Add x prefix to v850e case for handling --with-cpu=v850e.
[official-gcc.git] / gcc / unroll.c
blob61d63d8e2a359fc45d48275e98cd939ab83be173
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* Try to unroll a loop, and split induction variables.
25 Loops for which the number of iterations can be calculated exactly are
26 handled specially. If the number of iterations times the insn_count is
27 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
28 Otherwise, we try to unroll the loop a number of times modulo the number
29 of iterations, so that only one exit test will be needed. It is unrolled
30 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
31 the insn count.
33 Otherwise, if the number of iterations can be calculated exactly at
34 run time, and the loop is always entered at the top, then we try to
35 precondition the loop. That is, at run time, calculate how many times
36 the loop will execute, and then execute the loop body a few times so
37 that the remaining iterations will be some multiple of 4 (or 2 if the
38 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
39 with only one exit test needed at the end of the loop.
41 Otherwise, if the number of iterations can not be calculated exactly,
42 not even at run time, then we still unroll the loop a number of times
43 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
44 but there must be an exit test after each copy of the loop body.
46 For each induction variable, which is dead outside the loop (replaceable)
47 or for which we can easily calculate the final value, if we can easily
48 calculate its value at each place where it is set as a function of the
49 current loop unroll count and the variable's value at loop entry, then
50 the induction variable is split into `N' different variables, one for
51 each copy of the loop body. One variable is live across the backward
52 branch, and the others are all calculated as a function of this variable.
53 This helps eliminate data dependencies, and leads to further opportunities
54 for cse. */
56 /* Possible improvements follow: */
58 /* ??? Add an extra pass somewhere to determine whether unrolling will
59 give any benefit. E.g. after generating all unrolled insns, compute the
60 cost of all insns and compare against cost of insns in rolled loop.
62 - On traditional architectures, unrolling a non-constant bound loop
63 is a win if there is a giv whose only use is in memory addresses, the
64 memory addresses can be split, and hence giv increments can be
65 eliminated.
66 - It is also a win if the loop is executed many times, and preconditioning
67 can be performed for the loop.
68 Add code to check for these and similar cases. */
70 /* ??? Improve control of which loops get unrolled. Could use profiling
71 info to only unroll the most commonly executed loops. Perhaps have
72 a user specifyable option to control the amount of code expansion,
73 or the percent of loops to consider for unrolling. Etc. */
75 /* ??? Look at the register copies inside the loop to see if they form a
76 simple permutation. If so, iterate the permutation until it gets back to
77 the start state. This is how many times we should unroll the loop, for
78 best results, because then all register copies can be eliminated.
79 For example, the lisp nreverse function should be unrolled 3 times
80 while (this)
82 next = this->cdr;
83 this->cdr = prev;
84 prev = this;
85 this = next;
88 ??? The number of times to unroll the loop may also be based on data
89 references in the loop. For example, if we have a loop that references
90 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
92 /* ??? Add some simple linear equation solving capability so that we can
93 determine the number of loop iterations for more complex loops.
94 For example, consider this loop from gdb
95 #define SWAP_TARGET_AND_HOST(buffer,len)
97 char tmp;
98 char *p = (char *) buffer;
99 char *q = ((char *) buffer) + len - 1;
100 int iterations = (len + 1) >> 1;
101 int i;
102 for (p; p < q; p++, q--;)
104 tmp = *q;
105 *q = *p;
106 *p = tmp;
109 Note that:
110 start value = p = &buffer + current_iteration
111 end value = q = &buffer + len - 1 - current_iteration
112 Given the loop exit test of "p < q", then there must be "q - p" iterations,
113 set equal to zero and solve for number of iterations:
114 q - p = len - 1 - 2*current_iteration = 0
115 current_iteration = (len - 1) / 2
116 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
117 iterations of this loop. */
119 /* ??? Currently, no labels are marked as loop invariant when doing loop
120 unrolling. This is because an insn inside the loop, that loads the address
121 of a label inside the loop into a register, could be moved outside the loop
122 by the invariant code motion pass if labels were invariant. If the loop
123 is subsequently unrolled, the code will be wrong because each unrolled
124 body of the loop will use the same address, whereas each actually needs a
125 different address. A case where this happens is when a loop containing
126 a switch statement is unrolled.
128 It would be better to let labels be considered invariant. When we
129 unroll loops here, check to see if any insns using a label local to the
130 loop were moved before the loop. If so, then correct the problem, by
131 moving the insn back into the loop, or perhaps replicate the insn before
132 the loop, one copy for each time the loop is unrolled. */
134 #include "config.h"
135 #include "system.h"
136 #include "rtl.h"
137 #include "tm_p.h"
138 #include "insn-config.h"
139 #include "integrate.h"
140 #include "regs.h"
141 #include "recog.h"
142 #include "flags.h"
143 #include "function.h"
144 #include "expr.h"
145 #include "loop.h"
146 #include "toplev.h"
147 #include "hard-reg-set.h"
148 #include "basic-block.h"
149 #include "predict.h"
150 #include "params.h"
152 /* The prime factors looked for when trying to unroll a loop by some
153 number which is modulo the total number of iterations. Just checking
154 for these 4 prime factors will find at least one factor for 75% of
155 all numbers theoretically. Practically speaking, this will succeed
156 almost all of the time since loops are generally a multiple of 2
157 and/or 5. */
159 #define NUM_FACTORS 4
161 static struct _factor { const int factor; int count; }
162 factors[NUM_FACTORS] = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
164 /* Describes the different types of loop unrolling performed. */
166 enum unroll_types
168 UNROLL_COMPLETELY,
169 UNROLL_MODULO,
170 UNROLL_NAIVE
173 /* Indexed by register number, if non-zero, then it contains a pointer
174 to a struct induction for a DEST_REG giv which has been combined with
175 one of more address givs. This is needed because whenever such a DEST_REG
176 giv is modified, we must modify the value of all split address givs
177 that were combined with this DEST_REG giv. */
179 static struct induction **addr_combined_regs;
181 /* Indexed by register number, if this is a splittable induction variable,
182 then this will hold the current value of the register, which depends on the
183 iteration number. */
185 static rtx *splittable_regs;
187 /* Indexed by register number, if this is a splittable induction variable,
188 then this will hold the number of instructions in the loop that modify
189 the induction variable. Used to ensure that only the last insn modifying
190 a split iv will update the original iv of the dest. */
192 static int *splittable_regs_updates;
194 /* Forward declarations. */
196 static void init_reg_map PARAMS ((struct inline_remap *, int));
197 static rtx calculate_giv_inc PARAMS ((rtx, rtx, unsigned int));
198 static rtx initial_reg_note_copy PARAMS ((rtx, struct inline_remap *));
199 static void final_reg_note_copy PARAMS ((rtx *, struct inline_remap *));
200 static void copy_loop_body PARAMS ((struct loop *, rtx, rtx,
201 struct inline_remap *, rtx, int,
202 enum unroll_types, rtx, rtx, rtx, rtx));
203 static int find_splittable_regs PARAMS ((const struct loop *,
204 enum unroll_types, int));
205 static int find_splittable_givs PARAMS ((const struct loop *,
206 struct iv_class *, enum unroll_types,
207 rtx, int));
208 static int reg_dead_after_loop PARAMS ((const struct loop *, rtx));
209 static rtx fold_rtx_mult_add PARAMS ((rtx, rtx, rtx, enum machine_mode));
210 static rtx remap_split_bivs PARAMS ((struct loop *, rtx));
211 static rtx find_common_reg_term PARAMS ((rtx, rtx));
212 static rtx subtract_reg_term PARAMS ((rtx, rtx));
213 static rtx loop_find_equiv_value PARAMS ((const struct loop *, rtx));
214 static rtx ujump_to_loop_cont PARAMS ((rtx, rtx));
216 /* Try to unroll one loop and split induction variables in the loop.
218 The loop is described by the arguments LOOP and INSN_COUNT.
219 STRENGTH_REDUCTION_P indicates whether information generated in the
220 strength reduction pass is available.
222 This function is intended to be called from within `strength_reduce'
223 in loop.c. */
225 void
226 unroll_loop (loop, insn_count, strength_reduce_p)
227 struct loop *loop;
228 int insn_count;
229 int strength_reduce_p;
231 struct loop_info *loop_info = LOOP_INFO (loop);
232 struct loop_ivs *ivs = LOOP_IVS (loop);
233 int i, j;
234 unsigned int r;
235 unsigned HOST_WIDE_INT temp;
236 int unroll_number = 1;
237 rtx copy_start, copy_end;
238 rtx insn, sequence, pattern, tem;
239 int max_labelno, max_insnno;
240 rtx insert_before;
241 struct inline_remap *map;
242 char *local_label = NULL;
243 char *local_regno;
244 unsigned int max_local_regnum;
245 unsigned int maxregnum;
246 rtx exit_label = 0;
247 rtx start_label;
248 struct iv_class *bl;
249 int splitting_not_safe = 0;
250 enum unroll_types unroll_type = UNROLL_NAIVE;
251 int loop_preconditioned = 0;
252 rtx safety_label;
253 /* This points to the last real insn in the loop, which should be either
254 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
255 jumps). */
256 rtx last_loop_insn;
257 rtx loop_start = loop->start;
258 rtx loop_end = loop->end;
260 /* Don't bother unrolling huge loops. Since the minimum factor is
261 two, loops greater than one half of MAX_UNROLLED_INSNS will never
262 be unrolled. */
263 if (insn_count > MAX_UNROLLED_INSNS / 2)
265 if (loop_dump_stream)
266 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
267 return;
270 /* Determine type of unroll to perform. Depends on the number of iterations
271 and the size of the loop. */
273 /* If there is no strength reduce info, then set
274 loop_info->n_iterations to zero. This can happen if
275 strength_reduce can't find any bivs in the loop. A value of zero
276 indicates that the number of iterations could not be calculated. */
278 if (! strength_reduce_p)
279 loop_info->n_iterations = 0;
281 if (loop_dump_stream && loop_info->n_iterations > 0)
283 fputs ("Loop unrolling: ", loop_dump_stream);
284 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
285 loop_info->n_iterations);
286 fputs (" iterations.\n", loop_dump_stream);
289 /* Find and save a pointer to the last nonnote insn in the loop. */
291 last_loop_insn = prev_nonnote_insn (loop_end);
293 /* Calculate how many times to unroll the loop. Indicate whether or
294 not the loop is being completely unrolled. */
296 if (loop_info->n_iterations == 1)
298 /* Handle the case where the loop begins with an unconditional
299 jump to the loop condition. Make sure to delete the jump
300 insn, otherwise the loop body will never execute. */
302 rtx ujump = ujump_to_loop_cont (loop->start, loop->cont);
303 if (ujump)
304 delete_related_insns (ujump);
306 /* If number of iterations is exactly 1, then eliminate the compare and
307 branch at the end of the loop since they will never be taken.
308 Then return, since no other action is needed here. */
310 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
311 don't do anything. */
313 if (GET_CODE (last_loop_insn) == BARRIER)
315 /* Delete the jump insn. This will delete the barrier also. */
316 delete_related_insns (PREV_INSN (last_loop_insn));
318 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
320 #ifdef HAVE_cc0
321 rtx prev = PREV_INSN (last_loop_insn);
322 #endif
323 delete_related_insns (last_loop_insn);
324 #ifdef HAVE_cc0
325 /* The immediately preceding insn may be a compare which must be
326 deleted. */
327 if (only_sets_cc0_p (prev))
328 delete_related_insns (prev);
329 #endif
332 /* Remove the loop notes since this is no longer a loop. */
333 if (loop->vtop)
334 delete_related_insns (loop->vtop);
335 if (loop->cont)
336 delete_related_insns (loop->cont);
337 if (loop_start)
338 delete_related_insns (loop_start);
339 if (loop_end)
340 delete_related_insns (loop_end);
342 return;
344 else if (loop_info->n_iterations > 0
345 /* Avoid overflow in the next expression. */
346 && loop_info->n_iterations < (unsigned) MAX_UNROLLED_INSNS
347 && loop_info->n_iterations * insn_count < (unsigned) MAX_UNROLLED_INSNS)
349 unroll_number = loop_info->n_iterations;
350 unroll_type = UNROLL_COMPLETELY;
352 else if (loop_info->n_iterations > 0)
354 /* Try to factor the number of iterations. Don't bother with the
355 general case, only using 2, 3, 5, and 7 will get 75% of all
356 numbers theoretically, and almost all in practice. */
358 for (i = 0; i < NUM_FACTORS; i++)
359 factors[i].count = 0;
361 temp = loop_info->n_iterations;
362 for (i = NUM_FACTORS - 1; i >= 0; i--)
363 while (temp % factors[i].factor == 0)
365 factors[i].count++;
366 temp = temp / factors[i].factor;
369 /* Start with the larger factors first so that we generally
370 get lots of unrolling. */
372 unroll_number = 1;
373 temp = insn_count;
374 for (i = 3; i >= 0; i--)
375 while (factors[i].count--)
377 if (temp * factors[i].factor < (unsigned) MAX_UNROLLED_INSNS)
379 unroll_number *= factors[i].factor;
380 temp *= factors[i].factor;
382 else
383 break;
386 /* If we couldn't find any factors, then unroll as in the normal
387 case. */
388 if (unroll_number == 1)
390 if (loop_dump_stream)
391 fprintf (loop_dump_stream, "Loop unrolling: No factors found.\n");
393 else
394 unroll_type = UNROLL_MODULO;
397 /* Default case, calculate number of times to unroll loop based on its
398 size. */
399 if (unroll_type == UNROLL_NAIVE)
401 if (8 * insn_count < MAX_UNROLLED_INSNS)
402 unroll_number = 8;
403 else if (4 * insn_count < MAX_UNROLLED_INSNS)
404 unroll_number = 4;
405 else
406 unroll_number = 2;
409 /* Now we know how many times to unroll the loop. */
411 if (loop_dump_stream)
412 fprintf (loop_dump_stream, "Unrolling loop %d times.\n", unroll_number);
414 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
416 /* Loops of these types can start with jump down to the exit condition
417 in rare circumstances.
419 Consider a pair of nested loops where the inner loop is part
420 of the exit code for the outer loop.
422 In this case jump.c will not duplicate the exit test for the outer
423 loop, so it will start with a jump to the exit code.
425 Then consider if the inner loop turns out to iterate once and
426 only once. We will end up deleting the jumps associated with
427 the inner loop. However, the loop notes are not removed from
428 the instruction stream.
430 And finally assume that we can compute the number of iterations
431 for the outer loop.
433 In this case unroll may want to unroll the outer loop even though
434 it starts with a jump to the outer loop's exit code.
436 We could try to optimize this case, but it hardly seems worth it.
437 Just return without unrolling the loop in such cases. */
439 insn = loop_start;
440 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
441 insn = NEXT_INSN (insn);
442 if (GET_CODE (insn) == JUMP_INSN)
443 return;
446 if (unroll_type == UNROLL_COMPLETELY)
448 /* Completely unrolling the loop: Delete the compare and branch at
449 the end (the last two instructions). This delete must done at the
450 very end of loop unrolling, to avoid problems with calls to
451 back_branch_in_range_p, which is called by find_splittable_regs.
452 All increments of splittable bivs/givs are changed to load constant
453 instructions. */
455 copy_start = loop_start;
457 /* Set insert_before to the instruction immediately after the JUMP_INSN
458 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
459 the loop will be correctly handled by copy_loop_body. */
460 insert_before = NEXT_INSN (last_loop_insn);
462 /* Set copy_end to the insn before the jump at the end of the loop. */
463 if (GET_CODE (last_loop_insn) == BARRIER)
464 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
465 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
467 copy_end = PREV_INSN (last_loop_insn);
468 #ifdef HAVE_cc0
469 /* The instruction immediately before the JUMP_INSN may be a compare
470 instruction which we do not want to copy. */
471 if (sets_cc0_p (PREV_INSN (copy_end)))
472 copy_end = PREV_INSN (copy_end);
473 #endif
475 else
477 /* We currently can't unroll a loop if it doesn't end with a
478 JUMP_INSN. There would need to be a mechanism that recognizes
479 this case, and then inserts a jump after each loop body, which
480 jumps to after the last loop body. */
481 if (loop_dump_stream)
482 fprintf (loop_dump_stream,
483 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
484 return;
487 else if (unroll_type == UNROLL_MODULO)
489 /* Partially unrolling the loop: The compare and branch at the end
490 (the last two instructions) must remain. Don't copy the compare
491 and branch instructions at the end of the loop. Insert the unrolled
492 code immediately before the compare/branch at the end so that the
493 code will fall through to them as before. */
495 copy_start = loop_start;
497 /* Set insert_before to the jump insn at the end of the loop.
498 Set copy_end to before the jump insn at the end of the loop. */
499 if (GET_CODE (last_loop_insn) == BARRIER)
501 insert_before = PREV_INSN (last_loop_insn);
502 copy_end = PREV_INSN (insert_before);
504 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
506 insert_before = last_loop_insn;
507 #ifdef HAVE_cc0
508 /* The instruction immediately before the JUMP_INSN may be a compare
509 instruction which we do not want to copy or delete. */
510 if (sets_cc0_p (PREV_INSN (insert_before)))
511 insert_before = PREV_INSN (insert_before);
512 #endif
513 copy_end = PREV_INSN (insert_before);
515 else
517 /* We currently can't unroll a loop if it doesn't end with a
518 JUMP_INSN. There would need to be a mechanism that recognizes
519 this case, and then inserts a jump after each loop body, which
520 jumps to after the last loop body. */
521 if (loop_dump_stream)
522 fprintf (loop_dump_stream,
523 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
524 return;
527 else
529 /* Normal case: Must copy the compare and branch instructions at the
530 end of the loop. */
532 if (GET_CODE (last_loop_insn) == BARRIER)
534 /* Loop ends with an unconditional jump and a barrier.
535 Handle this like above, don't copy jump and barrier.
536 This is not strictly necessary, but doing so prevents generating
537 unconditional jumps to an immediately following label.
539 This will be corrected below if the target of this jump is
540 not the start_label. */
542 insert_before = PREV_INSN (last_loop_insn);
543 copy_end = PREV_INSN (insert_before);
545 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
547 /* Set insert_before to immediately after the JUMP_INSN, so that
548 NOTEs at the end of the loop will be correctly handled by
549 copy_loop_body. */
550 insert_before = NEXT_INSN (last_loop_insn);
551 copy_end = last_loop_insn;
553 else
555 /* We currently can't unroll a loop if it doesn't end with a
556 JUMP_INSN. There would need to be a mechanism that recognizes
557 this case, and then inserts a jump after each loop body, which
558 jumps to after the last loop body. */
559 if (loop_dump_stream)
560 fprintf (loop_dump_stream,
561 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
562 return;
565 /* If copying exit test branches because they can not be eliminated,
566 then must convert the fall through case of the branch to a jump past
567 the end of the loop. Create a label to emit after the loop and save
568 it for later use. Do not use the label after the loop, if any, since
569 it might be used by insns outside the loop, or there might be insns
570 added before it later by final_[bg]iv_value which must be after
571 the real exit label. */
572 exit_label = gen_label_rtx ();
574 insn = loop_start;
575 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
576 insn = NEXT_INSN (insn);
578 if (GET_CODE (insn) == JUMP_INSN)
580 /* The loop starts with a jump down to the exit condition test.
581 Start copying the loop after the barrier following this
582 jump insn. */
583 copy_start = NEXT_INSN (insn);
585 /* Splitting induction variables doesn't work when the loop is
586 entered via a jump to the bottom, because then we end up doing
587 a comparison against a new register for a split variable, but
588 we did not execute the set insn for the new register because
589 it was skipped over. */
590 splitting_not_safe = 1;
591 if (loop_dump_stream)
592 fprintf (loop_dump_stream,
593 "Splitting not safe, because loop not entered at top.\n");
595 else
596 copy_start = loop_start;
599 /* This should always be the first label in the loop. */
600 start_label = NEXT_INSN (copy_start);
601 /* There may be a line number note and/or a loop continue note here. */
602 while (GET_CODE (start_label) == NOTE)
603 start_label = NEXT_INSN (start_label);
604 if (GET_CODE (start_label) != CODE_LABEL)
606 /* This can happen as a result of jump threading. If the first insns in
607 the loop test the same condition as the loop's backward jump, or the
608 opposite condition, then the backward jump will be modified to point
609 to elsewhere, and the loop's start label is deleted.
611 This case currently can not be handled by the loop unrolling code. */
613 if (loop_dump_stream)
614 fprintf (loop_dump_stream,
615 "Unrolling failure: unknown insns between BEG note and loop label.\n");
616 return;
618 if (LABEL_NAME (start_label))
620 /* The jump optimization pass must have combined the original start label
621 with a named label for a goto. We can't unroll this case because
622 jumps which go to the named label must be handled differently than
623 jumps to the loop start, and it is impossible to differentiate them
624 in this case. */
625 if (loop_dump_stream)
626 fprintf (loop_dump_stream,
627 "Unrolling failure: loop start label is gone\n");
628 return;
631 if (unroll_type == UNROLL_NAIVE
632 && GET_CODE (last_loop_insn) == BARRIER
633 && GET_CODE (PREV_INSN (last_loop_insn)) == JUMP_INSN
634 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
636 /* In this case, we must copy the jump and barrier, because they will
637 not be converted to jumps to an immediately following label. */
639 insert_before = NEXT_INSN (last_loop_insn);
640 copy_end = last_loop_insn;
643 if (unroll_type == UNROLL_NAIVE
644 && GET_CODE (last_loop_insn) == JUMP_INSN
645 && start_label != JUMP_LABEL (last_loop_insn))
647 /* ??? The loop ends with a conditional branch that does not branch back
648 to the loop start label. In this case, we must emit an unconditional
649 branch to the loop exit after emitting the final branch.
650 copy_loop_body does not have support for this currently, so we
651 give up. It doesn't seem worthwhile to unroll anyways since
652 unrolling would increase the number of branch instructions
653 executed. */
654 if (loop_dump_stream)
655 fprintf (loop_dump_stream,
656 "Unrolling failure: final conditional branch not to loop start\n");
657 return;
660 /* Allocate a translation table for the labels and insn numbers.
661 They will be filled in as we copy the insns in the loop. */
663 max_labelno = max_label_num ();
664 max_insnno = get_max_uid ();
666 /* Various paths through the unroll code may reach the "egress" label
667 without initializing fields within the map structure.
669 To be safe, we use xcalloc to zero the memory. */
670 map = (struct inline_remap *) xcalloc (1, sizeof (struct inline_remap));
672 /* Allocate the label map. */
674 if (max_labelno > 0)
676 map->label_map = (rtx *) xcalloc (max_labelno, sizeof (rtx));
677 local_label = (char *) xcalloc (max_labelno, sizeof (char));
680 /* Search the loop and mark all local labels, i.e. the ones which have to
681 be distinct labels when copied. For all labels which might be
682 non-local, set their label_map entries to point to themselves.
683 If they happen to be local their label_map entries will be overwritten
684 before the loop body is copied. The label_map entries for local labels
685 will be set to a different value each time the loop body is copied. */
687 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
689 rtx note;
691 if (GET_CODE (insn) == CODE_LABEL)
692 local_label[CODE_LABEL_NUMBER (insn)] = 1;
693 else if (GET_CODE (insn) == JUMP_INSN)
695 if (JUMP_LABEL (insn))
696 set_label_in_map (map,
697 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
698 JUMP_LABEL (insn));
699 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
700 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
702 rtx pat = PATTERN (insn);
703 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
704 int len = XVECLEN (pat, diff_vec_p);
705 rtx label;
707 for (i = 0; i < len; i++)
709 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
710 set_label_in_map (map, CODE_LABEL_NUMBER (label), label);
714 if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
715 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
716 XEXP (note, 0));
719 /* Allocate space for the insn map. */
721 map->insn_map = (rtx *) xmalloc (max_insnno * sizeof (rtx));
723 /* Set this to zero, to indicate that we are doing loop unrolling,
724 not function inlining. */
725 map->inline_target = 0;
727 /* The register and constant maps depend on the number of registers
728 present, so the final maps can't be created until after
729 find_splittable_regs is called. However, they are needed for
730 preconditioning, so we create temporary maps when preconditioning
731 is performed. */
733 /* The preconditioning code may allocate two new pseudo registers. */
734 maxregnum = max_reg_num ();
736 /* local_regno is only valid for regnos < max_local_regnum. */
737 max_local_regnum = maxregnum;
739 /* Allocate and zero out the splittable_regs and addr_combined_regs
740 arrays. These must be zeroed here because they will be used if
741 loop preconditioning is performed, and must be zero for that case.
743 It is safe to do this here, since the extra registers created by the
744 preconditioning code and find_splittable_regs will never be used
745 to access the splittable_regs[] and addr_combined_regs[] arrays. */
747 splittable_regs = (rtx *) xcalloc (maxregnum, sizeof (rtx));
748 splittable_regs_updates = (int *) xcalloc (maxregnum, sizeof (int));
749 addr_combined_regs
750 = (struct induction **) xcalloc (maxregnum, sizeof (struct induction *));
751 local_regno = (char *) xcalloc (maxregnum, sizeof (char));
753 /* Mark all local registers, i.e. the ones which are referenced only
754 inside the loop. */
755 if (INSN_UID (copy_end) < max_uid_for_loop)
757 int copy_start_luid = INSN_LUID (copy_start);
758 int copy_end_luid = INSN_LUID (copy_end);
760 /* If a register is used in the jump insn, we must not duplicate it
761 since it will also be used outside the loop. */
762 if (GET_CODE (copy_end) == JUMP_INSN)
763 copy_end_luid--;
765 /* If we have a target that uses cc0, then we also must not duplicate
766 the insn that sets cc0 before the jump insn, if one is present. */
767 #ifdef HAVE_cc0
768 if (GET_CODE (copy_end) == JUMP_INSN
769 && sets_cc0_p (PREV_INSN (copy_end)))
770 copy_end_luid--;
771 #endif
773 /* If copy_start points to the NOTE that starts the loop, then we must
774 use the next luid, because invariant pseudo-regs moved out of the loop
775 have their lifetimes modified to start here, but they are not safe
776 to duplicate. */
777 if (copy_start == loop_start)
778 copy_start_luid++;
780 /* If a pseudo's lifetime is entirely contained within this loop, then we
781 can use a different pseudo in each unrolled copy of the loop. This
782 results in better code. */
783 /* We must limit the generic test to max_reg_before_loop, because only
784 these pseudo registers have valid regno_first_uid info. */
785 for (r = FIRST_PSEUDO_REGISTER; r < max_reg_before_loop; ++r)
786 if (REGNO_FIRST_UID (r) > 0 && REGNO_FIRST_UID (r) <= max_uid_for_loop
787 && REGNO_FIRST_LUID (r) >= copy_start_luid
788 && REGNO_LAST_UID (r) > 0 && REGNO_LAST_UID (r) <= max_uid_for_loop
789 && REGNO_LAST_LUID (r) <= copy_end_luid)
791 /* However, we must also check for loop-carried dependencies.
792 If the value the pseudo has at the end of iteration X is
793 used by iteration X+1, then we can not use a different pseudo
794 for each unrolled copy of the loop. */
795 /* A pseudo is safe if regno_first_uid is a set, and this
796 set dominates all instructions from regno_first_uid to
797 regno_last_uid. */
798 /* ??? This check is simplistic. We would get better code if
799 this check was more sophisticated. */
800 if (set_dominates_use (r, REGNO_FIRST_UID (r), REGNO_LAST_UID (r),
801 copy_start, copy_end))
802 local_regno[r] = 1;
804 if (loop_dump_stream)
806 if (local_regno[r])
807 fprintf (loop_dump_stream, "Marked reg %d as local\n", r);
808 else
809 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
815 /* If this loop requires exit tests when unrolled, check to see if we
816 can precondition the loop so as to make the exit tests unnecessary.
817 Just like variable splitting, this is not safe if the loop is entered
818 via a jump to the bottom. Also, can not do this if no strength
819 reduce info, because precondition_loop_p uses this info. */
821 /* Must copy the loop body for preconditioning before the following
822 find_splittable_regs call since that will emit insns which need to
823 be after the preconditioned loop copies, but immediately before the
824 unrolled loop copies. */
826 /* Also, it is not safe to split induction variables for the preconditioned
827 copies of the loop body. If we split induction variables, then the code
828 assumes that each induction variable can be represented as a function
829 of its initial value and the loop iteration number. This is not true
830 in this case, because the last preconditioned copy of the loop body
831 could be any iteration from the first up to the `unroll_number-1'th,
832 depending on the initial value of the iteration variable. Therefore
833 we can not split induction variables here, because we can not calculate
834 their value. Hence, this code must occur before find_splittable_regs
835 is called. */
837 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
839 rtx initial_value, final_value, increment;
840 enum machine_mode mode;
842 if (precondition_loop_p (loop,
843 &initial_value, &final_value, &increment,
844 &mode))
846 rtx diff;
847 rtx *labels;
848 int abs_inc, neg_inc;
849 enum rtx_code cc = loop_info->comparison_code;
850 int less_p = (cc == LE || cc == LEU || cc == LT || cc == LTU);
851 int unsigned_p = (cc == LEU || cc == GEU || cc == LTU || cc == GTU);
853 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
855 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray, maxregnum,
856 "unroll_loop_precondition");
857 global_const_equiv_varray = map->const_equiv_varray;
859 init_reg_map (map, maxregnum);
861 /* Limit loop unrolling to 4, since this will make 7 copies of
862 the loop body. */
863 if (unroll_number > 4)
864 unroll_number = 4;
866 /* Save the absolute value of the increment, and also whether or
867 not it is negative. */
868 neg_inc = 0;
869 abs_inc = INTVAL (increment);
870 if (abs_inc < 0)
872 abs_inc = -abs_inc;
873 neg_inc = 1;
876 start_sequence ();
878 /* Final value may have form of (PLUS val1 const1_rtx). We need
879 to convert it into general operand, so compute the real value. */
881 if (GET_CODE (final_value) == PLUS)
883 final_value = expand_simple_binop (mode, PLUS,
884 copy_rtx (XEXP (final_value, 0)),
885 copy_rtx (XEXP (final_value, 1)),
886 NULL_RTX, 0, OPTAB_LIB_WIDEN);
888 if (!nonmemory_operand (final_value, VOIDmode))
889 final_value = force_reg (mode, copy_rtx (final_value));
891 /* Calculate the difference between the final and initial values.
892 Final value may be a (plus (reg x) (const_int 1)) rtx.
893 Let the following cse pass simplify this if initial value is
894 a constant.
896 We must copy the final and initial values here to avoid
897 improperly shared rtl.
899 We have to deal with for (i = 0; --i < 6;) type loops.
900 For such loops the real final value is the first time the
901 loop variable overflows, so the diff we calculate is the
902 distance from the overflow value. This is 0 or ~0 for
903 unsigned loops depending on the direction, or INT_MAX,
904 INT_MAX+1 for signed loops. We really do not need the
905 exact value, since we are only interested in the diff
906 modulo the increment, and the increment is a power of 2,
907 so we can pretend that the overflow value is 0/~0. */
909 if (cc == NE || less_p != neg_inc)
910 diff = expand_simple_binop (mode, MINUS, final_value,
911 copy_rtx (initial_value), NULL_RTX, 0,
912 OPTAB_LIB_WIDEN);
913 else
914 diff = expand_simple_unop (mode, neg_inc ? NOT : NEG,
915 copy_rtx (initial_value), NULL_RTX, 0);
917 /* Now calculate (diff % (unroll * abs (increment))) by using an
918 and instruction. */
919 diff = expand_simple_binop (GET_MODE (diff), AND, diff,
920 GEN_INT (unroll_number * abs_inc - 1),
921 NULL_RTX, 0, OPTAB_LIB_WIDEN);
923 /* Now emit a sequence of branches to jump to the proper precond
924 loop entry point. */
926 labels = (rtx *) xmalloc (sizeof (rtx) * unroll_number);
927 for (i = 0; i < unroll_number; i++)
928 labels[i] = gen_label_rtx ();
930 /* Check for the case where the initial value is greater than or
931 equal to the final value. In that case, we want to execute
932 exactly one loop iteration. The code below will fail for this
933 case. This check does not apply if the loop has a NE
934 comparison at the end. */
936 if (cc != NE)
938 rtx incremented_initval;
939 incremented_initval = expand_simple_binop (mode, PLUS,
940 initial_value,
941 increment,
942 NULL_RTX, 0,
943 OPTAB_LIB_WIDEN);
944 emit_cmp_and_jump_insns (incremented_initval, final_value,
945 less_p ? GE : LE, NULL_RTX,
946 mode, unsigned_p, labels[1]);
947 predict_insn_def (get_last_insn (), PRED_LOOP_CONDITION,
948 TAKEN);
949 JUMP_LABEL (get_last_insn ()) = labels[1];
950 LABEL_NUSES (labels[1])++;
953 /* Assuming the unroll_number is 4, and the increment is 2, then
954 for a negative increment: for a positive increment:
955 diff = 0,1 precond 0 diff = 0,7 precond 0
956 diff = 2,3 precond 3 diff = 1,2 precond 1
957 diff = 4,5 precond 2 diff = 3,4 precond 2
958 diff = 6,7 precond 1 diff = 5,6 precond 3 */
960 /* We only need to emit (unroll_number - 1) branches here, the
961 last case just falls through to the following code. */
963 /* ??? This would give better code if we emitted a tree of branches
964 instead of the current linear list of branches. */
966 for (i = 0; i < unroll_number - 1; i++)
968 int cmp_const;
969 enum rtx_code cmp_code;
971 /* For negative increments, must invert the constant compared
972 against, except when comparing against zero. */
973 if (i == 0)
975 cmp_const = 0;
976 cmp_code = EQ;
978 else if (neg_inc)
980 cmp_const = unroll_number - i;
981 cmp_code = GE;
983 else
985 cmp_const = i;
986 cmp_code = LE;
989 emit_cmp_and_jump_insns (diff, GEN_INT (abs_inc * cmp_const),
990 cmp_code, NULL_RTX, mode, 0, labels[i]);
991 JUMP_LABEL (get_last_insn ()) = labels[i];
992 LABEL_NUSES (labels[i])++;
993 predict_insn (get_last_insn (), PRED_LOOP_PRECONDITIONING,
994 REG_BR_PROB_BASE / (unroll_number - i));
997 /* If the increment is greater than one, then we need another branch,
998 to handle other cases equivalent to 0. */
1000 /* ??? This should be merged into the code above somehow to help
1001 simplify the code here, and reduce the number of branches emitted.
1002 For the negative increment case, the branch here could easily
1003 be merged with the `0' case branch above. For the positive
1004 increment case, it is not clear how this can be simplified. */
1006 if (abs_inc != 1)
1008 int cmp_const;
1009 enum rtx_code cmp_code;
1011 if (neg_inc)
1013 cmp_const = abs_inc - 1;
1014 cmp_code = LE;
1016 else
1018 cmp_const = abs_inc * (unroll_number - 1) + 1;
1019 cmp_code = GE;
1022 emit_cmp_and_jump_insns (diff, GEN_INT (cmp_const), cmp_code,
1023 NULL_RTX, mode, 0, labels[0]);
1024 JUMP_LABEL (get_last_insn ()) = labels[0];
1025 LABEL_NUSES (labels[0])++;
1028 sequence = get_insns ();
1029 end_sequence ();
1030 loop_insn_hoist (loop, sequence);
1032 /* Only the last copy of the loop body here needs the exit
1033 test, so set copy_end to exclude the compare/branch here,
1034 and then reset it inside the loop when get to the last
1035 copy. */
1037 if (GET_CODE (last_loop_insn) == BARRIER)
1038 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1039 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1041 copy_end = PREV_INSN (last_loop_insn);
1042 #ifdef HAVE_cc0
1043 /* The immediately preceding insn may be a compare which
1044 we do not want to copy. */
1045 if (sets_cc0_p (PREV_INSN (copy_end)))
1046 copy_end = PREV_INSN (copy_end);
1047 #endif
1049 else
1050 abort ();
1052 for (i = 1; i < unroll_number; i++)
1054 emit_label_after (labels[unroll_number - i],
1055 PREV_INSN (loop_start));
1057 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1058 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0),
1059 0, (VARRAY_SIZE (map->const_equiv_varray)
1060 * sizeof (struct const_equiv_data)));
1061 map->const_age = 0;
1063 for (j = 0; j < max_labelno; j++)
1064 if (local_label[j])
1065 set_label_in_map (map, j, gen_label_rtx ());
1067 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1068 if (local_regno[r])
1070 map->reg_map[r]
1071 = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1072 record_base_value (REGNO (map->reg_map[r]),
1073 regno_reg_rtx[r], 0);
1075 /* The last copy needs the compare/branch insns at the end,
1076 so reset copy_end here if the loop ends with a conditional
1077 branch. */
1079 if (i == unroll_number - 1)
1081 if (GET_CODE (last_loop_insn) == BARRIER)
1082 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1083 else
1084 copy_end = last_loop_insn;
1087 /* None of the copies are the `last_iteration', so just
1088 pass zero for that parameter. */
1089 copy_loop_body (loop, copy_start, copy_end, map, exit_label, 0,
1090 unroll_type, start_label, loop_end,
1091 loop_start, copy_end);
1093 emit_label_after (labels[0], PREV_INSN (loop_start));
1095 if (GET_CODE (last_loop_insn) == BARRIER)
1097 insert_before = PREV_INSN (last_loop_insn);
1098 copy_end = PREV_INSN (insert_before);
1100 else
1102 insert_before = last_loop_insn;
1103 #ifdef HAVE_cc0
1104 /* The instruction immediately before the JUMP_INSN may
1105 be a compare instruction which we do not want to copy
1106 or delete. */
1107 if (sets_cc0_p (PREV_INSN (insert_before)))
1108 insert_before = PREV_INSN (insert_before);
1109 #endif
1110 copy_end = PREV_INSN (insert_before);
1113 /* Set unroll type to MODULO now. */
1114 unroll_type = UNROLL_MODULO;
1115 loop_preconditioned = 1;
1117 /* Clean up. */
1118 free (labels);
1122 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1123 the loop unless all loops are being unrolled. */
1124 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1126 if (loop_dump_stream)
1127 fprintf (loop_dump_stream,
1128 "Unrolling failure: Naive unrolling not being done.\n");
1129 goto egress;
1132 /* At this point, we are guaranteed to unroll the loop. */
1134 /* Keep track of the unroll factor for the loop. */
1135 loop_info->unroll_number = unroll_number;
1137 /* And whether the loop has been preconditioned. */
1138 loop_info->preconditioned = loop_preconditioned;
1140 /* For each biv and giv, determine whether it can be safely split into
1141 a different variable for each unrolled copy of the loop body.
1142 We precalculate and save this info here, since computing it is
1143 expensive.
1145 Do this before deleting any instructions from the loop, so that
1146 back_branch_in_range_p will work correctly. */
1148 if (splitting_not_safe)
1149 temp = 0;
1150 else
1151 temp = find_splittable_regs (loop, unroll_type, unroll_number);
1153 /* find_splittable_regs may have created some new registers, so must
1154 reallocate the reg_map with the new larger size, and must realloc
1155 the constant maps also. */
1157 maxregnum = max_reg_num ();
1158 map->reg_map = (rtx *) xmalloc (maxregnum * sizeof (rtx));
1160 init_reg_map (map, maxregnum);
1162 if (map->const_equiv_varray == 0)
1163 VARRAY_CONST_EQUIV_INIT (map->const_equiv_varray,
1164 maxregnum + temp * unroll_number * 2,
1165 "unroll_loop");
1166 global_const_equiv_varray = map->const_equiv_varray;
1168 /* Search the list of bivs and givs to find ones which need to be remapped
1169 when split, and set their reg_map entry appropriately. */
1171 for (bl = ivs->list; bl; bl = bl->next)
1173 if (REGNO (bl->biv->src_reg) != bl->regno)
1174 map->reg_map[bl->regno] = bl->biv->src_reg;
1175 #if 0
1176 /* Currently, non-reduced/final-value givs are never split. */
1177 for (v = bl->giv; v; v = v->next_iv)
1178 if (REGNO (v->src_reg) != bl->regno)
1179 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1180 #endif
1183 /* Use our current register alignment and pointer flags. */
1184 map->regno_pointer_align = cfun->emit->regno_pointer_align;
1185 map->x_regno_reg_rtx = cfun->emit->x_regno_reg_rtx;
1187 /* If the loop is being partially unrolled, and the iteration variables
1188 are being split, and are being renamed for the split, then must fix up
1189 the compare/jump instruction at the end of the loop to refer to the new
1190 registers. This compare isn't copied, so the registers used in it
1191 will never be replaced if it isn't done here. */
1193 if (unroll_type == UNROLL_MODULO)
1195 insn = NEXT_INSN (copy_end);
1196 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1197 PATTERN (insn) = remap_split_bivs (loop, PATTERN (insn));
1200 /* For unroll_number times, make a copy of each instruction
1201 between copy_start and copy_end, and insert these new instructions
1202 before the end of the loop. */
1204 for (i = 0; i < unroll_number; i++)
1206 memset ((char *) map->insn_map, 0, max_insnno * sizeof (rtx));
1207 memset ((char *) &VARRAY_CONST_EQUIV (map->const_equiv_varray, 0), 0,
1208 VARRAY_SIZE (map->const_equiv_varray) * sizeof (struct const_equiv_data));
1209 map->const_age = 0;
1211 for (j = 0; j < max_labelno; j++)
1212 if (local_label[j])
1213 set_label_in_map (map, j, gen_label_rtx ());
1215 for (r = FIRST_PSEUDO_REGISTER; r < max_local_regnum; r++)
1216 if (local_regno[r])
1218 map->reg_map[r] = gen_reg_rtx (GET_MODE (regno_reg_rtx[r]));
1219 record_base_value (REGNO (map->reg_map[r]),
1220 regno_reg_rtx[r], 0);
1223 /* If loop starts with a branch to the test, then fix it so that
1224 it points to the test of the first unrolled copy of the loop. */
1225 if (i == 0 && loop_start != copy_start)
1227 insn = PREV_INSN (copy_start);
1228 pattern = PATTERN (insn);
1230 tem = get_label_from_map (map,
1231 CODE_LABEL_NUMBER
1232 (XEXP (SET_SRC (pattern), 0)));
1233 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1235 /* Set the jump label so that it can be used by later loop unrolling
1236 passes. */
1237 JUMP_LABEL (insn) = tem;
1238 LABEL_NUSES (tem)++;
1241 copy_loop_body (loop, copy_start, copy_end, map, exit_label,
1242 i == unroll_number - 1, unroll_type, start_label,
1243 loop_end, insert_before, insert_before);
1246 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1247 insn to be deleted. This prevents any runaway delete_insn call from
1248 more insns that it should, as it always stops at a CODE_LABEL. */
1250 /* Delete the compare and branch at the end of the loop if completely
1251 unrolling the loop. Deleting the backward branch at the end also
1252 deletes the code label at the start of the loop. This is done at
1253 the very end to avoid problems with back_branch_in_range_p. */
1255 if (unroll_type == UNROLL_COMPLETELY)
1256 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1257 else
1258 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1260 /* Delete all of the original loop instructions. Don't delete the
1261 LOOP_BEG note, or the first code label in the loop. */
1263 insn = NEXT_INSN (copy_start);
1264 while (insn != safety_label)
1266 /* ??? Don't delete named code labels. They will be deleted when the
1267 jump that references them is deleted. Otherwise, we end up deleting
1268 them twice, which causes them to completely disappear instead of turn
1269 into NOTE_INSN_DELETED_LABEL notes. This in turn causes aborts in
1270 dwarfout.c/dwarf2out.c. We could perhaps fix the dwarf*out.c files
1271 to handle deleted labels instead. Or perhaps fix DECL_RTL of the
1272 associated LABEL_DECL to point to one of the new label instances. */
1273 /* ??? Likewise, we can't delete a NOTE_INSN_DELETED_LABEL note. */
1274 if (insn != start_label
1275 && ! (GET_CODE (insn) == CODE_LABEL && LABEL_NAME (insn))
1276 && ! (GET_CODE (insn) == NOTE
1277 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))
1278 insn = delete_related_insns (insn);
1279 else
1280 insn = NEXT_INSN (insn);
1283 /* Can now delete the 'safety' label emitted to protect us from runaway
1284 delete_related_insns calls. */
1285 if (INSN_DELETED_P (safety_label))
1286 abort ();
1287 delete_related_insns (safety_label);
1289 /* If exit_label exists, emit it after the loop. Doing the emit here
1290 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1291 This is needed so that mostly_true_jump in reorg.c will treat jumps
1292 to this loop end label correctly, i.e. predict that they are usually
1293 not taken. */
1294 if (exit_label)
1295 emit_label_after (exit_label, loop_end);
1297 egress:
1298 if (unroll_type == UNROLL_COMPLETELY)
1300 /* Remove the loop notes since this is no longer a loop. */
1301 if (loop->vtop)
1302 delete_related_insns (loop->vtop);
1303 if (loop->cont)
1304 delete_related_insns (loop->cont);
1305 if (loop_start)
1306 delete_related_insns (loop_start);
1307 if (loop_end)
1308 delete_related_insns (loop_end);
1311 if (map->const_equiv_varray)
1312 VARRAY_FREE (map->const_equiv_varray);
1313 if (map->label_map)
1315 free (map->label_map);
1316 free (local_label);
1318 free (map->insn_map);
1319 free (splittable_regs);
1320 free (splittable_regs_updates);
1321 free (addr_combined_regs);
1322 free (local_regno);
1323 if (map->reg_map)
1324 free (map->reg_map);
1325 free (map);
1328 /* Return true if the loop can be safely, and profitably, preconditioned
1329 so that the unrolled copies of the loop body don't need exit tests.
1331 This only works if final_value, initial_value and increment can be
1332 determined, and if increment is a constant power of 2.
1333 If increment is not a power of 2, then the preconditioning modulo
1334 operation would require a real modulo instead of a boolean AND, and this
1335 is not considered `profitable'. */
1337 /* ??? If the loop is known to be executed very many times, or the machine
1338 has a very cheap divide instruction, then preconditioning is a win even
1339 when the increment is not a power of 2. Use RTX_COST to compute
1340 whether divide is cheap.
1341 ??? A divide by constant doesn't actually need a divide, look at
1342 expand_divmod. The reduced cost of this optimized modulo is not
1343 reflected in RTX_COST. */
1346 precondition_loop_p (loop, initial_value, final_value, increment, mode)
1347 const struct loop *loop;
1348 rtx *initial_value, *final_value, *increment;
1349 enum machine_mode *mode;
1351 rtx loop_start = loop->start;
1352 struct loop_info *loop_info = LOOP_INFO (loop);
1354 if (loop_info->n_iterations > 0)
1356 if (INTVAL (loop_info->increment) > 0)
1358 *initial_value = const0_rtx;
1359 *increment = const1_rtx;
1360 *final_value = GEN_INT (loop_info->n_iterations);
1362 else
1364 *initial_value = GEN_INT (loop_info->n_iterations);
1365 *increment = constm1_rtx;
1366 *final_value = const0_rtx;
1368 *mode = word_mode;
1370 if (loop_dump_stream)
1372 fputs ("Preconditioning: Success, number of iterations known, ",
1373 loop_dump_stream);
1374 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1375 loop_info->n_iterations);
1376 fputs (".\n", loop_dump_stream);
1378 return 1;
1381 if (loop_info->iteration_var == 0)
1383 if (loop_dump_stream)
1384 fprintf (loop_dump_stream,
1385 "Preconditioning: Could not find iteration variable.\n");
1386 return 0;
1388 else if (loop_info->initial_value == 0)
1390 if (loop_dump_stream)
1391 fprintf (loop_dump_stream,
1392 "Preconditioning: Could not find initial value.\n");
1393 return 0;
1395 else if (loop_info->increment == 0)
1397 if (loop_dump_stream)
1398 fprintf (loop_dump_stream,
1399 "Preconditioning: Could not find increment value.\n");
1400 return 0;
1402 else if (GET_CODE (loop_info->increment) != CONST_INT)
1404 if (loop_dump_stream)
1405 fprintf (loop_dump_stream,
1406 "Preconditioning: Increment not a constant.\n");
1407 return 0;
1409 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1410 && (exact_log2 (-INTVAL (loop_info->increment)) < 0))
1412 if (loop_dump_stream)
1413 fprintf (loop_dump_stream,
1414 "Preconditioning: Increment not a constant power of 2.\n");
1415 return 0;
1418 /* Unsigned_compare and compare_dir can be ignored here, since they do
1419 not matter for preconditioning. */
1421 if (loop_info->final_value == 0)
1423 if (loop_dump_stream)
1424 fprintf (loop_dump_stream,
1425 "Preconditioning: EQ comparison loop.\n");
1426 return 0;
1429 /* Must ensure that final_value is invariant, so call
1430 loop_invariant_p to check. Before doing so, must check regno
1431 against max_reg_before_loop to make sure that the register is in
1432 the range covered by loop_invariant_p. If it isn't, then it is
1433 most likely a biv/giv which by definition are not invariant. */
1434 if ((GET_CODE (loop_info->final_value) == REG
1435 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1436 || (GET_CODE (loop_info->final_value) == PLUS
1437 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1438 || ! loop_invariant_p (loop, loop_info->final_value))
1440 if (loop_dump_stream)
1441 fprintf (loop_dump_stream,
1442 "Preconditioning: Final value not invariant.\n");
1443 return 0;
1446 /* Fail for floating point values, since the caller of this function
1447 does not have code to deal with them. */
1448 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1449 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1451 if (loop_dump_stream)
1452 fprintf (loop_dump_stream,
1453 "Preconditioning: Floating point final or initial value.\n");
1454 return 0;
1457 /* Fail if loop_info->iteration_var is not live before loop_start,
1458 since we need to test its value in the preconditioning code. */
1460 if (REGNO_FIRST_LUID (REGNO (loop_info->iteration_var))
1461 > INSN_LUID (loop_start))
1463 if (loop_dump_stream)
1464 fprintf (loop_dump_stream,
1465 "Preconditioning: Iteration var not live before loop start.\n");
1466 return 0;
1469 /* Note that loop_iterations biases the initial value for GIV iterators
1470 such as "while (i-- > 0)" so that we can calculate the number of
1471 iterations just like for BIV iterators.
1473 Also note that the absolute values of initial_value and
1474 final_value are unimportant as only their difference is used for
1475 calculating the number of loop iterations. */
1476 *initial_value = loop_info->initial_value;
1477 *increment = loop_info->increment;
1478 *final_value = loop_info->final_value;
1480 /* Decide what mode to do these calculations in. Choose the larger
1481 of final_value's mode and initial_value's mode, or a full-word if
1482 both are constants. */
1483 *mode = GET_MODE (*final_value);
1484 if (*mode == VOIDmode)
1486 *mode = GET_MODE (*initial_value);
1487 if (*mode == VOIDmode)
1488 *mode = word_mode;
1490 else if (*mode != GET_MODE (*initial_value)
1491 && (GET_MODE_SIZE (*mode)
1492 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1493 *mode = GET_MODE (*initial_value);
1495 /* Success! */
1496 if (loop_dump_stream)
1497 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1498 return 1;
1501 /* All pseudo-registers must be mapped to themselves. Two hard registers
1502 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1503 REGNUM, to avoid function-inlining specific conversions of these
1504 registers. All other hard regs can not be mapped because they may be
1505 used with different
1506 modes. */
1508 static void
1509 init_reg_map (map, maxregnum)
1510 struct inline_remap *map;
1511 int maxregnum;
1513 int i;
1515 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1516 map->reg_map[i] = regno_reg_rtx[i];
1517 /* Just clear the rest of the entries. */
1518 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1519 map->reg_map[i] = 0;
1521 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1522 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1523 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1524 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1527 /* Strength-reduction will often emit code for optimized biv/givs which
1528 calculates their value in a temporary register, and then copies the result
1529 to the iv. This procedure reconstructs the pattern computing the iv;
1530 verifying that all operands are of the proper form.
1532 PATTERN must be the result of single_set.
1533 The return value is the amount that the giv is incremented by. */
1535 static rtx
1536 calculate_giv_inc (pattern, src_insn, regno)
1537 rtx pattern, src_insn;
1538 unsigned int regno;
1540 rtx increment;
1541 rtx increment_total = 0;
1542 int tries = 0;
1544 retry:
1545 /* Verify that we have an increment insn here. First check for a plus
1546 as the set source. */
1547 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1549 /* SR sometimes computes the new giv value in a temp, then copies it
1550 to the new_reg. */
1551 src_insn = PREV_INSN (src_insn);
1552 pattern = single_set (src_insn);
1553 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1554 abort ();
1556 /* The last insn emitted is not needed, so delete it to avoid confusing
1557 the second cse pass. This insn sets the giv unnecessarily. */
1558 delete_related_insns (get_last_insn ());
1561 /* Verify that we have a constant as the second operand of the plus. */
1562 increment = XEXP (SET_SRC (pattern), 1);
1563 if (GET_CODE (increment) != CONST_INT)
1565 /* SR sometimes puts the constant in a register, especially if it is
1566 too big to be an add immed operand. */
1567 increment = find_last_value (increment, &src_insn, NULL_RTX, 0);
1569 /* SR may have used LO_SUM to compute the constant if it is too large
1570 for a load immed operand. In this case, the constant is in operand
1571 one of the LO_SUM rtx. */
1572 if (GET_CODE (increment) == LO_SUM)
1573 increment = XEXP (increment, 1);
1575 /* Some ports store large constants in memory and add a REG_EQUAL
1576 note to the store insn. */
1577 else if (GET_CODE (increment) == MEM)
1579 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1580 if (note)
1581 increment = XEXP (note, 0);
1584 else if (GET_CODE (increment) == IOR
1585 || GET_CODE (increment) == ASHIFT
1586 || GET_CODE (increment) == PLUS)
1588 /* The rs6000 port loads some constants with IOR.
1589 The alpha port loads some constants with ASHIFT and PLUS. */
1590 rtx second_part = XEXP (increment, 1);
1591 enum rtx_code code = GET_CODE (increment);
1593 increment = find_last_value (XEXP (increment, 0),
1594 &src_insn, NULL_RTX, 0);
1595 /* Don't need the last insn anymore. */
1596 delete_related_insns (get_last_insn ());
1598 if (GET_CODE (second_part) != CONST_INT
1599 || GET_CODE (increment) != CONST_INT)
1600 abort ();
1602 if (code == IOR)
1603 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1604 else if (code == PLUS)
1605 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1606 else
1607 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1610 if (GET_CODE (increment) != CONST_INT)
1611 abort ();
1613 /* The insn loading the constant into a register is no longer needed,
1614 so delete it. */
1615 delete_related_insns (get_last_insn ());
1618 if (increment_total)
1619 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1620 else
1621 increment_total = increment;
1623 /* Check that the source register is the same as the register we expected
1624 to see as the source. If not, something is seriously wrong. */
1625 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1626 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1628 /* Some machines (e.g. the romp), may emit two add instructions for
1629 certain constants, so lets try looking for another add immediately
1630 before this one if we have only seen one add insn so far. */
1632 if (tries == 0)
1634 tries++;
1636 src_insn = PREV_INSN (src_insn);
1637 pattern = single_set (src_insn);
1639 delete_related_insns (get_last_insn ());
1641 goto retry;
1644 abort ();
1647 return increment_total;
1650 /* Copy REG_NOTES, except for insn references, because not all insn_map
1651 entries are valid yet. We do need to copy registers now though, because
1652 the reg_map entries can change during copying. */
1654 static rtx
1655 initial_reg_note_copy (notes, map)
1656 rtx notes;
1657 struct inline_remap *map;
1659 rtx copy;
1661 if (notes == 0)
1662 return 0;
1664 copy = rtx_alloc (GET_CODE (notes));
1665 PUT_REG_NOTE_KIND (copy, REG_NOTE_KIND (notes));
1667 if (GET_CODE (notes) == EXPR_LIST)
1668 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map, 0);
1669 else if (GET_CODE (notes) == INSN_LIST)
1670 /* Don't substitute for these yet. */
1671 XEXP (copy, 0) = copy_rtx (XEXP (notes, 0));
1672 else
1673 abort ();
1675 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1677 return copy;
1680 /* Fixup insn references in copied REG_NOTES. */
1682 static void
1683 final_reg_note_copy (notesp, map)
1684 rtx *notesp;
1685 struct inline_remap *map;
1687 while (*notesp)
1689 rtx note = *notesp;
1691 if (GET_CODE (note) == INSN_LIST)
1693 /* Sometimes, we have a REG_WAS_0 note that points to a
1694 deleted instruction. In that case, we can just delete the
1695 note. */
1696 if (REG_NOTE_KIND (note) == REG_WAS_0)
1698 *notesp = XEXP (note, 1);
1699 continue;
1701 else
1703 rtx insn = map->insn_map[INSN_UID (XEXP (note, 0))];
1705 /* If we failed to remap the note, something is awry.
1706 Allow REG_LABEL as it may reference label outside
1707 the unrolled loop. */
1708 if (!insn)
1710 if (REG_NOTE_KIND (note) != REG_LABEL)
1711 abort ();
1713 else
1714 XEXP (note, 0) = insn;
1718 notesp = &XEXP (note, 1);
1722 /* Copy each instruction in the loop, substituting from map as appropriate.
1723 This is very similar to a loop in expand_inline_function. */
1725 static void
1726 copy_loop_body (loop, copy_start, copy_end, map, exit_label, last_iteration,
1727 unroll_type, start_label, loop_end, insert_before,
1728 copy_notes_from)
1729 struct loop *loop;
1730 rtx copy_start, copy_end;
1731 struct inline_remap *map;
1732 rtx exit_label;
1733 int last_iteration;
1734 enum unroll_types unroll_type;
1735 rtx start_label, loop_end, insert_before, copy_notes_from;
1737 struct loop_ivs *ivs = LOOP_IVS (loop);
1738 rtx insn, pattern;
1739 rtx set, tem, copy = NULL_RTX;
1740 int dest_reg_was_split, i;
1741 #ifdef HAVE_cc0
1742 rtx cc0_insn = 0;
1743 #endif
1744 rtx final_label = 0;
1745 rtx giv_inc, giv_dest_reg, giv_src_reg;
1747 /* If this isn't the last iteration, then map any references to the
1748 start_label to final_label. Final label will then be emitted immediately
1749 after the end of this loop body if it was ever used.
1751 If this is the last iteration, then map references to the start_label
1752 to itself. */
1753 if (! last_iteration)
1755 final_label = gen_label_rtx ();
1756 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), final_label);
1758 else
1759 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1761 start_sequence ();
1763 insn = copy_start;
1766 insn = NEXT_INSN (insn);
1768 map->orig_asm_operands_vector = 0;
1770 switch (GET_CODE (insn))
1772 case INSN:
1773 pattern = PATTERN (insn);
1774 copy = 0;
1775 giv_inc = 0;
1777 /* Check to see if this is a giv that has been combined with
1778 some split address givs. (Combined in the sense that
1779 `combine_givs' in loop.c has put two givs in the same register.)
1780 In this case, we must search all givs based on the same biv to
1781 find the address givs. Then split the address givs.
1782 Do this before splitting the giv, since that may map the
1783 SET_DEST to a new register. */
1785 if ((set = single_set (insn))
1786 && GET_CODE (SET_DEST (set)) == REG
1787 && addr_combined_regs[REGNO (SET_DEST (set))])
1789 struct iv_class *bl;
1790 struct induction *v, *tv;
1791 unsigned int regno = REGNO (SET_DEST (set));
1793 v = addr_combined_regs[REGNO (SET_DEST (set))];
1794 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
1796 /* Although the giv_inc amount is not needed here, we must call
1797 calculate_giv_inc here since it might try to delete the
1798 last insn emitted. If we wait until later to call it,
1799 we might accidentally delete insns generated immediately
1800 below by emit_unrolled_add. */
1802 giv_inc = calculate_giv_inc (set, insn, regno);
1804 /* Now find all address giv's that were combined with this
1805 giv 'v'. */
1806 for (tv = bl->giv; tv; tv = tv->next_iv)
1807 if (tv->giv_type == DEST_ADDR && tv->same == v)
1809 int this_giv_inc;
1811 /* If this DEST_ADDR giv was not split, then ignore it. */
1812 if (*tv->location != tv->dest_reg)
1813 continue;
1815 /* Scale this_giv_inc if the multiplicative factors of
1816 the two givs are different. */
1817 this_giv_inc = INTVAL (giv_inc);
1818 if (tv->mult_val != v->mult_val)
1819 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1820 * INTVAL (tv->mult_val));
1822 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1823 *tv->location = tv->dest_reg;
1825 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1827 /* Must emit an insn to increment the split address
1828 giv. Add in the const_adjust field in case there
1829 was a constant eliminated from the address. */
1830 rtx value, dest_reg;
1832 /* tv->dest_reg will be either a bare register,
1833 or else a register plus a constant. */
1834 if (GET_CODE (tv->dest_reg) == REG)
1835 dest_reg = tv->dest_reg;
1836 else
1837 dest_reg = XEXP (tv->dest_reg, 0);
1839 /* Check for shared address givs, and avoid
1840 incrementing the shared pseudo reg more than
1841 once. */
1842 if (! tv->same_insn && ! tv->shared)
1844 /* tv->dest_reg may actually be a (PLUS (REG)
1845 (CONST)) here, so we must call plus_constant
1846 to add the const_adjust amount before calling
1847 emit_unrolled_add below. */
1848 value = plus_constant (tv->dest_reg,
1849 tv->const_adjust);
1851 if (GET_CODE (value) == PLUS)
1853 /* The constant could be too large for an add
1854 immediate, so can't directly emit an insn
1855 here. */
1856 emit_unrolled_add (dest_reg, XEXP (value, 0),
1857 XEXP (value, 1));
1861 /* Reset the giv to be just the register again, in case
1862 it is used after the set we have just emitted.
1863 We must subtract the const_adjust factor added in
1864 above. */
1865 tv->dest_reg = plus_constant (dest_reg,
1866 -tv->const_adjust);
1867 *tv->location = tv->dest_reg;
1872 /* If this is a setting of a splittable variable, then determine
1873 how to split the variable, create a new set based on this split,
1874 and set up the reg_map so that later uses of the variable will
1875 use the new split variable. */
1877 dest_reg_was_split = 0;
1879 if ((set = single_set (insn))
1880 && GET_CODE (SET_DEST (set)) == REG
1881 && splittable_regs[REGNO (SET_DEST (set))])
1883 unsigned int regno = REGNO (SET_DEST (set));
1884 unsigned int src_regno;
1886 dest_reg_was_split = 1;
1888 giv_dest_reg = SET_DEST (set);
1889 giv_src_reg = giv_dest_reg;
1890 /* Compute the increment value for the giv, if it wasn't
1891 already computed above. */
1892 if (giv_inc == 0)
1893 giv_inc = calculate_giv_inc (set, insn, regno);
1895 src_regno = REGNO (giv_src_reg);
1897 if (unroll_type == UNROLL_COMPLETELY)
1899 /* Completely unrolling the loop. Set the induction
1900 variable to a known constant value. */
1902 /* The value in splittable_regs may be an invariant
1903 value, so we must use plus_constant here. */
1904 splittable_regs[regno]
1905 = plus_constant (splittable_regs[src_regno],
1906 INTVAL (giv_inc));
1908 if (GET_CODE (splittable_regs[regno]) == PLUS)
1910 giv_src_reg = XEXP (splittable_regs[regno], 0);
1911 giv_inc = XEXP (splittable_regs[regno], 1);
1913 else
1915 /* The splittable_regs value must be a REG or a
1916 CONST_INT, so put the entire value in the giv_src_reg
1917 variable. */
1918 giv_src_reg = splittable_regs[regno];
1919 giv_inc = const0_rtx;
1922 else
1924 /* Partially unrolling loop. Create a new pseudo
1925 register for the iteration variable, and set it to
1926 be a constant plus the original register. Except
1927 on the last iteration, when the result has to
1928 go back into the original iteration var register. */
1930 /* Handle bivs which must be mapped to a new register
1931 when split. This happens for bivs which need their
1932 final value set before loop entry. The new register
1933 for the biv was stored in the biv's first struct
1934 induction entry by find_splittable_regs. */
1936 if (regno < ivs->n_regs
1937 && REG_IV_TYPE (ivs, regno) == BASIC_INDUCT)
1939 giv_src_reg = REG_IV_CLASS (ivs, regno)->biv->src_reg;
1940 giv_dest_reg = giv_src_reg;
1943 #if 0
1944 /* If non-reduced/final-value givs were split, then
1945 this would have to remap those givs also. See
1946 find_splittable_regs. */
1947 #endif
1949 splittable_regs[regno]
1950 = simplify_gen_binary (PLUS, GET_MODE (giv_src_reg),
1951 giv_inc,
1952 splittable_regs[src_regno]);
1953 giv_inc = splittable_regs[regno];
1955 /* Now split the induction variable by changing the dest
1956 of this insn to a new register, and setting its
1957 reg_map entry to point to this new register.
1959 If this is the last iteration, and this is the last insn
1960 that will update the iv, then reuse the original dest,
1961 to ensure that the iv will have the proper value when
1962 the loop exits or repeats.
1964 Using splittable_regs_updates here like this is safe,
1965 because it can only be greater than one if all
1966 instructions modifying the iv are always executed in
1967 order. */
1969 if (! last_iteration
1970 || (splittable_regs_updates[regno]-- != 1))
1972 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1973 giv_dest_reg = tem;
1974 map->reg_map[regno] = tem;
1975 record_base_value (REGNO (tem),
1976 giv_inc == const0_rtx
1977 ? giv_src_reg
1978 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1979 giv_src_reg, giv_inc),
1982 else
1983 map->reg_map[regno] = giv_src_reg;
1986 /* The constant being added could be too large for an add
1987 immediate, so can't directly emit an insn here. */
1988 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1989 copy = get_last_insn ();
1990 pattern = PATTERN (copy);
1992 else
1994 pattern = copy_rtx_and_substitute (pattern, map, 0);
1995 copy = emit_insn (pattern);
1997 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1998 INSN_SCOPE (copy) = INSN_SCOPE (insn);
2000 #ifdef HAVE_cc0
2001 /* If this insn is setting CC0, it may need to look at
2002 the insn that uses CC0 to see what type of insn it is.
2003 In that case, the call to recog via validate_change will
2004 fail. So don't substitute constants here. Instead,
2005 do it when we emit the following insn.
2007 For example, see the pyr.md file. That machine has signed and
2008 unsigned compares. The compare patterns must check the
2009 following branch insn to see which what kind of compare to
2010 emit.
2012 If the previous insn set CC0, substitute constants on it as
2013 well. */
2014 if (sets_cc0_p (PATTERN (copy)) != 0)
2015 cc0_insn = copy;
2016 else
2018 if (cc0_insn)
2019 try_constants (cc0_insn, map);
2020 cc0_insn = 0;
2021 try_constants (copy, map);
2023 #else
2024 try_constants (copy, map);
2025 #endif
2027 /* Make split induction variable constants `permanent' since we
2028 know there are no backward branches across iteration variable
2029 settings which would invalidate this. */
2030 if (dest_reg_was_split)
2032 int regno = REGNO (SET_DEST (set));
2034 if ((size_t) regno < VARRAY_SIZE (map->const_equiv_varray)
2035 && (VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age
2036 == map->const_age))
2037 VARRAY_CONST_EQUIV (map->const_equiv_varray, regno).age = -1;
2039 break;
2041 case JUMP_INSN:
2042 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2043 copy = emit_jump_insn (pattern);
2044 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2045 INSN_SCOPE (copy) = INSN_SCOPE (insn);
2047 if (JUMP_LABEL (insn))
2049 JUMP_LABEL (copy) = get_label_from_map (map,
2050 CODE_LABEL_NUMBER
2051 (JUMP_LABEL (insn)));
2052 LABEL_NUSES (JUMP_LABEL (copy))++;
2054 if (JUMP_LABEL (insn) == start_label && insn == copy_end
2055 && ! last_iteration)
2058 /* This is a branch to the beginning of the loop; this is the
2059 last insn being copied; and this is not the last iteration.
2060 In this case, we want to change the original fall through
2061 case to be a branch past the end of the loop, and the
2062 original jump label case to fall_through. */
2064 if (!invert_jump (copy, exit_label, 0))
2066 rtx jmp;
2067 rtx lab = gen_label_rtx ();
2068 /* Can't do it by reversing the jump (probably because we
2069 couldn't reverse the conditions), so emit a new
2070 jump_insn after COPY, and redirect the jump around
2071 that. */
2072 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
2073 JUMP_LABEL (jmp) = exit_label;
2074 LABEL_NUSES (exit_label)++;
2075 jmp = emit_barrier_after (jmp);
2076 emit_label_after (lab, jmp);
2077 LABEL_NUSES (lab) = 0;
2078 if (!redirect_jump (copy, lab, 0))
2079 abort ();
2083 #ifdef HAVE_cc0
2084 if (cc0_insn)
2085 try_constants (cc0_insn, map);
2086 cc0_insn = 0;
2087 #endif
2088 try_constants (copy, map);
2090 /* Set the jump label of COPY correctly to avoid problems with
2091 later passes of unroll_loop, if INSN had jump label set. */
2092 if (JUMP_LABEL (insn))
2094 rtx label = 0;
2096 /* Can't use the label_map for every insn, since this may be
2097 the backward branch, and hence the label was not mapped. */
2098 if ((set = single_set (copy)))
2100 tem = SET_SRC (set);
2101 if (GET_CODE (tem) == LABEL_REF)
2102 label = XEXP (tem, 0);
2103 else if (GET_CODE (tem) == IF_THEN_ELSE)
2105 if (XEXP (tem, 1) != pc_rtx)
2106 label = XEXP (XEXP (tem, 1), 0);
2107 else
2108 label = XEXP (XEXP (tem, 2), 0);
2112 if (label && GET_CODE (label) == CODE_LABEL)
2113 JUMP_LABEL (copy) = label;
2114 else
2116 /* An unrecognizable jump insn, probably the entry jump
2117 for a switch statement. This label must have been mapped,
2118 so just use the label_map to get the new jump label. */
2119 JUMP_LABEL (copy)
2120 = get_label_from_map (map,
2121 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2124 /* If this is a non-local jump, then must increase the label
2125 use count so that the label will not be deleted when the
2126 original jump is deleted. */
2127 LABEL_NUSES (JUMP_LABEL (copy))++;
2129 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2130 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2132 rtx pat = PATTERN (copy);
2133 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2134 int len = XVECLEN (pat, diff_vec_p);
2135 int i;
2137 for (i = 0; i < len; i++)
2138 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2141 /* If this used to be a conditional jump insn but whose branch
2142 direction is now known, we must do something special. */
2143 if (any_condjump_p (insn) && onlyjump_p (insn) && map->last_pc_value)
2145 #ifdef HAVE_cc0
2146 /* If the previous insn set cc0 for us, delete it. */
2147 if (only_sets_cc0_p (PREV_INSN (copy)))
2148 delete_related_insns (PREV_INSN (copy));
2149 #endif
2151 /* If this is now a no-op, delete it. */
2152 if (map->last_pc_value == pc_rtx)
2154 delete_insn (copy);
2155 copy = 0;
2157 else
2158 /* Otherwise, this is unconditional jump so we must put a
2159 BARRIER after it. We could do some dead code elimination
2160 here, but jump.c will do it just as well. */
2161 emit_barrier ();
2163 break;
2165 case CALL_INSN:
2166 pattern = copy_rtx_and_substitute (PATTERN (insn), map, 0);
2167 copy = emit_call_insn (pattern);
2168 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2169 INSN_SCOPE (copy) = INSN_SCOPE (insn);
2170 SIBLING_CALL_P (copy) = SIBLING_CALL_P (insn);
2172 /* Because the USAGE information potentially contains objects other
2173 than hard registers, we need to copy it. */
2174 CALL_INSN_FUNCTION_USAGE (copy)
2175 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn),
2176 map, 0);
2178 #ifdef HAVE_cc0
2179 if (cc0_insn)
2180 try_constants (cc0_insn, map);
2181 cc0_insn = 0;
2182 #endif
2183 try_constants (copy, map);
2185 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2186 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2187 VARRAY_CONST_EQUIV (map->const_equiv_varray, i).rtx = 0;
2188 break;
2190 case CODE_LABEL:
2191 /* If this is the loop start label, then we don't need to emit a
2192 copy of this label since no one will use it. */
2194 if (insn != start_label)
2196 copy = emit_label (get_label_from_map (map,
2197 CODE_LABEL_NUMBER (insn)));
2198 map->const_age++;
2200 break;
2202 case BARRIER:
2203 copy = emit_barrier ();
2204 break;
2206 case NOTE:
2207 /* VTOP and CONT notes are valid only before the loop exit test.
2208 If placed anywhere else, loop may generate bad code. */
2209 /* BASIC_BLOCK notes exist to stabilize basic block structures with
2210 the associated rtl. We do not want to share the structure in
2211 this new block. */
2213 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2214 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED_LABEL
2215 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2216 && ((NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2217 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2218 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2219 copy = emit_note (NOTE_SOURCE_FILE (insn),
2220 NOTE_LINE_NUMBER (insn));
2221 else
2222 copy = 0;
2223 break;
2225 default:
2226 abort ();
2229 map->insn_map[INSN_UID (insn)] = copy;
2231 while (insn != copy_end);
2233 /* Now finish coping the REG_NOTES. */
2234 insn = copy_start;
2237 insn = NEXT_INSN (insn);
2238 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2239 || GET_CODE (insn) == CALL_INSN)
2240 && map->insn_map[INSN_UID (insn)])
2241 final_reg_note_copy (&REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2243 while (insn != copy_end);
2245 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2246 each of these notes here, since there may be some important ones, such as
2247 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2248 iteration, because the original notes won't be deleted.
2250 We can't use insert_before here, because when from preconditioning,
2251 insert_before points before the loop. We can't use copy_end, because
2252 there may be insns already inserted after it (which we don't want to
2253 copy) when not from preconditioning code. */
2255 if (! last_iteration)
2257 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2259 /* VTOP notes are valid only before the loop exit test.
2260 If placed anywhere else, loop may generate bad code.
2261 Although COPY_NOTES_FROM will be at most one or two (for cc0)
2262 instructions before the last insn in the loop, COPY_NOTES_FROM
2263 can be a NOTE_INSN_LOOP_CONT note if there is no VTOP note,
2264 as in a do .. while loop. */
2265 if (GET_CODE (insn) == NOTE
2266 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2267 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
2268 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2269 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_CONT)
2270 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2274 if (final_label && LABEL_NUSES (final_label) > 0)
2275 emit_label (final_label);
2277 tem = get_insns ();
2278 end_sequence ();
2279 loop_insn_emit_before (loop, 0, insert_before, tem);
2282 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2283 emitted. This will correctly handle the case where the increment value
2284 won't fit in the immediate field of a PLUS insns. */
2286 void
2287 emit_unrolled_add (dest_reg, src_reg, increment)
2288 rtx dest_reg, src_reg, increment;
2290 rtx result;
2292 result = expand_simple_binop (GET_MODE (dest_reg), PLUS, src_reg, increment,
2293 dest_reg, 0, OPTAB_LIB_WIDEN);
2295 if (dest_reg != result)
2296 emit_move_insn (dest_reg, result);
2299 /* Searches the insns between INSN and LOOP->END. Returns 1 if there
2300 is a backward branch in that range that branches to somewhere between
2301 LOOP->START and INSN. Returns 0 otherwise. */
2303 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2304 In practice, this is not a problem, because this function is seldom called,
2305 and uses a negligible amount of CPU time on average. */
2308 back_branch_in_range_p (loop, insn)
2309 const struct loop *loop;
2310 rtx insn;
2312 rtx p, q, target_insn;
2313 rtx loop_start = loop->start;
2314 rtx loop_end = loop->end;
2315 rtx orig_loop_end = loop->end;
2317 /* Stop before we get to the backward branch at the end of the loop. */
2318 loop_end = prev_nonnote_insn (loop_end);
2319 if (GET_CODE (loop_end) == BARRIER)
2320 loop_end = PREV_INSN (loop_end);
2322 /* Check in case insn has been deleted, search forward for first non
2323 deleted insn following it. */
2324 while (INSN_DELETED_P (insn))
2325 insn = NEXT_INSN (insn);
2327 /* Check for the case where insn is the last insn in the loop. Deal
2328 with the case where INSN was a deleted loop test insn, in which case
2329 it will now be the NOTE_LOOP_END. */
2330 if (insn == loop_end || insn == orig_loop_end)
2331 return 0;
2333 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2335 if (GET_CODE (p) == JUMP_INSN)
2337 target_insn = JUMP_LABEL (p);
2339 /* Search from loop_start to insn, to see if one of them is
2340 the target_insn. We can't use INSN_LUID comparisons here,
2341 since insn may not have an LUID entry. */
2342 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2343 if (q == target_insn)
2344 return 1;
2348 return 0;
2351 /* Try to generate the simplest rtx for the expression
2352 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2353 value of giv's. */
2355 static rtx
2356 fold_rtx_mult_add (mult1, mult2, add1, mode)
2357 rtx mult1, mult2, add1;
2358 enum machine_mode mode;
2360 rtx temp, mult_res;
2361 rtx result;
2363 /* The modes must all be the same. This should always be true. For now,
2364 check to make sure. */
2365 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2366 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2367 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2368 abort ();
2370 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2371 will be a constant. */
2372 if (GET_CODE (mult1) == CONST_INT)
2374 temp = mult2;
2375 mult2 = mult1;
2376 mult1 = temp;
2379 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2380 if (! mult_res)
2381 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2383 /* Again, put the constant second. */
2384 if (GET_CODE (add1) == CONST_INT)
2386 temp = add1;
2387 add1 = mult_res;
2388 mult_res = temp;
2391 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2392 if (! result)
2393 result = gen_rtx_PLUS (mode, add1, mult_res);
2395 return result;
2398 /* Searches the list of induction struct's for the biv BL, to try to calculate
2399 the total increment value for one iteration of the loop as a constant.
2401 Returns the increment value as an rtx, simplified as much as possible,
2402 if it can be calculated. Otherwise, returns 0. */
2405 biv_total_increment (bl)
2406 const struct iv_class *bl;
2408 struct induction *v;
2409 rtx result;
2411 /* For increment, must check every instruction that sets it. Each
2412 instruction must be executed only once each time through the loop.
2413 To verify this, we check that the insn is always executed, and that
2414 there are no backward branches after the insn that branch to before it.
2415 Also, the insn must have a mult_val of one (to make sure it really is
2416 an increment). */
2418 result = const0_rtx;
2419 for (v = bl->biv; v; v = v->next_iv)
2421 if (v->always_computable && v->mult_val == const1_rtx
2422 && ! v->maybe_multiple
2423 && SCALAR_INT_MODE_P (v->mode))
2424 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2425 else
2426 return 0;
2429 return result;
2432 /* For each biv and giv, determine whether it can be safely split into
2433 a different variable for each unrolled copy of the loop body. If it
2434 is safe to split, then indicate that by saving some useful info
2435 in the splittable_regs array.
2437 If the loop is being completely unrolled, then splittable_regs will hold
2438 the current value of the induction variable while the loop is unrolled.
2439 It must be set to the initial value of the induction variable here.
2440 Otherwise, splittable_regs will hold the difference between the current
2441 value of the induction variable and the value the induction variable had
2442 at the top of the loop. It must be set to the value 0 here.
2444 Returns the total number of instructions that set registers that are
2445 splittable. */
2447 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2448 constant values are unnecessary, since we can easily calculate increment
2449 values in this case even if nothing is constant. The increment value
2450 should not involve a multiply however. */
2452 /* ?? Even if the biv/giv increment values aren't constant, it may still
2453 be beneficial to split the variable if the loop is only unrolled a few
2454 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2456 static int
2457 find_splittable_regs (loop, unroll_type, unroll_number)
2458 const struct loop *loop;
2459 enum unroll_types unroll_type;
2460 int unroll_number;
2462 struct loop_ivs *ivs = LOOP_IVS (loop);
2463 struct iv_class *bl;
2464 struct induction *v;
2465 rtx increment, tem;
2466 rtx biv_final_value;
2467 int biv_splittable;
2468 int result = 0;
2470 for (bl = ivs->list; bl; bl = bl->next)
2472 /* Biv_total_increment must return a constant value,
2473 otherwise we can not calculate the split values. */
2475 increment = biv_total_increment (bl);
2476 if (! increment || GET_CODE (increment) != CONST_INT)
2477 continue;
2479 /* The loop must be unrolled completely, or else have a known number
2480 of iterations and only one exit, or else the biv must be dead
2481 outside the loop, or else the final value must be known. Otherwise,
2482 it is unsafe to split the biv since it may not have the proper
2483 value on loop exit. */
2485 /* loop_number_exit_count is non-zero if the loop has an exit other than
2486 a fall through at the end. */
2488 biv_splittable = 1;
2489 biv_final_value = 0;
2490 if (unroll_type != UNROLL_COMPLETELY
2491 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2492 && (REGNO_LAST_LUID (bl->regno) >= INSN_LUID (loop->end)
2493 || ! bl->init_insn
2494 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2495 || (REGNO_FIRST_LUID (bl->regno)
2496 < INSN_LUID (bl->init_insn))
2497 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2498 && ! (biv_final_value = final_biv_value (loop, bl)))
2499 biv_splittable = 0;
2501 /* If any of the insns setting the BIV don't do so with a simple
2502 PLUS, we don't know how to split it. */
2503 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2504 if ((tem = single_set (v->insn)) == 0
2505 || GET_CODE (SET_DEST (tem)) != REG
2506 || REGNO (SET_DEST (tem)) != bl->regno
2507 || GET_CODE (SET_SRC (tem)) != PLUS)
2508 biv_splittable = 0;
2510 /* If final value is non-zero, then must emit an instruction which sets
2511 the value of the biv to the proper value. This is done after
2512 handling all of the givs, since some of them may need to use the
2513 biv's value in their initialization code. */
2515 /* This biv is splittable. If completely unrolling the loop, save
2516 the biv's initial value. Otherwise, save the constant zero. */
2518 if (biv_splittable == 1)
2520 if (unroll_type == UNROLL_COMPLETELY)
2522 /* If the initial value of the biv is itself (i.e. it is too
2523 complicated for strength_reduce to compute), or is a hard
2524 register, or it isn't invariant, then we must create a new
2525 pseudo reg to hold the initial value of the biv. */
2527 if (GET_CODE (bl->initial_value) == REG
2528 && (REGNO (bl->initial_value) == bl->regno
2529 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2530 || ! loop_invariant_p (loop, bl->initial_value)))
2532 rtx tem = gen_reg_rtx (bl->biv->mode);
2534 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2535 loop_insn_hoist (loop,
2536 gen_move_insn (tem, bl->biv->src_reg));
2538 if (loop_dump_stream)
2539 fprintf (loop_dump_stream,
2540 "Biv %d initial value remapped to %d.\n",
2541 bl->regno, REGNO (tem));
2543 splittable_regs[bl->regno] = tem;
2545 else
2546 splittable_regs[bl->regno] = bl->initial_value;
2548 else
2549 splittable_regs[bl->regno] = const0_rtx;
2551 /* Save the number of instructions that modify the biv, so that
2552 we can treat the last one specially. */
2554 splittable_regs_updates[bl->regno] = bl->biv_count;
2555 result += bl->biv_count;
2557 if (loop_dump_stream)
2558 fprintf (loop_dump_stream,
2559 "Biv %d safe to split.\n", bl->regno);
2562 /* Check every giv that depends on this biv to see whether it is
2563 splittable also. Even if the biv isn't splittable, givs which
2564 depend on it may be splittable if the biv is live outside the
2565 loop, and the givs aren't. */
2567 result += find_splittable_givs (loop, bl, unroll_type, increment,
2568 unroll_number);
2570 /* If final value is non-zero, then must emit an instruction which sets
2571 the value of the biv to the proper value. This is done after
2572 handling all of the givs, since some of them may need to use the
2573 biv's value in their initialization code. */
2574 if (biv_final_value)
2576 /* If the loop has multiple exits, emit the insns before the
2577 loop to ensure that it will always be executed no matter
2578 how the loop exits. Otherwise emit the insn after the loop,
2579 since this is slightly more efficient. */
2580 if (! loop->exit_count)
2581 loop_insn_sink (loop, gen_move_insn (bl->biv->src_reg,
2582 biv_final_value));
2583 else
2585 /* Create a new register to hold the value of the biv, and then
2586 set the biv to its final value before the loop start. The biv
2587 is set to its final value before loop start to ensure that
2588 this insn will always be executed, no matter how the loop
2589 exits. */
2590 rtx tem = gen_reg_rtx (bl->biv->mode);
2591 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2593 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2594 loop_insn_hoist (loop, gen_move_insn (bl->biv->src_reg,
2595 biv_final_value));
2597 if (loop_dump_stream)
2598 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2599 REGNO (bl->biv->src_reg), REGNO (tem));
2601 /* Set up the mapping from the original biv register to the new
2602 register. */
2603 bl->biv->src_reg = tem;
2607 return result;
2610 /* For every giv based on the biv BL, check to determine whether it is
2611 splittable. This is a subroutine to find_splittable_regs ().
2613 Return the number of instructions that set splittable registers. */
2615 static int
2616 find_splittable_givs (loop, bl, unroll_type, increment, unroll_number)
2617 const struct loop *loop;
2618 struct iv_class *bl;
2619 enum unroll_types unroll_type;
2620 rtx increment;
2621 int unroll_number ATTRIBUTE_UNUSED;
2623 struct loop_ivs *ivs = LOOP_IVS (loop);
2624 struct induction *v, *v2;
2625 rtx final_value;
2626 rtx tem;
2627 int result = 0;
2629 /* Scan the list of givs, and set the same_insn field when there are
2630 multiple identical givs in the same insn. */
2631 for (v = bl->giv; v; v = v->next_iv)
2632 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2633 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2634 && ! v2->same_insn)
2635 v2->same_insn = v;
2637 for (v = bl->giv; v; v = v->next_iv)
2639 rtx giv_inc, value;
2641 /* Only split the giv if it has already been reduced, or if the loop is
2642 being completely unrolled. */
2643 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2644 continue;
2646 /* The giv can be split if the insn that sets the giv is executed once
2647 and only once on every iteration of the loop. */
2648 /* An address giv can always be split. v->insn is just a use not a set,
2649 and hence it does not matter whether it is always executed. All that
2650 matters is that all the biv increments are always executed, and we
2651 won't reach here if they aren't. */
2652 if (v->giv_type != DEST_ADDR
2653 && (! v->always_computable
2654 || back_branch_in_range_p (loop, v->insn)))
2655 continue;
2657 /* The giv increment value must be a constant. */
2658 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2659 v->mode);
2660 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2661 continue;
2663 /* The loop must be unrolled completely, or else have a known number of
2664 iterations and only one exit, or else the giv must be dead outside
2665 the loop, or else the final value of the giv must be known.
2666 Otherwise, it is not safe to split the giv since it may not have the
2667 proper value on loop exit. */
2669 /* The used outside loop test will fail for DEST_ADDR givs. They are
2670 never used outside the loop anyways, so it is always safe to split a
2671 DEST_ADDR giv. */
2673 final_value = 0;
2674 if (unroll_type != UNROLL_COMPLETELY
2675 && (loop->exit_count || unroll_type == UNROLL_NAIVE)
2676 && v->giv_type != DEST_ADDR
2677 /* The next part is true if the pseudo is used outside the loop.
2678 We assume that this is true for any pseudo created after loop
2679 starts, because we don't have a reg_n_info entry for them. */
2680 && (REGNO (v->dest_reg) >= max_reg_before_loop
2681 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2682 /* Check for the case where the pseudo is set by a shift/add
2683 sequence, in which case the first insn setting the pseudo
2684 is the first insn of the shift/add sequence. */
2685 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2686 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2687 != INSN_UID (XEXP (tem, 0)))))
2688 /* Line above always fails if INSN was moved by loop opt. */
2689 || (REGNO_LAST_LUID (REGNO (v->dest_reg))
2690 >= INSN_LUID (loop->end)))
2691 && ! (final_value = v->final_value))
2692 continue;
2694 #if 0
2695 /* Currently, non-reduced/final-value givs are never split. */
2696 /* Should emit insns after the loop if possible, as the biv final value
2697 code below does. */
2699 /* If the final value is non-zero, and the giv has not been reduced,
2700 then must emit an instruction to set the final value. */
2701 if (final_value && !v->new_reg)
2703 /* Create a new register to hold the value of the giv, and then set
2704 the giv to its final value before the loop start. The giv is set
2705 to its final value before loop start to ensure that this insn
2706 will always be executed, no matter how we exit. */
2707 tem = gen_reg_rtx (v->mode);
2708 loop_insn_hoist (loop, gen_move_insn (tem, v->dest_reg));
2709 loop_insn_hoist (loop, gen_move_insn (v->dest_reg, final_value));
2711 if (loop_dump_stream)
2712 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2713 REGNO (v->dest_reg), REGNO (tem));
2715 v->src_reg = tem;
2717 #endif
2719 /* This giv is splittable. If completely unrolling the loop, save the
2720 giv's initial value. Otherwise, save the constant zero for it. */
2722 if (unroll_type == UNROLL_COMPLETELY)
2724 /* It is not safe to use bl->initial_value here, because it may not
2725 be invariant. It is safe to use the initial value stored in
2726 the splittable_regs array if it is set. In rare cases, it won't
2727 be set, so then we do exactly the same thing as
2728 find_splittable_regs does to get a safe value. */
2729 rtx biv_initial_value;
2731 if (splittable_regs[bl->regno])
2732 biv_initial_value = splittable_regs[bl->regno];
2733 else if (GET_CODE (bl->initial_value) != REG
2734 || (REGNO (bl->initial_value) != bl->regno
2735 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2736 biv_initial_value = bl->initial_value;
2737 else
2739 rtx tem = gen_reg_rtx (bl->biv->mode);
2741 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2742 loop_insn_hoist (loop, gen_move_insn (tem, bl->biv->src_reg));
2743 biv_initial_value = tem;
2745 biv_initial_value = extend_value_for_giv (v, biv_initial_value);
2746 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2747 v->add_val, v->mode);
2749 else
2750 value = const0_rtx;
2752 if (v->new_reg)
2754 /* If a giv was combined with another giv, then we can only split
2755 this giv if the giv it was combined with was reduced. This
2756 is because the value of v->new_reg is meaningless in this
2757 case. */
2758 if (v->same && ! v->same->new_reg)
2760 if (loop_dump_stream)
2761 fprintf (loop_dump_stream,
2762 "giv combined with unreduced giv not split.\n");
2763 continue;
2765 /* If the giv is an address destination, it could be something other
2766 than a simple register, these have to be treated differently. */
2767 else if (v->giv_type == DEST_REG)
2769 /* If value is not a constant, register, or register plus
2770 constant, then compute its value into a register before
2771 loop start. This prevents invalid rtx sharing, and should
2772 generate better code. We can use bl->initial_value here
2773 instead of splittable_regs[bl->regno] because this code
2774 is going before the loop start. */
2775 if (unroll_type == UNROLL_COMPLETELY
2776 && GET_CODE (value) != CONST_INT
2777 && GET_CODE (value) != REG
2778 && (GET_CODE (value) != PLUS
2779 || GET_CODE (XEXP (value, 0)) != REG
2780 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2782 rtx tem = gen_reg_rtx (v->mode);
2783 record_base_value (REGNO (tem), v->add_val, 0);
2784 loop_iv_add_mult_hoist (loop, bl->initial_value, v->mult_val,
2785 v->add_val, tem);
2786 value = tem;
2789 splittable_regs[REGNO (v->new_reg)] = value;
2791 else
2792 continue;
2794 else
2796 #if 0
2797 /* Currently, unreduced giv's can't be split. This is not too much
2798 of a problem since unreduced giv's are not live across loop
2799 iterations anyways. When unrolling a loop completely though,
2800 it makes sense to reduce&split givs when possible, as this will
2801 result in simpler instructions, and will not require that a reg
2802 be live across loop iterations. */
2804 splittable_regs[REGNO (v->dest_reg)] = value;
2805 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2806 REGNO (v->dest_reg), INSN_UID (v->insn));
2807 #else
2808 continue;
2809 #endif
2812 /* Unreduced givs are only updated once by definition. Reduced givs
2813 are updated as many times as their biv is. Mark it so if this is
2814 a splittable register. Don't need to do anything for address givs
2815 where this may not be a register. */
2817 if (GET_CODE (v->new_reg) == REG)
2819 int count = 1;
2820 if (! v->ignore)
2821 count = REG_IV_CLASS (ivs, REGNO (v->src_reg))->biv_count;
2823 splittable_regs_updates[REGNO (v->new_reg)] = count;
2826 result++;
2828 if (loop_dump_stream)
2830 int regnum;
2832 if (GET_CODE (v->dest_reg) == CONST_INT)
2833 regnum = -1;
2834 else if (GET_CODE (v->dest_reg) != REG)
2835 regnum = REGNO (XEXP (v->dest_reg, 0));
2836 else
2837 regnum = REGNO (v->dest_reg);
2838 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2839 regnum, INSN_UID (v->insn));
2843 return result;
2846 /* Try to prove that the register is dead after the loop exits. Trace every
2847 loop exit looking for an insn that will always be executed, which sets
2848 the register to some value, and appears before the first use of the register
2849 is found. If successful, then return 1, otherwise return 0. */
2851 /* ?? Could be made more intelligent in the handling of jumps, so that
2852 it can search past if statements and other similar structures. */
2854 static int
2855 reg_dead_after_loop (loop, reg)
2856 const struct loop *loop;
2857 rtx reg;
2859 rtx insn, label;
2860 enum rtx_code code;
2861 int jump_count = 0;
2862 int label_count = 0;
2864 /* In addition to checking all exits of this loop, we must also check
2865 all exits of inner nested loops that would exit this loop. We don't
2866 have any way to identify those, so we just give up if there are any
2867 such inner loop exits. */
2869 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
2870 label_count++;
2872 if (label_count != loop->exit_count)
2873 return 0;
2875 /* HACK: Must also search the loop fall through exit, create a label_ref
2876 here which points to the loop->end, and append the loop_number_exit_labels
2877 list to it. */
2878 label = gen_rtx_LABEL_REF (VOIDmode, loop->end);
2879 LABEL_NEXTREF (label) = loop->exit_labels;
2881 for (; label; label = LABEL_NEXTREF (label))
2883 /* Succeed if find an insn which sets the biv or if reach end of
2884 function. Fail if find an insn that uses the biv, or if come to
2885 a conditional jump. */
2887 insn = NEXT_INSN (XEXP (label, 0));
2888 while (insn)
2890 code = GET_CODE (insn);
2891 if (GET_RTX_CLASS (code) == 'i')
2893 rtx set;
2895 if (reg_referenced_p (reg, PATTERN (insn)))
2896 return 0;
2898 set = single_set (insn);
2899 if (set && rtx_equal_p (SET_DEST (set), reg))
2900 break;
2903 if (code == JUMP_INSN)
2905 if (GET_CODE (PATTERN (insn)) == RETURN)
2906 break;
2907 else if (!any_uncondjump_p (insn)
2908 /* Prevent infinite loop following infinite loops. */
2909 || jump_count++ > 20)
2910 return 0;
2911 else
2912 insn = JUMP_LABEL (insn);
2915 insn = NEXT_INSN (insn);
2919 /* Success, the register is dead on all loop exits. */
2920 return 1;
2923 /* Try to calculate the final value of the biv, the value it will have at
2924 the end of the loop. If we can do it, return that value. */
2927 final_biv_value (loop, bl)
2928 const struct loop *loop;
2929 struct iv_class *bl;
2931 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
2932 rtx increment, tem;
2934 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2936 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2937 return 0;
2939 /* The final value for reversed bivs must be calculated differently than
2940 for ordinary bivs. In this case, there is already an insn after the
2941 loop which sets this biv's final value (if necessary), and there are
2942 no other loop exits, so we can return any value. */
2943 if (bl->reversed)
2945 if (loop_dump_stream)
2946 fprintf (loop_dump_stream,
2947 "Final biv value for %d, reversed biv.\n", bl->regno);
2949 return const0_rtx;
2952 /* Try to calculate the final value as initial value + (number of iterations
2953 * increment). For this to work, increment must be invariant, the only
2954 exit from the loop must be the fall through at the bottom (otherwise
2955 it may not have its final value when the loop exits), and the initial
2956 value of the biv must be invariant. */
2958 if (n_iterations != 0
2959 && ! loop->exit_count
2960 && loop_invariant_p (loop, bl->initial_value))
2962 increment = biv_total_increment (bl);
2964 if (increment && loop_invariant_p (loop, increment))
2966 /* Can calculate the loop exit value, emit insns after loop
2967 end to calculate this value into a temporary register in
2968 case it is needed later. */
2970 tem = gen_reg_rtx (bl->biv->mode);
2971 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2972 loop_iv_add_mult_sink (loop, increment, GEN_INT (n_iterations),
2973 bl->initial_value, tem);
2975 if (loop_dump_stream)
2976 fprintf (loop_dump_stream,
2977 "Final biv value for %d, calculated.\n", bl->regno);
2979 return tem;
2983 /* Check to see if the biv is dead at all loop exits. */
2984 if (reg_dead_after_loop (loop, bl->biv->src_reg))
2986 if (loop_dump_stream)
2987 fprintf (loop_dump_stream,
2988 "Final biv value for %d, biv dead after loop exit.\n",
2989 bl->regno);
2991 return const0_rtx;
2994 return 0;
2997 /* Try to calculate the final value of the giv, the value it will have at
2998 the end of the loop. If we can do it, return that value. */
3001 final_giv_value (loop, v)
3002 const struct loop *loop;
3003 struct induction *v;
3005 struct loop_ivs *ivs = LOOP_IVS (loop);
3006 struct iv_class *bl;
3007 rtx insn;
3008 rtx increment, tem;
3009 rtx seq;
3010 rtx loop_end = loop->end;
3011 unsigned HOST_WIDE_INT n_iterations = LOOP_INFO (loop)->n_iterations;
3013 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3015 /* The final value for givs which depend on reversed bivs must be calculated
3016 differently than for ordinary givs. In this case, there is already an
3017 insn after the loop which sets this giv's final value (if necessary),
3018 and there are no other loop exits, so we can return any value. */
3019 if (bl->reversed)
3021 if (loop_dump_stream)
3022 fprintf (loop_dump_stream,
3023 "Final giv value for %d, depends on reversed biv\n",
3024 REGNO (v->dest_reg));
3025 return const0_rtx;
3028 /* Try to calculate the final value as a function of the biv it depends
3029 upon. The only exit from the loop must be the fall through at the bottom
3030 and the insn that sets the giv must be executed on every iteration
3031 (otherwise the giv may not have its final value when the loop exits). */
3033 /* ??? Can calculate the final giv value by subtracting off the
3034 extra biv increments times the giv's mult_val. The loop must have
3035 only one exit for this to work, but the loop iterations does not need
3036 to be known. */
3038 if (n_iterations != 0
3039 && ! loop->exit_count
3040 && v->always_executed)
3042 /* ?? It is tempting to use the biv's value here since these insns will
3043 be put after the loop, and hence the biv will have its final value
3044 then. However, this fails if the biv is subsequently eliminated.
3045 Perhaps determine whether biv's are eliminable before trying to
3046 determine whether giv's are replaceable so that we can use the
3047 biv value here if it is not eliminable. */
3049 /* We are emitting code after the end of the loop, so we must make
3050 sure that bl->initial_value is still valid then. It will still
3051 be valid if it is invariant. */
3053 increment = biv_total_increment (bl);
3055 if (increment && loop_invariant_p (loop, increment)
3056 && loop_invariant_p (loop, bl->initial_value))
3058 /* Can calculate the loop exit value of its biv as
3059 (n_iterations * increment) + initial_value */
3061 /* The loop exit value of the giv is then
3062 (final_biv_value - extra increments) * mult_val + add_val.
3063 The extra increments are any increments to the biv which
3064 occur in the loop after the giv's value is calculated.
3065 We must search from the insn that sets the giv to the end
3066 of the loop to calculate this value. */
3068 /* Put the final biv value in tem. */
3069 tem = gen_reg_rtx (v->mode);
3070 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3071 loop_iv_add_mult_sink (loop, extend_value_for_giv (v, increment),
3072 GEN_INT (n_iterations),
3073 extend_value_for_giv (v, bl->initial_value),
3074 tem);
3076 /* Subtract off extra increments as we find them. */
3077 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3078 insn = NEXT_INSN (insn))
3080 struct induction *biv;
3082 for (biv = bl->biv; biv; biv = biv->next_iv)
3083 if (biv->insn == insn)
3085 start_sequence ();
3086 tem = expand_simple_binop (GET_MODE (tem), MINUS, tem,
3087 biv->add_val, NULL_RTX, 0,
3088 OPTAB_LIB_WIDEN);
3089 seq = get_insns ();
3090 end_sequence ();
3091 loop_insn_sink (loop, seq);
3095 /* Now calculate the giv's final value. */
3096 loop_iv_add_mult_sink (loop, tem, v->mult_val, v->add_val, tem);
3098 if (loop_dump_stream)
3099 fprintf (loop_dump_stream,
3100 "Final giv value for %d, calc from biv's value.\n",
3101 REGNO (v->dest_reg));
3103 return tem;
3107 /* Replaceable giv's should never reach here. */
3108 if (v->replaceable)
3109 abort ();
3111 /* Check to see if the biv is dead at all loop exits. */
3112 if (reg_dead_after_loop (loop, v->dest_reg))
3114 if (loop_dump_stream)
3115 fprintf (loop_dump_stream,
3116 "Final giv value for %d, giv dead after loop exit.\n",
3117 REGNO (v->dest_reg));
3119 return const0_rtx;
3122 return 0;
3125 /* Look back before LOOP->START for the insn that sets REG and return
3126 the equivalent constant if there is a REG_EQUAL note otherwise just
3127 the SET_SRC of REG. */
3129 static rtx
3130 loop_find_equiv_value (loop, reg)
3131 const struct loop *loop;
3132 rtx reg;
3134 rtx loop_start = loop->start;
3135 rtx insn, set;
3136 rtx ret;
3138 ret = reg;
3139 for (insn = PREV_INSN (loop_start); insn; insn = PREV_INSN (insn))
3141 if (GET_CODE (insn) == CODE_LABEL)
3142 break;
3144 else if (INSN_P (insn) && reg_set_p (reg, insn))
3146 /* We found the last insn before the loop that sets the register.
3147 If it sets the entire register, and has a REG_EQUAL note,
3148 then use the value of the REG_EQUAL note. */
3149 if ((set = single_set (insn))
3150 && (SET_DEST (set) == reg))
3152 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3154 /* Only use the REG_EQUAL note if it is a constant.
3155 Other things, divide in particular, will cause
3156 problems later if we use them. */
3157 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3158 && CONSTANT_P (XEXP (note, 0)))
3159 ret = XEXP (note, 0);
3160 else
3161 ret = SET_SRC (set);
3163 /* We cannot do this if it changes between the
3164 assignment and loop start though. */
3165 if (modified_between_p (ret, insn, loop_start))
3166 ret = reg;
3168 break;
3171 return ret;
3174 /* Return a simplified rtx for the expression OP - REG.
3176 REG must appear in OP, and OP must be a register or the sum of a register
3177 and a second term.
3179 Thus, the return value must be const0_rtx or the second term.
3181 The caller is responsible for verifying that REG appears in OP and OP has
3182 the proper form. */
3184 static rtx
3185 subtract_reg_term (op, reg)
3186 rtx op, reg;
3188 if (op == reg)
3189 return const0_rtx;
3190 if (GET_CODE (op) == PLUS)
3192 if (XEXP (op, 0) == reg)
3193 return XEXP (op, 1);
3194 else if (XEXP (op, 1) == reg)
3195 return XEXP (op, 0);
3197 /* OP does not contain REG as a term. */
3198 abort ();
3201 /* Find and return register term common to both expressions OP0 and
3202 OP1 or NULL_RTX if no such term exists. Each expression must be a
3203 REG or a PLUS of a REG. */
3205 static rtx
3206 find_common_reg_term (op0, op1)
3207 rtx op0, op1;
3209 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3210 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3212 rtx op00;
3213 rtx op01;
3214 rtx op10;
3215 rtx op11;
3217 if (GET_CODE (op0) == PLUS)
3218 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3219 else
3220 op01 = const0_rtx, op00 = op0;
3222 if (GET_CODE (op1) == PLUS)
3223 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3224 else
3225 op11 = const0_rtx, op10 = op1;
3227 /* Find and return common register term if present. */
3228 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3229 return op00;
3230 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3231 return op01;
3234 /* No common register term found. */
3235 return NULL_RTX;
3238 /* Determine the loop iterator and calculate the number of loop
3239 iterations. Returns the exact number of loop iterations if it can
3240 be calculated, otherwise returns zero. */
3242 unsigned HOST_WIDE_INT
3243 loop_iterations (loop)
3244 struct loop *loop;
3246 struct loop_info *loop_info = LOOP_INFO (loop);
3247 struct loop_ivs *ivs = LOOP_IVS (loop);
3248 rtx comparison, comparison_value;
3249 rtx iteration_var, initial_value, increment, final_value;
3250 enum rtx_code comparison_code;
3251 HOST_WIDE_INT inc;
3252 unsigned HOST_WIDE_INT abs_inc;
3253 unsigned HOST_WIDE_INT abs_diff;
3254 int off_by_one;
3255 int increment_dir;
3256 int unsigned_p, compare_dir, final_larger;
3257 rtx last_loop_insn;
3258 rtx reg_term;
3259 struct iv_class *bl;
3261 loop_info->n_iterations = 0;
3262 loop_info->initial_value = 0;
3263 loop_info->initial_equiv_value = 0;
3264 loop_info->comparison_value = 0;
3265 loop_info->final_value = 0;
3266 loop_info->final_equiv_value = 0;
3267 loop_info->increment = 0;
3268 loop_info->iteration_var = 0;
3269 loop_info->unroll_number = 1;
3270 loop_info->iv = 0;
3272 /* We used to use prev_nonnote_insn here, but that fails because it might
3273 accidentally get the branch for a contained loop if the branch for this
3274 loop was deleted. We can only trust branches immediately before the
3275 loop_end. */
3276 last_loop_insn = prev_nonnote_insn (loop->end);
3278 /* ??? We should probably try harder to find the jump insn
3279 at the end of the loop. The following code assumes that
3280 the last loop insn is a jump to the top of the loop. */
3281 if (GET_CODE (last_loop_insn) != JUMP_INSN)
3283 if (loop_dump_stream)
3284 fprintf (loop_dump_stream,
3285 "Loop iterations: No final conditional branch found.\n");
3286 return 0;
3289 /* If there is a more than a single jump to the top of the loop
3290 we cannot (easily) determine the iteration count. */
3291 if (LABEL_NUSES (JUMP_LABEL (last_loop_insn)) > 1)
3293 if (loop_dump_stream)
3294 fprintf (loop_dump_stream,
3295 "Loop iterations: Loop has multiple back edges.\n");
3296 return 0;
3299 /* If there are multiple conditionalized loop exit tests, they may jump
3300 back to differing CODE_LABELs. */
3301 if (loop->top && loop->cont)
3303 rtx temp = PREV_INSN (last_loop_insn);
3307 if (GET_CODE (temp) == JUMP_INSN)
3309 /* There are some kinds of jumps we can't deal with easily. */
3310 if (JUMP_LABEL (temp) == 0)
3312 if (loop_dump_stream)
3313 fprintf
3314 (loop_dump_stream,
3315 "Loop iterations: Jump insn has null JUMP_LABEL.\n");
3316 return 0;
3319 if (/* Previous unrolling may have generated new insns not
3320 covered by the uid_luid array. */
3321 INSN_UID (JUMP_LABEL (temp)) < max_uid_for_loop
3322 /* Check if we jump back into the loop body. */
3323 && INSN_LUID (JUMP_LABEL (temp)) > INSN_LUID (loop->top)
3324 && INSN_LUID (JUMP_LABEL (temp)) < INSN_LUID (loop->cont))
3326 if (loop_dump_stream)
3327 fprintf
3328 (loop_dump_stream,
3329 "Loop iterations: Loop has multiple back edges.\n");
3330 return 0;
3334 while ((temp = PREV_INSN (temp)) != loop->cont);
3337 /* Find the iteration variable. If the last insn is a conditional
3338 branch, and the insn before tests a register value, make that the
3339 iteration variable. */
3341 comparison = get_condition_for_loop (loop, last_loop_insn);
3342 if (comparison == 0)
3344 if (loop_dump_stream)
3345 fprintf (loop_dump_stream,
3346 "Loop iterations: No final comparison found.\n");
3347 return 0;
3350 /* ??? Get_condition may switch position of induction variable and
3351 invariant register when it canonicalizes the comparison. */
3353 comparison_code = GET_CODE (comparison);
3354 iteration_var = XEXP (comparison, 0);
3355 comparison_value = XEXP (comparison, 1);
3357 if (GET_CODE (iteration_var) != REG)
3359 if (loop_dump_stream)
3360 fprintf (loop_dump_stream,
3361 "Loop iterations: Comparison not against register.\n");
3362 return 0;
3365 /* The only new registers that are created before loop iterations
3366 are givs made from biv increments or registers created by
3367 load_mems. In the latter case, it is possible that try_copy_prop
3368 will propagate a new pseudo into the old iteration register but
3369 this will be marked by having the REG_USERVAR_P bit set. */
3371 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs
3372 && ! REG_USERVAR_P (iteration_var))
3373 abort ();
3375 /* Determine the initial value of the iteration variable, and the amount
3376 that it is incremented each loop. Use the tables constructed by
3377 the strength reduction pass to calculate these values. */
3379 /* Clear the result values, in case no answer can be found. */
3380 initial_value = 0;
3381 increment = 0;
3383 /* The iteration variable can be either a giv or a biv. Check to see
3384 which it is, and compute the variable's initial value, and increment
3385 value if possible. */
3387 /* If this is a new register, can't handle it since we don't have any
3388 reg_iv_type entry for it. */
3389 if ((unsigned) REGNO (iteration_var) >= ivs->n_regs)
3391 if (loop_dump_stream)
3392 fprintf (loop_dump_stream,
3393 "Loop iterations: No reg_iv_type entry for iteration var.\n");
3394 return 0;
3397 /* Reject iteration variables larger than the host wide int size, since they
3398 could result in a number of iterations greater than the range of our
3399 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
3400 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
3401 > HOST_BITS_PER_WIDE_INT))
3403 if (loop_dump_stream)
3404 fprintf (loop_dump_stream,
3405 "Loop iterations: Iteration var rejected because mode too large.\n");
3406 return 0;
3408 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
3410 if (loop_dump_stream)
3411 fprintf (loop_dump_stream,
3412 "Loop iterations: Iteration var not an integer.\n");
3413 return 0;
3415 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == BASIC_INDUCT)
3417 if (REGNO (iteration_var) >= ivs->n_regs)
3418 abort ();
3420 /* Grab initial value, only useful if it is a constant. */
3421 bl = REG_IV_CLASS (ivs, REGNO (iteration_var));
3422 initial_value = bl->initial_value;
3423 if (!bl->biv->always_executed || bl->biv->maybe_multiple)
3425 if (loop_dump_stream)
3426 fprintf (loop_dump_stream,
3427 "Loop iterations: Basic induction var not set once in each iteration.\n");
3428 return 0;
3431 increment = biv_total_increment (bl);
3433 else if (REG_IV_TYPE (ivs, REGNO (iteration_var)) == GENERAL_INDUCT)
3435 HOST_WIDE_INT offset = 0;
3436 struct induction *v = REG_IV_INFO (ivs, REGNO (iteration_var));
3437 rtx biv_initial_value;
3439 if (REGNO (v->src_reg) >= ivs->n_regs)
3440 abort ();
3442 if (!v->always_executed || v->maybe_multiple)
3444 if (loop_dump_stream)
3445 fprintf (loop_dump_stream,
3446 "Loop iterations: General induction var not set once in each iteration.\n");
3447 return 0;
3450 bl = REG_IV_CLASS (ivs, REGNO (v->src_reg));
3452 /* Increment value is mult_val times the increment value of the biv. */
3454 increment = biv_total_increment (bl);
3455 if (increment)
3457 struct induction *biv_inc;
3459 increment = fold_rtx_mult_add (v->mult_val,
3460 extend_value_for_giv (v, increment),
3461 const0_rtx, v->mode);
3462 /* The caller assumes that one full increment has occurred at the
3463 first loop test. But that's not true when the biv is incremented
3464 after the giv is set (which is the usual case), e.g.:
3465 i = 6; do {;} while (i++ < 9) .
3466 Therefore, we bias the initial value by subtracting the amount of
3467 the increment that occurs between the giv set and the giv test. */
3468 for (biv_inc = bl->biv; biv_inc; biv_inc = biv_inc->next_iv)
3470 if (loop_insn_first_p (v->insn, biv_inc->insn))
3472 if (REG_P (biv_inc->add_val))
3474 if (loop_dump_stream)
3475 fprintf (loop_dump_stream,
3476 "Loop iterations: Basic induction var add_val is REG %d.\n",
3477 REGNO (biv_inc->add_val));
3478 return 0;
3481 offset -= INTVAL (biv_inc->add_val);
3485 if (loop_dump_stream)
3486 fprintf (loop_dump_stream,
3487 "Loop iterations: Giv iterator, initial value bias %ld.\n",
3488 (long) offset);
3490 /* Initial value is mult_val times the biv's initial value plus
3491 add_val. Only useful if it is a constant. */
3492 biv_initial_value = extend_value_for_giv (v, bl->initial_value);
3493 initial_value
3494 = fold_rtx_mult_add (v->mult_val,
3495 plus_constant (biv_initial_value, offset),
3496 v->add_val, v->mode);
3498 else
3500 if (loop_dump_stream)
3501 fprintf (loop_dump_stream,
3502 "Loop iterations: Not basic or general induction var.\n");
3503 return 0;
3506 if (initial_value == 0)
3507 return 0;
3509 unsigned_p = 0;
3510 off_by_one = 0;
3511 switch (comparison_code)
3513 case LEU:
3514 unsigned_p = 1;
3515 case LE:
3516 compare_dir = 1;
3517 off_by_one = 1;
3518 break;
3519 case GEU:
3520 unsigned_p = 1;
3521 case GE:
3522 compare_dir = -1;
3523 off_by_one = -1;
3524 break;
3525 case EQ:
3526 /* Cannot determine loop iterations with this case. */
3527 compare_dir = 0;
3528 break;
3529 case LTU:
3530 unsigned_p = 1;
3531 case LT:
3532 compare_dir = 1;
3533 break;
3534 case GTU:
3535 unsigned_p = 1;
3536 case GT:
3537 compare_dir = -1;
3538 case NE:
3539 compare_dir = 0;
3540 break;
3541 default:
3542 abort ();
3545 /* If the comparison value is an invariant register, then try to find
3546 its value from the insns before the start of the loop. */
3548 final_value = comparison_value;
3549 if (GET_CODE (comparison_value) == REG
3550 && loop_invariant_p (loop, comparison_value))
3552 final_value = loop_find_equiv_value (loop, comparison_value);
3554 /* If we don't get an invariant final value, we are better
3555 off with the original register. */
3556 if (! loop_invariant_p (loop, final_value))
3557 final_value = comparison_value;
3560 /* Calculate the approximate final value of the induction variable
3561 (on the last successful iteration). The exact final value
3562 depends on the branch operator, and increment sign. It will be
3563 wrong if the iteration variable is not incremented by one each
3564 time through the loop and (comparison_value + off_by_one -
3565 initial_value) % increment != 0.
3566 ??? Note that the final_value may overflow and thus final_larger
3567 will be bogus. A potentially infinite loop will be classified
3568 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3569 if (off_by_one)
3570 final_value = plus_constant (final_value, off_by_one);
3572 /* Save the calculated values describing this loop's bounds, in case
3573 precondition_loop_p will need them later. These values can not be
3574 recalculated inside precondition_loop_p because strength reduction
3575 optimizations may obscure the loop's structure.
3577 These values are only required by precondition_loop_p and insert_bct
3578 whenever the number of iterations cannot be computed at compile time.
3579 Only the difference between final_value and initial_value is
3580 important. Note that final_value is only approximate. */
3581 loop_info->initial_value = initial_value;
3582 loop_info->comparison_value = comparison_value;
3583 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3584 loop_info->increment = increment;
3585 loop_info->iteration_var = iteration_var;
3586 loop_info->comparison_code = comparison_code;
3587 loop_info->iv = bl;
3589 /* Try to determine the iteration count for loops such
3590 as (for i = init; i < init + const; i++). When running the
3591 loop optimization twice, the first pass often converts simple
3592 loops into this form. */
3594 if (REG_P (initial_value))
3596 rtx reg1;
3597 rtx reg2;
3598 rtx const2;
3600 reg1 = initial_value;
3601 if (GET_CODE (final_value) == PLUS)
3602 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3603 else
3604 reg2 = final_value, const2 = const0_rtx;
3606 /* Check for initial_value = reg1, final_value = reg2 + const2,
3607 where reg1 != reg2. */
3608 if (REG_P (reg2) && reg2 != reg1)
3610 rtx temp;
3612 /* Find what reg1 is equivalent to. Hopefully it will
3613 either be reg2 or reg2 plus a constant. */
3614 temp = loop_find_equiv_value (loop, reg1);
3616 if (find_common_reg_term (temp, reg2))
3617 initial_value = temp;
3618 else
3620 /* Find what reg2 is equivalent to. Hopefully it will
3621 either be reg1 or reg1 plus a constant. Let's ignore
3622 the latter case for now since it is not so common. */
3623 temp = loop_find_equiv_value (loop, reg2);
3625 if (temp == loop_info->iteration_var)
3626 temp = initial_value;
3627 if (temp == reg1)
3628 final_value = (const2 == const0_rtx)
3629 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3632 else if (loop->vtop && GET_CODE (reg2) == CONST_INT)
3634 rtx temp;
3636 /* When running the loop optimizer twice, check_dbra_loop
3637 further obfuscates reversible loops of the form:
3638 for (i = init; i < init + const; i++). We often end up with
3639 final_value = 0, initial_value = temp, temp = temp2 - init,
3640 where temp2 = init + const. If the loop has a vtop we
3641 can replace initial_value with const. */
3643 temp = loop_find_equiv_value (loop, reg1);
3645 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3647 rtx temp2 = loop_find_equiv_value (loop, XEXP (temp, 0));
3649 if (GET_CODE (temp2) == PLUS
3650 && XEXP (temp2, 0) == XEXP (temp, 1))
3651 initial_value = XEXP (temp2, 1);
3656 /* If have initial_value = reg + const1 and final_value = reg +
3657 const2, then replace initial_value with const1 and final_value
3658 with const2. This should be safe since we are protected by the
3659 initial comparison before entering the loop if we have a vtop.
3660 For example, a + b < a + c is not equivalent to b < c for all a
3661 when using modulo arithmetic.
3663 ??? Without a vtop we could still perform the optimization if we check
3664 the initial and final values carefully. */
3665 if (loop->vtop
3666 && (reg_term = find_common_reg_term (initial_value, final_value)))
3668 initial_value = subtract_reg_term (initial_value, reg_term);
3669 final_value = subtract_reg_term (final_value, reg_term);
3672 loop_info->initial_equiv_value = initial_value;
3673 loop_info->final_equiv_value = final_value;
3675 /* For EQ comparison loops, we don't have a valid final value.
3676 Check this now so that we won't leave an invalid value if we
3677 return early for any other reason. */
3678 if (comparison_code == EQ)
3679 loop_info->final_equiv_value = loop_info->final_value = 0;
3681 if (increment == 0)
3683 if (loop_dump_stream)
3684 fprintf (loop_dump_stream,
3685 "Loop iterations: Increment value can't be calculated.\n");
3686 return 0;
3689 if (GET_CODE (increment) != CONST_INT)
3691 /* If we have a REG, check to see if REG holds a constant value. */
3692 /* ??? Other RTL, such as (neg (reg)) is possible here, but it isn't
3693 clear if it is worthwhile to try to handle such RTL. */
3694 if (GET_CODE (increment) == REG || GET_CODE (increment) == SUBREG)
3695 increment = loop_find_equiv_value (loop, increment);
3697 if (GET_CODE (increment) != CONST_INT)
3699 if (loop_dump_stream)
3701 fprintf (loop_dump_stream,
3702 "Loop iterations: Increment value not constant ");
3703 print_simple_rtl (loop_dump_stream, increment);
3704 fprintf (loop_dump_stream, ".\n");
3706 return 0;
3708 loop_info->increment = increment;
3711 if (GET_CODE (initial_value) != CONST_INT)
3713 if (loop_dump_stream)
3715 fprintf (loop_dump_stream,
3716 "Loop iterations: Initial value not constant ");
3717 print_simple_rtl (loop_dump_stream, initial_value);
3718 fprintf (loop_dump_stream, ".\n");
3720 return 0;
3722 else if (GET_CODE (final_value) != CONST_INT)
3724 if (loop_dump_stream)
3726 fprintf (loop_dump_stream,
3727 "Loop iterations: Final value not constant ");
3728 print_simple_rtl (loop_dump_stream, final_value);
3729 fprintf (loop_dump_stream, ".\n");
3731 return 0;
3733 else if (comparison_code == EQ)
3735 rtx inc_once;
3737 if (loop_dump_stream)
3738 fprintf (loop_dump_stream, "Loop iterations: EQ comparison loop.\n");
3740 inc_once = gen_int_mode (INTVAL (initial_value) + INTVAL (increment),
3741 GET_MODE (iteration_var));
3743 if (inc_once == final_value)
3745 /* The iterator value once through the loop is equal to the
3746 comparision value. Either we have an infinite loop, or
3747 we'll loop twice. */
3748 if (increment == const0_rtx)
3749 return 0;
3750 loop_info->n_iterations = 2;
3752 else
3753 loop_info->n_iterations = 1;
3755 if (GET_CODE (loop_info->initial_value) == CONST_INT)
3756 loop_info->final_value
3757 = gen_int_mode ((INTVAL (loop_info->initial_value)
3758 + loop_info->n_iterations * INTVAL (increment)),
3759 GET_MODE (iteration_var));
3760 else
3761 loop_info->final_value
3762 = plus_constant (loop_info->initial_value,
3763 loop_info->n_iterations * INTVAL (increment));
3764 loop_info->final_equiv_value
3765 = gen_int_mode ((INTVAL (initial_value)
3766 + loop_info->n_iterations * INTVAL (increment)),
3767 GET_MODE (iteration_var));
3768 return loop_info->n_iterations;
3771 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3772 if (unsigned_p)
3773 final_larger
3774 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3775 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3776 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3777 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3778 else
3779 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3780 - (INTVAL (final_value) < INTVAL (initial_value));
3782 if (INTVAL (increment) > 0)
3783 increment_dir = 1;
3784 else if (INTVAL (increment) == 0)
3785 increment_dir = 0;
3786 else
3787 increment_dir = -1;
3789 /* There are 27 different cases: compare_dir = -1, 0, 1;
3790 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3791 There are 4 normal cases, 4 reverse cases (where the iteration variable
3792 will overflow before the loop exits), 4 infinite loop cases, and 15
3793 immediate exit (0 or 1 iteration depending on loop type) cases.
3794 Only try to optimize the normal cases. */
3796 /* (compare_dir/final_larger/increment_dir)
3797 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3798 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3799 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3800 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3802 /* ?? If the meaning of reverse loops (where the iteration variable
3803 will overflow before the loop exits) is undefined, then could
3804 eliminate all of these special checks, and just always assume
3805 the loops are normal/immediate/infinite. Note that this means
3806 the sign of increment_dir does not have to be known. Also,
3807 since it does not really hurt if immediate exit loops or infinite loops
3808 are optimized, then that case could be ignored also, and hence all
3809 loops can be optimized.
3811 According to ANSI Spec, the reverse loop case result is undefined,
3812 because the action on overflow is undefined.
3814 See also the special test for NE loops below. */
3816 if (final_larger == increment_dir && final_larger != 0
3817 && (final_larger == compare_dir || compare_dir == 0))
3818 /* Normal case. */
3820 else
3822 if (loop_dump_stream)
3823 fprintf (loop_dump_stream, "Loop iterations: Not normal loop.\n");
3824 return 0;
3827 /* Calculate the number of iterations, final_value is only an approximation,
3828 so correct for that. Note that abs_diff and n_iterations are
3829 unsigned, because they can be as large as 2^n - 1. */
3831 inc = INTVAL (increment);
3832 if (inc > 0)
3834 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3835 abs_inc = inc;
3837 else if (inc < 0)
3839 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3840 abs_inc = -inc;
3842 else
3843 abort ();
3845 /* Given that iteration_var is going to iterate over its own mode,
3846 not HOST_WIDE_INT, disregard higher bits that might have come
3847 into the picture due to sign extension of initial and final
3848 values. */
3849 abs_diff &= ((unsigned HOST_WIDE_INT) 1
3850 << (GET_MODE_BITSIZE (GET_MODE (iteration_var)) - 1)
3851 << 1) - 1;
3853 /* For NE tests, make sure that the iteration variable won't miss
3854 the final value. If abs_diff mod abs_incr is not zero, then the
3855 iteration variable will overflow before the loop exits, and we
3856 can not calculate the number of iterations. */
3857 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3858 return 0;
3860 /* Note that the number of iterations could be calculated using
3861 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3862 handle potential overflow of the summation. */
3863 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3864 return loop_info->n_iterations;
3867 /* Replace uses of split bivs with their split pseudo register. This is
3868 for original instructions which remain after loop unrolling without
3869 copying. */
3871 static rtx
3872 remap_split_bivs (loop, x)
3873 struct loop *loop;
3874 rtx x;
3876 struct loop_ivs *ivs = LOOP_IVS (loop);
3877 enum rtx_code code;
3878 int i;
3879 const char *fmt;
3881 if (x == 0)
3882 return x;
3884 code = GET_CODE (x);
3885 switch (code)
3887 case SCRATCH:
3888 case PC:
3889 case CC0:
3890 case CONST_INT:
3891 case CONST_DOUBLE:
3892 case CONST:
3893 case SYMBOL_REF:
3894 case LABEL_REF:
3895 return x;
3897 case REG:
3898 #if 0
3899 /* If non-reduced/final-value givs were split, then this would also
3900 have to remap those givs also. */
3901 #endif
3902 if (REGNO (x) < ivs->n_regs
3903 && REG_IV_TYPE (ivs, REGNO (x)) == BASIC_INDUCT)
3904 return REG_IV_CLASS (ivs, REGNO (x))->biv->src_reg;
3905 break;
3907 default:
3908 break;
3911 fmt = GET_RTX_FORMAT (code);
3912 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3914 if (fmt[i] == 'e')
3915 XEXP (x, i) = remap_split_bivs (loop, XEXP (x, i));
3916 else if (fmt[i] == 'E')
3918 int j;
3919 for (j = 0; j < XVECLEN (x, i); j++)
3920 XVECEXP (x, i, j) = remap_split_bivs (loop, XVECEXP (x, i, j));
3923 return x;
3926 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3927 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3928 return 0. COPY_START is where we can start looking for the insns
3929 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3930 insns.
3932 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3933 must dominate LAST_UID.
3935 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3936 may not dominate LAST_UID.
3938 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3939 must dominate LAST_UID. */
3942 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3943 int regno;
3944 int first_uid;
3945 int last_uid;
3946 rtx copy_start;
3947 rtx copy_end;
3949 int passed_jump = 0;
3950 rtx p = NEXT_INSN (copy_start);
3952 while (INSN_UID (p) != first_uid)
3954 if (GET_CODE (p) == JUMP_INSN)
3955 passed_jump = 1;
3956 /* Could not find FIRST_UID. */
3957 if (p == copy_end)
3958 return 0;
3959 p = NEXT_INSN (p);
3962 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3963 if (! INSN_P (p) || ! dead_or_set_regno_p (p, regno))
3964 return 0;
3966 /* FIRST_UID is always executed. */
3967 if (passed_jump == 0)
3968 return 1;
3970 while (INSN_UID (p) != last_uid)
3972 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3973 can not be sure that FIRST_UID dominates LAST_UID. */
3974 if (GET_CODE (p) == CODE_LABEL)
3975 return 0;
3976 /* Could not find LAST_UID, but we reached the end of the loop, so
3977 it must be safe. */
3978 else if (p == copy_end)
3979 return 1;
3980 p = NEXT_INSN (p);
3983 /* FIRST_UID is always executed if LAST_UID is executed. */
3984 return 1;
3987 /* This routine is called when the number of iterations for the unrolled
3988 loop is one. The goal is to identify a loop that begins with an
3989 unconditional branch to the loop continuation note (or a label just after).
3990 In this case, the unconditional branch that starts the loop needs to be
3991 deleted so that we execute the single iteration. */
3993 static rtx
3994 ujump_to_loop_cont (loop_start, loop_cont)
3995 rtx loop_start;
3996 rtx loop_cont;
3998 rtx x, label, label_ref;
4000 /* See if loop start, or the next insn is an unconditional jump. */
4001 loop_start = next_nonnote_insn (loop_start);
4003 x = pc_set (loop_start);
4004 if (!x)
4005 return NULL_RTX;
4007 label_ref = SET_SRC (x);
4008 if (!label_ref)
4009 return NULL_RTX;
4011 /* Examine insn after loop continuation note. Return if not a label. */
4012 label = next_nonnote_insn (loop_cont);
4013 if (label == 0 || GET_CODE (label) != CODE_LABEL)
4014 return NULL_RTX;
4016 /* Return the loop start if the branch label matches the code label. */
4017 if (CODE_LABEL_NUMBER (label) == CODE_LABEL_NUMBER (XEXP (label_ref, 0)))
4018 return loop_start;
4019 else
4020 return NULL_RTX;