value_mode
))
1063 /* If OP0 is a memory, try copying it to a register and seeing if a
1064 cheap register alternative is available. */
1065 if (MEM_P (op0
) && !reverse
)
1067 if (get_best_mem_extraction_insn (&insv
, EP_insv
, bitsize
, bitnum
,
1069 && store_bit_field_using_insv (&insv
, op0
, op0_mode
,
1070 bitsize
, bitnum
, value
, value_mode
))
1073 rtx_insn
*last
= get_last_insn ();
1075 /* Try loading part of OP0 into a register, inserting the bitfield
1076 into that, and then copying the result back to OP0. */
1077 unsigned HOST_WIDE_INT bitpos
;
1078 rtx xop0
= adjust_bit_field_mem_for_reg (EP_insv
, op0
, bitsize
, bitnum
,
1079 bitregion_start
, bitregion_end
,
1080 fieldmode
, &bitpos
);
1083 rtx tempreg
= copy_to_reg (xop0
);
1084 if (store_bit_field_1 (tempreg
, bitsize
, bitpos
,
1085 bitregion_start
, bitregion_end
,
1086 fieldmode
, orig_value
, reverse
, false))
1088 emit_move_insn (xop0
, tempreg
);
1091 delete_insns_since (last
);
1098 store_fixed_bit_field (op0
, op0_mode
, bitsize
, bitnum
, bitregion_start
,
1099 bitregion_end
, value
, value_mode
, reverse
);
1103 /* Generate code to store value from rtx VALUE
1104 into a bit-field within structure STR_RTX
1105 containing BITSIZE bits starting at bit BITNUM.
1107 BITREGION_START is bitpos of the first bitfield in this region.
1108 BITREGION_END is the bitpos of the ending bitfield in this region.
1109 These two fields are 0, if the C++ memory model does not apply,
1110 or we are not interested in keeping track of bitfield regions.
1112 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1114 If REVERSE is true, the store is to be done in reverse order. */
1117 store_bit_field (rtx str_rtx
, poly_uint64 bitsize
, poly_uint64 bitnum
,
1118 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
1119 machine_mode fieldmode
,
1120 rtx value
, bool reverse
)
1122 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
1123 unsigned HOST_WIDE_INT ibitsize
= 0, ibitnum
= 0;
1124 scalar_int_mode int_mode
;
1125 if (bitsize
.is_constant (&ibitsize
)
1126 && bitnum
.is_constant (&ibitnum
)
1127 && is_a
<scalar_int_mode
> (fieldmode
, &int_mode
)
1128 && strict_volatile_bitfield_p (str_rtx
, ibitsize
, ibitnum
, int_mode
,
1129 bitregion_start
, bitregion_end
))
1131 /* Storing of a full word can be done with a simple store.
1132 We know here that the field can be accessed with one single
1133 instruction. For targets that support unaligned memory,
1134 an unaligned access may be necessary. */
1135 if (ibitsize
== GET_MODE_BITSIZE (int_mode
))
1137 str_rtx
= adjust_bitfield_address (str_rtx
, int_mode
,
1138 ibitnum
/ BITS_PER_UNIT
);
1140 value
= flip_storage_order (int_mode
, value
);
1141 gcc_assert (ibitnum
% BITS_PER_UNIT
== 0);
1142 emit_move_insn (str_rtx
, value
);
1148 str_rtx
= narrow_bit_field_mem (str_rtx
, int_mode
, ibitsize
,
1150 gcc_assert (ibitnum
+ ibitsize
<= GET_MODE_BITSIZE (int_mode
));
1151 temp
= copy_to_reg (str_rtx
);
1152 if (!store_bit_field_1 (temp
, ibitsize
, ibitnum
, 0, 0,
1153 int_mode
, value
, reverse
, true))
1156 emit_move_insn (str_rtx
, temp
);
1162 /* Under the C++0x memory model, we must not touch bits outside the
1163 bit region. Adjust the address to start at the beginning of the
1165 if (MEM_P (str_rtx
) && maybe_ne (bitregion_start
, 0U))
1167 scalar_int_mode best_mode
;
1168 machine_mode addr_mode
= VOIDmode
;
1170 poly_uint64 offset
= exact_div (bitregion_start
, BITS_PER_UNIT
);
1171 bitnum
-= bitregion_start
;
1172 poly_int64 size
= bits_to_bytes_round_up (bitnum
+ bitsize
);
1173 bitregion_end
-= bitregion_start
;
1174 bitregion_start
= 0;
1175 if (bitsize
.is_constant (&ibitsize
)
1176 && bitnum
.is_constant (&ibitnum
)
1177 && get_best_mode (ibitsize
, ibitnum
,
1178 bitregion_start
, bitregion_end
,
1179 MEM_ALIGN (str_rtx
), INT_MAX
,
1180 MEM_VOLATILE_P (str_rtx
), &best_mode
))
1181 addr_mode
= best_mode
;
1182 str_rtx
= adjust_bitfield_address_size (str_rtx
, addr_mode
,
1186 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
,
1187 bitregion_start
, bitregion_end
,
1188 fieldmode
, value
, reverse
, true))
1192 /* Use shifts and boolean operations to store VALUE into a bit field of
1193 width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
1194 it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
1197 If REVERSE is true, the store is to be done in reverse order. */
1200 store_fixed_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
1201 unsigned HOST_WIDE_INT bitsize
,
1202 unsigned HOST_WIDE_INT bitnum
,
1203 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
1204 rtx value
, scalar_int_mode value_mode
, bool reverse
)
1206 /* There is a case not handled here:
1207 a structure with a known alignment of just a halfword
1208 and a field split across two aligned halfwords within the structure.
1209 Or likewise a structure with a known alignment of just a byte
1210 and a field split across two bytes.
1211 Such cases are not supposed to be able to occur. */
1213 scalar_int_mode best_mode
;
1216 unsigned int max_bitsize
= BITS_PER_WORD
;
1217 scalar_int_mode imode
;
1218 if (op0_mode
.exists (&imode
) && GET_MODE_BITSIZE (imode
) < max_bitsize
)
1219 max_bitsize
= GET_MODE_BITSIZE (imode
);
1221 if (!get_best_mode (bitsize
, bitnum
, bitregion_start
, bitregion_end
,
1222 MEM_ALIGN (op0
), max_bitsize
, MEM_VOLATILE_P (op0
),
1225 /* The only way this should occur is if the field spans word
1227 store_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
1228 bitregion_start
, bitregion_end
,
1229 value
, value_mode
, reverse
);
1233 op0
= narrow_bit_field_mem (op0
, best_mode
, bitsize
, bitnum
, &bitnum
);
1236 best_mode
= op0_mode
.require ();
1238 store_fixed_bit_field_1 (op0
, best_mode
, bitsize
, bitnum
,
1239 value
, value_mode
, reverse
);
1242 /* Helper function for store_fixed_bit_field, stores
1243 the bit field always using MODE, which is the mode of OP0. The other
1244 arguments are as for store_fixed_bit_field. */
1247 store_fixed_bit_field_1 (rtx op0
, scalar_int_mode mode
,
1248 unsigned HOST_WIDE_INT bitsize
,
1249 unsigned HOST_WIDE_INT bitnum
,
1250 rtx value
, scalar_int_mode value_mode
, bool reverse
)
1256 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1257 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
1259 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
1260 /* BITNUM is the distance between our msb
1261 and that of the containing datum.
1262 Convert it to the distance from the lsb. */
1263 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
1265 /* Now BITNUM is always the distance between our lsb
1268 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
1269 we must first convert its mode to MODE. */
1271 if (CONST_INT_P (value
))
1273 unsigned HOST_WIDE_INT v
= UINTVAL (value
);
1275 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1276 v
&= (HOST_WIDE_INT_1U
<< bitsize
) - 1;
1280 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
1281 && v
== (HOST_WIDE_INT_1U
<< bitsize
) - 1)
1282 || (bitsize
== HOST_BITS_PER_WIDE_INT
1283 && v
== HOST_WIDE_INT_M1U
))
1286 value
= lshift_value (mode
, v
, bitnum
);
1290 int must_and
= (GET_MODE_BITSIZE (value_mode
) != bitsize
1291 && bitnum
+ bitsize
!= GET_MODE_BITSIZE (mode
));
1293 if (value_mode
!= mode
)
1294 value
= convert_to_mode (mode
, value
, 1);
1297 value
= expand_binop (mode
, and_optab
, value
,
1298 mask_rtx (mode
, 0, bitsize
, 0),
1299 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1301 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
1302 bitnum
, NULL_RTX
, 1);
1306 value
= flip_storage_order (mode
, value
);
1308 /* Now clear the chosen bits in OP0,
1309 except that if VALUE is -1 we need not bother. */
1310 /* We keep the intermediates in registers to allow CSE to combine
1311 consecutive bitfield assignments. */
1313 temp
= force_reg (mode
, op0
);
1317 rtx mask
= mask_rtx (mode
, bitnum
, bitsize
, 1);
1319 mask
= flip_storage_order (mode
, mask
);
1320 temp
= expand_binop (mode
, and_optab
, temp
, mask
,
1321 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1322 temp
= force_reg (mode
, temp
);
1325 /* Now logical-or VALUE into OP0, unless it is zero. */
1329 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
1330 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
1331 temp
= force_reg (mode
, temp
);
1336 op0
= copy_rtx (op0
);
1337 emit_move_insn (op0
, temp
);
1341 /* Store a bit field that is split across multiple accessible memory objects.
1343 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
1344 BITSIZE is the field width; BITPOS the position of its first bit
1346 VALUE is the value to store, which has mode VALUE_MODE.
1347 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
1350 If REVERSE is true, the store is to be done in reverse order.
1352 This does not yet handle fields wider than BITS_PER_WORD. */
1355 store_split_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
1356 unsigned HOST_WIDE_INT bitsize
,
1357 unsigned HOST_WIDE_INT bitpos
,
1358 poly_uint64 bitregion_start
, poly_uint64 bitregion_end
,
1359 rtx value
, scalar_int_mode value_mode
, bool reverse
)
1361 unsigned int unit
, total_bits
, bitsdone
= 0;
1363 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1365 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1366 unit
= BITS_PER_WORD
;
1368 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1370 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1371 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1372 again, and we will mutually recurse forever. */
1373 if (MEM_P (op0
) && op0_mode
.exists ())
1374 unit
= MIN (unit
, GET_MODE_BITSIZE (op0_mode
.require ()));
1376 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1377 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1378 that VALUE might be a floating-point constant. */
1379 if (CONSTANT_P (value
) && !CONST_INT_P (value
))
1381 rtx word
= gen_lowpart_common (word_mode
, value
);
1383 if (word
&& (value
!= word
))
1386 value
= gen_lowpart_common (word_mode
, force_reg (value_mode
, value
));
1387 value_mode
= word_mode
;
1390 total_bits
= GET_MODE_BITSIZE (value_mode
);
1392 while (bitsdone
< bitsize
)
1394 unsigned HOST_WIDE_INT thissize
;
1395 unsigned HOST_WIDE_INT thispos
;
1396 unsigned HOST_WIDE_INT offset
;
1399 offset
= (bitpos
+ bitsdone
) / unit
;
1400 thispos
= (bitpos
+ bitsdone
) % unit
;
1402 /* When region of bytes we can touch is restricted, decrease
1403 UNIT close to the end of the region as needed. If op0 is a REG
1404 or SUBREG of REG, don't do this, as there can't be data races
1405 on a register and we can expand shorter code in some cases. */
1406 if (maybe_ne (bitregion_end
, 0U)
1407 && unit
> BITS_PER_UNIT
1408 && maybe_gt (bitpos
+ bitsdone
- thispos
+ unit
, bitregion_end
+ 1)
1410 && (GET_CODE (op0
) != SUBREG
|| !REG_P (SUBREG_REG (op0
))))
1416 /* THISSIZE must not overrun a word boundary. Otherwise,
1417 store_fixed_bit_field will call us again, and we will mutually
1419 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1420 thissize
= MIN (thissize
, unit
- thispos
);
1422 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
1424 /* Fetch successively less significant portions. */
1425 if (CONST_INT_P (value
))
1426 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1427 >> (bitsize
- bitsdone
- thissize
))
1428 & ((HOST_WIDE_INT_1
<< thissize
) - 1));
1429 /* Likewise, but the source is little-endian. */
1431 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1433 bitsize
- bitsdone
- thissize
,
1434 NULL_RTX
, 1, false);
1436 /* The args are chosen so that the last part includes the
1437 lsb. Give extract_bit_field the value it needs (with
1438 endianness compensation) to fetch the piece we want. */
1439 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1441 total_bits
- bitsize
+ bitsdone
,
1442 NULL_RTX
, 1, false);
1446 /* Fetch successively more significant portions. */
1447 if (CONST_INT_P (value
))
1448 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1450 & ((HOST_WIDE_INT_1
<< thissize
) - 1));
1451 /* Likewise, but the source is big-endian. */
1453 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1455 total_bits
- bitsdone
- thissize
,
1456 NULL_RTX
, 1, false);
1458 part
= extract_fixed_bit_field (word_mode
, value
, value_mode
,
1459 thissize
, bitsdone
, NULL_RTX
,
1463 /* If OP0 is a register, then handle OFFSET here. */
1464 rtx op0_piece
= op0
;
1465 opt_scalar_int_mode op0_piece_mode
= op0_mode
;
1466 if (SUBREG_P (op0
) || REG_P (op0
))
1468 scalar_int_mode imode
;
1469 if (op0_mode
.exists (&imode
)
1470 && GET_MODE_SIZE (imode
) < UNITS_PER_WORD
)
1473 op0_piece
= const0_rtx
;
1477 op0_piece
= operand_subword_force (op0
,
1478 offset
* unit
/ BITS_PER_WORD
,
1480 op0_piece_mode
= word_mode
;
1482 offset
&= BITS_PER_WORD
/ unit
- 1;
1485 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
1486 it is just an out-of-bounds access. Ignore it. */
1487 if (op0_piece
!= const0_rtx
)
1488 store_fixed_bit_field (op0_piece
, op0_piece_mode
, thissize
,
1489 offset
* unit
+ thispos
, bitregion_start
,
1490 bitregion_end
, part
, word_mode
, reverse
);
1491 bitsdone
+= thissize
;
1495 /* A subroutine of extract_bit_field_1 that converts return value X
1496 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1497 to extract_bit_field. */
1500 convert_extracted_bit_field (rtx x
, machine_mode mode
,
1501 machine_mode tmode
, bool unsignedp
)
1503 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1506 /* If the x mode is not a scalar integral, first convert to the
1507 integer mode of that size and then access it as a floating-point
1508 value via a SUBREG. */
1509 if (!SCALAR_INT_MODE_P (tmode
))
1511 scalar_int_mode int_mode
= int_mode_for_mode (tmode
).require ();
1512 x
= convert_to_mode (int_mode
, x
, unsignedp
);
1513 x
= force_reg (int_mode
, x
);
1514 return gen_lowpart (tmode
, x
);
1517 return convert_to_mode (tmode
, x
, unsignedp
);
1520 /* Try to use an ext(z)v pattern to extract a field from OP0.
1521 Return the extracted value on success, otherwise return null.
1522 EXTV describes the extraction instruction to use. If OP0_MODE
1523 is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
1524 The other arguments are as for extract_bit_field. */
1527 extract_bit_field_using_extv (const extraction_insn
*extv
, rtx op0
,
1528 opt_scalar_int_mode op0_mode
,
1529 unsigned HOST_WIDE_INT bitsize
,
1530 unsigned HOST_WIDE_INT bitnum
,
1531 int unsignedp
, rtx target
,
1532 machine_mode mode
, machine_mode tmode
)
1534 class expand_operand ops
[4];
1535 rtx spec_target
= target
;
1536 rtx spec_target_subreg
= 0;
1537 scalar_int_mode ext_mode
= extv
->field_mode
;
1538 unsigned unit
= GET_MODE_BITSIZE (ext_mode
);
1540 if (bitsize
== 0 || unit
< bitsize
)
1544 /* Get a reference to the first byte of the field. */
1545 op0
= narrow_bit_field_mem (op0
, extv
->struct_mode
, bitsize
, bitnum
,
1549 /* Convert from counting within OP0 to counting in EXT_MODE. */
1550 if (BYTES_BIG_ENDIAN
)
1551 bitnum
+= unit
- GET_MODE_BITSIZE (op0_mode
.require ());
1553 /* If op0 is a register, we need it in EXT_MODE to make it
1554 acceptable to the format of ext(z)v. */
1555 if (GET_CODE (op0
) == SUBREG
&& op0_mode
.require () != ext_mode
)
1557 if (REG_P (op0
) && op0_mode
.require () != ext_mode
)
1558 op0
= gen_lowpart_SUBREG (ext_mode
, op0
);
1561 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1562 "backwards" from the size of the unit we are extracting from.
1563 Otherwise, we count bits from the most significant on a
1564 BYTES/BITS_BIG_ENDIAN machine. */
1566 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1567 bitnum
= unit
- bitsize
- bitnum
;
1570 target
= spec_target
= gen_reg_rtx (tmode
);
1572 if (GET_MODE (target
) != ext_mode
)
1575 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1576 between the mode of the extraction (word_mode) and the target
1577 mode. Instead, create a temporary and use convert_move to set
1580 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target
), ext_mode
)
1581 && (temp
= gen_lowpart_if_possible (ext_mode
, target
)))
1584 if (partial_subreg_p (GET_MODE (spec_target
), ext_mode
))
1585 spec_target_subreg
= target
;
1588 target
= gen_reg_rtx (ext_mode
);
1591 create_output_operand (&ops
[0], target
, ext_mode
);
1592 create_fixed_operand (&ops
[1], op0
);
1593 create_integer_operand (&ops
[2], bitsize
);
1594 create_integer_operand (&ops
[3], bitnum
);
1595 if (maybe_expand_insn (extv
->icode
, 4, ops
))
1597 target
= ops
[0].value
;
1598 if (target
== spec_target
)
1600 if (target
== spec_target_subreg
)
1602 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1607 /* See whether it would be valid to extract the part of OP0 described
1608 by BITNUM and BITSIZE into a value of mode MODE using a subreg
1609 operation. Return the subreg if so, otherwise return null. */
1612 extract_bit_field_as_subreg (machine_mode mode
, rtx op0
,
1613 poly_uint64 bitsize
, poly_uint64 bitnum
)
1615 poly_uint64 bytenum
;
1616 if (multiple_p (bitnum
, BITS_PER_UNIT
, &bytenum
)
1617 && known_eq (bitsize
, GET_MODE_BITSIZE (mode
))
1618 && lowpart_bit_field_p (bitnum
, bitsize
, GET_MODE (op0
))
1619 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (op0
)))
1620 return simplify_gen_subreg (mode
, op0
, GET_MODE (op0
), bytenum
);
1624 /* A subroutine of extract_bit_field, with the same arguments.
1625 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1626 if we can find no other means of implementing the operation.
1627 if FALLBACK_P is false, return NULL instead. */
1630 extract_bit_field_1 (rtx str_rtx
, poly_uint64 bitsize
, poly_uint64 bitnum
,
1631 int unsignedp
, rtx target
, machine_mode mode
,
1632 machine_mode tmode
, bool reverse
, bool fallback_p
,
1638 if (tmode
== VOIDmode
)
1641 while (GET_CODE (op0
) == SUBREG
)
1643 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1644 op0
= SUBREG_REG (op0
);
1647 /* If we have an out-of-bounds access to a register, just return an
1648 uninitialized register of the required mode. This can occur if the
1649 source code contains an out-of-bounds access to a small array. */
1650 if (REG_P (op0
) && known_ge (bitnum
, GET_MODE_BITSIZE (GET_MODE (op0
))))
1651 return gen_reg_rtx (tmode
);
1654 && mode
== GET_MODE (op0
)
1655 && known_eq (bitnum
, 0U)
1656 && known_eq (bitsize
, GET_MODE_BITSIZE (GET_MODE (op0
))))
1659 op0
= flip_storage_order (mode
, op0
);
1660 /* We're trying to extract a full register from itself. */
1664 /* First try to check for vector from vector extractions. */
1665 if (VECTOR_MODE_P (GET_MODE (op0
))
1667 && VECTOR_MODE_P (tmode
)
1668 && known_eq (bitsize
, GET_MODE_BITSIZE (tmode
))
1669 && maybe_gt (GET_MODE_SIZE (GET_MODE (op0
)), GET_MODE_SIZE (tmode
)))
1671 machine_mode new_mode
= GET_MODE (op0
);
1672 if (GET_MODE_INNER (new_mode
) != GET_MODE_INNER (tmode
))
1674 scalar_mode inner_mode
= GET_MODE_INNER (tmode
);
1676 if (!multiple_p (GET_MODE_BITSIZE (GET_MODE (op0
)),
1677 GET_MODE_UNIT_BITSIZE (tmode
), &nunits
)
1678 || !related_vector_mode (tmode
, inner_mode
,
1679 nunits
).exists (&new_mode
)
1680 || maybe_ne (GET_MODE_SIZE (new_mode
),
1681 GET_MODE_SIZE (GET_MODE (op0
))))
1682 new_mode
= VOIDmode
;
1685 if (new_mode
!= VOIDmode
1686 && (convert_optab_handler (vec_extract_optab
, new_mode
, tmode
)
1687 != CODE_FOR_nothing
)
1688 && multiple_p (bitnum
, GET_MODE_BITSIZE (tmode
), &pos
))
1690 class expand_operand ops
[3];
1691 machine_mode outermode
= new_mode
;
1692 machine_mode innermode
= tmode
;
1693 enum insn_code icode
1694 = convert_optab_handler (vec_extract_optab
, outermode
, innermode
);
1696 if (new_mode
!= GET_MODE (op0
))
1697 op0
= gen_lowpart (new_mode
, op0
);
1698 create_output_operand (&ops
[0], target
, innermode
);
1700 create_input_operand (&ops
[1], op0
, outermode
);
1701 create_integer_operand (&ops
[2], pos
);
1702 if (maybe_expand_insn (icode
, 3, ops
))
1704 if (alt_rtl
&& ops
[0].target
)
1706 target
= ops
[0].value
;
1707 if (GET_MODE (target
) != mode
)
1708 return gen_lowpart (tmode
, target
);
1714 /* See if we can get a better vector mode before extracting. */
1715 if (VECTOR_MODE_P (GET_MODE (op0
))
1717 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1719 machine_mode new_mode
;
1721 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1722 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1723 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1724 new_mode
= MIN_MODE_VECTOR_FRACT
;
1725 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1726 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1727 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1728 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1729 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1730 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1732 new_mode
= MIN_MODE_VECTOR_INT
;
1734 FOR_EACH_MODE_FROM (new_mode
, new_mode
)
1735 if (known_eq (GET_MODE_SIZE (new_mode
), GET_MODE_SIZE (GET_MODE (op0
)))
1736 && known_eq (GET_MODE_UNIT_SIZE (new_mode
), GET_MODE_SIZE (tmode
))
1737 && targetm
.vector_mode_supported_p (new_mode
))
1739 if (new_mode
!= VOIDmode
)
1740 op0
= gen_lowpart (new_mode
, op0
);
1743 /* Use vec_extract patterns for extracting parts of vectors whenever
1744 available. If that fails, see whether the current modes and bitregion
1745 give a natural subreg. */
1746 machine_mode outermode
= GET_MODE (op0
);
1747 if (VECTOR_MODE_P (outermode
) && !MEM_P (op0
))
1749 scalar_mode innermode
= GET_MODE_INNER (outermode
);
1750 enum insn_code icode
1751 = convert_optab_handler (vec_extract_optab
, outermode
, innermode
);
1753 if (icode
!= CODE_FOR_nothing
1754 && known_eq (bitsize
, GET_MODE_BITSIZE (innermode
))
1755 && multiple_p (bitnum
, GET_MODE_BITSIZE (innermode
), &pos
))
1757 class expand_operand ops
[3];
1759 create_output_operand (&ops
[0], target
, innermode
);
1761 create_input_operand (&ops
[1], op0
, outermode
);
1762 create_integer_operand (&ops
[2], pos
);
1763 if (maybe_expand_insn (icode
, 3, ops
))
1765 if (alt_rtl
&& ops
[0].target
)
1767 target
= ops
[0].value
;
1768 if (GET_MODE (target
) != mode
)
1769 return gen_lowpart (tmode
, target
);
1773 /* Using subregs is useful if we're extracting one register vector
1774 from a multi-register vector. extract_bit_field_as_subreg checks
1775 for valid bitsize and bitnum, so we don't need to do that here. */
1776 if (VECTOR_MODE_P (mode
))
1778 rtx sub
= extract_bit_field_as_subreg (mode
, op0
, bitsize
, bitnum
);
1784 /* Make sure we are playing with integral modes. Pun with subregs
1786 opt_scalar_int_mode op0_mode
= int_mode_for_mode (GET_MODE (op0
));
1787 scalar_int_mode imode
;
1788 if (!op0_mode
.exists (&imode
) || imode
!= GET_MODE (op0
))
1791 op0
= adjust_bitfield_address_size (op0
, op0_mode
.else_blk (),
1793 else if (op0_mode
.exists (&imode
))
1795 op0
= gen_lowpart (imode
, op0
);
1797 /* If we got a SUBREG, force it into a register since we
1798 aren't going to be able to do another SUBREG on it. */
1799 if (GET_CODE (op0
) == SUBREG
)
1800 op0
= force_reg (imode
, op0
);
1804 poly_int64 size
= GET_MODE_SIZE (GET_MODE (op0
));
1805 rtx mem
= assign_stack_temp (GET_MODE (op0
), size
);
1806 emit_move_insn (mem
, op0
);
1807 op0
= adjust_bitfield_address_size (mem
, BLKmode
, 0, size
);
1811 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1812 If that's wrong, the solution is to test for it and set TARGET to 0
1815 /* Get the mode of the field to use for atomic access or subreg
1817 if (!SCALAR_INT_MODE_P (tmode
)
1818 || !mode_for_size (bitsize
, GET_MODE_CLASS (tmode
), 0).exists (&mode1
))
1820 gcc_assert (mode1
!= BLKmode
);
1822 /* Extraction of a full MODE1 value can be done with a subreg as long
1823 as the least significant bit of the value is the least significant
1824 bit of either OP0 or a word of OP0. */
1825 if (!MEM_P (op0
) && !reverse
)
1827 rtx sub
= extract_bit_field_as_subreg (mode1
, op0
, bitsize
, bitnum
);
1829 return convert_extracted_bit_field (sub
, mode
, tmode
, unsignedp
);
1832 /* Extraction of a full MODE1 value can be done with a load as long as
1833 the field is on a byte boundary and is sufficiently aligned. */
1834 poly_uint64 bytenum
;
1835 if (simple_mem_bitfield_p (op0
, bitsize
, bitnum
, mode1
, &bytenum
))
1837 op0
= adjust_bitfield_address (op0
, mode1
, bytenum
);
1839 op0
= flip_storage_order (mode1
, op0
);
1840 return convert_extracted_bit_field (op0
, mode
, tmode
, unsignedp
);
1843 /* If we have a memory source and a non-constant bit offset, restrict
1844 the memory to the referenced bytes. This is a worst-case fallback
1845 but is useful for things like vector booleans. */
1846 if (MEM_P (op0
) && !bitnum
.is_constant ())
1848 bytenum
= bits_to_bytes_round_down (bitnum
);
1849 bitnum
= num_trailing_bits (bitnum
);
1850 poly_uint64 bytesize
= bits_to_bytes_round_up (bitnum
+ bitsize
);
1851 op0
= adjust_bitfield_address_size (op0
, BLKmode
, bytenum
, bytesize
);
1852 op0_mode
= opt_scalar_int_mode ();
1855 /* It's possible we'll need to handle other cases here for
1856 polynomial bitnum and bitsize. */
1858 /* From here on we need to be looking at a fixed-size insertion. */
1859 return extract_integral_bit_field (op0
, op0_mode
, bitsize
.to_constant (),
1860 bitnum
.to_constant (), unsignedp
,
1861 target
, mode
, tmode
, reverse
, fallback_p
);
1864 /* Subroutine of extract_bit_field_1, with the same arguments, except
1865 that BITSIZE and BITNUM are constant. Handle cases specific to
1866 integral modes. If OP0_MODE is defined, it is the mode of OP0,
1867 otherwise OP0 is a BLKmode MEM. */
1870 extract_integral_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
1871 unsigned HOST_WIDE_INT bitsize
,
1872 unsigned HOST_WIDE_INT bitnum
, int unsignedp
,
1873 rtx target
, machine_mode mode
, machine_mode tmode
,
1874 bool reverse
, bool fallback_p
)
1876 /* Handle fields bigger than a word. */
1878 if (bitsize
> BITS_PER_WORD
)
1880 /* Here we transfer the words of the field
1881 in the order least significant first.
1882 This is because the most significant word is the one which may
1883 be less than full. */
1885 const bool backwards
= WORDS_BIG_ENDIAN
;
1886 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1890 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1891 target
= gen_reg_rtx (mode
);
1893 /* In case we're about to clobber a base register or something
1894 (see gcc.c-torture/execute/20040625-1.c). */
1895 if (reg_mentioned_p (target
, op0
))
1896 target
= gen_reg_rtx (mode
);
1898 /* Indicate for flow that the entire target reg is being set. */
1899 emit_clobber (target
);
1901 /* The mode must be fixed-size, since extract_bit_field_1 handles
1902 extractions from variable-sized objects before calling this
1904 unsigned int target_size
1905 = GET_MODE_SIZE (GET_MODE (target
)).to_constant ();
1906 last
= get_last_insn ();
1907 for (i
= 0; i
< nwords
; i
++)
1909 /* If I is 0, use the low-order word in both field and target;
1910 if I is 1, use the next to lowest word; and so on. */
1911 /* Word number in TARGET to use. */
1912 unsigned int wordnum
1913 = (backwards
? target_size
/ UNITS_PER_WORD
- i
- 1 : i
);
1914 /* Offset from start of field in OP0. */
1915 unsigned int bit_offset
= (backwards
^ reverse
1916 ? MAX ((int) bitsize
- ((int) i
+ 1)
1919 : (int) i
* BITS_PER_WORD
);
1920 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1922 = extract_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
1923 bitsize
- i
* BITS_PER_WORD
),
1924 bitnum
+ bit_offset
, 1, target_part
,
1925 mode
, word_mode
, reverse
, fallback_p
, NULL
);
1927 gcc_assert (target_part
);
1930 delete_insns_since (last
);
1934 if (result_part
!= target_part
)
1935 emit_move_insn (target_part
, result_part
);
1940 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1941 need to be zero'd out. */
1942 if (target_size
> nwords
* UNITS_PER_WORD
)
1944 unsigned int i
, total_words
;
1946 total_words
= target_size
/ UNITS_PER_WORD
;
1947 for (i
= nwords
; i
< total_words
; i
++)
1949 (operand_subword (target
,
1950 backwards
? total_words
- i
- 1 : i
,
1957 /* Signed bit field: sign-extend with two arithmetic shifts. */
1958 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1959 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1960 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1961 GET_MODE_BITSIZE (mode
) - bitsize
, NULL_RTX
, 0);
1964 /* If OP0 is a multi-word register, narrow it to the affected word.
1965 If the region spans two words, defer to extract_split_bit_field. */
1966 if (!MEM_P (op0
) && GET_MODE_SIZE (op0_mode
.require ()) > UNITS_PER_WORD
)
1968 if (bitnum
% BITS_PER_WORD
+ bitsize
> BITS_PER_WORD
)
1972 target
= extract_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
1973 unsignedp
, reverse
);
1974 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1976 op0
= simplify_gen_subreg (word_mode
, op0
, op0_mode
.require (),
1977 bitnum
/ BITS_PER_WORD
* UNITS_PER_WORD
);
1978 op0_mode
= word_mode
;
1979 bitnum
%= BITS_PER_WORD
;
1982 /* From here on we know the desired field is smaller than a word.
1983 If OP0 is a register, it too fits within a word. */
1984 enum extraction_pattern pattern
= unsignedp
? EP_extzv
: EP_extv
;
1985 extraction_insn extv
;
1988 /* ??? We could limit the structure size to the part of OP0 that
1989 contains the field, with appropriate checks for endianness
1990 and TARGET_TRULY_NOOP_TRUNCATION. */
1991 && get_best_reg_extraction_insn (&extv
, pattern
,
1992 GET_MODE_BITSIZE (op0_mode
.require ()),
1995 rtx result
= extract_bit_field_using_extv (&extv
, op0
, op0_mode
,
1997 unsignedp
, target
, mode
,
2003 /* If OP0 is a memory, try copying it to a register and seeing if a
2004 cheap register alternative is available. */
2005 if (MEM_P (op0
) & !reverse
)
2007 if (get_best_mem_extraction_insn (&extv
, pattern
, bitsize
, bitnum
,
2010 rtx result
= extract_bit_field_using_extv (&extv
, op0
, op0_mode
,
2012 unsignedp
, target
, mode
,
2018 rtx_insn
*last
= get_last_insn ();
2020 /* Try loading part of OP0 into a register and extracting the
2021 bitfield from that. */
2022 unsigned HOST_WIDE_INT bitpos
;
2023 rtx xop0
= adjust_bit_field_mem_for_reg (pattern
, op0
, bitsize
, bitnum
,
2024 0, 0, tmode
, &bitpos
);
2027 xop0
= copy_to_reg (xop0
);
2028 rtx result
= extract_bit_field_1 (xop0
, bitsize
, bitpos
,
2030 mode
, tmode
, reverse
, false, NULL
);
2033 delete_insns_since (last
);
2040 /* Find a correspondingly-sized integer field, so we can apply
2041 shifts and masks to it. */
2042 scalar_int_mode int_mode
;
2043 if (!int_mode_for_mode (tmode
).exists (&int_mode
))
2044 /* If this fails, we should probably push op0 out to memory and then
2046 int_mode
= int_mode_for_mode (mode
).require ();
2048 target
= extract_fixed_bit_field (int_mode
, op0
, op0_mode
, bitsize
,
2049 bitnum
, target
, unsignedp
, reverse
);
2051 /* Complex values must be reversed piecewise, so we need to undo the global
2052 reversal, convert to the complex mode and reverse again. */
2053 if (reverse
&& COMPLEX_MODE_P (tmode
))
2055 target
= flip_storage_order (int_mode
, target
);
2056 target
= convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
2057 target
= flip_storage_order (tmode
, target
);
2060 target
= convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
2065 /* Generate code to extract a byte-field from STR_RTX
2066 containing BITSIZE bits, starting at BITNUM,
2067 and put it in TARGET if possible (if TARGET is nonzero).
2068 Regardless of TARGET, we return the rtx for where the value is placed.
2070 STR_RTX is the structure containing the byte (a REG or MEM).
2071 UNSIGNEDP is nonzero if this is an unsigned bit field.
2072 MODE is the natural mode of the field value once extracted.
2073 TMODE is the mode the caller would like the value to have;
2074 but the value may be returned with type MODE instead.
2076 If REVERSE is true, the extraction is to be done in reverse order.
2078 If a TARGET is specified and we can store in it at no extra cost,
2079 we do so, and return TARGET.
2080 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
2081 if they are equally easy.
2083 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
2084 then *ALT_RTL is set to TARGET (before legitimziation). */
2087 extract_bit_field (rtx str_rtx
, poly_uint64 bitsize
, poly_uint64 bitnum
,
2088 int unsignedp
, rtx target
, machine_mode mode
,
2089 machine_mode tmode
, bool reverse
, rtx
*alt_rtl
)
2093 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
2094 if (maybe_ne (GET_MODE_BITSIZE (GET_MODE (str_rtx
)), 0))
2095 mode1
= GET_MODE (str_rtx
);
2096 else if (target
&& maybe_ne (GET_MODE_BITSIZE (GET_MODE (target
)), 0))
2097 mode1
= GET_MODE (target
);
2101 unsigned HOST_WIDE_INT ibitsize
, ibitnum
;
2102 scalar_int_mode int_mode
;
2103 if (bitsize
.is_constant (&ibitsize
)
2104 && bitnum
.is_constant (&ibitnum
)
2105 && is_a
<scalar_int_mode
> (mode1
, &int_mode
)
2106 && strict_volatile_bitfield_p (str_rtx
, ibitsize
, ibitnum
,
2109 /* Extraction of a full INT_MODE value can be done with a simple load.
2110 We know here that the field can be accessed with one single
2111 instruction. For targets that support unaligned memory,
2112 an unaligned access may be necessary. */
2113 if (ibitsize
== GET_MODE_BITSIZE (int_mode
))
2115 rtx result
= adjust_bitfield_address (str_rtx
, int_mode
,
2116 ibitnum
/ BITS_PER_UNIT
);
2118 result
= flip_storage_order (int_mode
, result
);
2119 gcc_assert (ibitnum
% BITS_PER_UNIT
== 0);
2120 return convert_extracted_bit_field (result
, mode
, tmode
, unsignedp
);
2123 str_rtx
= narrow_bit_field_mem (str_rtx
, int_mode
, ibitsize
, ibitnum
,
2125 gcc_assert (ibitnum
+ ibitsize
<= GET_MODE_BITSIZE (int_mode
));
2126 str_rtx
= copy_to_reg (str_rtx
);
2127 return extract_bit_field_1 (str_rtx
, ibitsize
, ibitnum
, unsignedp
,
2128 target
, mode
, tmode
, reverse
, true, alt_rtl
);
2131 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
2132 target
, mode
, tmode
, reverse
, true, alt_rtl
);
2135 /* Use shifts and boolean operations to extract a field of BITSIZE bits
2136 from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
2137 otherwise OP0 is a BLKmode MEM.
2139 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
2140 If REVERSE is true, the extraction is to be done in reverse order.
2142 If TARGET is nonzero, attempts to store the value there
2143 and return TARGET, but this is not guaranteed.
2144 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
2147 extract_fixed_bit_field (machine_mode tmode
, rtx op0
,
2148 opt_scalar_int_mode op0_mode
,
2149 unsigned HOST_WIDE_INT bitsize
,
2150 unsigned HOST_WIDE_INT bitnum
, rtx target
,
2151 int unsignedp
, bool reverse
)
2153 scalar_int_mode mode
;
2156 if (!get_best_mode (bitsize
, bitnum
, 0, 0, MEM_ALIGN (op0
),
2157 BITS_PER_WORD
, MEM_VOLATILE_P (op0
), &mode
))
2158 /* The only way this should occur is if the field spans word
2160 return extract_split_bit_field (op0
, op0_mode
, bitsize
, bitnum
,
2161 unsignedp
, reverse
);
2163 op0
= narrow_bit_field_mem (op0
, mode
, bitsize
, bitnum
, &bitnum
);
2166 mode
= op0_mode
.require ();
2168 return extract_fixed_bit_field_1 (tmode
, op0
, mode
, bitsize
, bitnum
,
2169 target
, unsignedp
, reverse
);
2172 /* Helper function for extract_fixed_bit_field, extracts
2173 the bit field always using MODE, which is the mode of OP0.
2174 The other arguments are as for extract_fixed_bit_field. */
2177 extract_fixed_bit_field_1 (machine_mode tmode
, rtx op0
, scalar_int_mode mode
,
2178 unsigned HOST_WIDE_INT bitsize
,
2179 unsigned HOST_WIDE_INT bitnum
, rtx target
,
2180 int unsignedp
, bool reverse
)
2182 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
2183 for invalid input, such as extract equivalent of f5 from
2184 gcc.dg/pr48335-2.c. */
2186 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
2187 /* BITNUM is the distance between our msb and that of OP0.
2188 Convert it to the distance from the lsb. */
2189 bitnum
= GET_MODE_BITSIZE (mode
) - bitsize
- bitnum
;
2191 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
2192 We have reduced the big-endian case to the little-endian case. */
2194 op0
= flip_storage_order (mode
, op0
);
2200 /* If the field does not already start at the lsb,
2201 shift it so it does. */
2202 /* Maybe propagate the target for the shift. */
2203 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
2206 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, bitnum
, subtarget
, 1);
2208 /* Convert the value to the desired mode. TMODE must also be a
2209 scalar integer for this conversion to make sense, since we
2210 shouldn't reinterpret the bits. */
2211 scalar_int_mode new_mode
= as_a
<scalar_int_mode
> (tmode
);
2212 if (mode
!= new_mode
)
2213 op0
= convert_to_mode (new_mode
, op0
, 1);
2215 /* Unless the msb of the field used to be the msb when we shifted,
2216 mask out the upper bits. */
2218 if (GET_MODE_BITSIZE (mode
) != bitnum
+ bitsize
)
2219 return expand_binop (new_mode
, and_optab
, op0
,
2220 mask_rtx (new_mode
, 0, bitsize
, 0),
2221 target
, 1, OPTAB_LIB_WIDEN
);
2225 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2226 then arithmetic-shift its lsb to the lsb of the word. */
2227 op0
= force_reg (mode
, op0
);
2229 /* Find the narrowest integer mode that contains the field. */
2231 opt_scalar_int_mode mode_iter
;
2232 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
2233 if (GET_MODE_BITSIZE (mode_iter
.require ()) >= bitsize
+ bitnum
)
2236 mode
= mode_iter
.require ();
2237 op0
= convert_to_mode (mode
, op0
, 0);
2242 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitnum
))
2244 int amount
= GET_MODE_BITSIZE (mode
) - (bitsize
+ bitnum
);
2245 /* Maybe propagate the target for the shift. */
2246 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
2247 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
2250 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
2251 GET_MODE_BITSIZE (mode
) - bitsize
, target
, 0);
2254 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
2258 lshift_value (machine_mode mode
, unsigned HOST_WIDE_INT value
,
2261 return immed_wide_int_const (wi::lshift (value
, bitpos
), mode
);
2264 /* Extract a bit field that is split across two words
2265 and return an RTX for the result.
2267 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2268 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
2269 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
2270 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
2273 If REVERSE is true, the extraction is to be done in reverse order. */
2276 extract_split_bit_field (rtx op0
, opt_scalar_int_mode op0_mode
,
2277 unsigned HOST_WIDE_INT bitsize
,
2278 unsigned HOST_WIDE_INT bitpos
, int unsignedp
,
2282 unsigned int bitsdone
= 0;
2283 rtx result
= NULL_RTX
;
2286 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2288 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
2289 unit
= BITS_PER_WORD
;
2291 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
2293 while (bitsdone
< bitsize
)
2295 unsigned HOST_WIDE_INT thissize
;
2297 unsigned HOST_WIDE_INT thispos
;
2298 unsigned HOST_WIDE_INT offset
;
2300 offset
= (bitpos
+ bitsdone
) / unit
;
2301 thispos
= (bitpos
+ bitsdone
) % unit
;
2303 /* THISSIZE must not overrun a word boundary. Otherwise,
2304 extract_fixed_bit_field will call us again, and we will mutually
2306 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
2307 thissize
= MIN (thissize
, unit
- thispos
);
2309 /* If OP0 is a register, then handle OFFSET here. */
2310 rtx op0_piece
= op0
;
2311 opt_scalar_int_mode op0_piece_mode
= op0_mode
;
2312 if (SUBREG_P (op0
) || REG_P (op0
))
2314 op0_piece
= operand_subword_force (op0
, offset
, op0_mode
.require ());
2315 op0_piece_mode
= word_mode
;
2319 /* Extract the parts in bit-counting order,
2320 whose meaning is determined by BYTES_PER_UNIT.
2321 OFFSET is in UNITs, and UNIT is in bits. */
2322 part
= extract_fixed_bit_field (word_mode
, op0_piece
, op0_piece_mode
,
2323 thissize
, offset
* unit
+ thispos
,
2325 bitsdone
+= thissize
;
2327 /* Shift this part into place for the result. */
2328 if (reverse
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
2330 if (bitsize
!= bitsdone
)
2331 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2332 bitsize
- bitsdone
, 0, 1);
2336 if (bitsdone
!= thissize
)
2337 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
2338 bitsdone
- thissize
, 0, 1);
2344 /* Combine the parts with bitwise or. This works
2345 because we extracted each part as an unsigned bit field. */
2346 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
2352 /* Unsigned bit field: we are done. */
2355 /* Signed bit field: sign-extend with two arithmetic shifts. */
2356 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
2357 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2358 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
2359 BITS_PER_WORD
- bitsize
, NULL_RTX
, 0);
2362 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2363 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2364 MODE, fill the upper bits with zeros. Fail if the layout of either
2365 mode is unknown (as for CC modes) or if the extraction would involve
2366 unprofitable mode punning. Return the value on success, otherwise
2369 This is different from gen_lowpart* in these respects:
2371 - the returned value must always be considered an rvalue
2373 - when MODE is wider than SRC_MODE, the extraction involves
2376 - when MODE is smaller than SRC_MODE, the extraction involves
2377 a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
2379 In other words, this routine performs a computation, whereas the
2380 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2384 extract_low_bits (machine_mode mode
, machine_mode src_mode
, rtx src
)
2386 scalar_int_mode int_mode
, src_int_mode
;
2388 if (mode
== src_mode
)
2391 if (CONSTANT_P (src
))
2393 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2394 fails, it will happily create (subreg (symbol_ref)) or similar
2396 poly_uint64 byte
= subreg_lowpart_offset (mode
, src_mode
);
2397 rtx ret
= simplify_subreg (mode
, src
, src_mode
, byte
);
2401 if (GET_MODE (src
) == VOIDmode
2402 || !validate_subreg (mode
, src_mode
, src
, byte
))
2405 src
= force_reg (GET_MODE (src
), src
);
2406 return gen_rtx_SUBREG (mode
, src
, byte
);
2409 if (GET_MODE_CLASS (mode
) == MODE_CC
|| GET_MODE_CLASS (src_mode
) == MODE_CC
)
2412 if (known_eq (GET_MODE_BITSIZE (mode
), GET_MODE_BITSIZE (src_mode
))
2413 && targetm
.modes_tieable_p (mode
, src_mode
))
2415 rtx x
= gen_lowpart_common (mode
, src
);
2420 if (!int_mode_for_mode (src_mode
).exists (&src_int_mode
)
2421 || !int_mode_for_mode (mode
).exists (&int_mode
))
2424 if (!targetm
.modes_tieable_p (src_int_mode
, src_mode
))
2426 if (!targetm
.modes_tieable_p (int_mode
, mode
))
2429 src
= gen_lowpart (src_int_mode
, src
);
2430 if (!validate_subreg (int_mode
, src_int_mode
, src
,
2431 subreg_lowpart_offset (int_mode
, src_int_mode
)))
2434 src
= convert_modes (int_mode
, src_int_mode
, src
, true);
2435 src
= gen_lowpart (mode
, src
);
2439 /* Add INC into TARGET. */
2442 expand_inc (rtx target
, rtx inc
)
2444 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2446 target
, 0, OPTAB_LIB_WIDEN
);
2447 if (value
!= target
)
2448 emit_move_insn (target
, value
);
2451 /* Subtract DEC from TARGET. */
2454 expand_dec (rtx target
, rtx dec
)
2456 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2458 target
, 0, OPTAB_LIB_WIDEN
);
2459 if (value
!= target
)
2460 emit_move_insn (target
, value
);
2463 /* Output a shift instruction for expression code CODE,
2464 with SHIFTED being the rtx for the value to shift,
2465 and AMOUNT the rtx for the amount to shift by.
2466 Store the result in the rtx TARGET, if that is convenient.
2467 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2468 Return the rtx for where the value is.
2469 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2470 in which case 0 is returned. */
2473 expand_shift_1 (enum tree_code code
, machine_mode mode
, rtx shifted
,
2474 rtx amount
, rtx target
, int unsignedp
, bool may_fail
= false)
2477 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2478 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2479 optab lshift_optab
= ashl_optab
;
2480 optab rshift_arith_optab
= ashr_optab
;
2481 optab rshift_uns_optab
= lshr_optab
;
2482 optab lrotate_optab
= rotl_optab
;
2483 optab rrotate_optab
= rotr_optab
;
2484 machine_mode op1_mode
;
2485 scalar_mode scalar_mode
= GET_MODE_INNER (mode
);
2487 bool speed
= optimize_insn_for_speed_p ();
2490 op1_mode
= GET_MODE (op1
);
2492 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2493 shift amount is a vector, use the vector/vector shift patterns. */
2494 if (VECTOR_MODE_P (mode
) && VECTOR_MODE_P (op1_mode
))
2496 lshift_optab
= vashl_optab
;
2497 rshift_arith_optab
= vashr_optab
;
2498 rshift_uns_optab
= vlshr_optab
;
2499 lrotate_optab
= vrotl_optab
;
2500 rrotate_optab
= vrotr_optab
;
2503 /* Previously detected shift-counts computed by NEGATE_EXPR
2504 and shifted in the other direction; but that does not work
2507 if (SHIFT_COUNT_TRUNCATED
)
2509 if (CONST_INT_P (op1
)
2510 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2511 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (scalar_mode
)))
2512 op1
= gen_int_shift_amount (mode
,
2513 (unsigned HOST_WIDE_INT
) INTVAL (op1
)
2514 % GET_MODE_BITSIZE (scalar_mode
));
2515 else if (GET_CODE (op1
) == SUBREG
2516 && subreg_lowpart_p (op1
)
2517 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1
)))
2518 && SCALAR_INT_MODE_P (GET_MODE (op1
)))
2519 op1
= SUBREG_REG (op1
);
2522 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2523 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2524 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2527 && CONST_INT_P (op1
)
2528 && IN_RANGE (INTVAL (op1
), GET_MODE_BITSIZE (scalar_mode
) / 2 + left
,
2529 GET_MODE_BITSIZE (scalar_mode
) - 1))
2531 op1
= gen_int_shift_amount (mode
, (GET_MODE_BITSIZE (scalar_mode
)
2534 code
= left
? LROTATE_EXPR
: RROTATE_EXPR
;
2537 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2538 Note that this is not the case for bigger values. For instance a rotation
2539 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2540 0x04030201 (bswapsi). */
2542 && CONST_INT_P (op1
)
2543 && INTVAL (op1
) == BITS_PER_UNIT
2544 && GET_MODE_SIZE (scalar_mode
) == 2
2545 && optab_handler (bswap_optab
, mode
) != CODE_FOR_nothing
)
2546 return expand_unop (mode
, bswap_optab
, shifted
, NULL_RTX
, unsignedp
);
2548 if (op1
== const0_rtx
)
2551 /* Check whether its cheaper to implement a left shift by a constant
2552 bit count by a sequence of additions. */
2553 if (code
== LSHIFT_EXPR
2554 && CONST_INT_P (op1
)
2556 && INTVAL (op1
) < GET_MODE_PRECISION (scalar_mode
)
2557 && INTVAL (op1
) < MAX_BITS_PER_WORD
2558 && (shift_cost (speed
, mode
, INTVAL (op1
))
2559 > INTVAL (op1
) * add_cost (speed
, mode
))
2560 && shift_cost (speed
, mode
, INTVAL (op1
)) != MAX_COST
)
2563 for (i
= 0; i
< INTVAL (op1
); i
++)
2565 temp
= force_reg (mode
, shifted
);
2566 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2567 unsignedp
, OPTAB_LIB_WIDEN
);
2572 for (attempt
= 0; temp
== 0 && attempt
< 3; attempt
++)
2574 enum optab_methods methods
;
2577 methods
= OPTAB_DIRECT
;
2578 else if (attempt
== 1)
2579 methods
= OPTAB_WIDEN
;
2581 methods
= OPTAB_LIB_WIDEN
;
2585 /* Widening does not work for rotation. */
2586 if (methods
== OPTAB_WIDEN
)
2588 else if (methods
== OPTAB_LIB_WIDEN
)
2590 /* If we have been unable to open-code this by a rotation,
2591 do it as the IOR of two shifts. I.e., to rotate A
2593 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
2594 where C is the bitsize of A.
2596 It is theoretically possible that the target machine might
2597 not be able to perform either shift and hence we would
2598 be making two libcalls rather than just the one for the
2599 shift (similarly if IOR could not be done). We will allow
2600 this extremely unlikely lossage to avoid complicating the
2603 rtx subtarget
= target
== shifted
? 0 : target
;
2604 rtx new_amount
, other_amount
;
2608 if (op1
== const0_rtx
)
2610 else if (CONST_INT_P (op1
))
2611 other_amount
= gen_int_shift_amount
2612 (mode
, GET_MODE_BITSIZE (scalar_mode
) - INTVAL (op1
));
2616 = simplify_gen_unary (NEG
, GET_MODE (op1
),
2617 op1
, GET_MODE (op1
));
2618 HOST_WIDE_INT mask
= GET_MODE_PRECISION (scalar_mode
) - 1;
2620 = simplify_gen_binary (AND
, GET_MODE (op1
), other_amount
,
2621 gen_int_mode (mask
, GET_MODE (op1
)));
2624 shifted
= force_reg (mode
, shifted
);
2626 temp
= expand_shift_1 (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2627 mode
, shifted
, new_amount
, 0, 1);
2628 temp1
= expand_shift_1 (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2629 mode
, shifted
, other_amount
,
2631 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2632 unsignedp
, methods
);
2635 temp
= expand_binop (mode
,
2636 left
? lrotate_optab
: rrotate_optab
,
2637 shifted
, op1
, target
, unsignedp
, methods
);
2640 temp
= expand_binop (mode
,
2641 left
? lshift_optab
: rshift_uns_optab
,
2642 shifted
, op1
, target
, unsignedp
, methods
);
2644 /* Do arithmetic shifts.
2645 Also, if we are going to widen the operand, we can just as well
2646 use an arithmetic right-shift instead of a logical one. */
2647 if (temp
== 0 && ! rotate
2648 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2650 enum optab_methods methods1
= methods
;
2652 /* If trying to widen a log shift to an arithmetic shift,
2653 don't accept an arithmetic shift of the same size. */
2655 methods1
= OPTAB_MUST_WIDEN
;
2657 /* Arithmetic shift */
2659 temp
= expand_binop (mode
,
2660 left
? lshift_optab
: rshift_arith_optab
,
2661 shifted
, op1
, target
, unsignedp
, methods1
);
2664 /* We used to try extzv here for logical right shifts, but that was
2665 only useful for one machine, the VAX, and caused poor code
2666 generation there for lshrdi3, so the code was deleted and a
2667 define_expand for lshrsi3 was added to vax.md. */
2670 gcc_assert (temp
!= NULL_RTX
|| may_fail
);
2674 /* Output a shift instruction for expression code CODE,
2675 with SHIFTED being the rtx for the value to shift,
2676 and AMOUNT the amount to shift by.
2677 Store the result in the rtx TARGET, if that is convenient.
2678 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2679 Return the rtx for where the value is. */
2682 expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2683 poly_int64 amount
, rtx target
, int unsignedp
)
2685 return expand_shift_1 (code
, mode
, shifted
,
2686 gen_int_shift_amount (mode
, amount
),
2690 /* Likewise, but return 0 if that cannot be done. */
2693 maybe_expand_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2694 int amount
, rtx target
, int unsignedp
)
2696 return expand_shift_1 (code
, mode
,
2697 shifted
, GEN_INT (amount
), target
, unsignedp
, true);
2700 /* Output a shift instruction for expression code CODE,
2701 with SHIFTED being the rtx for the value to shift,
2702 and AMOUNT the tree for the amount to shift by.
2703 Store the result in the rtx TARGET, if that is convenient.
2704 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2705 Return the rtx for where the value is. */
2708 expand_variable_shift (enum tree_code code
, machine_mode mode
, rtx shifted
,
2709 tree amount
, rtx target
, int unsignedp
)
2711 return expand_shift_1 (code
, mode
,
2712 shifted
, expand_normal (amount
), target
, unsignedp
);
2716 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2717 const struct mult_cost
*, machine_mode mode
);
2718 static rtx
expand_mult_const (machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2719 const struct algorithm
*, enum mult_variant
);
2720 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2721 static rtx
extract_high_half (scalar_int_mode
, rtx
);
2722 static rtx
expmed_mult_highpart (scalar_int_mode
, rtx
, rtx
, rtx
, int, int);
2723 static rtx
expmed_mult_highpart_optab (scalar_int_mode
, rtx
, rtx
, rtx
,
2725 /* Compute and return the best algorithm for multiplying by T.
2726 The algorithm must cost less than cost_limit
2727 If retval.cost >= COST_LIMIT, no algorithm was found and all
2728 other field of the returned struct are undefined.
2729 MODE is the machine mode of the multiplication. */
2732 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2733 const struct mult_cost
*cost_limit
, machine_mode mode
)
2736 struct algorithm
*alg_in
, *best_alg
;
2737 struct mult_cost best_cost
;
2738 struct mult_cost new_limit
;
2739 int op_cost
, op_latency
;
2740 unsigned HOST_WIDE_INT orig_t
= t
;
2741 unsigned HOST_WIDE_INT q
;
2742 int maxm
, hash_index
;
2743 bool cache_hit
= false;
2744 enum alg_code cache_alg
= alg_zero
;
2745 bool speed
= optimize_insn_for_speed_p ();
2746 scalar_int_mode imode
;
2747 struct alg_hash_entry
*entry_ptr
;
2749 /* Indicate that no algorithm is yet found. If no algorithm
2750 is found, this value will be returned and indicate failure. */
2751 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2752 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2754 if (cost_limit
->cost
< 0
2755 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2758 /* Be prepared for vector modes. */
2759 imode
= as_a
<scalar_int_mode
> (GET_MODE_INNER (mode
));
2761 maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (imode
));
2763 /* Restrict the bits of "t" to the multiplication's mode. */
2764 t
&= GET_MODE_MASK (imode
);
2766 /* t == 1 can be done in zero cost. */
2770 alg_out
->cost
.cost
= 0;
2771 alg_out
->cost
.latency
= 0;
2772 alg_out
->op
[0] = alg_m
;
2776 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2780 if (MULT_COST_LESS (cost_limit
, zero_cost (speed
)))
2785 alg_out
->cost
.cost
= zero_cost (speed
);
2786 alg_out
->cost
.latency
= zero_cost (speed
);
2787 alg_out
->op
[0] = alg_zero
;
2792 /* We'll be needing a couple extra algorithm structures now. */
2794 alg_in
= XALLOCA (struct algorithm
);
2795 best_alg
= XALLOCA (struct algorithm
);
2796 best_cost
= *cost_limit
;
2798 /* Compute the hash index. */
2799 hash_index
= (t
^ (unsigned int) mode
^ (speed
* 256)) % NUM_ALG_HASH_ENTRIES
;
2801 /* See if we already know what to do for T. */
2802 entry_ptr
= alg_hash_entry_ptr (hash_index
);
2803 if (entry_ptr
->t
== t
2804 && entry_ptr
->mode
== mode
2805 && entry_ptr
->speed
== speed
2806 && entry_ptr
->alg
!= alg_unknown
)
2808 cache_alg
= entry_ptr
->alg
;
2810 if (cache_alg
== alg_impossible
)
2812 /* The cache tells us that it's impossible to synthesize
2813 multiplication by T within entry_ptr->cost. */
2814 if (!CHEAPER_MULT_COST (&entry_ptr
->cost
, cost_limit
))
2815 /* COST_LIMIT is at least as restrictive as the one
2816 recorded in the hash table, in which case we have no
2817 hope of synthesizing a multiplication. Just
2821 /* If we get here, COST_LIMIT is less restrictive than the
2822 one recorded in the hash table, so we may be able to
2823 synthesize a multiplication. Proceed as if we didn't
2824 have the cache entry. */
2828 if (CHEAPER_MULT_COST (cost_limit
, &entry_ptr
->cost
))
2829 /* The cached algorithm shows that this multiplication
2830 requires more cost than COST_LIMIT. Just return. This
2831 way, we don't clobber this cache entry with
2832 alg_impossible but retain useful information. */
2844 goto do_alg_addsub_t_m2
;
2846 case alg_add_factor
:
2847 case alg_sub_factor
:
2848 goto do_alg_addsub_factor
;
2851 goto do_alg_add_t2_m
;
2854 goto do_alg_sub_t2_m
;
2862 /* If we have a group of zero bits at the low-order part of T, try
2863 multiplying by the remaining bits and then doing a shift. */
2868 m
= ctz_or_zero (t
); /* m = number of low zero bits */
2872 /* The function expand_shift will choose between a shift and
2873 a sequence of additions, so the observed cost is given as
2874 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2875 op_cost
= m
* add_cost (speed
, mode
);
2876 if (shift_cost (speed
, mode
, m
) < op_cost
)
2877 op_cost
= shift_cost (speed
, mode
, m
);
2878 new_limit
.cost
= best_cost
.cost
- op_cost
;
2879 new_limit
.latency
= best_cost
.latency
- op_cost
;
2880 synth_mult (alg_in
, q
, &new_limit
, mode
);
2882 alg_in
->cost
.cost
+= op_cost
;
2883 alg_in
->cost
.latency
+= op_cost
;
2884 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2886 best_cost
= alg_in
->cost
;
2887 std::swap (alg_in
, best_alg
);
2888 best_alg
->log
[best_alg
->ops
] = m
;
2889 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2892 /* See if treating ORIG_T as a signed number yields a better
2893 sequence. Try this sequence only for a negative ORIG_T
2894 as it would be useless for a non-negative ORIG_T. */
2895 if ((HOST_WIDE_INT
) orig_t
< 0)
2897 /* Shift ORIG_T as follows because a right shift of a
2898 negative-valued signed type is implementation
2900 q
= ~(~orig_t
>> m
);
2901 /* The function expand_shift will choose between a shift
2902 and a sequence of additions, so the observed cost is
2903 given as MIN (m * add_cost(speed, mode),
2904 shift_cost(speed, mode, m)). */
2905 op_cost
= m
* add_cost (speed
, mode
);
2906 if (shift_cost (speed
, mode
, m
) < op_cost
)
2907 op_cost
= shift_cost (speed
, mode
, m
);
2908 new_limit
.cost
= best_cost
.cost
- op_cost
;
2909 new_limit
.latency
= best_cost
.latency
- op_cost
;
2910 synth_mult (alg_in
, q
, &new_limit
, mode
);
2912 alg_in
->cost
.cost
+= op_cost
;
2913 alg_in
->cost
.latency
+= op_cost
;
2914 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2916 best_cost
= alg_in
->cost
;
2917 std::swap (alg_in
, best_alg
);
2918 best_alg
->log
[best_alg
->ops
] = m
;
2919 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2927 /* If we have an odd number, add or subtract one. */
2930 unsigned HOST_WIDE_INT w
;
2933 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2935 /* If T was -1, then W will be zero after the loop. This is another
2936 case where T ends with ...111. Handling this with (T + 1) and
2937 subtract 1 produces slightly better code and results in algorithm
2938 selection much faster than treating it like the ...0111 case
2942 /* Reject the case where t is 3.
2943 Thus we prefer addition in that case. */
2946 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
2948 op_cost
= add_cost (speed
, mode
);
2949 new_limit
.cost
= best_cost
.cost
- op_cost
;
2950 new_limit
.latency
= best_cost
.latency
- op_cost
;
2951 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2953 alg_in
->cost
.cost
+= op_cost
;
2954 alg_in
->cost
.latency
+= op_cost
;
2955 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2957 best_cost
= alg_in
->cost
;
2958 std::swap (alg_in
, best_alg
);
2959 best_alg
->log
[best_alg
->ops
] = 0;
2960 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2965 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
2967 op_cost
= add_cost (speed
, mode
);
2968 new_limit
.cost
= best_cost
.cost
- op_cost
;
2969 new_limit
.latency
= best_cost
.latency
- op_cost
;
2970 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2972 alg_in
->cost
.cost
+= op_cost
;
2973 alg_in
->cost
.latency
+= op_cost
;
2974 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2976 best_cost
= alg_in
->cost
;
2977 std::swap (alg_in
, best_alg
);
2978 best_alg
->log
[best_alg
->ops
] = 0;
2979 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2983 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2984 quickly with a - a * n for some appropriate constant n. */
2985 m
= exact_log2 (-orig_t
+ 1);
2986 if (m
>= 0 && m
< maxm
)
2988 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
2989 /* If the target has a cheap shift-and-subtract insn use
2990 that in preference to a shift insn followed by a sub insn.
2991 Assume that the shift-and-sub is "atomic" with a latency
2992 equal to it's cost, otherwise assume that on superscalar
2993 hardware the shift may be executed concurrently with the
2994 earlier steps in the algorithm. */
2995 if (shiftsub1_cost (speed
, mode
, m
) <= op_cost
)
2997 op_cost
= shiftsub1_cost (speed
, mode
, m
);
2998 op_latency
= op_cost
;
3001 op_latency
= add_cost (speed
, mode
);
3003 new_limit
.cost
= best_cost
.cost
- op_cost
;
3004 new_limit
.latency
= best_cost
.latency
- op_latency
;
3005 synth_mult (alg_in
, (unsigned HOST_WIDE_INT
) (-orig_t
+ 1) >> m
,
3008 alg_in
->cost
.cost
+= op_cost
;
3009 alg_in
->cost
.latency
+= op_latency
;
3010 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3012 best_cost
= alg_in
->cost
;
3013 std::swap (alg_in
, best_alg
);
3014 best_alg
->log
[best_alg
->ops
] = m
;
3015 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
3023 /* Look for factors of t of the form
3024 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
3025 If we find such a factor, we can multiply by t using an algorithm that
3026 multiplies by q, shift the result by m and add/subtract it to itself.
3028 We search for large factors first and loop down, even if large factors
3029 are less probable than small; if we find a large factor we will find a
3030 good sequence quickly, and therefore be able to prune (by decreasing
3031 COST_LIMIT) the search. */
3033 do_alg_addsub_factor
:
3034 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
3036 unsigned HOST_WIDE_INT d
;
3038 d
= (HOST_WIDE_INT_1U
<< m
) + 1;
3039 if (t
% d
== 0 && t
> d
&& m
< maxm
3040 && (!cache_hit
|| cache_alg
== alg_add_factor
))
3042 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
3043 if (shiftadd_cost (speed
, mode
, m
) <= op_cost
)
3044 op_cost
= shiftadd_cost (speed
, mode
, m
);
3046 op_latency
= op_cost
;
3049 new_limit
.cost
= best_cost
.cost
- op_cost
;
3050 new_limit
.latency
= best_cost
.latency
- op_latency
;
3051 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
3053 alg_in
->cost
.cost
+= op_cost
;
3054 alg_in
->cost
.latency
+= op_latency
;
3055 if (alg_in
->cost
.latency
< op_cost
)
3056 alg_in
->cost
.latency
= op_cost
;
3057 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3059 best_cost
= alg_in
->cost
;
3060 std::swap (alg_in
, best_alg
);
3061 best_alg
->log
[best_alg
->ops
] = m
;
3062 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
3064 /* Other factors will have been taken care of in the recursion. */
3068 d
= (HOST_WIDE_INT_1U
<< m
) - 1;
3069 if (t
% d
== 0 && t
> d
&& m
< maxm
3070 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
3072 op_cost
= add_cost (speed
, mode
) + shift_cost (speed
, mode
, m
);
3073 if (shiftsub0_cost (speed
, mode
, m
) <= op_cost
)
3074 op_cost
= shiftsub0_cost (speed
, mode
, m
);
3076 op_latency
= op_cost
;
3078 new_limit
.cost
= best_cost
.cost
- op_cost
;
3079 new_limit
.latency
= best_cost
.latency
- op_latency
;
3080 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
3082 alg_in
->cost
.cost
+= op_cost
;
3083 alg_in
->cost
.latency
+= op_latency
;
3084 if (alg_in
->cost
.latency
< op_cost
)
3085 alg_in
->cost
.latency
= op_cost
;
3086 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3088 best_cost
= alg_in
->cost
;
3089 std::swap (alg_in
, best_alg
);
3090 best_alg
->log
[best_alg
->ops
] = m
;
3091 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
3099 /* Try shift-and-add (load effective address) instructions,
3100 i.e. do a*3, a*5, a*9. */
3108 op_cost
= shiftadd_cost (speed
, mode
, m
);
3109 new_limit
.cost
= best_cost
.cost
- op_cost
;
3110 new_limit
.latency
= best_cost
.latency
- op_cost
;
3111 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
3113 alg_in
->cost
.cost
+= op_cost
;
3114 alg_in
->cost
.latency
+= op_cost
;
3115 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3117 best_cost
= alg_in
->cost
;
3118 std::swap (alg_in
, best_alg
);
3119 best_alg
->log
[best_alg
->ops
] = m
;
3120 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
3131 op_cost
= shiftsub0_cost (speed
, mode
, m
);
3132 new_limit
.cost
= best_cost
.cost
- op_cost
;
3133 new_limit
.latency
= best_cost
.latency
- op_cost
;
3134 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
3136 alg_in
->cost
.cost
+= op_cost
;
3137 alg_in
->cost
.latency
+= op_cost
;
3138 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
3140 best_cost
= alg_in
->cost
;
3141 std::swap (alg_in
, best_alg
);
3142 best_alg
->log
[best_alg
->ops
] = m
;
3143 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
3151 /* If best_cost has not decreased, we have not found any algorithm. */
3152 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
3154 /* We failed to find an algorithm. Record alg_impossible for
3155 this case (that is, <T, MODE, COST_LIMIT>) so that next time
3156 we are asked to find an algorithm for T within the same or
3157 lower COST_LIMIT, we can immediately return to the
3160 entry_ptr
->mode
= mode
;
3161 entry_ptr
->speed
= speed
;
3162 entry_ptr
->alg
= alg_impossible
;
3163 entry_ptr
->cost
= *cost_limit
;
3167 /* Cache the result. */
3171 entry_ptr
->mode
= mode
;
3172 entry_ptr
->speed
= speed
;
3173 entry_ptr
->alg
= best_alg
->op
[best_alg
->ops
];
3174 entry_ptr
->cost
.cost
= best_cost
.cost
;
3175 entry_ptr
->cost
.latency
= best_cost
.latency
;
3178 /* If we are getting a too long sequence for `struct algorithm'
3179 to record, make this search fail. */
3180 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
3183 /* Copy the algorithm from temporary space to the space at alg_out.
3184 We avoid using structure assignment because the majority of
3185 best_alg is normally undefined, and this is a critical function. */
3186 alg_out
->ops
= best_alg
->ops
+ 1;
3187 alg_out
->cost
= best_cost
;
3188 memcpy (alg_out
->op
, best_alg
->op
,
3189 alg_out
->ops
* sizeof *alg_out
->op
);
3190 memcpy (alg_out
->log
, best_alg
->log
,
3191 alg_out
->ops
* sizeof *alg_out
->log
);
3194 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
3195 Try three variations:
3197 - a shift/add sequence based on VAL itself
3198 - a shift/add sequence based on -VAL, followed by a negation
3199 - a shift/add sequence based on VAL - 1, followed by an addition.
3201 Return true if the cheapest of these cost less than MULT_COST,
3202 describing the algorithm in *ALG and final fixup in *VARIANT. */
3205 choose_mult_variant (machine_mode mode
, HOST_WIDE_INT val
,
3206 struct algorithm
*alg
, enum mult_variant
*variant
,
3209 struct algorithm alg2
;
3210 struct mult_cost limit
;
3212 bool speed
= optimize_insn_for_speed_p ();
3214 /* Fail quickly for impossible bounds. */
3218 /* Ensure that mult_cost provides a reasonable upper bound.
3219 Any constant multiplication can be performed with less
3220 than 2 * bits additions. */
3221 op_cost
= 2 * GET_MODE_UNIT_BITSIZE (mode
) * add_cost (speed
, mode
);
3222 if (mult_cost
> op_cost
)
3223 mult_cost
= op_cost
;
3225 *variant
= basic_variant
;
3226 limit
.cost
= mult_cost
;
3227 limit
.latency
= mult_cost
;
3228 synth_mult (alg
, val
, &limit
, mode
);
3230 /* This works only if the inverted value actually fits in an
3232 if (HOST_BITS_PER_INT
>= GET_MODE_UNIT_BITSIZE (mode
))
3234 op_cost
= neg_cost (speed
, mode
);
3235 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
3237 limit
.cost
= alg
->cost
.cost
- op_cost
;
3238 limit
.latency
= alg
->cost
.latency
- op_cost
;
3242 limit
.cost
= mult_cost
- op_cost
;
3243 limit
.latency
= mult_cost
- op_cost
;
3246 synth_mult (&alg2
, -val
, &limit
, mode
);
3247 alg2
.cost
.cost
+= op_cost
;
3248 alg2
.cost
.latency
+= op_cost
;
3249 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
3250 *alg
= alg2
, *variant
= negate_variant
;
3253 /* This proves very useful for division-by-constant. */
3254 op_cost
= add_cost (speed
, mode
);
3255 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
3257 limit
.cost
= alg
->cost
.cost
- op_cost
;
3258 limit
.latency
= alg
->cost
.latency
- op_cost
;
3262 limit
.cost
= mult_cost
- op_cost
;
3263 limit
.latency
= mult_cost
- op_cost
;
3266 synth_mult (&alg2
, val
- 1, &limit
, mode
);
3267 alg2
.cost
.cost
+= op_cost
;
3268 alg2
.cost
.latency
+= op_cost
;
3269 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
3270 *alg
= alg2
, *variant
= add_variant
;
3272 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
3275 /* A subroutine of expand_mult, used for constant multiplications.
3276 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3277 convenient. Use the shift/add sequence described by ALG and apply
3278 the final fixup specified by VARIANT. */
3281 expand_mult_const (machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
3282 rtx target
, const struct algorithm
*alg
,
3283 enum mult_variant variant
)
3285 unsigned HOST_WIDE_INT val_so_far
;
3291 /* Avoid referencing memory over and over and invalid sharing
3293 op0
= force_reg (mode
, op0
);
3295 /* ACCUM starts out either as OP0 or as a zero, depending on
3296 the first operation. */
3298 if (alg
->op
[0] == alg_zero
)
3300 accum
= copy_to_mode_reg (mode
, CONST0_RTX (mode
));
3303 else if (alg
->op
[0] == alg_m
)
3305 accum
= copy_to_mode_reg (mode
, op0
);
3311 for (opno
= 1; opno
< alg
->ops
; opno
++)
3313 int log
= alg
->log
[opno
];
3314 rtx shift_subtarget
= optimize
? 0 : accum
;
3316 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
3319 rtx accum_target
= optimize
? 0 : accum
;
3322 switch (alg
->op
[opno
])
3325 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3326 /* REG_EQUAL note will be attached to the following insn. */
3327 emit_move_insn (accum
, tem
);
3332 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3333 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3334 add_target
? add_target
: accum_target
);
3335 val_so_far
+= HOST_WIDE_INT_1U
<< log
;
3339 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
, log
, NULL_RTX
, 0);
3340 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
3341 add_target
? add_target
: accum_target
);
3342 val_so_far
-= HOST_WIDE_INT_1U
<< log
;
3346 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3347 log
, shift_subtarget
, 0);
3348 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
3349 add_target
? add_target
: accum_target
);
3350 val_so_far
= (val_so_far
<< log
) + 1;
3354 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
3355 log
, shift_subtarget
, 0);
3356 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
3357 add_target
? add_target
: accum_target
);
3358 val_so_far
= (val_so_far
<< log
) - 1;
3361 case alg_add_factor
:
3362 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3363 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
3364 add_target
? add_target
: accum_target
);
3365 val_so_far
+= val_so_far
<< log
;
3368 case alg_sub_factor
:
3369 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
, log
, NULL_RTX
, 0);
3370 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
3372 ? add_target
: (optimize
? 0 : tem
)));
3373 val_so_far
= (val_so_far
<< log
) - val_so_far
;
3380 if (SCALAR_INT_MODE_P (mode
))
3382 /* Write a REG_EQUAL note on the last insn so that we can cse
3383 multiplication sequences. Note that if ACCUM is a SUBREG,
3384 we've set the inner register and must properly indicate that. */
3385 tem
= op0
, nmode
= mode
;
3386 accum_inner
= accum
;
3387 if (GET_CODE (accum
) == SUBREG
)
3389 accum_inner
= SUBREG_REG (accum
);
3390 nmode
= GET_MODE (accum_inner
);
3391 tem
= gen_lowpart (nmode
, op0
);
3394 /* Don't add a REG_EQUAL note if tem is a paradoxical SUBREG.
3395 In that case, only the low bits of accum would be guaranteed to
3396 be equal to the content of the REG_EQUAL note, the upper bits
3398 if (!paradoxical_subreg_p (tem
))
3400 insn
= get_last_insn ();
3401 wide_int wval_so_far
3402 = wi::uhwi (val_so_far
,
3403 GET_MODE_PRECISION (as_a
<scalar_mode
> (nmode
)));
3404 rtx c
= immed_wide_int_const (wval_so_far
, nmode
);
3405 set_dst_reg_note (insn
, REG_EQUAL
, gen_rtx_MULT (nmode
, tem
, c
),
3411 if (variant
== negate_variant
)
3413 val_so_far
= -val_so_far
;
3414 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
3416 else if (variant
== add_variant
)
3418 val_so_far
= val_so_far
+ 1;
3419 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
3422 /* Compare only the bits of val and val_so_far that are significant
3423 in the result mode, to avoid sign-/zero-extension confusion. */
3424 nmode
= GET_MODE_INNER (mode
);
3425 val
&= GET_MODE_MASK (nmode
);
3426 val_so_far
&= GET_MODE_MASK (nmode
);
3427 gcc_assert (val
== (HOST_WIDE_INT
) val_so_far
);
3432 /* Perform a multiplication and return an rtx for the result.
3433 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3434 TARGET is a suggestion for where to store the result (an rtx).
3436 We check specially for a constant integer as OP1.
3437 If you want this check for OP0 as well, then before calling
3438 you should swap the two operands if OP0 would be constant. */
3441 expand_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3442 int unsignedp
, bool no_libcall
)
3444 enum mult_variant variant
;
3445 struct algorithm algorithm
;
3448 bool speed
= optimize_insn_for_speed_p ();
3449 bool do_trapv
= flag_trapv
&& SCALAR_INT_MODE_P (mode
) && !unsignedp
;
3451 if (CONSTANT_P (op0
))
3452 std::swap (op0
, op1
);
3454 /* For vectors, there are several simplifications that can be made if
3455 all elements of the vector constant are identical. */
3456 scalar_op1
= unwrap_const_vec_duplicate (op1
);
3458 if (INTEGRAL_MODE_P (mode
))
3461 HOST_WIDE_INT coeff
;
3465 if (op1
== CONST0_RTX (mode
))
3467 if (op1
== CONST1_RTX (mode
))
3469 if (op1
== CONSTM1_RTX (mode
))
3470 return expand_unop (mode
, do_trapv
? negv_optab
: neg_optab
,
3476 /* If mode is integer vector mode, check if the backend supports
3477 vector lshift (by scalar or vector) at all. If not, we can't use
3478 synthetized multiply. */
3479 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
3480 && optab_handler (vashl_optab
, mode
) == CODE_FOR_nothing
3481 && optab_handler (ashl_optab
, mode
) == CODE_FOR_nothing
)
3484 /* These are the operations that are potentially turned into
3485 a sequence of shifts and additions. */
3486 mode_bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
3488 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3489 less than or equal in size to `unsigned int' this doesn't matter.
3490 If the mode is larger than `unsigned int', then synth_mult works
3491 only if the constant value exactly fits in an `unsigned int' without
3492 any truncation. This means that multiplying by negative values does
3493 not work; results are off by 2^32 on a 32 bit machine. */
3494 if (CONST_INT_P (scalar_op1
))
3496 coeff
= INTVAL (scalar_op1
);
3499 #if TARGET_SUPPORTS_WIDE_INT
3500 else if (CONST_WIDE_INT_P (scalar_op1
))
3502 else if (CONST_DOUBLE_AS_INT_P (scalar_op1
))
3505 int shift
= wi::exact_log2 (rtx_mode_t (scalar_op1
, mode
));
3506 /* Perfect power of 2 (other than 1, which is handled above). */
3508 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3509 shift
, target
, unsignedp
);
3516 /* We used to test optimize here, on the grounds that it's better to
3517 produce a smaller program when -O is not used. But this causes
3518 such a terrible slowdown sometimes that it seems better to always
3521 /* Special case powers of two. */
3522 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
)
3523 && !(is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
))
3524 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3525 floor_log2 (coeff
), target
, unsignedp
);
3527 fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3529 /* Attempt to handle multiplication of DImode values by negative
3530 coefficients, by performing the multiplication by a positive
3531 multiplier and then inverting the result. */
3532 if (is_neg
&& mode_bitsize
> HOST_BITS_PER_WIDE_INT
)
3534 /* Its safe to use -coeff even for INT_MIN, as the
3535 result is interpreted as an unsigned coefficient.
3536 Exclude cost of op0 from max_cost to match the cost
3537 calculation of the synth_mult. */
3538 coeff
= -(unsigned HOST_WIDE_INT
) coeff
;
3539 max_cost
= (set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
),
3541 - neg_cost (speed
, mode
));
3545 /* Special case powers of two. */
3546 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3548 rtx temp
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
3549 floor_log2 (coeff
), target
, unsignedp
);
3550 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3553 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3556 rtx temp
= expand_mult_const (mode
, op0
, coeff
, NULL_RTX
,
3557 &algorithm
, variant
);
3558 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3563 /* Exclude cost of op0 from max_cost to match the cost
3564 calculation of the synth_mult. */
3565 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), mode
, speed
);
3566 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3567 return expand_mult_const (mode
, op0
, coeff
, target
,
3568 &algorithm
, variant
);
3572 /* Expand x*2.0 as x+x. */
3573 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1
)
3574 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1
), &dconst2
))
3576 op0
= force_reg (GET_MODE (op0
), op0
);
3577 return expand_binop (mode
, add_optab
, op0
, op0
,
3579 no_libcall
? OPTAB_WIDEN
: OPTAB_LIB_WIDEN
);
3582 /* This used to use umul_optab if unsigned, but for non-widening multiply
3583 there is no difference between signed and unsigned. */
3584 op0
= expand_binop (mode
, do_trapv
? smulv_optab
: smul_optab
,
3585 op0
, op1
, target
, unsignedp
,
3586 no_libcall
? OPTAB_WIDEN
: OPTAB_LIB_WIDEN
);
3587 gcc_assert (op0
|| no_libcall
);
3591 /* Return a cost estimate for multiplying a register by the given
3592 COEFFicient in the given MODE and SPEED. */
3595 mult_by_coeff_cost (HOST_WIDE_INT coeff
, machine_mode mode
, bool speed
)
3598 struct algorithm algorithm
;
3599 enum mult_variant variant
;
3601 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3602 max_cost
= set_src_cost (gen_rtx_MULT (mode
, fake_reg
, fake_reg
),
3604 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
, max_cost
))
3605 return algorithm
.cost
.cost
;
3610 /* Perform a widening multiplication and return an rtx for the result.
3611 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3612 TARGET is a suggestion for where to store the result (an rtx).
3613 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3614 or smul_widen_optab.
3616 We check specially for a constant integer as OP1, comparing the
3617 cost of a widening multiply against the cost of a sequence of shifts
3621 expand_widening_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
3622 int unsignedp
, optab this_optab
)
3624 bool speed
= optimize_insn_for_speed_p ();
3627 if (CONST_INT_P (op1
)
3628 && GET_MODE (op0
) != VOIDmode
3629 && (cop1
= convert_modes (mode
, GET_MODE (op0
), op1
,
3630 this_optab
== umul_widen_optab
))
3631 && CONST_INT_P (cop1
)
3632 && (INTVAL (cop1
) >= 0
3633 || HWI_COMPUTABLE_MODE_P (mode
)))
3635 HOST_WIDE_INT coeff
= INTVAL (cop1
);
3637 enum mult_variant variant
;
3638 struct algorithm algorithm
;
3641 return CONST0_RTX (mode
);
3643 /* Special case powers of two. */
3644 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3646 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3647 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3648 floor_log2 (coeff
), target
, unsignedp
);
3651 /* Exclude cost of op0 from max_cost to match the cost
3652 calculation of the synth_mult. */
3653 max_cost
= mul_widen_cost (speed
, mode
);
3654 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3657 op0
= convert_to_mode (mode
, op0
, this_optab
== umul_widen_optab
);
3658 return expand_mult_const (mode
, op0
, coeff
, target
,
3659 &algorithm
, variant
);
3662 return expand_binop (mode
, this_optab
, op0
, op1
, target
,
3663 unsignedp
, OPTAB_LIB_WIDEN
);
3666 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3667 replace division by D, and put the least significant N bits of the result
3668 in *MULTIPLIER_PTR and return the most significant bit.
3670 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3671 needed precision is in PRECISION (should be <= N).
3673 PRECISION should be as small as possible so this function can choose
3674 multiplier more freely.
3676 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3677 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3679 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3680 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3682 unsigned HOST_WIDE_INT
3683 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3684 unsigned HOST_WIDE_INT
*multiplier_ptr
,
3685 int *post_shift_ptr
, int *lgup_ptr
)
3687 int lgup
, post_shift
;
3690 /* lgup = ceil(log2(divisor)); */
3691 lgup
= ceil_log2 (d
);
3693 gcc_assert (lgup
<= n
);
3696 pow2
= n
+ lgup
- precision
;
3698 /* mlow = 2^(N + lgup)/d */
3699 wide_int val
= wi::set_bit_in_zero (pow
, HOST_BITS_PER_DOUBLE_INT
);
3700 wide_int mlow
= wi::udiv_trunc (val
, d
);
3702 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
3703 val
|= wi::set_bit_in_zero (pow2
, HOST_BITS_PER_DOUBLE_INT
);
3704 wide_int mhigh
= wi::udiv_trunc (val
, d
);
3706 /* If precision == N, then mlow, mhigh exceed 2^N
3707 (but they do not exceed 2^(N+1)). */
3709 /* Reduce to lowest terms. */
3710 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3712 unsigned HOST_WIDE_INT ml_lo
= wi::extract_uhwi (mlow
, 1,
3713 HOST_BITS_PER_WIDE_INT
);
3714 unsigned HOST_WIDE_INT mh_lo
= wi::extract_uhwi (mhigh
, 1,
3715 HOST_BITS_PER_WIDE_INT
);
3719 mlow
= wi::uhwi (ml_lo
, HOST_BITS_PER_DOUBLE_INT
);
3720 mhigh
= wi::uhwi (mh_lo
, HOST_BITS_PER_DOUBLE_INT
);
3723 *post_shift_ptr
= post_shift
;
3725 if (n
< HOST_BITS_PER_WIDE_INT
)
3727 unsigned HOST_WIDE_INT mask
= (HOST_WIDE_INT_1U
<< n
) - 1;
3728 *multiplier_ptr
= mhigh
.to_uhwi () & mask
;
3729 return mhigh
.to_uhwi () > mask
;
3733 *multiplier_ptr
= mhigh
.to_uhwi ();
3734 return wi::extract_uhwi (mhigh
, HOST_BITS_PER_WIDE_INT
, 1);
3738 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3739 congruent to 1 (mod 2**N). */
3741 static unsigned HOST_WIDE_INT
3742 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3744 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3746 /* The algorithm notes that the choice y = x satisfies
3747 x*y == 1 mod 2^3, since x is assumed odd.
3748 Each iteration doubles the number of bits of significance in y. */
3750 unsigned HOST_WIDE_INT mask
;
3751 unsigned HOST_WIDE_INT y
= x
;
3754 mask
= (n
== HOST_BITS_PER_WIDE_INT
3756 : (HOST_WIDE_INT_1U
<< n
) - 1);
3760 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3766 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3767 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3768 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3769 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3772 The result is put in TARGET if that is convenient.
3774 MODE is the mode of operation. */
3777 expand_mult_highpart_adjust (scalar_int_mode mode
, rtx adj_operand
, rtx op0
,
3778 rtx op1
, rtx target
, int unsignedp
)
3781 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3783 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3784 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3785 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3787 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3790 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3791 GET_MODE_BITSIZE (mode
) - 1, NULL_RTX
, 0);
3792 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3793 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3799 /* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
3802 extract_high_half (scalar_int_mode mode
, rtx op
)
3804 if (mode
== word_mode
)
3805 return gen_highpart (mode
, op
);
3807 scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (mode
).require ();
3809 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3810 GET_MODE_BITSIZE (mode
), 0, 1);
3811 return convert_modes (mode
, wider_mode
, op
, 0);
3814 /* Like expmed_mult_highpart, but only consider using a multiplication
3815 optab. OP1 is an rtx for the constant operand. */
3818 expmed_mult_highpart_optab (scalar_int_mode mode
, rtx op0
, rtx op1
,
3819 rtx target
, int unsignedp
, int max_cost
)
3821 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3825 bool speed
= optimize_insn_for_speed_p ();
3827 scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (mode
).require ();
3829 size
= GET_MODE_BITSIZE (mode
);
3831 /* Firstly, try using a multiplication insn that only generates the needed
3832 high part of the product, and in the sign flavor of unsignedp. */
3833 if (mul_highpart_cost (speed
, mode
) < max_cost
)
3835 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3836 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3837 unsignedp
, OPTAB_DIRECT
);
3842 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3843 Need to adjust the result after the multiplication. */
3844 if (size
- 1 < BITS_PER_WORD
3845 && (mul_highpart_cost (speed
, mode
)
3846 + 2 * shift_cost (speed
, mode
, size
-1)
3847 + 4 * add_cost (speed
, mode
) < max_cost
))
3849 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3850 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3851 unsignedp
, OPTAB_DIRECT
);
3853 /* We used the wrong signedness. Adjust the result. */
3854 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3858 /* Try widening multiplication. */
3859 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3860 if (convert_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3861 && mul_widen_cost (speed
, wider_mode
) < max_cost
)
3863 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3864 unsignedp
, OPTAB_WIDEN
);
3866 return extract_high_half (mode
, tem
);
3869 /* Try widening the mode and perform a non-widening multiplication. */
3870 if (optab_handler (smul_optab
, wider_mode
) != CODE_FOR_nothing
3871 && size
- 1 < BITS_PER_WORD
3872 && (mul_cost (speed
, wider_mode
) + shift_cost (speed
, mode
, size
-1)
3878 /* We need to widen the operands, for example to ensure the
3879 constant multiplier is correctly sign or zero extended.
3880 Use a sequence to clean-up any instructions emitted by
3881 the conversions if things don't work out. */
3883 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3884 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3885 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3886 unsignedp
, OPTAB_WIDEN
);
3887 insns
= get_insns ();
3893 return extract_high_half (mode
, tem
);
3897 /* Try widening multiplication of opposite signedness, and adjust. */
3898 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3899 if (convert_optab_handler (moptab
, wider_mode
, mode
) != CODE_FOR_nothing
3900 && size
- 1 < BITS_PER_WORD
3901 && (mul_widen_cost (speed
, wider_mode
)
3902 + 2 * shift_cost (speed
, mode
, size
-1)
3903 + 4 * add_cost (speed
, mode
) < max_cost
))
3905 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3906 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3909 tem
= extract_high_half (mode
, tem
);
3910 /* We used the wrong signedness. Adjust the result. */
3911 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3919 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3920 putting the high half of the result in TARGET if that is convenient,
3921 and return where the result is. If the operation cannot be performed,
3924 MODE is the mode of operation and result.
3926 UNSIGNEDP nonzero means unsigned multiply.
3928 MAX_COST is the total allowed cost for the expanded RTL. */
3931 expmed_mult_highpart (scalar_int_mode mode
, rtx op0
, rtx op1
,
3932 rtx target
, int unsignedp
, int max_cost
)
3934 unsigned HOST_WIDE_INT cnst1
;
3936 bool sign_adjust
= false;
3937 enum mult_variant variant
;
3938 struct algorithm alg
;
3940 bool speed
= optimize_insn_for_speed_p ();
3942 /* We can't support modes wider than HOST_BITS_PER_INT. */
3943 gcc_assert (HWI_COMPUTABLE_MODE_P (mode
));
3945 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3947 /* We can't optimize modes wider than BITS_PER_WORD.
3948 ??? We might be able to perform double-word arithmetic if
3949 mode == word_mode, however all the cost calculations in
3950 synth_mult etc. assume single-word operations. */
3951 scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (mode
).require ();
3952 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3953 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3954 unsignedp
, max_cost
);
3956 extra_cost
= shift_cost (speed
, mode
, GET_MODE_BITSIZE (mode
) - 1);
3958 /* Check whether we try to multiply by a negative constant. */
3959 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3962 extra_cost
+= add_cost (speed
, mode
);
3965 /* See whether shift/add multiplication is cheap enough. */
3966 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3967 max_cost
- extra_cost
))
3969 /* See whether the specialized multiplication optabs are
3970 cheaper than the shift/add version. */
3971 tem
= expmed_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3972 alg
.cost
.cost
+ extra_cost
);
3976 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3977 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3978 tem
= extract_high_half (mode
, tem
);
3980 /* Adjust result for signedness. */
3982 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3986 return expmed_mult_highpart_optab (mode
, op0
, op1
, target
,
3987 unsignedp
, max_cost
);
3991 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3994 expand_smod_pow2 (scalar_int_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3996 rtx result
, temp
, shift
;
3997 rtx_code_label
*label
;
3999 int prec
= GET_MODE_PRECISION (mode
);
4001 logd
= floor_log2 (d
);
4002 result
= gen_reg_rtx (mode
);
4004 /* Avoid conditional branches when they're expensive. */
4005 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
4006 && optimize_insn_for_speed_p ())
4008 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
4012 HOST_WIDE_INT masklow
= (HOST_WIDE_INT_1
<< logd
) - 1;
4013 signmask
= force_reg (mode
, signmask
);
4014 shift
= gen_int_shift_amount (mode
, GET_MODE_BITSIZE (mode
) - logd
);
4016 /* Use the rtx_cost of a LSHIFTRT instruction to determine
4017 which instruction sequence to use. If logical right shifts
4018 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
4019 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
4021 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
4022 if (optab_handler (lshr_optab
, mode
) == CODE_FOR_nothing
4023 || (set_src_cost (temp
, mode
, optimize_insn_for_speed_p ())
4024 > COSTS_N_INSNS (2)))
4026 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
4027 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4028 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
4029 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4030 temp
= expand_binop (mode
, and_optab
, temp
,
4031 gen_int_mode (masklow
, mode
),
4032 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4033 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
4034 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4035 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
4036 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4040 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
4041 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4042 signmask
= force_reg (mode
, signmask
);
4044 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
4045 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4046 temp
= expand_binop (mode
, and_optab
, temp
,
4047 gen_int_mode (masklow
, mode
),
4048 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4049 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
4050 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4056 /* Mask contains the mode's signbit and the significant bits of the
4057 modulus. By including the signbit in the operation, many targets
4058 can avoid an explicit compare operation in the following comparison
4060 wide_int mask
= wi::mask (logd
, false, prec
);
4061 mask
= wi::set_bit (mask
, prec
- 1);
4063 temp
= expand_binop (mode
, and_optab
, op0
,
4064 immed_wide_int_const (mask
, mode
),
4065 result
, 1, OPTAB_LIB_WIDEN
);
4067 emit_move_insn (result
, temp
);
4069 label
= gen_label_rtx ();
4070 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
4072 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
4073 0, OPTAB_LIB_WIDEN
);
4075 mask
= wi::mask (logd
, true, prec
);
4076 temp
= expand_binop (mode
, ior_optab
, temp
,
4077 immed_wide_int_const (mask
, mode
),
4078 result
, 1, OPTAB_LIB_WIDEN
);
4079 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
4080 0, OPTAB_LIB_WIDEN
);
4082 emit_move_insn (result
, temp
);
4087 /* Expand signed division of OP0 by a power of two D in mode MODE.
4088 This routine is only called for positive values of D. */
4091 expand_sdiv_pow2 (scalar_int_mode mode
, rtx op0
, HOST_WIDE_INT d
)
4094 rtx_code_label
*label
;
4097 logd
= floor_log2 (d
);
4100 && BRANCH_COST (optimize_insn_for_speed_p (),
4103 temp
= gen_reg_rtx (mode
);
4104 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
4105 if (temp
!= NULL_RTX
)
4107 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
4108 0, OPTAB_LIB_WIDEN
);
4109 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
4113 if (HAVE_conditional_move
4114 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
4119 temp2
= copy_to_mode_reg (mode
, op0
);
4120 temp
= expand_binop (mode
, add_optab
, temp2
, gen_int_mode (d
- 1, mode
),
4121 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4122 temp
= force_reg (mode
, temp
);
4124 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
4125 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
4126 mode
, temp
, temp2
, mode
, 0);
4129 rtx_insn
*seq
= get_insns ();
4132 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, logd
, NULL_RTX
, 0);
4137 if (BRANCH_COST (optimize_insn_for_speed_p (),
4140 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
4142 temp
= gen_reg_rtx (mode
);
4143 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
4144 if (temp
!= NULL_RTX
)
4146 if (GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
4147 || shift_cost (optimize_insn_for_speed_p (), mode
, ushift
)
4148 > COSTS_N_INSNS (1))
4149 temp
= expand_binop (mode
, and_optab
, temp
,
4150 gen_int_mode (d
- 1, mode
),
4151 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4153 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
4154 ushift
, NULL_RTX
, 1);
4155 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
4156 0, OPTAB_LIB_WIDEN
);
4157 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
4161 label
= gen_label_rtx ();
4162 temp
= copy_to_mode_reg (mode
, op0
);
4163 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
4164 expand_inc (temp
, gen_int_mode (d
- 1, mode
));
4166 return expand_shift (RSHIFT_EXPR
, mode
, temp
, logd
, NULL_RTX
, 0);
4169 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
4170 if that is convenient, and returning where the result is.
4171 You may request either the quotient or the remainder as the result;
4172 specify REM_FLAG nonzero to get the remainder.
4174 CODE is the expression code for which kind of division this is;
4175 it controls how rounding is done. MODE is the machine mode to use.
4176 UNSIGNEDP nonzero means do unsigned division. */
4178 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
4179 and then correct it by or'ing in missing high bits
4180 if result of ANDI is nonzero.
4181 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
4182 This could optimize to a bfexts instruction.
4183 But C doesn't use these operations, so their optimizations are
4185 /* ??? For modulo, we don't actually need the highpart of the first product,
4186 the low part will do nicely. And for small divisors, the second multiply
4187 can also be a low-part only multiply or even be completely left out.
4188 E.g. to calculate the remainder of a division by 3 with a 32 bit
4189 multiply, multiply with 0x55555556 and extract the upper two bits;
4190 the result is exact for inputs up to 0x1fffffff.
4191 The input range can be reduced by using cross-sum rules.
4192 For odd divisors >= 3, the following table gives right shift counts
4193 so that if a number is shifted by an integer multiple of the given
4194 amount, the remainder stays the same:
4195 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
4196 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
4197 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
4198 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
4199 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
4201 Cross-sum rules for even numbers can be derived by leaving as many bits
4202 to the right alone as the divisor has zeros to the right.
4203 E.g. if x is an unsigned 32 bit number:
4204 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4208 expand_divmod (int rem_flag
, enum tree_code code
, machine_mode mode
,
4209 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
4210 enum optab_methods methods
)
4212 machine_mode compute_mode
;
4214 rtx quotient
= 0, remainder
= 0;
4217 optab optab1
, optab2
;
4218 int op1_is_constant
, op1_is_pow2
= 0;
4219 int max_cost
, extra_cost
;
4220 static HOST_WIDE_INT last_div_const
= 0;
4221 bool speed
= optimize_insn_for_speed_p ();
4223 op1_is_constant
= CONST_INT_P (op1
);
4224 if (op1_is_constant
)
4226 wide_int ext_op1
= rtx_mode_t (op1
, mode
);
4227 op1_is_pow2
= (wi::popcount (ext_op1
) == 1
4229 && wi::popcount (wi::neg (ext_op1
)) == 1));
4233 This is the structure of expand_divmod:
4235 First comes code to fix up the operands so we can perform the operations
4236 correctly and efficiently.
4238 Second comes a switch statement with code specific for each rounding mode.
4239 For some special operands this code emits all RTL for the desired
4240 operation, for other cases, it generates only a quotient and stores it in
4241 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4242 to indicate that it has not done anything.
4244 Last comes code that finishes the operation. If QUOTIENT is set and
4245 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4246 QUOTIENT is not set, it is computed using trunc rounding.
4248 We try to generate special code for division and remainder when OP1 is a
4249 constant. If |OP1| = 2**n we can use shifts and some other fast
4250 operations. For other values of OP1, we compute a carefully selected
4251 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4254 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4255 half of the product. Different strategies for generating the product are
4256 implemented in expmed_mult_highpart.
4258 If what we actually want is the remainder, we generate that by another
4259 by-constant multiplication and a subtraction. */
4261 /* We shouldn't be called with OP1 == const1_rtx, but some of the
4262 code below will malfunction if we are, so check here and handle
4263 the special case if so. */
4264 if (op1
== const1_rtx
)
4265 return rem_flag
? const0_rtx
: op0
;
4267 /* When dividing by -1, we could get an overflow.
4268 negv_optab can handle overflows. */
4269 if (! unsignedp
&& op1
== constm1_rtx
)
4273 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS (mode
) == MODE_INT
4274 ? negv_optab
: neg_optab
, op0
, target
, 0);
4278 /* Don't use the function value register as a target
4279 since we have to read it as well as write it,
4280 and function-inlining gets confused by this. */
4281 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
4282 /* Don't clobber an operand while doing a multi-step calculation. */
4283 || ((rem_flag
|| op1_is_constant
)
4284 && (reg_mentioned_p (target
, op0
)
4285 || (MEM_P (op0
) && MEM_P (target
))))
4286 || reg_mentioned_p (target
, op1
)
4287 || (MEM_P (op1
) && MEM_P (target
))))
4290 /* Get the mode in which to perform this computation. Normally it will
4291 be MODE, but sometimes we can't do the desired operation in MODE.
4292 If so, pick a wider mode in which we can do the operation. Convert
4293 to that mode at the start to avoid repeated conversions.
4295 First see what operations we need. These depend on the expression
4296 we are evaluating. (We assume that divxx3 insns exist under the
4297 same conditions that modxx3 insns and that these insns don't normally
4298 fail. If these assumptions are not correct, we may generate less
4299 efficient code in some cases.)
4301 Then see if we find a mode in which we can open-code that operation
4302 (either a division, modulus, or shift). Finally, check for the smallest
4303 mode for which we can do the operation with a library call. */
4305 /* We might want to refine this now that we have division-by-constant
4306 optimization. Since expmed_mult_highpart tries so many variants, it is
4307 not straightforward to generalize this. Maybe we should make an array
4308 of possible modes in init_expmed? Save this for GCC 2.7. */
4310 optab1
= (op1_is_pow2
4311 ? (unsignedp
? lshr_optab
: ashr_optab
)
4312 : (unsignedp
? udiv_optab
: sdiv_optab
));
4313 optab2
= (op1_is_pow2
? optab1
4314 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
4316 if (methods
== OPTAB_WIDEN
|| methods
== OPTAB_LIB_WIDEN
)
4318 FOR_EACH_MODE_FROM (compute_mode
, mode
)
4319 if (optab_handler (optab1
, compute_mode
) != CODE_FOR_nothing
4320 || optab_handler (optab2
, compute_mode
) != CODE_FOR_nothing
)
4323 if (compute_mode
== VOIDmode
&& methods
== OPTAB_LIB_WIDEN
)
4324 FOR_EACH_MODE_FROM (compute_mode
, mode
)
4325 if (optab_libfunc (optab1
, compute_mode
)
4326 || optab_libfunc (optab2
, compute_mode
))
4330 compute_mode
= mode
;
4332 /* If we still couldn't find a mode, use MODE, but expand_binop will
4334 if (compute_mode
== VOIDmode
)
4335 compute_mode
= mode
;
4337 if (target
&& GET_MODE (target
) == compute_mode
)
4340 tquotient
= gen_reg_rtx (compute_mode
);
4343 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
4344 (mode), and thereby get better code when OP1 is a constant. Do that
4345 later. It will require going over all usages of SIZE below. */
4346 size
= GET_MODE_BITSIZE (mode
);
4349 /* Only deduct something for a REM if the last divide done was
4350 for a different constant. Then set the constant of the last
4352 max_cost
= (unsignedp
4353 ? udiv_cost (speed
, compute_mode
)
4354 : sdiv_cost (speed
, compute_mode
));
4355 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
4356 && INTVAL (op1
) == last_div_const
))
4357 max_cost
-= (mul_cost (speed
, compute_mode
)
4358 + add_cost (speed
, compute_mode
));
4360 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
4362 /* Now convert to the best mode to use. */
4363 if (compute_mode
!= mode
)
4365 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
4366 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
4368 /* convert_modes may have placed op1 into a register, so we
4369 must recompute the following. */
4370 op1_is_constant
= CONST_INT_P (op1
);
4371 if (op1_is_constant
)
4373 wide_int ext_op1
= rtx_mode_t (op1
, compute_mode
);
4374 op1_is_pow2
= (wi::popcount (ext_op1
) == 1
4376 && wi::popcount (wi::neg (ext_op1
)) == 1));
4382 /* If one of the operands is a volatile MEM, copy it into a register. */
4384 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
4385 op0
= force_reg (compute_mode
, op0
);
4386 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
4387 op1
= force_reg (compute_mode
, op1
);
4389 /* If we need the remainder or if OP1 is constant, we need to
4390 put OP0 in a register in case it has any queued subexpressions. */
4391 if (rem_flag
|| op1_is_constant
)
4392 op0
= force_reg (compute_mode
, op0
);
4394 last
= get_last_insn ();
4396 /* Promote floor rounding to trunc rounding for unsigned operations. */
4399 if (code
== FLOOR_DIV_EXPR
)
4400 code
= TRUNC_DIV_EXPR
;
4401 if (code
== FLOOR_MOD_EXPR
)
4402 code
= TRUNC_MOD_EXPR
;
4403 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
4404 code
= TRUNC_DIV_EXPR
;
4407 if (op1
!= const0_rtx
)
4410 case TRUNC_MOD_EXPR
:
4411 case TRUNC_DIV_EXPR
:
4412 if (op1_is_constant
)
4414 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
4415 int size
= GET_MODE_BITSIZE (int_mode
);
4418 unsigned HOST_WIDE_INT mh
, ml
;
4419 int pre_shift
, post_shift
;
4421 wide_int wd
= rtx_mode_t (op1
, int_mode
);
4422 unsigned HOST_WIDE_INT d
= wd
.to_uhwi ();
4424 if (wi::popcount (wd
) == 1)
4426 pre_shift
= floor_log2 (d
);
4429 unsigned HOST_WIDE_INT mask
4430 = (HOST_WIDE_INT_1U
<< pre_shift
) - 1;
4432 = expand_binop (int_mode
, and_optab
, op0
,
4433 gen_int_mode (mask
, int_mode
),
4434 remainder
, 1, methods
);
4436 return gen_lowpart (mode
, remainder
);
4438 quotient
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
4439 pre_shift
, tquotient
, 1);
4441 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4443 if (d
>= (HOST_WIDE_INT_1U
<< (size
- 1)))
4445 /* Most significant bit of divisor is set; emit an scc
4447 quotient
= emit_store_flag_force (tquotient
, GEU
, op0
, op1
,
4452 /* Find a suitable multiplier and right shift count
4453 instead of multiplying with D. */
4455 mh
= choose_multiplier (d
, size
, size
,
4456 &ml
, &post_shift
, &dummy
);
4458 /* If the suggested multiplier is more than SIZE bits,
4459 we can do better for even divisors, using an
4460 initial right shift. */
4461 if (mh
!= 0 && (d
& 1) == 0)
4463 pre_shift
= ctz_or_zero (d
);
4464 mh
= choose_multiplier (d
>> pre_shift
, size
,
4466 &ml
, &post_shift
, &dummy
);
4476 if (post_shift
- 1 >= BITS_PER_WORD
)
4480 = (shift_cost (speed
, int_mode
, post_shift
- 1)
4481 + shift_cost (speed
, int_mode
, 1)
4482 + 2 * add_cost (speed
, int_mode
));
4483 t1
= expmed_mult_highpart
4484 (int_mode
, op0
, gen_int_mode (ml
, int_mode
),
4485 NULL_RTX
, 1, max_cost
- extra_cost
);
4488 t2
= force_operand (gen_rtx_MINUS (int_mode
,
4491 t3
= expand_shift (RSHIFT_EXPR
, int_mode
,
4492 t2
, 1, NULL_RTX
, 1);
4493 t4
= force_operand (gen_rtx_PLUS (int_mode
,
4496 quotient
= expand_shift
4497 (RSHIFT_EXPR
, int_mode
, t4
,
4498 post_shift
- 1, tquotient
, 1);
4504 if (pre_shift
>= BITS_PER_WORD
4505 || post_shift
>= BITS_PER_WORD
)
4509 (RSHIFT_EXPR
, int_mode
, op0
,
4510 pre_shift
, NULL_RTX
, 1);
4512 = (shift_cost (speed
, int_mode
, pre_shift
)
4513 + shift_cost (speed
, int_mode
, post_shift
));
4514 t2
= expmed_mult_highpart
4516 gen_int_mode (ml
, int_mode
),
4517 NULL_RTX
, 1, max_cost
- extra_cost
);
4520 quotient
= expand_shift
4521 (RSHIFT_EXPR
, int_mode
, t2
,
4522 post_shift
, tquotient
, 1);
4526 else /* Too wide mode to use tricky code */
4529 insn
= get_last_insn ();
4531 set_dst_reg_note (insn
, REG_EQUAL
,
4532 gen_rtx_UDIV (int_mode
, op0
, op1
),
4535 else /* TRUNC_DIV, signed */
4537 unsigned HOST_WIDE_INT ml
;
4538 int lgup
, post_shift
;
4540 HOST_WIDE_INT d
= INTVAL (op1
);
4541 unsigned HOST_WIDE_INT abs_d
;
4543 /* Not prepared to handle division/remainder by
4544 0xffffffffffffffff8000000000000000 etc. */
4545 if (d
== HOST_WIDE_INT_MIN
&& size
> HOST_BITS_PER_WIDE_INT
)
4548 /* Since d might be INT_MIN, we have to cast to
4549 unsigned HOST_WIDE_INT before negating to avoid
4550 undefined signed overflow. */
4552 ? (unsigned HOST_WIDE_INT
) d
4553 : - (unsigned HOST_WIDE_INT
) d
);
4555 /* n rem d = n rem -d */
4556 if (rem_flag
&& d
< 0)
4559 op1
= gen_int_mode (abs_d
, int_mode
);
4565 quotient
= expand_unop (int_mode
, neg_optab
, op0
,
4567 else if (size
<= HOST_BITS_PER_WIDE_INT
4568 && abs_d
== HOST_WIDE_INT_1U
<< (size
- 1))
4570 /* This case is not handled correctly below. */
4571 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4576 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4577 && (size
<= HOST_BITS_PER_WIDE_INT
|| d
>= 0)
4579 ? smod_pow2_cheap (speed
, int_mode
)
4580 : sdiv_pow2_cheap (speed
, int_mode
))
4581 /* We assume that cheap metric is true if the
4582 optab has an expander for this mode. */
4583 && ((optab_handler ((rem_flag
? smod_optab
4586 != CODE_FOR_nothing
)
4587 || (optab_handler (sdivmod_optab
, int_mode
)
4588 != CODE_FOR_nothing
)))
4590 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4594 remainder
= expand_smod_pow2 (int_mode
, op0
, d
);
4596 return gen_lowpart (mode
, remainder
);
4599 if (sdiv_pow2_cheap (speed
, int_mode
)
4600 && ((optab_handler (sdiv_optab
, int_mode
)
4601 != CODE_FOR_nothing
)
4602 || (optab_handler (sdivmod_optab
, int_mode
)
4603 != CODE_FOR_nothing
)))
4604 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4606 gen_int_mode (abs_d
,
4610 quotient
= expand_sdiv_pow2 (int_mode
, op0
, abs_d
);
4612 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4613 negate the quotient. */
4616 insn
= get_last_insn ();
4618 && abs_d
< (HOST_WIDE_INT_1U
4619 << (HOST_BITS_PER_WIDE_INT
- 1)))
4620 set_dst_reg_note (insn
, REG_EQUAL
,
4621 gen_rtx_DIV (int_mode
, op0
,
4627 quotient
= expand_unop (int_mode
, neg_optab
,
4628 quotient
, quotient
, 0);
4631 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4633 choose_multiplier (abs_d
, size
, size
- 1,
4634 &ml
, &post_shift
, &lgup
);
4635 if (ml
< HOST_WIDE_INT_1U
<< (size
- 1))
4639 if (post_shift
>= BITS_PER_WORD
4640 || size
- 1 >= BITS_PER_WORD
)
4643 extra_cost
= (shift_cost (speed
, int_mode
, post_shift
)
4644 + shift_cost (speed
, int_mode
, size
- 1)
4645 + add_cost (speed
, int_mode
));
4646 t1
= expmed_mult_highpart
4647 (int_mode
, op0
, gen_int_mode (ml
, int_mode
),
4648 NULL_RTX
, 0, max_cost
- extra_cost
);
4652 (RSHIFT_EXPR
, int_mode
, t1
,
4653 post_shift
, NULL_RTX
, 0);
4655 (RSHIFT_EXPR
, int_mode
, op0
,
4656 size
- 1, NULL_RTX
, 0);
4659 = force_operand (gen_rtx_MINUS (int_mode
, t3
, t2
),
4663 = force_operand (gen_rtx_MINUS (int_mode
, t2
, t3
),
4670 if (post_shift
>= BITS_PER_WORD
4671 || size
- 1 >= BITS_PER_WORD
)
4674 ml
|= HOST_WIDE_INT_M1U
<< (size
- 1);
4675 mlr
= gen_int_mode (ml
, int_mode
);
4676 extra_cost
= (shift_cost (speed
, int_mode
, post_shift
)
4677 + shift_cost (speed
, int_mode
, size
- 1)
4678 + 2 * add_cost (speed
, int_mode
));
4679 t1
= expmed_mult_highpart (int_mode
, op0
, mlr
,
4681 max_cost
- extra_cost
);
4684 t2
= force_operand (gen_rtx_PLUS (int_mode
, t1
, op0
),
4687 (RSHIFT_EXPR
, int_mode
, t2
,
4688 post_shift
, NULL_RTX
, 0);
4690 (RSHIFT_EXPR
, int_mode
, op0
,
4691 size
- 1, NULL_RTX
, 0);
4694 = force_operand (gen_rtx_MINUS (int_mode
, t4
, t3
),
4698 = force_operand (gen_rtx_MINUS (int_mode
, t3
, t4
),
4702 else /* Too wide mode to use tricky code */
4705 insn
= get_last_insn ();
4707 set_dst_reg_note (insn
, REG_EQUAL
,
4708 gen_rtx_DIV (int_mode
, op0
, op1
),
4714 delete_insns_since (last
);
4717 case FLOOR_DIV_EXPR
:
4718 case FLOOR_MOD_EXPR
:
4719 /* We will come here only for signed operations. */
4720 if (op1_is_constant
&& HWI_COMPUTABLE_MODE_P (compute_mode
))
4722 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
4723 int size
= GET_MODE_BITSIZE (int_mode
);
4724 unsigned HOST_WIDE_INT mh
, ml
;
4725 int pre_shift
, lgup
, post_shift
;
4726 HOST_WIDE_INT d
= INTVAL (op1
);
4730 /* We could just as easily deal with negative constants here,
4731 but it does not seem worth the trouble for GCC 2.6. */
4732 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4734 pre_shift
= floor_log2 (d
);
4737 unsigned HOST_WIDE_INT mask
4738 = (HOST_WIDE_INT_1U
<< pre_shift
) - 1;
4739 remainder
= expand_binop
4740 (int_mode
, and_optab
, op0
,
4741 gen_int_mode (mask
, int_mode
),
4742 remainder
, 0, methods
);
4744 return gen_lowpart (mode
, remainder
);
4746 quotient
= expand_shift
4747 (RSHIFT_EXPR
, int_mode
, op0
,
4748 pre_shift
, tquotient
, 0);
4754 mh
= choose_multiplier (d
, size
, size
- 1,
4755 &ml
, &post_shift
, &lgup
);
4758 if (post_shift
< BITS_PER_WORD
4759 && size
- 1 < BITS_PER_WORD
)
4762 (RSHIFT_EXPR
, int_mode
, op0
,
4763 size
- 1, NULL_RTX
, 0);
4764 t2
= expand_binop (int_mode
, xor_optab
, op0
, t1
,
4765 NULL_RTX
, 0, OPTAB_WIDEN
);
4766 extra_cost
= (shift_cost (speed
, int_mode
, post_shift
)
4767 + shift_cost (speed
, int_mode
, size
- 1)
4768 + 2 * add_cost (speed
, int_mode
));
4769 t3
= expmed_mult_highpart
4770 (int_mode
, t2
, gen_int_mode (ml
, int_mode
),
4771 NULL_RTX
, 1, max_cost
- extra_cost
);
4775 (RSHIFT_EXPR
, int_mode
, t3
,
4776 post_shift
, NULL_RTX
, 1);
4777 quotient
= expand_binop (int_mode
, xor_optab
,
4778 t4
, t1
, tquotient
, 0,
4786 rtx nsign
, t1
, t2
, t3
, t4
;
4787 t1
= force_operand (gen_rtx_PLUS (int_mode
,
4788 op0
, constm1_rtx
), NULL_RTX
);
4789 t2
= expand_binop (int_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4791 nsign
= expand_shift (RSHIFT_EXPR
, int_mode
, t2
,
4792 size
- 1, NULL_RTX
, 0);
4793 t3
= force_operand (gen_rtx_MINUS (int_mode
, t1
, nsign
),
4795 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, int_mode
, t3
, op1
,
4800 t5
= expand_unop (int_mode
, one_cmpl_optab
, nsign
,
4802 quotient
= force_operand (gen_rtx_PLUS (int_mode
, t4
, t5
),
4810 delete_insns_since (last
);
4812 /* Try using an instruction that produces both the quotient and
4813 remainder, using truncation. We can easily compensate the quotient
4814 or remainder to get floor rounding, once we have the remainder.
4815 Notice that we compute also the final remainder value here,
4816 and return the result right away. */
4817 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4818 target
= gen_reg_rtx (compute_mode
);
4823 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4824 quotient
= gen_reg_rtx (compute_mode
);
4829 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4830 remainder
= gen_reg_rtx (compute_mode
);
4833 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4834 quotient
, remainder
, 0))
4836 /* This could be computed with a branch-less sequence.
4837 Save that for later. */
4839 rtx_code_label
*label
= gen_label_rtx ();
4840 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4841 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4842 NULL_RTX
, 0, OPTAB_WIDEN
);
4843 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4844 expand_dec (quotient
, const1_rtx
);
4845 expand_inc (remainder
, op1
);
4847 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4850 /* No luck with division elimination or divmod. Have to do it
4851 by conditionally adjusting op0 *and* the result. */
4853 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
4857 quotient
= gen_reg_rtx (compute_mode
);
4858 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4859 label1
= gen_label_rtx ();
4860 label2
= gen_label_rtx ();
4861 label3
= gen_label_rtx ();
4862 label4
= gen_label_rtx ();
4863 label5
= gen_label_rtx ();
4864 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4865 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4866 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4867 quotient
, 0, methods
);
4868 if (tem
!= quotient
)
4869 emit_move_insn (quotient
, tem
);
4870 emit_jump_insn (targetm
.gen_jump (label5
));
4872 emit_label (label1
);
4873 expand_inc (adjusted_op0
, const1_rtx
);
4874 emit_jump_insn (targetm
.gen_jump (label4
));
4876 emit_label (label2
);
4877 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4878 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4879 quotient
, 0, methods
);
4880 if (tem
!= quotient
)
4881 emit_move_insn (quotient
, tem
);
4882 emit_jump_insn (targetm
.gen_jump (label5
));
4884 emit_label (label3
);
4885 expand_dec (adjusted_op0
, const1_rtx
);
4886 emit_label (label4
);
4887 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4888 quotient
, 0, methods
);
4889 if (tem
!= quotient
)
4890 emit_move_insn (quotient
, tem
);
4891 expand_dec (quotient
, const1_rtx
);
4892 emit_label (label5
);
4901 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4902 && (HWI_COMPUTABLE_MODE_P (compute_mode
)
4903 || INTVAL (op1
) >= 0))
4905 scalar_int_mode int_mode
4906 = as_a
<scalar_int_mode
> (compute_mode
);
4908 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4909 t1
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
4910 floor_log2 (d
), tquotient
, 1);
4911 t2
= expand_binop (int_mode
, and_optab
, op0
,
4912 gen_int_mode (d
- 1, int_mode
),
4913 NULL_RTX
, 1, methods
);
4914 t3
= gen_reg_rtx (int_mode
);
4915 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
, int_mode
, 1, 1);
4918 rtx_code_label
*lab
;
4919 lab
= gen_label_rtx ();
4920 do_cmp_and_jump (t2
, const0_rtx
, EQ
, int_mode
, lab
);
4921 expand_inc (t1
, const1_rtx
);
4926 quotient
= force_operand (gen_rtx_PLUS (int_mode
, t1
, t3
),
4931 /* Try using an instruction that produces both the quotient and
4932 remainder, using truncation. We can easily compensate the
4933 quotient or remainder to get ceiling rounding, once we have the
4934 remainder. Notice that we compute also the final remainder
4935 value here, and return the result right away. */
4936 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4937 target
= gen_reg_rtx (compute_mode
);
4941 remainder
= (REG_P (target
)
4942 ? target
: gen_reg_rtx (compute_mode
));
4943 quotient
= gen_reg_rtx (compute_mode
);
4947 quotient
= (REG_P (target
)
4948 ? target
: gen_reg_rtx (compute_mode
));
4949 remainder
= gen_reg_rtx (compute_mode
);
4952 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4955 /* This could be computed with a branch-less sequence.
4956 Save that for later. */
4957 rtx_code_label
*label
= gen_label_rtx ();
4958 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4959 compute_mode
, label
);
4960 expand_inc (quotient
, const1_rtx
);
4961 expand_dec (remainder
, op1
);
4963 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4966 /* No luck with division elimination or divmod. Have to do it
4967 by conditionally adjusting op0 *and* the result. */
4969 rtx_code_label
*label1
, *label2
;
4970 rtx adjusted_op0
, tem
;
4972 quotient
= gen_reg_rtx (compute_mode
);
4973 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4974 label1
= gen_label_rtx ();
4975 label2
= gen_label_rtx ();
4976 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4977 compute_mode
, label1
);
4978 emit_move_insn (quotient
, const0_rtx
);
4979 emit_jump_insn (targetm
.gen_jump (label2
));
4981 emit_label (label1
);
4982 expand_dec (adjusted_op0
, const1_rtx
);
4983 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4984 quotient
, 1, methods
);
4985 if (tem
!= quotient
)
4986 emit_move_insn (quotient
, tem
);
4987 expand_inc (quotient
, const1_rtx
);
4988 emit_label (label2
);
4993 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4994 && INTVAL (op1
) >= 0)
4996 /* This is extremely similar to the code for the unsigned case
4997 above. For 2.7 we should merge these variants, but for
4998 2.6.1 I don't want to touch the code for unsigned since that
4999 get used in C. The signed case will only be used by other
5003 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
5004 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
5005 floor_log2 (d
), tquotient
, 0);
5006 t2
= expand_binop (compute_mode
, and_optab
, op0
,
5007 gen_int_mode (d
- 1, compute_mode
),
5008 NULL_RTX
, 1, methods
);
5009 t3
= gen_reg_rtx (compute_mode
);
5010 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
5011 compute_mode
, 1, 1);
5014 rtx_code_label
*lab
;
5015 lab
= gen_label_rtx ();
5016 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
5017 expand_inc (t1
, const1_rtx
);
5022 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
5028 /* Try using an instruction that produces both the quotient and
5029 remainder, using truncation. We can easily compensate the
5030 quotient or remainder to get ceiling rounding, once we have the
5031 remainder. Notice that we compute also the final remainder
5032 value here, and return the result right away. */
5033 if (target
== 0 || GET_MODE (target
) != compute_mode
)
5034 target
= gen_reg_rtx (compute_mode
);
5037 remainder
= (REG_P (target
)
5038 ? target
: gen_reg_rtx (compute_mode
));
5039 quotient
= gen_reg_rtx (compute_mode
);
5043 quotient
= (REG_P (target
)
5044 ? target
: gen_reg_rtx (compute_mode
));
5045 remainder
= gen_reg_rtx (compute_mode
);
5048 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
5051 /* This could be computed with a branch-less sequence.
5052 Save that for later. */
5054 rtx_code_label
*label
= gen_label_rtx ();
5055 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
5056 compute_mode
, label
);
5057 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
5058 NULL_RTX
, 0, OPTAB_WIDEN
);
5059 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
5060 expand_inc (quotient
, const1_rtx
);
5061 expand_dec (remainder
, op1
);
5063 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5066 /* No luck with division elimination or divmod. Have to do it
5067 by conditionally adjusting op0 *and* the result. */
5069 rtx_code_label
*label1
, *label2
, *label3
, *label4
, *label5
;
5073 quotient
= gen_reg_rtx (compute_mode
);
5074 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
5075 label1
= gen_label_rtx ();
5076 label2
= gen_label_rtx ();
5077 label3
= gen_label_rtx ();
5078 label4
= gen_label_rtx ();
5079 label5
= gen_label_rtx ();
5080 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
5081 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
5082 compute_mode
, label1
);
5083 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
5084 quotient
, 0, methods
);
5085 if (tem
!= quotient
)
5086 emit_move_insn (quotient
, tem
);
5087 emit_jump_insn (targetm
.gen_jump (label5
));
5089 emit_label (label1
);
5090 expand_dec (adjusted_op0
, const1_rtx
);
5091 emit_jump_insn (targetm
.gen_jump (label4
));
5093 emit_label (label2
);
5094 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
5095 compute_mode
, label3
);
5096 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
5097 quotient
, 0, methods
);
5098 if (tem
!= quotient
)
5099 emit_move_insn (quotient
, tem
);
5100 emit_jump_insn (targetm
.gen_jump (label5
));
5102 emit_label (label3
);
5103 expand_inc (adjusted_op0
, const1_rtx
);
5104 emit_label (label4
);
5105 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
5106 quotient
, 0, methods
);
5107 if (tem
!= quotient
)
5108 emit_move_insn (quotient
, tem
);
5109 expand_inc (quotient
, const1_rtx
);
5110 emit_label (label5
);
5115 case EXACT_DIV_EXPR
:
5116 if (op1_is_constant
&& HWI_COMPUTABLE_MODE_P (compute_mode
))
5118 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
5119 int size
= GET_MODE_BITSIZE (int_mode
);
5120 HOST_WIDE_INT d
= INTVAL (op1
);
5121 unsigned HOST_WIDE_INT ml
;
5125 pre_shift
= ctz_or_zero (d
);
5126 ml
= invert_mod2n (d
>> pre_shift
, size
);
5127 t1
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
5128 pre_shift
, NULL_RTX
, unsignedp
);
5129 quotient
= expand_mult (int_mode
, t1
, gen_int_mode (ml
, int_mode
),
5132 insn
= get_last_insn ();
5133 set_dst_reg_note (insn
, REG_EQUAL
,
5134 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
5135 int_mode
, op0
, op1
),
5140 case ROUND_DIV_EXPR
:
5141 case ROUND_MOD_EXPR
:
5144 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
5146 rtx_code_label
*label
;
5147 label
= gen_label_rtx ();
5148 quotient
= gen_reg_rtx (int_mode
);
5149 remainder
= gen_reg_rtx (int_mode
);
5150 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
5153 quotient
= expand_binop (int_mode
, udiv_optab
, op0
, op1
,
5154 quotient
, 1, methods
);
5155 tem
= expand_mult (int_mode
, quotient
, op1
, NULL_RTX
, 1);
5156 remainder
= expand_binop (int_mode
, sub_optab
, op0
, tem
,
5157 remainder
, 1, methods
);
5159 tem
= plus_constant (int_mode
, op1
, -1);
5160 tem
= expand_shift (RSHIFT_EXPR
, int_mode
, tem
, 1, NULL_RTX
, 1);
5161 do_cmp_and_jump (remainder
, tem
, LEU
, int_mode
, label
);
5162 expand_inc (quotient
, const1_rtx
);
5163 expand_dec (remainder
, op1
);
5168 scalar_int_mode int_mode
= as_a
<scalar_int_mode
> (compute_mode
);
5169 int size
= GET_MODE_BITSIZE (int_mode
);
5170 rtx abs_rem
, abs_op1
, tem
, mask
;
5171 rtx_code_label
*label
;
5172 label
= gen_label_rtx ();
5173 quotient
= gen_reg_rtx (int_mode
);
5174 remainder
= gen_reg_rtx (int_mode
);
5175 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
5178 quotient
= expand_binop (int_mode
, sdiv_optab
, op0
, op1
,
5179 quotient
, 0, methods
);
5180 tem
= expand_mult (int_mode
, quotient
, op1
, NULL_RTX
, 0);
5181 remainder
= expand_binop (int_mode
, sub_optab
, op0
, tem
,
5182 remainder
, 0, methods
);
5184 abs_rem
= expand_abs (int_mode
, remainder
, NULL_RTX
, 1, 0);
5185 abs_op1
= expand_abs (int_mode
, op1
, NULL_RTX
, 1, 0);
5186 tem
= expand_shift (LSHIFT_EXPR
, int_mode
, abs_rem
,
5188 do_cmp_and_jump (tem
, abs_op1
, LTU
, int_mode
, label
);
5189 tem
= expand_binop (int_mode
, xor_optab
, op0
, op1
,
5190 NULL_RTX
, 0, OPTAB_WIDEN
);
5191 mask
= expand_shift (RSHIFT_EXPR
, int_mode
, tem
,
5192 size
- 1, NULL_RTX
, 0);
5193 tem
= expand_binop (int_mode
, xor_optab
, mask
, const1_rtx
,
5194 NULL_RTX
, 0, OPTAB_WIDEN
);
5195 tem
= expand_binop (int_mode
, sub_optab
, tem
, mask
,
5196 NULL_RTX
, 0, OPTAB_WIDEN
);
5197 expand_inc (quotient
, tem
);
5198 tem
= expand_binop (int_mode
, xor_optab
, mask
, op1
,
5199 NULL_RTX
, 0, OPTAB_WIDEN
);
5200 tem
= expand_binop (int_mode
, sub_optab
, tem
, mask
,
5201 NULL_RTX
, 0, OPTAB_WIDEN
);
5202 expand_dec (remainder
, tem
);
5205 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5213 if (target
&& GET_MODE (target
) != compute_mode
)
5218 /* Try to produce the remainder without producing the quotient.
5219 If we seem to have a divmod pattern that does not require widening,
5220 don't try widening here. We should really have a WIDEN argument
5221 to expand_twoval_binop, since what we'd really like to do here is
5222 1) try a mod insn in compute_mode
5223 2) try a divmod insn in compute_mode
5224 3) try a div insn in compute_mode and multiply-subtract to get
5226 4) try the same things with widening allowed. */
5228 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
5231 ((optab_handler (optab2
, compute_mode
)
5232 != CODE_FOR_nothing
)
5233 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
5236 /* No luck there. Can we do remainder and divide at once
5237 without a library call? */
5238 remainder
= gen_reg_rtx (compute_mode
);
5239 if (! expand_twoval_binop ((unsignedp
5243 NULL_RTX
, remainder
, unsignedp
))
5248 return gen_lowpart (mode
, remainder
);
5251 /* Produce the quotient. Try a quotient insn, but not a library call.
5252 If we have a divmod in this mode, use it in preference to widening
5253 the div (for this test we assume it will not fail). Note that optab2
5254 is set to the one of the two optabs that the call below will use. */
5256 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
5257 op0
, op1
, rem_flag
? NULL_RTX
: target
,
5259 ((optab_handler (optab2
, compute_mode
)
5260 != CODE_FOR_nothing
)
5261 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
5265 /* No luck there. Try a quotient-and-remainder insn,
5266 keeping the quotient alone. */
5267 quotient
= gen_reg_rtx (compute_mode
);
5268 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
5270 quotient
, NULL_RTX
, unsignedp
))
5274 /* Still no luck. If we are not computing the remainder,
5275 use a library call for the quotient. */
5276 quotient
= sign_expand_binop (compute_mode
,
5277 udiv_optab
, sdiv_optab
,
5279 unsignedp
, methods
);
5286 if (target
&& GET_MODE (target
) != compute_mode
)
5291 /* No divide instruction either. Use library for remainder. */
5292 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
5294 unsignedp
, methods
);
5295 /* No remainder function. Try a quotient-and-remainder
5296 function, keeping the remainder. */
5298 && (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
))
5300 remainder
= gen_reg_rtx (compute_mode
);
5301 if (!expand_twoval_binop_libfunc
5302 (unsignedp
? udivmod_optab
: sdivmod_optab
,
5304 NULL_RTX
, remainder
,
5305 unsignedp
? UMOD
: MOD
))
5306 remainder
= NULL_RTX
;
5311 /* We divided. Now finish doing X - Y * (X / Y). */
5312 remainder
= expand_mult (compute_mode
, quotient
, op1
,
5313 NULL_RTX
, unsignedp
);
5314 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
5315 remainder
, target
, unsignedp
,
5320 if (methods
!= OPTAB_LIB_WIDEN
5321 && (rem_flag
? remainder
: quotient
) == NULL_RTX
)
5324 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
5327 /* Return a tree node with data type TYPE, describing the value of X.
5328 Usually this is an VAR_DECL, if there is no obvious better choice.
5329 X may be an expression, however we only support those expressions
5330 generated by loop.c. */
5333 make_tree (tree type
, rtx x
)
5337 switch (GET_CODE (x
))
5340 case CONST_WIDE_INT
:
5341 t
= wide_int_to_tree (type
, rtx_mode_t (x
, TYPE_MODE (type
)));
5345 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT
* 2 <= MAX_BITSIZE_MODE_ANY_INT
);
5346 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (x
) == VOIDmode
)
5347 t
= wide_int_to_tree (type
,
5348 wide_int::from_array (&CONST_DOUBLE_LOW (x
), 2,
5349 HOST_BITS_PER_WIDE_INT
* 2));
5351 t
= build_real (type
, *CONST_DOUBLE_REAL_VALUE (x
));
5357 unsigned int npatterns
= CONST_VECTOR_NPATTERNS (x
);
5358 unsigned int nelts_per_pattern
= CONST_VECTOR_NELTS_PER_PATTERN (x
);
5359 tree itype
= TREE_TYPE (type
);
5361 /* Build a tree with vector elements. */
5362 tree_vector_builder
elts (type
, npatterns
, nelts_per_pattern
);
5363 unsigned int count
= elts
.encoded_nelts ();
5364 for (unsigned int i
= 0; i
< count
; ++i
)
5366 rtx elt
= CONST_VECTOR_ELT (x
, i
);
5367 elts
.quick_push (make_tree (itype
, elt
));
5370 return elts
.build ();
5374 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5375 make_tree (type
, XEXP (x
, 1)));
5378 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5379 make_tree (type
, XEXP (x
, 1)));
5382 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
5385 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5386 make_tree (type
, XEXP (x
, 1)));
5389 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
5390 make_tree (type
, XEXP (x
, 1)));
5393 t
= unsigned_type_for (type
);
5394 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5395 make_tree (t
, XEXP (x
, 0)),
5396 make_tree (type
, XEXP (x
, 1))));
5399 t
= signed_type_for (type
);
5400 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
5401 make_tree (t
, XEXP (x
, 0)),
5402 make_tree (type
, XEXP (x
, 1))));
5405 if (TREE_CODE (type
) != REAL_TYPE
)
5406 t
= signed_type_for (type
);
5410 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5411 make_tree (t
, XEXP (x
, 0)),
5412 make_tree (t
, XEXP (x
, 1))));
5414 t
= unsigned_type_for (type
);
5415 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
5416 make_tree (t
, XEXP (x
, 0)),
5417 make_tree (t
, XEXP (x
, 1))));
5421 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
5422 GET_CODE (x
) == ZERO_EXTEND
);
5423 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
5426 return make_tree (type
, XEXP (x
, 0));
5429 t
= SYMBOL_REF_DECL (x
);
5431 return fold_convert (type
, build_fold_addr_expr (t
));
5435 if (CONST_POLY_INT_P (x
))
5436 return wide_int_to_tree (t
, const_poly_int_value (x
));
5438 t
= build_decl (RTL_LOCATION (x
), VAR_DECL
, NULL_TREE
, type
);
5440 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5441 address mode to pointer mode. */
5442 if (POINTER_TYPE_P (type
))
5443 x
= convert_memory_address_addr_space
5444 (SCALAR_INT_TYPE_MODE (type
), x
, TYPE_ADDR_SPACE (TREE_TYPE (type
)));
5446 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5447 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
5448 t
->decl_with_rtl
.rtl
= x
;
5454 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
5455 and returning TARGET.
5457 If TARGET is 0, a pseudo-register or constant is returned. */
5460 expand_and (machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
5464 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
5465 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
5467 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
5471 else if (tem
!= target
)
5472 emit_move_insn (target
, tem
);
5476 /* Helper function for emit_store_flag. */
5478 emit_cstore (rtx target
, enum insn_code icode
, enum rtx_code code
,
5479 machine_mode mode
, machine_mode compare_mode
,
5480 int unsignedp
, rtx x
, rtx y
, int normalizep
,
5481 machine_mode target_mode
)
5483 class expand_operand ops
[4];
5484 rtx op0
, comparison
, subtarget
;
5486 scalar_int_mode result_mode
= targetm
.cstore_mode (icode
);
5487 scalar_int_mode int_target_mode
;
5489 last
= get_last_insn ();
5490 x
= prepare_operand (icode
, x
, 2, mode
, compare_mode
, unsignedp
);
5491 y
= prepare_operand (icode
, y
, 3, mode
, compare_mode
, unsignedp
);
5494 delete_insns_since (last
);
5498 if (target_mode
== VOIDmode
)
5499 int_target_mode
= result_mode
;
5501 int_target_mode
= as_a
<scalar_int_mode
> (target_mode
);
5503 target
= gen_reg_rtx (int_target_mode
);
5505 comparison
= gen_rtx_fmt_ee (code
, result_mode
, x
, y
);
5507 create_output_operand (&ops
[0], optimize
? NULL_RTX
: target
, result_mode
);
5508 create_fixed_operand (&ops
[1], comparison
);
5509 create_fixed_operand (&ops
[2], x
);
5510 create_fixed_operand (&ops
[3], y
);
5511 if (!maybe_expand_insn (icode
, 4, ops
))
5513 delete_insns_since (last
);
5516 subtarget
= ops
[0].value
;
5518 /* If we are converting to a wider mode, first convert to
5519 INT_TARGET_MODE, then normalize. This produces better combining
5520 opportunities on machines that have a SIGN_EXTRACT when we are
5521 testing a single bit. This mostly benefits the 68k.
5523 If STORE_FLAG_VALUE does not have the sign bit set when
5524 interpreted in MODE, we can do this conversion as unsigned, which
5525 is usually more efficient. */
5526 if (GET_MODE_PRECISION (int_target_mode
) > GET_MODE_PRECISION (result_mode
))
5528 gcc_assert (GET_MODE_PRECISION (result_mode
) != 1
5529 || STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1);
5531 bool unsignedp
= (STORE_FLAG_VALUE
>= 0);
5532 convert_move (target
, subtarget
, unsignedp
);
5535 result_mode
= int_target_mode
;
5540 /* If we want to keep subexpressions around, don't reuse our last
5545 /* Now normalize to the proper value in MODE. Sometimes we don't
5546 have to do anything. */
5547 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5549 /* STORE_FLAG_VALUE might be the most negative number, so write
5550 the comparison this way to avoid a compiler-time warning. */
5551 else if (- normalizep
== STORE_FLAG_VALUE
)
5552 op0
= expand_unop (result_mode
, neg_optab
, op0
, subtarget
, 0);
5554 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5555 it hard to use a value of just the sign bit due to ANSI integer
5556 constant typing rules. */
5557 else if (val_signbit_known_set_p (result_mode
, STORE_FLAG_VALUE
))
5558 op0
= expand_shift (RSHIFT_EXPR
, result_mode
, op0
,
5559 GET_MODE_BITSIZE (result_mode
) - 1, subtarget
,
5563 gcc_assert (STORE_FLAG_VALUE
& 1);
5565 op0
= expand_and (result_mode
, op0
, const1_rtx
, subtarget
);
5566 if (normalizep
== -1)
5567 op0
= expand_unop (result_mode
, neg_optab
, op0
, op0
, 0);
5570 /* If we were converting to a smaller mode, do the conversion now. */
5571 if (int_target_mode
!= result_mode
)
5573 convert_move (target
, op0
, 0);
5581 /* A subroutine of emit_store_flag only including "tricks" that do not
5582 need a recursive call. These are kept separate to avoid infinite
5586 emit_store_flag_1 (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5587 machine_mode mode
, int unsignedp
, int normalizep
,
5588 machine_mode target_mode
)
5591 enum insn_code icode
;
5592 machine_mode compare_mode
;
5593 enum mode_class mclass
;
5594 enum rtx_code scode
;
5597 code
= unsigned_condition (code
);
5598 scode
= swap_condition (code
);
5600 /* If one operand is constant, make it the second one. Only do this
5601 if the other operand is not constant as well. */
5603 if (swap_commutative_operands_p (op0
, op1
))
5605 std::swap (op0
, op1
);
5606 code
= swap_condition (code
);
5609 if (mode
== VOIDmode
)
5610 mode
= GET_MODE (op0
);
5612 if (CONST_SCALAR_INT_P (op1
))
5613 canonicalize_comparison (mode
, &code
, &op1
);
5615 /* For some comparisons with 1 and -1, we can convert this to
5616 comparisons with zero. This will often produce more opportunities for
5617 store-flag insns. */
5622 if (op1
== const1_rtx
)
5623 op1
= const0_rtx
, code
= LE
;
5626 if (op1
== constm1_rtx
)
5627 op1
= const0_rtx
, code
= LT
;
5630 if (op1
== const1_rtx
)
5631 op1
= const0_rtx
, code
= GT
;
5634 if (op1
== constm1_rtx
)
5635 op1
= const0_rtx
, code
= GE
;
5638 if (op1
== const1_rtx
)
5639 op1
= const0_rtx
, code
= NE
;
5642 if (op1
== const1_rtx
)
5643 op1
= const0_rtx
, code
= EQ
;
5649 /* If we are comparing a double-word integer with zero or -1, we can
5650 convert the comparison into one involving a single word. */
5651 scalar_int_mode int_mode
;
5652 if (is_int_mode (mode
, &int_mode
)
5653 && GET_MODE_BITSIZE (int_mode
) == BITS_PER_WORD
* 2
5654 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5657 if ((code
== EQ
|| code
== NE
)
5658 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5662 /* Do a logical OR or AND of the two words and compare the
5664 op00
= simplify_gen_subreg (word_mode
, op0
, int_mode
, 0);
5665 op01
= simplify_gen_subreg (word_mode
, op0
, int_mode
, UNITS_PER_WORD
);
5666 tem
= expand_binop (word_mode
,
5667 op1
== const0_rtx
? ior_optab
: and_optab
,
5668 op00
, op01
, NULL_RTX
, unsignedp
,
5672 tem
= emit_store_flag (NULL_RTX
, code
, tem
, op1
, word_mode
,
5673 unsignedp
, normalizep
);
5675 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5679 /* If testing the sign bit, can just test on high word. */
5680 op0h
= simplify_gen_subreg (word_mode
, op0
, int_mode
,
5681 subreg_highpart_offset (word_mode
,
5683 tem
= emit_store_flag (NULL_RTX
, code
, op0h
, op1
, word_mode
,
5684 unsignedp
, normalizep
);
5691 if (target_mode
== VOIDmode
|| GET_MODE (tem
) == target_mode
)
5694 target
= gen_reg_rtx (target_mode
);
5696 convert_move (target
, tem
,
5697 !val_signbit_known_set_p (word_mode
,
5698 (normalizep
? normalizep
5699 : STORE_FLAG_VALUE
)));
5704 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5705 complement of A (for GE) and shifting the sign bit to the low bit. */
5706 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5707 && is_int_mode (mode
, &int_mode
)
5708 && (normalizep
|| STORE_FLAG_VALUE
== 1
5709 || val_signbit_p (int_mode
, STORE_FLAG_VALUE
)))
5711 scalar_int_mode int_target_mode
;
5715 int_target_mode
= int_mode
;
5718 /* If the result is to be wider than OP0, it is best to convert it
5719 first. If it is to be narrower, it is *incorrect* to convert it
5721 int_target_mode
= as_a
<scalar_int_mode
> (target_mode
);
5722 if (GET_MODE_SIZE (int_target_mode
) > GET_MODE_SIZE (int_mode
))
5724 op0
= convert_modes (int_target_mode
, int_mode
, op0
, 0);
5725 int_mode
= int_target_mode
;
5729 if (int_target_mode
!= int_mode
)
5733 op0
= expand_unop (int_mode
, one_cmpl_optab
, op0
,
5734 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5735 ? 0 : subtarget
), 0);
5737 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5738 /* If we are supposed to produce a 0/1 value, we want to do
5739 a logical shift from the sign bit to the low-order bit; for
5740 a -1/0 value, we do an arithmetic shift. */
5741 op0
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
5742 GET_MODE_BITSIZE (int_mode
) - 1,
5743 subtarget
, normalizep
!= -1);
5745 if (int_mode
!= int_target_mode
)
5746 op0
= convert_modes (int_target_mode
, int_mode
, op0
, 0);
5751 mclass
= GET_MODE_CLASS (mode
);
5752 FOR_EACH_MODE_FROM (compare_mode
, mode
)
5754 machine_mode optab_mode
= mclass
== MODE_CC
? CCmode
: compare_mode
;
5755 icode
= optab_handler (cstore_optab
, optab_mode
);
5756 if (icode
!= CODE_FOR_nothing
)
5758 do_pending_stack_adjust ();
5759 rtx tem
= emit_cstore (target
, icode
, code
, mode
, compare_mode
,
5760 unsignedp
, op0
, op1
, normalizep
, target_mode
);
5764 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
5766 tem
= emit_cstore (target
, icode
, scode
, mode
, compare_mode
,
5767 unsignedp
, op1
, op0
, normalizep
, target_mode
);
5778 /* Subroutine of emit_store_flag that handles cases in which the operands
5779 are scalar integers. SUBTARGET is the target to use for temporary
5780 operations and TRUEVAL is the value to store when the condition is
5781 true. All other arguments are as for emit_store_flag. */
5784 emit_store_flag_int (rtx target
, rtx subtarget
, enum rtx_code code
, rtx op0
,
5785 rtx op1
, scalar_int_mode mode
, int unsignedp
,
5786 int normalizep
, rtx trueval
)
5788 machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
5789 rtx_insn
*last
= get_last_insn ();
5791 /* If this is an equality comparison of integers, we can try to exclusive-or
5792 (or subtract) the two operands and use a recursive call to try the
5793 comparison with zero. Don't do any of these cases if branches are
5796 if ((code
== EQ
|| code
== NE
) && op1
!= const0_rtx
)
5798 rtx tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5802 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5805 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5806 mode
, unsignedp
, normalizep
);
5810 delete_insns_since (last
);
5813 /* For integer comparisons, try the reverse comparison. However, for
5814 small X and if we'd have anyway to extend, implementing "X != 0"
5815 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
5816 rtx_code rcode
= reverse_condition (code
);
5817 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
5818 && ! (optab_handler (cstore_optab
, mode
) == CODE_FOR_nothing
5820 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
5821 && op1
== const0_rtx
))
5823 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
5824 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
5826 /* Again, for the reverse comparison, use either an addition or a XOR. */
5828 && rtx_cost (GEN_INT (normalizep
), mode
, PLUS
, 1,
5829 optimize_insn_for_speed_p ()) == 0)
5831 rtx tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5832 STORE_FLAG_VALUE
, target_mode
);
5834 tem
= expand_binop (target_mode
, add_optab
, tem
,
5835 gen_int_mode (normalizep
, target_mode
),
5836 target
, 0, OPTAB_WIDEN
);
5841 && rtx_cost (trueval
, mode
, XOR
, 1,
5842 optimize_insn_for_speed_p ()) == 0)
5844 rtx tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
5845 normalizep
, target_mode
);
5847 tem
= expand_binop (target_mode
, xor_optab
, tem
, trueval
, target
,
5848 INTVAL (trueval
) >= 0, OPTAB_WIDEN
);
5853 delete_insns_since (last
);
5856 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5857 the constant zero. Reject all other comparisons at this point. Only
5858 do LE and GT if branches are expensive since they are expensive on
5859 2-operand machines. */
5861 if (op1
!= const0_rtx
5862 || (code
!= EQ
&& code
!= NE
5863 && (BRANCH_COST (optimize_insn_for_speed_p (),
5864 false) <= 1 || (code
!= LE
&& code
!= GT
))))
5867 /* Try to put the result of the comparison in the sign bit. Assume we can't
5868 do the necessary operation below. */
5872 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5873 the sign bit set. */
5877 /* This is destructive, so SUBTARGET can't be OP0. */
5878 if (rtx_equal_p (subtarget
, op0
))
5881 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5884 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5888 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5889 number of bits in the mode of OP0, minus one. */
5893 if (rtx_equal_p (subtarget
, op0
))
5896 tem
= maybe_expand_shift (RSHIFT_EXPR
, mode
, op0
,
5897 GET_MODE_BITSIZE (mode
) - 1,
5900 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5904 if (code
== EQ
|| code
== NE
)
5906 /* For EQ or NE, one way to do the comparison is to apply an operation
5907 that converts the operand into a positive number if it is nonzero
5908 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5909 for NE we negate. This puts the result in the sign bit. Then we
5910 normalize with a shift, if needed.
5912 Two operations that can do the above actions are ABS and FFS, so try
5913 them. If that doesn't work, and MODE is smaller than a full word,
5914 we can use zero-extension to the wider mode (an unsigned conversion)
5915 as the operation. */
5917 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5918 that is compensated by the subsequent overflow when subtracting
5921 if (optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)
5922 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5923 else if (optab_handler (ffs_optab
, mode
) != CODE_FOR_nothing
)
5924 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5925 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5927 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5934 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5937 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5940 /* If we couldn't do it that way, for NE we can "or" the two's complement
5941 of the value with itself. For EQ, we take the one's complement of
5942 that "or", which is an extra insn, so we only handle EQ if branches
5947 || BRANCH_COST (optimize_insn_for_speed_p (),
5950 if (rtx_equal_p (subtarget
, op0
))
5953 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5954 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5957 if (tem
&& code
== EQ
)
5958 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5962 if (tem
&& normalizep
)
5963 tem
= maybe_expand_shift (RSHIFT_EXPR
, mode
, tem
,
5964 GET_MODE_BITSIZE (mode
) - 1,
5965 subtarget
, normalizep
== 1);
5971 else if (GET_MODE (tem
) != target_mode
)
5973 convert_move (target
, tem
, 0);
5976 else if (!subtarget
)
5978 emit_move_insn (target
, tem
);
5983 delete_insns_since (last
);
5988 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5989 and storing in TARGET. Normally return TARGET.
5990 Return 0 if that cannot be done.
5992 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5993 it is VOIDmode, they cannot both be CONST_INT.
5995 UNSIGNEDP is for the case where we have to widen the operands
5996 to perform the operation. It says to use zero-extension.
5998 NORMALIZEP is 1 if we should convert the result to be either zero
5999 or one. Normalize is -1 if we should convert the result to be
6000 either zero or -1. If NORMALIZEP is zero, the result will be left
6001 "raw" out of the scc insn. */
6004 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
6005 machine_mode mode
, int unsignedp
, int normalizep
)
6007 machine_mode target_mode
= target
? GET_MODE (target
) : VOIDmode
;
6008 enum rtx_code rcode
;
6013 /* If we compare constants, we shouldn't use a store-flag operation,
6014 but a constant load. We can get there via the vanilla route that
6015 usually generates a compare-branch sequence, but will in this case
6016 fold the comparison to a constant, and thus elide the branch. */
6017 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
6020 tem
= emit_store_flag_1 (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
,
6025 /* If we reached here, we can't do this with a scc insn, however there
6026 are some comparisons that can be done in other ways. Don't do any
6027 of these cases if branches are very cheap. */
6028 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
6031 /* See what we need to return. We can only return a 1, -1, or the
6034 if (normalizep
== 0)
6036 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6037 normalizep
= STORE_FLAG_VALUE
;
6039 else if (val_signbit_p (mode
, STORE_FLAG_VALUE
))
6045 last
= get_last_insn ();
6047 /* If optimizing, use different pseudo registers for each insn, instead
6048 of reusing the same pseudo. This leads to better CSE, but slows
6049 down the compiler, since there are more pseudos. */
6050 subtarget
= (!optimize
6051 && (target_mode
== mode
)) ? target
: NULL_RTX
;
6052 trueval
= GEN_INT (normalizep
? normalizep
: STORE_FLAG_VALUE
);
6054 /* For floating-point comparisons, try the reverse comparison or try
6055 changing the "orderedness" of the comparison. */
6056 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
6058 enum rtx_code first_code
;
6061 rcode
= reverse_condition_maybe_unordered (code
);
6062 if (can_compare_p (rcode
, mode
, ccp_store_flag
)
6063 && (code
== ORDERED
|| code
== UNORDERED
6064 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
6065 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
6067 int want_add
= ((STORE_FLAG_VALUE
== 1 && normalizep
== -1)
6068 || (STORE_FLAG_VALUE
== -1 && normalizep
== 1));
6070 /* For the reverse comparison, use either an addition or a XOR. */
6072 && rtx_cost (GEN_INT (normalizep
), mode
, PLUS
, 1,
6073 optimize_insn_for_speed_p ()) == 0)
6075 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
6076 STORE_FLAG_VALUE
, target_mode
);
6078 return expand_binop (target_mode
, add_optab
, tem
,
6079 gen_int_mode (normalizep
, target_mode
),
6080 target
, 0, OPTAB_WIDEN
);
6083 && rtx_cost (trueval
, mode
, XOR
, 1,
6084 optimize_insn_for_speed_p ()) == 0)
6086 tem
= emit_store_flag_1 (subtarget
, rcode
, op0
, op1
, mode
, 0,
6087 normalizep
, target_mode
);
6089 return expand_binop (target_mode
, xor_optab
, tem
, trueval
,
6090 target
, INTVAL (trueval
) >= 0,
6095 delete_insns_since (last
);
6097 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
6098 if (code
== ORDERED
|| code
== UNORDERED
)
6101 and_them
= split_comparison (code
, mode
, &first_code
, &code
);
6103 /* If there are no NaNs, the first comparison should always fall through.
6104 Effectively change the comparison to the other one. */
6105 if (!HONOR_NANS (mode
))
6107 gcc_assert (first_code
== (and_them
? ORDERED
: UNORDERED
));
6108 return emit_store_flag_1 (target
, code
, op0
, op1
, mode
, 0, normalizep
,
6112 if (!HAVE_conditional_move
)
6115 /* Do not turn a trapping comparison into a non-trapping one. */
6116 if ((code
!= EQ
&& code
!= NE
&& code
!= UNEQ
&& code
!= LTGT
)
6117 && flag_trapping_math
)
6120 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
6121 conditional move. */
6122 tem
= emit_store_flag_1 (subtarget
, first_code
, op0
, op1
, mode
, 0,
6123 normalizep
, target_mode
);
6128 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
6129 tem
, const0_rtx
, GET_MODE (tem
), 0);
6131 tem
= emit_conditional_move (target
, code
, op0
, op1
, mode
,
6132 trueval
, tem
, GET_MODE (tem
), 0);
6135 delete_insns_since (last
);
6139 /* The remaining tricks only apply to integer comparisons. */
6141 scalar_int_mode int_mode
;
6142 if (is_int_mode (mode
, &int_mode
))
6143 return emit_store_flag_int (target
, subtarget
, code
, op0
, op1
, int_mode
,
6144 unsignedp
, normalizep
, trueval
);
6149 /* Like emit_store_flag, but always succeeds. */
6152 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
6153 machine_mode mode
, int unsignedp
, int normalizep
)
6156 rtx_code_label
*label
;
6157 rtx trueval
, falseval
;
6159 /* First see if emit_store_flag can do the job. */
6160 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
6164 /* If one operand is constant, make it the second one. Only do this
6165 if the other operand is not constant as well. */
6166 if (swap_commutative_operands_p (op0
, op1
))
6168 std::swap (op0
, op1
);
6169 code
= swap_condition (code
);
6172 if (mode
== VOIDmode
)
6173 mode
= GET_MODE (op0
);
6176 target
= gen_reg_rtx (word_mode
);
6178 /* If this failed, we have to do this with set/compare/jump/set code.
6179 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
6180 trueval
= normalizep
? GEN_INT (normalizep
) : const1_rtx
;
6182 && GET_MODE_CLASS (mode
) == MODE_INT
6185 && op1
== const0_rtx
)
6187 label
= gen_label_rtx ();
6188 do_compare_rtx_and_jump (target
, const0_rtx
, EQ
, unsignedp
, mode
,
6189 NULL_RTX
, NULL
, label
,
6190 profile_probability::uninitialized ());
6191 emit_move_insn (target
, trueval
);
6197 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
6198 target
= gen_reg_rtx (GET_MODE (target
));
6200 /* Jump in the right direction if the target cannot implement CODE
6201 but can jump on its reverse condition. */
6202 falseval
= const0_rtx
;
6203 if (! can_compare_p (code
, mode
, ccp_jump
)
6204 && (! FLOAT_MODE_P (mode
)
6205 || code
== ORDERED
|| code
== UNORDERED
6206 || (! HONOR_NANS (mode
) && (code
== LTGT
|| code
== UNEQ
))
6207 || (! HONOR_SNANS (mode
) && (code
== EQ
|| code
== NE
))))
6209 enum rtx_code rcode
;
6210 if (FLOAT_MODE_P (mode
))
6211 rcode
= reverse_condition_maybe_unordered (code
);
6213 rcode
= reverse_condition (code
);
6215 /* Canonicalize to UNORDERED for the libcall. */
6216 if (can_compare_p (rcode
, mode
, ccp_jump
)
6217 || (code
== ORDERED
&& ! can_compare_p (ORDERED
, mode
, ccp_jump
)))
6220 trueval
= const0_rtx
;
6225 emit_move_insn (target
, trueval
);
6226 label
= gen_label_rtx ();
6227 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
, NULL
,
6228 label
, profile_probability::uninitialized ());
6230 emit_move_insn (target
, falseval
);
6236 /* Helper function for canonicalize_cmp_for_target. Swap between inclusive
6237 and exclusive ranges in order to create an equivalent comparison. See
6238 canonicalize_cmp_for_target for the possible cases. */
6240 static enum rtx_code
6241 equivalent_cmp_code (enum rtx_code code
)
6267 /* Choose the more appropiate immediate in scalar integer comparisons. The
6268 purpose of this is to end up with an immediate which can be loaded into a
6269 register in fewer moves, if possible.
6271 For each integer comparison there exists an equivalent choice:
6272 i) a > b or a >= b + 1
6273 ii) a <= b or a < b + 1
6274 iii) a >= b or a > b - 1
6275 iv) a < b or a <= b - 1
6277 MODE is the mode of the first operand.
6278 CODE points to the comparison code.
6279 IMM points to the rtx containing the immediate. *IMM must satisfy
6280 CONST_SCALAR_INT_P on entry and continues to satisfy CONST_SCALAR_INT_P
6284 canonicalize_comparison (machine_mode mode
, enum rtx_code
*code
, rtx
*imm
)
6286 if (!SCALAR_INT_MODE_P (mode
))
6290 enum signop sgn
= unsigned_condition_p (*code
) ? UNSIGNED
: SIGNED
;
6292 /* Extract the immediate value from the rtx. */
6293 wide_int imm_val
= rtx_mode_t (*imm
, mode
);
6295 if (*code
== GT
|| *code
== GTU
|| *code
== LE
|| *code
== LEU
)
6297 else if (*code
== GE
|| *code
== GEU
|| *code
== LT
|| *code
== LTU
)
6302 /* Check for overflow/underflow in the case of signed values and
6303 wrapping around in the case of unsigned values. If any occur
6304 cancel the optimization. */
6305 wi::overflow_type overflow
= wi::OVF_NONE
;
6309 imm_modif
= wi::add (imm_val
, 1, sgn
, &overflow
);
6311 imm_modif
= wi::sub (imm_val
, 1, sgn
, &overflow
);
6316 /* The following creates a pseudo; if we cannot do that, bail out. */
6317 if (!can_create_pseudo_p ())
6320 rtx reg
= gen_rtx_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
6321 rtx new_imm
= immed_wide_int_const (imm_modif
, mode
);
6323 rtx_insn
*old_rtx
= gen_move_insn (reg
, *imm
);
6324 rtx_insn
*new_rtx
= gen_move_insn (reg
, new_imm
);
6326 /* Update the immediate and the code. */
6327 if (insn_cost (old_rtx
, true) > insn_cost (new_rtx
, true))
6329 *code
= equivalent_cmp_code (*code
);
6336 /* Perform possibly multi-word comparison and conditional jump to LABEL
6337 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
6338 now a thin wrapper around do_compare_rtx_and_jump. */
6341 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, machine_mode mode
,
6342 rtx_code_label
*label
)
6344 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
6345 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
, NULL_RTX
,
6346 NULL
, label
, profile_probability::uninitialized ());