Fix bootstrap/PR63632
[official-gcc.git] / libgo / go / crypto / rsa / rsa.go
blobbce6ba4eba31121edfb394f6112b23500461ac14
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Package rsa implements RSA encryption as specified in PKCS#1.
6 package rsa
8 import (
9 "crypto/rand"
10 "crypto/subtle"
11 "errors"
12 "hash"
13 "io"
14 "math/big"
17 var bigZero = big.NewInt(0)
18 var bigOne = big.NewInt(1)
20 // A PublicKey represents the public part of an RSA key.
21 type PublicKey struct {
22 N *big.Int // modulus
23 E int // public exponent
26 var (
27 errPublicModulus = errors.New("crypto/rsa: missing public modulus")
28 errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small")
29 errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large")
32 // checkPub sanity checks the public key before we use it.
33 // We require pub.E to fit into a 32-bit integer so that we
34 // do not have different behavior depending on whether
35 // int is 32 or 64 bits. See also
36 // http://www.imperialviolet.org/2012/03/16/rsae.html.
37 func checkPub(pub *PublicKey) error {
38 if pub.N == nil {
39 return errPublicModulus
41 if pub.E < 2 {
42 return errPublicExponentSmall
44 if pub.E > 1<<31-1 {
45 return errPublicExponentLarge
47 return nil
50 // A PrivateKey represents an RSA key
51 type PrivateKey struct {
52 PublicKey // public part.
53 D *big.Int // private exponent
54 Primes []*big.Int // prime factors of N, has >= 2 elements.
56 // Precomputed contains precomputed values that speed up private
57 // operations, if available.
58 Precomputed PrecomputedValues
61 type PrecomputedValues struct {
62 Dp, Dq *big.Int // D mod (P-1) (or mod Q-1)
63 Qinv *big.Int // Q^-1 mod P
65 // CRTValues is used for the 3rd and subsequent primes. Due to a
66 // historical accident, the CRT for the first two primes is handled
67 // differently in PKCS#1 and interoperability is sufficiently
68 // important that we mirror this.
69 CRTValues []CRTValue
72 // CRTValue contains the precomputed chinese remainder theorem values.
73 type CRTValue struct {
74 Exp *big.Int // D mod (prime-1).
75 Coeff *big.Int // R·Coeff ≡ 1 mod Prime.
76 R *big.Int // product of primes prior to this (inc p and q).
79 // Validate performs basic sanity checks on the key.
80 // It returns nil if the key is valid, or else an error describing a problem.
81 func (priv *PrivateKey) Validate() error {
82 if err := checkPub(&priv.PublicKey); err != nil {
83 return err
86 // Check that the prime factors are actually prime. Note that this is
87 // just a sanity check. Since the random witnesses chosen by
88 // ProbablyPrime are deterministic, given the candidate number, it's
89 // easy for an attack to generate composites that pass this test.
90 for _, prime := range priv.Primes {
91 if !prime.ProbablyPrime(20) {
92 return errors.New("crypto/rsa: prime factor is composite")
96 // Check that Πprimes == n.
97 modulus := new(big.Int).Set(bigOne)
98 for _, prime := range priv.Primes {
99 modulus.Mul(modulus, prime)
101 if modulus.Cmp(priv.N) != 0 {
102 return errors.New("crypto/rsa: invalid modulus")
105 // Check that de ≡ 1 mod p-1, for each prime.
106 // This implies that e is coprime to each p-1 as e has a multiplicative
107 // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
108 // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
109 // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
110 congruence := new(big.Int)
111 de := new(big.Int).SetInt64(int64(priv.E))
112 de.Mul(de, priv.D)
113 for _, prime := range priv.Primes {
114 pminus1 := new(big.Int).Sub(prime, bigOne)
115 congruence.Mod(de, pminus1)
116 if congruence.Cmp(bigOne) != 0 {
117 return errors.New("crypto/rsa: invalid exponents")
120 return nil
123 // GenerateKey generates an RSA keypair of the given bit size using the
124 // random source random (for example, crypto/rand.Reader).
125 func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) {
126 return GenerateMultiPrimeKey(random, 2, bits)
129 // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit
130 // size and the given random source, as suggested in [1]. Although the public
131 // keys are compatible (actually, indistinguishable) from the 2-prime case,
132 // the private keys are not. Thus it may not be possible to export multi-prime
133 // private keys in certain formats or to subsequently import them into other
134 // code.
136 // Table 1 in [2] suggests maximum numbers of primes for a given size.
138 // [1] US patent 4405829 (1972, expired)
139 // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
140 func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) {
141 priv = new(PrivateKey)
142 priv.E = 65537
144 if nprimes < 2 {
145 return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2")
148 primes := make([]*big.Int, nprimes)
150 NextSetOfPrimes:
151 for {
152 todo := bits
153 // crypto/rand should set the top two bits in each prime.
154 // Thus each prime has the form
155 // p_i = 2^bitlen(p_i) × 0.11... (in base 2).
156 // And the product is:
157 // P = 2^todo × α
158 // where α is the product of nprimes numbers of the form 0.11...
160 // If α < 1/2 (which can happen for nprimes > 2), we need to
161 // shift todo to compensate for lost bits: the mean value of 0.11...
162 // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2
163 // will give good results.
164 if nprimes >= 7 {
165 todo += (nprimes - 2) / 5
167 for i := 0; i < nprimes; i++ {
168 primes[i], err = rand.Prime(random, todo/(nprimes-i))
169 if err != nil {
170 return nil, err
172 todo -= primes[i].BitLen()
175 // Make sure that primes is pairwise unequal.
176 for i, prime := range primes {
177 for j := 0; j < i; j++ {
178 if prime.Cmp(primes[j]) == 0 {
179 continue NextSetOfPrimes
184 n := new(big.Int).Set(bigOne)
185 totient := new(big.Int).Set(bigOne)
186 pminus1 := new(big.Int)
187 for _, prime := range primes {
188 n.Mul(n, prime)
189 pminus1.Sub(prime, bigOne)
190 totient.Mul(totient, pminus1)
192 if n.BitLen() != bits {
193 // This should never happen for nprimes == 2 because
194 // crypto/rand should set the top two bits in each prime.
195 // For nprimes > 2 we hope it does not happen often.
196 continue NextSetOfPrimes
199 g := new(big.Int)
200 priv.D = new(big.Int)
201 y := new(big.Int)
202 e := big.NewInt(int64(priv.E))
203 g.GCD(priv.D, y, e, totient)
205 if g.Cmp(bigOne) == 0 {
206 if priv.D.Sign() < 0 {
207 priv.D.Add(priv.D, totient)
209 priv.Primes = primes
210 priv.N = n
212 break
216 priv.Precompute()
217 return
220 // incCounter increments a four byte, big-endian counter.
221 func incCounter(c *[4]byte) {
222 if c[3]++; c[3] != 0 {
223 return
225 if c[2]++; c[2] != 0 {
226 return
228 if c[1]++; c[1] != 0 {
229 return
231 c[0]++
234 // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function
235 // specified in PKCS#1 v2.1.
236 func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
237 var counter [4]byte
238 var digest []byte
240 done := 0
241 for done < len(out) {
242 hash.Write(seed)
243 hash.Write(counter[0:4])
244 digest = hash.Sum(digest[:0])
245 hash.Reset()
247 for i := 0; i < len(digest) && done < len(out); i++ {
248 out[done] ^= digest[i]
249 done++
251 incCounter(&counter)
255 // ErrMessageTooLong is returned when attempting to encrypt a message which is
256 // too large for the size of the public key.
257 var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
259 func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
260 e := big.NewInt(int64(pub.E))
261 c.Exp(m, e, pub.N)
262 return c
265 // EncryptOAEP encrypts the given message with RSA-OAEP.
266 // The message must be no longer than the length of the public modulus less
267 // twice the hash length plus 2.
268 func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) {
269 if err := checkPub(pub); err != nil {
270 return nil, err
272 hash.Reset()
273 k := (pub.N.BitLen() + 7) / 8
274 if len(msg) > k-2*hash.Size()-2 {
275 err = ErrMessageTooLong
276 return
279 hash.Write(label)
280 lHash := hash.Sum(nil)
281 hash.Reset()
283 em := make([]byte, k)
284 seed := em[1 : 1+hash.Size()]
285 db := em[1+hash.Size():]
287 copy(db[0:hash.Size()], lHash)
288 db[len(db)-len(msg)-1] = 1
289 copy(db[len(db)-len(msg):], msg)
291 _, err = io.ReadFull(random, seed)
292 if err != nil {
293 return
296 mgf1XOR(db, hash, seed)
297 mgf1XOR(seed, hash, db)
299 m := new(big.Int)
300 m.SetBytes(em)
301 c := encrypt(new(big.Int), pub, m)
302 out = c.Bytes()
304 if len(out) < k {
305 // If the output is too small, we need to left-pad with zeros.
306 t := make([]byte, k)
307 copy(t[k-len(out):], out)
308 out = t
311 return
314 // ErrDecryption represents a failure to decrypt a message.
315 // It is deliberately vague to avoid adaptive attacks.
316 var ErrDecryption = errors.New("crypto/rsa: decryption error")
318 // ErrVerification represents a failure to verify a signature.
319 // It is deliberately vague to avoid adaptive attacks.
320 var ErrVerification = errors.New("crypto/rsa: verification error")
322 // modInverse returns ia, the inverse of a in the multiplicative group of prime
323 // order n. It requires that a be a member of the group (i.e. less than n).
324 func modInverse(a, n *big.Int) (ia *big.Int, ok bool) {
325 g := new(big.Int)
326 x := new(big.Int)
327 y := new(big.Int)
328 g.GCD(x, y, a, n)
329 if g.Cmp(bigOne) != 0 {
330 // In this case, a and n aren't coprime and we cannot calculate
331 // the inverse. This happens because the values of n are nearly
332 // prime (being the product of two primes) rather than truly
333 // prime.
334 return
337 if x.Cmp(bigOne) < 0 {
338 // 0 is not the multiplicative inverse of any element so, if x
339 // < 1, then x is negative.
340 x.Add(x, n)
343 return x, true
346 // Precompute performs some calculations that speed up private key operations
347 // in the future.
348 func (priv *PrivateKey) Precompute() {
349 if priv.Precomputed.Dp != nil {
350 return
353 priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne)
354 priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp)
356 priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne)
357 priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq)
359 priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0])
361 r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1])
362 priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2)
363 for i := 2; i < len(priv.Primes); i++ {
364 prime := priv.Primes[i]
365 values := &priv.Precomputed.CRTValues[i-2]
367 values.Exp = new(big.Int).Sub(prime, bigOne)
368 values.Exp.Mod(priv.D, values.Exp)
370 values.R = new(big.Int).Set(r)
371 values.Coeff = new(big.Int).ModInverse(r, prime)
373 r.Mul(r, prime)
377 // decrypt performs an RSA decryption, resulting in a plaintext integer. If a
378 // random source is given, RSA blinding is used.
379 func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
380 // TODO(agl): can we get away with reusing blinds?
381 if c.Cmp(priv.N) > 0 {
382 err = ErrDecryption
383 return
386 var ir *big.Int
387 if random != nil {
388 // Blinding enabled. Blinding involves multiplying c by r^e.
389 // Then the decryption operation performs (m^e * r^e)^d mod n
390 // which equals mr mod n. The factor of r can then be removed
391 // by multiplying by the multiplicative inverse of r.
393 var r *big.Int
395 for {
396 r, err = rand.Int(random, priv.N)
397 if err != nil {
398 return
400 if r.Cmp(bigZero) == 0 {
401 r = bigOne
403 var ok bool
404 ir, ok = modInverse(r, priv.N)
405 if ok {
406 break
409 bigE := big.NewInt(int64(priv.E))
410 rpowe := new(big.Int).Exp(r, bigE, priv.N)
411 cCopy := new(big.Int).Set(c)
412 cCopy.Mul(cCopy, rpowe)
413 cCopy.Mod(cCopy, priv.N)
414 c = cCopy
417 if priv.Precomputed.Dp == nil {
418 m = new(big.Int).Exp(c, priv.D, priv.N)
419 } else {
420 // We have the precalculated values needed for the CRT.
421 m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
422 m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
423 m.Sub(m, m2)
424 if m.Sign() < 0 {
425 m.Add(m, priv.Primes[0])
427 m.Mul(m, priv.Precomputed.Qinv)
428 m.Mod(m, priv.Primes[0])
429 m.Mul(m, priv.Primes[1])
430 m.Add(m, m2)
432 for i, values := range priv.Precomputed.CRTValues {
433 prime := priv.Primes[2+i]
434 m2.Exp(c, values.Exp, prime)
435 m2.Sub(m2, m)
436 m2.Mul(m2, values.Coeff)
437 m2.Mod(m2, prime)
438 if m2.Sign() < 0 {
439 m2.Add(m2, prime)
441 m2.Mul(m2, values.R)
442 m.Add(m, m2)
446 if ir != nil {
447 // Unblind.
448 m.Mul(m, ir)
449 m.Mod(m, priv.N)
452 return
455 // DecryptOAEP decrypts ciphertext using RSA-OAEP.
456 // If random != nil, DecryptOAEP uses RSA blinding to avoid timing side-channel attacks.
457 func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) {
458 if err := checkPub(&priv.PublicKey); err != nil {
459 return nil, err
461 k := (priv.N.BitLen() + 7) / 8
462 if len(ciphertext) > k ||
463 k < hash.Size()*2+2 {
464 err = ErrDecryption
465 return
468 c := new(big.Int).SetBytes(ciphertext)
470 m, err := decrypt(random, priv, c)
471 if err != nil {
472 return
475 hash.Write(label)
476 lHash := hash.Sum(nil)
477 hash.Reset()
479 // Converting the plaintext number to bytes will strip any
480 // leading zeros so we may have to left pad. We do this unconditionally
481 // to avoid leaking timing information. (Although we still probably
482 // leak the number of leading zeros. It's not clear that we can do
483 // anything about this.)
484 em := leftPad(m.Bytes(), k)
486 firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
488 seed := em[1 : hash.Size()+1]
489 db := em[hash.Size()+1:]
491 mgf1XOR(seed, hash, db)
492 mgf1XOR(db, hash, seed)
494 lHash2 := db[0:hash.Size()]
496 // We have to validate the plaintext in constant time in order to avoid
497 // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal
498 // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1
499 // v2.0. In J. Kilian, editor, Advances in Cryptology.
500 lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2)
502 // The remainder of the plaintext must be zero or more 0x00, followed
503 // by 0x01, followed by the message.
504 // lookingForIndex: 1 iff we are still looking for the 0x01
505 // index: the offset of the first 0x01 byte
506 // invalid: 1 iff we saw a non-zero byte before the 0x01.
507 var lookingForIndex, index, invalid int
508 lookingForIndex = 1
509 rest := db[hash.Size():]
511 for i := 0; i < len(rest); i++ {
512 equals0 := subtle.ConstantTimeByteEq(rest[i], 0)
513 equals1 := subtle.ConstantTimeByteEq(rest[i], 1)
514 index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index)
515 lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex)
516 invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid)
519 if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 {
520 err = ErrDecryption
521 return
524 msg = rest[index+1:]
525 return
528 // leftPad returns a new slice of length size. The contents of input are right
529 // aligned in the new slice.
530 func leftPad(input []byte, size int) (out []byte) {
531 n := len(input)
532 if n > size {
533 n = size
535 out = make([]byte, size)
536 copy(out[len(out)-n:], input)
537 return