2015-03-04 Robert Dewar <dewar@adacore.com>
[official-gcc.git] / gcc / reload1.c
blob5a010454c8e71267dc584d89acb57b22c867ef4a
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "hashtab.h"
34 #include "hash-set.h"
35 #include "vec.h"
36 #include "input.h"
37 #include "function.h"
38 #include "symtab.h"
39 #include "rtl.h"
40 #include "statistics.h"
41 #include "double-int.h"
42 #include "real.h"
43 #include "fixed-value.h"
44 #include "alias.h"
45 #include "wide-int.h"
46 #include "inchash.h"
47 #include "tree.h"
48 #include "expmed.h"
49 #include "dojump.h"
50 #include "explow.h"
51 #include "calls.h"
52 #include "emit-rtl.h"
53 #include "varasm.h"
54 #include "stmt.h"
55 #include "expr.h"
56 #include "insn-codes.h"
57 #include "optabs.h"
58 #include "regs.h"
59 #include "addresses.h"
60 #include "predict.h"
61 #include "dominance.h"
62 #include "cfg.h"
63 #include "cfgrtl.h"
64 #include "cfgbuild.h"
65 #include "basic-block.h"
66 #include "df.h"
67 #include "reload.h"
68 #include "recog.h"
69 #include "except.h"
70 #include "ira.h"
71 #include "target.h"
72 #include "dumpfile.h"
73 #include "rtl-iter.h"
75 /* This file contains the reload pass of the compiler, which is
76 run after register allocation has been done. It checks that
77 each insn is valid (operands required to be in registers really
78 are in registers of the proper class) and fixes up invalid ones
79 by copying values temporarily into registers for the insns
80 that need them.
82 The results of register allocation are described by the vector
83 reg_renumber; the insns still contain pseudo regs, but reg_renumber
84 can be used to find which hard reg, if any, a pseudo reg is in.
86 The technique we always use is to free up a few hard regs that are
87 called ``reload regs'', and for each place where a pseudo reg
88 must be in a hard reg, copy it temporarily into one of the reload regs.
90 Reload regs are allocated locally for every instruction that needs
91 reloads. When there are pseudos which are allocated to a register that
92 has been chosen as a reload reg, such pseudos must be ``spilled''.
93 This means that they go to other hard regs, or to stack slots if no other
94 available hard regs can be found. Spilling can invalidate more
95 insns, requiring additional need for reloads, so we must keep checking
96 until the process stabilizes.
98 For machines with different classes of registers, we must keep track
99 of the register class needed for each reload, and make sure that
100 we allocate enough reload registers of each class.
102 The file reload.c contains the code that checks one insn for
103 validity and reports the reloads that it needs. This file
104 is in charge of scanning the entire rtl code, accumulating the
105 reload needs, spilling, assigning reload registers to use for
106 fixing up each insn, and generating the new insns to copy values
107 into the reload registers. */
109 struct target_reload default_target_reload;
110 #if SWITCHABLE_TARGET
111 struct target_reload *this_target_reload = &default_target_reload;
112 #endif
114 #define spill_indirect_levels \
115 (this_target_reload->x_spill_indirect_levels)
117 /* During reload_as_needed, element N contains a REG rtx for the hard reg
118 into which reg N has been reloaded (perhaps for a previous insn). */
119 static rtx *reg_last_reload_reg;
121 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
122 for an output reload that stores into reg N. */
123 static regset_head reg_has_output_reload;
125 /* Indicates which hard regs are reload-registers for an output reload
126 in the current insn. */
127 static HARD_REG_SET reg_is_output_reload;
129 /* Widest width in which each pseudo reg is referred to (via subreg). */
130 static unsigned int *reg_max_ref_width;
132 /* Vector to remember old contents of reg_renumber before spilling. */
133 static short *reg_old_renumber;
135 /* During reload_as_needed, element N contains the last pseudo regno reloaded
136 into hard register N. If that pseudo reg occupied more than one register,
137 reg_reloaded_contents points to that pseudo for each spill register in
138 use; all of these must remain set for an inheritance to occur. */
139 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
141 /* During reload_as_needed, element N contains the insn for which
142 hard register N was last used. Its contents are significant only
143 when reg_reloaded_valid is set for this register. */
144 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
146 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
147 static HARD_REG_SET reg_reloaded_valid;
148 /* Indicate if the register was dead at the end of the reload.
149 This is only valid if reg_reloaded_contents is set and valid. */
150 static HARD_REG_SET reg_reloaded_dead;
152 /* Indicate whether the register's current value is one that is not
153 safe to retain across a call, even for registers that are normally
154 call-saved. This is only meaningful for members of reg_reloaded_valid. */
155 static HARD_REG_SET reg_reloaded_call_part_clobbered;
157 /* Number of spill-regs so far; number of valid elements of spill_regs. */
158 static int n_spills;
160 /* In parallel with spill_regs, contains REG rtx's for those regs.
161 Holds the last rtx used for any given reg, or 0 if it has never
162 been used for spilling yet. This rtx is reused, provided it has
163 the proper mode. */
164 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
166 /* In parallel with spill_regs, contains nonzero for a spill reg
167 that was stored after the last time it was used.
168 The precise value is the insn generated to do the store. */
169 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
171 /* This is the register that was stored with spill_reg_store. This is a
172 copy of reload_out / reload_out_reg when the value was stored; if
173 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
174 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
176 /* This table is the inverse mapping of spill_regs:
177 indexed by hard reg number,
178 it contains the position of that reg in spill_regs,
179 or -1 for something that is not in spill_regs.
181 ?!? This is no longer accurate. */
182 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
184 /* This reg set indicates registers that can't be used as spill registers for
185 the currently processed insn. These are the hard registers which are live
186 during the insn, but not allocated to pseudos, as well as fixed
187 registers. */
188 static HARD_REG_SET bad_spill_regs;
190 /* These are the hard registers that can't be used as spill register for any
191 insn. This includes registers used for user variables and registers that
192 we can't eliminate. A register that appears in this set also can't be used
193 to retry register allocation. */
194 static HARD_REG_SET bad_spill_regs_global;
196 /* Describes order of use of registers for reloading
197 of spilled pseudo-registers. `n_spills' is the number of
198 elements that are actually valid; new ones are added at the end.
200 Both spill_regs and spill_reg_order are used on two occasions:
201 once during find_reload_regs, where they keep track of the spill registers
202 for a single insn, but also during reload_as_needed where they show all
203 the registers ever used by reload. For the latter case, the information
204 is calculated during finish_spills. */
205 static short spill_regs[FIRST_PSEUDO_REGISTER];
207 /* This vector of reg sets indicates, for each pseudo, which hard registers
208 may not be used for retrying global allocation because the register was
209 formerly spilled from one of them. If we allowed reallocating a pseudo to
210 a register that it was already allocated to, reload might not
211 terminate. */
212 static HARD_REG_SET *pseudo_previous_regs;
214 /* This vector of reg sets indicates, for each pseudo, which hard
215 registers may not be used for retrying global allocation because they
216 are used as spill registers during one of the insns in which the
217 pseudo is live. */
218 static HARD_REG_SET *pseudo_forbidden_regs;
220 /* All hard regs that have been used as spill registers for any insn are
221 marked in this set. */
222 static HARD_REG_SET used_spill_regs;
224 /* Index of last register assigned as a spill register. We allocate in
225 a round-robin fashion. */
226 static int last_spill_reg;
228 /* Record the stack slot for each spilled hard register. */
229 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
231 /* Width allocated so far for that stack slot. */
232 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
234 /* Record which pseudos needed to be spilled. */
235 static regset_head spilled_pseudos;
237 /* Record which pseudos changed their allocation in finish_spills. */
238 static regset_head changed_allocation_pseudos;
240 /* Used for communication between order_regs_for_reload and count_pseudo.
241 Used to avoid counting one pseudo twice. */
242 static regset_head pseudos_counted;
244 /* First uid used by insns created by reload in this function.
245 Used in find_equiv_reg. */
246 int reload_first_uid;
248 /* Flag set by local-alloc or global-alloc if anything is live in
249 a call-clobbered reg across calls. */
250 int caller_save_needed;
252 /* Set to 1 while reload_as_needed is operating.
253 Required by some machines to handle any generated moves differently. */
254 int reload_in_progress = 0;
256 /* This obstack is used for allocation of rtl during register elimination.
257 The allocated storage can be freed once find_reloads has processed the
258 insn. */
259 static struct obstack reload_obstack;
261 /* Points to the beginning of the reload_obstack. All insn_chain structures
262 are allocated first. */
263 static char *reload_startobj;
265 /* The point after all insn_chain structures. Used to quickly deallocate
266 memory allocated in copy_reloads during calculate_needs_all_insns. */
267 static char *reload_firstobj;
269 /* This points before all local rtl generated by register elimination.
270 Used to quickly free all memory after processing one insn. */
271 static char *reload_insn_firstobj;
273 /* List of insn_chain instructions, one for every insn that reload needs to
274 examine. */
275 struct insn_chain *reload_insn_chain;
277 /* TRUE if we potentially left dead insns in the insn stream and want to
278 run DCE immediately after reload, FALSE otherwise. */
279 static bool need_dce;
281 /* List of all insns needing reloads. */
282 static struct insn_chain *insns_need_reload;
284 /* This structure is used to record information about register eliminations.
285 Each array entry describes one possible way of eliminating a register
286 in favor of another. If there is more than one way of eliminating a
287 particular register, the most preferred should be specified first. */
289 struct elim_table
291 int from; /* Register number to be eliminated. */
292 int to; /* Register number used as replacement. */
293 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
294 int can_eliminate; /* Nonzero if this elimination can be done. */
295 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
296 target hook in previous scan over insns
297 made by reload. */
298 HOST_WIDE_INT offset; /* Current offset between the two regs. */
299 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
300 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
301 rtx from_rtx; /* REG rtx for the register to be eliminated.
302 We cannot simply compare the number since
303 we might then spuriously replace a hard
304 register corresponding to a pseudo
305 assigned to the reg to be eliminated. */
306 rtx to_rtx; /* REG rtx for the replacement. */
309 static struct elim_table *reg_eliminate = 0;
311 /* This is an intermediate structure to initialize the table. It has
312 exactly the members provided by ELIMINABLE_REGS. */
313 static const struct elim_table_1
315 const int from;
316 const int to;
317 } reg_eliminate_1[] =
319 /* If a set of eliminable registers was specified, define the table from it.
320 Otherwise, default to the normal case of the frame pointer being
321 replaced by the stack pointer. */
323 #ifdef ELIMINABLE_REGS
324 ELIMINABLE_REGS;
325 #else
326 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
327 #endif
329 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
331 /* Record the number of pending eliminations that have an offset not equal
332 to their initial offset. If nonzero, we use a new copy of each
333 replacement result in any insns encountered. */
334 int num_not_at_initial_offset;
336 /* Count the number of registers that we may be able to eliminate. */
337 static int num_eliminable;
338 /* And the number of registers that are equivalent to a constant that
339 can be eliminated to frame_pointer / arg_pointer + constant. */
340 static int num_eliminable_invariants;
342 /* For each label, we record the offset of each elimination. If we reach
343 a label by more than one path and an offset differs, we cannot do the
344 elimination. This information is indexed by the difference of the
345 number of the label and the first label number. We can't offset the
346 pointer itself as this can cause problems on machines with segmented
347 memory. The first table is an array of flags that records whether we
348 have yet encountered a label and the second table is an array of arrays,
349 one entry in the latter array for each elimination. */
351 static int first_label_num;
352 static char *offsets_known_at;
353 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
355 vec<reg_equivs_t, va_gc> *reg_equivs;
357 /* Stack of addresses where an rtx has been changed. We can undo the
358 changes by popping items off the stack and restoring the original
359 value at each location.
361 We use this simplistic undo capability rather than copy_rtx as copy_rtx
362 will not make a deep copy of a normally sharable rtx, such as
363 (const (plus (symbol_ref) (const_int))). If such an expression appears
364 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
365 rtx expression would be changed. See PR 42431. */
367 typedef rtx *rtx_p;
368 static vec<rtx_p> substitute_stack;
370 /* Number of labels in the current function. */
372 static int num_labels;
374 static void replace_pseudos_in (rtx *, machine_mode, rtx);
375 static void maybe_fix_stack_asms (void);
376 static void copy_reloads (struct insn_chain *);
377 static void calculate_needs_all_insns (int);
378 static int find_reg (struct insn_chain *, int);
379 static void find_reload_regs (struct insn_chain *);
380 static void select_reload_regs (void);
381 static void delete_caller_save_insns (void);
383 static void spill_failure (rtx_insn *, enum reg_class);
384 static void count_spilled_pseudo (int, int, int);
385 static void delete_dead_insn (rtx_insn *);
386 static void alter_reg (int, int, bool);
387 static void set_label_offsets (rtx, rtx_insn *, int);
388 static void check_eliminable_occurrences (rtx);
389 static void elimination_effects (rtx, machine_mode);
390 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
391 static int eliminate_regs_in_insn (rtx_insn *, int);
392 static void update_eliminable_offsets (void);
393 static void mark_not_eliminable (rtx, const_rtx, void *);
394 static void set_initial_elim_offsets (void);
395 static bool verify_initial_elim_offsets (void);
396 static void set_initial_label_offsets (void);
397 static void set_offsets_for_label (rtx_insn *);
398 static void init_eliminable_invariants (rtx_insn *, bool);
399 static void init_elim_table (void);
400 static void free_reg_equiv (void);
401 static void update_eliminables (HARD_REG_SET *);
402 static bool update_eliminables_and_spill (void);
403 static void elimination_costs_in_insn (rtx_insn *);
404 static void spill_hard_reg (unsigned int, int);
405 static int finish_spills (int);
406 static void scan_paradoxical_subregs (rtx);
407 static void count_pseudo (int);
408 static void order_regs_for_reload (struct insn_chain *);
409 static void reload_as_needed (int);
410 static void forget_old_reloads_1 (rtx, const_rtx, void *);
411 static void forget_marked_reloads (regset);
412 static int reload_reg_class_lower (const void *, const void *);
413 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
414 machine_mode);
415 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
416 machine_mode);
417 static int reload_reg_free_p (unsigned int, int, enum reload_type);
418 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
419 rtx, rtx, int, int);
420 static int free_for_value_p (int, machine_mode, int, enum reload_type,
421 rtx, rtx, int, int);
422 static int allocate_reload_reg (struct insn_chain *, int, int);
423 static int conflicts_with_override (rtx);
424 static void failed_reload (rtx_insn *, int);
425 static int set_reload_reg (int, int);
426 static void choose_reload_regs_init (struct insn_chain *, rtx *);
427 static void choose_reload_regs (struct insn_chain *);
428 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
429 rtx, int);
430 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
431 int);
432 static void do_input_reload (struct insn_chain *, struct reload *, int);
433 static void do_output_reload (struct insn_chain *, struct reload *, int);
434 static void emit_reload_insns (struct insn_chain *);
435 static void delete_output_reload (rtx_insn *, int, int, rtx);
436 static void delete_address_reloads (rtx_insn *, rtx_insn *);
437 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
438 static void inc_for_reload (rtx, rtx, rtx, int);
439 #ifdef AUTO_INC_DEC
440 static void add_auto_inc_notes (rtx_insn *, rtx);
441 #endif
442 static void substitute (rtx *, const_rtx, rtx);
443 static bool gen_reload_chain_without_interm_reg_p (int, int);
444 static int reloads_conflict (int, int);
445 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
446 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
448 /* Initialize the reload pass. This is called at the beginning of compilation
449 and may be called again if the target is reinitialized. */
451 void
452 init_reload (void)
454 int i;
456 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
457 Set spill_indirect_levels to the number of levels such addressing is
458 permitted, zero if it is not permitted at all. */
460 rtx tem
461 = gen_rtx_MEM (Pmode,
462 gen_rtx_PLUS (Pmode,
463 gen_rtx_REG (Pmode,
464 LAST_VIRTUAL_REGISTER + 1),
465 gen_int_mode (4, Pmode)));
466 spill_indirect_levels = 0;
468 while (memory_address_p (QImode, tem))
470 spill_indirect_levels++;
471 tem = gen_rtx_MEM (Pmode, tem);
474 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
476 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
477 indirect_symref_ok = memory_address_p (QImode, tem);
479 /* See if reg+reg is a valid (and offsettable) address. */
481 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
483 tem = gen_rtx_PLUS (Pmode,
484 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
485 gen_rtx_REG (Pmode, i));
487 /* This way, we make sure that reg+reg is an offsettable address. */
488 tem = plus_constant (Pmode, tem, 4);
490 if (memory_address_p (QImode, tem))
492 double_reg_address_ok = 1;
493 break;
497 /* Initialize obstack for our rtl allocation. */
498 if (reload_startobj == NULL)
500 gcc_obstack_init (&reload_obstack);
501 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
504 INIT_REG_SET (&spilled_pseudos);
505 INIT_REG_SET (&changed_allocation_pseudos);
506 INIT_REG_SET (&pseudos_counted);
509 /* List of insn chains that are currently unused. */
510 static struct insn_chain *unused_insn_chains = 0;
512 /* Allocate an empty insn_chain structure. */
513 struct insn_chain *
514 new_insn_chain (void)
516 struct insn_chain *c;
518 if (unused_insn_chains == 0)
520 c = XOBNEW (&reload_obstack, struct insn_chain);
521 INIT_REG_SET (&c->live_throughout);
522 INIT_REG_SET (&c->dead_or_set);
524 else
526 c = unused_insn_chains;
527 unused_insn_chains = c->next;
529 c->is_caller_save_insn = 0;
530 c->need_operand_change = 0;
531 c->need_reload = 0;
532 c->need_elim = 0;
533 return c;
536 /* Small utility function to set all regs in hard reg set TO which are
537 allocated to pseudos in regset FROM. */
539 void
540 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
542 unsigned int regno;
543 reg_set_iterator rsi;
545 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
547 int r = reg_renumber[regno];
549 if (r < 0)
551 /* reload_combine uses the information from DF_LIVE_IN,
552 which might still contain registers that have not
553 actually been allocated since they have an
554 equivalence. */
555 gcc_assert (ira_conflicts_p || reload_completed);
557 else
558 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
562 /* Replace all pseudos found in LOC with their corresponding
563 equivalences. */
565 static void
566 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
568 rtx x = *loc;
569 enum rtx_code code;
570 const char *fmt;
571 int i, j;
573 if (! x)
574 return;
576 code = GET_CODE (x);
577 if (code == REG)
579 unsigned int regno = REGNO (x);
581 if (regno < FIRST_PSEUDO_REGISTER)
582 return;
584 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
585 if (x != *loc)
587 *loc = x;
588 replace_pseudos_in (loc, mem_mode, usage);
589 return;
592 if (reg_equiv_constant (regno))
593 *loc = reg_equiv_constant (regno);
594 else if (reg_equiv_invariant (regno))
595 *loc = reg_equiv_invariant (regno);
596 else if (reg_equiv_mem (regno))
597 *loc = reg_equiv_mem (regno);
598 else if (reg_equiv_address (regno))
599 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
600 else
602 gcc_assert (!REG_P (regno_reg_rtx[regno])
603 || REGNO (regno_reg_rtx[regno]) != regno);
604 *loc = regno_reg_rtx[regno];
607 return;
609 else if (code == MEM)
611 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
612 return;
615 /* Process each of our operands recursively. */
616 fmt = GET_RTX_FORMAT (code);
617 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
618 if (*fmt == 'e')
619 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
620 else if (*fmt == 'E')
621 for (j = 0; j < XVECLEN (x, i); j++)
622 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
625 /* Determine if the current function has an exception receiver block
626 that reaches the exit block via non-exceptional edges */
628 static bool
629 has_nonexceptional_receiver (void)
631 edge e;
632 edge_iterator ei;
633 basic_block *tos, *worklist, bb;
635 /* If we're not optimizing, then just err on the safe side. */
636 if (!optimize)
637 return true;
639 /* First determine which blocks can reach exit via normal paths. */
640 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
642 FOR_EACH_BB_FN (bb, cfun)
643 bb->flags &= ~BB_REACHABLE;
645 /* Place the exit block on our worklist. */
646 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
647 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
649 /* Iterate: find everything reachable from what we've already seen. */
650 while (tos != worklist)
652 bb = *--tos;
654 FOR_EACH_EDGE (e, ei, bb->preds)
655 if (!(e->flags & EDGE_ABNORMAL))
657 basic_block src = e->src;
659 if (!(src->flags & BB_REACHABLE))
661 src->flags |= BB_REACHABLE;
662 *tos++ = src;
666 free (worklist);
668 /* Now see if there's a reachable block with an exceptional incoming
669 edge. */
670 FOR_EACH_BB_FN (bb, cfun)
671 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
672 return true;
674 /* No exceptional block reached exit unexceptionally. */
675 return false;
678 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
679 zero elements) to MAX_REG_NUM elements.
681 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
682 void
683 grow_reg_equivs (void)
685 int old_size = vec_safe_length (reg_equivs);
686 int max_regno = max_reg_num ();
687 int i;
688 reg_equivs_t ze;
690 memset (&ze, 0, sizeof (reg_equivs_t));
691 vec_safe_reserve (reg_equivs, max_regno);
692 for (i = old_size; i < max_regno; i++)
693 reg_equivs->quick_insert (i, ze);
697 /* Global variables used by reload and its subroutines. */
699 /* The current basic block while in calculate_elim_costs_all_insns. */
700 static basic_block elim_bb;
702 /* Set during calculate_needs if an insn needs register elimination. */
703 static int something_needs_elimination;
704 /* Set during calculate_needs if an insn needs an operand changed. */
705 static int something_needs_operands_changed;
706 /* Set by alter_regs if we spilled a register to the stack. */
707 static bool something_was_spilled;
709 /* Nonzero means we couldn't get enough spill regs. */
710 static int failure;
712 /* Temporary array of pseudo-register number. */
713 static int *temp_pseudo_reg_arr;
715 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
716 If that insn didn't set the register (i.e., it copied the register to
717 memory), just delete that insn instead of the equivalencing insn plus
718 anything now dead. If we call delete_dead_insn on that insn, we may
719 delete the insn that actually sets the register if the register dies
720 there and that is incorrect. */
721 static void
722 remove_init_insns ()
724 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
726 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
728 rtx list;
729 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
731 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
733 /* If we already deleted the insn or if it may trap, we can't
734 delete it. The latter case shouldn't happen, but can
735 if an insn has a variable address, gets a REG_EH_REGION
736 note added to it, and then gets converted into a load
737 from a constant address. */
738 if (NOTE_P (equiv_insn)
739 || can_throw_internal (equiv_insn))
741 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
742 delete_dead_insn (equiv_insn);
743 else
744 SET_INSN_DELETED (equiv_insn);
750 /* Return true if remove_init_insns will delete INSN. */
751 static bool
752 will_delete_init_insn_p (rtx_insn *insn)
754 rtx set = single_set (insn);
755 if (!set || !REG_P (SET_DEST (set)))
756 return false;
757 unsigned regno = REGNO (SET_DEST (set));
759 if (can_throw_internal (insn))
760 return false;
762 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
763 return false;
765 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
767 rtx equiv_insn = XEXP (list, 0);
768 if (equiv_insn == insn)
769 return true;
771 return false;
774 /* Main entry point for the reload pass.
776 FIRST is the first insn of the function being compiled.
778 GLOBAL nonzero means we were called from global_alloc
779 and should attempt to reallocate any pseudoregs that we
780 displace from hard regs we will use for reloads.
781 If GLOBAL is zero, we do not have enough information to do that,
782 so any pseudo reg that is spilled must go to the stack.
784 Return value is TRUE if reload likely left dead insns in the
785 stream and a DCE pass should be run to elimiante them. Else the
786 return value is FALSE. */
788 bool
789 reload (rtx_insn *first, int global)
791 int i, n;
792 rtx_insn *insn;
793 struct elim_table *ep;
794 basic_block bb;
795 bool inserted;
797 /* Make sure even insns with volatile mem refs are recognizable. */
798 init_recog ();
800 failure = 0;
802 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
804 /* Make sure that the last insn in the chain
805 is not something that needs reloading. */
806 emit_note (NOTE_INSN_DELETED);
808 /* Enable find_equiv_reg to distinguish insns made by reload. */
809 reload_first_uid = get_max_uid ();
811 #ifdef SECONDARY_MEMORY_NEEDED
812 /* Initialize the secondary memory table. */
813 clear_secondary_mem ();
814 #endif
816 /* We don't have a stack slot for any spill reg yet. */
817 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
818 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
820 /* Initialize the save area information for caller-save, in case some
821 are needed. */
822 init_save_areas ();
824 /* Compute which hard registers are now in use
825 as homes for pseudo registers.
826 This is done here rather than (eg) in global_alloc
827 because this point is reached even if not optimizing. */
828 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
829 mark_home_live (i);
831 /* A function that has a nonlocal label that can reach the exit
832 block via non-exceptional paths must save all call-saved
833 registers. */
834 if (cfun->has_nonlocal_label
835 && has_nonexceptional_receiver ())
836 crtl->saves_all_registers = 1;
838 if (crtl->saves_all_registers)
839 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
840 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
841 df_set_regs_ever_live (i, true);
843 /* Find all the pseudo registers that didn't get hard regs
844 but do have known equivalent constants or memory slots.
845 These include parameters (known equivalent to parameter slots)
846 and cse'd or loop-moved constant memory addresses.
848 Record constant equivalents in reg_equiv_constant
849 so they will be substituted by find_reloads.
850 Record memory equivalents in reg_mem_equiv so they can
851 be substituted eventually by altering the REG-rtx's. */
853 grow_reg_equivs ();
854 reg_old_renumber = XCNEWVEC (short, max_regno);
855 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
856 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
857 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
859 CLEAR_HARD_REG_SET (bad_spill_regs_global);
861 init_eliminable_invariants (first, true);
862 init_elim_table ();
864 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
865 stack slots to the pseudos that lack hard regs or equivalents.
866 Do not touch virtual registers. */
868 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
869 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
870 temp_pseudo_reg_arr[n++] = i;
872 if (ira_conflicts_p)
873 /* Ask IRA to order pseudo-registers for better stack slot
874 sharing. */
875 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
877 for (i = 0; i < n; i++)
878 alter_reg (temp_pseudo_reg_arr[i], -1, false);
880 /* If we have some registers we think can be eliminated, scan all insns to
881 see if there is an insn that sets one of these registers to something
882 other than itself plus a constant. If so, the register cannot be
883 eliminated. Doing this scan here eliminates an extra pass through the
884 main reload loop in the most common case where register elimination
885 cannot be done. */
886 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
887 if (INSN_P (insn))
888 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
890 maybe_fix_stack_asms ();
892 insns_need_reload = 0;
893 something_needs_elimination = 0;
895 /* Initialize to -1, which means take the first spill register. */
896 last_spill_reg = -1;
898 /* Spill any hard regs that we know we can't eliminate. */
899 CLEAR_HARD_REG_SET (used_spill_regs);
900 /* There can be multiple ways to eliminate a register;
901 they should be listed adjacently.
902 Elimination for any register fails only if all possible ways fail. */
903 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
905 int from = ep->from;
906 int can_eliminate = 0;
909 can_eliminate |= ep->can_eliminate;
910 ep++;
912 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
913 if (! can_eliminate)
914 spill_hard_reg (from, 1);
917 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
918 if (frame_pointer_needed)
919 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
920 #endif
921 finish_spills (global);
923 /* From now on, we may need to generate moves differently. We may also
924 allow modifications of insns which cause them to not be recognized.
925 Any such modifications will be cleaned up during reload itself. */
926 reload_in_progress = 1;
928 /* This loop scans the entire function each go-round
929 and repeats until one repetition spills no additional hard regs. */
930 for (;;)
932 int something_changed;
933 int did_spill;
934 HOST_WIDE_INT starting_frame_size;
936 starting_frame_size = get_frame_size ();
937 something_was_spilled = false;
939 set_initial_elim_offsets ();
940 set_initial_label_offsets ();
942 /* For each pseudo register that has an equivalent location defined,
943 try to eliminate any eliminable registers (such as the frame pointer)
944 assuming initial offsets for the replacement register, which
945 is the normal case.
947 If the resulting location is directly addressable, substitute
948 the MEM we just got directly for the old REG.
950 If it is not addressable but is a constant or the sum of a hard reg
951 and constant, it is probably not addressable because the constant is
952 out of range, in that case record the address; we will generate
953 hairy code to compute the address in a register each time it is
954 needed. Similarly if it is a hard register, but one that is not
955 valid as an address register.
957 If the location is not addressable, but does not have one of the
958 above forms, assign a stack slot. We have to do this to avoid the
959 potential of producing lots of reloads if, e.g., a location involves
960 a pseudo that didn't get a hard register and has an equivalent memory
961 location that also involves a pseudo that didn't get a hard register.
963 Perhaps at some point we will improve reload_when_needed handling
964 so this problem goes away. But that's very hairy. */
966 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
967 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
969 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
970 NULL_RTX);
972 if (strict_memory_address_addr_space_p
973 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
974 MEM_ADDR_SPACE (x)))
975 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
976 else if (CONSTANT_P (XEXP (x, 0))
977 || (REG_P (XEXP (x, 0))
978 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
979 || (GET_CODE (XEXP (x, 0)) == PLUS
980 && REG_P (XEXP (XEXP (x, 0), 0))
981 && (REGNO (XEXP (XEXP (x, 0), 0))
982 < FIRST_PSEUDO_REGISTER)
983 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
984 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
985 else
987 /* Make a new stack slot. Then indicate that something
988 changed so we go back and recompute offsets for
989 eliminable registers because the allocation of memory
990 below might change some offset. reg_equiv_{mem,address}
991 will be set up for this pseudo on the next pass around
992 the loop. */
993 reg_equiv_memory_loc (i) = 0;
994 reg_equiv_init (i) = 0;
995 alter_reg (i, -1, true);
999 if (caller_save_needed)
1000 setup_save_areas ();
1002 if (starting_frame_size && crtl->stack_alignment_needed)
1004 /* If we have a stack frame, we must align it now. The
1005 stack size may be a part of the offset computation for
1006 register elimination. So if this changes the stack size,
1007 then repeat the elimination bookkeeping. We don't
1008 realign when there is no stack, as that will cause a
1009 stack frame when none is needed should
1010 STARTING_FRAME_OFFSET not be already aligned to
1011 STACK_BOUNDARY. */
1012 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
1014 /* If we allocated another stack slot, redo elimination bookkeeping. */
1015 if (something_was_spilled || starting_frame_size != get_frame_size ())
1017 update_eliminables_and_spill ();
1018 continue;
1021 if (caller_save_needed)
1023 save_call_clobbered_regs ();
1024 /* That might have allocated new insn_chain structures. */
1025 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1028 calculate_needs_all_insns (global);
1030 if (! ira_conflicts_p)
1031 /* Don't do it for IRA. We need this info because we don't
1032 change live_throughout and dead_or_set for chains when IRA
1033 is used. */
1034 CLEAR_REG_SET (&spilled_pseudos);
1036 did_spill = 0;
1038 something_changed = 0;
1040 /* If we allocated any new memory locations, make another pass
1041 since it might have changed elimination offsets. */
1042 if (something_was_spilled || starting_frame_size != get_frame_size ())
1043 something_changed = 1;
1045 /* Even if the frame size remained the same, we might still have
1046 changed elimination offsets, e.g. if find_reloads called
1047 force_const_mem requiring the back end to allocate a constant
1048 pool base register that needs to be saved on the stack. */
1049 else if (!verify_initial_elim_offsets ())
1050 something_changed = 1;
1052 if (update_eliminables_and_spill ())
1054 did_spill = 1;
1055 something_changed = 1;
1058 select_reload_regs ();
1059 if (failure)
1060 goto failed;
1062 if (insns_need_reload != 0 || did_spill)
1063 something_changed |= finish_spills (global);
1065 if (! something_changed)
1066 break;
1068 if (caller_save_needed)
1069 delete_caller_save_insns ();
1071 obstack_free (&reload_obstack, reload_firstobj);
1074 /* If global-alloc was run, notify it of any register eliminations we have
1075 done. */
1076 if (global)
1077 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1078 if (ep->can_eliminate)
1079 mark_elimination (ep->from, ep->to);
1081 remove_init_insns ();
1083 /* Use the reload registers where necessary
1084 by generating move instructions to move the must-be-register
1085 values into or out of the reload registers. */
1087 if (insns_need_reload != 0 || something_needs_elimination
1088 || something_needs_operands_changed)
1090 HOST_WIDE_INT old_frame_size = get_frame_size ();
1092 reload_as_needed (global);
1094 gcc_assert (old_frame_size == get_frame_size ());
1096 gcc_assert (verify_initial_elim_offsets ());
1099 /* If we were able to eliminate the frame pointer, show that it is no
1100 longer live at the start of any basic block. If it ls live by
1101 virtue of being in a pseudo, that pseudo will be marked live
1102 and hence the frame pointer will be known to be live via that
1103 pseudo. */
1105 if (! frame_pointer_needed)
1106 FOR_EACH_BB_FN (bb, cfun)
1107 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1109 /* Come here (with failure set nonzero) if we can't get enough spill
1110 regs. */
1111 failed:
1113 CLEAR_REG_SET (&changed_allocation_pseudos);
1114 CLEAR_REG_SET (&spilled_pseudos);
1115 reload_in_progress = 0;
1117 /* Now eliminate all pseudo regs by modifying them into
1118 their equivalent memory references.
1119 The REG-rtx's for the pseudos are modified in place,
1120 so all insns that used to refer to them now refer to memory.
1122 For a reg that has a reg_equiv_address, all those insns
1123 were changed by reloading so that no insns refer to it any longer;
1124 but the DECL_RTL of a variable decl may refer to it,
1125 and if so this causes the debugging info to mention the variable. */
1127 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1129 rtx addr = 0;
1131 if (reg_equiv_mem (i))
1132 addr = XEXP (reg_equiv_mem (i), 0);
1134 if (reg_equiv_address (i))
1135 addr = reg_equiv_address (i);
1137 if (addr)
1139 if (reg_renumber[i] < 0)
1141 rtx reg = regno_reg_rtx[i];
1143 REG_USERVAR_P (reg) = 0;
1144 PUT_CODE (reg, MEM);
1145 XEXP (reg, 0) = addr;
1146 if (reg_equiv_memory_loc (i))
1147 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1148 else
1149 MEM_ATTRS (reg) = 0;
1150 MEM_NOTRAP_P (reg) = 1;
1152 else if (reg_equiv_mem (i))
1153 XEXP (reg_equiv_mem (i), 0) = addr;
1156 /* We don't want complex addressing modes in debug insns
1157 if simpler ones will do, so delegitimize equivalences
1158 in debug insns. */
1159 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1161 rtx reg = regno_reg_rtx[i];
1162 rtx equiv = 0;
1163 df_ref use, next;
1165 if (reg_equiv_constant (i))
1166 equiv = reg_equiv_constant (i);
1167 else if (reg_equiv_invariant (i))
1168 equiv = reg_equiv_invariant (i);
1169 else if (reg && MEM_P (reg))
1170 equiv = targetm.delegitimize_address (reg);
1171 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1172 equiv = reg;
1174 if (equiv == reg)
1175 continue;
1177 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1179 insn = DF_REF_INSN (use);
1181 /* Make sure the next ref is for a different instruction,
1182 so that we're not affected by the rescan. */
1183 next = DF_REF_NEXT_REG (use);
1184 while (next && DF_REF_INSN (next) == insn)
1185 next = DF_REF_NEXT_REG (next);
1187 if (DEBUG_INSN_P (insn))
1189 if (!equiv)
1191 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1192 df_insn_rescan_debug_internal (insn);
1194 else
1195 INSN_VAR_LOCATION_LOC (insn)
1196 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1197 reg, equiv);
1203 /* We must set reload_completed now since the cleanup_subreg_operands call
1204 below will re-recognize each insn and reload may have generated insns
1205 which are only valid during and after reload. */
1206 reload_completed = 1;
1208 /* Make a pass over all the insns and delete all USEs which we inserted
1209 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1210 notes. Delete all CLOBBER insns, except those that refer to the return
1211 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1212 from misarranging variable-array code, and simplify (subreg (reg))
1213 operands. Strip and regenerate REG_INC notes that may have been moved
1214 around. */
1216 for (insn = first; insn; insn = NEXT_INSN (insn))
1217 if (INSN_P (insn))
1219 rtx *pnote;
1221 if (CALL_P (insn))
1222 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1223 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1225 if ((GET_CODE (PATTERN (insn)) == USE
1226 /* We mark with QImode USEs introduced by reload itself. */
1227 && (GET_MODE (insn) == QImode
1228 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1229 || (GET_CODE (PATTERN (insn)) == CLOBBER
1230 && (!MEM_P (XEXP (PATTERN (insn), 0))
1231 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1232 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1233 && XEXP (XEXP (PATTERN (insn), 0), 0)
1234 != stack_pointer_rtx))
1235 && (!REG_P (XEXP (PATTERN (insn), 0))
1236 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1238 delete_insn (insn);
1239 continue;
1242 /* Some CLOBBERs may survive until here and still reference unassigned
1243 pseudos with const equivalent, which may in turn cause ICE in later
1244 passes if the reference remains in place. */
1245 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1246 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1247 VOIDmode, PATTERN (insn));
1249 /* Discard obvious no-ops, even without -O. This optimization
1250 is fast and doesn't interfere with debugging. */
1251 if (NONJUMP_INSN_P (insn)
1252 && GET_CODE (PATTERN (insn)) == SET
1253 && REG_P (SET_SRC (PATTERN (insn)))
1254 && REG_P (SET_DEST (PATTERN (insn)))
1255 && (REGNO (SET_SRC (PATTERN (insn)))
1256 == REGNO (SET_DEST (PATTERN (insn)))))
1258 delete_insn (insn);
1259 continue;
1262 pnote = &REG_NOTES (insn);
1263 while (*pnote != 0)
1265 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1266 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1267 || REG_NOTE_KIND (*pnote) == REG_INC)
1268 *pnote = XEXP (*pnote, 1);
1269 else
1270 pnote = &XEXP (*pnote, 1);
1273 #ifdef AUTO_INC_DEC
1274 add_auto_inc_notes (insn, PATTERN (insn));
1275 #endif
1277 /* Simplify (subreg (reg)) if it appears as an operand. */
1278 cleanup_subreg_operands (insn);
1280 /* Clean up invalid ASMs so that they don't confuse later passes.
1281 See PR 21299. */
1282 if (asm_noperands (PATTERN (insn)) >= 0)
1284 extract_insn (insn);
1285 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1287 error_for_asm (insn,
1288 "%<asm%> operand has impossible constraints");
1289 delete_insn (insn);
1290 continue;
1295 /* If we are doing generic stack checking, give a warning if this
1296 function's frame size is larger than we expect. */
1297 if (flag_stack_check == GENERIC_STACK_CHECK)
1299 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1300 static int verbose_warned = 0;
1302 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1303 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1304 size += UNITS_PER_WORD;
1306 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1308 warning (0, "frame size too large for reliable stack checking");
1309 if (! verbose_warned)
1311 warning (0, "try reducing the number of local variables");
1312 verbose_warned = 1;
1317 free (temp_pseudo_reg_arr);
1319 /* Indicate that we no longer have known memory locations or constants. */
1320 free_reg_equiv ();
1322 free (reg_max_ref_width);
1323 free (reg_old_renumber);
1324 free (pseudo_previous_regs);
1325 free (pseudo_forbidden_regs);
1327 CLEAR_HARD_REG_SET (used_spill_regs);
1328 for (i = 0; i < n_spills; i++)
1329 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1331 /* Free all the insn_chain structures at once. */
1332 obstack_free (&reload_obstack, reload_startobj);
1333 unused_insn_chains = 0;
1335 inserted = fixup_abnormal_edges ();
1337 /* We've possibly turned single trapping insn into multiple ones. */
1338 if (cfun->can_throw_non_call_exceptions)
1340 sbitmap blocks;
1341 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1342 bitmap_ones (blocks);
1343 find_many_sub_basic_blocks (blocks);
1344 sbitmap_free (blocks);
1347 if (inserted)
1348 commit_edge_insertions ();
1350 /* Replacing pseudos with their memory equivalents might have
1351 created shared rtx. Subsequent passes would get confused
1352 by this, so unshare everything here. */
1353 unshare_all_rtl_again (first);
1355 #ifdef STACK_BOUNDARY
1356 /* init_emit has set the alignment of the hard frame pointer
1357 to STACK_BOUNDARY. It is very likely no longer valid if
1358 the hard frame pointer was used for register allocation. */
1359 if (!frame_pointer_needed)
1360 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1361 #endif
1363 substitute_stack.release ();
1365 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1367 reload_completed = !failure;
1369 return need_dce;
1372 /* Yet another special case. Unfortunately, reg-stack forces people to
1373 write incorrect clobbers in asm statements. These clobbers must not
1374 cause the register to appear in bad_spill_regs, otherwise we'll call
1375 fatal_insn later. We clear the corresponding regnos in the live
1376 register sets to avoid this.
1377 The whole thing is rather sick, I'm afraid. */
1379 static void
1380 maybe_fix_stack_asms (void)
1382 #ifdef STACK_REGS
1383 const char *constraints[MAX_RECOG_OPERANDS];
1384 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1385 struct insn_chain *chain;
1387 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1389 int i, noperands;
1390 HARD_REG_SET clobbered, allowed;
1391 rtx pat;
1393 if (! INSN_P (chain->insn)
1394 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1395 continue;
1396 pat = PATTERN (chain->insn);
1397 if (GET_CODE (pat) != PARALLEL)
1398 continue;
1400 CLEAR_HARD_REG_SET (clobbered);
1401 CLEAR_HARD_REG_SET (allowed);
1403 /* First, make a mask of all stack regs that are clobbered. */
1404 for (i = 0; i < XVECLEN (pat, 0); i++)
1406 rtx t = XVECEXP (pat, 0, i);
1407 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1408 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1411 /* Get the operand values and constraints out of the insn. */
1412 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1413 constraints, operand_mode, NULL);
1415 /* For every operand, see what registers are allowed. */
1416 for (i = 0; i < noperands; i++)
1418 const char *p = constraints[i];
1419 /* For every alternative, we compute the class of registers allowed
1420 for reloading in CLS, and merge its contents into the reg set
1421 ALLOWED. */
1422 int cls = (int) NO_REGS;
1424 for (;;)
1426 char c = *p;
1428 if (c == '\0' || c == ',' || c == '#')
1430 /* End of one alternative - mark the regs in the current
1431 class, and reset the class. */
1432 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1433 cls = NO_REGS;
1434 p++;
1435 if (c == '#')
1436 do {
1437 c = *p++;
1438 } while (c != '\0' && c != ',');
1439 if (c == '\0')
1440 break;
1441 continue;
1444 switch (c)
1446 case 'g':
1447 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1448 break;
1450 default:
1451 enum constraint_num cn = lookup_constraint (p);
1452 if (insn_extra_address_constraint (cn))
1453 cls = (int) reg_class_subunion[cls]
1454 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1455 ADDRESS, SCRATCH)];
1456 else
1457 cls = (int) reg_class_subunion[cls]
1458 [reg_class_for_constraint (cn)];
1459 break;
1461 p += CONSTRAINT_LEN (c, p);
1464 /* Those of the registers which are clobbered, but allowed by the
1465 constraints, must be usable as reload registers. So clear them
1466 out of the life information. */
1467 AND_HARD_REG_SET (allowed, clobbered);
1468 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1469 if (TEST_HARD_REG_BIT (allowed, i))
1471 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1472 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1476 #endif
1479 /* Copy the global variables n_reloads and rld into the corresponding elts
1480 of CHAIN. */
1481 static void
1482 copy_reloads (struct insn_chain *chain)
1484 chain->n_reloads = n_reloads;
1485 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1486 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1487 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1490 /* Walk the chain of insns, and determine for each whether it needs reloads
1491 and/or eliminations. Build the corresponding insns_need_reload list, and
1492 set something_needs_elimination as appropriate. */
1493 static void
1494 calculate_needs_all_insns (int global)
1496 struct insn_chain **pprev_reload = &insns_need_reload;
1497 struct insn_chain *chain, *next = 0;
1499 something_needs_elimination = 0;
1501 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1502 for (chain = reload_insn_chain; chain != 0; chain = next)
1504 rtx_insn *insn = chain->insn;
1506 next = chain->next;
1508 /* Clear out the shortcuts. */
1509 chain->n_reloads = 0;
1510 chain->need_elim = 0;
1511 chain->need_reload = 0;
1512 chain->need_operand_change = 0;
1514 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1515 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1516 what effects this has on the known offsets at labels. */
1518 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1519 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1520 set_label_offsets (insn, insn, 0);
1522 if (INSN_P (insn))
1524 rtx old_body = PATTERN (insn);
1525 int old_code = INSN_CODE (insn);
1526 rtx old_notes = REG_NOTES (insn);
1527 int did_elimination = 0;
1528 int operands_changed = 0;
1530 /* Skip insns that only set an equivalence. */
1531 if (will_delete_init_insn_p (insn))
1532 continue;
1534 /* If needed, eliminate any eliminable registers. */
1535 if (num_eliminable || num_eliminable_invariants)
1536 did_elimination = eliminate_regs_in_insn (insn, 0);
1538 /* Analyze the instruction. */
1539 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1540 global, spill_reg_order);
1542 /* If a no-op set needs more than one reload, this is likely
1543 to be something that needs input address reloads. We
1544 can't get rid of this cleanly later, and it is of no use
1545 anyway, so discard it now.
1546 We only do this when expensive_optimizations is enabled,
1547 since this complements reload inheritance / output
1548 reload deletion, and it can make debugging harder. */
1549 if (flag_expensive_optimizations && n_reloads > 1)
1551 rtx set = single_set (insn);
1552 if (set
1554 ((SET_SRC (set) == SET_DEST (set)
1555 && REG_P (SET_SRC (set))
1556 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1557 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1558 && reg_renumber[REGNO (SET_SRC (set))] < 0
1559 && reg_renumber[REGNO (SET_DEST (set))] < 0
1560 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1561 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1562 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1563 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1565 if (ira_conflicts_p)
1566 /* Inform IRA about the insn deletion. */
1567 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1568 REGNO (SET_SRC (set)));
1569 delete_insn (insn);
1570 /* Delete it from the reload chain. */
1571 if (chain->prev)
1572 chain->prev->next = next;
1573 else
1574 reload_insn_chain = next;
1575 if (next)
1576 next->prev = chain->prev;
1577 chain->next = unused_insn_chains;
1578 unused_insn_chains = chain;
1579 continue;
1582 if (num_eliminable)
1583 update_eliminable_offsets ();
1585 /* Remember for later shortcuts which insns had any reloads or
1586 register eliminations. */
1587 chain->need_elim = did_elimination;
1588 chain->need_reload = n_reloads > 0;
1589 chain->need_operand_change = operands_changed;
1591 /* Discard any register replacements done. */
1592 if (did_elimination)
1594 obstack_free (&reload_obstack, reload_insn_firstobj);
1595 PATTERN (insn) = old_body;
1596 INSN_CODE (insn) = old_code;
1597 REG_NOTES (insn) = old_notes;
1598 something_needs_elimination = 1;
1601 something_needs_operands_changed |= operands_changed;
1603 if (n_reloads != 0)
1605 copy_reloads (chain);
1606 *pprev_reload = chain;
1607 pprev_reload = &chain->next_need_reload;
1611 *pprev_reload = 0;
1614 /* This function is called from the register allocator to set up estimates
1615 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1616 an invariant. The structure is similar to calculate_needs_all_insns. */
1618 void
1619 calculate_elim_costs_all_insns (void)
1621 int *reg_equiv_init_cost;
1622 basic_block bb;
1623 int i;
1625 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1626 init_elim_table ();
1627 init_eliminable_invariants (get_insns (), false);
1629 set_initial_elim_offsets ();
1630 set_initial_label_offsets ();
1632 FOR_EACH_BB_FN (bb, cfun)
1634 rtx_insn *insn;
1635 elim_bb = bb;
1637 FOR_BB_INSNS (bb, insn)
1639 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1640 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1641 what effects this has on the known offsets at labels. */
1643 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1644 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1645 set_label_offsets (insn, insn, 0);
1647 if (INSN_P (insn))
1649 rtx set = single_set (insn);
1651 /* Skip insns that only set an equivalence. */
1652 if (set && REG_P (SET_DEST (set))
1653 && reg_renumber[REGNO (SET_DEST (set))] < 0
1654 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1655 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1657 unsigned regno = REGNO (SET_DEST (set));
1658 rtx init = reg_equiv_init (regno);
1659 if (init)
1661 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1662 false, true);
1663 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1664 int freq = REG_FREQ_FROM_BB (bb);
1666 reg_equiv_init_cost[regno] = cost * freq;
1667 continue;
1670 /* If needed, eliminate any eliminable registers. */
1671 if (num_eliminable || num_eliminable_invariants)
1672 elimination_costs_in_insn (insn);
1674 if (num_eliminable)
1675 update_eliminable_offsets ();
1679 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1681 if (reg_equiv_invariant (i))
1683 if (reg_equiv_init (i))
1685 int cost = reg_equiv_init_cost[i];
1686 if (dump_file)
1687 fprintf (dump_file,
1688 "Reg %d has equivalence, initial gains %d\n", i, cost);
1689 if (cost != 0)
1690 ira_adjust_equiv_reg_cost (i, cost);
1692 else
1694 if (dump_file)
1695 fprintf (dump_file,
1696 "Reg %d had equivalence, but can't be eliminated\n",
1698 ira_adjust_equiv_reg_cost (i, 0);
1703 free (reg_equiv_init_cost);
1704 free (offsets_known_at);
1705 free (offsets_at);
1706 offsets_at = NULL;
1707 offsets_known_at = NULL;
1710 /* Comparison function for qsort to decide which of two reloads
1711 should be handled first. *P1 and *P2 are the reload numbers. */
1713 static int
1714 reload_reg_class_lower (const void *r1p, const void *r2p)
1716 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1717 int t;
1719 /* Consider required reloads before optional ones. */
1720 t = rld[r1].optional - rld[r2].optional;
1721 if (t != 0)
1722 return t;
1724 /* Count all solitary classes before non-solitary ones. */
1725 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1726 - (reg_class_size[(int) rld[r1].rclass] == 1));
1727 if (t != 0)
1728 return t;
1730 /* Aside from solitaires, consider all multi-reg groups first. */
1731 t = rld[r2].nregs - rld[r1].nregs;
1732 if (t != 0)
1733 return t;
1735 /* Consider reloads in order of increasing reg-class number. */
1736 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1737 if (t != 0)
1738 return t;
1740 /* If reloads are equally urgent, sort by reload number,
1741 so that the results of qsort leave nothing to chance. */
1742 return r1 - r2;
1745 /* The cost of spilling each hard reg. */
1746 static int spill_cost[FIRST_PSEUDO_REGISTER];
1748 /* When spilling multiple hard registers, we use SPILL_COST for the first
1749 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1750 only the first hard reg for a multi-reg pseudo. */
1751 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1753 /* Map of hard regno to pseudo regno currently occupying the hard
1754 reg. */
1755 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1757 /* Update the spill cost arrays, considering that pseudo REG is live. */
1759 static void
1760 count_pseudo (int reg)
1762 int freq = REG_FREQ (reg);
1763 int r = reg_renumber[reg];
1764 int nregs;
1766 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1767 if (ira_conflicts_p && r < 0)
1768 return;
1770 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1771 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1772 return;
1774 SET_REGNO_REG_SET (&pseudos_counted, reg);
1776 gcc_assert (r >= 0);
1778 spill_add_cost[r] += freq;
1779 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1780 while (nregs-- > 0)
1782 hard_regno_to_pseudo_regno[r + nregs] = reg;
1783 spill_cost[r + nregs] += freq;
1787 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1788 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1790 static void
1791 order_regs_for_reload (struct insn_chain *chain)
1793 unsigned i;
1794 HARD_REG_SET used_by_pseudos;
1795 HARD_REG_SET used_by_pseudos2;
1796 reg_set_iterator rsi;
1798 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1800 memset (spill_cost, 0, sizeof spill_cost);
1801 memset (spill_add_cost, 0, sizeof spill_add_cost);
1802 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1803 hard_regno_to_pseudo_regno[i] = -1;
1805 /* Count number of uses of each hard reg by pseudo regs allocated to it
1806 and then order them by decreasing use. First exclude hard registers
1807 that are live in or across this insn. */
1809 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1810 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1811 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1812 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1814 /* Now find out which pseudos are allocated to it, and update
1815 hard_reg_n_uses. */
1816 CLEAR_REG_SET (&pseudos_counted);
1818 EXECUTE_IF_SET_IN_REG_SET
1819 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1821 count_pseudo (i);
1823 EXECUTE_IF_SET_IN_REG_SET
1824 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1826 count_pseudo (i);
1828 CLEAR_REG_SET (&pseudos_counted);
1831 /* Vector of reload-numbers showing the order in which the reloads should
1832 be processed. */
1833 static short reload_order[MAX_RELOADS];
1835 /* This is used to keep track of the spill regs used in one insn. */
1836 static HARD_REG_SET used_spill_regs_local;
1838 /* We decided to spill hard register SPILLED, which has a size of
1839 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1840 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1841 update SPILL_COST/SPILL_ADD_COST. */
1843 static void
1844 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1846 int freq = REG_FREQ (reg);
1847 int r = reg_renumber[reg];
1848 int nregs;
1850 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1851 if (ira_conflicts_p && r < 0)
1852 return;
1854 gcc_assert (r >= 0);
1856 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1858 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1859 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1860 return;
1862 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1864 spill_add_cost[r] -= freq;
1865 while (nregs-- > 0)
1867 hard_regno_to_pseudo_regno[r + nregs] = -1;
1868 spill_cost[r + nregs] -= freq;
1872 /* Find reload register to use for reload number ORDER. */
1874 static int
1875 find_reg (struct insn_chain *chain, int order)
1877 int rnum = reload_order[order];
1878 struct reload *rl = rld + rnum;
1879 int best_cost = INT_MAX;
1880 int best_reg = -1;
1881 unsigned int i, j, n;
1882 int k;
1883 HARD_REG_SET not_usable;
1884 HARD_REG_SET used_by_other_reload;
1885 reg_set_iterator rsi;
1886 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1887 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1889 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1890 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1891 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1893 CLEAR_HARD_REG_SET (used_by_other_reload);
1894 for (k = 0; k < order; k++)
1896 int other = reload_order[k];
1898 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1899 for (j = 0; j < rld[other].nregs; j++)
1900 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1903 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1905 #ifdef REG_ALLOC_ORDER
1906 unsigned int regno = reg_alloc_order[i];
1907 #else
1908 unsigned int regno = i;
1909 #endif
1911 if (! TEST_HARD_REG_BIT (not_usable, regno)
1912 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1913 && HARD_REGNO_MODE_OK (regno, rl->mode))
1915 int this_cost = spill_cost[regno];
1916 int ok = 1;
1917 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1919 for (j = 1; j < this_nregs; j++)
1921 this_cost += spill_add_cost[regno + j];
1922 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1923 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1924 ok = 0;
1926 if (! ok)
1927 continue;
1929 if (ira_conflicts_p)
1931 /* Ask IRA to find a better pseudo-register for
1932 spilling. */
1933 for (n = j = 0; j < this_nregs; j++)
1935 int r = hard_regno_to_pseudo_regno[regno + j];
1937 if (r < 0)
1938 continue;
1939 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1940 regno_pseudo_regs[n++] = r;
1942 regno_pseudo_regs[n++] = -1;
1943 if (best_reg < 0
1944 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1945 best_regno_pseudo_regs,
1946 rl->in, rl->out,
1947 chain->insn))
1949 best_reg = regno;
1950 for (j = 0;; j++)
1952 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1953 if (regno_pseudo_regs[j] < 0)
1954 break;
1957 continue;
1960 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1961 this_cost--;
1962 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1963 this_cost--;
1964 if (this_cost < best_cost
1965 /* Among registers with equal cost, prefer caller-saved ones, or
1966 use REG_ALLOC_ORDER if it is defined. */
1967 || (this_cost == best_cost
1968 #ifdef REG_ALLOC_ORDER
1969 && (inv_reg_alloc_order[regno]
1970 < inv_reg_alloc_order[best_reg])
1971 #else
1972 && call_used_regs[regno]
1973 && ! call_used_regs[best_reg]
1974 #endif
1977 best_reg = regno;
1978 best_cost = this_cost;
1982 if (best_reg == -1)
1983 return 0;
1985 if (dump_file)
1986 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1988 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1989 rl->regno = best_reg;
1991 EXECUTE_IF_SET_IN_REG_SET
1992 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1994 count_spilled_pseudo (best_reg, rl->nregs, j);
1997 EXECUTE_IF_SET_IN_REG_SET
1998 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
2000 count_spilled_pseudo (best_reg, rl->nregs, j);
2003 for (i = 0; i < rl->nregs; i++)
2005 gcc_assert (spill_cost[best_reg + i] == 0);
2006 gcc_assert (spill_add_cost[best_reg + i] == 0);
2007 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
2008 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
2010 return 1;
2013 /* Find more reload regs to satisfy the remaining need of an insn, which
2014 is given by CHAIN.
2015 Do it by ascending class number, since otherwise a reg
2016 might be spilled for a big class and might fail to count
2017 for a smaller class even though it belongs to that class. */
2019 static void
2020 find_reload_regs (struct insn_chain *chain)
2022 int i;
2024 /* In order to be certain of getting the registers we need,
2025 we must sort the reloads into order of increasing register class.
2026 Then our grabbing of reload registers will parallel the process
2027 that provided the reload registers. */
2028 for (i = 0; i < chain->n_reloads; i++)
2030 /* Show whether this reload already has a hard reg. */
2031 if (chain->rld[i].reg_rtx)
2033 int regno = REGNO (chain->rld[i].reg_rtx);
2034 chain->rld[i].regno = regno;
2035 chain->rld[i].nregs
2036 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2038 else
2039 chain->rld[i].regno = -1;
2040 reload_order[i] = i;
2043 n_reloads = chain->n_reloads;
2044 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2046 CLEAR_HARD_REG_SET (used_spill_regs_local);
2048 if (dump_file)
2049 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2051 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2053 /* Compute the order of preference for hard registers to spill. */
2055 order_regs_for_reload (chain);
2057 for (i = 0; i < n_reloads; i++)
2059 int r = reload_order[i];
2061 /* Ignore reloads that got marked inoperative. */
2062 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2063 && ! rld[r].optional
2064 && rld[r].regno == -1)
2065 if (! find_reg (chain, i))
2067 if (dump_file)
2068 fprintf (dump_file, "reload failure for reload %d\n", r);
2069 spill_failure (chain->insn, rld[r].rclass);
2070 failure = 1;
2071 return;
2075 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2076 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2078 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2081 static void
2082 select_reload_regs (void)
2084 struct insn_chain *chain;
2086 /* Try to satisfy the needs for each insn. */
2087 for (chain = insns_need_reload; chain != 0;
2088 chain = chain->next_need_reload)
2089 find_reload_regs (chain);
2092 /* Delete all insns that were inserted by emit_caller_save_insns during
2093 this iteration. */
2094 static void
2095 delete_caller_save_insns (void)
2097 struct insn_chain *c = reload_insn_chain;
2099 while (c != 0)
2101 while (c != 0 && c->is_caller_save_insn)
2103 struct insn_chain *next = c->next;
2104 rtx_insn *insn = c->insn;
2106 if (c == reload_insn_chain)
2107 reload_insn_chain = next;
2108 delete_insn (insn);
2110 if (next)
2111 next->prev = c->prev;
2112 if (c->prev)
2113 c->prev->next = next;
2114 c->next = unused_insn_chains;
2115 unused_insn_chains = c;
2116 c = next;
2118 if (c != 0)
2119 c = c->next;
2123 /* Handle the failure to find a register to spill.
2124 INSN should be one of the insns which needed this particular spill reg. */
2126 static void
2127 spill_failure (rtx_insn *insn, enum reg_class rclass)
2129 if (asm_noperands (PATTERN (insn)) >= 0)
2130 error_for_asm (insn, "can%'t find a register in class %qs while "
2131 "reloading %<asm%>",
2132 reg_class_names[rclass]);
2133 else
2135 error ("unable to find a register to spill in class %qs",
2136 reg_class_names[rclass]);
2138 if (dump_file)
2140 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2141 debug_reload_to_stream (dump_file);
2143 fatal_insn ("this is the insn:", insn);
2147 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2148 data that is dead in INSN. */
2150 static void
2151 delete_dead_insn (rtx_insn *insn)
2153 rtx_insn *prev = prev_active_insn (insn);
2154 rtx prev_dest;
2156 /* If the previous insn sets a register that dies in our insn make
2157 a note that we want to run DCE immediately after reload.
2159 We used to delete the previous insn & recurse, but that's wrong for
2160 block local equivalences. Instead of trying to figure out the exact
2161 circumstances where we can delete the potentially dead insns, just
2162 let DCE do the job. */
2163 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2164 && GET_CODE (PATTERN (prev)) == SET
2165 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2166 && reg_mentioned_p (prev_dest, PATTERN (insn))
2167 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2168 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2169 need_dce = 1;
2171 SET_INSN_DELETED (insn);
2174 /* Modify the home of pseudo-reg I.
2175 The new home is present in reg_renumber[I].
2177 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2178 or it may be -1, meaning there is none or it is not relevant.
2179 This is used so that all pseudos spilled from a given hard reg
2180 can share one stack slot. */
2182 static void
2183 alter_reg (int i, int from_reg, bool dont_share_p)
2185 /* When outputting an inline function, this can happen
2186 for a reg that isn't actually used. */
2187 if (regno_reg_rtx[i] == 0)
2188 return;
2190 /* If the reg got changed to a MEM at rtl-generation time,
2191 ignore it. */
2192 if (!REG_P (regno_reg_rtx[i]))
2193 return;
2195 /* Modify the reg-rtx to contain the new hard reg
2196 number or else to contain its pseudo reg number. */
2197 SET_REGNO (regno_reg_rtx[i],
2198 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2200 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2201 allocate a stack slot for it. */
2203 if (reg_renumber[i] < 0
2204 && REG_N_REFS (i) > 0
2205 && reg_equiv_constant (i) == 0
2206 && (reg_equiv_invariant (i) == 0
2207 || reg_equiv_init (i) == 0)
2208 && reg_equiv_memory_loc (i) == 0)
2210 rtx x = NULL_RTX;
2211 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2212 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2213 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2214 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2215 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2216 int adjust = 0;
2218 something_was_spilled = true;
2220 if (ira_conflicts_p)
2222 /* Mark the spill for IRA. */
2223 SET_REGNO_REG_SET (&spilled_pseudos, i);
2224 if (!dont_share_p)
2225 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2228 if (x)
2231 /* Each pseudo reg has an inherent size which comes from its own mode,
2232 and a total size which provides room for paradoxical subregs
2233 which refer to the pseudo reg in wider modes.
2235 We can use a slot already allocated if it provides both
2236 enough inherent space and enough total space.
2237 Otherwise, we allocate a new slot, making sure that it has no less
2238 inherent space, and no less total space, then the previous slot. */
2239 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2241 rtx stack_slot;
2243 /* No known place to spill from => no slot to reuse. */
2244 x = assign_stack_local (mode, total_size,
2245 min_align > inherent_align
2246 || total_size > inherent_size ? -1 : 0);
2248 stack_slot = x;
2250 /* Cancel the big-endian correction done in assign_stack_local.
2251 Get the address of the beginning of the slot. This is so we
2252 can do a big-endian correction unconditionally below. */
2253 if (BYTES_BIG_ENDIAN)
2255 adjust = inherent_size - total_size;
2256 if (adjust)
2257 stack_slot
2258 = adjust_address_nv (x, mode_for_size (total_size
2259 * BITS_PER_UNIT,
2260 MODE_INT, 1),
2261 adjust);
2264 if (! dont_share_p && ira_conflicts_p)
2265 /* Inform IRA about allocation a new stack slot. */
2266 ira_mark_new_stack_slot (stack_slot, i, total_size);
2269 /* Reuse a stack slot if possible. */
2270 else if (spill_stack_slot[from_reg] != 0
2271 && spill_stack_slot_width[from_reg] >= total_size
2272 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2273 >= inherent_size)
2274 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2275 x = spill_stack_slot[from_reg];
2277 /* Allocate a bigger slot. */
2278 else
2280 /* Compute maximum size needed, both for inherent size
2281 and for total size. */
2282 rtx stack_slot;
2284 if (spill_stack_slot[from_reg])
2286 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2287 > inherent_size)
2288 mode = GET_MODE (spill_stack_slot[from_reg]);
2289 if (spill_stack_slot_width[from_reg] > total_size)
2290 total_size = spill_stack_slot_width[from_reg];
2291 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2292 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2295 /* Make a slot with that size. */
2296 x = assign_stack_local (mode, total_size,
2297 min_align > inherent_align
2298 || total_size > inherent_size ? -1 : 0);
2299 stack_slot = x;
2301 /* Cancel the big-endian correction done in assign_stack_local.
2302 Get the address of the beginning of the slot. This is so we
2303 can do a big-endian correction unconditionally below. */
2304 if (BYTES_BIG_ENDIAN)
2306 adjust = GET_MODE_SIZE (mode) - total_size;
2307 if (adjust)
2308 stack_slot
2309 = adjust_address_nv (x, mode_for_size (total_size
2310 * BITS_PER_UNIT,
2311 MODE_INT, 1),
2312 adjust);
2315 spill_stack_slot[from_reg] = stack_slot;
2316 spill_stack_slot_width[from_reg] = total_size;
2319 /* On a big endian machine, the "address" of the slot
2320 is the address of the low part that fits its inherent mode. */
2321 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2322 adjust += (total_size - inherent_size);
2324 /* If we have any adjustment to make, or if the stack slot is the
2325 wrong mode, make a new stack slot. */
2326 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2328 /* Set all of the memory attributes as appropriate for a spill. */
2329 set_mem_attrs_for_spill (x);
2331 /* Save the stack slot for later. */
2332 reg_equiv_memory_loc (i) = x;
2336 /* Mark the slots in regs_ever_live for the hard regs used by
2337 pseudo-reg number REGNO, accessed in MODE. */
2339 static void
2340 mark_home_live_1 (int regno, machine_mode mode)
2342 int i, lim;
2344 i = reg_renumber[regno];
2345 if (i < 0)
2346 return;
2347 lim = end_hard_regno (mode, i);
2348 while (i < lim)
2349 df_set_regs_ever_live (i++, true);
2352 /* Mark the slots in regs_ever_live for the hard regs
2353 used by pseudo-reg number REGNO. */
2355 void
2356 mark_home_live (int regno)
2358 if (reg_renumber[regno] >= 0)
2359 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2362 /* This function handles the tracking of elimination offsets around branches.
2364 X is a piece of RTL being scanned.
2366 INSN is the insn that it came from, if any.
2368 INITIAL_P is nonzero if we are to set the offset to be the initial
2369 offset and zero if we are setting the offset of the label to be the
2370 current offset. */
2372 static void
2373 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2375 enum rtx_code code = GET_CODE (x);
2376 rtx tem;
2377 unsigned int i;
2378 struct elim_table *p;
2380 switch (code)
2382 case LABEL_REF:
2383 if (LABEL_REF_NONLOCAL_P (x))
2384 return;
2386 x = LABEL_REF_LABEL (x);
2388 /* ... fall through ... */
2390 case CODE_LABEL:
2391 /* If we know nothing about this label, set the desired offsets. Note
2392 that this sets the offset at a label to be the offset before a label
2393 if we don't know anything about the label. This is not correct for
2394 the label after a BARRIER, but is the best guess we can make. If
2395 we guessed wrong, we will suppress an elimination that might have
2396 been possible had we been able to guess correctly. */
2398 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2400 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2401 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2402 = (initial_p ? reg_eliminate[i].initial_offset
2403 : reg_eliminate[i].offset);
2404 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2407 /* Otherwise, if this is the definition of a label and it is
2408 preceded by a BARRIER, set our offsets to the known offset of
2409 that label. */
2411 else if (x == insn
2412 && (tem = prev_nonnote_insn (insn)) != 0
2413 && BARRIER_P (tem))
2414 set_offsets_for_label (insn);
2415 else
2416 /* If neither of the above cases is true, compare each offset
2417 with those previously recorded and suppress any eliminations
2418 where the offsets disagree. */
2420 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2421 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2422 != (initial_p ? reg_eliminate[i].initial_offset
2423 : reg_eliminate[i].offset))
2424 reg_eliminate[i].can_eliminate = 0;
2426 return;
2428 case JUMP_TABLE_DATA:
2429 set_label_offsets (PATTERN (insn), insn, initial_p);
2430 return;
2432 case JUMP_INSN:
2433 set_label_offsets (PATTERN (insn), insn, initial_p);
2435 /* ... fall through ... */
2437 case INSN:
2438 case CALL_INSN:
2439 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2440 to indirectly and hence must have all eliminations at their
2441 initial offsets. */
2442 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2443 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2444 set_label_offsets (XEXP (tem, 0), insn, 1);
2445 return;
2447 case PARALLEL:
2448 case ADDR_VEC:
2449 case ADDR_DIFF_VEC:
2450 /* Each of the labels in the parallel or address vector must be
2451 at their initial offsets. We want the first field for PARALLEL
2452 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2454 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2455 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2456 insn, initial_p);
2457 return;
2459 case SET:
2460 /* We only care about setting PC. If the source is not RETURN,
2461 IF_THEN_ELSE, or a label, disable any eliminations not at
2462 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2463 isn't one of those possibilities. For branches to a label,
2464 call ourselves recursively.
2466 Note that this can disable elimination unnecessarily when we have
2467 a non-local goto since it will look like a non-constant jump to
2468 someplace in the current function. This isn't a significant
2469 problem since such jumps will normally be when all elimination
2470 pairs are back to their initial offsets. */
2472 if (SET_DEST (x) != pc_rtx)
2473 return;
2475 switch (GET_CODE (SET_SRC (x)))
2477 case PC:
2478 case RETURN:
2479 return;
2481 case LABEL_REF:
2482 set_label_offsets (SET_SRC (x), insn, initial_p);
2483 return;
2485 case IF_THEN_ELSE:
2486 tem = XEXP (SET_SRC (x), 1);
2487 if (GET_CODE (tem) == LABEL_REF)
2488 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2489 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2490 break;
2492 tem = XEXP (SET_SRC (x), 2);
2493 if (GET_CODE (tem) == LABEL_REF)
2494 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2495 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2496 break;
2497 return;
2499 default:
2500 break;
2503 /* If we reach here, all eliminations must be at their initial
2504 offset because we are doing a jump to a variable address. */
2505 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2506 if (p->offset != p->initial_offset)
2507 p->can_eliminate = 0;
2508 break;
2510 default:
2511 break;
2515 /* This function examines every reg that occurs in X and adjusts the
2516 costs for its elimination which are gathered by IRA. INSN is the
2517 insn in which X occurs. We do not recurse into MEM expressions. */
2519 static void
2520 note_reg_elim_costly (const_rtx x, rtx insn)
2522 subrtx_iterator::array_type array;
2523 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2525 const_rtx x = *iter;
2526 if (MEM_P (x))
2527 iter.skip_subrtxes ();
2528 else if (REG_P (x)
2529 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2530 && reg_equiv_init (REGNO (x))
2531 && reg_equiv_invariant (REGNO (x)))
2533 rtx t = reg_equiv_invariant (REGNO (x));
2534 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2535 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2536 int freq = REG_FREQ_FROM_BB (elim_bb);
2538 if (cost != 0)
2539 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2544 /* Scan X and replace any eliminable registers (such as fp) with a
2545 replacement (such as sp), plus an offset.
2547 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2548 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2549 MEM, we are allowed to replace a sum of a register and the constant zero
2550 with the register, which we cannot do outside a MEM. In addition, we need
2551 to record the fact that a register is referenced outside a MEM.
2553 If INSN is an insn, it is the insn containing X. If we replace a REG
2554 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2555 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2556 the REG is being modified.
2558 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2559 That's used when we eliminate in expressions stored in notes.
2560 This means, do not set ref_outside_mem even if the reference
2561 is outside of MEMs.
2563 If FOR_COSTS is true, we are being called before reload in order to
2564 estimate the costs of keeping registers with an equivalence unallocated.
2566 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2567 replacements done assuming all offsets are at their initial values. If
2568 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2569 encounter, return the actual location so that find_reloads will do
2570 the proper thing. */
2572 static rtx
2573 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2574 bool may_use_invariant, bool for_costs)
2576 enum rtx_code code = GET_CODE (x);
2577 struct elim_table *ep;
2578 int regno;
2579 rtx new_rtx;
2580 int i, j;
2581 const char *fmt;
2582 int copied = 0;
2584 if (! current_function_decl)
2585 return x;
2587 switch (code)
2589 CASE_CONST_ANY:
2590 case CONST:
2591 case SYMBOL_REF:
2592 case CODE_LABEL:
2593 case PC:
2594 case CC0:
2595 case ASM_INPUT:
2596 case ADDR_VEC:
2597 case ADDR_DIFF_VEC:
2598 case RETURN:
2599 return x;
2601 case REG:
2602 regno = REGNO (x);
2604 /* First handle the case where we encounter a bare register that
2605 is eliminable. Replace it with a PLUS. */
2606 if (regno < FIRST_PSEUDO_REGISTER)
2608 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2609 ep++)
2610 if (ep->from_rtx == x && ep->can_eliminate)
2611 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2614 else if (reg_renumber && reg_renumber[regno] < 0
2615 && reg_equivs
2616 && reg_equiv_invariant (regno))
2618 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2619 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2620 mem_mode, insn, true, for_costs);
2621 /* There exists at least one use of REGNO that cannot be
2622 eliminated. Prevent the defining insn from being deleted. */
2623 reg_equiv_init (regno) = NULL_RTX;
2624 if (!for_costs)
2625 alter_reg (regno, -1, true);
2627 return x;
2629 /* You might think handling MINUS in a manner similar to PLUS is a
2630 good idea. It is not. It has been tried multiple times and every
2631 time the change has had to have been reverted.
2633 Other parts of reload know a PLUS is special (gen_reload for example)
2634 and require special code to handle code a reloaded PLUS operand.
2636 Also consider backends where the flags register is clobbered by a
2637 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2638 lea instruction comes to mind). If we try to reload a MINUS, we
2639 may kill the flags register that was holding a useful value.
2641 So, please before trying to handle MINUS, consider reload as a
2642 whole instead of this little section as well as the backend issues. */
2643 case PLUS:
2644 /* If this is the sum of an eliminable register and a constant, rework
2645 the sum. */
2646 if (REG_P (XEXP (x, 0))
2647 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2648 && CONSTANT_P (XEXP (x, 1)))
2650 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2651 ep++)
2652 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2654 /* The only time we want to replace a PLUS with a REG (this
2655 occurs when the constant operand of the PLUS is the negative
2656 of the offset) is when we are inside a MEM. We won't want
2657 to do so at other times because that would change the
2658 structure of the insn in a way that reload can't handle.
2659 We special-case the commonest situation in
2660 eliminate_regs_in_insn, so just replace a PLUS with a
2661 PLUS here, unless inside a MEM. */
2662 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2663 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2664 return ep->to_rtx;
2665 else
2666 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2667 plus_constant (Pmode, XEXP (x, 1),
2668 ep->previous_offset));
2671 /* If the register is not eliminable, we are done since the other
2672 operand is a constant. */
2673 return x;
2676 /* If this is part of an address, we want to bring any constant to the
2677 outermost PLUS. We will do this by doing register replacement in
2678 our operands and seeing if a constant shows up in one of them.
2680 Note that there is no risk of modifying the structure of the insn,
2681 since we only get called for its operands, thus we are either
2682 modifying the address inside a MEM, or something like an address
2683 operand of a load-address insn. */
2686 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2687 for_costs);
2688 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2689 for_costs);
2691 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2693 /* If one side is a PLUS and the other side is a pseudo that
2694 didn't get a hard register but has a reg_equiv_constant,
2695 we must replace the constant here since it may no longer
2696 be in the position of any operand. */
2697 if (GET_CODE (new0) == PLUS && REG_P (new1)
2698 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2699 && reg_renumber[REGNO (new1)] < 0
2700 && reg_equivs
2701 && reg_equiv_constant (REGNO (new1)) != 0)
2702 new1 = reg_equiv_constant (REGNO (new1));
2703 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2704 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2705 && reg_renumber[REGNO (new0)] < 0
2706 && reg_equiv_constant (REGNO (new0)) != 0)
2707 new0 = reg_equiv_constant (REGNO (new0));
2709 new_rtx = form_sum (GET_MODE (x), new0, new1);
2711 /* As above, if we are not inside a MEM we do not want to
2712 turn a PLUS into something else. We might try to do so here
2713 for an addition of 0 if we aren't optimizing. */
2714 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2715 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2716 else
2717 return new_rtx;
2720 return x;
2722 case MULT:
2723 /* If this is the product of an eliminable register and a
2724 constant, apply the distribute law and move the constant out
2725 so that we have (plus (mult ..) ..). This is needed in order
2726 to keep load-address insns valid. This case is pathological.
2727 We ignore the possibility of overflow here. */
2728 if (REG_P (XEXP (x, 0))
2729 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2730 && CONST_INT_P (XEXP (x, 1)))
2731 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2732 ep++)
2733 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2735 if (! mem_mode
2736 /* Refs inside notes or in DEBUG_INSNs don't count for
2737 this purpose. */
2738 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2739 || GET_CODE (insn) == INSN_LIST
2740 || DEBUG_INSN_P (insn))))
2741 ep->ref_outside_mem = 1;
2743 return
2744 plus_constant (Pmode,
2745 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2746 ep->previous_offset * INTVAL (XEXP (x, 1)));
2749 /* ... fall through ... */
2751 case CALL:
2752 case COMPARE:
2753 /* See comments before PLUS about handling MINUS. */
2754 case MINUS:
2755 case DIV: case UDIV:
2756 case MOD: case UMOD:
2757 case AND: case IOR: case XOR:
2758 case ROTATERT: case ROTATE:
2759 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2760 case NE: case EQ:
2761 case GE: case GT: case GEU: case GTU:
2762 case LE: case LT: case LEU: case LTU:
2764 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2765 for_costs);
2766 rtx new1 = XEXP (x, 1)
2767 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2768 for_costs) : 0;
2770 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2771 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2773 return x;
2775 case EXPR_LIST:
2776 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2777 if (XEXP (x, 0))
2779 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2780 for_costs);
2781 if (new_rtx != XEXP (x, 0))
2783 /* If this is a REG_DEAD note, it is not valid anymore.
2784 Using the eliminated version could result in creating a
2785 REG_DEAD note for the stack or frame pointer. */
2786 if (REG_NOTE_KIND (x) == REG_DEAD)
2787 return (XEXP (x, 1)
2788 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2789 for_costs)
2790 : NULL_RTX);
2792 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2796 /* ... fall through ... */
2798 case INSN_LIST:
2799 case INT_LIST:
2800 /* Now do eliminations in the rest of the chain. If this was
2801 an EXPR_LIST, this might result in allocating more memory than is
2802 strictly needed, but it simplifies the code. */
2803 if (XEXP (x, 1))
2805 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2806 for_costs);
2807 if (new_rtx != XEXP (x, 1))
2808 return
2809 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2811 return x;
2813 case PRE_INC:
2814 case POST_INC:
2815 case PRE_DEC:
2816 case POST_DEC:
2817 /* We do not support elimination of a register that is modified.
2818 elimination_effects has already make sure that this does not
2819 happen. */
2820 return x;
2822 case PRE_MODIFY:
2823 case POST_MODIFY:
2824 /* We do not support elimination of a register that is modified.
2825 elimination_effects has already make sure that this does not
2826 happen. The only remaining case we need to consider here is
2827 that the increment value may be an eliminable register. */
2828 if (GET_CODE (XEXP (x, 1)) == PLUS
2829 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2831 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2832 insn, true, for_costs);
2834 if (new_rtx != XEXP (XEXP (x, 1), 1))
2835 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2836 gen_rtx_PLUS (GET_MODE (x),
2837 XEXP (x, 0), new_rtx));
2839 return x;
2841 case STRICT_LOW_PART:
2842 case NEG: case NOT:
2843 case SIGN_EXTEND: case ZERO_EXTEND:
2844 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2845 case FLOAT: case FIX:
2846 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2847 case ABS:
2848 case SQRT:
2849 case FFS:
2850 case CLZ:
2851 case CTZ:
2852 case POPCOUNT:
2853 case PARITY:
2854 case BSWAP:
2855 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2856 for_costs);
2857 if (new_rtx != XEXP (x, 0))
2858 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2859 return x;
2861 case SUBREG:
2862 /* Similar to above processing, but preserve SUBREG_BYTE.
2863 Convert (subreg (mem)) to (mem) if not paradoxical.
2864 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2865 pseudo didn't get a hard reg, we must replace this with the
2866 eliminated version of the memory location because push_reload
2867 may do the replacement in certain circumstances. */
2868 if (REG_P (SUBREG_REG (x))
2869 && !paradoxical_subreg_p (x)
2870 && reg_equivs
2871 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2873 new_rtx = SUBREG_REG (x);
2875 else
2876 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2878 if (new_rtx != SUBREG_REG (x))
2880 int x_size = GET_MODE_SIZE (GET_MODE (x));
2881 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2883 if (MEM_P (new_rtx)
2884 && ((x_size < new_size
2885 #ifdef WORD_REGISTER_OPERATIONS
2886 /* On these machines, combine can create rtl of the form
2887 (set (subreg:m1 (reg:m2 R) 0) ...)
2888 where m1 < m2, and expects something interesting to
2889 happen to the entire word. Moreover, it will use the
2890 (reg:m2 R) later, expecting all bits to be preserved.
2891 So if the number of words is the same, preserve the
2892 subreg so that push_reload can see it. */
2893 && ! ((x_size - 1) / UNITS_PER_WORD
2894 == (new_size -1 ) / UNITS_PER_WORD)
2895 #endif
2897 || x_size == new_size)
2899 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2900 else
2901 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2904 return x;
2906 case MEM:
2907 /* Our only special processing is to pass the mode of the MEM to our
2908 recursive call and copy the flags. While we are here, handle this
2909 case more efficiently. */
2911 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2912 for_costs);
2913 if (for_costs
2914 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2915 && !memory_address_p (GET_MODE (x), new_rtx))
2916 note_reg_elim_costly (XEXP (x, 0), insn);
2918 return replace_equiv_address_nv (x, new_rtx);
2920 case USE:
2921 /* Handle insn_list USE that a call to a pure function may generate. */
2922 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2923 for_costs);
2924 if (new_rtx != XEXP (x, 0))
2925 return gen_rtx_USE (GET_MODE (x), new_rtx);
2926 return x;
2928 case CLOBBER:
2929 case ASM_OPERANDS:
2930 gcc_assert (insn && DEBUG_INSN_P (insn));
2931 break;
2933 case SET:
2934 gcc_unreachable ();
2936 default:
2937 break;
2940 /* Process each of our operands recursively. If any have changed, make a
2941 copy of the rtx. */
2942 fmt = GET_RTX_FORMAT (code);
2943 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2945 if (*fmt == 'e')
2947 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2948 for_costs);
2949 if (new_rtx != XEXP (x, i) && ! copied)
2951 x = shallow_copy_rtx (x);
2952 copied = 1;
2954 XEXP (x, i) = new_rtx;
2956 else if (*fmt == 'E')
2958 int copied_vec = 0;
2959 for (j = 0; j < XVECLEN (x, i); j++)
2961 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2962 for_costs);
2963 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2965 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2966 XVEC (x, i)->elem);
2967 if (! copied)
2969 x = shallow_copy_rtx (x);
2970 copied = 1;
2972 XVEC (x, i) = new_v;
2973 copied_vec = 1;
2975 XVECEXP (x, i, j) = new_rtx;
2980 return x;
2984 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2986 if (reg_eliminate == NULL)
2988 gcc_assert (targetm.no_register_allocation);
2989 return x;
2991 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2994 /* Scan rtx X for modifications of elimination target registers. Update
2995 the table of eliminables to reflect the changed state. MEM_MODE is
2996 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2998 static void
2999 elimination_effects (rtx x, machine_mode mem_mode)
3001 enum rtx_code code = GET_CODE (x);
3002 struct elim_table *ep;
3003 int regno;
3004 int i, j;
3005 const char *fmt;
3007 switch (code)
3009 CASE_CONST_ANY:
3010 case CONST:
3011 case SYMBOL_REF:
3012 case CODE_LABEL:
3013 case PC:
3014 case CC0:
3015 case ASM_INPUT:
3016 case ADDR_VEC:
3017 case ADDR_DIFF_VEC:
3018 case RETURN:
3019 return;
3021 case REG:
3022 regno = REGNO (x);
3024 /* First handle the case where we encounter a bare register that
3025 is eliminable. Replace it with a PLUS. */
3026 if (regno < FIRST_PSEUDO_REGISTER)
3028 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3029 ep++)
3030 if (ep->from_rtx == x && ep->can_eliminate)
3032 if (! mem_mode)
3033 ep->ref_outside_mem = 1;
3034 return;
3038 else if (reg_renumber[regno] < 0
3039 && reg_equivs
3040 && reg_equiv_constant (regno)
3041 && ! function_invariant_p (reg_equiv_constant (regno)))
3042 elimination_effects (reg_equiv_constant (regno), mem_mode);
3043 return;
3045 case PRE_INC:
3046 case POST_INC:
3047 case PRE_DEC:
3048 case POST_DEC:
3049 case POST_MODIFY:
3050 case PRE_MODIFY:
3051 /* If we modify the source of an elimination rule, disable it. */
3052 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3053 if (ep->from_rtx == XEXP (x, 0))
3054 ep->can_eliminate = 0;
3056 /* If we modify the target of an elimination rule by adding a constant,
3057 update its offset. If we modify the target in any other way, we'll
3058 have to disable the rule as well. */
3059 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3060 if (ep->to_rtx == XEXP (x, 0))
3062 int size = GET_MODE_SIZE (mem_mode);
3064 /* If more bytes than MEM_MODE are pushed, account for them. */
3065 #ifdef PUSH_ROUNDING
3066 if (ep->to_rtx == stack_pointer_rtx)
3067 size = PUSH_ROUNDING (size);
3068 #endif
3069 if (code == PRE_DEC || code == POST_DEC)
3070 ep->offset += size;
3071 else if (code == PRE_INC || code == POST_INC)
3072 ep->offset -= size;
3073 else if (code == PRE_MODIFY || code == POST_MODIFY)
3075 if (GET_CODE (XEXP (x, 1)) == PLUS
3076 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3077 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3078 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3079 else
3080 ep->can_eliminate = 0;
3084 /* These two aren't unary operators. */
3085 if (code == POST_MODIFY || code == PRE_MODIFY)
3086 break;
3088 /* Fall through to generic unary operation case. */
3089 case STRICT_LOW_PART:
3090 case NEG: case NOT:
3091 case SIGN_EXTEND: case ZERO_EXTEND:
3092 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3093 case FLOAT: case FIX:
3094 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3095 case ABS:
3096 case SQRT:
3097 case FFS:
3098 case CLZ:
3099 case CTZ:
3100 case POPCOUNT:
3101 case PARITY:
3102 case BSWAP:
3103 elimination_effects (XEXP (x, 0), mem_mode);
3104 return;
3106 case SUBREG:
3107 if (REG_P (SUBREG_REG (x))
3108 && (GET_MODE_SIZE (GET_MODE (x))
3109 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3110 && reg_equivs
3111 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3112 return;
3114 elimination_effects (SUBREG_REG (x), mem_mode);
3115 return;
3117 case USE:
3118 /* If using a register that is the source of an eliminate we still
3119 think can be performed, note it cannot be performed since we don't
3120 know how this register is used. */
3121 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3122 if (ep->from_rtx == XEXP (x, 0))
3123 ep->can_eliminate = 0;
3125 elimination_effects (XEXP (x, 0), mem_mode);
3126 return;
3128 case CLOBBER:
3129 /* If clobbering a register that is the replacement register for an
3130 elimination we still think can be performed, note that it cannot
3131 be performed. Otherwise, we need not be concerned about it. */
3132 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3133 if (ep->to_rtx == XEXP (x, 0))
3134 ep->can_eliminate = 0;
3136 elimination_effects (XEXP (x, 0), mem_mode);
3137 return;
3139 case SET:
3140 /* Check for setting a register that we know about. */
3141 if (REG_P (SET_DEST (x)))
3143 /* See if this is setting the replacement register for an
3144 elimination.
3146 If DEST is the hard frame pointer, we do nothing because we
3147 assume that all assignments to the frame pointer are for
3148 non-local gotos and are being done at a time when they are valid
3149 and do not disturb anything else. Some machines want to
3150 eliminate a fake argument pointer (or even a fake frame pointer)
3151 with either the real frame or the stack pointer. Assignments to
3152 the hard frame pointer must not prevent this elimination. */
3154 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3155 ep++)
3156 if (ep->to_rtx == SET_DEST (x)
3157 && SET_DEST (x) != hard_frame_pointer_rtx)
3159 /* If it is being incremented, adjust the offset. Otherwise,
3160 this elimination can't be done. */
3161 rtx src = SET_SRC (x);
3163 if (GET_CODE (src) == PLUS
3164 && XEXP (src, 0) == SET_DEST (x)
3165 && CONST_INT_P (XEXP (src, 1)))
3166 ep->offset -= INTVAL (XEXP (src, 1));
3167 else
3168 ep->can_eliminate = 0;
3172 elimination_effects (SET_DEST (x), VOIDmode);
3173 elimination_effects (SET_SRC (x), VOIDmode);
3174 return;
3176 case MEM:
3177 /* Our only special processing is to pass the mode of the MEM to our
3178 recursive call. */
3179 elimination_effects (XEXP (x, 0), GET_MODE (x));
3180 return;
3182 default:
3183 break;
3186 fmt = GET_RTX_FORMAT (code);
3187 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3189 if (*fmt == 'e')
3190 elimination_effects (XEXP (x, i), mem_mode);
3191 else if (*fmt == 'E')
3192 for (j = 0; j < XVECLEN (x, i); j++)
3193 elimination_effects (XVECEXP (x, i, j), mem_mode);
3197 /* Descend through rtx X and verify that no references to eliminable registers
3198 remain. If any do remain, mark the involved register as not
3199 eliminable. */
3201 static void
3202 check_eliminable_occurrences (rtx x)
3204 const char *fmt;
3205 int i;
3206 enum rtx_code code;
3208 if (x == 0)
3209 return;
3211 code = GET_CODE (x);
3213 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3215 struct elim_table *ep;
3217 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3218 if (ep->from_rtx == x)
3219 ep->can_eliminate = 0;
3220 return;
3223 fmt = GET_RTX_FORMAT (code);
3224 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3226 if (*fmt == 'e')
3227 check_eliminable_occurrences (XEXP (x, i));
3228 else if (*fmt == 'E')
3230 int j;
3231 for (j = 0; j < XVECLEN (x, i); j++)
3232 check_eliminable_occurrences (XVECEXP (x, i, j));
3237 /* Scan INSN and eliminate all eliminable registers in it.
3239 If REPLACE is nonzero, do the replacement destructively. Also
3240 delete the insn as dead it if it is setting an eliminable register.
3242 If REPLACE is zero, do all our allocations in reload_obstack.
3244 If no eliminations were done and this insn doesn't require any elimination
3245 processing (these are not identical conditions: it might be updating sp,
3246 but not referencing fp; this needs to be seen during reload_as_needed so
3247 that the offset between fp and sp can be taken into consideration), zero
3248 is returned. Otherwise, 1 is returned. */
3250 static int
3251 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3253 int icode = recog_memoized (insn);
3254 rtx old_body = PATTERN (insn);
3255 int insn_is_asm = asm_noperands (old_body) >= 0;
3256 rtx old_set = single_set (insn);
3257 rtx new_body;
3258 int val = 0;
3259 int i;
3260 rtx substed_operand[MAX_RECOG_OPERANDS];
3261 rtx orig_operand[MAX_RECOG_OPERANDS];
3262 struct elim_table *ep;
3263 rtx plus_src, plus_cst_src;
3265 if (! insn_is_asm && icode < 0)
3267 gcc_assert (DEBUG_INSN_P (insn)
3268 || GET_CODE (PATTERN (insn)) == USE
3269 || GET_CODE (PATTERN (insn)) == CLOBBER
3270 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3271 if (DEBUG_INSN_P (insn))
3272 INSN_VAR_LOCATION_LOC (insn)
3273 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3274 return 0;
3277 if (old_set != 0 && REG_P (SET_DEST (old_set))
3278 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3280 /* Check for setting an eliminable register. */
3281 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3282 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3284 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3285 /* If this is setting the frame pointer register to the
3286 hardware frame pointer register and this is an elimination
3287 that will be done (tested above), this insn is really
3288 adjusting the frame pointer downward to compensate for
3289 the adjustment done before a nonlocal goto. */
3290 if (ep->from == FRAME_POINTER_REGNUM
3291 && ep->to == HARD_FRAME_POINTER_REGNUM)
3293 rtx base = SET_SRC (old_set);
3294 rtx_insn *base_insn = insn;
3295 HOST_WIDE_INT offset = 0;
3297 while (base != ep->to_rtx)
3299 rtx_insn *prev_insn;
3300 rtx prev_set;
3302 if (GET_CODE (base) == PLUS
3303 && CONST_INT_P (XEXP (base, 1)))
3305 offset += INTVAL (XEXP (base, 1));
3306 base = XEXP (base, 0);
3308 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3309 && (prev_set = single_set (prev_insn)) != 0
3310 && rtx_equal_p (SET_DEST (prev_set), base))
3312 base = SET_SRC (prev_set);
3313 base_insn = prev_insn;
3315 else
3316 break;
3319 if (base == ep->to_rtx)
3321 rtx src = plus_constant (Pmode, ep->to_rtx,
3322 offset - ep->offset);
3324 new_body = old_body;
3325 if (! replace)
3327 new_body = copy_insn (old_body);
3328 if (REG_NOTES (insn))
3329 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3331 PATTERN (insn) = new_body;
3332 old_set = single_set (insn);
3334 /* First see if this insn remains valid when we
3335 make the change. If not, keep the INSN_CODE
3336 the same and let reload fit it up. */
3337 validate_change (insn, &SET_SRC (old_set), src, 1);
3338 validate_change (insn, &SET_DEST (old_set),
3339 ep->to_rtx, 1);
3340 if (! apply_change_group ())
3342 SET_SRC (old_set) = src;
3343 SET_DEST (old_set) = ep->to_rtx;
3346 val = 1;
3347 goto done;
3350 #endif
3352 /* In this case this insn isn't serving a useful purpose. We
3353 will delete it in reload_as_needed once we know that this
3354 elimination is, in fact, being done.
3356 If REPLACE isn't set, we can't delete this insn, but needn't
3357 process it since it won't be used unless something changes. */
3358 if (replace)
3360 delete_dead_insn (insn);
3361 return 1;
3363 val = 1;
3364 goto done;
3368 /* We allow one special case which happens to work on all machines we
3369 currently support: a single set with the source or a REG_EQUAL
3370 note being a PLUS of an eliminable register and a constant. */
3371 plus_src = plus_cst_src = 0;
3372 if (old_set && REG_P (SET_DEST (old_set)))
3374 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3375 plus_src = SET_SRC (old_set);
3376 /* First see if the source is of the form (plus (...) CST). */
3377 if (plus_src
3378 && CONST_INT_P (XEXP (plus_src, 1)))
3379 plus_cst_src = plus_src;
3380 else if (REG_P (SET_SRC (old_set))
3381 || plus_src)
3383 /* Otherwise, see if we have a REG_EQUAL note of the form
3384 (plus (...) CST). */
3385 rtx links;
3386 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3388 if ((REG_NOTE_KIND (links) == REG_EQUAL
3389 || REG_NOTE_KIND (links) == REG_EQUIV)
3390 && GET_CODE (XEXP (links, 0)) == PLUS
3391 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3393 plus_cst_src = XEXP (links, 0);
3394 break;
3399 /* Check that the first operand of the PLUS is a hard reg or
3400 the lowpart subreg of one. */
3401 if (plus_cst_src)
3403 rtx reg = XEXP (plus_cst_src, 0);
3404 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3405 reg = SUBREG_REG (reg);
3407 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3408 plus_cst_src = 0;
3411 if (plus_cst_src)
3413 rtx reg = XEXP (plus_cst_src, 0);
3414 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3416 if (GET_CODE (reg) == SUBREG)
3417 reg = SUBREG_REG (reg);
3419 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3420 if (ep->from_rtx == reg && ep->can_eliminate)
3422 rtx to_rtx = ep->to_rtx;
3423 offset += ep->offset;
3424 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3426 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3427 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3428 to_rtx);
3429 /* If we have a nonzero offset, and the source is already
3430 a simple REG, the following transformation would
3431 increase the cost of the insn by replacing a simple REG
3432 with (plus (reg sp) CST). So try only when we already
3433 had a PLUS before. */
3434 if (offset == 0 || plus_src)
3436 rtx new_src = plus_constant (GET_MODE (to_rtx),
3437 to_rtx, offset);
3439 new_body = old_body;
3440 if (! replace)
3442 new_body = copy_insn (old_body);
3443 if (REG_NOTES (insn))
3444 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3446 PATTERN (insn) = new_body;
3447 old_set = single_set (insn);
3449 /* First see if this insn remains valid when we make the
3450 change. If not, try to replace the whole pattern with
3451 a simple set (this may help if the original insn was a
3452 PARALLEL that was only recognized as single_set due to
3453 REG_UNUSED notes). If this isn't valid either, keep
3454 the INSN_CODE the same and let reload fix it up. */
3455 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3457 rtx new_pat = gen_rtx_SET (VOIDmode,
3458 SET_DEST (old_set), new_src);
3460 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3461 SET_SRC (old_set) = new_src;
3464 else
3465 break;
3467 val = 1;
3468 /* This can't have an effect on elimination offsets, so skip right
3469 to the end. */
3470 goto done;
3474 /* Determine the effects of this insn on elimination offsets. */
3475 elimination_effects (old_body, VOIDmode);
3477 /* Eliminate all eliminable registers occurring in operands that
3478 can be handled by reload. */
3479 extract_insn (insn);
3480 for (i = 0; i < recog_data.n_operands; i++)
3482 orig_operand[i] = recog_data.operand[i];
3483 substed_operand[i] = recog_data.operand[i];
3485 /* For an asm statement, every operand is eliminable. */
3486 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3488 bool is_set_src, in_plus;
3490 /* Check for setting a register that we know about. */
3491 if (recog_data.operand_type[i] != OP_IN
3492 && REG_P (orig_operand[i]))
3494 /* If we are assigning to a register that can be eliminated, it
3495 must be as part of a PARALLEL, since the code above handles
3496 single SETs. We must indicate that we can no longer
3497 eliminate this reg. */
3498 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3499 ep++)
3500 if (ep->from_rtx == orig_operand[i])
3501 ep->can_eliminate = 0;
3504 /* Companion to the above plus substitution, we can allow
3505 invariants as the source of a plain move. */
3506 is_set_src = false;
3507 if (old_set
3508 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3509 is_set_src = true;
3510 in_plus = false;
3511 if (plus_src
3512 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3513 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3514 in_plus = true;
3516 substed_operand[i]
3517 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3518 replace ? insn : NULL_RTX,
3519 is_set_src || in_plus, false);
3520 if (substed_operand[i] != orig_operand[i])
3521 val = 1;
3522 /* Terminate the search in check_eliminable_occurrences at
3523 this point. */
3524 *recog_data.operand_loc[i] = 0;
3526 /* If an output operand changed from a REG to a MEM and INSN is an
3527 insn, write a CLOBBER insn. */
3528 if (recog_data.operand_type[i] != OP_IN
3529 && REG_P (orig_operand[i])
3530 && MEM_P (substed_operand[i])
3531 && replace)
3532 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3536 for (i = 0; i < recog_data.n_dups; i++)
3537 *recog_data.dup_loc[i]
3538 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3540 /* If any eliminable remain, they aren't eliminable anymore. */
3541 check_eliminable_occurrences (old_body);
3543 /* Substitute the operands; the new values are in the substed_operand
3544 array. */
3545 for (i = 0; i < recog_data.n_operands; i++)
3546 *recog_data.operand_loc[i] = substed_operand[i];
3547 for (i = 0; i < recog_data.n_dups; i++)
3548 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3550 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3551 re-recognize the insn. We do this in case we had a simple addition
3552 but now can do this as a load-address. This saves an insn in this
3553 common case.
3554 If re-recognition fails, the old insn code number will still be used,
3555 and some register operands may have changed into PLUS expressions.
3556 These will be handled by find_reloads by loading them into a register
3557 again. */
3559 if (val)
3561 /* If we aren't replacing things permanently and we changed something,
3562 make another copy to ensure that all the RTL is new. Otherwise
3563 things can go wrong if find_reload swaps commutative operands
3564 and one is inside RTL that has been copied while the other is not. */
3565 new_body = old_body;
3566 if (! replace)
3568 new_body = copy_insn (old_body);
3569 if (REG_NOTES (insn))
3570 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3572 PATTERN (insn) = new_body;
3574 /* If we had a move insn but now we don't, rerecognize it. This will
3575 cause spurious re-recognition if the old move had a PARALLEL since
3576 the new one still will, but we can't call single_set without
3577 having put NEW_BODY into the insn and the re-recognition won't
3578 hurt in this rare case. */
3579 /* ??? Why this huge if statement - why don't we just rerecognize the
3580 thing always? */
3581 if (! insn_is_asm
3582 && old_set != 0
3583 && ((REG_P (SET_SRC (old_set))
3584 && (GET_CODE (new_body) != SET
3585 || !REG_P (SET_SRC (new_body))))
3586 /* If this was a load from or store to memory, compare
3587 the MEM in recog_data.operand to the one in the insn.
3588 If they are not equal, then rerecognize the insn. */
3589 || (old_set != 0
3590 && ((MEM_P (SET_SRC (old_set))
3591 && SET_SRC (old_set) != recog_data.operand[1])
3592 || (MEM_P (SET_DEST (old_set))
3593 && SET_DEST (old_set) != recog_data.operand[0])))
3594 /* If this was an add insn before, rerecognize. */
3595 || GET_CODE (SET_SRC (old_set)) == PLUS))
3597 int new_icode = recog (PATTERN (insn), insn, 0);
3598 if (new_icode >= 0)
3599 INSN_CODE (insn) = new_icode;
3603 /* Restore the old body. If there were any changes to it, we made a copy
3604 of it while the changes were still in place, so we'll correctly return
3605 a modified insn below. */
3606 if (! replace)
3608 /* Restore the old body. */
3609 for (i = 0; i < recog_data.n_operands; i++)
3610 /* Restoring a top-level match_parallel would clobber the new_body
3611 we installed in the insn. */
3612 if (recog_data.operand_loc[i] != &PATTERN (insn))
3613 *recog_data.operand_loc[i] = orig_operand[i];
3614 for (i = 0; i < recog_data.n_dups; i++)
3615 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3618 /* Update all elimination pairs to reflect the status after the current
3619 insn. The changes we make were determined by the earlier call to
3620 elimination_effects.
3622 We also detect cases where register elimination cannot be done,
3623 namely, if a register would be both changed and referenced outside a MEM
3624 in the resulting insn since such an insn is often undefined and, even if
3625 not, we cannot know what meaning will be given to it. Note that it is
3626 valid to have a register used in an address in an insn that changes it
3627 (presumably with a pre- or post-increment or decrement).
3629 If anything changes, return nonzero. */
3631 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3633 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3634 ep->can_eliminate = 0;
3636 ep->ref_outside_mem = 0;
3638 if (ep->previous_offset != ep->offset)
3639 val = 1;
3642 done:
3643 /* If we changed something, perform elimination in REG_NOTES. This is
3644 needed even when REPLACE is zero because a REG_DEAD note might refer
3645 to a register that we eliminate and could cause a different number
3646 of spill registers to be needed in the final reload pass than in
3647 the pre-passes. */
3648 if (val && REG_NOTES (insn) != 0)
3649 REG_NOTES (insn)
3650 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3651 false);
3653 return val;
3656 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3657 register allocator. INSN is the instruction we need to examine, we perform
3658 eliminations in its operands and record cases where eliminating a reg with
3659 an invariant equivalence would add extra cost. */
3661 static void
3662 elimination_costs_in_insn (rtx_insn *insn)
3664 int icode = recog_memoized (insn);
3665 rtx old_body = PATTERN (insn);
3666 int insn_is_asm = asm_noperands (old_body) >= 0;
3667 rtx old_set = single_set (insn);
3668 int i;
3669 rtx orig_operand[MAX_RECOG_OPERANDS];
3670 rtx orig_dup[MAX_RECOG_OPERANDS];
3671 struct elim_table *ep;
3672 rtx plus_src, plus_cst_src;
3673 bool sets_reg_p;
3675 if (! insn_is_asm && icode < 0)
3677 gcc_assert (DEBUG_INSN_P (insn)
3678 || GET_CODE (PATTERN (insn)) == USE
3679 || GET_CODE (PATTERN (insn)) == CLOBBER
3680 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3681 return;
3684 if (old_set != 0 && REG_P (SET_DEST (old_set))
3685 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3687 /* Check for setting an eliminable register. */
3688 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3689 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3690 return;
3693 /* We allow one special case which happens to work on all machines we
3694 currently support: a single set with the source or a REG_EQUAL
3695 note being a PLUS of an eliminable register and a constant. */
3696 plus_src = plus_cst_src = 0;
3697 sets_reg_p = false;
3698 if (old_set && REG_P (SET_DEST (old_set)))
3700 sets_reg_p = true;
3701 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3702 plus_src = SET_SRC (old_set);
3703 /* First see if the source is of the form (plus (...) CST). */
3704 if (plus_src
3705 && CONST_INT_P (XEXP (plus_src, 1)))
3706 plus_cst_src = plus_src;
3707 else if (REG_P (SET_SRC (old_set))
3708 || plus_src)
3710 /* Otherwise, see if we have a REG_EQUAL note of the form
3711 (plus (...) CST). */
3712 rtx links;
3713 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3715 if ((REG_NOTE_KIND (links) == REG_EQUAL
3716 || REG_NOTE_KIND (links) == REG_EQUIV)
3717 && GET_CODE (XEXP (links, 0)) == PLUS
3718 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3720 plus_cst_src = XEXP (links, 0);
3721 break;
3727 /* Determine the effects of this insn on elimination offsets. */
3728 elimination_effects (old_body, VOIDmode);
3730 /* Eliminate all eliminable registers occurring in operands that
3731 can be handled by reload. */
3732 extract_insn (insn);
3733 for (i = 0; i < recog_data.n_dups; i++)
3734 orig_dup[i] = *recog_data.dup_loc[i];
3736 for (i = 0; i < recog_data.n_operands; i++)
3738 orig_operand[i] = recog_data.operand[i];
3740 /* For an asm statement, every operand is eliminable. */
3741 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3743 bool is_set_src, in_plus;
3745 /* Check for setting a register that we know about. */
3746 if (recog_data.operand_type[i] != OP_IN
3747 && REG_P (orig_operand[i]))
3749 /* If we are assigning to a register that can be eliminated, it
3750 must be as part of a PARALLEL, since the code above handles
3751 single SETs. We must indicate that we can no longer
3752 eliminate this reg. */
3753 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3754 ep++)
3755 if (ep->from_rtx == orig_operand[i])
3756 ep->can_eliminate = 0;
3759 /* Companion to the above plus substitution, we can allow
3760 invariants as the source of a plain move. */
3761 is_set_src = false;
3762 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3763 is_set_src = true;
3764 if (is_set_src && !sets_reg_p)
3765 note_reg_elim_costly (SET_SRC (old_set), insn);
3766 in_plus = false;
3767 if (plus_src && sets_reg_p
3768 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3769 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3770 in_plus = true;
3772 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3773 NULL_RTX,
3774 is_set_src || in_plus, true);
3775 /* Terminate the search in check_eliminable_occurrences at
3776 this point. */
3777 *recog_data.operand_loc[i] = 0;
3781 for (i = 0; i < recog_data.n_dups; i++)
3782 *recog_data.dup_loc[i]
3783 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3785 /* If any eliminable remain, they aren't eliminable anymore. */
3786 check_eliminable_occurrences (old_body);
3788 /* Restore the old body. */
3789 for (i = 0; i < recog_data.n_operands; i++)
3790 *recog_data.operand_loc[i] = orig_operand[i];
3791 for (i = 0; i < recog_data.n_dups; i++)
3792 *recog_data.dup_loc[i] = orig_dup[i];
3794 /* Update all elimination pairs to reflect the status after the current
3795 insn. The changes we make were determined by the earlier call to
3796 elimination_effects. */
3798 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3800 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3801 ep->can_eliminate = 0;
3803 ep->ref_outside_mem = 0;
3806 return;
3809 /* Loop through all elimination pairs.
3810 Recalculate the number not at initial offset.
3812 Compute the maximum offset (minimum offset if the stack does not
3813 grow downward) for each elimination pair. */
3815 static void
3816 update_eliminable_offsets (void)
3818 struct elim_table *ep;
3820 num_not_at_initial_offset = 0;
3821 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3823 ep->previous_offset = ep->offset;
3824 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3825 num_not_at_initial_offset++;
3829 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3830 replacement we currently believe is valid, mark it as not eliminable if X
3831 modifies DEST in any way other than by adding a constant integer to it.
3833 If DEST is the frame pointer, we do nothing because we assume that
3834 all assignments to the hard frame pointer are nonlocal gotos and are being
3835 done at a time when they are valid and do not disturb anything else.
3836 Some machines want to eliminate a fake argument pointer with either the
3837 frame or stack pointer. Assignments to the hard frame pointer must not
3838 prevent this elimination.
3840 Called via note_stores from reload before starting its passes to scan
3841 the insns of the function. */
3843 static void
3844 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3846 unsigned int i;
3848 /* A SUBREG of a hard register here is just changing its mode. We should
3849 not see a SUBREG of an eliminable hard register, but check just in
3850 case. */
3851 if (GET_CODE (dest) == SUBREG)
3852 dest = SUBREG_REG (dest);
3854 if (dest == hard_frame_pointer_rtx)
3855 return;
3857 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3858 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3859 && (GET_CODE (x) != SET
3860 || GET_CODE (SET_SRC (x)) != PLUS
3861 || XEXP (SET_SRC (x), 0) != dest
3862 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3864 reg_eliminate[i].can_eliminate_previous
3865 = reg_eliminate[i].can_eliminate = 0;
3866 num_eliminable--;
3870 /* Verify that the initial elimination offsets did not change since the
3871 last call to set_initial_elim_offsets. This is used to catch cases
3872 where something illegal happened during reload_as_needed that could
3873 cause incorrect code to be generated if we did not check for it. */
3875 static bool
3876 verify_initial_elim_offsets (void)
3878 HOST_WIDE_INT t;
3880 if (!num_eliminable)
3881 return true;
3883 #ifdef ELIMINABLE_REGS
3885 struct elim_table *ep;
3887 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3889 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3890 if (t != ep->initial_offset)
3891 return false;
3894 #else
3895 INITIAL_FRAME_POINTER_OFFSET (t);
3896 if (t != reg_eliminate[0].initial_offset)
3897 return false;
3898 #endif
3900 return true;
3903 /* Reset all offsets on eliminable registers to their initial values. */
3905 static void
3906 set_initial_elim_offsets (void)
3908 struct elim_table *ep = reg_eliminate;
3910 #ifdef ELIMINABLE_REGS
3911 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3913 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3914 ep->previous_offset = ep->offset = ep->initial_offset;
3916 #else
3917 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3918 ep->previous_offset = ep->offset = ep->initial_offset;
3919 #endif
3921 num_not_at_initial_offset = 0;
3924 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3926 static void
3927 set_initial_eh_label_offset (rtx label)
3929 set_label_offsets (label, NULL, 1);
3932 /* Initialize the known label offsets.
3933 Set a known offset for each forced label to be at the initial offset
3934 of each elimination. We do this because we assume that all
3935 computed jumps occur from a location where each elimination is
3936 at its initial offset.
3937 For all other labels, show that we don't know the offsets. */
3939 static void
3940 set_initial_label_offsets (void)
3942 memset (offsets_known_at, 0, num_labels);
3944 for (rtx_insn_list *x = forced_labels; x; x = x->next ())
3945 if (x->insn ())
3946 set_label_offsets (x->insn (), NULL, 1);
3948 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3949 if (x->insn ())
3950 set_label_offsets (x->insn (), NULL, 1);
3952 for_each_eh_label (set_initial_eh_label_offset);
3955 /* Set all elimination offsets to the known values for the code label given
3956 by INSN. */
3958 static void
3959 set_offsets_for_label (rtx_insn *insn)
3961 unsigned int i;
3962 int label_nr = CODE_LABEL_NUMBER (insn);
3963 struct elim_table *ep;
3965 num_not_at_initial_offset = 0;
3966 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3968 ep->offset = ep->previous_offset
3969 = offsets_at[label_nr - first_label_num][i];
3970 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3971 num_not_at_initial_offset++;
3975 /* See if anything that happened changes which eliminations are valid.
3976 For example, on the SPARC, whether or not the frame pointer can
3977 be eliminated can depend on what registers have been used. We need
3978 not check some conditions again (such as flag_omit_frame_pointer)
3979 since they can't have changed. */
3981 static void
3982 update_eliminables (HARD_REG_SET *pset)
3984 int previous_frame_pointer_needed = frame_pointer_needed;
3985 struct elim_table *ep;
3987 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3988 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3989 && targetm.frame_pointer_required ())
3990 #ifdef ELIMINABLE_REGS
3991 || ! targetm.can_eliminate (ep->from, ep->to)
3992 #endif
3994 ep->can_eliminate = 0;
3996 /* Look for the case where we have discovered that we can't replace
3997 register A with register B and that means that we will now be
3998 trying to replace register A with register C. This means we can
3999 no longer replace register C with register B and we need to disable
4000 such an elimination, if it exists. This occurs often with A == ap,
4001 B == sp, and C == fp. */
4003 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4005 struct elim_table *op;
4006 int new_to = -1;
4008 if (! ep->can_eliminate && ep->can_eliminate_previous)
4010 /* Find the current elimination for ep->from, if there is a
4011 new one. */
4012 for (op = reg_eliminate;
4013 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4014 if (op->from == ep->from && op->can_eliminate)
4016 new_to = op->to;
4017 break;
4020 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
4021 disable it. */
4022 for (op = reg_eliminate;
4023 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
4024 if (op->from == new_to && op->to == ep->to)
4025 op->can_eliminate = 0;
4029 /* See if any registers that we thought we could eliminate the previous
4030 time are no longer eliminable. If so, something has changed and we
4031 must spill the register. Also, recompute the number of eliminable
4032 registers and see if the frame pointer is needed; it is if there is
4033 no elimination of the frame pointer that we can perform. */
4035 frame_pointer_needed = 1;
4036 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4038 if (ep->can_eliminate
4039 && ep->from == FRAME_POINTER_REGNUM
4040 && ep->to != HARD_FRAME_POINTER_REGNUM
4041 && (! SUPPORTS_STACK_ALIGNMENT
4042 || ! crtl->stack_realign_needed))
4043 frame_pointer_needed = 0;
4045 if (! ep->can_eliminate && ep->can_eliminate_previous)
4047 ep->can_eliminate_previous = 0;
4048 SET_HARD_REG_BIT (*pset, ep->from);
4049 num_eliminable--;
4053 /* If we didn't need a frame pointer last time, but we do now, spill
4054 the hard frame pointer. */
4055 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4056 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4059 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4060 Return true iff a register was spilled. */
4062 static bool
4063 update_eliminables_and_spill (void)
4065 int i;
4066 bool did_spill = false;
4067 HARD_REG_SET to_spill;
4068 CLEAR_HARD_REG_SET (to_spill);
4069 update_eliminables (&to_spill);
4070 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4072 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4073 if (TEST_HARD_REG_BIT (to_spill, i))
4075 spill_hard_reg (i, 1);
4076 did_spill = true;
4078 /* Regardless of the state of spills, if we previously had
4079 a register that we thought we could eliminate, but now can
4080 not eliminate, we must run another pass.
4082 Consider pseudos which have an entry in reg_equiv_* which
4083 reference an eliminable register. We must make another pass
4084 to update reg_equiv_* so that we do not substitute in the
4085 old value from when we thought the elimination could be
4086 performed. */
4088 return did_spill;
4091 /* Return true if X is used as the target register of an elimination. */
4093 bool
4094 elimination_target_reg_p (rtx x)
4096 struct elim_table *ep;
4098 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4099 if (ep->to_rtx == x && ep->can_eliminate)
4100 return true;
4102 return false;
4105 /* Initialize the table of registers to eliminate.
4106 Pre-condition: global flag frame_pointer_needed has been set before
4107 calling this function. */
4109 static void
4110 init_elim_table (void)
4112 struct elim_table *ep;
4113 #ifdef ELIMINABLE_REGS
4114 const struct elim_table_1 *ep1;
4115 #endif
4117 if (!reg_eliminate)
4118 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4120 num_eliminable = 0;
4122 #ifdef ELIMINABLE_REGS
4123 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4124 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4126 ep->from = ep1->from;
4127 ep->to = ep1->to;
4128 ep->can_eliminate = ep->can_eliminate_previous
4129 = (targetm.can_eliminate (ep->from, ep->to)
4130 && ! (ep->to == STACK_POINTER_REGNUM
4131 && frame_pointer_needed
4132 && (! SUPPORTS_STACK_ALIGNMENT
4133 || ! stack_realign_fp)));
4135 #else
4136 reg_eliminate[0].from = reg_eliminate_1[0].from;
4137 reg_eliminate[0].to = reg_eliminate_1[0].to;
4138 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4139 = ! frame_pointer_needed;
4140 #endif
4142 /* Count the number of eliminable registers and build the FROM and TO
4143 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4144 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4145 We depend on this. */
4146 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4148 num_eliminable += ep->can_eliminate;
4149 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4150 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4154 /* Find all the pseudo registers that didn't get hard regs
4155 but do have known equivalent constants or memory slots.
4156 These include parameters (known equivalent to parameter slots)
4157 and cse'd or loop-moved constant memory addresses.
4159 Record constant equivalents in reg_equiv_constant
4160 so they will be substituted by find_reloads.
4161 Record memory equivalents in reg_mem_equiv so they can
4162 be substituted eventually by altering the REG-rtx's. */
4164 static void
4165 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4167 int i;
4168 rtx_insn *insn;
4170 grow_reg_equivs ();
4171 if (do_subregs)
4172 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4173 else
4174 reg_max_ref_width = NULL;
4176 num_eliminable_invariants = 0;
4178 first_label_num = get_first_label_num ();
4179 num_labels = max_label_num () - first_label_num;
4181 /* Allocate the tables used to store offset information at labels. */
4182 offsets_known_at = XNEWVEC (char, num_labels);
4183 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4185 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4186 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4187 find largest such for each pseudo. FIRST is the head of the insn
4188 list. */
4190 for (insn = first; insn; insn = NEXT_INSN (insn))
4192 rtx set = single_set (insn);
4194 /* We may introduce USEs that we want to remove at the end, so
4195 we'll mark them with QImode. Make sure there are no
4196 previously-marked insns left by say regmove. */
4197 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4198 && GET_MODE (insn) != VOIDmode)
4199 PUT_MODE (insn, VOIDmode);
4201 if (do_subregs && NONDEBUG_INSN_P (insn))
4202 scan_paradoxical_subregs (PATTERN (insn));
4204 if (set != 0 && REG_P (SET_DEST (set)))
4206 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4207 rtx x;
4209 if (! note)
4210 continue;
4212 i = REGNO (SET_DEST (set));
4213 x = XEXP (note, 0);
4215 if (i <= LAST_VIRTUAL_REGISTER)
4216 continue;
4218 /* If flag_pic and we have constant, verify it's legitimate. */
4219 if (!CONSTANT_P (x)
4220 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4222 /* It can happen that a REG_EQUIV note contains a MEM
4223 that is not a legitimate memory operand. As later
4224 stages of reload assume that all addresses found
4225 in the reg_equiv_* arrays were originally legitimate,
4226 we ignore such REG_EQUIV notes. */
4227 if (memory_operand (x, VOIDmode))
4229 /* Always unshare the equivalence, so we can
4230 substitute into this insn without touching the
4231 equivalence. */
4232 reg_equiv_memory_loc (i) = copy_rtx (x);
4234 else if (function_invariant_p (x))
4236 machine_mode mode;
4238 mode = GET_MODE (SET_DEST (set));
4239 if (GET_CODE (x) == PLUS)
4241 /* This is PLUS of frame pointer and a constant,
4242 and might be shared. Unshare it. */
4243 reg_equiv_invariant (i) = copy_rtx (x);
4244 num_eliminable_invariants++;
4246 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4248 reg_equiv_invariant (i) = x;
4249 num_eliminable_invariants++;
4251 else if (targetm.legitimate_constant_p (mode, x))
4252 reg_equiv_constant (i) = x;
4253 else
4255 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4256 if (! reg_equiv_memory_loc (i))
4257 reg_equiv_init (i) = NULL_RTX;
4260 else
4262 reg_equiv_init (i) = NULL_RTX;
4263 continue;
4266 else
4267 reg_equiv_init (i) = NULL_RTX;
4271 if (dump_file)
4272 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4273 if (reg_equiv_init (i))
4275 fprintf (dump_file, "init_insns for %u: ", i);
4276 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4277 fprintf (dump_file, "\n");
4281 /* Indicate that we no longer have known memory locations or constants.
4282 Free all data involved in tracking these. */
4284 static void
4285 free_reg_equiv (void)
4287 int i;
4289 free (offsets_known_at);
4290 free (offsets_at);
4291 offsets_at = 0;
4292 offsets_known_at = 0;
4294 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4295 if (reg_equiv_alt_mem_list (i))
4296 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4297 vec_free (reg_equivs);
4300 /* Kick all pseudos out of hard register REGNO.
4302 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4303 because we found we can't eliminate some register. In the case, no pseudos
4304 are allowed to be in the register, even if they are only in a block that
4305 doesn't require spill registers, unlike the case when we are spilling this
4306 hard reg to produce another spill register.
4308 Return nonzero if any pseudos needed to be kicked out. */
4310 static void
4311 spill_hard_reg (unsigned int regno, int cant_eliminate)
4313 int i;
4315 if (cant_eliminate)
4317 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4318 df_set_regs_ever_live (regno, true);
4321 /* Spill every pseudo reg that was allocated to this reg
4322 or to something that overlaps this reg. */
4324 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4325 if (reg_renumber[i] >= 0
4326 && (unsigned int) reg_renumber[i] <= regno
4327 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4328 SET_REGNO_REG_SET (&spilled_pseudos, i);
4331 /* After find_reload_regs has been run for all insn that need reloads,
4332 and/or spill_hard_regs was called, this function is used to actually
4333 spill pseudo registers and try to reallocate them. It also sets up the
4334 spill_regs array for use by choose_reload_regs. */
4336 static int
4337 finish_spills (int global)
4339 struct insn_chain *chain;
4340 int something_changed = 0;
4341 unsigned i;
4342 reg_set_iterator rsi;
4344 /* Build the spill_regs array for the function. */
4345 /* If there are some registers still to eliminate and one of the spill regs
4346 wasn't ever used before, additional stack space may have to be
4347 allocated to store this register. Thus, we may have changed the offset
4348 between the stack and frame pointers, so mark that something has changed.
4350 One might think that we need only set VAL to 1 if this is a call-used
4351 register. However, the set of registers that must be saved by the
4352 prologue is not identical to the call-used set. For example, the
4353 register used by the call insn for the return PC is a call-used register,
4354 but must be saved by the prologue. */
4356 n_spills = 0;
4357 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4358 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4360 spill_reg_order[i] = n_spills;
4361 spill_regs[n_spills++] = i;
4362 if (num_eliminable && ! df_regs_ever_live_p (i))
4363 something_changed = 1;
4364 df_set_regs_ever_live (i, true);
4366 else
4367 spill_reg_order[i] = -1;
4369 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4370 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4372 /* Record the current hard register the pseudo is allocated to
4373 in pseudo_previous_regs so we avoid reallocating it to the
4374 same hard reg in a later pass. */
4375 gcc_assert (reg_renumber[i] >= 0);
4377 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4378 /* Mark it as no longer having a hard register home. */
4379 reg_renumber[i] = -1;
4380 if (ira_conflicts_p)
4381 /* Inform IRA about the change. */
4382 ira_mark_allocation_change (i);
4383 /* We will need to scan everything again. */
4384 something_changed = 1;
4387 /* Retry global register allocation if possible. */
4388 if (global && ira_conflicts_p)
4390 unsigned int n;
4392 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4393 /* For every insn that needs reloads, set the registers used as spill
4394 regs in pseudo_forbidden_regs for every pseudo live across the
4395 insn. */
4396 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4398 EXECUTE_IF_SET_IN_REG_SET
4399 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4401 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4402 chain->used_spill_regs);
4404 EXECUTE_IF_SET_IN_REG_SET
4405 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4407 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4408 chain->used_spill_regs);
4412 /* Retry allocating the pseudos spilled in IRA and the
4413 reload. For each reg, merge the various reg sets that
4414 indicate which hard regs can't be used, and call
4415 ira_reassign_pseudos. */
4416 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4417 if (reg_old_renumber[i] != reg_renumber[i])
4419 if (reg_renumber[i] < 0)
4420 temp_pseudo_reg_arr[n++] = i;
4421 else
4422 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4424 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4425 bad_spill_regs_global,
4426 pseudo_forbidden_regs, pseudo_previous_regs,
4427 &spilled_pseudos))
4428 something_changed = 1;
4430 /* Fix up the register information in the insn chain.
4431 This involves deleting those of the spilled pseudos which did not get
4432 a new hard register home from the live_{before,after} sets. */
4433 for (chain = reload_insn_chain; chain; chain = chain->next)
4435 HARD_REG_SET used_by_pseudos;
4436 HARD_REG_SET used_by_pseudos2;
4438 if (! ira_conflicts_p)
4440 /* Don't do it for IRA because IRA and the reload still can
4441 assign hard registers to the spilled pseudos on next
4442 reload iterations. */
4443 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4444 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4446 /* Mark any unallocated hard regs as available for spills. That
4447 makes inheritance work somewhat better. */
4448 if (chain->need_reload)
4450 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4451 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4452 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4454 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4455 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4456 /* Value of chain->used_spill_regs from previous iteration
4457 may be not included in the value calculated here because
4458 of possible removing caller-saves insns (see function
4459 delete_caller_save_insns. */
4460 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4461 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4465 CLEAR_REG_SET (&changed_allocation_pseudos);
4466 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4467 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4469 int regno = reg_renumber[i];
4470 if (reg_old_renumber[i] == regno)
4471 continue;
4473 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4475 alter_reg (i, reg_old_renumber[i], false);
4476 reg_old_renumber[i] = regno;
4477 if (dump_file)
4479 if (regno == -1)
4480 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4481 else
4482 fprintf (dump_file, " Register %d now in %d.\n\n",
4483 i, reg_renumber[i]);
4487 return something_changed;
4490 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4492 static void
4493 scan_paradoxical_subregs (rtx x)
4495 int i;
4496 const char *fmt;
4497 enum rtx_code code = GET_CODE (x);
4499 switch (code)
4501 case REG:
4502 case CONST:
4503 case SYMBOL_REF:
4504 case LABEL_REF:
4505 CASE_CONST_ANY:
4506 case CC0:
4507 case PC:
4508 case USE:
4509 case CLOBBER:
4510 return;
4512 case SUBREG:
4513 if (REG_P (SUBREG_REG (x))
4514 && (GET_MODE_SIZE (GET_MODE (x))
4515 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4517 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4518 = GET_MODE_SIZE (GET_MODE (x));
4519 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4521 return;
4523 default:
4524 break;
4527 fmt = GET_RTX_FORMAT (code);
4528 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4530 if (fmt[i] == 'e')
4531 scan_paradoxical_subregs (XEXP (x, i));
4532 else if (fmt[i] == 'E')
4534 int j;
4535 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4536 scan_paradoxical_subregs (XVECEXP (x, i, j));
4541 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4542 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4543 and apply the corresponding narrowing subreg to *OTHER_PTR.
4544 Return true if the operands were changed, false otherwise. */
4546 static bool
4547 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4549 rtx op, inner, other, tem;
4551 op = *op_ptr;
4552 if (!paradoxical_subreg_p (op))
4553 return false;
4554 inner = SUBREG_REG (op);
4556 other = *other_ptr;
4557 tem = gen_lowpart_common (GET_MODE (inner), other);
4558 if (!tem)
4559 return false;
4561 /* If the lowpart operation turned a hard register into a subreg,
4562 rather than simplifying it to another hard register, then the
4563 mode change cannot be properly represented. For example, OTHER
4564 might be valid in its current mode, but not in the new one. */
4565 if (GET_CODE (tem) == SUBREG
4566 && REG_P (other)
4567 && HARD_REGISTER_P (other))
4568 return false;
4570 *op_ptr = inner;
4571 *other_ptr = tem;
4572 return true;
4575 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4576 examine all of the reload insns between PREV and NEXT exclusive, and
4577 annotate all that may trap. */
4579 static void
4580 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4582 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4583 if (note == NULL)
4584 return;
4585 if (!insn_could_throw_p (insn))
4586 remove_note (insn, note);
4587 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4590 /* Reload pseudo-registers into hard regs around each insn as needed.
4591 Additional register load insns are output before the insn that needs it
4592 and perhaps store insns after insns that modify the reloaded pseudo reg.
4594 reg_last_reload_reg and reg_reloaded_contents keep track of
4595 which registers are already available in reload registers.
4596 We update these for the reloads that we perform,
4597 as the insns are scanned. */
4599 static void
4600 reload_as_needed (int live_known)
4602 struct insn_chain *chain;
4603 #if defined (AUTO_INC_DEC)
4604 int i;
4605 #endif
4606 rtx_note *marker;
4608 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4609 memset (spill_reg_store, 0, sizeof spill_reg_store);
4610 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4611 INIT_REG_SET (&reg_has_output_reload);
4612 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4613 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4615 set_initial_elim_offsets ();
4617 /* Generate a marker insn that we will move around. */
4618 marker = emit_note (NOTE_INSN_DELETED);
4619 unlink_insn_chain (marker, marker);
4621 for (chain = reload_insn_chain; chain; chain = chain->next)
4623 rtx_insn *prev = 0;
4624 rtx_insn *insn = chain->insn;
4625 rtx_insn *old_next = NEXT_INSN (insn);
4626 #ifdef AUTO_INC_DEC
4627 rtx_insn *old_prev = PREV_INSN (insn);
4628 #endif
4630 if (will_delete_init_insn_p (insn))
4631 continue;
4633 /* If we pass a label, copy the offsets from the label information
4634 into the current offsets of each elimination. */
4635 if (LABEL_P (insn))
4636 set_offsets_for_label (insn);
4638 else if (INSN_P (insn))
4640 regset_head regs_to_forget;
4641 INIT_REG_SET (&regs_to_forget);
4642 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4644 /* If this is a USE and CLOBBER of a MEM, ensure that any
4645 references to eliminable registers have been removed. */
4647 if ((GET_CODE (PATTERN (insn)) == USE
4648 || GET_CODE (PATTERN (insn)) == CLOBBER)
4649 && MEM_P (XEXP (PATTERN (insn), 0)))
4650 XEXP (XEXP (PATTERN (insn), 0), 0)
4651 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4652 GET_MODE (XEXP (PATTERN (insn), 0)),
4653 NULL_RTX);
4655 /* If we need to do register elimination processing, do so.
4656 This might delete the insn, in which case we are done. */
4657 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4659 eliminate_regs_in_insn (insn, 1);
4660 if (NOTE_P (insn))
4662 update_eliminable_offsets ();
4663 CLEAR_REG_SET (&regs_to_forget);
4664 continue;
4668 /* If need_elim is nonzero but need_reload is zero, one might think
4669 that we could simply set n_reloads to 0. However, find_reloads
4670 could have done some manipulation of the insn (such as swapping
4671 commutative operands), and these manipulations are lost during
4672 the first pass for every insn that needs register elimination.
4673 So the actions of find_reloads must be redone here. */
4675 if (! chain->need_elim && ! chain->need_reload
4676 && ! chain->need_operand_change)
4677 n_reloads = 0;
4678 /* First find the pseudo regs that must be reloaded for this insn.
4679 This info is returned in the tables reload_... (see reload.h).
4680 Also modify the body of INSN by substituting RELOAD
4681 rtx's for those pseudo regs. */
4682 else
4684 CLEAR_REG_SET (&reg_has_output_reload);
4685 CLEAR_HARD_REG_SET (reg_is_output_reload);
4687 find_reloads (insn, 1, spill_indirect_levels, live_known,
4688 spill_reg_order);
4691 if (n_reloads > 0)
4693 rtx_insn *next = NEXT_INSN (insn);
4695 /* ??? PREV can get deleted by reload inheritance.
4696 Work around this by emitting a marker note. */
4697 prev = PREV_INSN (insn);
4698 reorder_insns_nobb (marker, marker, prev);
4700 /* Now compute which reload regs to reload them into. Perhaps
4701 reusing reload regs from previous insns, or else output
4702 load insns to reload them. Maybe output store insns too.
4703 Record the choices of reload reg in reload_reg_rtx. */
4704 choose_reload_regs (chain);
4706 /* Generate the insns to reload operands into or out of
4707 their reload regs. */
4708 emit_reload_insns (chain);
4710 /* Substitute the chosen reload regs from reload_reg_rtx
4711 into the insn's body (or perhaps into the bodies of other
4712 load and store insn that we just made for reloading
4713 and that we moved the structure into). */
4714 subst_reloads (insn);
4716 prev = PREV_INSN (marker);
4717 unlink_insn_chain (marker, marker);
4719 /* Adjust the exception region notes for loads and stores. */
4720 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4721 fixup_eh_region_note (insn, prev, next);
4723 /* Adjust the location of REG_ARGS_SIZE. */
4724 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4725 if (p)
4727 remove_note (insn, p);
4728 fixup_args_size_notes (prev, PREV_INSN (next),
4729 INTVAL (XEXP (p, 0)));
4732 /* If this was an ASM, make sure that all the reload insns
4733 we have generated are valid. If not, give an error
4734 and delete them. */
4735 if (asm_noperands (PATTERN (insn)) >= 0)
4736 for (rtx_insn *p = NEXT_INSN (prev);
4737 p != next;
4738 p = NEXT_INSN (p))
4739 if (p != insn && INSN_P (p)
4740 && GET_CODE (PATTERN (p)) != USE
4741 && (recog_memoized (p) < 0
4742 || (extract_insn (p),
4743 !(constrain_operands (1,
4744 get_enabled_alternatives (p))))))
4746 error_for_asm (insn,
4747 "%<asm%> operand requires "
4748 "impossible reload");
4749 delete_insn (p);
4753 if (num_eliminable && chain->need_elim)
4754 update_eliminable_offsets ();
4756 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4757 is no longer validly lying around to save a future reload.
4758 Note that this does not detect pseudos that were reloaded
4759 for this insn in order to be stored in
4760 (obeying register constraints). That is correct; such reload
4761 registers ARE still valid. */
4762 forget_marked_reloads (&regs_to_forget);
4763 CLEAR_REG_SET (&regs_to_forget);
4765 /* There may have been CLOBBER insns placed after INSN. So scan
4766 between INSN and NEXT and use them to forget old reloads. */
4767 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4768 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4769 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4771 #ifdef AUTO_INC_DEC
4772 /* Likewise for regs altered by auto-increment in this insn.
4773 REG_INC notes have been changed by reloading:
4774 find_reloads_address_1 records substitutions for them,
4775 which have been performed by subst_reloads above. */
4776 for (i = n_reloads - 1; i >= 0; i--)
4778 rtx in_reg = rld[i].in_reg;
4779 if (in_reg)
4781 enum rtx_code code = GET_CODE (in_reg);
4782 /* PRE_INC / PRE_DEC will have the reload register ending up
4783 with the same value as the stack slot, but that doesn't
4784 hold true for POST_INC / POST_DEC. Either we have to
4785 convert the memory access to a true POST_INC / POST_DEC,
4786 or we can't use the reload register for inheritance. */
4787 if ((code == POST_INC || code == POST_DEC)
4788 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4789 REGNO (rld[i].reg_rtx))
4790 /* Make sure it is the inc/dec pseudo, and not
4791 some other (e.g. output operand) pseudo. */
4792 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4793 == REGNO (XEXP (in_reg, 0))))
4796 rtx reload_reg = rld[i].reg_rtx;
4797 machine_mode mode = GET_MODE (reload_reg);
4798 int n = 0;
4799 rtx_insn *p;
4801 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4803 /* We really want to ignore REG_INC notes here, so
4804 use PATTERN (p) as argument to reg_set_p . */
4805 if (reg_set_p (reload_reg, PATTERN (p)))
4806 break;
4807 n = count_occurrences (PATTERN (p), reload_reg, 0);
4808 if (! n)
4809 continue;
4810 if (n == 1)
4812 rtx replace_reg
4813 = gen_rtx_fmt_e (code, mode, reload_reg);
4815 validate_replace_rtx_group (reload_reg,
4816 replace_reg, p);
4817 n = verify_changes (0);
4819 /* We must also verify that the constraints
4820 are met after the replacement. Make sure
4821 extract_insn is only called for an insn
4822 where the replacements were found to be
4823 valid so far. */
4824 if (n)
4826 extract_insn (p);
4827 n = constrain_operands (1,
4828 get_enabled_alternatives (p));
4831 /* If the constraints were not met, then
4832 undo the replacement, else confirm it. */
4833 if (!n)
4834 cancel_changes (0);
4835 else
4836 confirm_change_group ();
4838 break;
4840 if (n == 1)
4842 add_reg_note (p, REG_INC, reload_reg);
4843 /* Mark this as having an output reload so that the
4844 REG_INC processing code below won't invalidate
4845 the reload for inheritance. */
4846 SET_HARD_REG_BIT (reg_is_output_reload,
4847 REGNO (reload_reg));
4848 SET_REGNO_REG_SET (&reg_has_output_reload,
4849 REGNO (XEXP (in_reg, 0)));
4851 else
4852 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4853 NULL);
4855 else if ((code == PRE_INC || code == PRE_DEC)
4856 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4857 REGNO (rld[i].reg_rtx))
4858 /* Make sure it is the inc/dec pseudo, and not
4859 some other (e.g. output operand) pseudo. */
4860 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4861 == REGNO (XEXP (in_reg, 0))))
4863 SET_HARD_REG_BIT (reg_is_output_reload,
4864 REGNO (rld[i].reg_rtx));
4865 SET_REGNO_REG_SET (&reg_has_output_reload,
4866 REGNO (XEXP (in_reg, 0)));
4868 else if (code == PRE_INC || code == PRE_DEC
4869 || code == POST_INC || code == POST_DEC)
4871 int in_regno = REGNO (XEXP (in_reg, 0));
4873 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4875 int in_hard_regno;
4876 bool forget_p = true;
4878 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4879 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4880 in_hard_regno))
4882 for (rtx_insn *x = (old_prev ?
4883 NEXT_INSN (old_prev) : insn);
4884 x != old_next;
4885 x = NEXT_INSN (x))
4886 if (x == reg_reloaded_insn[in_hard_regno])
4888 forget_p = false;
4889 break;
4892 /* If for some reasons, we didn't set up
4893 reg_last_reload_reg in this insn,
4894 invalidate inheritance from previous
4895 insns for the incremented/decremented
4896 register. Such registers will be not in
4897 reg_has_output_reload. Invalidate it
4898 also if the corresponding element in
4899 reg_reloaded_insn is also
4900 invalidated. */
4901 if (forget_p)
4902 forget_old_reloads_1 (XEXP (in_reg, 0),
4903 NULL_RTX, NULL);
4908 /* If a pseudo that got a hard register is auto-incremented,
4909 we must purge records of copying it into pseudos without
4910 hard registers. */
4911 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4912 if (REG_NOTE_KIND (x) == REG_INC)
4914 /* See if this pseudo reg was reloaded in this insn.
4915 If so, its last-reload info is still valid
4916 because it is based on this insn's reload. */
4917 for (i = 0; i < n_reloads; i++)
4918 if (rld[i].out == XEXP (x, 0))
4919 break;
4921 if (i == n_reloads)
4922 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4924 #endif
4926 /* A reload reg's contents are unknown after a label. */
4927 if (LABEL_P (insn))
4928 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4930 /* Don't assume a reload reg is still good after a call insn
4931 if it is a call-used reg, or if it contains a value that will
4932 be partially clobbered by the call. */
4933 else if (CALL_P (insn))
4935 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4936 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4938 /* If this is a call to a setjmp-type function, we must not
4939 reuse any reload reg contents across the call; that will
4940 just be clobbered by other uses of the register in later
4941 code, before the longjmp. */
4942 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4943 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4947 /* Clean up. */
4948 free (reg_last_reload_reg);
4949 CLEAR_REG_SET (&reg_has_output_reload);
4952 /* Discard all record of any value reloaded from X,
4953 or reloaded in X from someplace else;
4954 unless X is an output reload reg of the current insn.
4956 X may be a hard reg (the reload reg)
4957 or it may be a pseudo reg that was reloaded from.
4959 When DATA is non-NULL just mark the registers in regset
4960 to be forgotten later. */
4962 static void
4963 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4964 void *data)
4966 unsigned int regno;
4967 unsigned int nr;
4968 regset regs = (regset) data;
4970 /* note_stores does give us subregs of hard regs,
4971 subreg_regno_offset requires a hard reg. */
4972 while (GET_CODE (x) == SUBREG)
4974 /* We ignore the subreg offset when calculating the regno,
4975 because we are using the entire underlying hard register
4976 below. */
4977 x = SUBREG_REG (x);
4980 if (!REG_P (x))
4981 return;
4983 regno = REGNO (x);
4985 if (regno >= FIRST_PSEUDO_REGISTER)
4986 nr = 1;
4987 else
4989 unsigned int i;
4991 nr = hard_regno_nregs[regno][GET_MODE (x)];
4992 /* Storing into a spilled-reg invalidates its contents.
4993 This can happen if a block-local pseudo is allocated to that reg
4994 and it wasn't spilled because this block's total need is 0.
4995 Then some insn might have an optional reload and use this reg. */
4996 if (!regs)
4997 for (i = 0; i < nr; i++)
4998 /* But don't do this if the reg actually serves as an output
4999 reload reg in the current instruction. */
5000 if (n_reloads == 0
5001 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
5003 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
5004 spill_reg_store[regno + i] = 0;
5008 if (regs)
5009 while (nr-- > 0)
5010 SET_REGNO_REG_SET (regs, regno + nr);
5011 else
5013 /* Since value of X has changed,
5014 forget any value previously copied from it. */
5016 while (nr-- > 0)
5017 /* But don't forget a copy if this is the output reload
5018 that establishes the copy's validity. */
5019 if (n_reloads == 0
5020 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
5021 reg_last_reload_reg[regno + nr] = 0;
5025 /* Forget the reloads marked in regset by previous function. */
5026 static void
5027 forget_marked_reloads (regset regs)
5029 unsigned int reg;
5030 reg_set_iterator rsi;
5031 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
5033 if (reg < FIRST_PSEUDO_REGISTER
5034 /* But don't do this if the reg actually serves as an output
5035 reload reg in the current instruction. */
5036 && (n_reloads == 0
5037 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5039 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5040 spill_reg_store[reg] = 0;
5042 if (n_reloads == 0
5043 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5044 reg_last_reload_reg[reg] = 0;
5048 /* The following HARD_REG_SETs indicate when each hard register is
5049 used for a reload of various parts of the current insn. */
5051 /* If reg is unavailable for all reloads. */
5052 static HARD_REG_SET reload_reg_unavailable;
5053 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5054 static HARD_REG_SET reload_reg_used;
5055 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5056 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5057 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5058 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5059 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5060 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5061 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5062 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5063 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5064 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5065 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5066 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5067 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5068 static HARD_REG_SET reload_reg_used_in_op_addr;
5069 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5070 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5071 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5072 static HARD_REG_SET reload_reg_used_in_insn;
5073 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5074 static HARD_REG_SET reload_reg_used_in_other_addr;
5076 /* If reg is in use as a reload reg for any sort of reload. */
5077 static HARD_REG_SET reload_reg_used_at_all;
5079 /* If reg is use as an inherited reload. We just mark the first register
5080 in the group. */
5081 static HARD_REG_SET reload_reg_used_for_inherit;
5083 /* Records which hard regs are used in any way, either as explicit use or
5084 by being allocated to a pseudo during any point of the current insn. */
5085 static HARD_REG_SET reg_used_in_insn;
5087 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5088 TYPE. MODE is used to indicate how many consecutive regs are
5089 actually used. */
5091 static void
5092 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5093 machine_mode mode)
5095 switch (type)
5097 case RELOAD_OTHER:
5098 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5099 break;
5101 case RELOAD_FOR_INPUT_ADDRESS:
5102 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5103 break;
5105 case RELOAD_FOR_INPADDR_ADDRESS:
5106 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5107 break;
5109 case RELOAD_FOR_OUTPUT_ADDRESS:
5110 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5111 break;
5113 case RELOAD_FOR_OUTADDR_ADDRESS:
5114 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5115 break;
5117 case RELOAD_FOR_OPERAND_ADDRESS:
5118 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5119 break;
5121 case RELOAD_FOR_OPADDR_ADDR:
5122 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5123 break;
5125 case RELOAD_FOR_OTHER_ADDRESS:
5126 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5127 break;
5129 case RELOAD_FOR_INPUT:
5130 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5131 break;
5133 case RELOAD_FOR_OUTPUT:
5134 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5135 break;
5137 case RELOAD_FOR_INSN:
5138 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5139 break;
5142 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5145 /* Similarly, but show REGNO is no longer in use for a reload. */
5147 static void
5148 clear_reload_reg_in_use (unsigned int regno, int opnum,
5149 enum reload_type type, machine_mode mode)
5151 unsigned int nregs = hard_regno_nregs[regno][mode];
5152 unsigned int start_regno, end_regno, r;
5153 int i;
5154 /* A complication is that for some reload types, inheritance might
5155 allow multiple reloads of the same types to share a reload register.
5156 We set check_opnum if we have to check only reloads with the same
5157 operand number, and check_any if we have to check all reloads. */
5158 int check_opnum = 0;
5159 int check_any = 0;
5160 HARD_REG_SET *used_in_set;
5162 switch (type)
5164 case RELOAD_OTHER:
5165 used_in_set = &reload_reg_used;
5166 break;
5168 case RELOAD_FOR_INPUT_ADDRESS:
5169 used_in_set = &reload_reg_used_in_input_addr[opnum];
5170 break;
5172 case RELOAD_FOR_INPADDR_ADDRESS:
5173 check_opnum = 1;
5174 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5175 break;
5177 case RELOAD_FOR_OUTPUT_ADDRESS:
5178 used_in_set = &reload_reg_used_in_output_addr[opnum];
5179 break;
5181 case RELOAD_FOR_OUTADDR_ADDRESS:
5182 check_opnum = 1;
5183 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5184 break;
5186 case RELOAD_FOR_OPERAND_ADDRESS:
5187 used_in_set = &reload_reg_used_in_op_addr;
5188 break;
5190 case RELOAD_FOR_OPADDR_ADDR:
5191 check_any = 1;
5192 used_in_set = &reload_reg_used_in_op_addr_reload;
5193 break;
5195 case RELOAD_FOR_OTHER_ADDRESS:
5196 used_in_set = &reload_reg_used_in_other_addr;
5197 check_any = 1;
5198 break;
5200 case RELOAD_FOR_INPUT:
5201 used_in_set = &reload_reg_used_in_input[opnum];
5202 break;
5204 case RELOAD_FOR_OUTPUT:
5205 used_in_set = &reload_reg_used_in_output[opnum];
5206 break;
5208 case RELOAD_FOR_INSN:
5209 used_in_set = &reload_reg_used_in_insn;
5210 break;
5211 default:
5212 gcc_unreachable ();
5214 /* We resolve conflicts with remaining reloads of the same type by
5215 excluding the intervals of reload registers by them from the
5216 interval of freed reload registers. Since we only keep track of
5217 one set of interval bounds, we might have to exclude somewhat
5218 more than what would be necessary if we used a HARD_REG_SET here.
5219 But this should only happen very infrequently, so there should
5220 be no reason to worry about it. */
5222 start_regno = regno;
5223 end_regno = regno + nregs;
5224 if (check_opnum || check_any)
5226 for (i = n_reloads - 1; i >= 0; i--)
5228 if (rld[i].when_needed == type
5229 && (check_any || rld[i].opnum == opnum)
5230 && rld[i].reg_rtx)
5232 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5233 unsigned int conflict_end
5234 = end_hard_regno (rld[i].mode, conflict_start);
5236 /* If there is an overlap with the first to-be-freed register,
5237 adjust the interval start. */
5238 if (conflict_start <= start_regno && conflict_end > start_regno)
5239 start_regno = conflict_end;
5240 /* Otherwise, if there is a conflict with one of the other
5241 to-be-freed registers, adjust the interval end. */
5242 if (conflict_start > start_regno && conflict_start < end_regno)
5243 end_regno = conflict_start;
5248 for (r = start_regno; r < end_regno; r++)
5249 CLEAR_HARD_REG_BIT (*used_in_set, r);
5252 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5253 specified by OPNUM and TYPE. */
5255 static int
5256 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5258 int i;
5260 /* In use for a RELOAD_OTHER means it's not available for anything. */
5261 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5262 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5263 return 0;
5265 switch (type)
5267 case RELOAD_OTHER:
5268 /* In use for anything means we can't use it for RELOAD_OTHER. */
5269 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5270 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5271 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5272 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5273 return 0;
5275 for (i = 0; i < reload_n_operands; i++)
5276 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5277 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5278 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5279 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5280 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5281 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5282 return 0;
5284 return 1;
5286 case RELOAD_FOR_INPUT:
5287 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5288 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5289 return 0;
5291 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5292 return 0;
5294 /* If it is used for some other input, can't use it. */
5295 for (i = 0; i < reload_n_operands; i++)
5296 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5297 return 0;
5299 /* If it is used in a later operand's address, can't use it. */
5300 for (i = opnum + 1; i < reload_n_operands; i++)
5301 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5302 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5303 return 0;
5305 return 1;
5307 case RELOAD_FOR_INPUT_ADDRESS:
5308 /* Can't use a register if it is used for an input address for this
5309 operand or used as an input in an earlier one. */
5310 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5311 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5312 return 0;
5314 for (i = 0; i < opnum; i++)
5315 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5316 return 0;
5318 return 1;
5320 case RELOAD_FOR_INPADDR_ADDRESS:
5321 /* Can't use a register if it is used for an input address
5322 for this operand or used as an input in an earlier
5323 one. */
5324 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5325 return 0;
5327 for (i = 0; i < opnum; i++)
5328 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5329 return 0;
5331 return 1;
5333 case RELOAD_FOR_OUTPUT_ADDRESS:
5334 /* Can't use a register if it is used for an output address for this
5335 operand or used as an output in this or a later operand. Note
5336 that multiple output operands are emitted in reverse order, so
5337 the conflicting ones are those with lower indices. */
5338 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5339 return 0;
5341 for (i = 0; i <= opnum; i++)
5342 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5343 return 0;
5345 return 1;
5347 case RELOAD_FOR_OUTADDR_ADDRESS:
5348 /* Can't use a register if it is used for an output address
5349 for this operand or used as an output in this or a
5350 later operand. Note that multiple output operands are
5351 emitted in reverse order, so the conflicting ones are
5352 those with lower indices. */
5353 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5354 return 0;
5356 for (i = 0; i <= opnum; i++)
5357 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5358 return 0;
5360 return 1;
5362 case RELOAD_FOR_OPERAND_ADDRESS:
5363 for (i = 0; i < reload_n_operands; i++)
5364 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5365 return 0;
5367 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5368 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5370 case RELOAD_FOR_OPADDR_ADDR:
5371 for (i = 0; i < reload_n_operands; i++)
5372 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5373 return 0;
5375 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5377 case RELOAD_FOR_OUTPUT:
5378 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5379 outputs, or an operand address for this or an earlier output.
5380 Note that multiple output operands are emitted in reverse order,
5381 so the conflicting ones are those with higher indices. */
5382 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5383 return 0;
5385 for (i = 0; i < reload_n_operands; i++)
5386 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5387 return 0;
5389 for (i = opnum; i < reload_n_operands; i++)
5390 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5391 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5392 return 0;
5394 return 1;
5396 case RELOAD_FOR_INSN:
5397 for (i = 0; i < reload_n_operands; i++)
5398 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5399 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5400 return 0;
5402 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5403 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5405 case RELOAD_FOR_OTHER_ADDRESS:
5406 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5408 default:
5409 gcc_unreachable ();
5413 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5414 the number RELOADNUM, is still available in REGNO at the end of the insn.
5416 We can assume that the reload reg was already tested for availability
5417 at the time it is needed, and we should not check this again,
5418 in case the reg has already been marked in use. */
5420 static int
5421 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5423 int opnum = rld[reloadnum].opnum;
5424 enum reload_type type = rld[reloadnum].when_needed;
5425 int i;
5427 /* See if there is a reload with the same type for this operand, using
5428 the same register. This case is not handled by the code below. */
5429 for (i = reloadnum + 1; i < n_reloads; i++)
5431 rtx reg;
5432 int nregs;
5434 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5435 continue;
5436 reg = rld[i].reg_rtx;
5437 if (reg == NULL_RTX)
5438 continue;
5439 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5440 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5441 return 0;
5444 switch (type)
5446 case RELOAD_OTHER:
5447 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5448 its value must reach the end. */
5449 return 1;
5451 /* If this use is for part of the insn,
5452 its value reaches if no subsequent part uses the same register.
5453 Just like the above function, don't try to do this with lots
5454 of fallthroughs. */
5456 case RELOAD_FOR_OTHER_ADDRESS:
5457 /* Here we check for everything else, since these don't conflict
5458 with anything else and everything comes later. */
5460 for (i = 0; i < reload_n_operands; i++)
5461 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5462 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5463 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5464 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5465 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5466 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5467 return 0;
5469 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5470 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5471 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5472 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5474 case RELOAD_FOR_INPUT_ADDRESS:
5475 case RELOAD_FOR_INPADDR_ADDRESS:
5476 /* Similar, except that we check only for this and subsequent inputs
5477 and the address of only subsequent inputs and we do not need
5478 to check for RELOAD_OTHER objects since they are known not to
5479 conflict. */
5481 for (i = opnum; i < reload_n_operands; i++)
5482 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5483 return 0;
5485 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5486 could be killed if the register is also used by reload with type
5487 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5488 if (type == RELOAD_FOR_INPADDR_ADDRESS
5489 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5490 return 0;
5492 for (i = opnum + 1; i < reload_n_operands; i++)
5493 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5494 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5495 return 0;
5497 for (i = 0; i < reload_n_operands; i++)
5498 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5499 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5500 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5501 return 0;
5503 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5504 return 0;
5506 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5507 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5508 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5510 case RELOAD_FOR_INPUT:
5511 /* Similar to input address, except we start at the next operand for
5512 both input and input address and we do not check for
5513 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5514 would conflict. */
5516 for (i = opnum + 1; i < reload_n_operands; i++)
5517 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5518 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5519 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5520 return 0;
5522 /* ... fall through ... */
5524 case RELOAD_FOR_OPERAND_ADDRESS:
5525 /* Check outputs and their addresses. */
5527 for (i = 0; i < reload_n_operands; i++)
5528 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5529 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5530 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5531 return 0;
5533 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5535 case RELOAD_FOR_OPADDR_ADDR:
5536 for (i = 0; i < reload_n_operands; i++)
5537 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5538 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5539 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5540 return 0;
5542 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5543 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5544 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5546 case RELOAD_FOR_INSN:
5547 /* These conflict with other outputs with RELOAD_OTHER. So
5548 we need only check for output addresses. */
5550 opnum = reload_n_operands;
5552 /* ... fall through ... */
5554 case RELOAD_FOR_OUTPUT:
5555 case RELOAD_FOR_OUTPUT_ADDRESS:
5556 case RELOAD_FOR_OUTADDR_ADDRESS:
5557 /* We already know these can't conflict with a later output. So the
5558 only thing to check are later output addresses.
5559 Note that multiple output operands are emitted in reverse order,
5560 so the conflicting ones are those with lower indices. */
5561 for (i = 0; i < opnum; i++)
5562 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5563 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5564 return 0;
5566 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5567 could be killed if the register is also used by reload with type
5568 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5569 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5570 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5571 return 0;
5573 return 1;
5575 default:
5576 gcc_unreachable ();
5580 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5581 every register in REG. */
5583 static bool
5584 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5586 unsigned int i;
5588 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5589 if (!reload_reg_reaches_end_p (i, reloadnum))
5590 return false;
5591 return true;
5595 /* Returns whether R1 and R2 are uniquely chained: the value of one
5596 is used by the other, and that value is not used by any other
5597 reload for this insn. This is used to partially undo the decision
5598 made in find_reloads when in the case of multiple
5599 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5600 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5601 reloads. This code tries to avoid the conflict created by that
5602 change. It might be cleaner to explicitly keep track of which
5603 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5604 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5605 this after the fact. */
5606 static bool
5607 reloads_unique_chain_p (int r1, int r2)
5609 int i;
5611 /* We only check input reloads. */
5612 if (! rld[r1].in || ! rld[r2].in)
5613 return false;
5615 /* Avoid anything with output reloads. */
5616 if (rld[r1].out || rld[r2].out)
5617 return false;
5619 /* "chained" means one reload is a component of the other reload,
5620 not the same as the other reload. */
5621 if (rld[r1].opnum != rld[r2].opnum
5622 || rtx_equal_p (rld[r1].in, rld[r2].in)
5623 || rld[r1].optional || rld[r2].optional
5624 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5625 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5626 return false;
5628 /* The following loop assumes that r1 is the reload that feeds r2. */
5629 if (r1 > r2)
5631 int tmp = r2;
5632 r2 = r1;
5633 r1 = tmp;
5636 for (i = 0; i < n_reloads; i ++)
5637 /* Look for input reloads that aren't our two */
5638 if (i != r1 && i != r2 && rld[i].in)
5640 /* If our reload is mentioned at all, it isn't a simple chain. */
5641 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5642 return false;
5644 return true;
5647 /* The recursive function change all occurrences of WHAT in *WHERE
5648 to REPL. */
5649 static void
5650 substitute (rtx *where, const_rtx what, rtx repl)
5652 const char *fmt;
5653 int i;
5654 enum rtx_code code;
5656 if (*where == 0)
5657 return;
5659 if (*where == what || rtx_equal_p (*where, what))
5661 /* Record the location of the changed rtx. */
5662 substitute_stack.safe_push (where);
5663 *where = repl;
5664 return;
5667 code = GET_CODE (*where);
5668 fmt = GET_RTX_FORMAT (code);
5669 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5671 if (fmt[i] == 'E')
5673 int j;
5675 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5676 substitute (&XVECEXP (*where, i, j), what, repl);
5678 else if (fmt[i] == 'e')
5679 substitute (&XEXP (*where, i), what, repl);
5683 /* The function returns TRUE if chain of reload R1 and R2 (in any
5684 order) can be evaluated without usage of intermediate register for
5685 the reload containing another reload. It is important to see
5686 gen_reload to understand what the function is trying to do. As an
5687 example, let us have reload chain
5689 r2: const
5690 r1: <something> + const
5692 and reload R2 got reload reg HR. The function returns true if
5693 there is a correct insn HR = HR + <something>. Otherwise,
5694 gen_reload will use intermediate register (and this is the reload
5695 reg for R1) to reload <something>.
5697 We need this function to find a conflict for chain reloads. In our
5698 example, if HR = HR + <something> is incorrect insn, then we cannot
5699 use HR as a reload register for R2. If we do use it then we get a
5700 wrong code:
5702 HR = const
5703 HR = <something>
5704 HR = HR + HR
5707 static bool
5708 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5710 /* Assume other cases in gen_reload are not possible for
5711 chain reloads or do need an intermediate hard registers. */
5712 bool result = true;
5713 int regno, n, code;
5714 rtx out, in;
5715 rtx_insn *insn;
5716 rtx_insn *last = get_last_insn ();
5718 /* Make r2 a component of r1. */
5719 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5721 n = r1;
5722 r1 = r2;
5723 r2 = n;
5725 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5726 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5727 gcc_assert (regno >= 0);
5728 out = gen_rtx_REG (rld[r1].mode, regno);
5729 in = rld[r1].in;
5730 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5732 /* If IN is a paradoxical SUBREG, remove it and try to put the
5733 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5734 strip_paradoxical_subreg (&in, &out);
5736 if (GET_CODE (in) == PLUS
5737 && (REG_P (XEXP (in, 0))
5738 || GET_CODE (XEXP (in, 0)) == SUBREG
5739 || MEM_P (XEXP (in, 0)))
5740 && (REG_P (XEXP (in, 1))
5741 || GET_CODE (XEXP (in, 1)) == SUBREG
5742 || CONSTANT_P (XEXP (in, 1))
5743 || MEM_P (XEXP (in, 1))))
5745 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5746 code = recog_memoized (insn);
5747 result = false;
5749 if (code >= 0)
5751 extract_insn (insn);
5752 /* We want constrain operands to treat this insn strictly in
5753 its validity determination, i.e., the way it would after
5754 reload has completed. */
5755 result = constrain_operands (1, get_enabled_alternatives (insn));
5758 delete_insns_since (last);
5761 /* Restore the original value at each changed address within R1. */
5762 while (!substitute_stack.is_empty ())
5764 rtx *where = substitute_stack.pop ();
5765 *where = rld[r2].in;
5768 return result;
5771 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5772 Return 0 otherwise.
5774 This function uses the same algorithm as reload_reg_free_p above. */
5776 static int
5777 reloads_conflict (int r1, int r2)
5779 enum reload_type r1_type = rld[r1].when_needed;
5780 enum reload_type r2_type = rld[r2].when_needed;
5781 int r1_opnum = rld[r1].opnum;
5782 int r2_opnum = rld[r2].opnum;
5784 /* RELOAD_OTHER conflicts with everything. */
5785 if (r2_type == RELOAD_OTHER)
5786 return 1;
5788 /* Otherwise, check conflicts differently for each type. */
5790 switch (r1_type)
5792 case RELOAD_FOR_INPUT:
5793 return (r2_type == RELOAD_FOR_INSN
5794 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5795 || r2_type == RELOAD_FOR_OPADDR_ADDR
5796 || r2_type == RELOAD_FOR_INPUT
5797 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5798 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5799 && r2_opnum > r1_opnum));
5801 case RELOAD_FOR_INPUT_ADDRESS:
5802 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5803 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5805 case RELOAD_FOR_INPADDR_ADDRESS:
5806 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5807 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5809 case RELOAD_FOR_OUTPUT_ADDRESS:
5810 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5811 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5813 case RELOAD_FOR_OUTADDR_ADDRESS:
5814 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5815 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5817 case RELOAD_FOR_OPERAND_ADDRESS:
5818 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5819 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5820 && (!reloads_unique_chain_p (r1, r2)
5821 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5823 case RELOAD_FOR_OPADDR_ADDR:
5824 return (r2_type == RELOAD_FOR_INPUT
5825 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5827 case RELOAD_FOR_OUTPUT:
5828 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5829 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5830 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5831 && r2_opnum >= r1_opnum));
5833 case RELOAD_FOR_INSN:
5834 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5835 || r2_type == RELOAD_FOR_INSN
5836 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5838 case RELOAD_FOR_OTHER_ADDRESS:
5839 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5841 case RELOAD_OTHER:
5842 return 1;
5844 default:
5845 gcc_unreachable ();
5849 /* Indexed by reload number, 1 if incoming value
5850 inherited from previous insns. */
5851 static char reload_inherited[MAX_RELOADS];
5853 /* For an inherited reload, this is the insn the reload was inherited from,
5854 if we know it. Otherwise, this is 0. */
5855 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5857 /* If nonzero, this is a place to get the value of the reload,
5858 rather than using reload_in. */
5859 static rtx reload_override_in[MAX_RELOADS];
5861 /* For each reload, the hard register number of the register used,
5862 or -1 if we did not need a register for this reload. */
5863 static int reload_spill_index[MAX_RELOADS];
5865 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5866 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5868 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5869 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5871 /* Subroutine of free_for_value_p, used to check a single register.
5872 START_REGNO is the starting regno of the full reload register
5873 (possibly comprising multiple hard registers) that we are considering. */
5875 static int
5876 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5877 enum reload_type type, rtx value, rtx out,
5878 int reloadnum, int ignore_address_reloads)
5880 int time1;
5881 /* Set if we see an input reload that must not share its reload register
5882 with any new earlyclobber, but might otherwise share the reload
5883 register with an output or input-output reload. */
5884 int check_earlyclobber = 0;
5885 int i;
5886 int copy = 0;
5888 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5889 return 0;
5891 if (out == const0_rtx)
5893 copy = 1;
5894 out = NULL_RTX;
5897 /* We use some pseudo 'time' value to check if the lifetimes of the
5898 new register use would overlap with the one of a previous reload
5899 that is not read-only or uses a different value.
5900 The 'time' used doesn't have to be linear in any shape or form, just
5901 monotonic.
5902 Some reload types use different 'buckets' for each operand.
5903 So there are MAX_RECOG_OPERANDS different time values for each
5904 such reload type.
5905 We compute TIME1 as the time when the register for the prospective
5906 new reload ceases to be live, and TIME2 for each existing
5907 reload as the time when that the reload register of that reload
5908 becomes live.
5909 Where there is little to be gained by exact lifetime calculations,
5910 we just make conservative assumptions, i.e. a longer lifetime;
5911 this is done in the 'default:' cases. */
5912 switch (type)
5914 case RELOAD_FOR_OTHER_ADDRESS:
5915 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5916 time1 = copy ? 0 : 1;
5917 break;
5918 case RELOAD_OTHER:
5919 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5920 break;
5921 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5922 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5923 respectively, to the time values for these, we get distinct time
5924 values. To get distinct time values for each operand, we have to
5925 multiply opnum by at least three. We round that up to four because
5926 multiply by four is often cheaper. */
5927 case RELOAD_FOR_INPADDR_ADDRESS:
5928 time1 = opnum * 4 + 2;
5929 break;
5930 case RELOAD_FOR_INPUT_ADDRESS:
5931 time1 = opnum * 4 + 3;
5932 break;
5933 case RELOAD_FOR_INPUT:
5934 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5935 executes (inclusive). */
5936 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5937 break;
5938 case RELOAD_FOR_OPADDR_ADDR:
5939 /* opnum * 4 + 4
5940 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5941 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5942 break;
5943 case RELOAD_FOR_OPERAND_ADDRESS:
5944 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5945 is executed. */
5946 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5947 break;
5948 case RELOAD_FOR_OUTADDR_ADDRESS:
5949 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5950 break;
5951 case RELOAD_FOR_OUTPUT_ADDRESS:
5952 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5953 break;
5954 default:
5955 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5958 for (i = 0; i < n_reloads; i++)
5960 rtx reg = rld[i].reg_rtx;
5961 if (reg && REG_P (reg)
5962 && ((unsigned) regno - true_regnum (reg)
5963 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5964 && i != reloadnum)
5966 rtx other_input = rld[i].in;
5968 /* If the other reload loads the same input value, that
5969 will not cause a conflict only if it's loading it into
5970 the same register. */
5971 if (true_regnum (reg) != start_regno)
5972 other_input = NULL_RTX;
5973 if (! other_input || ! rtx_equal_p (other_input, value)
5974 || rld[i].out || out)
5976 int time2;
5977 switch (rld[i].when_needed)
5979 case RELOAD_FOR_OTHER_ADDRESS:
5980 time2 = 0;
5981 break;
5982 case RELOAD_FOR_INPADDR_ADDRESS:
5983 /* find_reloads makes sure that a
5984 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5985 by at most one - the first -
5986 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5987 address reload is inherited, the address address reload
5988 goes away, so we can ignore this conflict. */
5989 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5990 && ignore_address_reloads
5991 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5992 Then the address address is still needed to store
5993 back the new address. */
5994 && ! rld[reloadnum].out)
5995 continue;
5996 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5997 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5998 reloads go away. */
5999 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
6000 && ignore_address_reloads
6001 /* Unless we are reloading an auto_inc expression. */
6002 && ! rld[reloadnum].out)
6003 continue;
6004 time2 = rld[i].opnum * 4 + 2;
6005 break;
6006 case RELOAD_FOR_INPUT_ADDRESS:
6007 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
6008 && ignore_address_reloads
6009 && ! rld[reloadnum].out)
6010 continue;
6011 time2 = rld[i].opnum * 4 + 3;
6012 break;
6013 case RELOAD_FOR_INPUT:
6014 time2 = rld[i].opnum * 4 + 4;
6015 check_earlyclobber = 1;
6016 break;
6017 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
6018 == MAX_RECOG_OPERAND * 4 */
6019 case RELOAD_FOR_OPADDR_ADDR:
6020 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
6021 && ignore_address_reloads
6022 && ! rld[reloadnum].out)
6023 continue;
6024 time2 = MAX_RECOG_OPERANDS * 4 + 1;
6025 break;
6026 case RELOAD_FOR_OPERAND_ADDRESS:
6027 time2 = MAX_RECOG_OPERANDS * 4 + 2;
6028 check_earlyclobber = 1;
6029 break;
6030 case RELOAD_FOR_INSN:
6031 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6032 break;
6033 case RELOAD_FOR_OUTPUT:
6034 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6035 instruction is executed. */
6036 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6037 break;
6038 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6039 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6040 value. */
6041 case RELOAD_FOR_OUTADDR_ADDRESS:
6042 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6043 && ignore_address_reloads
6044 && ! rld[reloadnum].out)
6045 continue;
6046 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6047 break;
6048 case RELOAD_FOR_OUTPUT_ADDRESS:
6049 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6050 break;
6051 case RELOAD_OTHER:
6052 /* If there is no conflict in the input part, handle this
6053 like an output reload. */
6054 if (! rld[i].in || rtx_equal_p (other_input, value))
6056 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6057 /* Earlyclobbered outputs must conflict with inputs. */
6058 if (earlyclobber_operand_p (rld[i].out))
6059 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6061 break;
6063 time2 = 1;
6064 /* RELOAD_OTHER might be live beyond instruction execution,
6065 but this is not obvious when we set time2 = 1. So check
6066 here if there might be a problem with the new reload
6067 clobbering the register used by the RELOAD_OTHER. */
6068 if (out)
6069 return 0;
6070 break;
6071 default:
6072 return 0;
6074 if ((time1 >= time2
6075 && (! rld[i].in || rld[i].out
6076 || ! rtx_equal_p (other_input, value)))
6077 || (out && rld[reloadnum].out_reg
6078 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6079 return 0;
6084 /* Earlyclobbered outputs must conflict with inputs. */
6085 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6086 return 0;
6088 return 1;
6091 /* Return 1 if the value in reload reg REGNO, as used by a reload
6092 needed for the part of the insn specified by OPNUM and TYPE,
6093 may be used to load VALUE into it.
6095 MODE is the mode in which the register is used, this is needed to
6096 determine how many hard regs to test.
6098 Other read-only reloads with the same value do not conflict
6099 unless OUT is nonzero and these other reloads have to live while
6100 output reloads live.
6101 If OUT is CONST0_RTX, this is a special case: it means that the
6102 test should not be for using register REGNO as reload register, but
6103 for copying from register REGNO into the reload register.
6105 RELOADNUM is the number of the reload we want to load this value for;
6106 a reload does not conflict with itself.
6108 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6109 reloads that load an address for the very reload we are considering.
6111 The caller has to make sure that there is no conflict with the return
6112 register. */
6114 static int
6115 free_for_value_p (int regno, machine_mode mode, int opnum,
6116 enum reload_type type, rtx value, rtx out, int reloadnum,
6117 int ignore_address_reloads)
6119 int nregs = hard_regno_nregs[regno][mode];
6120 while (nregs-- > 0)
6121 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6122 value, out, reloadnum,
6123 ignore_address_reloads))
6124 return 0;
6125 return 1;
6128 /* Return nonzero if the rtx X is invariant over the current function. */
6129 /* ??? Actually, the places where we use this expect exactly what is
6130 tested here, and not everything that is function invariant. In
6131 particular, the frame pointer and arg pointer are special cased;
6132 pic_offset_table_rtx is not, and we must not spill these things to
6133 memory. */
6136 function_invariant_p (const_rtx x)
6138 if (CONSTANT_P (x))
6139 return 1;
6140 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6141 return 1;
6142 if (GET_CODE (x) == PLUS
6143 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6144 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6145 return 1;
6146 return 0;
6149 /* Determine whether the reload reg X overlaps any rtx'es used for
6150 overriding inheritance. Return nonzero if so. */
6152 static int
6153 conflicts_with_override (rtx x)
6155 int i;
6156 for (i = 0; i < n_reloads; i++)
6157 if (reload_override_in[i]
6158 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6159 return 1;
6160 return 0;
6163 /* Give an error message saying we failed to find a reload for INSN,
6164 and clear out reload R. */
6165 static void
6166 failed_reload (rtx_insn *insn, int r)
6168 if (asm_noperands (PATTERN (insn)) < 0)
6169 /* It's the compiler's fault. */
6170 fatal_insn ("could not find a spill register", insn);
6172 /* It's the user's fault; the operand's mode and constraint
6173 don't match. Disable this reload so we don't crash in final. */
6174 error_for_asm (insn,
6175 "%<asm%> operand constraint incompatible with operand size");
6176 rld[r].in = 0;
6177 rld[r].out = 0;
6178 rld[r].reg_rtx = 0;
6179 rld[r].optional = 1;
6180 rld[r].secondary_p = 1;
6183 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6184 for reload R. If it's valid, get an rtx for it. Return nonzero if
6185 successful. */
6186 static int
6187 set_reload_reg (int i, int r)
6189 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6190 parameter. */
6191 int regno ATTRIBUTE_UNUSED;
6192 rtx reg = spill_reg_rtx[i];
6194 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6195 spill_reg_rtx[i] = reg
6196 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6198 regno = true_regnum (reg);
6200 /* Detect when the reload reg can't hold the reload mode.
6201 This used to be one `if', but Sequent compiler can't handle that. */
6202 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6204 machine_mode test_mode = VOIDmode;
6205 if (rld[r].in)
6206 test_mode = GET_MODE (rld[r].in);
6207 /* If rld[r].in has VOIDmode, it means we will load it
6208 in whatever mode the reload reg has: to wit, rld[r].mode.
6209 We have already tested that for validity. */
6210 /* Aside from that, we need to test that the expressions
6211 to reload from or into have modes which are valid for this
6212 reload register. Otherwise the reload insns would be invalid. */
6213 if (! (rld[r].in != 0 && test_mode != VOIDmode
6214 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6215 if (! (rld[r].out != 0
6216 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6218 /* The reg is OK. */
6219 last_spill_reg = i;
6221 /* Mark as in use for this insn the reload regs we use
6222 for this. */
6223 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6224 rld[r].when_needed, rld[r].mode);
6226 rld[r].reg_rtx = reg;
6227 reload_spill_index[r] = spill_regs[i];
6228 return 1;
6231 return 0;
6234 /* Find a spill register to use as a reload register for reload R.
6235 LAST_RELOAD is nonzero if this is the last reload for the insn being
6236 processed.
6238 Set rld[R].reg_rtx to the register allocated.
6240 We return 1 if successful, or 0 if we couldn't find a spill reg and
6241 we didn't change anything. */
6243 static int
6244 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6245 int last_reload)
6247 int i, pass, count;
6249 /* If we put this reload ahead, thinking it is a group,
6250 then insist on finding a group. Otherwise we can grab a
6251 reg that some other reload needs.
6252 (That can happen when we have a 68000 DATA_OR_FP_REG
6253 which is a group of data regs or one fp reg.)
6254 We need not be so restrictive if there are no more reloads
6255 for this insn.
6257 ??? Really it would be nicer to have smarter handling
6258 for that kind of reg class, where a problem like this is normal.
6259 Perhaps those classes should be avoided for reloading
6260 by use of more alternatives. */
6262 int force_group = rld[r].nregs > 1 && ! last_reload;
6264 /* If we want a single register and haven't yet found one,
6265 take any reg in the right class and not in use.
6266 If we want a consecutive group, here is where we look for it.
6268 We use three passes so we can first look for reload regs to
6269 reuse, which are already in use for other reloads in this insn,
6270 and only then use additional registers which are not "bad", then
6271 finally any register.
6273 I think that maximizing reuse is needed to make sure we don't
6274 run out of reload regs. Suppose we have three reloads, and
6275 reloads A and B can share regs. These need two regs.
6276 Suppose A and B are given different regs.
6277 That leaves none for C. */
6278 for (pass = 0; pass < 3; pass++)
6280 /* I is the index in spill_regs.
6281 We advance it round-robin between insns to use all spill regs
6282 equally, so that inherited reloads have a chance
6283 of leapfrogging each other. */
6285 i = last_spill_reg;
6287 for (count = 0; count < n_spills; count++)
6289 int rclass = (int) rld[r].rclass;
6290 int regnum;
6292 i++;
6293 if (i >= n_spills)
6294 i -= n_spills;
6295 regnum = spill_regs[i];
6297 if ((reload_reg_free_p (regnum, rld[r].opnum,
6298 rld[r].when_needed)
6299 || (rld[r].in
6300 /* We check reload_reg_used to make sure we
6301 don't clobber the return register. */
6302 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6303 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6304 rld[r].when_needed, rld[r].in,
6305 rld[r].out, r, 1)))
6306 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6307 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6308 /* Look first for regs to share, then for unshared. But
6309 don't share regs used for inherited reloads; they are
6310 the ones we want to preserve. */
6311 && (pass
6312 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6313 regnum)
6314 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6315 regnum))))
6317 int nr = hard_regno_nregs[regnum][rld[r].mode];
6319 /* During the second pass we want to avoid reload registers
6320 which are "bad" for this reload. */
6321 if (pass == 1
6322 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6323 continue;
6325 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6326 (on 68000) got us two FP regs. If NR is 1,
6327 we would reject both of them. */
6328 if (force_group)
6329 nr = rld[r].nregs;
6330 /* If we need only one reg, we have already won. */
6331 if (nr == 1)
6333 /* But reject a single reg if we demand a group. */
6334 if (force_group)
6335 continue;
6336 break;
6338 /* Otherwise check that as many consecutive regs as we need
6339 are available here. */
6340 while (nr > 1)
6342 int regno = regnum + nr - 1;
6343 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6344 && spill_reg_order[regno] >= 0
6345 && reload_reg_free_p (regno, rld[r].opnum,
6346 rld[r].when_needed)))
6347 break;
6348 nr--;
6350 if (nr == 1)
6351 break;
6355 /* If we found something on the current pass, omit later passes. */
6356 if (count < n_spills)
6357 break;
6360 /* We should have found a spill register by now. */
6361 if (count >= n_spills)
6362 return 0;
6364 /* I is the index in SPILL_REG_RTX of the reload register we are to
6365 allocate. Get an rtx for it and find its register number. */
6367 return set_reload_reg (i, r);
6370 /* Initialize all the tables needed to allocate reload registers.
6371 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6372 is the array we use to restore the reg_rtx field for every reload. */
6374 static void
6375 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6377 int i;
6379 for (i = 0; i < n_reloads; i++)
6380 rld[i].reg_rtx = save_reload_reg_rtx[i];
6382 memset (reload_inherited, 0, MAX_RELOADS);
6383 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6384 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6386 CLEAR_HARD_REG_SET (reload_reg_used);
6387 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6388 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6389 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6390 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6391 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6393 CLEAR_HARD_REG_SET (reg_used_in_insn);
6395 HARD_REG_SET tmp;
6396 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6397 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6398 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6399 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6400 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6401 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6404 for (i = 0; i < reload_n_operands; i++)
6406 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6407 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6408 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6409 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6410 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6411 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6414 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6416 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6418 for (i = 0; i < n_reloads; i++)
6419 /* If we have already decided to use a certain register,
6420 don't use it in another way. */
6421 if (rld[i].reg_rtx)
6422 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6423 rld[i].when_needed, rld[i].mode);
6426 #ifdef SECONDARY_MEMORY_NEEDED
6427 /* If X is not a subreg, return it unmodified. If it is a subreg,
6428 look up whether we made a replacement for the SUBREG_REG. Return
6429 either the replacement or the SUBREG_REG. */
6431 static rtx
6432 replaced_subreg (rtx x)
6434 if (GET_CODE (x) == SUBREG)
6435 return find_replacement (&SUBREG_REG (x));
6436 return x;
6438 #endif
6440 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6441 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6442 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6443 otherwise it is NULL. */
6445 static int
6446 compute_reload_subreg_offset (machine_mode outermode,
6447 rtx subreg,
6448 machine_mode innermode)
6450 int outer_offset;
6451 machine_mode middlemode;
6453 if (!subreg)
6454 return subreg_lowpart_offset (outermode, innermode);
6456 outer_offset = SUBREG_BYTE (subreg);
6457 middlemode = GET_MODE (SUBREG_REG (subreg));
6459 /* If SUBREG is paradoxical then return the normal lowpart offset
6460 for OUTERMODE and INNERMODE. Our caller has already checked
6461 that OUTERMODE fits in INNERMODE. */
6462 if (outer_offset == 0
6463 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6464 return subreg_lowpart_offset (outermode, innermode);
6466 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6467 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6468 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6471 /* Assign hard reg targets for the pseudo-registers we must reload
6472 into hard regs for this insn.
6473 Also output the instructions to copy them in and out of the hard regs.
6475 For machines with register classes, we are responsible for
6476 finding a reload reg in the proper class. */
6478 static void
6479 choose_reload_regs (struct insn_chain *chain)
6481 rtx_insn *insn = chain->insn;
6482 int i, j;
6483 unsigned int max_group_size = 1;
6484 enum reg_class group_class = NO_REGS;
6485 int pass, win, inheritance;
6487 rtx save_reload_reg_rtx[MAX_RELOADS];
6489 /* In order to be certain of getting the registers we need,
6490 we must sort the reloads into order of increasing register class.
6491 Then our grabbing of reload registers will parallel the process
6492 that provided the reload registers.
6494 Also note whether any of the reloads wants a consecutive group of regs.
6495 If so, record the maximum size of the group desired and what
6496 register class contains all the groups needed by this insn. */
6498 for (j = 0; j < n_reloads; j++)
6500 reload_order[j] = j;
6501 if (rld[j].reg_rtx != NULL_RTX)
6503 gcc_assert (REG_P (rld[j].reg_rtx)
6504 && HARD_REGISTER_P (rld[j].reg_rtx));
6505 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6507 else
6508 reload_spill_index[j] = -1;
6510 if (rld[j].nregs > 1)
6512 max_group_size = MAX (rld[j].nregs, max_group_size);
6513 group_class
6514 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6517 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6520 if (n_reloads > 1)
6521 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6523 /* If -O, try first with inheritance, then turning it off.
6524 If not -O, don't do inheritance.
6525 Using inheritance when not optimizing leads to paradoxes
6526 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6527 because one side of the comparison might be inherited. */
6528 win = 0;
6529 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6531 choose_reload_regs_init (chain, save_reload_reg_rtx);
6533 /* Process the reloads in order of preference just found.
6534 Beyond this point, subregs can be found in reload_reg_rtx.
6536 This used to look for an existing reloaded home for all of the
6537 reloads, and only then perform any new reloads. But that could lose
6538 if the reloads were done out of reg-class order because a later
6539 reload with a looser constraint might have an old home in a register
6540 needed by an earlier reload with a tighter constraint.
6542 To solve this, we make two passes over the reloads, in the order
6543 described above. In the first pass we try to inherit a reload
6544 from a previous insn. If there is a later reload that needs a
6545 class that is a proper subset of the class being processed, we must
6546 also allocate a spill register during the first pass.
6548 Then make a second pass over the reloads to allocate any reloads
6549 that haven't been given registers yet. */
6551 for (j = 0; j < n_reloads; j++)
6553 int r = reload_order[j];
6554 rtx search_equiv = NULL_RTX;
6556 /* Ignore reloads that got marked inoperative. */
6557 if (rld[r].out == 0 && rld[r].in == 0
6558 && ! rld[r].secondary_p)
6559 continue;
6561 /* If find_reloads chose to use reload_in or reload_out as a reload
6562 register, we don't need to chose one. Otherwise, try even if it
6563 found one since we might save an insn if we find the value lying
6564 around.
6565 Try also when reload_in is a pseudo without a hard reg. */
6566 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6567 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6568 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6569 && !MEM_P (rld[r].in)
6570 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6571 continue;
6573 #if 0 /* No longer needed for correct operation.
6574 It might give better code, or might not; worth an experiment? */
6575 /* If this is an optional reload, we can't inherit from earlier insns
6576 until we are sure that any non-optional reloads have been allocated.
6577 The following code takes advantage of the fact that optional reloads
6578 are at the end of reload_order. */
6579 if (rld[r].optional != 0)
6580 for (i = 0; i < j; i++)
6581 if ((rld[reload_order[i]].out != 0
6582 || rld[reload_order[i]].in != 0
6583 || rld[reload_order[i]].secondary_p)
6584 && ! rld[reload_order[i]].optional
6585 && rld[reload_order[i]].reg_rtx == 0)
6586 allocate_reload_reg (chain, reload_order[i], 0);
6587 #endif
6589 /* First see if this pseudo is already available as reloaded
6590 for a previous insn. We cannot try to inherit for reloads
6591 that are smaller than the maximum number of registers needed
6592 for groups unless the register we would allocate cannot be used
6593 for the groups.
6595 We could check here to see if this is a secondary reload for
6596 an object that is already in a register of the desired class.
6597 This would avoid the need for the secondary reload register.
6598 But this is complex because we can't easily determine what
6599 objects might want to be loaded via this reload. So let a
6600 register be allocated here. In `emit_reload_insns' we suppress
6601 one of the loads in the case described above. */
6603 if (inheritance)
6605 int byte = 0;
6606 int regno = -1;
6607 machine_mode mode = VOIDmode;
6608 rtx subreg = NULL_RTX;
6610 if (rld[r].in == 0)
6612 else if (REG_P (rld[r].in))
6614 regno = REGNO (rld[r].in);
6615 mode = GET_MODE (rld[r].in);
6617 else if (REG_P (rld[r].in_reg))
6619 regno = REGNO (rld[r].in_reg);
6620 mode = GET_MODE (rld[r].in_reg);
6622 else if (GET_CODE (rld[r].in_reg) == SUBREG
6623 && REG_P (SUBREG_REG (rld[r].in_reg)))
6625 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6626 if (regno < FIRST_PSEUDO_REGISTER)
6627 regno = subreg_regno (rld[r].in_reg);
6628 else
6630 subreg = rld[r].in_reg;
6631 byte = SUBREG_BYTE (subreg);
6633 mode = GET_MODE (rld[r].in_reg);
6635 #ifdef AUTO_INC_DEC
6636 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6637 && REG_P (XEXP (rld[r].in_reg, 0)))
6639 regno = REGNO (XEXP (rld[r].in_reg, 0));
6640 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6641 rld[r].out = rld[r].in;
6643 #endif
6644 #if 0
6645 /* This won't work, since REGNO can be a pseudo reg number.
6646 Also, it takes much more hair to keep track of all the things
6647 that can invalidate an inherited reload of part of a pseudoreg. */
6648 else if (GET_CODE (rld[r].in) == SUBREG
6649 && REG_P (SUBREG_REG (rld[r].in)))
6650 regno = subreg_regno (rld[r].in);
6651 #endif
6653 if (regno >= 0
6654 && reg_last_reload_reg[regno] != 0
6655 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6656 >= GET_MODE_SIZE (mode) + byte)
6657 #ifdef CANNOT_CHANGE_MODE_CLASS
6658 /* Verify that the register it's in can be used in
6659 mode MODE. */
6660 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6661 GET_MODE (reg_last_reload_reg[regno]),
6662 mode)
6663 #endif
6666 enum reg_class rclass = rld[r].rclass, last_class;
6667 rtx last_reg = reg_last_reload_reg[regno];
6669 i = REGNO (last_reg);
6670 byte = compute_reload_subreg_offset (mode,
6671 subreg,
6672 GET_MODE (last_reg));
6673 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6674 last_class = REGNO_REG_CLASS (i);
6676 if (reg_reloaded_contents[i] == regno
6677 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6678 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6679 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6680 /* Even if we can't use this register as a reload
6681 register, we might use it for reload_override_in,
6682 if copying it to the desired class is cheap
6683 enough. */
6684 || ((register_move_cost (mode, last_class, rclass)
6685 < memory_move_cost (mode, rclass, true))
6686 && (secondary_reload_class (1, rclass, mode,
6687 last_reg)
6688 == NO_REGS)
6689 #ifdef SECONDARY_MEMORY_NEEDED
6690 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6691 mode)
6692 #endif
6695 && (rld[r].nregs == max_group_size
6696 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6698 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6699 rld[r].when_needed, rld[r].in,
6700 const0_rtx, r, 1))
6702 /* If a group is needed, verify that all the subsequent
6703 registers still have their values intact. */
6704 int nr = hard_regno_nregs[i][rld[r].mode];
6705 int k;
6707 for (k = 1; k < nr; k++)
6708 if (reg_reloaded_contents[i + k] != regno
6709 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6710 break;
6712 if (k == nr)
6714 int i1;
6715 int bad_for_class;
6717 last_reg = (GET_MODE (last_reg) == mode
6718 ? last_reg : gen_rtx_REG (mode, i));
6720 bad_for_class = 0;
6721 for (k = 0; k < nr; k++)
6722 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6723 i+k);
6725 /* We found a register that contains the
6726 value we need. If this register is the
6727 same as an `earlyclobber' operand of the
6728 current insn, just mark it as a place to
6729 reload from since we can't use it as the
6730 reload register itself. */
6732 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6733 if (reg_overlap_mentioned_for_reload_p
6734 (reg_last_reload_reg[regno],
6735 reload_earlyclobbers[i1]))
6736 break;
6738 if (i1 != n_earlyclobbers
6739 || ! (free_for_value_p (i, rld[r].mode,
6740 rld[r].opnum,
6741 rld[r].when_needed, rld[r].in,
6742 rld[r].out, r, 1))
6743 /* Don't use it if we'd clobber a pseudo reg. */
6744 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6745 && rld[r].out
6746 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6747 /* Don't clobber the frame pointer. */
6748 || (i == HARD_FRAME_POINTER_REGNUM
6749 && frame_pointer_needed
6750 && rld[r].out)
6751 /* Don't really use the inherited spill reg
6752 if we need it wider than we've got it. */
6753 || (GET_MODE_SIZE (rld[r].mode)
6754 > GET_MODE_SIZE (mode))
6755 || bad_for_class
6757 /* If find_reloads chose reload_out as reload
6758 register, stay with it - that leaves the
6759 inherited register for subsequent reloads. */
6760 || (rld[r].out && rld[r].reg_rtx
6761 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6763 if (! rld[r].optional)
6765 reload_override_in[r] = last_reg;
6766 reload_inheritance_insn[r]
6767 = reg_reloaded_insn[i];
6770 else
6772 int k;
6773 /* We can use this as a reload reg. */
6774 /* Mark the register as in use for this part of
6775 the insn. */
6776 mark_reload_reg_in_use (i,
6777 rld[r].opnum,
6778 rld[r].when_needed,
6779 rld[r].mode);
6780 rld[r].reg_rtx = last_reg;
6781 reload_inherited[r] = 1;
6782 reload_inheritance_insn[r]
6783 = reg_reloaded_insn[i];
6784 reload_spill_index[r] = i;
6785 for (k = 0; k < nr; k++)
6786 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6787 i + k);
6794 /* Here's another way to see if the value is already lying around. */
6795 if (inheritance
6796 && rld[r].in != 0
6797 && ! reload_inherited[r]
6798 && rld[r].out == 0
6799 && (CONSTANT_P (rld[r].in)
6800 || GET_CODE (rld[r].in) == PLUS
6801 || REG_P (rld[r].in)
6802 || MEM_P (rld[r].in))
6803 && (rld[r].nregs == max_group_size
6804 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6805 search_equiv = rld[r].in;
6807 if (search_equiv)
6809 rtx equiv
6810 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6811 -1, NULL, 0, rld[r].mode);
6812 int regno = 0;
6814 if (equiv != 0)
6816 if (REG_P (equiv))
6817 regno = REGNO (equiv);
6818 else
6820 /* This must be a SUBREG of a hard register.
6821 Make a new REG since this might be used in an
6822 address and not all machines support SUBREGs
6823 there. */
6824 gcc_assert (GET_CODE (equiv) == SUBREG);
6825 regno = subreg_regno (equiv);
6826 equiv = gen_rtx_REG (rld[r].mode, regno);
6827 /* If we choose EQUIV as the reload register, but the
6828 loop below decides to cancel the inheritance, we'll
6829 end up reloading EQUIV in rld[r].mode, not the mode
6830 it had originally. That isn't safe when EQUIV isn't
6831 available as a spill register since its value might
6832 still be live at this point. */
6833 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6834 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6835 equiv = 0;
6839 /* If we found a spill reg, reject it unless it is free
6840 and of the desired class. */
6841 if (equiv != 0)
6843 int regs_used = 0;
6844 int bad_for_class = 0;
6845 int max_regno = regno + rld[r].nregs;
6847 for (i = regno; i < max_regno; i++)
6849 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6851 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6855 if ((regs_used
6856 && ! free_for_value_p (regno, rld[r].mode,
6857 rld[r].opnum, rld[r].when_needed,
6858 rld[r].in, rld[r].out, r, 1))
6859 || bad_for_class)
6860 equiv = 0;
6863 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6864 equiv = 0;
6866 /* We found a register that contains the value we need.
6867 If this register is the same as an `earlyclobber' operand
6868 of the current insn, just mark it as a place to reload from
6869 since we can't use it as the reload register itself. */
6871 if (equiv != 0)
6872 for (i = 0; i < n_earlyclobbers; i++)
6873 if (reg_overlap_mentioned_for_reload_p (equiv,
6874 reload_earlyclobbers[i]))
6876 if (! rld[r].optional)
6877 reload_override_in[r] = equiv;
6878 equiv = 0;
6879 break;
6882 /* If the equiv register we have found is explicitly clobbered
6883 in the current insn, it depends on the reload type if we
6884 can use it, use it for reload_override_in, or not at all.
6885 In particular, we then can't use EQUIV for a
6886 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6888 if (equiv != 0)
6890 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6891 switch (rld[r].when_needed)
6893 case RELOAD_FOR_OTHER_ADDRESS:
6894 case RELOAD_FOR_INPADDR_ADDRESS:
6895 case RELOAD_FOR_INPUT_ADDRESS:
6896 case RELOAD_FOR_OPADDR_ADDR:
6897 break;
6898 case RELOAD_OTHER:
6899 case RELOAD_FOR_INPUT:
6900 case RELOAD_FOR_OPERAND_ADDRESS:
6901 if (! rld[r].optional)
6902 reload_override_in[r] = equiv;
6903 /* Fall through. */
6904 default:
6905 equiv = 0;
6906 break;
6908 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6909 switch (rld[r].when_needed)
6911 case RELOAD_FOR_OTHER_ADDRESS:
6912 case RELOAD_FOR_INPADDR_ADDRESS:
6913 case RELOAD_FOR_INPUT_ADDRESS:
6914 case RELOAD_FOR_OPADDR_ADDR:
6915 case RELOAD_FOR_OPERAND_ADDRESS:
6916 case RELOAD_FOR_INPUT:
6917 break;
6918 case RELOAD_OTHER:
6919 if (! rld[r].optional)
6920 reload_override_in[r] = equiv;
6921 /* Fall through. */
6922 default:
6923 equiv = 0;
6924 break;
6928 /* If we found an equivalent reg, say no code need be generated
6929 to load it, and use it as our reload reg. */
6930 if (equiv != 0
6931 && (regno != HARD_FRAME_POINTER_REGNUM
6932 || !frame_pointer_needed))
6934 int nr = hard_regno_nregs[regno][rld[r].mode];
6935 int k;
6936 rld[r].reg_rtx = equiv;
6937 reload_spill_index[r] = regno;
6938 reload_inherited[r] = 1;
6940 /* If reg_reloaded_valid is not set for this register,
6941 there might be a stale spill_reg_store lying around.
6942 We must clear it, since otherwise emit_reload_insns
6943 might delete the store. */
6944 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6945 spill_reg_store[regno] = NULL;
6946 /* If any of the hard registers in EQUIV are spill
6947 registers, mark them as in use for this insn. */
6948 for (k = 0; k < nr; k++)
6950 i = spill_reg_order[regno + k];
6951 if (i >= 0)
6953 mark_reload_reg_in_use (regno, rld[r].opnum,
6954 rld[r].when_needed,
6955 rld[r].mode);
6956 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6957 regno + k);
6963 /* If we found a register to use already, or if this is an optional
6964 reload, we are done. */
6965 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6966 continue;
6968 #if 0
6969 /* No longer needed for correct operation. Might or might
6970 not give better code on the average. Want to experiment? */
6972 /* See if there is a later reload that has a class different from our
6973 class that intersects our class or that requires less register
6974 than our reload. If so, we must allocate a register to this
6975 reload now, since that reload might inherit a previous reload
6976 and take the only available register in our class. Don't do this
6977 for optional reloads since they will force all previous reloads
6978 to be allocated. Also don't do this for reloads that have been
6979 turned off. */
6981 for (i = j + 1; i < n_reloads; i++)
6983 int s = reload_order[i];
6985 if ((rld[s].in == 0 && rld[s].out == 0
6986 && ! rld[s].secondary_p)
6987 || rld[s].optional)
6988 continue;
6990 if ((rld[s].rclass != rld[r].rclass
6991 && reg_classes_intersect_p (rld[r].rclass,
6992 rld[s].rclass))
6993 || rld[s].nregs < rld[r].nregs)
6994 break;
6997 if (i == n_reloads)
6998 continue;
7000 allocate_reload_reg (chain, r, j == n_reloads - 1);
7001 #endif
7004 /* Now allocate reload registers for anything non-optional that
7005 didn't get one yet. */
7006 for (j = 0; j < n_reloads; j++)
7008 int r = reload_order[j];
7010 /* Ignore reloads that got marked inoperative. */
7011 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
7012 continue;
7014 /* Skip reloads that already have a register allocated or are
7015 optional. */
7016 if (rld[r].reg_rtx != 0 || rld[r].optional)
7017 continue;
7019 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
7020 break;
7023 /* If that loop got all the way, we have won. */
7024 if (j == n_reloads)
7026 win = 1;
7027 break;
7030 /* Loop around and try without any inheritance. */
7033 if (! win)
7035 /* First undo everything done by the failed attempt
7036 to allocate with inheritance. */
7037 choose_reload_regs_init (chain, save_reload_reg_rtx);
7039 /* Some sanity tests to verify that the reloads found in the first
7040 pass are identical to the ones we have now. */
7041 gcc_assert (chain->n_reloads == n_reloads);
7043 for (i = 0; i < n_reloads; i++)
7045 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7046 continue;
7047 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7048 for (j = 0; j < n_spills; j++)
7049 if (spill_regs[j] == chain->rld[i].regno)
7050 if (! set_reload_reg (j, i))
7051 failed_reload (chain->insn, i);
7055 /* If we thought we could inherit a reload, because it seemed that
7056 nothing else wanted the same reload register earlier in the insn,
7057 verify that assumption, now that all reloads have been assigned.
7058 Likewise for reloads where reload_override_in has been set. */
7060 /* If doing expensive optimizations, do one preliminary pass that doesn't
7061 cancel any inheritance, but removes reloads that have been needed only
7062 for reloads that we know can be inherited. */
7063 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7065 for (j = 0; j < n_reloads; j++)
7067 int r = reload_order[j];
7068 rtx check_reg;
7069 #ifdef SECONDARY_MEMORY_NEEDED
7070 rtx tem;
7071 #endif
7072 if (reload_inherited[r] && rld[r].reg_rtx)
7073 check_reg = rld[r].reg_rtx;
7074 else if (reload_override_in[r]
7075 && (REG_P (reload_override_in[r])
7076 || GET_CODE (reload_override_in[r]) == SUBREG))
7077 check_reg = reload_override_in[r];
7078 else
7079 continue;
7080 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7081 rld[r].opnum, rld[r].when_needed, rld[r].in,
7082 (reload_inherited[r]
7083 ? rld[r].out : const0_rtx),
7084 r, 1))
7086 if (pass)
7087 continue;
7088 reload_inherited[r] = 0;
7089 reload_override_in[r] = 0;
7091 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7092 reload_override_in, then we do not need its related
7093 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7094 likewise for other reload types.
7095 We handle this by removing a reload when its only replacement
7096 is mentioned in reload_in of the reload we are going to inherit.
7097 A special case are auto_inc expressions; even if the input is
7098 inherited, we still need the address for the output. We can
7099 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7100 If we succeeded removing some reload and we are doing a preliminary
7101 pass just to remove such reloads, make another pass, since the
7102 removal of one reload might allow us to inherit another one. */
7103 else if (rld[r].in
7104 && rld[r].out != rld[r].in
7105 && remove_address_replacements (rld[r].in))
7107 if (pass)
7108 pass = 2;
7110 #ifdef SECONDARY_MEMORY_NEEDED
7111 /* If we needed a memory location for the reload, we also have to
7112 remove its related reloads. */
7113 else if (rld[r].in
7114 && rld[r].out != rld[r].in
7115 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7116 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7117 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7118 rld[r].rclass, rld[r].inmode)
7119 && remove_address_replacements
7120 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7121 rld[r].when_needed)))
7123 if (pass)
7124 pass = 2;
7126 #endif
7130 /* Now that reload_override_in is known valid,
7131 actually override reload_in. */
7132 for (j = 0; j < n_reloads; j++)
7133 if (reload_override_in[j])
7134 rld[j].in = reload_override_in[j];
7136 /* If this reload won't be done because it has been canceled or is
7137 optional and not inherited, clear reload_reg_rtx so other
7138 routines (such as subst_reloads) don't get confused. */
7139 for (j = 0; j < n_reloads; j++)
7140 if (rld[j].reg_rtx != 0
7141 && ((rld[j].optional && ! reload_inherited[j])
7142 || (rld[j].in == 0 && rld[j].out == 0
7143 && ! rld[j].secondary_p)))
7145 int regno = true_regnum (rld[j].reg_rtx);
7147 if (spill_reg_order[regno] >= 0)
7148 clear_reload_reg_in_use (regno, rld[j].opnum,
7149 rld[j].when_needed, rld[j].mode);
7150 rld[j].reg_rtx = 0;
7151 reload_spill_index[j] = -1;
7154 /* Record which pseudos and which spill regs have output reloads. */
7155 for (j = 0; j < n_reloads; j++)
7157 int r = reload_order[j];
7159 i = reload_spill_index[r];
7161 /* I is nonneg if this reload uses a register.
7162 If rld[r].reg_rtx is 0, this is an optional reload
7163 that we opted to ignore. */
7164 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7165 && rld[r].reg_rtx != 0)
7167 int nregno = REGNO (rld[r].out_reg);
7168 int nr = 1;
7170 if (nregno < FIRST_PSEUDO_REGISTER)
7171 nr = hard_regno_nregs[nregno][rld[r].mode];
7173 while (--nr >= 0)
7174 SET_REGNO_REG_SET (&reg_has_output_reload,
7175 nregno + nr);
7177 if (i >= 0)
7178 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7180 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7181 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7182 || rld[r].when_needed == RELOAD_FOR_INSN);
7187 /* Deallocate the reload register for reload R. This is called from
7188 remove_address_replacements. */
7190 void
7191 deallocate_reload_reg (int r)
7193 int regno;
7195 if (! rld[r].reg_rtx)
7196 return;
7197 regno = true_regnum (rld[r].reg_rtx);
7198 rld[r].reg_rtx = 0;
7199 if (spill_reg_order[regno] >= 0)
7200 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7201 rld[r].mode);
7202 reload_spill_index[r] = -1;
7205 /* These arrays are filled by emit_reload_insns and its subroutines. */
7206 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7207 static rtx_insn *other_input_address_reload_insns = 0;
7208 static rtx_insn *other_input_reload_insns = 0;
7209 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7210 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7211 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7212 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7213 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7214 static rtx_insn *operand_reload_insns = 0;
7215 static rtx_insn *other_operand_reload_insns = 0;
7216 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7218 /* Values to be put in spill_reg_store are put here first. Instructions
7219 must only be placed here if the associated reload register reaches
7220 the end of the instruction's reload sequence. */
7221 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7222 static HARD_REG_SET reg_reloaded_died;
7224 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7225 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7226 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7227 adjusted register, and return true. Otherwise, return false. */
7228 static bool
7229 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7230 enum reg_class new_class,
7231 machine_mode new_mode)
7234 rtx reg;
7236 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7238 unsigned regno = REGNO (reg);
7240 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7241 continue;
7242 if (GET_MODE (reg) != new_mode)
7244 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7245 continue;
7246 if (hard_regno_nregs[regno][new_mode]
7247 > hard_regno_nregs[regno][GET_MODE (reg)])
7248 continue;
7249 reg = reload_adjust_reg_for_mode (reg, new_mode);
7251 *reload_reg = reg;
7252 return true;
7254 return false;
7257 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7258 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7259 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7260 adjusted register, and return true. Otherwise, return false. */
7261 static bool
7262 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7263 enum insn_code icode)
7266 enum reg_class new_class = scratch_reload_class (icode);
7267 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7269 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7270 new_class, new_mode);
7273 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7274 has the number J. OLD contains the value to be used as input. */
7276 static void
7277 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7278 rtx old, int j)
7280 rtx_insn *insn = chain->insn;
7281 rtx reloadreg;
7282 rtx oldequiv_reg = 0;
7283 rtx oldequiv = 0;
7284 int special = 0;
7285 machine_mode mode;
7286 rtx_insn **where;
7288 /* delete_output_reload is only invoked properly if old contains
7289 the original pseudo register. Since this is replaced with a
7290 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7291 find the pseudo in RELOAD_IN_REG. This is also used to
7292 determine whether a secondary reload is needed. */
7293 if (reload_override_in[j]
7294 && (REG_P (rl->in_reg)
7295 || (GET_CODE (rl->in_reg) == SUBREG
7296 && REG_P (SUBREG_REG (rl->in_reg)))))
7298 oldequiv = old;
7299 old = rl->in_reg;
7301 if (oldequiv == 0)
7302 oldequiv = old;
7303 else if (REG_P (oldequiv))
7304 oldequiv_reg = oldequiv;
7305 else if (GET_CODE (oldequiv) == SUBREG)
7306 oldequiv_reg = SUBREG_REG (oldequiv);
7308 reloadreg = reload_reg_rtx_for_input[j];
7309 mode = GET_MODE (reloadreg);
7311 /* If we are reloading from a register that was recently stored in
7312 with an output-reload, see if we can prove there was
7313 actually no need to store the old value in it. */
7315 if (optimize && REG_P (oldequiv)
7316 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7317 && spill_reg_store[REGNO (oldequiv)]
7318 && REG_P (old)
7319 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7320 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7321 rl->out_reg)))
7322 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7324 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7325 OLDEQUIV. */
7327 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7328 oldequiv = SUBREG_REG (oldequiv);
7329 if (GET_MODE (oldequiv) != VOIDmode
7330 && mode != GET_MODE (oldequiv))
7331 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7333 /* Switch to the right place to emit the reload insns. */
7334 switch (rl->when_needed)
7336 case RELOAD_OTHER:
7337 where = &other_input_reload_insns;
7338 break;
7339 case RELOAD_FOR_INPUT:
7340 where = &input_reload_insns[rl->opnum];
7341 break;
7342 case RELOAD_FOR_INPUT_ADDRESS:
7343 where = &input_address_reload_insns[rl->opnum];
7344 break;
7345 case RELOAD_FOR_INPADDR_ADDRESS:
7346 where = &inpaddr_address_reload_insns[rl->opnum];
7347 break;
7348 case RELOAD_FOR_OUTPUT_ADDRESS:
7349 where = &output_address_reload_insns[rl->opnum];
7350 break;
7351 case RELOAD_FOR_OUTADDR_ADDRESS:
7352 where = &outaddr_address_reload_insns[rl->opnum];
7353 break;
7354 case RELOAD_FOR_OPERAND_ADDRESS:
7355 where = &operand_reload_insns;
7356 break;
7357 case RELOAD_FOR_OPADDR_ADDR:
7358 where = &other_operand_reload_insns;
7359 break;
7360 case RELOAD_FOR_OTHER_ADDRESS:
7361 where = &other_input_address_reload_insns;
7362 break;
7363 default:
7364 gcc_unreachable ();
7367 push_to_sequence (*where);
7369 /* Auto-increment addresses must be reloaded in a special way. */
7370 if (rl->out && ! rl->out_reg)
7372 /* We are not going to bother supporting the case where a
7373 incremented register can't be copied directly from
7374 OLDEQUIV since this seems highly unlikely. */
7375 gcc_assert (rl->secondary_in_reload < 0);
7377 if (reload_inherited[j])
7378 oldequiv = reloadreg;
7380 old = XEXP (rl->in_reg, 0);
7382 /* Prevent normal processing of this reload. */
7383 special = 1;
7384 /* Output a special code sequence for this case. */
7385 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7388 /* If we are reloading a pseudo-register that was set by the previous
7389 insn, see if we can get rid of that pseudo-register entirely
7390 by redirecting the previous insn into our reload register. */
7392 else if (optimize && REG_P (old)
7393 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7394 && dead_or_set_p (insn, old)
7395 /* This is unsafe if some other reload
7396 uses the same reg first. */
7397 && ! conflicts_with_override (reloadreg)
7398 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7399 rl->when_needed, old, rl->out, j, 0))
7401 rtx_insn *temp = PREV_INSN (insn);
7402 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7403 temp = PREV_INSN (temp);
7404 if (temp
7405 && NONJUMP_INSN_P (temp)
7406 && GET_CODE (PATTERN (temp)) == SET
7407 && SET_DEST (PATTERN (temp)) == old
7408 /* Make sure we can access insn_operand_constraint. */
7409 && asm_noperands (PATTERN (temp)) < 0
7410 /* This is unsafe if operand occurs more than once in current
7411 insn. Perhaps some occurrences aren't reloaded. */
7412 && count_occurrences (PATTERN (insn), old, 0) == 1)
7414 rtx old = SET_DEST (PATTERN (temp));
7415 /* Store into the reload register instead of the pseudo. */
7416 SET_DEST (PATTERN (temp)) = reloadreg;
7418 /* Verify that resulting insn is valid.
7420 Note that we have replaced the destination of TEMP with
7421 RELOADREG. If TEMP references RELOADREG within an
7422 autoincrement addressing mode, then the resulting insn
7423 is ill-formed and we must reject this optimization. */
7424 extract_insn (temp);
7425 if (constrain_operands (1, get_enabled_alternatives (temp))
7426 #ifdef AUTO_INC_DEC
7427 && ! find_reg_note (temp, REG_INC, reloadreg)
7428 #endif
7431 /* If the previous insn is an output reload, the source is
7432 a reload register, and its spill_reg_store entry will
7433 contain the previous destination. This is now
7434 invalid. */
7435 if (REG_P (SET_SRC (PATTERN (temp)))
7436 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7438 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7439 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7442 /* If these are the only uses of the pseudo reg,
7443 pretend for GDB it lives in the reload reg we used. */
7444 if (REG_N_DEATHS (REGNO (old)) == 1
7445 && REG_N_SETS (REGNO (old)) == 1)
7447 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7448 if (ira_conflicts_p)
7449 /* Inform IRA about the change. */
7450 ira_mark_allocation_change (REGNO (old));
7451 alter_reg (REGNO (old), -1, false);
7453 special = 1;
7455 /* Adjust any debug insns between temp and insn. */
7456 while ((temp = NEXT_INSN (temp)) != insn)
7457 if (DEBUG_INSN_P (temp))
7458 replace_rtx (PATTERN (temp), old, reloadreg);
7459 else
7460 gcc_assert (NOTE_P (temp));
7462 else
7464 SET_DEST (PATTERN (temp)) = old;
7469 /* We can't do that, so output an insn to load RELOADREG. */
7471 /* If we have a secondary reload, pick up the secondary register
7472 and icode, if any. If OLDEQUIV and OLD are different or
7473 if this is an in-out reload, recompute whether or not we
7474 still need a secondary register and what the icode should
7475 be. If we still need a secondary register and the class or
7476 icode is different, go back to reloading from OLD if using
7477 OLDEQUIV means that we got the wrong type of register. We
7478 cannot have different class or icode due to an in-out reload
7479 because we don't make such reloads when both the input and
7480 output need secondary reload registers. */
7482 if (! special && rl->secondary_in_reload >= 0)
7484 rtx second_reload_reg = 0;
7485 rtx third_reload_reg = 0;
7486 int secondary_reload = rl->secondary_in_reload;
7487 rtx real_oldequiv = oldequiv;
7488 rtx real_old = old;
7489 rtx tmp;
7490 enum insn_code icode;
7491 enum insn_code tertiary_icode = CODE_FOR_nothing;
7493 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7494 and similarly for OLD.
7495 See comments in get_secondary_reload in reload.c. */
7496 /* If it is a pseudo that cannot be replaced with its
7497 equivalent MEM, we must fall back to reload_in, which
7498 will have all the necessary substitutions registered.
7499 Likewise for a pseudo that can't be replaced with its
7500 equivalent constant.
7502 Take extra care for subregs of such pseudos. Note that
7503 we cannot use reg_equiv_mem in this case because it is
7504 not in the right mode. */
7506 tmp = oldequiv;
7507 if (GET_CODE (tmp) == SUBREG)
7508 tmp = SUBREG_REG (tmp);
7509 if (REG_P (tmp)
7510 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7511 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7512 || reg_equiv_constant (REGNO (tmp)) != 0))
7514 if (! reg_equiv_mem (REGNO (tmp))
7515 || num_not_at_initial_offset
7516 || GET_CODE (oldequiv) == SUBREG)
7517 real_oldequiv = rl->in;
7518 else
7519 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7522 tmp = old;
7523 if (GET_CODE (tmp) == SUBREG)
7524 tmp = SUBREG_REG (tmp);
7525 if (REG_P (tmp)
7526 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7527 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7528 || reg_equiv_constant (REGNO (tmp)) != 0))
7530 if (! reg_equiv_mem (REGNO (tmp))
7531 || num_not_at_initial_offset
7532 || GET_CODE (old) == SUBREG)
7533 real_old = rl->in;
7534 else
7535 real_old = reg_equiv_mem (REGNO (tmp));
7538 second_reload_reg = rld[secondary_reload].reg_rtx;
7539 if (rld[secondary_reload].secondary_in_reload >= 0)
7541 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7543 third_reload_reg = rld[tertiary_reload].reg_rtx;
7544 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7545 /* We'd have to add more code for quartary reloads. */
7546 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7548 icode = rl->secondary_in_icode;
7550 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7551 || (rl->in != 0 && rl->out != 0))
7553 secondary_reload_info sri, sri2;
7554 enum reg_class new_class, new_t_class;
7556 sri.icode = CODE_FOR_nothing;
7557 sri.prev_sri = NULL;
7558 new_class
7559 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7560 rl->rclass, mode,
7561 &sri);
7563 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7564 second_reload_reg = 0;
7565 else if (new_class == NO_REGS)
7567 if (reload_adjust_reg_for_icode (&second_reload_reg,
7568 third_reload_reg,
7569 (enum insn_code) sri.icode))
7571 icode = (enum insn_code) sri.icode;
7572 third_reload_reg = 0;
7574 else
7576 oldequiv = old;
7577 real_oldequiv = real_old;
7580 else if (sri.icode != CODE_FOR_nothing)
7581 /* We currently lack a way to express this in reloads. */
7582 gcc_unreachable ();
7583 else
7585 sri2.icode = CODE_FOR_nothing;
7586 sri2.prev_sri = &sri;
7587 new_t_class
7588 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7589 new_class, mode,
7590 &sri);
7591 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7593 if (reload_adjust_reg_for_temp (&second_reload_reg,
7594 third_reload_reg,
7595 new_class, mode))
7597 third_reload_reg = 0;
7598 tertiary_icode = (enum insn_code) sri2.icode;
7600 else
7602 oldequiv = old;
7603 real_oldequiv = real_old;
7606 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7608 rtx intermediate = second_reload_reg;
7610 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7611 new_class, mode)
7612 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7613 ((enum insn_code)
7614 sri2.icode)))
7616 second_reload_reg = intermediate;
7617 tertiary_icode = (enum insn_code) sri2.icode;
7619 else
7621 oldequiv = old;
7622 real_oldequiv = real_old;
7625 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7627 rtx intermediate = second_reload_reg;
7629 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7630 new_class, mode)
7631 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7632 new_t_class, mode))
7634 second_reload_reg = intermediate;
7635 tertiary_icode = (enum insn_code) sri2.icode;
7637 else
7639 oldequiv = old;
7640 real_oldequiv = real_old;
7643 else
7645 /* This could be handled more intelligently too. */
7646 oldequiv = old;
7647 real_oldequiv = real_old;
7652 /* If we still need a secondary reload register, check
7653 to see if it is being used as a scratch or intermediate
7654 register and generate code appropriately. If we need
7655 a scratch register, use REAL_OLDEQUIV since the form of
7656 the insn may depend on the actual address if it is
7657 a MEM. */
7659 if (second_reload_reg)
7661 if (icode != CODE_FOR_nothing)
7663 /* We'd have to add extra code to handle this case. */
7664 gcc_assert (!third_reload_reg);
7666 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7667 second_reload_reg));
7668 special = 1;
7670 else
7672 /* See if we need a scratch register to load the
7673 intermediate register (a tertiary reload). */
7674 if (tertiary_icode != CODE_FOR_nothing)
7676 emit_insn ((GEN_FCN (tertiary_icode)
7677 (second_reload_reg, real_oldequiv,
7678 third_reload_reg)));
7680 else if (third_reload_reg)
7682 gen_reload (third_reload_reg, real_oldequiv,
7683 rl->opnum,
7684 rl->when_needed);
7685 gen_reload (second_reload_reg, third_reload_reg,
7686 rl->opnum,
7687 rl->when_needed);
7689 else
7690 gen_reload (second_reload_reg, real_oldequiv,
7691 rl->opnum,
7692 rl->when_needed);
7694 oldequiv = second_reload_reg;
7699 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7701 rtx real_oldequiv = oldequiv;
7703 if ((REG_P (oldequiv)
7704 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7705 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7706 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7707 || (GET_CODE (oldequiv) == SUBREG
7708 && REG_P (SUBREG_REG (oldequiv))
7709 && (REGNO (SUBREG_REG (oldequiv))
7710 >= FIRST_PSEUDO_REGISTER)
7711 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7712 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7713 || (CONSTANT_P (oldequiv)
7714 && (targetm.preferred_reload_class (oldequiv,
7715 REGNO_REG_CLASS (REGNO (reloadreg)))
7716 == NO_REGS)))
7717 real_oldequiv = rl->in;
7718 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7719 rl->when_needed);
7722 if (cfun->can_throw_non_call_exceptions)
7723 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7725 /* End this sequence. */
7726 *where = get_insns ();
7727 end_sequence ();
7729 /* Update reload_override_in so that delete_address_reloads_1
7730 can see the actual register usage. */
7731 if (oldequiv_reg)
7732 reload_override_in[j] = oldequiv;
7735 /* Generate insns to for the output reload RL, which is for the insn described
7736 by CHAIN and has the number J. */
7737 static void
7738 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7739 int j)
7741 rtx reloadreg;
7742 rtx_insn *insn = chain->insn;
7743 int special = 0;
7744 rtx old = rl->out;
7745 machine_mode mode;
7746 rtx_insn *p;
7747 rtx rl_reg_rtx;
7749 if (rl->when_needed == RELOAD_OTHER)
7750 start_sequence ();
7751 else
7752 push_to_sequence (output_reload_insns[rl->opnum]);
7754 rl_reg_rtx = reload_reg_rtx_for_output[j];
7755 mode = GET_MODE (rl_reg_rtx);
7757 reloadreg = rl_reg_rtx;
7759 /* If we need two reload regs, set RELOADREG to the intermediate
7760 one, since it will be stored into OLD. We might need a secondary
7761 register only for an input reload, so check again here. */
7763 if (rl->secondary_out_reload >= 0)
7765 rtx real_old = old;
7766 int secondary_reload = rl->secondary_out_reload;
7767 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7769 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7770 && reg_equiv_mem (REGNO (old)) != 0)
7771 real_old = reg_equiv_mem (REGNO (old));
7773 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7775 rtx second_reloadreg = reloadreg;
7776 reloadreg = rld[secondary_reload].reg_rtx;
7778 /* See if RELOADREG is to be used as a scratch register
7779 or as an intermediate register. */
7780 if (rl->secondary_out_icode != CODE_FOR_nothing)
7782 /* We'd have to add extra code to handle this case. */
7783 gcc_assert (tertiary_reload < 0);
7785 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7786 (real_old, second_reloadreg, reloadreg)));
7787 special = 1;
7789 else
7791 /* See if we need both a scratch and intermediate reload
7792 register. */
7794 enum insn_code tertiary_icode
7795 = rld[secondary_reload].secondary_out_icode;
7797 /* We'd have to add more code for quartary reloads. */
7798 gcc_assert (tertiary_reload < 0
7799 || rld[tertiary_reload].secondary_out_reload < 0);
7801 if (GET_MODE (reloadreg) != mode)
7802 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7804 if (tertiary_icode != CODE_FOR_nothing)
7806 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7808 /* Copy primary reload reg to secondary reload reg.
7809 (Note that these have been swapped above, then
7810 secondary reload reg to OLD using our insn.) */
7812 /* If REAL_OLD is a paradoxical SUBREG, remove it
7813 and try to put the opposite SUBREG on
7814 RELOADREG. */
7815 strip_paradoxical_subreg (&real_old, &reloadreg);
7817 gen_reload (reloadreg, second_reloadreg,
7818 rl->opnum, rl->when_needed);
7819 emit_insn ((GEN_FCN (tertiary_icode)
7820 (real_old, reloadreg, third_reloadreg)));
7821 special = 1;
7824 else
7826 /* Copy between the reload regs here and then to
7827 OUT later. */
7829 gen_reload (reloadreg, second_reloadreg,
7830 rl->opnum, rl->when_needed);
7831 if (tertiary_reload >= 0)
7833 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7835 gen_reload (third_reloadreg, reloadreg,
7836 rl->opnum, rl->when_needed);
7837 reloadreg = third_reloadreg;
7844 /* Output the last reload insn. */
7845 if (! special)
7847 rtx set;
7849 /* Don't output the last reload if OLD is not the dest of
7850 INSN and is in the src and is clobbered by INSN. */
7851 if (! flag_expensive_optimizations
7852 || !REG_P (old)
7853 || !(set = single_set (insn))
7854 || rtx_equal_p (old, SET_DEST (set))
7855 || !reg_mentioned_p (old, SET_SRC (set))
7856 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7857 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7858 gen_reload (old, reloadreg, rl->opnum,
7859 rl->when_needed);
7862 /* Look at all insns we emitted, just to be safe. */
7863 for (p = get_insns (); p; p = NEXT_INSN (p))
7864 if (INSN_P (p))
7866 rtx pat = PATTERN (p);
7868 /* If this output reload doesn't come from a spill reg,
7869 clear any memory of reloaded copies of the pseudo reg.
7870 If this output reload comes from a spill reg,
7871 reg_has_output_reload will make this do nothing. */
7872 note_stores (pat, forget_old_reloads_1, NULL);
7874 if (reg_mentioned_p (rl_reg_rtx, pat))
7876 rtx set = single_set (insn);
7877 if (reload_spill_index[j] < 0
7878 && set
7879 && SET_SRC (set) == rl_reg_rtx)
7881 int src = REGNO (SET_SRC (set));
7883 reload_spill_index[j] = src;
7884 SET_HARD_REG_BIT (reg_is_output_reload, src);
7885 if (find_regno_note (insn, REG_DEAD, src))
7886 SET_HARD_REG_BIT (reg_reloaded_died, src);
7888 if (HARD_REGISTER_P (rl_reg_rtx))
7890 int s = rl->secondary_out_reload;
7891 set = single_set (p);
7892 /* If this reload copies only to the secondary reload
7893 register, the secondary reload does the actual
7894 store. */
7895 if (s >= 0 && set == NULL_RTX)
7896 /* We can't tell what function the secondary reload
7897 has and where the actual store to the pseudo is
7898 made; leave new_spill_reg_store alone. */
7900 else if (s >= 0
7901 && SET_SRC (set) == rl_reg_rtx
7902 && SET_DEST (set) == rld[s].reg_rtx)
7904 /* Usually the next instruction will be the
7905 secondary reload insn; if we can confirm
7906 that it is, setting new_spill_reg_store to
7907 that insn will allow an extra optimization. */
7908 rtx s_reg = rld[s].reg_rtx;
7909 rtx_insn *next = NEXT_INSN (p);
7910 rld[s].out = rl->out;
7911 rld[s].out_reg = rl->out_reg;
7912 set = single_set (next);
7913 if (set && SET_SRC (set) == s_reg
7914 && reload_reg_rtx_reaches_end_p (s_reg, s))
7916 SET_HARD_REG_BIT (reg_is_output_reload,
7917 REGNO (s_reg));
7918 new_spill_reg_store[REGNO (s_reg)] = next;
7921 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7922 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7927 if (rl->when_needed == RELOAD_OTHER)
7929 emit_insn (other_output_reload_insns[rl->opnum]);
7930 other_output_reload_insns[rl->opnum] = get_insns ();
7932 else
7933 output_reload_insns[rl->opnum] = get_insns ();
7935 if (cfun->can_throw_non_call_exceptions)
7936 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7938 end_sequence ();
7941 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7942 and has the number J. */
7943 static void
7944 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7946 rtx_insn *insn = chain->insn;
7947 rtx old = (rl->in && MEM_P (rl->in)
7948 ? rl->in_reg : rl->in);
7949 rtx reg_rtx = rl->reg_rtx;
7951 if (old && reg_rtx)
7953 machine_mode mode;
7955 /* Determine the mode to reload in.
7956 This is very tricky because we have three to choose from.
7957 There is the mode the insn operand wants (rl->inmode).
7958 There is the mode of the reload register RELOADREG.
7959 There is the intrinsic mode of the operand, which we could find
7960 by stripping some SUBREGs.
7961 It turns out that RELOADREG's mode is irrelevant:
7962 we can change that arbitrarily.
7964 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7965 then the reload reg may not support QImode moves, so use SImode.
7966 If foo is in memory due to spilling a pseudo reg, this is safe,
7967 because the QImode value is in the least significant part of a
7968 slot big enough for a SImode. If foo is some other sort of
7969 memory reference, then it is impossible to reload this case,
7970 so previous passes had better make sure this never happens.
7972 Then consider a one-word union which has SImode and one of its
7973 members is a float, being fetched as (SUBREG:SF union:SI).
7974 We must fetch that as SFmode because we could be loading into
7975 a float-only register. In this case OLD's mode is correct.
7977 Consider an immediate integer: it has VOIDmode. Here we need
7978 to get a mode from something else.
7980 In some cases, there is a fourth mode, the operand's
7981 containing mode. If the insn specifies a containing mode for
7982 this operand, it overrides all others.
7984 I am not sure whether the algorithm here is always right,
7985 but it does the right things in those cases. */
7987 mode = GET_MODE (old);
7988 if (mode == VOIDmode)
7989 mode = rl->inmode;
7991 /* We cannot use gen_lowpart_common since it can do the wrong thing
7992 when REG_RTX has a multi-word mode. Note that REG_RTX must
7993 always be a REG here. */
7994 if (GET_MODE (reg_rtx) != mode)
7995 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7997 reload_reg_rtx_for_input[j] = reg_rtx;
7999 if (old != 0
8000 /* AUTO_INC reloads need to be handled even if inherited. We got an
8001 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
8002 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
8003 && ! rtx_equal_p (reg_rtx, old)
8004 && reg_rtx != 0)
8005 emit_input_reload_insns (chain, rld + j, old, j);
8007 /* When inheriting a wider reload, we have a MEM in rl->in,
8008 e.g. inheriting a SImode output reload for
8009 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
8010 if (optimize && reload_inherited[j] && rl->in
8011 && MEM_P (rl->in)
8012 && MEM_P (rl->in_reg)
8013 && reload_spill_index[j] >= 0
8014 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
8015 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
8017 /* If we are reloading a register that was recently stored in with an
8018 output-reload, see if we can prove there was
8019 actually no need to store the old value in it. */
8021 if (optimize
8022 && (reload_inherited[j] || reload_override_in[j])
8023 && reg_rtx
8024 && REG_P (reg_rtx)
8025 && spill_reg_store[REGNO (reg_rtx)] != 0
8026 #if 0
8027 /* There doesn't seem to be any reason to restrict this to pseudos
8028 and doing so loses in the case where we are copying from a
8029 register of the wrong class. */
8030 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
8031 #endif
8032 /* The insn might have already some references to stackslots
8033 replaced by MEMs, while reload_out_reg still names the
8034 original pseudo. */
8035 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8036 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8037 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8040 /* Do output reloading for reload RL, which is for the insn described by
8041 CHAIN and has the number J.
8042 ??? At some point we need to support handling output reloads of
8043 JUMP_INSNs or insns that set cc0. */
8044 static void
8045 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8047 rtx note, old;
8048 rtx_insn *insn = chain->insn;
8049 /* If this is an output reload that stores something that is
8050 not loaded in this same reload, see if we can eliminate a previous
8051 store. */
8052 rtx pseudo = rl->out_reg;
8053 rtx reg_rtx = rl->reg_rtx;
8055 if (rl->out && reg_rtx)
8057 machine_mode mode;
8059 /* Determine the mode to reload in.
8060 See comments above (for input reloading). */
8061 mode = GET_MODE (rl->out);
8062 if (mode == VOIDmode)
8064 /* VOIDmode should never happen for an output. */
8065 if (asm_noperands (PATTERN (insn)) < 0)
8066 /* It's the compiler's fault. */
8067 fatal_insn ("VOIDmode on an output", insn);
8068 error_for_asm (insn, "output operand is constant in %<asm%>");
8069 /* Prevent crash--use something we know is valid. */
8070 mode = word_mode;
8071 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8073 if (GET_MODE (reg_rtx) != mode)
8074 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8076 reload_reg_rtx_for_output[j] = reg_rtx;
8078 if (pseudo
8079 && optimize
8080 && REG_P (pseudo)
8081 && ! rtx_equal_p (rl->in_reg, pseudo)
8082 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8083 && reg_last_reload_reg[REGNO (pseudo)])
8085 int pseudo_no = REGNO (pseudo);
8086 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8088 /* We don't need to test full validity of last_regno for
8089 inherit here; we only want to know if the store actually
8090 matches the pseudo. */
8091 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8092 && reg_reloaded_contents[last_regno] == pseudo_no
8093 && spill_reg_store[last_regno]
8094 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8095 delete_output_reload (insn, j, last_regno, reg_rtx);
8098 old = rl->out_reg;
8099 if (old == 0
8100 || reg_rtx == 0
8101 || rtx_equal_p (old, reg_rtx))
8102 return;
8104 /* An output operand that dies right away does need a reload,
8105 but need not be copied from it. Show the new location in the
8106 REG_UNUSED note. */
8107 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8108 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8110 XEXP (note, 0) = reg_rtx;
8111 return;
8113 /* Likewise for a SUBREG of an operand that dies. */
8114 else if (GET_CODE (old) == SUBREG
8115 && REG_P (SUBREG_REG (old))
8116 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8117 SUBREG_REG (old))))
8119 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8120 return;
8122 else if (GET_CODE (old) == SCRATCH)
8123 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8124 but we don't want to make an output reload. */
8125 return;
8127 /* If is a JUMP_INSN, we can't support output reloads yet. */
8128 gcc_assert (NONJUMP_INSN_P (insn));
8130 emit_output_reload_insns (chain, rld + j, j);
8133 /* A reload copies values of MODE from register SRC to register DEST.
8134 Return true if it can be treated for inheritance purposes like a
8135 group of reloads, each one reloading a single hard register. The
8136 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8137 occupy the same number of hard registers. */
8139 static bool
8140 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8141 int src ATTRIBUTE_UNUSED,
8142 machine_mode mode ATTRIBUTE_UNUSED)
8144 #ifdef CANNOT_CHANGE_MODE_CLASS
8145 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8146 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8147 #else
8148 return true;
8149 #endif
8152 /* Output insns to reload values in and out of the chosen reload regs. */
8154 static void
8155 emit_reload_insns (struct insn_chain *chain)
8157 rtx_insn *insn = chain->insn;
8159 int j;
8161 CLEAR_HARD_REG_SET (reg_reloaded_died);
8163 for (j = 0; j < reload_n_operands; j++)
8164 input_reload_insns[j] = input_address_reload_insns[j]
8165 = inpaddr_address_reload_insns[j]
8166 = output_reload_insns[j] = output_address_reload_insns[j]
8167 = outaddr_address_reload_insns[j]
8168 = other_output_reload_insns[j] = 0;
8169 other_input_address_reload_insns = 0;
8170 other_input_reload_insns = 0;
8171 operand_reload_insns = 0;
8172 other_operand_reload_insns = 0;
8174 /* Dump reloads into the dump file. */
8175 if (dump_file)
8177 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8178 debug_reload_to_stream (dump_file);
8181 for (j = 0; j < n_reloads; j++)
8182 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8184 unsigned int i;
8186 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8187 new_spill_reg_store[i] = 0;
8190 /* Now output the instructions to copy the data into and out of the
8191 reload registers. Do these in the order that the reloads were reported,
8192 since reloads of base and index registers precede reloads of operands
8193 and the operands may need the base and index registers reloaded. */
8195 for (j = 0; j < n_reloads; j++)
8197 do_input_reload (chain, rld + j, j);
8198 do_output_reload (chain, rld + j, j);
8201 /* Now write all the insns we made for reloads in the order expected by
8202 the allocation functions. Prior to the insn being reloaded, we write
8203 the following reloads:
8205 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8207 RELOAD_OTHER reloads.
8209 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8210 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8211 RELOAD_FOR_INPUT reload for the operand.
8213 RELOAD_FOR_OPADDR_ADDRS reloads.
8215 RELOAD_FOR_OPERAND_ADDRESS reloads.
8217 After the insn being reloaded, we write the following:
8219 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8220 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8221 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8222 reloads for the operand. The RELOAD_OTHER output reloads are
8223 output in descending order by reload number. */
8225 emit_insn_before (other_input_address_reload_insns, insn);
8226 emit_insn_before (other_input_reload_insns, insn);
8228 for (j = 0; j < reload_n_operands; j++)
8230 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8231 emit_insn_before (input_address_reload_insns[j], insn);
8232 emit_insn_before (input_reload_insns[j], insn);
8235 emit_insn_before (other_operand_reload_insns, insn);
8236 emit_insn_before (operand_reload_insns, insn);
8238 for (j = 0; j < reload_n_operands; j++)
8240 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8241 x = emit_insn_after (output_address_reload_insns[j], x);
8242 x = emit_insn_after (output_reload_insns[j], x);
8243 emit_insn_after (other_output_reload_insns[j], x);
8246 /* For all the spill regs newly reloaded in this instruction,
8247 record what they were reloaded from, so subsequent instructions
8248 can inherit the reloads.
8250 Update spill_reg_store for the reloads of this insn.
8251 Copy the elements that were updated in the loop above. */
8253 for (j = 0; j < n_reloads; j++)
8255 int r = reload_order[j];
8256 int i = reload_spill_index[r];
8258 /* If this is a non-inherited input reload from a pseudo, we must
8259 clear any memory of a previous store to the same pseudo. Only do
8260 something if there will not be an output reload for the pseudo
8261 being reloaded. */
8262 if (rld[r].in_reg != 0
8263 && ! (reload_inherited[r] || reload_override_in[r]))
8265 rtx reg = rld[r].in_reg;
8267 if (GET_CODE (reg) == SUBREG)
8268 reg = SUBREG_REG (reg);
8270 if (REG_P (reg)
8271 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8272 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8274 int nregno = REGNO (reg);
8276 if (reg_last_reload_reg[nregno])
8278 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8280 if (reg_reloaded_contents[last_regno] == nregno)
8281 spill_reg_store[last_regno] = 0;
8286 /* I is nonneg if this reload used a register.
8287 If rld[r].reg_rtx is 0, this is an optional reload
8288 that we opted to ignore. */
8290 if (i >= 0 && rld[r].reg_rtx != 0)
8292 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8293 int k;
8295 /* For a multi register reload, we need to check if all or part
8296 of the value lives to the end. */
8297 for (k = 0; k < nr; k++)
8298 if (reload_reg_reaches_end_p (i + k, r))
8299 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8301 /* Maybe the spill reg contains a copy of reload_out. */
8302 if (rld[r].out != 0
8303 && (REG_P (rld[r].out)
8304 || (rld[r].out_reg
8305 ? REG_P (rld[r].out_reg)
8306 /* The reload value is an auto-modification of
8307 some kind. For PRE_INC, POST_INC, PRE_DEC
8308 and POST_DEC, we record an equivalence
8309 between the reload register and the operand
8310 on the optimistic assumption that we can make
8311 the equivalence hold. reload_as_needed must
8312 then either make it hold or invalidate the
8313 equivalence.
8315 PRE_MODIFY and POST_MODIFY addresses are reloaded
8316 somewhat differently, and allowing them here leads
8317 to problems. */
8318 : (GET_CODE (rld[r].out) != POST_MODIFY
8319 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8321 rtx reg;
8323 reg = reload_reg_rtx_for_output[r];
8324 if (reload_reg_rtx_reaches_end_p (reg, r))
8326 machine_mode mode = GET_MODE (reg);
8327 int regno = REGNO (reg);
8328 int nregs = hard_regno_nregs[regno][mode];
8329 rtx out = (REG_P (rld[r].out)
8330 ? rld[r].out
8331 : rld[r].out_reg
8332 ? rld[r].out_reg
8333 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8334 int out_regno = REGNO (out);
8335 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8336 : hard_regno_nregs[out_regno][mode]);
8337 bool piecemeal;
8339 spill_reg_store[regno] = new_spill_reg_store[regno];
8340 spill_reg_stored_to[regno] = out;
8341 reg_last_reload_reg[out_regno] = reg;
8343 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8344 && nregs == out_nregs
8345 && inherit_piecemeal_p (out_regno, regno, mode));
8347 /* If OUT_REGNO is a hard register, it may occupy more than
8348 one register. If it does, say what is in the
8349 rest of the registers assuming that both registers
8350 agree on how many words the object takes. If not,
8351 invalidate the subsequent registers. */
8353 if (HARD_REGISTER_NUM_P (out_regno))
8354 for (k = 1; k < out_nregs; k++)
8355 reg_last_reload_reg[out_regno + k]
8356 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8358 /* Now do the inverse operation. */
8359 for (k = 0; k < nregs; k++)
8361 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8362 reg_reloaded_contents[regno + k]
8363 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8364 ? out_regno
8365 : out_regno + k);
8366 reg_reloaded_insn[regno + k] = insn;
8367 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8368 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8369 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8370 regno + k);
8371 else
8372 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8373 regno + k);
8377 /* Maybe the spill reg contains a copy of reload_in. Only do
8378 something if there will not be an output reload for
8379 the register being reloaded. */
8380 else if (rld[r].out_reg == 0
8381 && rld[r].in != 0
8382 && ((REG_P (rld[r].in)
8383 && !HARD_REGISTER_P (rld[r].in)
8384 && !REGNO_REG_SET_P (&reg_has_output_reload,
8385 REGNO (rld[r].in)))
8386 || (REG_P (rld[r].in_reg)
8387 && !REGNO_REG_SET_P (&reg_has_output_reload,
8388 REGNO (rld[r].in_reg))))
8389 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8391 rtx reg;
8393 reg = reload_reg_rtx_for_input[r];
8394 if (reload_reg_rtx_reaches_end_p (reg, r))
8396 machine_mode mode;
8397 int regno;
8398 int nregs;
8399 int in_regno;
8400 int in_nregs;
8401 rtx in;
8402 bool piecemeal;
8404 mode = GET_MODE (reg);
8405 regno = REGNO (reg);
8406 nregs = hard_regno_nregs[regno][mode];
8407 if (REG_P (rld[r].in)
8408 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8409 in = rld[r].in;
8410 else if (REG_P (rld[r].in_reg))
8411 in = rld[r].in_reg;
8412 else
8413 in = XEXP (rld[r].in_reg, 0);
8414 in_regno = REGNO (in);
8416 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8417 : hard_regno_nregs[in_regno][mode]);
8419 reg_last_reload_reg[in_regno] = reg;
8421 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8422 && nregs == in_nregs
8423 && inherit_piecemeal_p (regno, in_regno, mode));
8425 if (HARD_REGISTER_NUM_P (in_regno))
8426 for (k = 1; k < in_nregs; k++)
8427 reg_last_reload_reg[in_regno + k]
8428 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8430 /* Unless we inherited this reload, show we haven't
8431 recently done a store.
8432 Previous stores of inherited auto_inc expressions
8433 also have to be discarded. */
8434 if (! reload_inherited[r]
8435 || (rld[r].out && ! rld[r].out_reg))
8436 spill_reg_store[regno] = 0;
8438 for (k = 0; k < nregs; k++)
8440 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8441 reg_reloaded_contents[regno + k]
8442 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8443 ? in_regno
8444 : in_regno + k);
8445 reg_reloaded_insn[regno + k] = insn;
8446 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8447 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8448 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8449 regno + k);
8450 else
8451 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8452 regno + k);
8458 /* The following if-statement was #if 0'd in 1.34 (or before...).
8459 It's reenabled in 1.35 because supposedly nothing else
8460 deals with this problem. */
8462 /* If a register gets output-reloaded from a non-spill register,
8463 that invalidates any previous reloaded copy of it.
8464 But forget_old_reloads_1 won't get to see it, because
8465 it thinks only about the original insn. So invalidate it here.
8466 Also do the same thing for RELOAD_OTHER constraints where the
8467 output is discarded. */
8468 if (i < 0
8469 && ((rld[r].out != 0
8470 && (REG_P (rld[r].out)
8471 || (MEM_P (rld[r].out)
8472 && REG_P (rld[r].out_reg))))
8473 || (rld[r].out == 0 && rld[r].out_reg
8474 && REG_P (rld[r].out_reg))))
8476 rtx out = ((rld[r].out && REG_P (rld[r].out))
8477 ? rld[r].out : rld[r].out_reg);
8478 int out_regno = REGNO (out);
8479 machine_mode mode = GET_MODE (out);
8481 /* REG_RTX is now set or clobbered by the main instruction.
8482 As the comment above explains, forget_old_reloads_1 only
8483 sees the original instruction, and there is no guarantee
8484 that the original instruction also clobbered REG_RTX.
8485 For example, if find_reloads sees that the input side of
8486 a matched operand pair dies in this instruction, it may
8487 use the input register as the reload register.
8489 Calling forget_old_reloads_1 is a waste of effort if
8490 REG_RTX is also the output register.
8492 If we know that REG_RTX holds the value of a pseudo
8493 register, the code after the call will record that fact. */
8494 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8495 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8497 if (!HARD_REGISTER_NUM_P (out_regno))
8499 rtx src_reg;
8500 rtx_insn *store_insn = NULL;
8502 reg_last_reload_reg[out_regno] = 0;
8504 /* If we can find a hard register that is stored, record
8505 the storing insn so that we may delete this insn with
8506 delete_output_reload. */
8507 src_reg = reload_reg_rtx_for_output[r];
8509 if (src_reg)
8511 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8512 store_insn = new_spill_reg_store[REGNO (src_reg)];
8513 else
8514 src_reg = NULL_RTX;
8516 else
8518 /* If this is an optional reload, try to find the
8519 source reg from an input reload. */
8520 rtx set = single_set (insn);
8521 if (set && SET_DEST (set) == rld[r].out)
8523 int k;
8525 src_reg = SET_SRC (set);
8526 store_insn = insn;
8527 for (k = 0; k < n_reloads; k++)
8529 if (rld[k].in == src_reg)
8531 src_reg = reload_reg_rtx_for_input[k];
8532 break;
8537 if (src_reg && REG_P (src_reg)
8538 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8540 int src_regno, src_nregs, k;
8541 rtx note;
8543 gcc_assert (GET_MODE (src_reg) == mode);
8544 src_regno = REGNO (src_reg);
8545 src_nregs = hard_regno_nregs[src_regno][mode];
8546 /* The place where to find a death note varies with
8547 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8548 necessarily checked exactly in the code that moves
8549 notes, so just check both locations. */
8550 note = find_regno_note (insn, REG_DEAD, src_regno);
8551 if (! note && store_insn)
8552 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8553 for (k = 0; k < src_nregs; k++)
8555 spill_reg_store[src_regno + k] = store_insn;
8556 spill_reg_stored_to[src_regno + k] = out;
8557 reg_reloaded_contents[src_regno + k] = out_regno;
8558 reg_reloaded_insn[src_regno + k] = store_insn;
8559 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8560 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8561 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8562 mode))
8563 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8564 src_regno + k);
8565 else
8566 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8567 src_regno + k);
8568 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8569 if (note)
8570 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8571 else
8572 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8574 reg_last_reload_reg[out_regno] = src_reg;
8575 /* We have to set reg_has_output_reload here, or else
8576 forget_old_reloads_1 will clear reg_last_reload_reg
8577 right away. */
8578 SET_REGNO_REG_SET (&reg_has_output_reload,
8579 out_regno);
8582 else
8584 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8586 for (k = 0; k < out_nregs; k++)
8587 reg_last_reload_reg[out_regno + k] = 0;
8591 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8594 /* Go through the motions to emit INSN and test if it is strictly valid.
8595 Return the emitted insn if valid, else return NULL. */
8597 static rtx_insn *
8598 emit_insn_if_valid_for_reload (rtx pat)
8600 rtx_insn *last = get_last_insn ();
8601 int code;
8603 rtx_insn *insn = emit_insn (pat);
8604 code = recog_memoized (insn);
8606 if (code >= 0)
8608 extract_insn (insn);
8609 /* We want constrain operands to treat this insn strictly in its
8610 validity determination, i.e., the way it would after reload has
8611 completed. */
8612 if (constrain_operands (1, get_enabled_alternatives (insn)))
8613 return insn;
8616 delete_insns_since (last);
8617 return NULL;
8620 /* Emit code to perform a reload from IN (which may be a reload register) to
8621 OUT (which may also be a reload register). IN or OUT is from operand
8622 OPNUM with reload type TYPE.
8624 Returns first insn emitted. */
8626 static rtx_insn *
8627 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8629 rtx_insn *last = get_last_insn ();
8630 rtx_insn *tem;
8631 #ifdef SECONDARY_MEMORY_NEEDED
8632 rtx tem1, tem2;
8633 #endif
8635 /* If IN is a paradoxical SUBREG, remove it and try to put the
8636 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8637 if (!strip_paradoxical_subreg (&in, &out))
8638 strip_paradoxical_subreg (&out, &in);
8640 /* How to do this reload can get quite tricky. Normally, we are being
8641 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8642 register that didn't get a hard register. In that case we can just
8643 call emit_move_insn.
8645 We can also be asked to reload a PLUS that adds a register or a MEM to
8646 another register, constant or MEM. This can occur during frame pointer
8647 elimination and while reloading addresses. This case is handled by
8648 trying to emit a single insn to perform the add. If it is not valid,
8649 we use a two insn sequence.
8651 Or we can be asked to reload an unary operand that was a fragment of
8652 an addressing mode, into a register. If it isn't recognized as-is,
8653 we try making the unop operand and the reload-register the same:
8654 (set reg:X (unop:X expr:Y))
8655 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8657 Finally, we could be called to handle an 'o' constraint by putting
8658 an address into a register. In that case, we first try to do this
8659 with a named pattern of "reload_load_address". If no such pattern
8660 exists, we just emit a SET insn and hope for the best (it will normally
8661 be valid on machines that use 'o').
8663 This entire process is made complex because reload will never
8664 process the insns we generate here and so we must ensure that
8665 they will fit their constraints and also by the fact that parts of
8666 IN might be being reloaded separately and replaced with spill registers.
8667 Because of this, we are, in some sense, just guessing the right approach
8668 here. The one listed above seems to work.
8670 ??? At some point, this whole thing needs to be rethought. */
8672 if (GET_CODE (in) == PLUS
8673 && (REG_P (XEXP (in, 0))
8674 || GET_CODE (XEXP (in, 0)) == SUBREG
8675 || MEM_P (XEXP (in, 0)))
8676 && (REG_P (XEXP (in, 1))
8677 || GET_CODE (XEXP (in, 1)) == SUBREG
8678 || CONSTANT_P (XEXP (in, 1))
8679 || MEM_P (XEXP (in, 1))))
8681 /* We need to compute the sum of a register or a MEM and another
8682 register, constant, or MEM, and put it into the reload
8683 register. The best possible way of doing this is if the machine
8684 has a three-operand ADD insn that accepts the required operands.
8686 The simplest approach is to try to generate such an insn and see if it
8687 is recognized and matches its constraints. If so, it can be used.
8689 It might be better not to actually emit the insn unless it is valid,
8690 but we need to pass the insn as an operand to `recog' and
8691 `extract_insn' and it is simpler to emit and then delete the insn if
8692 not valid than to dummy things up. */
8694 rtx op0, op1, tem;
8695 rtx_insn *insn;
8696 enum insn_code code;
8698 op0 = find_replacement (&XEXP (in, 0));
8699 op1 = find_replacement (&XEXP (in, 1));
8701 /* Since constraint checking is strict, commutativity won't be
8702 checked, so we need to do that here to avoid spurious failure
8703 if the add instruction is two-address and the second operand
8704 of the add is the same as the reload reg, which is frequently
8705 the case. If the insn would be A = B + A, rearrange it so
8706 it will be A = A + B as constrain_operands expects. */
8708 if (REG_P (XEXP (in, 1))
8709 && REGNO (out) == REGNO (XEXP (in, 1)))
8710 tem = op0, op0 = op1, op1 = tem;
8712 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8713 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8715 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8716 if (insn)
8717 return insn;
8719 /* If that failed, we must use a conservative two-insn sequence.
8721 Use a move to copy one operand into the reload register. Prefer
8722 to reload a constant, MEM or pseudo since the move patterns can
8723 handle an arbitrary operand. If OP1 is not a constant, MEM or
8724 pseudo and OP1 is not a valid operand for an add instruction, then
8725 reload OP1.
8727 After reloading one of the operands into the reload register, add
8728 the reload register to the output register.
8730 If there is another way to do this for a specific machine, a
8731 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8732 we emit below. */
8734 code = optab_handler (add_optab, GET_MODE (out));
8736 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8737 || (REG_P (op1)
8738 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8739 || (code != CODE_FOR_nothing
8740 && !insn_operand_matches (code, 2, op1)))
8741 tem = op0, op0 = op1, op1 = tem;
8743 gen_reload (out, op0, opnum, type);
8745 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8746 This fixes a problem on the 32K where the stack pointer cannot
8747 be used as an operand of an add insn. */
8749 if (rtx_equal_p (op0, op1))
8750 op1 = out;
8752 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8753 if (insn)
8755 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8756 set_dst_reg_note (insn, REG_EQUIV, in, out);
8757 return insn;
8760 /* If that failed, copy the address register to the reload register.
8761 Then add the constant to the reload register. */
8763 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8764 gen_reload (out, op1, opnum, type);
8765 insn = emit_insn (gen_add2_insn (out, op0));
8766 set_dst_reg_note (insn, REG_EQUIV, in, out);
8769 #ifdef SECONDARY_MEMORY_NEEDED
8770 /* If we need a memory location to do the move, do it that way. */
8771 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8772 (REG_P (tem1) && REG_P (tem2)))
8773 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8774 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8775 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8776 REGNO_REG_CLASS (REGNO (tem2)),
8777 GET_MODE (out)))
8779 /* Get the memory to use and rewrite both registers to its mode. */
8780 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8782 if (GET_MODE (loc) != GET_MODE (out))
8783 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8785 if (GET_MODE (loc) != GET_MODE (in))
8786 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8788 gen_reload (loc, in, opnum, type);
8789 gen_reload (out, loc, opnum, type);
8791 #endif
8792 else if (REG_P (out) && UNARY_P (in))
8794 rtx insn;
8795 rtx op1;
8796 rtx out_moded;
8797 rtx_insn *set;
8799 op1 = find_replacement (&XEXP (in, 0));
8800 if (op1 != XEXP (in, 0))
8801 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8803 /* First, try a plain SET. */
8804 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8805 if (set)
8806 return set;
8808 /* If that failed, move the inner operand to the reload
8809 register, and try the same unop with the inner expression
8810 replaced with the reload register. */
8812 if (GET_MODE (op1) != GET_MODE (out))
8813 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8814 else
8815 out_moded = out;
8817 gen_reload (out_moded, op1, opnum, type);
8819 insn
8820 = gen_rtx_SET (VOIDmode, out,
8821 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8822 out_moded));
8823 insn = emit_insn_if_valid_for_reload (insn);
8824 if (insn)
8826 set_unique_reg_note (insn, REG_EQUIV, in);
8827 return as_a <rtx_insn *> (insn);
8830 fatal_insn ("failure trying to reload:", set);
8832 /* If IN is a simple operand, use gen_move_insn. */
8833 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8835 tem = emit_insn (gen_move_insn (out, in));
8836 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8837 mark_jump_label (in, tem, 0);
8840 #ifdef HAVE_reload_load_address
8841 else if (HAVE_reload_load_address)
8842 emit_insn (gen_reload_load_address (out, in));
8843 #endif
8845 /* Otherwise, just write (set OUT IN) and hope for the best. */
8846 else
8847 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8849 /* Return the first insn emitted.
8850 We can not just return get_last_insn, because there may have
8851 been multiple instructions emitted. Also note that gen_move_insn may
8852 emit more than one insn itself, so we can not assume that there is one
8853 insn emitted per emit_insn_before call. */
8855 return last ? NEXT_INSN (last) : get_insns ();
8858 /* Delete a previously made output-reload whose result we now believe
8859 is not needed. First we double-check.
8861 INSN is the insn now being processed.
8862 LAST_RELOAD_REG is the hard register number for which we want to delete
8863 the last output reload.
8864 J is the reload-number that originally used REG. The caller has made
8865 certain that reload J doesn't use REG any longer for input.
8866 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8868 static void
8869 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8870 rtx new_reload_reg)
8872 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8873 rtx reg = spill_reg_stored_to[last_reload_reg];
8874 int k;
8875 int n_occurrences;
8876 int n_inherited = 0;
8877 rtx substed;
8878 unsigned regno;
8879 int nregs;
8881 /* It is possible that this reload has been only used to set another reload
8882 we eliminated earlier and thus deleted this instruction too. */
8883 if (output_reload_insn->deleted ())
8884 return;
8886 /* Get the raw pseudo-register referred to. */
8888 while (GET_CODE (reg) == SUBREG)
8889 reg = SUBREG_REG (reg);
8890 substed = reg_equiv_memory_loc (REGNO (reg));
8892 /* This is unsafe if the operand occurs more often in the current
8893 insn than it is inherited. */
8894 for (k = n_reloads - 1; k >= 0; k--)
8896 rtx reg2 = rld[k].in;
8897 if (! reg2)
8898 continue;
8899 if (MEM_P (reg2) || reload_override_in[k])
8900 reg2 = rld[k].in_reg;
8901 #ifdef AUTO_INC_DEC
8902 if (rld[k].out && ! rld[k].out_reg)
8903 reg2 = XEXP (rld[k].in_reg, 0);
8904 #endif
8905 while (GET_CODE (reg2) == SUBREG)
8906 reg2 = SUBREG_REG (reg2);
8907 if (rtx_equal_p (reg2, reg))
8909 if (reload_inherited[k] || reload_override_in[k] || k == j)
8910 n_inherited++;
8911 else
8912 return;
8915 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8916 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8917 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8918 reg, 0);
8919 if (substed)
8920 n_occurrences += count_occurrences (PATTERN (insn),
8921 eliminate_regs (substed, VOIDmode,
8922 NULL_RTX), 0);
8923 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8925 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8926 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8928 if (n_occurrences > n_inherited)
8929 return;
8931 regno = REGNO (reg);
8932 if (regno >= FIRST_PSEUDO_REGISTER)
8933 nregs = 1;
8934 else
8935 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8937 /* If the pseudo-reg we are reloading is no longer referenced
8938 anywhere between the store into it and here,
8939 and we're within the same basic block, then the value can only
8940 pass through the reload reg and end up here.
8941 Otherwise, give up--return. */
8942 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8943 i1 != insn; i1 = NEXT_INSN (i1))
8945 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8946 return;
8947 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8948 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8950 /* If this is USE in front of INSN, we only have to check that
8951 there are no more references than accounted for by inheritance. */
8952 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8954 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8955 i1 = NEXT_INSN (i1);
8957 if (n_occurrences <= n_inherited && i1 == insn)
8958 break;
8959 return;
8963 /* We will be deleting the insn. Remove the spill reg information. */
8964 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8966 spill_reg_store[last_reload_reg + k] = 0;
8967 spill_reg_stored_to[last_reload_reg + k] = 0;
8970 /* The caller has already checked that REG dies or is set in INSN.
8971 It has also checked that we are optimizing, and thus some
8972 inaccuracies in the debugging information are acceptable.
8973 So we could just delete output_reload_insn. But in some cases
8974 we can improve the debugging information without sacrificing
8975 optimization - maybe even improving the code: See if the pseudo
8976 reg has been completely replaced with reload regs. If so, delete
8977 the store insn and forget we had a stack slot for the pseudo. */
8978 if (rld[j].out != rld[j].in
8979 && REG_N_DEATHS (REGNO (reg)) == 1
8980 && REG_N_SETS (REGNO (reg)) == 1
8981 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8982 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8984 rtx_insn *i2;
8986 /* We know that it was used only between here and the beginning of
8987 the current basic block. (We also know that the last use before
8988 INSN was the output reload we are thinking of deleting, but never
8989 mind that.) Search that range; see if any ref remains. */
8990 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8992 rtx set = single_set (i2);
8994 /* Uses which just store in the pseudo don't count,
8995 since if they are the only uses, they are dead. */
8996 if (set != 0 && SET_DEST (set) == reg)
8997 continue;
8998 if (LABEL_P (i2) || JUMP_P (i2))
8999 break;
9000 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
9001 && reg_mentioned_p (reg, PATTERN (i2)))
9003 /* Some other ref remains; just delete the output reload we
9004 know to be dead. */
9005 delete_address_reloads (output_reload_insn, insn);
9006 delete_insn (output_reload_insn);
9007 return;
9011 /* Delete the now-dead stores into this pseudo. Note that this
9012 loop also takes care of deleting output_reload_insn. */
9013 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
9015 rtx set = single_set (i2);
9017 if (set != 0 && SET_DEST (set) == reg)
9019 delete_address_reloads (i2, insn);
9020 delete_insn (i2);
9022 if (LABEL_P (i2) || JUMP_P (i2))
9023 break;
9026 /* For the debugging info, say the pseudo lives in this reload reg. */
9027 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
9028 if (ira_conflicts_p)
9029 /* Inform IRA about the change. */
9030 ira_mark_allocation_change (REGNO (reg));
9031 alter_reg (REGNO (reg), -1, false);
9033 else
9035 delete_address_reloads (output_reload_insn, insn);
9036 delete_insn (output_reload_insn);
9040 /* We are going to delete DEAD_INSN. Recursively delete loads of
9041 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9042 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9043 static void
9044 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9046 rtx set = single_set (dead_insn);
9047 rtx set2, dst;
9048 rtx_insn *prev, *next;
9049 if (set)
9051 rtx dst = SET_DEST (set);
9052 if (MEM_P (dst))
9053 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9055 /* If we deleted the store from a reloaded post_{in,de}c expression,
9056 we can delete the matching adds. */
9057 prev = PREV_INSN (dead_insn);
9058 next = NEXT_INSN (dead_insn);
9059 if (! prev || ! next)
9060 return;
9061 set = single_set (next);
9062 set2 = single_set (prev);
9063 if (! set || ! set2
9064 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9065 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9066 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9067 return;
9068 dst = SET_DEST (set);
9069 if (! rtx_equal_p (dst, SET_DEST (set2))
9070 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9071 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9072 || (INTVAL (XEXP (SET_SRC (set), 1))
9073 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9074 return;
9075 delete_related_insns (prev);
9076 delete_related_insns (next);
9079 /* Subfunction of delete_address_reloads: process registers found in X. */
9080 static void
9081 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9083 rtx_insn *prev, *i2;
9084 rtx set, dst;
9085 int i, j;
9086 enum rtx_code code = GET_CODE (x);
9088 if (code != REG)
9090 const char *fmt = GET_RTX_FORMAT (code);
9091 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9093 if (fmt[i] == 'e')
9094 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9095 else if (fmt[i] == 'E')
9097 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9098 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9099 current_insn);
9102 return;
9105 if (spill_reg_order[REGNO (x)] < 0)
9106 return;
9108 /* Scan backwards for the insn that sets x. This might be a way back due
9109 to inheritance. */
9110 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9112 code = GET_CODE (prev);
9113 if (code == CODE_LABEL || code == JUMP_INSN)
9114 return;
9115 if (!INSN_P (prev))
9116 continue;
9117 if (reg_set_p (x, PATTERN (prev)))
9118 break;
9119 if (reg_referenced_p (x, PATTERN (prev)))
9120 return;
9122 if (! prev || INSN_UID (prev) < reload_first_uid)
9123 return;
9124 /* Check that PREV only sets the reload register. */
9125 set = single_set (prev);
9126 if (! set)
9127 return;
9128 dst = SET_DEST (set);
9129 if (!REG_P (dst)
9130 || ! rtx_equal_p (dst, x))
9131 return;
9132 if (! reg_set_p (dst, PATTERN (dead_insn)))
9134 /* Check if DST was used in a later insn -
9135 it might have been inherited. */
9136 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9138 if (LABEL_P (i2))
9139 break;
9140 if (! INSN_P (i2))
9141 continue;
9142 if (reg_referenced_p (dst, PATTERN (i2)))
9144 /* If there is a reference to the register in the current insn,
9145 it might be loaded in a non-inherited reload. If no other
9146 reload uses it, that means the register is set before
9147 referenced. */
9148 if (i2 == current_insn)
9150 for (j = n_reloads - 1; j >= 0; j--)
9151 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9152 || reload_override_in[j] == dst)
9153 return;
9154 for (j = n_reloads - 1; j >= 0; j--)
9155 if (rld[j].in && rld[j].reg_rtx == dst)
9156 break;
9157 if (j >= 0)
9158 break;
9160 return;
9162 if (JUMP_P (i2))
9163 break;
9164 /* If DST is still live at CURRENT_INSN, check if it is used for
9165 any reload. Note that even if CURRENT_INSN sets DST, we still
9166 have to check the reloads. */
9167 if (i2 == current_insn)
9169 for (j = n_reloads - 1; j >= 0; j--)
9170 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9171 || reload_override_in[j] == dst)
9172 return;
9173 /* ??? We can't finish the loop here, because dst might be
9174 allocated to a pseudo in this block if no reload in this
9175 block needs any of the classes containing DST - see
9176 spill_hard_reg. There is no easy way to tell this, so we
9177 have to scan till the end of the basic block. */
9179 if (reg_set_p (dst, PATTERN (i2)))
9180 break;
9183 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9184 reg_reloaded_contents[REGNO (dst)] = -1;
9185 delete_insn (prev);
9188 /* Output reload-insns to reload VALUE into RELOADREG.
9189 VALUE is an autoincrement or autodecrement RTX whose operand
9190 is a register or memory location;
9191 so reloading involves incrementing that location.
9192 IN is either identical to VALUE, or some cheaper place to reload from.
9194 INC_AMOUNT is the number to increment or decrement by (always positive).
9195 This cannot be deduced from VALUE. */
9197 static void
9198 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9200 /* REG or MEM to be copied and incremented. */
9201 rtx incloc = find_replacement (&XEXP (value, 0));
9202 /* Nonzero if increment after copying. */
9203 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9204 || GET_CODE (value) == POST_MODIFY);
9205 rtx_insn *last;
9206 rtx inc;
9207 rtx_insn *add_insn;
9208 int code;
9209 rtx real_in = in == value ? incloc : in;
9211 /* No hard register is equivalent to this register after
9212 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9213 we could inc/dec that register as well (maybe even using it for
9214 the source), but I'm not sure it's worth worrying about. */
9215 if (REG_P (incloc))
9216 reg_last_reload_reg[REGNO (incloc)] = 0;
9218 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9220 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9221 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9223 else
9225 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9226 inc_amount = -inc_amount;
9228 inc = GEN_INT (inc_amount);
9231 /* If this is post-increment, first copy the location to the reload reg. */
9232 if (post && real_in != reloadreg)
9233 emit_insn (gen_move_insn (reloadreg, real_in));
9235 if (in == value)
9237 /* See if we can directly increment INCLOC. Use a method similar to
9238 that in gen_reload. */
9240 last = get_last_insn ();
9241 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9242 gen_rtx_PLUS (GET_MODE (incloc),
9243 incloc, inc)));
9245 code = recog_memoized (add_insn);
9246 if (code >= 0)
9248 extract_insn (add_insn);
9249 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9251 /* If this is a pre-increment and we have incremented the value
9252 where it lives, copy the incremented value to RELOADREG to
9253 be used as an address. */
9255 if (! post)
9256 emit_insn (gen_move_insn (reloadreg, incloc));
9257 return;
9260 delete_insns_since (last);
9263 /* If couldn't do the increment directly, must increment in RELOADREG.
9264 The way we do this depends on whether this is pre- or post-increment.
9265 For pre-increment, copy INCLOC to the reload register, increment it
9266 there, then save back. */
9268 if (! post)
9270 if (in != reloadreg)
9271 emit_insn (gen_move_insn (reloadreg, real_in));
9272 emit_insn (gen_add2_insn (reloadreg, inc));
9273 emit_insn (gen_move_insn (incloc, reloadreg));
9275 else
9277 /* Postincrement.
9278 Because this might be a jump insn or a compare, and because RELOADREG
9279 may not be available after the insn in an input reload, we must do
9280 the incrementation before the insn being reloaded for.
9282 We have already copied IN to RELOADREG. Increment the copy in
9283 RELOADREG, save that back, then decrement RELOADREG so it has
9284 the original value. */
9286 emit_insn (gen_add2_insn (reloadreg, inc));
9287 emit_insn (gen_move_insn (incloc, reloadreg));
9288 if (CONST_INT_P (inc))
9289 emit_insn (gen_add2_insn (reloadreg,
9290 gen_int_mode (-INTVAL (inc),
9291 GET_MODE (reloadreg))));
9292 else
9293 emit_insn (gen_sub2_insn (reloadreg, inc));
9297 #ifdef AUTO_INC_DEC
9298 static void
9299 add_auto_inc_notes (rtx_insn *insn, rtx x)
9301 enum rtx_code code = GET_CODE (x);
9302 const char *fmt;
9303 int i, j;
9305 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9307 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9308 return;
9311 /* Scan all the operand sub-expressions. */
9312 fmt = GET_RTX_FORMAT (code);
9313 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9315 if (fmt[i] == 'e')
9316 add_auto_inc_notes (insn, XEXP (x, i));
9317 else if (fmt[i] == 'E')
9318 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9319 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9322 #endif