gofrontend: deduplicate C syscall function declarations
[official-gcc.git] / gcc / predict.c
bloba847ec6f9d937b6182f79e5abcb63fc1ff8ac8a9
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "tm.h"
34 #include "tree.h"
35 #include "calls.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "except.h"
45 #include "diagnostic-core.h"
46 #include "recog.h"
47 #include "expr.h"
48 #include "predict.h"
49 #include "coverage.h"
50 #include "sreal.h"
51 #include "params.h"
52 #include "target.h"
53 #include "cfgloop.h"
54 #include "pointer-set.h"
55 #include "tree-ssa-alias.h"
56 #include "internal-fn.h"
57 #include "gimple-expr.h"
58 #include "is-a.h"
59 #include "gimple.h"
60 #include "gimple-iterator.h"
61 #include "gimple-ssa.h"
62 #include "cgraph.h"
63 #include "tree-cfg.h"
64 #include "tree-phinodes.h"
65 #include "ssa-iterators.h"
66 #include "tree-ssa-loop-niter.h"
67 #include "tree-ssa-loop.h"
68 #include "tree-pass.h"
69 #include "tree-scalar-evolution.h"
70 #include "cfgloop.h"
72 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
73 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
74 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
75 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void predict_paths_leading_to_edge (edge, enum br_predictor, enum prediction);
81 static bool can_predict_insn_p (const_rtx);
83 /* Information we hold about each branch predictor.
84 Filled using information from predict.def. */
86 struct predictor_info
88 const char *const name; /* Name used in the debugging dumps. */
89 const int hitrate; /* Expected hitrate used by
90 predict_insn_def call. */
91 const int flags;
94 /* Use given predictor without Dempster-Shaffer theory if it matches
95 using first_match heuristics. */
96 #define PRED_FLAG_FIRST_MATCH 1
98 /* Recompute hitrate in percent to our representation. */
100 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
103 static const struct predictor_info predictor_info[]= {
104 #include "predict.def"
106 /* Upper bound on predictors. */
107 {NULL, 0, 0}
109 #undef DEF_PREDICTOR
111 /* Return TRUE if frequency FREQ is considered to be hot. */
113 static inline bool
114 maybe_hot_frequency_p (struct function *fun, int freq)
116 struct cgraph_node *node = cgraph_get_node (fun->decl);
117 if (!profile_info || !flag_branch_probabilities)
119 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (node->frequency == NODE_FREQUENCY_HOT)
122 return true;
124 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
125 return true;
126 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
127 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
128 return false;
129 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
130 return false;
131 if (freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency
132 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
133 return false;
134 return true;
137 static gcov_type min_count = -1;
139 /* Determine the threshold for hot BB counts. */
141 gcov_type
142 get_hot_bb_threshold ()
144 gcov_working_set_t *ws;
145 if (min_count == -1)
147 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
148 gcc_assert (ws);
149 min_count = ws->min_counter;
151 return min_count;
154 /* Set the threshold for hot BB counts. */
156 void
157 set_hot_bb_threshold (gcov_type min)
159 min_count = min;
162 /* Return TRUE if frequency FREQ is considered to be hot. */
164 static inline bool
165 maybe_hot_count_p (struct function *fun, gcov_type count)
167 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
168 return true;
169 /* Code executed at most once is not hot. */
170 if (profile_info->runs >= count)
171 return false;
172 return (count >= get_hot_bb_threshold ());
175 /* Return true in case BB can be CPU intensive and should be optimized
176 for maximal performance. */
178 bool
179 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
181 gcc_checking_assert (fun);
182 if (profile_status_for_fn (fun) == PROFILE_READ)
183 return maybe_hot_count_p (fun, bb->count);
184 return maybe_hot_frequency_p (fun, bb->frequency);
187 /* Return true if the call can be hot. */
189 bool
190 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
192 if (profile_info && flag_branch_probabilities
193 && !maybe_hot_count_p (NULL,
194 edge->count))
195 return false;
196 if (edge->caller->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED
197 || (edge->callee
198 && edge->callee->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
199 return false;
200 if (edge->caller->frequency > NODE_FREQUENCY_UNLIKELY_EXECUTED
201 && (edge->callee
202 && edge->callee->frequency <= NODE_FREQUENCY_EXECUTED_ONCE))
203 return false;
204 if (optimize_size)
205 return false;
206 if (edge->caller->frequency == NODE_FREQUENCY_HOT)
207 return true;
208 if (edge->caller->frequency == NODE_FREQUENCY_EXECUTED_ONCE
209 && edge->frequency < CGRAPH_FREQ_BASE * 3 / 2)
210 return false;
211 if (flag_guess_branch_prob)
213 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0
214 || edge->frequency <= (CGRAPH_FREQ_BASE
215 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
216 return false;
218 return true;
221 /* Return true in case BB can be CPU intensive and should be optimized
222 for maximal performance. */
224 bool
225 maybe_hot_edge_p (edge e)
227 if (profile_status_for_fn (cfun) == PROFILE_READ)
228 return maybe_hot_count_p (cfun, e->count);
229 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
234 /* Return true if profile COUNT and FREQUENCY, or function FUN static
235 node frequency reflects never being executed. */
237 static bool
238 probably_never_executed (struct function *fun,
239 gcov_type count, int frequency)
241 gcc_checking_assert (fun);
242 if (profile_status_for_fn (cfun) == PROFILE_READ)
244 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
245 if (count * unlikely_count_fraction >= profile_info->runs)
246 return false;
247 if (!frequency)
248 return true;
249 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
250 return false;
251 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
253 gcov_type computed_count;
254 /* Check for possibility of overflow, in which case entry bb count
255 is large enough to do the division first without losing much
256 precision. */
257 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count < REG_BR_PROB_BASE *
258 REG_BR_PROB_BASE)
260 gcov_type scaled_count
261 = frequency * ENTRY_BLOCK_PTR_FOR_FN (cfun)->count *
262 unlikely_count_fraction;
263 computed_count = RDIV (scaled_count,
264 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
266 else
268 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count,
269 ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency);
270 computed_count *= frequency * unlikely_count_fraction;
272 if (computed_count >= profile_info->runs)
273 return false;
275 return true;
277 if ((!profile_info || !flag_branch_probabilities)
278 && (cgraph_get_node (fun->decl)->frequency
279 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
280 return true;
281 return false;
285 /* Return true in case BB is probably never executed. */
287 bool
288 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
290 return probably_never_executed (fun, bb->count, bb->frequency);
294 /* Return true in case edge E is probably never executed. */
296 bool
297 probably_never_executed_edge_p (struct function *fun, edge e)
299 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
302 /* Return true if NODE should be optimized for size. */
304 bool
305 cgraph_optimize_for_size_p (struct cgraph_node *node)
307 if (optimize_size)
308 return true;
309 if (node && (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED))
310 return true;
311 else
312 return false;
315 /* Return true when current function should always be optimized for size. */
317 bool
318 optimize_function_for_size_p (struct function *fun)
320 if (optimize_size)
321 return true;
322 if (!fun || !fun->decl)
323 return false;
324 return cgraph_optimize_for_size_p (cgraph_get_node (fun->decl));
327 /* Return true when current function should always be optimized for speed. */
329 bool
330 optimize_function_for_speed_p (struct function *fun)
332 return !optimize_function_for_size_p (fun);
335 /* Return TRUE when BB should be optimized for size. */
337 bool
338 optimize_bb_for_size_p (const_basic_block bb)
340 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (cfun, bb);
343 /* Return TRUE when BB should be optimized for speed. */
345 bool
346 optimize_bb_for_speed_p (const_basic_block bb)
348 return !optimize_bb_for_size_p (bb);
351 /* Return TRUE when BB should be optimized for size. */
353 bool
354 optimize_edge_for_size_p (edge e)
356 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
359 /* Return TRUE when BB should be optimized for speed. */
361 bool
362 optimize_edge_for_speed_p (edge e)
364 return !optimize_edge_for_size_p (e);
367 /* Return TRUE when BB should be optimized for size. */
369 bool
370 optimize_insn_for_size_p (void)
372 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
375 /* Return TRUE when BB should be optimized for speed. */
377 bool
378 optimize_insn_for_speed_p (void)
380 return !optimize_insn_for_size_p ();
383 /* Return TRUE when LOOP should be optimized for size. */
385 bool
386 optimize_loop_for_size_p (struct loop *loop)
388 return optimize_bb_for_size_p (loop->header);
391 /* Return TRUE when LOOP should be optimized for speed. */
393 bool
394 optimize_loop_for_speed_p (struct loop *loop)
396 return optimize_bb_for_speed_p (loop->header);
399 /* Return TRUE when LOOP nest should be optimized for speed. */
401 bool
402 optimize_loop_nest_for_speed_p (struct loop *loop)
404 struct loop *l = loop;
405 if (optimize_loop_for_speed_p (loop))
406 return true;
407 l = loop->inner;
408 while (l && l != loop)
410 if (optimize_loop_for_speed_p (l))
411 return true;
412 if (l->inner)
413 l = l->inner;
414 else if (l->next)
415 l = l->next;
416 else
418 while (l != loop && !l->next)
419 l = loop_outer (l);
420 if (l != loop)
421 l = l->next;
424 return false;
427 /* Return TRUE when LOOP nest should be optimized for size. */
429 bool
430 optimize_loop_nest_for_size_p (struct loop *loop)
432 return !optimize_loop_nest_for_speed_p (loop);
435 /* Return true when edge E is likely to be well predictable by branch
436 predictor. */
438 bool
439 predictable_edge_p (edge e)
441 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
442 return false;
443 if ((e->probability
444 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
445 || (REG_BR_PROB_BASE - e->probability
446 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
447 return true;
448 return false;
452 /* Set RTL expansion for BB profile. */
454 void
455 rtl_profile_for_bb (basic_block bb)
457 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
460 /* Set RTL expansion for edge profile. */
462 void
463 rtl_profile_for_edge (edge e)
465 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
468 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
469 void
470 default_rtl_profile (void)
472 crtl->maybe_hot_insn_p = true;
475 /* Return true if the one of outgoing edges is already predicted by
476 PREDICTOR. */
478 bool
479 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
481 rtx note;
482 if (!INSN_P (BB_END (bb)))
483 return false;
484 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
485 if (REG_NOTE_KIND (note) == REG_BR_PRED
486 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
487 return true;
488 return false;
491 /* This map contains for a basic block the list of predictions for the
492 outgoing edges. */
494 static struct pointer_map_t *bb_predictions;
496 /* Structure representing predictions in tree level. */
498 struct edge_prediction {
499 struct edge_prediction *ep_next;
500 edge ep_edge;
501 enum br_predictor ep_predictor;
502 int ep_probability;
505 /* Return true if the one of outgoing edges is already predicted by
506 PREDICTOR. */
508 bool
509 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
511 struct edge_prediction *i;
512 void **preds = pointer_map_contains (bb_predictions, bb);
514 if (!preds)
515 return false;
517 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
518 if (i->ep_predictor == predictor)
519 return true;
520 return false;
523 /* Return true when the probability of edge is reliable.
525 The profile guessing code is good at predicting branch outcome (ie.
526 taken/not taken), that is predicted right slightly over 75% of time.
527 It is however notoriously poor on predicting the probability itself.
528 In general the profile appear a lot flatter (with probabilities closer
529 to 50%) than the reality so it is bad idea to use it to drive optimization
530 such as those disabling dynamic branch prediction for well predictable
531 branches.
533 There are two exceptions - edges leading to noreturn edges and edges
534 predicted by number of iterations heuristics are predicted well. This macro
535 should be able to distinguish those, but at the moment it simply check for
536 noreturn heuristic that is only one giving probability over 99% or bellow
537 1%. In future we might want to propagate reliability information across the
538 CFG if we find this information useful on multiple places. */
539 static bool
540 probability_reliable_p (int prob)
542 return (profile_status_for_fn (cfun) == PROFILE_READ
543 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
544 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
547 /* Same predicate as above, working on edges. */
548 bool
549 edge_probability_reliable_p (const_edge e)
551 return probability_reliable_p (e->probability);
554 /* Same predicate as edge_probability_reliable_p, working on notes. */
555 bool
556 br_prob_note_reliable_p (const_rtx note)
558 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
559 return probability_reliable_p (XINT (note, 0));
562 static void
563 predict_insn (rtx insn, enum br_predictor predictor, int probability)
565 gcc_assert (any_condjump_p (insn));
566 if (!flag_guess_branch_prob)
567 return;
569 add_reg_note (insn, REG_BR_PRED,
570 gen_rtx_CONCAT (VOIDmode,
571 GEN_INT ((int) predictor),
572 GEN_INT ((int) probability)));
575 /* Predict insn by given predictor. */
577 void
578 predict_insn_def (rtx insn, enum br_predictor predictor,
579 enum prediction taken)
581 int probability = predictor_info[(int) predictor].hitrate;
583 if (taken != TAKEN)
584 probability = REG_BR_PROB_BASE - probability;
586 predict_insn (insn, predictor, probability);
589 /* Predict edge E with given probability if possible. */
591 void
592 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
594 rtx last_insn;
595 last_insn = BB_END (e->src);
597 /* We can store the branch prediction information only about
598 conditional jumps. */
599 if (!any_condjump_p (last_insn))
600 return;
602 /* We always store probability of branching. */
603 if (e->flags & EDGE_FALLTHRU)
604 probability = REG_BR_PROB_BASE - probability;
606 predict_insn (last_insn, predictor, probability);
609 /* Predict edge E with the given PROBABILITY. */
610 void
611 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
613 gcc_assert (profile_status_for_fn (cfun) != PROFILE_GUESSED);
614 if ((e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) && EDGE_COUNT (e->src->succs) >
616 && flag_guess_branch_prob && optimize)
618 struct edge_prediction *i = XNEW (struct edge_prediction);
619 void **preds = pointer_map_insert (bb_predictions, e->src);
621 i->ep_next = (struct edge_prediction *) *preds;
622 *preds = i;
623 i->ep_probability = probability;
624 i->ep_predictor = predictor;
625 i->ep_edge = e;
629 /* Remove all predictions on given basic block that are attached
630 to edge E. */
631 void
632 remove_predictions_associated_with_edge (edge e)
634 void **preds;
636 if (!bb_predictions)
637 return;
639 preds = pointer_map_contains (bb_predictions, e->src);
641 if (preds)
643 struct edge_prediction **prediction = (struct edge_prediction **) preds;
644 struct edge_prediction *next;
646 while (*prediction)
648 if ((*prediction)->ep_edge == e)
650 next = (*prediction)->ep_next;
651 free (*prediction);
652 *prediction = next;
654 else
655 prediction = &((*prediction)->ep_next);
660 /* Clears the list of predictions stored for BB. */
662 static void
663 clear_bb_predictions (basic_block bb)
665 void **preds = pointer_map_contains (bb_predictions, bb);
666 struct edge_prediction *pred, *next;
668 if (!preds)
669 return;
671 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
673 next = pred->ep_next;
674 free (pred);
676 *preds = NULL;
679 /* Return true when we can store prediction on insn INSN.
680 At the moment we represent predictions only on conditional
681 jumps, not at computed jump or other complicated cases. */
682 static bool
683 can_predict_insn_p (const_rtx insn)
685 return (JUMP_P (insn)
686 && any_condjump_p (insn)
687 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
690 /* Predict edge E by given predictor if possible. */
692 void
693 predict_edge_def (edge e, enum br_predictor predictor,
694 enum prediction taken)
696 int probability = predictor_info[(int) predictor].hitrate;
698 if (taken != TAKEN)
699 probability = REG_BR_PROB_BASE - probability;
701 predict_edge (e, predictor, probability);
704 /* Invert all branch predictions or probability notes in the INSN. This needs
705 to be done each time we invert the condition used by the jump. */
707 void
708 invert_br_probabilities (rtx insn)
710 rtx note;
712 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
713 if (REG_NOTE_KIND (note) == REG_BR_PROB)
714 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
715 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
716 XEXP (XEXP (note, 0), 1)
717 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
720 /* Dump information about the branch prediction to the output file. */
722 static void
723 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
724 basic_block bb, int used)
726 edge e;
727 edge_iterator ei;
729 if (!file)
730 return;
732 FOR_EACH_EDGE (e, ei, bb->succs)
733 if (! (e->flags & EDGE_FALLTHRU))
734 break;
736 fprintf (file, " %s heuristics%s: %.1f%%",
737 predictor_info[predictor].name,
738 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
740 if (bb->count)
742 fprintf (file, " exec ");
743 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
744 if (e)
746 fprintf (file, " hit ");
747 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
748 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
752 fprintf (file, "\n");
755 /* We can not predict the probabilities of outgoing edges of bb. Set them
756 evenly and hope for the best. */
757 static void
758 set_even_probabilities (basic_block bb)
760 int nedges = 0;
761 edge e;
762 edge_iterator ei;
764 FOR_EACH_EDGE (e, ei, bb->succs)
765 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
766 nedges ++;
767 FOR_EACH_EDGE (e, ei, bb->succs)
768 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
769 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
770 else
771 e->probability = 0;
774 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
775 note if not already present. Remove now useless REG_BR_PRED notes. */
777 static void
778 combine_predictions_for_insn (rtx insn, basic_block bb)
780 rtx prob_note;
781 rtx *pnote;
782 rtx note;
783 int best_probability = PROB_EVEN;
784 enum br_predictor best_predictor = END_PREDICTORS;
785 int combined_probability = REG_BR_PROB_BASE / 2;
786 int d;
787 bool first_match = false;
788 bool found = false;
790 if (!can_predict_insn_p (insn))
792 set_even_probabilities (bb);
793 return;
796 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
797 pnote = &REG_NOTES (insn);
798 if (dump_file)
799 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
800 bb->index);
802 /* We implement "first match" heuristics and use probability guessed
803 by predictor with smallest index. */
804 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
805 if (REG_NOTE_KIND (note) == REG_BR_PRED)
807 enum br_predictor predictor = ((enum br_predictor)
808 INTVAL (XEXP (XEXP (note, 0), 0)));
809 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
811 found = true;
812 if (best_predictor > predictor)
813 best_probability = probability, best_predictor = predictor;
815 d = (combined_probability * probability
816 + (REG_BR_PROB_BASE - combined_probability)
817 * (REG_BR_PROB_BASE - probability));
819 /* Use FP math to avoid overflows of 32bit integers. */
820 if (d == 0)
821 /* If one probability is 0% and one 100%, avoid division by zero. */
822 combined_probability = REG_BR_PROB_BASE / 2;
823 else
824 combined_probability = (((double) combined_probability) * probability
825 * REG_BR_PROB_BASE / d + 0.5);
828 /* Decide which heuristic to use. In case we didn't match anything,
829 use no_prediction heuristic, in case we did match, use either
830 first match or Dempster-Shaffer theory depending on the flags. */
832 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
833 first_match = true;
835 if (!found)
836 dump_prediction (dump_file, PRED_NO_PREDICTION,
837 combined_probability, bb, true);
838 else
840 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
841 bb, !first_match);
842 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
843 bb, first_match);
846 if (first_match)
847 combined_probability = best_probability;
848 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
850 while (*pnote)
852 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
854 enum br_predictor predictor = ((enum br_predictor)
855 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
856 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
858 dump_prediction (dump_file, predictor, probability, bb,
859 !first_match || best_predictor == predictor);
860 *pnote = XEXP (*pnote, 1);
862 else
863 pnote = &XEXP (*pnote, 1);
866 if (!prob_note)
868 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
870 /* Save the prediction into CFG in case we are seeing non-degenerated
871 conditional jump. */
872 if (!single_succ_p (bb))
874 BRANCH_EDGE (bb)->probability = combined_probability;
875 FALLTHRU_EDGE (bb)->probability
876 = REG_BR_PROB_BASE - combined_probability;
879 else if (!single_succ_p (bb))
881 int prob = XINT (prob_note, 0);
883 BRANCH_EDGE (bb)->probability = prob;
884 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
886 else
887 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
890 /* Combine predictions into single probability and store them into CFG.
891 Remove now useless prediction entries. */
893 static void
894 combine_predictions_for_bb (basic_block bb)
896 int best_probability = PROB_EVEN;
897 enum br_predictor best_predictor = END_PREDICTORS;
898 int combined_probability = REG_BR_PROB_BASE / 2;
899 int d;
900 bool first_match = false;
901 bool found = false;
902 struct edge_prediction *pred;
903 int nedges = 0;
904 edge e, first = NULL, second = NULL;
905 edge_iterator ei;
906 void **preds;
908 FOR_EACH_EDGE (e, ei, bb->succs)
909 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
911 nedges ++;
912 if (first && !second)
913 second = e;
914 if (!first)
915 first = e;
918 /* When there is no successor or only one choice, prediction is easy.
920 We are lazy for now and predict only basic blocks with two outgoing
921 edges. It is possible to predict generic case too, but we have to
922 ignore first match heuristics and do more involved combining. Implement
923 this later. */
924 if (nedges != 2)
926 if (!bb->count)
927 set_even_probabilities (bb);
928 clear_bb_predictions (bb);
929 if (dump_file)
930 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
931 nedges, bb->index);
932 return;
935 if (dump_file)
936 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
938 preds = pointer_map_contains (bb_predictions, bb);
939 if (preds)
941 /* We implement "first match" heuristics and use probability guessed
942 by predictor with smallest index. */
943 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
945 enum br_predictor predictor = pred->ep_predictor;
946 int probability = pred->ep_probability;
948 if (pred->ep_edge != first)
949 probability = REG_BR_PROB_BASE - probability;
951 found = true;
952 /* First match heuristics would be widly confused if we predicted
953 both directions. */
954 if (best_predictor > predictor)
956 struct edge_prediction *pred2;
957 int prob = probability;
959 for (pred2 = (struct edge_prediction *) *preds;
960 pred2; pred2 = pred2->ep_next)
961 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
963 int probability2 = pred->ep_probability;
965 if (pred2->ep_edge != first)
966 probability2 = REG_BR_PROB_BASE - probability2;
968 if ((probability < REG_BR_PROB_BASE / 2) !=
969 (probability2 < REG_BR_PROB_BASE / 2))
970 break;
972 /* If the same predictor later gave better result, go for it! */
973 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
974 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
975 prob = probability2;
977 if (!pred2)
978 best_probability = prob, best_predictor = predictor;
981 d = (combined_probability * probability
982 + (REG_BR_PROB_BASE - combined_probability)
983 * (REG_BR_PROB_BASE - probability));
985 /* Use FP math to avoid overflows of 32bit integers. */
986 if (d == 0)
987 /* If one probability is 0% and one 100%, avoid division by zero. */
988 combined_probability = REG_BR_PROB_BASE / 2;
989 else
990 combined_probability = (((double) combined_probability)
991 * probability
992 * REG_BR_PROB_BASE / d + 0.5);
996 /* Decide which heuristic to use. In case we didn't match anything,
997 use no_prediction heuristic, in case we did match, use either
998 first match or Dempster-Shaffer theory depending on the flags. */
1000 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
1001 first_match = true;
1003 if (!found)
1004 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
1005 else
1007 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1008 !first_match);
1009 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1010 first_match);
1013 if (first_match)
1014 combined_probability = best_probability;
1015 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
1017 if (preds)
1019 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1021 enum br_predictor predictor = pred->ep_predictor;
1022 int probability = pred->ep_probability;
1024 if (pred->ep_edge != EDGE_SUCC (bb, 0))
1025 probability = REG_BR_PROB_BASE - probability;
1026 dump_prediction (dump_file, predictor, probability, bb,
1027 !first_match || best_predictor == predictor);
1030 clear_bb_predictions (bb);
1032 if (!bb->count)
1034 first->probability = combined_probability;
1035 second->probability = REG_BR_PROB_BASE - combined_probability;
1039 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1040 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1042 T1 and T2 should be one of the following cases:
1043 1. T1 is SSA_NAME, T2 is NULL
1044 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1045 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1047 static tree
1048 strips_small_constant (tree t1, tree t2)
1050 tree ret = NULL;
1051 int value = 0;
1053 if (!t1)
1054 return NULL;
1055 else if (TREE_CODE (t1) == SSA_NAME)
1056 ret = t1;
1057 else if (tree_fits_shwi_p (t1))
1058 value = tree_to_shwi (t1);
1059 else
1060 return NULL;
1062 if (!t2)
1063 return ret;
1064 else if (tree_fits_shwi_p (t2))
1065 value = tree_to_shwi (t2);
1066 else if (TREE_CODE (t2) == SSA_NAME)
1068 if (ret)
1069 return NULL;
1070 else
1071 ret = t2;
1074 if (value <= 4 && value >= -4)
1075 return ret;
1076 else
1077 return NULL;
1080 /* Return the SSA_NAME in T or T's operands.
1081 Return NULL if SSA_NAME cannot be found. */
1083 static tree
1084 get_base_value (tree t)
1086 if (TREE_CODE (t) == SSA_NAME)
1087 return t;
1089 if (!BINARY_CLASS_P (t))
1090 return NULL;
1092 switch (TREE_OPERAND_LENGTH (t))
1094 case 1:
1095 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1096 case 2:
1097 return strips_small_constant (TREE_OPERAND (t, 0),
1098 TREE_OPERAND (t, 1));
1099 default:
1100 return NULL;
1104 /* Check the compare STMT in LOOP. If it compares an induction
1105 variable to a loop invariant, return true, and save
1106 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1107 Otherwise return false and set LOOP_INVAIANT to NULL. */
1109 static bool
1110 is_comparison_with_loop_invariant_p (gimple stmt, struct loop *loop,
1111 tree *loop_invariant,
1112 enum tree_code *compare_code,
1113 tree *loop_step,
1114 tree *loop_iv_base)
1116 tree op0, op1, bound, base;
1117 affine_iv iv0, iv1;
1118 enum tree_code code;
1119 tree step;
1121 code = gimple_cond_code (stmt);
1122 *loop_invariant = NULL;
1124 switch (code)
1126 case GT_EXPR:
1127 case GE_EXPR:
1128 case NE_EXPR:
1129 case LT_EXPR:
1130 case LE_EXPR:
1131 case EQ_EXPR:
1132 break;
1134 default:
1135 return false;
1138 op0 = gimple_cond_lhs (stmt);
1139 op1 = gimple_cond_rhs (stmt);
1141 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1142 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1143 return false;
1144 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1145 return false;
1146 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1147 return false;
1148 if (TREE_CODE (iv0.step) != INTEGER_CST
1149 || TREE_CODE (iv1.step) != INTEGER_CST)
1150 return false;
1151 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1152 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1153 return false;
1155 if (integer_zerop (iv0.step))
1157 if (code != NE_EXPR && code != EQ_EXPR)
1158 code = invert_tree_comparison (code, false);
1159 bound = iv0.base;
1160 base = iv1.base;
1161 if (tree_fits_shwi_p (iv1.step))
1162 step = iv1.step;
1163 else
1164 return false;
1166 else
1168 bound = iv1.base;
1169 base = iv0.base;
1170 if (tree_fits_shwi_p (iv0.step))
1171 step = iv0.step;
1172 else
1173 return false;
1176 if (TREE_CODE (bound) != INTEGER_CST)
1177 bound = get_base_value (bound);
1178 if (!bound)
1179 return false;
1180 if (TREE_CODE (base) != INTEGER_CST)
1181 base = get_base_value (base);
1182 if (!base)
1183 return false;
1185 *loop_invariant = bound;
1186 *compare_code = code;
1187 *loop_step = step;
1188 *loop_iv_base = base;
1189 return true;
1192 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1194 static bool
1195 expr_coherent_p (tree t1, tree t2)
1197 gimple stmt;
1198 tree ssa_name_1 = NULL;
1199 tree ssa_name_2 = NULL;
1201 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1202 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1204 if (t1 == t2)
1205 return true;
1207 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1208 return true;
1209 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1210 return false;
1212 /* Check to see if t1 is expressed/defined with t2. */
1213 stmt = SSA_NAME_DEF_STMT (t1);
1214 gcc_assert (stmt != NULL);
1215 if (is_gimple_assign (stmt))
1217 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1218 if (ssa_name_1 && ssa_name_1 == t2)
1219 return true;
1222 /* Check to see if t2 is expressed/defined with t1. */
1223 stmt = SSA_NAME_DEF_STMT (t2);
1224 gcc_assert (stmt != NULL);
1225 if (is_gimple_assign (stmt))
1227 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1228 if (ssa_name_2 && ssa_name_2 == t1)
1229 return true;
1232 /* Compare if t1 and t2's def_stmts are identical. */
1233 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1234 return true;
1235 else
1236 return false;
1239 /* Predict branch probability of BB when BB contains a branch that compares
1240 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1241 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1243 E.g.
1244 for (int i = 0; i < bound; i++) {
1245 if (i < bound - 2)
1246 computation_1();
1247 else
1248 computation_2();
1251 In this loop, we will predict the branch inside the loop to be taken. */
1253 static void
1254 predict_iv_comparison (struct loop *loop, basic_block bb,
1255 tree loop_bound_var,
1256 tree loop_iv_base_var,
1257 enum tree_code loop_bound_code,
1258 int loop_bound_step)
1260 gimple stmt;
1261 tree compare_var, compare_base;
1262 enum tree_code compare_code;
1263 tree compare_step_var;
1264 edge then_edge;
1265 edge_iterator ei;
1267 if (predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1268 || predicted_by_p (bb, PRED_LOOP_ITERATIONS)
1269 || predicted_by_p (bb, PRED_LOOP_EXIT))
1270 return;
1272 stmt = last_stmt (bb);
1273 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1274 return;
1275 if (!is_comparison_with_loop_invariant_p (stmt, loop, &compare_var,
1276 &compare_code,
1277 &compare_step_var,
1278 &compare_base))
1279 return;
1281 /* Find the taken edge. */
1282 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1283 if (then_edge->flags & EDGE_TRUE_VALUE)
1284 break;
1286 /* When comparing an IV to a loop invariant, NE is more likely to be
1287 taken while EQ is more likely to be not-taken. */
1288 if (compare_code == NE_EXPR)
1290 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1291 return;
1293 else if (compare_code == EQ_EXPR)
1295 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1296 return;
1299 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1300 return;
1302 /* If loop bound, base and compare bound are all constants, we can
1303 calculate the probability directly. */
1304 if (tree_fits_shwi_p (loop_bound_var)
1305 && tree_fits_shwi_p (compare_var)
1306 && tree_fits_shwi_p (compare_base))
1308 int probability;
1309 bool of, overflow = false;
1310 double_int mod, compare_count, tem, loop_count;
1312 double_int loop_bound = tree_to_double_int (loop_bound_var);
1313 double_int compare_bound = tree_to_double_int (compare_var);
1314 double_int base = tree_to_double_int (compare_base);
1315 double_int compare_step = tree_to_double_int (compare_step_var);
1317 /* (loop_bound - base) / compare_step */
1318 tem = loop_bound.sub_with_overflow (base, &of);
1319 overflow |= of;
1320 loop_count = tem.divmod_with_overflow (compare_step,
1321 0, TRUNC_DIV_EXPR,
1322 &mod, &of);
1323 overflow |= of;
1325 if ((!compare_step.is_negative ())
1326 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1328 /* (loop_bound - compare_bound) / compare_step */
1329 tem = loop_bound.sub_with_overflow (compare_bound, &of);
1330 overflow |= of;
1331 compare_count = tem.divmod_with_overflow (compare_step,
1332 0, TRUNC_DIV_EXPR,
1333 &mod, &of);
1334 overflow |= of;
1336 else
1338 /* (compare_bound - base) / compare_step */
1339 tem = compare_bound.sub_with_overflow (base, &of);
1340 overflow |= of;
1341 compare_count = tem.divmod_with_overflow (compare_step,
1342 0, TRUNC_DIV_EXPR,
1343 &mod, &of);
1344 overflow |= of;
1346 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1347 ++compare_count;
1348 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1349 ++loop_count;
1350 if (compare_count.is_negative ())
1351 compare_count = double_int_zero;
1352 if (loop_count.is_negative ())
1353 loop_count = double_int_zero;
1354 if (loop_count.is_zero ())
1355 probability = 0;
1356 else if (compare_count.scmp (loop_count) == 1)
1357 probability = REG_BR_PROB_BASE;
1358 else
1360 /* If loop_count is too big, such that REG_BR_PROB_BASE * loop_count
1361 could overflow, shift both loop_count and compare_count right
1362 a bit so that it doesn't overflow. Note both counts are known not
1363 to be negative at this point. */
1364 int clz_bits = clz_hwi (loop_count.high);
1365 gcc_assert (REG_BR_PROB_BASE < 32768);
1366 if (clz_bits < 16)
1368 loop_count.arshift (16 - clz_bits, HOST_BITS_PER_DOUBLE_INT);
1369 compare_count.arshift (16 - clz_bits, HOST_BITS_PER_DOUBLE_INT);
1371 tem = compare_count.mul_with_sign (double_int::from_shwi
1372 (REG_BR_PROB_BASE), true, &of);
1373 gcc_assert (!of);
1374 tem = tem.divmod (loop_count, true, TRUNC_DIV_EXPR, &mod);
1375 probability = tem.to_uhwi ();
1378 if (!overflow)
1379 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1381 return;
1384 if (expr_coherent_p (loop_bound_var, compare_var))
1386 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1387 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1388 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1389 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1390 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1391 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1392 else if (loop_bound_code == NE_EXPR)
1394 /* If the loop backedge condition is "(i != bound)", we do
1395 the comparison based on the step of IV:
1396 * step < 0 : backedge condition is like (i > bound)
1397 * step > 0 : backedge condition is like (i < bound) */
1398 gcc_assert (loop_bound_step != 0);
1399 if (loop_bound_step > 0
1400 && (compare_code == LT_EXPR
1401 || compare_code == LE_EXPR))
1402 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1403 else if (loop_bound_step < 0
1404 && (compare_code == GT_EXPR
1405 || compare_code == GE_EXPR))
1406 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1407 else
1408 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1410 else
1411 /* The branch is predicted not-taken if loop_bound_code is
1412 opposite with compare_code. */
1413 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1415 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1417 /* For cases like:
1418 for (i = s; i < h; i++)
1419 if (i > s + 2) ....
1420 The branch should be predicted taken. */
1421 if (loop_bound_step > 0
1422 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1423 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1424 else if (loop_bound_step < 0
1425 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1426 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1427 else
1428 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1432 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1433 exits are resulted from short-circuit conditions that will generate an
1434 if_tmp. E.g.:
1436 if (foo() || global > 10)
1437 break;
1439 This will be translated into:
1441 BB3:
1442 loop header...
1443 BB4:
1444 if foo() goto BB6 else goto BB5
1445 BB5:
1446 if global > 10 goto BB6 else goto BB7
1447 BB6:
1448 goto BB7
1449 BB7:
1450 iftmp = (PHI 0(BB5), 1(BB6))
1451 if iftmp == 1 goto BB8 else goto BB3
1452 BB8:
1453 outside of the loop...
1455 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1456 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1457 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1458 exits to predict them using PRED_LOOP_EXIT. */
1460 static void
1461 predict_extra_loop_exits (edge exit_edge)
1463 unsigned i;
1464 bool check_value_one;
1465 gimple phi_stmt;
1466 tree cmp_rhs, cmp_lhs;
1467 gimple cmp_stmt = last_stmt (exit_edge->src);
1469 if (!cmp_stmt || gimple_code (cmp_stmt) != GIMPLE_COND)
1470 return;
1471 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1472 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1473 if (!TREE_CONSTANT (cmp_rhs)
1474 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1475 return;
1476 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1477 return;
1479 /* If check_value_one is true, only the phi_args with value '1' will lead
1480 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1481 loop exit. */
1482 check_value_one = (((integer_onep (cmp_rhs))
1483 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1484 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1486 phi_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1487 if (!phi_stmt || gimple_code (phi_stmt) != GIMPLE_PHI)
1488 return;
1490 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1492 edge e1;
1493 edge_iterator ei;
1494 tree val = gimple_phi_arg_def (phi_stmt, i);
1495 edge e = gimple_phi_arg_edge (phi_stmt, i);
1497 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1498 continue;
1499 if ((check_value_one ^ integer_onep (val)) == 1)
1500 continue;
1501 if (EDGE_COUNT (e->src->succs) != 1)
1503 predict_paths_leading_to_edge (e, PRED_LOOP_EXIT, NOT_TAKEN);
1504 continue;
1507 FOR_EACH_EDGE (e1, ei, e->src->preds)
1508 predict_paths_leading_to_edge (e1, PRED_LOOP_EXIT, NOT_TAKEN);
1512 /* Predict edge probabilities by exploiting loop structure. */
1514 static void
1515 predict_loops (void)
1517 struct loop *loop;
1519 /* Try to predict out blocks in a loop that are not part of a
1520 natural loop. */
1521 FOR_EACH_LOOP (loop, 0)
1523 basic_block bb, *bbs;
1524 unsigned j, n_exits;
1525 vec<edge> exits;
1526 struct tree_niter_desc niter_desc;
1527 edge ex;
1528 struct nb_iter_bound *nb_iter;
1529 enum tree_code loop_bound_code = ERROR_MARK;
1530 tree loop_bound_step = NULL;
1531 tree loop_bound_var = NULL;
1532 tree loop_iv_base = NULL;
1533 gimple stmt = NULL;
1535 exits = get_loop_exit_edges (loop);
1536 n_exits = exits.length ();
1537 if (!n_exits)
1539 exits.release ();
1540 continue;
1543 FOR_EACH_VEC_ELT (exits, j, ex)
1545 tree niter = NULL;
1546 HOST_WIDE_INT nitercst;
1547 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1548 int probability;
1549 enum br_predictor predictor;
1551 predict_extra_loop_exits (ex);
1553 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1554 niter = niter_desc.niter;
1555 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1556 niter = loop_niter_by_eval (loop, ex);
1558 if (TREE_CODE (niter) == INTEGER_CST)
1560 if (tree_fits_uhwi_p (niter)
1561 && max
1562 && compare_tree_int (niter, max - 1) == -1)
1563 nitercst = tree_to_uhwi (niter) + 1;
1564 else
1565 nitercst = max;
1566 predictor = PRED_LOOP_ITERATIONS;
1568 /* If we have just one exit and we can derive some information about
1569 the number of iterations of the loop from the statements inside
1570 the loop, use it to predict this exit. */
1571 else if (n_exits == 1)
1573 nitercst = estimated_stmt_executions_int (loop);
1574 if (nitercst < 0)
1575 continue;
1576 if (nitercst > max)
1577 nitercst = max;
1579 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1581 else
1582 continue;
1584 /* If the prediction for number of iterations is zero, do not
1585 predict the exit edges. */
1586 if (nitercst == 0)
1587 continue;
1589 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
1590 predict_edge (ex, predictor, probability);
1592 exits.release ();
1594 /* Find information about loop bound variables. */
1595 for (nb_iter = loop->bounds; nb_iter;
1596 nb_iter = nb_iter->next)
1597 if (nb_iter->stmt
1598 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1600 stmt = nb_iter->stmt;
1601 break;
1603 if (!stmt && last_stmt (loop->header)
1604 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1605 stmt = last_stmt (loop->header);
1606 if (stmt)
1607 is_comparison_with_loop_invariant_p (stmt, loop,
1608 &loop_bound_var,
1609 &loop_bound_code,
1610 &loop_bound_step,
1611 &loop_iv_base);
1613 bbs = get_loop_body (loop);
1615 for (j = 0; j < loop->num_nodes; j++)
1617 int header_found = 0;
1618 edge e;
1619 edge_iterator ei;
1621 bb = bbs[j];
1623 /* Bypass loop heuristics on continue statement. These
1624 statements construct loops via "non-loop" constructs
1625 in the source language and are better to be handled
1626 separately. */
1627 if (predicted_by_p (bb, PRED_CONTINUE))
1628 continue;
1630 /* Loop branch heuristics - predict an edge back to a
1631 loop's head as taken. */
1632 if (bb == loop->latch)
1634 e = find_edge (loop->latch, loop->header);
1635 if (e)
1637 header_found = 1;
1638 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1642 /* Loop exit heuristics - predict an edge exiting the loop if the
1643 conditional has no loop header successors as not taken. */
1644 if (!header_found
1645 /* If we already used more reliable loop exit predictors, do not
1646 bother with PRED_LOOP_EXIT. */
1647 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1648 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1650 /* For loop with many exits we don't want to predict all exits
1651 with the pretty large probability, because if all exits are
1652 considered in row, the loop would be predicted to iterate
1653 almost never. The code to divide probability by number of
1654 exits is very rough. It should compute the number of exits
1655 taken in each patch through function (not the overall number
1656 of exits that might be a lot higher for loops with wide switch
1657 statements in them) and compute n-th square root.
1659 We limit the minimal probability by 2% to avoid
1660 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1661 as this was causing regression in perl benchmark containing such
1662 a wide loop. */
1664 int probability = ((REG_BR_PROB_BASE
1665 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1666 / n_exits);
1667 if (probability < HITRATE (2))
1668 probability = HITRATE (2);
1669 FOR_EACH_EDGE (e, ei, bb->succs)
1670 if (e->dest->index < NUM_FIXED_BLOCKS
1671 || !flow_bb_inside_loop_p (loop, e->dest))
1672 predict_edge (e, PRED_LOOP_EXIT, probability);
1674 if (loop_bound_var)
1675 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1676 loop_bound_code,
1677 tree_to_shwi (loop_bound_step));
1680 /* Free basic blocks from get_loop_body. */
1681 free (bbs);
1685 /* Attempt to predict probabilities of BB outgoing edges using local
1686 properties. */
1687 static void
1688 bb_estimate_probability_locally (basic_block bb)
1690 rtx last_insn = BB_END (bb);
1691 rtx cond;
1693 if (! can_predict_insn_p (last_insn))
1694 return;
1695 cond = get_condition (last_insn, NULL, false, false);
1696 if (! cond)
1697 return;
1699 /* Try "pointer heuristic."
1700 A comparison ptr == 0 is predicted as false.
1701 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1702 if (COMPARISON_P (cond)
1703 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1704 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1706 if (GET_CODE (cond) == EQ)
1707 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1708 else if (GET_CODE (cond) == NE)
1709 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1711 else
1713 /* Try "opcode heuristic."
1714 EQ tests are usually false and NE tests are usually true. Also,
1715 most quantities are positive, so we can make the appropriate guesses
1716 about signed comparisons against zero. */
1717 switch (GET_CODE (cond))
1719 case CONST_INT:
1720 /* Unconditional branch. */
1721 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1722 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1723 break;
1725 case EQ:
1726 case UNEQ:
1727 /* Floating point comparisons appears to behave in a very
1728 unpredictable way because of special role of = tests in
1729 FP code. */
1730 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1732 /* Comparisons with 0 are often used for booleans and there is
1733 nothing useful to predict about them. */
1734 else if (XEXP (cond, 1) == const0_rtx
1735 || XEXP (cond, 0) == const0_rtx)
1737 else
1738 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1739 break;
1741 case NE:
1742 case LTGT:
1743 /* Floating point comparisons appears to behave in a very
1744 unpredictable way because of special role of = tests in
1745 FP code. */
1746 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1748 /* Comparisons with 0 are often used for booleans and there is
1749 nothing useful to predict about them. */
1750 else if (XEXP (cond, 1) == const0_rtx
1751 || XEXP (cond, 0) == const0_rtx)
1753 else
1754 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1755 break;
1757 case ORDERED:
1758 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1759 break;
1761 case UNORDERED:
1762 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1763 break;
1765 case LE:
1766 case LT:
1767 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1768 || XEXP (cond, 1) == constm1_rtx)
1769 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1770 break;
1772 case GE:
1773 case GT:
1774 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1775 || XEXP (cond, 1) == constm1_rtx)
1776 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1777 break;
1779 default:
1780 break;
1784 /* Set edge->probability for each successor edge of BB. */
1785 void
1786 guess_outgoing_edge_probabilities (basic_block bb)
1788 bb_estimate_probability_locally (bb);
1789 combine_predictions_for_insn (BB_END (bb), bb);
1792 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
1794 /* Helper function for expr_expected_value. */
1796 static tree
1797 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
1798 tree op1, bitmap visited, enum br_predictor *predictor)
1800 gimple def;
1802 if (predictor)
1803 *predictor = PRED_UNCONDITIONAL;
1805 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1807 if (TREE_CONSTANT (op0))
1808 return op0;
1810 if (code != SSA_NAME)
1811 return NULL_TREE;
1813 def = SSA_NAME_DEF_STMT (op0);
1815 /* If we were already here, break the infinite cycle. */
1816 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
1817 return NULL;
1819 if (gimple_code (def) == GIMPLE_PHI)
1821 /* All the arguments of the PHI node must have the same constant
1822 length. */
1823 int i, n = gimple_phi_num_args (def);
1824 tree val = NULL, new_val;
1826 for (i = 0; i < n; i++)
1828 tree arg = PHI_ARG_DEF (def, i);
1829 enum br_predictor predictor2;
1831 /* If this PHI has itself as an argument, we cannot
1832 determine the string length of this argument. However,
1833 if we can find an expected constant value for the other
1834 PHI args then we can still be sure that this is
1835 likely a constant. So be optimistic and just
1836 continue with the next argument. */
1837 if (arg == PHI_RESULT (def))
1838 continue;
1840 new_val = expr_expected_value (arg, visited, &predictor2);
1842 /* It is difficult to combine value predictors. Simply assume
1843 that later predictor is weaker and take its prediction. */
1844 if (predictor && *predictor < predictor2)
1845 *predictor = predictor2;
1846 if (!new_val)
1847 return NULL;
1848 if (!val)
1849 val = new_val;
1850 else if (!operand_equal_p (val, new_val, false))
1851 return NULL;
1853 return val;
1855 if (is_gimple_assign (def))
1857 if (gimple_assign_lhs (def) != op0)
1858 return NULL;
1860 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1861 gimple_assign_rhs1 (def),
1862 gimple_assign_rhs_code (def),
1863 gimple_assign_rhs2 (def),
1864 visited, predictor);
1867 if (is_gimple_call (def))
1869 tree decl = gimple_call_fndecl (def);
1870 if (!decl)
1872 if (gimple_call_internal_p (def)
1873 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
1875 gcc_assert (gimple_call_num_args (def) == 3);
1876 tree val = gimple_call_arg (def, 0);
1877 if (TREE_CONSTANT (val))
1878 return val;
1879 if (predictor)
1881 *predictor = PRED_BUILTIN_EXPECT;
1882 tree val2 = gimple_call_arg (def, 2);
1883 gcc_assert (TREE_CODE (val2) == INTEGER_CST
1884 && tree_fits_uhwi_p (val2)
1885 && tree_to_uhwi (val2) < END_PREDICTORS);
1886 *predictor = (enum br_predictor) tree_to_uhwi (val2);
1888 return gimple_call_arg (def, 1);
1890 return NULL;
1892 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
1893 switch (DECL_FUNCTION_CODE (decl))
1895 case BUILT_IN_EXPECT:
1897 tree val;
1898 if (gimple_call_num_args (def) != 2)
1899 return NULL;
1900 val = gimple_call_arg (def, 0);
1901 if (TREE_CONSTANT (val))
1902 return val;
1903 if (predictor)
1904 *predictor = PRED_BUILTIN_EXPECT;
1905 return gimple_call_arg (def, 1);
1908 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
1909 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
1910 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
1911 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
1912 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
1913 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
1914 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
1915 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
1916 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
1917 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
1918 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
1919 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
1920 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
1921 /* Assume that any given atomic operation has low contention,
1922 and thus the compare-and-swap operation succeeds. */
1923 if (predictor)
1924 *predictor = PRED_COMPARE_AND_SWAP;
1925 return boolean_true_node;
1929 return NULL;
1932 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1934 tree res;
1935 enum br_predictor predictor2;
1936 op0 = expr_expected_value (op0, visited, predictor);
1937 if (!op0)
1938 return NULL;
1939 op1 = expr_expected_value (op1, visited, &predictor2);
1940 if (predictor && *predictor < predictor2)
1941 *predictor = predictor2;
1942 if (!op1)
1943 return NULL;
1944 res = fold_build2 (code, type, op0, op1);
1945 if (TREE_CONSTANT (res))
1946 return res;
1947 return NULL;
1949 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1951 tree res;
1952 op0 = expr_expected_value (op0, visited, predictor);
1953 if (!op0)
1954 return NULL;
1955 res = fold_build1 (code, type, op0);
1956 if (TREE_CONSTANT (res))
1957 return res;
1958 return NULL;
1960 return NULL;
1963 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1964 The function is used by builtin_expect branch predictor so the evidence
1965 must come from this construct and additional possible constant folding.
1967 We may want to implement more involved value guess (such as value range
1968 propagation based prediction), but such tricks shall go to new
1969 implementation. */
1971 static tree
1972 expr_expected_value (tree expr, bitmap visited,
1973 enum br_predictor *predictor)
1975 enum tree_code code;
1976 tree op0, op1;
1978 if (TREE_CONSTANT (expr))
1980 if (predictor)
1981 *predictor = PRED_UNCONDITIONAL;
1982 return expr;
1985 extract_ops_from_tree (expr, &code, &op0, &op1);
1986 return expr_expected_value_1 (TREE_TYPE (expr),
1987 op0, code, op1, visited, predictor);
1990 /* Predict using opcode of the last statement in basic block. */
1991 static void
1992 tree_predict_by_opcode (basic_block bb)
1994 gimple stmt = last_stmt (bb);
1995 edge then_edge;
1996 tree op0, op1;
1997 tree type;
1998 tree val;
1999 enum tree_code cmp;
2000 bitmap visited;
2001 edge_iterator ei;
2002 enum br_predictor predictor;
2004 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
2005 return;
2006 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2007 if (then_edge->flags & EDGE_TRUE_VALUE)
2008 break;
2009 op0 = gimple_cond_lhs (stmt);
2010 op1 = gimple_cond_rhs (stmt);
2011 cmp = gimple_cond_code (stmt);
2012 type = TREE_TYPE (op0);
2013 visited = BITMAP_ALLOC (NULL);
2014 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
2015 &predictor);
2016 BITMAP_FREE (visited);
2017 if (val && TREE_CODE (val) == INTEGER_CST)
2019 if (predictor == PRED_BUILTIN_EXPECT)
2021 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2023 gcc_assert (percent >= 0 && percent <= 100);
2024 if (integer_zerop (val))
2025 percent = 100 - percent;
2026 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2028 else
2029 predict_edge (then_edge, predictor,
2030 integer_zerop (val) ? NOT_TAKEN : TAKEN);
2032 /* Try "pointer heuristic."
2033 A comparison ptr == 0 is predicted as false.
2034 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2035 if (POINTER_TYPE_P (type))
2037 if (cmp == EQ_EXPR)
2038 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2039 else if (cmp == NE_EXPR)
2040 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2042 else
2044 /* Try "opcode heuristic."
2045 EQ tests are usually false and NE tests are usually true. Also,
2046 most quantities are positive, so we can make the appropriate guesses
2047 about signed comparisons against zero. */
2048 switch (cmp)
2050 case EQ_EXPR:
2051 case UNEQ_EXPR:
2052 /* Floating point comparisons appears to behave in a very
2053 unpredictable way because of special role of = tests in
2054 FP code. */
2055 if (FLOAT_TYPE_P (type))
2057 /* Comparisons with 0 are often used for booleans and there is
2058 nothing useful to predict about them. */
2059 else if (integer_zerop (op0) || integer_zerop (op1))
2061 else
2062 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2063 break;
2065 case NE_EXPR:
2066 case LTGT_EXPR:
2067 /* Floating point comparisons appears to behave in a very
2068 unpredictable way because of special role of = tests in
2069 FP code. */
2070 if (FLOAT_TYPE_P (type))
2072 /* Comparisons with 0 are often used for booleans and there is
2073 nothing useful to predict about them. */
2074 else if (integer_zerop (op0)
2075 || integer_zerop (op1))
2077 else
2078 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2079 break;
2081 case ORDERED_EXPR:
2082 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2083 break;
2085 case UNORDERED_EXPR:
2086 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2087 break;
2089 case LE_EXPR:
2090 case LT_EXPR:
2091 if (integer_zerop (op1)
2092 || integer_onep (op1)
2093 || integer_all_onesp (op1)
2094 || real_zerop (op1)
2095 || real_onep (op1)
2096 || real_minus_onep (op1))
2097 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2098 break;
2100 case GE_EXPR:
2101 case GT_EXPR:
2102 if (integer_zerop (op1)
2103 || integer_onep (op1)
2104 || integer_all_onesp (op1)
2105 || real_zerop (op1)
2106 || real_onep (op1)
2107 || real_minus_onep (op1))
2108 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2109 break;
2111 default:
2112 break;
2116 /* Try to guess whether the value of return means error code. */
2118 static enum br_predictor
2119 return_prediction (tree val, enum prediction *prediction)
2121 /* VOID. */
2122 if (!val)
2123 return PRED_NO_PREDICTION;
2124 /* Different heuristics for pointers and scalars. */
2125 if (POINTER_TYPE_P (TREE_TYPE (val)))
2127 /* NULL is usually not returned. */
2128 if (integer_zerop (val))
2130 *prediction = NOT_TAKEN;
2131 return PRED_NULL_RETURN;
2134 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2136 /* Negative return values are often used to indicate
2137 errors. */
2138 if (TREE_CODE (val) == INTEGER_CST
2139 && tree_int_cst_sgn (val) < 0)
2141 *prediction = NOT_TAKEN;
2142 return PRED_NEGATIVE_RETURN;
2144 /* Constant return values seems to be commonly taken.
2145 Zero/one often represent booleans so exclude them from the
2146 heuristics. */
2147 if (TREE_CONSTANT (val)
2148 && (!integer_zerop (val) && !integer_onep (val)))
2150 *prediction = TAKEN;
2151 return PRED_CONST_RETURN;
2154 return PRED_NO_PREDICTION;
2157 /* Find the basic block with return expression and look up for possible
2158 return value trying to apply RETURN_PREDICTION heuristics. */
2159 static void
2160 apply_return_prediction (void)
2162 gimple return_stmt = NULL;
2163 tree return_val;
2164 edge e;
2165 gimple phi;
2166 int phi_num_args, i;
2167 enum br_predictor pred;
2168 enum prediction direction;
2169 edge_iterator ei;
2171 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2173 return_stmt = last_stmt (e->src);
2174 if (return_stmt
2175 && gimple_code (return_stmt) == GIMPLE_RETURN)
2176 break;
2178 if (!e)
2179 return;
2180 return_val = gimple_return_retval (return_stmt);
2181 if (!return_val)
2182 return;
2183 if (TREE_CODE (return_val) != SSA_NAME
2184 || !SSA_NAME_DEF_STMT (return_val)
2185 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2186 return;
2187 phi = SSA_NAME_DEF_STMT (return_val);
2188 phi_num_args = gimple_phi_num_args (phi);
2189 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2191 /* Avoid the degenerate case where all return values form the function
2192 belongs to same category (ie they are all positive constants)
2193 so we can hardly say something about them. */
2194 for (i = 1; i < phi_num_args; i++)
2195 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2196 break;
2197 if (i != phi_num_args)
2198 for (i = 0; i < phi_num_args; i++)
2200 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2201 if (pred != PRED_NO_PREDICTION)
2202 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2203 direction);
2207 /* Look for basic block that contains unlikely to happen events
2208 (such as noreturn calls) and mark all paths leading to execution
2209 of this basic blocks as unlikely. */
2211 static void
2212 tree_bb_level_predictions (void)
2214 basic_block bb;
2215 bool has_return_edges = false;
2216 edge e;
2217 edge_iterator ei;
2219 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2220 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2222 has_return_edges = true;
2223 break;
2226 apply_return_prediction ();
2228 FOR_EACH_BB_FN (bb, cfun)
2230 gimple_stmt_iterator gsi;
2232 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2234 gimple stmt = gsi_stmt (gsi);
2235 tree decl;
2237 if (is_gimple_call (stmt))
2239 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2240 && has_return_edges)
2241 predict_paths_leading_to (bb, PRED_NORETURN,
2242 NOT_TAKEN);
2243 decl = gimple_call_fndecl (stmt);
2244 if (decl
2245 && lookup_attribute ("cold",
2246 DECL_ATTRIBUTES (decl)))
2247 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2248 NOT_TAKEN);
2250 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2252 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2253 gimple_predict_outcome (stmt));
2254 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2255 hints to callers. */
2261 #ifdef ENABLE_CHECKING
2263 /* Callback for pointer_map_traverse, asserts that the pointer map is
2264 empty. */
2266 static bool
2267 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
2268 void *data ATTRIBUTE_UNUSED)
2270 gcc_assert (!*value);
2271 return false;
2273 #endif
2275 /* Predict branch probabilities and estimate profile for basic block BB. */
2277 static void
2278 tree_estimate_probability_bb (basic_block bb)
2280 edge e;
2281 edge_iterator ei;
2282 gimple last;
2284 FOR_EACH_EDGE (e, ei, bb->succs)
2286 /* Predict edges to user labels with attributes. */
2287 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2289 gimple_stmt_iterator gi;
2290 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2292 gimple stmt = gsi_stmt (gi);
2293 tree decl;
2295 if (gimple_code (stmt) != GIMPLE_LABEL)
2296 break;
2297 decl = gimple_label_label (stmt);
2298 if (DECL_ARTIFICIAL (decl))
2299 continue;
2301 /* Finally, we have a user-defined label. */
2302 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2303 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2304 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2305 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2309 /* Predict early returns to be probable, as we've already taken
2310 care for error returns and other cases are often used for
2311 fast paths through function.
2313 Since we've already removed the return statements, we are
2314 looking for CFG like:
2316 if (conditional)
2319 goto return_block
2321 some other blocks
2322 return_block:
2323 return_stmt. */
2324 if (e->dest != bb->next_bb
2325 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2326 && single_succ_p (e->dest)
2327 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2328 && (last = last_stmt (e->dest)) != NULL
2329 && gimple_code (last) == GIMPLE_RETURN)
2331 edge e1;
2332 edge_iterator ei1;
2334 if (single_succ_p (bb))
2336 FOR_EACH_EDGE (e1, ei1, bb->preds)
2337 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2338 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2339 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2340 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2342 else
2343 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2344 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2345 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2346 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2349 /* Look for block we are guarding (ie we dominate it,
2350 but it doesn't postdominate us). */
2351 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2352 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2353 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2355 gimple_stmt_iterator bi;
2357 /* The call heuristic claims that a guarded function call
2358 is improbable. This is because such calls are often used
2359 to signal exceptional situations such as printing error
2360 messages. */
2361 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2362 gsi_next (&bi))
2364 gimple stmt = gsi_stmt (bi);
2365 if (is_gimple_call (stmt)
2366 /* Constant and pure calls are hardly used to signalize
2367 something exceptional. */
2368 && gimple_has_side_effects (stmt))
2370 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2371 break;
2376 tree_predict_by_opcode (bb);
2379 /* Predict branch probabilities and estimate profile of the tree CFG.
2380 This function can be called from the loop optimizers to recompute
2381 the profile information. */
2383 void
2384 tree_estimate_probability (void)
2386 basic_block bb;
2388 add_noreturn_fake_exit_edges ();
2389 connect_infinite_loops_to_exit ();
2390 /* We use loop_niter_by_eval, which requires that the loops have
2391 preheaders. */
2392 create_preheaders (CP_SIMPLE_PREHEADERS);
2393 calculate_dominance_info (CDI_POST_DOMINATORS);
2395 bb_predictions = pointer_map_create ();
2396 tree_bb_level_predictions ();
2397 record_loop_exits ();
2399 if (number_of_loops (cfun) > 1)
2400 predict_loops ();
2402 FOR_EACH_BB_FN (bb, cfun)
2403 tree_estimate_probability_bb (bb);
2405 FOR_EACH_BB_FN (bb, cfun)
2406 combine_predictions_for_bb (bb);
2408 #ifdef ENABLE_CHECKING
2409 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
2410 #endif
2411 pointer_map_destroy (bb_predictions);
2412 bb_predictions = NULL;
2414 estimate_bb_frequencies (false);
2415 free_dominance_info (CDI_POST_DOMINATORS);
2416 remove_fake_exit_edges ();
2419 /* Predict edges to successors of CUR whose sources are not postdominated by
2420 BB by PRED and recurse to all postdominators. */
2422 static void
2423 predict_paths_for_bb (basic_block cur, basic_block bb,
2424 enum br_predictor pred,
2425 enum prediction taken,
2426 bitmap visited)
2428 edge e;
2429 edge_iterator ei;
2430 basic_block son;
2432 /* We are looking for all edges forming edge cut induced by
2433 set of all blocks postdominated by BB. */
2434 FOR_EACH_EDGE (e, ei, cur->preds)
2435 if (e->src->index >= NUM_FIXED_BLOCKS
2436 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2438 edge e2;
2439 edge_iterator ei2;
2440 bool found = false;
2442 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2443 if (e->flags & (EDGE_EH | EDGE_FAKE))
2444 continue;
2445 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2447 /* See if there is an edge from e->src that is not abnormal
2448 and does not lead to BB. */
2449 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2450 if (e2 != e
2451 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2452 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb))
2454 found = true;
2455 break;
2458 /* If there is non-abnormal path leaving e->src, predict edge
2459 using predictor. Otherwise we need to look for paths
2460 leading to e->src.
2462 The second may lead to infinite loop in the case we are predicitng
2463 regions that are only reachable by abnormal edges. We simply
2464 prevent visiting given BB twice. */
2465 if (found)
2466 predict_edge_def (e, pred, taken);
2467 else if (bitmap_set_bit (visited, e->src->index))
2468 predict_paths_for_bb (e->src, e->src, pred, taken, visited);
2470 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2471 son;
2472 son = next_dom_son (CDI_POST_DOMINATORS, son))
2473 predict_paths_for_bb (son, bb, pred, taken, visited);
2476 /* Sets branch probabilities according to PREDiction and
2477 FLAGS. */
2479 static void
2480 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2481 enum prediction taken)
2483 bitmap visited = BITMAP_ALLOC (NULL);
2484 predict_paths_for_bb (bb, bb, pred, taken, visited);
2485 BITMAP_FREE (visited);
2488 /* Like predict_paths_leading_to but take edge instead of basic block. */
2490 static void
2491 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2492 enum prediction taken)
2494 bool has_nonloop_edge = false;
2495 edge_iterator ei;
2496 edge e2;
2498 basic_block bb = e->src;
2499 FOR_EACH_EDGE (e2, ei, bb->succs)
2500 if (e2->dest != e->src && e2->dest != e->dest
2501 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2502 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2504 has_nonloop_edge = true;
2505 break;
2507 if (!has_nonloop_edge)
2509 bitmap visited = BITMAP_ALLOC (NULL);
2510 predict_paths_for_bb (bb, bb, pred, taken, visited);
2511 BITMAP_FREE (visited);
2513 else
2514 predict_edge_def (e, pred, taken);
2517 /* This is used to carry information about basic blocks. It is
2518 attached to the AUX field of the standard CFG block. */
2520 typedef struct block_info_def
2522 /* Estimated frequency of execution of basic_block. */
2523 sreal frequency;
2525 /* To keep queue of basic blocks to process. */
2526 basic_block next;
2528 /* Number of predecessors we need to visit first. */
2529 int npredecessors;
2530 } *block_info;
2532 /* Similar information for edges. */
2533 typedef struct edge_info_def
2535 /* In case edge is a loopback edge, the probability edge will be reached
2536 in case header is. Estimated number of iterations of the loop can be
2537 then computed as 1 / (1 - back_edge_prob). */
2538 sreal back_edge_prob;
2539 /* True if the edge is a loopback edge in the natural loop. */
2540 unsigned int back_edge:1;
2541 } *edge_info;
2543 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2544 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2546 /* Helper function for estimate_bb_frequencies.
2547 Propagate the frequencies in blocks marked in
2548 TOVISIT, starting in HEAD. */
2550 static void
2551 propagate_freq (basic_block head, bitmap tovisit)
2553 basic_block bb;
2554 basic_block last;
2555 unsigned i;
2556 edge e;
2557 basic_block nextbb;
2558 bitmap_iterator bi;
2560 /* For each basic block we need to visit count number of his predecessors
2561 we need to visit first. */
2562 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2564 edge_iterator ei;
2565 int count = 0;
2567 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2569 FOR_EACH_EDGE (e, ei, bb->preds)
2571 bool visit = bitmap_bit_p (tovisit, e->src->index);
2573 if (visit && !(e->flags & EDGE_DFS_BACK))
2574 count++;
2575 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2576 fprintf (dump_file,
2577 "Irreducible region hit, ignoring edge to %i->%i\n",
2578 e->src->index, bb->index);
2580 BLOCK_INFO (bb)->npredecessors = count;
2581 /* When function never returns, we will never process exit block. */
2582 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2583 bb->count = bb->frequency = 0;
2586 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
2587 last = head;
2588 for (bb = head; bb; bb = nextbb)
2590 edge_iterator ei;
2591 sreal cyclic_probability, frequency;
2593 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
2594 memcpy (&frequency, &real_zero, sizeof (real_zero));
2596 nextbb = BLOCK_INFO (bb)->next;
2597 BLOCK_INFO (bb)->next = NULL;
2599 /* Compute frequency of basic block. */
2600 if (bb != head)
2602 #ifdef ENABLE_CHECKING
2603 FOR_EACH_EDGE (e, ei, bb->preds)
2604 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
2605 || (e->flags & EDGE_DFS_BACK));
2606 #endif
2608 FOR_EACH_EDGE (e, ei, bb->preds)
2609 if (EDGE_INFO (e)->back_edge)
2611 sreal_add (&cyclic_probability, &cyclic_probability,
2612 &EDGE_INFO (e)->back_edge_prob);
2614 else if (!(e->flags & EDGE_DFS_BACK))
2616 sreal tmp;
2618 /* frequency += (e->probability
2619 * BLOCK_INFO (e->src)->frequency /
2620 REG_BR_PROB_BASE); */
2622 sreal_init (&tmp, e->probability, 0);
2623 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
2624 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
2625 sreal_add (&frequency, &frequency, &tmp);
2628 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
2630 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
2631 sizeof (frequency));
2633 else
2635 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
2637 memcpy (&cyclic_probability, &real_almost_one,
2638 sizeof (real_almost_one));
2641 /* BLOCK_INFO (bb)->frequency = frequency
2642 / (1 - cyclic_probability) */
2644 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
2645 sreal_div (&BLOCK_INFO (bb)->frequency,
2646 &frequency, &cyclic_probability);
2650 bitmap_clear_bit (tovisit, bb->index);
2652 e = find_edge (bb, head);
2653 if (e)
2655 sreal tmp;
2657 /* EDGE_INFO (e)->back_edge_prob
2658 = ((e->probability * BLOCK_INFO (bb)->frequency)
2659 / REG_BR_PROB_BASE); */
2661 sreal_init (&tmp, e->probability, 0);
2662 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
2663 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2664 &tmp, &real_inv_br_prob_base);
2667 /* Propagate to successor blocks. */
2668 FOR_EACH_EDGE (e, ei, bb->succs)
2669 if (!(e->flags & EDGE_DFS_BACK)
2670 && BLOCK_INFO (e->dest)->npredecessors)
2672 BLOCK_INFO (e->dest)->npredecessors--;
2673 if (!BLOCK_INFO (e->dest)->npredecessors)
2675 if (!nextbb)
2676 nextbb = e->dest;
2677 else
2678 BLOCK_INFO (last)->next = e->dest;
2680 last = e->dest;
2686 /* Estimate frequencies in loops at same nest level. */
2688 static void
2689 estimate_loops_at_level (struct loop *first_loop)
2691 struct loop *loop;
2693 for (loop = first_loop; loop; loop = loop->next)
2695 edge e;
2696 basic_block *bbs;
2697 unsigned i;
2698 bitmap tovisit = BITMAP_ALLOC (NULL);
2700 estimate_loops_at_level (loop->inner);
2702 /* Find current loop back edge and mark it. */
2703 e = loop_latch_edge (loop);
2704 EDGE_INFO (e)->back_edge = 1;
2706 bbs = get_loop_body (loop);
2707 for (i = 0; i < loop->num_nodes; i++)
2708 bitmap_set_bit (tovisit, bbs[i]->index);
2709 free (bbs);
2710 propagate_freq (loop->header, tovisit);
2711 BITMAP_FREE (tovisit);
2715 /* Propagates frequencies through structure of loops. */
2717 static void
2718 estimate_loops (void)
2720 bitmap tovisit = BITMAP_ALLOC (NULL);
2721 basic_block bb;
2723 /* Start by estimating the frequencies in the loops. */
2724 if (number_of_loops (cfun) > 1)
2725 estimate_loops_at_level (current_loops->tree_root->inner);
2727 /* Now propagate the frequencies through all the blocks. */
2728 FOR_ALL_BB_FN (bb, cfun)
2730 bitmap_set_bit (tovisit, bb->index);
2732 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
2733 BITMAP_FREE (tovisit);
2736 /* Drop the profile for NODE to guessed, and update its frequency based on
2737 whether it is expected to be hot given the CALL_COUNT. */
2739 static void
2740 drop_profile (struct cgraph_node *node, gcov_type call_count)
2742 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2743 /* In the case where this was called by another function with a
2744 dropped profile, call_count will be 0. Since there are no
2745 non-zero call counts to this function, we don't know for sure
2746 whether it is hot, and therefore it will be marked normal below. */
2747 bool hot = maybe_hot_count_p (NULL, call_count);
2749 if (dump_file)
2750 fprintf (dump_file,
2751 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2752 node->name (), node->order,
2753 hot ? "Function is hot" : "Function is normal");
2754 /* We only expect to miss profiles for functions that are reached
2755 via non-zero call edges in cases where the function may have
2756 been linked from another module or library (COMDATs and extern
2757 templates). See the comments below for handle_missing_profiles.
2758 Also, only warn in cases where the missing counts exceed the
2759 number of training runs. In certain cases with an execv followed
2760 by a no-return call the profile for the no-return call is not
2761 dumped and there can be a mismatch. */
2762 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
2763 && call_count > profile_info->runs)
2765 if (flag_profile_correction)
2767 if (dump_file)
2768 fprintf (dump_file,
2769 "Missing counts for called function %s/%i\n",
2770 node->name (), node->order);
2772 else
2773 warning (0, "Missing counts for called function %s/%i",
2774 node->name (), node->order);
2777 profile_status_for_fn (fn)
2778 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
2779 node->frequency
2780 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
2783 /* In the case of COMDAT routines, multiple object files will contain the same
2784 function and the linker will select one for the binary. In that case
2785 all the other copies from the profile instrument binary will be missing
2786 profile counts. Look for cases where this happened, due to non-zero
2787 call counts going to 0-count functions, and drop the profile to guessed
2788 so that we can use the estimated probabilities and avoid optimizing only
2789 for size.
2791 The other case where the profile may be missing is when the routine
2792 is not going to be emitted to the object file, e.g. for "extern template"
2793 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2794 all other cases of non-zero calls to 0-count functions. */
2796 void
2797 handle_missing_profiles (void)
2799 struct cgraph_node *node;
2800 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
2801 vec<struct cgraph_node *> worklist;
2802 worklist.create (64);
2804 /* See if 0 count function has non-0 count callers. In this case we
2805 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2806 FOR_EACH_DEFINED_FUNCTION (node)
2808 struct cgraph_edge *e;
2809 gcov_type call_count = 0;
2810 gcov_type max_tp_first_run = 0;
2811 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
2813 if (node->count)
2814 continue;
2815 for (e = node->callers; e; e = e->next_caller)
2817 call_count += e->count;
2819 if (e->caller->tp_first_run > max_tp_first_run)
2820 max_tp_first_run = e->caller->tp_first_run;
2823 /* If time profile is missing, let assign the maximum that comes from
2824 caller functions. */
2825 if (!node->tp_first_run && max_tp_first_run)
2826 node->tp_first_run = max_tp_first_run + 1;
2828 if (call_count
2829 && fn && fn->cfg
2830 && (call_count * unlikely_count_fraction >= profile_info->runs))
2832 drop_profile (node, call_count);
2833 worklist.safe_push (node);
2837 /* Propagate the profile dropping to other 0-count COMDATs that are
2838 potentially called by COMDATs we already dropped the profile on. */
2839 while (worklist.length () > 0)
2841 struct cgraph_edge *e;
2843 node = worklist.pop ();
2844 for (e = node->callees; e; e = e->next_caller)
2846 struct cgraph_node *callee = e->callee;
2847 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
2849 if (callee->count > 0)
2850 continue;
2851 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
2852 && profile_status_for_fn (fn) == PROFILE_READ)
2854 drop_profile (node, 0);
2855 worklist.safe_push (callee);
2859 worklist.release ();
2862 /* Convert counts measured by profile driven feedback to frequencies.
2863 Return nonzero iff there was any nonzero execution count. */
2866 counts_to_freqs (void)
2868 gcov_type count_max, true_count_max = 0;
2869 basic_block bb;
2871 /* Don't overwrite the estimated frequencies when the profile for
2872 the function is missing. We may drop this function PROFILE_GUESSED
2873 later in drop_profile (). */
2874 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
2875 return 0;
2877 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2878 true_count_max = MAX (bb->count, true_count_max);
2880 count_max = MAX (true_count_max, 1);
2881 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2882 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2884 return true_count_max;
2887 /* Return true if function is likely to be expensive, so there is no point to
2888 optimize performance of prologue, epilogue or do inlining at the expense
2889 of code size growth. THRESHOLD is the limit of number of instructions
2890 function can execute at average to be still considered not expensive. */
2892 bool
2893 expensive_function_p (int threshold)
2895 unsigned int sum = 0;
2896 basic_block bb;
2897 unsigned int limit;
2899 /* We can not compute accurately for large thresholds due to scaled
2900 frequencies. */
2901 gcc_assert (threshold <= BB_FREQ_MAX);
2903 /* Frequencies are out of range. This either means that function contains
2904 internal loop executing more than BB_FREQ_MAX times or profile feedback
2905 is available and function has not been executed at all. */
2906 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
2907 return true;
2909 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2910 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
2911 FOR_EACH_BB_FN (bb, cfun)
2913 rtx insn;
2915 FOR_BB_INSNS (bb, insn)
2916 if (active_insn_p (insn))
2918 sum += bb->frequency;
2919 if (sum > limit)
2920 return true;
2924 return false;
2927 /* Estimate and propagate basic block frequencies using the given branch
2928 probabilities. If FORCE is true, the frequencies are used to estimate
2929 the counts even when there are already non-zero profile counts. */
2931 void
2932 estimate_bb_frequencies (bool force)
2934 basic_block bb;
2935 sreal freq_max;
2937 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
2939 static int real_values_initialized = 0;
2941 if (!real_values_initialized)
2943 real_values_initialized = 1;
2944 sreal_init (&real_zero, 0, 0);
2945 sreal_init (&real_one, 1, 0);
2946 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2947 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2948 sreal_init (&real_one_half, 1, -1);
2949 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2950 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2953 mark_dfs_back_edges ();
2955 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
2956 REG_BR_PROB_BASE;
2958 /* Set up block info for each basic block. */
2959 alloc_aux_for_blocks (sizeof (struct block_info_def));
2960 alloc_aux_for_edges (sizeof (struct edge_info_def));
2961 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2963 edge e;
2964 edge_iterator ei;
2966 FOR_EACH_EDGE (e, ei, bb->succs)
2968 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2969 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2970 &EDGE_INFO (e)->back_edge_prob,
2971 &real_inv_br_prob_base);
2975 /* First compute frequencies locally for each loop from innermost
2976 to outermost to examine frequencies for back edges. */
2977 estimate_loops ();
2979 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2980 FOR_EACH_BB_FN (bb, cfun)
2981 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2982 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2984 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2985 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
2987 sreal tmp;
2989 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2990 sreal_add (&tmp, &tmp, &real_one_half);
2991 bb->frequency = sreal_to_int (&tmp);
2994 free_aux_for_blocks ();
2995 free_aux_for_edges ();
2997 compute_function_frequency ();
3000 /* Decide whether function is hot, cold or unlikely executed. */
3001 void
3002 compute_function_frequency (void)
3004 basic_block bb;
3005 struct cgraph_node *node = cgraph_get_node (current_function_decl);
3007 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3008 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
3009 node->only_called_at_startup = true;
3010 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
3011 node->only_called_at_exit = true;
3013 if (profile_status_for_fn (cfun) != PROFILE_READ)
3015 int flags = flags_from_decl_or_type (current_function_decl);
3016 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3017 != NULL)
3018 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3019 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3020 != NULL)
3021 node->frequency = NODE_FREQUENCY_HOT;
3022 else if (flags & ECF_NORETURN)
3023 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3024 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3025 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3026 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3027 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3028 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3029 return;
3032 /* Only first time try to drop function into unlikely executed.
3033 After inlining the roundoff errors may confuse us.
3034 Ipa-profile pass will drop functions only called from unlikely
3035 functions to unlikely and that is most of what we care about. */
3036 if (!cfun->after_inlining)
3037 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3038 FOR_EACH_BB_FN (bb, cfun)
3040 if (maybe_hot_bb_p (cfun, bb))
3042 node->frequency = NODE_FREQUENCY_HOT;
3043 return;
3045 if (!probably_never_executed_bb_p (cfun, bb))
3046 node->frequency = NODE_FREQUENCY_NORMAL;
3050 /* Build PREDICT_EXPR. */
3051 tree
3052 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3054 tree t = build1 (PREDICT_EXPR, void_type_node,
3055 build_int_cst (integer_type_node, predictor));
3056 SET_PREDICT_EXPR_OUTCOME (t, taken);
3057 return t;
3060 const char *
3061 predictor_name (enum br_predictor predictor)
3063 return predictor_info[predictor].name;
3066 /* Predict branch probabilities and estimate profile of the tree CFG. */
3068 namespace {
3070 const pass_data pass_data_profile =
3072 GIMPLE_PASS, /* type */
3073 "profile_estimate", /* name */
3074 OPTGROUP_NONE, /* optinfo_flags */
3075 true, /* has_execute */
3076 TV_BRANCH_PROB, /* tv_id */
3077 PROP_cfg, /* properties_required */
3078 0, /* properties_provided */
3079 0, /* properties_destroyed */
3080 0, /* todo_flags_start */
3081 TODO_verify_ssa, /* todo_flags_finish */
3084 class pass_profile : public gimple_opt_pass
3086 public:
3087 pass_profile (gcc::context *ctxt)
3088 : gimple_opt_pass (pass_data_profile, ctxt)
3091 /* opt_pass methods: */
3092 virtual bool gate (function *) { return flag_guess_branch_prob; }
3093 virtual unsigned int execute (function *);
3095 }; // class pass_profile
3097 unsigned int
3098 pass_profile::execute (function *fun)
3100 unsigned nb_loops;
3102 loop_optimizer_init (LOOPS_NORMAL);
3103 if (dump_file && (dump_flags & TDF_DETAILS))
3104 flow_loops_dump (dump_file, NULL, 0);
3106 mark_irreducible_loops ();
3108 nb_loops = number_of_loops (fun);
3109 if (nb_loops > 1)
3110 scev_initialize ();
3112 tree_estimate_probability ();
3114 if (nb_loops > 1)
3115 scev_finalize ();
3117 loop_optimizer_finalize ();
3118 if (dump_file && (dump_flags & TDF_DETAILS))
3119 gimple_dump_cfg (dump_file, dump_flags);
3120 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3121 profile_status_for_fn (fun) = PROFILE_GUESSED;
3122 return 0;
3125 } // anon namespace
3127 gimple_opt_pass *
3128 make_pass_profile (gcc::context *ctxt)
3130 return new pass_profile (ctxt);
3133 namespace {
3135 const pass_data pass_data_strip_predict_hints =
3137 GIMPLE_PASS, /* type */
3138 "*strip_predict_hints", /* name */
3139 OPTGROUP_NONE, /* optinfo_flags */
3140 true, /* has_execute */
3141 TV_BRANCH_PROB, /* tv_id */
3142 PROP_cfg, /* properties_required */
3143 0, /* properties_provided */
3144 0, /* properties_destroyed */
3145 0, /* todo_flags_start */
3146 TODO_verify_ssa, /* todo_flags_finish */
3149 class pass_strip_predict_hints : public gimple_opt_pass
3151 public:
3152 pass_strip_predict_hints (gcc::context *ctxt)
3153 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3156 /* opt_pass methods: */
3157 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3158 virtual unsigned int execute (function *);
3160 }; // class pass_strip_predict_hints
3162 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3163 we no longer need. */
3164 unsigned int
3165 pass_strip_predict_hints::execute (function *fun)
3167 basic_block bb;
3168 gimple ass_stmt;
3169 tree var;
3171 FOR_EACH_BB_FN (bb, fun)
3173 gimple_stmt_iterator bi;
3174 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3176 gimple stmt = gsi_stmt (bi);
3178 if (gimple_code (stmt) == GIMPLE_PREDICT)
3180 gsi_remove (&bi, true);
3181 continue;
3183 else if (is_gimple_call (stmt))
3185 tree fndecl = gimple_call_fndecl (stmt);
3187 if ((fndecl
3188 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3189 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3190 && gimple_call_num_args (stmt) == 2)
3191 || (gimple_call_internal_p (stmt)
3192 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3194 var = gimple_call_lhs (stmt);
3195 if (var)
3197 ass_stmt
3198 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3199 gsi_replace (&bi, ass_stmt, true);
3201 else
3203 gsi_remove (&bi, true);
3204 continue;
3208 gsi_next (&bi);
3211 return 0;
3214 } // anon namespace
3216 gimple_opt_pass *
3217 make_pass_strip_predict_hints (gcc::context *ctxt)
3219 return new pass_strip_predict_hints (ctxt);
3222 /* Rebuild function frequencies. Passes are in general expected to
3223 maintain profile by hand, however in some cases this is not possible:
3224 for example when inlining several functions with loops freuqencies might run
3225 out of scale and thus needs to be recomputed. */
3227 void
3228 rebuild_frequencies (void)
3230 timevar_push (TV_REBUILD_FREQUENCIES);
3232 /* When the max bb count in the function is small, there is a higher
3233 chance that there were truncation errors in the integer scaling
3234 of counts by inlining and other optimizations. This could lead
3235 to incorrect classification of code as being cold when it isn't.
3236 In that case, force the estimation of bb counts/frequencies from the
3237 branch probabilities, rather than computing frequencies from counts,
3238 which may also lead to frequencies incorrectly reduced to 0. There
3239 is less precision in the probabilities, so we only do this for small
3240 max counts. */
3241 gcov_type count_max = 0;
3242 basic_block bb;
3243 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3244 count_max = MAX (bb->count, count_max);
3246 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3247 || (profile_status_for_fn (cfun) == PROFILE_READ && count_max < REG_BR_PROB_BASE/10))
3249 loop_optimizer_init (0);
3250 add_noreturn_fake_exit_edges ();
3251 mark_irreducible_loops ();
3252 connect_infinite_loops_to_exit ();
3253 estimate_bb_frequencies (true);
3254 remove_fake_exit_edges ();
3255 loop_optimizer_finalize ();
3257 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3258 counts_to_freqs ();
3259 else
3260 gcc_unreachable ();
3261 timevar_pop (TV_REBUILD_FREQUENCIES);