* c-common.c (get_priority): Add check for
[official-gcc.git] / gcc / ada / s-taprop-posix.adb
blobf8d1f0db90d23f4f9261583807095c3a418544c7
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNARL; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNARL was developed by the GNARL team at Florida State University. --
30 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- This is a POSIX-like version of this package
36 -- This package contains all the GNULL primitives that interface directly
37 -- with the underlying OS.
39 -- Note: this file can only be used for POSIX compliant systems that
40 -- implement SCHED_FIFO and Ceiling Locking correctly.
42 -- For configurations where SCHED_FIFO and priority ceiling are not a
43 -- requirement, this file can also be used (e.g AiX threads)
45 pragma Polling (Off);
46 -- Turn off polling, we do not want ATC polling to take place during
47 -- tasking operations. It causes infinite loops and other problems.
49 with System.Tasking.Debug;
50 -- used for Known_Tasks
52 with System.Interrupt_Management;
53 -- used for Keep_Unmasked
54 -- Abort_Task_Interrupt
55 -- Interrupt_ID
57 with System.OS_Primitives;
58 -- used for Delay_Modes
60 with System.Task_Info;
61 -- used for Task_Info_Type
63 with Interfaces.C;
64 -- used for int
65 -- size_t
67 with System.Soft_Links;
68 -- used for Abort_Defer/Undefer
70 -- We use System.Soft_Links instead of System.Tasking.Initialization
71 -- because the later is a higher level package that we shouldn't depend on.
72 -- For example when using the restricted run time, it is replaced by
73 -- System.Tasking.Restricted.Stages.
75 with Unchecked_Conversion;
76 with Unchecked_Deallocation;
78 package body System.Task_Primitives.Operations is
80 package SSL renames System.Soft_Links;
82 use System.Tasking.Debug;
83 use System.Tasking;
84 use Interfaces.C;
85 use System.OS_Interface;
86 use System.Parameters;
87 use System.OS_Primitives;
89 ----------------
90 -- Local Data --
91 ----------------
93 -- The followings are logically constants, but need to be initialized
94 -- at run time.
96 Single_RTS_Lock : aliased RTS_Lock;
97 -- This is a lock to allow only one thread of control in the RTS at
98 -- a time; it is used to execute in mutual exclusion from all other tasks.
99 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
101 ATCB_Key : aliased pthread_key_t;
102 -- Key used to find the Ada Task_Id associated with a thread
104 Environment_Task_Id : Task_Id;
105 -- A variable to hold Task_Id for the environment task
107 Locking_Policy : Character;
108 pragma Import (C, Locking_Policy, "__gl_locking_policy");
109 -- Value of the pragma Locking_Policy:
110 -- 'C' for Ceiling_Locking
111 -- 'I' for Inherit_Locking
112 -- ' ' for none.
114 Unblocked_Signal_Mask : aliased sigset_t;
115 -- The set of signals that should unblocked in all tasks
117 -- The followings are internal configuration constants needed
119 Next_Serial_Number : Task_Serial_Number := 100;
120 -- We start at 100, to reserve some special values for
121 -- using in error checking.
123 Time_Slice_Val : Integer;
124 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
126 Dispatching_Policy : Character;
127 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
129 Foreign_Task_Elaborated : aliased Boolean := True;
130 -- Used to identified fake tasks (i.e., non-Ada Threads)
132 --------------------
133 -- Local Packages --
134 --------------------
136 package Specific is
138 procedure Initialize (Environment_Task : Task_Id);
139 pragma Inline (Initialize);
140 -- Initialize various data needed by this package
142 function Is_Valid_Task return Boolean;
143 pragma Inline (Is_Valid_Task);
144 -- Does executing thread have a TCB?
146 procedure Set (Self_Id : Task_Id);
147 pragma Inline (Set);
148 -- Set the self id for the current task
150 function Self return Task_Id;
151 pragma Inline (Self);
152 -- Return a pointer to the Ada Task Control Block of the calling task
154 end Specific;
156 package body Specific is separate;
157 -- The body of this package is target specific
159 ---------------------------------
160 -- Support for foreign threads --
161 ---------------------------------
163 function Register_Foreign_Thread (Thread : Thread_Id) return Task_Id;
164 -- Allocate and Initialize a new ATCB for the current Thread
166 function Register_Foreign_Thread
167 (Thread : Thread_Id) return Task_Id is separate;
169 -----------------------
170 -- Local Subprograms --
171 -----------------------
173 procedure Abort_Handler (Sig : Signal);
174 -- Signal handler used to implement asynchronous abort.
175 -- See also comment before body, below.
177 function To_Address is new Unchecked_Conversion (Task_Id, System.Address);
179 -------------------
180 -- Abort_Handler --
181 -------------------
183 -- Target-dependent binding of inter-thread Abort signal to
184 -- the raising of the Abort_Signal exception.
186 -- The technical issues and alternatives here are essentially
187 -- the same as for raising exceptions in response to other
188 -- signals (e.g. Storage_Error). See code and comments in
189 -- the package body System.Interrupt_Management.
191 -- Some implementations may not allow an exception to be propagated
192 -- out of a handler, and others might leave the signal or
193 -- interrupt that invoked this handler masked after the exceptional
194 -- return to the application code.
196 -- GNAT exceptions are originally implemented using setjmp()/longjmp().
197 -- On most UNIX systems, this will allow transfer out of a signal handler,
198 -- which is usually the only mechanism available for implementing
199 -- asynchronous handlers of this kind. However, some
200 -- systems do not restore the signal mask on longjmp(), leaving the
201 -- abort signal masked.
203 procedure Abort_Handler (Sig : Signal) is
204 pragma Warnings (Off, Sig);
206 T : constant Task_Id := Self;
207 Result : Interfaces.C.int;
208 Old_Set : aliased sigset_t;
210 begin
211 -- It is not safe to raise an exception when using ZCX and the GCC
212 -- exception handling mechanism.
214 if ZCX_By_Default and then GCC_ZCX_Support then
215 return;
216 end if;
218 if T.Deferral_Level = 0
219 and then T.Pending_ATC_Level < T.ATC_Nesting_Level and then
220 not T.Aborting
221 then
222 T.Aborting := True;
224 -- Make sure signals used for RTS internal purpose are unmasked
226 Result := pthread_sigmask (SIG_UNBLOCK,
227 Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
228 pragma Assert (Result = 0);
230 raise Standard'Abort_Signal;
231 end if;
232 end Abort_Handler;
234 -----------------
235 -- Stack_Guard --
236 -----------------
238 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
239 Stack_Base : constant Address := Get_Stack_Base (T.Common.LL.Thread);
240 Guard_Page_Address : Address;
242 Res : Interfaces.C.int;
244 begin
245 if Stack_Base_Available then
247 -- Compute the guard page address
249 Guard_Page_Address :=
250 Stack_Base - (Stack_Base mod Get_Page_Size) + Get_Page_Size;
252 if On then
253 Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_ON);
254 else
255 Res := mprotect (Guard_Page_Address, Get_Page_Size, PROT_OFF);
256 end if;
258 pragma Assert (Res = 0);
259 end if;
260 end Stack_Guard;
262 --------------------
263 -- Get_Thread_Id --
264 --------------------
266 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
267 begin
268 return T.Common.LL.Thread;
269 end Get_Thread_Id;
271 ----------
272 -- Self --
273 ----------
275 function Self return Task_Id renames Specific.Self;
277 ---------------------
278 -- Initialize_Lock --
279 ---------------------
281 -- Note: mutexes and cond_variables needed per-task basis are
282 -- initialized in Intialize_TCB and the Storage_Error is
283 -- handled. Other mutexes (such as RTS_Lock, Memory_Lock...)
284 -- used in RTS is initialized before any status change of RTS.
285 -- Therefore rasing Storage_Error in the following routines
286 -- should be able to be handled safely.
288 procedure Initialize_Lock
289 (Prio : System.Any_Priority;
290 L : access Lock)
292 Attributes : aliased pthread_mutexattr_t;
293 Result : Interfaces.C.int;
295 begin
296 Result := pthread_mutexattr_init (Attributes'Access);
297 pragma Assert (Result = 0 or else Result = ENOMEM);
299 if Result = ENOMEM then
300 raise Storage_Error;
301 end if;
303 if Locking_Policy = 'C' then
304 Result := pthread_mutexattr_setprotocol
305 (Attributes'Access, PTHREAD_PRIO_PROTECT);
306 pragma Assert (Result = 0);
308 Result := pthread_mutexattr_setprioceiling
309 (Attributes'Access, Interfaces.C.int (Prio));
310 pragma Assert (Result = 0);
312 elsif Locking_Policy = 'I' then
313 Result := pthread_mutexattr_setprotocol
314 (Attributes'Access, PTHREAD_PRIO_INHERIT);
315 pragma Assert (Result = 0);
316 end if;
318 Result := pthread_mutex_init (L, Attributes'Access);
319 pragma Assert (Result = 0 or else Result = ENOMEM);
321 if Result = ENOMEM then
322 Result := pthread_mutexattr_destroy (Attributes'Access);
323 raise Storage_Error;
324 end if;
326 Result := pthread_mutexattr_destroy (Attributes'Access);
327 pragma Assert (Result = 0);
328 end Initialize_Lock;
330 procedure Initialize_Lock (L : access RTS_Lock; Level : Lock_Level) is
331 pragma Warnings (Off, Level);
333 Attributes : aliased pthread_mutexattr_t;
334 Result : Interfaces.C.int;
336 begin
337 Result := pthread_mutexattr_init (Attributes'Access);
338 pragma Assert (Result = 0 or else Result = ENOMEM);
340 if Result = ENOMEM then
341 raise Storage_Error;
342 end if;
344 if Locking_Policy = 'C' then
345 Result := pthread_mutexattr_setprotocol
346 (Attributes'Access, PTHREAD_PRIO_PROTECT);
347 pragma Assert (Result = 0);
349 Result := pthread_mutexattr_setprioceiling
350 (Attributes'Access, Interfaces.C.int (System.Any_Priority'Last));
351 pragma Assert (Result = 0);
353 elsif Locking_Policy = 'I' then
354 Result := pthread_mutexattr_setprotocol
355 (Attributes'Access, PTHREAD_PRIO_INHERIT);
356 pragma Assert (Result = 0);
357 end if;
359 Result := pthread_mutex_init (L, Attributes'Access);
360 pragma Assert (Result = 0 or else Result = ENOMEM);
362 if Result = ENOMEM then
363 Result := pthread_mutexattr_destroy (Attributes'Access);
364 raise Storage_Error;
365 end if;
367 Result := pthread_mutexattr_destroy (Attributes'Access);
368 pragma Assert (Result = 0);
369 end Initialize_Lock;
371 -------------------
372 -- Finalize_Lock --
373 -------------------
375 procedure Finalize_Lock (L : access Lock) is
376 Result : Interfaces.C.int;
378 begin
379 Result := pthread_mutex_destroy (L);
380 pragma Assert (Result = 0);
381 end Finalize_Lock;
383 procedure Finalize_Lock (L : access RTS_Lock) is
384 Result : Interfaces.C.int;
386 begin
387 Result := pthread_mutex_destroy (L);
388 pragma Assert (Result = 0);
389 end Finalize_Lock;
391 ----------------
392 -- Write_Lock --
393 ----------------
395 procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
396 Result : Interfaces.C.int;
398 begin
399 Result := pthread_mutex_lock (L);
401 -- Assume that the cause of EINVAL is a priority ceiling violation
403 Ceiling_Violation := (Result = EINVAL);
404 pragma Assert (Result = 0 or else Result = EINVAL);
405 end Write_Lock;
407 procedure Write_Lock
408 (L : access RTS_Lock;
409 Global_Lock : Boolean := False)
411 Result : Interfaces.C.int;
413 begin
414 if not Single_Lock or else Global_Lock then
415 Result := pthread_mutex_lock (L);
416 pragma Assert (Result = 0);
417 end if;
418 end Write_Lock;
420 procedure Write_Lock (T : Task_Id) is
421 Result : Interfaces.C.int;
423 begin
424 if not Single_Lock then
425 Result := pthread_mutex_lock (T.Common.LL.L'Access);
426 pragma Assert (Result = 0);
427 end if;
428 end Write_Lock;
430 ---------------
431 -- Read_Lock --
432 ---------------
434 procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
435 begin
436 Write_Lock (L, Ceiling_Violation);
437 end Read_Lock;
439 ------------
440 -- Unlock --
441 ------------
443 procedure Unlock (L : access Lock) is
444 Result : Interfaces.C.int;
446 begin
447 Result := pthread_mutex_unlock (L);
448 pragma Assert (Result = 0);
449 end Unlock;
451 procedure Unlock (L : access RTS_Lock; Global_Lock : Boolean := False) is
452 Result : Interfaces.C.int;
454 begin
455 if not Single_Lock or else Global_Lock then
456 Result := pthread_mutex_unlock (L);
457 pragma Assert (Result = 0);
458 end if;
459 end Unlock;
461 procedure Unlock (T : Task_Id) is
462 Result : Interfaces.C.int;
464 begin
465 if not Single_Lock then
466 Result := pthread_mutex_unlock (T.Common.LL.L'Access);
467 pragma Assert (Result = 0);
468 end if;
469 end Unlock;
471 -----------
472 -- Sleep --
473 -----------
475 procedure Sleep
476 (Self_ID : Task_Id;
477 Reason : System.Tasking.Task_States)
479 pragma Warnings (Off, Reason);
481 Result : Interfaces.C.int;
483 begin
484 if Single_Lock then
485 Result := pthread_cond_wait
486 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
487 else
488 Result := pthread_cond_wait
489 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
490 end if;
492 -- EINTR is not considered a failure
494 pragma Assert (Result = 0 or else Result = EINTR);
495 end Sleep;
497 -----------------
498 -- Timed_Sleep --
499 -----------------
501 -- This is for use within the run-time system, so abort is
502 -- assumed to be already deferred, and the caller should be
503 -- holding its own ATCB lock.
505 procedure Timed_Sleep
506 (Self_ID : Task_Id;
507 Time : Duration;
508 Mode : ST.Delay_Modes;
509 Reason : Task_States;
510 Timedout : out Boolean;
511 Yielded : out Boolean)
513 pragma Warnings (Off, Reason);
515 Check_Time : constant Duration := Monotonic_Clock;
516 Rel_Time : Duration;
517 Abs_Time : Duration;
518 Request : aliased timespec;
519 Result : Interfaces.C.int;
521 begin
522 Timedout := True;
523 Yielded := False;
525 if Mode = Relative then
526 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
528 if Relative_Timed_Wait then
529 Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
530 end if;
532 else
533 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
535 if Relative_Timed_Wait then
536 Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
537 end if;
538 end if;
540 if Abs_Time > Check_Time then
541 if Relative_Timed_Wait then
542 Request := To_Timespec (Rel_Time);
543 else
544 Request := To_Timespec (Abs_Time);
545 end if;
547 loop
548 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
549 or else Self_ID.Pending_Priority_Change;
551 if Single_Lock then
552 Result := pthread_cond_timedwait
553 (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access,
554 Request'Access);
556 else
557 Result := pthread_cond_timedwait
558 (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access,
559 Request'Access);
560 end if;
562 exit when Abs_Time <= Monotonic_Clock;
564 if Result = 0 or Result = EINTR then
566 -- Somebody may have called Wakeup for us
568 Timedout := False;
569 exit;
570 end if;
572 pragma Assert (Result = ETIMEDOUT);
573 end loop;
574 end if;
575 end Timed_Sleep;
577 -----------------
578 -- Timed_Delay --
579 -----------------
581 -- This is for use in implementing delay statements, so we assume the
582 -- caller is abort-deferred but is holding no locks.
584 procedure Timed_Delay
585 (Self_ID : Task_Id;
586 Time : Duration;
587 Mode : ST.Delay_Modes)
589 Check_Time : constant Duration := Monotonic_Clock;
590 Abs_Time : Duration;
591 Rel_Time : Duration;
592 Request : aliased timespec;
594 Result : Interfaces.C.int;
595 pragma Warnings (Off, Result);
597 begin
598 if Single_Lock then
599 Lock_RTS;
600 end if;
602 Write_Lock (Self_ID);
604 if Mode = Relative then
605 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
607 if Relative_Timed_Wait then
608 Rel_Time := Duration'Min (Max_Sensible_Delay, Time);
609 end if;
611 else
612 Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
614 if Relative_Timed_Wait then
615 Rel_Time := Duration'Min (Max_Sensible_Delay, Time - Check_Time);
616 end if;
617 end if;
619 if Abs_Time > Check_Time then
620 if Relative_Timed_Wait then
621 Request := To_Timespec (Rel_Time);
622 else
623 Request := To_Timespec (Abs_Time);
624 end if;
626 Self_ID.Common.State := Delay_Sleep;
628 loop
629 if Self_ID.Pending_Priority_Change then
630 Self_ID.Pending_Priority_Change := False;
631 Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
632 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
633 end if;
635 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
637 if Single_Lock then
638 Result := pthread_cond_timedwait
639 (Self_ID.Common.LL.CV'Access,
640 Single_RTS_Lock'Access,
641 Request'Access);
642 else
643 Result := pthread_cond_timedwait
644 (Self_ID.Common.LL.CV'Access,
645 Self_ID.Common.LL.L'Access,
646 Request'Access);
647 end if;
649 exit when Abs_Time <= Monotonic_Clock;
651 pragma Assert (Result = 0
652 or else Result = ETIMEDOUT
653 or else Result = EINTR);
654 end loop;
656 Self_ID.Common.State := Runnable;
657 end if;
659 Unlock (Self_ID);
661 if Single_Lock then
662 Unlock_RTS;
663 end if;
665 Result := sched_yield;
666 end Timed_Delay;
668 ---------------------
669 -- Monotonic_Clock --
670 ---------------------
672 function Monotonic_Clock return Duration is
673 TS : aliased timespec;
674 Result : Interfaces.C.int;
675 begin
676 Result := clock_gettime
677 (clock_id => CLOCK_REALTIME, tp => TS'Unchecked_Access);
678 pragma Assert (Result = 0);
679 return To_Duration (TS);
680 end Monotonic_Clock;
682 -------------------
683 -- RT_Resolution --
684 -------------------
686 function RT_Resolution return Duration is
687 begin
688 return 10#1.0#E-6;
689 end RT_Resolution;
691 ------------
692 -- Wakeup --
693 ------------
695 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
696 pragma Warnings (Off, Reason);
697 Result : Interfaces.C.int;
698 begin
699 Result := pthread_cond_signal (T.Common.LL.CV'Access);
700 pragma Assert (Result = 0);
701 end Wakeup;
703 -----------
704 -- Yield --
705 -----------
707 procedure Yield (Do_Yield : Boolean := True) is
708 Result : Interfaces.C.int;
709 pragma Unreferenced (Result);
710 begin
711 if Do_Yield then
712 Result := sched_yield;
713 end if;
714 end Yield;
716 ------------------
717 -- Set_Priority --
718 ------------------
720 procedure Set_Priority
721 (T : Task_Id;
722 Prio : System.Any_Priority;
723 Loss_Of_Inheritance : Boolean := False)
725 pragma Warnings (Off, Loss_Of_Inheritance);
727 Result : Interfaces.C.int;
728 Param : aliased struct_sched_param;
730 function Get_Policy (Prio : System.Any_Priority) return Character;
731 pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
732 -- Get priority specific dispatching policy
734 Priority_Specific_Policy : constant Character := Get_Policy (Prio);
735 -- Upper case first character of the policy name corresponding to the
736 -- task as set by a Priority_Specific_Dispatching pragma.
738 begin
739 T.Common.Current_Priority := Prio;
740 Param.sched_priority := To_Target_Priority (Prio);
742 if Time_Slice_Supported
743 and then (Dispatching_Policy = 'R'
744 or else Priority_Specific_Policy = 'R'
745 or else Time_Slice_Val > 0)
746 then
747 Result := pthread_setschedparam
748 (T.Common.LL.Thread, SCHED_RR, Param'Access);
750 elsif Dispatching_Policy = 'F'
751 or else Priority_Specific_Policy = 'F'
752 or else Time_Slice_Val = 0
753 then
754 Result := pthread_setschedparam
755 (T.Common.LL.Thread, SCHED_FIFO, Param'Access);
757 else
758 Result := pthread_setschedparam
759 (T.Common.LL.Thread, SCHED_OTHER, Param'Access);
760 end if;
762 pragma Assert (Result = 0);
763 end Set_Priority;
765 ------------------
766 -- Get_Priority --
767 ------------------
769 function Get_Priority (T : Task_Id) return System.Any_Priority is
770 begin
771 return T.Common.Current_Priority;
772 end Get_Priority;
774 ----------------
775 -- Enter_Task --
776 ----------------
778 procedure Enter_Task (Self_ID : Task_Id) is
779 begin
780 Self_ID.Common.LL.Thread := pthread_self;
781 Self_ID.Common.LL.LWP := lwp_self;
783 Specific.Set (Self_ID);
785 Lock_RTS;
787 for J in Known_Tasks'Range loop
788 if Known_Tasks (J) = null then
789 Known_Tasks (J) := Self_ID;
790 Self_ID.Known_Tasks_Index := J;
791 exit;
792 end if;
793 end loop;
795 Unlock_RTS;
796 end Enter_Task;
798 --------------
799 -- New_ATCB --
800 --------------
802 function New_ATCB (Entry_Num : Task_Entry_Index) return Task_Id is
803 begin
804 return new Ada_Task_Control_Block (Entry_Num);
805 end New_ATCB;
807 -------------------
808 -- Is_Valid_Task --
809 -------------------
811 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
813 -----------------------------
814 -- Register_Foreign_Thread --
815 -----------------------------
817 function Register_Foreign_Thread return Task_Id is
818 begin
819 if Is_Valid_Task then
820 return Self;
821 else
822 return Register_Foreign_Thread (pthread_self);
823 end if;
824 end Register_Foreign_Thread;
826 --------------------
827 -- Initialize_TCB --
828 --------------------
830 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
831 Mutex_Attr : aliased pthread_mutexattr_t;
832 Result : Interfaces.C.int;
833 Cond_Attr : aliased pthread_condattr_t;
835 begin
836 -- Give the task a unique serial number
838 Self_ID.Serial_Number := Next_Serial_Number;
839 Next_Serial_Number := Next_Serial_Number + 1;
840 pragma Assert (Next_Serial_Number /= 0);
842 if not Single_Lock then
843 Result := pthread_mutexattr_init (Mutex_Attr'Access);
844 pragma Assert (Result = 0 or else Result = ENOMEM);
846 if Result = 0 then
847 if Locking_Policy = 'C' then
848 Result := pthread_mutexattr_setprotocol
849 (Mutex_Attr'Access, PTHREAD_PRIO_PROTECT);
850 pragma Assert (Result = 0);
852 Result := pthread_mutexattr_setprioceiling
853 (Mutex_Attr'Access,
854 Interfaces.C.int (System.Any_Priority'Last));
855 pragma Assert (Result = 0);
857 elsif Locking_Policy = 'I' then
858 Result := pthread_mutexattr_setprotocol
859 (Mutex_Attr'Access, PTHREAD_PRIO_INHERIT);
860 pragma Assert (Result = 0);
861 end if;
863 Result := pthread_mutex_init (Self_ID.Common.LL.L'Access,
864 Mutex_Attr'Access);
865 pragma Assert (Result = 0 or else Result = ENOMEM);
866 end if;
868 if Result /= 0 then
869 Succeeded := False;
870 return;
871 end if;
873 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
874 pragma Assert (Result = 0);
875 end if;
877 Result := pthread_condattr_init (Cond_Attr'Access);
878 pragma Assert (Result = 0 or else Result = ENOMEM);
880 if Result = 0 then
881 Result := pthread_cond_init (Self_ID.Common.LL.CV'Access,
882 Cond_Attr'Access);
883 pragma Assert (Result = 0 or else Result = ENOMEM);
884 end if;
886 if Result = 0 then
887 Succeeded := True;
888 else
889 if not Single_Lock then
890 Result := pthread_mutex_destroy (Self_ID.Common.LL.L'Access);
891 pragma Assert (Result = 0);
892 end if;
894 Succeeded := False;
895 end if;
897 Result := pthread_condattr_destroy (Cond_Attr'Access);
898 pragma Assert (Result = 0);
899 end Initialize_TCB;
901 -----------------
902 -- Create_Task --
903 -----------------
905 procedure Create_Task
906 (T : Task_Id;
907 Wrapper : System.Address;
908 Stack_Size : System.Parameters.Size_Type;
909 Priority : System.Any_Priority;
910 Succeeded : out Boolean)
912 Attributes : aliased pthread_attr_t;
913 Adjusted_Stack_Size : Interfaces.C.size_t;
914 Result : Interfaces.C.int;
916 function Thread_Body_Access is new
917 Unchecked_Conversion (System.Address, Thread_Body);
919 use System.Task_Info;
921 begin
922 Adjusted_Stack_Size := Interfaces.C.size_t (Stack_Size);
924 if Stack_Base_Available then
925 -- If Stack Checking is supported then allocate 2 additional pages:
927 -- In the worst case, stack is allocated at something like
928 -- N * Get_Page_Size - epsilon, we need to add the size for 2 pages
929 -- to be sure the effective stack size is greater than what
930 -- has been asked.
932 Adjusted_Stack_Size := Adjusted_Stack_Size + 2 * Get_Page_Size;
933 end if;
935 Result := pthread_attr_init (Attributes'Access);
936 pragma Assert (Result = 0 or else Result = ENOMEM);
938 if Result /= 0 then
939 Succeeded := False;
940 return;
941 end if;
943 Result := pthread_attr_setdetachstate
944 (Attributes'Access, PTHREAD_CREATE_DETACHED);
945 pragma Assert (Result = 0);
947 Result := pthread_attr_setstacksize
948 (Attributes'Access, Adjusted_Stack_Size);
949 pragma Assert (Result = 0);
951 if T.Common.Task_Info /= Default_Scope then
953 -- We are assuming that Scope_Type has the same values than the
954 -- corresponding C macros
956 Result := pthread_attr_setscope
957 (Attributes'Access, Task_Info_Type'Pos (T.Common.Task_Info));
958 pragma Assert (Result = 0);
959 end if;
961 -- Since the initial signal mask of a thread is inherited from the
962 -- creator, and the Environment task has all its signals masked, we
963 -- do not need to manipulate caller's signal mask at this point.
964 -- All tasks in RTS will have All_Tasks_Mask initially.
966 Result := pthread_create
967 (T.Common.LL.Thread'Access,
968 Attributes'Access,
969 Thread_Body_Access (Wrapper),
970 To_Address (T));
971 pragma Assert (Result = 0 or else Result = EAGAIN);
973 Succeeded := Result = 0;
975 Result := pthread_attr_destroy (Attributes'Access);
976 pragma Assert (Result = 0);
978 Set_Priority (T, Priority);
979 end Create_Task;
981 ------------------
982 -- Finalize_TCB --
983 ------------------
985 procedure Finalize_TCB (T : Task_Id) is
986 Result : Interfaces.C.int;
987 Tmp : Task_Id := T;
988 Is_Self : constant Boolean := T = Self;
990 procedure Free is new
991 Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
993 begin
994 if not Single_Lock then
995 Result := pthread_mutex_destroy (T.Common.LL.L'Access);
996 pragma Assert (Result = 0);
997 end if;
999 Result := pthread_cond_destroy (T.Common.LL.CV'Access);
1000 pragma Assert (Result = 0);
1002 if T.Known_Tasks_Index /= -1 then
1003 Known_Tasks (T.Known_Tasks_Index) := null;
1004 end if;
1006 Free (Tmp);
1008 if Is_Self then
1009 Specific.Set (null);
1010 end if;
1011 end Finalize_TCB;
1013 ---------------
1014 -- Exit_Task --
1015 ---------------
1017 procedure Exit_Task is
1018 begin
1019 -- Mark this task as unknown, so that if Self is called, it won't
1020 -- return a dangling pointer.
1022 Specific.Set (null);
1023 end Exit_Task;
1025 ----------------
1026 -- Abort_Task --
1027 ----------------
1029 procedure Abort_Task (T : Task_Id) is
1030 Result : Interfaces.C.int;
1031 begin
1032 Result := pthread_kill (T.Common.LL.Thread,
1033 Signal (System.Interrupt_Management.Abort_Task_Interrupt));
1034 pragma Assert (Result = 0);
1035 end Abort_Task;
1037 ----------------
1038 -- Initialize --
1039 ----------------
1041 procedure Initialize (S : in out Suspension_Object) is
1042 Mutex_Attr : aliased pthread_mutexattr_t;
1043 Cond_Attr : aliased pthread_condattr_t;
1044 Result : Interfaces.C.int;
1045 begin
1046 -- Initialize internal state. It is always initialized to False (ARM
1047 -- D.10 par. 6).
1049 S.State := False;
1050 S.Waiting := False;
1052 -- Initialize internal mutex
1054 Result := pthread_mutexattr_init (Mutex_Attr'Access);
1055 pragma Assert (Result = 0 or else Result = ENOMEM);
1057 if Result = ENOMEM then
1058 raise Storage_Error;
1059 end if;
1061 Result := pthread_mutex_init (S.L'Access, Mutex_Attr'Access);
1062 pragma Assert (Result = 0 or else Result = ENOMEM);
1064 if Result = ENOMEM then
1065 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
1066 pragma Assert (Result = 0);
1068 raise Storage_Error;
1069 end if;
1071 Result := pthread_mutexattr_destroy (Mutex_Attr'Access);
1072 pragma Assert (Result = 0);
1074 -- Initialize internal condition variable
1076 Result := pthread_condattr_init (Cond_Attr'Access);
1077 pragma Assert (Result = 0 or else Result = ENOMEM);
1079 if Result /= 0 then
1080 Result := pthread_mutex_destroy (S.L'Access);
1081 pragma Assert (Result = 0);
1083 if Result = ENOMEM then
1084 raise Storage_Error;
1085 end if;
1086 end if;
1088 Result := pthread_cond_init (S.CV'Access, Cond_Attr'Access);
1089 pragma Assert (Result = 0 or else Result = ENOMEM);
1091 if Result /= 0 then
1092 Result := pthread_mutex_destroy (S.L'Access);
1093 pragma Assert (Result = 0);
1095 if Result = ENOMEM then
1096 Result := pthread_condattr_destroy (Cond_Attr'Access);
1097 pragma Assert (Result = 0);
1099 raise Storage_Error;
1100 end if;
1101 end if;
1103 Result := pthread_condattr_destroy (Cond_Attr'Access);
1104 pragma Assert (Result = 0);
1105 end Initialize;
1107 --------------
1108 -- Finalize --
1109 --------------
1111 procedure Finalize (S : in out Suspension_Object) is
1112 Result : Interfaces.C.int;
1113 begin
1114 -- Destroy internal mutex
1116 Result := pthread_mutex_destroy (S.L'Access);
1117 pragma Assert (Result = 0);
1119 -- Destroy internal condition variable
1121 Result := pthread_cond_destroy (S.CV'Access);
1122 pragma Assert (Result = 0);
1123 end Finalize;
1125 -------------------
1126 -- Current_State --
1127 -------------------
1129 function Current_State (S : Suspension_Object) return Boolean is
1130 begin
1131 -- We do not want to use lock on this read operation. State is marked
1132 -- as Atomic so that we ensure that the value retrieved is correct.
1134 return S.State;
1135 end Current_State;
1137 ---------------
1138 -- Set_False --
1139 ---------------
1141 procedure Set_False (S : in out Suspension_Object) is
1142 Result : Interfaces.C.int;
1143 begin
1144 SSL.Abort_Defer.all;
1146 Result := pthread_mutex_lock (S.L'Access);
1147 pragma Assert (Result = 0);
1149 S.State := False;
1151 Result := pthread_mutex_unlock (S.L'Access);
1152 pragma Assert (Result = 0);
1154 SSL.Abort_Undefer.all;
1155 end Set_False;
1157 --------------
1158 -- Set_True --
1159 --------------
1161 procedure Set_True (S : in out Suspension_Object) is
1162 Result : Interfaces.C.int;
1163 begin
1164 SSL.Abort_Defer.all;
1166 Result := pthread_mutex_lock (S.L'Access);
1167 pragma Assert (Result = 0);
1169 -- If there is already a task waiting on this suspension object then
1170 -- we resume it, leaving the state of the suspension object to False,
1171 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1172 -- the state to True.
1174 if S.Waiting then
1175 S.Waiting := False;
1176 S.State := False;
1178 Result := pthread_cond_signal (S.CV'Access);
1179 pragma Assert (Result = 0);
1180 else
1181 S.State := True;
1182 end if;
1184 Result := pthread_mutex_unlock (S.L'Access);
1185 pragma Assert (Result = 0);
1187 SSL.Abort_Undefer.all;
1188 end Set_True;
1190 ------------------------
1191 -- Suspend_Until_True --
1192 ------------------------
1194 procedure Suspend_Until_True (S : in out Suspension_Object) is
1195 Result : Interfaces.C.int;
1196 begin
1197 SSL.Abort_Defer.all;
1199 Result := pthread_mutex_lock (S.L'Access);
1200 pragma Assert (Result = 0);
1202 if S.Waiting then
1203 -- Program_Error must be raised upon calling Suspend_Until_True
1204 -- if another task is already waiting on that suspension object
1205 -- (ARM D.10 par. 10).
1207 Result := pthread_mutex_unlock (S.L'Access);
1208 pragma Assert (Result = 0);
1210 SSL.Abort_Undefer.all;
1212 raise Program_Error;
1213 else
1214 -- Suspend the task if the state is False. Otherwise, the task
1215 -- continues its execution, and the state of the suspension object
1216 -- is set to False (ARM D.10 par. 9).
1218 if S.State then
1219 S.State := False;
1220 else
1221 S.Waiting := True;
1222 Result := pthread_cond_wait (S.CV'Access, S.L'Access);
1223 end if;
1225 Result := pthread_mutex_unlock (S.L'Access);
1226 pragma Assert (Result = 0);
1228 SSL.Abort_Undefer.all;
1229 end if;
1230 end Suspend_Until_True;
1232 ----------------
1233 -- Check_Exit --
1234 ----------------
1236 -- Dummy version
1238 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1239 pragma Warnings (Off, Self_ID);
1240 begin
1241 return True;
1242 end Check_Exit;
1244 --------------------
1245 -- Check_No_Locks --
1246 --------------------
1248 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1249 pragma Warnings (Off, Self_ID);
1250 begin
1251 return True;
1252 end Check_No_Locks;
1254 ----------------------
1255 -- Environment_Task --
1256 ----------------------
1258 function Environment_Task return Task_Id is
1259 begin
1260 return Environment_Task_Id;
1261 end Environment_Task;
1263 --------------
1264 -- Lock_RTS --
1265 --------------
1267 procedure Lock_RTS is
1268 begin
1269 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1270 end Lock_RTS;
1272 ----------------
1273 -- Unlock_RTS --
1274 ----------------
1276 procedure Unlock_RTS is
1277 begin
1278 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1279 end Unlock_RTS;
1281 ------------------
1282 -- Suspend_Task --
1283 ------------------
1285 function Suspend_Task
1286 (T : ST.Task_Id;
1287 Thread_Self : Thread_Id) return Boolean
1289 pragma Warnings (Off, T);
1290 pragma Warnings (Off, Thread_Self);
1291 begin
1292 return False;
1293 end Suspend_Task;
1295 -----------------
1296 -- Resume_Task --
1297 -----------------
1299 function Resume_Task
1300 (T : ST.Task_Id;
1301 Thread_Self : Thread_Id) return Boolean
1303 pragma Warnings (Off, T);
1304 pragma Warnings (Off, Thread_Self);
1305 begin
1306 return False;
1307 end Resume_Task;
1309 ----------------
1310 -- Initialize --
1311 ----------------
1313 procedure Initialize (Environment_Task : Task_Id) is
1314 act : aliased struct_sigaction;
1315 old_act : aliased struct_sigaction;
1316 Tmp_Set : aliased sigset_t;
1317 Result : Interfaces.C.int;
1319 function State
1320 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
1321 pragma Import (C, State, "__gnat_get_interrupt_state");
1322 -- Get interrupt state. Defined in a-init.c
1323 -- The input argument is the interrupt number,
1324 -- and the result is one of the following:
1326 Default : constant Character := 's';
1327 -- 'n' this interrupt not set by any Interrupt_State pragma
1328 -- 'u' Interrupt_State pragma set state to User
1329 -- 'r' Interrupt_State pragma set state to Runtime
1330 -- 's' Interrupt_State pragma set state to System (use "default"
1331 -- system handler)
1333 begin
1334 Environment_Task_Id := Environment_Task;
1336 Interrupt_Management.Initialize;
1338 -- Prepare the set of signals that should unblocked in all tasks
1340 Result := sigemptyset (Unblocked_Signal_Mask'Access);
1341 pragma Assert (Result = 0);
1343 for J in Interrupt_Management.Interrupt_ID loop
1344 if System.Interrupt_Management.Keep_Unmasked (J) then
1345 Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
1346 pragma Assert (Result = 0);
1347 end if;
1348 end loop;
1350 -- Initialize the lock used to synchronize chain of all ATCBs
1352 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1354 Specific.Initialize (Environment_Task);
1356 Enter_Task (Environment_Task);
1358 -- Install the abort-signal handler
1360 if State (System.Interrupt_Management.Abort_Task_Interrupt)
1361 /= Default
1362 then
1363 act.sa_flags := 0;
1364 act.sa_handler := Abort_Handler'Address;
1366 Result := sigemptyset (Tmp_Set'Access);
1367 pragma Assert (Result = 0);
1368 act.sa_mask := Tmp_Set;
1370 Result :=
1371 sigaction
1372 (Signal (System.Interrupt_Management.Abort_Task_Interrupt),
1373 act'Unchecked_Access,
1374 old_act'Unchecked_Access);
1375 pragma Assert (Result = 0);
1376 end if;
1377 end Initialize;
1379 end System.Task_Primitives.Operations;