1 /* Perform the semantic phase of parsing, i.e., the process of
2 building tree structure, checking semantic consistency, and
3 building RTL. These routines are used both during actual parsing
4 and during the instantiation of template functions.
6 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
7 Free Software Foundation, Inc.
8 Written by Mark Mitchell (mmitchell@usa.net) based on code found
9 formerly in parse.y and pt.c.
11 This file is part of GCC.
13 GCC is free software; you can redistribute it and/or modify it
14 under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
18 GCC is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GCC; see the file COPYING. If not, write to the Free
25 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
30 #include "coretypes.h"
35 #include "tree-inline.h"
36 #include "tree-mudflap.h"
45 #include "diagnostic.h"
47 #include "tree-iterator.h"
51 /* There routines provide a modular interface to perform many parsing
52 operations. They may therefore be used during actual parsing, or
53 during template instantiation, which may be regarded as a
54 degenerate form of parsing. Since the current g++ parser is
55 lacking in several respects, and will be reimplemented, we are
56 attempting to move most code that is not directly related to
57 parsing into this file; that will make implementing the new parser
58 much easier since it will be able to make use of these routines. */
60 static tree
maybe_convert_cond (tree
);
61 static tree
simplify_aggr_init_exprs_r (tree
*, int *, void *);
62 static void emit_associated_thunks (tree
);
63 static tree
finalize_nrv_r (tree
*, int *, void *);
66 /* Deferred Access Checking Overview
67 ---------------------------------
69 Most C++ expressions and declarations require access checking
70 to be performed during parsing. However, in several cases,
71 this has to be treated differently.
73 For member declarations, access checking has to be deferred
74 until more information about the declaration is known. For
86 When we are parsing the function return type `A::X', we don't
87 really know if this is allowed until we parse the function name.
89 Furthermore, some contexts require that access checking is
90 never performed at all. These include class heads, and template
93 Typical use of access checking functions is described here:
95 1. When we enter a context that requires certain access checking
96 mode, the function `push_deferring_access_checks' is called with
97 DEFERRING argument specifying the desired mode. Access checking
98 may be performed immediately (dk_no_deferred), deferred
99 (dk_deferred), or not performed (dk_no_check).
101 2. When a declaration such as a type, or a variable, is encountered,
102 the function `perform_or_defer_access_check' is called. It
103 maintains a TREE_LIST of all deferred checks.
105 3. The global `current_class_type' or `current_function_decl' is then
106 setup by the parser. `enforce_access' relies on these information
109 4. Upon exiting the context mentioned in step 1,
110 `perform_deferred_access_checks' is called to check all declaration
111 stored in the TREE_LIST. `pop_deferring_access_checks' is then
112 called to restore the previous access checking mode.
114 In case of parsing error, we simply call `pop_deferring_access_checks'
115 without `perform_deferred_access_checks'. */
117 typedef struct deferred_access
GTY(())
119 /* A TREE_LIST representing name-lookups for which we have deferred
120 checking access controls. We cannot check the accessibility of
121 names used in a decl-specifier-seq until we know what is being
122 declared because code like:
129 A::B* A::f() { return 0; }
131 is valid, even though `A::B' is not generally accessible.
133 The TREE_PURPOSE of each node is the scope used to qualify the
134 name being looked up; the TREE_VALUE is the DECL to which the
135 name was resolved. */
136 tree deferred_access_checks
;
138 /* The current mode of access checks. */
139 enum deferring_kind deferring_access_checks_kind
;
142 DEF_VEC_GC_O (deferred_access
);
144 /* Data for deferred access checking. */
145 static GTY(()) VEC (deferred_access
) *deferred_access_stack
;
146 static GTY(()) unsigned deferred_access_no_check
;
148 /* Save the current deferred access states and start deferred
149 access checking iff DEFER_P is true. */
152 push_deferring_access_checks (deferring_kind deferring
)
154 /* For context like template instantiation, access checking
155 disabling applies to all nested context. */
156 if (deferred_access_no_check
|| deferring
== dk_no_check
)
157 deferred_access_no_check
++;
160 deferred_access
*ptr
;
162 ptr
= VEC_safe_push (deferred_access
, deferred_access_stack
, NULL
);
163 ptr
->deferred_access_checks
= NULL_TREE
;
164 ptr
->deferring_access_checks_kind
= deferring
;
168 /* Resume deferring access checks again after we stopped doing
172 resume_deferring_access_checks (void)
174 if (!deferred_access_no_check
)
175 VEC_last (deferred_access
, deferred_access_stack
)
176 ->deferring_access_checks_kind
= dk_deferred
;
179 /* Stop deferring access checks. */
182 stop_deferring_access_checks (void)
184 if (!deferred_access_no_check
)
185 VEC_last (deferred_access
, deferred_access_stack
)
186 ->deferring_access_checks_kind
= dk_no_deferred
;
189 /* Discard the current deferred access checks and restore the
193 pop_deferring_access_checks (void)
195 if (deferred_access_no_check
)
196 deferred_access_no_check
--;
198 VEC_pop (deferred_access
, deferred_access_stack
);
201 /* Returns a TREE_LIST representing the deferred checks.
202 The TREE_PURPOSE of each node is the type through which the
203 access occurred; the TREE_VALUE is the declaration named.
207 get_deferred_access_checks (void)
209 if (deferred_access_no_check
)
212 return (VEC_last (deferred_access
, deferred_access_stack
)
213 ->deferred_access_checks
);
216 /* Take current deferred checks and combine with the
217 previous states if we also defer checks previously.
218 Otherwise perform checks now. */
221 pop_to_parent_deferring_access_checks (void)
223 if (deferred_access_no_check
)
224 deferred_access_no_check
--;
228 deferred_access
*ptr
;
230 checks
= (VEC_last (deferred_access
, deferred_access_stack
)
231 ->deferred_access_checks
);
233 VEC_pop (deferred_access
, deferred_access_stack
);
234 ptr
= VEC_last (deferred_access
, deferred_access_stack
);
235 if (ptr
->deferring_access_checks_kind
== dk_no_deferred
)
238 for (; checks
; checks
= TREE_CHAIN (checks
))
239 enforce_access (TREE_PURPOSE (checks
),
240 TREE_VALUE (checks
));
244 /* Merge with parent. */
246 tree original
= ptr
->deferred_access_checks
;
248 for (; checks
; checks
= next
)
252 next
= TREE_CHAIN (checks
);
254 for (probe
= original
; probe
; probe
= TREE_CHAIN (probe
))
255 if (TREE_VALUE (probe
) == TREE_VALUE (checks
)
256 && TREE_PURPOSE (probe
) == TREE_PURPOSE (checks
))
258 /* Insert into parent's checks. */
259 TREE_CHAIN (checks
) = ptr
->deferred_access_checks
;
260 ptr
->deferred_access_checks
= checks
;
267 /* Perform the deferred access checks.
269 After performing the checks, we still have to keep the list
270 `deferred_access_stack->deferred_access_checks' since we may want
271 to check access for them again later in a different context.
278 A::X A::a, x; // No error for `A::a', error for `x'
280 We have to perform deferred access of `A::X', first with `A::a',
284 perform_deferred_access_checks (void)
288 for (deferred_check
= (VEC_last (deferred_access
, deferred_access_stack
)
289 ->deferred_access_checks
);
291 deferred_check
= TREE_CHAIN (deferred_check
))
293 enforce_access (TREE_PURPOSE (deferred_check
),
294 TREE_VALUE (deferred_check
));
297 /* Defer checking the accessibility of DECL, when looked up in
301 perform_or_defer_access_check (tree binfo
, tree decl
)
304 deferred_access
*ptr
;
306 /* Exit if we are in a context that no access checking is performed.
308 if (deferred_access_no_check
)
311 gcc_assert (TREE_CODE (binfo
) == TREE_BINFO
);
313 ptr
= VEC_last (deferred_access
, deferred_access_stack
);
315 /* If we are not supposed to defer access checks, just check now. */
316 if (ptr
->deferring_access_checks_kind
== dk_no_deferred
)
318 enforce_access (binfo
, decl
);
322 /* See if we are already going to perform this check. */
323 for (check
= ptr
->deferred_access_checks
;
325 check
= TREE_CHAIN (check
))
326 if (TREE_VALUE (check
) == decl
&& TREE_PURPOSE (check
) == binfo
)
328 /* If not, record the check. */
329 ptr
->deferred_access_checks
330 = tree_cons (binfo
, decl
, ptr
->deferred_access_checks
);
333 /* Returns nonzero if the current statement is a full expression,
334 i.e. temporaries created during that statement should be destroyed
335 at the end of the statement. */
338 stmts_are_full_exprs_p (void)
340 return current_stmt_tree ()->stmts_are_full_exprs_p
;
343 /* Returns the stmt_tree (if any) to which statements are currently
344 being added. If there is no active statement-tree, NULL is
348 current_stmt_tree (void)
351 ? &cfun
->language
->base
.x_stmt_tree
352 : &scope_chain
->x_stmt_tree
);
355 /* If statements are full expressions, wrap STMT in a CLEANUP_POINT_EXPR. */
358 maybe_cleanup_point_expr (tree expr
)
360 if (!processing_template_decl
&& stmts_are_full_exprs_p ())
361 expr
= fold_build_cleanup_point_expr (TREE_TYPE (expr
), expr
);
365 /* Like maybe_cleanup_point_expr except have the type of the new expression be
366 void so we don't need to create a temporary variable to hold the inner
367 expression. The reason why we do this is because the original type might be
368 an aggregate and we cannot create a temporary variable for that type. */
371 maybe_cleanup_point_expr_void (tree expr
)
373 if (!processing_template_decl
&& stmts_are_full_exprs_p ())
374 expr
= fold_build_cleanup_point_expr (void_type_node
, expr
);
380 /* Create a declaration statement for the declaration given by the DECL. */
383 add_decl_expr (tree decl
)
385 tree r
= build_stmt (DECL_EXPR
, decl
);
386 if (DECL_INITIAL (decl
)
387 || (DECL_SIZE (decl
) && TREE_SIDE_EFFECTS (DECL_SIZE (decl
))))
388 r
= maybe_cleanup_point_expr_void (r
);
392 /* Nonzero if TYPE is an anonymous union or struct type. We have to use a
393 flag for this because "A union for which objects or pointers are
394 declared is not an anonymous union" [class.union]. */
397 anon_aggr_type_p (tree node
)
399 return ANON_AGGR_TYPE_P (node
);
402 /* Finish a scope. */
405 do_poplevel (tree stmt_list
)
409 if (stmts_are_full_exprs_p ())
410 block
= poplevel (kept_level_p (), 1, 0);
412 stmt_list
= pop_stmt_list (stmt_list
);
414 if (!processing_template_decl
)
416 stmt_list
= c_build_bind_expr (block
, stmt_list
);
417 /* ??? See c_end_compound_stmt re statement expressions. */
423 /* Begin a new scope. */
426 do_pushlevel (scope_kind sk
)
428 tree ret
= push_stmt_list ();
429 if (stmts_are_full_exprs_p ())
430 begin_scope (sk
, NULL
);
434 /* Queue a cleanup. CLEANUP is an expression/statement to be executed
435 when the current scope is exited. EH_ONLY is true when this is not
436 meant to apply to normal control flow transfer. */
439 push_cleanup (tree decl
, tree cleanup
, bool eh_only
)
441 tree stmt
= build_stmt (CLEANUP_STMT
, NULL
, cleanup
, decl
);
442 CLEANUP_EH_ONLY (stmt
) = eh_only
;
444 CLEANUP_BODY (stmt
) = push_stmt_list ();
447 /* Begin a conditional that might contain a declaration. When generating
448 normal code, we want the declaration to appear before the statement
449 containing the conditional. When generating template code, we want the
450 conditional to be rendered as the raw DECL_EXPR. */
453 begin_cond (tree
*cond_p
)
455 if (processing_template_decl
)
456 *cond_p
= push_stmt_list ();
459 /* Finish such a conditional. */
462 finish_cond (tree
*cond_p
, tree expr
)
464 if (processing_template_decl
)
466 tree cond
= pop_stmt_list (*cond_p
);
467 if (TREE_CODE (cond
) == DECL_EXPR
)
473 /* If *COND_P specifies a conditional with a declaration, transform the
476 for (; A x = 42;) { }
478 while (true) { A x = 42; if (!x) break; }
479 for (;;) { A x = 42; if (!x) break; }
480 The statement list for BODY will be empty if the conditional did
481 not declare anything. */
484 simplify_loop_decl_cond (tree
*cond_p
, tree body
)
488 if (!TREE_SIDE_EFFECTS (body
))
492 *cond_p
= boolean_true_node
;
494 if_stmt
= begin_if_stmt ();
495 cond
= build_unary_op (TRUTH_NOT_EXPR
, cond
, 0);
496 finish_if_stmt_cond (cond
, if_stmt
);
497 finish_break_stmt ();
498 finish_then_clause (if_stmt
);
499 finish_if_stmt (if_stmt
);
502 /* Finish a goto-statement. */
505 finish_goto_stmt (tree destination
)
507 if (TREE_CODE (destination
) == IDENTIFIER_NODE
)
508 destination
= lookup_label (destination
);
510 /* We warn about unused labels with -Wunused. That means we have to
511 mark the used labels as used. */
512 if (TREE_CODE (destination
) == LABEL_DECL
)
513 TREE_USED (destination
) = 1;
516 /* The DESTINATION is being used as an rvalue. */
517 if (!processing_template_decl
)
518 destination
= decay_conversion (destination
);
519 /* We don't inline calls to functions with computed gotos.
520 Those functions are typically up to some funny business,
521 and may be depending on the labels being at particular
522 addresses, or some such. */
523 DECL_UNINLINABLE (current_function_decl
) = 1;
526 check_goto (destination
);
528 return add_stmt (build_stmt (GOTO_EXPR
, destination
));
531 /* COND is the condition-expression for an if, while, etc.,
532 statement. Convert it to a boolean value, if appropriate. */
535 maybe_convert_cond (tree cond
)
537 /* Empty conditions remain empty. */
541 /* Wait until we instantiate templates before doing conversion. */
542 if (processing_template_decl
)
545 /* Do the conversion. */
546 cond
= convert_from_reference (cond
);
547 return condition_conversion (cond
);
550 /* Finish an expression-statement, whose EXPRESSION is as indicated. */
553 finish_expr_stmt (tree expr
)
557 if (expr
!= NULL_TREE
)
559 if (!processing_template_decl
)
561 if (warn_sequence_point
)
562 verify_sequence_points (expr
);
563 expr
= convert_to_void (expr
, "statement");
565 else if (!type_dependent_expression_p (expr
))
566 convert_to_void (build_non_dependent_expr (expr
), "statement");
568 /* Simplification of inner statement expressions, compound exprs,
569 etc can result in us already having an EXPR_STMT. */
570 if (TREE_CODE (expr
) != CLEANUP_POINT_EXPR
)
572 if (TREE_CODE (expr
) != EXPR_STMT
)
573 expr
= build_stmt (EXPR_STMT
, expr
);
574 expr
= maybe_cleanup_point_expr_void (expr
);
586 /* Begin an if-statement. Returns a newly created IF_STMT if
593 scope
= do_pushlevel (sk_block
);
594 r
= build_stmt (IF_STMT
, NULL_TREE
, NULL_TREE
, NULL_TREE
);
595 TREE_CHAIN (r
) = scope
;
596 begin_cond (&IF_COND (r
));
600 /* Process the COND of an if-statement, which may be given by
604 finish_if_stmt_cond (tree cond
, tree if_stmt
)
606 finish_cond (&IF_COND (if_stmt
), maybe_convert_cond (cond
));
608 THEN_CLAUSE (if_stmt
) = push_stmt_list ();
611 /* Finish the then-clause of an if-statement, which may be given by
615 finish_then_clause (tree if_stmt
)
617 THEN_CLAUSE (if_stmt
) = pop_stmt_list (THEN_CLAUSE (if_stmt
));
621 /* Begin the else-clause of an if-statement. */
624 begin_else_clause (tree if_stmt
)
626 ELSE_CLAUSE (if_stmt
) = push_stmt_list ();
629 /* Finish the else-clause of an if-statement, which may be given by
633 finish_else_clause (tree if_stmt
)
635 ELSE_CLAUSE (if_stmt
) = pop_stmt_list (ELSE_CLAUSE (if_stmt
));
638 /* Finish an if-statement. */
641 finish_if_stmt (tree if_stmt
)
643 tree scope
= TREE_CHAIN (if_stmt
);
644 TREE_CHAIN (if_stmt
) = NULL
;
645 add_stmt (do_poplevel (scope
));
649 /* Begin a while-statement. Returns a newly created WHILE_STMT if
653 begin_while_stmt (void)
656 r
= build_stmt (WHILE_STMT
, NULL_TREE
, NULL_TREE
);
658 WHILE_BODY (r
) = do_pushlevel (sk_block
);
659 begin_cond (&WHILE_COND (r
));
663 /* Process the COND of a while-statement, which may be given by
667 finish_while_stmt_cond (tree cond
, tree while_stmt
)
669 finish_cond (&WHILE_COND (while_stmt
), maybe_convert_cond (cond
));
670 simplify_loop_decl_cond (&WHILE_COND (while_stmt
), WHILE_BODY (while_stmt
));
673 /* Finish a while-statement, which may be given by WHILE_STMT. */
676 finish_while_stmt (tree while_stmt
)
678 WHILE_BODY (while_stmt
) = do_poplevel (WHILE_BODY (while_stmt
));
682 /* Begin a do-statement. Returns a newly created DO_STMT if
688 tree r
= build_stmt (DO_STMT
, NULL_TREE
, NULL_TREE
);
690 DO_BODY (r
) = push_stmt_list ();
694 /* Finish the body of a do-statement, which may be given by DO_STMT. */
697 finish_do_body (tree do_stmt
)
699 DO_BODY (do_stmt
) = pop_stmt_list (DO_BODY (do_stmt
));
702 /* Finish a do-statement, which may be given by DO_STMT, and whose
703 COND is as indicated. */
706 finish_do_stmt (tree cond
, tree do_stmt
)
708 cond
= maybe_convert_cond (cond
);
709 DO_COND (do_stmt
) = cond
;
713 /* Finish a return-statement. The EXPRESSION returned, if any, is as
717 finish_return_stmt (tree expr
)
721 expr
= check_return_expr (expr
);
722 if (!processing_template_decl
)
724 if (DECL_DESTRUCTOR_P (current_function_decl
)
725 || (DECL_CONSTRUCTOR_P (current_function_decl
)
726 && targetm
.cxx
.cdtor_returns_this ()))
728 /* Similarly, all destructors must run destructors for
729 base-classes before returning. So, all returns in a
730 destructor get sent to the DTOR_LABEL; finish_function emits
731 code to return a value there. */
732 return finish_goto_stmt (cdtor_label
);
736 r
= build_stmt (RETURN_EXPR
, expr
);
737 r
= maybe_cleanup_point_expr_void (r
);
744 /* Begin a for-statement. Returns a new FOR_STMT if appropriate. */
747 begin_for_stmt (void)
751 r
= build_stmt (FOR_STMT
, NULL_TREE
, NULL_TREE
,
752 NULL_TREE
, NULL_TREE
);
754 if (flag_new_for_scope
> 0)
755 TREE_CHAIN (r
) = do_pushlevel (sk_for
);
757 if (processing_template_decl
)
758 FOR_INIT_STMT (r
) = push_stmt_list ();
763 /* Finish the for-init-statement of a for-statement, which may be
764 given by FOR_STMT. */
767 finish_for_init_stmt (tree for_stmt
)
769 if (processing_template_decl
)
770 FOR_INIT_STMT (for_stmt
) = pop_stmt_list (FOR_INIT_STMT (for_stmt
));
772 FOR_BODY (for_stmt
) = do_pushlevel (sk_block
);
773 begin_cond (&FOR_COND (for_stmt
));
776 /* Finish the COND of a for-statement, which may be given by
780 finish_for_cond (tree cond
, tree for_stmt
)
782 finish_cond (&FOR_COND (for_stmt
), maybe_convert_cond (cond
));
783 simplify_loop_decl_cond (&FOR_COND (for_stmt
), FOR_BODY (for_stmt
));
786 /* Finish the increment-EXPRESSION in a for-statement, which may be
787 given by FOR_STMT. */
790 finish_for_expr (tree expr
, tree for_stmt
)
794 /* If EXPR is an overloaded function, issue an error; there is no
795 context available to use to perform overload resolution. */
796 if (type_unknown_p (expr
))
798 cxx_incomplete_type_error (expr
, TREE_TYPE (expr
));
799 expr
= error_mark_node
;
801 if (!processing_template_decl
)
803 if (warn_sequence_point
)
804 verify_sequence_points (expr
);
805 expr
= convert_to_void (expr
, "3rd expression in for");
807 else if (!type_dependent_expression_p (expr
))
808 convert_to_void (build_non_dependent_expr (expr
), "3rd expression in for");
809 expr
= maybe_cleanup_point_expr_void (expr
);
810 FOR_EXPR (for_stmt
) = expr
;
813 /* Finish the body of a for-statement, which may be given by
814 FOR_STMT. The increment-EXPR for the loop must be
818 finish_for_stmt (tree for_stmt
)
820 FOR_BODY (for_stmt
) = do_poplevel (FOR_BODY (for_stmt
));
822 /* Pop the scope for the body of the loop. */
823 if (flag_new_for_scope
> 0)
825 tree scope
= TREE_CHAIN (for_stmt
);
826 TREE_CHAIN (for_stmt
) = NULL
;
827 add_stmt (do_poplevel (scope
));
833 /* Finish a break-statement. */
836 finish_break_stmt (void)
838 return add_stmt (build_break_stmt ());
841 /* Finish a continue-statement. */
844 finish_continue_stmt (void)
846 return add_stmt (build_continue_stmt ());
849 /* Begin a switch-statement. Returns a new SWITCH_STMT if
853 begin_switch_stmt (void)
857 r
= build_stmt (SWITCH_STMT
, NULL_TREE
, NULL_TREE
, NULL_TREE
);
859 scope
= do_pushlevel (sk_block
);
860 TREE_CHAIN (r
) = scope
;
861 begin_cond (&SWITCH_STMT_COND (r
));
866 /* Finish the cond of a switch-statement. */
869 finish_switch_cond (tree cond
, tree switch_stmt
)
871 tree orig_type
= NULL
;
872 if (!processing_template_decl
)
876 /* Convert the condition to an integer or enumeration type. */
877 cond
= build_expr_type_conversion (WANT_INT
| WANT_ENUM
, cond
, true);
878 if (cond
== NULL_TREE
)
880 error ("switch quantity not an integer");
881 cond
= error_mark_node
;
883 orig_type
= TREE_TYPE (cond
);
884 if (cond
!= error_mark_node
)
888 Integral promotions are performed. */
889 cond
= perform_integral_promotions (cond
);
890 cond
= maybe_cleanup_point_expr (cond
);
893 if (cond
!= error_mark_node
)
895 index
= get_unwidened (cond
, NULL_TREE
);
896 /* We can't strip a conversion from a signed type to an unsigned,
897 because if we did, int_fits_type_p would do the wrong thing
898 when checking case values for being in range,
899 and it's too hard to do the right thing. */
900 if (TYPE_UNSIGNED (TREE_TYPE (cond
))
901 == TYPE_UNSIGNED (TREE_TYPE (index
)))
905 finish_cond (&SWITCH_STMT_COND (switch_stmt
), cond
);
906 SWITCH_STMT_TYPE (switch_stmt
) = orig_type
;
907 add_stmt (switch_stmt
);
908 push_switch (switch_stmt
);
909 SWITCH_STMT_BODY (switch_stmt
) = push_stmt_list ();
912 /* Finish the body of a switch-statement, which may be given by
913 SWITCH_STMT. The COND to switch on is indicated. */
916 finish_switch_stmt (tree switch_stmt
)
920 SWITCH_STMT_BODY (switch_stmt
) =
921 pop_stmt_list (SWITCH_STMT_BODY (switch_stmt
));
925 scope
= TREE_CHAIN (switch_stmt
);
926 TREE_CHAIN (switch_stmt
) = NULL
;
927 add_stmt (do_poplevel (scope
));
930 /* Begin a try-block. Returns a newly-created TRY_BLOCK if
934 begin_try_block (void)
936 tree r
= build_stmt (TRY_BLOCK
, NULL_TREE
, NULL_TREE
);
938 TRY_STMTS (r
) = push_stmt_list ();
942 /* Likewise, for a function-try-block. */
945 begin_function_try_block (void)
947 tree r
= begin_try_block ();
948 FN_TRY_BLOCK_P (r
) = 1;
952 /* Finish a try-block, which may be given by TRY_BLOCK. */
955 finish_try_block (tree try_block
)
957 TRY_STMTS (try_block
) = pop_stmt_list (TRY_STMTS (try_block
));
958 TRY_HANDLERS (try_block
) = push_stmt_list ();
961 /* Finish the body of a cleanup try-block, which may be given by
965 finish_cleanup_try_block (tree try_block
)
967 TRY_STMTS (try_block
) = pop_stmt_list (TRY_STMTS (try_block
));
970 /* Finish an implicitly generated try-block, with a cleanup is given
974 finish_cleanup (tree cleanup
, tree try_block
)
976 TRY_HANDLERS (try_block
) = cleanup
;
977 CLEANUP_P (try_block
) = 1;
980 /* Likewise, for a function-try-block. */
983 finish_function_try_block (tree try_block
)
985 finish_try_block (try_block
);
986 /* FIXME : something queer about CTOR_INITIALIZER somehow following
987 the try block, but moving it inside. */
988 in_function_try_handler
= 1;
991 /* Finish a handler-sequence for a try-block, which may be given by
995 finish_handler_sequence (tree try_block
)
997 TRY_HANDLERS (try_block
) = pop_stmt_list (TRY_HANDLERS (try_block
));
998 check_handlers (TRY_HANDLERS (try_block
));
1001 /* Likewise, for a function-try-block. */
1004 finish_function_handler_sequence (tree try_block
)
1006 in_function_try_handler
= 0;
1007 finish_handler_sequence (try_block
);
1010 /* Begin a handler. Returns a HANDLER if appropriate. */
1013 begin_handler (void)
1017 r
= build_stmt (HANDLER
, NULL_TREE
, NULL_TREE
);
1020 /* Create a binding level for the eh_info and the exception object
1022 HANDLER_BODY (r
) = do_pushlevel (sk_catch
);
1027 /* Finish the handler-parameters for a handler, which may be given by
1028 HANDLER. DECL is the declaration for the catch parameter, or NULL
1029 if this is a `catch (...)' clause. */
1032 finish_handler_parms (tree decl
, tree handler
)
1034 tree type
= NULL_TREE
;
1035 if (processing_template_decl
)
1039 decl
= pushdecl (decl
);
1040 decl
= push_template_decl (decl
);
1041 HANDLER_PARMS (handler
) = decl
;
1042 type
= TREE_TYPE (decl
);
1046 type
= expand_start_catch_block (decl
);
1048 HANDLER_TYPE (handler
) = type
;
1049 if (!processing_template_decl
&& type
)
1050 mark_used (eh_type_info (type
));
1053 /* Finish a handler, which may be given by HANDLER. The BLOCKs are
1054 the return value from the matching call to finish_handler_parms. */
1057 finish_handler (tree handler
)
1059 if (!processing_template_decl
)
1060 expand_end_catch_block ();
1061 HANDLER_BODY (handler
) = do_poplevel (HANDLER_BODY (handler
));
1064 /* Begin a compound statement. FLAGS contains some bits that control the
1065 behavior and context. If BCS_NO_SCOPE is set, the compound statement
1066 does not define a scope. If BCS_FN_BODY is set, this is the outermost
1067 block of a function. If BCS_TRY_BLOCK is set, this is the block
1068 created on behalf of a TRY statement. Returns a token to be passed to
1069 finish_compound_stmt. */
1072 begin_compound_stmt (unsigned int flags
)
1076 if (flags
& BCS_NO_SCOPE
)
1078 r
= push_stmt_list ();
1079 STATEMENT_LIST_NO_SCOPE (r
) = 1;
1081 /* Normally, we try hard to keep the BLOCK for a statement-expression.
1082 But, if it's a statement-expression with a scopeless block, there's
1083 nothing to keep, and we don't want to accidentally keep a block
1084 *inside* the scopeless block. */
1085 keep_next_level (false);
1088 r
= do_pushlevel (flags
& BCS_TRY_BLOCK
? sk_try
: sk_block
);
1090 /* When processing a template, we need to remember where the braces were,
1091 so that we can set up identical scopes when instantiating the template
1092 later. BIND_EXPR is a handy candidate for this.
1093 Note that do_poplevel won't create a BIND_EXPR itself here (and thus
1094 result in nested BIND_EXPRs), since we don't build BLOCK nodes when
1095 processing templates. */
1096 if (processing_template_decl
)
1098 r
= build3 (BIND_EXPR
, NULL
, NULL
, r
, NULL
);
1099 BIND_EXPR_TRY_BLOCK (r
) = (flags
& BCS_TRY_BLOCK
) != 0;
1100 BIND_EXPR_BODY_BLOCK (r
) = (flags
& BCS_FN_BODY
) != 0;
1101 TREE_SIDE_EFFECTS (r
) = 1;
1107 /* Finish a compound-statement, which is given by STMT. */
1110 finish_compound_stmt (tree stmt
)
1112 if (TREE_CODE (stmt
) == BIND_EXPR
)
1113 BIND_EXPR_BODY (stmt
) = do_poplevel (BIND_EXPR_BODY (stmt
));
1114 else if (STATEMENT_LIST_NO_SCOPE (stmt
))
1115 stmt
= pop_stmt_list (stmt
);
1118 /* Destroy any ObjC "super" receivers that may have been
1120 objc_clear_super_receiver ();
1122 stmt
= do_poplevel (stmt
);
1125 /* ??? See c_end_compound_stmt wrt statement expressions. */
1130 /* Finish an asm-statement, whose components are a STRING, some
1131 OUTPUT_OPERANDS, some INPUT_OPERANDS, and some CLOBBERS. Also note
1132 whether the asm-statement should be considered volatile. */
1135 finish_asm_stmt (int volatile_p
, tree string
, tree output_operands
,
1136 tree input_operands
, tree clobbers
)
1141 if (!processing_template_decl
)
1143 int ninputs
, noutputs
;
1144 const char *constraint
;
1145 const char **oconstraints
;
1146 bool allows_mem
, allows_reg
, is_inout
;
1150 ninputs
= list_length (input_operands
);
1151 noutputs
= list_length (output_operands
);
1152 oconstraints
= (const char **) alloca (noutputs
* sizeof (char *));
1154 string
= resolve_asm_operand_names (string
, output_operands
,
1157 for (i
= 0, t
= output_operands
; t
; t
= TREE_CHAIN (t
), ++i
)
1159 operand
= TREE_VALUE (t
);
1161 /* ??? Really, this should not be here. Users should be using a
1162 proper lvalue, dammit. But there's a long history of using
1163 casts in the output operands. In cases like longlong.h, this
1164 becomes a primitive form of typechecking -- if the cast can be
1165 removed, then the output operand had a type of the proper width;
1166 otherwise we'll get an error. Gross, but ... */
1167 STRIP_NOPS (operand
);
1169 if (!lvalue_or_else (operand
, lv_asm
))
1170 operand
= error_mark_node
;
1172 constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t
)));
1173 oconstraints
[i
] = constraint
;
1175 if (parse_output_constraint (&constraint
, i
, ninputs
, noutputs
,
1176 &allows_mem
, &allows_reg
, &is_inout
))
1178 /* If the operand is going to end up in memory,
1179 mark it addressable. */
1180 if (!allows_reg
&& !cxx_mark_addressable (operand
))
1181 operand
= error_mark_node
;
1184 operand
= error_mark_node
;
1186 TREE_VALUE (t
) = operand
;
1189 for (i
= 0, t
= input_operands
; t
; ++i
, t
= TREE_CHAIN (t
))
1191 constraint
= TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t
)));
1192 operand
= decay_conversion (TREE_VALUE (t
));
1194 /* If the type of the operand hasn't been determined (e.g.,
1195 because it involves an overloaded function), then issue
1196 an error message. There's no context available to
1197 resolve the overloading. */
1198 if (TREE_TYPE (operand
) == unknown_type_node
)
1200 error ("type of asm operand %qE could not be determined",
1202 operand
= error_mark_node
;
1205 if (parse_input_constraint (&constraint
, i
, ninputs
, noutputs
, 0,
1206 oconstraints
, &allows_mem
, &allows_reg
))
1208 /* If the operand is going to end up in memory,
1209 mark it addressable. */
1210 if (!allows_reg
&& allows_mem
)
1212 /* Strip the nops as we allow this case. FIXME, this really
1213 should be rejected or made deprecated. */
1214 STRIP_NOPS (operand
);
1215 if (!cxx_mark_addressable (operand
))
1216 operand
= error_mark_node
;
1220 operand
= error_mark_node
;
1222 TREE_VALUE (t
) = operand
;
1226 r
= build_stmt (ASM_EXPR
, string
,
1227 output_operands
, input_operands
,
1229 ASM_VOLATILE_P (r
) = volatile_p
;
1230 r
= maybe_cleanup_point_expr_void (r
);
1231 return add_stmt (r
);
1234 /* Finish a label with the indicated NAME. */
1237 finish_label_stmt (tree name
)
1239 tree decl
= define_label (input_location
, name
);
1240 return add_stmt (build_stmt (LABEL_EXPR
, decl
));
1243 /* Finish a series of declarations for local labels. G++ allows users
1244 to declare "local" labels, i.e., labels with scope. This extension
1245 is useful when writing code involving statement-expressions. */
1248 finish_label_decl (tree name
)
1250 tree decl
= declare_local_label (name
);
1251 add_decl_expr (decl
);
1254 /* When DECL goes out of scope, make sure that CLEANUP is executed. */
1257 finish_decl_cleanup (tree decl
, tree cleanup
)
1259 push_cleanup (decl
, cleanup
, false);
1262 /* If the current scope exits with an exception, run CLEANUP. */
1265 finish_eh_cleanup (tree cleanup
)
1267 push_cleanup (NULL
, cleanup
, true);
1270 /* The MEM_INITS is a list of mem-initializers, in reverse of the
1271 order they were written by the user. Each node is as for
1272 emit_mem_initializers. */
1275 finish_mem_initializers (tree mem_inits
)
1277 /* Reorder the MEM_INITS so that they are in the order they appeared
1278 in the source program. */
1279 mem_inits
= nreverse (mem_inits
);
1281 if (processing_template_decl
)
1282 add_stmt (build_min_nt (CTOR_INITIALIZER
, mem_inits
));
1284 emit_mem_initializers (mem_inits
);
1287 /* Finish a parenthesized expression EXPR. */
1290 finish_parenthesized_expr (tree expr
)
1293 /* This inhibits warnings in c_common_truthvalue_conversion. */
1294 TREE_NO_WARNING (expr
) = 1;
1296 if (TREE_CODE (expr
) == OFFSET_REF
)
1297 /* [expr.unary.op]/3 The qualified id of a pointer-to-member must not be
1298 enclosed in parentheses. */
1299 PTRMEM_OK_P (expr
) = 0;
1301 if (TREE_CODE (expr
) == STRING_CST
)
1302 PAREN_STRING_LITERAL_P (expr
) = 1;
1307 /* Finish a reference to a non-static data member (DECL) that is not
1308 preceded by `.' or `->'. */
1311 finish_non_static_data_member (tree decl
, tree object
, tree qualifying_scope
)
1313 gcc_assert (TREE_CODE (decl
) == FIELD_DECL
);
1317 if (current_function_decl
1318 && DECL_STATIC_FUNCTION_P (current_function_decl
))
1319 cp_error_at ("invalid use of member %qD in static member function",
1322 cp_error_at ("invalid use of non-static data member %qD", decl
);
1323 error ("from this location");
1325 return error_mark_node
;
1327 TREE_USED (current_class_ptr
) = 1;
1328 if (processing_template_decl
&& !qualifying_scope
)
1330 tree type
= TREE_TYPE (decl
);
1332 if (TREE_CODE (type
) == REFERENCE_TYPE
)
1333 type
= TREE_TYPE (type
);
1336 /* Set the cv qualifiers. */
1337 int quals
= cp_type_quals (TREE_TYPE (current_class_ref
));
1339 if (DECL_MUTABLE_P (decl
))
1340 quals
&= ~TYPE_QUAL_CONST
;
1342 quals
|= cp_type_quals (TREE_TYPE (decl
));
1343 type
= cp_build_qualified_type (type
, quals
);
1346 return build_min (COMPONENT_REF
, type
, object
, decl
, NULL_TREE
);
1350 tree access_type
= TREE_TYPE (object
);
1351 tree lookup_context
= context_for_name_lookup (decl
);
1353 while (!DERIVED_FROM_P (lookup_context
, access_type
))
1355 access_type
= TYPE_CONTEXT (access_type
);
1356 while (access_type
&& DECL_P (access_type
))
1357 access_type
= DECL_CONTEXT (access_type
);
1361 cp_error_at ("object missing in reference to %qD", decl
);
1362 error ("from this location");
1363 return error_mark_node
;
1367 /* If PROCESSING_TEMPLATE_DECL is nonzero here, then
1368 QUALIFYING_SCOPE is also non-null. Wrap this in a SCOPE_REF
1370 if (processing_template_decl
)
1371 return build_min (SCOPE_REF
, TREE_TYPE (decl
),
1372 qualifying_scope
, DECL_NAME (decl
));
1374 perform_or_defer_access_check (TYPE_BINFO (access_type
), decl
);
1376 /* If the data member was named `C::M', convert `*this' to `C'
1378 if (qualifying_scope
)
1380 tree binfo
= NULL_TREE
;
1381 object
= build_scoped_ref (object
, qualifying_scope
,
1385 return build_class_member_access_expr (object
, decl
,
1386 /*access_path=*/NULL_TREE
,
1387 /*preserve_reference=*/false);
1391 /* DECL was the declaration to which a qualified-id resolved. Issue
1392 an error message if it is not accessible. If OBJECT_TYPE is
1393 non-NULL, we have just seen `x->' or `x.' and OBJECT_TYPE is the
1394 type of `*x', or `x', respectively. If the DECL was named as
1395 `A::B' then NESTED_NAME_SPECIFIER is `A'. */
1398 check_accessibility_of_qualified_id (tree decl
,
1400 tree nested_name_specifier
)
1403 tree qualifying_type
= NULL_TREE
;
1405 /* If we're not checking, return immediately. */
1406 if (deferred_access_no_check
)
1409 /* Determine the SCOPE of DECL. */
1410 scope
= context_for_name_lookup (decl
);
1411 /* If the SCOPE is not a type, then DECL is not a member. */
1412 if (!TYPE_P (scope
))
1414 /* Compute the scope through which DECL is being accessed. */
1416 /* OBJECT_TYPE might not be a class type; consider:
1418 class A { typedef int I; };
1422 In this case, we will have "A::I" as the DECL, but "I" as the
1424 && CLASS_TYPE_P (object_type
)
1425 && DERIVED_FROM_P (scope
, object_type
))
1426 /* If we are processing a `->' or `.' expression, use the type of the
1428 qualifying_type
= object_type
;
1429 else if (nested_name_specifier
)
1431 /* If the reference is to a non-static member of the
1432 current class, treat it as if it were referenced through
1434 if (DECL_NONSTATIC_MEMBER_P (decl
)
1435 && current_class_ptr
1436 && DERIVED_FROM_P (scope
, current_class_type
))
1437 qualifying_type
= current_class_type
;
1438 /* Otherwise, use the type indicated by the
1439 nested-name-specifier. */
1441 qualifying_type
= nested_name_specifier
;
1444 /* Otherwise, the name must be from the current class or one of
1446 qualifying_type
= currently_open_derived_class (scope
);
1448 if (qualifying_type
&& IS_AGGR_TYPE_CODE (TREE_CODE (qualifying_type
)))
1449 /* It is possible for qualifying type to be a TEMPLATE_TYPE_PARM
1450 or similar in a default argument value. */
1451 perform_or_defer_access_check (TYPE_BINFO (qualifying_type
), decl
);
1454 /* EXPR is the result of a qualified-id. The QUALIFYING_CLASS was the
1455 class named to the left of the "::" operator. DONE is true if this
1456 expression is a complete postfix-expression; it is false if this
1457 expression is followed by '->', '[', '(', etc. ADDRESS_P is true
1458 iff this expression is the operand of '&'. */
1461 finish_qualified_id_expr (tree qualifying_class
, tree expr
, bool done
,
1464 if (error_operand_p (expr
))
1465 return error_mark_node
;
1467 /* If EXPR occurs as the operand of '&', use special handling that
1468 permits a pointer-to-member. */
1469 if (address_p
&& done
)
1471 if (TREE_CODE (expr
) == SCOPE_REF
)
1472 expr
= TREE_OPERAND (expr
, 1);
1473 expr
= build_offset_ref (qualifying_class
, expr
,
1474 /*address_p=*/true);
1478 if (TREE_CODE (expr
) == FIELD_DECL
)
1479 expr
= finish_non_static_data_member (expr
, current_class_ref
,
1481 else if (BASELINK_P (expr
) && !processing_template_decl
)
1485 /* See if any of the functions are non-static members. */
1486 fns
= BASELINK_FUNCTIONS (expr
);
1487 if (TREE_CODE (fns
) == TEMPLATE_ID_EXPR
)
1488 fns
= TREE_OPERAND (fns
, 0);
1489 /* If so, the expression may be relative to the current
1491 if (!shared_member_p (fns
)
1492 && current_class_type
1493 && DERIVED_FROM_P (qualifying_class
, current_class_type
))
1494 expr
= (build_class_member_access_expr
1495 (maybe_dummy_object (qualifying_class
, NULL
),
1497 BASELINK_ACCESS_BINFO (expr
),
1498 /*preserve_reference=*/false));
1500 /* The expression is a qualified name whose address is not
1502 expr
= build_offset_ref (qualifying_class
, expr
, /*address_p=*/false);
1508 /* Begin a statement-expression. The value returned must be passed to
1509 finish_stmt_expr. */
1512 begin_stmt_expr (void)
1514 return push_stmt_list ();
1517 /* Process the final expression of a statement expression. EXPR can be
1518 NULL, if the final expression is empty. Build up a TARGET_EXPR so
1519 that the result value can be safely returned to the enclosing
1523 finish_stmt_expr_expr (tree expr
, tree stmt_expr
)
1525 tree result
= NULL_TREE
;
1529 if (!processing_template_decl
&& !VOID_TYPE_P (TREE_TYPE (expr
)))
1531 tree type
= TREE_TYPE (expr
);
1533 if (TREE_CODE (type
) == ARRAY_TYPE
1534 || TREE_CODE (type
) == FUNCTION_TYPE
)
1535 expr
= decay_conversion (expr
);
1537 expr
= require_complete_type (expr
);
1539 type
= TREE_TYPE (expr
);
1541 /* Build a TARGET_EXPR for this aggregate. finish_stmt_expr
1542 will then pull it apart so the lifetime of the target is
1543 within the scope of the expression containing this statement
1545 if (TREE_CODE (expr
) == TARGET_EXPR
)
1547 else if (!IS_AGGR_TYPE (type
) || TYPE_HAS_TRIVIAL_INIT_REF (type
))
1548 expr
= build_target_expr_with_type (expr
, type
);
1551 /* Copy construct. */
1552 expr
= build_special_member_call
1553 (NULL_TREE
, complete_ctor_identifier
,
1554 build_tree_list (NULL_TREE
, expr
),
1555 type
, LOOKUP_NORMAL
);
1556 expr
= build_cplus_new (type
, expr
);
1557 gcc_assert (TREE_CODE (expr
) == TARGET_EXPR
);
1561 if (expr
!= error_mark_node
)
1563 result
= build_stmt (EXPR_STMT
, expr
);
1564 EXPR_STMT_STMT_EXPR_RESULT (result
) = 1;
1571 /* Remember the last expression so that finish_stmt_expr
1572 can pull it apart. */
1573 TREE_TYPE (stmt_expr
) = result
;
1578 /* Finish a statement-expression. EXPR should be the value returned
1579 by the previous begin_stmt_expr. Returns an expression
1580 representing the statement-expression. */
1583 finish_stmt_expr (tree stmt_expr
, bool has_no_scope
)
1585 tree result
, result_stmt
, type
;
1586 tree
*result_stmt_p
= NULL
;
1588 result_stmt
= TREE_TYPE (stmt_expr
);
1589 TREE_TYPE (stmt_expr
) = void_type_node
;
1590 result
= pop_stmt_list (stmt_expr
);
1592 if (!result_stmt
|| VOID_TYPE_P (result_stmt
))
1593 type
= void_type_node
;
1596 /* We need to search the statement expression for the result_stmt,
1597 since we'll need to replace it entirely. */
1599 result_stmt_p
= &result
;
1603 if (t
== result_stmt
)
1606 switch (TREE_CODE (t
))
1608 case STATEMENT_LIST
:
1610 tree_stmt_iterator i
= tsi_last (t
);
1611 result_stmt_p
= tsi_stmt_ptr (i
);
1615 result_stmt_p
= &BIND_EXPR_BODY (t
);
1617 case TRY_FINALLY_EXPR
:
1618 case TRY_CATCH_EXPR
:
1620 result_stmt_p
= &TREE_OPERAND (t
, 0);
1626 type
= TREE_TYPE (EXPR_STMT_EXPR (result_stmt
));
1629 if (processing_template_decl
)
1631 result
= build_min (STMT_EXPR
, type
, result
);
1632 TREE_SIDE_EFFECTS (result
) = 1;
1633 STMT_EXPR_NO_SCOPE (result
) = has_no_scope
;
1635 else if (!VOID_TYPE_P (type
))
1637 /* Pull out the TARGET_EXPR that is the final expression. Put
1638 the target's init_expr as the final expression and then put
1639 the statement expression itself as the target's init
1640 expr. Finally, return the target expression. */
1641 tree init
, target_expr
= EXPR_STMT_EXPR (result_stmt
);
1642 gcc_assert (TREE_CODE (target_expr
) == TARGET_EXPR
);
1644 /* The initializer will be void if the initialization is done by
1645 AGGR_INIT_EXPR; propagate that out to the statement-expression as
1647 init
= TREE_OPERAND (target_expr
, 1);
1648 type
= TREE_TYPE (init
);
1650 init
= maybe_cleanup_point_expr (init
);
1651 *result_stmt_p
= init
;
1653 if (VOID_TYPE_P (type
))
1654 /* No frobbing needed. */;
1655 else if (TREE_CODE (result
) == BIND_EXPR
)
1657 /* The BIND_EXPR created in finish_compound_stmt is void; if we're
1658 returning a value directly, give it the appropriate type. */
1659 if (VOID_TYPE_P (TREE_TYPE (result
)))
1660 TREE_TYPE (result
) = type
;
1662 gcc_assert (same_type_p (TREE_TYPE (result
), type
));
1664 else if (TREE_CODE (result
) == STATEMENT_LIST
)
1665 /* We need to wrap a STATEMENT_LIST in a BIND_EXPR so it can have a
1666 type other than void. FIXME why can't we just return a value
1667 from STATEMENT_LIST? */
1668 result
= build3 (BIND_EXPR
, type
, NULL
, result
, NULL
);
1670 TREE_OPERAND (target_expr
, 1) = result
;
1671 result
= target_expr
;
1677 /* Perform Koenig lookup. FN is the postfix-expression representing
1678 the function (or functions) to call; ARGS are the arguments to the
1679 call. Returns the functions to be considered by overload
1683 perform_koenig_lookup (tree fn
, tree args
)
1685 tree identifier
= NULL_TREE
;
1686 tree functions
= NULL_TREE
;
1688 /* Find the name of the overloaded function. */
1689 if (TREE_CODE (fn
) == IDENTIFIER_NODE
)
1691 else if (is_overloaded_fn (fn
))
1694 identifier
= DECL_NAME (get_first_fn (functions
));
1696 else if (DECL_P (fn
))
1699 identifier
= DECL_NAME (fn
);
1702 /* A call to a namespace-scope function using an unqualified name.
1704 Do Koenig lookup -- unless any of the arguments are
1706 if (!any_type_dependent_arguments_p (args
))
1708 fn
= lookup_arg_dependent (identifier
, functions
, args
);
1710 /* The unqualified name could not be resolved. */
1711 fn
= unqualified_fn_lookup_error (identifier
);
1719 /* Generate an expression for `FN (ARGS)'.
1721 If DISALLOW_VIRTUAL is true, the call to FN will be not generated
1722 as a virtual call, even if FN is virtual. (This flag is set when
1723 encountering an expression where the function name is explicitly
1724 qualified. For example a call to `X::f' never generates a virtual
1727 Returns code for the call. */
1730 finish_call_expr (tree fn
, tree args
, bool disallow_virtual
, bool koenig_p
)
1736 if (fn
== error_mark_node
|| args
== error_mark_node
)
1737 return error_mark_node
;
1739 /* ARGS should be a list of arguments. */
1740 gcc_assert (!args
|| TREE_CODE (args
) == TREE_LIST
);
1745 if (processing_template_decl
)
1747 if (type_dependent_expression_p (fn
)
1748 || any_type_dependent_arguments_p (args
))
1750 result
= build_nt (CALL_EXPR
, fn
, args
, NULL_TREE
);
1751 KOENIG_LOOKUP_P (result
) = koenig_p
;
1754 if (!BASELINK_P (fn
)
1755 && TREE_CODE (fn
) != PSEUDO_DTOR_EXPR
1756 && TREE_TYPE (fn
) != unknown_type_node
)
1757 fn
= build_non_dependent_expr (fn
);
1758 args
= build_non_dependent_args (orig_args
);
1761 /* A reference to a member function will appear as an overloaded
1762 function (rather than a BASELINK) if an unqualified name was used
1764 if (!BASELINK_P (fn
) && is_overloaded_fn (fn
))
1768 if (TREE_CODE (f
) == TEMPLATE_ID_EXPR
)
1769 f
= TREE_OPERAND (f
, 0);
1770 f
= get_first_fn (f
);
1771 if (DECL_FUNCTION_MEMBER_P (f
))
1773 tree type
= currently_open_derived_class (DECL_CONTEXT (f
));
1775 type
= DECL_CONTEXT (f
);
1776 fn
= build_baselink (TYPE_BINFO (type
),
1778 fn
, /*optype=*/NULL_TREE
);
1783 if (BASELINK_P (fn
))
1787 /* A call to a member function. From [over.call.func]:
1789 If the keyword this is in scope and refers to the class of
1790 that member function, or a derived class thereof, then the
1791 function call is transformed into a qualified function call
1792 using (*this) as the postfix-expression to the left of the
1793 . operator.... [Otherwise] a contrived object of type T
1794 becomes the implied object argument.
1796 This paragraph is unclear about this situation:
1798 struct A { void f(); };
1799 struct B : public A {};
1800 struct C : public A { void g() { B::f(); }};
1802 In particular, for `B::f', this paragraph does not make clear
1803 whether "the class of that member function" refers to `A' or
1804 to `B'. We believe it refers to `B'. */
1805 if (current_class_type
1806 && DERIVED_FROM_P (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn
)),
1808 && current_class_ref
)
1809 object
= maybe_dummy_object (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn
)),
1813 tree representative_fn
;
1815 representative_fn
= BASELINK_FUNCTIONS (fn
);
1816 if (TREE_CODE (representative_fn
) == TEMPLATE_ID_EXPR
)
1817 representative_fn
= TREE_OPERAND (representative_fn
, 0);
1818 representative_fn
= get_first_fn (representative_fn
);
1819 object
= build_dummy_object (DECL_CONTEXT (representative_fn
));
1822 if (processing_template_decl
)
1824 if (type_dependent_expression_p (object
))
1825 return build_nt (CALL_EXPR
, orig_fn
, orig_args
, NULL_TREE
);
1826 object
= build_non_dependent_expr (object
);
1829 result
= build_new_method_call (object
, fn
, args
, NULL_TREE
,
1831 ? LOOKUP_NONVIRTUAL
: 0));
1833 else if (is_overloaded_fn (fn
))
1834 /* A call to a namespace-scope function. */
1835 result
= build_new_function_call (fn
, args
);
1836 else if (TREE_CODE (fn
) == PSEUDO_DTOR_EXPR
)
1839 error ("arguments to destructor are not allowed");
1840 /* Mark the pseudo-destructor call as having side-effects so
1841 that we do not issue warnings about its use. */
1842 result
= build1 (NOP_EXPR
,
1844 TREE_OPERAND (fn
, 0));
1845 TREE_SIDE_EFFECTS (result
) = 1;
1847 else if (CLASS_TYPE_P (TREE_TYPE (fn
)))
1848 /* If the "function" is really an object of class type, it might
1849 have an overloaded `operator ()'. */
1850 result
= build_new_op (CALL_EXPR
, LOOKUP_NORMAL
, fn
, args
, NULL_TREE
,
1851 /*overloaded_p=*/NULL
);
1853 /* A call where the function is unknown. */
1854 result
= build_function_call (fn
, args
);
1856 if (processing_template_decl
)
1858 result
= build3 (CALL_EXPR
, TREE_TYPE (result
), orig_fn
,
1859 orig_args
, NULL_TREE
);
1860 KOENIG_LOOKUP_P (result
) = koenig_p
;
1865 /* Finish a call to a postfix increment or decrement or EXPR. (Which
1866 is indicated by CODE, which should be POSTINCREMENT_EXPR or
1867 POSTDECREMENT_EXPR.) */
1870 finish_increment_expr (tree expr
, enum tree_code code
)
1872 return build_x_unary_op (code
, expr
);
1875 /* Finish a use of `this'. Returns an expression for `this'. */
1878 finish_this_expr (void)
1882 if (current_class_ptr
)
1884 result
= current_class_ptr
;
1886 else if (current_function_decl
1887 && DECL_STATIC_FUNCTION_P (current_function_decl
))
1889 error ("%<this%> is unavailable for static member functions");
1890 result
= error_mark_node
;
1894 if (current_function_decl
)
1895 error ("invalid use of %<this%> in non-member function");
1897 error ("invalid use of %<this%> at top level");
1898 result
= error_mark_node
;
1904 /* Finish a pseudo-destructor expression. If SCOPE is NULL, the
1905 expression was of the form `OBJECT.~DESTRUCTOR' where DESTRUCTOR is
1906 the TYPE for the type given. If SCOPE is non-NULL, the expression
1907 was of the form `OBJECT.SCOPE::~DESTRUCTOR'. */
1910 finish_pseudo_destructor_expr (tree object
, tree scope
, tree destructor
)
1912 if (destructor
== error_mark_node
)
1913 return error_mark_node
;
1915 gcc_assert (TYPE_P (destructor
));
1917 if (!processing_template_decl
)
1919 if (scope
== error_mark_node
)
1921 error ("invalid qualifying scope in pseudo-destructor name");
1922 return error_mark_node
;
1925 /* [expr.pseudo] says both:
1927 The type designated by the pseudo-destructor-name shall be
1928 the same as the object type.
1932 The cv-unqualified versions of the object type and of the
1933 type designated by the pseudo-destructor-name shall be the
1936 We implement the more generous second sentence, since that is
1937 what most other compilers do. */
1938 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object
),
1941 error ("%qE is not of type %qT", object
, destructor
);
1942 return error_mark_node
;
1946 return build3 (PSEUDO_DTOR_EXPR
, void_type_node
, object
, scope
, destructor
);
1949 /* Finish an expression of the form CODE EXPR. */
1952 finish_unary_op_expr (enum tree_code code
, tree expr
)
1954 tree result
= build_x_unary_op (code
, expr
);
1955 /* Inside a template, build_x_unary_op does not fold the
1956 expression. So check whether the result is folded before
1957 setting TREE_NEGATED_INT. */
1958 if (code
== NEGATE_EXPR
&& TREE_CODE (expr
) == INTEGER_CST
1959 && TREE_CODE (result
) == INTEGER_CST
1960 && !TYPE_UNSIGNED (TREE_TYPE (result
))
1961 && INT_CST_LT (result
, integer_zero_node
))
1963 /* RESULT may be a cached INTEGER_CST, so we must copy it before
1964 setting TREE_NEGATED_INT. */
1965 result
= copy_node (result
);
1966 TREE_NEGATED_INT (result
) = 1;
1968 overflow_warning (result
);
1972 /* Finish a compound-literal expression. TYPE is the type to which
1973 the INITIALIZER_LIST is being cast. */
1976 finish_compound_literal (tree type
, tree initializer_list
)
1978 tree compound_literal
;
1980 /* Build a CONSTRUCTOR for the INITIALIZER_LIST. */
1981 compound_literal
= build_constructor (NULL_TREE
, initializer_list
);
1982 /* Mark it as a compound-literal. */
1983 TREE_HAS_CONSTRUCTOR (compound_literal
) = 1;
1984 if (processing_template_decl
)
1985 TREE_TYPE (compound_literal
) = type
;
1988 /* Check the initialization. */
1989 compound_literal
= digest_init (type
, compound_literal
, NULL
);
1990 /* If the TYPE was an array type with an unknown bound, then we can
1991 figure out the dimension now. For example, something like:
1995 implies that the array has two elements. */
1996 if (TREE_CODE (type
) == ARRAY_TYPE
&& !COMPLETE_TYPE_P (type
))
1997 complete_array_type (type
, compound_literal
, 1);
2000 return compound_literal
;
2003 /* Return the declaration for the function-name variable indicated by
2007 finish_fname (tree id
)
2011 decl
= fname_decl (C_RID_CODE (id
), id
);
2012 if (processing_template_decl
)
2013 decl
= DECL_NAME (decl
);
2017 /* Finish a translation unit. */
2020 finish_translation_unit (void)
2022 /* In case there were missing closebraces,
2023 get us back to the global binding level. */
2025 while (current_namespace
!= global_namespace
)
2028 /* Do file scope __FUNCTION__ et al. */
2029 finish_fname_decls ();
2032 /* Finish a template type parameter, specified as AGGR IDENTIFIER.
2033 Returns the parameter. */
2036 finish_template_type_parm (tree aggr
, tree identifier
)
2038 if (aggr
!= class_type_node
)
2040 pedwarn ("template type parameters must use the keyword %<class%> or %<typename%>");
2041 aggr
= class_type_node
;
2044 return build_tree_list (aggr
, identifier
);
2047 /* Finish a template template parameter, specified as AGGR IDENTIFIER.
2048 Returns the parameter. */
2051 finish_template_template_parm (tree aggr
, tree identifier
)
2053 tree decl
= build_decl (TYPE_DECL
, identifier
, NULL_TREE
);
2054 tree tmpl
= build_lang_decl (TEMPLATE_DECL
, identifier
, NULL_TREE
);
2055 DECL_TEMPLATE_PARMS (tmpl
) = current_template_parms
;
2056 DECL_TEMPLATE_RESULT (tmpl
) = decl
;
2057 DECL_ARTIFICIAL (decl
) = 1;
2058 end_template_decl ();
2060 gcc_assert (DECL_TEMPLATE_PARMS (tmpl
));
2062 return finish_template_type_parm (aggr
, tmpl
);
2065 /* ARGUMENT is the default-argument value for a template template
2066 parameter. If ARGUMENT is invalid, issue error messages and return
2067 the ERROR_MARK_NODE. Otherwise, ARGUMENT itself is returned. */
2070 check_template_template_default_arg (tree argument
)
2072 if (TREE_CODE (argument
) != TEMPLATE_DECL
2073 && TREE_CODE (argument
) != TEMPLATE_TEMPLATE_PARM
2074 && TREE_CODE (argument
) != UNBOUND_CLASS_TEMPLATE
)
2076 if (TREE_CODE (argument
) == TYPE_DECL
)
2078 tree t
= TREE_TYPE (argument
);
2080 /* Try to emit a slightly smarter error message if we detect
2081 that the user is using a template instantiation. */
2082 if (CLASSTYPE_TEMPLATE_INFO (t
)
2083 && CLASSTYPE_TEMPLATE_INSTANTIATION (t
))
2084 error ("invalid use of type %qT as a default value for a "
2085 "template template-parameter", t
);
2087 error ("invalid use of %qD as a default value for a template "
2088 "template-parameter", argument
);
2091 error ("invalid default argument for a template template parameter");
2092 return error_mark_node
;
2098 /* Begin a class definition, as indicated by T. */
2101 begin_class_definition (tree t
)
2103 if (t
== error_mark_node
)
2104 return error_mark_node
;
2106 if (processing_template_parmlist
)
2108 error ("definition of %q#T inside template parameter list", t
);
2109 return error_mark_node
;
2111 /* A non-implicit typename comes from code like:
2113 template <typename T> struct A {
2114 template <typename U> struct A<T>::B ...
2116 This is erroneous. */
2117 else if (TREE_CODE (t
) == TYPENAME_TYPE
)
2119 error ("invalid definition of qualified type %qT", t
);
2120 t
= error_mark_node
;
2123 if (t
== error_mark_node
|| ! IS_AGGR_TYPE (t
))
2125 t
= make_aggr_type (RECORD_TYPE
);
2126 pushtag (make_anon_name (), t
, 0);
2129 /* If this type was already complete, and we see another definition,
2131 if (COMPLETE_TYPE_P (t
))
2133 error ("redefinition of %q#T", t
);
2134 cp_error_at ("previous definition of %q#T", t
);
2135 return error_mark_node
;
2138 /* Update the location of the decl. */
2139 DECL_SOURCE_LOCATION (TYPE_NAME (t
)) = input_location
;
2141 if (TYPE_BEING_DEFINED (t
))
2143 t
= make_aggr_type (TREE_CODE (t
));
2144 pushtag (TYPE_IDENTIFIER (t
), t
, 0);
2146 maybe_process_partial_specialization (t
);
2148 TYPE_BEING_DEFINED (t
) = 1;
2149 if (flag_pack_struct
)
2152 TYPE_PACKED (t
) = 1;
2153 /* Even though the type is being defined for the first time
2154 here, there might have been a forward declaration, so there
2155 might be cv-qualified variants of T. */
2156 for (v
= TYPE_NEXT_VARIANT (t
); v
; v
= TYPE_NEXT_VARIANT (v
))
2157 TYPE_PACKED (v
) = 1;
2159 /* Reset the interface data, at the earliest possible
2160 moment, as it might have been set via a class foo;
2162 if (! TYPE_ANONYMOUS_P (t
))
2164 struct c_fileinfo
*finfo
= get_fileinfo (lbasename (input_filename
));
2165 CLASSTYPE_INTERFACE_ONLY (t
) = finfo
->interface_only
;
2166 SET_CLASSTYPE_INTERFACE_UNKNOWN_X
2167 (t
, finfo
->interface_unknown
);
2169 reset_specialization();
2171 /* Make a declaration for this class in its own scope. */
2172 build_self_reference ();
2177 /* Finish the member declaration given by DECL. */
2180 finish_member_declaration (tree decl
)
2182 if (decl
== error_mark_node
|| decl
== NULL_TREE
)
2185 if (decl
== void_type_node
)
2186 /* The COMPONENT was a friend, not a member, and so there's
2187 nothing for us to do. */
2190 /* We should see only one DECL at a time. */
2191 gcc_assert (TREE_CHAIN (decl
) == NULL_TREE
);
2193 /* Set up access control for DECL. */
2195 = (current_access_specifier
== access_private_node
);
2196 TREE_PROTECTED (decl
)
2197 = (current_access_specifier
== access_protected_node
);
2198 if (TREE_CODE (decl
) == TEMPLATE_DECL
)
2200 TREE_PRIVATE (DECL_TEMPLATE_RESULT (decl
)) = TREE_PRIVATE (decl
);
2201 TREE_PROTECTED (DECL_TEMPLATE_RESULT (decl
)) = TREE_PROTECTED (decl
);
2204 /* Mark the DECL as a member of the current class. */
2205 DECL_CONTEXT (decl
) = current_class_type
;
2209 A C language linkage is ignored for the names of class members
2210 and the member function type of class member functions. */
2211 if (DECL_LANG_SPECIFIC (decl
) && DECL_LANGUAGE (decl
) == lang_c
)
2212 SET_DECL_LANGUAGE (decl
, lang_cplusplus
);
2214 /* Put functions on the TYPE_METHODS list and everything else on the
2215 TYPE_FIELDS list. Note that these are built up in reverse order.
2216 We reverse them (to obtain declaration order) in finish_struct. */
2217 if (TREE_CODE (decl
) == FUNCTION_DECL
2218 || DECL_FUNCTION_TEMPLATE_P (decl
))
2220 /* We also need to add this function to the
2221 CLASSTYPE_METHOD_VEC. */
2222 add_method (current_class_type
, decl
);
2224 TREE_CHAIN (decl
) = TYPE_METHODS (current_class_type
);
2225 TYPE_METHODS (current_class_type
) = decl
;
2227 maybe_add_class_template_decl_list (current_class_type
, decl
,
2230 /* Enter the DECL into the scope of the class. */
2231 else if ((TREE_CODE (decl
) == USING_DECL
&& TREE_TYPE (decl
))
2232 || pushdecl_class_level (decl
))
2234 /* All TYPE_DECLs go at the end of TYPE_FIELDS. Ordinary fields
2235 go at the beginning. The reason is that lookup_field_1
2236 searches the list in order, and we want a field name to
2237 override a type name so that the "struct stat hack" will
2238 work. In particular:
2240 struct S { enum E { }; int E } s;
2243 is valid. In addition, the FIELD_DECLs must be maintained in
2244 declaration order so that class layout works as expected.
2245 However, we don't need that order until class layout, so we
2246 save a little time by putting FIELD_DECLs on in reverse order
2247 here, and then reversing them in finish_struct_1. (We could
2248 also keep a pointer to the correct insertion points in the
2251 if (TREE_CODE (decl
) == TYPE_DECL
)
2252 TYPE_FIELDS (current_class_type
)
2253 = chainon (TYPE_FIELDS (current_class_type
), decl
);
2256 TREE_CHAIN (decl
) = TYPE_FIELDS (current_class_type
);
2257 TYPE_FIELDS (current_class_type
) = decl
;
2260 maybe_add_class_template_decl_list (current_class_type
, decl
,
2265 note_decl_for_pch (decl
);
2268 /* DECL has been declared while we are building a PCH file. Perform
2269 actions that we might normally undertake lazily, but which can be
2270 performed now so that they do not have to be performed in
2271 translation units which include the PCH file. */
2274 note_decl_for_pch (tree decl
)
2276 gcc_assert (pch_file
);
2278 /* A non-template inline function with external linkage will always
2279 be COMDAT. As we must eventually determine the linkage of all
2280 functions, and as that causes writes to the data mapped in from
2281 the PCH file, it's advantageous to mark the functions at this
2283 if (TREE_CODE (decl
) == FUNCTION_DECL
2284 && TREE_PUBLIC (decl
)
2285 && DECL_DECLARED_INLINE_P (decl
)
2286 && !DECL_IMPLICIT_INSTANTIATION (decl
))
2288 comdat_linkage (decl
);
2289 DECL_INTERFACE_KNOWN (decl
) = 1;
2292 /* There's a good chance that we'll have to mangle names at some
2293 point, even if only for emission in debugging information. */
2294 if (TREE_CODE (decl
) == VAR_DECL
2295 || TREE_CODE (decl
) == FUNCTION_DECL
)
2299 /* Finish processing a complete template declaration. The PARMS are
2300 the template parameters. */
2303 finish_template_decl (tree parms
)
2306 end_template_decl ();
2308 end_specialization ();
2311 /* Finish processing a template-id (which names a type) of the form
2312 NAME < ARGS >. Return the TYPE_DECL for the type named by the
2313 template-id. If ENTERING_SCOPE is nonzero we are about to enter
2314 the scope of template-id indicated. */
2317 finish_template_type (tree name
, tree args
, int entering_scope
)
2321 decl
= lookup_template_class (name
, args
,
2322 NULL_TREE
, NULL_TREE
, entering_scope
,
2323 tf_error
| tf_warning
| tf_user
);
2324 if (decl
!= error_mark_node
)
2325 decl
= TYPE_STUB_DECL (decl
);
2330 /* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER.
2331 Return a TREE_LIST containing the ACCESS_SPECIFIER and the
2332 BASE_CLASS, or NULL_TREE if an error occurred. The
2333 ACCESS_SPECIFIER is one of
2334 access_{default,public,protected_private}_node. For a virtual base
2335 we set TREE_TYPE. */
2338 finish_base_specifier (tree base
, tree access
, bool virtual_p
)
2342 if (base
== error_mark_node
)
2344 error ("invalid base-class specification");
2347 else if (! is_aggr_type (base
, 1))
2351 if (cp_type_quals (base
) != 0)
2353 error ("base class %qT has cv qualifiers", base
);
2354 base
= TYPE_MAIN_VARIANT (base
);
2356 result
= build_tree_list (access
, base
);
2358 TREE_TYPE (result
) = integer_type_node
;
2364 /* Issue a diagnostic that NAME cannot be found in SCOPE. DECL is
2365 what we found when we tried to do the lookup. */
2368 qualified_name_lookup_error (tree scope
, tree name
, tree decl
)
2372 if (!COMPLETE_TYPE_P (scope
))
2373 error ("incomplete type %qT used in nested name specifier", scope
);
2374 else if (TREE_CODE (decl
) == TREE_LIST
)
2376 error ("reference to %<%T::%D%> is ambiguous", scope
, name
);
2377 print_candidates (decl
);
2380 error ("%qD is not a member of %qT", name
, scope
);
2382 else if (scope
!= global_namespace
)
2383 error ("%qD is not a member of %qD", name
, scope
);
2385 error ("%<::%D%> has not been declared", name
);
2388 /* ID_EXPRESSION is a representation of parsed, but unprocessed,
2389 id-expression. (See cp_parser_id_expression for details.) SCOPE,
2390 if non-NULL, is the type or namespace used to explicitly qualify
2391 ID_EXPRESSION. DECL is the entity to which that name has been
2394 *CONSTANT_EXPRESSION_P is true if we are presently parsing a
2395 constant-expression. In that case, *NON_CONSTANT_EXPRESSION_P will
2396 be set to true if this expression isn't permitted in a
2397 constant-expression, but it is otherwise not set by this function.
2398 *ALLOW_NON_CONSTANT_EXPRESSION_P is true if we are parsing a
2399 constant-expression, but a non-constant expression is also
2402 If an error occurs, and it is the kind of error that might cause
2403 the parser to abort a tentative parse, *ERROR_MSG is filled in. It
2404 is the caller's responsibility to issue the message. *ERROR_MSG
2405 will be a string with static storage duration, so the caller need
2408 Return an expression for the entity, after issuing appropriate
2409 diagnostics. This function is also responsible for transforming a
2410 reference to a non-static member into a COMPONENT_REF that makes
2411 the use of "this" explicit.
2413 Upon return, *IDK will be filled in appropriately. */
2416 finish_id_expression (tree id_expression
,
2420 tree
*qualifying_class
,
2421 bool integral_constant_expression_p
,
2422 bool allow_non_integral_constant_expression_p
,
2423 bool *non_integral_constant_expression_p
,
2424 const char **error_msg
)
2426 /* Initialize the output parameters. */
2427 *idk
= CP_ID_KIND_NONE
;
2430 if (id_expression
== error_mark_node
)
2431 return error_mark_node
;
2432 /* If we have a template-id, then no further lookup is
2433 required. If the template-id was for a template-class, we
2434 will sometimes have a TYPE_DECL at this point. */
2435 else if (TREE_CODE (decl
) == TEMPLATE_ID_EXPR
2436 || TREE_CODE (decl
) == TYPE_DECL
)
2438 /* Look up the name. */
2441 if (decl
== error_mark_node
)
2443 /* Name lookup failed. */
2446 || (!dependent_type_p (scope
)
2447 && !(TREE_CODE (id_expression
) == IDENTIFIER_NODE
2448 && IDENTIFIER_TYPENAME_P (id_expression
)
2449 && dependent_type_p (TREE_TYPE (id_expression
))))))
2451 /* If the qualifying type is non-dependent (and the name
2452 does not name a conversion operator to a dependent
2453 type), issue an error. */
2454 qualified_name_lookup_error (scope
, id_expression
, decl
);
2455 return error_mark_node
;
2459 /* It may be resolved via Koenig lookup. */
2460 *idk
= CP_ID_KIND_UNQUALIFIED
;
2461 return id_expression
;
2464 decl
= id_expression
;
2466 /* If DECL is a variable that would be out of scope under
2467 ANSI/ISO rules, but in scope in the ARM, name lookup
2468 will succeed. Issue a diagnostic here. */
2470 decl
= check_for_out_of_scope_variable (decl
);
2472 /* Remember that the name was used in the definition of
2473 the current class so that we can check later to see if
2474 the meaning would have been different after the class
2475 was entirely defined. */
2476 if (!scope
&& decl
!= error_mark_node
)
2477 maybe_note_name_used_in_class (id_expression
, decl
);
2480 /* If we didn't find anything, or what we found was a type,
2481 then this wasn't really an id-expression. */
2482 if (TREE_CODE (decl
) == TEMPLATE_DECL
2483 && !DECL_FUNCTION_TEMPLATE_P (decl
))
2485 *error_msg
= "missing template arguments";
2486 return error_mark_node
;
2488 else if (TREE_CODE (decl
) == TYPE_DECL
2489 || TREE_CODE (decl
) == NAMESPACE_DECL
)
2491 *error_msg
= "expected primary-expression";
2492 return error_mark_node
;
2495 /* If the name resolved to a template parameter, there is no
2496 need to look it up again later. */
2497 if ((TREE_CODE (decl
) == CONST_DECL
&& DECL_TEMPLATE_PARM_P (decl
))
2498 || TREE_CODE (decl
) == TEMPLATE_PARM_INDEX
)
2502 *idk
= CP_ID_KIND_NONE
;
2503 if (TREE_CODE (decl
) == TEMPLATE_PARM_INDEX
)
2504 decl
= TEMPLATE_PARM_DECL (decl
);
2505 r
= convert_from_reference (DECL_INITIAL (decl
));
2507 if (integral_constant_expression_p
2508 && !dependent_type_p (TREE_TYPE (decl
))
2509 && !(INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (r
))))
2511 if (!allow_non_integral_constant_expression_p
)
2512 error ("template parameter %qD of type %qT is not allowed in "
2513 "an integral constant expression because it is not of "
2514 "integral or enumeration type", decl
, TREE_TYPE (decl
));
2515 *non_integral_constant_expression_p
= true;
2519 /* Similarly, we resolve enumeration constants to their
2520 underlying values. */
2521 else if (TREE_CODE (decl
) == CONST_DECL
)
2523 *idk
= CP_ID_KIND_NONE
;
2524 if (!processing_template_decl
)
2525 return DECL_INITIAL (decl
);
2532 /* If the declaration was explicitly qualified indicate
2533 that. The semantics of `A::f(3)' are different than
2534 `f(3)' if `f' is virtual. */
2536 ? CP_ID_KIND_QUALIFIED
2537 : (TREE_CODE (decl
) == TEMPLATE_ID_EXPR
2538 ? CP_ID_KIND_TEMPLATE_ID
2539 : CP_ID_KIND_UNQUALIFIED
));
2544 An id-expression is type-dependent if it contains an
2545 identifier that was declared with a dependent type.
2547 The standard is not very specific about an id-expression that
2548 names a set of overloaded functions. What if some of them
2549 have dependent types and some of them do not? Presumably,
2550 such a name should be treated as a dependent name. */
2551 /* Assume the name is not dependent. */
2552 dependent_p
= false;
2553 if (!processing_template_decl
)
2554 /* No names are dependent outside a template. */
2556 /* A template-id where the name of the template was not resolved
2557 is definitely dependent. */
2558 else if (TREE_CODE (decl
) == TEMPLATE_ID_EXPR
2559 && (TREE_CODE (TREE_OPERAND (decl
, 0))
2560 == IDENTIFIER_NODE
))
2562 /* For anything except an overloaded function, just check its
2564 else if (!is_overloaded_fn (decl
))
2566 = dependent_type_p (TREE_TYPE (decl
));
2567 /* For a set of overloaded functions, check each of the
2573 if (BASELINK_P (fns
))
2574 fns
= BASELINK_FUNCTIONS (fns
);
2576 /* For a template-id, check to see if the template
2577 arguments are dependent. */
2578 if (TREE_CODE (fns
) == TEMPLATE_ID_EXPR
)
2580 tree args
= TREE_OPERAND (fns
, 1);
2581 dependent_p
= any_dependent_template_arguments_p (args
);
2582 /* The functions are those referred to by the
2584 fns
= TREE_OPERAND (fns
, 0);
2587 /* If there are no dependent template arguments, go through
2588 the overloaded functions. */
2589 while (fns
&& !dependent_p
)
2591 tree fn
= OVL_CURRENT (fns
);
2593 /* Member functions of dependent classes are
2595 if (TREE_CODE (fn
) == FUNCTION_DECL
2596 && type_dependent_expression_p (fn
))
2598 else if (TREE_CODE (fn
) == TEMPLATE_DECL
2599 && dependent_template_p (fn
))
2602 fns
= OVL_NEXT (fns
);
2606 /* If the name was dependent on a template parameter, we will
2607 resolve the name at instantiation time. */
2610 /* Create a SCOPE_REF for qualified names, if the scope is
2615 *qualifying_class
= scope
;
2616 /* Since this name was dependent, the expression isn't
2617 constant -- yet. No error is issued because it might
2618 be constant when things are instantiated. */
2619 if (integral_constant_expression_p
)
2620 *non_integral_constant_expression_p
= true;
2621 if (TYPE_P (scope
) && dependent_type_p (scope
))
2622 return build_nt (SCOPE_REF
, scope
, id_expression
);
2623 else if (TYPE_P (scope
) && DECL_P (decl
))
2624 return convert_from_reference
2625 (build2 (SCOPE_REF
, TREE_TYPE (decl
), scope
, id_expression
));
2627 return convert_from_reference (decl
);
2629 /* A TEMPLATE_ID already contains all the information we
2631 if (TREE_CODE (id_expression
) == TEMPLATE_ID_EXPR
)
2632 return id_expression
;
2633 /* Since this name was dependent, the expression isn't
2634 constant -- yet. No error is issued because it might be
2635 constant when things are instantiated. */
2636 if (integral_constant_expression_p
)
2637 *non_integral_constant_expression_p
= true;
2638 *idk
= CP_ID_KIND_UNQUALIFIED_DEPENDENT
;
2639 /* If we found a variable, then name lookup during the
2640 instantiation will always resolve to the same VAR_DECL
2641 (or an instantiation thereof). */
2642 if (TREE_CODE (decl
) == VAR_DECL
2643 || TREE_CODE (decl
) == PARM_DECL
)
2644 return convert_from_reference (decl
);
2645 /* The same is true for FIELD_DECL, but we also need to
2646 make sure that the syntax is correct. */
2647 else if (TREE_CODE (decl
) == FIELD_DECL
)
2649 /* Since SCOPE is NULL here, this is an unqualified name.
2650 Access checking has been performed during name lookup
2651 already. Turn off checking to avoid duplicate errors. */
2652 push_deferring_access_checks (dk_no_check
);
2653 decl
= finish_non_static_data_member
2654 (decl
, current_class_ref
,
2655 /*qualifying_scope=*/NULL_TREE
);
2656 pop_deferring_access_checks ();
2659 return id_expression
;
2662 /* Only certain kinds of names are allowed in constant
2663 expression. Enumerators and template parameters have already
2664 been handled above. */
2665 if (integral_constant_expression_p
2666 && ! DECL_INTEGRAL_CONSTANT_VAR_P (decl
)
2667 && ! builtin_valid_in_constant_expr_p (decl
))
2669 if (!allow_non_integral_constant_expression_p
)
2671 error ("%qD cannot appear in a constant-expression", decl
);
2672 return error_mark_node
;
2674 *non_integral_constant_expression_p
= true;
2677 if (TREE_CODE (decl
) == NAMESPACE_DECL
)
2679 error ("use of namespace %qD as expression", decl
);
2680 return error_mark_node
;
2682 else if (DECL_CLASS_TEMPLATE_P (decl
))
2684 error ("use of class template %qT as expression", decl
);
2685 return error_mark_node
;
2687 else if (TREE_CODE (decl
) == TREE_LIST
)
2689 /* Ambiguous reference to base members. */
2690 error ("request for member %qD is ambiguous in "
2691 "multiple inheritance lattice", id_expression
);
2692 print_candidates (decl
);
2693 return error_mark_node
;
2696 /* Mark variable-like entities as used. Functions are similarly
2697 marked either below or after overload resolution. */
2698 if (TREE_CODE (decl
) == VAR_DECL
2699 || TREE_CODE (decl
) == PARM_DECL
2700 || TREE_CODE (decl
) == RESULT_DECL
)
2705 decl
= (adjust_result_of_qualified_name_lookup
2706 (decl
, scope
, current_class_type
));
2708 if (TREE_CODE (decl
) == FUNCTION_DECL
)
2711 if (TREE_CODE (decl
) == FIELD_DECL
|| BASELINK_P (decl
))
2712 *qualifying_class
= scope
;
2715 tree r
= convert_from_reference (decl
);
2717 if (processing_template_decl
2719 r
= build2 (SCOPE_REF
, TREE_TYPE (r
), scope
, decl
);
2723 else if (TREE_CODE (decl
) == FIELD_DECL
)
2725 /* Since SCOPE is NULL here, this is an unqualified name.
2726 Access checking has been performed during name lookup
2727 already. Turn off checking to avoid duplicate errors. */
2728 push_deferring_access_checks (dk_no_check
);
2729 decl
= finish_non_static_data_member (decl
, current_class_ref
,
2730 /*qualifying_scope=*/NULL_TREE
);
2731 pop_deferring_access_checks ();
2733 else if (is_overloaded_fn (decl
))
2735 tree first_fn
= OVL_CURRENT (decl
);
2737 if (TREE_CODE (first_fn
) == TEMPLATE_DECL
)
2738 first_fn
= DECL_TEMPLATE_RESULT (first_fn
);
2740 if (!really_overloaded_fn (decl
))
2741 mark_used (first_fn
);
2743 if (TREE_CODE (first_fn
) == FUNCTION_DECL
2744 && DECL_FUNCTION_MEMBER_P (first_fn
)
2745 && !shared_member_p (decl
))
2747 /* A set of member functions. */
2748 decl
= maybe_dummy_object (DECL_CONTEXT (first_fn
), 0);
2749 return finish_class_member_access_expr (decl
, id_expression
);
2754 if (TREE_CODE (decl
) == VAR_DECL
2755 || TREE_CODE (decl
) == PARM_DECL
2756 || TREE_CODE (decl
) == RESULT_DECL
)
2758 tree context
= decl_function_context (decl
);
2760 if (context
!= NULL_TREE
&& context
!= current_function_decl
2761 && ! TREE_STATIC (decl
))
2763 error ("use of %s from containing function",
2764 (TREE_CODE (decl
) == VAR_DECL
2765 ? "%<auto%> variable" : "parameter"));
2766 cp_error_at (" %q#D declared here", decl
);
2767 return error_mark_node
;
2771 if (DECL_P (decl
) && DECL_NONLOCAL (decl
)
2772 && DECL_CLASS_SCOPE_P (decl
)
2773 && DECL_CONTEXT (decl
) != current_class_type
)
2777 path
= currently_open_derived_class (DECL_CONTEXT (decl
));
2778 perform_or_defer_access_check (TYPE_BINFO (path
), decl
);
2781 decl
= convert_from_reference (decl
);
2784 /* Resolve references to variables of anonymous unions
2785 into COMPONENT_REFs. */
2786 if (TREE_CODE (decl
) == ALIAS_DECL
)
2787 decl
= unshare_expr (DECL_INITIAL (decl
));
2790 if (TREE_DEPRECATED (decl
))
2791 warn_deprecated_use (decl
);
2796 /* Implement the __typeof keyword: Return the type of EXPR, suitable for
2797 use as a type-specifier. */
2800 finish_typeof (tree expr
)
2804 if (type_dependent_expression_p (expr
))
2806 type
= make_aggr_type (TYPEOF_TYPE
);
2807 TYPEOF_TYPE_EXPR (type
) = expr
;
2812 type
= TREE_TYPE (expr
);
2814 if (!type
|| type
== unknown_type_node
)
2816 error ("type of %qE is unknown", expr
);
2817 return error_mark_node
;
2823 /* Called from expand_body via walk_tree. Replace all AGGR_INIT_EXPRs
2824 with equivalent CALL_EXPRs. */
2827 simplify_aggr_init_exprs_r (tree
* tp
,
2829 void* data ATTRIBUTE_UNUSED
)
2831 /* We don't need to walk into types; there's nothing in a type that
2832 needs simplification. (And, furthermore, there are places we
2833 actively don't want to go. For example, we don't want to wander
2834 into the default arguments for a FUNCTION_DECL that appears in a
2841 /* Only AGGR_INIT_EXPRs are interesting. */
2842 else if (TREE_CODE (*tp
) != AGGR_INIT_EXPR
)
2845 simplify_aggr_init_expr (tp
);
2847 /* Keep iterating. */
2851 /* Replace the AGGR_INIT_EXPR at *TP with an equivalent CALL_EXPR. This
2852 function is broken out from the above for the benefit of the tree-ssa
2856 simplify_aggr_init_expr (tree
*tp
)
2858 tree aggr_init_expr
= *tp
;
2860 /* Form an appropriate CALL_EXPR. */
2861 tree fn
= TREE_OPERAND (aggr_init_expr
, 0);
2862 tree args
= TREE_OPERAND (aggr_init_expr
, 1);
2863 tree slot
= TREE_OPERAND (aggr_init_expr
, 2);
2864 tree type
= TREE_TYPE (slot
);
2867 enum style_t
{ ctor
, arg
, pcc
} style
;
2869 if (AGGR_INIT_VIA_CTOR_P (aggr_init_expr
))
2871 #ifdef PCC_STATIC_STRUCT_RETURN
2877 gcc_assert (TREE_ADDRESSABLE (type
));
2881 if (style
== ctor
|| style
== arg
)
2883 /* Pass the address of the slot. If this is a constructor, we
2884 replace the first argument; otherwise, we tack on a new one. */
2888 args
= TREE_CHAIN (args
);
2890 cxx_mark_addressable (slot
);
2891 addr
= build1 (ADDR_EXPR
, build_pointer_type (type
), slot
);
2894 /* The return type might have different cv-quals from the slot. */
2895 tree fntype
= TREE_TYPE (TREE_TYPE (fn
));
2897 gcc_assert (TREE_CODE (fntype
) == FUNCTION_TYPE
2898 || TREE_CODE (fntype
) == METHOD_TYPE
);
2899 addr
= convert (build_pointer_type (TREE_TYPE (fntype
)), addr
);
2902 args
= tree_cons (NULL_TREE
, addr
, args
);
2905 call_expr
= build3 (CALL_EXPR
,
2906 TREE_TYPE (TREE_TYPE (TREE_TYPE (fn
))),
2907 fn
, args
, NULL_TREE
);
2910 /* Tell the backend that we've added our return slot to the argument
2912 CALL_EXPR_HAS_RETURN_SLOT_ADDR (call_expr
) = 1;
2913 else if (style
== pcc
)
2915 /* If we're using the non-reentrant PCC calling convention, then we
2916 need to copy the returned value out of the static buffer into the
2918 push_deferring_access_checks (dk_no_check
);
2919 call_expr
= build_aggr_init (slot
, call_expr
,
2920 DIRECT_BIND
| LOOKUP_ONLYCONVERTING
);
2921 pop_deferring_access_checks ();
2927 /* Emit all thunks to FN that should be emitted when FN is emitted. */
2930 emit_associated_thunks (tree fn
)
2932 /* When we use vcall offsets, we emit thunks with the virtual
2933 functions to which they thunk. The whole point of vcall offsets
2934 is so that you can know statically the entire set of thunks that
2935 will ever be needed for a given virtual function, thereby
2936 enabling you to output all the thunks with the function itself. */
2937 if (DECL_VIRTUAL_P (fn
))
2941 for (thunk
= DECL_THUNKS (fn
); thunk
; thunk
= TREE_CHAIN (thunk
))
2943 if (!THUNK_ALIAS (thunk
))
2945 use_thunk (thunk
, /*emit_p=*/1);
2946 if (DECL_RESULT_THUNK_P (thunk
))
2950 for (probe
= DECL_THUNKS (thunk
);
2951 probe
; probe
= TREE_CHAIN (probe
))
2952 use_thunk (probe
, /*emit_p=*/1);
2956 gcc_assert (!DECL_THUNKS (thunk
));
2961 /* Generate RTL for FN. */
2964 expand_body (tree fn
)
2966 tree saved_function
;
2968 /* Compute the appropriate object-file linkage for inline
2970 if (DECL_DECLARED_INLINE_P (fn
))
2971 import_export_decl (fn
);
2973 /* If FN is external, then there's no point in generating RTL for
2974 it. This situation can arise with an inline function under
2975 `-fexternal-templates'; we instantiate the function, even though
2976 we're not planning on emitting it, in case we get a chance to
2978 if (DECL_EXTERNAL (fn
))
2981 /* ??? When is this needed? */
2982 saved_function
= current_function_decl
;
2984 /* Emit any thunks that should be emitted at the same time as FN. */
2985 emit_associated_thunks (fn
);
2987 /* This function is only called from cgraph, or recursively from
2988 emit_associated_thunks. In neither case should we be currently
2989 generating trees for a function. */
2990 gcc_assert (function_depth
== 0);
2992 tree_rest_of_compilation (fn
);
2994 current_function_decl
= saved_function
;
2996 if (DECL_CLONED_FUNCTION_P (fn
))
2998 /* If this is a clone, go through the other clones now and mark
2999 their parameters used. We have to do that here, as we don't
3000 know whether any particular clone will be expanded, and
3001 therefore cannot pick one arbitrarily. */
3004 for (probe
= TREE_CHAIN (DECL_CLONED_FUNCTION (fn
));
3005 probe
&& DECL_CLONED_FUNCTION_P (probe
);
3006 probe
= TREE_CHAIN (probe
))
3010 for (parms
= DECL_ARGUMENTS (probe
);
3011 parms
; parms
= TREE_CHAIN (parms
))
3012 TREE_USED (parms
) = 1;
3017 /* Generate RTL for FN. */
3020 expand_or_defer_fn (tree fn
)
3022 /* When the parser calls us after finishing the body of a template
3023 function, we don't really want to expand the body. */
3024 if (processing_template_decl
)
3026 /* Normally, collection only occurs in rest_of_compilation. So,
3027 if we don't collect here, we never collect junk generated
3028 during the processing of templates until we hit a
3029 non-template function. */
3034 /* Replace AGGR_INIT_EXPRs with appropriate CALL_EXPRs. */
3035 walk_tree_without_duplicates (&DECL_SAVED_TREE (fn
),
3036 simplify_aggr_init_exprs_r
,
3039 /* If this is a constructor or destructor body, we have to clone
3041 if (maybe_clone_body (fn
))
3043 /* We don't want to process FN again, so pretend we've written
3044 it out, even though we haven't. */
3045 TREE_ASM_WRITTEN (fn
) = 1;
3049 /* If this function is marked with the constructor attribute, add it
3050 to the list of functions to be called along with constructors
3051 from static duration objects. */
3052 if (DECL_STATIC_CONSTRUCTOR (fn
))
3053 static_ctors
= tree_cons (NULL_TREE
, fn
, static_ctors
);
3055 /* If this function is marked with the destructor attribute, add it
3056 to the list of functions to be called along with destructors from
3057 static duration objects. */
3058 if (DECL_STATIC_DESTRUCTOR (fn
))
3059 static_dtors
= tree_cons (NULL_TREE
, fn
, static_dtors
);
3061 /* We make a decision about linkage for these functions at the end
3062 of the compilation. Until that point, we do not want the back
3063 end to output them -- but we do want it to see the bodies of
3064 these functions so that it can inline them as appropriate. */
3065 if (DECL_DECLARED_INLINE_P (fn
) || DECL_IMPLICIT_INSTANTIATION (fn
))
3069 DECL_EXTERNAL (fn
) = 1;
3070 DECL_NOT_REALLY_EXTERN (fn
) = 1;
3071 note_vague_linkage_fn (fn
);
3074 import_export_decl (fn
);
3076 /* If the user wants us to keep all inline functions, then mark
3077 this function as needed so that finish_file will make sure to
3079 if (flag_keep_inline_functions
&& DECL_DECLARED_INLINE_P (fn
))
3083 /* There's no reason to do any of the work here if we're only doing
3084 semantic analysis; this code just generates RTL. */
3085 if (flag_syntax_only
)
3090 /* Expand or defer, at the whim of the compilation unit manager. */
3091 cgraph_finalize_function (fn
, function_depth
> 1);
3103 /* Helper function for walk_tree, used by finalize_nrv below. */
3106 finalize_nrv_r (tree
* tp
, int* walk_subtrees
, void* data
)
3108 struct nrv_data
*dp
= (struct nrv_data
*)data
;
3111 /* No need to walk into types. There wouldn't be any need to walk into
3112 non-statements, except that we have to consider STMT_EXPRs. */
3115 /* Change all returns to just refer to the RESULT_DECL; this is a nop,
3116 but differs from using NULL_TREE in that it indicates that we care
3117 about the value of the RESULT_DECL. */
3118 else if (TREE_CODE (*tp
) == RETURN_EXPR
)
3119 TREE_OPERAND (*tp
, 0) = dp
->result
;
3120 /* Change all cleanups for the NRV to only run when an exception is
3122 else if (TREE_CODE (*tp
) == CLEANUP_STMT
3123 && CLEANUP_DECL (*tp
) == dp
->var
)
3124 CLEANUP_EH_ONLY (*tp
) = 1;
3125 /* Replace the DECL_EXPR for the NRV with an initialization of the
3126 RESULT_DECL, if needed. */
3127 else if (TREE_CODE (*tp
) == DECL_EXPR
3128 && DECL_EXPR_DECL (*tp
) == dp
->var
)
3131 if (DECL_INITIAL (dp
->var
)
3132 && DECL_INITIAL (dp
->var
) != error_mark_node
)
3134 init
= build2 (INIT_EXPR
, void_type_node
, dp
->result
,
3135 DECL_INITIAL (dp
->var
));
3136 DECL_INITIAL (dp
->var
) = error_mark_node
;
3139 init
= build_empty_stmt ();
3140 SET_EXPR_LOCUS (init
, EXPR_LOCUS (*tp
));
3143 /* And replace all uses of the NRV with the RESULT_DECL. */
3144 else if (*tp
== dp
->var
)
3147 /* Avoid walking into the same tree more than once. Unfortunately, we
3148 can't just use walk_tree_without duplicates because it would only call
3149 us for the first occurrence of dp->var in the function body. */
3150 slot
= htab_find_slot (dp
->visited
, *tp
, INSERT
);
3156 /* Keep iterating. */
3160 /* Called from finish_function to implement the named return value
3161 optimization by overriding all the RETURN_EXPRs and pertinent
3162 CLEANUP_STMTs and replacing all occurrences of VAR with RESULT, the
3163 RESULT_DECL for the function. */
3166 finalize_nrv (tree
*tp
, tree var
, tree result
)
3168 struct nrv_data data
;
3170 /* Copy debugging information from VAR to RESULT. */
3171 DECL_NAME (result
) = DECL_NAME (var
);
3172 DECL_ARTIFICIAL (result
) = DECL_ARTIFICIAL (var
);
3173 DECL_IGNORED_P (result
) = DECL_IGNORED_P (var
);
3174 DECL_SOURCE_LOCATION (result
) = DECL_SOURCE_LOCATION (var
);
3175 DECL_ABSTRACT_ORIGIN (result
) = DECL_ABSTRACT_ORIGIN (var
);
3176 /* Don't forget that we take its address. */
3177 TREE_ADDRESSABLE (result
) = TREE_ADDRESSABLE (var
);
3180 data
.result
= result
;
3181 data
.visited
= htab_create (37, htab_hash_pointer
, htab_eq_pointer
, NULL
);
3182 walk_tree (tp
, finalize_nrv_r
, &data
, 0);
3183 htab_delete (data
.visited
);
3186 /* Perform initialization related to this module. */
3189 init_cp_semantics (void)
3193 #include "gt-cp-semantics.h"