* c-common.c (get_priority): Add check for
[official-gcc.git] / gcc / ada / exp_ch3.adb
blob4e08bedaaf39d621d25217c60bfb3eb590710ae9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Exp_Aggr; use Exp_Aggr;
33 with Exp_Ch4; use Exp_Ch4;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Ch11; use Exp_Ch11;
38 with Exp_Disp; use Exp_Disp;
39 with Exp_Dist; use Exp_Dist;
40 with Exp_Smem; use Exp_Smem;
41 with Exp_Strm; use Exp_Strm;
42 with Exp_Tss; use Exp_Tss;
43 with Exp_Util; use Exp_Util;
44 with Freeze; use Freeze;
45 with Hostparm; use Hostparm;
46 with Nlists; use Nlists;
47 with Nmake; use Nmake;
48 with Opt; use Opt;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Attr; use Sem_Attr;
54 with Sem_Cat; use Sem_Cat;
55 with Sem_Ch3; use Sem_Ch3;
56 with Sem_Ch8; use Sem_Ch8;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Mech; use Sem_Mech;
60 with Sem_Res; use Sem_Res;
61 with Sem_Util; use Sem_Util;
62 with Sinfo; use Sinfo;
63 with Stand; use Stand;
64 with Snames; use Snames;
65 with Tbuild; use Tbuild;
66 with Ttypes; use Ttypes;
67 with Validsw; use Validsw;
69 package body Exp_Ch3 is
71 -----------------------
72 -- Local Subprograms --
73 -----------------------
75 procedure Adjust_Discriminants (Rtype : Entity_Id);
76 -- This is used when freezing a record type. It attempts to construct
77 -- more restrictive subtypes for discriminants so that the max size of
78 -- the record can be calculated more accurately. See the body of this
79 -- procedure for details.
81 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id);
82 -- Build initialization procedure for given array type. Nod is a node
83 -- used for attachment of any actions required in its construction.
84 -- It also supplies the source location used for the procedure.
86 function Build_Discriminant_Formals
87 (Rec_Id : Entity_Id;
88 Use_Dl : Boolean) return List_Id;
89 -- This function uses the discriminants of a type to build a list of
90 -- formal parameters, used in the following function. If the flag Use_Dl
91 -- is set, the list is built using the already defined discriminals
92 -- of the type. Otherwise new identifiers are created, with the source
93 -- names of the discriminants.
95 procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id);
96 -- Build record initialization procedure. N is the type declaration
97 -- node, and Pe is the corresponding entity for the record type.
99 procedure Build_Slice_Assignment (Typ : Entity_Id);
100 -- Build assignment procedure for one-dimensional arrays of controlled
101 -- types. Other array and slice assignments are expanded in-line, but
102 -- the code expansion for controlled components (when control actions
103 -- are active) can lead to very large blocks that GCC3 handles poorly.
105 procedure Build_Variant_Record_Equality (Typ : Entity_Id);
106 -- Create An Equality function for the non-tagged variant record 'Typ'
107 -- and attach it to the TSS list
109 procedure Check_Stream_Attributes (Typ : Entity_Id);
110 -- Check that if a limited extension has a parent with user-defined
111 -- stream attributes, and does not itself have user-definer
112 -- stream-attributes, then any limited component of the extension also
113 -- has the corresponding user-defined stream attributes.
115 procedure Clean_Task_Names
116 (Typ : Entity_Id;
117 Proc_Id : Entity_Id);
118 -- If an initialization procedure includes calls to generate names
119 -- for task subcomponents, indicate that secondary stack cleanup is
120 -- needed after an initialization. Typ is the component type, and Proc_Id
121 -- the initialization procedure for the enclosing composite type.
123 procedure Expand_Tagged_Root (T : Entity_Id);
124 -- Add a field _Tag at the beginning of the record. This field carries
125 -- the value of the access to the Dispatch table. This procedure is only
126 -- called on root type, the _Tag field being inherited by the descendants.
128 procedure Expand_Record_Controller (T : Entity_Id);
129 -- T must be a record type that Has_Controlled_Component. Add a field
130 -- _controller of type Record_Controller or Limited_Record_Controller
131 -- in the record T.
133 procedure Freeze_Array_Type (N : Node_Id);
134 -- Freeze an array type. Deals with building the initialization procedure,
135 -- creating the packed array type for a packed array and also with the
136 -- creation of the controlling procedures for the controlled case. The
137 -- argument N is the N_Freeze_Entity node for the type.
139 procedure Freeze_Enumeration_Type (N : Node_Id);
140 -- Freeze enumeration type with non-standard representation. Builds the
141 -- array and function needed to convert between enumeration pos and
142 -- enumeration representation values. N is the N_Freeze_Entity node
143 -- for the type.
145 procedure Freeze_Record_Type (N : Node_Id);
146 -- Freeze record type. Builds all necessary discriminant checking
147 -- and other ancillary functions, and builds dispatch tables where
148 -- needed. The argument N is the N_Freeze_Entity node. This processing
149 -- applies only to E_Record_Type entities, not to class wide types,
150 -- record subtypes, or private types.
152 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id);
153 -- Treat user-defined stream operations as renaming_as_body if the
154 -- subprogram they rename is not frozen when the type is frozen.
156 function Init_Formals (Typ : Entity_Id) return List_Id;
157 -- This function builds the list of formals for an initialization routine.
158 -- The first formal is always _Init with the given type. For task value
159 -- record types and types containing tasks, three additional formals are
160 -- added:
162 -- _Master : Master_Id
163 -- _Chain : in out Activation_Chain
164 -- _Task_Name : String
166 -- The caller must append additional entries for discriminants if required.
168 function In_Runtime (E : Entity_Id) return Boolean;
169 -- Check if E is defined in the RTL (in a child of Ada or System). Used
170 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
172 function Make_Eq_Case
173 (E : Entity_Id;
174 CL : Node_Id;
175 Discr : Entity_Id := Empty) return List_Id;
176 -- Building block for variant record equality. Defined to share the
177 -- code between the tagged and non-tagged case. Given a Component_List
178 -- node CL, it generates an 'if' followed by a 'case' statement that
179 -- compares all components of local temporaries named X and Y (that
180 -- are declared as formals at some upper level). E provides the Sloc to be
181 -- used for the generated code. Discr is used as the case statement switch
182 -- in the case of Unchecked_Union equality.
184 function Make_Eq_If
185 (E : Entity_Id;
186 L : List_Id) return Node_Id;
187 -- Building block for variant record equality. Defined to share the
188 -- code between the tagged and non-tagged case. Given the list of
189 -- components (or discriminants) L, it generates a return statement
190 -- that compares all components of local temporaries named X and Y
191 -- (that are declared as formals at some upper level). E provides the Sloc
192 -- to be used for the generated code.
194 procedure Make_Predefined_Primitive_Specs
195 (Tag_Typ : Entity_Id;
196 Predef_List : out List_Id;
197 Renamed_Eq : out Node_Id);
198 -- Create a list with the specs of the predefined primitive operations.
199 -- The following entries are present for all tagged types, and provide
200 -- the results of the corresponding attribute applied to the object.
201 -- Dispatching is required in general, since the result of the attribute
202 -- will vary with the actual object subtype.
204 -- _alignment provides result of 'Alignment attribute
205 -- _size provides result of 'Size attribute
206 -- typSR provides result of 'Read attribute
207 -- typSW provides result of 'Write attribute
208 -- typSI provides result of 'Input attribute
209 -- typSO provides result of 'Output attribute
211 -- The following entries are additionally present for non-limited
212 -- tagged types, and implement additional dispatching operations
213 -- for predefined operations:
215 -- _equality implements "=" operator
216 -- _assign implements assignment operation
217 -- typDF implements deep finalization
218 -- typDA implements deep adust
220 -- The latter two are empty procedures unless the type contains some
221 -- controlled components that require finalization actions (the deep
222 -- in the name refers to the fact that the action applies to components).
224 -- The list is returned in Predef_List. The Parameter Renamed_Eq
225 -- either returns the value Empty, or else the defining unit name
226 -- for the predefined equality function in the case where the type
227 -- has a primitive operation that is a renaming of predefined equality
228 -- (but only if there is also an overriding user-defined equality
229 -- function). The returned Renamed_Eq will be passed to the
230 -- corresponding parameter of Predefined_Primitive_Bodies.
232 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean;
233 -- returns True if there are representation clauses for type T that
234 -- are not inherited. If the result is false, the init_proc and the
235 -- discriminant_checking functions of the parent can be reused by
236 -- a derived type.
238 procedure Make_Controlling_Function_Wrappers
239 (Tag_Typ : Entity_Id;
240 Decl_List : out List_Id;
241 Body_List : out List_Id);
242 -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
243 -- associated with inherited functions with controlling results which
244 -- are not overridden. The body of each wrapper function consists solely
245 -- of a return statement whose expression is an extension aggregate
246 -- invoking the inherited subprogram's parent subprogram and extended
247 -- with a null association list.
249 procedure Make_Null_Procedure_Specs
250 (Tag_Typ : Entity_Id;
251 Decl_List : out List_Id);
252 -- Ada 2005 (AI-251): Makes specs for null procedures associated with any
253 -- null procedures inherited from an interface type that have not been
254 -- overridden. Only one null procedure will be created for a given set of
255 -- inherited null procedures with homographic profiles.
257 function Predef_Spec_Or_Body
258 (Loc : Source_Ptr;
259 Tag_Typ : Entity_Id;
260 Name : Name_Id;
261 Profile : List_Id;
262 Ret_Type : Entity_Id := Empty;
263 For_Body : Boolean := False) return Node_Id;
264 -- This function generates the appropriate expansion for a predefined
265 -- primitive operation specified by its name, parameter profile and
266 -- return type (Empty means this is a procedure). If For_Body is false,
267 -- then the returned node is a subprogram declaration. If For_Body is
268 -- true, then the returned node is a empty subprogram body containing
269 -- no declarations and no statements.
271 function Predef_Stream_Attr_Spec
272 (Loc : Source_Ptr;
273 Tag_Typ : Entity_Id;
274 Name : TSS_Name_Type;
275 For_Body : Boolean := False) return Node_Id;
276 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
277 -- input and output attribute whose specs are constructed in Exp_Strm.
279 function Predef_Deep_Spec
280 (Loc : Source_Ptr;
281 Tag_Typ : Entity_Id;
282 Name : TSS_Name_Type;
283 For_Body : Boolean := False) return Node_Id;
284 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
285 -- and _deep_finalize
287 function Predefined_Primitive_Bodies
288 (Tag_Typ : Entity_Id;
289 Renamed_Eq : Node_Id) return List_Id;
290 -- Create the bodies of the predefined primitives that are described in
291 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
292 -- the defining unit name of the type's predefined equality as returned
293 -- by Make_Predefined_Primitive_Specs.
295 function Predefined_Primitive_Freeze (Tag_Typ : Entity_Id) return List_Id;
296 -- Freeze entities of all predefined primitive operations. This is needed
297 -- because the bodies of these operations do not normally do any freezeing.
299 function Stream_Operation_OK
300 (Typ : Entity_Id;
301 Operation : TSS_Name_Type) return Boolean;
302 -- Check whether the named stream operation must be emitted for a given
303 -- type. The rules for inheritance of stream attributes by type extensions
304 -- are enforced by this function. Furthermore, various restrictions prevent
305 -- the generation of these operations, as a useful optimization or for
306 -- certification purposes.
308 --------------------------
309 -- Adjust_Discriminants --
310 --------------------------
312 -- This procedure attempts to define subtypes for discriminants that
313 -- are more restrictive than those declared. Such a replacement is
314 -- possible if we can demonstrate that values outside the restricted
315 -- range would cause constraint errors in any case. The advantage of
316 -- restricting the discriminant types in this way is tha the maximum
317 -- size of the variant record can be calculated more conservatively.
319 -- An example of a situation in which we can perform this type of
320 -- restriction is the following:
322 -- subtype B is range 1 .. 10;
323 -- type Q is array (B range <>) of Integer;
325 -- type V (N : Natural) is record
326 -- C : Q (1 .. N);
327 -- end record;
329 -- In this situation, we can restrict the upper bound of N to 10, since
330 -- any larger value would cause a constraint error in any case.
332 -- There are many situations in which such restriction is possible, but
333 -- for now, we just look for cases like the above, where the component
334 -- in question is a one dimensional array whose upper bound is one of
335 -- the record discriminants. Also the component must not be part of
336 -- any variant part, since then the component does not always exist.
338 procedure Adjust_Discriminants (Rtype : Entity_Id) is
339 Loc : constant Source_Ptr := Sloc (Rtype);
340 Comp : Entity_Id;
341 Ctyp : Entity_Id;
342 Ityp : Entity_Id;
343 Lo : Node_Id;
344 Hi : Node_Id;
345 P : Node_Id;
346 Loval : Uint;
347 Discr : Entity_Id;
348 Dtyp : Entity_Id;
349 Dhi : Node_Id;
350 Dhiv : Uint;
351 Ahi : Node_Id;
352 Ahiv : Uint;
353 Tnn : Entity_Id;
355 begin
356 Comp := First_Component (Rtype);
357 while Present (Comp) loop
359 -- If our parent is a variant, quit, we do not look at components
360 -- that are in variant parts, because they may not always exist.
362 P := Parent (Comp); -- component declaration
363 P := Parent (P); -- component list
365 exit when Nkind (Parent (P)) = N_Variant;
367 -- We are looking for a one dimensional array type
369 Ctyp := Etype (Comp);
371 if not Is_Array_Type (Ctyp)
372 or else Number_Dimensions (Ctyp) > 1
373 then
374 goto Continue;
375 end if;
377 -- The lower bound must be constant, and the upper bound is a
378 -- discriminant (which is a discriminant of the current record).
380 Ityp := Etype (First_Index (Ctyp));
381 Lo := Type_Low_Bound (Ityp);
382 Hi := Type_High_Bound (Ityp);
384 if not Compile_Time_Known_Value (Lo)
385 or else Nkind (Hi) /= N_Identifier
386 or else No (Entity (Hi))
387 or else Ekind (Entity (Hi)) /= E_Discriminant
388 then
389 goto Continue;
390 end if;
392 -- We have an array with appropriate bounds
394 Loval := Expr_Value (Lo);
395 Discr := Entity (Hi);
396 Dtyp := Etype (Discr);
398 -- See if the discriminant has a known upper bound
400 Dhi := Type_High_Bound (Dtyp);
402 if not Compile_Time_Known_Value (Dhi) then
403 goto Continue;
404 end if;
406 Dhiv := Expr_Value (Dhi);
408 -- See if base type of component array has known upper bound
410 Ahi := Type_High_Bound (Etype (First_Index (Base_Type (Ctyp))));
412 if not Compile_Time_Known_Value (Ahi) then
413 goto Continue;
414 end if;
416 Ahiv := Expr_Value (Ahi);
418 -- The condition for doing the restriction is that the high bound
419 -- of the discriminant is greater than the low bound of the array,
420 -- and is also greater than the high bound of the base type index.
422 if Dhiv > Loval and then Dhiv > Ahiv then
424 -- We can reset the upper bound of the discriminant type to
425 -- whichever is larger, the low bound of the component, or
426 -- the high bound of the base type array index.
428 -- We build a subtype that is declared as
430 -- subtype Tnn is discr_type range discr_type'First .. max;
432 -- And insert this declaration into the tree. The type of the
433 -- discriminant is then reset to this more restricted subtype.
435 Tnn := Make_Defining_Identifier (Loc, New_Internal_Name ('T'));
437 Insert_Action (Declaration_Node (Rtype),
438 Make_Subtype_Declaration (Loc,
439 Defining_Identifier => Tnn,
440 Subtype_Indication =>
441 Make_Subtype_Indication (Loc,
442 Subtype_Mark => New_Occurrence_Of (Dtyp, Loc),
443 Constraint =>
444 Make_Range_Constraint (Loc,
445 Range_Expression =>
446 Make_Range (Loc,
447 Low_Bound =>
448 Make_Attribute_Reference (Loc,
449 Attribute_Name => Name_First,
450 Prefix => New_Occurrence_Of (Dtyp, Loc)),
451 High_Bound =>
452 Make_Integer_Literal (Loc,
453 Intval => UI_Max (Loval, Ahiv)))))));
455 Set_Etype (Discr, Tnn);
456 end if;
458 <<Continue>>
459 Next_Component (Comp);
460 end loop;
461 end Adjust_Discriminants;
463 ---------------------------
464 -- Build_Array_Init_Proc --
465 ---------------------------
467 procedure Build_Array_Init_Proc (A_Type : Entity_Id; Nod : Node_Id) is
468 Loc : constant Source_Ptr := Sloc (Nod);
469 Comp_Type : constant Entity_Id := Component_Type (A_Type);
470 Index_List : List_Id;
471 Proc_Id : Entity_Id;
472 Body_Stmts : List_Id;
474 function Init_Component return List_Id;
475 -- Create one statement to initialize one array component, designated
476 -- by a full set of indices.
478 function Init_One_Dimension (N : Int) return List_Id;
479 -- Create loop to initialize one dimension of the array. The single
480 -- statement in the loop body initializes the inner dimensions if any,
481 -- or else the single component. Note that this procedure is called
482 -- recursively, with N being the dimension to be initialized. A call
483 -- with N greater than the number of dimensions simply generates the
484 -- component initialization, terminating the recursion.
486 --------------------
487 -- Init_Component --
488 --------------------
490 function Init_Component return List_Id is
491 Comp : Node_Id;
493 begin
494 Comp :=
495 Make_Indexed_Component (Loc,
496 Prefix => Make_Identifier (Loc, Name_uInit),
497 Expressions => Index_List);
499 if Needs_Simple_Initialization (Comp_Type) then
500 Set_Assignment_OK (Comp);
501 return New_List (
502 Make_Assignment_Statement (Loc,
503 Name => Comp,
504 Expression =>
505 Get_Simple_Init_Val
506 (Comp_Type, Loc, Component_Size (A_Type))));
508 else
509 Clean_Task_Names (Comp_Type, Proc_Id);
510 return
511 Build_Initialization_Call (Loc, Comp, Comp_Type, True, A_Type);
512 end if;
513 end Init_Component;
515 ------------------------
516 -- Init_One_Dimension --
517 ------------------------
519 function Init_One_Dimension (N : Int) return List_Id is
520 Index : Entity_Id;
522 begin
523 -- If the component does not need initializing, then there is nothing
524 -- to do here, so we return a null body. This occurs when generating
525 -- the dummy Init_Proc needed for Initialize_Scalars processing.
527 if not Has_Non_Null_Base_Init_Proc (Comp_Type)
528 and then not Needs_Simple_Initialization (Comp_Type)
529 and then not Has_Task (Comp_Type)
530 then
531 return New_List (Make_Null_Statement (Loc));
533 -- If all dimensions dealt with, we simply initialize the component
535 elsif N > Number_Dimensions (A_Type) then
536 return Init_Component;
538 -- Here we generate the required loop
540 else
541 Index :=
542 Make_Defining_Identifier (Loc, New_External_Name ('J', N));
544 Append (New_Reference_To (Index, Loc), Index_List);
546 return New_List (
547 Make_Implicit_Loop_Statement (Nod,
548 Identifier => Empty,
549 Iteration_Scheme =>
550 Make_Iteration_Scheme (Loc,
551 Loop_Parameter_Specification =>
552 Make_Loop_Parameter_Specification (Loc,
553 Defining_Identifier => Index,
554 Discrete_Subtype_Definition =>
555 Make_Attribute_Reference (Loc,
556 Prefix => Make_Identifier (Loc, Name_uInit),
557 Attribute_Name => Name_Range,
558 Expressions => New_List (
559 Make_Integer_Literal (Loc, N))))),
560 Statements => Init_One_Dimension (N + 1)));
561 end if;
562 end Init_One_Dimension;
564 -- Start of processing for Build_Array_Init_Proc
566 begin
567 if Suppress_Init_Proc (A_Type) then
568 return;
569 end if;
571 Index_List := New_List;
573 -- We need an initialization procedure if any of the following is true:
575 -- 1. The component type has an initialization procedure
576 -- 2. The component type needs simple initialization
577 -- 3. Tasks are present
578 -- 4. The type is marked as a publc entity
580 -- The reason for the public entity test is to deal properly with the
581 -- Initialize_Scalars pragma. This pragma can be set in the client and
582 -- not in the declaring package, this means the client will make a call
583 -- to the initialization procedure (because one of conditions 1-3 must
584 -- apply in this case), and we must generate a procedure (even if it is
585 -- null) to satisfy the call in this case.
587 -- Exception: do not build an array init_proc for a type whose root
588 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
589 -- is no place to put the code, and in any case we handle initialization
590 -- of such types (in the Initialize_Scalars case, that's the only time
591 -- the issue arises) in a special manner anyway which does not need an
592 -- init_proc.
594 if Has_Non_Null_Base_Init_Proc (Comp_Type)
595 or else Needs_Simple_Initialization (Comp_Type)
596 or else Has_Task (Comp_Type)
597 or else (not Restriction_Active (No_Initialize_Scalars)
598 and then Is_Public (A_Type)
599 and then Root_Type (A_Type) /= Standard_String
600 and then Root_Type (A_Type) /= Standard_Wide_String
601 and then Root_Type (A_Type) /= Standard_Wide_Wide_String)
602 then
603 Proc_Id :=
604 Make_Defining_Identifier (Loc, Make_Init_Proc_Name (A_Type));
606 Body_Stmts := Init_One_Dimension (1);
608 Discard_Node (
609 Make_Subprogram_Body (Loc,
610 Specification =>
611 Make_Procedure_Specification (Loc,
612 Defining_Unit_Name => Proc_Id,
613 Parameter_Specifications => Init_Formals (A_Type)),
614 Declarations => New_List,
615 Handled_Statement_Sequence =>
616 Make_Handled_Sequence_Of_Statements (Loc,
617 Statements => Body_Stmts)));
619 Set_Ekind (Proc_Id, E_Procedure);
620 Set_Is_Public (Proc_Id, Is_Public (A_Type));
621 Set_Is_Internal (Proc_Id);
622 Set_Has_Completion (Proc_Id);
624 if not Debug_Generated_Code then
625 Set_Debug_Info_Off (Proc_Id);
626 end if;
628 -- Set inlined unless controlled stuff or tasks around, in which
629 -- case we do not want to inline, because nested stuff may cause
630 -- difficulties in interunit inlining, and furthermore there is
631 -- in any case no point in inlining such complex init procs.
633 if not Has_Task (Proc_Id)
634 and then not Controlled_Type (Proc_Id)
635 then
636 Set_Is_Inlined (Proc_Id);
637 end if;
639 -- Associate Init_Proc with type, and determine if the procedure
640 -- is null (happens because of the Initialize_Scalars pragma case,
641 -- where we have to generate a null procedure in case it is called
642 -- by a client with Initialize_Scalars set). Such procedures have
643 -- to be generated, but do not have to be called, so we mark them
644 -- as null to suppress the call.
646 Set_Init_Proc (A_Type, Proc_Id);
648 if List_Length (Body_Stmts) = 1
649 and then Nkind (First (Body_Stmts)) = N_Null_Statement
650 then
651 Set_Is_Null_Init_Proc (Proc_Id);
652 end if;
653 end if;
654 end Build_Array_Init_Proc;
656 -----------------------------
657 -- Build_Class_Wide_Master --
658 -----------------------------
660 procedure Build_Class_Wide_Master (T : Entity_Id) is
661 Loc : constant Source_Ptr := Sloc (T);
662 M_Id : Entity_Id;
663 Decl : Node_Id;
664 P : Node_Id;
665 Par : Node_Id;
667 begin
668 -- Nothing to do if there is no task hierarchy
670 if Restriction_Active (No_Task_Hierarchy) then
671 return;
672 end if;
674 -- Find declaration that created the access type: either a
675 -- type declaration, or an object declaration with an
676 -- access definition, in which case the type is anonymous.
678 if Is_Itype (T) then
679 P := Associated_Node_For_Itype (T);
680 else
681 P := Parent (T);
682 end if;
684 -- Nothing to do if we already built a master entity for this scope
686 if not Has_Master_Entity (Scope (T)) then
688 -- first build the master entity
689 -- _Master : constant Master_Id := Current_Master.all;
690 -- and insert it just before the current declaration
692 Decl :=
693 Make_Object_Declaration (Loc,
694 Defining_Identifier =>
695 Make_Defining_Identifier (Loc, Name_uMaster),
696 Constant_Present => True,
697 Object_Definition => New_Reference_To (Standard_Integer, Loc),
698 Expression =>
699 Make_Explicit_Dereference (Loc,
700 New_Reference_To (RTE (RE_Current_Master), Loc)));
702 Insert_Before (P, Decl);
703 Analyze (Decl);
704 Set_Has_Master_Entity (Scope (T));
706 -- Now mark the containing scope as a task master
708 Par := P;
709 while Nkind (Par) /= N_Compilation_Unit loop
710 Par := Parent (Par);
712 -- If we fall off the top, we are at the outer level, and the
713 -- environment task is our effective master, so nothing to mark.
715 if Nkind (Par) = N_Task_Body
716 or else Nkind (Par) = N_Block_Statement
717 or else Nkind (Par) = N_Subprogram_Body
718 then
719 Set_Is_Task_Master (Par, True);
720 exit;
721 end if;
722 end loop;
723 end if;
725 -- Now define the renaming of the master_id
727 M_Id :=
728 Make_Defining_Identifier (Loc,
729 New_External_Name (Chars (T), 'M'));
731 Decl :=
732 Make_Object_Renaming_Declaration (Loc,
733 Defining_Identifier => M_Id,
734 Subtype_Mark => New_Reference_To (Standard_Integer, Loc),
735 Name => Make_Identifier (Loc, Name_uMaster));
736 Insert_Before (P, Decl);
737 Analyze (Decl);
739 Set_Master_Id (T, M_Id);
741 exception
742 when RE_Not_Available =>
743 return;
744 end Build_Class_Wide_Master;
746 --------------------------------
747 -- Build_Discr_Checking_Funcs --
748 --------------------------------
750 procedure Build_Discr_Checking_Funcs (N : Node_Id) is
751 Rec_Id : Entity_Id;
752 Loc : Source_Ptr;
753 Enclosing_Func_Id : Entity_Id;
754 Sequence : Nat := 1;
755 Type_Def : Node_Id;
756 V : Node_Id;
758 function Build_Case_Statement
759 (Case_Id : Entity_Id;
760 Variant : Node_Id) return Node_Id;
761 -- Build a case statement containing only two alternatives. The
762 -- first alternative corresponds exactly to the discrete choices
763 -- given on the variant with contains the components that we are
764 -- generating the checks for. If the discriminant is one of these
765 -- return False. The second alternative is an OTHERS choice that
766 -- will return True indicating the discriminant did not match.
768 function Build_Dcheck_Function
769 (Case_Id : Entity_Id;
770 Variant : Node_Id) return Entity_Id;
771 -- Build the discriminant checking function for a given variant
773 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id);
774 -- Builds the discriminant checking function for each variant of the
775 -- given variant part of the record type.
777 --------------------------
778 -- Build_Case_Statement --
779 --------------------------
781 function Build_Case_Statement
782 (Case_Id : Entity_Id;
783 Variant : Node_Id) return Node_Id
785 Alt_List : constant List_Id := New_List;
786 Actuals_List : List_Id;
787 Case_Node : Node_Id;
788 Case_Alt_Node : Node_Id;
789 Choice : Node_Id;
790 Choice_List : List_Id;
791 D : Entity_Id;
792 Return_Node : Node_Id;
794 begin
795 Case_Node := New_Node (N_Case_Statement, Loc);
797 -- Replace the discriminant which controls the variant, with the
798 -- name of the formal of the checking function.
800 Set_Expression (Case_Node,
801 Make_Identifier (Loc, Chars (Case_Id)));
803 Choice := First (Discrete_Choices (Variant));
805 if Nkind (Choice) = N_Others_Choice then
806 Choice_List := New_Copy_List (Others_Discrete_Choices (Choice));
807 else
808 Choice_List := New_Copy_List (Discrete_Choices (Variant));
809 end if;
811 if not Is_Empty_List (Choice_List) then
812 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
813 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
815 -- In case this is a nested variant, we need to return the result
816 -- of the discriminant checking function for the immediately
817 -- enclosing variant.
819 if Present (Enclosing_Func_Id) then
820 Actuals_List := New_List;
822 D := First_Discriminant (Rec_Id);
823 while Present (D) loop
824 Append (Make_Identifier (Loc, Chars (D)), Actuals_List);
825 Next_Discriminant (D);
826 end loop;
828 Return_Node :=
829 Make_Return_Statement (Loc,
830 Expression =>
831 Make_Function_Call (Loc,
832 Name =>
833 New_Reference_To (Enclosing_Func_Id, Loc),
834 Parameter_Associations =>
835 Actuals_List));
837 else
838 Return_Node :=
839 Make_Return_Statement (Loc,
840 Expression =>
841 New_Reference_To (Standard_False, Loc));
842 end if;
844 Set_Statements (Case_Alt_Node, New_List (Return_Node));
845 Append (Case_Alt_Node, Alt_List);
846 end if;
848 Case_Alt_Node := New_Node (N_Case_Statement_Alternative, Loc);
849 Choice_List := New_List (New_Node (N_Others_Choice, Loc));
850 Set_Discrete_Choices (Case_Alt_Node, Choice_List);
852 Return_Node :=
853 Make_Return_Statement (Loc,
854 Expression =>
855 New_Reference_To (Standard_True, Loc));
857 Set_Statements (Case_Alt_Node, New_List (Return_Node));
858 Append (Case_Alt_Node, Alt_List);
860 Set_Alternatives (Case_Node, Alt_List);
861 return Case_Node;
862 end Build_Case_Statement;
864 ---------------------------
865 -- Build_Dcheck_Function --
866 ---------------------------
868 function Build_Dcheck_Function
869 (Case_Id : Entity_Id;
870 Variant : Node_Id) return Entity_Id
872 Body_Node : Node_Id;
873 Func_Id : Entity_Id;
874 Parameter_List : List_Id;
875 Spec_Node : Node_Id;
877 begin
878 Body_Node := New_Node (N_Subprogram_Body, Loc);
879 Sequence := Sequence + 1;
881 Func_Id :=
882 Make_Defining_Identifier (Loc,
883 Chars => New_External_Name (Chars (Rec_Id), 'D', Sequence));
885 Spec_Node := New_Node (N_Function_Specification, Loc);
886 Set_Defining_Unit_Name (Spec_Node, Func_Id);
888 Parameter_List := Build_Discriminant_Formals (Rec_Id, False);
890 Set_Parameter_Specifications (Spec_Node, Parameter_List);
891 Set_Result_Definition (Spec_Node,
892 New_Reference_To (Standard_Boolean, Loc));
893 Set_Specification (Body_Node, Spec_Node);
894 Set_Declarations (Body_Node, New_List);
896 Set_Handled_Statement_Sequence (Body_Node,
897 Make_Handled_Sequence_Of_Statements (Loc,
898 Statements => New_List (
899 Build_Case_Statement (Case_Id, Variant))));
901 Set_Ekind (Func_Id, E_Function);
902 Set_Mechanism (Func_Id, Default_Mechanism);
903 Set_Is_Inlined (Func_Id, True);
904 Set_Is_Pure (Func_Id, True);
905 Set_Is_Public (Func_Id, Is_Public (Rec_Id));
906 Set_Is_Internal (Func_Id, True);
908 if not Debug_Generated_Code then
909 Set_Debug_Info_Off (Func_Id);
910 end if;
912 Analyze (Body_Node);
914 Append_Freeze_Action (Rec_Id, Body_Node);
915 Set_Dcheck_Function (Variant, Func_Id);
916 return Func_Id;
917 end Build_Dcheck_Function;
919 ----------------------------
920 -- Build_Dcheck_Functions --
921 ----------------------------
923 procedure Build_Dcheck_Functions (Variant_Part_Node : Node_Id) is
924 Component_List_Node : Node_Id;
925 Decl : Entity_Id;
926 Discr_Name : Entity_Id;
927 Func_Id : Entity_Id;
928 Variant : Node_Id;
929 Saved_Enclosing_Func_Id : Entity_Id;
931 begin
932 -- Build the discriminant checking function for each variant, label
933 -- all components of that variant with the function's name.
935 Discr_Name := Entity (Name (Variant_Part_Node));
936 Variant := First_Non_Pragma (Variants (Variant_Part_Node));
938 while Present (Variant) loop
939 Func_Id := Build_Dcheck_Function (Discr_Name, Variant);
940 Component_List_Node := Component_List (Variant);
942 if not Null_Present (Component_List_Node) then
943 Decl :=
944 First_Non_Pragma (Component_Items (Component_List_Node));
946 while Present (Decl) loop
947 Set_Discriminant_Checking_Func
948 (Defining_Identifier (Decl), Func_Id);
950 Next_Non_Pragma (Decl);
951 end loop;
953 if Present (Variant_Part (Component_List_Node)) then
954 Saved_Enclosing_Func_Id := Enclosing_Func_Id;
955 Enclosing_Func_Id := Func_Id;
956 Build_Dcheck_Functions (Variant_Part (Component_List_Node));
957 Enclosing_Func_Id := Saved_Enclosing_Func_Id;
958 end if;
959 end if;
961 Next_Non_Pragma (Variant);
962 end loop;
963 end Build_Dcheck_Functions;
965 -- Start of processing for Build_Discr_Checking_Funcs
967 begin
968 -- Only build if not done already
970 if not Discr_Check_Funcs_Built (N) then
971 Type_Def := Type_Definition (N);
973 if Nkind (Type_Def) = N_Record_Definition then
974 if No (Component_List (Type_Def)) then -- null record.
975 return;
976 else
977 V := Variant_Part (Component_List (Type_Def));
978 end if;
980 else pragma Assert (Nkind (Type_Def) = N_Derived_Type_Definition);
981 if No (Component_List (Record_Extension_Part (Type_Def))) then
982 return;
983 else
984 V := Variant_Part
985 (Component_List (Record_Extension_Part (Type_Def)));
986 end if;
987 end if;
989 Rec_Id := Defining_Identifier (N);
991 if Present (V) and then not Is_Unchecked_Union (Rec_Id) then
992 Loc := Sloc (N);
993 Enclosing_Func_Id := Empty;
994 Build_Dcheck_Functions (V);
995 end if;
997 Set_Discr_Check_Funcs_Built (N);
998 end if;
999 end Build_Discr_Checking_Funcs;
1001 --------------------------------
1002 -- Build_Discriminant_Formals --
1003 --------------------------------
1005 function Build_Discriminant_Formals
1006 (Rec_Id : Entity_Id;
1007 Use_Dl : Boolean) return List_Id
1009 Loc : Source_Ptr := Sloc (Rec_Id);
1010 Parameter_List : constant List_Id := New_List;
1011 D : Entity_Id;
1012 Formal : Entity_Id;
1013 Param_Spec_Node : Node_Id;
1015 begin
1016 if Has_Discriminants (Rec_Id) then
1017 D := First_Discriminant (Rec_Id);
1018 while Present (D) loop
1019 Loc := Sloc (D);
1021 if Use_Dl then
1022 Formal := Discriminal (D);
1023 else
1024 Formal := Make_Defining_Identifier (Loc, Chars (D));
1025 end if;
1027 Param_Spec_Node :=
1028 Make_Parameter_Specification (Loc,
1029 Defining_Identifier => Formal,
1030 Parameter_Type =>
1031 New_Reference_To (Etype (D), Loc));
1032 Append (Param_Spec_Node, Parameter_List);
1033 Next_Discriminant (D);
1034 end loop;
1035 end if;
1037 return Parameter_List;
1038 end Build_Discriminant_Formals;
1040 -------------------------------
1041 -- Build_Initialization_Call --
1042 -------------------------------
1044 -- References to a discriminant inside the record type declaration
1045 -- can appear either in the subtype_indication to constrain a
1046 -- record or an array, or as part of a larger expression given for
1047 -- the initial value of a component. In both of these cases N appears
1048 -- in the record initialization procedure and needs to be replaced by
1049 -- the formal parameter of the initialization procedure which
1050 -- corresponds to that discriminant.
1052 -- In the example below, references to discriminants D1 and D2 in proc_1
1053 -- are replaced by references to formals with the same name
1054 -- (discriminals)
1056 -- A similar replacement is done for calls to any record
1057 -- initialization procedure for any components that are themselves
1058 -- of a record type.
1060 -- type R (D1, D2 : Integer) is record
1061 -- X : Integer := F * D1;
1062 -- Y : Integer := F * D2;
1063 -- end record;
1065 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1066 -- begin
1067 -- Out_2.D1 := D1;
1068 -- Out_2.D2 := D2;
1069 -- Out_2.X := F * D1;
1070 -- Out_2.Y := F * D2;
1071 -- end;
1073 function Build_Initialization_Call
1074 (Loc : Source_Ptr;
1075 Id_Ref : Node_Id;
1076 Typ : Entity_Id;
1077 In_Init_Proc : Boolean := False;
1078 Enclos_Type : Entity_Id := Empty;
1079 Discr_Map : Elist_Id := New_Elmt_List;
1080 With_Default_Init : Boolean := False) return List_Id
1082 First_Arg : Node_Id;
1083 Args : List_Id;
1084 Decls : List_Id;
1085 Decl : Node_Id;
1086 Discr : Entity_Id;
1087 Arg : Node_Id;
1088 Proc : constant Entity_Id := Base_Init_Proc (Typ);
1089 Init_Type : constant Entity_Id := Etype (First_Formal (Proc));
1090 Full_Init_Type : constant Entity_Id := Underlying_Type (Init_Type);
1091 Res : constant List_Id := New_List;
1092 Full_Type : Entity_Id := Typ;
1093 Controller_Typ : Entity_Id;
1095 begin
1096 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1097 -- is active (in which case we make the call anyway, since in the
1098 -- actual compiled client it may be non null).
1100 if Is_Null_Init_Proc (Proc) and then not Init_Or_Norm_Scalars then
1101 return Empty_List;
1102 end if;
1104 -- Go to full view if private type. In the case of successive
1105 -- private derivations, this can require more than one step.
1107 while Is_Private_Type (Full_Type)
1108 and then Present (Full_View (Full_Type))
1109 loop
1110 Full_Type := Full_View (Full_Type);
1111 end loop;
1113 -- If Typ is derived, the procedure is the initialization procedure for
1114 -- the root type. Wrap the argument in an conversion to make it type
1115 -- honest. Actually it isn't quite type honest, because there can be
1116 -- conflicts of views in the private type case. That is why we set
1117 -- Conversion_OK in the conversion node.
1119 if (Is_Record_Type (Typ)
1120 or else Is_Array_Type (Typ)
1121 or else Is_Private_Type (Typ))
1122 and then Init_Type /= Base_Type (Typ)
1123 then
1124 First_Arg := OK_Convert_To (Etype (Init_Type), Id_Ref);
1125 Set_Etype (First_Arg, Init_Type);
1127 else
1128 First_Arg := Id_Ref;
1129 end if;
1131 Args := New_List (Convert_Concurrent (First_Arg, Typ));
1133 -- In the tasks case, add _Master as the value of the _Master parameter
1134 -- and _Chain as the value of the _Chain parameter. At the outer level,
1135 -- these will be variables holding the corresponding values obtained
1136 -- from GNARL. At inner levels, they will be the parameters passed down
1137 -- through the outer routines.
1139 if Has_Task (Full_Type) then
1140 if Restriction_Active (No_Task_Hierarchy) then
1142 -- See comments in System.Tasking.Initialization.Init_RTS
1143 -- for the value 3 (should be rtsfindable constant ???)
1145 Append_To (Args, Make_Integer_Literal (Loc, 3));
1146 else
1147 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1148 end if;
1150 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1152 -- Ada 2005 (AI-287): In case of default initialized components
1153 -- with tasks, we generate a null string actual parameter.
1154 -- This is just a workaround that must be improved later???
1156 if With_Default_Init then
1157 Append_To (Args,
1158 Make_String_Literal (Loc,
1159 Strval => ""));
1161 else
1162 Decls :=
1163 Build_Task_Image_Decls (Loc, Id_Ref, Enclos_Type, In_Init_Proc);
1164 Decl := Last (Decls);
1166 Append_To (Args,
1167 New_Occurrence_Of (Defining_Identifier (Decl), Loc));
1168 Append_List (Decls, Res);
1169 end if;
1171 else
1172 Decls := No_List;
1173 Decl := Empty;
1174 end if;
1176 -- Add discriminant values if discriminants are present
1178 if Has_Discriminants (Full_Init_Type) then
1179 Discr := First_Discriminant (Full_Init_Type);
1181 while Present (Discr) loop
1183 -- If this is a discriminated concurrent type, the init_proc
1184 -- for the corresponding record is being called. Use that
1185 -- type directly to find the discriminant value, to handle
1186 -- properly intervening renamed discriminants.
1188 declare
1189 T : Entity_Id := Full_Type;
1191 begin
1192 if Is_Protected_Type (T) then
1193 T := Corresponding_Record_Type (T);
1195 elsif Is_Private_Type (T)
1196 and then Present (Underlying_Full_View (T))
1197 and then Is_Protected_Type (Underlying_Full_View (T))
1198 then
1199 T := Corresponding_Record_Type (Underlying_Full_View (T));
1200 end if;
1202 Arg :=
1203 Get_Discriminant_Value (
1204 Discr,
1206 Discriminant_Constraint (Full_Type));
1207 end;
1209 if In_Init_Proc then
1211 -- Replace any possible references to the discriminant in the
1212 -- call to the record initialization procedure with references
1213 -- to the appropriate formal parameter.
1215 if Nkind (Arg) = N_Identifier
1216 and then Ekind (Entity (Arg)) = E_Discriminant
1217 then
1218 Arg := New_Reference_To (Discriminal (Entity (Arg)), Loc);
1220 -- Case of access discriminants. We replace the reference
1221 -- to the type by a reference to the actual object
1223 elsif Nkind (Arg) = N_Attribute_Reference
1224 and then Is_Access_Type (Etype (Arg))
1225 and then Is_Entity_Name (Prefix (Arg))
1226 and then Is_Type (Entity (Prefix (Arg)))
1227 then
1228 Arg :=
1229 Make_Attribute_Reference (Loc,
1230 Prefix => New_Copy (Prefix (Id_Ref)),
1231 Attribute_Name => Name_Unrestricted_Access);
1233 -- Otherwise make a copy of the default expression. Note
1234 -- that we use the current Sloc for this, because we do not
1235 -- want the call to appear to be at the declaration point.
1236 -- Within the expression, replace discriminants with their
1237 -- discriminals.
1239 else
1240 Arg :=
1241 New_Copy_Tree (Arg, Map => Discr_Map, New_Sloc => Loc);
1242 end if;
1244 else
1245 if Is_Constrained (Full_Type) then
1246 Arg := Duplicate_Subexpr_No_Checks (Arg);
1247 else
1248 -- The constraints come from the discriminant default
1249 -- exps, they must be reevaluated, so we use New_Copy_Tree
1250 -- but we ensure the proper Sloc (for any embedded calls).
1252 Arg := New_Copy_Tree (Arg, New_Sloc => Loc);
1253 end if;
1254 end if;
1256 -- Ada 2005 (AI-287) In case of default initialized components,
1257 -- we need to generate the corresponding selected component node
1258 -- to access the discriminant value. In other cases this is not
1259 -- required because we are inside the init proc and we use the
1260 -- corresponding formal.
1262 if With_Default_Init
1263 and then Nkind (Id_Ref) = N_Selected_Component
1264 and then Nkind (Arg) = N_Identifier
1265 then
1266 Append_To (Args,
1267 Make_Selected_Component (Loc,
1268 Prefix => New_Copy_Tree (Prefix (Id_Ref)),
1269 Selector_Name => Arg));
1270 else
1271 Append_To (Args, Arg);
1272 end if;
1274 Next_Discriminant (Discr);
1275 end loop;
1276 end if;
1278 -- If this is a call to initialize the parent component of a derived
1279 -- tagged type, indicate that the tag should not be set in the parent.
1281 if Is_Tagged_Type (Full_Init_Type)
1282 and then not Is_CPP_Class (Full_Init_Type)
1283 and then Nkind (Id_Ref) = N_Selected_Component
1284 and then Chars (Selector_Name (Id_Ref)) = Name_uParent
1285 then
1286 Append_To (Args, New_Occurrence_Of (Standard_False, Loc));
1287 end if;
1289 Append_To (Res,
1290 Make_Procedure_Call_Statement (Loc,
1291 Name => New_Occurrence_Of (Proc, Loc),
1292 Parameter_Associations => Args));
1294 if Controlled_Type (Typ)
1295 and then Nkind (Id_Ref) = N_Selected_Component
1296 then
1297 if Chars (Selector_Name (Id_Ref)) /= Name_uParent then
1298 Append_List_To (Res,
1299 Make_Init_Call (
1300 Ref => New_Copy_Tree (First_Arg),
1301 Typ => Typ,
1302 Flist_Ref =>
1303 Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
1304 With_Attach => Make_Integer_Literal (Loc, 1)));
1306 -- If the enclosing type is an extension with new controlled
1307 -- components, it has his own record controller. If the parent
1308 -- also had a record controller, attach it to the new one.
1309 -- Build_Init_Statements relies on the fact that in this specific
1310 -- case the last statement of the result is the attach call to
1311 -- the controller. If this is changed, it must be synchronized.
1313 elsif Present (Enclos_Type)
1314 and then Has_New_Controlled_Component (Enclos_Type)
1315 and then Has_Controlled_Component (Typ)
1316 then
1317 if Is_Inherently_Limited_Type (Typ) then
1318 Controller_Typ := RTE (RE_Limited_Record_Controller);
1319 else
1320 Controller_Typ := RTE (RE_Record_Controller);
1321 end if;
1323 Append_List_To (Res,
1324 Make_Init_Call (
1325 Ref =>
1326 Make_Selected_Component (Loc,
1327 Prefix => New_Copy_Tree (First_Arg),
1328 Selector_Name => Make_Identifier (Loc, Name_uController)),
1329 Typ => Controller_Typ,
1330 Flist_Ref => Find_Final_List (Typ, New_Copy_Tree (First_Arg)),
1331 With_Attach => Make_Integer_Literal (Loc, 1)));
1332 end if;
1333 end if;
1335 return Res;
1337 exception
1338 when RE_Not_Available =>
1339 return Empty_List;
1340 end Build_Initialization_Call;
1342 ---------------------------
1343 -- Build_Master_Renaming --
1344 ---------------------------
1346 procedure Build_Master_Renaming (N : Node_Id; T : Entity_Id) is
1347 Loc : constant Source_Ptr := Sloc (N);
1348 M_Id : Entity_Id;
1349 Decl : Node_Id;
1351 begin
1352 -- Nothing to do if there is no task hierarchy
1354 if Restriction_Active (No_Task_Hierarchy) then
1355 return;
1356 end if;
1358 M_Id :=
1359 Make_Defining_Identifier (Loc,
1360 New_External_Name (Chars (T), 'M'));
1362 Decl :=
1363 Make_Object_Renaming_Declaration (Loc,
1364 Defining_Identifier => M_Id,
1365 Subtype_Mark => New_Reference_To (RTE (RE_Master_Id), Loc),
1366 Name => Make_Identifier (Loc, Name_uMaster));
1367 Insert_Before (N, Decl);
1368 Analyze (Decl);
1370 Set_Master_Id (T, M_Id);
1372 exception
1373 when RE_Not_Available =>
1374 return;
1375 end Build_Master_Renaming;
1377 ----------------------------
1378 -- Build_Record_Init_Proc --
1379 ----------------------------
1381 procedure Build_Record_Init_Proc (N : Node_Id; Pe : Entity_Id) is
1382 Loc : Source_Ptr := Sloc (N);
1383 Discr_Map : constant Elist_Id := New_Elmt_List;
1384 Proc_Id : Entity_Id;
1385 Rec_Type : Entity_Id;
1386 Set_Tag : Entity_Id := Empty;
1388 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id;
1389 -- Build a assignment statement node which assigns to record
1390 -- component its default expression if defined. The left hand side
1391 -- of the assignment is marked Assignment_OK so that initialization
1392 -- of limited private records works correctly, Return also the
1393 -- adjustment call for controlled objects
1395 procedure Build_Discriminant_Assignments (Statement_List : List_Id);
1396 -- If the record has discriminants, adds assignment statements to
1397 -- statement list to initialize the discriminant values from the
1398 -- arguments of the initialization procedure.
1400 function Build_Init_Statements (Comp_List : Node_Id) return List_Id;
1401 -- Build a list representing a sequence of statements which initialize
1402 -- components of the given component list. This may involve building
1403 -- case statements for the variant parts.
1405 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id;
1406 -- Given a non-tagged type-derivation that declares discriminants,
1407 -- such as
1409 -- type R (R1, R2 : Integer) is record ... end record;
1411 -- type D (D1 : Integer) is new R (1, D1);
1413 -- we make the _init_proc of D be
1415 -- procedure _init_proc(X : D; D1 : Integer) is
1416 -- begin
1417 -- _init_proc( R(X), 1, D1);
1418 -- end _init_proc;
1420 -- This function builds the call statement in this _init_proc.
1422 procedure Build_Init_Procedure;
1423 -- Build the tree corresponding to the procedure specification and body
1424 -- of the initialization procedure (by calling all the preceding
1425 -- auxiliary routines), and install it as the _init TSS.
1427 procedure Build_Offset_To_Top_Functions;
1428 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
1429 -- and body of the Offset_To_Top function that is generated when the
1430 -- parent of a type with discriminants has secondary dispatch tables.
1432 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id);
1433 -- Add range checks to components of disciminated records. S is a
1434 -- subtype indication of a record component. Check_List is a list
1435 -- to which the check actions are appended.
1437 function Component_Needs_Simple_Initialization
1438 (T : Entity_Id) return Boolean;
1439 -- Determines if a component needs simple initialization, given its type
1440 -- T. This is the same as Needs_Simple_Initialization except for the
1441 -- following difference: the types Tag, Interface_Tag, and Vtable_Ptr
1442 -- which are access types which would normally require simple
1443 -- initialization to null, do not require initialization as components,
1444 -- since they are explicitly initialized by other means.
1446 procedure Constrain_Array
1447 (SI : Node_Id;
1448 Check_List : List_Id);
1449 -- Called from Build_Record_Checks.
1450 -- Apply a list of index constraints to an unconstrained array type.
1451 -- The first parameter is the entity for the resulting subtype.
1452 -- Check_List is a list to which the check actions are appended.
1454 procedure Constrain_Index
1455 (Index : Node_Id;
1456 S : Node_Id;
1457 Check_List : List_Id);
1458 -- Called from Build_Record_Checks.
1459 -- Process an index constraint in a constrained array declaration.
1460 -- The constraint can be a subtype name, or a range with or without
1461 -- an explicit subtype mark. The index is the corresponding index of the
1462 -- unconstrained array. S is the range expression. Check_List is a list
1463 -- to which the check actions are appended.
1465 function Parent_Subtype_Renaming_Discrims return Boolean;
1466 -- Returns True for base types N that rename discriminants, else False
1468 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean;
1469 -- Determines whether a record initialization procedure needs to be
1470 -- generated for the given record type.
1472 ----------------------
1473 -- Build_Assignment --
1474 ----------------------
1476 function Build_Assignment (Id : Entity_Id; N : Node_Id) return List_Id is
1477 Exp : Node_Id := N;
1478 Lhs : Node_Id;
1479 Typ : constant Entity_Id := Underlying_Type (Etype (Id));
1480 Kind : Node_Kind := Nkind (N);
1481 Res : List_Id;
1483 begin
1484 Loc := Sloc (N);
1485 Lhs :=
1486 Make_Selected_Component (Loc,
1487 Prefix => Make_Identifier (Loc, Name_uInit),
1488 Selector_Name => New_Occurrence_Of (Id, Loc));
1489 Set_Assignment_OK (Lhs);
1491 -- Case of an access attribute applied to the current instance.
1492 -- Replace the reference to the type by a reference to the actual
1493 -- object. (Note that this handles the case of the top level of
1494 -- the expression being given by such an attribute, but does not
1495 -- cover uses nested within an initial value expression. Nested
1496 -- uses are unlikely to occur in practice, but are theoretically
1497 -- possible. It is not clear how to handle them without fully
1498 -- traversing the expression. ???
1500 if Kind = N_Attribute_Reference
1501 and then (Attribute_Name (N) = Name_Unchecked_Access
1502 or else
1503 Attribute_Name (N) = Name_Unrestricted_Access)
1504 and then Is_Entity_Name (Prefix (N))
1505 and then Is_Type (Entity (Prefix (N)))
1506 and then Entity (Prefix (N)) = Rec_Type
1507 then
1508 Exp :=
1509 Make_Attribute_Reference (Loc,
1510 Prefix => Make_Identifier (Loc, Name_uInit),
1511 Attribute_Name => Name_Unrestricted_Access);
1512 end if;
1514 -- Ada 2005 (AI-231): Add the run-time check if required
1516 if Ada_Version >= Ada_05
1517 and then Can_Never_Be_Null (Etype (Id)) -- Lhs
1518 then
1519 if Nkind (Exp) = N_Null then
1520 return New_List (
1521 Make_Raise_Constraint_Error (Sloc (Exp),
1522 Reason => CE_Null_Not_Allowed));
1524 elsif Present (Etype (Exp))
1525 and then not Can_Never_Be_Null (Etype (Exp))
1526 then
1527 Install_Null_Excluding_Check (Exp);
1528 end if;
1529 end if;
1531 -- Take a copy of Exp to ensure that later copies of this
1532 -- component_declaration in derived types see the original tree,
1533 -- not a node rewritten during expansion of the init_proc.
1535 Exp := New_Copy_Tree (Exp);
1537 Res := New_List (
1538 Make_Assignment_Statement (Loc,
1539 Name => Lhs,
1540 Expression => Exp));
1542 Set_No_Ctrl_Actions (First (Res));
1544 -- Adjust the tag if tagged (because of possible view conversions).
1545 -- Suppress the tag adjustment when Java_VM because JVM tags are
1546 -- represented implicitly in objects.
1548 if Is_Tagged_Type (Typ) and then not Java_VM then
1549 Append_To (Res,
1550 Make_Assignment_Statement (Loc,
1551 Name =>
1552 Make_Selected_Component (Loc,
1553 Prefix => New_Copy_Tree (Lhs),
1554 Selector_Name =>
1555 New_Reference_To (First_Tag_Component (Typ), Loc)),
1557 Expression =>
1558 Unchecked_Convert_To (RTE (RE_Tag),
1559 New_Reference_To
1560 (Node (First_Elmt (Access_Disp_Table (Typ))), Loc))));
1561 end if;
1563 -- Adjust the component if controlled except if it is an
1564 -- aggregate that will be expanded inline
1566 if Kind = N_Qualified_Expression then
1567 Kind := Nkind (Expression (N));
1568 end if;
1570 if Controlled_Type (Typ)
1571 and then not (Kind = N_Aggregate or else Kind = N_Extension_Aggregate)
1572 then
1573 Append_List_To (Res,
1574 Make_Adjust_Call (
1575 Ref => New_Copy_Tree (Lhs),
1576 Typ => Etype (Id),
1577 Flist_Ref =>
1578 Find_Final_List (Etype (Id), New_Copy_Tree (Lhs)),
1579 With_Attach => Make_Integer_Literal (Loc, 1)));
1580 end if;
1582 return Res;
1584 exception
1585 when RE_Not_Available =>
1586 return Empty_List;
1587 end Build_Assignment;
1589 ------------------------------------
1590 -- Build_Discriminant_Assignments --
1591 ------------------------------------
1593 procedure Build_Discriminant_Assignments (Statement_List : List_Id) is
1594 D : Entity_Id;
1595 Is_Tagged : constant Boolean := Is_Tagged_Type (Rec_Type);
1597 begin
1598 if Has_Discriminants (Rec_Type)
1599 and then not Is_Unchecked_Union (Rec_Type)
1600 then
1601 D := First_Discriminant (Rec_Type);
1603 while Present (D) loop
1604 -- Don't generate the assignment for discriminants in derived
1605 -- tagged types if the discriminant is a renaming of some
1606 -- ancestor discriminant. This initialization will be done
1607 -- when initializing the _parent field of the derived record.
1609 if Is_Tagged and then
1610 Present (Corresponding_Discriminant (D))
1611 then
1612 null;
1614 else
1615 Loc := Sloc (D);
1616 Append_List_To (Statement_List,
1617 Build_Assignment (D,
1618 New_Reference_To (Discriminal (D), Loc)));
1619 end if;
1621 Next_Discriminant (D);
1622 end loop;
1623 end if;
1624 end Build_Discriminant_Assignments;
1626 --------------------------
1627 -- Build_Init_Call_Thru --
1628 --------------------------
1630 function Build_Init_Call_Thru (Parameters : List_Id) return List_Id is
1631 Parent_Proc : constant Entity_Id :=
1632 Base_Init_Proc (Etype (Rec_Type));
1634 Parent_Type : constant Entity_Id :=
1635 Etype (First_Formal (Parent_Proc));
1637 Uparent_Type : constant Entity_Id :=
1638 Underlying_Type (Parent_Type);
1640 First_Discr_Param : Node_Id;
1642 Parent_Discr : Entity_Id;
1643 First_Arg : Node_Id;
1644 Args : List_Id;
1645 Arg : Node_Id;
1646 Res : List_Id;
1648 begin
1649 -- First argument (_Init) is the object to be initialized.
1650 -- ??? not sure where to get a reasonable Loc for First_Arg
1652 First_Arg :=
1653 OK_Convert_To (Parent_Type,
1654 New_Reference_To (Defining_Identifier (First (Parameters)), Loc));
1656 Set_Etype (First_Arg, Parent_Type);
1658 Args := New_List (Convert_Concurrent (First_Arg, Rec_Type));
1660 -- In the tasks case,
1661 -- add _Master as the value of the _Master parameter
1662 -- add _Chain as the value of the _Chain parameter.
1663 -- add _Task_Name as the value of the _Task_Name parameter.
1664 -- At the outer level, these will be variables holding the
1665 -- corresponding values obtained from GNARL or the expander.
1667 -- At inner levels, they will be the parameters passed down through
1668 -- the outer routines.
1670 First_Discr_Param := Next (First (Parameters));
1672 if Has_Task (Rec_Type) then
1673 if Restriction_Active (No_Task_Hierarchy) then
1675 -- See comments in System.Tasking.Initialization.Init_RTS
1676 -- for the value 3.
1678 Append_To (Args, Make_Integer_Literal (Loc, 3));
1679 else
1680 Append_To (Args, Make_Identifier (Loc, Name_uMaster));
1681 end if;
1683 Append_To (Args, Make_Identifier (Loc, Name_uChain));
1684 Append_To (Args, Make_Identifier (Loc, Name_uTask_Name));
1685 First_Discr_Param := Next (Next (Next (First_Discr_Param)));
1686 end if;
1688 -- Append discriminant values
1690 if Has_Discriminants (Uparent_Type) then
1691 pragma Assert (not Is_Tagged_Type (Uparent_Type));
1693 Parent_Discr := First_Discriminant (Uparent_Type);
1694 while Present (Parent_Discr) loop
1696 -- Get the initial value for this discriminant
1697 -- ??? needs to be cleaned up to use parent_Discr_Constr
1698 -- directly.
1700 declare
1701 Discr_Value : Elmt_Id :=
1702 First_Elmt
1703 (Stored_Constraint (Rec_Type));
1705 Discr : Entity_Id :=
1706 First_Stored_Discriminant (Uparent_Type);
1707 begin
1708 while Original_Record_Component (Parent_Discr) /= Discr loop
1709 Next_Stored_Discriminant (Discr);
1710 Next_Elmt (Discr_Value);
1711 end loop;
1713 Arg := Node (Discr_Value);
1714 end;
1716 -- Append it to the list
1718 if Nkind (Arg) = N_Identifier
1719 and then Ekind (Entity (Arg)) = E_Discriminant
1720 then
1721 Append_To (Args,
1722 New_Reference_To (Discriminal (Entity (Arg)), Loc));
1724 -- Case of access discriminants. We replace the reference
1725 -- to the type by a reference to the actual object.
1727 -- Is above comment right??? Use of New_Copy below seems mighty
1728 -- suspicious ???
1730 else
1731 Append_To (Args, New_Copy (Arg));
1732 end if;
1734 Next_Discriminant (Parent_Discr);
1735 end loop;
1736 end if;
1738 Res :=
1739 New_List (
1740 Make_Procedure_Call_Statement (Loc,
1741 Name => New_Occurrence_Of (Parent_Proc, Loc),
1742 Parameter_Associations => Args));
1744 return Res;
1745 end Build_Init_Call_Thru;
1747 -----------------------------------
1748 -- Build_Offset_To_Top_Functions --
1749 -----------------------------------
1751 procedure Build_Offset_To_Top_Functions is
1752 ADT : Elmt_Id;
1753 Body_Node : Node_Id;
1754 Func_Id : Entity_Id;
1755 Spec_Node : Node_Id;
1756 E : Entity_Id;
1758 procedure Build_Offset_To_Top_Internal (Typ : Entity_Id);
1759 -- Internal subprogram used to recursively traverse all the ancestors
1761 ----------------------------------
1762 -- Build_Offset_To_Top_Internal --
1763 ----------------------------------
1765 procedure Build_Offset_To_Top_Internal (Typ : Entity_Id) is
1766 begin
1767 -- Climb to the ancestor (if any) handling private types
1769 if Present (Full_View (Etype (Typ))) then
1770 if Full_View (Etype (Typ)) /= Typ then
1771 Build_Offset_To_Top_Internal (Full_View (Etype (Typ)));
1772 end if;
1774 elsif Etype (Typ) /= Typ then
1775 Build_Offset_To_Top_Internal (Etype (Typ));
1776 end if;
1778 if Present (Abstract_Interfaces (Typ))
1779 and then not Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
1780 then
1781 E := First_Entity (Typ);
1782 while Present (E) loop
1783 if Is_Tag (E)
1784 and then Chars (E) /= Name_uTag
1785 then
1786 if Typ = Rec_Type then
1787 Body_Node := New_Node (N_Subprogram_Body, Loc);
1789 Func_Id := Make_Defining_Identifier (Loc,
1790 New_Internal_Name ('F'));
1792 Set_DT_Offset_To_Top_Func (E, Func_Id);
1794 Spec_Node := New_Node (N_Function_Specification, Loc);
1795 Set_Defining_Unit_Name (Spec_Node, Func_Id);
1796 Set_Parameter_Specifications (Spec_Node, New_List (
1797 Make_Parameter_Specification (Loc,
1798 Defining_Identifier =>
1799 Make_Defining_Identifier (Loc, Name_uO),
1800 In_Present => True,
1801 Parameter_Type => New_Reference_To (Typ, Loc))));
1802 Set_Result_Definition (Spec_Node,
1803 New_Reference_To (RTE (RE_Storage_Offset), Loc));
1805 Set_Specification (Body_Node, Spec_Node);
1806 Set_Declarations (Body_Node, New_List);
1807 Set_Handled_Statement_Sequence (Body_Node,
1808 Make_Handled_Sequence_Of_Statements (Loc,
1809 Statements => New_List (
1810 Make_Return_Statement (Loc,
1811 Expression =>
1812 Make_Attribute_Reference (Loc,
1813 Prefix =>
1814 Make_Selected_Component (Loc,
1815 Prefix => Make_Identifier (Loc,
1816 Name_uO),
1817 Selector_Name => New_Reference_To
1818 (E, Loc)),
1819 Attribute_Name => Name_Position)))));
1821 Set_Ekind (Func_Id, E_Function);
1822 Set_Mechanism (Func_Id, Default_Mechanism);
1823 Set_Is_Internal (Func_Id, True);
1825 if not Debug_Generated_Code then
1826 Set_Debug_Info_Off (Func_Id);
1827 end if;
1829 Analyze (Body_Node);
1831 Append_Freeze_Action (Rec_Type, Body_Node);
1832 end if;
1834 Next_Elmt (ADT);
1835 end if;
1837 Next_Entity (E);
1838 end loop;
1839 end if;
1840 end Build_Offset_To_Top_Internal;
1842 -- Start of processing for Build_Offset_To_Top_Functions
1844 begin
1845 if Etype (Rec_Type) = Rec_Type
1846 or else not Has_Discriminants (Etype (Rec_Type))
1847 or else No (Abstract_Interfaces (Rec_Type))
1848 or else Is_Empty_Elmt_List (Abstract_Interfaces (Rec_Type))
1849 then
1850 return;
1851 end if;
1853 -- Skip the first _Tag, which is the main tag of the
1854 -- tagged type. Following tags correspond with abstract
1855 -- interfaces.
1857 ADT := Next_Elmt (First_Elmt (Access_Disp_Table (Rec_Type)));
1859 -- Handle private types
1861 if Present (Full_View (Rec_Type)) then
1862 Build_Offset_To_Top_Internal (Full_View (Rec_Type));
1863 else
1864 Build_Offset_To_Top_Internal (Rec_Type);
1865 end if;
1866 end Build_Offset_To_Top_Functions;
1868 --------------------------
1869 -- Build_Init_Procedure --
1870 --------------------------
1872 procedure Build_Init_Procedure is
1873 Body_Node : Node_Id;
1874 Handled_Stmt_Node : Node_Id;
1875 Parameters : List_Id;
1876 Proc_Spec_Node : Node_Id;
1877 Body_Stmts : List_Id;
1878 Record_Extension_Node : Node_Id;
1879 Init_Tag : Node_Id;
1881 begin
1882 Body_Stmts := New_List;
1883 Body_Node := New_Node (N_Subprogram_Body, Loc);
1885 Proc_Id :=
1886 Make_Defining_Identifier (Loc,
1887 Chars => Make_Init_Proc_Name (Rec_Type));
1888 Set_Ekind (Proc_Id, E_Procedure);
1890 Proc_Spec_Node := New_Node (N_Procedure_Specification, Loc);
1891 Set_Defining_Unit_Name (Proc_Spec_Node, Proc_Id);
1893 Parameters := Init_Formals (Rec_Type);
1894 Append_List_To (Parameters,
1895 Build_Discriminant_Formals (Rec_Type, True));
1897 -- For tagged types, we add a flag to indicate whether the routine
1898 -- is called to initialize a parent component in the init_proc of
1899 -- a type extension. If the flag is false, we do not set the tag
1900 -- because it has been set already in the extension.
1902 if Is_Tagged_Type (Rec_Type)
1903 and then not Is_CPP_Class (Rec_Type)
1904 then
1905 Set_Tag :=
1906 Make_Defining_Identifier (Loc, New_Internal_Name ('P'));
1908 Append_To (Parameters,
1909 Make_Parameter_Specification (Loc,
1910 Defining_Identifier => Set_Tag,
1911 Parameter_Type => New_Occurrence_Of (Standard_Boolean, Loc),
1912 Expression => New_Occurrence_Of (Standard_True, Loc)));
1913 end if;
1915 Set_Parameter_Specifications (Proc_Spec_Node, Parameters);
1916 Set_Specification (Body_Node, Proc_Spec_Node);
1917 Set_Declarations (Body_Node, New_List);
1919 if Parent_Subtype_Renaming_Discrims then
1921 -- N is a Derived_Type_Definition that renames the parameters
1922 -- of the ancestor type. We initialize it by expanding our
1923 -- discriminants and call the ancestor _init_proc with a
1924 -- type-converted object
1926 Append_List_To (Body_Stmts,
1927 Build_Init_Call_Thru (Parameters));
1929 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
1930 Build_Discriminant_Assignments (Body_Stmts);
1932 if not Null_Present (Type_Definition (N)) then
1933 Append_List_To (Body_Stmts,
1934 Build_Init_Statements (
1935 Component_List (Type_Definition (N))));
1936 end if;
1938 else
1939 -- N is a Derived_Type_Definition with a possible non-empty
1940 -- extension. The initialization of a type extension consists
1941 -- in the initialization of the components in the extension.
1943 Build_Discriminant_Assignments (Body_Stmts);
1945 Record_Extension_Node :=
1946 Record_Extension_Part (Type_Definition (N));
1948 if not Null_Present (Record_Extension_Node) then
1949 declare
1950 Stmts : constant List_Id :=
1951 Build_Init_Statements (
1952 Component_List (Record_Extension_Node));
1954 begin
1955 -- The parent field must be initialized first because
1956 -- the offset of the new discriminants may depend on it
1958 Prepend_To (Body_Stmts, Remove_Head (Stmts));
1959 Append_List_To (Body_Stmts, Stmts);
1960 end;
1961 end if;
1962 end if;
1964 -- Add here the assignment to instantiate the Tag
1966 -- The assignement corresponds to the code:
1968 -- _Init._Tag := Typ'Tag;
1970 -- Suppress the tag assignment when Java_VM because JVM tags are
1971 -- represented implicitly in objects. It is also suppressed in
1972 -- case of CPP_Class types because in this case the tag is
1973 -- initialized in the C++ side.
1975 if Is_Tagged_Type (Rec_Type)
1976 and then not Is_CPP_Class (Rec_Type)
1977 and then not Java_VM
1978 then
1979 Init_Tag :=
1980 Make_Assignment_Statement (Loc,
1981 Name =>
1982 Make_Selected_Component (Loc,
1983 Prefix => Make_Identifier (Loc, Name_uInit),
1984 Selector_Name =>
1985 New_Reference_To (First_Tag_Component (Rec_Type), Loc)),
1987 Expression =>
1988 New_Reference_To
1989 (Node (First_Elmt (Access_Disp_Table (Rec_Type))), Loc));
1991 -- The tag must be inserted before the assignments to other
1992 -- components, because the initial value of the component may
1993 -- depend ot the tag (eg. through a dispatching operation on
1994 -- an access to the current type). The tag assignment is not done
1995 -- when initializing the parent component of a type extension,
1996 -- because in that case the tag is set in the extension.
1997 -- Extensions of imported C++ classes add a final complication,
1998 -- because we cannot inhibit tag setting in the constructor for
1999 -- the parent. In that case we insert the tag initialization
2000 -- after the calls to initialize the parent.
2002 if not Is_CPP_Class (Etype (Rec_Type)) then
2003 Init_Tag :=
2004 Make_If_Statement (Loc,
2005 Condition => New_Occurrence_Of (Set_Tag, Loc),
2006 Then_Statements => New_List (Init_Tag));
2008 Prepend_To (Body_Stmts, Init_Tag);
2010 else
2011 declare
2012 Nod : Node_Id := First (Body_Stmts);
2013 New_N : Node_Id;
2014 Args : List_Id;
2016 begin
2017 -- We assume the first init_proc call is for the parent
2019 while Present (Next (Nod))
2020 and then (Nkind (Nod) /= N_Procedure_Call_Statement
2021 or else not Is_Init_Proc (Name (Nod)))
2022 loop
2023 Nod := Next (Nod);
2024 end loop;
2026 -- Generate:
2027 -- ancestor_constructor (_init.parent);
2028 -- if Arg2 then
2029 -- _init._tag := new_dt;
2030 -- end if;
2032 if Debug_Flag_QQ then
2033 Init_Tag :=
2034 Make_If_Statement (Loc,
2035 Condition => New_Occurrence_Of (Set_Tag, Loc),
2036 Then_Statements => New_List (Init_Tag));
2037 Insert_After (Nod, Init_Tag);
2039 -- Generate:
2040 -- ancestor_constructor (_init.parent);
2041 -- if Arg2 then
2042 -- inherit_dt (_init._tag, new_dt, num_prims);
2043 -- _init._tag := new_dt;
2044 -- end if;
2045 else
2046 Args := New_List (
2047 Node1 =>
2048 Make_Selected_Component (Loc,
2049 Prefix => Make_Identifier (Loc, Name_uInit),
2050 Selector_Name =>
2051 New_Reference_To
2052 (First_Tag_Component (Rec_Type), Loc)),
2054 Node2 =>
2055 New_Reference_To
2056 (Node (First_Elmt (Access_Disp_Table (Rec_Type))),
2057 Loc),
2059 Node3 =>
2060 Make_Integer_Literal (Loc,
2061 DT_Entry_Count (First_Tag_Component (Rec_Type))));
2063 New_N :=
2064 Make_Procedure_Call_Statement (Loc,
2065 Name => New_Reference_To (RTE (RE_Inherit_CPP_DT),
2066 Loc),
2067 Parameter_Associations => Args);
2069 Init_Tag :=
2070 Make_If_Statement (Loc,
2071 Condition => New_Occurrence_Of (Set_Tag, Loc),
2072 Then_Statements => New_List (New_N, Init_Tag));
2074 Insert_After (Nod, Init_Tag);
2076 -- We have inherited the whole contents of the DT table
2077 -- from the CPP side. Therefore all our previous initia-
2078 -- lization has been lost and we must refill entries
2079 -- associated with Ada primitives. This needs more work
2080 -- to avoid its execution each time an object is
2081 -- initialized???
2083 declare
2084 E : Elmt_Id;
2085 Prim : Node_Id;
2087 begin
2088 E := First_Elmt (Primitive_Operations (Rec_Type));
2089 while Present (E) loop
2090 Prim := Node (E);
2092 if not Is_Imported (Prim)
2093 and then Convention (Prim) = Convention_CPP
2094 and then not Present (Abstract_Interface_Alias
2095 (Prim))
2096 then
2097 Insert_After (Init_Tag,
2098 Fill_DT_Entry (Loc, Prim));
2099 end if;
2101 Next_Elmt (E);
2102 end loop;
2103 end;
2104 end if;
2105 end;
2106 end if;
2108 -- Ada 2005 (AI-251): Initialization of all the tags
2109 -- corresponding with abstract interfaces
2111 if Ada_Version >= Ada_05
2112 and then not Is_Interface (Rec_Type)
2113 then
2114 Init_Secondary_Tags
2115 (Typ => Rec_Type,
2116 Target => Make_Identifier (Loc, Name_uInit),
2117 Stmts_List => Body_Stmts);
2118 end if;
2119 end if;
2121 Handled_Stmt_Node := New_Node (N_Handled_Sequence_Of_Statements, Loc);
2122 Set_Statements (Handled_Stmt_Node, Body_Stmts);
2123 Set_Exception_Handlers (Handled_Stmt_Node, No_List);
2124 Set_Handled_Statement_Sequence (Body_Node, Handled_Stmt_Node);
2126 if not Debug_Generated_Code then
2127 Set_Debug_Info_Off (Proc_Id);
2128 end if;
2130 -- Associate Init_Proc with type, and determine if the procedure
2131 -- is null (happens because of the Initialize_Scalars pragma case,
2132 -- where we have to generate a null procedure in case it is called
2133 -- by a client with Initialize_Scalars set). Such procedures have
2134 -- to be generated, but do not have to be called, so we mark them
2135 -- as null to suppress the call.
2137 Set_Init_Proc (Rec_Type, Proc_Id);
2139 if List_Length (Body_Stmts) = 1
2140 and then Nkind (First (Body_Stmts)) = N_Null_Statement
2141 then
2142 Set_Is_Null_Init_Proc (Proc_Id);
2143 end if;
2144 end Build_Init_Procedure;
2146 ---------------------------
2147 -- Build_Init_Statements --
2148 ---------------------------
2150 function Build_Init_Statements (Comp_List : Node_Id) return List_Id is
2151 Check_List : constant List_Id := New_List;
2152 Alt_List : List_Id;
2153 Statement_List : List_Id;
2154 Stmts : List_Id;
2156 Per_Object_Constraint_Components : Boolean;
2158 Decl : Node_Id;
2159 Variant : Node_Id;
2161 Id : Entity_Id;
2162 Typ : Entity_Id;
2164 function Has_Access_Constraint (E : Entity_Id) return Boolean;
2165 -- Components with access discriminants that depend on the current
2166 -- instance must be initialized after all other components.
2168 ---------------------------
2169 -- Has_Access_Constraint --
2170 ---------------------------
2172 function Has_Access_Constraint (E : Entity_Id) return Boolean is
2173 Disc : Entity_Id;
2174 T : constant Entity_Id := Etype (E);
2176 begin
2177 if Has_Per_Object_Constraint (E)
2178 and then Has_Discriminants (T)
2179 then
2180 Disc := First_Discriminant (T);
2181 while Present (Disc) loop
2182 if Is_Access_Type (Etype (Disc)) then
2183 return True;
2184 end if;
2186 Next_Discriminant (Disc);
2187 end loop;
2189 return False;
2190 else
2191 return False;
2192 end if;
2193 end Has_Access_Constraint;
2195 -- Start of processing for Build_Init_Statements
2197 begin
2198 if Null_Present (Comp_List) then
2199 return New_List (Make_Null_Statement (Loc));
2200 end if;
2202 Statement_List := New_List;
2204 -- Loop through components, skipping pragmas, in 2 steps. The first
2205 -- step deals with regular components. The second step deals with
2206 -- components have per object constraints, and no explicit initia-
2207 -- lization.
2209 Per_Object_Constraint_Components := False;
2211 -- First step : regular components
2213 Decl := First_Non_Pragma (Component_Items (Comp_List));
2214 while Present (Decl) loop
2215 Loc := Sloc (Decl);
2216 Build_Record_Checks
2217 (Subtype_Indication (Component_Definition (Decl)), Check_List);
2219 Id := Defining_Identifier (Decl);
2220 Typ := Etype (Id);
2222 if Has_Access_Constraint (Id)
2223 and then No (Expression (Decl))
2224 then
2225 -- Skip processing for now and ask for a second pass
2227 Per_Object_Constraint_Components := True;
2229 else
2230 -- Case of explicit initialization
2232 if Present (Expression (Decl)) then
2233 Stmts := Build_Assignment (Id, Expression (Decl));
2235 -- Case of composite component with its own Init_Proc
2237 elsif not Is_Interface (Typ)
2238 and then Has_Non_Null_Base_Init_Proc (Typ)
2239 then
2240 Stmts :=
2241 Build_Initialization_Call
2242 (Loc,
2243 Make_Selected_Component (Loc,
2244 Prefix => Make_Identifier (Loc, Name_uInit),
2245 Selector_Name => New_Occurrence_Of (Id, Loc)),
2246 Typ,
2247 True,
2248 Rec_Type,
2249 Discr_Map => Discr_Map);
2251 Clean_Task_Names (Typ, Proc_Id);
2253 -- Case of component needing simple initialization
2255 elsif Component_Needs_Simple_Initialization (Typ) then
2256 Stmts :=
2257 Build_Assignment
2258 (Id, Get_Simple_Init_Val (Typ, Loc, Esize (Id)));
2260 -- Nothing needed for this case
2262 else
2263 Stmts := No_List;
2264 end if;
2266 if Present (Check_List) then
2267 Append_List_To (Statement_List, Check_List);
2268 end if;
2270 if Present (Stmts) then
2272 -- Add the initialization of the record controller before
2273 -- the _Parent field is attached to it when the attachment
2274 -- can occur. It does not work to simply initialize the
2275 -- controller first: it must be initialized after the parent
2276 -- if the parent holds discriminants that can be used
2277 -- to compute the offset of the controller. We assume here
2278 -- that the last statement of the initialization call is the
2279 -- attachement of the parent (see Build_Initialization_Call)
2281 if Chars (Id) = Name_uController
2282 and then Rec_Type /= Etype (Rec_Type)
2283 and then Has_Controlled_Component (Etype (Rec_Type))
2284 and then Has_New_Controlled_Component (Rec_Type)
2285 then
2286 Insert_List_Before (Last (Statement_List), Stmts);
2287 else
2288 Append_List_To (Statement_List, Stmts);
2289 end if;
2290 end if;
2291 end if;
2293 Next_Non_Pragma (Decl);
2294 end loop;
2296 if Per_Object_Constraint_Components then
2298 -- Second pass: components with per-object constraints
2300 Decl := First_Non_Pragma (Component_Items (Comp_List));
2302 while Present (Decl) loop
2303 Loc := Sloc (Decl);
2304 Id := Defining_Identifier (Decl);
2305 Typ := Etype (Id);
2307 if Has_Access_Constraint (Id)
2308 and then No (Expression (Decl))
2309 then
2310 if Has_Non_Null_Base_Init_Proc (Typ) then
2311 Append_List_To (Statement_List,
2312 Build_Initialization_Call (Loc,
2313 Make_Selected_Component (Loc,
2314 Prefix => Make_Identifier (Loc, Name_uInit),
2315 Selector_Name => New_Occurrence_Of (Id, Loc)),
2316 Typ, True, Rec_Type, Discr_Map => Discr_Map));
2318 Clean_Task_Names (Typ, Proc_Id);
2320 elsif Component_Needs_Simple_Initialization (Typ) then
2321 Append_List_To (Statement_List,
2322 Build_Assignment
2323 (Id, Get_Simple_Init_Val (Typ, Loc, Esize (Id))));
2324 end if;
2325 end if;
2327 Next_Non_Pragma (Decl);
2328 end loop;
2329 end if;
2331 -- Process the variant part
2333 if Present (Variant_Part (Comp_List)) then
2334 Alt_List := New_List;
2335 Variant := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
2337 while Present (Variant) loop
2338 Loc := Sloc (Variant);
2339 Append_To (Alt_List,
2340 Make_Case_Statement_Alternative (Loc,
2341 Discrete_Choices =>
2342 New_Copy_List (Discrete_Choices (Variant)),
2343 Statements =>
2344 Build_Init_Statements (Component_List (Variant))));
2346 Next_Non_Pragma (Variant);
2347 end loop;
2349 -- The expression of the case statement which is a reference
2350 -- to one of the discriminants is replaced by the appropriate
2351 -- formal parameter of the initialization procedure.
2353 Append_To (Statement_List,
2354 Make_Case_Statement (Loc,
2355 Expression =>
2356 New_Reference_To (Discriminal (
2357 Entity (Name (Variant_Part (Comp_List)))), Loc),
2358 Alternatives => Alt_List));
2359 end if;
2361 -- For a task record type, add the task create call and calls
2362 -- to bind any interrupt (signal) entries.
2364 if Is_Task_Record_Type (Rec_Type) then
2366 -- In the case of the restricted run time the ATCB has already
2367 -- been preallocated.
2369 if Restricted_Profile then
2370 Append_To (Statement_List,
2371 Make_Assignment_Statement (Loc,
2372 Name => Make_Selected_Component (Loc,
2373 Prefix => Make_Identifier (Loc, Name_uInit),
2374 Selector_Name => Make_Identifier (Loc, Name_uTask_Id)),
2375 Expression => Make_Attribute_Reference (Loc,
2376 Prefix =>
2377 Make_Selected_Component (Loc,
2378 Prefix => Make_Identifier (Loc, Name_uInit),
2379 Selector_Name =>
2380 Make_Identifier (Loc, Name_uATCB)),
2381 Attribute_Name => Name_Unchecked_Access)));
2382 end if;
2384 Append_To (Statement_List, Make_Task_Create_Call (Rec_Type));
2386 declare
2387 Task_Type : constant Entity_Id :=
2388 Corresponding_Concurrent_Type (Rec_Type);
2389 Task_Decl : constant Node_Id := Parent (Task_Type);
2390 Task_Def : constant Node_Id := Task_Definition (Task_Decl);
2391 Vis_Decl : Node_Id;
2392 Ent : Entity_Id;
2394 begin
2395 if Present (Task_Def) then
2396 Vis_Decl := First (Visible_Declarations (Task_Def));
2397 while Present (Vis_Decl) loop
2398 Loc := Sloc (Vis_Decl);
2400 if Nkind (Vis_Decl) = N_Attribute_Definition_Clause then
2401 if Get_Attribute_Id (Chars (Vis_Decl)) =
2402 Attribute_Address
2403 then
2404 Ent := Entity (Name (Vis_Decl));
2406 if Ekind (Ent) = E_Entry then
2407 Append_To (Statement_List,
2408 Make_Procedure_Call_Statement (Loc,
2409 Name => New_Reference_To (
2410 RTE (RE_Bind_Interrupt_To_Entry), Loc),
2411 Parameter_Associations => New_List (
2412 Make_Selected_Component (Loc,
2413 Prefix =>
2414 Make_Identifier (Loc, Name_uInit),
2415 Selector_Name =>
2416 Make_Identifier (Loc, Name_uTask_Id)),
2417 Entry_Index_Expression (
2418 Loc, Ent, Empty, Task_Type),
2419 Expression (Vis_Decl))));
2420 end if;
2421 end if;
2422 end if;
2424 Next (Vis_Decl);
2425 end loop;
2426 end if;
2427 end;
2428 end if;
2430 -- For a protected type, add statements generated by
2431 -- Make_Initialize_Protection.
2433 if Is_Protected_Record_Type (Rec_Type) then
2434 Append_List_To (Statement_List,
2435 Make_Initialize_Protection (Rec_Type));
2436 end if;
2438 -- If no initializations when generated for component declarations
2439 -- corresponding to this Statement_List, append a null statement
2440 -- to the Statement_List to make it a valid Ada tree.
2442 if Is_Empty_List (Statement_List) then
2443 Append (New_Node (N_Null_Statement, Loc), Statement_List);
2444 end if;
2446 return Statement_List;
2448 exception
2449 when RE_Not_Available =>
2450 return Empty_List;
2451 end Build_Init_Statements;
2453 -------------------------
2454 -- Build_Record_Checks --
2455 -------------------------
2457 procedure Build_Record_Checks (S : Node_Id; Check_List : List_Id) is
2458 Subtype_Mark_Id : Entity_Id;
2460 begin
2461 if Nkind (S) = N_Subtype_Indication then
2462 Find_Type (Subtype_Mark (S));
2463 Subtype_Mark_Id := Entity (Subtype_Mark (S));
2465 -- Remaining processing depends on type
2467 case Ekind (Subtype_Mark_Id) is
2469 when Array_Kind =>
2470 Constrain_Array (S, Check_List);
2472 when others =>
2473 null;
2474 end case;
2475 end if;
2476 end Build_Record_Checks;
2478 -------------------------------------------
2479 -- Component_Needs_Simple_Initialization --
2480 -------------------------------------------
2482 function Component_Needs_Simple_Initialization
2483 (T : Entity_Id) return Boolean
2485 begin
2486 return
2487 Needs_Simple_Initialization (T)
2488 and then not Is_RTE (T, RE_Tag)
2489 and then not Is_RTE (T, RE_Vtable_Ptr)
2491 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
2493 and then not Is_RTE (T, RE_Interface_Tag);
2494 end Component_Needs_Simple_Initialization;
2496 ---------------------
2497 -- Constrain_Array --
2498 ---------------------
2500 procedure Constrain_Array
2501 (SI : Node_Id;
2502 Check_List : List_Id)
2504 C : constant Node_Id := Constraint (SI);
2505 Number_Of_Constraints : Nat := 0;
2506 Index : Node_Id;
2507 S, T : Entity_Id;
2509 begin
2510 T := Entity (Subtype_Mark (SI));
2512 if Ekind (T) in Access_Kind then
2513 T := Designated_Type (T);
2514 end if;
2516 S := First (Constraints (C));
2518 while Present (S) loop
2519 Number_Of_Constraints := Number_Of_Constraints + 1;
2520 Next (S);
2521 end loop;
2523 -- In either case, the index constraint must provide a discrete
2524 -- range for each index of the array type and the type of each
2525 -- discrete range must be the same as that of the corresponding
2526 -- index. (RM 3.6.1)
2528 S := First (Constraints (C));
2529 Index := First_Index (T);
2530 Analyze (Index);
2532 -- Apply constraints to each index type
2534 for J in 1 .. Number_Of_Constraints loop
2535 Constrain_Index (Index, S, Check_List);
2536 Next (Index);
2537 Next (S);
2538 end loop;
2540 end Constrain_Array;
2542 ---------------------
2543 -- Constrain_Index --
2544 ---------------------
2546 procedure Constrain_Index
2547 (Index : Node_Id;
2548 S : Node_Id;
2549 Check_List : List_Id)
2551 T : constant Entity_Id := Etype (Index);
2553 begin
2554 if Nkind (S) = N_Range then
2555 Process_Range_Expr_In_Decl (S, T, Check_List);
2556 end if;
2557 end Constrain_Index;
2559 --------------------------------------
2560 -- Parent_Subtype_Renaming_Discrims --
2561 --------------------------------------
2563 function Parent_Subtype_Renaming_Discrims return Boolean is
2564 De : Entity_Id;
2565 Dp : Entity_Id;
2567 begin
2568 if Base_Type (Pe) /= Pe then
2569 return False;
2570 end if;
2572 if Etype (Pe) = Pe
2573 or else not Has_Discriminants (Pe)
2574 or else Is_Constrained (Pe)
2575 or else Is_Tagged_Type (Pe)
2576 then
2577 return False;
2578 end if;
2580 -- If there are no explicit stored discriminants we have inherited
2581 -- the root type discriminants so far, so no renamings occurred.
2583 if First_Discriminant (Pe) = First_Stored_Discriminant (Pe) then
2584 return False;
2585 end if;
2587 -- Check if we have done some trivial renaming of the parent
2588 -- discriminants, i.e. someting like
2590 -- type DT (X1,X2: int) is new PT (X1,X2);
2592 De := First_Discriminant (Pe);
2593 Dp := First_Discriminant (Etype (Pe));
2595 while Present (De) loop
2596 pragma Assert (Present (Dp));
2598 if Corresponding_Discriminant (De) /= Dp then
2599 return True;
2600 end if;
2602 Next_Discriminant (De);
2603 Next_Discriminant (Dp);
2604 end loop;
2606 return Present (Dp);
2607 end Parent_Subtype_Renaming_Discrims;
2609 ------------------------
2610 -- Requires_Init_Proc --
2611 ------------------------
2613 function Requires_Init_Proc (Rec_Id : Entity_Id) return Boolean is
2614 Comp_Decl : Node_Id;
2615 Id : Entity_Id;
2616 Typ : Entity_Id;
2618 begin
2619 -- Definitely do not need one if specifically suppressed
2621 if Suppress_Init_Proc (Rec_Id) then
2622 return False;
2623 end if;
2625 -- If it is a type derived from a type with unknown discriminants,
2626 -- we cannot build an initialization procedure for it.
2628 if Has_Unknown_Discriminants (Rec_Id) then
2629 return False;
2630 end if;
2632 -- Otherwise we need to generate an initialization procedure if
2633 -- Is_CPP_Class is False and at least one of the following applies:
2635 -- 1. Discriminants are present, since they need to be initialized
2636 -- with the appropriate discriminant constraint expressions.
2637 -- However, the discriminant of an unchecked union does not
2638 -- count, since the discriminant is not present.
2640 -- 2. The type is a tagged type, since the implicit Tag component
2641 -- needs to be initialized with a pointer to the dispatch table.
2643 -- 3. The type contains tasks
2645 -- 4. One or more components has an initial value
2647 -- 5. One or more components is for a type which itself requires
2648 -- an initialization procedure.
2650 -- 6. One or more components is a type that requires simple
2651 -- initialization (see Needs_Simple_Initialization), except
2652 -- that types Tag and Interface_Tag are excluded, since fields
2653 -- of these types are initialized by other means.
2655 -- 7. The type is the record type built for a task type (since at
2656 -- the very least, Create_Task must be called)
2658 -- 8. The type is the record type built for a protected type (since
2659 -- at least Initialize_Protection must be called)
2661 -- 9. The type is marked as a public entity. The reason we add this
2662 -- case (even if none of the above apply) is to properly handle
2663 -- Initialize_Scalars. If a package is compiled without an IS
2664 -- pragma, and the client is compiled with an IS pragma, then
2665 -- the client will think an initialization procedure is present
2666 -- and call it, when in fact no such procedure is required, but
2667 -- since the call is generated, there had better be a routine
2668 -- at the other end of the call, even if it does nothing!)
2670 -- Note: the reason we exclude the CPP_Class case is because in this
2671 -- case the initialization is performed in the C++ side.
2673 if Is_CPP_Class (Rec_Id) then
2674 return False;
2676 elsif not Restriction_Active (No_Initialize_Scalars)
2677 and then Is_Public (Rec_Id)
2678 then
2679 return True;
2681 elsif (Has_Discriminants (Rec_Id)
2682 and then not Is_Unchecked_Union (Rec_Id))
2683 or else Is_Tagged_Type (Rec_Id)
2684 or else Is_Concurrent_Record_Type (Rec_Id)
2685 or else Has_Task (Rec_Id)
2686 then
2687 return True;
2688 end if;
2690 Id := First_Component (Rec_Id);
2692 while Present (Id) loop
2693 Comp_Decl := Parent (Id);
2694 Typ := Etype (Id);
2696 if Present (Expression (Comp_Decl))
2697 or else Has_Non_Null_Base_Init_Proc (Typ)
2698 or else Component_Needs_Simple_Initialization (Typ)
2699 then
2700 return True;
2701 end if;
2703 Next_Component (Id);
2704 end loop;
2706 return False;
2707 end Requires_Init_Proc;
2709 -- Start of processing for Build_Record_Init_Proc
2711 begin
2712 Rec_Type := Defining_Identifier (N);
2714 -- This may be full declaration of a private type, in which case
2715 -- the visible entity is a record, and the private entity has been
2716 -- exchanged with it in the private part of the current package.
2717 -- The initialization procedure is built for the record type, which
2718 -- is retrievable from the private entity.
2720 if Is_Incomplete_Or_Private_Type (Rec_Type) then
2721 Rec_Type := Underlying_Type (Rec_Type);
2722 end if;
2724 -- If there are discriminants, build the discriminant map to replace
2725 -- discriminants by their discriminals in complex bound expressions.
2726 -- These only arise for the corresponding records of protected types.
2728 if Is_Concurrent_Record_Type (Rec_Type)
2729 and then Has_Discriminants (Rec_Type)
2730 then
2731 declare
2732 Disc : Entity_Id;
2733 begin
2734 Disc := First_Discriminant (Rec_Type);
2735 while Present (Disc) loop
2736 Append_Elmt (Disc, Discr_Map);
2737 Append_Elmt (Discriminal (Disc), Discr_Map);
2738 Next_Discriminant (Disc);
2739 end loop;
2740 end;
2741 end if;
2743 -- Derived types that have no type extension can use the initialization
2744 -- procedure of their parent and do not need a procedure of their own.
2745 -- This is only correct if there are no representation clauses for the
2746 -- type or its parent, and if the parent has in fact been frozen so
2747 -- that its initialization procedure exists.
2749 if Is_Derived_Type (Rec_Type)
2750 and then not Is_Tagged_Type (Rec_Type)
2751 and then not Is_Unchecked_Union (Rec_Type)
2752 and then not Has_New_Non_Standard_Rep (Rec_Type)
2753 and then not Parent_Subtype_Renaming_Discrims
2754 and then Has_Non_Null_Base_Init_Proc (Etype (Rec_Type))
2755 then
2756 Copy_TSS (Base_Init_Proc (Etype (Rec_Type)), Rec_Type);
2758 -- Otherwise if we need an initialization procedure, then build one,
2759 -- mark it as public and inlinable and as having a completion.
2761 elsif Requires_Init_Proc (Rec_Type)
2762 or else Is_Unchecked_Union (Rec_Type)
2763 then
2764 Build_Offset_To_Top_Functions;
2765 Build_Init_Procedure;
2766 Set_Is_Public (Proc_Id, Is_Public (Pe));
2768 -- The initialization of protected records is not worth inlining.
2769 -- In addition, when compiled for another unit for inlining purposes,
2770 -- it may make reference to entities that have not been elaborated
2771 -- yet. The initialization of controlled records contains a nested
2772 -- clean-up procedure that makes it impractical to inline as well,
2773 -- and leads to undefined symbols if inlined in a different unit.
2774 -- Similar considerations apply to task types.
2776 if not Is_Concurrent_Type (Rec_Type)
2777 and then not Has_Task (Rec_Type)
2778 and then not Controlled_Type (Rec_Type)
2779 then
2780 Set_Is_Inlined (Proc_Id);
2781 end if;
2783 Set_Is_Internal (Proc_Id);
2784 Set_Has_Completion (Proc_Id);
2786 if not Debug_Generated_Code then
2787 Set_Debug_Info_Off (Proc_Id);
2788 end if;
2789 end if;
2790 end Build_Record_Init_Proc;
2792 ----------------------------
2793 -- Build_Slice_Assignment --
2794 ----------------------------
2796 -- Generates the following subprogram:
2798 -- procedure Assign
2799 -- (Source, Target : Array_Type,
2800 -- Left_Lo, Left_Hi, Right_Lo, Right_Hi : Index;
2801 -- Rev : Boolean)
2802 -- is
2803 -- Li1 : Index;
2804 -- Ri1 : Index;
2806 -- begin
2807 -- if Rev then
2808 -- Li1 := Left_Hi;
2809 -- Ri1 := Right_Hi;
2810 -- else
2811 -- Li1 := Left_Lo;
2812 -- Ri1 := Right_Lo;
2813 -- end if;
2815 -- loop
2816 -- if Rev then
2817 -- exit when Li1 < Left_Lo;
2818 -- else
2819 -- exit when Li1 > Left_Hi;
2820 -- end if;
2822 -- Target (Li1) := Source (Ri1);
2824 -- if Rev then
2825 -- Li1 := Index'pred (Li1);
2826 -- Ri1 := Index'pred (Ri1);
2827 -- else
2828 -- Li1 := Index'succ (Li1);
2829 -- Ri1 := Index'succ (Ri1);
2830 -- end if;
2831 -- end loop;
2832 -- end Assign;
2834 procedure Build_Slice_Assignment (Typ : Entity_Id) is
2835 Loc : constant Source_Ptr := Sloc (Typ);
2836 Index : constant Entity_Id := Base_Type (Etype (First_Index (Typ)));
2838 -- Build formal parameters of procedure
2840 Larray : constant Entity_Id :=
2841 Make_Defining_Identifier
2842 (Loc, Chars => New_Internal_Name ('A'));
2843 Rarray : constant Entity_Id :=
2844 Make_Defining_Identifier
2845 (Loc, Chars => New_Internal_Name ('R'));
2846 Left_Lo : constant Entity_Id :=
2847 Make_Defining_Identifier
2848 (Loc, Chars => New_Internal_Name ('L'));
2849 Left_Hi : constant Entity_Id :=
2850 Make_Defining_Identifier
2851 (Loc, Chars => New_Internal_Name ('L'));
2852 Right_Lo : constant Entity_Id :=
2853 Make_Defining_Identifier
2854 (Loc, Chars => New_Internal_Name ('R'));
2855 Right_Hi : constant Entity_Id :=
2856 Make_Defining_Identifier
2857 (Loc, Chars => New_Internal_Name ('R'));
2858 Rev : constant Entity_Id :=
2859 Make_Defining_Identifier
2860 (Loc, Chars => New_Internal_Name ('D'));
2861 Proc_Name : constant Entity_Id :=
2862 Make_Defining_Identifier (Loc,
2863 Chars => Make_TSS_Name (Typ, TSS_Slice_Assign));
2865 Lnn : constant Entity_Id :=
2866 Make_Defining_Identifier (Loc, New_Internal_Name ('L'));
2867 Rnn : constant Entity_Id :=
2868 Make_Defining_Identifier (Loc, New_Internal_Name ('R'));
2869 -- Subscripts for left and right sides
2871 Decls : List_Id;
2872 Loops : Node_Id;
2873 Stats : List_Id;
2875 begin
2876 -- Build declarations for indices
2878 Decls := New_List;
2880 Append_To (Decls,
2881 Make_Object_Declaration (Loc,
2882 Defining_Identifier => Lnn,
2883 Object_Definition =>
2884 New_Occurrence_Of (Index, Loc)));
2886 Append_To (Decls,
2887 Make_Object_Declaration (Loc,
2888 Defining_Identifier => Rnn,
2889 Object_Definition =>
2890 New_Occurrence_Of (Index, Loc)));
2892 Stats := New_List;
2894 -- Build initializations for indices
2896 declare
2897 F_Init : constant List_Id := New_List;
2898 B_Init : constant List_Id := New_List;
2900 begin
2901 Append_To (F_Init,
2902 Make_Assignment_Statement (Loc,
2903 Name => New_Occurrence_Of (Lnn, Loc),
2904 Expression => New_Occurrence_Of (Left_Lo, Loc)));
2906 Append_To (F_Init,
2907 Make_Assignment_Statement (Loc,
2908 Name => New_Occurrence_Of (Rnn, Loc),
2909 Expression => New_Occurrence_Of (Right_Lo, Loc)));
2911 Append_To (B_Init,
2912 Make_Assignment_Statement (Loc,
2913 Name => New_Occurrence_Of (Lnn, Loc),
2914 Expression => New_Occurrence_Of (Left_Hi, Loc)));
2916 Append_To (B_Init,
2917 Make_Assignment_Statement (Loc,
2918 Name => New_Occurrence_Of (Rnn, Loc),
2919 Expression => New_Occurrence_Of (Right_Hi, Loc)));
2921 Append_To (Stats,
2922 Make_If_Statement (Loc,
2923 Condition => New_Occurrence_Of (Rev, Loc),
2924 Then_Statements => B_Init,
2925 Else_Statements => F_Init));
2926 end;
2928 -- Now construct the assignment statement
2930 Loops :=
2931 Make_Loop_Statement (Loc,
2932 Statements => New_List (
2933 Make_Assignment_Statement (Loc,
2934 Name =>
2935 Make_Indexed_Component (Loc,
2936 Prefix => New_Occurrence_Of (Larray, Loc),
2937 Expressions => New_List (New_Occurrence_Of (Lnn, Loc))),
2938 Expression =>
2939 Make_Indexed_Component (Loc,
2940 Prefix => New_Occurrence_Of (Rarray, Loc),
2941 Expressions => New_List (New_Occurrence_Of (Rnn, Loc))))),
2942 End_Label => Empty);
2944 -- Build exit condition
2946 declare
2947 F_Ass : constant List_Id := New_List;
2948 B_Ass : constant List_Id := New_List;
2950 begin
2951 Append_To (F_Ass,
2952 Make_Exit_Statement (Loc,
2953 Condition =>
2954 Make_Op_Gt (Loc,
2955 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
2956 Right_Opnd => New_Occurrence_Of (Left_Hi, Loc))));
2958 Append_To (B_Ass,
2959 Make_Exit_Statement (Loc,
2960 Condition =>
2961 Make_Op_Lt (Loc,
2962 Left_Opnd => New_Occurrence_Of (Lnn, Loc),
2963 Right_Opnd => New_Occurrence_Of (Left_Lo, Loc))));
2965 Prepend_To (Statements (Loops),
2966 Make_If_Statement (Loc,
2967 Condition => New_Occurrence_Of (Rev, Loc),
2968 Then_Statements => B_Ass,
2969 Else_Statements => F_Ass));
2970 end;
2972 -- Build the increment/decrement statements
2974 declare
2975 F_Ass : constant List_Id := New_List;
2976 B_Ass : constant List_Id := New_List;
2978 begin
2979 Append_To (F_Ass,
2980 Make_Assignment_Statement (Loc,
2981 Name => New_Occurrence_Of (Lnn, Loc),
2982 Expression =>
2983 Make_Attribute_Reference (Loc,
2984 Prefix =>
2985 New_Occurrence_Of (Index, Loc),
2986 Attribute_Name => Name_Succ,
2987 Expressions => New_List (
2988 New_Occurrence_Of (Lnn, Loc)))));
2990 Append_To (F_Ass,
2991 Make_Assignment_Statement (Loc,
2992 Name => New_Occurrence_Of (Rnn, Loc),
2993 Expression =>
2994 Make_Attribute_Reference (Loc,
2995 Prefix =>
2996 New_Occurrence_Of (Index, Loc),
2997 Attribute_Name => Name_Succ,
2998 Expressions => New_List (
2999 New_Occurrence_Of (Rnn, Loc)))));
3001 Append_To (B_Ass,
3002 Make_Assignment_Statement (Loc,
3003 Name => New_Occurrence_Of (Lnn, Loc),
3004 Expression =>
3005 Make_Attribute_Reference (Loc,
3006 Prefix =>
3007 New_Occurrence_Of (Index, Loc),
3008 Attribute_Name => Name_Pred,
3009 Expressions => New_List (
3010 New_Occurrence_Of (Lnn, Loc)))));
3012 Append_To (B_Ass,
3013 Make_Assignment_Statement (Loc,
3014 Name => New_Occurrence_Of (Rnn, Loc),
3015 Expression =>
3016 Make_Attribute_Reference (Loc,
3017 Prefix =>
3018 New_Occurrence_Of (Index, Loc),
3019 Attribute_Name => Name_Pred,
3020 Expressions => New_List (
3021 New_Occurrence_Of (Rnn, Loc)))));
3023 Append_To (Statements (Loops),
3024 Make_If_Statement (Loc,
3025 Condition => New_Occurrence_Of (Rev, Loc),
3026 Then_Statements => B_Ass,
3027 Else_Statements => F_Ass));
3028 end;
3030 Append_To (Stats, Loops);
3032 declare
3033 Spec : Node_Id;
3034 Formals : List_Id := New_List;
3036 begin
3037 Formals := New_List (
3038 Make_Parameter_Specification (Loc,
3039 Defining_Identifier => Larray,
3040 Out_Present => True,
3041 Parameter_Type =>
3042 New_Reference_To (Base_Type (Typ), Loc)),
3044 Make_Parameter_Specification (Loc,
3045 Defining_Identifier => Rarray,
3046 Parameter_Type =>
3047 New_Reference_To (Base_Type (Typ), Loc)),
3049 Make_Parameter_Specification (Loc,
3050 Defining_Identifier => Left_Lo,
3051 Parameter_Type =>
3052 New_Reference_To (Index, Loc)),
3054 Make_Parameter_Specification (Loc,
3055 Defining_Identifier => Left_Hi,
3056 Parameter_Type =>
3057 New_Reference_To (Index, Loc)),
3059 Make_Parameter_Specification (Loc,
3060 Defining_Identifier => Right_Lo,
3061 Parameter_Type =>
3062 New_Reference_To (Index, Loc)),
3064 Make_Parameter_Specification (Loc,
3065 Defining_Identifier => Right_Hi,
3066 Parameter_Type =>
3067 New_Reference_To (Index, Loc)));
3069 Append_To (Formals,
3070 Make_Parameter_Specification (Loc,
3071 Defining_Identifier => Rev,
3072 Parameter_Type =>
3073 New_Reference_To (Standard_Boolean, Loc)));
3075 Spec :=
3076 Make_Procedure_Specification (Loc,
3077 Defining_Unit_Name => Proc_Name,
3078 Parameter_Specifications => Formals);
3080 Discard_Node (
3081 Make_Subprogram_Body (Loc,
3082 Specification => Spec,
3083 Declarations => Decls,
3084 Handled_Statement_Sequence =>
3085 Make_Handled_Sequence_Of_Statements (Loc,
3086 Statements => Stats)));
3087 end;
3089 Set_TSS (Typ, Proc_Name);
3090 Set_Is_Pure (Proc_Name);
3091 end Build_Slice_Assignment;
3093 ------------------------------------
3094 -- Build_Variant_Record_Equality --
3095 ------------------------------------
3097 -- Generates:
3099 -- function _Equality (X, Y : T) return Boolean is
3100 -- begin
3101 -- -- Compare discriminants
3103 -- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
3104 -- return False;
3105 -- end if;
3107 -- -- Compare components
3109 -- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
3110 -- return False;
3111 -- end if;
3113 -- -- Compare variant part
3115 -- case X.D1 is
3116 -- when V1 =>
3117 -- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
3118 -- return False;
3119 -- end if;
3120 -- ...
3121 -- when Vn =>
3122 -- if False or else X.Cn /= Y.Cn then
3123 -- return False;
3124 -- end if;
3125 -- end case;
3126 -- return True;
3127 -- end _Equality;
3129 procedure Build_Variant_Record_Equality (Typ : Entity_Id) is
3130 Loc : constant Source_Ptr := Sloc (Typ);
3132 F : constant Entity_Id :=
3133 Make_Defining_Identifier (Loc,
3134 Chars => Make_TSS_Name (Typ, TSS_Composite_Equality));
3136 X : constant Entity_Id :=
3137 Make_Defining_Identifier (Loc,
3138 Chars => Name_X);
3140 Y : constant Entity_Id :=
3141 Make_Defining_Identifier (Loc,
3142 Chars => Name_Y);
3144 Def : constant Node_Id := Parent (Typ);
3145 Comps : constant Node_Id := Component_List (Type_Definition (Def));
3146 Stmts : constant List_Id := New_List;
3147 Pspecs : constant List_Id := New_List;
3149 begin
3150 -- Derived Unchecked_Union types no longer inherit the equality function
3151 -- of their parent.
3153 if Is_Derived_Type (Typ)
3154 and then not Is_Unchecked_Union (Typ)
3155 and then not Has_New_Non_Standard_Rep (Typ)
3156 then
3157 declare
3158 Parent_Eq : constant Entity_Id :=
3159 TSS (Root_Type (Typ), TSS_Composite_Equality);
3161 begin
3162 if Present (Parent_Eq) then
3163 Copy_TSS (Parent_Eq, Typ);
3164 return;
3165 end if;
3166 end;
3167 end if;
3169 Discard_Node (
3170 Make_Subprogram_Body (Loc,
3171 Specification =>
3172 Make_Function_Specification (Loc,
3173 Defining_Unit_Name => F,
3174 Parameter_Specifications => Pspecs,
3175 Result_Definition => New_Reference_To (Standard_Boolean, Loc)),
3176 Declarations => New_List,
3177 Handled_Statement_Sequence =>
3178 Make_Handled_Sequence_Of_Statements (Loc,
3179 Statements => Stmts)));
3181 Append_To (Pspecs,
3182 Make_Parameter_Specification (Loc,
3183 Defining_Identifier => X,
3184 Parameter_Type => New_Reference_To (Typ, Loc)));
3186 Append_To (Pspecs,
3187 Make_Parameter_Specification (Loc,
3188 Defining_Identifier => Y,
3189 Parameter_Type => New_Reference_To (Typ, Loc)));
3191 -- Unchecked_Unions require additional machinery to support equality.
3192 -- Two extra parameters (A and B) are added to the equality function
3193 -- parameter list in order to capture the inferred values of the
3194 -- discriminants in later calls.
3196 if Is_Unchecked_Union (Typ) then
3197 declare
3198 Discr_Type : constant Node_Id := Etype (First_Discriminant (Typ));
3200 A : constant Node_Id :=
3201 Make_Defining_Identifier (Loc,
3202 Chars => Name_A);
3204 B : constant Node_Id :=
3205 Make_Defining_Identifier (Loc,
3206 Chars => Name_B);
3208 begin
3209 -- Add A and B to the parameter list
3211 Append_To (Pspecs,
3212 Make_Parameter_Specification (Loc,
3213 Defining_Identifier => A,
3214 Parameter_Type => New_Reference_To (Discr_Type, Loc)));
3216 Append_To (Pspecs,
3217 Make_Parameter_Specification (Loc,
3218 Defining_Identifier => B,
3219 Parameter_Type => New_Reference_To (Discr_Type, Loc)));
3221 -- Generate the following header code to compare the inferred
3222 -- discriminants:
3224 -- if a /= b then
3225 -- return False;
3226 -- end if;
3228 Append_To (Stmts,
3229 Make_If_Statement (Loc,
3230 Condition =>
3231 Make_Op_Ne (Loc,
3232 Left_Opnd => New_Reference_To (A, Loc),
3233 Right_Opnd => New_Reference_To (B, Loc)),
3234 Then_Statements => New_List (
3235 Make_Return_Statement (Loc,
3236 Expression => New_Occurrence_Of (Standard_False, Loc)))));
3238 -- Generate component-by-component comparison. Note that we must
3239 -- propagate one of the inferred discriminant formals to act as
3240 -- the case statement switch.
3242 Append_List_To (Stmts,
3243 Make_Eq_Case (Typ, Comps, A));
3245 end;
3247 -- Normal case (not unchecked union)
3249 else
3250 Append_To (Stmts,
3251 Make_Eq_If (Typ,
3252 Discriminant_Specifications (Def)));
3254 Append_List_To (Stmts,
3255 Make_Eq_Case (Typ, Comps));
3256 end if;
3258 Append_To (Stmts,
3259 Make_Return_Statement (Loc,
3260 Expression => New_Reference_To (Standard_True, Loc)));
3262 Set_TSS (Typ, F);
3263 Set_Is_Pure (F);
3265 if not Debug_Generated_Code then
3266 Set_Debug_Info_Off (F);
3267 end if;
3268 end Build_Variant_Record_Equality;
3270 -----------------------------
3271 -- Check_Stream_Attributes --
3272 -----------------------------
3274 procedure Check_Stream_Attributes (Typ : Entity_Id) is
3275 Comp : Entity_Id;
3276 Par_Read : constant Boolean :=
3277 Stream_Attribute_Available (Typ, TSS_Stream_Read)
3278 and then not Has_Specified_Stream_Read (Typ);
3279 Par_Write : constant Boolean :=
3280 Stream_Attribute_Available (Typ, TSS_Stream_Write)
3281 and then not Has_Specified_Stream_Write (Typ);
3283 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type);
3284 -- Check that Comp has a user-specified Nam stream attribute
3286 ----------------
3287 -- Check_Attr --
3288 ----------------
3290 procedure Check_Attr (Nam : Name_Id; TSS_Nam : TSS_Name_Type) is
3291 begin
3292 if not Stream_Attribute_Available (Etype (Comp), TSS_Nam) then
3293 Error_Msg_Name_1 := Nam;
3294 Error_Msg_N
3295 ("|component& in limited extension must have% attribute", Comp);
3296 end if;
3297 end Check_Attr;
3299 -- Start of processing for Check_Stream_Attributes
3301 begin
3302 if Par_Read or else Par_Write then
3303 Comp := First_Component (Typ);
3304 while Present (Comp) loop
3305 if Comes_From_Source (Comp)
3306 and then Original_Record_Component (Comp) = Comp
3307 and then Is_Limited_Type (Etype (Comp))
3308 then
3309 if Par_Read then
3310 Check_Attr (Name_Read, TSS_Stream_Read);
3311 end if;
3313 if Par_Write then
3314 Check_Attr (Name_Write, TSS_Stream_Write);
3315 end if;
3316 end if;
3318 Next_Component (Comp);
3319 end loop;
3320 end if;
3321 end Check_Stream_Attributes;
3323 -----------------------------
3324 -- Expand_Record_Extension --
3325 -----------------------------
3327 -- Add a field _parent at the beginning of the record extension. This is
3328 -- used to implement inheritance. Here are some examples of expansion:
3330 -- 1. no discriminants
3331 -- type T2 is new T1 with null record;
3332 -- gives
3333 -- type T2 is new T1 with record
3334 -- _Parent : T1;
3335 -- end record;
3337 -- 2. renamed discriminants
3338 -- type T2 (B, C : Int) is new T1 (A => B) with record
3339 -- _Parent : T1 (A => B);
3340 -- D : Int;
3341 -- end;
3343 -- 3. inherited discriminants
3344 -- type T2 is new T1 with record -- discriminant A inherited
3345 -- _Parent : T1 (A);
3346 -- D : Int;
3347 -- end;
3349 procedure Expand_Record_Extension (T : Entity_Id; Def : Node_Id) is
3350 Indic : constant Node_Id := Subtype_Indication (Def);
3351 Loc : constant Source_Ptr := Sloc (Def);
3352 Rec_Ext_Part : Node_Id := Record_Extension_Part (Def);
3353 Par_Subtype : Entity_Id;
3354 Comp_List : Node_Id;
3355 Comp_Decl : Node_Id;
3356 Parent_N : Node_Id;
3357 D : Entity_Id;
3358 List_Constr : constant List_Id := New_List;
3360 begin
3361 -- Expand_Record_Extension is called directly from the semantics, so
3362 -- we must check to see whether expansion is active before proceeding
3364 if not Expander_Active then
3365 return;
3366 end if;
3368 -- This may be a derivation of an untagged private type whose full
3369 -- view is tagged, in which case the Derived_Type_Definition has no
3370 -- extension part. Build an empty one now.
3372 if No (Rec_Ext_Part) then
3373 Rec_Ext_Part :=
3374 Make_Record_Definition (Loc,
3375 End_Label => Empty,
3376 Component_List => Empty,
3377 Null_Present => True);
3379 Set_Record_Extension_Part (Def, Rec_Ext_Part);
3380 Mark_Rewrite_Insertion (Rec_Ext_Part);
3381 end if;
3383 Comp_List := Component_List (Rec_Ext_Part);
3385 Parent_N := Make_Defining_Identifier (Loc, Name_uParent);
3387 -- If the derived type inherits its discriminants the type of the
3388 -- _parent field must be constrained by the inherited discriminants
3390 if Has_Discriminants (T)
3391 and then Nkind (Indic) /= N_Subtype_Indication
3392 and then not Is_Constrained (Entity (Indic))
3393 then
3394 D := First_Discriminant (T);
3395 while Present (D) loop
3396 Append_To (List_Constr, New_Occurrence_Of (D, Loc));
3397 Next_Discriminant (D);
3398 end loop;
3400 Par_Subtype :=
3401 Process_Subtype (
3402 Make_Subtype_Indication (Loc,
3403 Subtype_Mark => New_Reference_To (Entity (Indic), Loc),
3404 Constraint =>
3405 Make_Index_Or_Discriminant_Constraint (Loc,
3406 Constraints => List_Constr)),
3407 Def);
3409 -- Otherwise the original subtype_indication is just what is needed
3411 else
3412 Par_Subtype := Process_Subtype (New_Copy_Tree (Indic), Def);
3413 end if;
3415 Set_Parent_Subtype (T, Par_Subtype);
3417 Comp_Decl :=
3418 Make_Component_Declaration (Loc,
3419 Defining_Identifier => Parent_N,
3420 Component_Definition =>
3421 Make_Component_Definition (Loc,
3422 Aliased_Present => False,
3423 Subtype_Indication => New_Reference_To (Par_Subtype, Loc)));
3425 if Null_Present (Rec_Ext_Part) then
3426 Set_Component_List (Rec_Ext_Part,
3427 Make_Component_List (Loc,
3428 Component_Items => New_List (Comp_Decl),
3429 Variant_Part => Empty,
3430 Null_Present => False));
3431 Set_Null_Present (Rec_Ext_Part, False);
3433 elsif Null_Present (Comp_List)
3434 or else Is_Empty_List (Component_Items (Comp_List))
3435 then
3436 Set_Component_Items (Comp_List, New_List (Comp_Decl));
3437 Set_Null_Present (Comp_List, False);
3439 else
3440 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
3441 end if;
3443 Analyze (Comp_Decl);
3444 end Expand_Record_Extension;
3446 ------------------------------------
3447 -- Expand_N_Full_Type_Declaration --
3448 ------------------------------------
3450 procedure Expand_N_Full_Type_Declaration (N : Node_Id) is
3451 Def_Id : constant Entity_Id := Defining_Identifier (N);
3452 B_Id : constant Entity_Id := Base_Type (Def_Id);
3453 Par_Id : Entity_Id;
3454 FN : Node_Id;
3456 begin
3457 if Is_Access_Type (Def_Id) then
3459 -- Anonymous access types are created for the components of the
3460 -- record parameter for an entry declaration. No master is created
3461 -- for such a type.
3463 if Has_Task (Designated_Type (Def_Id))
3464 and then Comes_From_Source (N)
3465 then
3466 Build_Master_Entity (Def_Id);
3467 Build_Master_Renaming (Parent (Def_Id), Def_Id);
3469 -- Create a class-wide master because a Master_Id must be generated
3470 -- for access-to-limited-class-wide types whose root may be extended
3471 -- with task components, and for access-to-limited-interfaces because
3472 -- they can be used to reference tasks implementing such interface.
3474 elsif Is_Class_Wide_Type (Designated_Type (Def_Id))
3475 and then (Is_Limited_Type (Designated_Type (Def_Id))
3476 or else
3477 (Is_Interface (Designated_Type (Def_Id))
3478 and then
3479 Is_Limited_Interface (Designated_Type (Def_Id))))
3480 and then Tasking_Allowed
3482 -- Do not create a class-wide master for types whose convention is
3483 -- Java since these types cannot embed Ada tasks anyway. Note that
3484 -- the following test cannot catch the following case:
3486 -- package java.lang.Object is
3487 -- type Typ is tagged limited private;
3488 -- type Ref is access all Typ'Class;
3489 -- private
3490 -- type Typ is tagged limited ...;
3491 -- pragma Convention (Typ, Java)
3492 -- end;
3494 -- Because the convention appears after we have done the
3495 -- processing for type Ref.
3497 and then Convention (Designated_Type (Def_Id)) /= Convention_Java
3498 then
3499 Build_Class_Wide_Master (Def_Id);
3501 elsif Ekind (Def_Id) = E_Access_Protected_Subprogram_Type then
3502 Expand_Access_Protected_Subprogram_Type (N);
3503 end if;
3505 elsif Has_Task (Def_Id) then
3506 Expand_Previous_Access_Type (Def_Id);
3507 end if;
3509 Par_Id := Etype (B_Id);
3511 -- The parent type is private then we need to inherit
3512 -- any TSS operations from the full view.
3514 if Ekind (Par_Id) in Private_Kind
3515 and then Present (Full_View (Par_Id))
3516 then
3517 Par_Id := Base_Type (Full_View (Par_Id));
3518 end if;
3520 if Nkind (Type_Definition (Original_Node (N)))
3521 = N_Derived_Type_Definition
3522 and then not Is_Tagged_Type (Def_Id)
3523 and then Present (Freeze_Node (Par_Id))
3524 and then Present (TSS_Elist (Freeze_Node (Par_Id)))
3525 then
3526 Ensure_Freeze_Node (B_Id);
3527 FN := Freeze_Node (B_Id);
3529 if No (TSS_Elist (FN)) then
3530 Set_TSS_Elist (FN, New_Elmt_List);
3531 end if;
3533 declare
3534 T_E : constant Elist_Id := TSS_Elist (FN);
3535 Elmt : Elmt_Id;
3537 begin
3538 Elmt := First_Elmt (TSS_Elist (Freeze_Node (Par_Id)));
3540 while Present (Elmt) loop
3541 if Chars (Node (Elmt)) /= Name_uInit then
3542 Append_Elmt (Node (Elmt), T_E);
3543 end if;
3545 Next_Elmt (Elmt);
3546 end loop;
3548 -- If the derived type itself is private with a full view, then
3549 -- associate the full view with the inherited TSS_Elist as well.
3551 if Ekind (B_Id) in Private_Kind
3552 and then Present (Full_View (B_Id))
3553 then
3554 Ensure_Freeze_Node (Base_Type (Full_View (B_Id)));
3555 Set_TSS_Elist
3556 (Freeze_Node (Base_Type (Full_View (B_Id))), TSS_Elist (FN));
3557 end if;
3558 end;
3559 end if;
3560 end Expand_N_Full_Type_Declaration;
3562 ---------------------------------
3563 -- Expand_N_Object_Declaration --
3564 ---------------------------------
3566 -- First we do special processing for objects of a tagged type where this
3567 -- is the point at which the type is frozen. The creation of the dispatch
3568 -- table and the initialization procedure have to be deferred to this
3569 -- point, since we reference previously declared primitive subprograms.
3571 -- For all types, we call an initialization procedure if there is one
3573 procedure Expand_N_Object_Declaration (N : Node_Id) is
3574 Def_Id : constant Entity_Id := Defining_Identifier (N);
3575 Typ : constant Entity_Id := Etype (Def_Id);
3576 Loc : constant Source_Ptr := Sloc (N);
3577 Expr : constant Node_Id := Expression (N);
3579 New_Ref : Node_Id;
3580 Id_Ref : Node_Id;
3581 Expr_Q : Node_Id;
3583 begin
3584 -- Don't do anything for deferred constants. All proper actions will
3585 -- be expanded during the full declaration.
3587 if No (Expr) and Constant_Present (N) then
3588 return;
3589 end if;
3591 -- Make shared memory routines for shared passive variable
3593 if Is_Shared_Passive (Def_Id) then
3594 Make_Shared_Var_Procs (N);
3595 end if;
3597 -- If tasks being declared, make sure we have an activation chain
3598 -- defined for the tasks (has no effect if we already have one), and
3599 -- also that a Master variable is established and that the appropriate
3600 -- enclosing construct is established as a task master.
3602 if Has_Task (Typ) then
3603 Build_Activation_Chain_Entity (N);
3604 Build_Master_Entity (Def_Id);
3605 end if;
3607 -- Default initialization required, and no expression present
3609 if No (Expr) then
3611 -- Expand Initialize call for controlled objects. One may wonder why
3612 -- the Initialize Call is not done in the regular Init procedure
3613 -- attached to the record type. That's because the init procedure is
3614 -- recursively called on each component, including _Parent, thus the
3615 -- Init call for a controlled object would generate not only one
3616 -- Initialize call as it is required but one for each ancestor of
3617 -- its type. This processing is suppressed if No_Initialization set.
3619 if not Controlled_Type (Typ)
3620 or else No_Initialization (N)
3621 then
3622 null;
3624 elsif not Abort_Allowed
3625 or else not Comes_From_Source (N)
3626 then
3627 Insert_Actions_After (N,
3628 Make_Init_Call (
3629 Ref => New_Occurrence_Of (Def_Id, Loc),
3630 Typ => Base_Type (Typ),
3631 Flist_Ref => Find_Final_List (Def_Id),
3632 With_Attach => Make_Integer_Literal (Loc, 1)));
3634 -- Abort allowed
3636 else
3637 -- We need to protect the initialize call
3639 -- begin
3640 -- Defer_Abort.all;
3641 -- Initialize (...);
3642 -- at end
3643 -- Undefer_Abort.all;
3644 -- end;
3646 -- ??? this won't protect the initialize call for controlled
3647 -- components which are part of the init proc, so this block
3648 -- should probably also contain the call to _init_proc but this
3649 -- requires some code reorganization...
3651 declare
3652 L : constant List_Id :=
3653 Make_Init_Call (
3654 Ref => New_Occurrence_Of (Def_Id, Loc),
3655 Typ => Base_Type (Typ),
3656 Flist_Ref => Find_Final_List (Def_Id),
3657 With_Attach => Make_Integer_Literal (Loc, 1));
3659 Blk : constant Node_Id :=
3660 Make_Block_Statement (Loc,
3661 Handled_Statement_Sequence =>
3662 Make_Handled_Sequence_Of_Statements (Loc, L));
3664 begin
3665 Prepend_To (L, Build_Runtime_Call (Loc, RE_Abort_Defer));
3666 Set_At_End_Proc (Handled_Statement_Sequence (Blk),
3667 New_Occurrence_Of (RTE (RE_Abort_Undefer_Direct), Loc));
3668 Insert_Actions_After (N, New_List (Blk));
3669 Expand_At_End_Handler
3670 (Handled_Statement_Sequence (Blk), Entity (Identifier (Blk)));
3671 end;
3672 end if;
3674 -- Call type initialization procedure if there is one. We build the
3675 -- call and put it immediately after the object declaration, so that
3676 -- it will be expanded in the usual manner. Note that this will
3677 -- result in proper handling of defaulted discriminants. The call
3678 -- to the Init_Proc is suppressed if No_Initialization is set.
3680 if Has_Non_Null_Base_Init_Proc (Typ)
3681 and then not No_Initialization (N)
3682 then
3683 -- The call to the initialization procedure does NOT freeze
3684 -- the object being initialized. This is because the call is
3685 -- not a source level call. This works fine, because the only
3686 -- possible statements depending on freeze status that can
3687 -- appear after the _Init call are rep clauses which can
3688 -- safely appear after actual references to the object.
3690 Id_Ref := New_Reference_To (Def_Id, Loc);
3691 Set_Must_Not_Freeze (Id_Ref);
3692 Set_Assignment_OK (Id_Ref);
3694 Insert_Actions_After (N,
3695 Build_Initialization_Call (Loc, Id_Ref, Typ));
3697 -- If simple initialization is required, then set an appropriate
3698 -- simple initialization expression in place. This special
3699 -- initialization is required even though No_Init_Flag is present.
3701 -- An internally generated temporary needs no initialization because
3702 -- it will be assigned subsequently. In particular, there is no
3703 -- point in applying Initialize_Scalars to such a temporary.
3705 elsif Needs_Simple_Initialization (Typ)
3706 and then not Is_Internal (Def_Id)
3707 then
3708 Set_No_Initialization (N, False);
3709 Set_Expression (N, Get_Simple_Init_Val (Typ, Loc, Esize (Def_Id)));
3710 Analyze_And_Resolve (Expression (N), Typ);
3711 end if;
3713 -- Generate attribute for Persistent_BSS if needed
3715 if Persistent_BSS_Mode
3716 and then Comes_From_Source (N)
3717 and then Is_Potentially_Persistent_Type (Typ)
3718 and then Is_Library_Level_Entity (Def_Id)
3719 then
3720 declare
3721 Prag : Node_Id;
3722 begin
3723 Prag :=
3724 Make_Linker_Section_Pragma
3725 (Def_Id, Sloc (N), ".persistent.bss");
3726 Insert_After (N, Prag);
3727 Analyze (Prag);
3728 end;
3729 end if;
3731 -- If access type, then we know it is null if not initialized
3733 if Is_Access_Type (Typ) then
3734 Set_Is_Known_Null (Def_Id);
3735 end if;
3737 -- Explicit initialization present
3739 else
3740 -- Obtain actual expression from qualified expression
3742 if Nkind (Expr) = N_Qualified_Expression then
3743 Expr_Q := Expression (Expr);
3744 else
3745 Expr_Q := Expr;
3746 end if;
3748 -- When we have the appropriate type of aggregate in the expression
3749 -- (it has been determined during analysis of the aggregate by
3750 -- setting the delay flag), let's perform in place assignment and
3751 -- thus avoid creating a temporary.
3753 if Is_Delayed_Aggregate (Expr_Q) then
3754 Convert_Aggr_In_Object_Decl (N);
3756 else
3757 -- Ada 2005 (AI-318-02): If the initialization expression is a
3758 -- call to a build-in-place function, then access to the declared
3759 -- object must be passed to the function. Currently we limit such
3760 -- functions to those with constrained limited result subtypes,
3761 -- but eventually we plan to expand the allowed forms of funtions
3762 -- that are treated as build-in-place.
3764 if Ada_Version >= Ada_05
3765 and then Is_Build_In_Place_Function_Call (Expr_Q)
3766 then
3767 Make_Build_In_Place_Call_In_Object_Declaration (N, Expr_Q);
3768 end if;
3770 -- In most cases, we must check that the initial value meets any
3771 -- constraint imposed by the declared type. However, there is one
3772 -- very important exception to this rule. If the entity has an
3773 -- unconstrained nominal subtype, then it acquired its constraints
3774 -- from the expression in the first place, and not only does this
3775 -- mean that the constraint check is not needed, but an attempt to
3776 -- perform the constraint check can cause order order of
3777 -- elaboration problems.
3779 if not Is_Constr_Subt_For_U_Nominal (Typ) then
3781 -- If this is an allocator for an aggregate that has been
3782 -- allocated in place, delay checks until assignments are
3783 -- made, because the discriminants are not initialized.
3785 if Nkind (Expr) = N_Allocator
3786 and then No_Initialization (Expr)
3787 then
3788 null;
3789 else
3790 Apply_Constraint_Check (Expr, Typ);
3791 end if;
3792 end if;
3794 -- If the type is controlled we attach the object to the final
3795 -- list and adjust the target after the copy. This
3796 -- ??? incomplete sentence
3798 -- Ada 2005 (AI-251): Do not register in the final list objects
3799 -- containing class-wide interfaces; otherwise we erroneously
3800 -- register the tag of the interface in the final list. Example:
3802 -- Obj1 : T; -- Controlled object that implements Iface
3803 -- Obj2 : Iface'Class := Iface'Class (Obj1);
3805 -- Obj1 is registered in the final list; Obj2 is not registered.
3807 if Controlled_Type (Typ)
3808 and then not (Is_Interface (Typ)
3809 and then Is_Class_Wide_Type (Typ))
3810 then
3811 declare
3812 Flist : Node_Id;
3813 F : Entity_Id;
3815 begin
3816 -- Attach the result to a dummy final list which will never
3817 -- be finalized if Delay_Finalize_Attachis set. It is
3818 -- important to attach to a dummy final list rather than not
3819 -- attaching at all in order to reset the pointers coming
3820 -- from the initial value. Equivalent code exists in the
3821 -- sec-stack case in Exp_Ch4.Expand_N_Allocator.
3823 if Delay_Finalize_Attach (N) then
3824 F :=
3825 Make_Defining_Identifier (Loc, New_Internal_Name ('F'));
3826 Insert_Action (N,
3827 Make_Object_Declaration (Loc,
3828 Defining_Identifier => F,
3829 Object_Definition =>
3830 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
3832 Flist := New_Reference_To (F, Loc);
3834 else
3835 Flist := Find_Final_List (Def_Id);
3836 end if;
3838 -- Adjustment is only needed when the controlled type is not
3839 -- limited.
3841 if not Is_Limited_Type (Typ) then
3842 Insert_Actions_After (N,
3843 Make_Adjust_Call (
3844 Ref => New_Reference_To (Def_Id, Loc),
3845 Typ => Base_Type (Typ),
3846 Flist_Ref => Flist,
3847 With_Attach => Make_Integer_Literal (Loc, 1)));
3848 end if;
3849 end;
3850 end if;
3852 -- For tagged types, when an init value is given, the tag has to
3853 -- be re-initialized separately in order to avoid the propagation
3854 -- of a wrong tag coming from a view conversion unless the type
3855 -- is class wide (in this case the tag comes from the init value).
3856 -- Suppress the tag assignment when Java_VM because JVM tags are
3857 -- represented implicitly in objects. Ditto for types that are
3858 -- CPP_CLASS, and for initializations that are aggregates, because
3859 -- they have to have the right tag.
3861 if Is_Tagged_Type (Typ)
3862 and then not Is_Class_Wide_Type (Typ)
3863 and then not Is_CPP_Class (Typ)
3864 and then not Java_VM
3865 and then Nkind (Expr) /= N_Aggregate
3866 then
3867 -- The re-assignment of the tag has to be done even if the
3868 -- object is a constant.
3870 New_Ref :=
3871 Make_Selected_Component (Loc,
3872 Prefix => New_Reference_To (Def_Id, Loc),
3873 Selector_Name =>
3874 New_Reference_To (First_Tag_Component (Typ), Loc));
3876 Set_Assignment_OK (New_Ref);
3878 Insert_After (N,
3879 Make_Assignment_Statement (Loc,
3880 Name => New_Ref,
3881 Expression =>
3882 Unchecked_Convert_To (RTE (RE_Tag),
3883 New_Reference_To
3884 (Node
3885 (First_Elmt
3886 (Access_Disp_Table (Base_Type (Typ)))),
3887 Loc))));
3889 -- For discrete types, set the Is_Known_Valid flag if the
3890 -- initializing value is known to be valid.
3892 elsif Is_Discrete_Type (Typ) and then Expr_Known_Valid (Expr) then
3893 Set_Is_Known_Valid (Def_Id);
3895 elsif Is_Access_Type (Typ) then
3897 -- For access types set the Is_Known_Non_Null flag if the
3898 -- initializing value is known to be non-null. We can also set
3899 -- Can_Never_Be_Null if this is a constant.
3901 if Known_Non_Null (Expr) then
3902 Set_Is_Known_Non_Null (Def_Id, True);
3904 if Constant_Present (N) then
3905 Set_Can_Never_Be_Null (Def_Id);
3906 end if;
3907 end if;
3908 end if;
3910 -- If validity checking on copies, validate initial expression
3912 if Validity_Checks_On
3913 and then Validity_Check_Copies
3914 then
3915 Ensure_Valid (Expr);
3916 Set_Is_Known_Valid (Def_Id);
3917 end if;
3918 end if;
3920 -- Cases where the back end cannot handle the initialization directly
3921 -- In such cases, we expand an assignment that will be appropriately
3922 -- handled by Expand_N_Assignment_Statement.
3924 -- The exclusion of the unconstrained case is wrong, but for now it
3925 -- is too much trouble ???
3927 if (Is_Possibly_Unaligned_Slice (Expr)
3928 or else (Is_Possibly_Unaligned_Object (Expr)
3929 and then not Represented_As_Scalar (Etype (Expr))))
3931 -- The exclusion of the unconstrained case is wrong, but for now
3932 -- it is too much trouble ???
3934 and then not (Is_Array_Type (Etype (Expr))
3935 and then not Is_Constrained (Etype (Expr)))
3936 then
3937 declare
3938 Stat : constant Node_Id :=
3939 Make_Assignment_Statement (Loc,
3940 Name => New_Reference_To (Def_Id, Loc),
3941 Expression => Relocate_Node (Expr));
3942 begin
3943 Set_Expression (N, Empty);
3944 Set_No_Initialization (N);
3945 Set_Assignment_OK (Name (Stat));
3946 Set_No_Ctrl_Actions (Stat);
3947 Insert_After (N, Stat);
3948 Analyze (Stat);
3949 end;
3950 end if;
3951 end if;
3953 -- For array type, check for size too large
3954 -- We really need this for record types too???
3956 if Is_Array_Type (Typ) then
3957 Apply_Array_Size_Check (N, Typ);
3958 end if;
3960 exception
3961 when RE_Not_Available =>
3962 return;
3963 end Expand_N_Object_Declaration;
3965 ---------------------------------
3966 -- Expand_N_Subtype_Indication --
3967 ---------------------------------
3969 -- Add a check on the range of the subtype. The static case is partially
3970 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
3971 -- to check here for the static case in order to avoid generating
3972 -- extraneous expanded code. Also deal with validity checking.
3974 procedure Expand_N_Subtype_Indication (N : Node_Id) is
3975 Ran : constant Node_Id := Range_Expression (Constraint (N));
3976 Typ : constant Entity_Id := Entity (Subtype_Mark (N));
3978 begin
3979 if Nkind (Constraint (N)) = N_Range_Constraint then
3980 Validity_Check_Range (Range_Expression (Constraint (N)));
3981 end if;
3983 if Nkind (Parent (N)) = N_Constrained_Array_Definition
3984 or else
3985 Nkind (Parent (N)) = N_Slice
3986 then
3987 Resolve (Ran, Typ);
3988 Apply_Range_Check (Ran, Typ);
3989 end if;
3990 end Expand_N_Subtype_Indication;
3992 ---------------------------
3993 -- Expand_N_Variant_Part --
3994 ---------------------------
3996 -- If the last variant does not contain the Others choice, replace it with
3997 -- an N_Others_Choice node since Gigi always wants an Others. Note that we
3998 -- do not bother to call Analyze on the modified variant part, since it's
3999 -- only effect would be to compute the contents of the
4000 -- Others_Discrete_Choices node laboriously, and of course we already know
4001 -- the list of choices that corresponds to the others choice (it's the
4002 -- list we are replacing!)
4004 procedure Expand_N_Variant_Part (N : Node_Id) is
4005 Last_Var : constant Node_Id := Last_Non_Pragma (Variants (N));
4006 Others_Node : Node_Id;
4007 begin
4008 if Nkind (First (Discrete_Choices (Last_Var))) /= N_Others_Choice then
4009 Others_Node := Make_Others_Choice (Sloc (Last_Var));
4010 Set_Others_Discrete_Choices
4011 (Others_Node, Discrete_Choices (Last_Var));
4012 Set_Discrete_Choices (Last_Var, New_List (Others_Node));
4013 end if;
4014 end Expand_N_Variant_Part;
4016 ---------------------------------
4017 -- Expand_Previous_Access_Type --
4018 ---------------------------------
4020 procedure Expand_Previous_Access_Type (Def_Id : Entity_Id) is
4021 T : Entity_Id := First_Entity (Current_Scope);
4023 begin
4024 -- Find all access types declared in the current scope, whose
4025 -- designated type is Def_Id.
4027 while Present (T) loop
4028 if Is_Access_Type (T)
4029 and then Designated_Type (T) = Def_Id
4030 then
4031 Build_Master_Entity (Def_Id);
4032 Build_Master_Renaming (Parent (Def_Id), T);
4033 end if;
4035 Next_Entity (T);
4036 end loop;
4037 end Expand_Previous_Access_Type;
4039 ------------------------------
4040 -- Expand_Record_Controller --
4041 ------------------------------
4043 procedure Expand_Record_Controller (T : Entity_Id) is
4044 Def : Node_Id := Type_Definition (Parent (T));
4045 Comp_List : Node_Id;
4046 Comp_Decl : Node_Id;
4047 Loc : Source_Ptr;
4048 First_Comp : Node_Id;
4049 Controller_Type : Entity_Id;
4050 Ent : Entity_Id;
4052 begin
4053 if Nkind (Def) = N_Derived_Type_Definition then
4054 Def := Record_Extension_Part (Def);
4055 end if;
4057 if Null_Present (Def) then
4058 Set_Component_List (Def,
4059 Make_Component_List (Sloc (Def),
4060 Component_Items => Empty_List,
4061 Variant_Part => Empty,
4062 Null_Present => True));
4063 end if;
4065 Comp_List := Component_List (Def);
4067 if Null_Present (Comp_List)
4068 or else Is_Empty_List (Component_Items (Comp_List))
4069 then
4070 Loc := Sloc (Comp_List);
4071 else
4072 Loc := Sloc (First (Component_Items (Comp_List)));
4073 end if;
4075 if Is_Inherently_Limited_Type (T) then
4076 Controller_Type := RTE (RE_Limited_Record_Controller);
4077 else
4078 Controller_Type := RTE (RE_Record_Controller);
4079 end if;
4081 Ent := Make_Defining_Identifier (Loc, Name_uController);
4083 Comp_Decl :=
4084 Make_Component_Declaration (Loc,
4085 Defining_Identifier => Ent,
4086 Component_Definition =>
4087 Make_Component_Definition (Loc,
4088 Aliased_Present => False,
4089 Subtype_Indication => New_Reference_To (Controller_Type, Loc)));
4091 if Null_Present (Comp_List)
4092 or else Is_Empty_List (Component_Items (Comp_List))
4093 then
4094 Set_Component_Items (Comp_List, New_List (Comp_Decl));
4095 Set_Null_Present (Comp_List, False);
4097 else
4098 -- The controller cannot be placed before the _Parent field since
4099 -- gigi lays out field in order and _parent must be first to
4100 -- preserve the polymorphism of tagged types.
4102 First_Comp := First (Component_Items (Comp_List));
4104 if not Is_Tagged_Type (T) then
4105 Insert_Before (First_Comp, Comp_Decl);
4107 -- if T is a tagged type, place controller declaration after
4108 -- parent field and after eventual tags of implemented
4109 -- interfaces, if present.
4111 else
4112 while Present (First_Comp)
4113 and then
4114 (Chars (Defining_Identifier (First_Comp)) = Name_uParent
4115 or else Is_Tag (Defining_Identifier (First_Comp)))
4116 loop
4117 Next (First_Comp);
4118 end loop;
4120 -- An empty tagged extension might consist only of the parent
4121 -- component. Otherwise insert the controller before the first
4122 -- component that is neither parent nor tag.
4124 if Present (First_Comp) then
4125 Insert_Before (First_Comp, Comp_Decl);
4126 else
4127 Append (Comp_Decl, Component_Items (Comp_List));
4128 end if;
4129 end if;
4130 end if;
4132 New_Scope (T);
4133 Analyze (Comp_Decl);
4134 Set_Ekind (Ent, E_Component);
4135 Init_Component_Location (Ent);
4137 -- Move the _controller entity ahead in the list of internal entities
4138 -- of the enclosing record so that it is selected instead of a
4139 -- potentially inherited one.
4141 declare
4142 E : constant Entity_Id := Last_Entity (T);
4143 Comp : Entity_Id;
4145 begin
4146 pragma Assert (Chars (E) = Name_uController);
4148 Set_Next_Entity (E, First_Entity (T));
4149 Set_First_Entity (T, E);
4151 Comp := Next_Entity (E);
4152 while Next_Entity (Comp) /= E loop
4153 Next_Entity (Comp);
4154 end loop;
4156 Set_Next_Entity (Comp, Empty);
4157 Set_Last_Entity (T, Comp);
4158 end;
4160 End_Scope;
4162 exception
4163 when RE_Not_Available =>
4164 return;
4165 end Expand_Record_Controller;
4167 ------------------------
4168 -- Expand_Tagged_Root --
4169 ------------------------
4171 procedure Expand_Tagged_Root (T : Entity_Id) is
4172 Def : constant Node_Id := Type_Definition (Parent (T));
4173 Comp_List : Node_Id;
4174 Comp_Decl : Node_Id;
4175 Sloc_N : Source_Ptr;
4177 begin
4178 if Null_Present (Def) then
4179 Set_Component_List (Def,
4180 Make_Component_List (Sloc (Def),
4181 Component_Items => Empty_List,
4182 Variant_Part => Empty,
4183 Null_Present => True));
4184 end if;
4186 Comp_List := Component_List (Def);
4188 if Null_Present (Comp_List)
4189 or else Is_Empty_List (Component_Items (Comp_List))
4190 then
4191 Sloc_N := Sloc (Comp_List);
4192 else
4193 Sloc_N := Sloc (First (Component_Items (Comp_List)));
4194 end if;
4196 Comp_Decl :=
4197 Make_Component_Declaration (Sloc_N,
4198 Defining_Identifier => First_Tag_Component (T),
4199 Component_Definition =>
4200 Make_Component_Definition (Sloc_N,
4201 Aliased_Present => False,
4202 Subtype_Indication => New_Reference_To (RTE (RE_Tag), Sloc_N)));
4204 if Null_Present (Comp_List)
4205 or else Is_Empty_List (Component_Items (Comp_List))
4206 then
4207 Set_Component_Items (Comp_List, New_List (Comp_Decl));
4208 Set_Null_Present (Comp_List, False);
4210 else
4211 Insert_Before (First (Component_Items (Comp_List)), Comp_Decl);
4212 end if;
4214 -- We don't Analyze the whole expansion because the tag component has
4215 -- already been analyzed previously. Here we just insure that the tree
4216 -- is coherent with the semantic decoration
4218 Find_Type (Subtype_Indication (Component_Definition (Comp_Decl)));
4220 exception
4221 when RE_Not_Available =>
4222 return;
4223 end Expand_Tagged_Root;
4225 ----------------------
4226 -- Clean_Task_Names --
4227 ----------------------
4229 procedure Clean_Task_Names
4230 (Typ : Entity_Id;
4231 Proc_Id : Entity_Id)
4233 begin
4234 if Has_Task (Typ)
4235 and then not Restriction_Active (No_Implicit_Heap_Allocations)
4236 and then not Global_Discard_Names
4237 then
4238 Set_Uses_Sec_Stack (Proc_Id);
4239 end if;
4240 end Clean_Task_Names;
4242 -----------------------
4243 -- Freeze_Array_Type --
4244 -----------------------
4246 procedure Freeze_Array_Type (N : Node_Id) is
4247 Typ : constant Entity_Id := Entity (N);
4248 Base : constant Entity_Id := Base_Type (Typ);
4250 begin
4251 if not Is_Bit_Packed_Array (Typ) then
4253 -- If the component contains tasks, so does the array type. This may
4254 -- not be indicated in the array type because the component may have
4255 -- been a private type at the point of definition. Same if component
4256 -- type is controlled.
4258 Set_Has_Task (Base, Has_Task (Component_Type (Typ)));
4259 Set_Has_Controlled_Component (Base,
4260 Has_Controlled_Component (Component_Type (Typ))
4261 or else Is_Controlled (Component_Type (Typ)));
4263 if No (Init_Proc (Base)) then
4265 -- If this is an anonymous array created for a declaration with
4266 -- an initial value, its init_proc will never be called. The
4267 -- initial value itself may have been expanded into assign-
4268 -- ments, in which case the object declaration is carries the
4269 -- No_Initialization flag.
4271 if Is_Itype (Base)
4272 and then Nkind (Associated_Node_For_Itype (Base)) =
4273 N_Object_Declaration
4274 and then (Present (Expression (Associated_Node_For_Itype (Base)))
4275 or else
4276 No_Initialization (Associated_Node_For_Itype (Base)))
4277 then
4278 null;
4280 -- We do not need an init proc for string or wide [wide] string,
4281 -- since the only time these need initialization in normalize or
4282 -- initialize scalars mode, and these types are treated specially
4283 -- and do not need initialization procedures.
4285 elsif Root_Type (Base) = Standard_String
4286 or else Root_Type (Base) = Standard_Wide_String
4287 or else Root_Type (Base) = Standard_Wide_Wide_String
4288 then
4289 null;
4291 -- Otherwise we have to build an init proc for the subtype
4293 else
4294 Build_Array_Init_Proc (Base, N);
4295 end if;
4296 end if;
4298 if Typ = Base and then Has_Controlled_Component (Base) then
4299 Build_Controlling_Procs (Base);
4301 if not Is_Limited_Type (Component_Type (Typ))
4302 and then Number_Dimensions (Typ) = 1
4303 then
4304 Build_Slice_Assignment (Typ);
4305 end if;
4306 end if;
4308 -- For packed case, there is a default initialization, except if the
4309 -- component type is itself a packed structure with an initialization
4310 -- procedure.
4312 elsif Present (Init_Proc (Component_Type (Base)))
4313 and then No (Base_Init_Proc (Base))
4314 then
4315 Build_Array_Init_Proc (Base, N);
4316 end if;
4317 end Freeze_Array_Type;
4319 -----------------------------
4320 -- Freeze_Enumeration_Type --
4321 -----------------------------
4323 procedure Freeze_Enumeration_Type (N : Node_Id) is
4324 Typ : constant Entity_Id := Entity (N);
4325 Loc : constant Source_Ptr := Sloc (Typ);
4326 Ent : Entity_Id;
4327 Lst : List_Id;
4328 Num : Nat;
4329 Arr : Entity_Id;
4330 Fent : Entity_Id;
4331 Ityp : Entity_Id;
4332 Is_Contiguous : Boolean;
4333 Pos_Expr : Node_Id;
4334 Last_Repval : Uint;
4336 Func : Entity_Id;
4337 pragma Warnings (Off, Func);
4339 begin
4340 -- Various optimization are possible if the given representation is
4341 -- contiguous.
4343 Is_Contiguous := True;
4344 Ent := First_Literal (Typ);
4345 Last_Repval := Enumeration_Rep (Ent);
4346 Next_Literal (Ent);
4348 while Present (Ent) loop
4349 if Enumeration_Rep (Ent) - Last_Repval /= 1 then
4350 Is_Contiguous := False;
4351 exit;
4352 else
4353 Last_Repval := Enumeration_Rep (Ent);
4354 end if;
4356 Next_Literal (Ent);
4357 end loop;
4359 if Is_Contiguous then
4360 Set_Has_Contiguous_Rep (Typ);
4361 Ent := First_Literal (Typ);
4362 Num := 1;
4363 Lst := New_List (New_Reference_To (Ent, Sloc (Ent)));
4365 else
4366 -- Build list of literal references
4368 Lst := New_List;
4369 Num := 0;
4371 Ent := First_Literal (Typ);
4372 while Present (Ent) loop
4373 Append_To (Lst, New_Reference_To (Ent, Sloc (Ent)));
4374 Num := Num + 1;
4375 Next_Literal (Ent);
4376 end loop;
4377 end if;
4379 -- Now build an array declaration
4381 -- typA : array (Natural range 0 .. num - 1) of ctype :=
4382 -- (v, v, v, v, v, ....)
4384 -- where ctype is the corresponding integer type. If the representation
4385 -- is contiguous, we only keep the first literal, which provides the
4386 -- offset for Pos_To_Rep computations.
4388 Arr :=
4389 Make_Defining_Identifier (Loc,
4390 Chars => New_External_Name (Chars (Typ), 'A'));
4392 Append_Freeze_Action (Typ,
4393 Make_Object_Declaration (Loc,
4394 Defining_Identifier => Arr,
4395 Constant_Present => True,
4397 Object_Definition =>
4398 Make_Constrained_Array_Definition (Loc,
4399 Discrete_Subtype_Definitions => New_List (
4400 Make_Subtype_Indication (Loc,
4401 Subtype_Mark => New_Reference_To (Standard_Natural, Loc),
4402 Constraint =>
4403 Make_Range_Constraint (Loc,
4404 Range_Expression =>
4405 Make_Range (Loc,
4406 Low_Bound =>
4407 Make_Integer_Literal (Loc, 0),
4408 High_Bound =>
4409 Make_Integer_Literal (Loc, Num - 1))))),
4411 Component_Definition =>
4412 Make_Component_Definition (Loc,
4413 Aliased_Present => False,
4414 Subtype_Indication => New_Reference_To (Typ, Loc))),
4416 Expression =>
4417 Make_Aggregate (Loc,
4418 Expressions => Lst)));
4420 Set_Enum_Pos_To_Rep (Typ, Arr);
4422 -- Now we build the function that converts representation values to
4423 -- position values. This function has the form:
4425 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
4426 -- begin
4427 -- case ityp!(A) is
4428 -- when enum-lit'Enum_Rep => return posval;
4429 -- when enum-lit'Enum_Rep => return posval;
4430 -- ...
4431 -- when others =>
4432 -- [raise Constraint_Error when F "invalid data"]
4433 -- return -1;
4434 -- end case;
4435 -- end;
4437 -- Note: the F parameter determines whether the others case (no valid
4438 -- representation) raises Constraint_Error or returns a unique value
4439 -- of minus one. The latter case is used, e.g. in 'Valid code.
4441 -- Note: the reason we use Enum_Rep values in the case here is to avoid
4442 -- the code generator making inappropriate assumptions about the range
4443 -- of the values in the case where the value is invalid. ityp is a
4444 -- signed or unsigned integer type of appropriate width.
4446 -- Note: if exceptions are not supported, then we suppress the raise
4447 -- and return -1 unconditionally (this is an erroneous program in any
4448 -- case and there is no obligation to raise Constraint_Error here!) We
4449 -- also do this if pragma Restrictions (No_Exceptions) is active.
4451 -- Representations are signed
4453 if Enumeration_Rep (First_Literal (Typ)) < 0 then
4455 -- The underlying type is signed. Reset the Is_Unsigned_Type
4456 -- explicitly, because it might have been inherited from
4457 -- parent type.
4459 Set_Is_Unsigned_Type (Typ, False);
4461 if Esize (Typ) <= Standard_Integer_Size then
4462 Ityp := Standard_Integer;
4463 else
4464 Ityp := Universal_Integer;
4465 end if;
4467 -- Representations are unsigned
4469 else
4470 if Esize (Typ) <= Standard_Integer_Size then
4471 Ityp := RTE (RE_Unsigned);
4472 else
4473 Ityp := RTE (RE_Long_Long_Unsigned);
4474 end if;
4475 end if;
4477 -- The body of the function is a case statement. First collect case
4478 -- alternatives, or optimize the contiguous case.
4480 Lst := New_List;
4482 -- If representation is contiguous, Pos is computed by subtracting
4483 -- the representation of the first literal.
4485 if Is_Contiguous then
4486 Ent := First_Literal (Typ);
4488 if Enumeration_Rep (Ent) = Last_Repval then
4490 -- Another special case: for a single literal, Pos is zero
4492 Pos_Expr := Make_Integer_Literal (Loc, Uint_0);
4494 else
4495 Pos_Expr :=
4496 Convert_To (Standard_Integer,
4497 Make_Op_Subtract (Loc,
4498 Left_Opnd =>
4499 Unchecked_Convert_To (Ityp,
4500 Make_Identifier (Loc, Name_uA)),
4501 Right_Opnd =>
4502 Make_Integer_Literal (Loc,
4503 Intval =>
4504 Enumeration_Rep (First_Literal (Typ)))));
4505 end if;
4507 Append_To (Lst,
4508 Make_Case_Statement_Alternative (Loc,
4509 Discrete_Choices => New_List (
4510 Make_Range (Sloc (Enumeration_Rep_Expr (Ent)),
4511 Low_Bound =>
4512 Make_Integer_Literal (Loc,
4513 Intval => Enumeration_Rep (Ent)),
4514 High_Bound =>
4515 Make_Integer_Literal (Loc, Intval => Last_Repval))),
4517 Statements => New_List (
4518 Make_Return_Statement (Loc,
4519 Expression => Pos_Expr))));
4521 else
4522 Ent := First_Literal (Typ);
4524 while Present (Ent) loop
4525 Append_To (Lst,
4526 Make_Case_Statement_Alternative (Loc,
4527 Discrete_Choices => New_List (
4528 Make_Integer_Literal (Sloc (Enumeration_Rep_Expr (Ent)),
4529 Intval => Enumeration_Rep (Ent))),
4531 Statements => New_List (
4532 Make_Return_Statement (Loc,
4533 Expression =>
4534 Make_Integer_Literal (Loc,
4535 Intval => Enumeration_Pos (Ent))))));
4537 Next_Literal (Ent);
4538 end loop;
4539 end if;
4541 -- In normal mode, add the others clause with the test
4543 if not Restriction_Active (No_Exception_Handlers) then
4544 Append_To (Lst,
4545 Make_Case_Statement_Alternative (Loc,
4546 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
4547 Statements => New_List (
4548 Make_Raise_Constraint_Error (Loc,
4549 Condition => Make_Identifier (Loc, Name_uF),
4550 Reason => CE_Invalid_Data),
4551 Make_Return_Statement (Loc,
4552 Expression =>
4553 Make_Integer_Literal (Loc, -1)))));
4555 -- If Restriction (No_Exceptions_Handlers) is active then we always
4556 -- return -1 (since we cannot usefully raise Constraint_Error in
4557 -- this case). See description above for further details.
4559 else
4560 Append_To (Lst,
4561 Make_Case_Statement_Alternative (Loc,
4562 Discrete_Choices => New_List (Make_Others_Choice (Loc)),
4563 Statements => New_List (
4564 Make_Return_Statement (Loc,
4565 Expression =>
4566 Make_Integer_Literal (Loc, -1)))));
4567 end if;
4569 -- Now we can build the function body
4571 Fent :=
4572 Make_Defining_Identifier (Loc, Make_TSS_Name (Typ, TSS_Rep_To_Pos));
4574 Func :=
4575 Make_Subprogram_Body (Loc,
4576 Specification =>
4577 Make_Function_Specification (Loc,
4578 Defining_Unit_Name => Fent,
4579 Parameter_Specifications => New_List (
4580 Make_Parameter_Specification (Loc,
4581 Defining_Identifier =>
4582 Make_Defining_Identifier (Loc, Name_uA),
4583 Parameter_Type => New_Reference_To (Typ, Loc)),
4584 Make_Parameter_Specification (Loc,
4585 Defining_Identifier =>
4586 Make_Defining_Identifier (Loc, Name_uF),
4587 Parameter_Type => New_Reference_To (Standard_Boolean, Loc))),
4589 Result_Definition => New_Reference_To (Standard_Integer, Loc)),
4591 Declarations => Empty_List,
4593 Handled_Statement_Sequence =>
4594 Make_Handled_Sequence_Of_Statements (Loc,
4595 Statements => New_List (
4596 Make_Case_Statement (Loc,
4597 Expression =>
4598 Unchecked_Convert_To (Ityp,
4599 Make_Identifier (Loc, Name_uA)),
4600 Alternatives => Lst))));
4602 Set_TSS (Typ, Fent);
4603 Set_Is_Pure (Fent);
4605 if not Debug_Generated_Code then
4606 Set_Debug_Info_Off (Fent);
4607 end if;
4609 exception
4610 when RE_Not_Available =>
4611 return;
4612 end Freeze_Enumeration_Type;
4614 ------------------------
4615 -- Freeze_Record_Type --
4616 ------------------------
4618 procedure Freeze_Record_Type (N : Node_Id) is
4619 Comp : Entity_Id;
4620 Def_Id : constant Node_Id := Entity (N);
4621 Predef_List : List_Id;
4622 Type_Decl : constant Node_Id := Parent (Def_Id);
4624 Renamed_Eq : Node_Id := Empty;
4625 -- Could use some comments ???
4627 Wrapper_Decl_List : List_Id := No_List;
4628 Wrapper_Body_List : List_Id := No_List;
4629 Null_Proc_Decl_List : List_Id := No_List;
4631 begin
4632 -- Build discriminant checking functions if not a derived type (for
4633 -- derived types that are not tagged types, we always use the
4634 -- discriminant checking functions of the parent type). However, for
4635 -- untagged types the derivation may have taken place before the
4636 -- parent was frozen, so we copy explicitly the discriminant checking
4637 -- functions from the parent into the components of the derived type.
4639 if not Is_Derived_Type (Def_Id)
4640 or else Has_New_Non_Standard_Rep (Def_Id)
4641 or else Is_Tagged_Type (Def_Id)
4642 then
4643 Build_Discr_Checking_Funcs (Type_Decl);
4645 elsif Is_Derived_Type (Def_Id)
4646 and then not Is_Tagged_Type (Def_Id)
4648 -- If we have a derived Unchecked_Union, we do not inherit the
4649 -- discriminant checking functions from the parent type since the
4650 -- discriminants are non existent.
4652 and then not Is_Unchecked_Union (Def_Id)
4653 and then Has_Discriminants (Def_Id)
4654 then
4655 declare
4656 Old_Comp : Entity_Id;
4658 begin
4659 Old_Comp :=
4660 First_Component (Base_Type (Underlying_Type (Etype (Def_Id))));
4661 Comp := First_Component (Def_Id);
4662 while Present (Comp) loop
4663 if Ekind (Comp) = E_Component
4664 and then Chars (Comp) = Chars (Old_Comp)
4665 then
4666 Set_Discriminant_Checking_Func (Comp,
4667 Discriminant_Checking_Func (Old_Comp));
4668 end if;
4670 Next_Component (Old_Comp);
4671 Next_Component (Comp);
4672 end loop;
4673 end;
4674 end if;
4676 if Is_Derived_Type (Def_Id)
4677 and then Is_Limited_Type (Def_Id)
4678 and then Is_Tagged_Type (Def_Id)
4679 then
4680 Check_Stream_Attributes (Def_Id);
4681 end if;
4683 -- Update task and controlled component flags, because some of the
4684 -- component types may have been private at the point of the record
4685 -- declaration.
4687 Comp := First_Component (Def_Id);
4689 while Present (Comp) loop
4690 if Has_Task (Etype (Comp)) then
4691 Set_Has_Task (Def_Id);
4693 elsif Has_Controlled_Component (Etype (Comp))
4694 or else (Chars (Comp) /= Name_uParent
4695 and then Is_Controlled (Etype (Comp)))
4696 then
4697 Set_Has_Controlled_Component (Def_Id);
4698 end if;
4700 Next_Component (Comp);
4701 end loop;
4703 -- Creation of the Dispatch Table. Note that a Dispatch Table is
4704 -- created for regular tagged types as well as for Ada types deriving
4705 -- from a C++ Class, but not for tagged types directly corresponding to
4706 -- the C++ classes. In the later case we assume that the Vtable is
4707 -- created in the C++ side and we just use it.
4709 if Is_Tagged_Type (Def_Id) then
4711 if Is_CPP_Class (Def_Id) then
4713 -- Because of the new C++ ABI compatibility we now allow the
4714 -- programer to use the Ada tag (and in this case we must do
4715 -- the normal expansion of the tag)
4717 if Etype (First_Component (Def_Id)) = RTE (RE_Tag)
4718 and then Underlying_Type (Etype (Def_Id)) = Def_Id
4719 then
4720 Expand_Tagged_Root (Def_Id);
4721 end if;
4723 Set_All_DT_Position (Def_Id);
4724 Set_Default_Constructor (Def_Id);
4726 else
4727 -- Usually inherited primitives are not delayed but the first Ada
4728 -- extension of a CPP_Class is an exception since the address of
4729 -- the inherited subprogram has to be inserted in the new Ada
4730 -- Dispatch Table and this is a freezing action (usually the
4731 -- inherited primitive address is inserted in the DT by
4732 -- Inherit_DT)
4734 -- Similarly, if this is an inherited operation whose parent is
4735 -- not frozen yet, it is not in the DT of the parent, and we
4736 -- generate an explicit freeze node for the inherited operation,
4737 -- so that it is properly inserted in the DT of the current type.
4739 declare
4740 Elmt : Elmt_Id := First_Elmt (Primitive_Operations (Def_Id));
4741 Subp : Entity_Id;
4743 begin
4744 while Present (Elmt) loop
4745 Subp := Node (Elmt);
4747 if Present (Alias (Subp)) then
4748 if Is_CPP_Class (Etype (Def_Id)) then
4749 Set_Has_Delayed_Freeze (Subp);
4751 elsif Has_Delayed_Freeze (Alias (Subp))
4752 and then not Is_Frozen (Alias (Subp))
4753 then
4754 Set_Is_Frozen (Subp, False);
4755 Set_Has_Delayed_Freeze (Subp);
4756 end if;
4757 end if;
4759 Next_Elmt (Elmt);
4760 end loop;
4761 end;
4763 if Underlying_Type (Etype (Def_Id)) = Def_Id then
4764 Expand_Tagged_Root (Def_Id);
4765 end if;
4767 -- Unfreeze momentarily the type to add the predefined primitives
4768 -- operations. The reason we unfreeze is so that these predefined
4769 -- operations will indeed end up as primitive operations (which
4770 -- must be before the freeze point).
4772 Set_Is_Frozen (Def_Id, False);
4773 Make_Predefined_Primitive_Specs
4774 (Def_Id, Predef_List, Renamed_Eq);
4775 Insert_List_Before_And_Analyze (N, Predef_List);
4777 -- Ada 2005 (AI-391): For a nonabstract null extension, create
4778 -- wrapper functions for each nonoverridden inherited function
4779 -- with a controlling result of the type. The wrapper for such
4780 -- a function returns an extension aggregate that invokes the
4781 -- the parent function.
4783 if Ada_Version >= Ada_05
4784 and then not Is_Abstract (Def_Id)
4785 and then Is_Null_Extension (Def_Id)
4786 then
4787 Make_Controlling_Function_Wrappers
4788 (Def_Id, Wrapper_Decl_List, Wrapper_Body_List);
4789 Insert_List_Before_And_Analyze (N, Wrapper_Decl_List);
4790 end if;
4792 -- Ada 2005 (AI-251): For a nonabstract type extension, build
4793 -- null procedure declarations for each set of homographic null
4794 -- procedures that are inherited from interface types but not
4795 -- overridden. This is done to ensure that the dispatch table
4796 -- entry associated with such null primitives are properly filled.
4798 if Ada_Version >= Ada_05
4799 and then Etype (Def_Id) /= Def_Id
4800 and then not Is_Abstract (Def_Id)
4801 then
4802 Make_Null_Procedure_Specs (Def_Id, Null_Proc_Decl_List);
4803 Insert_Actions (N, Null_Proc_Decl_List);
4804 end if;
4806 Set_Is_Frozen (Def_Id, True);
4807 Set_All_DT_Position (Def_Id);
4809 -- Add the controlled component before the freezing actions
4810 -- referenced in those actions.
4812 if Has_New_Controlled_Component (Def_Id) then
4813 Expand_Record_Controller (Def_Id);
4814 end if;
4816 -- Suppress creation of a dispatch table when Java_VM because the
4817 -- dispatching mechanism is handled internally by the JVM.
4819 if not Java_VM then
4821 -- Ada 2005 (AI-251): Build the secondary dispatch tables
4823 declare
4824 ADT : Elist_Id := Access_Disp_Table (Def_Id);
4826 procedure Add_Secondary_Tables (Typ : Entity_Id);
4827 -- Internal subprogram, recursively climb to the ancestors
4829 --------------------------
4830 -- Add_Secondary_Tables --
4831 --------------------------
4833 procedure Add_Secondary_Tables (Typ : Entity_Id) is
4834 E : Entity_Id;
4835 Iface : Elmt_Id;
4836 Result : List_Id;
4837 Suffix_Index : Int;
4839 begin
4840 -- Climb to the ancestor (if any) handling private types
4842 if Present (Full_View (Etype (Typ))) then
4843 if Full_View (Etype (Typ)) /= Typ then
4844 Add_Secondary_Tables (Full_View (Etype (Typ)));
4845 end if;
4847 elsif Etype (Typ) /= Typ then
4848 Add_Secondary_Tables (Etype (Typ));
4849 end if;
4851 if Present (Abstract_Interfaces (Typ))
4852 and then
4853 not Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
4854 then
4855 Iface := First_Elmt (Abstract_Interfaces (Typ));
4856 Suffix_Index := 0;
4858 E := First_Entity (Typ);
4859 while Present (E) loop
4860 if Is_Tag (E) and then Chars (E) /= Name_uTag then
4861 Make_Secondary_DT
4862 (Typ => Def_Id,
4863 Ancestor_Typ => Typ,
4864 Suffix_Index => Suffix_Index,
4865 Iface => Node (Iface),
4866 AI_Tag => E,
4867 Acc_Disp_Tables => ADT,
4868 Result => Result);
4870 Append_Freeze_Actions (Def_Id, Result);
4871 Suffix_Index := Suffix_Index + 1;
4872 Next_Elmt (Iface);
4873 end if;
4875 Next_Entity (E);
4876 end loop;
4877 end if;
4878 end Add_Secondary_Tables;
4880 -- Start of processing to build secondary dispatch tables
4882 begin
4883 -- Handle private types
4885 if Present (Full_View (Def_Id)) then
4886 Add_Secondary_Tables (Full_View (Def_Id));
4887 else
4888 Add_Secondary_Tables (Def_Id);
4889 end if;
4891 Set_Access_Disp_Table (Def_Id, ADT);
4892 Append_Freeze_Actions (Def_Id, Make_DT (Def_Id));
4893 end;
4894 end if;
4896 -- Make sure that the primitives Initialize, Adjust and Finalize
4897 -- are Frozen before other TSS subprograms. We don't want them
4898 -- Frozen inside.
4900 if Is_Controlled (Def_Id) then
4901 if not Is_Limited_Type (Def_Id) then
4902 Append_Freeze_Actions (Def_Id,
4903 Freeze_Entity
4904 (Find_Prim_Op (Def_Id, Name_Adjust), Sloc (Def_Id)));
4905 end if;
4907 Append_Freeze_Actions (Def_Id,
4908 Freeze_Entity
4909 (Find_Prim_Op (Def_Id, Name_Initialize), Sloc (Def_Id)));
4911 Append_Freeze_Actions (Def_Id,
4912 Freeze_Entity
4913 (Find_Prim_Op (Def_Id, Name_Finalize), Sloc (Def_Id)));
4914 end if;
4916 -- Freeze rest of primitive operations
4918 Append_Freeze_Actions
4919 (Def_Id, Predefined_Primitive_Freeze (Def_Id));
4920 Append_Freeze_Actions
4921 (Def_Id, Init_Predefined_Interface_Primitives (Def_Id));
4922 end if;
4924 -- In the non-tagged case, an equality function is provided only for
4925 -- variant records (that are not unchecked unions).
4927 elsif Has_Discriminants (Def_Id)
4928 and then not Is_Limited_Type (Def_Id)
4929 then
4930 declare
4931 Comps : constant Node_Id :=
4932 Component_List (Type_Definition (Type_Decl));
4934 begin
4935 if Present (Comps)
4936 and then Present (Variant_Part (Comps))
4937 then
4938 Build_Variant_Record_Equality (Def_Id);
4939 end if;
4940 end;
4941 end if;
4943 -- Before building the record initialization procedure, if we are
4944 -- dealing with a concurrent record value type, then we must go through
4945 -- the discriminants, exchanging discriminals between the concurrent
4946 -- type and the concurrent record value type. See the section "Handling
4947 -- of Discriminants" in the Einfo spec for details.
4949 if Is_Concurrent_Record_Type (Def_Id)
4950 and then Has_Discriminants (Def_Id)
4951 then
4952 declare
4953 Ctyp : constant Entity_Id :=
4954 Corresponding_Concurrent_Type (Def_Id);
4955 Conc_Discr : Entity_Id;
4956 Rec_Discr : Entity_Id;
4957 Temp : Entity_Id;
4959 begin
4960 Conc_Discr := First_Discriminant (Ctyp);
4961 Rec_Discr := First_Discriminant (Def_Id);
4963 while Present (Conc_Discr) loop
4964 Temp := Discriminal (Conc_Discr);
4965 Set_Discriminal (Conc_Discr, Discriminal (Rec_Discr));
4966 Set_Discriminal (Rec_Discr, Temp);
4968 Set_Discriminal_Link (Discriminal (Conc_Discr), Conc_Discr);
4969 Set_Discriminal_Link (Discriminal (Rec_Discr), Rec_Discr);
4971 Next_Discriminant (Conc_Discr);
4972 Next_Discriminant (Rec_Discr);
4973 end loop;
4974 end;
4975 end if;
4977 if Has_Controlled_Component (Def_Id) then
4978 if No (Controller_Component (Def_Id)) then
4979 Expand_Record_Controller (Def_Id);
4980 end if;
4982 Build_Controlling_Procs (Def_Id);
4983 end if;
4985 Adjust_Discriminants (Def_Id);
4986 Build_Record_Init_Proc (Type_Decl, Def_Id);
4988 -- For tagged type, build bodies of primitive operations. Note that we
4989 -- do this after building the record initialization experiment, since
4990 -- the primitive operations may need the initialization routine
4992 if Is_Tagged_Type (Def_Id) then
4993 Predef_List := Predefined_Primitive_Bodies (Def_Id, Renamed_Eq);
4994 Append_Freeze_Actions (Def_Id, Predef_List);
4996 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
4997 -- inherited functions, then add their bodies to the freeze actions.
4999 if Present (Wrapper_Body_List) then
5000 Append_Freeze_Actions (Def_Id, Wrapper_Body_List);
5001 end if;
5003 -- Populate the two auxiliary tables used for dispatching
5004 -- asynchronous, conditional and timed selects for synchronized
5005 -- types that implement a limited interface.
5007 if Ada_Version >= Ada_05
5008 and then not Restriction_Active (No_Dispatching_Calls)
5009 and then Is_Concurrent_Record_Type (Def_Id)
5010 and then Implements_Interface (
5011 Typ => Def_Id,
5012 Kind => Any_Limited_Interface,
5013 Check_Parent => True)
5014 then
5015 Append_Freeze_Actions (Def_Id,
5016 Make_Select_Specific_Data_Table (Def_Id));
5017 end if;
5018 end if;
5019 end Freeze_Record_Type;
5021 ------------------------------
5022 -- Freeze_Stream_Operations --
5023 ------------------------------
5025 procedure Freeze_Stream_Operations (N : Node_Id; Typ : Entity_Id) is
5026 Names : constant array (1 .. 4) of TSS_Name_Type :=
5027 (TSS_Stream_Input,
5028 TSS_Stream_Output,
5029 TSS_Stream_Read,
5030 TSS_Stream_Write);
5031 Stream_Op : Entity_Id;
5033 begin
5034 -- Primitive operations of tagged types are frozen when the dispatch
5035 -- table is constructed.
5037 if not Comes_From_Source (Typ)
5038 or else Is_Tagged_Type (Typ)
5039 then
5040 return;
5041 end if;
5043 for J in Names'Range loop
5044 Stream_Op := TSS (Typ, Names (J));
5046 if Present (Stream_Op)
5047 and then Is_Subprogram (Stream_Op)
5048 and then Nkind (Unit_Declaration_Node (Stream_Op)) =
5049 N_Subprogram_Declaration
5050 and then not Is_Frozen (Stream_Op)
5051 then
5052 Append_Freeze_Actions
5053 (Typ, Freeze_Entity (Stream_Op, Sloc (N)));
5054 end if;
5055 end loop;
5056 end Freeze_Stream_Operations;
5058 -----------------
5059 -- Freeze_Type --
5060 -----------------
5062 -- Full type declarations are expanded at the point at which the type is
5063 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
5064 -- declarations generated by the freezing (e.g. the procedure generated
5065 -- for initialization) are chained in the Actions field list of the freeze
5066 -- node using Append_Freeze_Actions.
5068 function Freeze_Type (N : Node_Id) return Boolean is
5069 Def_Id : constant Entity_Id := Entity (N);
5070 RACW_Seen : Boolean := False;
5071 Result : Boolean := False;
5073 begin
5074 -- Process associated access types needing special processing
5076 if Present (Access_Types_To_Process (N)) then
5077 declare
5078 E : Elmt_Id := First_Elmt (Access_Types_To_Process (N));
5079 begin
5080 while Present (E) loop
5082 if Is_Remote_Access_To_Class_Wide_Type (Node (E)) then
5083 Validate_RACW_Primitives (Node (E));
5084 RACW_Seen := True;
5085 end if;
5087 E := Next_Elmt (E);
5088 end loop;
5089 end;
5091 if RACW_Seen then
5093 -- If there are RACWs designating this type, make stubs now
5095 Remote_Types_Tagged_Full_View_Encountered (Def_Id);
5096 end if;
5097 end if;
5099 -- Freeze processing for record types
5101 if Is_Record_Type (Def_Id) then
5102 if Ekind (Def_Id) = E_Record_Type then
5103 Freeze_Record_Type (N);
5105 -- The subtype may have been declared before the type was frozen. If
5106 -- the type has controlled components it is necessary to create the
5107 -- entity for the controller explicitly because it did not exist at
5108 -- the point of the subtype declaration. Only the entity is needed,
5109 -- the back-end will obtain the layout from the type. This is only
5110 -- necessary if this is constrained subtype whose component list is
5111 -- not shared with the base type.
5113 elsif Ekind (Def_Id) = E_Record_Subtype
5114 and then Has_Discriminants (Def_Id)
5115 and then Last_Entity (Def_Id) /= Last_Entity (Base_Type (Def_Id))
5116 and then Present (Controller_Component (Def_Id))
5117 then
5118 declare
5119 Old_C : constant Entity_Id := Controller_Component (Def_Id);
5120 New_C : Entity_Id;
5122 begin
5123 if Scope (Old_C) = Base_Type (Def_Id) then
5125 -- The entity is the one in the parent. Create new one
5127 New_C := New_Copy (Old_C);
5128 Set_Parent (New_C, Parent (Old_C));
5129 New_Scope (Def_Id);
5130 Enter_Name (New_C);
5131 End_Scope;
5132 end if;
5133 end;
5135 if Is_Itype (Def_Id)
5136 and then Is_Record_Type (Underlying_Type (Scope (Def_Id)))
5137 then
5138 -- The freeze node is only used to introduce the controller,
5139 -- the back-end has no use for it for a discriminated
5140 -- component.
5142 Set_Freeze_Node (Def_Id, Empty);
5143 Set_Has_Delayed_Freeze (Def_Id, False);
5144 Result := True;
5145 end if;
5147 -- Similar process if the controller of the subtype is not present
5148 -- but the parent has it. This can happen with constrained
5149 -- record components where the subtype is an itype.
5151 elsif Ekind (Def_Id) = E_Record_Subtype
5152 and then Is_Itype (Def_Id)
5153 and then No (Controller_Component (Def_Id))
5154 and then Present (Controller_Component (Etype (Def_Id)))
5155 then
5156 declare
5157 Old_C : constant Entity_Id :=
5158 Controller_Component (Etype (Def_Id));
5159 New_C : constant Entity_Id := New_Copy (Old_C);
5161 begin
5162 Set_Next_Entity (New_C, First_Entity (Def_Id));
5163 Set_First_Entity (Def_Id, New_C);
5165 -- The freeze node is only used to introduce the controller,
5166 -- the back-end has no use for it for a discriminated
5167 -- component.
5169 Set_Freeze_Node (Def_Id, Empty);
5170 Set_Has_Delayed_Freeze (Def_Id, False);
5171 Result := True;
5172 end;
5173 end if;
5175 -- Freeze processing for array types
5177 elsif Is_Array_Type (Def_Id) then
5178 Freeze_Array_Type (N);
5180 -- Freeze processing for access types
5182 -- For pool-specific access types, find out the pool object used for
5183 -- this type, needs actual expansion of it in some cases. Here are the
5184 -- different cases :
5186 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
5187 -- ---> don't use any storage pool
5189 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
5190 -- Expand:
5191 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
5193 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
5194 -- ---> Storage Pool is the specified one
5196 -- See GNAT Pool packages in the Run-Time for more details
5198 elsif Ekind (Def_Id) = E_Access_Type
5199 or else Ekind (Def_Id) = E_General_Access_Type
5200 then
5201 declare
5202 Loc : constant Source_Ptr := Sloc (N);
5203 Desig_Type : constant Entity_Id := Designated_Type (Def_Id);
5204 Pool_Object : Entity_Id;
5205 Siz_Exp : Node_Id;
5207 Freeze_Action_Typ : Entity_Id;
5209 begin
5210 if Has_Storage_Size_Clause (Def_Id) then
5211 Siz_Exp := Expression (Parent (Storage_Size_Variable (Def_Id)));
5212 else
5213 Siz_Exp := Empty;
5214 end if;
5216 -- Case 1
5218 -- Rep Clause "for Def_Id'Storage_Size use 0;"
5219 -- ---> don't use any storage pool
5221 if Has_Storage_Size_Clause (Def_Id)
5222 and then Compile_Time_Known_Value (Siz_Exp)
5223 and then Expr_Value (Siz_Exp) = 0
5224 then
5225 null;
5227 -- Case 2
5229 -- Rep Clause : for Def_Id'Storage_Size use Expr.
5230 -- ---> Expand:
5231 -- Def_Id__Pool : Stack_Bounded_Pool
5232 -- (Expr, DT'Size, DT'Alignment);
5234 elsif Has_Storage_Size_Clause (Def_Id) then
5235 declare
5236 DT_Size : Node_Id;
5237 DT_Align : Node_Id;
5239 begin
5240 -- For unconstrained composite types we give a size of zero
5241 -- so that the pool knows that it needs a special algorithm
5242 -- for variable size object allocation.
5244 if Is_Composite_Type (Desig_Type)
5245 and then not Is_Constrained (Desig_Type)
5246 then
5247 DT_Size :=
5248 Make_Integer_Literal (Loc, 0);
5250 DT_Align :=
5251 Make_Integer_Literal (Loc, Maximum_Alignment);
5253 else
5254 DT_Size :=
5255 Make_Attribute_Reference (Loc,
5256 Prefix => New_Reference_To (Desig_Type, Loc),
5257 Attribute_Name => Name_Max_Size_In_Storage_Elements);
5259 DT_Align :=
5260 Make_Attribute_Reference (Loc,
5261 Prefix => New_Reference_To (Desig_Type, Loc),
5262 Attribute_Name => Name_Alignment);
5263 end if;
5265 Pool_Object :=
5266 Make_Defining_Identifier (Loc,
5267 Chars => New_External_Name (Chars (Def_Id), 'P'));
5269 -- We put the code associated with the pools in the entity
5270 -- that has the later freeze node, usually the acces type
5271 -- but it can also be the designated_type; because the pool
5272 -- code requires both those types to be frozen
5274 if Is_Frozen (Desig_Type)
5275 and then (No (Freeze_Node (Desig_Type))
5276 or else Analyzed (Freeze_Node (Desig_Type)))
5277 then
5278 Freeze_Action_Typ := Def_Id;
5280 -- A Taft amendment type cannot get the freeze actions
5281 -- since the full view is not there.
5283 elsif Is_Incomplete_Or_Private_Type (Desig_Type)
5284 and then No (Full_View (Desig_Type))
5285 then
5286 Freeze_Action_Typ := Def_Id;
5288 else
5289 Freeze_Action_Typ := Desig_Type;
5290 end if;
5292 Append_Freeze_Action (Freeze_Action_Typ,
5293 Make_Object_Declaration (Loc,
5294 Defining_Identifier => Pool_Object,
5295 Object_Definition =>
5296 Make_Subtype_Indication (Loc,
5297 Subtype_Mark =>
5298 New_Reference_To
5299 (RTE (RE_Stack_Bounded_Pool), Loc),
5301 Constraint =>
5302 Make_Index_Or_Discriminant_Constraint (Loc,
5303 Constraints => New_List (
5305 -- First discriminant is the Pool Size
5307 New_Reference_To (
5308 Storage_Size_Variable (Def_Id), Loc),
5310 -- Second discriminant is the element size
5312 DT_Size,
5314 -- Third discriminant is the alignment
5316 DT_Align)))));
5317 end;
5319 Set_Associated_Storage_Pool (Def_Id, Pool_Object);
5321 -- Case 3
5323 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
5324 -- ---> Storage Pool is the specified one
5326 elsif Present (Associated_Storage_Pool (Def_Id)) then
5328 -- Nothing to do the associated storage pool has been attached
5329 -- when analyzing the rep. clause
5331 null;
5332 end if;
5334 -- For access-to-controlled types (including class-wide types and
5335 -- Taft-amendment types which potentially have controlled
5336 -- components), expand the list controller object that will store
5337 -- the dynamically allocated objects. Do not do this
5338 -- transformation for expander-generated access types, but do it
5339 -- for types that are the full view of types derived from other
5340 -- private types. Also suppress the list controller in the case
5341 -- of a designated type with convention Java, since this is used
5342 -- when binding to Java API specs, where there's no equivalent of
5343 -- a finalization list and we don't want to pull in the
5344 -- finalization support if not needed.
5346 if not Comes_From_Source (Def_Id)
5347 and then not Has_Private_Declaration (Def_Id)
5348 then
5349 null;
5351 elsif (Controlled_Type (Desig_Type)
5352 and then Convention (Desig_Type) /= Convention_Java)
5353 or else
5354 (Is_Incomplete_Or_Private_Type (Desig_Type)
5355 and then No (Full_View (Desig_Type))
5357 -- An exception is made for types defined in the run-time
5358 -- because Ada.Tags.Tag itself is such a type and cannot
5359 -- afford this unnecessary overhead that would generates a
5360 -- loop in the expansion scheme...
5362 and then not In_Runtime (Def_Id)
5364 -- Another exception is if Restrictions (No_Finalization)
5365 -- is active, since then we know nothing is controlled.
5367 and then not Restriction_Active (No_Finalization))
5369 -- If the designated type is not frozen yet, its controlled
5370 -- status must be retrieved explicitly.
5372 or else (Is_Array_Type (Desig_Type)
5373 and then not Is_Frozen (Desig_Type)
5374 and then Controlled_Type (Component_Type (Desig_Type)))
5375 then
5376 Set_Associated_Final_Chain (Def_Id,
5377 Make_Defining_Identifier (Loc,
5378 New_External_Name (Chars (Def_Id), 'L')));
5380 Append_Freeze_Action (Def_Id,
5381 Make_Object_Declaration (Loc,
5382 Defining_Identifier => Associated_Final_Chain (Def_Id),
5383 Object_Definition =>
5384 New_Reference_To (RTE (RE_List_Controller), Loc)));
5385 end if;
5386 end;
5388 -- Freeze processing for enumeration types
5390 elsif Ekind (Def_Id) = E_Enumeration_Type then
5392 -- We only have something to do if we have a non-standard
5393 -- representation (i.e. at least one literal whose pos value
5394 -- is not the same as its representation)
5396 if Has_Non_Standard_Rep (Def_Id) then
5397 Freeze_Enumeration_Type (N);
5398 end if;
5400 -- Private types that are completed by a derivation from a private
5401 -- type have an internally generated full view, that needs to be
5402 -- frozen. This must be done explicitly because the two views share
5403 -- the freeze node, and the underlying full view is not visible when
5404 -- the freeze node is analyzed.
5406 elsif Is_Private_Type (Def_Id)
5407 and then Is_Derived_Type (Def_Id)
5408 and then Present (Full_View (Def_Id))
5409 and then Is_Itype (Full_View (Def_Id))
5410 and then Has_Private_Declaration (Full_View (Def_Id))
5411 and then Freeze_Node (Full_View (Def_Id)) = N
5412 then
5413 Set_Entity (N, Full_View (Def_Id));
5414 Result := Freeze_Type (N);
5415 Set_Entity (N, Def_Id);
5417 -- All other types require no expander action. There are such cases
5418 -- (e.g. task types and protected types). In such cases, the freeze
5419 -- nodes are there for use by Gigi.
5421 end if;
5423 Freeze_Stream_Operations (N, Def_Id);
5424 return Result;
5426 exception
5427 when RE_Not_Available =>
5428 return False;
5429 end Freeze_Type;
5431 -------------------------
5432 -- Get_Simple_Init_Val --
5433 -------------------------
5435 function Get_Simple_Init_Val
5436 (T : Entity_Id;
5437 Loc : Source_Ptr;
5438 Size : Uint := No_Uint) return Node_Id
5440 Val : Node_Id;
5441 Result : Node_Id;
5442 Val_RE : RE_Id;
5444 Size_To_Use : Uint;
5445 -- This is the size to be used for computation of the appropriate
5446 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
5448 Lo_Bound : Uint;
5449 Hi_Bound : Uint;
5450 -- These are the values computed by the procedure Check_Subtype_Bounds
5452 procedure Check_Subtype_Bounds;
5453 -- This procedure examines the subtype T, and its ancestor subtypes and
5454 -- derived types to determine the best known information about the
5455 -- bounds of the subtype. After the call Lo_Bound is set either to
5456 -- No_Uint if no information can be determined, or to a value which
5457 -- represents a known low bound, i.e. a valid value of the subtype can
5458 -- not be less than this value. Hi_Bound is similarly set to a known
5459 -- high bound (valid value cannot be greater than this).
5461 --------------------------
5462 -- Check_Subtype_Bounds --
5463 --------------------------
5465 procedure Check_Subtype_Bounds is
5466 ST1 : Entity_Id;
5467 ST2 : Entity_Id;
5468 Lo : Node_Id;
5469 Hi : Node_Id;
5470 Loval : Uint;
5471 Hival : Uint;
5473 begin
5474 Lo_Bound := No_Uint;
5475 Hi_Bound := No_Uint;
5477 -- Loop to climb ancestor subtypes and derived types
5479 ST1 := T;
5480 loop
5481 if not Is_Discrete_Type (ST1) then
5482 return;
5483 end if;
5485 Lo := Type_Low_Bound (ST1);
5486 Hi := Type_High_Bound (ST1);
5488 if Compile_Time_Known_Value (Lo) then
5489 Loval := Expr_Value (Lo);
5491 if Lo_Bound = No_Uint or else Lo_Bound < Loval then
5492 Lo_Bound := Loval;
5493 end if;
5494 end if;
5496 if Compile_Time_Known_Value (Hi) then
5497 Hival := Expr_Value (Hi);
5499 if Hi_Bound = No_Uint or else Hi_Bound > Hival then
5500 Hi_Bound := Hival;
5501 end if;
5502 end if;
5504 ST2 := Ancestor_Subtype (ST1);
5506 if No (ST2) then
5507 ST2 := Etype (ST1);
5508 end if;
5510 exit when ST1 = ST2;
5511 ST1 := ST2;
5512 end loop;
5513 end Check_Subtype_Bounds;
5515 -- Start of processing for Get_Simple_Init_Val
5517 begin
5518 -- For a private type, we should always have an underlying type
5519 -- (because this was already checked in Needs_Simple_Initialization).
5520 -- What we do is to get the value for the underlying type and then do
5521 -- an Unchecked_Convert to the private type.
5523 if Is_Private_Type (T) then
5524 Val := Get_Simple_Init_Val (Underlying_Type (T), Loc, Size);
5526 -- A special case, if the underlying value is null, then qualify it
5527 -- with the underlying type, so that the null is properly typed
5528 -- Similarly, if it is an aggregate it must be qualified, because an
5529 -- unchecked conversion does not provide a context for it.
5531 if Nkind (Val) = N_Null
5532 or else Nkind (Val) = N_Aggregate
5533 then
5534 Val :=
5535 Make_Qualified_Expression (Loc,
5536 Subtype_Mark =>
5537 New_Occurrence_Of (Underlying_Type (T), Loc),
5538 Expression => Val);
5539 end if;
5541 Result := Unchecked_Convert_To (T, Val);
5543 -- Don't truncate result (important for Initialize/Normalize_Scalars)
5545 if Nkind (Result) = N_Unchecked_Type_Conversion
5546 and then Is_Scalar_Type (Underlying_Type (T))
5547 then
5548 Set_No_Truncation (Result);
5549 end if;
5551 return Result;
5553 -- For scalars, we must have normalize/initialize scalars case
5555 elsif Is_Scalar_Type (T) then
5556 pragma Assert (Init_Or_Norm_Scalars);
5558 -- Compute size of object. If it is given by the caller, we can use
5559 -- it directly, otherwise we use Esize (T) as an estimate. As far as
5560 -- we know this covers all cases correctly.
5562 if Size = No_Uint or else Size <= Uint_0 then
5563 Size_To_Use := UI_Max (Uint_1, Esize (T));
5564 else
5565 Size_To_Use := Size;
5566 end if;
5568 -- Maximum size to use is 64 bits, since we will create values
5569 -- of type Unsigned_64 and the range must fit this type.
5571 if Size_To_Use /= No_Uint and then Size_To_Use > Uint_64 then
5572 Size_To_Use := Uint_64;
5573 end if;
5575 -- Check known bounds of subtype
5577 Check_Subtype_Bounds;
5579 -- Processing for Normalize_Scalars case
5581 if Normalize_Scalars then
5583 -- If zero is invalid, it is a convenient value to use that is
5584 -- for sure an appropriate invalid value in all situations.
5586 if Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
5587 Val := Make_Integer_Literal (Loc, 0);
5589 -- Cases where all one bits is the appropriate invalid value
5591 -- For modular types, all 1 bits is either invalid or valid. If
5592 -- it is valid, then there is nothing that can be done since there
5593 -- are no invalid values (we ruled out zero already).
5595 -- For signed integer types that have no negative values, either
5596 -- there is room for negative values, or there is not. If there
5597 -- is, then all 1 bits may be interpretecd as minus one, which is
5598 -- certainly invalid. Alternatively it is treated as the largest
5599 -- positive value, in which case the observation for modular types
5600 -- still applies.
5602 -- For float types, all 1-bits is a NaN (not a number), which is
5603 -- certainly an appropriately invalid value.
5605 elsif Is_Unsigned_Type (T)
5606 or else Is_Floating_Point_Type (T)
5607 or else Is_Enumeration_Type (T)
5608 then
5609 Val := Make_Integer_Literal (Loc, 2 ** Size_To_Use - 1);
5611 -- Resolve as Unsigned_64, because the largest number we
5612 -- can generate is out of range of universal integer.
5614 Analyze_And_Resolve (Val, RTE (RE_Unsigned_64));
5616 -- Case of signed types
5618 else
5619 declare
5620 Signed_Size : constant Uint :=
5621 UI_Min (Uint_63, Size_To_Use - 1);
5623 begin
5624 -- Normally we like to use the most negative number. The
5625 -- one exception is when this number is in the known
5626 -- subtype range and the largest positive number is not in
5627 -- the known subtype range.
5629 -- For this exceptional case, use largest positive value
5631 if Lo_Bound /= No_Uint and then Hi_Bound /= No_Uint
5632 and then Lo_Bound <= (-(2 ** Signed_Size))
5633 and then Hi_Bound < 2 ** Signed_Size
5634 then
5635 Val := Make_Integer_Literal (Loc, 2 ** Signed_Size - 1);
5637 -- Normal case of largest negative value
5639 else
5640 Val := Make_Integer_Literal (Loc, -(2 ** Signed_Size));
5641 end if;
5642 end;
5643 end if;
5645 -- Here for Initialize_Scalars case
5647 else
5648 -- For float types, use float values from System.Scalar_Values
5650 if Is_Floating_Point_Type (T) then
5651 if Root_Type (T) = Standard_Short_Float then
5652 Val_RE := RE_IS_Isf;
5653 elsif Root_Type (T) = Standard_Float then
5654 Val_RE := RE_IS_Ifl;
5655 elsif Root_Type (T) = Standard_Long_Float then
5656 Val_RE := RE_IS_Ilf;
5657 else pragma Assert (Root_Type (T) = Standard_Long_Long_Float);
5658 Val_RE := RE_IS_Ill;
5659 end if;
5661 -- If zero is invalid, use zero values from System.Scalar_Values
5663 elsif Lo_Bound /= No_Uint and then Lo_Bound > Uint_0 then
5664 if Size_To_Use <= 8 then
5665 Val_RE := RE_IS_Iz1;
5666 elsif Size_To_Use <= 16 then
5667 Val_RE := RE_IS_Iz2;
5668 elsif Size_To_Use <= 32 then
5669 Val_RE := RE_IS_Iz4;
5670 else
5671 Val_RE := RE_IS_Iz8;
5672 end if;
5674 -- For unsigned, use unsigned values from System.Scalar_Values
5676 elsif Is_Unsigned_Type (T) then
5677 if Size_To_Use <= 8 then
5678 Val_RE := RE_IS_Iu1;
5679 elsif Size_To_Use <= 16 then
5680 Val_RE := RE_IS_Iu2;
5681 elsif Size_To_Use <= 32 then
5682 Val_RE := RE_IS_Iu4;
5683 else
5684 Val_RE := RE_IS_Iu8;
5685 end if;
5687 -- For signed, use signed values from System.Scalar_Values
5689 else
5690 if Size_To_Use <= 8 then
5691 Val_RE := RE_IS_Is1;
5692 elsif Size_To_Use <= 16 then
5693 Val_RE := RE_IS_Is2;
5694 elsif Size_To_Use <= 32 then
5695 Val_RE := RE_IS_Is4;
5696 else
5697 Val_RE := RE_IS_Is8;
5698 end if;
5699 end if;
5701 Val := New_Occurrence_Of (RTE (Val_RE), Loc);
5702 end if;
5704 -- The final expression is obtained by doing an unchecked conversion
5705 -- of this result to the base type of the required subtype. We use
5706 -- the base type to avoid the unchecked conversion from chopping
5707 -- bits, and then we set Kill_Range_Check to preserve the "bad"
5708 -- value.
5710 Result := Unchecked_Convert_To (Base_Type (T), Val);
5712 -- Ensure result is not truncated, since we want the "bad" bits
5713 -- and also kill range check on result.
5715 if Nkind (Result) = N_Unchecked_Type_Conversion then
5716 Set_No_Truncation (Result);
5717 Set_Kill_Range_Check (Result, True);
5718 end if;
5720 return Result;
5722 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
5724 elsif Root_Type (T) = Standard_String
5725 or else
5726 Root_Type (T) = Standard_Wide_String
5727 or else
5728 Root_Type (T) = Standard_Wide_Wide_String
5729 then
5730 pragma Assert (Init_Or_Norm_Scalars);
5732 return
5733 Make_Aggregate (Loc,
5734 Component_Associations => New_List (
5735 Make_Component_Association (Loc,
5736 Choices => New_List (
5737 Make_Others_Choice (Loc)),
5738 Expression =>
5739 Get_Simple_Init_Val
5740 (Component_Type (T), Loc, Esize (Root_Type (T))))));
5742 -- Access type is initialized to null
5744 elsif Is_Access_Type (T) then
5745 return
5746 Make_Null (Loc);
5748 -- No other possibilities should arise, since we should only be
5749 -- calling Get_Simple_Init_Val if Needs_Simple_Initialization
5750 -- returned True, indicating one of the above cases held.
5752 else
5753 raise Program_Error;
5754 end if;
5756 exception
5757 when RE_Not_Available =>
5758 return Empty;
5759 end Get_Simple_Init_Val;
5761 ------------------------------
5762 -- Has_New_Non_Standard_Rep --
5763 ------------------------------
5765 function Has_New_Non_Standard_Rep (T : Entity_Id) return Boolean is
5766 begin
5767 if not Is_Derived_Type (T) then
5768 return Has_Non_Standard_Rep (T)
5769 or else Has_Non_Standard_Rep (Root_Type (T));
5771 -- If Has_Non_Standard_Rep is not set on the derived type, the
5772 -- representation is fully inherited.
5774 elsif not Has_Non_Standard_Rep (T) then
5775 return False;
5777 else
5778 return First_Rep_Item (T) /= First_Rep_Item (Root_Type (T));
5780 -- May need a more precise check here: the First_Rep_Item may
5781 -- be a stream attribute, which does not affect the representation
5782 -- of the type ???
5783 end if;
5784 end Has_New_Non_Standard_Rep;
5786 ----------------
5787 -- In_Runtime --
5788 ----------------
5790 function In_Runtime (E : Entity_Id) return Boolean is
5791 S1 : Entity_Id := Scope (E);
5793 begin
5794 while Scope (S1) /= Standard_Standard loop
5795 S1 := Scope (S1);
5796 end loop;
5798 return Chars (S1) = Name_System or else Chars (S1) = Name_Ada;
5799 end In_Runtime;
5801 ------------------
5802 -- Init_Formals --
5803 ------------------
5805 function Init_Formals (Typ : Entity_Id) return List_Id is
5806 Loc : constant Source_Ptr := Sloc (Typ);
5807 Formals : List_Id;
5809 begin
5810 -- First parameter is always _Init : in out typ. Note that we need
5811 -- this to be in/out because in the case of the task record value,
5812 -- there are default record fields (_Priority, _Size, -Task_Info)
5813 -- that may be referenced in the generated initialization routine.
5815 Formals := New_List (
5816 Make_Parameter_Specification (Loc,
5817 Defining_Identifier =>
5818 Make_Defining_Identifier (Loc, Name_uInit),
5819 In_Present => True,
5820 Out_Present => True,
5821 Parameter_Type => New_Reference_To (Typ, Loc)));
5823 -- For task record value, or type that contains tasks, add two more
5824 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
5825 -- We also add these parameters for the task record type case.
5827 if Has_Task (Typ)
5828 or else (Is_Record_Type (Typ) and then Is_Task_Record_Type (Typ))
5829 then
5830 Append_To (Formals,
5831 Make_Parameter_Specification (Loc,
5832 Defining_Identifier =>
5833 Make_Defining_Identifier (Loc, Name_uMaster),
5834 Parameter_Type => New_Reference_To (RTE (RE_Master_Id), Loc)));
5836 Append_To (Formals,
5837 Make_Parameter_Specification (Loc,
5838 Defining_Identifier =>
5839 Make_Defining_Identifier (Loc, Name_uChain),
5840 In_Present => True,
5841 Out_Present => True,
5842 Parameter_Type =>
5843 New_Reference_To (RTE (RE_Activation_Chain), Loc)));
5845 Append_To (Formals,
5846 Make_Parameter_Specification (Loc,
5847 Defining_Identifier =>
5848 Make_Defining_Identifier (Loc, Name_uTask_Name),
5849 In_Present => True,
5850 Parameter_Type =>
5851 New_Reference_To (Standard_String, Loc)));
5852 end if;
5854 return Formals;
5856 exception
5857 when RE_Not_Available =>
5858 return Empty_List;
5859 end Init_Formals;
5861 -------------------------
5862 -- Init_Secondary_Tags --
5863 -------------------------
5865 procedure Init_Secondary_Tags
5866 (Typ : Entity_Id;
5867 Target : Node_Id;
5868 Stmts_List : List_Id)
5870 Loc : constant Source_Ptr := Sloc (Target);
5871 ADT : Elmt_Id;
5872 Full_Typ : Entity_Id;
5874 procedure Init_Secondary_Tags_Internal (Typ : Entity_Id);
5875 -- Internal subprogram used to recursively climb to the root type.
5876 -- We assume that all the primitives of the imported C++ class are
5877 -- defined in the C side.
5879 ----------------------------------
5880 -- Init_Secondary_Tags_Internal --
5881 ----------------------------------
5883 procedure Init_Secondary_Tags_Internal (Typ : Entity_Id) is
5884 Args : List_Id;
5885 Aux_N : Node_Id;
5886 E : Entity_Id;
5887 Iface : Entity_Id;
5888 New_N : Node_Id;
5889 Prev_E : Entity_Id;
5891 begin
5892 -- Climb to the ancestor (if any) handling private types
5894 if Present (Full_View (Etype (Typ))) then
5895 if Full_View (Etype (Typ)) /= Typ then
5896 Init_Secondary_Tags_Internal (Full_View (Etype (Typ)));
5897 end if;
5899 elsif Etype (Typ) /= Typ then
5900 Init_Secondary_Tags_Internal (Etype (Typ));
5901 end if;
5903 if Is_Interface (Typ) then
5904 -- Generate:
5905 -- Set_Offset_To_Top
5906 -- (This => Init,
5907 -- Interface_T => Iface'Tag,
5908 -- Is_Constant => True,
5909 -- Offset_Value => 0,
5910 -- Offset_Func => null)
5912 Append_To (Stmts_List,
5913 Make_Procedure_Call_Statement (Loc,
5914 Name => New_Reference_To (RTE (RE_Set_Offset_To_Top), Loc),
5915 Parameter_Associations => New_List (
5916 Make_Attribute_Reference (Loc,
5917 Prefix => New_Copy_Tree (Target),
5918 Attribute_Name => Name_Address),
5920 Unchecked_Convert_To (RTE (RE_Tag),
5921 New_Reference_To
5922 (Node (First_Elmt (Access_Disp_Table (Typ))),
5923 Loc)),
5925 New_Occurrence_Of (Standard_True, Loc),
5927 Make_Integer_Literal (Loc, Uint_0),
5929 New_Reference_To (RTE (RE_Null_Address), Loc))));
5930 end if;
5932 if Present (Abstract_Interfaces (Typ))
5933 and then not Is_Empty_Elmt_List (Abstract_Interfaces (Typ))
5934 then
5935 E := First_Entity (Typ);
5936 while Present (E) loop
5937 if Is_Tag (E)
5938 and then Chars (E) /= Name_uTag
5939 then
5940 Aux_N := Node (ADT);
5941 pragma Assert (Present (Aux_N));
5943 Iface := Find_Interface (Typ, E);
5945 -- If we are compiling under the CPP full ABI compatibility
5946 -- mode and the ancestor is a CPP_Pragma tagged type then
5947 -- we generate code to inherit the contents of the dispatch
5948 -- table directly from the ancestor.
5950 if Is_CPP_Class (Etype (Typ))
5951 and then not Debug_Flag_QQ
5952 then
5953 Args := New_List (
5954 Node1 =>
5955 Unchecked_Convert_To (RTE (RE_Tag),
5956 Make_Selected_Component (Loc,
5957 Prefix => New_Copy_Tree (Target),
5958 Selector_Name => New_Reference_To (E, Loc))),
5959 Node2 =>
5960 Unchecked_Convert_To (RTE (RE_Tag),
5961 New_Reference_To (Aux_N, Loc)),
5963 Node3 =>
5964 Make_Integer_Literal (Loc,
5965 DT_Entry_Count (First_Tag_Component (Iface))));
5967 -- Issue error if Inherit_CPP_DT is not available
5968 -- in a configurable run-time environment.
5970 if not RTE_Available (RE_Inherit_CPP_DT) then
5971 Error_Msg_CRT ("cpp interfacing", Typ);
5972 return;
5973 end if;
5975 New_N :=
5976 Make_Procedure_Call_Statement (Loc,
5977 Name => New_Reference_To (RTE (RE_Inherit_CPP_DT),
5978 Loc),
5979 Parameter_Associations => Args);
5981 Append_To (Stmts_List, New_N);
5982 end if;
5984 -- Initialize the pointer to the secondary DT associated
5985 -- with the interface
5987 Append_To (Stmts_List,
5988 Make_Assignment_Statement (Loc,
5989 Name =>
5990 Make_Selected_Component (Loc,
5991 Prefix => New_Copy_Tree (Target),
5992 Selector_Name => New_Reference_To (E, Loc)),
5993 Expression =>
5994 New_Reference_To (Aux_N, Loc)));
5996 -- If the ancestor is CPP_Class, nothing else to do here
5998 if Is_CPP_Class (Etype (Typ)) and then not Debug_Flag_QQ then
5999 null;
6001 -- Otherwise, comment required ???
6003 else
6004 -- Issue error if Set_Offset_To_Top is not available in a
6005 -- configurable run-time environment.
6007 if not RTE_Available (RE_Set_Offset_To_Top) then
6008 Error_Msg_CRT ("abstract interface types", Typ);
6009 return;
6010 end if;
6012 -- We generate a different call when the parent of the
6013 -- type has discriminants.
6015 if Typ /= Etype (Typ)
6016 and then Has_Discriminants (Etype (Typ))
6017 then
6018 pragma Assert
6019 (Present (DT_Offset_To_Top_Func (E)));
6021 -- Generate:
6022 -- Set_Offset_To_Top
6023 -- (This => Init,
6024 -- Interface_T => Iface'Tag,
6025 -- Is_Constant => False,
6026 -- Offset_Value => n,
6027 -- Offset_Func => Fn'Address)
6029 Append_To (Stmts_List,
6030 Make_Procedure_Call_Statement (Loc,
6031 Name => New_Reference_To
6032 (RTE (RE_Set_Offset_To_Top), Loc),
6033 Parameter_Associations => New_List (
6034 Make_Attribute_Reference (Loc,
6035 Prefix => New_Copy_Tree (Target),
6036 Attribute_Name => Name_Address),
6038 Unchecked_Convert_To (RTE (RE_Tag),
6039 New_Reference_To
6040 (Node (First_Elmt
6041 (Access_Disp_Table (Iface))),
6042 Loc)),
6044 New_Occurrence_Of (Standard_False, Loc),
6046 Unchecked_Convert_To
6047 (RTE (RE_Storage_Offset),
6048 Make_Attribute_Reference (Loc,
6049 Prefix =>
6050 Make_Selected_Component (Loc,
6051 Prefix => New_Copy_Tree (Target),
6052 Selector_Name =>
6053 New_Reference_To (E, Loc)),
6054 Attribute_Name => Name_Position)),
6056 Unchecked_Convert_To (RTE (RE_Address),
6057 Make_Attribute_Reference (Loc,
6058 Prefix => New_Reference_To
6059 (DT_Offset_To_Top_Func (E),
6060 Loc),
6061 Attribute_Name =>
6062 Name_Address)))));
6064 -- In this case the next component stores the
6065 -- value of the offset to the top.
6067 Prev_E := E;
6068 Next_Entity (E);
6069 pragma Assert (Present (E));
6071 Append_To (Stmts_List,
6072 Make_Assignment_Statement (Loc,
6073 Name =>
6074 Make_Selected_Component (Loc,
6075 Prefix => New_Copy_Tree (Target),
6076 Selector_Name => New_Reference_To (E, Loc)),
6077 Expression =>
6078 Make_Attribute_Reference (Loc,
6079 Prefix =>
6080 Make_Selected_Component (Loc,
6081 Prefix => New_Copy_Tree (Target),
6082 Selector_Name =>
6083 New_Reference_To (Prev_E, Loc)),
6084 Attribute_Name => Name_Position)));
6086 -- Normal case: No discriminants in the parent type
6088 else
6089 -- Generate:
6090 -- Set_Offset_To_Top
6091 -- (This => Init,
6092 -- Interface_T => Iface'Tag,
6093 -- Is_Constant => True,
6094 -- Offset_Value => n,
6095 -- Offset_Func => null);
6097 Append_To (Stmts_List,
6098 Make_Procedure_Call_Statement (Loc,
6099 Name => New_Reference_To
6100 (RTE (RE_Set_Offset_To_Top), Loc),
6101 Parameter_Associations => New_List (
6102 Make_Attribute_Reference (Loc,
6103 Prefix => New_Copy_Tree (Target),
6104 Attribute_Name => Name_Address),
6106 Unchecked_Convert_To (RTE (RE_Tag),
6107 New_Reference_To
6108 (Node (First_Elmt
6109 (Access_Disp_Table (Iface))),
6110 Loc)),
6112 New_Occurrence_Of (Standard_True, Loc),
6114 Unchecked_Convert_To
6115 (RTE (RE_Storage_Offset),
6116 Make_Attribute_Reference (Loc,
6117 Prefix =>
6118 Make_Selected_Component (Loc,
6119 Prefix => New_Copy_Tree (Target),
6120 Selector_Name =>
6121 New_Reference_To (E, Loc)),
6122 Attribute_Name => Name_Position)),
6124 New_Reference_To
6125 (RTE (RE_Null_Address), Loc))));
6126 end if;
6127 end if;
6129 Next_Elmt (ADT);
6130 end if;
6132 Next_Entity (E);
6133 end loop;
6134 end if;
6135 end Init_Secondary_Tags_Internal;
6137 -- Start of processing for Init_Secondary_Tags
6139 begin
6140 -- Skip the first _Tag, which is the main tag of the tagged type.
6141 -- Following tags correspond with abstract interfaces.
6143 ADT := Next_Elmt (First_Elmt (Access_Disp_Table (Typ)));
6145 -- Handle private types
6147 if Present (Full_View (Typ)) then
6148 Full_Typ := Full_View (Typ);
6149 else
6150 Full_Typ := Typ;
6151 end if;
6153 Init_Secondary_Tags_Internal (Full_Typ);
6154 end Init_Secondary_Tags;
6156 ----------------------------------------
6157 -- Make_Controlling_Function_Wrappers --
6158 ----------------------------------------
6160 procedure Make_Controlling_Function_Wrappers
6161 (Tag_Typ : Entity_Id;
6162 Decl_List : out List_Id;
6163 Body_List : out List_Id)
6165 Loc : constant Source_Ptr := Sloc (Tag_Typ);
6166 Prim_Elmt : Elmt_Id;
6167 Subp : Entity_Id;
6168 Actual_List : List_Id;
6169 Formal_List : List_Id;
6170 Formal : Entity_Id;
6171 Par_Formal : Entity_Id;
6172 Formal_Node : Node_Id;
6173 Func_Spec : Node_Id;
6174 Func_Decl : Node_Id;
6175 Func_Body : Node_Id;
6176 Return_Stmt : Node_Id;
6178 begin
6179 Decl_List := New_List;
6180 Body_List := New_List;
6182 Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
6184 while Present (Prim_Elmt) loop
6185 Subp := Node (Prim_Elmt);
6187 -- If a primitive function with a controlling result of the type has
6188 -- not been overridden by the user, then we must create a wrapper
6189 -- function here that effectively overrides it and invokes the
6190 -- (non-abstract) parent function. This can only occur for a null
6191 -- extension. Note that functions with anonymous controlling access
6192 -- results don't qualify and must be overridden. We also exclude
6193 -- Input attributes, since each type will have its own version of
6194 -- Input constructed by the expander. The test for Comes_From_Source
6195 -- is needed to distinguish inherited operations from renamings
6196 -- (which also have Alias set).
6198 if Is_Abstract (Subp)
6199 and then Present (Alias (Subp))
6200 and then not Is_Abstract (Alias (Subp))
6201 and then not Comes_From_Source (Subp)
6202 and then Ekind (Subp) = E_Function
6203 and then Has_Controlling_Result (Subp)
6204 and then not Is_Access_Type (Etype (Subp))
6205 and then not Is_TSS (Subp, TSS_Stream_Input)
6206 then
6207 Formal_List := No_List;
6208 Formal := First_Formal (Subp);
6210 if Present (Formal) then
6211 Formal_List := New_List;
6213 while Present (Formal) loop
6214 Append
6215 (Make_Parameter_Specification
6216 (Loc,
6217 Defining_Identifier =>
6218 Make_Defining_Identifier (Sloc (Formal),
6219 Chars => Chars (Formal)),
6220 In_Present => In_Present (Parent (Formal)),
6221 Out_Present => Out_Present (Parent (Formal)),
6222 Parameter_Type =>
6223 New_Reference_To (Etype (Formal), Loc),
6224 Expression =>
6225 New_Copy_Tree (Expression (Parent (Formal)))),
6226 Formal_List);
6228 Next_Formal (Formal);
6229 end loop;
6230 end if;
6232 Func_Spec :=
6233 Make_Function_Specification (Loc,
6234 Defining_Unit_Name =>
6235 Make_Defining_Identifier (Loc, Chars (Subp)),
6236 Parameter_Specifications =>
6237 Formal_List,
6238 Result_Definition =>
6239 New_Reference_To (Etype (Subp), Loc));
6241 Func_Decl := Make_Subprogram_Declaration (Loc, Func_Spec);
6242 Append_To (Decl_List, Func_Decl);
6244 -- Build a wrapper body that calls the parent function. The body
6245 -- contains a single return statement that returns an extension
6246 -- aggregate whose ancestor part is a call to the parent function,
6247 -- passing the formals as actuals (with any controlling arguments
6248 -- converted to the types of the corresponding formals of the
6249 -- parent function, which might be anonymous access types), and
6250 -- having a null extension.
6252 Formal := First_Formal (Subp);
6253 Par_Formal := First_Formal (Alias (Subp));
6254 Formal_Node := First (Formal_List);
6256 if Present (Formal) then
6257 Actual_List := New_List;
6258 else
6259 Actual_List := No_List;
6260 end if;
6262 while Present (Formal) loop
6263 if Is_Controlling_Formal (Formal) then
6264 Append_To (Actual_List,
6265 Make_Type_Conversion (Loc,
6266 Subtype_Mark =>
6267 New_Occurrence_Of (Etype (Par_Formal), Loc),
6268 Expression =>
6269 New_Reference_To
6270 (Defining_Identifier (Formal_Node), Loc)));
6271 else
6272 Append_To
6273 (Actual_List,
6274 New_Reference_To
6275 (Defining_Identifier (Formal_Node), Loc));
6276 end if;
6278 Next_Formal (Formal);
6279 Next_Formal (Par_Formal);
6280 Next (Formal_Node);
6281 end loop;
6283 Return_Stmt :=
6284 Make_Return_Statement (Loc,
6285 Expression =>
6286 Make_Extension_Aggregate (Loc,
6287 Ancestor_Part =>
6288 Make_Function_Call (Loc,
6289 Name => New_Reference_To (Alias (Subp), Loc),
6290 Parameter_Associations => Actual_List),
6291 Null_Record_Present => True));
6293 Func_Body :=
6294 Make_Subprogram_Body (Loc,
6295 Specification => New_Copy_Tree (Func_Spec),
6296 Declarations => Empty_List,
6297 Handled_Statement_Sequence =>
6298 Make_Handled_Sequence_Of_Statements (Loc,
6299 Statements => New_List (Return_Stmt)));
6301 Set_Defining_Unit_Name
6302 (Specification (Func_Body),
6303 Make_Defining_Identifier (Loc, Chars (Subp)));
6305 Append_To (Body_List, Func_Body);
6307 -- Replace the inherited function with the wrapper function
6308 -- in the primitive operations list.
6310 Override_Dispatching_Operation
6311 (Tag_Typ, Subp, New_Op => Defining_Unit_Name (Func_Spec));
6312 end if;
6314 Next_Elmt (Prim_Elmt);
6315 end loop;
6316 end Make_Controlling_Function_Wrappers;
6318 ------------------
6319 -- Make_Eq_Case --
6320 ------------------
6322 -- <Make_Eq_if shared components>
6323 -- case X.D1 is
6324 -- when V1 => <Make_Eq_Case> on subcomponents
6325 -- ...
6326 -- when Vn => <Make_Eq_Case> on subcomponents
6327 -- end case;
6329 function Make_Eq_Case
6330 (E : Entity_Id;
6331 CL : Node_Id;
6332 Discr : Entity_Id := Empty) return List_Id
6334 Loc : constant Source_Ptr := Sloc (E);
6335 Result : constant List_Id := New_List;
6336 Variant : Node_Id;
6337 Alt_List : List_Id;
6339 begin
6340 Append_To (Result, Make_Eq_If (E, Component_Items (CL)));
6342 if No (Variant_Part (CL)) then
6343 return Result;
6344 end if;
6346 Variant := First_Non_Pragma (Variants (Variant_Part (CL)));
6348 if No (Variant) then
6349 return Result;
6350 end if;
6352 Alt_List := New_List;
6354 while Present (Variant) loop
6355 Append_To (Alt_List,
6356 Make_Case_Statement_Alternative (Loc,
6357 Discrete_Choices => New_Copy_List (Discrete_Choices (Variant)),
6358 Statements => Make_Eq_Case (E, Component_List (Variant))));
6360 Next_Non_Pragma (Variant);
6361 end loop;
6363 -- If we have an Unchecked_Union, use one of the parameters that
6364 -- captures the discriminants.
6366 if Is_Unchecked_Union (E) then
6367 Append_To (Result,
6368 Make_Case_Statement (Loc,
6369 Expression => New_Reference_To (Discr, Loc),
6370 Alternatives => Alt_List));
6372 else
6373 Append_To (Result,
6374 Make_Case_Statement (Loc,
6375 Expression =>
6376 Make_Selected_Component (Loc,
6377 Prefix => Make_Identifier (Loc, Name_X),
6378 Selector_Name => New_Copy (Name (Variant_Part (CL)))),
6379 Alternatives => Alt_List));
6380 end if;
6382 return Result;
6383 end Make_Eq_Case;
6385 ----------------
6386 -- Make_Eq_If --
6387 ----------------
6389 -- Generates:
6391 -- if
6392 -- X.C1 /= Y.C1
6393 -- or else
6394 -- X.C2 /= Y.C2
6395 -- ...
6396 -- then
6397 -- return False;
6398 -- end if;
6400 -- or a null statement if the list L is empty
6402 function Make_Eq_If
6403 (E : Entity_Id;
6404 L : List_Id) return Node_Id
6406 Loc : constant Source_Ptr := Sloc (E);
6407 C : Node_Id;
6408 Field_Name : Name_Id;
6409 Cond : Node_Id;
6411 begin
6412 if No (L) then
6413 return Make_Null_Statement (Loc);
6415 else
6416 Cond := Empty;
6418 C := First_Non_Pragma (L);
6419 while Present (C) loop
6420 Field_Name := Chars (Defining_Identifier (C));
6422 -- The tags must not be compared they are not part of the value.
6423 -- Note also that in the following, we use Make_Identifier for
6424 -- the component names. Use of New_Reference_To to identify the
6425 -- components would be incorrect because the wrong entities for
6426 -- discriminants could be picked up in the private type case.
6428 if Field_Name /= Name_uTag then
6429 Evolve_Or_Else (Cond,
6430 Make_Op_Ne (Loc,
6431 Left_Opnd =>
6432 Make_Selected_Component (Loc,
6433 Prefix => Make_Identifier (Loc, Name_X),
6434 Selector_Name =>
6435 Make_Identifier (Loc, Field_Name)),
6437 Right_Opnd =>
6438 Make_Selected_Component (Loc,
6439 Prefix => Make_Identifier (Loc, Name_Y),
6440 Selector_Name =>
6441 Make_Identifier (Loc, Field_Name))));
6442 end if;
6444 Next_Non_Pragma (C);
6445 end loop;
6447 if No (Cond) then
6448 return Make_Null_Statement (Loc);
6450 else
6451 return
6452 Make_Implicit_If_Statement (E,
6453 Condition => Cond,
6454 Then_Statements => New_List (
6455 Make_Return_Statement (Loc,
6456 Expression => New_Occurrence_Of (Standard_False, Loc))));
6457 end if;
6458 end if;
6459 end Make_Eq_If;
6461 -------------------------------
6462 -- Make_Null_Procedure_Specs --
6463 -------------------------------
6465 procedure Make_Null_Procedure_Specs
6466 (Tag_Typ : Entity_Id;
6467 Decl_List : out List_Id)
6469 Loc : constant Source_Ptr := Sloc (Tag_Typ);
6470 Formal : Entity_Id;
6471 Formal_List : List_Id;
6472 Parent_Subp : Entity_Id;
6473 Prim_Elmt : Elmt_Id;
6474 Proc_Spec : Node_Id;
6475 Proc_Decl : Node_Id;
6476 Subp : Entity_Id;
6478 function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean;
6479 -- Returns True if E is a null procedure that is an interface primitive
6481 ---------------------------------
6482 -- Is_Null_Interface_Primitive --
6483 ---------------------------------
6485 function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean is
6486 begin
6487 return Comes_From_Source (E)
6488 and then Is_Dispatching_Operation (E)
6489 and then Ekind (E) = E_Procedure
6490 and then Null_Present (Parent (E))
6491 and then Is_Interface (Find_Dispatching_Type (E));
6492 end Is_Null_Interface_Primitive;
6494 -- Start of processing for Make_Null_Procedure_Specs
6496 begin
6497 Decl_List := New_List;
6498 Prim_Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
6499 while Present (Prim_Elmt) loop
6500 Subp := Node (Prim_Elmt);
6502 -- If a null procedure inherited from an interface has not been
6503 -- overridden, then we build a null procedure declaration to
6504 -- override the inherited procedure.
6506 Parent_Subp := Alias (Subp);
6508 if Present (Parent_Subp)
6509 and then Is_Null_Interface_Primitive (Parent_Subp)
6510 then
6511 Formal_List := No_List;
6512 Formal := First_Formal (Subp);
6514 if Present (Formal) then
6515 Formal_List := New_List;
6517 while Present (Formal) loop
6518 Append
6519 (Make_Parameter_Specification (Loc,
6520 Defining_Identifier =>
6521 Make_Defining_Identifier (Sloc (Formal),
6522 Chars => Chars (Formal)),
6523 In_Present => In_Present (Parent (Formal)),
6524 Out_Present => Out_Present (Parent (Formal)),
6525 Parameter_Type =>
6526 New_Reference_To (Etype (Formal), Loc),
6527 Expression =>
6528 New_Copy_Tree (Expression (Parent (Formal)))),
6529 Formal_List);
6531 Next_Formal (Formal);
6532 end loop;
6533 end if;
6535 Proc_Spec :=
6536 Make_Procedure_Specification (Loc,
6537 Defining_Unit_Name =>
6538 Make_Defining_Identifier (Loc, Chars (Subp)),
6539 Parameter_Specifications => Formal_List);
6540 Set_Null_Present (Proc_Spec);
6542 Proc_Decl := Make_Subprogram_Declaration (Loc, Proc_Spec);
6543 Append_To (Decl_List, Proc_Decl);
6544 Analyze (Proc_Decl);
6545 end if;
6547 Next_Elmt (Prim_Elmt);
6548 end loop;
6549 end Make_Null_Procedure_Specs;
6551 -------------------------------------
6552 -- Make_Predefined_Primitive_Specs --
6553 -------------------------------------
6555 procedure Make_Predefined_Primitive_Specs
6556 (Tag_Typ : Entity_Id;
6557 Predef_List : out List_Id;
6558 Renamed_Eq : out Node_Id)
6560 Loc : constant Source_Ptr := Sloc (Tag_Typ);
6561 Res : constant List_Id := New_List;
6562 Prim : Elmt_Id;
6563 Eq_Needed : Boolean;
6564 Eq_Spec : Node_Id;
6565 Eq_Name : Name_Id := Name_Op_Eq;
6567 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean;
6568 -- Returns true if Prim is a renaming of an unresolved predefined
6569 -- equality operation.
6571 -------------------------------
6572 -- Is_Predefined_Eq_Renaming --
6573 -------------------------------
6575 function Is_Predefined_Eq_Renaming (Prim : Node_Id) return Boolean is
6576 begin
6577 return Chars (Prim) /= Name_Op_Eq
6578 and then Present (Alias (Prim))
6579 and then Comes_From_Source (Prim)
6580 and then Is_Intrinsic_Subprogram (Alias (Prim))
6581 and then Chars (Alias (Prim)) = Name_Op_Eq;
6582 end Is_Predefined_Eq_Renaming;
6584 -- Start of processing for Make_Predefined_Primitive_Specs
6586 begin
6587 Renamed_Eq := Empty;
6589 -- Spec of _Size
6591 Append_To (Res, Predef_Spec_Or_Body (Loc,
6592 Tag_Typ => Tag_Typ,
6593 Name => Name_uSize,
6594 Profile => New_List (
6595 Make_Parameter_Specification (Loc,
6596 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
6597 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6599 Ret_Type => Standard_Long_Long_Integer));
6601 -- Spec of _Alignment
6603 Append_To (Res, Predef_Spec_Or_Body (Loc,
6604 Tag_Typ => Tag_Typ,
6605 Name => Name_uAlignment,
6606 Profile => New_List (
6607 Make_Parameter_Specification (Loc,
6608 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
6609 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6611 Ret_Type => Standard_Integer));
6613 -- Specs for dispatching stream attributes
6615 declare
6616 Stream_Op_TSS_Names :
6617 constant array (Integer range <>) of TSS_Name_Type :=
6618 (TSS_Stream_Read,
6619 TSS_Stream_Write,
6620 TSS_Stream_Input,
6621 TSS_Stream_Output);
6622 begin
6623 for Op in Stream_Op_TSS_Names'Range loop
6624 if Stream_Operation_OK (Tag_Typ, Stream_Op_TSS_Names (Op)) then
6625 Append_To (Res,
6626 Predef_Stream_Attr_Spec (Loc, Tag_Typ,
6627 Stream_Op_TSS_Names (Op)));
6628 end if;
6629 end loop;
6630 end;
6632 -- Spec of "=" if expanded if the type is not limited and if a
6633 -- user defined "=" was not already declared for the non-full
6634 -- view of a private extension
6636 if not Is_Limited_Type (Tag_Typ) then
6637 Eq_Needed := True;
6639 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
6640 while Present (Prim) loop
6642 -- If a primitive is encountered that renames the predefined
6643 -- equality operator before reaching any explicit equality
6644 -- primitive, then we still need to create a predefined
6645 -- equality function, because calls to it can occur via
6646 -- the renaming. A new name is created for the equality
6647 -- to avoid conflicting with any user-defined equality.
6648 -- (Note that this doesn't account for renamings of
6649 -- equality nested within subpackages???)
6651 if Is_Predefined_Eq_Renaming (Node (Prim)) then
6652 Eq_Name := New_External_Name (Chars (Node (Prim)), 'E');
6654 elsif Chars (Node (Prim)) = Name_Op_Eq
6655 and then (No (Alias (Node (Prim)))
6656 or else Nkind (Unit_Declaration_Node (Node (Prim))) =
6657 N_Subprogram_Renaming_Declaration)
6658 and then Etype (First_Formal (Node (Prim))) =
6659 Etype (Next_Formal (First_Formal (Node (Prim))))
6660 and then Base_Type (Etype (Node (Prim))) = Standard_Boolean
6662 then
6663 Eq_Needed := False;
6664 exit;
6666 -- If the parent equality is abstract, the inherited equality is
6667 -- abstract as well, and no body can be created for for it.
6669 elsif Chars (Node (Prim)) = Name_Op_Eq
6670 and then Present (Alias (Node (Prim)))
6671 and then Is_Abstract (Alias (Node (Prim)))
6672 then
6673 Eq_Needed := False;
6674 exit;
6675 end if;
6677 Next_Elmt (Prim);
6678 end loop;
6680 -- If a renaming of predefined equality was found
6681 -- but there was no user-defined equality (so Eq_Needed
6682 -- is still true), then set the name back to Name_Op_Eq.
6683 -- But in the case where a user-defined equality was
6684 -- located after such a renaming, then the predefined
6685 -- equality function is still needed, so Eq_Needed must
6686 -- be set back to True.
6688 if Eq_Name /= Name_Op_Eq then
6689 if Eq_Needed then
6690 Eq_Name := Name_Op_Eq;
6691 else
6692 Eq_Needed := True;
6693 end if;
6694 end if;
6696 if Eq_Needed then
6697 Eq_Spec := Predef_Spec_Or_Body (Loc,
6698 Tag_Typ => Tag_Typ,
6699 Name => Eq_Name,
6700 Profile => New_List (
6701 Make_Parameter_Specification (Loc,
6702 Defining_Identifier =>
6703 Make_Defining_Identifier (Loc, Name_X),
6704 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
6705 Make_Parameter_Specification (Loc,
6706 Defining_Identifier =>
6707 Make_Defining_Identifier (Loc, Name_Y),
6708 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
6709 Ret_Type => Standard_Boolean);
6710 Append_To (Res, Eq_Spec);
6712 if Eq_Name /= Name_Op_Eq then
6713 Renamed_Eq := Defining_Unit_Name (Specification (Eq_Spec));
6715 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
6716 while Present (Prim) loop
6718 -- Any renamings of equality that appeared before an
6719 -- overriding equality must be updated to refer to
6720 -- the entity for the predefined equality, otherwise
6721 -- calls via the renaming would get incorrectly
6722 -- resolved to call the user-defined equality function.
6724 if Is_Predefined_Eq_Renaming (Node (Prim)) then
6725 Set_Alias (Node (Prim), Renamed_Eq);
6727 -- Exit upon encountering a user-defined equality
6729 elsif Chars (Node (Prim)) = Name_Op_Eq
6730 and then No (Alias (Node (Prim)))
6731 then
6732 exit;
6733 end if;
6735 Next_Elmt (Prim);
6736 end loop;
6737 end if;
6738 end if;
6740 -- Spec for dispatching assignment
6742 Append_To (Res, Predef_Spec_Or_Body (Loc,
6743 Tag_Typ => Tag_Typ,
6744 Name => Name_uAssign,
6745 Profile => New_List (
6746 Make_Parameter_Specification (Loc,
6747 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
6748 Out_Present => True,
6749 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
6751 Make_Parameter_Specification (Loc,
6752 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
6753 Parameter_Type => New_Reference_To (Tag_Typ, Loc)))));
6754 end if;
6756 -- Generate the declarations for the following primitive operations:
6758 -- disp_asynchronous_select
6759 -- disp_conditional_select
6760 -- disp_get_prim_op_kind
6761 -- disp_get_task_id
6762 -- disp_timed_select
6764 -- for limited interfaces and synchronized types that implement a
6765 -- limited interface.
6767 if Ada_Version >= Ada_05
6768 and then
6769 ((Is_Interface (Tag_Typ) and then Is_Limited_Record (Tag_Typ))
6770 or else
6771 (Is_Concurrent_Record_Type (Tag_Typ)
6772 and then Implements_Interface (
6773 Typ => Tag_Typ,
6774 Kind => Any_Limited_Interface,
6775 Check_Parent => True)))
6776 then
6777 Append_To (Res,
6778 Make_Subprogram_Declaration (Loc,
6779 Specification =>
6780 Make_Disp_Asynchronous_Select_Spec (Tag_Typ)));
6782 Append_To (Res,
6783 Make_Subprogram_Declaration (Loc,
6784 Specification =>
6785 Make_Disp_Conditional_Select_Spec (Tag_Typ)));
6787 Append_To (Res,
6788 Make_Subprogram_Declaration (Loc,
6789 Specification =>
6790 Make_Disp_Get_Prim_Op_Kind_Spec (Tag_Typ)));
6792 Append_To (Res,
6793 Make_Subprogram_Declaration (Loc,
6794 Specification =>
6795 Make_Disp_Get_Task_Id_Spec (Tag_Typ)));
6797 Append_To (Res,
6798 Make_Subprogram_Declaration (Loc,
6799 Specification =>
6800 Make_Disp_Timed_Select_Spec (Tag_Typ)));
6801 end if;
6803 -- Specs for finalization actions that may be required in case a
6804 -- future extension contain a controlled element. We generate those
6805 -- only for root tagged types where they will get dummy bodies or
6806 -- when the type has controlled components and their body must be
6807 -- generated. It is also impossible to provide those for tagged
6808 -- types defined within s-finimp since it would involve circularity
6809 -- problems
6811 if In_Finalization_Root (Tag_Typ) then
6812 null;
6814 -- We also skip these if finalization is not available
6816 elsif Restriction_Active (No_Finalization) then
6817 null;
6819 elsif Etype (Tag_Typ) = Tag_Typ
6820 or else Controlled_Type (Tag_Typ)
6822 -- Ada 2005 (AI-251): We must also generate these subprograms if
6823 -- the immediate ancestor is an interface to ensure the correct
6824 -- initialization of its dispatch table.
6826 or else (not Is_Interface (Tag_Typ)
6827 and then
6828 Is_Interface (Etype (Tag_Typ)))
6829 then
6830 if not Is_Limited_Type (Tag_Typ) then
6831 Append_To (Res,
6832 Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust));
6833 end if;
6835 Append_To (Res, Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize));
6836 end if;
6838 Predef_List := Res;
6839 end Make_Predefined_Primitive_Specs;
6841 ---------------------------------
6842 -- Needs_Simple_Initialization --
6843 ---------------------------------
6845 function Needs_Simple_Initialization (T : Entity_Id) return Boolean is
6846 begin
6847 -- Check for private type, in which case test applies to the
6848 -- underlying type of the private type.
6850 if Is_Private_Type (T) then
6851 declare
6852 RT : constant Entity_Id := Underlying_Type (T);
6854 begin
6855 if Present (RT) then
6856 return Needs_Simple_Initialization (RT);
6857 else
6858 return False;
6859 end if;
6860 end;
6862 -- Cases needing simple initialization are access types, and, if pragma
6863 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
6864 -- types.
6866 elsif Is_Access_Type (T)
6867 or else (Init_Or_Norm_Scalars and then (Is_Scalar_Type (T)))
6868 then
6869 return True;
6871 -- If Initialize/Normalize_Scalars is in effect, string objects also
6872 -- need initialization, unless they are created in the course of
6873 -- expanding an aggregate (since in the latter case they will be
6874 -- filled with appropriate initializing values before they are used).
6876 elsif Init_Or_Norm_Scalars
6877 and then
6878 (Root_Type (T) = Standard_String
6879 or else Root_Type (T) = Standard_Wide_String
6880 or else Root_Type (T) = Standard_Wide_Wide_String)
6881 and then
6882 (not Is_Itype (T)
6883 or else Nkind (Associated_Node_For_Itype (T)) /= N_Aggregate)
6884 then
6885 return True;
6887 else
6888 return False;
6889 end if;
6890 end Needs_Simple_Initialization;
6892 ----------------------
6893 -- Predef_Deep_Spec --
6894 ----------------------
6896 function Predef_Deep_Spec
6897 (Loc : Source_Ptr;
6898 Tag_Typ : Entity_Id;
6899 Name : TSS_Name_Type;
6900 For_Body : Boolean := False) return Node_Id
6902 Prof : List_Id;
6903 Type_B : Entity_Id;
6905 begin
6906 if Name = TSS_Deep_Finalize then
6907 Prof := New_List;
6908 Type_B := Standard_Boolean;
6910 else
6911 Prof := New_List (
6912 Make_Parameter_Specification (Loc,
6913 Defining_Identifier => Make_Defining_Identifier (Loc, Name_L),
6914 In_Present => True,
6915 Out_Present => True,
6916 Parameter_Type =>
6917 New_Reference_To (RTE (RE_Finalizable_Ptr), Loc)));
6918 Type_B := Standard_Short_Short_Integer;
6919 end if;
6921 Append_To (Prof,
6922 Make_Parameter_Specification (Loc,
6923 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
6924 In_Present => True,
6925 Out_Present => True,
6926 Parameter_Type => New_Reference_To (Tag_Typ, Loc)));
6928 Append_To (Prof,
6929 Make_Parameter_Specification (Loc,
6930 Defining_Identifier => Make_Defining_Identifier (Loc, Name_B),
6931 Parameter_Type => New_Reference_To (Type_B, Loc)));
6933 return Predef_Spec_Or_Body (Loc,
6934 Name => Make_TSS_Name (Tag_Typ, Name),
6935 Tag_Typ => Tag_Typ,
6936 Profile => Prof,
6937 For_Body => For_Body);
6939 exception
6940 when RE_Not_Available =>
6941 return Empty;
6942 end Predef_Deep_Spec;
6944 -------------------------
6945 -- Predef_Spec_Or_Body --
6946 -------------------------
6948 function Predef_Spec_Or_Body
6949 (Loc : Source_Ptr;
6950 Tag_Typ : Entity_Id;
6951 Name : Name_Id;
6952 Profile : List_Id;
6953 Ret_Type : Entity_Id := Empty;
6954 For_Body : Boolean := False) return Node_Id
6956 Id : constant Entity_Id := Make_Defining_Identifier (Loc, Name);
6957 Spec : Node_Id;
6959 begin
6960 Set_Is_Public (Id, Is_Public (Tag_Typ));
6962 -- The internal flag is set to mark these declarations because
6963 -- they have specific properties. First they are primitives even
6964 -- if they are not defined in the type scope (the freezing point
6965 -- is not necessarily in the same scope), furthermore the
6966 -- predefined equality can be overridden by a user-defined
6967 -- equality, no body will be generated in this case.
6969 Set_Is_Internal (Id);
6971 if not Debug_Generated_Code then
6972 Set_Debug_Info_Off (Id);
6973 end if;
6975 if No (Ret_Type) then
6976 Spec :=
6977 Make_Procedure_Specification (Loc,
6978 Defining_Unit_Name => Id,
6979 Parameter_Specifications => Profile);
6980 else
6981 Spec :=
6982 Make_Function_Specification (Loc,
6983 Defining_Unit_Name => Id,
6984 Parameter_Specifications => Profile,
6985 Result_Definition =>
6986 New_Reference_To (Ret_Type, Loc));
6987 end if;
6989 -- If body case, return empty subprogram body. Note that this is
6990 -- ill-formed, because there is not even a null statement, and
6991 -- certainly not a return in the function case. The caller is
6992 -- expected to do surgery on the body to add the appropriate stuff.
6994 if For_Body then
6995 return Make_Subprogram_Body (Loc, Spec, Empty_List, Empty);
6997 -- For the case of Input/Output attributes applied to an abstract type,
6998 -- generate abstract specifications. These will never be called,
6999 -- but we need the slots allocated in the dispatching table so
7000 -- that typ'Class'Input and typ'Class'Output will work properly.
7002 elsif (Is_TSS (Name, TSS_Stream_Input)
7003 or else
7004 Is_TSS (Name, TSS_Stream_Output))
7005 and then Is_Abstract (Tag_Typ)
7006 then
7007 return Make_Abstract_Subprogram_Declaration (Loc, Spec);
7009 -- Normal spec case, where we return a subprogram declaration
7011 else
7012 return Make_Subprogram_Declaration (Loc, Spec);
7013 end if;
7014 end Predef_Spec_Or_Body;
7016 -----------------------------
7017 -- Predef_Stream_Attr_Spec --
7018 -----------------------------
7020 function Predef_Stream_Attr_Spec
7021 (Loc : Source_Ptr;
7022 Tag_Typ : Entity_Id;
7023 Name : TSS_Name_Type;
7024 For_Body : Boolean := False) return Node_Id
7026 Ret_Type : Entity_Id;
7028 begin
7029 if Name = TSS_Stream_Input then
7030 Ret_Type := Tag_Typ;
7031 else
7032 Ret_Type := Empty;
7033 end if;
7035 return Predef_Spec_Or_Body (Loc,
7036 Name => Make_TSS_Name (Tag_Typ, Name),
7037 Tag_Typ => Tag_Typ,
7038 Profile => Build_Stream_Attr_Profile (Loc, Tag_Typ, Name),
7039 Ret_Type => Ret_Type,
7040 For_Body => For_Body);
7041 end Predef_Stream_Attr_Spec;
7043 ---------------------------------
7044 -- Predefined_Primitive_Bodies --
7045 ---------------------------------
7047 function Predefined_Primitive_Bodies
7048 (Tag_Typ : Entity_Id;
7049 Renamed_Eq : Node_Id) return List_Id
7051 Loc : constant Source_Ptr := Sloc (Tag_Typ);
7052 Res : constant List_Id := New_List;
7053 Decl : Node_Id;
7054 Prim : Elmt_Id;
7055 Eq_Needed : Boolean;
7056 Eq_Name : Name_Id;
7057 Ent : Entity_Id;
7059 begin
7060 -- See if we have a predefined "=" operator
7062 if Present (Renamed_Eq) then
7063 Eq_Needed := True;
7064 Eq_Name := Chars (Renamed_Eq);
7066 else
7067 Eq_Needed := False;
7068 Eq_Name := No_Name;
7070 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
7071 while Present (Prim) loop
7072 if Chars (Node (Prim)) = Name_Op_Eq
7073 and then Is_Internal (Node (Prim))
7074 then
7075 Eq_Needed := True;
7076 Eq_Name := Name_Op_Eq;
7077 end if;
7079 Next_Elmt (Prim);
7080 end loop;
7081 end if;
7083 -- Body of _Alignment
7085 Decl := Predef_Spec_Or_Body (Loc,
7086 Tag_Typ => Tag_Typ,
7087 Name => Name_uAlignment,
7088 Profile => New_List (
7089 Make_Parameter_Specification (Loc,
7090 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
7091 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
7093 Ret_Type => Standard_Integer,
7094 For_Body => True);
7096 Set_Handled_Statement_Sequence (Decl,
7097 Make_Handled_Sequence_Of_Statements (Loc, New_List (
7098 Make_Return_Statement (Loc,
7099 Expression =>
7100 Make_Attribute_Reference (Loc,
7101 Prefix => Make_Identifier (Loc, Name_X),
7102 Attribute_Name => Name_Alignment)))));
7104 Append_To (Res, Decl);
7106 -- Body of _Size
7108 Decl := Predef_Spec_Or_Body (Loc,
7109 Tag_Typ => Tag_Typ,
7110 Name => Name_uSize,
7111 Profile => New_List (
7112 Make_Parameter_Specification (Loc,
7113 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
7114 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
7116 Ret_Type => Standard_Long_Long_Integer,
7117 For_Body => True);
7119 Set_Handled_Statement_Sequence (Decl,
7120 Make_Handled_Sequence_Of_Statements (Loc, New_List (
7121 Make_Return_Statement (Loc,
7122 Expression =>
7123 Make_Attribute_Reference (Loc,
7124 Prefix => Make_Identifier (Loc, Name_X),
7125 Attribute_Name => Name_Size)))));
7127 Append_To (Res, Decl);
7129 -- Bodies for Dispatching stream IO routines. We need these only for
7130 -- non-limited types (in the limited case there is no dispatching).
7131 -- We also skip them if dispatching or finalization are not available.
7133 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Read)
7134 and then No (TSS (Tag_Typ, TSS_Stream_Read))
7135 then
7136 Build_Record_Read_Procedure (Loc, Tag_Typ, Decl, Ent);
7137 Append_To (Res, Decl);
7138 end if;
7140 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Write)
7141 and then No (TSS (Tag_Typ, TSS_Stream_Write))
7142 then
7143 Build_Record_Write_Procedure (Loc, Tag_Typ, Decl, Ent);
7144 Append_To (Res, Decl);
7145 end if;
7147 -- Skip bodies of _Input and _Output for the abstract case, since
7148 -- the corresponding specs are abstract (see Predef_Spec_Or_Body)
7150 if not Is_Abstract (Tag_Typ) then
7151 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Input)
7152 and then No (TSS (Tag_Typ, TSS_Stream_Input))
7153 then
7154 Build_Record_Or_Elementary_Input_Function
7155 (Loc, Tag_Typ, Decl, Ent);
7156 Append_To (Res, Decl);
7157 end if;
7159 if Stream_Operation_OK (Tag_Typ, TSS_Stream_Output)
7160 and then No (TSS (Tag_Typ, TSS_Stream_Output))
7161 then
7162 Build_Record_Or_Elementary_Output_Procedure
7163 (Loc, Tag_Typ, Decl, Ent);
7164 Append_To (Res, Decl);
7165 end if;
7166 end if;
7168 -- Generate the bodies for the following primitive operations:
7170 -- disp_asynchronous_select
7171 -- disp_conditional_select
7172 -- disp_get_prim_op_kind
7173 -- disp_get_task_id
7174 -- disp_timed_select
7176 -- for limited interfaces and synchronized types that implement a
7177 -- limited interface. The interface versions will have null bodies.
7179 if Ada_Version >= Ada_05
7180 and then
7181 not Restriction_Active (No_Dispatching_Calls)
7182 and then
7183 ((Is_Interface (Tag_Typ) and then Is_Limited_Record (Tag_Typ))
7184 or else
7185 (Is_Concurrent_Record_Type (Tag_Typ)
7186 and then Implements_Interface (
7187 Typ => Tag_Typ,
7188 Kind => Any_Limited_Interface,
7189 Check_Parent => True)))
7190 then
7191 Append_To (Res, Make_Disp_Asynchronous_Select_Body (Tag_Typ));
7192 Append_To (Res, Make_Disp_Conditional_Select_Body (Tag_Typ));
7193 Append_To (Res, Make_Disp_Get_Prim_Op_Kind_Body (Tag_Typ));
7194 Append_To (Res, Make_Disp_Get_Task_Id_Body (Tag_Typ));
7195 Append_To (Res, Make_Disp_Timed_Select_Body (Tag_Typ));
7196 end if;
7198 if not Is_Limited_Type (Tag_Typ) then
7200 -- Body for equality
7202 if Eq_Needed then
7203 Decl :=
7204 Predef_Spec_Or_Body (Loc,
7205 Tag_Typ => Tag_Typ,
7206 Name => Eq_Name,
7207 Profile => New_List (
7208 Make_Parameter_Specification (Loc,
7209 Defining_Identifier =>
7210 Make_Defining_Identifier (Loc, Name_X),
7211 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
7213 Make_Parameter_Specification (Loc,
7214 Defining_Identifier =>
7215 Make_Defining_Identifier (Loc, Name_Y),
7216 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
7218 Ret_Type => Standard_Boolean,
7219 For_Body => True);
7221 declare
7222 Def : constant Node_Id := Parent (Tag_Typ);
7223 Stmts : constant List_Id := New_List;
7224 Variant_Case : Boolean := Has_Discriminants (Tag_Typ);
7225 Comps : Node_Id := Empty;
7226 Typ_Def : Node_Id := Type_Definition (Def);
7228 begin
7229 if Variant_Case then
7230 if Nkind (Typ_Def) = N_Derived_Type_Definition then
7231 Typ_Def := Record_Extension_Part (Typ_Def);
7232 end if;
7234 if Present (Typ_Def) then
7235 Comps := Component_List (Typ_Def);
7236 end if;
7238 Variant_Case := Present (Comps)
7239 and then Present (Variant_Part (Comps));
7240 end if;
7242 if Variant_Case then
7243 Append_To (Stmts,
7244 Make_Eq_If (Tag_Typ, Discriminant_Specifications (Def)));
7245 Append_List_To (Stmts, Make_Eq_Case (Tag_Typ, Comps));
7246 Append_To (Stmts,
7247 Make_Return_Statement (Loc,
7248 Expression => New_Reference_To (Standard_True, Loc)));
7250 else
7251 Append_To (Stmts,
7252 Make_Return_Statement (Loc,
7253 Expression =>
7254 Expand_Record_Equality (Tag_Typ,
7255 Typ => Tag_Typ,
7256 Lhs => Make_Identifier (Loc, Name_X),
7257 Rhs => Make_Identifier (Loc, Name_Y),
7258 Bodies => Declarations (Decl))));
7259 end if;
7261 Set_Handled_Statement_Sequence (Decl,
7262 Make_Handled_Sequence_Of_Statements (Loc, Stmts));
7263 end;
7264 Append_To (Res, Decl);
7265 end if;
7267 -- Body for dispatching assignment
7269 Decl :=
7270 Predef_Spec_Or_Body (Loc,
7271 Tag_Typ => Tag_Typ,
7272 Name => Name_uAssign,
7273 Profile => New_List (
7274 Make_Parameter_Specification (Loc,
7275 Defining_Identifier => Make_Defining_Identifier (Loc, Name_X),
7276 Out_Present => True,
7277 Parameter_Type => New_Reference_To (Tag_Typ, Loc)),
7279 Make_Parameter_Specification (Loc,
7280 Defining_Identifier => Make_Defining_Identifier (Loc, Name_Y),
7281 Parameter_Type => New_Reference_To (Tag_Typ, Loc))),
7282 For_Body => True);
7284 Set_Handled_Statement_Sequence (Decl,
7285 Make_Handled_Sequence_Of_Statements (Loc, New_List (
7286 Make_Assignment_Statement (Loc,
7287 Name => Make_Identifier (Loc, Name_X),
7288 Expression => Make_Identifier (Loc, Name_Y)))));
7290 Append_To (Res, Decl);
7291 end if;
7293 -- Generate dummy bodies for finalization actions of types that have
7294 -- no controlled components.
7296 -- Skip this processing if we are in the finalization routine in the
7297 -- runtime itself, otherwise we get hopelessly circularly confused!
7299 if In_Finalization_Root (Tag_Typ) then
7300 null;
7302 -- Skip this if finalization is not available
7304 elsif Restriction_Active (No_Finalization) then
7305 null;
7307 elsif (Etype (Tag_Typ) = Tag_Typ
7308 or else Is_Controlled (Tag_Typ)
7310 -- Ada 2005 (AI-251): We must also generate these subprograms
7311 -- if the immediate ancestor of Tag_Typ is an interface to
7312 -- ensure the correct initialization of its dispatch table.
7314 or else (not Is_Interface (Tag_Typ)
7315 and then
7316 Is_Interface (Etype (Tag_Typ))))
7317 and then not Has_Controlled_Component (Tag_Typ)
7318 then
7319 if not Is_Limited_Type (Tag_Typ) then
7320 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Adjust, True);
7322 if Is_Controlled (Tag_Typ) then
7323 Set_Handled_Statement_Sequence (Decl,
7324 Make_Handled_Sequence_Of_Statements (Loc,
7325 Make_Adjust_Call (
7326 Ref => Make_Identifier (Loc, Name_V),
7327 Typ => Tag_Typ,
7328 Flist_Ref => Make_Identifier (Loc, Name_L),
7329 With_Attach => Make_Identifier (Loc, Name_B))));
7331 else
7332 Set_Handled_Statement_Sequence (Decl,
7333 Make_Handled_Sequence_Of_Statements (Loc, New_List (
7334 Make_Null_Statement (Loc))));
7335 end if;
7337 Append_To (Res, Decl);
7338 end if;
7340 Decl := Predef_Deep_Spec (Loc, Tag_Typ, TSS_Deep_Finalize, True);
7342 if Is_Controlled (Tag_Typ) then
7343 Set_Handled_Statement_Sequence (Decl,
7344 Make_Handled_Sequence_Of_Statements (Loc,
7345 Make_Final_Call (
7346 Ref => Make_Identifier (Loc, Name_V),
7347 Typ => Tag_Typ,
7348 With_Detach => Make_Identifier (Loc, Name_B))));
7350 else
7351 Set_Handled_Statement_Sequence (Decl,
7352 Make_Handled_Sequence_Of_Statements (Loc, New_List (
7353 Make_Null_Statement (Loc))));
7354 end if;
7356 Append_To (Res, Decl);
7357 end if;
7359 return Res;
7360 end Predefined_Primitive_Bodies;
7362 ---------------------------------
7363 -- Predefined_Primitive_Freeze --
7364 ---------------------------------
7366 function Predefined_Primitive_Freeze
7367 (Tag_Typ : Entity_Id) return List_Id
7369 Loc : constant Source_Ptr := Sloc (Tag_Typ);
7370 Res : constant List_Id := New_List;
7371 Prim : Elmt_Id;
7372 Frnodes : List_Id;
7374 begin
7375 Prim := First_Elmt (Primitive_Operations (Tag_Typ));
7376 while Present (Prim) loop
7377 if Is_Internal (Node (Prim)) then
7378 Frnodes := Freeze_Entity (Node (Prim), Loc);
7380 if Present (Frnodes) then
7381 Append_List_To (Res, Frnodes);
7382 end if;
7383 end if;
7385 Next_Elmt (Prim);
7386 end loop;
7388 return Res;
7389 end Predefined_Primitive_Freeze;
7391 -------------------------
7392 -- Stream_Operation_OK --
7393 -------------------------
7395 function Stream_Operation_OK
7396 (Typ : Entity_Id;
7397 Operation : TSS_Name_Type) return Boolean
7399 Has_Inheritable_Stream_Attribute : Boolean := False;
7401 begin
7402 if Is_Limited_Type (Typ)
7403 and then Is_Tagged_Type (Typ)
7404 and then Is_Derived_Type (Typ)
7405 then
7406 -- Special case of a limited type extension: a default implementation
7407 -- of the stream attributes Read and Write exists if the attribute
7408 -- has been specified for an ancestor type.
7410 Has_Inheritable_Stream_Attribute :=
7411 Present (Find_Inherited_TSS (Base_Type (Etype (Typ)), Operation));
7412 end if;
7414 return
7415 not (Is_Limited_Type (Typ)
7416 and then not Has_Inheritable_Stream_Attribute)
7417 and then not Has_Unknown_Discriminants (Typ)
7418 and then RTE_Available (RE_Tag)
7419 and then RTE_Available (RE_Root_Stream_Type)
7420 and then not Restriction_Active (No_Dispatch)
7421 and then not Restriction_Active (No_Streams);
7422 end Stream_Operation_OK;
7423 end Exp_Ch3;