1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 #include "coretypes.h"
34 #include "tree-flow.h"
35 #ifdef ENABLE_VALGRIND_CHECKING
36 # ifdef HAVE_VALGRIND_MEMCHECK_H
37 # include <valgrind/memcheck.h>
38 # elif defined HAVE_MEMCHECK_H
39 # include <memcheck.h>
41 # include <valgrind.h>
44 /* Avoid #ifdef:s when we can help it. */
45 #define VALGRIND_DISCARD(x)
48 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
49 file open. Prefer either to valloc. */
51 # undef HAVE_MMAP_DEV_ZERO
53 # include <sys/mman.h>
55 # define MAP_FAILED -1
57 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
58 # define MAP_ANONYMOUS MAP_ANON
64 #ifdef HAVE_MMAP_DEV_ZERO
66 # include <sys/mman.h>
68 # define MAP_FAILED -1
75 #define USING_MALLOC_PAGE_GROUPS
80 This garbage-collecting allocator allocates objects on one of a set
81 of pages. Each page can allocate objects of a single size only;
82 available sizes are powers of two starting at four bytes. The size
83 of an allocation request is rounded up to the next power of two
84 (`order'), and satisfied from the appropriate page.
86 Each page is recorded in a page-entry, which also maintains an
87 in-use bitmap of object positions on the page. This allows the
88 allocation state of a particular object to be flipped without
89 touching the page itself.
91 Each page-entry also has a context depth, which is used to track
92 pushing and popping of allocation contexts. Only objects allocated
93 in the current (highest-numbered) context may be collected.
95 Page entries are arranged in an array of singly-linked lists. The
96 array is indexed by the allocation size, in bits, of the pages on
97 it; i.e. all pages on a list allocate objects of the same size.
98 Pages are ordered on the list such that all non-full pages precede
99 all full pages, with non-full pages arranged in order of decreasing
102 Empty pages (of all orders) are kept on a single page cache list,
103 and are considered first when new pages are required; they are
104 deallocated at the start of the next collection if they haven't
105 been recycled by then. */
107 /* Define GGC_DEBUG_LEVEL to print debugging information.
108 0: No debugging output.
109 1: GC statistics only.
110 2: Page-entry allocations/deallocations as well.
111 3: Object allocations as well.
112 4: Object marks as well. */
113 #define GGC_DEBUG_LEVEL (0)
115 #ifndef HOST_BITS_PER_PTR
116 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
120 /* A two-level tree is used to look up the page-entry for a given
121 pointer. Two chunks of the pointer's bits are extracted to index
122 the first and second levels of the tree, as follows:
126 msb +----------------+----+------+------+ lsb
132 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
133 pages are aligned on system page boundaries. The next most
134 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
135 index values in the lookup table, respectively.
137 For 32-bit architectures and the settings below, there are no
138 leftover bits. For architectures with wider pointers, the lookup
139 tree points to a list of pages, which must be scanned to find the
142 #define PAGE_L1_BITS (8)
143 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
144 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
145 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
147 #define LOOKUP_L1(p) \
148 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
150 #define LOOKUP_L2(p) \
151 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
153 /* The number of objects per allocation page, for objects on a page of
154 the indicated ORDER. */
155 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
157 /* The number of objects in P. */
158 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
160 /* The size of an object on a page of the indicated ORDER. */
161 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
163 /* For speed, we avoid doing a general integer divide to locate the
164 offset in the allocation bitmap, by precalculating numbers M, S
165 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
166 within the page which is evenly divisible by the object size Z. */
167 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
168 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
169 #define OFFSET_TO_BIT(OFFSET, ORDER) \
170 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
172 /* The number of extra orders, not corresponding to power-of-two sized
175 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
177 #define RTL_SIZE(NSLOTS) \
178 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
180 #define TREE_EXP_SIZE(OPS) \
181 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
183 /* The Ith entry is the maximum size of an object to be stored in the
184 Ith extra order. Adding a new entry to this array is the *only*
185 thing you need to do to add a new special allocation size. */
187 static const size_t extra_order_size_table
[] = {
188 sizeof (struct stmt_ann_d
),
189 sizeof (struct tree_decl
),
190 sizeof (struct tree_list
),
192 RTL_SIZE (2), /* MEM, PLUS, etc. */
193 RTL_SIZE (9), /* INSN */
196 /* The total number of orders. */
198 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
200 /* We use this structure to determine the alignment required for
201 allocations. For power-of-two sized allocations, that's not a
202 problem, but it does matter for odd-sized allocations. */
204 struct max_alignment
{
212 /* The biggest alignment required. */
214 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
216 /* Compute the smallest nonnegative number which when added to X gives
219 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
221 /* Compute the smallest multiple of F that is >= X. */
223 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
225 /* The Ith entry is the number of objects on a page or order I. */
227 static unsigned objects_per_page_table
[NUM_ORDERS
];
229 /* The Ith entry is the size of an object on a page of order I. */
231 static size_t object_size_table
[NUM_ORDERS
];
233 /* The Ith entry is a pair of numbers (mult, shift) such that
234 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
235 for all k evenly divisible by OBJECT_SIZE(I). */
242 inverse_table
[NUM_ORDERS
];
244 /* A page_entry records the status of an allocation page. This
245 structure is dynamically sized to fit the bitmap in_use_p. */
246 typedef struct page_entry
248 /* The next page-entry with objects of the same size, or NULL if
249 this is the last page-entry. */
250 struct page_entry
*next
;
252 /* The previous page-entry with objects of the same size, or NULL if
253 this is the first page-entry. The PREV pointer exists solely to
254 keep the cost of ggc_free manageable. */
255 struct page_entry
*prev
;
257 /* The number of bytes allocated. (This will always be a multiple
258 of the host system page size.) */
261 /* The address at which the memory is allocated. */
264 #ifdef USING_MALLOC_PAGE_GROUPS
265 /* Back pointer to the page group this page came from. */
266 struct page_group
*group
;
269 /* This is the index in the by_depth varray where this page table
271 unsigned long index_by_depth
;
273 /* Context depth of this page. */
274 unsigned short context_depth
;
276 /* The number of free objects remaining on this page. */
277 unsigned short num_free_objects
;
279 /* A likely candidate for the bit position of a free object for the
280 next allocation from this page. */
281 unsigned short next_bit_hint
;
283 /* The lg of size of objects allocated from this page. */
286 /* A bit vector indicating whether or not objects are in use. The
287 Nth bit is one if the Nth object on this page is allocated. This
288 array is dynamically sized. */
289 unsigned long in_use_p
[1];
292 #ifdef USING_MALLOC_PAGE_GROUPS
293 /* A page_group describes a large allocation from malloc, from which
294 we parcel out aligned pages. */
295 typedef struct page_group
297 /* A linked list of all extant page groups. */
298 struct page_group
*next
;
300 /* The address we received from malloc. */
303 /* The size of the block. */
306 /* A bitmask of pages in use. */
311 #if HOST_BITS_PER_PTR <= 32
313 /* On 32-bit hosts, we use a two level page table, as pictured above. */
314 typedef page_entry
**page_table
[PAGE_L1_SIZE
];
318 /* On 64-bit hosts, we use the same two level page tables plus a linked
319 list that disambiguates the top 32-bits. There will almost always be
320 exactly one entry in the list. */
321 typedef struct page_table_chain
323 struct page_table_chain
*next
;
325 page_entry
**table
[PAGE_L1_SIZE
];
330 /* The rest of the global variables. */
331 static struct globals
333 /* The Nth element in this array is a page with objects of size 2^N.
334 If there are any pages with free objects, they will be at the
335 head of the list. NULL if there are no page-entries for this
337 page_entry
*pages
[NUM_ORDERS
];
339 /* The Nth element in this array is the last page with objects of
340 size 2^N. NULL if there are no page-entries for this object
342 page_entry
*page_tails
[NUM_ORDERS
];
344 /* Lookup table for associating allocation pages with object addresses. */
347 /* The system's page size. */
351 /* Bytes currently allocated. */
354 /* Bytes currently allocated at the end of the last collection. */
355 size_t allocated_last_gc
;
357 /* Total amount of memory mapped. */
360 /* Bit N set if any allocations have been done at context depth N. */
361 unsigned long context_depth_allocations
;
363 /* Bit N set if any collections have been done at context depth N. */
364 unsigned long context_depth_collections
;
366 /* The current depth in the context stack. */
367 unsigned short context_depth
;
369 /* A file descriptor open to /dev/zero for reading. */
370 #if defined (HAVE_MMAP_DEV_ZERO)
374 /* A cache of free system pages. */
375 page_entry
*free_pages
;
377 #ifdef USING_MALLOC_PAGE_GROUPS
378 page_group
*page_groups
;
381 /* The file descriptor for debugging output. */
384 /* Current number of elements in use in depth below. */
385 unsigned int depth_in_use
;
387 /* Maximum number of elements that can be used before resizing. */
388 unsigned int depth_max
;
390 /* Each element of this arry is an index in by_depth where the given
391 depth starts. This structure is indexed by that given depth we
392 are interested in. */
395 /* Current number of elements in use in by_depth below. */
396 unsigned int by_depth_in_use
;
398 /* Maximum number of elements that can be used before resizing. */
399 unsigned int by_depth_max
;
401 /* Each element of this array is a pointer to a page_entry, all
402 page_entries can be found in here by increasing depth.
403 index_by_depth in the page_entry is the index into this data
404 structure where that page_entry can be found. This is used to
405 speed up finding all page_entries at a particular depth. */
406 page_entry
**by_depth
;
408 /* Each element is a pointer to the saved in_use_p bits, if any,
409 zero otherwise. We allocate them all together, to enable a
410 better runtime data access pattern. */
411 unsigned long **save_in_use
;
413 #ifdef ENABLE_GC_ALWAYS_COLLECT
414 /* List of free objects to be verified as actually free on the
419 struct free_object
*next
;
423 #ifdef GATHER_STATISTICS
426 /* Total memory allocated with ggc_alloc. */
427 unsigned long long total_allocated
;
428 /* Total overhead for memory to be allocated with ggc_alloc. */
429 unsigned long long total_overhead
;
431 /* Total allocations and overhead for sizes less than 32, 64 and 128.
432 These sizes are interesting because they are typical cache line
435 unsigned long long total_allocated_under32
;
436 unsigned long long total_overhead_under32
;
438 unsigned long long total_allocated_under64
;
439 unsigned long long total_overhead_under64
;
441 unsigned long long total_allocated_under128
;
442 unsigned long long total_overhead_under128
;
444 /* The allocations for each of the allocation orders. */
445 unsigned long long total_allocated_per_order
[NUM_ORDERS
];
447 /* The overhead for each of the allocation orders. */
448 unsigned long long total_overhead_per_order
[NUM_ORDERS
];
453 /* The size in bytes required to maintain a bitmap for the objects
455 #define BITMAP_SIZE(Num_objects) \
456 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
458 /* Allocate pages in chunks of this size, to throttle calls to memory
459 allocation routines. The first page is used, the rest go onto the
460 free list. This cannot be larger than HOST_BITS_PER_INT for the
461 in_use bitmask for page_group. Hosts that need a different value
462 can override this by defining GGC_QUIRE_SIZE explicitly. */
463 #ifndef GGC_QUIRE_SIZE
465 # define GGC_QUIRE_SIZE 256
467 # define GGC_QUIRE_SIZE 16
471 /* Initial guess as to how many page table entries we might need. */
472 #define INITIAL_PTE_COUNT 128
474 static int ggc_allocated_p (const void *);
475 static page_entry
*lookup_page_table_entry (const void *);
476 static void set_page_table_entry (void *, page_entry
*);
478 static char *alloc_anon (char *, size_t);
480 #ifdef USING_MALLOC_PAGE_GROUPS
481 static size_t page_group_index (char *, char *);
482 static void set_page_group_in_use (page_group
*, char *);
483 static void clear_page_group_in_use (page_group
*, char *);
485 static struct page_entry
* alloc_page (unsigned);
486 static void free_page (struct page_entry
*);
487 static void release_pages (void);
488 static void clear_marks (void);
489 static void sweep_pages (void);
490 static void ggc_recalculate_in_use_p (page_entry
*);
491 static void compute_inverse (unsigned);
492 static inline void adjust_depth (void);
493 static void move_ptes_to_front (int, int);
495 void debug_print_page_list (int);
496 static void push_depth (unsigned int);
497 static void push_by_depth (page_entry
*, unsigned long *);
499 /* Push an entry onto G.depth. */
502 push_depth (unsigned int i
)
504 if (G
.depth_in_use
>= G
.depth_max
)
507 G
.depth
= xrealloc (G
.depth
, G
.depth_max
* sizeof (unsigned int));
509 G
.depth
[G
.depth_in_use
++] = i
;
512 /* Push an entry onto G.by_depth and G.save_in_use. */
515 push_by_depth (page_entry
*p
, unsigned long *s
)
517 if (G
.by_depth_in_use
>= G
.by_depth_max
)
520 G
.by_depth
= xrealloc (G
.by_depth
,
521 G
.by_depth_max
* sizeof (page_entry
*));
522 G
.save_in_use
= xrealloc (G
.save_in_use
,
523 G
.by_depth_max
* sizeof (unsigned long *));
525 G
.by_depth
[G
.by_depth_in_use
] = p
;
526 G
.save_in_use
[G
.by_depth_in_use
++] = s
;
529 #if (GCC_VERSION < 3001)
530 #define prefetch(X) ((void) X)
532 #define prefetch(X) __builtin_prefetch (X)
535 #define save_in_use_p_i(__i) \
537 #define save_in_use_p(__p) \
538 (save_in_use_p_i (__p->index_by_depth))
540 /* Returns nonzero if P was allocated in GC'able memory. */
543 ggc_allocated_p (const void *p
)
548 #if HOST_BITS_PER_PTR <= 32
551 page_table table
= G
.lookup
;
552 size_t high_bits
= (size_t) p
& ~ (size_t) 0xffffffff;
557 if (table
->high_bits
== high_bits
)
561 base
= &table
->table
[0];
564 /* Extract the level 1 and 2 indices. */
568 return base
[L1
] && base
[L1
][L2
];
571 /* Traverse the page table and find the entry for a page.
572 Die (probably) if the object wasn't allocated via GC. */
574 static inline page_entry
*
575 lookup_page_table_entry (const void *p
)
580 #if HOST_BITS_PER_PTR <= 32
583 page_table table
= G
.lookup
;
584 size_t high_bits
= (size_t) p
& ~ (size_t) 0xffffffff;
585 while (table
->high_bits
!= high_bits
)
587 base
= &table
->table
[0];
590 /* Extract the level 1 and 2 indices. */
597 /* Set the page table entry for a page. */
600 set_page_table_entry (void *p
, page_entry
*entry
)
605 #if HOST_BITS_PER_PTR <= 32
609 size_t high_bits
= (size_t) p
& ~ (size_t) 0xffffffff;
610 for (table
= G
.lookup
; table
; table
= table
->next
)
611 if (table
->high_bits
== high_bits
)
614 /* Not found -- allocate a new table. */
615 table
= xcalloc (1, sizeof(*table
));
616 table
->next
= G
.lookup
;
617 table
->high_bits
= high_bits
;
620 base
= &table
->table
[0];
623 /* Extract the level 1 and 2 indices. */
627 if (base
[L1
] == NULL
)
628 base
[L1
] = xcalloc (PAGE_L2_SIZE
, sizeof (page_entry
*));
630 base
[L1
][L2
] = entry
;
633 /* Prints the page-entry for object size ORDER, for debugging. */
636 debug_print_page_list (int order
)
639 printf ("Head=%p, Tail=%p:\n", (void *) G
.pages
[order
],
640 (void *) G
.page_tails
[order
]);
644 printf ("%p(%1d|%3d) -> ", (void *) p
, p
->context_depth
,
645 p
->num_free_objects
);
653 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
654 (if non-null). The ifdef structure here is intended to cause a
655 compile error unless exactly one of the HAVE_* is defined. */
658 alloc_anon (char *pref ATTRIBUTE_UNUSED
, size_t size
)
660 #ifdef HAVE_MMAP_ANON
661 char *page
= mmap (pref
, size
, PROT_READ
| PROT_WRITE
,
662 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
664 #ifdef HAVE_MMAP_DEV_ZERO
665 char *page
= mmap (pref
, size
, PROT_READ
| PROT_WRITE
,
666 MAP_PRIVATE
, G
.dev_zero_fd
, 0);
669 if (page
== (char *) MAP_FAILED
)
671 perror ("virtual memory exhausted");
672 exit (FATAL_EXIT_CODE
);
675 /* Remember that we allocated this memory. */
676 G
.bytes_mapped
+= size
;
678 /* Pretend we don't have access to the allocated pages. We'll enable
679 access to smaller pieces of the area in ggc_alloc. Discard the
680 handle to avoid handle leak. */
681 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page
, size
));
686 #ifdef USING_MALLOC_PAGE_GROUPS
687 /* Compute the index for this page into the page group. */
690 page_group_index (char *allocation
, char *page
)
692 return (size_t) (page
- allocation
) >> G
.lg_pagesize
;
695 /* Set and clear the in_use bit for this page in the page group. */
698 set_page_group_in_use (page_group
*group
, char *page
)
700 group
->in_use
|= 1 << page_group_index (group
->allocation
, page
);
704 clear_page_group_in_use (page_group
*group
, char *page
)
706 group
->in_use
&= ~(1 << page_group_index (group
->allocation
, page
));
710 /* Allocate a new page for allocating objects of size 2^ORDER,
711 and return an entry for it. The entry is not added to the
712 appropriate page_table list. */
714 static inline struct page_entry
*
715 alloc_page (unsigned order
)
717 struct page_entry
*entry
, *p
, **pp
;
721 size_t page_entry_size
;
723 #ifdef USING_MALLOC_PAGE_GROUPS
727 num_objects
= OBJECTS_PER_PAGE (order
);
728 bitmap_size
= BITMAP_SIZE (num_objects
+ 1);
729 page_entry_size
= sizeof (page_entry
) - sizeof (long) + bitmap_size
;
730 entry_size
= num_objects
* OBJECT_SIZE (order
);
731 if (entry_size
< G
.pagesize
)
732 entry_size
= G
.pagesize
;
737 /* Check the list of free pages for one we can use. */
738 for (pp
= &G
.free_pages
, p
= *pp
; p
; pp
= &p
->next
, p
= *pp
)
739 if (p
->bytes
== entry_size
)
744 /* Recycle the allocated memory from this page ... */
748 #ifdef USING_MALLOC_PAGE_GROUPS
752 /* ... and, if possible, the page entry itself. */
753 if (p
->order
== order
)
756 memset (entry
, 0, page_entry_size
);
762 else if (entry_size
== G
.pagesize
)
764 /* We want just one page. Allocate a bunch of them and put the
765 extras on the freelist. (Can only do this optimization with
766 mmap for backing store.) */
767 struct page_entry
*e
, *f
= G
.free_pages
;
770 page
= alloc_anon (NULL
, G
.pagesize
* GGC_QUIRE_SIZE
);
772 /* This loop counts down so that the chain will be in ascending
774 for (i
= GGC_QUIRE_SIZE
- 1; i
>= 1; i
--)
776 e
= xcalloc (1, page_entry_size
);
778 e
->bytes
= G
.pagesize
;
779 e
->page
= page
+ (i
<< G
.lg_pagesize
);
787 page
= alloc_anon (NULL
, entry_size
);
789 #ifdef USING_MALLOC_PAGE_GROUPS
792 /* Allocate a large block of memory and serve out the aligned
793 pages therein. This results in much less memory wastage
794 than the traditional implementation of valloc. */
796 char *allocation
, *a
, *enda
;
797 size_t alloc_size
, head_slop
, tail_slop
;
798 int multiple_pages
= (entry_size
== G
.pagesize
);
801 alloc_size
= GGC_QUIRE_SIZE
* G
.pagesize
;
803 alloc_size
= entry_size
+ G
.pagesize
- 1;
804 allocation
= xmalloc (alloc_size
);
806 page
= (char *) (((size_t) allocation
+ G
.pagesize
- 1) & -G
.pagesize
);
807 head_slop
= page
- allocation
;
809 tail_slop
= ((size_t) allocation
+ alloc_size
) & (G
.pagesize
- 1);
811 tail_slop
= alloc_size
- entry_size
- head_slop
;
812 enda
= allocation
+ alloc_size
- tail_slop
;
814 /* We allocated N pages, which are likely not aligned, leaving
815 us with N-1 usable pages. We plan to place the page_group
816 structure somewhere in the slop. */
817 if (head_slop
>= sizeof (page_group
))
818 group
= (page_group
*)page
- 1;
821 /* We magically got an aligned allocation. Too bad, we have
822 to waste a page anyway. */
826 tail_slop
+= G
.pagesize
;
828 gcc_assert (tail_slop
>= sizeof (page_group
));
829 group
= (page_group
*)enda
;
830 tail_slop
-= sizeof (page_group
);
833 /* Remember that we allocated this memory. */
834 group
->next
= G
.page_groups
;
835 group
->allocation
= allocation
;
836 group
->alloc_size
= alloc_size
;
838 G
.page_groups
= group
;
839 G
.bytes_mapped
+= alloc_size
;
841 /* If we allocated multiple pages, put the rest on the free list. */
844 struct page_entry
*e
, *f
= G
.free_pages
;
845 for (a
= enda
- G
.pagesize
; a
!= page
; a
-= G
.pagesize
)
847 e
= xcalloc (1, page_entry_size
);
849 e
->bytes
= G
.pagesize
;
861 entry
= xcalloc (1, page_entry_size
);
863 entry
->bytes
= entry_size
;
865 entry
->context_depth
= G
.context_depth
;
866 entry
->order
= order
;
867 entry
->num_free_objects
= num_objects
;
868 entry
->next_bit_hint
= 1;
870 G
.context_depth_allocations
|= (unsigned long)1 << G
.context_depth
;
872 #ifdef USING_MALLOC_PAGE_GROUPS
873 entry
->group
= group
;
874 set_page_group_in_use (group
, page
);
877 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
878 increment the hint. */
879 entry
->in_use_p
[num_objects
/ HOST_BITS_PER_LONG
]
880 = (unsigned long) 1 << (num_objects
% HOST_BITS_PER_LONG
);
882 set_page_table_entry (page
, entry
);
884 if (GGC_DEBUG_LEVEL
>= 2)
885 fprintf (G
.debug_file
,
886 "Allocating page at %p, object size=%lu, data %p-%p\n",
887 (void *) entry
, (unsigned long) OBJECT_SIZE (order
), page
,
888 page
+ entry_size
- 1);
893 /* Adjust the size of G.depth so that no index greater than the one
894 used by the top of the G.by_depth is used. */
901 if (G
.by_depth_in_use
)
903 top
= G
.by_depth
[G
.by_depth_in_use
-1];
905 /* Peel back indices in depth that index into by_depth, so that
906 as new elements are added to by_depth, we note the indices
907 of those elements, if they are for new context depths. */
908 while (G
.depth_in_use
> (size_t)top
->context_depth
+1)
913 /* For a page that is no longer needed, put it on the free page list. */
916 free_page (page_entry
*entry
)
918 if (GGC_DEBUG_LEVEL
>= 2)
919 fprintf (G
.debug_file
,
920 "Deallocating page at %p, data %p-%p\n", (void *) entry
,
921 entry
->page
, entry
->page
+ entry
->bytes
- 1);
923 /* Mark the page as inaccessible. Discard the handle to avoid handle
925 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry
->page
, entry
->bytes
));
927 set_page_table_entry (entry
->page
, NULL
);
929 #ifdef USING_MALLOC_PAGE_GROUPS
930 clear_page_group_in_use (entry
->group
, entry
->page
);
933 if (G
.by_depth_in_use
> 1)
935 page_entry
*top
= G
.by_depth
[G
.by_depth_in_use
-1];
936 int i
= entry
->index_by_depth
;
938 /* We cannot free a page from a context deeper than the current
940 gcc_assert (entry
->context_depth
== top
->context_depth
);
942 /* Put top element into freed slot. */
944 G
.save_in_use
[i
] = G
.save_in_use
[G
.by_depth_in_use
-1];
945 top
->index_by_depth
= i
;
951 entry
->next
= G
.free_pages
;
952 G
.free_pages
= entry
;
955 /* Release the free page cache to the system. */
961 page_entry
*p
, *next
;
965 /* Gather up adjacent pages so they are unmapped together. */
976 while (p
&& p
->page
== start
+ len
)
985 G
.bytes_mapped
-= len
;
990 #ifdef USING_MALLOC_PAGE_GROUPS
994 /* Remove all pages from free page groups from the list. */
996 while ((p
= *pp
) != NULL
)
997 if (p
->group
->in_use
== 0)
1005 /* Remove all free page groups, and release the storage. */
1006 gp
= &G
.page_groups
;
1007 while ((g
= *gp
) != NULL
)
1011 G
.bytes_mapped
-= g
->alloc_size
;
1012 free (g
->allocation
);
1019 /* This table provides a fast way to determine ceil(log_2(size)) for
1020 allocation requests. The minimum allocation size is eight bytes. */
1022 static unsigned char size_lookup
[257] =
1024 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1025 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1026 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1027 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1028 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1029 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1030 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1031 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1032 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1033 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1034 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1035 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1036 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1037 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1038 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1039 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1043 /* Typed allocation function. Does nothing special in this collector. */
1046 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED
, size_t size
1049 return ggc_alloc_stat (size PASS_MEM_STAT
);
1052 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1055 ggc_alloc_stat (size_t size MEM_STAT_DECL
)
1057 size_t order
, word
, bit
, object_offset
, object_size
;
1058 struct page_entry
*entry
;
1063 order
= size_lookup
[size
];
1064 object_size
= OBJECT_SIZE (order
);
1069 while (size
> (object_size
= OBJECT_SIZE (order
)))
1073 /* If there are non-full pages for this size allocation, they are at
1074 the head of the list. */
1075 entry
= G
.pages
[order
];
1077 /* If there is no page for this object size, or all pages in this
1078 context are full, allocate a new page. */
1079 if (entry
== NULL
|| entry
->num_free_objects
== 0)
1081 struct page_entry
*new_entry
;
1082 new_entry
= alloc_page (order
);
1084 new_entry
->index_by_depth
= G
.by_depth_in_use
;
1085 push_by_depth (new_entry
, 0);
1087 /* We can skip context depths, if we do, make sure we go all the
1088 way to the new depth. */
1089 while (new_entry
->context_depth
>= G
.depth_in_use
)
1090 push_depth (G
.by_depth_in_use
-1);
1092 /* If this is the only entry, it's also the tail. If it is not
1093 the only entry, then we must update the PREV pointer of the
1094 ENTRY (G.pages[order]) to point to our new page entry. */
1096 G
.page_tails
[order
] = new_entry
;
1098 entry
->prev
= new_entry
;
1100 /* Put new pages at the head of the page list. By definition the
1101 entry at the head of the list always has a NULL pointer. */
1102 new_entry
->next
= entry
;
1103 new_entry
->prev
= NULL
;
1105 G
.pages
[order
] = new_entry
;
1107 /* For a new page, we know the word and bit positions (in the
1108 in_use bitmap) of the first available object -- they're zero. */
1109 new_entry
->next_bit_hint
= 1;
1116 /* First try to use the hint left from the previous allocation
1117 to locate a clear bit in the in-use bitmap. We've made sure
1118 that the one-past-the-end bit is always set, so if the hint
1119 has run over, this test will fail. */
1120 unsigned hint
= entry
->next_bit_hint
;
1121 word
= hint
/ HOST_BITS_PER_LONG
;
1122 bit
= hint
% HOST_BITS_PER_LONG
;
1124 /* If the hint didn't work, scan the bitmap from the beginning. */
1125 if ((entry
->in_use_p
[word
] >> bit
) & 1)
1128 while (~entry
->in_use_p
[word
] == 0)
1131 #if GCC_VERSION >= 3004
1132 bit
= __builtin_ctzl (~entry
->in_use_p
[word
]);
1134 while ((entry
->in_use_p
[word
] >> bit
) & 1)
1138 hint
= word
* HOST_BITS_PER_LONG
+ bit
;
1141 /* Next time, try the next bit. */
1142 entry
->next_bit_hint
= hint
+ 1;
1144 object_offset
= hint
* object_size
;
1147 /* Set the in-use bit. */
1148 entry
->in_use_p
[word
] |= ((unsigned long) 1 << bit
);
1150 /* Keep a running total of the number of free objects. If this page
1151 fills up, we may have to move it to the end of the list if the
1152 next page isn't full. If the next page is full, all subsequent
1153 pages are full, so there's no need to move it. */
1154 if (--entry
->num_free_objects
== 0
1155 && entry
->next
!= NULL
1156 && entry
->next
->num_free_objects
> 0)
1158 /* We have a new head for the list. */
1159 G
.pages
[order
] = entry
->next
;
1161 /* We are moving ENTRY to the end of the page table list.
1162 The new page at the head of the list will have NULL in
1163 its PREV field and ENTRY will have NULL in its NEXT field. */
1164 entry
->next
->prev
= NULL
;
1167 /* Append ENTRY to the tail of the list. */
1168 entry
->prev
= G
.page_tails
[order
];
1169 G
.page_tails
[order
]->next
= entry
;
1170 G
.page_tails
[order
] = entry
;
1173 /* Calculate the object's address. */
1174 result
= entry
->page
+ object_offset
;
1175 #ifdef GATHER_STATISTICS
1176 ggc_record_overhead (OBJECT_SIZE (order
), OBJECT_SIZE (order
) - size
,
1177 result PASS_MEM_STAT
);
1180 #ifdef ENABLE_GC_CHECKING
1181 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1182 exact same semantics in presence of memory bugs, regardless of
1183 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1184 handle to avoid handle leak. */
1185 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result
, object_size
));
1187 /* `Poison' the entire allocated object, including any padding at
1189 memset (result
, 0xaf, object_size
);
1191 /* Make the bytes after the end of the object unaccessible. Discard the
1192 handle to avoid handle leak. */
1193 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result
+ size
,
1194 object_size
- size
));
1197 /* Tell Valgrind that the memory is there, but its content isn't
1198 defined. The bytes at the end of the object are still marked
1200 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result
, size
));
1202 /* Keep track of how many bytes are being allocated. This
1203 information is used in deciding when to collect. */
1204 G
.allocated
+= object_size
;
1206 /* For timevar statistics. */
1207 timevar_ggc_mem_total
+= object_size
;
1209 #ifdef GATHER_STATISTICS
1211 size_t overhead
= object_size
- size
;
1213 G
.stats
.total_overhead
+= overhead
;
1214 G
.stats
.total_allocated
+= object_size
;
1215 G
.stats
.total_overhead_per_order
[order
] += overhead
;
1216 G
.stats
.total_allocated_per_order
[order
] += object_size
;
1220 G
.stats
.total_overhead_under32
+= overhead
;
1221 G
.stats
.total_allocated_under32
+= object_size
;
1225 G
.stats
.total_overhead_under64
+= overhead
;
1226 G
.stats
.total_allocated_under64
+= object_size
;
1230 G
.stats
.total_overhead_under128
+= overhead
;
1231 G
.stats
.total_allocated_under128
+= object_size
;
1236 if (GGC_DEBUG_LEVEL
>= 3)
1237 fprintf (G
.debug_file
,
1238 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1239 (unsigned long) size
, (unsigned long) object_size
, result
,
1245 /* If P is not marked, marks it and return false. Otherwise return true.
1246 P must have been allocated by the GC allocator; it mustn't point to
1247 static objects, stack variables, or memory allocated with malloc. */
1250 ggc_set_mark (const void *p
)
1256 /* Look up the page on which the object is alloced. If the object
1257 wasn't allocated by the collector, we'll probably die. */
1258 entry
= lookup_page_table_entry (p
);
1261 /* Calculate the index of the object on the page; this is its bit
1262 position in the in_use_p bitmap. */
1263 bit
= OFFSET_TO_BIT (((const char *) p
) - entry
->page
, entry
->order
);
1264 word
= bit
/ HOST_BITS_PER_LONG
;
1265 mask
= (unsigned long) 1 << (bit
% HOST_BITS_PER_LONG
);
1267 /* If the bit was previously set, skip it. */
1268 if (entry
->in_use_p
[word
] & mask
)
1271 /* Otherwise set it, and decrement the free object count. */
1272 entry
->in_use_p
[word
] |= mask
;
1273 entry
->num_free_objects
-= 1;
1275 if (GGC_DEBUG_LEVEL
>= 4)
1276 fprintf (G
.debug_file
, "Marking %p\n", p
);
1281 /* Return 1 if P has been marked, zero otherwise.
1282 P must have been allocated by the GC allocator; it mustn't point to
1283 static objects, stack variables, or memory allocated with malloc. */
1286 ggc_marked_p (const void *p
)
1292 /* Look up the page on which the object is alloced. If the object
1293 wasn't allocated by the collector, we'll probably die. */
1294 entry
= lookup_page_table_entry (p
);
1297 /* Calculate the index of the object on the page; this is its bit
1298 position in the in_use_p bitmap. */
1299 bit
= OFFSET_TO_BIT (((const char *) p
) - entry
->page
, entry
->order
);
1300 word
= bit
/ HOST_BITS_PER_LONG
;
1301 mask
= (unsigned long) 1 << (bit
% HOST_BITS_PER_LONG
);
1303 return (entry
->in_use_p
[word
] & mask
) != 0;
1306 /* Return the size of the gc-able object P. */
1309 ggc_get_size (const void *p
)
1311 page_entry
*pe
= lookup_page_table_entry (p
);
1312 return OBJECT_SIZE (pe
->order
);
1315 /* Release the memory for object P. */
1320 page_entry
*pe
= lookup_page_table_entry (p
);
1321 size_t order
= pe
->order
;
1322 size_t size
= OBJECT_SIZE (order
);
1324 #ifdef GATHER_STATISTICS
1325 ggc_free_overhead (p
);
1328 if (GGC_DEBUG_LEVEL
>= 3)
1329 fprintf (G
.debug_file
,
1330 "Freeing object, actual size=%lu, at %p on %p\n",
1331 (unsigned long) size
, p
, (void *) pe
);
1333 #ifdef ENABLE_GC_CHECKING
1334 /* Poison the data, to indicate the data is garbage. */
1335 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p
, size
));
1336 memset (p
, 0xa5, size
);
1338 /* Let valgrind know the object is free. */
1339 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p
, size
));
1341 #ifdef ENABLE_GC_ALWAYS_COLLECT
1342 /* In the completely-anal-checking mode, we do *not* immediately free
1343 the data, but instead verify that the data is *actually* not
1344 reachable the next time we collect. */
1346 struct free_object
*fo
= xmalloc (sizeof (struct free_object
));
1348 fo
->next
= G
.free_object_list
;
1349 G
.free_object_list
= fo
;
1353 unsigned int bit_offset
, word
, bit
;
1355 G
.allocated
-= size
;
1357 /* Mark the object not-in-use. */
1358 bit_offset
= OFFSET_TO_BIT (((const char *) p
) - pe
->page
, order
);
1359 word
= bit_offset
/ HOST_BITS_PER_LONG
;
1360 bit
= bit_offset
% HOST_BITS_PER_LONG
;
1361 pe
->in_use_p
[word
] &= ~(1UL << bit
);
1363 if (pe
->num_free_objects
++ == 0)
1367 /* If the page is completely full, then it's supposed to
1368 be after all pages that aren't. Since we've freed one
1369 object from a page that was full, we need to move the
1370 page to the head of the list.
1372 PE is the node we want to move. Q is the previous node
1373 and P is the next node in the list. */
1375 if (q
&& q
->num_free_objects
== 0)
1381 /* If PE was at the end of the list, then Q becomes the
1382 new end of the list. If PE was not the end of the
1383 list, then we need to update the PREV field for P. */
1385 G
.page_tails
[order
] = q
;
1389 /* Move PE to the head of the list. */
1390 pe
->next
= G
.pages
[order
];
1392 G
.pages
[order
]->prev
= pe
;
1393 G
.pages
[order
] = pe
;
1396 /* Reset the hint bit to point to the only free object. */
1397 pe
->next_bit_hint
= bit_offset
;
1403 /* Subroutine of init_ggc which computes the pair of numbers used to
1404 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1406 This algorithm is taken from Granlund and Montgomery's paper
1407 "Division by Invariant Integers using Multiplication"
1408 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1412 compute_inverse (unsigned order
)
1417 size
= OBJECT_SIZE (order
);
1419 while (size
% 2 == 0)
1426 while (inv
* size
!= 1)
1427 inv
= inv
* (2 - inv
*size
);
1429 DIV_MULT (order
) = inv
;
1430 DIV_SHIFT (order
) = e
;
1433 /* Initialize the ggc-mmap allocator. */
1439 G
.pagesize
= getpagesize();
1440 G
.lg_pagesize
= exact_log2 (G
.pagesize
);
1442 #ifdef HAVE_MMAP_DEV_ZERO
1443 G
.dev_zero_fd
= open ("/dev/zero", O_RDONLY
);
1444 if (G
.dev_zero_fd
== -1)
1445 internal_error ("open /dev/zero: %m");
1449 G
.debug_file
= fopen ("ggc-mmap.debug", "w");
1451 G
.debug_file
= stdout
;
1455 /* StunOS has an amazing off-by-one error for the first mmap allocation
1456 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1457 believe, is an unaligned page allocation, which would cause us to
1458 hork badly if we tried to use it. */
1460 char *p
= alloc_anon (NULL
, G
.pagesize
);
1461 struct page_entry
*e
;
1462 if ((size_t)p
& (G
.pagesize
- 1))
1464 /* How losing. Discard this one and try another. If we still
1465 can't get something useful, give up. */
1467 p
= alloc_anon (NULL
, G
.pagesize
);
1468 gcc_assert (!((size_t)p
& (G
.pagesize
- 1)));
1471 /* We have a good page, might as well hold onto it... */
1472 e
= xcalloc (1, sizeof (struct page_entry
));
1473 e
->bytes
= G
.pagesize
;
1475 e
->next
= G
.free_pages
;
1480 /* Initialize the object size table. */
1481 for (order
= 0; order
< HOST_BITS_PER_PTR
; ++order
)
1482 object_size_table
[order
] = (size_t) 1 << order
;
1483 for (order
= HOST_BITS_PER_PTR
; order
< NUM_ORDERS
; ++order
)
1485 size_t s
= extra_order_size_table
[order
- HOST_BITS_PER_PTR
];
1487 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1488 so that we're sure of getting aligned memory. */
1489 s
= ROUND_UP (s
, MAX_ALIGNMENT
);
1490 object_size_table
[order
] = s
;
1493 /* Initialize the objects-per-page and inverse tables. */
1494 for (order
= 0; order
< NUM_ORDERS
; ++order
)
1496 objects_per_page_table
[order
] = G
.pagesize
/ OBJECT_SIZE (order
);
1497 if (objects_per_page_table
[order
] == 0)
1498 objects_per_page_table
[order
] = 1;
1499 compute_inverse (order
);
1502 /* Reset the size_lookup array to put appropriately sized objects in
1503 the special orders. All objects bigger than the previous power
1504 of two, but no greater than the special size, should go in the
1506 for (order
= HOST_BITS_PER_PTR
; order
< NUM_ORDERS
; ++order
)
1511 o
= size_lookup
[OBJECT_SIZE (order
)];
1512 for (i
= OBJECT_SIZE (order
); size_lookup
[i
] == o
; --i
)
1513 size_lookup
[i
] = order
;
1518 G
.depth
= xmalloc (G
.depth_max
* sizeof (unsigned int));
1520 G
.by_depth_in_use
= 0;
1521 G
.by_depth_max
= INITIAL_PTE_COUNT
;
1522 G
.by_depth
= xmalloc (G
.by_depth_max
* sizeof (page_entry
*));
1523 G
.save_in_use
= xmalloc (G
.by_depth_max
* sizeof (unsigned long *));
1526 /* Start a new GGC zone. */
1529 new_ggc_zone (const char *name ATTRIBUTE_UNUSED
)
1534 /* Destroy a GGC zone. */
1536 destroy_ggc_zone (struct alloc_zone
*zone ATTRIBUTE_UNUSED
)
1540 /* Increment the `GC context'. Objects allocated in an outer context
1541 are never freed, eliminating the need to register their roots. */
1544 ggc_push_context (void)
1549 gcc_assert (G
.context_depth
< HOST_BITS_PER_LONG
);
1552 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1553 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1556 ggc_recalculate_in_use_p (page_entry
*p
)
1561 /* Because the past-the-end bit in in_use_p is always set, we
1562 pretend there is one additional object. */
1563 num_objects
= OBJECTS_IN_PAGE (p
) + 1;
1565 /* Reset the free object count. */
1566 p
->num_free_objects
= num_objects
;
1568 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1570 i
< CEIL (BITMAP_SIZE (num_objects
),
1571 sizeof (*p
->in_use_p
));
1576 /* Something is in use if it is marked, or if it was in use in a
1577 context further down the context stack. */
1578 p
->in_use_p
[i
] |= save_in_use_p (p
)[i
];
1580 /* Decrement the free object count for every object allocated. */
1581 for (j
= p
->in_use_p
[i
]; j
; j
>>= 1)
1582 p
->num_free_objects
-= (j
& 1);
1585 gcc_assert (p
->num_free_objects
< num_objects
);
1588 /* Decrement the `GC context'. All objects allocated since the
1589 previous ggc_push_context are migrated to the outer context. */
1592 ggc_pop_context (void)
1594 unsigned long omask
;
1595 unsigned int depth
, i
, e
;
1596 #ifdef ENABLE_CHECKING
1600 depth
= --G
.context_depth
;
1601 omask
= (unsigned long)1 << (depth
+ 1);
1603 if (!((G
.context_depth_allocations
| G
.context_depth_collections
) & omask
))
1606 G
.context_depth_allocations
|= (G
.context_depth_allocations
& omask
) >> 1;
1607 G
.context_depth_allocations
&= omask
- 1;
1608 G
.context_depth_collections
&= omask
- 1;
1610 /* The G.depth array is shortened so that the last index is the
1611 context_depth of the top element of by_depth. */
1612 if (depth
+1 < G
.depth_in_use
)
1613 e
= G
.depth
[depth
+1];
1615 e
= G
.by_depth_in_use
;
1617 /* We might not have any PTEs of depth depth. */
1618 if (depth
< G
.depth_in_use
)
1621 /* First we go through all the pages at depth depth to
1622 recalculate the in use bits. */
1623 for (i
= G
.depth
[depth
]; i
< e
; ++i
)
1625 page_entry
*p
= G
.by_depth
[i
];
1627 /* Check that all of the pages really are at the depth that
1629 gcc_assert (p
->context_depth
== depth
);
1630 gcc_assert (p
->index_by_depth
== i
);
1632 prefetch (&save_in_use_p_i (i
+8));
1633 prefetch (&save_in_use_p_i (i
+16));
1634 if (save_in_use_p_i (i
))
1637 ggc_recalculate_in_use_p (p
);
1638 free (save_in_use_p_i (i
));
1639 save_in_use_p_i (i
) = 0;
1644 /* Then, we reset all page_entries with a depth greater than depth
1646 for (i
= e
; i
< G
.by_depth_in_use
; ++i
)
1648 page_entry
*p
= G
.by_depth
[i
];
1650 /* Check that all of the pages really are at the depth we
1652 gcc_assert (p
->context_depth
> depth
);
1653 gcc_assert (p
->index_by_depth
== i
);
1654 p
->context_depth
= depth
;
1659 #ifdef ENABLE_CHECKING
1660 for (order
= 2; order
< NUM_ORDERS
; order
++)
1664 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
1665 gcc_assert (p
->context_depth
< depth
||
1666 (p
->context_depth
== depth
&& !save_in_use_p (p
)));
1671 /* Unmark all objects. */
1678 for (order
= 2; order
< NUM_ORDERS
; order
++)
1682 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
1684 size_t num_objects
= OBJECTS_IN_PAGE (p
);
1685 size_t bitmap_size
= BITMAP_SIZE (num_objects
+ 1);
1687 /* The data should be page-aligned. */
1688 gcc_assert (!((size_t) p
->page
& (G
.pagesize
- 1)));
1690 /* Pages that aren't in the topmost context are not collected;
1691 nevertheless, we need their in-use bit vectors to store GC
1692 marks. So, back them up first. */
1693 if (p
->context_depth
< G
.context_depth
)
1695 if (! save_in_use_p (p
))
1696 save_in_use_p (p
) = xmalloc (bitmap_size
);
1697 memcpy (save_in_use_p (p
), p
->in_use_p
, bitmap_size
);
1700 /* Reset reset the number of free objects and clear the
1701 in-use bits. These will be adjusted by mark_obj. */
1702 p
->num_free_objects
= num_objects
;
1703 memset (p
->in_use_p
, 0, bitmap_size
);
1705 /* Make sure the one-past-the-end bit is always set. */
1706 p
->in_use_p
[num_objects
/ HOST_BITS_PER_LONG
]
1707 = ((unsigned long) 1 << (num_objects
% HOST_BITS_PER_LONG
));
1712 /* Free all empty pages. Partially empty pages need no attention
1713 because the `mark' bit doubles as an `unused' bit. */
1720 for (order
= 2; order
< NUM_ORDERS
; order
++)
1722 /* The last page-entry to consider, regardless of entries
1723 placed at the end of the list. */
1724 page_entry
* const last
= G
.page_tails
[order
];
1727 size_t live_objects
;
1728 page_entry
*p
, *previous
;
1738 page_entry
*next
= p
->next
;
1740 /* Loop until all entries have been examined. */
1743 num_objects
= OBJECTS_IN_PAGE (p
);
1745 /* Add all live objects on this page to the count of
1746 allocated memory. */
1747 live_objects
= num_objects
- p
->num_free_objects
;
1749 G
.allocated
+= OBJECT_SIZE (order
) * live_objects
;
1751 /* Only objects on pages in the topmost context should get
1753 if (p
->context_depth
< G
.context_depth
)
1756 /* Remove the page if it's empty. */
1757 else if (live_objects
== 0)
1759 /* If P was the first page in the list, then NEXT
1760 becomes the new first page in the list, otherwise
1761 splice P out of the forward pointers. */
1763 G
.pages
[order
] = next
;
1765 previous
->next
= next
;
1767 /* Splice P out of the back pointers too. */
1769 next
->prev
= previous
;
1771 /* Are we removing the last element? */
1772 if (p
== G
.page_tails
[order
])
1773 G
.page_tails
[order
] = previous
;
1778 /* If the page is full, move it to the end. */
1779 else if (p
->num_free_objects
== 0)
1781 /* Don't move it if it's already at the end. */
1782 if (p
!= G
.page_tails
[order
])
1784 /* Move p to the end of the list. */
1786 p
->prev
= G
.page_tails
[order
];
1787 G
.page_tails
[order
]->next
= p
;
1789 /* Update the tail pointer... */
1790 G
.page_tails
[order
] = p
;
1792 /* ... and the head pointer, if necessary. */
1794 G
.pages
[order
] = next
;
1796 previous
->next
= next
;
1798 /* And update the backpointer in NEXT if necessary. */
1800 next
->prev
= previous
;
1806 /* If we've fallen through to here, it's a page in the
1807 topmost context that is neither full nor empty. Such a
1808 page must precede pages at lesser context depth in the
1809 list, so move it to the head. */
1810 else if (p
!= G
.pages
[order
])
1812 previous
->next
= p
->next
;
1814 /* Update the backchain in the next node if it exists. */
1816 p
->next
->prev
= previous
;
1818 /* Move P to the head of the list. */
1819 p
->next
= G
.pages
[order
];
1821 G
.pages
[order
]->prev
= p
;
1823 /* Update the head pointer. */
1826 /* Are we moving the last element? */
1827 if (G
.page_tails
[order
] == p
)
1828 G
.page_tails
[order
] = previous
;
1837 /* Now, restore the in_use_p vectors for any pages from contexts
1838 other than the current one. */
1839 for (p
= G
.pages
[order
]; p
; p
= p
->next
)
1840 if (p
->context_depth
!= G
.context_depth
)
1841 ggc_recalculate_in_use_p (p
);
1845 #ifdef ENABLE_GC_CHECKING
1846 /* Clobber all free objects. */
1853 for (order
= 2; order
< NUM_ORDERS
; order
++)
1855 size_t size
= OBJECT_SIZE (order
);
1858 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
1863 if (p
->context_depth
!= G
.context_depth
)
1864 /* Since we don't do any collection for pages in pushed
1865 contexts, there's no need to do any poisoning. And
1866 besides, the IN_USE_P array isn't valid until we pop
1870 num_objects
= OBJECTS_IN_PAGE (p
);
1871 for (i
= 0; i
< num_objects
; i
++)
1874 word
= i
/ HOST_BITS_PER_LONG
;
1875 bit
= i
% HOST_BITS_PER_LONG
;
1876 if (((p
->in_use_p
[word
] >> bit
) & 1) == 0)
1878 char *object
= p
->page
+ i
* size
;
1880 /* Keep poison-by-write when we expect to use Valgrind,
1881 so the exact same memory semantics is kept, in case
1882 there are memory errors. We override this request
1884 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object
, size
));
1885 memset (object
, 0xa5, size
);
1887 /* Drop the handle to avoid handle leak. */
1888 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object
, size
));
1895 #define poison_pages()
1898 #ifdef ENABLE_GC_ALWAYS_COLLECT
1899 /* Validate that the reportedly free objects actually are. */
1902 validate_free_objects (void)
1904 struct free_object
*f
, *next
, *still_free
= NULL
;
1906 for (f
= G
.free_object_list
; f
; f
= next
)
1908 page_entry
*pe
= lookup_page_table_entry (f
->object
);
1911 bit
= OFFSET_TO_BIT ((char *)f
->object
- pe
->page
, pe
->order
);
1912 word
= bit
/ HOST_BITS_PER_LONG
;
1913 bit
= bit
% HOST_BITS_PER_LONG
;
1916 /* Make certain it isn't visible from any root. Notice that we
1917 do this check before sweep_pages merges save_in_use_p. */
1918 gcc_assert (!(pe
->in_use_p
[word
] & (1UL << bit
)));
1920 /* If the object comes from an outer context, then retain the
1921 free_object entry, so that we can verify that the address
1922 isn't live on the stack in some outer context. */
1923 if (pe
->context_depth
!= G
.context_depth
)
1925 f
->next
= still_free
;
1932 G
.free_object_list
= still_free
;
1935 #define validate_free_objects()
1938 /* Top level mark-and-sweep routine. */
1943 /* Avoid frequent unnecessary work by skipping collection if the
1944 total allocations haven't expanded much since the last
1946 float allocated_last_gc
=
1947 MAX (G
.allocated_last_gc
, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE
) * 1024);
1949 float min_expand
= allocated_last_gc
* PARAM_VALUE (GGC_MIN_EXPAND
) / 100;
1951 if (G
.allocated
< allocated_last_gc
+ min_expand
&& !ggc_force_collect
)
1954 timevar_push (TV_GC
);
1956 fprintf (stderr
, " {GC %luk -> ", (unsigned long) G
.allocated
/ 1024);
1957 if (GGC_DEBUG_LEVEL
>= 2)
1958 fprintf (G
.debug_file
, "BEGIN COLLECTING\n");
1960 /* Zero the total allocated bytes. This will be recalculated in the
1964 /* Release the pages we freed the last time we collected, but didn't
1965 reuse in the interim. */
1968 /* Indicate that we've seen collections at this context depth. */
1969 G
.context_depth_collections
= ((unsigned long)1 << (G
.context_depth
+ 1)) - 1;
1973 #ifdef GATHER_STATISTICS
1974 ggc_prune_overhead_list ();
1977 validate_free_objects ();
1980 G
.allocated_last_gc
= G
.allocated
;
1982 timevar_pop (TV_GC
);
1985 fprintf (stderr
, "%luk}", (unsigned long) G
.allocated
/ 1024);
1986 if (GGC_DEBUG_LEVEL
>= 2)
1987 fprintf (G
.debug_file
, "END COLLECTING\n");
1990 /* Print allocation statistics. */
1991 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1993 : ((x) < 1024*1024*10 \
1995 : (x) / (1024*1024))))
1996 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1999 ggc_print_statistics (void)
2001 struct ggc_statistics stats
;
2003 size_t total_overhead
= 0;
2005 /* Clear the statistics. */
2006 memset (&stats
, 0, sizeof (stats
));
2008 /* Make sure collection will really occur. */
2009 G
.allocated_last_gc
= 0;
2011 /* Collect and print the statistics common across collectors. */
2012 ggc_print_common_statistics (stderr
, &stats
);
2014 /* Release free pages so that we will not count the bytes allocated
2015 there as part of the total allocated memory. */
2018 /* Collect some information about the various sizes of
2021 "Memory still allocated at the end of the compilation process\n");
2022 fprintf (stderr
, "%-5s %10s %10s %10s\n",
2023 "Size", "Allocated", "Used", "Overhead");
2024 for (i
= 0; i
< NUM_ORDERS
; ++i
)
2031 /* Skip empty entries. */
2035 overhead
= allocated
= in_use
= 0;
2037 /* Figure out the total number of bytes allocated for objects of
2038 this size, and how many of them are actually in use. Also figure
2039 out how much memory the page table is using. */
2040 for (p
= G
.pages
[i
]; p
; p
= p
->next
)
2042 allocated
+= p
->bytes
;
2044 (OBJECTS_IN_PAGE (p
) - p
->num_free_objects
) * OBJECT_SIZE (i
);
2046 overhead
+= (sizeof (page_entry
) - sizeof (long)
2047 + BITMAP_SIZE (OBJECTS_IN_PAGE (p
) + 1));
2049 fprintf (stderr
, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2050 (unsigned long) OBJECT_SIZE (i
),
2051 SCALE (allocated
), STAT_LABEL (allocated
),
2052 SCALE (in_use
), STAT_LABEL (in_use
),
2053 SCALE (overhead
), STAT_LABEL (overhead
));
2054 total_overhead
+= overhead
;
2056 fprintf (stderr
, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2057 SCALE (G
.bytes_mapped
), STAT_LABEL (G
.bytes_mapped
),
2058 SCALE (G
.allocated
), STAT_LABEL(G
.allocated
),
2059 SCALE (total_overhead
), STAT_LABEL (total_overhead
));
2061 #ifdef GATHER_STATISTICS
2063 fprintf (stderr
, "\nTotal allocations and overheads during the compilation process\n");
2065 fprintf (stderr
, "Total Overhead: %10lld\n",
2066 G
.stats
.total_overhead
);
2067 fprintf (stderr
, "Total Allocated: %10lld\n",
2068 G
.stats
.total_allocated
);
2070 fprintf (stderr
, "Total Overhead under 32B: %10lld\n",
2071 G
.stats
.total_overhead_under32
);
2072 fprintf (stderr
, "Total Allocated under 32B: %10lld\n",
2073 G
.stats
.total_allocated_under32
);
2074 fprintf (stderr
, "Total Overhead under 64B: %10lld\n",
2075 G
.stats
.total_overhead_under64
);
2076 fprintf (stderr
, "Total Allocated under 64B: %10lld\n",
2077 G
.stats
.total_allocated_under64
);
2078 fprintf (stderr
, "Total Overhead under 128B: %10lld\n",
2079 G
.stats
.total_overhead_under128
);
2080 fprintf (stderr
, "Total Allocated under 128B: %10lld\n",
2081 G
.stats
.total_allocated_under128
);
2083 for (i
= 0; i
< NUM_ORDERS
; i
++)
2084 if (G
.stats
.total_allocated_per_order
[i
])
2086 fprintf (stderr
, "Total Overhead page size %7d: %10lld\n",
2087 OBJECT_SIZE (i
), G
.stats
.total_overhead_per_order
[i
]);
2088 fprintf (stderr
, "Total Allocated page size %7d: %10lld\n",
2089 OBJECT_SIZE (i
), G
.stats
.total_allocated_per_order
[i
]);
2097 struct ggc_pch_ondisk
2099 unsigned totals
[NUM_ORDERS
];
2101 size_t base
[NUM_ORDERS
];
2102 size_t written
[NUM_ORDERS
];
2105 struct ggc_pch_data
*
2108 return xcalloc (sizeof (struct ggc_pch_data
), 1);
2112 ggc_pch_count_object (struct ggc_pch_data
*d
, void *x ATTRIBUTE_UNUSED
,
2113 size_t size
, bool is_string ATTRIBUTE_UNUSED
,
2114 enum gt_types_enum type ATTRIBUTE_UNUSED
)
2119 order
= size_lookup
[size
];
2123 while (size
> OBJECT_SIZE (order
))
2127 d
->d
.totals
[order
]++;
2131 ggc_pch_total_size (struct ggc_pch_data
*d
)
2136 for (i
= 0; i
< NUM_ORDERS
; i
++)
2137 a
+= ROUND_UP (d
->d
.totals
[i
] * OBJECT_SIZE (i
), G
.pagesize
);
2142 ggc_pch_this_base (struct ggc_pch_data
*d
, void *base
)
2144 size_t a
= (size_t) base
;
2147 for (i
= 0; i
< NUM_ORDERS
; i
++)
2150 a
+= ROUND_UP (d
->d
.totals
[i
] * OBJECT_SIZE (i
), G
.pagesize
);
2156 ggc_pch_alloc_object (struct ggc_pch_data
*d
, void *x ATTRIBUTE_UNUSED
,
2157 size_t size
, bool is_string ATTRIBUTE_UNUSED
,
2158 enum gt_types_enum type ATTRIBUTE_UNUSED
)
2164 order
= size_lookup
[size
];
2168 while (size
> OBJECT_SIZE (order
))
2172 result
= (char *) d
->base
[order
];
2173 d
->base
[order
] += OBJECT_SIZE (order
);
2178 ggc_pch_prepare_write (struct ggc_pch_data
*d ATTRIBUTE_UNUSED
,
2179 FILE *f ATTRIBUTE_UNUSED
)
2181 /* Nothing to do. */
2185 ggc_pch_write_object (struct ggc_pch_data
*d ATTRIBUTE_UNUSED
,
2186 FILE *f
, void *x
, void *newx ATTRIBUTE_UNUSED
,
2187 size_t size
, bool is_string ATTRIBUTE_UNUSED
)
2190 static const char emptyBytes
[256];
2193 order
= size_lookup
[size
];
2197 while (size
> OBJECT_SIZE (order
))
2201 if (fwrite (x
, size
, 1, f
) != 1)
2202 fatal_error ("can't write PCH file: %m");
2204 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2205 object out to OBJECT_SIZE(order). This happens for strings. */
2207 if (size
!= OBJECT_SIZE (order
))
2209 unsigned padding
= OBJECT_SIZE(order
) - size
;
2211 /* To speed small writes, we use a nulled-out array that's larger
2212 than most padding requests as the source for our null bytes. This
2213 permits us to do the padding with fwrite() rather than fseek(), and
2214 limits the chance the OS may try to flush any outstanding writes. */
2215 if (padding
<= sizeof(emptyBytes
))
2217 if (fwrite (emptyBytes
, 1, padding
, f
) != padding
)
2218 fatal_error ("can't write PCH file");
2222 /* Larger than our buffer? Just default to fseek. */
2223 if (fseek (f
, padding
, SEEK_CUR
) != 0)
2224 fatal_error ("can't write PCH file");
2228 d
->written
[order
]++;
2229 if (d
->written
[order
] == d
->d
.totals
[order
]
2230 && fseek (f
, ROUND_UP_VALUE (d
->d
.totals
[order
] * OBJECT_SIZE (order
),
2233 fatal_error ("can't write PCH file: %m");
2237 ggc_pch_finish (struct ggc_pch_data
*d
, FILE *f
)
2239 if (fwrite (&d
->d
, sizeof (d
->d
), 1, f
) != 1)
2240 fatal_error ("can't write PCH file: %m");
2244 /* Move the PCH PTE entries just added to the end of by_depth, to the
2248 move_ptes_to_front (int count_old_page_tables
, int count_new_page_tables
)
2252 /* First, we swap the new entries to the front of the varrays. */
2253 page_entry
**new_by_depth
;
2254 unsigned long **new_save_in_use
;
2256 new_by_depth
= xmalloc (G
.by_depth_max
* sizeof (page_entry
*));
2257 new_save_in_use
= xmalloc (G
.by_depth_max
* sizeof (unsigned long *));
2259 memcpy (&new_by_depth
[0],
2260 &G
.by_depth
[count_old_page_tables
],
2261 count_new_page_tables
* sizeof (void *));
2262 memcpy (&new_by_depth
[count_new_page_tables
],
2264 count_old_page_tables
* sizeof (void *));
2265 memcpy (&new_save_in_use
[0],
2266 &G
.save_in_use
[count_old_page_tables
],
2267 count_new_page_tables
* sizeof (void *));
2268 memcpy (&new_save_in_use
[count_new_page_tables
],
2270 count_old_page_tables
* sizeof (void *));
2273 free (G
.save_in_use
);
2275 G
.by_depth
= new_by_depth
;
2276 G
.save_in_use
= new_save_in_use
;
2278 /* Now update all the index_by_depth fields. */
2279 for (i
= G
.by_depth_in_use
; i
> 0; --i
)
2281 page_entry
*p
= G
.by_depth
[i
-1];
2282 p
->index_by_depth
= i
-1;
2285 /* And last, we update the depth pointers in G.depth. The first
2286 entry is already 0, and context 0 entries always start at index
2287 0, so there is nothing to update in the first slot. We need a
2288 second slot, only if we have old ptes, and if we do, they start
2289 at index count_new_page_tables. */
2290 if (count_old_page_tables
)
2291 push_depth (count_new_page_tables
);
2295 ggc_pch_read (FILE *f
, void *addr
)
2297 struct ggc_pch_ondisk d
;
2300 unsigned long count_old_page_tables
;
2301 unsigned long count_new_page_tables
;
2303 count_old_page_tables
= G
.by_depth_in_use
;
2305 /* We've just read in a PCH file. So, every object that used to be
2306 allocated is now free. */
2308 #ifdef ENABLE_GC_CHECKING
2312 /* No object read from a PCH file should ever be freed. So, set the
2313 context depth to 1, and set the depth of all the currently-allocated
2314 pages to be 1 too. PCH pages will have depth 0. */
2315 gcc_assert (!G
.context_depth
);
2316 G
.context_depth
= 1;
2317 for (i
= 0; i
< NUM_ORDERS
; i
++)
2320 for (p
= G
.pages
[i
]; p
!= NULL
; p
= p
->next
)
2321 p
->context_depth
= G
.context_depth
;
2324 /* Allocate the appropriate page-table entries for the pages read from
2326 if (fread (&d
, sizeof (d
), 1, f
) != 1)
2327 fatal_error ("can't read PCH file: %m");
2329 for (i
= 0; i
< NUM_ORDERS
; i
++)
2331 struct page_entry
*entry
;
2337 if (d
.totals
[i
] == 0)
2340 bytes
= ROUND_UP (d
.totals
[i
] * OBJECT_SIZE (i
), G
.pagesize
);
2341 num_objs
= bytes
/ OBJECT_SIZE (i
);
2342 entry
= xcalloc (1, (sizeof (struct page_entry
)
2344 + BITMAP_SIZE (num_objs
+ 1)));
2345 entry
->bytes
= bytes
;
2347 entry
->context_depth
= 0;
2349 entry
->num_free_objects
= 0;
2353 j
+ HOST_BITS_PER_LONG
<= num_objs
+ 1;
2354 j
+= HOST_BITS_PER_LONG
)
2355 entry
->in_use_p
[j
/ HOST_BITS_PER_LONG
] = -1;
2356 for (; j
< num_objs
+ 1; j
++)
2357 entry
->in_use_p
[j
/ HOST_BITS_PER_LONG
]
2358 |= 1L << (j
% HOST_BITS_PER_LONG
);
2360 for (pte
= entry
->page
;
2361 pte
< entry
->page
+ entry
->bytes
;
2363 set_page_table_entry (pte
, entry
);
2365 if (G
.page_tails
[i
] != NULL
)
2366 G
.page_tails
[i
]->next
= entry
;
2369 G
.page_tails
[i
] = entry
;
2371 /* We start off by just adding all the new information to the
2372 end of the varrays, later, we will move the new information
2373 to the front of the varrays, as the PCH page tables are at
2375 push_by_depth (entry
, 0);
2378 /* Now, we update the various data structures that speed page table
2380 count_new_page_tables
= G
.by_depth_in_use
- count_old_page_tables
;
2382 move_ptes_to_front (count_old_page_tables
, count_new_page_tables
);
2384 /* Update the statistics. */
2385 G
.allocated
= G
.allocated_last_gc
= offs
- (char *)addr
;