1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
5 -- S Y S T E M . O S _ P R I M I T I V E S --
9 -- Copyright (C) 1998-2015, Free Software Foundation, Inc. --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
30 ------------------------------------------------------------------------------
32 -- This is the NT version of this package
34 with System
.Task_Lock
;
35 with System
.Win32
.Ext
;
37 package body System
.OS_Primitives
is
43 ----------------------------------------
44 -- Data for the high resolution clock --
45 ----------------------------------------
47 Tick_Frequency
: aliased LARGE_INTEGER
;
48 -- Holds frequency of high-performance counter used by Clock
49 -- Windows NT uses a 1_193_182 Hz counter on PCs.
51 Base_Monotonic_Ticks
: LARGE_INTEGER
;
52 -- Holds the Tick count for the base monotonic time
54 Base_Monotonic_Clock
: Duration;
55 -- Holds the current clock for monotonic clock's base time
57 type Clock_Data
is record
58 Base_Ticks
: LARGE_INTEGER
;
59 -- Holds the Tick count for the base time
61 Base_Time
: Long_Long_Integer;
62 -- Holds the base time used to check for system time change, used with
63 -- the standard clock.
65 Base_Clock
: Duration;
66 -- Holds the current clock for the standard clock's base time
69 type Clock_Data_Access
is access all Clock_Data
;
71 -- Two base clock buffers. This is used to be able to update a buffer while
72 -- the other buffer is read. The point is that we do not want to use a lock
73 -- inside the Clock routine for performance reasons. We still use a lock
74 -- in the Get_Base_Time which is called very rarely. Current is a pointer,
75 -- the pragma Atomic is there to ensure that the value can be set or read
76 -- atomically. That's it, when Get_Base_Time has updated a buffer the
77 -- switch to the new value is done by changing Current pointer.
79 First
, Second
: aliased Clock_Data
;
81 Current
: Clock_Data_Access
:= First
'Access;
82 pragma Atomic
(Current
);
84 -- The following signature is to detect change on the base clock data
85 -- above. The signature is a modular type, it will wrap around without
86 -- raising an exception. We would need to have exactly 2**32 updates of
87 -- the base data for the changes to get undetected.
89 type Signature_Type
is mod 2**32;
90 Signature
: Signature_Type
:= 0;
91 pragma Atomic
(Signature
);
93 procedure Get_Base_Time
(Data
: in out Clock_Data
);
94 -- Retrieve the base time and base ticks. These values will be used by
95 -- clock to compute the current time by adding to it a fraction of the
96 -- performance counter. This is for the implementation of a high-resolution
97 -- clock. Note that this routine does not change the base monotonic values
98 -- used by the monotonic clock.
104 -- This implementation of clock provides high resolution timer values
105 -- using QueryPerformanceCounter. This call return a 64 bits values (based
106 -- on the 8253 16 bits counter). This counter is updated every 1/1_193_182
107 -- times per seconds. The call to QueryPerformanceCounter takes 6
108 -- microsecs to complete.
110 function Clock
return Duration is
111 Max_Shift
: constant Duration := 2.0;
112 Hundreds_Nano_In_Sec
: constant Long_Long_Float := 1.0E7
;
114 Current_Ticks
: aliased LARGE_INTEGER
;
115 Elap_Secs_Tick
: Duration;
116 Elap_Secs_Sys
: Duration;
117 Now
: aliased Long_Long_Integer;
118 Sig1
, Sig2
: Signature_Type
;
121 -- Try ten times to get a coherent set of base data. For this we just
122 -- check that the signature hasn't changed during the copy of the
125 -- This loop will always be done once if there is no interleaved call
128 for K
in 1 .. 10 loop
132 exit when Sig1
= Sig2
;
135 if QueryPerformanceCounter
(Current_Ticks
'Access) = Win32
.FALSE then
139 GetSystemTimeAsFileTime
(Now
'Access);
142 Duration (Long_Long_Float (abs (Now
- Data
.Base_Time
)) /
143 Hundreds_Nano_In_Sec
);
146 Duration (Long_Long_Float (Current_Ticks
- Data
.Base_Ticks
) /
147 Long_Long_Float (Tick_Frequency
));
149 -- If we have a shift of more than Max_Shift seconds we resynchronize
150 -- the Clock. This is probably due to a manual Clock adjustment, a DST
151 -- adjustment or an NTP synchronisation. And we want to adjust the time
152 -- for this system (non-monotonic) clock.
154 if abs (Elap_Secs_Sys
- Elap_Secs_Tick
) > Max_Shift
then
155 Get_Base_Time
(Data
);
158 Duration (Long_Long_Float (Current_Ticks
- Data
.Base_Ticks
) /
159 Long_Long_Float (Tick_Frequency
));
162 return Data
.Base_Clock
+ Elap_Secs_Tick
;
169 procedure Get_Base_Time
(Data
: in out Clock_Data
) is
171 -- The resolution for GetSystemTime is 1 millisecond
173 -- The time to get both base times should take less than 1 millisecond.
174 -- Therefore, the elapsed time reported by GetSystemTime between both
175 -- actions should be null.
177 epoch_1970
: constant := 16#
19D_B1DE_D53E_8000#
; -- win32 UTC epoch
178 system_time_ns
: constant := 100; -- 100 ns per tick
179 Sec_Unit
: constant := 10#
1#E9
;
181 Max_Elapsed
: constant LARGE_INTEGER
:=
182 LARGE_INTEGER
(Tick_Frequency
/ 100_000
);
183 -- Look for a precision of 0.01 ms
185 Sig
: constant Signature_Type
:= Signature
;
187 Loc_Ticks
, Ctrl_Ticks
: aliased LARGE_INTEGER
;
188 Loc_Time
, Ctrl_Time
: aliased Long_Long_Integer;
189 Elapsed
: LARGE_INTEGER
;
190 Current_Max
: LARGE_INTEGER
:= LARGE_INTEGER
'Last;
191 New_Data
: Clock_Data_Access
;
194 -- Here we must be sure that both of these calls are done in a short
195 -- amount of time. Both are base time and should in theory be taken
196 -- at the very same time.
198 -- The goal of the following loop is to synchronize the system time
199 -- with the Win32 performance counter by getting a base offset for both.
200 -- Using these offsets it is then possible to compute actual time using
201 -- a performance counter which has a better precision than the Win32
204 -- Try at most 10 times to reach the best synchronisation (below 1
205 -- millisecond) otherwise the runtime will use the best value reached
210 -- First check that the current value has not been updated. This
211 -- could happen if another task has called Clock at the same time
212 -- and that Max_Shift has been reached too.
214 -- But if the current value has been changed just before we entered
215 -- into the critical section, we can safely return as the current
216 -- base data (time, clock, ticks) have already been updated.
218 if Sig
/= Signature
then
223 -- Check for the unused data buffer and set New_Data to point to it
225 if Current
= First
'Access then
226 New_Data
:= Second
'Access;
228 New_Data
:= First
'Access;
231 for K
in 1 .. 10 loop
232 if QueryPerformanceCounter
(Loc_Ticks
'Access) = Win32
.FALSE then
235 "Could not query high performance counter in Clock");
239 GetSystemTimeAsFileTime
(Ctrl_Time
'Access);
241 -- Scan for clock tick, will take up to 16ms/1ms depending on PC.
242 -- This cannot be an infinite loop or the system hardware is badly
246 GetSystemTimeAsFileTime
(Loc_Time
'Access);
248 if QueryPerformanceCounter
(Ctrl_Ticks
'Access) = Win32
.FALSE then
251 "Could not query high performance counter in Clock");
255 exit when Loc_Time
/= Ctrl_Time
;
256 Loc_Ticks
:= Ctrl_Ticks
;
259 -- Check elapsed Performance Counter between samples
260 -- to choose the best one.
262 Elapsed
:= Ctrl_Ticks
- Loc_Ticks
;
264 if Elapsed
< Current_Max
then
265 New_Data
.Base_Time
:= Loc_Time
;
266 New_Data
.Base_Ticks
:= Loc_Ticks
;
267 Current_Max
:= Elapsed
;
269 -- Exit the loop when we have reached the expected precision
271 exit when Elapsed
<= Max_Elapsed
;
275 New_Data
.Base_Clock
:=
278 ((New_Data
.Base_Time
- epoch_1970
) * system_time_ns
) /
279 Long_Long_Float (Sec_Unit
));
281 -- At this point all the base values have been set into the new data
282 -- record. Change the pointer (atomic operation) to these new values.
285 Data
:= New_Data
.all;
287 -- Set new signature for this data set
289 Signature
:= Signature
+ 1;
299 ---------------------
300 -- Monotonic_Clock --
301 ---------------------
303 function Monotonic_Clock
return Duration is
304 Current_Ticks
: aliased LARGE_INTEGER
;
305 Elap_Secs_Tick
: Duration;
308 if QueryPerformanceCounter
(Current_Ticks
'Access) = Win32
.FALSE then
313 Duration (Long_Long_Float (Current_Ticks
- Base_Monotonic_Ticks
) /
314 Long_Long_Float (Tick_Frequency
));
315 return Base_Monotonic_Clock
+ Elap_Secs_Tick
;
323 procedure Timed_Delay
(Time
: Duration; Mode
: Integer) is
325 function Mode_Clock
return Duration;
326 pragma Inline
(Mode_Clock
);
327 -- Return the current clock value using either the monotonic clock or
328 -- standard clock depending on the Mode value.
334 function Mode_Clock
return Duration is
338 return Monotonic_Clock
;
346 Base_Time
: constant Duration := Mode_Clock
;
347 -- Base_Time is used to detect clock set backward, in this case we
348 -- cannot ensure the delay accuracy.
352 Check_Time
: Duration := Base_Time
;
354 -- Start of processing for Timed Delay
357 if Mode
= Relative
then
359 Abs_Time
:= Time
+ Check_Time
;
361 Rel_Time
:= Time
- Check_Time
;
365 if Rel_Time
> 0.0 then
367 Sleep
(DWORD
(Rel_Time
* 1000.0));
368 Check_Time
:= Mode_Clock
;
370 exit when Abs_Time
<= Check_Time
or else Check_Time
< Base_Time
;
372 Rel_Time
:= Abs_Time
- Check_Time
;
381 Initialized
: Boolean := False;
383 procedure Initialize
is
391 -- Get starting time as base
393 if QueryPerformanceFrequency
(Tick_Frequency
'Access) = Win32
.FALSE then
394 raise Program_Error
with
395 "cannot get high performance counter frequency";
398 Get_Base_Time
(Current
.all);
400 -- Keep base clock and ticks for the monotonic clock. These values
401 -- should never be changed to ensure proper behavior of the monotonic
404 Base_Monotonic_Clock
:= Current
.Base_Clock
;
405 Base_Monotonic_Ticks
:= Current
.Base_Ticks
;
408 end System
.OS_Primitives
;