1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
25 /* High-level class interface. */
29 #include "coretypes.h"
40 #include "tree-dump.h"
42 /* The number of nested classes being processed. If we are not in the
43 scope of any class, this is zero. */
45 int current_class_depth
;
47 /* In order to deal with nested classes, we keep a stack of classes.
48 The topmost entry is the innermost class, and is the entry at index
49 CURRENT_CLASS_DEPTH */
51 typedef struct class_stack_node
{
52 /* The name of the class. */
55 /* The _TYPE node for the class. */
58 /* The access specifier pending for new declarations in the scope of
62 /* If were defining TYPE, the names used in this class. */
63 splay_tree names_used
;
65 /* Nonzero if this class is no longer open, because of a call to
68 }* class_stack_node_t
;
70 typedef struct vtbl_init_data_s
72 /* The base for which we're building initializers. */
74 /* The type of the most-derived type. */
76 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
77 unless ctor_vtbl_p is true. */
79 /* The negative-index vtable initializers built up so far. These
80 are in order from least negative index to most negative index. */
82 /* The last (i.e., most negative) entry in INITS. */
84 /* The binfo for the virtual base for which we're building
85 vcall offset initializers. */
87 /* The functions in vbase for which we have already provided vcall
90 /* The vtable index of the next vcall or vbase offset. */
92 /* Nonzero if we are building the initializer for the primary
95 /* Nonzero if we are building the initializer for a construction
98 /* True when adding vcall offset entries to the vtable. False when
99 merely computing the indices. */
100 bool generate_vcall_entries
;
103 /* The type of a function passed to walk_subobject_offsets. */
104 typedef int (*subobject_offset_fn
) (tree
, tree
, splay_tree
);
106 /* The stack itself. This is a dynamically resized array. The
107 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
108 static int current_class_stack_size
;
109 static class_stack_node_t current_class_stack
;
111 /* The size of the largest empty class seen in this translation unit. */
112 static GTY (()) tree sizeof_biggest_empty_class
;
114 /* An array of all local classes present in this translation unit, in
115 declaration order. */
116 VEC(tree
,gc
) *local_classes
;
118 static tree
get_vfield_name (tree
);
119 static void finish_struct_anon (tree
);
120 static tree
get_vtable_name (tree
);
121 static tree
get_basefndecls (tree
, tree
);
122 static int build_primary_vtable (tree
, tree
);
123 static int build_secondary_vtable (tree
);
124 static void finish_vtbls (tree
);
125 static void modify_vtable_entry (tree
, tree
, tree
, tree
, tree
*);
126 static void finish_struct_bits (tree
);
127 static int alter_access (tree
, tree
, tree
);
128 static void handle_using_decl (tree
, tree
);
129 static tree
dfs_modify_vtables (tree
, void *);
130 static tree
modify_all_vtables (tree
, tree
);
131 static void determine_primary_bases (tree
);
132 static void finish_struct_methods (tree
);
133 static void maybe_warn_about_overly_private_class (tree
);
134 static int method_name_cmp (const void *, const void *);
135 static int resort_method_name_cmp (const void *, const void *);
136 static void add_implicitly_declared_members (tree
, int, int);
137 static tree
fixed_type_or_null (tree
, int *, int *);
138 static tree
build_simple_base_path (tree expr
, tree binfo
);
139 static tree
build_vtbl_ref_1 (tree
, tree
);
140 static tree
build_vtbl_initializer (tree
, tree
, tree
, tree
, int *);
141 static int count_fields (tree
);
142 static int add_fields_to_record_type (tree
, struct sorted_fields_type
*, int);
143 static void check_bitfield_decl (tree
);
144 static void check_field_decl (tree
, tree
, int *, int *, int *);
145 static void check_field_decls (tree
, tree
*, int *, int *);
146 static tree
*build_base_field (record_layout_info
, tree
, splay_tree
, tree
*);
147 static void build_base_fields (record_layout_info
, splay_tree
, tree
*);
148 static void check_methods (tree
);
149 static void remove_zero_width_bit_fields (tree
);
150 static void check_bases (tree
, int *, int *);
151 static void check_bases_and_members (tree
);
152 static tree
create_vtable_ptr (tree
, tree
*);
153 static void include_empty_classes (record_layout_info
);
154 static void layout_class_type (tree
, tree
*);
155 static void fixup_pending_inline (tree
);
156 static void fixup_inline_methods (tree
);
157 static void propagate_binfo_offsets (tree
, tree
);
158 static void layout_virtual_bases (record_layout_info
, splay_tree
);
159 static void build_vbase_offset_vtbl_entries (tree
, vtbl_init_data
*);
160 static void add_vcall_offset_vtbl_entries_r (tree
, vtbl_init_data
*);
161 static void add_vcall_offset_vtbl_entries_1 (tree
, vtbl_init_data
*);
162 static void build_vcall_offset_vtbl_entries (tree
, vtbl_init_data
*);
163 static void add_vcall_offset (tree
, tree
, vtbl_init_data
*);
164 static void layout_vtable_decl (tree
, int);
165 static tree
dfs_find_final_overrider_pre (tree
, void *);
166 static tree
dfs_find_final_overrider_post (tree
, void *);
167 static tree
find_final_overrider (tree
, tree
, tree
);
168 static int make_new_vtable (tree
, tree
);
169 static tree
get_primary_binfo (tree
);
170 static int maybe_indent_hierarchy (FILE *, int, int);
171 static tree
dump_class_hierarchy_r (FILE *, int, tree
, tree
, int);
172 static void dump_class_hierarchy (tree
);
173 static void dump_class_hierarchy_1 (FILE *, int, tree
);
174 static void dump_array (FILE *, tree
);
175 static void dump_vtable (tree
, tree
, tree
);
176 static void dump_vtt (tree
, tree
);
177 static void dump_thunk (FILE *, int, tree
);
178 static tree
build_vtable (tree
, tree
, tree
);
179 static void initialize_vtable (tree
, tree
);
180 static void layout_nonempty_base_or_field (record_layout_info
,
181 tree
, tree
, splay_tree
);
182 static tree
end_of_class (tree
, int);
183 static bool layout_empty_base (tree
, tree
, splay_tree
);
184 static void accumulate_vtbl_inits (tree
, tree
, tree
, tree
, tree
);
185 static tree
dfs_accumulate_vtbl_inits (tree
, tree
, tree
, tree
,
187 static void build_rtti_vtbl_entries (tree
, vtbl_init_data
*);
188 static void build_vcall_and_vbase_vtbl_entries (tree
, vtbl_init_data
*);
189 static void clone_constructors_and_destructors (tree
);
190 static tree
build_clone (tree
, tree
);
191 static void update_vtable_entry_for_fn (tree
, tree
, tree
, tree
*, unsigned);
192 static void build_ctor_vtbl_group (tree
, tree
);
193 static void build_vtt (tree
);
194 static tree
binfo_ctor_vtable (tree
);
195 static tree
*build_vtt_inits (tree
, tree
, tree
*, tree
*);
196 static tree
dfs_build_secondary_vptr_vtt_inits (tree
, void *);
197 static tree
dfs_fixup_binfo_vtbls (tree
, void *);
198 static int record_subobject_offset (tree
, tree
, splay_tree
);
199 static int check_subobject_offset (tree
, tree
, splay_tree
);
200 static int walk_subobject_offsets (tree
, subobject_offset_fn
,
201 tree
, splay_tree
, tree
, int);
202 static void record_subobject_offsets (tree
, tree
, splay_tree
, bool);
203 static int layout_conflict_p (tree
, tree
, splay_tree
, int);
204 static int splay_tree_compare_integer_csts (splay_tree_key k1
,
206 static void warn_about_ambiguous_bases (tree
);
207 static bool type_requires_array_cookie (tree
);
208 static bool contains_empty_class_p (tree
);
209 static bool base_derived_from (tree
, tree
);
210 static int empty_base_at_nonzero_offset_p (tree
, tree
, splay_tree
);
211 static tree
end_of_base (tree
);
212 static tree
get_vcall_index (tree
, tree
);
214 /* Variables shared between class.c and call.c. */
216 #ifdef GATHER_STATISTICS
218 int n_vtable_entries
= 0;
219 int n_vtable_searches
= 0;
220 int n_vtable_elems
= 0;
221 int n_convert_harshness
= 0;
222 int n_compute_conversion_costs
= 0;
223 int n_inner_fields_searched
= 0;
226 /* Convert to or from a base subobject. EXPR is an expression of type
227 `A' or `A*', an expression of type `B' or `B*' is returned. To
228 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
229 the B base instance within A. To convert base A to derived B, CODE
230 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
231 In this latter case, A must not be a morally virtual base of B.
232 NONNULL is true if EXPR is known to be non-NULL (this is only
233 needed when EXPR is of pointer type). CV qualifiers are preserved
237 build_base_path (enum tree_code code
,
242 tree v_binfo
= NULL_TREE
;
243 tree d_binfo
= NULL_TREE
;
247 tree null_test
= NULL
;
248 tree ptr_target_type
;
250 int want_pointer
= TREE_CODE (TREE_TYPE (expr
)) == POINTER_TYPE
;
251 bool has_empty
= false;
254 if (expr
== error_mark_node
|| binfo
== error_mark_node
|| !binfo
)
255 return error_mark_node
;
257 for (probe
= binfo
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
260 if (is_empty_class (BINFO_TYPE (probe
)))
262 if (!v_binfo
&& BINFO_VIRTUAL_P (probe
))
266 probe
= TYPE_MAIN_VARIANT (TREE_TYPE (expr
));
268 probe
= TYPE_MAIN_VARIANT (TREE_TYPE (probe
));
270 gcc_assert ((code
== MINUS_EXPR
271 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), probe
))
272 || (code
== PLUS_EXPR
273 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo
), probe
)));
275 if (binfo
== d_binfo
)
279 if (code
== MINUS_EXPR
&& v_binfo
)
281 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
282 BINFO_TYPE (binfo
), BINFO_TYPE (d_binfo
), BINFO_TYPE (v_binfo
));
283 return error_mark_node
;
287 /* This must happen before the call to save_expr. */
288 expr
= build_unary_op (ADDR_EXPR
, expr
, 0);
290 offset
= BINFO_OFFSET (binfo
);
291 fixed_type_p
= resolves_to_fixed_type_p (expr
, &nonnull
);
292 target_type
= code
== PLUS_EXPR
? BINFO_TYPE (binfo
) : BINFO_TYPE (d_binfo
);
294 /* Do we need to look in the vtable for the real offset? */
295 virtual_access
= (v_binfo
&& fixed_type_p
<= 0);
297 /* Do we need to check for a null pointer? */
298 if (want_pointer
&& !nonnull
)
300 /* If we know the conversion will not actually change the value
301 of EXPR, then we can avoid testing the expression for NULL.
302 We have to avoid generating a COMPONENT_REF for a base class
303 field, because other parts of the compiler know that such
304 expressions are always non-NULL. */
305 if (!virtual_access
&& integer_zerop (offset
))
306 return build_nop (build_pointer_type (target_type
), expr
);
307 null_test
= error_mark_node
;
310 /* Protect against multiple evaluation if necessary. */
311 if (TREE_SIDE_EFFECTS (expr
) && (null_test
|| virtual_access
))
312 expr
= save_expr (expr
);
314 /* Now that we've saved expr, build the real null test. */
317 tree zero
= cp_convert (TREE_TYPE (expr
), integer_zero_node
);
318 null_test
= fold_build2 (NE_EXPR
, boolean_type_node
,
322 /* If this is a simple base reference, express it as a COMPONENT_REF. */
323 if (code
== PLUS_EXPR
&& !virtual_access
324 /* We don't build base fields for empty bases, and they aren't very
325 interesting to the optimizers anyway. */
328 expr
= build_indirect_ref (expr
, NULL
);
329 expr
= build_simple_base_path (expr
, binfo
);
331 expr
= build_address (expr
);
332 target_type
= TREE_TYPE (expr
);
338 /* Going via virtual base V_BINFO. We need the static offset
339 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
340 V_BINFO. That offset is an entry in D_BINFO's vtable. */
343 if (fixed_type_p
< 0 && in_base_initializer
)
345 /* In a base member initializer, we cannot rely on the
346 vtable being set up. We have to indirect via the
350 t
= TREE_TYPE (TYPE_VFIELD (current_class_type
));
351 t
= build_pointer_type (t
);
352 v_offset
= convert (t
, current_vtt_parm
);
353 v_offset
= build_indirect_ref (v_offset
, NULL
);
356 v_offset
= build_vfield_ref (build_indirect_ref (expr
, NULL
),
357 TREE_TYPE (TREE_TYPE (expr
)));
359 v_offset
= build2 (PLUS_EXPR
, TREE_TYPE (v_offset
),
360 v_offset
, BINFO_VPTR_FIELD (v_binfo
));
361 v_offset
= build1 (NOP_EXPR
,
362 build_pointer_type (ptrdiff_type_node
),
364 v_offset
= build_indirect_ref (v_offset
, NULL
);
365 TREE_CONSTANT (v_offset
) = 1;
366 TREE_INVARIANT (v_offset
) = 1;
368 offset
= convert_to_integer (ptrdiff_type_node
,
370 BINFO_OFFSET (v_binfo
)));
372 if (!integer_zerop (offset
))
373 v_offset
= build2 (code
, ptrdiff_type_node
, v_offset
, offset
);
375 if (fixed_type_p
< 0)
376 /* Negative fixed_type_p means this is a constructor or destructor;
377 virtual base layout is fixed in in-charge [cd]tors, but not in
379 offset
= build3 (COND_EXPR
, ptrdiff_type_node
,
380 build2 (EQ_EXPR
, boolean_type_node
,
381 current_in_charge_parm
, integer_zero_node
),
383 convert_to_integer (ptrdiff_type_node
,
384 BINFO_OFFSET (binfo
)));
389 target_type
= cp_build_qualified_type
390 (target_type
, cp_type_quals (TREE_TYPE (TREE_TYPE (expr
))));
391 ptr_target_type
= build_pointer_type (target_type
);
393 target_type
= ptr_target_type
;
395 expr
= build1 (NOP_EXPR
, ptr_target_type
, expr
);
397 if (!integer_zerop (offset
))
398 expr
= build2 (code
, ptr_target_type
, expr
, offset
);
403 expr
= build_indirect_ref (expr
, NULL
);
407 expr
= fold_build3 (COND_EXPR
, target_type
, null_test
, expr
,
408 fold_build1 (NOP_EXPR
, target_type
,
414 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
415 Perform a derived-to-base conversion by recursively building up a
416 sequence of COMPONENT_REFs to the appropriate base fields. */
419 build_simple_base_path (tree expr
, tree binfo
)
421 tree type
= BINFO_TYPE (binfo
);
422 tree d_binfo
= BINFO_INHERITANCE_CHAIN (binfo
);
425 if (d_binfo
== NULL_TREE
)
429 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr
)) == type
);
431 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
432 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
433 an lvalue in the front end; only _DECLs and _REFs are lvalues
435 temp
= unary_complex_lvalue (ADDR_EXPR
, expr
);
437 expr
= build_indirect_ref (temp
, NULL
);
443 expr
= build_simple_base_path (expr
, d_binfo
);
445 for (field
= TYPE_FIELDS (BINFO_TYPE (d_binfo
));
446 field
; field
= TREE_CHAIN (field
))
447 /* Is this the base field created by build_base_field? */
448 if (TREE_CODE (field
) == FIELD_DECL
449 && DECL_FIELD_IS_BASE (field
)
450 && TREE_TYPE (field
) == type
)
452 /* We don't use build_class_member_access_expr here, as that
453 has unnecessary checks, and more importantly results in
454 recursive calls to dfs_walk_once. */
455 int type_quals
= cp_type_quals (TREE_TYPE (expr
));
457 expr
= build3 (COMPONENT_REF
,
458 cp_build_qualified_type (type
, type_quals
),
459 expr
, field
, NULL_TREE
);
460 expr
= fold_if_not_in_template (expr
);
462 /* Mark the expression const or volatile, as appropriate.
463 Even though we've dealt with the type above, we still have
464 to mark the expression itself. */
465 if (type_quals
& TYPE_QUAL_CONST
)
466 TREE_READONLY (expr
) = 1;
467 if (type_quals
& TYPE_QUAL_VOLATILE
)
468 TREE_THIS_VOLATILE (expr
) = 1;
473 /* Didn't find the base field?!? */
477 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
478 type is a class type or a pointer to a class type. In the former
479 case, TYPE is also a class type; in the latter it is another
480 pointer type. If CHECK_ACCESS is true, an error message is emitted
481 if TYPE is inaccessible. If OBJECT has pointer type, the value is
482 assumed to be non-NULL. */
485 convert_to_base (tree object
, tree type
, bool check_access
, bool nonnull
)
490 if (TYPE_PTR_P (TREE_TYPE (object
)))
492 object_type
= TREE_TYPE (TREE_TYPE (object
));
493 type
= TREE_TYPE (type
);
496 object_type
= TREE_TYPE (object
);
498 binfo
= lookup_base (object_type
, type
,
499 check_access
? ba_check
: ba_unique
,
501 if (!binfo
|| binfo
== error_mark_node
)
502 return error_mark_node
;
504 return build_base_path (PLUS_EXPR
, object
, binfo
, nonnull
);
507 /* EXPR is an expression with unqualified class type. BASE is a base
508 binfo of that class type. Returns EXPR, converted to the BASE
509 type. This function assumes that EXPR is the most derived class;
510 therefore virtual bases can be found at their static offsets. */
513 convert_to_base_statically (tree expr
, tree base
)
517 expr_type
= TREE_TYPE (expr
);
518 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base
), expr_type
))
522 pointer_type
= build_pointer_type (expr_type
);
523 expr
= build_unary_op (ADDR_EXPR
, expr
, /*noconvert=*/1);
524 if (!integer_zerop (BINFO_OFFSET (base
)))
525 expr
= build2 (PLUS_EXPR
, pointer_type
, expr
,
526 build_nop (pointer_type
, BINFO_OFFSET (base
)));
527 expr
= build_nop (build_pointer_type (BINFO_TYPE (base
)), expr
);
528 expr
= build1 (INDIRECT_REF
, BINFO_TYPE (base
), expr
);
536 build_vfield_ref (tree datum
, tree type
)
538 tree vfield
, vcontext
;
540 if (datum
== error_mark_node
)
541 return error_mark_node
;
543 /* First, convert to the requested type. */
544 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum
), type
))
545 datum
= convert_to_base (datum
, type
, /*check_access=*/false,
548 /* Second, the requested type may not be the owner of its own vptr.
549 If not, convert to the base class that owns it. We cannot use
550 convert_to_base here, because VCONTEXT may appear more than once
551 in the inheritance hierarchy of TYPE, and thus direct conversion
552 between the types may be ambiguous. Following the path back up
553 one step at a time via primary bases avoids the problem. */
554 vfield
= TYPE_VFIELD (type
);
555 vcontext
= DECL_CONTEXT (vfield
);
556 while (!same_type_ignoring_top_level_qualifiers_p (vcontext
, type
))
558 datum
= build_simple_base_path (datum
, CLASSTYPE_PRIMARY_BINFO (type
));
559 type
= TREE_TYPE (datum
);
562 return build3 (COMPONENT_REF
, TREE_TYPE (vfield
), datum
, vfield
, NULL_TREE
);
565 /* Given an object INSTANCE, return an expression which yields the
566 vtable element corresponding to INDEX. There are many special
567 cases for INSTANCE which we take care of here, mainly to avoid
568 creating extra tree nodes when we don't have to. */
571 build_vtbl_ref_1 (tree instance
, tree idx
)
574 tree vtbl
= NULL_TREE
;
576 /* Try to figure out what a reference refers to, and
577 access its virtual function table directly. */
580 tree fixed_type
= fixed_type_or_null (instance
, NULL
, &cdtorp
);
582 tree basetype
= non_reference (TREE_TYPE (instance
));
584 if (fixed_type
&& !cdtorp
)
586 tree binfo
= lookup_base (fixed_type
, basetype
,
587 ba_unique
| ba_quiet
, NULL
);
589 vtbl
= unshare_expr (BINFO_VTABLE (binfo
));
593 vtbl
= build_vfield_ref (instance
, basetype
);
595 assemble_external (vtbl
);
597 aref
= build_array_ref (vtbl
, idx
);
598 TREE_CONSTANT (aref
) |= TREE_CONSTANT (vtbl
) && TREE_CONSTANT (idx
);
599 TREE_INVARIANT (aref
) = TREE_CONSTANT (aref
);
605 build_vtbl_ref (tree instance
, tree idx
)
607 tree aref
= build_vtbl_ref_1 (instance
, idx
);
612 /* Given a stable object pointer INSTANCE_PTR, return an expression which
613 yields a function pointer corresponding to vtable element INDEX. */
616 build_vfn_ref (tree instance_ptr
, tree idx
)
620 aref
= build_vtbl_ref_1 (build_indirect_ref (instance_ptr
, 0), idx
);
622 /* When using function descriptors, the address of the
623 vtable entry is treated as a function pointer. */
624 if (TARGET_VTABLE_USES_DESCRIPTORS
)
625 aref
= build1 (NOP_EXPR
, TREE_TYPE (aref
),
626 build_unary_op (ADDR_EXPR
, aref
, /*noconvert=*/1));
628 /* Remember this as a method reference, for later devirtualization. */
629 aref
= build3 (OBJ_TYPE_REF
, TREE_TYPE (aref
), aref
, instance_ptr
, idx
);
634 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
635 for the given TYPE. */
638 get_vtable_name (tree type
)
640 return mangle_vtbl_for_type (type
);
643 /* DECL is an entity associated with TYPE, like a virtual table or an
644 implicitly generated constructor. Determine whether or not DECL
645 should have external or internal linkage at the object file
646 level. This routine does not deal with COMDAT linkage and other
647 similar complexities; it simply sets TREE_PUBLIC if it possible for
648 entities in other translation units to contain copies of DECL, in
652 set_linkage_according_to_type (tree type
, tree decl
)
654 /* If TYPE involves a local class in a function with internal
655 linkage, then DECL should have internal linkage too. Other local
656 classes have no linkage -- but if their containing functions
657 have external linkage, it makes sense for DECL to have external
658 linkage too. That will allow template definitions to be merged,
660 if (no_linkage_check (type
, /*relaxed_p=*/true))
662 TREE_PUBLIC (decl
) = 0;
663 DECL_INTERFACE_KNOWN (decl
) = 1;
666 TREE_PUBLIC (decl
) = 1;
669 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
670 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
671 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
674 build_vtable (tree class_type
, tree name
, tree vtable_type
)
678 decl
= build_lang_decl (VAR_DECL
, name
, vtable_type
);
679 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
680 now to avoid confusion in mangle_decl. */
681 SET_DECL_ASSEMBLER_NAME (decl
, name
);
682 DECL_CONTEXT (decl
) = class_type
;
683 DECL_ARTIFICIAL (decl
) = 1;
684 TREE_STATIC (decl
) = 1;
685 TREE_READONLY (decl
) = 1;
686 DECL_VIRTUAL_P (decl
) = 1;
687 DECL_ALIGN (decl
) = TARGET_VTABLE_ENTRY_ALIGN
;
688 DECL_VTABLE_OR_VTT_P (decl
) = 1;
689 /* At one time the vtable info was grabbed 2 words at a time. This
690 fails on sparc unless you have 8-byte alignment. (tiemann) */
691 DECL_ALIGN (decl
) = MAX (TYPE_ALIGN (double_type_node
),
693 set_linkage_according_to_type (class_type
, decl
);
694 /* The vtable has not been defined -- yet. */
695 DECL_EXTERNAL (decl
) = 1;
696 DECL_NOT_REALLY_EXTERN (decl
) = 1;
698 /* Mark the VAR_DECL node representing the vtable itself as a
699 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
700 is rather important that such things be ignored because any
701 effort to actually generate DWARF for them will run into
702 trouble when/if we encounter code like:
705 struct S { virtual void member (); };
707 because the artificial declaration of the vtable itself (as
708 manufactured by the g++ front end) will say that the vtable is
709 a static member of `S' but only *after* the debug output for
710 the definition of `S' has already been output. This causes
711 grief because the DWARF entry for the definition of the vtable
712 will try to refer back to an earlier *declaration* of the
713 vtable as a static member of `S' and there won't be one. We
714 might be able to arrange to have the "vtable static member"
715 attached to the member list for `S' before the debug info for
716 `S' get written (which would solve the problem) but that would
717 require more intrusive changes to the g++ front end. */
718 DECL_IGNORED_P (decl
) = 1;
723 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
724 or even complete. If this does not exist, create it. If COMPLETE is
725 nonzero, then complete the definition of it -- that will render it
726 impossible to actually build the vtable, but is useful to get at those
727 which are known to exist in the runtime. */
730 get_vtable_decl (tree type
, int complete
)
734 if (CLASSTYPE_VTABLES (type
))
735 return CLASSTYPE_VTABLES (type
);
737 decl
= build_vtable (type
, get_vtable_name (type
), vtbl_type_node
);
738 CLASSTYPE_VTABLES (type
) = decl
;
742 DECL_EXTERNAL (decl
) = 1;
743 finish_decl (decl
, NULL_TREE
, NULL_TREE
);
749 /* Build the primary virtual function table for TYPE. If BINFO is
750 non-NULL, build the vtable starting with the initial approximation
751 that it is the same as the one which is the head of the association
752 list. Returns a nonzero value if a new vtable is actually
756 build_primary_vtable (tree binfo
, tree type
)
761 decl
= get_vtable_decl (type
, /*complete=*/0);
765 if (BINFO_NEW_VTABLE_MARKED (binfo
))
766 /* We have already created a vtable for this base, so there's
767 no need to do it again. */
770 virtuals
= copy_list (BINFO_VIRTUALS (binfo
));
771 TREE_TYPE (decl
) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo
));
772 DECL_SIZE (decl
) = TYPE_SIZE (TREE_TYPE (decl
));
773 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (TREE_TYPE (decl
));
777 gcc_assert (TREE_TYPE (decl
) == vtbl_type_node
);
778 virtuals
= NULL_TREE
;
781 #ifdef GATHER_STATISTICS
783 n_vtable_elems
+= list_length (virtuals
);
786 /* Initialize the association list for this type, based
787 on our first approximation. */
788 BINFO_VTABLE (TYPE_BINFO (type
)) = decl
;
789 BINFO_VIRTUALS (TYPE_BINFO (type
)) = virtuals
;
790 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type
));
794 /* Give BINFO a new virtual function table which is initialized
795 with a skeleton-copy of its original initialization. The only
796 entry that changes is the `delta' entry, so we can really
797 share a lot of structure.
799 FOR_TYPE is the most derived type which caused this table to
802 Returns nonzero if we haven't met BINFO before.
804 The order in which vtables are built (by calling this function) for
805 an object must remain the same, otherwise a binary incompatibility
809 build_secondary_vtable (tree binfo
)
811 if (BINFO_NEW_VTABLE_MARKED (binfo
))
812 /* We already created a vtable for this base. There's no need to
816 /* Remember that we've created a vtable for this BINFO, so that we
817 don't try to do so again. */
818 SET_BINFO_NEW_VTABLE_MARKED (binfo
);
820 /* Make fresh virtual list, so we can smash it later. */
821 BINFO_VIRTUALS (binfo
) = copy_list (BINFO_VIRTUALS (binfo
));
823 /* Secondary vtables are laid out as part of the same structure as
824 the primary vtable. */
825 BINFO_VTABLE (binfo
) = NULL_TREE
;
829 /* Create a new vtable for BINFO which is the hierarchy dominated by
830 T. Return nonzero if we actually created a new vtable. */
833 make_new_vtable (tree t
, tree binfo
)
835 if (binfo
== TYPE_BINFO (t
))
836 /* In this case, it is *type*'s vtable we are modifying. We start
837 with the approximation that its vtable is that of the
838 immediate base class. */
839 return build_primary_vtable (binfo
, t
);
841 /* This is our very own copy of `basetype' to play with. Later,
842 we will fill in all the virtual functions that override the
843 virtual functions in these base classes which are not defined
844 by the current type. */
845 return build_secondary_vtable (binfo
);
848 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
849 (which is in the hierarchy dominated by T) list FNDECL as its
850 BV_FN. DELTA is the required constant adjustment from the `this'
851 pointer where the vtable entry appears to the `this' required when
852 the function is actually called. */
855 modify_vtable_entry (tree t
,
865 if (fndecl
!= BV_FN (v
)
866 || !tree_int_cst_equal (delta
, BV_DELTA (v
)))
868 /* We need a new vtable for BINFO. */
869 if (make_new_vtable (t
, binfo
))
871 /* If we really did make a new vtable, we also made a copy
872 of the BINFO_VIRTUALS list. Now, we have to find the
873 corresponding entry in that list. */
874 *virtuals
= BINFO_VIRTUALS (binfo
);
875 while (BV_FN (*virtuals
) != BV_FN (v
))
876 *virtuals
= TREE_CHAIN (*virtuals
);
880 BV_DELTA (v
) = delta
;
881 BV_VCALL_INDEX (v
) = NULL_TREE
;
887 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
888 the USING_DECL naming METHOD. Returns true if the method could be
889 added to the method vec. */
892 add_method (tree type
, tree method
, tree using_decl
)
896 bool template_conv_p
= false;
898 VEC(tree
,gc
) *method_vec
;
900 bool insert_p
= false;
904 if (method
== error_mark_node
)
907 complete_p
= COMPLETE_TYPE_P (type
);
908 conv_p
= DECL_CONV_FN_P (method
);
910 template_conv_p
= (TREE_CODE (method
) == TEMPLATE_DECL
911 && DECL_TEMPLATE_CONV_FN_P (method
));
913 method_vec
= CLASSTYPE_METHOD_VEC (type
);
916 /* Make a new method vector. We start with 8 entries. We must
917 allocate at least two (for constructors and destructors), and
918 we're going to end up with an assignment operator at some
920 method_vec
= VEC_alloc (tree
, gc
, 8);
921 /* Create slots for constructors and destructors. */
922 VEC_quick_push (tree
, method_vec
, NULL_TREE
);
923 VEC_quick_push (tree
, method_vec
, NULL_TREE
);
924 CLASSTYPE_METHOD_VEC (type
) = method_vec
;
927 /* Maintain TYPE_HAS_CONSTRUCTOR, etc. */
928 grok_special_member_properties (method
);
930 /* Constructors and destructors go in special slots. */
931 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method
))
932 slot
= CLASSTYPE_CONSTRUCTOR_SLOT
;
933 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method
))
935 slot
= CLASSTYPE_DESTRUCTOR_SLOT
;
937 if (TYPE_FOR_JAVA (type
))
939 if (!DECL_ARTIFICIAL (method
))
940 error ("Java class %qT cannot have a destructor", type
);
941 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
942 error ("Java class %qT cannot have an implicit non-trivial "
952 /* See if we already have an entry with this name. */
953 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
954 VEC_iterate (tree
, method_vec
, slot
, m
);
960 if (TREE_CODE (m
) == TEMPLATE_DECL
961 && DECL_TEMPLATE_CONV_FN_P (m
))
965 if (conv_p
&& !DECL_CONV_FN_P (m
))
967 if (DECL_NAME (m
) == DECL_NAME (method
))
973 && !DECL_CONV_FN_P (m
)
974 && DECL_NAME (m
) > DECL_NAME (method
))
978 current_fns
= insert_p
? NULL_TREE
: VEC_index (tree
, method_vec
, slot
);
980 /* Check to see if we've already got this method. */
981 for (fns
= current_fns
; fns
; fns
= OVL_NEXT (fns
))
983 tree fn
= OVL_CURRENT (fns
);
989 if (TREE_CODE (fn
) != TREE_CODE (method
))
992 /* [over.load] Member function declarations with the
993 same name and the same parameter types cannot be
994 overloaded if any of them is a static member
995 function declaration.
997 [namespace.udecl] When a using-declaration brings names
998 from a base class into a derived class scope, member
999 functions in the derived class override and/or hide member
1000 functions with the same name and parameter types in a base
1001 class (rather than conflicting). */
1002 fn_type
= TREE_TYPE (fn
);
1003 method_type
= TREE_TYPE (method
);
1004 parms1
= TYPE_ARG_TYPES (fn_type
);
1005 parms2
= TYPE_ARG_TYPES (method_type
);
1007 /* Compare the quals on the 'this' parm. Don't compare
1008 the whole types, as used functions are treated as
1009 coming from the using class in overload resolution. */
1010 if (! DECL_STATIC_FUNCTION_P (fn
)
1011 && ! DECL_STATIC_FUNCTION_P (method
)
1012 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1
)))
1013 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2
)))))
1016 /* For templates, the return type and template parameters
1017 must be identical. */
1018 if (TREE_CODE (fn
) == TEMPLATE_DECL
1019 && (!same_type_p (TREE_TYPE (fn_type
),
1020 TREE_TYPE (method_type
))
1021 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn
),
1022 DECL_TEMPLATE_PARMS (method
))))
1025 if (! DECL_STATIC_FUNCTION_P (fn
))
1026 parms1
= TREE_CHAIN (parms1
);
1027 if (! DECL_STATIC_FUNCTION_P (method
))
1028 parms2
= TREE_CHAIN (parms2
);
1030 if (compparms (parms1
, parms2
)
1031 && (!DECL_CONV_FN_P (fn
)
1032 || same_type_p (TREE_TYPE (fn_type
),
1033 TREE_TYPE (method_type
))))
1037 if (DECL_CONTEXT (fn
) == type
)
1038 /* Defer to the local function. */
1040 if (DECL_CONTEXT (fn
) == DECL_CONTEXT (method
))
1041 error ("repeated using declaration %q+D", using_decl
);
1043 error ("using declaration %q+D conflicts with a previous using declaration",
1048 error ("%q+#D cannot be overloaded", method
);
1049 error ("with %q+#D", fn
);
1052 /* We don't call duplicate_decls here to merge the
1053 declarations because that will confuse things if the
1054 methods have inline definitions. In particular, we
1055 will crash while processing the definitions. */
1060 /* A class should never have more than one destructor. */
1061 if (current_fns
&& DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method
))
1064 /* Add the new binding. */
1065 overload
= build_overload (method
, current_fns
);
1068 TYPE_HAS_CONVERSION (type
) = 1;
1069 else if (slot
>= CLASSTYPE_FIRST_CONVERSION_SLOT
&& !complete_p
)
1070 push_class_level_binding (DECL_NAME (method
), overload
);
1076 /* We only expect to add few methods in the COMPLETE_P case, so
1077 just make room for one more method in that case. */
1079 reallocated
= VEC_reserve_exact (tree
, gc
, method_vec
, 1);
1081 reallocated
= VEC_reserve (tree
, gc
, method_vec
, 1);
1083 CLASSTYPE_METHOD_VEC (type
) = method_vec
;
1084 if (slot
== VEC_length (tree
, method_vec
))
1085 VEC_quick_push (tree
, method_vec
, overload
);
1087 VEC_quick_insert (tree
, method_vec
, slot
, overload
);
1090 /* Replace the current slot. */
1091 VEC_replace (tree
, method_vec
, slot
, overload
);
1095 /* Subroutines of finish_struct. */
1097 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1098 legit, otherwise return 0. */
1101 alter_access (tree t
, tree fdecl
, tree access
)
1105 if (!DECL_LANG_SPECIFIC (fdecl
))
1106 retrofit_lang_decl (fdecl
);
1108 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl
));
1110 elem
= purpose_member (t
, DECL_ACCESS (fdecl
));
1113 if (TREE_VALUE (elem
) != access
)
1115 if (TREE_CODE (TREE_TYPE (fdecl
)) == FUNCTION_DECL
)
1116 error ("conflicting access specifications for method"
1117 " %q+D, ignored", TREE_TYPE (fdecl
));
1119 error ("conflicting access specifications for field %qE, ignored",
1124 /* They're changing the access to the same thing they changed
1125 it to before. That's OK. */
1131 perform_or_defer_access_check (TYPE_BINFO (t
), fdecl
, fdecl
);
1132 DECL_ACCESS (fdecl
) = tree_cons (t
, access
, DECL_ACCESS (fdecl
));
1138 /* Process the USING_DECL, which is a member of T. */
1141 handle_using_decl (tree using_decl
, tree t
)
1143 tree decl
= USING_DECL_DECLS (using_decl
);
1144 tree name
= DECL_NAME (using_decl
);
1146 = TREE_PRIVATE (using_decl
) ? access_private_node
1147 : TREE_PROTECTED (using_decl
) ? access_protected_node
1148 : access_public_node
;
1149 tree flist
= NULL_TREE
;
1152 gcc_assert (!processing_template_decl
&& decl
);
1154 old_value
= lookup_member (t
, name
, /*protect=*/0, /*want_type=*/false);
1157 if (is_overloaded_fn (old_value
))
1158 old_value
= OVL_CURRENT (old_value
);
1160 if (DECL_P (old_value
) && DECL_CONTEXT (old_value
) == t
)
1163 old_value
= NULL_TREE
;
1166 cp_emit_debug_info_for_using (decl
, USING_DECL_SCOPE (using_decl
));
1168 if (is_overloaded_fn (decl
))
1173 else if (is_overloaded_fn (old_value
))
1176 /* It's OK to use functions from a base when there are functions with
1177 the same name already present in the current class. */;
1180 error ("%q+D invalid in %q#T", using_decl
, t
);
1181 error (" because of local method %q+#D with same name",
1182 OVL_CURRENT (old_value
));
1186 else if (!DECL_ARTIFICIAL (old_value
))
1188 error ("%q+D invalid in %q#T", using_decl
, t
);
1189 error (" because of local member %q+#D with same name", old_value
);
1193 /* Make type T see field decl FDECL with access ACCESS. */
1195 for (; flist
; flist
= OVL_NEXT (flist
))
1197 add_method (t
, OVL_CURRENT (flist
), using_decl
);
1198 alter_access (t
, OVL_CURRENT (flist
), access
);
1201 alter_access (t
, decl
, access
);
1204 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1205 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1206 properties of the bases. */
1209 check_bases (tree t
,
1210 int* cant_have_const_ctor_p
,
1211 int* no_const_asn_ref_p
)
1214 int seen_non_virtual_nearly_empty_base_p
;
1218 seen_non_virtual_nearly_empty_base_p
= 0;
1220 for (binfo
= TYPE_BINFO (t
), i
= 0;
1221 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1223 tree basetype
= TREE_TYPE (base_binfo
);
1225 gcc_assert (COMPLETE_TYPE_P (basetype
));
1227 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1228 here because the case of virtual functions but non-virtual
1229 dtor is handled in finish_struct_1. */
1230 if (!TYPE_POLYMORPHIC_P (basetype
))
1231 warning (OPT_Weffc__
,
1232 "base class %q#T has a non-virtual destructor", basetype
);
1234 /* If the base class doesn't have copy constructors or
1235 assignment operators that take const references, then the
1236 derived class cannot have such a member automatically
1238 if (! TYPE_HAS_CONST_INIT_REF (basetype
))
1239 *cant_have_const_ctor_p
= 1;
1240 if (TYPE_HAS_ASSIGN_REF (basetype
)
1241 && !TYPE_HAS_CONST_ASSIGN_REF (basetype
))
1242 *no_const_asn_ref_p
= 1;
1244 if (BINFO_VIRTUAL_P (base_binfo
))
1245 /* A virtual base does not effect nearly emptiness. */
1247 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype
))
1249 if (seen_non_virtual_nearly_empty_base_p
)
1250 /* And if there is more than one nearly empty base, then the
1251 derived class is not nearly empty either. */
1252 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
1254 /* Remember we've seen one. */
1255 seen_non_virtual_nearly_empty_base_p
= 1;
1257 else if (!is_empty_class (basetype
))
1258 /* If the base class is not empty or nearly empty, then this
1259 class cannot be nearly empty. */
1260 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
1262 /* A lot of properties from the bases also apply to the derived
1264 TYPE_NEEDS_CONSTRUCTING (t
) |= TYPE_NEEDS_CONSTRUCTING (basetype
);
1265 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
1266 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype
);
1267 TYPE_HAS_COMPLEX_ASSIGN_REF (t
)
1268 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype
);
1269 TYPE_HAS_COMPLEX_INIT_REF (t
) |= TYPE_HAS_COMPLEX_INIT_REF (basetype
);
1270 TYPE_POLYMORPHIC_P (t
) |= TYPE_POLYMORPHIC_P (basetype
);
1271 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
)
1272 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype
);
1276 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1277 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1278 that have had a nearly-empty virtual primary base stolen by some
1279 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1283 determine_primary_bases (tree t
)
1286 tree primary
= NULL_TREE
;
1287 tree type_binfo
= TYPE_BINFO (t
);
1290 /* Determine the primary bases of our bases. */
1291 for (base_binfo
= TREE_CHAIN (type_binfo
); base_binfo
;
1292 base_binfo
= TREE_CHAIN (base_binfo
))
1294 tree primary
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo
));
1296 /* See if we're the non-virtual primary of our inheritance
1298 if (!BINFO_VIRTUAL_P (base_binfo
))
1300 tree parent
= BINFO_INHERITANCE_CHAIN (base_binfo
);
1301 tree parent_primary
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent
));
1304 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
),
1305 BINFO_TYPE (parent_primary
)))
1306 /* We are the primary binfo. */
1307 BINFO_PRIMARY_P (base_binfo
) = 1;
1309 /* Determine if we have a virtual primary base, and mark it so.
1311 if (primary
&& BINFO_VIRTUAL_P (primary
))
1313 tree this_primary
= copied_binfo (primary
, base_binfo
);
1315 if (BINFO_PRIMARY_P (this_primary
))
1316 /* Someone already claimed this base. */
1317 BINFO_LOST_PRIMARY_P (base_binfo
) = 1;
1322 BINFO_PRIMARY_P (this_primary
) = 1;
1323 BINFO_INHERITANCE_CHAIN (this_primary
) = base_binfo
;
1325 /* A virtual binfo might have been copied from within
1326 another hierarchy. As we're about to use it as a
1327 primary base, make sure the offsets match. */
1328 delta
= size_diffop (convert (ssizetype
,
1329 BINFO_OFFSET (base_binfo
)),
1331 BINFO_OFFSET (this_primary
)));
1333 propagate_binfo_offsets (this_primary
, delta
);
1338 /* First look for a dynamic direct non-virtual base. */
1339 for (i
= 0; BINFO_BASE_ITERATE (type_binfo
, i
, base_binfo
); i
++)
1341 tree basetype
= BINFO_TYPE (base_binfo
);
1343 if (TYPE_CONTAINS_VPTR_P (basetype
) && !BINFO_VIRTUAL_P (base_binfo
))
1345 primary
= base_binfo
;
1350 /* A "nearly-empty" virtual base class can be the primary base
1351 class, if no non-virtual polymorphic base can be found. Look for
1352 a nearly-empty virtual dynamic base that is not already a primary
1353 base of something in the hierarchy. If there is no such base,
1354 just pick the first nearly-empty virtual base. */
1356 for (base_binfo
= TREE_CHAIN (type_binfo
); base_binfo
;
1357 base_binfo
= TREE_CHAIN (base_binfo
))
1358 if (BINFO_VIRTUAL_P (base_binfo
)
1359 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo
)))
1361 if (!BINFO_PRIMARY_P (base_binfo
))
1363 /* Found one that is not primary. */
1364 primary
= base_binfo
;
1368 /* Remember the first candidate. */
1369 primary
= base_binfo
;
1373 /* If we've got a primary base, use it. */
1376 tree basetype
= BINFO_TYPE (primary
);
1378 CLASSTYPE_PRIMARY_BINFO (t
) = primary
;
1379 if (BINFO_PRIMARY_P (primary
))
1380 /* We are stealing a primary base. */
1381 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary
)) = 1;
1382 BINFO_PRIMARY_P (primary
) = 1;
1383 if (BINFO_VIRTUAL_P (primary
))
1387 BINFO_INHERITANCE_CHAIN (primary
) = type_binfo
;
1388 /* A virtual binfo might have been copied from within
1389 another hierarchy. As we're about to use it as a primary
1390 base, make sure the offsets match. */
1391 delta
= size_diffop (ssize_int (0),
1392 convert (ssizetype
, BINFO_OFFSET (primary
)));
1394 propagate_binfo_offsets (primary
, delta
);
1397 primary
= TYPE_BINFO (basetype
);
1399 TYPE_VFIELD (t
) = TYPE_VFIELD (basetype
);
1400 BINFO_VTABLE (type_binfo
) = BINFO_VTABLE (primary
);
1401 BINFO_VIRTUALS (type_binfo
) = BINFO_VIRTUALS (primary
);
1405 /* Set memoizing fields and bits of T (and its variants) for later
1409 finish_struct_bits (tree t
)
1413 /* Fix up variants (if any). */
1414 for (variants
= TYPE_NEXT_VARIANT (t
);
1416 variants
= TYPE_NEXT_VARIANT (variants
))
1418 /* These fields are in the _TYPE part of the node, not in
1419 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1420 TYPE_HAS_CONSTRUCTOR (variants
) = TYPE_HAS_CONSTRUCTOR (t
);
1421 TYPE_NEEDS_CONSTRUCTING (variants
) = TYPE_NEEDS_CONSTRUCTING (t
);
1422 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants
)
1423 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
);
1425 TYPE_POLYMORPHIC_P (variants
) = TYPE_POLYMORPHIC_P (t
);
1427 TYPE_BINFO (variants
) = TYPE_BINFO (t
);
1429 /* Copy whatever these are holding today. */
1430 TYPE_VFIELD (variants
) = TYPE_VFIELD (t
);
1431 TYPE_METHODS (variants
) = TYPE_METHODS (t
);
1432 TYPE_FIELDS (variants
) = TYPE_FIELDS (t
);
1435 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t
)) && TYPE_POLYMORPHIC_P (t
))
1436 /* For a class w/o baseclasses, 'finish_struct' has set
1437 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1438 Similarly for a class whose base classes do not have vtables.
1439 When neither of these is true, we might have removed abstract
1440 virtuals (by providing a definition), added some (by declaring
1441 new ones), or redeclared ones from a base class. We need to
1442 recalculate what's really an abstract virtual at this point (by
1443 looking in the vtables). */
1444 get_pure_virtuals (t
);
1446 /* If this type has a copy constructor or a destructor, force its
1447 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1448 nonzero. This will cause it to be passed by invisible reference
1449 and prevent it from being returned in a register. */
1450 if (! TYPE_HAS_TRIVIAL_INIT_REF (t
) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
1453 DECL_MODE (TYPE_MAIN_DECL (t
)) = BLKmode
;
1454 for (variants
= t
; variants
; variants
= TYPE_NEXT_VARIANT (variants
))
1456 TYPE_MODE (variants
) = BLKmode
;
1457 TREE_ADDRESSABLE (variants
) = 1;
1462 /* Issue warnings about T having private constructors, but no friends,
1465 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1466 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1467 non-private static member functions. */
1470 maybe_warn_about_overly_private_class (tree t
)
1472 int has_member_fn
= 0;
1473 int has_nonprivate_method
= 0;
1476 if (!warn_ctor_dtor_privacy
1477 /* If the class has friends, those entities might create and
1478 access instances, so we should not warn. */
1479 || (CLASSTYPE_FRIEND_CLASSES (t
)
1480 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t
)))
1481 /* We will have warned when the template was declared; there's
1482 no need to warn on every instantiation. */
1483 || CLASSTYPE_TEMPLATE_INSTANTIATION (t
))
1484 /* There's no reason to even consider warning about this
1488 /* We only issue one warning, if more than one applies, because
1489 otherwise, on code like:
1492 // Oops - forgot `public:'
1498 we warn several times about essentially the same problem. */
1500 /* Check to see if all (non-constructor, non-destructor) member
1501 functions are private. (Since there are no friends or
1502 non-private statics, we can't ever call any of the private member
1504 for (fn
= TYPE_METHODS (t
); fn
; fn
= TREE_CHAIN (fn
))
1505 /* We're not interested in compiler-generated methods; they don't
1506 provide any way to call private members. */
1507 if (!DECL_ARTIFICIAL (fn
))
1509 if (!TREE_PRIVATE (fn
))
1511 if (DECL_STATIC_FUNCTION_P (fn
))
1512 /* A non-private static member function is just like a
1513 friend; it can create and invoke private member
1514 functions, and be accessed without a class
1518 has_nonprivate_method
= 1;
1519 /* Keep searching for a static member function. */
1521 else if (!DECL_CONSTRUCTOR_P (fn
) && !DECL_DESTRUCTOR_P (fn
))
1525 if (!has_nonprivate_method
&& has_member_fn
)
1527 /* There are no non-private methods, and there's at least one
1528 private member function that isn't a constructor or
1529 destructor. (If all the private members are
1530 constructors/destructors we want to use the code below that
1531 issues error messages specifically referring to
1532 constructors/destructors.) */
1534 tree binfo
= TYPE_BINFO (t
);
1536 for (i
= 0; i
!= BINFO_N_BASE_BINFOS (binfo
); i
++)
1537 if (BINFO_BASE_ACCESS (binfo
, i
) != access_private_node
)
1539 has_nonprivate_method
= 1;
1542 if (!has_nonprivate_method
)
1544 warning (OPT_Wctor_dtor_privacy
,
1545 "all member functions in class %qT are private", t
);
1550 /* Even if some of the member functions are non-private, the class
1551 won't be useful for much if all the constructors or destructors
1552 are private: such an object can never be created or destroyed. */
1553 fn
= CLASSTYPE_DESTRUCTORS (t
);
1554 if (fn
&& TREE_PRIVATE (fn
))
1556 warning (OPT_Wctor_dtor_privacy
,
1557 "%q#T only defines a private destructor and has no friends",
1562 if (TYPE_HAS_CONSTRUCTOR (t
)
1563 /* Implicitly generated constructors are always public. */
1564 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t
)
1565 || !CLASSTYPE_LAZY_COPY_CTOR (t
)))
1567 int nonprivate_ctor
= 0;
1569 /* If a non-template class does not define a copy
1570 constructor, one is defined for it, enabling it to avoid
1571 this warning. For a template class, this does not
1572 happen, and so we would normally get a warning on:
1574 template <class T> class C { private: C(); };
1576 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1577 complete non-template or fully instantiated classes have this
1579 if (!TYPE_HAS_INIT_REF (t
))
1580 nonprivate_ctor
= 1;
1582 for (fn
= CLASSTYPE_CONSTRUCTORS (t
); fn
; fn
= OVL_NEXT (fn
))
1584 tree ctor
= OVL_CURRENT (fn
);
1585 /* Ideally, we wouldn't count copy constructors (or, in
1586 fact, any constructor that takes an argument of the
1587 class type as a parameter) because such things cannot
1588 be used to construct an instance of the class unless
1589 you already have one. But, for now at least, we're
1591 if (! TREE_PRIVATE (ctor
))
1593 nonprivate_ctor
= 1;
1598 if (nonprivate_ctor
== 0)
1600 warning (OPT_Wctor_dtor_privacy
,
1601 "%q#T only defines private constructors and has no friends",
1609 gt_pointer_operator new_value
;
1613 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1616 method_name_cmp (const void* m1_p
, const void* m2_p
)
1618 const tree
*const m1
= (const tree
*) m1_p
;
1619 const tree
*const m2
= (const tree
*) m2_p
;
1621 if (*m1
== NULL_TREE
&& *m2
== NULL_TREE
)
1623 if (*m1
== NULL_TREE
)
1625 if (*m2
== NULL_TREE
)
1627 if (DECL_NAME (OVL_CURRENT (*m1
)) < DECL_NAME (OVL_CURRENT (*m2
)))
1632 /* This routine compares two fields like method_name_cmp but using the
1633 pointer operator in resort_field_decl_data. */
1636 resort_method_name_cmp (const void* m1_p
, const void* m2_p
)
1638 const tree
*const m1
= (const tree
*) m1_p
;
1639 const tree
*const m2
= (const tree
*) m2_p
;
1640 if (*m1
== NULL_TREE
&& *m2
== NULL_TREE
)
1642 if (*m1
== NULL_TREE
)
1644 if (*m2
== NULL_TREE
)
1647 tree d1
= DECL_NAME (OVL_CURRENT (*m1
));
1648 tree d2
= DECL_NAME (OVL_CURRENT (*m2
));
1649 resort_data
.new_value (&d1
, resort_data
.cookie
);
1650 resort_data
.new_value (&d2
, resort_data
.cookie
);
1657 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1660 resort_type_method_vec (void* obj
,
1661 void* orig_obj ATTRIBUTE_UNUSED
,
1662 gt_pointer_operator new_value
,
1665 VEC(tree
,gc
) *method_vec
= (VEC(tree
,gc
) *) obj
;
1666 int len
= VEC_length (tree
, method_vec
);
1670 /* The type conversion ops have to live at the front of the vec, so we
1672 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1673 VEC_iterate (tree
, method_vec
, slot
, fn
);
1675 if (!DECL_CONV_FN_P (OVL_CURRENT (fn
)))
1680 resort_data
.new_value
= new_value
;
1681 resort_data
.cookie
= cookie
;
1682 qsort (VEC_address (tree
, method_vec
) + slot
, len
- slot
, sizeof (tree
),
1683 resort_method_name_cmp
);
1687 /* Warn about duplicate methods in fn_fields.
1689 Sort methods that are not special (i.e., constructors, destructors,
1690 and type conversion operators) so that we can find them faster in
1694 finish_struct_methods (tree t
)
1697 VEC(tree
,gc
) *method_vec
;
1700 method_vec
= CLASSTYPE_METHOD_VEC (t
);
1704 len
= VEC_length (tree
, method_vec
);
1706 /* Clear DECL_IN_AGGR_P for all functions. */
1707 for (fn_fields
= TYPE_METHODS (t
); fn_fields
;
1708 fn_fields
= TREE_CHAIN (fn_fields
))
1709 DECL_IN_AGGR_P (fn_fields
) = 0;
1711 /* Issue warnings about private constructors and such. If there are
1712 no methods, then some public defaults are generated. */
1713 maybe_warn_about_overly_private_class (t
);
1715 /* The type conversion ops have to live at the front of the vec, so we
1717 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1718 VEC_iterate (tree
, method_vec
, slot
, fn_fields
);
1720 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields
)))
1723 qsort (VEC_address (tree
, method_vec
) + slot
,
1724 len
-slot
, sizeof (tree
), method_name_cmp
);
1727 /* Make BINFO's vtable have N entries, including RTTI entries,
1728 vbase and vcall offsets, etc. Set its type and call the back end
1732 layout_vtable_decl (tree binfo
, int n
)
1737 atype
= build_cplus_array_type (vtable_entry_type
,
1738 build_index_type (size_int (n
- 1)));
1739 layout_type (atype
);
1741 /* We may have to grow the vtable. */
1742 vtable
= get_vtbl_decl_for_binfo (binfo
);
1743 if (!same_type_p (TREE_TYPE (vtable
), atype
))
1745 TREE_TYPE (vtable
) = atype
;
1746 DECL_SIZE (vtable
) = DECL_SIZE_UNIT (vtable
) = NULL_TREE
;
1747 layout_decl (vtable
, 0);
1751 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1752 have the same signature. */
1755 same_signature_p (tree fndecl
, tree base_fndecl
)
1757 /* One destructor overrides another if they are the same kind of
1759 if (DECL_DESTRUCTOR_P (base_fndecl
) && DECL_DESTRUCTOR_P (fndecl
)
1760 && special_function_p (base_fndecl
) == special_function_p (fndecl
))
1762 /* But a non-destructor never overrides a destructor, nor vice
1763 versa, nor do different kinds of destructors override
1764 one-another. For example, a complete object destructor does not
1765 override a deleting destructor. */
1766 if (DECL_DESTRUCTOR_P (base_fndecl
) || DECL_DESTRUCTOR_P (fndecl
))
1769 if (DECL_NAME (fndecl
) == DECL_NAME (base_fndecl
)
1770 || (DECL_CONV_FN_P (fndecl
)
1771 && DECL_CONV_FN_P (base_fndecl
)
1772 && same_type_p (DECL_CONV_FN_TYPE (fndecl
),
1773 DECL_CONV_FN_TYPE (base_fndecl
))))
1775 tree types
, base_types
;
1776 types
= TYPE_ARG_TYPES (TREE_TYPE (fndecl
));
1777 base_types
= TYPE_ARG_TYPES (TREE_TYPE (base_fndecl
));
1778 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types
)))
1779 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types
))))
1780 && compparms (TREE_CHAIN (base_types
), TREE_CHAIN (types
)))
1786 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1790 base_derived_from (tree derived
, tree base
)
1794 for (probe
= base
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
1796 if (probe
== derived
)
1798 else if (BINFO_VIRTUAL_P (probe
))
1799 /* If we meet a virtual base, we can't follow the inheritance
1800 any more. See if the complete type of DERIVED contains
1801 such a virtual base. */
1802 return (binfo_for_vbase (BINFO_TYPE (probe
), BINFO_TYPE (derived
))
1808 typedef struct find_final_overrider_data_s
{
1809 /* The function for which we are trying to find a final overrider. */
1811 /* The base class in which the function was declared. */
1812 tree declaring_base
;
1813 /* The candidate overriders. */
1815 /* Path to most derived. */
1816 VEC(tree
,heap
) *path
;
1817 } find_final_overrider_data
;
1819 /* Add the overrider along the current path to FFOD->CANDIDATES.
1820 Returns true if an overrider was found; false otherwise. */
1823 dfs_find_final_overrider_1 (tree binfo
,
1824 find_final_overrider_data
*ffod
,
1829 /* If BINFO is not the most derived type, try a more derived class.
1830 A definition there will overrider a definition here. */
1834 if (dfs_find_final_overrider_1
1835 (VEC_index (tree
, ffod
->path
, depth
), ffod
, depth
))
1839 method
= look_for_overrides_here (BINFO_TYPE (binfo
), ffod
->fn
);
1842 tree
*candidate
= &ffod
->candidates
;
1844 /* Remove any candidates overridden by this new function. */
1847 /* If *CANDIDATE overrides METHOD, then METHOD
1848 cannot override anything else on the list. */
1849 if (base_derived_from (TREE_VALUE (*candidate
), binfo
))
1851 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1852 if (base_derived_from (binfo
, TREE_VALUE (*candidate
)))
1853 *candidate
= TREE_CHAIN (*candidate
);
1855 candidate
= &TREE_CHAIN (*candidate
);
1858 /* Add the new function. */
1859 ffod
->candidates
= tree_cons (method
, binfo
, ffod
->candidates
);
1866 /* Called from find_final_overrider via dfs_walk. */
1869 dfs_find_final_overrider_pre (tree binfo
, void *data
)
1871 find_final_overrider_data
*ffod
= (find_final_overrider_data
*) data
;
1873 if (binfo
== ffod
->declaring_base
)
1874 dfs_find_final_overrider_1 (binfo
, ffod
, VEC_length (tree
, ffod
->path
));
1875 VEC_safe_push (tree
, heap
, ffod
->path
, binfo
);
1881 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED
, void *data
)
1883 find_final_overrider_data
*ffod
= (find_final_overrider_data
*) data
;
1884 VEC_pop (tree
, ffod
->path
);
1889 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1890 FN and whose TREE_VALUE is the binfo for the base where the
1891 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1892 DERIVED) is the base object in which FN is declared. */
1895 find_final_overrider (tree derived
, tree binfo
, tree fn
)
1897 find_final_overrider_data ffod
;
1899 /* Getting this right is a little tricky. This is valid:
1901 struct S { virtual void f (); };
1902 struct T { virtual void f (); };
1903 struct U : public S, public T { };
1905 even though calling `f' in `U' is ambiguous. But,
1907 struct R { virtual void f(); };
1908 struct S : virtual public R { virtual void f (); };
1909 struct T : virtual public R { virtual void f (); };
1910 struct U : public S, public T { };
1912 is not -- there's no way to decide whether to put `S::f' or
1913 `T::f' in the vtable for `R'.
1915 The solution is to look at all paths to BINFO. If we find
1916 different overriders along any two, then there is a problem. */
1917 if (DECL_THUNK_P (fn
))
1918 fn
= THUNK_TARGET (fn
);
1920 /* Determine the depth of the hierarchy. */
1922 ffod
.declaring_base
= binfo
;
1923 ffod
.candidates
= NULL_TREE
;
1924 ffod
.path
= VEC_alloc (tree
, heap
, 30);
1926 dfs_walk_all (derived
, dfs_find_final_overrider_pre
,
1927 dfs_find_final_overrider_post
, &ffod
);
1929 VEC_free (tree
, heap
, ffod
.path
);
1931 /* If there was no winner, issue an error message. */
1932 if (!ffod
.candidates
|| TREE_CHAIN (ffod
.candidates
))
1933 return error_mark_node
;
1935 return ffod
.candidates
;
1938 /* Return the index of the vcall offset for FN when TYPE is used as a
1942 get_vcall_index (tree fn
, tree type
)
1944 VEC(tree_pair_s
,gc
) *indices
= CLASSTYPE_VCALL_INDICES (type
);
1948 for (ix
= 0; VEC_iterate (tree_pair_s
, indices
, ix
, p
); ix
++)
1949 if ((DECL_DESTRUCTOR_P (fn
) && DECL_DESTRUCTOR_P (p
->purpose
))
1950 || same_signature_p (fn
, p
->purpose
))
1953 /* There should always be an appropriate index. */
1957 /* Update an entry in the vtable for BINFO, which is in the hierarchy
1958 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
1959 corresponding position in the BINFO_VIRTUALS list. */
1962 update_vtable_entry_for_fn (tree t
, tree binfo
, tree fn
, tree
* virtuals
,
1970 tree overrider_fn
, overrider_target
;
1971 tree target_fn
= DECL_THUNK_P (fn
) ? THUNK_TARGET (fn
) : fn
;
1972 tree over_return
, base_return
;
1975 /* Find the nearest primary base (possibly binfo itself) which defines
1976 this function; this is the class the caller will convert to when
1977 calling FN through BINFO. */
1978 for (b
= binfo
; ; b
= get_primary_binfo (b
))
1981 if (look_for_overrides_here (BINFO_TYPE (b
), target_fn
))
1984 /* The nearest definition is from a lost primary. */
1985 if (BINFO_LOST_PRIMARY_P (b
))
1990 /* Find the final overrider. */
1991 overrider
= find_final_overrider (TYPE_BINFO (t
), b
, target_fn
);
1992 if (overrider
== error_mark_node
)
1994 error ("no unique final overrider for %qD in %qT", target_fn
, t
);
1997 overrider_target
= overrider_fn
= TREE_PURPOSE (overrider
);
1999 /* Check for adjusting covariant return types. */
2000 over_return
= TREE_TYPE (TREE_TYPE (overrider_target
));
2001 base_return
= TREE_TYPE (TREE_TYPE (target_fn
));
2003 if (POINTER_TYPE_P (over_return
)
2004 && TREE_CODE (over_return
) == TREE_CODE (base_return
)
2005 && CLASS_TYPE_P (TREE_TYPE (over_return
))
2006 && CLASS_TYPE_P (TREE_TYPE (base_return
))
2007 /* If the overrider is invalid, don't even try. */
2008 && !DECL_INVALID_OVERRIDER_P (overrider_target
))
2010 /* If FN is a covariant thunk, we must figure out the adjustment
2011 to the final base FN was converting to. As OVERRIDER_TARGET might
2012 also be converting to the return type of FN, we have to
2013 combine the two conversions here. */
2014 tree fixed_offset
, virtual_offset
;
2016 over_return
= TREE_TYPE (over_return
);
2017 base_return
= TREE_TYPE (base_return
);
2019 if (DECL_THUNK_P (fn
))
2021 gcc_assert (DECL_RESULT_THUNK_P (fn
));
2022 fixed_offset
= ssize_int (THUNK_FIXED_OFFSET (fn
));
2023 virtual_offset
= THUNK_VIRTUAL_OFFSET (fn
);
2026 fixed_offset
= virtual_offset
= NULL_TREE
;
2029 /* Find the equivalent binfo within the return type of the
2030 overriding function. We will want the vbase offset from
2032 virtual_offset
= binfo_for_vbase (BINFO_TYPE (virtual_offset
),
2034 else if (!same_type_ignoring_top_level_qualifiers_p
2035 (over_return
, base_return
))
2037 /* There was no existing virtual thunk (which takes
2038 precedence). So find the binfo of the base function's
2039 return type within the overriding function's return type.
2040 We cannot call lookup base here, because we're inside a
2041 dfs_walk, and will therefore clobber the BINFO_MARKED
2042 flags. Fortunately we know the covariancy is valid (it
2043 has already been checked), so we can just iterate along
2044 the binfos, which have been chained in inheritance graph
2045 order. Of course it is lame that we have to repeat the
2046 search here anyway -- we should really be caching pieces
2047 of the vtable and avoiding this repeated work. */
2048 tree thunk_binfo
, base_binfo
;
2050 /* Find the base binfo within the overriding function's
2051 return type. We will always find a thunk_binfo, except
2052 when the covariancy is invalid (which we will have
2053 already diagnosed). */
2054 for (base_binfo
= TYPE_BINFO (base_return
),
2055 thunk_binfo
= TYPE_BINFO (over_return
);
2057 thunk_binfo
= TREE_CHAIN (thunk_binfo
))
2058 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo
),
2059 BINFO_TYPE (base_binfo
)))
2062 /* See if virtual inheritance is involved. */
2063 for (virtual_offset
= thunk_binfo
;
2065 virtual_offset
= BINFO_INHERITANCE_CHAIN (virtual_offset
))
2066 if (BINFO_VIRTUAL_P (virtual_offset
))
2070 || (thunk_binfo
&& !BINFO_OFFSET_ZEROP (thunk_binfo
)))
2072 tree offset
= convert (ssizetype
, BINFO_OFFSET (thunk_binfo
));
2076 /* We convert via virtual base. Adjust the fixed
2077 offset to be from there. */
2078 offset
= size_diffop
2080 (ssizetype
, BINFO_OFFSET (virtual_offset
)));
2083 /* There was an existing fixed offset, this must be
2084 from the base just converted to, and the base the
2085 FN was thunking to. */
2086 fixed_offset
= size_binop (PLUS_EXPR
, fixed_offset
, offset
);
2088 fixed_offset
= offset
;
2092 if (fixed_offset
|| virtual_offset
)
2093 /* Replace the overriding function with a covariant thunk. We
2094 will emit the overriding function in its own slot as
2096 overrider_fn
= make_thunk (overrider_target
, /*this_adjusting=*/0,
2097 fixed_offset
, virtual_offset
);
2100 gcc_assert (!DECL_THUNK_P (fn
));
2102 /* Assume that we will produce a thunk that convert all the way to
2103 the final overrider, and not to an intermediate virtual base. */
2104 virtual_base
= NULL_TREE
;
2106 /* See if we can convert to an intermediate virtual base first, and then
2107 use the vcall offset located there to finish the conversion. */
2108 for (; b
; b
= BINFO_INHERITANCE_CHAIN (b
))
2110 /* If we find the final overrider, then we can stop
2112 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b
),
2113 BINFO_TYPE (TREE_VALUE (overrider
))))
2116 /* If we find a virtual base, and we haven't yet found the
2117 overrider, then there is a virtual base between the
2118 declaring base (first_defn) and the final overrider. */
2119 if (BINFO_VIRTUAL_P (b
))
2126 if (overrider_fn
!= overrider_target
&& !virtual_base
)
2128 /* The ABI specifies that a covariant thunk includes a mangling
2129 for a this pointer adjustment. This-adjusting thunks that
2130 override a function from a virtual base have a vcall
2131 adjustment. When the virtual base in question is a primary
2132 virtual base, we know the adjustments are zero, (and in the
2133 non-covariant case, we would not use the thunk).
2134 Unfortunately we didn't notice this could happen, when
2135 designing the ABI and so never mandated that such a covariant
2136 thunk should be emitted. Because we must use the ABI mandated
2137 name, we must continue searching from the binfo where we
2138 found the most recent definition of the function, towards the
2139 primary binfo which first introduced the function into the
2140 vtable. If that enters a virtual base, we must use a vcall
2141 this-adjusting thunk. Bleah! */
2142 tree probe
= first_defn
;
2144 while ((probe
= get_primary_binfo (probe
))
2145 && (unsigned) list_length (BINFO_VIRTUALS (probe
)) > ix
)
2146 if (BINFO_VIRTUAL_P (probe
))
2147 virtual_base
= probe
;
2150 /* Even if we find a virtual base, the correct delta is
2151 between the overrider and the binfo we're building a vtable
2153 goto virtual_covariant
;
2156 /* Compute the constant adjustment to the `this' pointer. The
2157 `this' pointer, when this function is called, will point at BINFO
2158 (or one of its primary bases, which are at the same offset). */
2160 /* The `this' pointer needs to be adjusted from the declaration to
2161 the nearest virtual base. */
2162 delta
= size_diffop (convert (ssizetype
, BINFO_OFFSET (virtual_base
)),
2163 convert (ssizetype
, BINFO_OFFSET (first_defn
)));
2165 /* If the nearest definition is in a lost primary, we don't need an
2166 entry in our vtable. Except possibly in a constructor vtable,
2167 if we happen to get our primary back. In that case, the offset
2168 will be zero, as it will be a primary base. */
2169 delta
= size_zero_node
;
2171 /* The `this' pointer needs to be adjusted from pointing to
2172 BINFO to pointing at the base where the final overrider
2175 delta
= size_diffop (convert (ssizetype
,
2176 BINFO_OFFSET (TREE_VALUE (overrider
))),
2177 convert (ssizetype
, BINFO_OFFSET (binfo
)));
2179 modify_vtable_entry (t
, binfo
, overrider_fn
, delta
, virtuals
);
2182 BV_VCALL_INDEX (*virtuals
)
2183 = get_vcall_index (overrider_target
, BINFO_TYPE (virtual_base
));
2185 BV_VCALL_INDEX (*virtuals
) = NULL_TREE
;
2188 /* Called from modify_all_vtables via dfs_walk. */
2191 dfs_modify_vtables (tree binfo
, void* data
)
2193 tree t
= (tree
) data
;
2198 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
2199 /* A base without a vtable needs no modification, and its bases
2200 are uninteresting. */
2201 return dfs_skip_bases
;
2203 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
)
2204 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
2205 /* Don't do the primary vtable, if it's new. */
2208 if (BINFO_PRIMARY_P (binfo
) && !BINFO_VIRTUAL_P (binfo
))
2209 /* There's no need to modify the vtable for a non-virtual primary
2210 base; we're not going to use that vtable anyhow. We do still
2211 need to do this for virtual primary bases, as they could become
2212 non-primary in a construction vtable. */
2215 make_new_vtable (t
, binfo
);
2217 /* Now, go through each of the virtual functions in the virtual
2218 function table for BINFO. Find the final overrider, and update
2219 the BINFO_VIRTUALS list appropriately. */
2220 for (ix
= 0, virtuals
= BINFO_VIRTUALS (binfo
),
2221 old_virtuals
= BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo
)));
2223 ix
++, virtuals
= TREE_CHAIN (virtuals
),
2224 old_virtuals
= TREE_CHAIN (old_virtuals
))
2225 update_vtable_entry_for_fn (t
,
2227 BV_FN (old_virtuals
),
2233 /* Update all of the primary and secondary vtables for T. Create new
2234 vtables as required, and initialize their RTTI information. Each
2235 of the functions in VIRTUALS is declared in T and may override a
2236 virtual function from a base class; find and modify the appropriate
2237 entries to point to the overriding functions. Returns a list, in
2238 declaration order, of the virtual functions that are declared in T,
2239 but do not appear in the primary base class vtable, and which
2240 should therefore be appended to the end of the vtable for T. */
2243 modify_all_vtables (tree t
, tree virtuals
)
2245 tree binfo
= TYPE_BINFO (t
);
2248 /* Update all of the vtables. */
2249 dfs_walk_once (binfo
, dfs_modify_vtables
, NULL
, t
);
2251 /* Add virtual functions not already in our primary vtable. These
2252 will be both those introduced by this class, and those overridden
2253 from secondary bases. It does not include virtuals merely
2254 inherited from secondary bases. */
2255 for (fnsp
= &virtuals
; *fnsp
; )
2257 tree fn
= TREE_VALUE (*fnsp
);
2259 if (!value_member (fn
, BINFO_VIRTUALS (binfo
))
2260 || DECL_VINDEX (fn
) == error_mark_node
)
2262 /* We don't need to adjust the `this' pointer when
2263 calling this function. */
2264 BV_DELTA (*fnsp
) = integer_zero_node
;
2265 BV_VCALL_INDEX (*fnsp
) = NULL_TREE
;
2267 /* This is a function not already in our vtable. Keep it. */
2268 fnsp
= &TREE_CHAIN (*fnsp
);
2271 /* We've already got an entry for this function. Skip it. */
2272 *fnsp
= TREE_CHAIN (*fnsp
);
2278 /* Get the base virtual function declarations in T that have the
2282 get_basefndecls (tree name
, tree t
)
2285 tree base_fndecls
= NULL_TREE
;
2286 int n_baseclasses
= BINFO_N_BASE_BINFOS (TYPE_BINFO (t
));
2289 /* Find virtual functions in T with the indicated NAME. */
2290 i
= lookup_fnfields_1 (t
, name
);
2292 for (methods
= VEC_index (tree
, CLASSTYPE_METHOD_VEC (t
), i
);
2294 methods
= OVL_NEXT (methods
))
2296 tree method
= OVL_CURRENT (methods
);
2298 if (TREE_CODE (method
) == FUNCTION_DECL
2299 && DECL_VINDEX (method
))
2300 base_fndecls
= tree_cons (NULL_TREE
, method
, base_fndecls
);
2304 return base_fndecls
;
2306 for (i
= 0; i
< n_baseclasses
; i
++)
2308 tree basetype
= BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t
), i
));
2309 base_fndecls
= chainon (get_basefndecls (name
, basetype
),
2313 return base_fndecls
;
2316 /* If this declaration supersedes the declaration of
2317 a method declared virtual in the base class, then
2318 mark this field as being virtual as well. */
2321 check_for_override (tree decl
, tree ctype
)
2323 if (TREE_CODE (decl
) == TEMPLATE_DECL
)
2324 /* In [temp.mem] we have:
2326 A specialization of a member function template does not
2327 override a virtual function from a base class. */
2329 if ((DECL_DESTRUCTOR_P (decl
)
2330 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl
))
2331 || DECL_CONV_FN_P (decl
))
2332 && look_for_overrides (ctype
, decl
)
2333 && !DECL_STATIC_FUNCTION_P (decl
))
2334 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2335 the error_mark_node so that we know it is an overriding
2337 DECL_VINDEX (decl
) = decl
;
2339 if (DECL_VIRTUAL_P (decl
))
2341 if (!DECL_VINDEX (decl
))
2342 DECL_VINDEX (decl
) = error_mark_node
;
2343 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl
)) = 1;
2344 if (DECL_DLLIMPORT_P (decl
))
2346 /* When we handled the dllimport attribute we may not have known
2347 that this function is virtual We can't use dllimport
2348 semantics for a virtual method because we need to initialize
2349 the vtable entry with a constant address. */
2350 DECL_DLLIMPORT_P (decl
) = 0;
2351 DECL_ATTRIBUTES (decl
)
2352 = remove_attribute ("dllimport", DECL_ATTRIBUTES (decl
));
2357 /* Warn about hidden virtual functions that are not overridden in t.
2358 We know that constructors and destructors don't apply. */
2361 warn_hidden (tree t
)
2363 VEC(tree
,gc
) *method_vec
= CLASSTYPE_METHOD_VEC (t
);
2367 /* We go through each separately named virtual function. */
2368 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2369 VEC_iterate (tree
, method_vec
, i
, fns
);
2380 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2381 have the same name. Figure out what name that is. */
2382 name
= DECL_NAME (OVL_CURRENT (fns
));
2383 /* There are no possibly hidden functions yet. */
2384 base_fndecls
= NULL_TREE
;
2385 /* Iterate through all of the base classes looking for possibly
2386 hidden functions. */
2387 for (binfo
= TYPE_BINFO (t
), j
= 0;
2388 BINFO_BASE_ITERATE (binfo
, j
, base_binfo
); j
++)
2390 tree basetype
= BINFO_TYPE (base_binfo
);
2391 base_fndecls
= chainon (get_basefndecls (name
, basetype
),
2395 /* If there are no functions to hide, continue. */
2399 /* Remove any overridden functions. */
2400 for (fn
= fns
; fn
; fn
= OVL_NEXT (fn
))
2402 fndecl
= OVL_CURRENT (fn
);
2403 if (DECL_VINDEX (fndecl
))
2405 tree
*prev
= &base_fndecls
;
2408 /* If the method from the base class has the same
2409 signature as the method from the derived class, it
2410 has been overridden. */
2411 if (same_signature_p (fndecl
, TREE_VALUE (*prev
)))
2412 *prev
= TREE_CHAIN (*prev
);
2414 prev
= &TREE_CHAIN (*prev
);
2418 /* Now give a warning for all base functions without overriders,
2419 as they are hidden. */
2420 while (base_fndecls
)
2422 /* Here we know it is a hider, and no overrider exists. */
2423 warning (0, "%q+D was hidden", TREE_VALUE (base_fndecls
));
2424 warning (0, " by %q+D", fns
);
2425 base_fndecls
= TREE_CHAIN (base_fndecls
);
2430 /* Check for things that are invalid. There are probably plenty of other
2431 things we should check for also. */
2434 finish_struct_anon (tree t
)
2438 for (field
= TYPE_FIELDS (t
); field
; field
= TREE_CHAIN (field
))
2440 if (TREE_STATIC (field
))
2442 if (TREE_CODE (field
) != FIELD_DECL
)
2445 if (DECL_NAME (field
) == NULL_TREE
2446 && ANON_AGGR_TYPE_P (TREE_TYPE (field
)))
2448 tree elt
= TYPE_FIELDS (TREE_TYPE (field
));
2449 for (; elt
; elt
= TREE_CHAIN (elt
))
2451 /* We're generally only interested in entities the user
2452 declared, but we also find nested classes by noticing
2453 the TYPE_DECL that we create implicitly. You're
2454 allowed to put one anonymous union inside another,
2455 though, so we explicitly tolerate that. We use
2456 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2457 we also allow unnamed types used for defining fields. */
2458 if (DECL_ARTIFICIAL (elt
)
2459 && (!DECL_IMPLICIT_TYPEDEF_P (elt
)
2460 || TYPE_ANONYMOUS_P (TREE_TYPE (elt
))))
2463 if (TREE_CODE (elt
) != FIELD_DECL
)
2465 pedwarn ("%q+#D invalid; an anonymous union can "
2466 "only have non-static data members", elt
);
2470 if (TREE_PRIVATE (elt
))
2471 pedwarn ("private member %q+#D in anonymous union", elt
);
2472 else if (TREE_PROTECTED (elt
))
2473 pedwarn ("protected member %q+#D in anonymous union", elt
);
2475 TREE_PRIVATE (elt
) = TREE_PRIVATE (field
);
2476 TREE_PROTECTED (elt
) = TREE_PROTECTED (field
);
2482 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2483 will be used later during class template instantiation.
2484 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2485 a non-static member data (FIELD_DECL), a member function
2486 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2487 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2488 When FRIEND_P is nonzero, T is either a friend class
2489 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2490 (FUNCTION_DECL, TEMPLATE_DECL). */
2493 maybe_add_class_template_decl_list (tree type
, tree t
, int friend_p
)
2495 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2496 if (CLASSTYPE_TEMPLATE_INFO (type
))
2497 CLASSTYPE_DECL_LIST (type
)
2498 = tree_cons (friend_p
? NULL_TREE
: type
,
2499 t
, CLASSTYPE_DECL_LIST (type
));
2502 /* Create default constructors, assignment operators, and so forth for
2503 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2504 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2505 the class cannot have a default constructor, copy constructor
2506 taking a const reference argument, or an assignment operator taking
2507 a const reference, respectively. */
2510 add_implicitly_declared_members (tree t
,
2511 int cant_have_const_cctor
,
2512 int cant_have_const_assignment
)
2515 if (!CLASSTYPE_DESTRUCTORS (t
))
2517 /* In general, we create destructors lazily. */
2518 CLASSTYPE_LAZY_DESTRUCTOR (t
) = 1;
2519 /* However, if the implicit destructor is non-trivial
2520 destructor, we sometimes have to create it at this point. */
2521 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
2525 if (TYPE_FOR_JAVA (t
))
2526 /* If this a Java class, any non-trivial destructor is
2527 invalid, even if compiler-generated. Therefore, if the
2528 destructor is non-trivial we create it now. */
2536 /* If the implicit destructor will be virtual, then we must
2537 generate it now because (unfortunately) we do not
2538 generate virtual tables lazily. */
2539 binfo
= TYPE_BINFO (t
);
2540 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ix
++)
2545 base_type
= BINFO_TYPE (base_binfo
);
2546 dtor
= CLASSTYPE_DESTRUCTORS (base_type
);
2547 if (dtor
&& DECL_VIRTUAL_P (dtor
))
2555 /* If we can't get away with being lazy, generate the destructor
2558 lazily_declare_fn (sfk_destructor
, t
);
2562 /* Default constructor. */
2563 if (! TYPE_HAS_CONSTRUCTOR (t
))
2565 TYPE_HAS_DEFAULT_CONSTRUCTOR (t
) = 1;
2566 CLASSTYPE_LAZY_DEFAULT_CTOR (t
) = 1;
2569 /* Copy constructor. */
2570 if (! TYPE_HAS_INIT_REF (t
) && ! TYPE_FOR_JAVA (t
))
2572 TYPE_HAS_INIT_REF (t
) = 1;
2573 TYPE_HAS_CONST_INIT_REF (t
) = !cant_have_const_cctor
;
2574 CLASSTYPE_LAZY_COPY_CTOR (t
) = 1;
2575 TYPE_HAS_CONSTRUCTOR (t
) = 1;
2578 /* If there is no assignment operator, one will be created if and
2579 when it is needed. For now, just record whether or not the type
2580 of the parameter to the assignment operator will be a const or
2581 non-const reference. */
2582 if (!TYPE_HAS_ASSIGN_REF (t
) && !TYPE_FOR_JAVA (t
))
2584 TYPE_HAS_ASSIGN_REF (t
) = 1;
2585 TYPE_HAS_CONST_ASSIGN_REF (t
) = !cant_have_const_assignment
;
2586 CLASSTYPE_LAZY_ASSIGNMENT_OP (t
) = 1;
2590 /* Subroutine of finish_struct_1. Recursively count the number of fields
2591 in TYPE, including anonymous union members. */
2594 count_fields (tree fields
)
2598 for (x
= fields
; x
; x
= TREE_CHAIN (x
))
2600 if (TREE_CODE (x
) == FIELD_DECL
&& ANON_AGGR_TYPE_P (TREE_TYPE (x
)))
2601 n_fields
+= count_fields (TYPE_FIELDS (TREE_TYPE (x
)));
2608 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2609 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2612 add_fields_to_record_type (tree fields
, struct sorted_fields_type
*field_vec
, int idx
)
2615 for (x
= fields
; x
; x
= TREE_CHAIN (x
))
2617 if (TREE_CODE (x
) == FIELD_DECL
&& ANON_AGGR_TYPE_P (TREE_TYPE (x
)))
2618 idx
= add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x
)), field_vec
, idx
);
2620 field_vec
->elts
[idx
++] = x
;
2625 /* FIELD is a bit-field. We are finishing the processing for its
2626 enclosing type. Issue any appropriate messages and set appropriate
2630 check_bitfield_decl (tree field
)
2632 tree type
= TREE_TYPE (field
);
2635 /* Extract the declared width of the bitfield, which has been
2636 temporarily stashed in DECL_INITIAL. */
2637 w
= DECL_INITIAL (field
);
2638 gcc_assert (w
!= NULL_TREE
);
2639 /* Remove the bit-field width indicator so that the rest of the
2640 compiler does not treat that value as an initializer. */
2641 DECL_INITIAL (field
) = NULL_TREE
;
2643 /* Detect invalid bit-field type. */
2644 if (!INTEGRAL_TYPE_P (type
))
2646 error ("bit-field %q+#D with non-integral type", field
);
2647 TREE_TYPE (field
) = error_mark_node
;
2648 w
= error_mark_node
;
2652 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2655 /* detect invalid field size. */
2656 w
= integral_constant_value (w
);
2658 if (TREE_CODE (w
) != INTEGER_CST
)
2660 error ("bit-field %q+D width not an integer constant", field
);
2661 w
= error_mark_node
;
2663 else if (tree_int_cst_sgn (w
) < 0)
2665 error ("negative width in bit-field %q+D", field
);
2666 w
= error_mark_node
;
2668 else if (integer_zerop (w
) && DECL_NAME (field
) != 0)
2670 error ("zero width for bit-field %q+D", field
);
2671 w
= error_mark_node
;
2673 else if (compare_tree_int (w
, TYPE_PRECISION (type
)) > 0
2674 && TREE_CODE (type
) != ENUMERAL_TYPE
2675 && TREE_CODE (type
) != BOOLEAN_TYPE
)
2676 warning (0, "width of %q+D exceeds its type", field
);
2677 else if (TREE_CODE (type
) == ENUMERAL_TYPE
2678 && (0 > compare_tree_int (w
,
2679 min_precision (TYPE_MIN_VALUE (type
),
2680 TYPE_UNSIGNED (type
)))
2681 || 0 > compare_tree_int (w
,
2683 (TYPE_MAX_VALUE (type
),
2684 TYPE_UNSIGNED (type
)))))
2685 warning (0, "%q+D is too small to hold all values of %q#T", field
, type
);
2688 if (w
!= error_mark_node
)
2690 DECL_SIZE (field
) = convert (bitsizetype
, w
);
2691 DECL_BIT_FIELD (field
) = 1;
2695 /* Non-bit-fields are aligned for their type. */
2696 DECL_BIT_FIELD (field
) = 0;
2697 CLEAR_DECL_C_BIT_FIELD (field
);
2701 /* FIELD is a non bit-field. We are finishing the processing for its
2702 enclosing type T. Issue any appropriate messages and set appropriate
2706 check_field_decl (tree field
,
2708 int* cant_have_const_ctor
,
2709 int* no_const_asn_ref
,
2710 int* any_default_members
)
2712 tree type
= strip_array_types (TREE_TYPE (field
));
2714 /* An anonymous union cannot contain any fields which would change
2715 the settings of CANT_HAVE_CONST_CTOR and friends. */
2716 if (ANON_UNION_TYPE_P (type
))
2718 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2719 structs. So, we recurse through their fields here. */
2720 else if (ANON_AGGR_TYPE_P (type
))
2724 for (fields
= TYPE_FIELDS (type
); fields
; fields
= TREE_CHAIN (fields
))
2725 if (TREE_CODE (fields
) == FIELD_DECL
&& !DECL_C_BIT_FIELD (field
))
2726 check_field_decl (fields
, t
, cant_have_const_ctor
,
2727 no_const_asn_ref
, any_default_members
);
2729 /* Check members with class type for constructors, destructors,
2731 else if (CLASS_TYPE_P (type
))
2733 /* Never let anything with uninheritable virtuals
2734 make it through without complaint. */
2735 abstract_virtuals_error (field
, type
);
2737 if (TREE_CODE (t
) == UNION_TYPE
)
2739 if (TYPE_NEEDS_CONSTRUCTING (type
))
2740 error ("member %q+#D with constructor not allowed in union",
2742 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
2743 error ("member %q+#D with destructor not allowed in union", field
);
2744 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type
))
2745 error ("member %q+#D with copy assignment operator not allowed in union",
2750 TYPE_NEEDS_CONSTRUCTING (t
) |= TYPE_NEEDS_CONSTRUCTING (type
);
2751 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
2752 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
);
2753 TYPE_HAS_COMPLEX_ASSIGN_REF (t
) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type
);
2754 TYPE_HAS_COMPLEX_INIT_REF (t
) |= TYPE_HAS_COMPLEX_INIT_REF (type
);
2757 if (!TYPE_HAS_CONST_INIT_REF (type
))
2758 *cant_have_const_ctor
= 1;
2760 if (!TYPE_HAS_CONST_ASSIGN_REF (type
))
2761 *no_const_asn_ref
= 1;
2763 if (DECL_INITIAL (field
) != NULL_TREE
)
2765 /* `build_class_init_list' does not recognize
2767 if (TREE_CODE (t
) == UNION_TYPE
&& any_default_members
!= 0)
2768 error ("multiple fields in union %qT initialized", t
);
2769 *any_default_members
= 1;
2773 /* Check the data members (both static and non-static), class-scoped
2774 typedefs, etc., appearing in the declaration of T. Issue
2775 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2776 declaration order) of access declarations; each TREE_VALUE in this
2777 list is a USING_DECL.
2779 In addition, set the following flags:
2782 The class is empty, i.e., contains no non-static data members.
2784 CANT_HAVE_CONST_CTOR_P
2785 This class cannot have an implicitly generated copy constructor
2786 taking a const reference.
2788 CANT_HAVE_CONST_ASN_REF
2789 This class cannot have an implicitly generated assignment
2790 operator taking a const reference.
2792 All of these flags should be initialized before calling this
2795 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2796 fields can be added by adding to this chain. */
2799 check_field_decls (tree t
, tree
*access_decls
,
2800 int *cant_have_const_ctor_p
,
2801 int *no_const_asn_ref_p
)
2806 int any_default_members
;
2809 /* Assume there are no access declarations. */
2810 *access_decls
= NULL_TREE
;
2811 /* Assume this class has no pointer members. */
2812 has_pointers
= false;
2813 /* Assume none of the members of this class have default
2815 any_default_members
= 0;
2817 for (field
= &TYPE_FIELDS (t
); *field
; field
= next
)
2820 tree type
= TREE_TYPE (x
);
2822 next
= &TREE_CHAIN (x
);
2824 if (TREE_CODE (x
) == USING_DECL
)
2826 /* Prune the access declaration from the list of fields. */
2827 *field
= TREE_CHAIN (x
);
2829 /* Save the access declarations for our caller. */
2830 *access_decls
= tree_cons (NULL_TREE
, x
, *access_decls
);
2832 /* Since we've reset *FIELD there's no reason to skip to the
2838 if (TREE_CODE (x
) == TYPE_DECL
2839 || TREE_CODE (x
) == TEMPLATE_DECL
)
2842 /* If we've gotten this far, it's a data member, possibly static,
2843 or an enumerator. */
2844 DECL_CONTEXT (x
) = t
;
2846 /* When this goes into scope, it will be a non-local reference. */
2847 DECL_NONLOCAL (x
) = 1;
2849 if (TREE_CODE (t
) == UNION_TYPE
)
2853 If a union contains a static data member, or a member of
2854 reference type, the program is ill-formed. */
2855 if (TREE_CODE (x
) == VAR_DECL
)
2857 error ("%q+D may not be static because it is a member of a union", x
);
2860 if (TREE_CODE (type
) == REFERENCE_TYPE
)
2862 error ("%q+D may not have reference type %qT because"
2863 " it is a member of a union",
2869 /* Perform error checking that did not get done in
2871 if (TREE_CODE (type
) == FUNCTION_TYPE
)
2873 error ("field %q+D invalidly declared function type", x
);
2874 type
= build_pointer_type (type
);
2875 TREE_TYPE (x
) = type
;
2877 else if (TREE_CODE (type
) == METHOD_TYPE
)
2879 error ("field %q+D invalidly declared method type", x
);
2880 type
= build_pointer_type (type
);
2881 TREE_TYPE (x
) = type
;
2884 if (type
== error_mark_node
)
2887 if (TREE_CODE (x
) == CONST_DECL
|| TREE_CODE (x
) == VAR_DECL
)
2890 /* Now it can only be a FIELD_DECL. */
2892 if (TREE_PRIVATE (x
) || TREE_PROTECTED (x
))
2893 CLASSTYPE_NON_AGGREGATE (t
) = 1;
2895 /* If this is of reference type, check if it needs an init.
2896 Also do a little ANSI jig if necessary. */
2897 if (TREE_CODE (type
) == REFERENCE_TYPE
)
2899 CLASSTYPE_NON_POD_P (t
) = 1;
2900 if (DECL_INITIAL (x
) == NULL_TREE
)
2901 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t
, 1);
2903 /* ARM $12.6.2: [A member initializer list] (or, for an
2904 aggregate, initialization by a brace-enclosed list) is the
2905 only way to initialize nonstatic const and reference
2907 TYPE_HAS_COMPLEX_ASSIGN_REF (t
) = 1;
2909 if (! TYPE_HAS_CONSTRUCTOR (t
) && CLASSTYPE_NON_AGGREGATE (t
)
2911 warning (OPT_Wextra
, "non-static reference %q+#D in class without a constructor", x
);
2914 type
= strip_array_types (type
);
2916 if (TYPE_PACKED (t
))
2918 if (!pod_type_p (type
) && !TYPE_PACKED (type
))
2922 "ignoring packed attribute because of unpacked non-POD field %q+#D",
2926 else if (TYPE_ALIGN (TREE_TYPE (x
)) > BITS_PER_UNIT
)
2927 DECL_PACKED (x
) = 1;
2930 if (DECL_C_BIT_FIELD (x
) && integer_zerop (DECL_INITIAL (x
)))
2931 /* We don't treat zero-width bitfields as making a class
2936 /* The class is non-empty. */
2937 CLASSTYPE_EMPTY_P (t
) = 0;
2938 /* The class is not even nearly empty. */
2939 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
2940 /* If one of the data members contains an empty class,
2942 if (CLASS_TYPE_P (type
)
2943 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type
))
2944 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 1;
2947 /* This is used by -Weffc++ (see below). Warn only for pointers
2948 to members which might hold dynamic memory. So do not warn
2949 for pointers to functions or pointers to members. */
2950 if (TYPE_PTR_P (type
)
2951 && !TYPE_PTRFN_P (type
)
2952 && !TYPE_PTR_TO_MEMBER_P (type
))
2953 has_pointers
= true;
2955 if (CLASS_TYPE_P (type
))
2957 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type
))
2958 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t
, 1);
2959 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type
))
2960 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
, 1);
2963 if (DECL_MUTABLE_P (x
) || TYPE_HAS_MUTABLE_P (type
))
2964 CLASSTYPE_HAS_MUTABLE (t
) = 1;
2966 if (! pod_type_p (type
))
2967 /* DR 148 now allows pointers to members (which are POD themselves),
2968 to be allowed in POD structs. */
2969 CLASSTYPE_NON_POD_P (t
) = 1;
2971 if (! zero_init_p (type
))
2972 CLASSTYPE_NON_ZERO_INIT_P (t
) = 1;
2974 /* If any field is const, the structure type is pseudo-const. */
2975 if (CP_TYPE_CONST_P (type
))
2977 C_TYPE_FIELDS_READONLY (t
) = 1;
2978 if (DECL_INITIAL (x
) == NULL_TREE
)
2979 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
, 1);
2981 /* ARM $12.6.2: [A member initializer list] (or, for an
2982 aggregate, initialization by a brace-enclosed list) is the
2983 only way to initialize nonstatic const and reference
2985 TYPE_HAS_COMPLEX_ASSIGN_REF (t
) = 1;
2987 if (! TYPE_HAS_CONSTRUCTOR (t
) && CLASSTYPE_NON_AGGREGATE (t
)
2989 warning (OPT_Wextra
, "non-static const member %q+#D in class without a constructor", x
);
2991 /* A field that is pseudo-const makes the structure likewise. */
2992 else if (CLASS_TYPE_P (type
))
2994 C_TYPE_FIELDS_READONLY (t
) |= C_TYPE_FIELDS_READONLY (type
);
2995 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
,
2996 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
)
2997 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type
));
3000 /* Core issue 80: A nonstatic data member is required to have a
3001 different name from the class iff the class has a
3002 user-defined constructor. */
3003 if (constructor_name_p (DECL_NAME (x
), t
) && TYPE_HAS_CONSTRUCTOR (t
))
3004 pedwarn ("field %q+#D with same name as class", x
);
3006 /* We set DECL_C_BIT_FIELD in grokbitfield.
3007 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3008 if (DECL_C_BIT_FIELD (x
))
3009 check_bitfield_decl (x
);
3011 check_field_decl (x
, t
,
3012 cant_have_const_ctor_p
,
3014 &any_default_members
);
3017 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3018 it should also define a copy constructor and an assignment operator to
3019 implement the correct copy semantic (deep vs shallow, etc.). As it is
3020 not feasible to check whether the constructors do allocate dynamic memory
3021 and store it within members, we approximate the warning like this:
3023 -- Warn only if there are members which are pointers
3024 -- Warn only if there is a non-trivial constructor (otherwise,
3025 there cannot be memory allocated).
3026 -- Warn only if there is a non-trivial destructor. We assume that the
3027 user at least implemented the cleanup correctly, and a destructor
3028 is needed to free dynamic memory.
3030 This seems enough for practical purposes. */
3033 && TYPE_HAS_CONSTRUCTOR (t
)
3034 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
3035 && !(TYPE_HAS_INIT_REF (t
) && TYPE_HAS_ASSIGN_REF (t
)))
3037 warning (OPT_Weffc__
, "%q#T has pointer data members", t
);
3039 if (! TYPE_HAS_INIT_REF (t
))
3041 warning (OPT_Weffc__
,
3042 " but does not override %<%T(const %T&)%>", t
, t
);
3043 if (!TYPE_HAS_ASSIGN_REF (t
))
3044 warning (OPT_Weffc__
, " or %<operator=(const %T&)%>", t
);
3046 else if (! TYPE_HAS_ASSIGN_REF (t
))
3047 warning (OPT_Weffc__
,
3048 " but does not override %<operator=(const %T&)%>", t
);
3051 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3053 TYPE_PACKED (t
) = 0;
3055 /* Check anonymous struct/anonymous union fields. */
3056 finish_struct_anon (t
);
3058 /* We've built up the list of access declarations in reverse order.
3060 *access_decls
= nreverse (*access_decls
);
3063 /* If TYPE is an empty class type, records its OFFSET in the table of
3067 record_subobject_offset (tree type
, tree offset
, splay_tree offsets
)
3071 if (!is_empty_class (type
))
3074 /* Record the location of this empty object in OFFSETS. */
3075 n
= splay_tree_lookup (offsets
, (splay_tree_key
) offset
);
3077 n
= splay_tree_insert (offsets
,
3078 (splay_tree_key
) offset
,
3079 (splay_tree_value
) NULL_TREE
);
3080 n
->value
= ((splay_tree_value
)
3081 tree_cons (NULL_TREE
,
3088 /* Returns nonzero if TYPE is an empty class type and there is
3089 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3092 check_subobject_offset (tree type
, tree offset
, splay_tree offsets
)
3097 if (!is_empty_class (type
))
3100 /* Record the location of this empty object in OFFSETS. */
3101 n
= splay_tree_lookup (offsets
, (splay_tree_key
) offset
);
3105 for (t
= (tree
) n
->value
; t
; t
= TREE_CHAIN (t
))
3106 if (same_type_p (TREE_VALUE (t
), type
))
3112 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3113 F for every subobject, passing it the type, offset, and table of
3114 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3117 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3118 than MAX_OFFSET will not be walked.
3120 If F returns a nonzero value, the traversal ceases, and that value
3121 is returned. Otherwise, returns zero. */
3124 walk_subobject_offsets (tree type
,
3125 subobject_offset_fn f
,
3132 tree type_binfo
= NULL_TREE
;
3134 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3136 if (max_offset
&& INT_CST_LT (max_offset
, offset
))
3139 if (type
== error_mark_node
)
3144 if (abi_version_at_least (2))
3146 type
= BINFO_TYPE (type
);
3149 if (CLASS_TYPE_P (type
))
3155 /* Avoid recursing into objects that are not interesting. */
3156 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type
))
3159 /* Record the location of TYPE. */
3160 r
= (*f
) (type
, offset
, offsets
);
3164 /* Iterate through the direct base classes of TYPE. */
3166 type_binfo
= TYPE_BINFO (type
);
3167 for (i
= 0; BINFO_BASE_ITERATE (type_binfo
, i
, binfo
); i
++)
3171 if (abi_version_at_least (2)
3172 && BINFO_VIRTUAL_P (binfo
))
3176 && BINFO_VIRTUAL_P (binfo
)
3177 && !BINFO_PRIMARY_P (binfo
))
3180 if (!abi_version_at_least (2))
3181 binfo_offset
= size_binop (PLUS_EXPR
,
3183 BINFO_OFFSET (binfo
));
3187 /* We cannot rely on BINFO_OFFSET being set for the base
3188 class yet, but the offsets for direct non-virtual
3189 bases can be calculated by going back to the TYPE. */
3190 orig_binfo
= BINFO_BASE_BINFO (TYPE_BINFO (type
), i
);
3191 binfo_offset
= size_binop (PLUS_EXPR
,
3193 BINFO_OFFSET (orig_binfo
));
3196 r
= walk_subobject_offsets (binfo
,
3201 (abi_version_at_least (2)
3202 ? /*vbases_p=*/0 : vbases_p
));
3207 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type
))
3210 VEC(tree
,gc
) *vbases
;
3212 /* Iterate through the virtual base classes of TYPE. In G++
3213 3.2, we included virtual bases in the direct base class
3214 loop above, which results in incorrect results; the
3215 correct offsets for virtual bases are only known when
3216 working with the most derived type. */
3218 for (vbases
= CLASSTYPE_VBASECLASSES (type
), ix
= 0;
3219 VEC_iterate (tree
, vbases
, ix
, binfo
); ix
++)
3221 r
= walk_subobject_offsets (binfo
,
3223 size_binop (PLUS_EXPR
,
3225 BINFO_OFFSET (binfo
)),
3234 /* We still have to walk the primary base, if it is
3235 virtual. (If it is non-virtual, then it was walked
3237 tree vbase
= get_primary_binfo (type_binfo
);
3239 if (vbase
&& BINFO_VIRTUAL_P (vbase
)
3240 && BINFO_PRIMARY_P (vbase
)
3241 && BINFO_INHERITANCE_CHAIN (vbase
) == type_binfo
)
3243 r
= (walk_subobject_offsets
3245 offsets
, max_offset
, /*vbases_p=*/0));
3252 /* Iterate through the fields of TYPE. */
3253 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
3254 if (TREE_CODE (field
) == FIELD_DECL
&& !DECL_ARTIFICIAL (field
))
3258 if (abi_version_at_least (2))
3259 field_offset
= byte_position (field
);
3261 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3262 field_offset
= DECL_FIELD_OFFSET (field
);
3264 r
= walk_subobject_offsets (TREE_TYPE (field
),
3266 size_binop (PLUS_EXPR
,
3276 else if (TREE_CODE (type
) == ARRAY_TYPE
)
3278 tree element_type
= strip_array_types (type
);
3279 tree domain
= TYPE_DOMAIN (type
);
3282 /* Avoid recursing into objects that are not interesting. */
3283 if (!CLASS_TYPE_P (element_type
)
3284 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type
))
3287 /* Step through each of the elements in the array. */
3288 for (index
= size_zero_node
;
3289 /* G++ 3.2 had an off-by-one error here. */
3290 (abi_version_at_least (2)
3291 ? !INT_CST_LT (TYPE_MAX_VALUE (domain
), index
)
3292 : INT_CST_LT (index
, TYPE_MAX_VALUE (domain
)));
3293 index
= size_binop (PLUS_EXPR
, index
, size_one_node
))
3295 r
= walk_subobject_offsets (TREE_TYPE (type
),
3303 offset
= size_binop (PLUS_EXPR
, offset
,
3304 TYPE_SIZE_UNIT (TREE_TYPE (type
)));
3305 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3306 there's no point in iterating through the remaining
3307 elements of the array. */
3308 if (max_offset
&& INT_CST_LT (max_offset
, offset
))
3316 /* Record all of the empty subobjects of TYPE (either a type or a
3317 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3318 is being placed at OFFSET; otherwise, it is a base class that is
3319 being placed at OFFSET. */
3322 record_subobject_offsets (tree type
,
3325 bool is_data_member
)
3328 /* If recording subobjects for a non-static data member or a
3329 non-empty base class , we do not need to record offsets beyond
3330 the size of the biggest empty class. Additional data members
3331 will go at the end of the class. Additional base classes will go
3332 either at offset zero (if empty, in which case they cannot
3333 overlap with offsets past the size of the biggest empty class) or
3334 at the end of the class.
3336 However, if we are placing an empty base class, then we must record
3337 all offsets, as either the empty class is at offset zero (where
3338 other empty classes might later be placed) or at the end of the
3339 class (where other objects might then be placed, so other empty
3340 subobjects might later overlap). */
3342 || !is_empty_class (BINFO_TYPE (type
)))
3343 max_offset
= sizeof_biggest_empty_class
;
3345 max_offset
= NULL_TREE
;
3346 walk_subobject_offsets (type
, record_subobject_offset
, offset
,
3347 offsets
, max_offset
, is_data_member
);
3350 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3351 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3352 virtual bases of TYPE are examined. */
3355 layout_conflict_p (tree type
,
3360 splay_tree_node max_node
;
3362 /* Get the node in OFFSETS that indicates the maximum offset where
3363 an empty subobject is located. */
3364 max_node
= splay_tree_max (offsets
);
3365 /* If there aren't any empty subobjects, then there's no point in
3366 performing this check. */
3370 return walk_subobject_offsets (type
, check_subobject_offset
, offset
,
3371 offsets
, (tree
) (max_node
->key
),
3375 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3376 non-static data member of the type indicated by RLI. BINFO is the
3377 binfo corresponding to the base subobject, OFFSETS maps offsets to
3378 types already located at those offsets. This function determines
3379 the position of the DECL. */
3382 layout_nonempty_base_or_field (record_layout_info rli
,
3387 tree offset
= NULL_TREE
;
3393 /* For the purposes of determining layout conflicts, we want to
3394 use the class type of BINFO; TREE_TYPE (DECL) will be the
3395 CLASSTYPE_AS_BASE version, which does not contain entries for
3396 zero-sized bases. */
3397 type
= TREE_TYPE (binfo
);
3402 type
= TREE_TYPE (decl
);
3406 /* Try to place the field. It may take more than one try if we have
3407 a hard time placing the field without putting two objects of the
3408 same type at the same address. */
3411 struct record_layout_info_s old_rli
= *rli
;
3413 /* Place this field. */
3414 place_field (rli
, decl
);
3415 offset
= byte_position (decl
);
3417 /* We have to check to see whether or not there is already
3418 something of the same type at the offset we're about to use.
3419 For example, consider:
3422 struct T : public S { int i; };
3423 struct U : public S, public T {};
3425 Here, we put S at offset zero in U. Then, we can't put T at
3426 offset zero -- its S component would be at the same address
3427 as the S we already allocated. So, we have to skip ahead.
3428 Since all data members, including those whose type is an
3429 empty class, have nonzero size, any overlap can happen only
3430 with a direct or indirect base-class -- it can't happen with
3432 /* In a union, overlap is permitted; all members are placed at
3434 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
3436 /* G++ 3.2 did not check for overlaps when placing a non-empty
3438 if (!abi_version_at_least (2) && binfo
&& BINFO_VIRTUAL_P (binfo
))
3440 if (layout_conflict_p (field_p
? type
: binfo
, offset
,
3443 /* Strip off the size allocated to this field. That puts us
3444 at the first place we could have put the field with
3445 proper alignment. */
3448 /* Bump up by the alignment required for the type. */
3450 = size_binop (PLUS_EXPR
, rli
->bitpos
,
3452 ? CLASSTYPE_ALIGN (type
)
3453 : TYPE_ALIGN (type
)));
3454 normalize_rli (rli
);
3457 /* There was no conflict. We're done laying out this field. */
3461 /* Now that we know where it will be placed, update its
3463 if (binfo
&& CLASS_TYPE_P (BINFO_TYPE (binfo
)))
3464 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3465 this point because their BINFO_OFFSET is copied from another
3466 hierarchy. Therefore, we may not need to add the entire
3468 propagate_binfo_offsets (binfo
,
3469 size_diffop (convert (ssizetype
, offset
),
3471 BINFO_OFFSET (binfo
))));
3474 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3477 empty_base_at_nonzero_offset_p (tree type
,
3479 splay_tree offsets ATTRIBUTE_UNUSED
)
3481 return is_empty_class (type
) && !integer_zerop (offset
);
3484 /* Layout the empty base BINFO. EOC indicates the byte currently just
3485 past the end of the class, and should be correctly aligned for a
3486 class of the type indicated by BINFO; OFFSETS gives the offsets of
3487 the empty bases allocated so far. T is the most derived
3488 type. Return nonzero iff we added it at the end. */
3491 layout_empty_base (tree binfo
, tree eoc
, splay_tree offsets
)
3494 tree basetype
= BINFO_TYPE (binfo
);
3497 /* This routine should only be used for empty classes. */
3498 gcc_assert (is_empty_class (basetype
));
3499 alignment
= ssize_int (CLASSTYPE_ALIGN_UNIT (basetype
));
3501 if (!integer_zerop (BINFO_OFFSET (binfo
)))
3503 if (abi_version_at_least (2))
3504 propagate_binfo_offsets
3505 (binfo
, size_diffop (size_zero_node
, BINFO_OFFSET (binfo
)));
3508 "offset of empty base %qT may not be ABI-compliant and may"
3509 "change in a future version of GCC",
3510 BINFO_TYPE (binfo
));
3513 /* This is an empty base class. We first try to put it at offset
3515 if (layout_conflict_p (binfo
,
3516 BINFO_OFFSET (binfo
),
3520 /* That didn't work. Now, we move forward from the next
3521 available spot in the class. */
3523 propagate_binfo_offsets (binfo
, convert (ssizetype
, eoc
));
3526 if (!layout_conflict_p (binfo
,
3527 BINFO_OFFSET (binfo
),
3530 /* We finally found a spot where there's no overlap. */
3533 /* There's overlap here, too. Bump along to the next spot. */
3534 propagate_binfo_offsets (binfo
, alignment
);
3540 /* Layout the base given by BINFO in the class indicated by RLI.
3541 *BASE_ALIGN is a running maximum of the alignments of
3542 any base class. OFFSETS gives the location of empty base
3543 subobjects. T is the most derived type. Return nonzero if the new
3544 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3545 *NEXT_FIELD, unless BINFO is for an empty base class.
3547 Returns the location at which the next field should be inserted. */
3550 build_base_field (record_layout_info rli
, tree binfo
,
3551 splay_tree offsets
, tree
*next_field
)
3554 tree basetype
= BINFO_TYPE (binfo
);
3556 if (!COMPLETE_TYPE_P (basetype
))
3557 /* This error is now reported in xref_tag, thus giving better
3558 location information. */
3561 /* Place the base class. */
3562 if (!is_empty_class (basetype
))
3566 /* The containing class is non-empty because it has a non-empty
3568 CLASSTYPE_EMPTY_P (t
) = 0;
3570 /* Create the FIELD_DECL. */
3571 decl
= build_decl (FIELD_DECL
, NULL_TREE
, CLASSTYPE_AS_BASE (basetype
));
3572 DECL_ARTIFICIAL (decl
) = 1;
3573 DECL_IGNORED_P (decl
) = 1;
3574 DECL_FIELD_CONTEXT (decl
) = t
;
3575 DECL_SIZE (decl
) = CLASSTYPE_SIZE (basetype
);
3576 DECL_SIZE_UNIT (decl
) = CLASSTYPE_SIZE_UNIT (basetype
);
3577 DECL_ALIGN (decl
) = CLASSTYPE_ALIGN (basetype
);
3578 DECL_USER_ALIGN (decl
) = CLASSTYPE_USER_ALIGN (basetype
);
3579 DECL_MODE (decl
) = TYPE_MODE (basetype
);
3580 DECL_FIELD_IS_BASE (decl
) = 1;
3582 /* Try to place the field. It may take more than one try if we
3583 have a hard time placing the field without putting two
3584 objects of the same type at the same address. */
3585 layout_nonempty_base_or_field (rli
, decl
, binfo
, offsets
);
3586 /* Add the new FIELD_DECL to the list of fields for T. */
3587 TREE_CHAIN (decl
) = *next_field
;
3589 next_field
= &TREE_CHAIN (decl
);
3596 /* On some platforms (ARM), even empty classes will not be
3598 eoc
= round_up (rli_size_unit_so_far (rli
),
3599 CLASSTYPE_ALIGN_UNIT (basetype
));
3600 atend
= layout_empty_base (binfo
, eoc
, offsets
);
3601 /* A nearly-empty class "has no proper base class that is empty,
3602 not morally virtual, and at an offset other than zero." */
3603 if (!BINFO_VIRTUAL_P (binfo
) && CLASSTYPE_NEARLY_EMPTY_P (t
))
3606 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
3607 /* The check above (used in G++ 3.2) is insufficient because
3608 an empty class placed at offset zero might itself have an
3609 empty base at a nonzero offset. */
3610 else if (walk_subobject_offsets (basetype
,
3611 empty_base_at_nonzero_offset_p
,
3614 /*max_offset=*/NULL_TREE
,
3617 if (abi_version_at_least (2))
3618 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
3621 "class %qT will be considered nearly empty in a "
3622 "future version of GCC", t
);
3626 /* We do not create a FIELD_DECL for empty base classes because
3627 it might overlap some other field. We want to be able to
3628 create CONSTRUCTORs for the class by iterating over the
3629 FIELD_DECLs, and the back end does not handle overlapping
3632 /* An empty virtual base causes a class to be non-empty
3633 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3634 here because that was already done when the virtual table
3635 pointer was created. */
3638 /* Record the offsets of BINFO and its base subobjects. */
3639 record_subobject_offsets (binfo
,
3640 BINFO_OFFSET (binfo
),
3642 /*is_data_member=*/false);
3647 /* Layout all of the non-virtual base classes. Record empty
3648 subobjects in OFFSETS. T is the most derived type. Return nonzero
3649 if the type cannot be nearly empty. The fields created
3650 corresponding to the base classes will be inserted at
3654 build_base_fields (record_layout_info rli
,
3655 splay_tree offsets
, tree
*next_field
)
3657 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3660 int n_baseclasses
= BINFO_N_BASE_BINFOS (TYPE_BINFO (t
));
3663 /* The primary base class is always allocated first. */
3664 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
3665 next_field
= build_base_field (rli
, CLASSTYPE_PRIMARY_BINFO (t
),
3666 offsets
, next_field
);
3668 /* Now allocate the rest of the bases. */
3669 for (i
= 0; i
< n_baseclasses
; ++i
)
3673 base_binfo
= BINFO_BASE_BINFO (TYPE_BINFO (t
), i
);
3675 /* The primary base was already allocated above, so we don't
3676 need to allocate it again here. */
3677 if (base_binfo
== CLASSTYPE_PRIMARY_BINFO (t
))
3680 /* Virtual bases are added at the end (a primary virtual base
3681 will have already been added). */
3682 if (BINFO_VIRTUAL_P (base_binfo
))
3685 next_field
= build_base_field (rli
, base_binfo
,
3686 offsets
, next_field
);
3690 /* Go through the TYPE_METHODS of T issuing any appropriate
3691 diagnostics, figuring out which methods override which other
3692 methods, and so forth. */
3695 check_methods (tree t
)
3699 for (x
= TYPE_METHODS (t
); x
; x
= TREE_CHAIN (x
))
3701 check_for_override (x
, t
);
3702 if (DECL_PURE_VIRTUAL_P (x
) && ! DECL_VINDEX (x
))
3703 error ("initializer specified for non-virtual method %q+D", x
);
3704 /* The name of the field is the original field name
3705 Save this in auxiliary field for later overloading. */
3706 if (DECL_VINDEX (x
))
3708 TYPE_POLYMORPHIC_P (t
) = 1;
3709 if (DECL_PURE_VIRTUAL_P (x
))
3710 VEC_safe_push (tree
, gc
, CLASSTYPE_PURE_VIRTUALS (t
), x
);
3712 /* All user-declared destructors are non-trivial. */
3713 if (DECL_DESTRUCTOR_P (x
))
3714 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
) = 1;
3718 /* FN is a constructor or destructor. Clone the declaration to create
3719 a specialized in-charge or not-in-charge version, as indicated by
3723 build_clone (tree fn
, tree name
)
3728 /* Copy the function. */
3729 clone
= copy_decl (fn
);
3730 /* Remember where this function came from. */
3731 DECL_CLONED_FUNCTION (clone
) = fn
;
3732 DECL_ABSTRACT_ORIGIN (clone
) = fn
;
3733 /* Reset the function name. */
3734 DECL_NAME (clone
) = name
;
3735 SET_DECL_ASSEMBLER_NAME (clone
, NULL_TREE
);
3736 /* There's no pending inline data for this function. */
3737 DECL_PENDING_INLINE_INFO (clone
) = NULL
;
3738 DECL_PENDING_INLINE_P (clone
) = 0;
3739 /* And it hasn't yet been deferred. */
3740 DECL_DEFERRED_FN (clone
) = 0;
3742 /* The base-class destructor is not virtual. */
3743 if (name
== base_dtor_identifier
)
3745 DECL_VIRTUAL_P (clone
) = 0;
3746 if (TREE_CODE (clone
) != TEMPLATE_DECL
)
3747 DECL_VINDEX (clone
) = NULL_TREE
;
3750 /* If there was an in-charge parameter, drop it from the function
3752 if (DECL_HAS_IN_CHARGE_PARM_P (clone
))
3758 exceptions
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone
));
3759 basetype
= TYPE_METHOD_BASETYPE (TREE_TYPE (clone
));
3760 parmtypes
= TYPE_ARG_TYPES (TREE_TYPE (clone
));
3761 /* Skip the `this' parameter. */
3762 parmtypes
= TREE_CHAIN (parmtypes
);
3763 /* Skip the in-charge parameter. */
3764 parmtypes
= TREE_CHAIN (parmtypes
);
3765 /* And the VTT parm, in a complete [cd]tor. */
3766 if (DECL_HAS_VTT_PARM_P (fn
)
3767 && ! DECL_NEEDS_VTT_PARM_P (clone
))
3768 parmtypes
= TREE_CHAIN (parmtypes
);
3769 /* If this is subobject constructor or destructor, add the vtt
3772 = build_method_type_directly (basetype
,
3773 TREE_TYPE (TREE_TYPE (clone
)),
3776 TREE_TYPE (clone
) = build_exception_variant (TREE_TYPE (clone
),
3779 = cp_build_type_attribute_variant (TREE_TYPE (clone
),
3780 TYPE_ATTRIBUTES (TREE_TYPE (fn
)));
3783 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3784 aren't function parameters; those are the template parameters. */
3785 if (TREE_CODE (clone
) != TEMPLATE_DECL
)
3787 DECL_ARGUMENTS (clone
) = copy_list (DECL_ARGUMENTS (clone
));
3788 /* Remove the in-charge parameter. */
3789 if (DECL_HAS_IN_CHARGE_PARM_P (clone
))
3791 TREE_CHAIN (DECL_ARGUMENTS (clone
))
3792 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone
)));
3793 DECL_HAS_IN_CHARGE_PARM_P (clone
) = 0;
3795 /* And the VTT parm, in a complete [cd]tor. */
3796 if (DECL_HAS_VTT_PARM_P (fn
))
3798 if (DECL_NEEDS_VTT_PARM_P (clone
))
3799 DECL_HAS_VTT_PARM_P (clone
) = 1;
3802 TREE_CHAIN (DECL_ARGUMENTS (clone
))
3803 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone
)));
3804 DECL_HAS_VTT_PARM_P (clone
) = 0;
3808 for (parms
= DECL_ARGUMENTS (clone
); parms
; parms
= TREE_CHAIN (parms
))
3810 DECL_CONTEXT (parms
) = clone
;
3811 cxx_dup_lang_specific_decl (parms
);
3815 /* Create the RTL for this function. */
3816 SET_DECL_RTL (clone
, NULL_RTX
);
3817 rest_of_decl_compilation (clone
, /*top_level=*/1, at_eof
);
3819 /* Make it easy to find the CLONE given the FN. */
3820 TREE_CHAIN (clone
) = TREE_CHAIN (fn
);
3821 TREE_CHAIN (fn
) = clone
;
3823 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3824 if (TREE_CODE (clone
) == TEMPLATE_DECL
)
3828 DECL_TEMPLATE_RESULT (clone
)
3829 = build_clone (DECL_TEMPLATE_RESULT (clone
), name
);
3830 result
= DECL_TEMPLATE_RESULT (clone
);
3831 DECL_TEMPLATE_INFO (result
) = copy_node (DECL_TEMPLATE_INFO (result
));
3832 DECL_TI_TEMPLATE (result
) = clone
;
3835 note_decl_for_pch (clone
);
3840 /* Produce declarations for all appropriate clones of FN. If
3841 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3842 CLASTYPE_METHOD_VEC as well. */
3845 clone_function_decl (tree fn
, int update_method_vec_p
)
3849 /* Avoid inappropriate cloning. */
3851 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn
)))
3854 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn
))
3856 /* For each constructor, we need two variants: an in-charge version
3857 and a not-in-charge version. */
3858 clone
= build_clone (fn
, complete_ctor_identifier
);
3859 if (update_method_vec_p
)
3860 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3861 clone
= build_clone (fn
, base_ctor_identifier
);
3862 if (update_method_vec_p
)
3863 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3867 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn
));
3869 /* For each destructor, we need three variants: an in-charge
3870 version, a not-in-charge version, and an in-charge deleting
3871 version. We clone the deleting version first because that
3872 means it will go second on the TYPE_METHODS list -- and that
3873 corresponds to the correct layout order in the virtual
3876 For a non-virtual destructor, we do not build a deleting
3878 if (DECL_VIRTUAL_P (fn
))
3880 clone
= build_clone (fn
, deleting_dtor_identifier
);
3881 if (update_method_vec_p
)
3882 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3884 clone
= build_clone (fn
, complete_dtor_identifier
);
3885 if (update_method_vec_p
)
3886 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3887 clone
= build_clone (fn
, base_dtor_identifier
);
3888 if (update_method_vec_p
)
3889 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
3892 /* Note that this is an abstract function that is never emitted. */
3893 DECL_ABSTRACT (fn
) = 1;
3896 /* DECL is an in charge constructor, which is being defined. This will
3897 have had an in class declaration, from whence clones were
3898 declared. An out-of-class definition can specify additional default
3899 arguments. As it is the clones that are involved in overload
3900 resolution, we must propagate the information from the DECL to its
3904 adjust_clone_args (tree decl
)
3908 for (clone
= TREE_CHAIN (decl
); clone
&& DECL_CLONED_FUNCTION (clone
);
3909 clone
= TREE_CHAIN (clone
))
3911 tree orig_clone_parms
= TYPE_ARG_TYPES (TREE_TYPE (clone
));
3912 tree orig_decl_parms
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
3913 tree decl_parms
, clone_parms
;
3915 clone_parms
= orig_clone_parms
;
3917 /* Skip the 'this' parameter. */
3918 orig_clone_parms
= TREE_CHAIN (orig_clone_parms
);
3919 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
3921 if (DECL_HAS_IN_CHARGE_PARM_P (decl
))
3922 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
3923 if (DECL_HAS_VTT_PARM_P (decl
))
3924 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
3926 clone_parms
= orig_clone_parms
;
3927 if (DECL_HAS_VTT_PARM_P (clone
))
3928 clone_parms
= TREE_CHAIN (clone_parms
);
3930 for (decl_parms
= orig_decl_parms
; decl_parms
;
3931 decl_parms
= TREE_CHAIN (decl_parms
),
3932 clone_parms
= TREE_CHAIN (clone_parms
))
3934 gcc_assert (same_type_p (TREE_TYPE (decl_parms
),
3935 TREE_TYPE (clone_parms
)));
3937 if (TREE_PURPOSE (decl_parms
) && !TREE_PURPOSE (clone_parms
))
3939 /* A default parameter has been added. Adjust the
3940 clone's parameters. */
3941 tree exceptions
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone
));
3942 tree basetype
= TYPE_METHOD_BASETYPE (TREE_TYPE (clone
));
3945 clone_parms
= orig_decl_parms
;
3947 if (DECL_HAS_VTT_PARM_P (clone
))
3949 clone_parms
= tree_cons (TREE_PURPOSE (orig_clone_parms
),
3950 TREE_VALUE (orig_clone_parms
),
3952 TREE_TYPE (clone_parms
) = TREE_TYPE (orig_clone_parms
);
3954 type
= build_method_type_directly (basetype
,
3955 TREE_TYPE (TREE_TYPE (clone
)),
3958 type
= build_exception_variant (type
, exceptions
);
3959 TREE_TYPE (clone
) = type
;
3961 clone_parms
= NULL_TREE
;
3965 gcc_assert (!clone_parms
);
3969 /* For each of the constructors and destructors in T, create an
3970 in-charge and not-in-charge variant. */
3973 clone_constructors_and_destructors (tree t
)
3977 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
3979 if (!CLASSTYPE_METHOD_VEC (t
))
3982 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
3983 clone_function_decl (OVL_CURRENT (fns
), /*update_method_vec_p=*/1);
3984 for (fns
= CLASSTYPE_DESTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
3985 clone_function_decl (OVL_CURRENT (fns
), /*update_method_vec_p=*/1);
3988 /* Remove all zero-width bit-fields from T. */
3991 remove_zero_width_bit_fields (tree t
)
3995 fieldsp
= &TYPE_FIELDS (t
);
3998 if (TREE_CODE (*fieldsp
) == FIELD_DECL
3999 && DECL_C_BIT_FIELD (*fieldsp
)
4000 && DECL_INITIAL (*fieldsp
))
4001 *fieldsp
= TREE_CHAIN (*fieldsp
);
4003 fieldsp
= &TREE_CHAIN (*fieldsp
);
4007 /* Returns TRUE iff we need a cookie when dynamically allocating an
4008 array whose elements have the indicated class TYPE. */
4011 type_requires_array_cookie (tree type
)
4014 bool has_two_argument_delete_p
= false;
4016 gcc_assert (CLASS_TYPE_P (type
));
4018 /* If there's a non-trivial destructor, we need a cookie. In order
4019 to iterate through the array calling the destructor for each
4020 element, we'll have to know how many elements there are. */
4021 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
4024 /* If the usual deallocation function is a two-argument whose second
4025 argument is of type `size_t', then we have to pass the size of
4026 the array to the deallocation function, so we will need to store
4028 fns
= lookup_fnfields (TYPE_BINFO (type
),
4029 ansi_opname (VEC_DELETE_EXPR
),
4031 /* If there are no `operator []' members, or the lookup is
4032 ambiguous, then we don't need a cookie. */
4033 if (!fns
|| fns
== error_mark_node
)
4035 /* Loop through all of the functions. */
4036 for (fns
= BASELINK_FUNCTIONS (fns
); fns
; fns
= OVL_NEXT (fns
))
4041 /* Select the current function. */
4042 fn
= OVL_CURRENT (fns
);
4043 /* See if this function is a one-argument delete function. If
4044 it is, then it will be the usual deallocation function. */
4045 second_parm
= TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn
)));
4046 if (second_parm
== void_list_node
)
4048 /* Otherwise, if we have a two-argument function and the second
4049 argument is `size_t', it will be the usual deallocation
4050 function -- unless there is one-argument function, too. */
4051 if (TREE_CHAIN (second_parm
) == void_list_node
4052 && same_type_p (TREE_VALUE (second_parm
), size_type_node
))
4053 has_two_argument_delete_p
= true;
4056 return has_two_argument_delete_p
;
4059 /* Check the validity of the bases and members declared in T. Add any
4060 implicitly-generated functions (like copy-constructors and
4061 assignment operators). Compute various flag bits (like
4062 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4063 level: i.e., independently of the ABI in use. */
4066 check_bases_and_members (tree t
)
4068 /* Nonzero if the implicitly generated copy constructor should take
4069 a non-const reference argument. */
4070 int cant_have_const_ctor
;
4071 /* Nonzero if the implicitly generated assignment operator
4072 should take a non-const reference argument. */
4073 int no_const_asn_ref
;
4076 /* By default, we use const reference arguments and generate default
4078 cant_have_const_ctor
= 0;
4079 no_const_asn_ref
= 0;
4081 /* Check all the base-classes. */
4082 check_bases (t
, &cant_have_const_ctor
,
4085 /* Check all the method declarations. */
4088 /* Check all the data member declarations. We cannot call
4089 check_field_decls until we have called check_bases check_methods,
4090 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4091 being set appropriately. */
4092 check_field_decls (t
, &access_decls
,
4093 &cant_have_const_ctor
,
4096 /* A nearly-empty class has to be vptr-containing; a nearly empty
4097 class contains just a vptr. */
4098 if (!TYPE_CONTAINS_VPTR_P (t
))
4099 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
4101 /* Do some bookkeeping that will guide the generation of implicitly
4102 declared member functions. */
4103 TYPE_HAS_COMPLEX_INIT_REF (t
)
4104 |= (TYPE_HAS_INIT_REF (t
) || TYPE_CONTAINS_VPTR_P (t
));
4105 TYPE_NEEDS_CONSTRUCTING (t
)
4106 |= (TYPE_HAS_CONSTRUCTOR (t
) || TYPE_CONTAINS_VPTR_P (t
));
4107 CLASSTYPE_NON_AGGREGATE (t
)
4108 |= (TYPE_HAS_CONSTRUCTOR (t
) || TYPE_POLYMORPHIC_P (t
));
4109 CLASSTYPE_NON_POD_P (t
)
4110 |= (CLASSTYPE_NON_AGGREGATE (t
)
4111 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
4112 || TYPE_HAS_ASSIGN_REF (t
));
4113 TYPE_HAS_COMPLEX_ASSIGN_REF (t
)
4114 |= TYPE_HAS_ASSIGN_REF (t
) || TYPE_CONTAINS_VPTR_P (t
);
4116 /* Synthesize any needed methods. */
4117 add_implicitly_declared_members (t
,
4118 cant_have_const_ctor
,
4121 /* Create the in-charge and not-in-charge variants of constructors
4123 clone_constructors_and_destructors (t
);
4125 /* Process the using-declarations. */
4126 for (; access_decls
; access_decls
= TREE_CHAIN (access_decls
))
4127 handle_using_decl (TREE_VALUE (access_decls
), t
);
4129 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4130 finish_struct_methods (t
);
4132 /* Figure out whether or not we will need a cookie when dynamically
4133 allocating an array of this type. */
4134 TYPE_LANG_SPECIFIC (t
)->u
.c
.vec_new_uses_cookie
4135 = type_requires_array_cookie (t
);
4138 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4139 accordingly. If a new vfield was created (because T doesn't have a
4140 primary base class), then the newly created field is returned. It
4141 is not added to the TYPE_FIELDS list; it is the caller's
4142 responsibility to do that. Accumulate declared virtual functions
4146 create_vtable_ptr (tree t
, tree
* virtuals_p
)
4150 /* Collect the virtual functions declared in T. */
4151 for (fn
= TYPE_METHODS (t
); fn
; fn
= TREE_CHAIN (fn
))
4152 if (DECL_VINDEX (fn
) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn
)
4153 && TREE_CODE (DECL_VINDEX (fn
)) != INTEGER_CST
)
4155 tree new_virtual
= make_node (TREE_LIST
);
4157 BV_FN (new_virtual
) = fn
;
4158 BV_DELTA (new_virtual
) = integer_zero_node
;
4159 BV_VCALL_INDEX (new_virtual
) = NULL_TREE
;
4161 TREE_CHAIN (new_virtual
) = *virtuals_p
;
4162 *virtuals_p
= new_virtual
;
4165 /* If we couldn't find an appropriate base class, create a new field
4166 here. Even if there weren't any new virtual functions, we might need a
4167 new virtual function table if we're supposed to include vptrs in
4168 all classes that need them. */
4169 if (!TYPE_VFIELD (t
) && (*virtuals_p
|| TYPE_CONTAINS_VPTR_P (t
)))
4171 /* We build this decl with vtbl_ptr_type_node, which is a
4172 `vtable_entry_type*'. It might seem more precise to use
4173 `vtable_entry_type (*)[N]' where N is the number of virtual
4174 functions. However, that would require the vtable pointer in
4175 base classes to have a different type than the vtable pointer
4176 in derived classes. We could make that happen, but that
4177 still wouldn't solve all the problems. In particular, the
4178 type-based alias analysis code would decide that assignments
4179 to the base class vtable pointer can't alias assignments to
4180 the derived class vtable pointer, since they have different
4181 types. Thus, in a derived class destructor, where the base
4182 class constructor was inlined, we could generate bad code for
4183 setting up the vtable pointer.
4185 Therefore, we use one type for all vtable pointers. We still
4186 use a type-correct type; it's just doesn't indicate the array
4187 bounds. That's better than using `void*' or some such; it's
4188 cleaner, and it let's the alias analysis code know that these
4189 stores cannot alias stores to void*! */
4192 field
= build_decl (FIELD_DECL
, get_vfield_name (t
), vtbl_ptr_type_node
);
4193 DECL_VIRTUAL_P (field
) = 1;
4194 DECL_ARTIFICIAL (field
) = 1;
4195 DECL_FIELD_CONTEXT (field
) = t
;
4196 DECL_FCONTEXT (field
) = t
;
4198 TYPE_VFIELD (t
) = field
;
4200 /* This class is non-empty. */
4201 CLASSTYPE_EMPTY_P (t
) = 0;
4209 /* Fixup the inline function given by INFO now that the class is
4213 fixup_pending_inline (tree fn
)
4215 if (DECL_PENDING_INLINE_INFO (fn
))
4217 tree args
= DECL_ARGUMENTS (fn
);
4220 DECL_CONTEXT (args
) = fn
;
4221 args
= TREE_CHAIN (args
);
4226 /* Fixup the inline methods and friends in TYPE now that TYPE is
4230 fixup_inline_methods (tree type
)
4232 tree method
= TYPE_METHODS (type
);
4233 VEC(tree
,gc
) *friends
;
4236 if (method
&& TREE_CODE (method
) == TREE_VEC
)
4238 if (TREE_VEC_ELT (method
, 1))
4239 method
= TREE_VEC_ELT (method
, 1);
4240 else if (TREE_VEC_ELT (method
, 0))
4241 method
= TREE_VEC_ELT (method
, 0);
4243 method
= TREE_VEC_ELT (method
, 2);
4246 /* Do inline member functions. */
4247 for (; method
; method
= TREE_CHAIN (method
))
4248 fixup_pending_inline (method
);
4251 for (friends
= CLASSTYPE_INLINE_FRIENDS (type
), ix
= 0;
4252 VEC_iterate (tree
, friends
, ix
, method
); ix
++)
4253 fixup_pending_inline (method
);
4254 CLASSTYPE_INLINE_FRIENDS (type
) = NULL
;
4257 /* Add OFFSET to all base types of BINFO which is a base in the
4258 hierarchy dominated by T.
4260 OFFSET, which is a type offset, is number of bytes. */
4263 propagate_binfo_offsets (tree binfo
, tree offset
)
4269 /* Update BINFO's offset. */
4270 BINFO_OFFSET (binfo
)
4271 = convert (sizetype
,
4272 size_binop (PLUS_EXPR
,
4273 convert (ssizetype
, BINFO_OFFSET (binfo
)),
4276 /* Find the primary base class. */
4277 primary_binfo
= get_primary_binfo (binfo
);
4279 if (primary_binfo
&& BINFO_INHERITANCE_CHAIN (primary_binfo
) == binfo
)
4280 propagate_binfo_offsets (primary_binfo
, offset
);
4282 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4284 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
4286 /* Don't do the primary base twice. */
4287 if (base_binfo
== primary_binfo
)
4290 if (BINFO_VIRTUAL_P (base_binfo
))
4293 propagate_binfo_offsets (base_binfo
, offset
);
4297 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4298 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4299 empty subobjects of T. */
4302 layout_virtual_bases (record_layout_info rli
, splay_tree offsets
)
4306 bool first_vbase
= true;
4309 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t
)) == 0)
4312 if (!abi_version_at_least(2))
4314 /* In G++ 3.2, we incorrectly rounded the size before laying out
4315 the virtual bases. */
4316 finish_record_layout (rli
, /*free_p=*/false);
4317 #ifdef STRUCTURE_SIZE_BOUNDARY
4318 /* Packed structures don't need to have minimum size. */
4319 if (! TYPE_PACKED (t
))
4320 TYPE_ALIGN (t
) = MAX (TYPE_ALIGN (t
), (unsigned) STRUCTURE_SIZE_BOUNDARY
);
4322 rli
->offset
= TYPE_SIZE_UNIT (t
);
4323 rli
->bitpos
= bitsize_zero_node
;
4324 rli
->record_align
= TYPE_ALIGN (t
);
4327 /* Find the last field. The artificial fields created for virtual
4328 bases will go after the last extant field to date. */
4329 next_field
= &TYPE_FIELDS (t
);
4331 next_field
= &TREE_CHAIN (*next_field
);
4333 /* Go through the virtual bases, allocating space for each virtual
4334 base that is not already a primary base class. These are
4335 allocated in inheritance graph order. */
4336 for (vbase
= TYPE_BINFO (t
); vbase
; vbase
= TREE_CHAIN (vbase
))
4338 if (!BINFO_VIRTUAL_P (vbase
))
4341 if (!BINFO_PRIMARY_P (vbase
))
4343 tree basetype
= TREE_TYPE (vbase
);
4345 /* This virtual base is not a primary base of any class in the
4346 hierarchy, so we have to add space for it. */
4347 next_field
= build_base_field (rli
, vbase
,
4348 offsets
, next_field
);
4350 /* If the first virtual base might have been placed at a
4351 lower address, had we started from CLASSTYPE_SIZE, rather
4352 than TYPE_SIZE, issue a warning. There can be both false
4353 positives and false negatives from this warning in rare
4354 cases; to deal with all the possibilities would probably
4355 require performing both layout algorithms and comparing
4356 the results which is not particularly tractable. */
4360 (size_binop (CEIL_DIV_EXPR
,
4361 round_up (CLASSTYPE_SIZE (t
),
4362 CLASSTYPE_ALIGN (basetype
)),
4364 BINFO_OFFSET (vbase
))))
4366 "offset of virtual base %qT is not ABI-compliant and "
4367 "may change in a future version of GCC",
4370 first_vbase
= false;
4375 /* Returns the offset of the byte just past the end of the base class
4379 end_of_base (tree binfo
)
4383 if (is_empty_class (BINFO_TYPE (binfo
)))
4384 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4385 allocate some space for it. It cannot have virtual bases, so
4386 TYPE_SIZE_UNIT is fine. */
4387 size
= TYPE_SIZE_UNIT (BINFO_TYPE (binfo
));
4389 size
= CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo
));
4391 return size_binop (PLUS_EXPR
, BINFO_OFFSET (binfo
), size
);
4394 /* Returns the offset of the byte just past the end of the base class
4395 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4396 only non-virtual bases are included. */
4399 end_of_class (tree t
, int include_virtuals_p
)
4401 tree result
= size_zero_node
;
4402 VEC(tree
,gc
) *vbases
;
4408 for (binfo
= TYPE_BINFO (t
), i
= 0;
4409 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
4411 if (!include_virtuals_p
4412 && BINFO_VIRTUAL_P (base_binfo
)
4413 && (!BINFO_PRIMARY_P (base_binfo
)
4414 || BINFO_INHERITANCE_CHAIN (base_binfo
) != TYPE_BINFO (t
)))
4417 offset
= end_of_base (base_binfo
);
4418 if (INT_CST_LT_UNSIGNED (result
, offset
))
4422 /* G++ 3.2 did not check indirect virtual bases. */
4423 if (abi_version_at_least (2) && include_virtuals_p
)
4424 for (vbases
= CLASSTYPE_VBASECLASSES (t
), i
= 0;
4425 VEC_iterate (tree
, vbases
, i
, base_binfo
); i
++)
4427 offset
= end_of_base (base_binfo
);
4428 if (INT_CST_LT_UNSIGNED (result
, offset
))
4435 /* Warn about bases of T that are inaccessible because they are
4436 ambiguous. For example:
4439 struct T : public S {};
4440 struct U : public S, public T {};
4442 Here, `(S*) new U' is not allowed because there are two `S'
4446 warn_about_ambiguous_bases (tree t
)
4449 VEC(tree
,gc
) *vbases
;
4454 /* If there are no repeated bases, nothing can be ambiguous. */
4455 if (!CLASSTYPE_REPEATED_BASE_P (t
))
4458 /* Check direct bases. */
4459 for (binfo
= TYPE_BINFO (t
), i
= 0;
4460 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
4462 basetype
= BINFO_TYPE (base_binfo
);
4464 if (!lookup_base (t
, basetype
, ba_unique
| ba_quiet
, NULL
))
4465 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4469 /* Check for ambiguous virtual bases. */
4471 for (vbases
= CLASSTYPE_VBASECLASSES (t
), i
= 0;
4472 VEC_iterate (tree
, vbases
, i
, binfo
); i
++)
4474 basetype
= BINFO_TYPE (binfo
);
4476 if (!lookup_base (t
, basetype
, ba_unique
| ba_quiet
, NULL
))
4477 warning (OPT_Wextra
, "virtual base %qT inaccessible in %qT due to ambiguity",
4482 /* Compare two INTEGER_CSTs K1 and K2. */
4485 splay_tree_compare_integer_csts (splay_tree_key k1
, splay_tree_key k2
)
4487 return tree_int_cst_compare ((tree
) k1
, (tree
) k2
);
4490 /* Increase the size indicated in RLI to account for empty classes
4491 that are "off the end" of the class. */
4494 include_empty_classes (record_layout_info rli
)
4499 /* It might be the case that we grew the class to allocate a
4500 zero-sized base class. That won't be reflected in RLI, yet,
4501 because we are willing to overlay multiple bases at the same
4502 offset. However, now we need to make sure that RLI is big enough
4503 to reflect the entire class. */
4504 eoc
= end_of_class (rli
->t
,
4505 CLASSTYPE_AS_BASE (rli
->t
) != NULL_TREE
);
4506 rli_size
= rli_size_unit_so_far (rli
);
4507 if (TREE_CODE (rli_size
) == INTEGER_CST
4508 && INT_CST_LT_UNSIGNED (rli_size
, eoc
))
4510 if (!abi_version_at_least (2))
4511 /* In version 1 of the ABI, the size of a class that ends with
4512 a bitfield was not rounded up to a whole multiple of a
4513 byte. Because rli_size_unit_so_far returns only the number
4514 of fully allocated bytes, any extra bits were not included
4516 rli
->bitpos
= round_down (rli
->bitpos
, BITS_PER_UNIT
);
4518 /* The size should have been rounded to a whole byte. */
4519 gcc_assert (tree_int_cst_equal
4520 (rli
->bitpos
, round_down (rli
->bitpos
, BITS_PER_UNIT
)));
4522 = size_binop (PLUS_EXPR
,
4524 size_binop (MULT_EXPR
,
4525 convert (bitsizetype
,
4526 size_binop (MINUS_EXPR
,
4528 bitsize_int (BITS_PER_UNIT
)));
4529 normalize_rli (rli
);
4533 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4534 BINFO_OFFSETs for all of the base-classes. Position the vtable
4535 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4538 layout_class_type (tree t
, tree
*virtuals_p
)
4540 tree non_static_data_members
;
4543 record_layout_info rli
;
4544 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4545 types that appear at that offset. */
4546 splay_tree empty_base_offsets
;
4547 /* True if the last field layed out was a bit-field. */
4548 bool last_field_was_bitfield
= false;
4549 /* The location at which the next field should be inserted. */
4551 /* T, as a base class. */
4554 /* Keep track of the first non-static data member. */
4555 non_static_data_members
= TYPE_FIELDS (t
);
4557 /* Start laying out the record. */
4558 rli
= start_record_layout (t
);
4560 /* Mark all the primary bases in the hierarchy. */
4561 determine_primary_bases (t
);
4563 /* Create a pointer to our virtual function table. */
4564 vptr
= create_vtable_ptr (t
, virtuals_p
);
4566 /* The vptr is always the first thing in the class. */
4569 TREE_CHAIN (vptr
) = TYPE_FIELDS (t
);
4570 TYPE_FIELDS (t
) = vptr
;
4571 next_field
= &TREE_CHAIN (vptr
);
4572 place_field (rli
, vptr
);
4575 next_field
= &TYPE_FIELDS (t
);
4577 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4578 empty_base_offsets
= splay_tree_new (splay_tree_compare_integer_csts
,
4580 build_base_fields (rli
, empty_base_offsets
, next_field
);
4582 /* Layout the non-static data members. */
4583 for (field
= non_static_data_members
; field
; field
= TREE_CHAIN (field
))
4588 /* We still pass things that aren't non-static data members to
4589 the back end, in case it wants to do something with them. */
4590 if (TREE_CODE (field
) != FIELD_DECL
)
4592 place_field (rli
, field
);
4593 /* If the static data member has incomplete type, keep track
4594 of it so that it can be completed later. (The handling
4595 of pending statics in finish_record_layout is
4596 insufficient; consider:
4599 struct S2 { static S1 s1; };
4601 At this point, finish_record_layout will be called, but
4602 S1 is still incomplete.) */
4603 if (TREE_CODE (field
) == VAR_DECL
)
4605 maybe_register_incomplete_var (field
);
4606 /* The visibility of static data members is determined
4607 at their point of declaration, not their point of
4609 determine_visibility (field
);
4614 type
= TREE_TYPE (field
);
4615 if (type
== error_mark_node
)
4618 padding
= NULL_TREE
;
4620 /* If this field is a bit-field whose width is greater than its
4621 type, then there are some special rules for allocating
4623 if (DECL_C_BIT_FIELD (field
)
4624 && INT_CST_LT (TYPE_SIZE (type
), DECL_SIZE (field
)))
4626 integer_type_kind itk
;
4628 bool was_unnamed_p
= false;
4629 /* We must allocate the bits as if suitably aligned for the
4630 longest integer type that fits in this many bits. type
4631 of the field. Then, we are supposed to use the left over
4632 bits as additional padding. */
4633 for (itk
= itk_char
; itk
!= itk_none
; ++itk
)
4634 if (INT_CST_LT (DECL_SIZE (field
),
4635 TYPE_SIZE (integer_types
[itk
])))
4638 /* ITK now indicates a type that is too large for the
4639 field. We have to back up by one to find the largest
4641 integer_type
= integer_types
[itk
- 1];
4643 /* Figure out how much additional padding is required. GCC
4644 3.2 always created a padding field, even if it had zero
4646 if (!abi_version_at_least (2)
4647 || INT_CST_LT (TYPE_SIZE (integer_type
), DECL_SIZE (field
)))
4649 if (abi_version_at_least (2) && TREE_CODE (t
) == UNION_TYPE
)
4650 /* In a union, the padding field must have the full width
4651 of the bit-field; all fields start at offset zero. */
4652 padding
= DECL_SIZE (field
);
4655 if (TREE_CODE (t
) == UNION_TYPE
)
4656 warning (OPT_Wabi
, "size assigned to %qT may not be "
4657 "ABI-compliant and may change in a future "
4660 padding
= size_binop (MINUS_EXPR
, DECL_SIZE (field
),
4661 TYPE_SIZE (integer_type
));
4664 #ifdef PCC_BITFIELD_TYPE_MATTERS
4665 /* An unnamed bitfield does not normally affect the
4666 alignment of the containing class on a target where
4667 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4668 make any exceptions for unnamed bitfields when the
4669 bitfields are longer than their types. Therefore, we
4670 temporarily give the field a name. */
4671 if (PCC_BITFIELD_TYPE_MATTERS
&& !DECL_NAME (field
))
4673 was_unnamed_p
= true;
4674 DECL_NAME (field
) = make_anon_name ();
4677 DECL_SIZE (field
) = TYPE_SIZE (integer_type
);
4678 DECL_ALIGN (field
) = TYPE_ALIGN (integer_type
);
4679 DECL_USER_ALIGN (field
) = TYPE_USER_ALIGN (integer_type
);
4680 layout_nonempty_base_or_field (rli
, field
, NULL_TREE
,
4681 empty_base_offsets
);
4683 DECL_NAME (field
) = NULL_TREE
;
4684 /* Now that layout has been performed, set the size of the
4685 field to the size of its declared type; the rest of the
4686 field is effectively invisible. */
4687 DECL_SIZE (field
) = TYPE_SIZE (type
);
4688 /* We must also reset the DECL_MODE of the field. */
4689 if (abi_version_at_least (2))
4690 DECL_MODE (field
) = TYPE_MODE (type
);
4692 && DECL_MODE (field
) != TYPE_MODE (type
))
4693 /* Versions of G++ before G++ 3.4 did not reset the
4696 "the offset of %qD may not be ABI-compliant and may "
4697 "change in a future version of GCC", field
);
4700 layout_nonempty_base_or_field (rli
, field
, NULL_TREE
,
4701 empty_base_offsets
);
4703 /* Remember the location of any empty classes in FIELD. */
4704 if (abi_version_at_least (2))
4705 record_subobject_offsets (TREE_TYPE (field
),
4706 byte_position(field
),
4708 /*is_data_member=*/true);
4710 /* If a bit-field does not immediately follow another bit-field,
4711 and yet it starts in the middle of a byte, we have failed to
4712 comply with the ABI. */
4714 && DECL_C_BIT_FIELD (field
)
4715 /* The TREE_NO_WARNING flag gets set by Objective-C when
4716 laying out an Objective-C class. The ObjC ABI differs
4717 from the C++ ABI, and so we do not want a warning
4719 && !TREE_NO_WARNING (field
)
4720 && !last_field_was_bitfield
4721 && !integer_zerop (size_binop (TRUNC_MOD_EXPR
,
4722 DECL_FIELD_BIT_OFFSET (field
),
4723 bitsize_unit_node
)))
4724 warning (OPT_Wabi
, "offset of %q+D is not ABI-compliant and may "
4725 "change in a future version of GCC", field
);
4727 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4728 offset of the field. */
4730 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field
),
4731 byte_position (field
))
4732 && contains_empty_class_p (TREE_TYPE (field
)))
4733 warning (OPT_Wabi
, "%q+D contains empty classes which may cause base "
4734 "classes to be placed at different locations in a "
4735 "future version of GCC", field
);
4737 /* The middle end uses the type of expressions to determine the
4738 possible range of expression values. In order to optimize
4739 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
4740 must be made aware of the width of "i", via its type.
4742 Because C++ does not have integer types of arbitrary width,
4743 we must (for the purposes of the front end) convert from the
4744 type assigned here to the declared type of the bitfield
4745 whenever a bitfield expression is used as an rvalue.
4746 Similarly, when assigning a value to a bitfield, the value
4747 must be converted to the type given the bitfield here. */
4748 if (DECL_C_BIT_FIELD (field
))
4751 unsigned HOST_WIDE_INT width
;
4752 ftype
= TREE_TYPE (field
);
4753 width
= tree_low_cst (DECL_SIZE (field
), /*unsignedp=*/1);
4754 if (width
!= TYPE_PRECISION (ftype
))
4756 = c_build_bitfield_integer_type (width
,
4757 TYPE_UNSIGNED (ftype
));
4760 /* If we needed additional padding after this field, add it
4766 padding_field
= build_decl (FIELD_DECL
,
4769 DECL_BIT_FIELD (padding_field
) = 1;
4770 DECL_SIZE (padding_field
) = padding
;
4771 DECL_CONTEXT (padding_field
) = t
;
4772 DECL_ARTIFICIAL (padding_field
) = 1;
4773 DECL_IGNORED_P (padding_field
) = 1;
4774 layout_nonempty_base_or_field (rli
, padding_field
,
4776 empty_base_offsets
);
4779 last_field_was_bitfield
= DECL_C_BIT_FIELD (field
);
4782 if (abi_version_at_least (2) && !integer_zerop (rli
->bitpos
))
4784 /* Make sure that we are on a byte boundary so that the size of
4785 the class without virtual bases will always be a round number
4787 rli
->bitpos
= round_up (rli
->bitpos
, BITS_PER_UNIT
);
4788 normalize_rli (rli
);
4791 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
4793 if (!abi_version_at_least (2))
4794 include_empty_classes(rli
);
4796 /* Delete all zero-width bit-fields from the list of fields. Now
4797 that the type is laid out they are no longer important. */
4798 remove_zero_width_bit_fields (t
);
4800 /* Create the version of T used for virtual bases. We do not use
4801 make_aggr_type for this version; this is an artificial type. For
4802 a POD type, we just reuse T. */
4803 if (CLASSTYPE_NON_POD_P (t
) || CLASSTYPE_EMPTY_P (t
))
4805 base_t
= make_node (TREE_CODE (t
));
4807 /* Set the size and alignment for the new type. In G++ 3.2, all
4808 empty classes were considered to have size zero when used as
4810 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t
))
4812 TYPE_SIZE (base_t
) = bitsize_zero_node
;
4813 TYPE_SIZE_UNIT (base_t
) = size_zero_node
;
4814 if (warn_abi
&& !integer_zerop (rli_size_unit_so_far (rli
)))
4816 "layout of classes derived from empty class %qT "
4817 "may change in a future version of GCC",
4824 /* If the ABI version is not at least two, and the last
4825 field was a bit-field, RLI may not be on a byte
4826 boundary. In particular, rli_size_unit_so_far might
4827 indicate the last complete byte, while rli_size_so_far
4828 indicates the total number of bits used. Therefore,
4829 rli_size_so_far, rather than rli_size_unit_so_far, is
4830 used to compute TYPE_SIZE_UNIT. */
4831 eoc
= end_of_class (t
, /*include_virtuals_p=*/0);
4832 TYPE_SIZE_UNIT (base_t
)
4833 = size_binop (MAX_EXPR
,
4835 size_binop (CEIL_DIV_EXPR
,
4836 rli_size_so_far (rli
),
4837 bitsize_int (BITS_PER_UNIT
))),
4840 = size_binop (MAX_EXPR
,
4841 rli_size_so_far (rli
),
4842 size_binop (MULT_EXPR
,
4843 convert (bitsizetype
, eoc
),
4844 bitsize_int (BITS_PER_UNIT
)));
4846 TYPE_ALIGN (base_t
) = rli
->record_align
;
4847 TYPE_USER_ALIGN (base_t
) = TYPE_USER_ALIGN (t
);
4849 /* Copy the fields from T. */
4850 next_field
= &TYPE_FIELDS (base_t
);
4851 for (field
= TYPE_FIELDS (t
); field
; field
= TREE_CHAIN (field
))
4852 if (TREE_CODE (field
) == FIELD_DECL
)
4854 *next_field
= build_decl (FIELD_DECL
,
4857 DECL_CONTEXT (*next_field
) = base_t
;
4858 DECL_FIELD_OFFSET (*next_field
) = DECL_FIELD_OFFSET (field
);
4859 DECL_FIELD_BIT_OFFSET (*next_field
)
4860 = DECL_FIELD_BIT_OFFSET (field
);
4861 DECL_SIZE (*next_field
) = DECL_SIZE (field
);
4862 DECL_MODE (*next_field
) = DECL_MODE (field
);
4863 next_field
= &TREE_CHAIN (*next_field
);
4866 /* Record the base version of the type. */
4867 CLASSTYPE_AS_BASE (t
) = base_t
;
4868 TYPE_CONTEXT (base_t
) = t
;
4871 CLASSTYPE_AS_BASE (t
) = t
;
4873 /* Every empty class contains an empty class. */
4874 if (CLASSTYPE_EMPTY_P (t
))
4875 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 1;
4877 /* Set the TYPE_DECL for this type to contain the right
4878 value for DECL_OFFSET, so that we can use it as part
4879 of a COMPONENT_REF for multiple inheritance. */
4880 layout_decl (TYPE_MAIN_DECL (t
), 0);
4882 /* Now fix up any virtual base class types that we left lying
4883 around. We must get these done before we try to lay out the
4884 virtual function table. As a side-effect, this will remove the
4885 base subobject fields. */
4886 layout_virtual_bases (rli
, empty_base_offsets
);
4888 /* Make sure that empty classes are reflected in RLI at this
4890 include_empty_classes(rli
);
4892 /* Make sure not to create any structures with zero size. */
4893 if (integer_zerop (rli_size_unit_so_far (rli
)) && CLASSTYPE_EMPTY_P (t
))
4895 build_decl (FIELD_DECL
, NULL_TREE
, char_type_node
));
4897 /* Let the back end lay out the type. */
4898 finish_record_layout (rli
, /*free_p=*/true);
4900 /* Warn about bases that can't be talked about due to ambiguity. */
4901 warn_about_ambiguous_bases (t
);
4903 /* Now that we're done with layout, give the base fields the real types. */
4904 for (field
= TYPE_FIELDS (t
); field
; field
= TREE_CHAIN (field
))
4905 if (DECL_ARTIFICIAL (field
) && IS_FAKE_BASE_TYPE (TREE_TYPE (field
)))
4906 TREE_TYPE (field
) = TYPE_CONTEXT (TREE_TYPE (field
));
4909 splay_tree_delete (empty_base_offsets
);
4911 if (CLASSTYPE_EMPTY_P (t
)
4912 && tree_int_cst_lt (sizeof_biggest_empty_class
,
4913 TYPE_SIZE_UNIT (t
)))
4914 sizeof_biggest_empty_class
= TYPE_SIZE_UNIT (t
);
4917 /* Determine the "key method" for the class type indicated by TYPE,
4918 and set CLASSTYPE_KEY_METHOD accordingly. */
4921 determine_key_method (tree type
)
4925 if (TYPE_FOR_JAVA (type
)
4926 || processing_template_decl
4927 || CLASSTYPE_TEMPLATE_INSTANTIATION (type
)
4928 || CLASSTYPE_INTERFACE_KNOWN (type
))
4931 /* The key method is the first non-pure virtual function that is not
4932 inline at the point of class definition. On some targets the
4933 key function may not be inline; those targets should not call
4934 this function until the end of the translation unit. */
4935 for (method
= TYPE_METHODS (type
); method
!= NULL_TREE
;
4936 method
= TREE_CHAIN (method
))
4937 if (DECL_VINDEX (method
) != NULL_TREE
4938 && ! DECL_DECLARED_INLINE_P (method
)
4939 && ! DECL_PURE_VIRTUAL_P (method
))
4941 CLASSTYPE_KEY_METHOD (type
) = method
;
4948 /* Perform processing required when the definition of T (a class type)
4952 finish_struct_1 (tree t
)
4955 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
4956 tree virtuals
= NULL_TREE
;
4959 if (COMPLETE_TYPE_P (t
))
4961 gcc_assert (IS_AGGR_TYPE (t
));
4962 error ("redefinition of %q#T", t
);
4967 /* If this type was previously laid out as a forward reference,
4968 make sure we lay it out again. */
4969 TYPE_SIZE (t
) = NULL_TREE
;
4970 CLASSTYPE_PRIMARY_BINFO (t
) = NULL_TREE
;
4972 fixup_inline_methods (t
);
4974 /* Make assumptions about the class; we'll reset the flags if
4976 CLASSTYPE_EMPTY_P (t
) = 1;
4977 CLASSTYPE_NEARLY_EMPTY_P (t
) = 1;
4978 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 0;
4980 /* Do end-of-class semantic processing: checking the validity of the
4981 bases and members and add implicitly generated methods. */
4982 check_bases_and_members (t
);
4984 /* Find the key method. */
4985 if (TYPE_CONTAINS_VPTR_P (t
))
4987 /* The Itanium C++ ABI permits the key method to be chosen when
4988 the class is defined -- even though the key method so
4989 selected may later turn out to be an inline function. On
4990 some systems (such as ARM Symbian OS) the key method cannot
4991 be determined until the end of the translation unit. On such
4992 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
4993 will cause the class to be added to KEYED_CLASSES. Then, in
4994 finish_file we will determine the key method. */
4995 if (targetm
.cxx
.key_method_may_be_inline ())
4996 determine_key_method (t
);
4998 /* If a polymorphic class has no key method, we may emit the vtable
4999 in every translation unit where the class definition appears. */
5000 if (CLASSTYPE_KEY_METHOD (t
) == NULL_TREE
)
5001 keyed_classes
= tree_cons (NULL_TREE
, t
, keyed_classes
);
5004 /* Layout the class itself. */
5005 layout_class_type (t
, &virtuals
);
5006 if (CLASSTYPE_AS_BASE (t
) != t
)
5007 /* We use the base type for trivial assignments, and hence it
5009 compute_record_mode (CLASSTYPE_AS_BASE (t
));
5011 virtuals
= modify_all_vtables (t
, nreverse (virtuals
));
5013 /* If necessary, create the primary vtable for this class. */
5014 if (virtuals
|| TYPE_CONTAINS_VPTR_P (t
))
5016 /* We must enter these virtuals into the table. */
5017 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
5018 build_primary_vtable (NULL_TREE
, t
);
5019 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t
)))
5020 /* Here we know enough to change the type of our virtual
5021 function table, but we will wait until later this function. */
5022 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t
), t
);
5025 if (TYPE_CONTAINS_VPTR_P (t
))
5030 if (BINFO_VTABLE (TYPE_BINFO (t
)))
5031 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t
))));
5032 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
5033 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t
)) == NULL_TREE
);
5035 /* Add entries for virtual functions introduced by this class. */
5036 BINFO_VIRTUALS (TYPE_BINFO (t
))
5037 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t
)), virtuals
);
5039 /* Set DECL_VINDEX for all functions declared in this class. */
5040 for (vindex
= 0, fn
= BINFO_VIRTUALS (TYPE_BINFO (t
));
5042 fn
= TREE_CHAIN (fn
),
5043 vindex
+= (TARGET_VTABLE_USES_DESCRIPTORS
5044 ? TARGET_VTABLE_USES_DESCRIPTORS
: 1))
5046 tree fndecl
= BV_FN (fn
);
5048 if (DECL_THUNK_P (fndecl
))
5049 /* A thunk. We should never be calling this entry directly
5050 from this vtable -- we'd use the entry for the non
5051 thunk base function. */
5052 DECL_VINDEX (fndecl
) = NULL_TREE
;
5053 else if (TREE_CODE (DECL_VINDEX (fndecl
)) != INTEGER_CST
)
5054 DECL_VINDEX (fndecl
) = build_int_cst (NULL_TREE
, vindex
);
5058 finish_struct_bits (t
);
5060 /* Complete the rtl for any static member objects of the type we're
5062 for (x
= TYPE_FIELDS (t
); x
; x
= TREE_CHAIN (x
))
5063 if (TREE_CODE (x
) == VAR_DECL
&& TREE_STATIC (x
)
5064 && TREE_TYPE (x
) != error_mark_node
5065 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x
)), t
))
5066 DECL_MODE (x
) = TYPE_MODE (t
);
5068 /* Done with FIELDS...now decide whether to sort these for
5069 faster lookups later.
5071 We use a small number because most searches fail (succeeding
5072 ultimately as the search bores through the inheritance
5073 hierarchy), and we want this failure to occur quickly. */
5075 n_fields
= count_fields (TYPE_FIELDS (t
));
5078 struct sorted_fields_type
*field_vec
= GGC_NEWVAR
5079 (struct sorted_fields_type
,
5080 sizeof (struct sorted_fields_type
) + n_fields
* sizeof (tree
));
5081 field_vec
->len
= n_fields
;
5082 add_fields_to_record_type (TYPE_FIELDS (t
), field_vec
, 0);
5083 qsort (field_vec
->elts
, n_fields
, sizeof (tree
),
5085 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t
)))
5086 retrofit_lang_decl (TYPE_MAIN_DECL (t
));
5087 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t
)) = field_vec
;
5090 /* Complain if one of the field types requires lower visibility. */
5091 constrain_class_visibility (t
);
5093 /* Make the rtl for any new vtables we have created, and unmark
5094 the base types we marked. */
5097 /* Build the VTT for T. */
5100 /* This warning does not make sense for Java classes, since they
5101 cannot have destructors. */
5102 if (!TYPE_FOR_JAVA (t
) && warn_nonvdtor
&& TYPE_POLYMORPHIC_P (t
))
5106 dtor
= CLASSTYPE_DESTRUCTORS (t
);
5107 /* Warn only if the dtor is non-private or the class has
5109 if (/* An implicitly declared destructor is always public. And,
5110 if it were virtual, we would have created it by now. */
5112 || (!DECL_VINDEX (dtor
)
5113 && (!TREE_PRIVATE (dtor
)
5114 || CLASSTYPE_FRIEND_CLASSES (t
)
5115 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t
)))))
5116 warning (0, "%q#T has virtual functions but non-virtual destructor",
5122 if (warn_overloaded_virtual
)
5125 /* Class layout, assignment of virtual table slots, etc., is now
5126 complete. Give the back end a chance to tweak the visibility of
5127 the class or perform any other required target modifications. */
5128 targetm
.cxx
.adjust_class_at_definition (t
);
5130 maybe_suppress_debug_info (t
);
5132 dump_class_hierarchy (t
);
5134 /* Finish debugging output for this type. */
5135 rest_of_type_compilation (t
, ! LOCAL_CLASS_P (t
));
5138 /* When T was built up, the member declarations were added in reverse
5139 order. Rearrange them to declaration order. */
5142 unreverse_member_declarations (tree t
)
5148 /* The following lists are all in reverse order. Put them in
5149 declaration order now. */
5150 TYPE_METHODS (t
) = nreverse (TYPE_METHODS (t
));
5151 CLASSTYPE_DECL_LIST (t
) = nreverse (CLASSTYPE_DECL_LIST (t
));
5153 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5154 reverse order, so we can't just use nreverse. */
5156 for (x
= TYPE_FIELDS (t
);
5157 x
&& TREE_CODE (x
) != TYPE_DECL
;
5160 next
= TREE_CHAIN (x
);
5161 TREE_CHAIN (x
) = prev
;
5166 TREE_CHAIN (TYPE_FIELDS (t
)) = x
;
5168 TYPE_FIELDS (t
) = prev
;
5173 finish_struct (tree t
, tree attributes
)
5175 location_t saved_loc
= input_location
;
5177 /* Now that we've got all the field declarations, reverse everything
5179 unreverse_member_declarations (t
);
5181 cplus_decl_attributes (&t
, attributes
, (int) ATTR_FLAG_TYPE_IN_PLACE
);
5183 /* Nadger the current location so that diagnostics point to the start of
5184 the struct, not the end. */
5185 input_location
= DECL_SOURCE_LOCATION (TYPE_NAME (t
));
5187 if (processing_template_decl
)
5191 finish_struct_methods (t
);
5192 TYPE_SIZE (t
) = bitsize_zero_node
;
5193 TYPE_SIZE_UNIT (t
) = size_zero_node
;
5195 /* We need to emit an error message if this type was used as a parameter
5196 and it is an abstract type, even if it is a template. We construct
5197 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5198 account and we call complete_vars with this type, which will check
5199 the PARM_DECLS. Note that while the type is being defined,
5200 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5201 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5202 CLASSTYPE_PURE_VIRTUALS (t
) = NULL
;
5203 for (x
= TYPE_METHODS (t
); x
; x
= TREE_CHAIN (x
))
5204 if (DECL_PURE_VIRTUAL_P (x
))
5205 VEC_safe_push (tree
, gc
, CLASSTYPE_PURE_VIRTUALS (t
), x
);
5209 finish_struct_1 (t
);
5211 input_location
= saved_loc
;
5213 TYPE_BEING_DEFINED (t
) = 0;
5215 if (current_class_type
)
5218 error ("trying to finish struct, but kicked out due to previous parse errors");
5220 if (processing_template_decl
&& at_function_scope_p ())
5221 add_stmt (build_min (TAG_DEFN
, t
));
5226 /* Return the dynamic type of INSTANCE, if known.
5227 Used to determine whether the virtual function table is needed
5230 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5231 of our knowledge of its type. *NONNULL should be initialized
5232 before this function is called. */
5235 fixed_type_or_null (tree instance
, int* nonnull
, int* cdtorp
)
5237 switch (TREE_CODE (instance
))
5240 if (POINTER_TYPE_P (TREE_TYPE (instance
)))
5243 return fixed_type_or_null (TREE_OPERAND (instance
, 0),
5247 /* This is a call to a constructor, hence it's never zero. */
5248 if (TREE_HAS_CONSTRUCTOR (instance
))
5252 return TREE_TYPE (instance
);
5257 /* This is a call to a constructor, hence it's never zero. */
5258 if (TREE_HAS_CONSTRUCTOR (instance
))
5262 return TREE_TYPE (instance
);
5264 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5268 if (TREE_CODE (TREE_OPERAND (instance
, 0)) == ADDR_EXPR
)
5269 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5270 if (TREE_CODE (TREE_OPERAND (instance
, 1)) == INTEGER_CST
)
5271 /* Propagate nonnull. */
5272 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5277 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5280 instance
= TREE_OPERAND (instance
, 0);
5283 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5284 with a real object -- given &p->f, p can still be null. */
5285 tree t
= get_base_address (instance
);
5286 /* ??? Probably should check DECL_WEAK here. */
5287 if (t
&& DECL_P (t
))
5290 return fixed_type_or_null (instance
, nonnull
, cdtorp
);
5293 /* If this component is really a base class reference, then the field
5294 itself isn't definitive. */
5295 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance
, 1)))
5296 return fixed_type_or_null (TREE_OPERAND (instance
, 0), nonnull
, cdtorp
);
5297 return fixed_type_or_null (TREE_OPERAND (instance
, 1), nonnull
, cdtorp
);
5301 if (TREE_CODE (TREE_TYPE (instance
)) == ARRAY_TYPE
5302 && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance
))))
5306 return TREE_TYPE (TREE_TYPE (instance
));
5308 /* fall through... */
5312 if (IS_AGGR_TYPE (TREE_TYPE (instance
)))
5316 return TREE_TYPE (instance
);
5318 else if (instance
== current_class_ptr
)
5323 /* if we're in a ctor or dtor, we know our type. */
5324 if (DECL_LANG_SPECIFIC (current_function_decl
)
5325 && (DECL_CONSTRUCTOR_P (current_function_decl
)
5326 || DECL_DESTRUCTOR_P (current_function_decl
)))
5330 return TREE_TYPE (TREE_TYPE (instance
));
5333 else if (TREE_CODE (TREE_TYPE (instance
)) == REFERENCE_TYPE
)
5335 /* Reference variables should be references to objects. */
5339 /* DECL_VAR_MARKED_P is used to prevent recursion; a
5340 variable's initializer may refer to the variable
5342 if (TREE_CODE (instance
) == VAR_DECL
5343 && DECL_INITIAL (instance
)
5344 && !DECL_VAR_MARKED_P (instance
))
5347 DECL_VAR_MARKED_P (instance
) = 1;
5348 type
= fixed_type_or_null (DECL_INITIAL (instance
),
5350 DECL_VAR_MARKED_P (instance
) = 0;
5361 /* Return nonzero if the dynamic type of INSTANCE is known, and
5362 equivalent to the static type. We also handle the case where
5363 INSTANCE is really a pointer. Return negative if this is a
5364 ctor/dtor. There the dynamic type is known, but this might not be
5365 the most derived base of the original object, and hence virtual
5366 bases may not be layed out according to this type.
5368 Used to determine whether the virtual function table is needed
5371 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5372 of our knowledge of its type. *NONNULL should be initialized
5373 before this function is called. */
5376 resolves_to_fixed_type_p (tree instance
, int* nonnull
)
5378 tree t
= TREE_TYPE (instance
);
5381 tree fixed
= fixed_type_or_null (instance
, nonnull
, &cdtorp
);
5382 if (fixed
== NULL_TREE
)
5384 if (POINTER_TYPE_P (t
))
5386 if (!same_type_ignoring_top_level_qualifiers_p (t
, fixed
))
5388 return cdtorp
? -1 : 1;
5393 init_class_processing (void)
5395 current_class_depth
= 0;
5396 current_class_stack_size
= 10;
5398 = XNEWVEC (struct class_stack_node
, current_class_stack_size
);
5399 local_classes
= VEC_alloc (tree
, gc
, 8);
5400 sizeof_biggest_empty_class
= size_zero_node
;
5402 ridpointers
[(int) RID_PUBLIC
] = access_public_node
;
5403 ridpointers
[(int) RID_PRIVATE
] = access_private_node
;
5404 ridpointers
[(int) RID_PROTECTED
] = access_protected_node
;
5407 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5410 restore_class_cache (void)
5414 /* We are re-entering the same class we just left, so we don't
5415 have to search the whole inheritance matrix to find all the
5416 decls to bind again. Instead, we install the cached
5417 class_shadowed list and walk through it binding names. */
5418 push_binding_level (previous_class_level
);
5419 class_binding_level
= previous_class_level
;
5420 /* Restore IDENTIFIER_TYPE_VALUE. */
5421 for (type
= class_binding_level
->type_shadowed
;
5423 type
= TREE_CHAIN (type
))
5424 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type
), TREE_TYPE (type
));
5427 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5428 appropriate for TYPE.
5430 So that we may avoid calls to lookup_name, we cache the _TYPE
5431 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5433 For multiple inheritance, we perform a two-pass depth-first search
5434 of the type lattice. */
5437 pushclass (tree type
)
5439 class_stack_node_t csn
;
5441 type
= TYPE_MAIN_VARIANT (type
);
5443 /* Make sure there is enough room for the new entry on the stack. */
5444 if (current_class_depth
+ 1 >= current_class_stack_size
)
5446 current_class_stack_size
*= 2;
5448 = XRESIZEVEC (struct class_stack_node
, current_class_stack
,
5449 current_class_stack_size
);
5452 /* Insert a new entry on the class stack. */
5453 csn
= current_class_stack
+ current_class_depth
;
5454 csn
->name
= current_class_name
;
5455 csn
->type
= current_class_type
;
5456 csn
->access
= current_access_specifier
;
5457 csn
->names_used
= 0;
5459 current_class_depth
++;
5461 /* Now set up the new type. */
5462 current_class_name
= TYPE_NAME (type
);
5463 if (TREE_CODE (current_class_name
) == TYPE_DECL
)
5464 current_class_name
= DECL_NAME (current_class_name
);
5465 current_class_type
= type
;
5467 /* By default, things in classes are private, while things in
5468 structures or unions are public. */
5469 current_access_specifier
= (CLASSTYPE_DECLARED_CLASS (type
)
5470 ? access_private_node
5471 : access_public_node
);
5473 if (previous_class_level
5474 && type
!= previous_class_level
->this_entity
5475 && current_class_depth
== 1)
5477 /* Forcibly remove any old class remnants. */
5478 invalidate_class_lookup_cache ();
5481 if (!previous_class_level
5482 || type
!= previous_class_level
->this_entity
5483 || current_class_depth
> 1)
5486 restore_class_cache ();
5489 /* When we exit a toplevel class scope, we save its binding level so
5490 that we can restore it quickly. Here, we've entered some other
5491 class, so we must invalidate our cache. */
5494 invalidate_class_lookup_cache (void)
5496 previous_class_level
= NULL
;
5499 /* Get out of the current class scope. If we were in a class scope
5500 previously, that is the one popped to. */
5507 current_class_depth
--;
5508 current_class_name
= current_class_stack
[current_class_depth
].name
;
5509 current_class_type
= current_class_stack
[current_class_depth
].type
;
5510 current_access_specifier
= current_class_stack
[current_class_depth
].access
;
5511 if (current_class_stack
[current_class_depth
].names_used
)
5512 splay_tree_delete (current_class_stack
[current_class_depth
].names_used
);
5515 /* Mark the top of the class stack as hidden. */
5518 push_class_stack (void)
5520 if (current_class_depth
)
5521 ++current_class_stack
[current_class_depth
- 1].hidden
;
5524 /* Mark the top of the class stack as un-hidden. */
5527 pop_class_stack (void)
5529 if (current_class_depth
)
5530 --current_class_stack
[current_class_depth
- 1].hidden
;
5533 /* Returns 1 if the class type currently being defined is either T or
5534 a nested type of T. */
5537 currently_open_class (tree t
)
5541 /* We start looking from 1 because entry 0 is from global scope,
5543 for (i
= current_class_depth
; i
> 0; --i
)
5546 if (i
== current_class_depth
)
5547 c
= current_class_type
;
5550 if (current_class_stack
[i
].hidden
)
5552 c
= current_class_stack
[i
].type
;
5556 if (same_type_p (c
, t
))
5562 /* If either current_class_type or one of its enclosing classes are derived
5563 from T, return the appropriate type. Used to determine how we found
5564 something via unqualified lookup. */
5567 currently_open_derived_class (tree t
)
5571 /* The bases of a dependent type are unknown. */
5572 if (dependent_type_p (t
))
5575 if (!current_class_type
)
5578 if (DERIVED_FROM_P (t
, current_class_type
))
5579 return current_class_type
;
5581 for (i
= current_class_depth
- 1; i
> 0; --i
)
5583 if (current_class_stack
[i
].hidden
)
5585 if (DERIVED_FROM_P (t
, current_class_stack
[i
].type
))
5586 return current_class_stack
[i
].type
;
5592 /* When entering a class scope, all enclosing class scopes' names with
5593 static meaning (static variables, static functions, types and
5594 enumerators) have to be visible. This recursive function calls
5595 pushclass for all enclosing class contexts until global or a local
5596 scope is reached. TYPE is the enclosed class. */
5599 push_nested_class (tree type
)
5603 /* A namespace might be passed in error cases, like A::B:C. */
5604 if (type
== NULL_TREE
5605 || type
== error_mark_node
5606 || TREE_CODE (type
) == NAMESPACE_DECL
5607 || ! IS_AGGR_TYPE (type
)
5608 || TREE_CODE (type
) == TEMPLATE_TYPE_PARM
5609 || TREE_CODE (type
) == BOUND_TEMPLATE_TEMPLATE_PARM
)
5612 context
= DECL_CONTEXT (TYPE_MAIN_DECL (type
));
5614 if (context
&& CLASS_TYPE_P (context
))
5615 push_nested_class (context
);
5619 /* Undoes a push_nested_class call. */
5622 pop_nested_class (void)
5624 tree context
= DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type
));
5627 if (context
&& CLASS_TYPE_P (context
))
5628 pop_nested_class ();
5631 /* Returns the number of extern "LANG" blocks we are nested within. */
5634 current_lang_depth (void)
5636 return VEC_length (tree
, current_lang_base
);
5639 /* Set global variables CURRENT_LANG_NAME to appropriate value
5640 so that behavior of name-mangling machinery is correct. */
5643 push_lang_context (tree name
)
5645 VEC_safe_push (tree
, gc
, current_lang_base
, current_lang_name
);
5647 if (name
== lang_name_cplusplus
)
5649 current_lang_name
= name
;
5651 else if (name
== lang_name_java
)
5653 current_lang_name
= name
;
5654 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5655 (See record_builtin_java_type in decl.c.) However, that causes
5656 incorrect debug entries if these types are actually used.
5657 So we re-enable debug output after extern "Java". */
5658 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node
)) = 0;
5659 DECL_IGNORED_P (TYPE_NAME (java_short_type_node
)) = 0;
5660 DECL_IGNORED_P (TYPE_NAME (java_int_type_node
)) = 0;
5661 DECL_IGNORED_P (TYPE_NAME (java_long_type_node
)) = 0;
5662 DECL_IGNORED_P (TYPE_NAME (java_float_type_node
)) = 0;
5663 DECL_IGNORED_P (TYPE_NAME (java_double_type_node
)) = 0;
5664 DECL_IGNORED_P (TYPE_NAME (java_char_type_node
)) = 0;
5665 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node
)) = 0;
5667 else if (name
== lang_name_c
)
5669 current_lang_name
= name
;
5672 error ("language string %<\"%E\"%> not recognized", name
);
5675 /* Get out of the current language scope. */
5678 pop_lang_context (void)
5680 current_lang_name
= VEC_pop (tree
, current_lang_base
);
5683 /* Type instantiation routines. */
5685 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5686 matches the TARGET_TYPE. If there is no satisfactory match, return
5687 error_mark_node, and issue an error & warning messages under
5688 control of FLAGS. Permit pointers to member function if FLAGS
5689 permits. If TEMPLATE_ONLY, the name of the overloaded function was
5690 a template-id, and EXPLICIT_TARGS are the explicitly provided
5691 template arguments. If OVERLOAD is for one or more member
5692 functions, then ACCESS_PATH is the base path used to reference
5693 those member functions. */
5696 resolve_address_of_overloaded_function (tree target_type
,
5698 tsubst_flags_t flags
,
5700 tree explicit_targs
,
5703 /* Here's what the standard says:
5707 If the name is a function template, template argument deduction
5708 is done, and if the argument deduction succeeds, the deduced
5709 arguments are used to generate a single template function, which
5710 is added to the set of overloaded functions considered.
5712 Non-member functions and static member functions match targets of
5713 type "pointer-to-function" or "reference-to-function." Nonstatic
5714 member functions match targets of type "pointer-to-member
5715 function;" the function type of the pointer to member is used to
5716 select the member function from the set of overloaded member
5717 functions. If a nonstatic member function is selected, the
5718 reference to the overloaded function name is required to have the
5719 form of a pointer to member as described in 5.3.1.
5721 If more than one function is selected, any template functions in
5722 the set are eliminated if the set also contains a non-template
5723 function, and any given template function is eliminated if the
5724 set contains a second template function that is more specialized
5725 than the first according to the partial ordering rules 14.5.5.2.
5726 After such eliminations, if any, there shall remain exactly one
5727 selected function. */
5730 int is_reference
= 0;
5731 /* We store the matches in a TREE_LIST rooted here. The functions
5732 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5733 interoperability with most_specialized_instantiation. */
5734 tree matches
= NULL_TREE
;
5737 /* By the time we get here, we should be seeing only real
5738 pointer-to-member types, not the internal POINTER_TYPE to
5739 METHOD_TYPE representation. */
5740 gcc_assert (TREE_CODE (target_type
) != POINTER_TYPE
5741 || TREE_CODE (TREE_TYPE (target_type
)) != METHOD_TYPE
);
5743 gcc_assert (is_overloaded_fn (overload
));
5745 /* Check that the TARGET_TYPE is reasonable. */
5746 if (TYPE_PTRFN_P (target_type
))
5748 else if (TYPE_PTRMEMFUNC_P (target_type
))
5749 /* This is OK, too. */
5751 else if (TREE_CODE (target_type
) == FUNCTION_TYPE
)
5753 /* This is OK, too. This comes from a conversion to reference
5755 target_type
= build_reference_type (target_type
);
5760 if (flags
& tf_error
)
5761 error ("cannot resolve overloaded function %qD based on"
5762 " conversion to type %qT",
5763 DECL_NAME (OVL_FUNCTION (overload
)), target_type
);
5764 return error_mark_node
;
5767 /* If we can find a non-template function that matches, we can just
5768 use it. There's no point in generating template instantiations
5769 if we're just going to throw them out anyhow. But, of course, we
5770 can only do this when we don't *need* a template function. */
5775 for (fns
= overload
; fns
; fns
= OVL_NEXT (fns
))
5777 tree fn
= OVL_CURRENT (fns
);
5780 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
5781 /* We're not looking for templates just yet. */
5784 if ((TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
5786 /* We're looking for a non-static member, and this isn't
5787 one, or vice versa. */
5790 /* Ignore functions which haven't been explicitly
5792 if (DECL_ANTICIPATED (fn
))
5795 /* See if there's a match. */
5796 fntype
= TREE_TYPE (fn
);
5798 fntype
= build_ptrmemfunc_type (build_pointer_type (fntype
));
5799 else if (!is_reference
)
5800 fntype
= build_pointer_type (fntype
);
5802 if (can_convert_arg (target_type
, fntype
, fn
, LOOKUP_NORMAL
))
5803 matches
= tree_cons (fn
, NULL_TREE
, matches
);
5807 /* Now, if we've already got a match (or matches), there's no need
5808 to proceed to the template functions. But, if we don't have a
5809 match we need to look at them, too. */
5812 tree target_fn_type
;
5813 tree target_arg_types
;
5814 tree target_ret_type
;
5819 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type
));
5821 target_fn_type
= TREE_TYPE (target_type
);
5822 target_arg_types
= TYPE_ARG_TYPES (target_fn_type
);
5823 target_ret_type
= TREE_TYPE (target_fn_type
);
5825 /* Never do unification on the 'this' parameter. */
5826 if (TREE_CODE (target_fn_type
) == METHOD_TYPE
)
5827 target_arg_types
= TREE_CHAIN (target_arg_types
);
5829 for (fns
= overload
; fns
; fns
= OVL_NEXT (fns
))
5831 tree fn
= OVL_CURRENT (fns
);
5833 tree instantiation_type
;
5836 if (TREE_CODE (fn
) != TEMPLATE_DECL
)
5837 /* We're only looking for templates. */
5840 if ((TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
5842 /* We're not looking for a non-static member, and this is
5843 one, or vice versa. */
5846 /* Try to do argument deduction. */
5847 targs
= make_tree_vec (DECL_NTPARMS (fn
));
5848 if (fn_type_unification (fn
, explicit_targs
, targs
,
5849 target_arg_types
, target_ret_type
,
5850 DEDUCE_EXACT
, LOOKUP_NORMAL
))
5851 /* Argument deduction failed. */
5854 /* Instantiate the template. */
5855 instantiation
= instantiate_template (fn
, targs
, flags
);
5856 if (instantiation
== error_mark_node
)
5857 /* Instantiation failed. */
5860 /* See if there's a match. */
5861 instantiation_type
= TREE_TYPE (instantiation
);
5863 instantiation_type
=
5864 build_ptrmemfunc_type (build_pointer_type (instantiation_type
));
5865 else if (!is_reference
)
5866 instantiation_type
= build_pointer_type (instantiation_type
);
5867 if (can_convert_arg (target_type
, instantiation_type
, instantiation
,
5869 matches
= tree_cons (instantiation
, fn
, matches
);
5872 /* Now, remove all but the most specialized of the matches. */
5875 tree match
= most_specialized_instantiation (matches
);
5877 if (match
!= error_mark_node
)
5878 matches
= tree_cons (TREE_PURPOSE (match
),
5884 /* Now we should have exactly one function in MATCHES. */
5885 if (matches
== NULL_TREE
)
5887 /* There were *no* matches. */
5888 if (flags
& tf_error
)
5890 error ("no matches converting function %qD to type %q#T",
5891 DECL_NAME (OVL_FUNCTION (overload
)),
5894 /* print_candidates expects a chain with the functions in
5895 TREE_VALUE slots, so we cons one up here (we're losing anyway,
5896 so why be clever?). */
5897 for (; overload
; overload
= OVL_NEXT (overload
))
5898 matches
= tree_cons (NULL_TREE
, OVL_CURRENT (overload
),
5901 print_candidates (matches
);
5903 return error_mark_node
;
5905 else if (TREE_CHAIN (matches
))
5907 /* There were too many matches. */
5909 if (flags
& tf_error
)
5913 error ("converting overloaded function %qD to type %q#T is ambiguous",
5914 DECL_NAME (OVL_FUNCTION (overload
)),
5917 /* Since print_candidates expects the functions in the
5918 TREE_VALUE slot, we flip them here. */
5919 for (match
= matches
; match
; match
= TREE_CHAIN (match
))
5920 TREE_VALUE (match
) = TREE_PURPOSE (match
);
5922 print_candidates (matches
);
5925 return error_mark_node
;
5928 /* Good, exactly one match. Now, convert it to the correct type. */
5929 fn
= TREE_PURPOSE (matches
);
5931 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
)
5932 && !(flags
& tf_ptrmem_ok
) && !flag_ms_extensions
)
5934 static int explained
;
5936 if (!(flags
& tf_error
))
5937 return error_mark_node
;
5939 pedwarn ("assuming pointer to member %qD", fn
);
5942 pedwarn ("(a pointer to member can only be formed with %<&%E%>)", fn
);
5947 /* If we're doing overload resolution purely for the purpose of
5948 determining conversion sequences, we should not consider the
5949 function used. If this conversion sequence is selected, the
5950 function will be marked as used at this point. */
5951 if (!(flags
& tf_conv
))
5954 /* We could not check access when this expression was originally
5955 created since we did not know at that time to which function
5956 the expression referred. */
5957 if (DECL_FUNCTION_MEMBER_P (fn
))
5959 gcc_assert (access_path
);
5960 perform_or_defer_access_check (access_path
, fn
, fn
);
5964 if (TYPE_PTRFN_P (target_type
) || TYPE_PTRMEMFUNC_P (target_type
))
5965 return build_unary_op (ADDR_EXPR
, fn
, 0);
5968 /* The target must be a REFERENCE_TYPE. Above, build_unary_op
5969 will mark the function as addressed, but here we must do it
5971 cxx_mark_addressable (fn
);
5977 /* This function will instantiate the type of the expression given in
5978 RHS to match the type of LHSTYPE. If errors exist, then return
5979 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
5980 we complain on errors. If we are not complaining, never modify rhs,
5981 as overload resolution wants to try many possible instantiations, in
5982 the hope that at least one will work.
5984 For non-recursive calls, LHSTYPE should be a function, pointer to
5985 function, or a pointer to member function. */
5988 instantiate_type (tree lhstype
, tree rhs
, tsubst_flags_t flags
)
5990 tsubst_flags_t flags_in
= flags
;
5991 tree access_path
= NULL_TREE
;
5993 flags
&= ~tf_ptrmem_ok
;
5995 if (TREE_CODE (lhstype
) == UNKNOWN_TYPE
)
5997 if (flags
& tf_error
)
5998 error ("not enough type information");
5999 return error_mark_node
;
6002 if (TREE_TYPE (rhs
) != NULL_TREE
&& ! (type_unknown_p (rhs
)))
6004 if (same_type_p (lhstype
, TREE_TYPE (rhs
)))
6006 if (flag_ms_extensions
6007 && TYPE_PTRMEMFUNC_P (lhstype
)
6008 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs
)))
6009 /* Microsoft allows `A::f' to be resolved to a
6010 pointer-to-member. */
6014 if (flags
& tf_error
)
6015 error ("argument of type %qT does not match %qT",
6016 TREE_TYPE (rhs
), lhstype
);
6017 return error_mark_node
;
6021 if (TREE_CODE (rhs
) == BASELINK
)
6023 access_path
= BASELINK_ACCESS_BINFO (rhs
);
6024 rhs
= BASELINK_FUNCTIONS (rhs
);
6027 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
6028 deduce any type information. */
6029 if (TREE_CODE (rhs
) == NON_DEPENDENT_EXPR
)
6031 if (flags
& tf_error
)
6032 error ("not enough type information");
6033 return error_mark_node
;
6036 /* There only a few kinds of expressions that may have a type
6037 dependent on overload resolution. */
6038 gcc_assert (TREE_CODE (rhs
) == ADDR_EXPR
6039 || TREE_CODE (rhs
) == COMPONENT_REF
6040 || TREE_CODE (rhs
) == COMPOUND_EXPR
6041 || really_overloaded_fn (rhs
));
6043 /* We don't overwrite rhs if it is an overloaded function.
6044 Copying it would destroy the tree link. */
6045 if (TREE_CODE (rhs
) != OVERLOAD
)
6046 rhs
= copy_node (rhs
);
6048 /* This should really only be used when attempting to distinguish
6049 what sort of a pointer to function we have. For now, any
6050 arithmetic operation which is not supported on pointers
6051 is rejected as an error. */
6053 switch (TREE_CODE (rhs
))
6057 tree member
= TREE_OPERAND (rhs
, 1);
6059 member
= instantiate_type (lhstype
, member
, flags
);
6060 if (member
!= error_mark_node
6061 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs
, 0)))
6062 /* Do not lose object's side effects. */
6063 return build2 (COMPOUND_EXPR
, TREE_TYPE (member
),
6064 TREE_OPERAND (rhs
, 0), member
);
6069 rhs
= TREE_OPERAND (rhs
, 1);
6070 if (BASELINK_P (rhs
))
6071 return instantiate_type (lhstype
, rhs
, flags_in
);
6073 /* This can happen if we are forming a pointer-to-member for a
6075 gcc_assert (TREE_CODE (rhs
) == TEMPLATE_ID_EXPR
);
6079 case TEMPLATE_ID_EXPR
:
6081 tree fns
= TREE_OPERAND (rhs
, 0);
6082 tree args
= TREE_OPERAND (rhs
, 1);
6085 resolve_address_of_overloaded_function (lhstype
, fns
, flags_in
,
6086 /*template_only=*/true,
6093 resolve_address_of_overloaded_function (lhstype
, rhs
, flags_in
,
6094 /*template_only=*/false,
6095 /*explicit_targs=*/NULL_TREE
,
6099 TREE_OPERAND (rhs
, 0)
6100 = instantiate_type (lhstype
, TREE_OPERAND (rhs
, 0), flags
);
6101 if (TREE_OPERAND (rhs
, 0) == error_mark_node
)
6102 return error_mark_node
;
6103 TREE_OPERAND (rhs
, 1)
6104 = instantiate_type (lhstype
, TREE_OPERAND (rhs
, 1), flags
);
6105 if (TREE_OPERAND (rhs
, 1) == error_mark_node
)
6106 return error_mark_node
;
6108 TREE_TYPE (rhs
) = lhstype
;
6113 if (PTRMEM_OK_P (rhs
))
6114 flags
|= tf_ptrmem_ok
;
6116 return instantiate_type (lhstype
, TREE_OPERAND (rhs
, 0), flags
);
6120 return error_mark_node
;
6125 return error_mark_node
;
6128 /* Return the name of the virtual function pointer field
6129 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6130 this may have to look back through base types to find the
6131 ultimate field name. (For single inheritance, these could
6132 all be the same name. Who knows for multiple inheritance). */
6135 get_vfield_name (tree type
)
6137 tree binfo
, base_binfo
;
6140 for (binfo
= TYPE_BINFO (type
);
6141 BINFO_N_BASE_BINFOS (binfo
);
6144 base_binfo
= BINFO_BASE_BINFO (binfo
, 0);
6146 if (BINFO_VIRTUAL_P (base_binfo
)
6147 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo
)))
6151 type
= BINFO_TYPE (binfo
);
6152 buf
= (char *) alloca (sizeof (VFIELD_NAME_FORMAT
)
6153 + TYPE_NAME_LENGTH (type
) + 2);
6154 sprintf (buf
, VFIELD_NAME_FORMAT
,
6155 IDENTIFIER_POINTER (constructor_name (type
)));
6156 return get_identifier (buf
);
6160 print_class_statistics (void)
6162 #ifdef GATHER_STATISTICS
6163 fprintf (stderr
, "convert_harshness = %d\n", n_convert_harshness
);
6164 fprintf (stderr
, "compute_conversion_costs = %d\n", n_compute_conversion_costs
);
6167 fprintf (stderr
, "vtables = %d; vtable searches = %d\n",
6168 n_vtables
, n_vtable_searches
);
6169 fprintf (stderr
, "vtable entries = %d; vtable elems = %d\n",
6170 n_vtable_entries
, n_vtable_elems
);
6175 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6176 according to [class]:
6177 The class-name is also inserted
6178 into the scope of the class itself. For purposes of access checking,
6179 the inserted class name is treated as if it were a public member name. */
6182 build_self_reference (void)
6184 tree name
= constructor_name (current_class_type
);
6185 tree value
= build_lang_decl (TYPE_DECL
, name
, current_class_type
);
6188 DECL_NONLOCAL (value
) = 1;
6189 DECL_CONTEXT (value
) = current_class_type
;
6190 DECL_ARTIFICIAL (value
) = 1;
6191 SET_DECL_SELF_REFERENCE_P (value
);
6193 if (processing_template_decl
)
6194 value
= push_template_decl (value
);
6196 saved_cas
= current_access_specifier
;
6197 current_access_specifier
= access_public_node
;
6198 finish_member_declaration (value
);
6199 current_access_specifier
= saved_cas
;
6202 /* Returns 1 if TYPE contains only padding bytes. */
6205 is_empty_class (tree type
)
6207 if (type
== error_mark_node
)
6210 if (! IS_AGGR_TYPE (type
))
6213 /* In G++ 3.2, whether or not a class was empty was determined by
6214 looking at its size. */
6215 if (abi_version_at_least (2))
6216 return CLASSTYPE_EMPTY_P (type
);
6218 return integer_zerop (CLASSTYPE_SIZE (type
));
6221 /* Returns true if TYPE contains an empty class. */
6224 contains_empty_class_p (tree type
)
6226 if (is_empty_class (type
))
6228 if (CLASS_TYPE_P (type
))
6235 for (binfo
= TYPE_BINFO (type
), i
= 0;
6236 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
6237 if (contains_empty_class_p (BINFO_TYPE (base_binfo
)))
6239 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
6240 if (TREE_CODE (field
) == FIELD_DECL
6241 && !DECL_ARTIFICIAL (field
)
6242 && is_empty_class (TREE_TYPE (field
)))
6245 else if (TREE_CODE (type
) == ARRAY_TYPE
)
6246 return contains_empty_class_p (TREE_TYPE (type
));
6250 /* Note that NAME was looked up while the current class was being
6251 defined and that the result of that lookup was DECL. */
6254 maybe_note_name_used_in_class (tree name
, tree decl
)
6256 splay_tree names_used
;
6258 /* If we're not defining a class, there's nothing to do. */
6259 if (!(innermost_scope_kind() == sk_class
6260 && TYPE_BEING_DEFINED (current_class_type
)))
6263 /* If there's already a binding for this NAME, then we don't have
6264 anything to worry about. */
6265 if (lookup_member (current_class_type
, name
,
6266 /*protect=*/0, /*want_type=*/false))
6269 if (!current_class_stack
[current_class_depth
- 1].names_used
)
6270 current_class_stack
[current_class_depth
- 1].names_used
6271 = splay_tree_new (splay_tree_compare_pointers
, 0, 0);
6272 names_used
= current_class_stack
[current_class_depth
- 1].names_used
;
6274 splay_tree_insert (names_used
,
6275 (splay_tree_key
) name
,
6276 (splay_tree_value
) decl
);
6279 /* Note that NAME was declared (as DECL) in the current class. Check
6280 to see that the declaration is valid. */
6283 note_name_declared_in_class (tree name
, tree decl
)
6285 splay_tree names_used
;
6288 /* Look to see if we ever used this name. */
6290 = current_class_stack
[current_class_depth
- 1].names_used
;
6294 n
= splay_tree_lookup (names_used
, (splay_tree_key
) name
);
6297 /* [basic.scope.class]
6299 A name N used in a class S shall refer to the same declaration
6300 in its context and when re-evaluated in the completed scope of
6302 pedwarn ("declaration of %q#D", decl
);
6303 pedwarn ("changes meaning of %qD from %q+#D",
6304 DECL_NAME (OVL_CURRENT (decl
)), (tree
) n
->value
);
6308 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6309 Secondary vtables are merged with primary vtables; this function
6310 will return the VAR_DECL for the primary vtable. */
6313 get_vtbl_decl_for_binfo (tree binfo
)
6317 decl
= BINFO_VTABLE (binfo
);
6318 if (decl
&& TREE_CODE (decl
) == PLUS_EXPR
)
6320 gcc_assert (TREE_CODE (TREE_OPERAND (decl
, 0)) == ADDR_EXPR
);
6321 decl
= TREE_OPERAND (TREE_OPERAND (decl
, 0), 0);
6324 gcc_assert (TREE_CODE (decl
) == VAR_DECL
);
6329 /* Returns the binfo for the primary base of BINFO. If the resulting
6330 BINFO is a virtual base, and it is inherited elsewhere in the
6331 hierarchy, then the returned binfo might not be the primary base of
6332 BINFO in the complete object. Check BINFO_PRIMARY_P or
6333 BINFO_LOST_PRIMARY_P to be sure. */
6336 get_primary_binfo (tree binfo
)
6340 primary_base
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo
));
6344 return copied_binfo (primary_base
, binfo
);
6347 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6350 maybe_indent_hierarchy (FILE * stream
, int indent
, int indented_p
)
6353 fprintf (stream
, "%*s", indent
, "");
6357 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6358 INDENT should be zero when called from the top level; it is
6359 incremented recursively. IGO indicates the next expected BINFO in
6360 inheritance graph ordering. */
6363 dump_class_hierarchy_r (FILE *stream
,
6373 indented
= maybe_indent_hierarchy (stream
, indent
, 0);
6374 fprintf (stream
, "%s (0x%lx) ",
6375 type_as_string (BINFO_TYPE (binfo
), TFF_PLAIN_IDENTIFIER
),
6376 (unsigned long) binfo
);
6379 fprintf (stream
, "alternative-path\n");
6382 igo
= TREE_CHAIN (binfo
);
6384 fprintf (stream
, HOST_WIDE_INT_PRINT_DEC
,
6385 tree_low_cst (BINFO_OFFSET (binfo
), 0));
6386 if (is_empty_class (BINFO_TYPE (binfo
)))
6387 fprintf (stream
, " empty");
6388 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo
)))
6389 fprintf (stream
, " nearly-empty");
6390 if (BINFO_VIRTUAL_P (binfo
))
6391 fprintf (stream
, " virtual");
6392 fprintf (stream
, "\n");
6395 if (BINFO_PRIMARY_P (binfo
))
6397 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6398 fprintf (stream
, " primary-for %s (0x%lx)",
6399 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo
)),
6400 TFF_PLAIN_IDENTIFIER
),
6401 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo
));
6403 if (BINFO_LOST_PRIMARY_P (binfo
))
6405 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6406 fprintf (stream
, " lost-primary");
6409 fprintf (stream
, "\n");
6411 if (!(flags
& TDF_SLIM
))
6415 if (BINFO_SUBVTT_INDEX (binfo
))
6417 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6418 fprintf (stream
, " subvttidx=%s",
6419 expr_as_string (BINFO_SUBVTT_INDEX (binfo
),
6420 TFF_PLAIN_IDENTIFIER
));
6422 if (BINFO_VPTR_INDEX (binfo
))
6424 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6425 fprintf (stream
, " vptridx=%s",
6426 expr_as_string (BINFO_VPTR_INDEX (binfo
),
6427 TFF_PLAIN_IDENTIFIER
));
6429 if (BINFO_VPTR_FIELD (binfo
))
6431 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6432 fprintf (stream
, " vbaseoffset=%s",
6433 expr_as_string (BINFO_VPTR_FIELD (binfo
),
6434 TFF_PLAIN_IDENTIFIER
));
6436 if (BINFO_VTABLE (binfo
))
6438 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
6439 fprintf (stream
, " vptr=%s",
6440 expr_as_string (BINFO_VTABLE (binfo
),
6441 TFF_PLAIN_IDENTIFIER
));
6445 fprintf (stream
, "\n");
6448 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
6449 igo
= dump_class_hierarchy_r (stream
, flags
, base_binfo
, igo
, indent
+ 2);
6454 /* Dump the BINFO hierarchy for T. */
6457 dump_class_hierarchy_1 (FILE *stream
, int flags
, tree t
)
6459 fprintf (stream
, "Class %s\n", type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
6460 fprintf (stream
, " size=%lu align=%lu\n",
6461 (unsigned long)(tree_low_cst (TYPE_SIZE (t
), 0) / BITS_PER_UNIT
),
6462 (unsigned long)(TYPE_ALIGN (t
) / BITS_PER_UNIT
));
6463 fprintf (stream
, " base size=%lu base align=%lu\n",
6464 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t
)), 0)
6466 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t
))
6468 dump_class_hierarchy_r (stream
, flags
, TYPE_BINFO (t
), TYPE_BINFO (t
), 0);
6469 fprintf (stream
, "\n");
6472 /* Debug interface to hierarchy dumping. */
6475 debug_class (tree t
)
6477 dump_class_hierarchy_1 (stderr
, TDF_SLIM
, t
);
6481 dump_class_hierarchy (tree t
)
6484 FILE *stream
= dump_begin (TDI_class
, &flags
);
6488 dump_class_hierarchy_1 (stream
, flags
, t
);
6489 dump_end (TDI_class
, stream
);
6494 dump_array (FILE * stream
, tree decl
)
6497 unsigned HOST_WIDE_INT ix
;
6499 tree size
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl
)));
6501 elt
= (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl
))), 0)
6503 fprintf (stream
, "%s:", decl_as_string (decl
, TFF_PLAIN_IDENTIFIER
));
6504 fprintf (stream
, " %s entries",
6505 expr_as_string (size_binop (PLUS_EXPR
, size
, size_one_node
),
6506 TFF_PLAIN_IDENTIFIER
));
6507 fprintf (stream
, "\n");
6509 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl
)),
6511 fprintf (stream
, "%-4ld %s\n", (long)(ix
* elt
),
6512 expr_as_string (value
, TFF_PLAIN_IDENTIFIER
));
6516 dump_vtable (tree t
, tree binfo
, tree vtable
)
6519 FILE *stream
= dump_begin (TDI_class
, &flags
);
6524 if (!(flags
& TDF_SLIM
))
6526 int ctor_vtbl_p
= TYPE_BINFO (t
) != binfo
;
6528 fprintf (stream
, "%s for %s",
6529 ctor_vtbl_p
? "Construction vtable" : "Vtable",
6530 type_as_string (BINFO_TYPE (binfo
), TFF_PLAIN_IDENTIFIER
));
6533 if (!BINFO_VIRTUAL_P (binfo
))
6534 fprintf (stream
, " (0x%lx instance)", (unsigned long)binfo
);
6535 fprintf (stream
, " in %s", type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
6537 fprintf (stream
, "\n");
6538 dump_array (stream
, vtable
);
6539 fprintf (stream
, "\n");
6542 dump_end (TDI_class
, stream
);
6546 dump_vtt (tree t
, tree vtt
)
6549 FILE *stream
= dump_begin (TDI_class
, &flags
);
6554 if (!(flags
& TDF_SLIM
))
6556 fprintf (stream
, "VTT for %s\n",
6557 type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
6558 dump_array (stream
, vtt
);
6559 fprintf (stream
, "\n");
6562 dump_end (TDI_class
, stream
);
6565 /* Dump a function or thunk and its thunkees. */
6568 dump_thunk (FILE *stream
, int indent
, tree thunk
)
6570 static const char spaces
[] = " ";
6571 tree name
= DECL_NAME (thunk
);
6574 fprintf (stream
, "%.*s%p %s %s", indent
, spaces
,
6576 !DECL_THUNK_P (thunk
) ? "function"
6577 : DECL_THIS_THUNK_P (thunk
) ? "this-thunk" : "covariant-thunk",
6578 name
? IDENTIFIER_POINTER (name
) : "<unset>");
6579 if (DECL_THUNK_P (thunk
))
6581 HOST_WIDE_INT fixed_adjust
= THUNK_FIXED_OFFSET (thunk
);
6582 tree virtual_adjust
= THUNK_VIRTUAL_OFFSET (thunk
);
6584 fprintf (stream
, " fixed=" HOST_WIDE_INT_PRINT_DEC
, fixed_adjust
);
6585 if (!virtual_adjust
)
6587 else if (DECL_THIS_THUNK_P (thunk
))
6588 fprintf (stream
, " vcall=" HOST_WIDE_INT_PRINT_DEC
,
6589 tree_low_cst (virtual_adjust
, 0));
6591 fprintf (stream
, " vbase=" HOST_WIDE_INT_PRINT_DEC
"(%s)",
6592 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust
), 0),
6593 type_as_string (BINFO_TYPE (virtual_adjust
), TFF_SCOPE
));
6594 if (THUNK_ALIAS (thunk
))
6595 fprintf (stream
, " alias to %p", (void *)THUNK_ALIAS (thunk
));
6597 fprintf (stream
, "\n");
6598 for (thunks
= DECL_THUNKS (thunk
); thunks
; thunks
= TREE_CHAIN (thunks
))
6599 dump_thunk (stream
, indent
+ 2, thunks
);
6602 /* Dump the thunks for FN. */
6605 debug_thunks (tree fn
)
6607 dump_thunk (stderr
, 0, fn
);
6610 /* Virtual function table initialization. */
6612 /* Create all the necessary vtables for T and its base classes. */
6615 finish_vtbls (tree t
)
6620 /* We lay out the primary and secondary vtables in one contiguous
6621 vtable. The primary vtable is first, followed by the non-virtual
6622 secondary vtables in inheritance graph order. */
6623 list
= build_tree_list (BINFO_VTABLE (TYPE_BINFO (t
)), NULL_TREE
);
6624 accumulate_vtbl_inits (TYPE_BINFO (t
), TYPE_BINFO (t
),
6625 TYPE_BINFO (t
), t
, list
);
6627 /* Then come the virtual bases, also in inheritance graph order. */
6628 for (vbase
= TYPE_BINFO (t
); vbase
; vbase
= TREE_CHAIN (vbase
))
6630 if (!BINFO_VIRTUAL_P (vbase
))
6632 accumulate_vtbl_inits (vbase
, vbase
, TYPE_BINFO (t
), t
, list
);
6635 if (BINFO_VTABLE (TYPE_BINFO (t
)))
6636 initialize_vtable (TYPE_BINFO (t
), TREE_VALUE (list
));
6639 /* Initialize the vtable for BINFO with the INITS. */
6642 initialize_vtable (tree binfo
, tree inits
)
6646 layout_vtable_decl (binfo
, list_length (inits
));
6647 decl
= get_vtbl_decl_for_binfo (binfo
);
6648 initialize_artificial_var (decl
, inits
);
6649 dump_vtable (BINFO_TYPE (binfo
), binfo
, decl
);
6652 /* Build the VTT (virtual table table) for T.
6653 A class requires a VTT if it has virtual bases.
6656 1 - primary virtual pointer for complete object T
6657 2 - secondary VTTs for each direct non-virtual base of T which requires a
6659 3 - secondary virtual pointers for each direct or indirect base of T which
6660 has virtual bases or is reachable via a virtual path from T.
6661 4 - secondary VTTs for each direct or indirect virtual base of T.
6663 Secondary VTTs look like complete object VTTs without part 4. */
6673 /* Build up the initializers for the VTT. */
6675 index
= size_zero_node
;
6676 build_vtt_inits (TYPE_BINFO (t
), t
, &inits
, &index
);
6678 /* If we didn't need a VTT, we're done. */
6682 /* Figure out the type of the VTT. */
6683 type
= build_index_type (size_int (list_length (inits
) - 1));
6684 type
= build_cplus_array_type (const_ptr_type_node
, type
);
6686 /* Now, build the VTT object itself. */
6687 vtt
= build_vtable (t
, mangle_vtt_for_type (t
), type
);
6688 initialize_artificial_var (vtt
, inits
);
6689 /* Add the VTT to the vtables list. */
6690 TREE_CHAIN (vtt
) = TREE_CHAIN (CLASSTYPE_VTABLES (t
));
6691 TREE_CHAIN (CLASSTYPE_VTABLES (t
)) = vtt
;
6696 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6697 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6698 and CHAIN the vtable pointer for this binfo after construction is
6699 complete. VALUE can also be another BINFO, in which case we recurse. */
6702 binfo_ctor_vtable (tree binfo
)
6708 vt
= BINFO_VTABLE (binfo
);
6709 if (TREE_CODE (vt
) == TREE_LIST
)
6710 vt
= TREE_VALUE (vt
);
6711 if (TREE_CODE (vt
) == TREE_BINFO
)
6720 /* Data for secondary VTT initialization. */
6721 typedef struct secondary_vptr_vtt_init_data_s
6723 /* Is this the primary VTT? */
6726 /* Current index into the VTT. */
6729 /* TREE_LIST of initializers built up. */
6732 /* The type being constructed by this secondary VTT. */
6733 tree type_being_constructed
;
6734 } secondary_vptr_vtt_init_data
;
6736 /* Recursively build the VTT-initializer for BINFO (which is in the
6737 hierarchy dominated by T). INITS points to the end of the initializer
6738 list to date. INDEX is the VTT index where the next element will be
6739 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6740 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6741 for virtual bases of T. When it is not so, we build the constructor
6742 vtables for the BINFO-in-T variant. */
6745 build_vtt_inits (tree binfo
, tree t
, tree
*inits
, tree
*index
)
6750 tree secondary_vptrs
;
6751 secondary_vptr_vtt_init_data data
;
6752 int top_level_p
= SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
);
6754 /* We only need VTTs for subobjects with virtual bases. */
6755 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)))
6758 /* We need to use a construction vtable if this is not the primary
6762 build_ctor_vtbl_group (binfo
, t
);
6764 /* Record the offset in the VTT where this sub-VTT can be found. */
6765 BINFO_SUBVTT_INDEX (binfo
) = *index
;
6768 /* Add the address of the primary vtable for the complete object. */
6769 init
= binfo_ctor_vtable (binfo
);
6770 *inits
= build_tree_list (NULL_TREE
, init
);
6771 inits
= &TREE_CHAIN (*inits
);
6774 gcc_assert (!BINFO_VPTR_INDEX (binfo
));
6775 BINFO_VPTR_INDEX (binfo
) = *index
;
6777 *index
= size_binop (PLUS_EXPR
, *index
, TYPE_SIZE_UNIT (ptr_type_node
));
6779 /* Recursively add the secondary VTTs for non-virtual bases. */
6780 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, b
); ++i
)
6781 if (!BINFO_VIRTUAL_P (b
))
6782 inits
= build_vtt_inits (b
, t
, inits
, index
);
6784 /* Add secondary virtual pointers for all subobjects of BINFO with
6785 either virtual bases or reachable along a virtual path, except
6786 subobjects that are non-virtual primary bases. */
6787 data
.top_level_p
= top_level_p
;
6788 data
.index
= *index
;
6790 data
.type_being_constructed
= BINFO_TYPE (binfo
);
6792 dfs_walk_once (binfo
, dfs_build_secondary_vptr_vtt_inits
, NULL
, &data
);
6794 *index
= data
.index
;
6796 /* The secondary vptrs come back in reverse order. After we reverse
6797 them, and add the INITS, the last init will be the first element
6799 secondary_vptrs
= data
.inits
;
6800 if (secondary_vptrs
)
6802 *inits
= nreverse (secondary_vptrs
);
6803 inits
= &TREE_CHAIN (secondary_vptrs
);
6804 gcc_assert (*inits
== NULL_TREE
);
6808 /* Add the secondary VTTs for virtual bases in inheritance graph
6810 for (b
= TYPE_BINFO (BINFO_TYPE (binfo
)); b
; b
= TREE_CHAIN (b
))
6812 if (!BINFO_VIRTUAL_P (b
))
6815 inits
= build_vtt_inits (b
, t
, inits
, index
);
6818 /* Remove the ctor vtables we created. */
6819 dfs_walk_all (binfo
, dfs_fixup_binfo_vtbls
, NULL
, binfo
);
6824 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
6825 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
6828 dfs_build_secondary_vptr_vtt_inits (tree binfo
, void *data_
)
6830 secondary_vptr_vtt_init_data
*data
= (secondary_vptr_vtt_init_data
*)data_
;
6832 /* We don't care about bases that don't have vtables. */
6833 if (!TYPE_VFIELD (BINFO_TYPE (binfo
)))
6834 return dfs_skip_bases
;
6836 /* We're only interested in proper subobjects of the type being
6838 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->type_being_constructed
))
6841 /* We're only interested in bases with virtual bases or reachable
6842 via a virtual path from the type being constructed. */
6843 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
))
6844 || binfo_via_virtual (binfo
, data
->type_being_constructed
)))
6845 return dfs_skip_bases
;
6847 /* We're not interested in non-virtual primary bases. */
6848 if (!BINFO_VIRTUAL_P (binfo
) && BINFO_PRIMARY_P (binfo
))
6851 /* Record the index where this secondary vptr can be found. */
6852 if (data
->top_level_p
)
6854 gcc_assert (!BINFO_VPTR_INDEX (binfo
));
6855 BINFO_VPTR_INDEX (binfo
) = data
->index
;
6857 if (BINFO_VIRTUAL_P (binfo
))
6859 /* It's a primary virtual base, and this is not a
6860 construction vtable. Find the base this is primary of in
6861 the inheritance graph, and use that base's vtable
6863 while (BINFO_PRIMARY_P (binfo
))
6864 binfo
= BINFO_INHERITANCE_CHAIN (binfo
);
6868 /* Add the initializer for the secondary vptr itself. */
6869 data
->inits
= tree_cons (NULL_TREE
, binfo_ctor_vtable (binfo
), data
->inits
);
6871 /* Advance the vtt index. */
6872 data
->index
= size_binop (PLUS_EXPR
, data
->index
,
6873 TYPE_SIZE_UNIT (ptr_type_node
));
6878 /* Called from build_vtt_inits via dfs_walk. After building
6879 constructor vtables and generating the sub-vtt from them, we need
6880 to restore the BINFO_VTABLES that were scribbled on. DATA is the
6881 binfo of the base whose sub vtt was generated. */
6884 dfs_fixup_binfo_vtbls (tree binfo
, void* data
)
6886 tree vtable
= BINFO_VTABLE (binfo
);
6888 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
6889 /* If this class has no vtable, none of its bases do. */
6890 return dfs_skip_bases
;
6893 /* This might be a primary base, so have no vtable in this
6897 /* If we scribbled the construction vtable vptr into BINFO, clear it
6899 if (TREE_CODE (vtable
) == TREE_LIST
6900 && (TREE_PURPOSE (vtable
) == (tree
) data
))
6901 BINFO_VTABLE (binfo
) = TREE_CHAIN (vtable
);
6906 /* Build the construction vtable group for BINFO which is in the
6907 hierarchy dominated by T. */
6910 build_ctor_vtbl_group (tree binfo
, tree t
)
6919 /* See if we've already created this construction vtable group. */
6920 id
= mangle_ctor_vtbl_for_type (t
, binfo
);
6921 if (IDENTIFIER_GLOBAL_VALUE (id
))
6924 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
));
6925 /* Build a version of VTBL (with the wrong type) for use in
6926 constructing the addresses of secondary vtables in the
6927 construction vtable group. */
6928 vtbl
= build_vtable (t
, id
, ptr_type_node
);
6929 DECL_CONSTRUCTION_VTABLE_P (vtbl
) = 1;
6930 list
= build_tree_list (vtbl
, NULL_TREE
);
6931 accumulate_vtbl_inits (binfo
, TYPE_BINFO (TREE_TYPE (binfo
)),
6934 /* Add the vtables for each of our virtual bases using the vbase in T
6936 for (vbase
= TYPE_BINFO (BINFO_TYPE (binfo
));
6938 vbase
= TREE_CHAIN (vbase
))
6942 if (!BINFO_VIRTUAL_P (vbase
))
6944 b
= copied_binfo (vbase
, binfo
);
6946 accumulate_vtbl_inits (b
, vbase
, binfo
, t
, list
);
6948 inits
= TREE_VALUE (list
);
6950 /* Figure out the type of the construction vtable. */
6951 type
= build_index_type (size_int (list_length (inits
) - 1));
6952 type
= build_cplus_array_type (vtable_entry_type
, type
);
6953 TREE_TYPE (vtbl
) = type
;
6955 /* Initialize the construction vtable. */
6956 CLASSTYPE_VTABLES (t
) = chainon (CLASSTYPE_VTABLES (t
), vtbl
);
6957 initialize_artificial_var (vtbl
, inits
);
6958 dump_vtable (t
, binfo
, vtbl
);
6961 /* Add the vtbl initializers for BINFO (and its bases other than
6962 non-virtual primaries) to the list of INITS. BINFO is in the
6963 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
6964 the constructor the vtbl inits should be accumulated for. (If this
6965 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
6966 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
6967 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
6968 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
6969 but are not necessarily the same in terms of layout. */
6972 accumulate_vtbl_inits (tree binfo
,
6980 int ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
6982 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), BINFO_TYPE (orig_binfo
)));
6984 /* If it doesn't have a vptr, we don't do anything. */
6985 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
6988 /* If we're building a construction vtable, we're not interested in
6989 subobjects that don't require construction vtables. */
6991 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
))
6992 && !binfo_via_virtual (orig_binfo
, BINFO_TYPE (rtti_binfo
)))
6995 /* Build the initializers for the BINFO-in-T vtable. */
6997 = chainon (TREE_VALUE (inits
),
6998 dfs_accumulate_vtbl_inits (binfo
, orig_binfo
,
6999 rtti_binfo
, t
, inits
));
7001 /* Walk the BINFO and its bases. We walk in preorder so that as we
7002 initialize each vtable we can figure out at what offset the
7003 secondary vtable lies from the primary vtable. We can't use
7004 dfs_walk here because we need to iterate through bases of BINFO
7005 and RTTI_BINFO simultaneously. */
7006 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
7008 /* Skip virtual bases. */
7009 if (BINFO_VIRTUAL_P (base_binfo
))
7011 accumulate_vtbl_inits (base_binfo
,
7012 BINFO_BASE_BINFO (orig_binfo
, i
),
7018 /* Called from accumulate_vtbl_inits. Returns the initializers for
7019 the BINFO vtable. */
7022 dfs_accumulate_vtbl_inits (tree binfo
,
7028 tree inits
= NULL_TREE
;
7029 tree vtbl
= NULL_TREE
;
7030 int ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
7033 && BINFO_VIRTUAL_P (orig_binfo
) && BINFO_PRIMARY_P (orig_binfo
))
7035 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7036 primary virtual base. If it is not the same primary in
7037 the hierarchy of T, we'll need to generate a ctor vtable
7038 for it, to place at its location in T. If it is the same
7039 primary, we still need a VTT entry for the vtable, but it
7040 should point to the ctor vtable for the base it is a
7041 primary for within the sub-hierarchy of RTTI_BINFO.
7043 There are three possible cases:
7045 1) We are in the same place.
7046 2) We are a primary base within a lost primary virtual base of
7048 3) We are primary to something not a base of RTTI_BINFO. */
7051 tree last
= NULL_TREE
;
7053 /* First, look through the bases we are primary to for RTTI_BINFO
7054 or a virtual base. */
7056 while (BINFO_PRIMARY_P (b
))
7058 b
= BINFO_INHERITANCE_CHAIN (b
);
7060 if (BINFO_VIRTUAL_P (b
) || b
== rtti_binfo
)
7063 /* If we run out of primary links, keep looking down our
7064 inheritance chain; we might be an indirect primary. */
7065 for (b
= last
; b
; b
= BINFO_INHERITANCE_CHAIN (b
))
7066 if (BINFO_VIRTUAL_P (b
) || b
== rtti_binfo
)
7070 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7071 base B and it is a base of RTTI_BINFO, this is case 2. In
7072 either case, we share our vtable with LAST, i.e. the
7073 derived-most base within B of which we are a primary. */
7075 || (b
&& binfo_for_vbase (BINFO_TYPE (b
), BINFO_TYPE (rtti_binfo
))))
7076 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7077 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7078 binfo_ctor_vtable after everything's been set up. */
7081 /* Otherwise, this is case 3 and we get our own. */
7083 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo
))
7091 /* Compute the initializer for this vtable. */
7092 inits
= build_vtbl_initializer (binfo
, orig_binfo
, t
, rtti_binfo
,
7095 /* Figure out the position to which the VPTR should point. */
7096 vtbl
= TREE_PURPOSE (l
);
7097 vtbl
= build1 (ADDR_EXPR
, vtbl_ptr_type_node
, vtbl
);
7098 index
= size_binop (PLUS_EXPR
,
7099 size_int (non_fn_entries
),
7100 size_int (list_length (TREE_VALUE (l
))));
7101 index
= size_binop (MULT_EXPR
,
7102 TYPE_SIZE_UNIT (vtable_entry_type
),
7104 vtbl
= build2 (PLUS_EXPR
, TREE_TYPE (vtbl
), vtbl
, index
);
7108 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7109 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7110 straighten this out. */
7111 BINFO_VTABLE (binfo
) = tree_cons (rtti_binfo
, vtbl
, BINFO_VTABLE (binfo
));
7112 else if (BINFO_PRIMARY_P (binfo
) && BINFO_VIRTUAL_P (binfo
))
7115 /* For an ordinary vtable, set BINFO_VTABLE. */
7116 BINFO_VTABLE (binfo
) = vtbl
;
7121 static GTY(()) tree abort_fndecl_addr
;
7123 /* Construct the initializer for BINFO's virtual function table. BINFO
7124 is part of the hierarchy dominated by T. If we're building a
7125 construction vtable, the ORIG_BINFO is the binfo we should use to
7126 find the actual function pointers to put in the vtable - but they
7127 can be overridden on the path to most-derived in the graph that
7128 ORIG_BINFO belongs. Otherwise,
7129 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7130 BINFO that should be indicated by the RTTI information in the
7131 vtable; it will be a base class of T, rather than T itself, if we
7132 are building a construction vtable.
7134 The value returned is a TREE_LIST suitable for wrapping in a
7135 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7136 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7137 number of non-function entries in the vtable.
7139 It might seem that this function should never be called with a
7140 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7141 base is always subsumed by a derived class vtable. However, when
7142 we are building construction vtables, we do build vtables for
7143 primary bases; we need these while the primary base is being
7147 build_vtbl_initializer (tree binfo
,
7151 int* non_fn_entries_p
)
7158 VEC(tree
,gc
) *vbases
;
7160 /* Initialize VID. */
7161 memset (&vid
, 0, sizeof (vid
));
7164 vid
.rtti_binfo
= rtti_binfo
;
7165 vid
.last_init
= &vid
.inits
;
7166 vid
.primary_vtbl_p
= SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
);
7167 vid
.ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
7168 vid
.generate_vcall_entries
= true;
7169 /* The first vbase or vcall offset is at index -3 in the vtable. */
7170 vid
.index
= ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE
);
7172 /* Add entries to the vtable for RTTI. */
7173 build_rtti_vtbl_entries (binfo
, &vid
);
7175 /* Create an array for keeping track of the functions we've
7176 processed. When we see multiple functions with the same
7177 signature, we share the vcall offsets. */
7178 vid
.fns
= VEC_alloc (tree
, gc
, 32);
7179 /* Add the vcall and vbase offset entries. */
7180 build_vcall_and_vbase_vtbl_entries (binfo
, &vid
);
7182 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7183 build_vbase_offset_vtbl_entries. */
7184 for (vbases
= CLASSTYPE_VBASECLASSES (t
), ix
= 0;
7185 VEC_iterate (tree
, vbases
, ix
, vbinfo
); ix
++)
7186 BINFO_VTABLE_PATH_MARKED (vbinfo
) = 0;
7188 /* If the target requires padding between data entries, add that now. */
7189 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE
> 1)
7193 for (prev
= &vid
.inits
; (cur
= *prev
); prev
= &TREE_CHAIN (cur
))
7198 for (i
= 1; i
< TARGET_VTABLE_DATA_ENTRY_DISTANCE
; ++i
)
7199 add
= tree_cons (NULL_TREE
,
7200 build1 (NOP_EXPR
, vtable_entry_type
,
7207 if (non_fn_entries_p
)
7208 *non_fn_entries_p
= list_length (vid
.inits
);
7210 /* Go through all the ordinary virtual functions, building up
7212 vfun_inits
= NULL_TREE
;
7213 for (v
= BINFO_VIRTUALS (orig_binfo
); v
; v
= TREE_CHAIN (v
))
7217 tree fn
, fn_original
;
7218 tree init
= NULL_TREE
;
7222 if (DECL_THUNK_P (fn
))
7224 if (!DECL_NAME (fn
))
7226 if (THUNK_ALIAS (fn
))
7228 fn
= THUNK_ALIAS (fn
);
7231 fn_original
= THUNK_TARGET (fn
);
7234 /* If the only definition of this function signature along our
7235 primary base chain is from a lost primary, this vtable slot will
7236 never be used, so just zero it out. This is important to avoid
7237 requiring extra thunks which cannot be generated with the function.
7239 We first check this in update_vtable_entry_for_fn, so we handle
7240 restored primary bases properly; we also need to do it here so we
7241 zero out unused slots in ctor vtables, rather than filling themff
7242 with erroneous values (though harmless, apart from relocation
7244 for (b
= binfo
; ; b
= get_primary_binfo (b
))
7246 /* We found a defn before a lost primary; go ahead as normal. */
7247 if (look_for_overrides_here (BINFO_TYPE (b
), fn_original
))
7250 /* The nearest definition is from a lost primary; clear the
7252 if (BINFO_LOST_PRIMARY_P (b
))
7254 init
= size_zero_node
;
7261 /* Pull the offset for `this', and the function to call, out of
7263 delta
= BV_DELTA (v
);
7264 vcall_index
= BV_VCALL_INDEX (v
);
7266 gcc_assert (TREE_CODE (delta
) == INTEGER_CST
);
7267 gcc_assert (TREE_CODE (fn
) == FUNCTION_DECL
);
7269 /* You can't call an abstract virtual function; it's abstract.
7270 So, we replace these functions with __pure_virtual. */
7271 if (DECL_PURE_VIRTUAL_P (fn_original
))
7274 if (abort_fndecl_addr
== NULL
)
7275 abort_fndecl_addr
= build1 (ADDR_EXPR
, vfunc_ptr_type_node
, fn
);
7276 init
= abort_fndecl_addr
;
7280 if (!integer_zerop (delta
) || vcall_index
)
7282 fn
= make_thunk (fn
, /*this_adjusting=*/1, delta
, vcall_index
);
7283 if (!DECL_NAME (fn
))
7286 /* Take the address of the function, considering it to be of an
7287 appropriate generic type. */
7288 init
= build1 (ADDR_EXPR
, vfunc_ptr_type_node
, fn
);
7292 /* And add it to the chain of initializers. */
7293 if (TARGET_VTABLE_USES_DESCRIPTORS
)
7296 if (init
== size_zero_node
)
7297 for (i
= 0; i
< TARGET_VTABLE_USES_DESCRIPTORS
; ++i
)
7298 vfun_inits
= tree_cons (NULL_TREE
, init
, vfun_inits
);
7300 for (i
= 0; i
< TARGET_VTABLE_USES_DESCRIPTORS
; ++i
)
7302 tree fdesc
= build2 (FDESC_EXPR
, vfunc_ptr_type_node
,
7303 TREE_OPERAND (init
, 0),
7304 build_int_cst (NULL_TREE
, i
));
7305 TREE_CONSTANT (fdesc
) = 1;
7306 TREE_INVARIANT (fdesc
) = 1;
7308 vfun_inits
= tree_cons (NULL_TREE
, fdesc
, vfun_inits
);
7312 vfun_inits
= tree_cons (NULL_TREE
, init
, vfun_inits
);
7315 /* The initializers for virtual functions were built up in reverse
7316 order; straighten them out now. */
7317 vfun_inits
= nreverse (vfun_inits
);
7319 /* The negative offset initializers are also in reverse order. */
7320 vid
.inits
= nreverse (vid
.inits
);
7322 /* Chain the two together. */
7323 return chainon (vid
.inits
, vfun_inits
);
7326 /* Adds to vid->inits the initializers for the vbase and vcall
7327 offsets in BINFO, which is in the hierarchy dominated by T. */
7330 build_vcall_and_vbase_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
7334 /* If this is a derived class, we must first create entries
7335 corresponding to the primary base class. */
7336 b
= get_primary_binfo (binfo
);
7338 build_vcall_and_vbase_vtbl_entries (b
, vid
);
7340 /* Add the vbase entries for this base. */
7341 build_vbase_offset_vtbl_entries (binfo
, vid
);
7342 /* Add the vcall entries for this base. */
7343 build_vcall_offset_vtbl_entries (binfo
, vid
);
7346 /* Returns the initializers for the vbase offset entries in the vtable
7347 for BINFO (which is part of the class hierarchy dominated by T), in
7348 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7349 where the next vbase offset will go. */
7352 build_vbase_offset_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
7356 tree non_primary_binfo
;
7358 /* If there are no virtual baseclasses, then there is nothing to
7360 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)))
7365 /* We might be a primary base class. Go up the inheritance hierarchy
7366 until we find the most derived class of which we are a primary base:
7367 it is the offset of that which we need to use. */
7368 non_primary_binfo
= binfo
;
7369 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo
))
7373 /* If we have reached a virtual base, then it must be a primary
7374 base (possibly multi-level) of vid->binfo, or we wouldn't
7375 have called build_vcall_and_vbase_vtbl_entries for it. But it
7376 might be a lost primary, so just skip down to vid->binfo. */
7377 if (BINFO_VIRTUAL_P (non_primary_binfo
))
7379 non_primary_binfo
= vid
->binfo
;
7383 b
= BINFO_INHERITANCE_CHAIN (non_primary_binfo
);
7384 if (get_primary_binfo (b
) != non_primary_binfo
)
7386 non_primary_binfo
= b
;
7389 /* Go through the virtual bases, adding the offsets. */
7390 for (vbase
= TYPE_BINFO (BINFO_TYPE (binfo
));
7392 vbase
= TREE_CHAIN (vbase
))
7397 if (!BINFO_VIRTUAL_P (vbase
))
7400 /* Find the instance of this virtual base in the complete
7402 b
= copied_binfo (vbase
, binfo
);
7404 /* If we've already got an offset for this virtual base, we
7405 don't need another one. */
7406 if (BINFO_VTABLE_PATH_MARKED (b
))
7408 BINFO_VTABLE_PATH_MARKED (b
) = 1;
7410 /* Figure out where we can find this vbase offset. */
7411 delta
= size_binop (MULT_EXPR
,
7414 TYPE_SIZE_UNIT (vtable_entry_type
)));
7415 if (vid
->primary_vtbl_p
)
7416 BINFO_VPTR_FIELD (b
) = delta
;
7418 if (binfo
!= TYPE_BINFO (t
))
7419 /* The vbase offset had better be the same. */
7420 gcc_assert (tree_int_cst_equal (delta
, BINFO_VPTR_FIELD (vbase
)));
7422 /* The next vbase will come at a more negative offset. */
7423 vid
->index
= size_binop (MINUS_EXPR
, vid
->index
,
7424 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE
));
7426 /* The initializer is the delta from BINFO to this virtual base.
7427 The vbase offsets go in reverse inheritance-graph order, and
7428 we are walking in inheritance graph order so these end up in
7430 delta
= size_diffop (BINFO_OFFSET (b
), BINFO_OFFSET (non_primary_binfo
));
7433 = build_tree_list (NULL_TREE
,
7434 fold_build1 (NOP_EXPR
,
7437 vid
->last_init
= &TREE_CHAIN (*vid
->last_init
);
7441 /* Adds the initializers for the vcall offset entries in the vtable
7442 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7446 build_vcall_offset_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
7448 /* We only need these entries if this base is a virtual base. We
7449 compute the indices -- but do not add to the vtable -- when
7450 building the main vtable for a class. */
7451 if (binfo
== TYPE_BINFO (vid
->derived
)
7452 || (BINFO_VIRTUAL_P (binfo
)
7453 /* If BINFO is RTTI_BINFO, then (since BINFO does not
7454 correspond to VID->DERIVED), we are building a primary
7455 construction virtual table. Since this is a primary
7456 virtual table, we do not need the vcall offsets for
7458 && binfo
!= vid
->rtti_binfo
))
7460 /* We need a vcall offset for each of the virtual functions in this
7461 vtable. For example:
7463 class A { virtual void f (); };
7464 class B1 : virtual public A { virtual void f (); };
7465 class B2 : virtual public A { virtual void f (); };
7466 class C: public B1, public B2 { virtual void f (); };
7468 A C object has a primary base of B1, which has a primary base of A. A
7469 C also has a secondary base of B2, which no longer has a primary base
7470 of A. So the B2-in-C construction vtable needs a secondary vtable for
7471 A, which will adjust the A* to a B2* to call f. We have no way of
7472 knowing what (or even whether) this offset will be when we define B2,
7473 so we store this "vcall offset" in the A sub-vtable and look it up in
7474 a "virtual thunk" for B2::f.
7476 We need entries for all the functions in our primary vtable and
7477 in our non-virtual bases' secondary vtables. */
7479 /* If we are just computing the vcall indices -- but do not need
7480 the actual entries -- not that. */
7481 if (!BINFO_VIRTUAL_P (binfo
))
7482 vid
->generate_vcall_entries
= false;
7483 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7484 add_vcall_offset_vtbl_entries_r (binfo
, vid
);
7488 /* Build vcall offsets, starting with those for BINFO. */
7491 add_vcall_offset_vtbl_entries_r (tree binfo
, vtbl_init_data
* vid
)
7497 /* Don't walk into virtual bases -- except, of course, for the
7498 virtual base for which we are building vcall offsets. Any
7499 primary virtual base will have already had its offsets generated
7500 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7501 if (BINFO_VIRTUAL_P (binfo
) && vid
->vbase
!= binfo
)
7504 /* If BINFO has a primary base, process it first. */
7505 primary_binfo
= get_primary_binfo (binfo
);
7507 add_vcall_offset_vtbl_entries_r (primary_binfo
, vid
);
7509 /* Add BINFO itself to the list. */
7510 add_vcall_offset_vtbl_entries_1 (binfo
, vid
);
7512 /* Scan the non-primary bases of BINFO. */
7513 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
7514 if (base_binfo
!= primary_binfo
)
7515 add_vcall_offset_vtbl_entries_r (base_binfo
, vid
);
7518 /* Called from build_vcall_offset_vtbl_entries_r. */
7521 add_vcall_offset_vtbl_entries_1 (tree binfo
, vtbl_init_data
* vid
)
7523 /* Make entries for the rest of the virtuals. */
7524 if (abi_version_at_least (2))
7528 /* The ABI requires that the methods be processed in declaration
7529 order. G++ 3.2 used the order in the vtable. */
7530 for (orig_fn
= TYPE_METHODS (BINFO_TYPE (binfo
));
7532 orig_fn
= TREE_CHAIN (orig_fn
))
7533 if (DECL_VINDEX (orig_fn
))
7534 add_vcall_offset (orig_fn
, binfo
, vid
);
7538 tree derived_virtuals
;
7541 /* If BINFO is a primary base, the most derived class which has
7542 BINFO as a primary base; otherwise, just BINFO. */
7543 tree non_primary_binfo
;
7545 /* We might be a primary base class. Go up the inheritance hierarchy
7546 until we find the most derived class of which we are a primary base:
7547 it is the BINFO_VIRTUALS there that we need to consider. */
7548 non_primary_binfo
= binfo
;
7549 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo
))
7553 /* If we have reached a virtual base, then it must be vid->vbase,
7554 because we ignore other virtual bases in
7555 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7556 base (possibly multi-level) of vid->binfo, or we wouldn't
7557 have called build_vcall_and_vbase_vtbl_entries for it. But it
7558 might be a lost primary, so just skip down to vid->binfo. */
7559 if (BINFO_VIRTUAL_P (non_primary_binfo
))
7561 gcc_assert (non_primary_binfo
== vid
->vbase
);
7562 non_primary_binfo
= vid
->binfo
;
7566 b
= BINFO_INHERITANCE_CHAIN (non_primary_binfo
);
7567 if (get_primary_binfo (b
) != non_primary_binfo
)
7569 non_primary_binfo
= b
;
7572 if (vid
->ctor_vtbl_p
)
7573 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7574 where rtti_binfo is the most derived type. */
7576 = original_binfo (non_primary_binfo
, vid
->rtti_binfo
);
7578 for (base_virtuals
= BINFO_VIRTUALS (binfo
),
7579 derived_virtuals
= BINFO_VIRTUALS (non_primary_binfo
),
7580 orig_virtuals
= BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo
)));
7582 base_virtuals
= TREE_CHAIN (base_virtuals
),
7583 derived_virtuals
= TREE_CHAIN (derived_virtuals
),
7584 orig_virtuals
= TREE_CHAIN (orig_virtuals
))
7588 /* Find the declaration that originally caused this function to
7589 be present in BINFO_TYPE (binfo). */
7590 orig_fn
= BV_FN (orig_virtuals
);
7592 /* When processing BINFO, we only want to generate vcall slots for
7593 function slots introduced in BINFO. So don't try to generate
7594 one if the function isn't even defined in BINFO. */
7595 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), DECL_CONTEXT (orig_fn
)))
7598 add_vcall_offset (orig_fn
, binfo
, vid
);
7603 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7606 add_vcall_offset (tree orig_fn
, tree binfo
, vtbl_init_data
*vid
)
7612 /* If there is already an entry for a function with the same
7613 signature as FN, then we do not need a second vcall offset.
7614 Check the list of functions already present in the derived
7616 for (i
= 0; VEC_iterate (tree
, vid
->fns
, i
, derived_entry
); ++i
)
7618 if (same_signature_p (derived_entry
, orig_fn
)
7619 /* We only use one vcall offset for virtual destructors,
7620 even though there are two virtual table entries. */
7621 || (DECL_DESTRUCTOR_P (derived_entry
)
7622 && DECL_DESTRUCTOR_P (orig_fn
)))
7626 /* If we are building these vcall offsets as part of building
7627 the vtable for the most derived class, remember the vcall
7629 if (vid
->binfo
== TYPE_BINFO (vid
->derived
))
7631 tree_pair_p elt
= VEC_safe_push (tree_pair_s
, gc
,
7632 CLASSTYPE_VCALL_INDICES (vid
->derived
),
7634 elt
->purpose
= orig_fn
;
7635 elt
->value
= vid
->index
;
7638 /* The next vcall offset will be found at a more negative
7640 vid
->index
= size_binop (MINUS_EXPR
, vid
->index
,
7641 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE
));
7643 /* Keep track of this function. */
7644 VEC_safe_push (tree
, gc
, vid
->fns
, orig_fn
);
7646 if (vid
->generate_vcall_entries
)
7651 /* Find the overriding function. */
7652 fn
= find_final_overrider (vid
->rtti_binfo
, binfo
, orig_fn
);
7653 if (fn
== error_mark_node
)
7654 vcall_offset
= build1 (NOP_EXPR
, vtable_entry_type
,
7658 base
= TREE_VALUE (fn
);
7660 /* The vbase we're working on is a primary base of
7661 vid->binfo. But it might be a lost primary, so its
7662 BINFO_OFFSET might be wrong, so we just use the
7663 BINFO_OFFSET from vid->binfo. */
7664 vcall_offset
= size_diffop (BINFO_OFFSET (base
),
7665 BINFO_OFFSET (vid
->binfo
));
7666 vcall_offset
= fold_build1 (NOP_EXPR
, vtable_entry_type
,
7669 /* Add the initializer to the vtable. */
7670 *vid
->last_init
= build_tree_list (NULL_TREE
, vcall_offset
);
7671 vid
->last_init
= &TREE_CHAIN (*vid
->last_init
);
7675 /* Return vtbl initializers for the RTTI entries corresponding to the
7676 BINFO's vtable. The RTTI entries should indicate the object given
7677 by VID->rtti_binfo. */
7680 build_rtti_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
7689 basetype
= BINFO_TYPE (binfo
);
7690 t
= BINFO_TYPE (vid
->rtti_binfo
);
7692 /* To find the complete object, we will first convert to our most
7693 primary base, and then add the offset in the vtbl to that value. */
7695 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b
))
7696 && !BINFO_LOST_PRIMARY_P (b
))
7700 primary_base
= get_primary_binfo (b
);
7701 gcc_assert (BINFO_PRIMARY_P (primary_base
)
7702 && BINFO_INHERITANCE_CHAIN (primary_base
) == b
);
7705 offset
= size_diffop (BINFO_OFFSET (vid
->rtti_binfo
), BINFO_OFFSET (b
));
7707 /* The second entry is the address of the typeinfo object. */
7709 decl
= build_address (get_tinfo_decl (t
));
7711 decl
= integer_zero_node
;
7713 /* Convert the declaration to a type that can be stored in the
7715 init
= build_nop (vfunc_ptr_type_node
, decl
);
7716 *vid
->last_init
= build_tree_list (NULL_TREE
, init
);
7717 vid
->last_init
= &TREE_CHAIN (*vid
->last_init
);
7719 /* Add the offset-to-top entry. It comes earlier in the vtable than
7720 the typeinfo entry. Convert the offset to look like a
7721 function pointer, so that we can put it in the vtable. */
7722 init
= build_nop (vfunc_ptr_type_node
, offset
);
7723 *vid
->last_init
= build_tree_list (NULL_TREE
, init
);
7724 vid
->last_init
= &TREE_CHAIN (*vid
->last_init
);
7727 /* Fold a OBJ_TYPE_REF expression to the address of a function.
7728 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
7731 cp_fold_obj_type_ref (tree ref
, tree known_type
)
7733 HOST_WIDE_INT index
= tree_low_cst (OBJ_TYPE_REF_TOKEN (ref
), 1);
7734 HOST_WIDE_INT i
= 0;
7735 tree v
= BINFO_VIRTUALS (TYPE_BINFO (known_type
));
7740 i
+= (TARGET_VTABLE_USES_DESCRIPTORS
7741 ? TARGET_VTABLE_USES_DESCRIPTORS
: 1);
7747 #ifdef ENABLE_CHECKING
7748 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref
),
7749 DECL_VINDEX (fndecl
)));
7752 cgraph_node (fndecl
)->local
.vtable_method
= true;
7754 return build_address (fndecl
);
7757 #include "gt-cp-class.h"