Add x prefix to v850e case for handling --with-cpu=v850e.
[official-gcc.git] / gcc / fold-const.c
blob2e869017dee72d33d9f0734125f1dbf6f6016255
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 2002,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type takes a constant and prior overflow indicator, and
43 forces the value to fit the type. It returns an overflow indicator. */
45 #include "config.h"
46 #include "system.h"
47 #include "flags.h"
48 #include "tree.h"
49 #include "real.h"
50 #include "rtl.h"
51 #include "expr.h"
52 #include "tm_p.h"
53 #include "toplev.h"
54 #include "ggc.h"
55 #include "hashtab.h"
56 #include "langhooks.h"
58 static void encode PARAMS ((HOST_WIDE_INT *,
59 unsigned HOST_WIDE_INT,
60 HOST_WIDE_INT));
61 static void decode PARAMS ((HOST_WIDE_INT *,
62 unsigned HOST_WIDE_INT *,
63 HOST_WIDE_INT *));
64 static tree negate_expr PARAMS ((tree));
65 static tree split_tree PARAMS ((tree, enum tree_code, tree *, tree *,
66 tree *, int));
67 static tree associate_trees PARAMS ((tree, tree, enum tree_code, tree));
68 static tree int_const_binop PARAMS ((enum tree_code, tree, tree, int));
69 static tree const_binop PARAMS ((enum tree_code, tree, tree, int));
70 static hashval_t size_htab_hash PARAMS ((const void *));
71 static int size_htab_eq PARAMS ((const void *, const void *));
72 static tree fold_convert PARAMS ((tree, tree));
73 static enum tree_code invert_tree_comparison PARAMS ((enum tree_code));
74 static enum tree_code swap_tree_comparison PARAMS ((enum tree_code));
75 static int comparison_to_compcode PARAMS ((enum tree_code));
76 static enum tree_code compcode_to_comparison PARAMS ((int));
77 static int truth_value_p PARAMS ((enum tree_code));
78 static int operand_equal_for_comparison_p PARAMS ((tree, tree, tree));
79 static int twoval_comparison_p PARAMS ((tree, tree *, tree *, int *));
80 static tree eval_subst PARAMS ((tree, tree, tree, tree, tree));
81 static tree omit_one_operand PARAMS ((tree, tree, tree));
82 static tree pedantic_omit_one_operand PARAMS ((tree, tree, tree));
83 static tree distribute_bit_expr PARAMS ((enum tree_code, tree, tree, tree));
84 static tree make_bit_field_ref PARAMS ((tree, tree, int, int, int));
85 static tree optimize_bit_field_compare PARAMS ((enum tree_code, tree,
86 tree, tree));
87 static tree decode_field_reference PARAMS ((tree, HOST_WIDE_INT *,
88 HOST_WIDE_INT *,
89 enum machine_mode *, int *,
90 int *, tree *, tree *));
91 static int all_ones_mask_p PARAMS ((tree, int));
92 static tree sign_bit_p PARAMS ((tree, tree));
93 static int simple_operand_p PARAMS ((tree));
94 static tree range_binop PARAMS ((enum tree_code, tree, tree, int,
95 tree, int));
96 static tree make_range PARAMS ((tree, int *, tree *, tree *));
97 static tree build_range_check PARAMS ((tree, tree, int, tree, tree));
98 static int merge_ranges PARAMS ((int *, tree *, tree *, int, tree, tree,
99 int, tree, tree));
100 static tree fold_range_test PARAMS ((tree));
101 static tree unextend PARAMS ((tree, int, int, tree));
102 static tree fold_truthop PARAMS ((enum tree_code, tree, tree, tree));
103 static tree optimize_minmax_comparison PARAMS ((tree));
104 static tree extract_muldiv PARAMS ((tree, tree, enum tree_code, tree));
105 static tree strip_compound_expr PARAMS ((tree, tree));
106 static int multiple_of_p PARAMS ((tree, tree, tree));
107 static tree constant_boolean_node PARAMS ((int, tree));
108 static int count_cond PARAMS ((tree, int));
109 static tree fold_binary_op_with_conditional_arg
110 PARAMS ((enum tree_code, tree, tree, tree, int));
111 static bool fold_real_zero_addition_p PARAMS ((tree, tree, int));
113 /* The following constants represent a bit based encoding of GCC's
114 comparison operators. This encoding simplifies transformations
115 on relational comparison operators, such as AND and OR. */
116 #define COMPCODE_FALSE 0
117 #define COMPCODE_LT 1
118 #define COMPCODE_EQ 2
119 #define COMPCODE_LE 3
120 #define COMPCODE_GT 4
121 #define COMPCODE_NE 5
122 #define COMPCODE_GE 6
123 #define COMPCODE_TRUE 7
125 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
126 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
127 and SUM1. Then this yields nonzero if overflow occurred during the
128 addition.
130 Overflow occurs if A and B have the same sign, but A and SUM differ in
131 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
132 sign. */
133 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
135 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
136 We do that by representing the two-word integer in 4 words, with only
137 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
138 number. The value of the word is LOWPART + HIGHPART * BASE. */
140 #define LOWPART(x) \
141 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
142 #define HIGHPART(x) \
143 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
144 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
146 /* Unpack a two-word integer into 4 words.
147 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
148 WORDS points to the array of HOST_WIDE_INTs. */
150 static void
151 encode (words, low, hi)
152 HOST_WIDE_INT *words;
153 unsigned HOST_WIDE_INT low;
154 HOST_WIDE_INT hi;
156 words[0] = LOWPART (low);
157 words[1] = HIGHPART (low);
158 words[2] = LOWPART (hi);
159 words[3] = HIGHPART (hi);
162 /* Pack an array of 4 words into a two-word integer.
163 WORDS points to the array of words.
164 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
166 static void
167 decode (words, low, hi)
168 HOST_WIDE_INT *words;
169 unsigned HOST_WIDE_INT *low;
170 HOST_WIDE_INT *hi;
172 *low = words[0] + words[1] * BASE;
173 *hi = words[2] + words[3] * BASE;
176 /* Make the integer constant T valid for its type by setting to 0 or 1 all
177 the bits in the constant that don't belong in the type.
179 Return 1 if a signed overflow occurs, 0 otherwise. If OVERFLOW is
180 nonzero, a signed overflow has already occurred in calculating T, so
181 propagate it. */
184 force_fit_type (t, overflow)
185 tree t;
186 int overflow;
188 unsigned HOST_WIDE_INT low;
189 HOST_WIDE_INT high;
190 unsigned int prec;
192 if (TREE_CODE (t) == REAL_CST)
194 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
195 Consider doing it via real_convert now. */
196 return overflow;
199 else if (TREE_CODE (t) != INTEGER_CST)
200 return overflow;
202 low = TREE_INT_CST_LOW (t);
203 high = TREE_INT_CST_HIGH (t);
205 if (POINTER_TYPE_P (TREE_TYPE (t)))
206 prec = POINTER_SIZE;
207 else
208 prec = TYPE_PRECISION (TREE_TYPE (t));
210 /* First clear all bits that are beyond the type's precision. */
212 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
214 else if (prec > HOST_BITS_PER_WIDE_INT)
215 TREE_INT_CST_HIGH (t)
216 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
217 else
219 TREE_INT_CST_HIGH (t) = 0;
220 if (prec < HOST_BITS_PER_WIDE_INT)
221 TREE_INT_CST_LOW (t) &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
224 /* Unsigned types do not suffer sign extension or overflow unless they
225 are a sizetype. */
226 if (TREE_UNSIGNED (TREE_TYPE (t))
227 && ! (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
228 && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
229 return overflow;
231 /* If the value's sign bit is set, extend the sign. */
232 if (prec != 2 * HOST_BITS_PER_WIDE_INT
233 && (prec > HOST_BITS_PER_WIDE_INT
234 ? 0 != (TREE_INT_CST_HIGH (t)
235 & ((HOST_WIDE_INT) 1
236 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
237 : 0 != (TREE_INT_CST_LOW (t)
238 & ((unsigned HOST_WIDE_INT) 1 << (prec - 1)))))
240 /* Value is negative:
241 set to 1 all the bits that are outside this type's precision. */
242 if (prec > HOST_BITS_PER_WIDE_INT)
243 TREE_INT_CST_HIGH (t)
244 |= ((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
245 else
247 TREE_INT_CST_HIGH (t) = -1;
248 if (prec < HOST_BITS_PER_WIDE_INT)
249 TREE_INT_CST_LOW (t) |= ((unsigned HOST_WIDE_INT) (-1) << prec);
253 /* Return nonzero if signed overflow occurred. */
254 return
255 ((overflow | (low ^ TREE_INT_CST_LOW (t)) | (high ^ TREE_INT_CST_HIGH (t)))
256 != 0);
259 /* Add two doubleword integers with doubleword result.
260 Each argument is given as two `HOST_WIDE_INT' pieces.
261 One argument is L1 and H1; the other, L2 and H2.
262 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
265 add_double (l1, h1, l2, h2, lv, hv)
266 unsigned HOST_WIDE_INT l1, l2;
267 HOST_WIDE_INT h1, h2;
268 unsigned HOST_WIDE_INT *lv;
269 HOST_WIDE_INT *hv;
271 unsigned HOST_WIDE_INT l;
272 HOST_WIDE_INT h;
274 l = l1 + l2;
275 h = h1 + h2 + (l < l1);
277 *lv = l;
278 *hv = h;
279 return OVERFLOW_SUM_SIGN (h1, h2, h);
282 /* Negate a doubleword integer with doubleword result.
283 Return nonzero if the operation overflows, assuming it's signed.
284 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
285 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
288 neg_double (l1, h1, lv, hv)
289 unsigned HOST_WIDE_INT l1;
290 HOST_WIDE_INT h1;
291 unsigned HOST_WIDE_INT *lv;
292 HOST_WIDE_INT *hv;
294 if (l1 == 0)
296 *lv = 0;
297 *hv = - h1;
298 return (*hv & h1) < 0;
300 else
302 *lv = -l1;
303 *hv = ~h1;
304 return 0;
308 /* Multiply two doubleword integers with doubleword result.
309 Return nonzero if the operation overflows, assuming it's signed.
310 Each argument is given as two `HOST_WIDE_INT' pieces.
311 One argument is L1 and H1; the other, L2 and H2.
312 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
315 mul_double (l1, h1, l2, h2, lv, hv)
316 unsigned HOST_WIDE_INT l1, l2;
317 HOST_WIDE_INT h1, h2;
318 unsigned HOST_WIDE_INT *lv;
319 HOST_WIDE_INT *hv;
321 HOST_WIDE_INT arg1[4];
322 HOST_WIDE_INT arg2[4];
323 HOST_WIDE_INT prod[4 * 2];
324 unsigned HOST_WIDE_INT carry;
325 int i, j, k;
326 unsigned HOST_WIDE_INT toplow, neglow;
327 HOST_WIDE_INT tophigh, neghigh;
329 encode (arg1, l1, h1);
330 encode (arg2, l2, h2);
332 memset ((char *) prod, 0, sizeof prod);
334 for (i = 0; i < 4; i++)
336 carry = 0;
337 for (j = 0; j < 4; j++)
339 k = i + j;
340 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
341 carry += arg1[i] * arg2[j];
342 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
343 carry += prod[k];
344 prod[k] = LOWPART (carry);
345 carry = HIGHPART (carry);
347 prod[i + 4] = carry;
350 decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
352 /* Check for overflow by calculating the top half of the answer in full;
353 it should agree with the low half's sign bit. */
354 decode (prod + 4, &toplow, &tophigh);
355 if (h1 < 0)
357 neg_double (l2, h2, &neglow, &neghigh);
358 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
360 if (h2 < 0)
362 neg_double (l1, h1, &neglow, &neghigh);
363 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
365 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
368 /* Shift the doubleword integer in L1, H1 left by COUNT places
369 keeping only PREC bits of result.
370 Shift right if COUNT is negative.
371 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
372 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
374 void
375 lshift_double (l1, h1, count, prec, lv, hv, arith)
376 unsigned HOST_WIDE_INT l1;
377 HOST_WIDE_INT h1, count;
378 unsigned int prec;
379 unsigned HOST_WIDE_INT *lv;
380 HOST_WIDE_INT *hv;
381 int arith;
383 unsigned HOST_WIDE_INT signmask;
385 if (count < 0)
387 rshift_double (l1, h1, -count, prec, lv, hv, arith);
388 return;
391 #ifdef SHIFT_COUNT_TRUNCATED
392 if (SHIFT_COUNT_TRUNCATED)
393 count %= prec;
394 #endif
396 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
398 /* Shifting by the host word size is undefined according to the
399 ANSI standard, so we must handle this as a special case. */
400 *hv = 0;
401 *lv = 0;
403 else if (count >= HOST_BITS_PER_WIDE_INT)
405 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
406 *lv = 0;
408 else
410 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
411 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
412 *lv = l1 << count;
415 /* Sign extend all bits that are beyond the precision. */
417 signmask = -((prec > HOST_BITS_PER_WIDE_INT
418 ? ((unsigned HOST_WIDE_INT) *hv
419 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
420 : (*lv >> (prec - 1))) & 1);
422 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
424 else if (prec >= HOST_BITS_PER_WIDE_INT)
426 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
427 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
429 else
431 *hv = signmask;
432 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
433 *lv |= signmask << prec;
437 /* Shift the doubleword integer in L1, H1 right by COUNT places
438 keeping only PREC bits of result. COUNT must be positive.
439 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
440 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
442 void
443 rshift_double (l1, h1, count, prec, lv, hv, arith)
444 unsigned HOST_WIDE_INT l1;
445 HOST_WIDE_INT h1, count;
446 unsigned int prec;
447 unsigned HOST_WIDE_INT *lv;
448 HOST_WIDE_INT *hv;
449 int arith;
451 unsigned HOST_WIDE_INT signmask;
453 signmask = (arith
454 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
455 : 0);
457 #ifdef SHIFT_COUNT_TRUNCATED
458 if (SHIFT_COUNT_TRUNCATED)
459 count %= prec;
460 #endif
462 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
464 /* Shifting by the host word size is undefined according to the
465 ANSI standard, so we must handle this as a special case. */
466 *hv = 0;
467 *lv = 0;
469 else if (count >= HOST_BITS_PER_WIDE_INT)
471 *hv = 0;
472 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
474 else
476 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
477 *lv = ((l1 >> count)
478 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
481 /* Zero / sign extend all bits that are beyond the precision. */
483 if (count >= (HOST_WIDE_INT)prec)
485 *hv = signmask;
486 *lv = signmask;
488 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
490 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
492 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
493 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
495 else
497 *hv = signmask;
498 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
499 *lv |= signmask << (prec - count);
503 /* Rotate the doubleword integer in L1, H1 left by COUNT places
504 keeping only PREC bits of result.
505 Rotate right if COUNT is negative.
506 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
508 void
509 lrotate_double (l1, h1, count, prec, lv, hv)
510 unsigned HOST_WIDE_INT l1;
511 HOST_WIDE_INT h1, count;
512 unsigned int prec;
513 unsigned HOST_WIDE_INT *lv;
514 HOST_WIDE_INT *hv;
516 unsigned HOST_WIDE_INT s1l, s2l;
517 HOST_WIDE_INT s1h, s2h;
519 count %= prec;
520 if (count < 0)
521 count += prec;
523 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
524 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
525 *lv = s1l | s2l;
526 *hv = s1h | s2h;
529 /* Rotate the doubleword integer in L1, H1 left by COUNT places
530 keeping only PREC bits of result. COUNT must be positive.
531 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
533 void
534 rrotate_double (l1, h1, count, prec, lv, hv)
535 unsigned HOST_WIDE_INT l1;
536 HOST_WIDE_INT h1, count;
537 unsigned int prec;
538 unsigned HOST_WIDE_INT *lv;
539 HOST_WIDE_INT *hv;
541 unsigned HOST_WIDE_INT s1l, s2l;
542 HOST_WIDE_INT s1h, s2h;
544 count %= prec;
545 if (count < 0)
546 count += prec;
548 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
549 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
550 *lv = s1l | s2l;
551 *hv = s1h | s2h;
554 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
555 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
556 CODE is a tree code for a kind of division, one of
557 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
558 or EXACT_DIV_EXPR
559 It controls how the quotient is rounded to an integer.
560 Return nonzero if the operation overflows.
561 UNS nonzero says do unsigned division. */
564 div_and_round_double (code, uns,
565 lnum_orig, hnum_orig, lden_orig, hden_orig,
566 lquo, hquo, lrem, hrem)
567 enum tree_code code;
568 int uns;
569 unsigned HOST_WIDE_INT lnum_orig; /* num == numerator == dividend */
570 HOST_WIDE_INT hnum_orig;
571 unsigned HOST_WIDE_INT lden_orig; /* den == denominator == divisor */
572 HOST_WIDE_INT hden_orig;
573 unsigned HOST_WIDE_INT *lquo, *lrem;
574 HOST_WIDE_INT *hquo, *hrem;
576 int quo_neg = 0;
577 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
578 HOST_WIDE_INT den[4], quo[4];
579 int i, j;
580 unsigned HOST_WIDE_INT work;
581 unsigned HOST_WIDE_INT carry = 0;
582 unsigned HOST_WIDE_INT lnum = lnum_orig;
583 HOST_WIDE_INT hnum = hnum_orig;
584 unsigned HOST_WIDE_INT lden = lden_orig;
585 HOST_WIDE_INT hden = hden_orig;
586 int overflow = 0;
588 if (hden == 0 && lden == 0)
589 overflow = 1, lden = 1;
591 /* calculate quotient sign and convert operands to unsigned. */
592 if (!uns)
594 if (hnum < 0)
596 quo_neg = ~ quo_neg;
597 /* (minimum integer) / (-1) is the only overflow case. */
598 if (neg_double (lnum, hnum, &lnum, &hnum)
599 && ((HOST_WIDE_INT) lden & hden) == -1)
600 overflow = 1;
602 if (hden < 0)
604 quo_neg = ~ quo_neg;
605 neg_double (lden, hden, &lden, &hden);
609 if (hnum == 0 && hden == 0)
610 { /* single precision */
611 *hquo = *hrem = 0;
612 /* This unsigned division rounds toward zero. */
613 *lquo = lnum / lden;
614 goto finish_up;
617 if (hnum == 0)
618 { /* trivial case: dividend < divisor */
619 /* hden != 0 already checked. */
620 *hquo = *lquo = 0;
621 *hrem = hnum;
622 *lrem = lnum;
623 goto finish_up;
626 memset ((char *) quo, 0, sizeof quo);
628 memset ((char *) num, 0, sizeof num); /* to zero 9th element */
629 memset ((char *) den, 0, sizeof den);
631 encode (num, lnum, hnum);
632 encode (den, lden, hden);
634 /* Special code for when the divisor < BASE. */
635 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
637 /* hnum != 0 already checked. */
638 for (i = 4 - 1; i >= 0; i--)
640 work = num[i] + carry * BASE;
641 quo[i] = work / lden;
642 carry = work % lden;
645 else
647 /* Full double precision division,
648 with thanks to Don Knuth's "Seminumerical Algorithms". */
649 int num_hi_sig, den_hi_sig;
650 unsigned HOST_WIDE_INT quo_est, scale;
652 /* Find the highest nonzero divisor digit. */
653 for (i = 4 - 1;; i--)
654 if (den[i] != 0)
656 den_hi_sig = i;
657 break;
660 /* Insure that the first digit of the divisor is at least BASE/2.
661 This is required by the quotient digit estimation algorithm. */
663 scale = BASE / (den[den_hi_sig] + 1);
664 if (scale > 1)
665 { /* scale divisor and dividend */
666 carry = 0;
667 for (i = 0; i <= 4 - 1; i++)
669 work = (num[i] * scale) + carry;
670 num[i] = LOWPART (work);
671 carry = HIGHPART (work);
674 num[4] = carry;
675 carry = 0;
676 for (i = 0; i <= 4 - 1; i++)
678 work = (den[i] * scale) + carry;
679 den[i] = LOWPART (work);
680 carry = HIGHPART (work);
681 if (den[i] != 0) den_hi_sig = i;
685 num_hi_sig = 4;
687 /* Main loop */
688 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
690 /* Guess the next quotient digit, quo_est, by dividing the first
691 two remaining dividend digits by the high order quotient digit.
692 quo_est is never low and is at most 2 high. */
693 unsigned HOST_WIDE_INT tmp;
695 num_hi_sig = i + den_hi_sig + 1;
696 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
697 if (num[num_hi_sig] != den[den_hi_sig])
698 quo_est = work / den[den_hi_sig];
699 else
700 quo_est = BASE - 1;
702 /* Refine quo_est so it's usually correct, and at most one high. */
703 tmp = work - quo_est * den[den_hi_sig];
704 if (tmp < BASE
705 && (den[den_hi_sig - 1] * quo_est
706 > (tmp * BASE + num[num_hi_sig - 2])))
707 quo_est--;
709 /* Try QUO_EST as the quotient digit, by multiplying the
710 divisor by QUO_EST and subtracting from the remaining dividend.
711 Keep in mind that QUO_EST is the I - 1st digit. */
713 carry = 0;
714 for (j = 0; j <= den_hi_sig; j++)
716 work = quo_est * den[j] + carry;
717 carry = HIGHPART (work);
718 work = num[i + j] - LOWPART (work);
719 num[i + j] = LOWPART (work);
720 carry += HIGHPART (work) != 0;
723 /* If quo_est was high by one, then num[i] went negative and
724 we need to correct things. */
725 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
727 quo_est--;
728 carry = 0; /* add divisor back in */
729 for (j = 0; j <= den_hi_sig; j++)
731 work = num[i + j] + den[j] + carry;
732 carry = HIGHPART (work);
733 num[i + j] = LOWPART (work);
736 num [num_hi_sig] += carry;
739 /* Store the quotient digit. */
740 quo[i] = quo_est;
744 decode (quo, lquo, hquo);
746 finish_up:
747 /* if result is negative, make it so. */
748 if (quo_neg)
749 neg_double (*lquo, *hquo, lquo, hquo);
751 /* compute trial remainder: rem = num - (quo * den) */
752 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
753 neg_double (*lrem, *hrem, lrem, hrem);
754 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
756 switch (code)
758 case TRUNC_DIV_EXPR:
759 case TRUNC_MOD_EXPR: /* round toward zero */
760 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
761 return overflow;
763 case FLOOR_DIV_EXPR:
764 case FLOOR_MOD_EXPR: /* round toward negative infinity */
765 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
767 /* quo = quo - 1; */
768 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
769 lquo, hquo);
771 else
772 return overflow;
773 break;
775 case CEIL_DIV_EXPR:
776 case CEIL_MOD_EXPR: /* round toward positive infinity */
777 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
779 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
780 lquo, hquo);
782 else
783 return overflow;
784 break;
786 case ROUND_DIV_EXPR:
787 case ROUND_MOD_EXPR: /* round to closest integer */
789 unsigned HOST_WIDE_INT labs_rem = *lrem;
790 HOST_WIDE_INT habs_rem = *hrem;
791 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
792 HOST_WIDE_INT habs_den = hden, htwice;
794 /* Get absolute values */
795 if (*hrem < 0)
796 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
797 if (hden < 0)
798 neg_double (lden, hden, &labs_den, &habs_den);
800 /* If (2 * abs (lrem) >= abs (lden)) */
801 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
802 labs_rem, habs_rem, &ltwice, &htwice);
804 if (((unsigned HOST_WIDE_INT) habs_den
805 < (unsigned HOST_WIDE_INT) htwice)
806 || (((unsigned HOST_WIDE_INT) habs_den
807 == (unsigned HOST_WIDE_INT) htwice)
808 && (labs_den < ltwice)))
810 if (*hquo < 0)
811 /* quo = quo - 1; */
812 add_double (*lquo, *hquo,
813 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
814 else
815 /* quo = quo + 1; */
816 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
817 lquo, hquo);
819 else
820 return overflow;
822 break;
824 default:
825 abort ();
828 /* compute true remainder: rem = num - (quo * den) */
829 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
830 neg_double (*lrem, *hrem, lrem, hrem);
831 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
832 return overflow;
835 /* Given T, an expression, return the negation of T. Allow for T to be
836 null, in which case return null. */
838 static tree
839 negate_expr (t)
840 tree t;
842 tree type;
843 tree tem;
845 if (t == 0)
846 return 0;
848 type = TREE_TYPE (t);
849 STRIP_SIGN_NOPS (t);
851 switch (TREE_CODE (t))
853 case INTEGER_CST:
854 case REAL_CST:
855 if (! TREE_UNSIGNED (type)
856 && 0 != (tem = fold (build1 (NEGATE_EXPR, type, t)))
857 && ! TREE_OVERFLOW (tem))
858 return tem;
859 break;
861 case NEGATE_EXPR:
862 return convert (type, TREE_OPERAND (t, 0));
864 case MINUS_EXPR:
865 /* - (A - B) -> B - A */
866 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
867 return convert (type,
868 fold (build (MINUS_EXPR, TREE_TYPE (t),
869 TREE_OPERAND (t, 1),
870 TREE_OPERAND (t, 0))));
871 break;
873 default:
874 break;
877 return convert (type, fold (build1 (NEGATE_EXPR, TREE_TYPE (t), t)));
880 /* Split a tree IN into a constant, literal and variable parts that could be
881 combined with CODE to make IN. "constant" means an expression with
882 TREE_CONSTANT but that isn't an actual constant. CODE must be a
883 commutative arithmetic operation. Store the constant part into *CONP,
884 the literal in *LITP and return the variable part. If a part isn't
885 present, set it to null. If the tree does not decompose in this way,
886 return the entire tree as the variable part and the other parts as null.
888 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
889 case, we negate an operand that was subtracted. Except if it is a
890 literal for which we use *MINUS_LITP instead.
892 If NEGATE_P is true, we are negating all of IN, again except a literal
893 for which we use *MINUS_LITP instead.
895 If IN is itself a literal or constant, return it as appropriate.
897 Note that we do not guarantee that any of the three values will be the
898 same type as IN, but they will have the same signedness and mode. */
900 static tree
901 split_tree (in, code, conp, litp, minus_litp, negate_p)
902 tree in;
903 enum tree_code code;
904 tree *conp, *litp, *minus_litp;
905 int negate_p;
907 tree var = 0;
909 *conp = 0;
910 *litp = 0;
911 *minus_litp = 0;
913 /* Strip any conversions that don't change the machine mode or signedness. */
914 STRIP_SIGN_NOPS (in);
916 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
917 *litp = in;
918 else if (TREE_CODE (in) == code
919 || (! FLOAT_TYPE_P (TREE_TYPE (in))
920 /* We can associate addition and subtraction together (even
921 though the C standard doesn't say so) for integers because
922 the value is not affected. For reals, the value might be
923 affected, so we can't. */
924 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
925 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
927 tree op0 = TREE_OPERAND (in, 0);
928 tree op1 = TREE_OPERAND (in, 1);
929 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
930 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
932 /* First see if either of the operands is a literal, then a constant. */
933 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
934 *litp = op0, op0 = 0;
935 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
936 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
938 if (op0 != 0 && TREE_CONSTANT (op0))
939 *conp = op0, op0 = 0;
940 else if (op1 != 0 && TREE_CONSTANT (op1))
941 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
943 /* If we haven't dealt with either operand, this is not a case we can
944 decompose. Otherwise, VAR is either of the ones remaining, if any. */
945 if (op0 != 0 && op1 != 0)
946 var = in;
947 else if (op0 != 0)
948 var = op0;
949 else
950 var = op1, neg_var_p = neg1_p;
952 /* Now do any needed negations. */
953 if (neg_litp_p)
954 *minus_litp = *litp, *litp = 0;
955 if (neg_conp_p)
956 *conp = negate_expr (*conp);
957 if (neg_var_p)
958 var = negate_expr (var);
960 else if (TREE_CONSTANT (in))
961 *conp = in;
962 else
963 var = in;
965 if (negate_p)
967 if (*litp)
968 *minus_litp = *litp, *litp = 0;
969 else if (*minus_litp)
970 *litp = *minus_litp, *minus_litp = 0;
971 *conp = negate_expr (*conp);
972 var = negate_expr (var);
975 return var;
978 /* Re-associate trees split by the above function. T1 and T2 are either
979 expressions to associate or null. Return the new expression, if any. If
980 we build an operation, do it in TYPE and with CODE. */
982 static tree
983 associate_trees (t1, t2, code, type)
984 tree t1, t2;
985 enum tree_code code;
986 tree type;
988 if (t1 == 0)
989 return t2;
990 else if (t2 == 0)
991 return t1;
993 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
994 try to fold this since we will have infinite recursion. But do
995 deal with any NEGATE_EXPRs. */
996 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
997 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
999 if (code == PLUS_EXPR)
1001 if (TREE_CODE (t1) == NEGATE_EXPR)
1002 return build (MINUS_EXPR, type, convert (type, t2),
1003 convert (type, TREE_OPERAND (t1, 0)));
1004 else if (TREE_CODE (t2) == NEGATE_EXPR)
1005 return build (MINUS_EXPR, type, convert (type, t1),
1006 convert (type, TREE_OPERAND (t2, 0)));
1008 return build (code, type, convert (type, t1), convert (type, t2));
1011 return fold (build (code, type, convert (type, t1), convert (type, t2)));
1014 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1015 to produce a new constant.
1017 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1019 static tree
1020 int_const_binop (code, arg1, arg2, notrunc)
1021 enum tree_code code;
1022 tree arg1, arg2;
1023 int notrunc;
1025 unsigned HOST_WIDE_INT int1l, int2l;
1026 HOST_WIDE_INT int1h, int2h;
1027 unsigned HOST_WIDE_INT low;
1028 HOST_WIDE_INT hi;
1029 unsigned HOST_WIDE_INT garbagel;
1030 HOST_WIDE_INT garbageh;
1031 tree t;
1032 tree type = TREE_TYPE (arg1);
1033 int uns = TREE_UNSIGNED (type);
1034 int is_sizetype
1035 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1036 int overflow = 0;
1037 int no_overflow = 0;
1039 int1l = TREE_INT_CST_LOW (arg1);
1040 int1h = TREE_INT_CST_HIGH (arg1);
1041 int2l = TREE_INT_CST_LOW (arg2);
1042 int2h = TREE_INT_CST_HIGH (arg2);
1044 switch (code)
1046 case BIT_IOR_EXPR:
1047 low = int1l | int2l, hi = int1h | int2h;
1048 break;
1050 case BIT_XOR_EXPR:
1051 low = int1l ^ int2l, hi = int1h ^ int2h;
1052 break;
1054 case BIT_AND_EXPR:
1055 low = int1l & int2l, hi = int1h & int2h;
1056 break;
1058 case BIT_ANDTC_EXPR:
1059 low = int1l & ~int2l, hi = int1h & ~int2h;
1060 break;
1062 case RSHIFT_EXPR:
1063 int2l = -int2l;
1064 case LSHIFT_EXPR:
1065 /* It's unclear from the C standard whether shifts can overflow.
1066 The following code ignores overflow; perhaps a C standard
1067 interpretation ruling is needed. */
1068 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1069 &low, &hi, !uns);
1070 no_overflow = 1;
1071 break;
1073 case RROTATE_EXPR:
1074 int2l = - int2l;
1075 case LROTATE_EXPR:
1076 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1077 &low, &hi);
1078 break;
1080 case PLUS_EXPR:
1081 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1082 break;
1084 case MINUS_EXPR:
1085 neg_double (int2l, int2h, &low, &hi);
1086 add_double (int1l, int1h, low, hi, &low, &hi);
1087 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1088 break;
1090 case MULT_EXPR:
1091 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1092 break;
1094 case TRUNC_DIV_EXPR:
1095 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1096 case EXACT_DIV_EXPR:
1097 /* This is a shortcut for a common special case. */
1098 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1099 && ! TREE_CONSTANT_OVERFLOW (arg1)
1100 && ! TREE_CONSTANT_OVERFLOW (arg2)
1101 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1103 if (code == CEIL_DIV_EXPR)
1104 int1l += int2l - 1;
1106 low = int1l / int2l, hi = 0;
1107 break;
1110 /* ... fall through ... */
1112 case ROUND_DIV_EXPR:
1113 if (int2h == 0 && int2l == 1)
1115 low = int1l, hi = int1h;
1116 break;
1118 if (int1l == int2l && int1h == int2h
1119 && ! (int1l == 0 && int1h == 0))
1121 low = 1, hi = 0;
1122 break;
1124 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1125 &low, &hi, &garbagel, &garbageh);
1126 break;
1128 case TRUNC_MOD_EXPR:
1129 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1130 /* This is a shortcut for a common special case. */
1131 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1132 && ! TREE_CONSTANT_OVERFLOW (arg1)
1133 && ! TREE_CONSTANT_OVERFLOW (arg2)
1134 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1136 if (code == CEIL_MOD_EXPR)
1137 int1l += int2l - 1;
1138 low = int1l % int2l, hi = 0;
1139 break;
1142 /* ... fall through ... */
1144 case ROUND_MOD_EXPR:
1145 overflow = div_and_round_double (code, uns,
1146 int1l, int1h, int2l, int2h,
1147 &garbagel, &garbageh, &low, &hi);
1148 break;
1150 case MIN_EXPR:
1151 case MAX_EXPR:
1152 if (uns)
1153 low = (((unsigned HOST_WIDE_INT) int1h
1154 < (unsigned HOST_WIDE_INT) int2h)
1155 || (((unsigned HOST_WIDE_INT) int1h
1156 == (unsigned HOST_WIDE_INT) int2h)
1157 && int1l < int2l));
1158 else
1159 low = (int1h < int2h
1160 || (int1h == int2h && int1l < int2l));
1162 if (low == (code == MIN_EXPR))
1163 low = int1l, hi = int1h;
1164 else
1165 low = int2l, hi = int2h;
1166 break;
1168 default:
1169 abort ();
1172 /* If this is for a sizetype, can be represented as one (signed)
1173 HOST_WIDE_INT word, and doesn't overflow, use size_int since it caches
1174 constants. */
1175 if (is_sizetype
1176 && ((hi == 0 && (HOST_WIDE_INT) low >= 0)
1177 || (hi == -1 && (HOST_WIDE_INT) low < 0))
1178 && overflow == 0 && ! TREE_OVERFLOW (arg1) && ! TREE_OVERFLOW (arg2))
1179 return size_int_type_wide (low, type);
1180 else
1182 t = build_int_2 (low, hi);
1183 TREE_TYPE (t) = TREE_TYPE (arg1);
1186 TREE_OVERFLOW (t)
1187 = ((notrunc
1188 ? (!uns || is_sizetype) && overflow
1189 : (force_fit_type (t, (!uns || is_sizetype) && overflow)
1190 && ! no_overflow))
1191 | TREE_OVERFLOW (arg1)
1192 | TREE_OVERFLOW (arg2));
1194 /* If we're doing a size calculation, unsigned arithmetic does overflow.
1195 So check if force_fit_type truncated the value. */
1196 if (is_sizetype
1197 && ! TREE_OVERFLOW (t)
1198 && (TREE_INT_CST_HIGH (t) != hi
1199 || TREE_INT_CST_LOW (t) != low))
1200 TREE_OVERFLOW (t) = 1;
1202 TREE_CONSTANT_OVERFLOW (t) = (TREE_OVERFLOW (t)
1203 | TREE_CONSTANT_OVERFLOW (arg1)
1204 | TREE_CONSTANT_OVERFLOW (arg2));
1205 return t;
1208 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1209 constant. We assume ARG1 and ARG2 have the same data type, or at least
1210 are the same kind of constant and the same machine mode.
1212 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1214 static tree
1215 const_binop (code, arg1, arg2, notrunc)
1216 enum tree_code code;
1217 tree arg1, arg2;
1218 int notrunc;
1220 STRIP_NOPS (arg1);
1221 STRIP_NOPS (arg2);
1223 if (TREE_CODE (arg1) == INTEGER_CST)
1224 return int_const_binop (code, arg1, arg2, notrunc);
1226 if (TREE_CODE (arg1) == REAL_CST)
1228 REAL_VALUE_TYPE d1;
1229 REAL_VALUE_TYPE d2;
1230 REAL_VALUE_TYPE value;
1231 tree t;
1233 d1 = TREE_REAL_CST (arg1);
1234 d2 = TREE_REAL_CST (arg2);
1236 /* If either operand is a NaN, just return it. Otherwise, set up
1237 for floating-point trap; we return an overflow. */
1238 if (REAL_VALUE_ISNAN (d1))
1239 return arg1;
1240 else if (REAL_VALUE_ISNAN (d2))
1241 return arg2;
1243 REAL_ARITHMETIC (value, code, d1, d2);
1245 t = build_real (TREE_TYPE (arg1),
1246 real_value_truncate (TYPE_MODE (TREE_TYPE (arg1)),
1247 value));
1249 TREE_OVERFLOW (t)
1250 = (force_fit_type (t, 0)
1251 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1252 TREE_CONSTANT_OVERFLOW (t)
1253 = TREE_OVERFLOW (t)
1254 | TREE_CONSTANT_OVERFLOW (arg1)
1255 | TREE_CONSTANT_OVERFLOW (arg2);
1256 return t;
1258 if (TREE_CODE (arg1) == COMPLEX_CST)
1260 tree type = TREE_TYPE (arg1);
1261 tree r1 = TREE_REALPART (arg1);
1262 tree i1 = TREE_IMAGPART (arg1);
1263 tree r2 = TREE_REALPART (arg2);
1264 tree i2 = TREE_IMAGPART (arg2);
1265 tree t;
1267 switch (code)
1269 case PLUS_EXPR:
1270 t = build_complex (type,
1271 const_binop (PLUS_EXPR, r1, r2, notrunc),
1272 const_binop (PLUS_EXPR, i1, i2, notrunc));
1273 break;
1275 case MINUS_EXPR:
1276 t = build_complex (type,
1277 const_binop (MINUS_EXPR, r1, r2, notrunc),
1278 const_binop (MINUS_EXPR, i1, i2, notrunc));
1279 break;
1281 case MULT_EXPR:
1282 t = build_complex (type,
1283 const_binop (MINUS_EXPR,
1284 const_binop (MULT_EXPR,
1285 r1, r2, notrunc),
1286 const_binop (MULT_EXPR,
1287 i1, i2, notrunc),
1288 notrunc),
1289 const_binop (PLUS_EXPR,
1290 const_binop (MULT_EXPR,
1291 r1, i2, notrunc),
1292 const_binop (MULT_EXPR,
1293 i1, r2, notrunc),
1294 notrunc));
1295 break;
1297 case RDIV_EXPR:
1299 tree magsquared
1300 = const_binop (PLUS_EXPR,
1301 const_binop (MULT_EXPR, r2, r2, notrunc),
1302 const_binop (MULT_EXPR, i2, i2, notrunc),
1303 notrunc);
1305 t = build_complex (type,
1306 const_binop
1307 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1308 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1309 const_binop (PLUS_EXPR,
1310 const_binop (MULT_EXPR, r1, r2,
1311 notrunc),
1312 const_binop (MULT_EXPR, i1, i2,
1313 notrunc),
1314 notrunc),
1315 magsquared, notrunc),
1316 const_binop
1317 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1318 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1319 const_binop (MINUS_EXPR,
1320 const_binop (MULT_EXPR, i1, r2,
1321 notrunc),
1322 const_binop (MULT_EXPR, r1, i2,
1323 notrunc),
1324 notrunc),
1325 magsquared, notrunc));
1327 break;
1329 default:
1330 abort ();
1332 return t;
1334 return 0;
1337 /* These are the hash table functions for the hash table of INTEGER_CST
1338 nodes of a sizetype. */
1340 /* Return the hash code code X, an INTEGER_CST. */
1342 static hashval_t
1343 size_htab_hash (x)
1344 const void *x;
1346 tree t = (tree) x;
1348 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1349 ^ (hashval_t) ((long) TREE_TYPE (t) >> 3)
1350 ^ (TREE_OVERFLOW (t) << 20));
1353 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1354 is the same as that given by *Y, which is the same. */
1356 static int
1357 size_htab_eq (x, y)
1358 const void *x;
1359 const void *y;
1361 tree xt = (tree) x;
1362 tree yt = (tree) y;
1364 return (TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1365 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt)
1366 && TREE_TYPE (xt) == TREE_TYPE (yt)
1367 && TREE_OVERFLOW (xt) == TREE_OVERFLOW (yt));
1370 /* Return an INTEGER_CST with value whose low-order HOST_BITS_PER_WIDE_INT
1371 bits are given by NUMBER and of the sizetype represented by KIND. */
1373 tree
1374 size_int_wide (number, kind)
1375 HOST_WIDE_INT number;
1376 enum size_type_kind kind;
1378 return size_int_type_wide (number, sizetype_tab[(int) kind]);
1381 /* Likewise, but the desired type is specified explicitly. */
1383 static GTY (()) tree new_const;
1384 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
1385 htab_t size_htab;
1387 tree
1388 size_int_type_wide (number, type)
1389 HOST_WIDE_INT number;
1390 tree type;
1392 PTR *slot;
1394 if (size_htab == 0)
1396 size_htab = htab_create (1024, size_htab_hash, size_htab_eq, NULL);
1397 new_const = make_node (INTEGER_CST);
1400 /* Adjust NEW_CONST to be the constant we want. If it's already in the
1401 hash table, we return the value from the hash table. Otherwise, we
1402 place that in the hash table and make a new node for the next time. */
1403 TREE_INT_CST_LOW (new_const) = number;
1404 TREE_INT_CST_HIGH (new_const) = number < 0 ? -1 : 0;
1405 TREE_TYPE (new_const) = type;
1406 TREE_OVERFLOW (new_const) = TREE_CONSTANT_OVERFLOW (new_const)
1407 = force_fit_type (new_const, 0);
1409 slot = htab_find_slot (size_htab, new_const, INSERT);
1410 if (*slot == 0)
1412 tree t = new_const;
1414 *slot = (PTR) new_const;
1415 new_const = make_node (INTEGER_CST);
1416 return t;
1418 else
1419 return (tree) *slot;
1422 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1423 is a tree code. The type of the result is taken from the operands.
1424 Both must be the same type integer type and it must be a size type.
1425 If the operands are constant, so is the result. */
1427 tree
1428 size_binop (code, arg0, arg1)
1429 enum tree_code code;
1430 tree arg0, arg1;
1432 tree type = TREE_TYPE (arg0);
1434 if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
1435 || type != TREE_TYPE (arg1))
1436 abort ();
1438 /* Handle the special case of two integer constants faster. */
1439 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1441 /* And some specific cases even faster than that. */
1442 if (code == PLUS_EXPR && integer_zerop (arg0))
1443 return arg1;
1444 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1445 && integer_zerop (arg1))
1446 return arg0;
1447 else if (code == MULT_EXPR && integer_onep (arg0))
1448 return arg1;
1450 /* Handle general case of two integer constants. */
1451 return int_const_binop (code, arg0, arg1, 0);
1454 if (arg0 == error_mark_node || arg1 == error_mark_node)
1455 return error_mark_node;
1457 return fold (build (code, type, arg0, arg1));
1460 /* Given two values, either both of sizetype or both of bitsizetype,
1461 compute the difference between the two values. Return the value
1462 in signed type corresponding to the type of the operands. */
1464 tree
1465 size_diffop (arg0, arg1)
1466 tree arg0, arg1;
1468 tree type = TREE_TYPE (arg0);
1469 tree ctype;
1471 if (TREE_CODE (type) != INTEGER_TYPE || ! TYPE_IS_SIZETYPE (type)
1472 || type != TREE_TYPE (arg1))
1473 abort ();
1475 /* If the type is already signed, just do the simple thing. */
1476 if (! TREE_UNSIGNED (type))
1477 return size_binop (MINUS_EXPR, arg0, arg1);
1479 ctype = (type == bitsizetype || type == ubitsizetype
1480 ? sbitsizetype : ssizetype);
1482 /* If either operand is not a constant, do the conversions to the signed
1483 type and subtract. The hardware will do the right thing with any
1484 overflow in the subtraction. */
1485 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1486 return size_binop (MINUS_EXPR, convert (ctype, arg0),
1487 convert (ctype, arg1));
1489 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1490 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1491 overflow) and negate (which can't either). Special-case a result
1492 of zero while we're here. */
1493 if (tree_int_cst_equal (arg0, arg1))
1494 return convert (ctype, integer_zero_node);
1495 else if (tree_int_cst_lt (arg1, arg0))
1496 return convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
1497 else
1498 return size_binop (MINUS_EXPR, convert (ctype, integer_zero_node),
1499 convert (ctype, size_binop (MINUS_EXPR, arg1, arg0)));
1503 /* Given T, a tree representing type conversion of ARG1, a constant,
1504 return a constant tree representing the result of conversion. */
1506 static tree
1507 fold_convert (t, arg1)
1508 tree t;
1509 tree arg1;
1511 tree type = TREE_TYPE (t);
1512 int overflow = 0;
1514 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1516 if (TREE_CODE (arg1) == INTEGER_CST)
1518 /* If we would build a constant wider than GCC supports,
1519 leave the conversion unfolded. */
1520 if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
1521 return t;
1523 /* If we are trying to make a sizetype for a small integer, use
1524 size_int to pick up cached types to reduce duplicate nodes. */
1525 if (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1526 && !TREE_CONSTANT_OVERFLOW (arg1)
1527 && compare_tree_int (arg1, 10000) < 0)
1528 return size_int_type_wide (TREE_INT_CST_LOW (arg1), type);
1530 /* Given an integer constant, make new constant with new type,
1531 appropriately sign-extended or truncated. */
1532 t = build_int_2 (TREE_INT_CST_LOW (arg1),
1533 TREE_INT_CST_HIGH (arg1));
1534 TREE_TYPE (t) = type;
1535 /* Indicate an overflow if (1) ARG1 already overflowed,
1536 or (2) force_fit_type indicates an overflow.
1537 Tell force_fit_type that an overflow has already occurred
1538 if ARG1 is a too-large unsigned value and T is signed.
1539 But don't indicate an overflow if converting a pointer. */
1540 TREE_OVERFLOW (t)
1541 = ((force_fit_type (t,
1542 (TREE_INT_CST_HIGH (arg1) < 0
1543 && (TREE_UNSIGNED (type)
1544 < TREE_UNSIGNED (TREE_TYPE (arg1)))))
1545 && ! POINTER_TYPE_P (TREE_TYPE (arg1)))
1546 || TREE_OVERFLOW (arg1));
1547 TREE_CONSTANT_OVERFLOW (t)
1548 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1550 else if (TREE_CODE (arg1) == REAL_CST)
1552 /* Don't initialize these, use assignments.
1553 Initialized local aggregates don't work on old compilers. */
1554 REAL_VALUE_TYPE x;
1555 REAL_VALUE_TYPE l;
1556 REAL_VALUE_TYPE u;
1557 tree type1 = TREE_TYPE (arg1);
1558 int no_upper_bound;
1560 x = TREE_REAL_CST (arg1);
1561 l = real_value_from_int_cst (type1, TYPE_MIN_VALUE (type));
1563 no_upper_bound = (TYPE_MAX_VALUE (type) == NULL);
1564 if (!no_upper_bound)
1565 u = real_value_from_int_cst (type1, TYPE_MAX_VALUE (type));
1567 /* See if X will be in range after truncation towards 0.
1568 To compensate for truncation, move the bounds away from 0,
1569 but reject if X exactly equals the adjusted bounds. */
1570 REAL_ARITHMETIC (l, MINUS_EXPR, l, dconst1);
1571 if (!no_upper_bound)
1572 REAL_ARITHMETIC (u, PLUS_EXPR, u, dconst1);
1573 /* If X is a NaN, use zero instead and show we have an overflow.
1574 Otherwise, range check. */
1575 if (REAL_VALUE_ISNAN (x))
1576 overflow = 1, x = dconst0;
1577 else if (! (REAL_VALUES_LESS (l, x)
1578 && !no_upper_bound
1579 && REAL_VALUES_LESS (x, u)))
1580 overflow = 1;
1583 HOST_WIDE_INT low, high;
1584 REAL_VALUE_TO_INT (&low, &high, x);
1585 t = build_int_2 (low, high);
1587 TREE_TYPE (t) = type;
1588 TREE_OVERFLOW (t)
1589 = TREE_OVERFLOW (arg1) | force_fit_type (t, overflow);
1590 TREE_CONSTANT_OVERFLOW (t)
1591 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1593 TREE_TYPE (t) = type;
1595 else if (TREE_CODE (type) == REAL_TYPE)
1597 if (TREE_CODE (arg1) == INTEGER_CST)
1598 return build_real_from_int_cst (type, arg1);
1599 if (TREE_CODE (arg1) == REAL_CST)
1601 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
1603 /* We make a copy of ARG1 so that we don't modify an
1604 existing constant tree. */
1605 t = copy_node (arg1);
1606 TREE_TYPE (t) = type;
1607 return t;
1610 t = build_real (type,
1611 real_value_truncate (TYPE_MODE (type),
1612 TREE_REAL_CST (arg1)));
1614 TREE_OVERFLOW (t)
1615 = TREE_OVERFLOW (arg1) | force_fit_type (t, 0);
1616 TREE_CONSTANT_OVERFLOW (t)
1617 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1618 return t;
1621 TREE_CONSTANT (t) = 1;
1622 return t;
1625 /* Return an expr equal to X but certainly not valid as an lvalue. */
1627 tree
1628 non_lvalue (x)
1629 tree x;
1631 tree result;
1633 /* These things are certainly not lvalues. */
1634 if (TREE_CODE (x) == NON_LVALUE_EXPR
1635 || TREE_CODE (x) == INTEGER_CST
1636 || TREE_CODE (x) == REAL_CST
1637 || TREE_CODE (x) == STRING_CST
1638 || TREE_CODE (x) == ADDR_EXPR)
1639 return x;
1641 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
1642 TREE_CONSTANT (result) = TREE_CONSTANT (x);
1643 return result;
1646 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
1647 Zero means allow extended lvalues. */
1649 int pedantic_lvalues;
1651 /* When pedantic, return an expr equal to X but certainly not valid as a
1652 pedantic lvalue. Otherwise, return X. */
1654 tree
1655 pedantic_non_lvalue (x)
1656 tree x;
1658 if (pedantic_lvalues)
1659 return non_lvalue (x);
1660 else
1661 return x;
1664 /* Given a tree comparison code, return the code that is the logical inverse
1665 of the given code. It is not safe to do this for floating-point
1666 comparisons, except for NE_EXPR and EQ_EXPR. */
1668 static enum tree_code
1669 invert_tree_comparison (code)
1670 enum tree_code code;
1672 switch (code)
1674 case EQ_EXPR:
1675 return NE_EXPR;
1676 case NE_EXPR:
1677 return EQ_EXPR;
1678 case GT_EXPR:
1679 return LE_EXPR;
1680 case GE_EXPR:
1681 return LT_EXPR;
1682 case LT_EXPR:
1683 return GE_EXPR;
1684 case LE_EXPR:
1685 return GT_EXPR;
1686 default:
1687 abort ();
1691 /* Similar, but return the comparison that results if the operands are
1692 swapped. This is safe for floating-point. */
1694 static enum tree_code
1695 swap_tree_comparison (code)
1696 enum tree_code code;
1698 switch (code)
1700 case EQ_EXPR:
1701 case NE_EXPR:
1702 return code;
1703 case GT_EXPR:
1704 return LT_EXPR;
1705 case GE_EXPR:
1706 return LE_EXPR;
1707 case LT_EXPR:
1708 return GT_EXPR;
1709 case LE_EXPR:
1710 return GE_EXPR;
1711 default:
1712 abort ();
1717 /* Convert a comparison tree code from an enum tree_code representation
1718 into a compcode bit-based encoding. This function is the inverse of
1719 compcode_to_comparison. */
1721 static int
1722 comparison_to_compcode (code)
1723 enum tree_code code;
1725 switch (code)
1727 case LT_EXPR:
1728 return COMPCODE_LT;
1729 case EQ_EXPR:
1730 return COMPCODE_EQ;
1731 case LE_EXPR:
1732 return COMPCODE_LE;
1733 case GT_EXPR:
1734 return COMPCODE_GT;
1735 case NE_EXPR:
1736 return COMPCODE_NE;
1737 case GE_EXPR:
1738 return COMPCODE_GE;
1739 default:
1740 abort ();
1744 /* Convert a compcode bit-based encoding of a comparison operator back
1745 to GCC's enum tree_code representation. This function is the
1746 inverse of comparison_to_compcode. */
1748 static enum tree_code
1749 compcode_to_comparison (code)
1750 int code;
1752 switch (code)
1754 case COMPCODE_LT:
1755 return LT_EXPR;
1756 case COMPCODE_EQ:
1757 return EQ_EXPR;
1758 case COMPCODE_LE:
1759 return LE_EXPR;
1760 case COMPCODE_GT:
1761 return GT_EXPR;
1762 case COMPCODE_NE:
1763 return NE_EXPR;
1764 case COMPCODE_GE:
1765 return GE_EXPR;
1766 default:
1767 abort ();
1771 /* Return nonzero if CODE is a tree code that represents a truth value. */
1773 static int
1774 truth_value_p (code)
1775 enum tree_code code;
1777 return (TREE_CODE_CLASS (code) == '<'
1778 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
1779 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
1780 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
1783 /* Return nonzero if two operands are necessarily equal.
1784 If ONLY_CONST is nonzero, only return nonzero for constants.
1785 This function tests whether the operands are indistinguishable;
1786 it does not test whether they are equal using C's == operation.
1787 The distinction is important for IEEE floating point, because
1788 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
1789 (2) two NaNs may be indistinguishable, but NaN!=NaN. */
1792 operand_equal_p (arg0, arg1, only_const)
1793 tree arg0, arg1;
1794 int only_const;
1796 /* If both types don't have the same signedness, then we can't consider
1797 them equal. We must check this before the STRIP_NOPS calls
1798 because they may change the signedness of the arguments. */
1799 if (TREE_UNSIGNED (TREE_TYPE (arg0)) != TREE_UNSIGNED (TREE_TYPE (arg1)))
1800 return 0;
1802 STRIP_NOPS (arg0);
1803 STRIP_NOPS (arg1);
1805 if (TREE_CODE (arg0) != TREE_CODE (arg1)
1806 /* This is needed for conversions and for COMPONENT_REF.
1807 Might as well play it safe and always test this. */
1808 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
1809 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
1810 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
1811 return 0;
1813 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
1814 We don't care about side effects in that case because the SAVE_EXPR
1815 takes care of that for us. In all other cases, two expressions are
1816 equal if they have no side effects. If we have two identical
1817 expressions with side effects that should be treated the same due
1818 to the only side effects being identical SAVE_EXPR's, that will
1819 be detected in the recursive calls below. */
1820 if (arg0 == arg1 && ! only_const
1821 && (TREE_CODE (arg0) == SAVE_EXPR
1822 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
1823 return 1;
1825 /* Next handle constant cases, those for which we can return 1 even
1826 if ONLY_CONST is set. */
1827 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
1828 switch (TREE_CODE (arg0))
1830 case INTEGER_CST:
1831 return (! TREE_CONSTANT_OVERFLOW (arg0)
1832 && ! TREE_CONSTANT_OVERFLOW (arg1)
1833 && tree_int_cst_equal (arg0, arg1));
1835 case REAL_CST:
1836 return (! TREE_CONSTANT_OVERFLOW (arg0)
1837 && ! TREE_CONSTANT_OVERFLOW (arg1)
1838 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
1839 TREE_REAL_CST (arg1)));
1841 case VECTOR_CST:
1843 tree v1, v2;
1845 if (TREE_CONSTANT_OVERFLOW (arg0)
1846 || TREE_CONSTANT_OVERFLOW (arg1))
1847 return 0;
1849 v1 = TREE_VECTOR_CST_ELTS (arg0);
1850 v2 = TREE_VECTOR_CST_ELTS (arg1);
1851 while (v1 && v2)
1853 if (!operand_equal_p (v1, v2, only_const))
1854 return 0;
1855 v1 = TREE_CHAIN (v1);
1856 v2 = TREE_CHAIN (v2);
1859 return 1;
1862 case COMPLEX_CST:
1863 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
1864 only_const)
1865 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
1866 only_const));
1868 case STRING_CST:
1869 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
1870 && ! memcmp (TREE_STRING_POINTER (arg0),
1871 TREE_STRING_POINTER (arg1),
1872 TREE_STRING_LENGTH (arg0)));
1874 case ADDR_EXPR:
1875 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
1877 default:
1878 break;
1881 if (only_const)
1882 return 0;
1884 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
1886 case '1':
1887 /* Two conversions are equal only if signedness and modes match. */
1888 if ((TREE_CODE (arg0) == NOP_EXPR || TREE_CODE (arg0) == CONVERT_EXPR)
1889 && (TREE_UNSIGNED (TREE_TYPE (arg0))
1890 != TREE_UNSIGNED (TREE_TYPE (arg1))))
1891 return 0;
1893 return operand_equal_p (TREE_OPERAND (arg0, 0),
1894 TREE_OPERAND (arg1, 0), 0);
1896 case '<':
1897 case '2':
1898 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0)
1899 && operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1),
1901 return 1;
1903 /* For commutative ops, allow the other order. */
1904 return ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MULT_EXPR
1905 || TREE_CODE (arg0) == MIN_EXPR || TREE_CODE (arg0) == MAX_EXPR
1906 || TREE_CODE (arg0) == BIT_IOR_EXPR
1907 || TREE_CODE (arg0) == BIT_XOR_EXPR
1908 || TREE_CODE (arg0) == BIT_AND_EXPR
1909 || TREE_CODE (arg0) == NE_EXPR || TREE_CODE (arg0) == EQ_EXPR)
1910 && operand_equal_p (TREE_OPERAND (arg0, 0),
1911 TREE_OPERAND (arg1, 1), 0)
1912 && operand_equal_p (TREE_OPERAND (arg0, 1),
1913 TREE_OPERAND (arg1, 0), 0));
1915 case 'r':
1916 /* If either of the pointer (or reference) expressions we are dereferencing
1917 contain a side effect, these cannot be equal. */
1918 if (TREE_SIDE_EFFECTS (arg0)
1919 || TREE_SIDE_EFFECTS (arg1))
1920 return 0;
1922 switch (TREE_CODE (arg0))
1924 case INDIRECT_REF:
1925 return operand_equal_p (TREE_OPERAND (arg0, 0),
1926 TREE_OPERAND (arg1, 0), 0);
1928 case COMPONENT_REF:
1929 case ARRAY_REF:
1930 case ARRAY_RANGE_REF:
1931 return (operand_equal_p (TREE_OPERAND (arg0, 0),
1932 TREE_OPERAND (arg1, 0), 0)
1933 && operand_equal_p (TREE_OPERAND (arg0, 1),
1934 TREE_OPERAND (arg1, 1), 0));
1936 case BIT_FIELD_REF:
1937 return (operand_equal_p (TREE_OPERAND (arg0, 0),
1938 TREE_OPERAND (arg1, 0), 0)
1939 && operand_equal_p (TREE_OPERAND (arg0, 1),
1940 TREE_OPERAND (arg1, 1), 0)
1941 && operand_equal_p (TREE_OPERAND (arg0, 2),
1942 TREE_OPERAND (arg1, 2), 0));
1943 default:
1944 return 0;
1947 case 'e':
1948 if (TREE_CODE (arg0) == RTL_EXPR)
1949 return rtx_equal_p (RTL_EXPR_RTL (arg0), RTL_EXPR_RTL (arg1));
1950 return 0;
1952 default:
1953 return 0;
1957 /* Similar to operand_equal_p, but see if ARG0 might have been made by
1958 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
1960 When in doubt, return 0. */
1962 static int
1963 operand_equal_for_comparison_p (arg0, arg1, other)
1964 tree arg0, arg1;
1965 tree other;
1967 int unsignedp1, unsignedpo;
1968 tree primarg0, primarg1, primother;
1969 unsigned int correct_width;
1971 if (operand_equal_p (arg0, arg1, 0))
1972 return 1;
1974 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
1975 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
1976 return 0;
1978 /* Discard any conversions that don't change the modes of ARG0 and ARG1
1979 and see if the inner values are the same. This removes any
1980 signedness comparison, which doesn't matter here. */
1981 primarg0 = arg0, primarg1 = arg1;
1982 STRIP_NOPS (primarg0);
1983 STRIP_NOPS (primarg1);
1984 if (operand_equal_p (primarg0, primarg1, 0))
1985 return 1;
1987 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
1988 actual comparison operand, ARG0.
1990 First throw away any conversions to wider types
1991 already present in the operands. */
1993 primarg1 = get_narrower (arg1, &unsignedp1);
1994 primother = get_narrower (other, &unsignedpo);
1996 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
1997 if (unsignedp1 == unsignedpo
1998 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
1999 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2001 tree type = TREE_TYPE (arg0);
2003 /* Make sure shorter operand is extended the right way
2004 to match the longer operand. */
2005 primarg1 = convert ((*lang_hooks.types.signed_or_unsigned_type)
2006 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2008 if (operand_equal_p (arg0, convert (type, primarg1), 0))
2009 return 1;
2012 return 0;
2015 /* See if ARG is an expression that is either a comparison or is performing
2016 arithmetic on comparisons. The comparisons must only be comparing
2017 two different values, which will be stored in *CVAL1 and *CVAL2; if
2018 they are nonzero it means that some operands have already been found.
2019 No variables may be used anywhere else in the expression except in the
2020 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2021 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2023 If this is true, return 1. Otherwise, return zero. */
2025 static int
2026 twoval_comparison_p (arg, cval1, cval2, save_p)
2027 tree arg;
2028 tree *cval1, *cval2;
2029 int *save_p;
2031 enum tree_code code = TREE_CODE (arg);
2032 char class = TREE_CODE_CLASS (code);
2034 /* We can handle some of the 'e' cases here. */
2035 if (class == 'e' && code == TRUTH_NOT_EXPR)
2036 class = '1';
2037 else if (class == 'e'
2038 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2039 || code == COMPOUND_EXPR))
2040 class = '2';
2042 else if (class == 'e' && code == SAVE_EXPR && SAVE_EXPR_RTL (arg) == 0
2043 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2045 /* If we've already found a CVAL1 or CVAL2, this expression is
2046 two complex to handle. */
2047 if (*cval1 || *cval2)
2048 return 0;
2050 class = '1';
2051 *save_p = 1;
2054 switch (class)
2056 case '1':
2057 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2059 case '2':
2060 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2061 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2062 cval1, cval2, save_p));
2064 case 'c':
2065 return 1;
2067 case 'e':
2068 if (code == COND_EXPR)
2069 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2070 cval1, cval2, save_p)
2071 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2072 cval1, cval2, save_p)
2073 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2074 cval1, cval2, save_p));
2075 return 0;
2077 case '<':
2078 /* First see if we can handle the first operand, then the second. For
2079 the second operand, we know *CVAL1 can't be zero. It must be that
2080 one side of the comparison is each of the values; test for the
2081 case where this isn't true by failing if the two operands
2082 are the same. */
2084 if (operand_equal_p (TREE_OPERAND (arg, 0),
2085 TREE_OPERAND (arg, 1), 0))
2086 return 0;
2088 if (*cval1 == 0)
2089 *cval1 = TREE_OPERAND (arg, 0);
2090 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2092 else if (*cval2 == 0)
2093 *cval2 = TREE_OPERAND (arg, 0);
2094 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2096 else
2097 return 0;
2099 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2101 else if (*cval2 == 0)
2102 *cval2 = TREE_OPERAND (arg, 1);
2103 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2105 else
2106 return 0;
2108 return 1;
2110 default:
2111 return 0;
2115 /* ARG is a tree that is known to contain just arithmetic operations and
2116 comparisons. Evaluate the operations in the tree substituting NEW0 for
2117 any occurrence of OLD0 as an operand of a comparison and likewise for
2118 NEW1 and OLD1. */
2120 static tree
2121 eval_subst (arg, old0, new0, old1, new1)
2122 tree arg;
2123 tree old0, new0, old1, new1;
2125 tree type = TREE_TYPE (arg);
2126 enum tree_code code = TREE_CODE (arg);
2127 char class = TREE_CODE_CLASS (code);
2129 /* We can handle some of the 'e' cases here. */
2130 if (class == 'e' && code == TRUTH_NOT_EXPR)
2131 class = '1';
2132 else if (class == 'e'
2133 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2134 class = '2';
2136 switch (class)
2138 case '1':
2139 return fold (build1 (code, type,
2140 eval_subst (TREE_OPERAND (arg, 0),
2141 old0, new0, old1, new1)));
2143 case '2':
2144 return fold (build (code, type,
2145 eval_subst (TREE_OPERAND (arg, 0),
2146 old0, new0, old1, new1),
2147 eval_subst (TREE_OPERAND (arg, 1),
2148 old0, new0, old1, new1)));
2150 case 'e':
2151 switch (code)
2153 case SAVE_EXPR:
2154 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2156 case COMPOUND_EXPR:
2157 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2159 case COND_EXPR:
2160 return fold (build (code, type,
2161 eval_subst (TREE_OPERAND (arg, 0),
2162 old0, new0, old1, new1),
2163 eval_subst (TREE_OPERAND (arg, 1),
2164 old0, new0, old1, new1),
2165 eval_subst (TREE_OPERAND (arg, 2),
2166 old0, new0, old1, new1)));
2167 default:
2168 break;
2170 /* fall through - ??? */
2172 case '<':
2174 tree arg0 = TREE_OPERAND (arg, 0);
2175 tree arg1 = TREE_OPERAND (arg, 1);
2177 /* We need to check both for exact equality and tree equality. The
2178 former will be true if the operand has a side-effect. In that
2179 case, we know the operand occurred exactly once. */
2181 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2182 arg0 = new0;
2183 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2184 arg0 = new1;
2186 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2187 arg1 = new0;
2188 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2189 arg1 = new1;
2191 return fold (build (code, type, arg0, arg1));
2194 default:
2195 return arg;
2199 /* Return a tree for the case when the result of an expression is RESULT
2200 converted to TYPE and OMITTED was previously an operand of the expression
2201 but is now not needed (e.g., we folded OMITTED * 0).
2203 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2204 the conversion of RESULT to TYPE. */
2206 static tree
2207 omit_one_operand (type, result, omitted)
2208 tree type, result, omitted;
2210 tree t = convert (type, result);
2212 if (TREE_SIDE_EFFECTS (omitted))
2213 return build (COMPOUND_EXPR, type, omitted, t);
2215 return non_lvalue (t);
2218 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2220 static tree
2221 pedantic_omit_one_operand (type, result, omitted)
2222 tree type, result, omitted;
2224 tree t = convert (type, result);
2226 if (TREE_SIDE_EFFECTS (omitted))
2227 return build (COMPOUND_EXPR, type, omitted, t);
2229 return pedantic_non_lvalue (t);
2232 /* Return a simplified tree node for the truth-negation of ARG. This
2233 never alters ARG itself. We assume that ARG is an operation that
2234 returns a truth value (0 or 1). */
2236 tree
2237 invert_truthvalue (arg)
2238 tree arg;
2240 tree type = TREE_TYPE (arg);
2241 enum tree_code code = TREE_CODE (arg);
2243 if (code == ERROR_MARK)
2244 return arg;
2246 /* If this is a comparison, we can simply invert it, except for
2247 floating-point non-equality comparisons, in which case we just
2248 enclose a TRUTH_NOT_EXPR around what we have. */
2250 if (TREE_CODE_CLASS (code) == '<')
2252 if (FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
2253 && !flag_unsafe_math_optimizations
2254 && code != NE_EXPR
2255 && code != EQ_EXPR)
2256 return build1 (TRUTH_NOT_EXPR, type, arg);
2257 else
2258 return build (invert_tree_comparison (code), type,
2259 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
2262 switch (code)
2264 case INTEGER_CST:
2265 return convert (type, build_int_2 (integer_zerop (arg), 0));
2267 case TRUTH_AND_EXPR:
2268 return build (TRUTH_OR_EXPR, type,
2269 invert_truthvalue (TREE_OPERAND (arg, 0)),
2270 invert_truthvalue (TREE_OPERAND (arg, 1)));
2272 case TRUTH_OR_EXPR:
2273 return build (TRUTH_AND_EXPR, type,
2274 invert_truthvalue (TREE_OPERAND (arg, 0)),
2275 invert_truthvalue (TREE_OPERAND (arg, 1)));
2277 case TRUTH_XOR_EXPR:
2278 /* Here we can invert either operand. We invert the first operand
2279 unless the second operand is a TRUTH_NOT_EXPR in which case our
2280 result is the XOR of the first operand with the inside of the
2281 negation of the second operand. */
2283 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
2284 return build (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
2285 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
2286 else
2287 return build (TRUTH_XOR_EXPR, type,
2288 invert_truthvalue (TREE_OPERAND (arg, 0)),
2289 TREE_OPERAND (arg, 1));
2291 case TRUTH_ANDIF_EXPR:
2292 return build (TRUTH_ORIF_EXPR, type,
2293 invert_truthvalue (TREE_OPERAND (arg, 0)),
2294 invert_truthvalue (TREE_OPERAND (arg, 1)));
2296 case TRUTH_ORIF_EXPR:
2297 return build (TRUTH_ANDIF_EXPR, type,
2298 invert_truthvalue (TREE_OPERAND (arg, 0)),
2299 invert_truthvalue (TREE_OPERAND (arg, 1)));
2301 case TRUTH_NOT_EXPR:
2302 return TREE_OPERAND (arg, 0);
2304 case COND_EXPR:
2305 return build (COND_EXPR, type, TREE_OPERAND (arg, 0),
2306 invert_truthvalue (TREE_OPERAND (arg, 1)),
2307 invert_truthvalue (TREE_OPERAND (arg, 2)));
2309 case COMPOUND_EXPR:
2310 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
2311 invert_truthvalue (TREE_OPERAND (arg, 1)));
2313 case WITH_RECORD_EXPR:
2314 return build (WITH_RECORD_EXPR, type,
2315 invert_truthvalue (TREE_OPERAND (arg, 0)),
2316 TREE_OPERAND (arg, 1));
2318 case NON_LVALUE_EXPR:
2319 return invert_truthvalue (TREE_OPERAND (arg, 0));
2321 case NOP_EXPR:
2322 case CONVERT_EXPR:
2323 case FLOAT_EXPR:
2324 return build1 (TREE_CODE (arg), type,
2325 invert_truthvalue (TREE_OPERAND (arg, 0)));
2327 case BIT_AND_EXPR:
2328 if (!integer_onep (TREE_OPERAND (arg, 1)))
2329 break;
2330 return build (EQ_EXPR, type, arg, convert (type, integer_zero_node));
2332 case SAVE_EXPR:
2333 return build1 (TRUTH_NOT_EXPR, type, arg);
2335 case CLEANUP_POINT_EXPR:
2336 return build1 (CLEANUP_POINT_EXPR, type,
2337 invert_truthvalue (TREE_OPERAND (arg, 0)));
2339 default:
2340 break;
2342 if (TREE_CODE (TREE_TYPE (arg)) != BOOLEAN_TYPE)
2343 abort ();
2344 return build1 (TRUTH_NOT_EXPR, type, arg);
2347 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
2348 operands are another bit-wise operation with a common input. If so,
2349 distribute the bit operations to save an operation and possibly two if
2350 constants are involved. For example, convert
2351 (A | B) & (A | C) into A | (B & C)
2352 Further simplification will occur if B and C are constants.
2354 If this optimization cannot be done, 0 will be returned. */
2356 static tree
2357 distribute_bit_expr (code, type, arg0, arg1)
2358 enum tree_code code;
2359 tree type;
2360 tree arg0, arg1;
2362 tree common;
2363 tree left, right;
2365 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2366 || TREE_CODE (arg0) == code
2367 || (TREE_CODE (arg0) != BIT_AND_EXPR
2368 && TREE_CODE (arg0) != BIT_IOR_EXPR))
2369 return 0;
2371 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
2373 common = TREE_OPERAND (arg0, 0);
2374 left = TREE_OPERAND (arg0, 1);
2375 right = TREE_OPERAND (arg1, 1);
2377 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
2379 common = TREE_OPERAND (arg0, 0);
2380 left = TREE_OPERAND (arg0, 1);
2381 right = TREE_OPERAND (arg1, 0);
2383 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
2385 common = TREE_OPERAND (arg0, 1);
2386 left = TREE_OPERAND (arg0, 0);
2387 right = TREE_OPERAND (arg1, 1);
2389 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
2391 common = TREE_OPERAND (arg0, 1);
2392 left = TREE_OPERAND (arg0, 0);
2393 right = TREE_OPERAND (arg1, 0);
2395 else
2396 return 0;
2398 return fold (build (TREE_CODE (arg0), type, common,
2399 fold (build (code, type, left, right))));
2402 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
2403 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
2405 static tree
2406 make_bit_field_ref (inner, type, bitsize, bitpos, unsignedp)
2407 tree inner;
2408 tree type;
2409 int bitsize, bitpos;
2410 int unsignedp;
2412 tree result = build (BIT_FIELD_REF, type, inner,
2413 size_int (bitsize), bitsize_int (bitpos));
2415 TREE_UNSIGNED (result) = unsignedp;
2417 return result;
2420 /* Optimize a bit-field compare.
2422 There are two cases: First is a compare against a constant and the
2423 second is a comparison of two items where the fields are at the same
2424 bit position relative to the start of a chunk (byte, halfword, word)
2425 large enough to contain it. In these cases we can avoid the shift
2426 implicit in bitfield extractions.
2428 For constants, we emit a compare of the shifted constant with the
2429 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
2430 compared. For two fields at the same position, we do the ANDs with the
2431 similar mask and compare the result of the ANDs.
2433 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
2434 COMPARE_TYPE is the type of the comparison, and LHS and RHS
2435 are the left and right operands of the comparison, respectively.
2437 If the optimization described above can be done, we return the resulting
2438 tree. Otherwise we return zero. */
2440 static tree
2441 optimize_bit_field_compare (code, compare_type, lhs, rhs)
2442 enum tree_code code;
2443 tree compare_type;
2444 tree lhs, rhs;
2446 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
2447 tree type = TREE_TYPE (lhs);
2448 tree signed_type, unsigned_type;
2449 int const_p = TREE_CODE (rhs) == INTEGER_CST;
2450 enum machine_mode lmode, rmode, nmode;
2451 int lunsignedp, runsignedp;
2452 int lvolatilep = 0, rvolatilep = 0;
2453 tree linner, rinner = NULL_TREE;
2454 tree mask;
2455 tree offset;
2457 /* Get all the information about the extractions being done. If the bit size
2458 if the same as the size of the underlying object, we aren't doing an
2459 extraction at all and so can do nothing. We also don't want to
2460 do anything if the inner expression is a PLACEHOLDER_EXPR since we
2461 then will no longer be able to replace it. */
2462 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
2463 &lunsignedp, &lvolatilep);
2464 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
2465 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
2466 return 0;
2468 if (!const_p)
2470 /* If this is not a constant, we can only do something if bit positions,
2471 sizes, and signedness are the same. */
2472 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
2473 &runsignedp, &rvolatilep);
2475 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
2476 || lunsignedp != runsignedp || offset != 0
2477 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
2478 return 0;
2481 /* See if we can find a mode to refer to this field. We should be able to,
2482 but fail if we can't. */
2483 nmode = get_best_mode (lbitsize, lbitpos,
2484 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
2485 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
2486 TYPE_ALIGN (TREE_TYPE (rinner))),
2487 word_mode, lvolatilep || rvolatilep);
2488 if (nmode == VOIDmode)
2489 return 0;
2491 /* Set signed and unsigned types of the precision of this mode for the
2492 shifts below. */
2493 signed_type = (*lang_hooks.types.type_for_mode) (nmode, 0);
2494 unsigned_type = (*lang_hooks.types.type_for_mode) (nmode, 1);
2496 /* Compute the bit position and size for the new reference and our offset
2497 within it. If the new reference is the same size as the original, we
2498 won't optimize anything, so return zero. */
2499 nbitsize = GET_MODE_BITSIZE (nmode);
2500 nbitpos = lbitpos & ~ (nbitsize - 1);
2501 lbitpos -= nbitpos;
2502 if (nbitsize == lbitsize)
2503 return 0;
2505 if (BYTES_BIG_ENDIAN)
2506 lbitpos = nbitsize - lbitsize - lbitpos;
2508 /* Make the mask to be used against the extracted field. */
2509 mask = build_int_2 (~0, ~0);
2510 TREE_TYPE (mask) = unsigned_type;
2511 force_fit_type (mask, 0);
2512 mask = convert (unsigned_type, mask);
2513 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
2514 mask = const_binop (RSHIFT_EXPR, mask,
2515 size_int (nbitsize - lbitsize - lbitpos), 0);
2517 if (! const_p)
2518 /* If not comparing with constant, just rework the comparison
2519 and return. */
2520 return build (code, compare_type,
2521 build (BIT_AND_EXPR, unsigned_type,
2522 make_bit_field_ref (linner, unsigned_type,
2523 nbitsize, nbitpos, 1),
2524 mask),
2525 build (BIT_AND_EXPR, unsigned_type,
2526 make_bit_field_ref (rinner, unsigned_type,
2527 nbitsize, nbitpos, 1),
2528 mask));
2530 /* Otherwise, we are handling the constant case. See if the constant is too
2531 big for the field. Warn and return a tree of for 0 (false) if so. We do
2532 this not only for its own sake, but to avoid having to test for this
2533 error case below. If we didn't, we might generate wrong code.
2535 For unsigned fields, the constant shifted right by the field length should
2536 be all zero. For signed fields, the high-order bits should agree with
2537 the sign bit. */
2539 if (lunsignedp)
2541 if (! integer_zerop (const_binop (RSHIFT_EXPR,
2542 convert (unsigned_type, rhs),
2543 size_int (lbitsize), 0)))
2545 warning ("comparison is always %d due to width of bit-field",
2546 code == NE_EXPR);
2547 return convert (compare_type,
2548 (code == NE_EXPR
2549 ? integer_one_node : integer_zero_node));
2552 else
2554 tree tem = const_binop (RSHIFT_EXPR, convert (signed_type, rhs),
2555 size_int (lbitsize - 1), 0);
2556 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
2558 warning ("comparison is always %d due to width of bit-field",
2559 code == NE_EXPR);
2560 return convert (compare_type,
2561 (code == NE_EXPR
2562 ? integer_one_node : integer_zero_node));
2566 /* Single-bit compares should always be against zero. */
2567 if (lbitsize == 1 && ! integer_zerop (rhs))
2569 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
2570 rhs = convert (type, integer_zero_node);
2573 /* Make a new bitfield reference, shift the constant over the
2574 appropriate number of bits and mask it with the computed mask
2575 (in case this was a signed field). If we changed it, make a new one. */
2576 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
2577 if (lvolatilep)
2579 TREE_SIDE_EFFECTS (lhs) = 1;
2580 TREE_THIS_VOLATILE (lhs) = 1;
2583 rhs = fold (const_binop (BIT_AND_EXPR,
2584 const_binop (LSHIFT_EXPR,
2585 convert (unsigned_type, rhs),
2586 size_int (lbitpos), 0),
2587 mask, 0));
2589 return build (code, compare_type,
2590 build (BIT_AND_EXPR, unsigned_type, lhs, mask),
2591 rhs);
2594 /* Subroutine for fold_truthop: decode a field reference.
2596 If EXP is a comparison reference, we return the innermost reference.
2598 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
2599 set to the starting bit number.
2601 If the innermost field can be completely contained in a mode-sized
2602 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
2604 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
2605 otherwise it is not changed.
2607 *PUNSIGNEDP is set to the signedness of the field.
2609 *PMASK is set to the mask used. This is either contained in a
2610 BIT_AND_EXPR or derived from the width of the field.
2612 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
2614 Return 0 if this is not a component reference or is one that we can't
2615 do anything with. */
2617 static tree
2618 decode_field_reference (exp, pbitsize, pbitpos, pmode, punsignedp,
2619 pvolatilep, pmask, pand_mask)
2620 tree exp;
2621 HOST_WIDE_INT *pbitsize, *pbitpos;
2622 enum machine_mode *pmode;
2623 int *punsignedp, *pvolatilep;
2624 tree *pmask;
2625 tree *pand_mask;
2627 tree and_mask = 0;
2628 tree mask, inner, offset;
2629 tree unsigned_type;
2630 unsigned int precision;
2632 /* All the optimizations using this function assume integer fields.
2633 There are problems with FP fields since the type_for_size call
2634 below can fail for, e.g., XFmode. */
2635 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
2636 return 0;
2638 STRIP_NOPS (exp);
2640 if (TREE_CODE (exp) == BIT_AND_EXPR)
2642 and_mask = TREE_OPERAND (exp, 1);
2643 exp = TREE_OPERAND (exp, 0);
2644 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
2645 if (TREE_CODE (and_mask) != INTEGER_CST)
2646 return 0;
2649 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
2650 punsignedp, pvolatilep);
2651 if ((inner == exp && and_mask == 0)
2652 || *pbitsize < 0 || offset != 0
2653 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
2654 return 0;
2656 /* Compute the mask to access the bitfield. */
2657 unsigned_type = (*lang_hooks.types.type_for_size) (*pbitsize, 1);
2658 precision = TYPE_PRECISION (unsigned_type);
2660 mask = build_int_2 (~0, ~0);
2661 TREE_TYPE (mask) = unsigned_type;
2662 force_fit_type (mask, 0);
2663 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2664 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
2666 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
2667 if (and_mask != 0)
2668 mask = fold (build (BIT_AND_EXPR, unsigned_type,
2669 convert (unsigned_type, and_mask), mask));
2671 *pmask = mask;
2672 *pand_mask = and_mask;
2673 return inner;
2676 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
2677 bit positions. */
2679 static int
2680 all_ones_mask_p (mask, size)
2681 tree mask;
2682 int size;
2684 tree type = TREE_TYPE (mask);
2685 unsigned int precision = TYPE_PRECISION (type);
2686 tree tmask;
2688 tmask = build_int_2 (~0, ~0);
2689 TREE_TYPE (tmask) = (*lang_hooks.types.signed_type) (type);
2690 force_fit_type (tmask, 0);
2691 return
2692 tree_int_cst_equal (mask,
2693 const_binop (RSHIFT_EXPR,
2694 const_binop (LSHIFT_EXPR, tmask,
2695 size_int (precision - size),
2697 size_int (precision - size), 0));
2700 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
2701 represents the sign bit of EXP's type. If EXP represents a sign
2702 or zero extension, also test VAL against the unextended type.
2703 The return value is the (sub)expression whose sign bit is VAL,
2704 or NULL_TREE otherwise. */
2706 static tree
2707 sign_bit_p (exp, val)
2708 tree exp;
2709 tree val;
2711 unsigned HOST_WIDE_INT lo;
2712 HOST_WIDE_INT hi;
2713 int width;
2714 tree t;
2716 /* Tree EXP must have an integral type. */
2717 t = TREE_TYPE (exp);
2718 if (! INTEGRAL_TYPE_P (t))
2719 return NULL_TREE;
2721 /* Tree VAL must be an integer constant. */
2722 if (TREE_CODE (val) != INTEGER_CST
2723 || TREE_CONSTANT_OVERFLOW (val))
2724 return NULL_TREE;
2726 width = TYPE_PRECISION (t);
2727 if (width > HOST_BITS_PER_WIDE_INT)
2729 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
2730 lo = 0;
2732 else
2734 hi = 0;
2735 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
2738 if (TREE_INT_CST_HIGH (val) == hi && TREE_INT_CST_LOW (val) == lo)
2739 return exp;
2741 /* Handle extension from a narrower type. */
2742 if (TREE_CODE (exp) == NOP_EXPR
2743 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
2744 return sign_bit_p (TREE_OPERAND (exp, 0), val);
2746 return NULL_TREE;
2749 /* Subroutine for fold_truthop: determine if an operand is simple enough
2750 to be evaluated unconditionally. */
2752 static int
2753 simple_operand_p (exp)
2754 tree exp;
2756 /* Strip any conversions that don't change the machine mode. */
2757 while ((TREE_CODE (exp) == NOP_EXPR
2758 || TREE_CODE (exp) == CONVERT_EXPR)
2759 && (TYPE_MODE (TREE_TYPE (exp))
2760 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
2761 exp = TREE_OPERAND (exp, 0);
2763 return (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c'
2764 || (DECL_P (exp)
2765 && ! TREE_ADDRESSABLE (exp)
2766 && ! TREE_THIS_VOLATILE (exp)
2767 && ! DECL_NONLOCAL (exp)
2768 /* Don't regard global variables as simple. They may be
2769 allocated in ways unknown to the compiler (shared memory,
2770 #pragma weak, etc). */
2771 && ! TREE_PUBLIC (exp)
2772 && ! DECL_EXTERNAL (exp)
2773 /* Loading a static variable is unduly expensive, but global
2774 registers aren't expensive. */
2775 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
2778 /* The following functions are subroutines to fold_range_test and allow it to
2779 try to change a logical combination of comparisons into a range test.
2781 For example, both
2782 X == 2 || X == 3 || X == 4 || X == 5
2784 X >= 2 && X <= 5
2785 are converted to
2786 (unsigned) (X - 2) <= 3
2788 We describe each set of comparisons as being either inside or outside
2789 a range, using a variable named like IN_P, and then describe the
2790 range with a lower and upper bound. If one of the bounds is omitted,
2791 it represents either the highest or lowest value of the type.
2793 In the comments below, we represent a range by two numbers in brackets
2794 preceded by a "+" to designate being inside that range, or a "-" to
2795 designate being outside that range, so the condition can be inverted by
2796 flipping the prefix. An omitted bound is represented by a "-". For
2797 example, "- [-, 10]" means being outside the range starting at the lowest
2798 possible value and ending at 10, in other words, being greater than 10.
2799 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
2800 always false.
2802 We set up things so that the missing bounds are handled in a consistent
2803 manner so neither a missing bound nor "true" and "false" need to be
2804 handled using a special case. */
2806 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
2807 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
2808 and UPPER1_P are nonzero if the respective argument is an upper bound
2809 and zero for a lower. TYPE, if nonzero, is the type of the result; it
2810 must be specified for a comparison. ARG1 will be converted to ARG0's
2811 type if both are specified. */
2813 static tree
2814 range_binop (code, type, arg0, upper0_p, arg1, upper1_p)
2815 enum tree_code code;
2816 tree type;
2817 tree arg0, arg1;
2818 int upper0_p, upper1_p;
2820 tree tem;
2821 int result;
2822 int sgn0, sgn1;
2824 /* If neither arg represents infinity, do the normal operation.
2825 Else, if not a comparison, return infinity. Else handle the special
2826 comparison rules. Note that most of the cases below won't occur, but
2827 are handled for consistency. */
2829 if (arg0 != 0 && arg1 != 0)
2831 tem = fold (build (code, type != 0 ? type : TREE_TYPE (arg0),
2832 arg0, convert (TREE_TYPE (arg0), arg1)));
2833 STRIP_NOPS (tem);
2834 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
2837 if (TREE_CODE_CLASS (code) != '<')
2838 return 0;
2840 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
2841 for neither. In real maths, we cannot assume open ended ranges are
2842 the same. But, this is computer arithmetic, where numbers are finite.
2843 We can therefore make the transformation of any unbounded range with
2844 the value Z, Z being greater than any representable number. This permits
2845 us to treat unbounded ranges as equal. */
2846 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
2847 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
2848 switch (code)
2850 case EQ_EXPR:
2851 result = sgn0 == sgn1;
2852 break;
2853 case NE_EXPR:
2854 result = sgn0 != sgn1;
2855 break;
2856 case LT_EXPR:
2857 result = sgn0 < sgn1;
2858 break;
2859 case LE_EXPR:
2860 result = sgn0 <= sgn1;
2861 break;
2862 case GT_EXPR:
2863 result = sgn0 > sgn1;
2864 break;
2865 case GE_EXPR:
2866 result = sgn0 >= sgn1;
2867 break;
2868 default:
2869 abort ();
2872 return convert (type, result ? integer_one_node : integer_zero_node);
2875 /* Given EXP, a logical expression, set the range it is testing into
2876 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
2877 actually being tested. *PLOW and *PHIGH will be made of the same type
2878 as the returned expression. If EXP is not a comparison, we will most
2879 likely not be returning a useful value and range. */
2881 static tree
2882 make_range (exp, pin_p, plow, phigh)
2883 tree exp;
2884 int *pin_p;
2885 tree *plow, *phigh;
2887 enum tree_code code;
2888 tree arg0 = NULL_TREE, arg1 = NULL_TREE, type = NULL_TREE;
2889 tree orig_type = NULL_TREE;
2890 int in_p, n_in_p;
2891 tree low, high, n_low, n_high;
2893 /* Start with simply saying "EXP != 0" and then look at the code of EXP
2894 and see if we can refine the range. Some of the cases below may not
2895 happen, but it doesn't seem worth worrying about this. We "continue"
2896 the outer loop when we've changed something; otherwise we "break"
2897 the switch, which will "break" the while. */
2899 in_p = 0, low = high = convert (TREE_TYPE (exp), integer_zero_node);
2901 while (1)
2903 code = TREE_CODE (exp);
2905 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
2907 arg0 = TREE_OPERAND (exp, 0);
2908 if (TREE_CODE_CLASS (code) == '<'
2909 || TREE_CODE_CLASS (code) == '1'
2910 || TREE_CODE_CLASS (code) == '2')
2911 type = TREE_TYPE (arg0);
2912 if (TREE_CODE_CLASS (code) == '2'
2913 || TREE_CODE_CLASS (code) == '<'
2914 || (TREE_CODE_CLASS (code) == 'e'
2915 && TREE_CODE_LENGTH (code) > 1))
2916 arg1 = TREE_OPERAND (exp, 1);
2919 /* Set ORIG_TYPE as soon as TYPE is non-null so that we do not
2920 lose a cast by accident. */
2921 if (type != NULL_TREE && orig_type == NULL_TREE)
2922 orig_type = type;
2924 switch (code)
2926 case TRUTH_NOT_EXPR:
2927 in_p = ! in_p, exp = arg0;
2928 continue;
2930 case EQ_EXPR: case NE_EXPR:
2931 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
2932 /* We can only do something if the range is testing for zero
2933 and if the second operand is an integer constant. Note that
2934 saying something is "in" the range we make is done by
2935 complementing IN_P since it will set in the initial case of
2936 being not equal to zero; "out" is leaving it alone. */
2937 if (low == 0 || high == 0
2938 || ! integer_zerop (low) || ! integer_zerop (high)
2939 || TREE_CODE (arg1) != INTEGER_CST)
2940 break;
2942 switch (code)
2944 case NE_EXPR: /* - [c, c] */
2945 low = high = arg1;
2946 break;
2947 case EQ_EXPR: /* + [c, c] */
2948 in_p = ! in_p, low = high = arg1;
2949 break;
2950 case GT_EXPR: /* - [-, c] */
2951 low = 0, high = arg1;
2952 break;
2953 case GE_EXPR: /* + [c, -] */
2954 in_p = ! in_p, low = arg1, high = 0;
2955 break;
2956 case LT_EXPR: /* - [c, -] */
2957 low = arg1, high = 0;
2958 break;
2959 case LE_EXPR: /* + [-, c] */
2960 in_p = ! in_p, low = 0, high = arg1;
2961 break;
2962 default:
2963 abort ();
2966 exp = arg0;
2968 /* If this is an unsigned comparison, we also know that EXP is
2969 greater than or equal to zero. We base the range tests we make
2970 on that fact, so we record it here so we can parse existing
2971 range tests. */
2972 if (TREE_UNSIGNED (type) && (low == 0 || high == 0))
2974 if (! merge_ranges (&n_in_p, &n_low, &n_high, in_p, low, high,
2975 1, convert (type, integer_zero_node),
2976 NULL_TREE))
2977 break;
2979 in_p = n_in_p, low = n_low, high = n_high;
2981 /* If the high bound is missing, but we
2982 have a low bound, reverse the range so
2983 it goes from zero to the low bound minus 1. */
2984 if (high == 0 && low)
2986 in_p = ! in_p;
2987 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
2988 integer_one_node, 0);
2989 low = convert (type, integer_zero_node);
2992 continue;
2994 case NEGATE_EXPR:
2995 /* (-x) IN [a,b] -> x in [-b, -a] */
2996 n_low = range_binop (MINUS_EXPR, type,
2997 convert (type, integer_zero_node), 0, high, 1);
2998 n_high = range_binop (MINUS_EXPR, type,
2999 convert (type, integer_zero_node), 0, low, 0);
3000 low = n_low, high = n_high;
3001 exp = arg0;
3002 continue;
3004 case BIT_NOT_EXPR:
3005 /* ~ X -> -X - 1 */
3006 exp = build (MINUS_EXPR, type, negate_expr (arg0),
3007 convert (type, integer_one_node));
3008 continue;
3010 case PLUS_EXPR: case MINUS_EXPR:
3011 if (TREE_CODE (arg1) != INTEGER_CST)
3012 break;
3014 /* If EXP is signed, any overflow in the computation is undefined,
3015 so we don't worry about it so long as our computations on
3016 the bounds don't overflow. For unsigned, overflow is defined
3017 and this is exactly the right thing. */
3018 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3019 type, low, 0, arg1, 0);
3020 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3021 type, high, 1, arg1, 0);
3022 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3023 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3024 break;
3026 /* Check for an unsigned range which has wrapped around the maximum
3027 value thus making n_high < n_low, and normalize it. */
3028 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3030 low = range_binop (PLUS_EXPR, type, n_high, 0,
3031 integer_one_node, 0);
3032 high = range_binop (MINUS_EXPR, type, n_low, 0,
3033 integer_one_node, 0);
3035 /* If the range is of the form +/- [ x+1, x ], we won't
3036 be able to normalize it. But then, it represents the
3037 whole range or the empty set, so make it
3038 +/- [ -, - ]. */
3039 if (tree_int_cst_equal (n_low, low)
3040 && tree_int_cst_equal (n_high, high))
3041 low = high = 0;
3042 else
3043 in_p = ! in_p;
3045 else
3046 low = n_low, high = n_high;
3048 exp = arg0;
3049 continue;
3051 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3052 if (TYPE_PRECISION (type) > TYPE_PRECISION (orig_type))
3053 break;
3055 if (! INTEGRAL_TYPE_P (type)
3056 || (low != 0 && ! int_fits_type_p (low, type))
3057 || (high != 0 && ! int_fits_type_p (high, type)))
3058 break;
3060 n_low = low, n_high = high;
3062 if (n_low != 0)
3063 n_low = convert (type, n_low);
3065 if (n_high != 0)
3066 n_high = convert (type, n_high);
3068 /* If we're converting from an unsigned to a signed type,
3069 we will be doing the comparison as unsigned. The tests above
3070 have already verified that LOW and HIGH are both positive.
3072 So we have to make sure that the original unsigned value will
3073 be interpreted as positive. */
3074 if (TREE_UNSIGNED (type) && ! TREE_UNSIGNED (TREE_TYPE (exp)))
3076 tree equiv_type = (*lang_hooks.types.type_for_mode)
3077 (TYPE_MODE (type), 1);
3078 tree high_positive;
3080 /* A range without an upper bound is, naturally, unbounded.
3081 Since convert would have cropped a very large value, use
3082 the max value for the destination type. */
3083 high_positive
3084 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
3085 : TYPE_MAX_VALUE (type);
3087 if (TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (exp)))
3088 high_positive = fold (build (RSHIFT_EXPR, type,
3089 convert (type, high_positive),
3090 convert (type, integer_one_node)));
3092 /* If the low bound is specified, "and" the range with the
3093 range for which the original unsigned value will be
3094 positive. */
3095 if (low != 0)
3097 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3098 1, n_low, n_high,
3099 1, convert (type, integer_zero_node),
3100 high_positive))
3101 break;
3103 in_p = (n_in_p == in_p);
3105 else
3107 /* Otherwise, "or" the range with the range of the input
3108 that will be interpreted as negative. */
3109 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3110 0, n_low, n_high,
3111 1, convert (type, integer_zero_node),
3112 high_positive))
3113 break;
3115 in_p = (in_p != n_in_p);
3119 exp = arg0;
3120 low = n_low, high = n_high;
3121 continue;
3123 default:
3124 break;
3127 break;
3130 /* If EXP is a constant, we can evaluate whether this is true or false. */
3131 if (TREE_CODE (exp) == INTEGER_CST)
3133 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
3134 exp, 0, low, 0))
3135 && integer_onep (range_binop (LE_EXPR, integer_type_node,
3136 exp, 1, high, 1)));
3137 low = high = 0;
3138 exp = 0;
3141 *pin_p = in_p, *plow = low, *phigh = high;
3142 return exp;
3145 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3146 type, TYPE, return an expression to test if EXP is in (or out of, depending
3147 on IN_P) the range. */
3149 static tree
3150 build_range_check (type, exp, in_p, low, high)
3151 tree type;
3152 tree exp;
3153 int in_p;
3154 tree low, high;
3156 tree etype = TREE_TYPE (exp);
3157 tree value;
3159 if (! in_p
3160 && (0 != (value = build_range_check (type, exp, 1, low, high))))
3161 return invert_truthvalue (value);
3163 if (low == 0 && high == 0)
3164 return convert (type, integer_one_node);
3166 if (low == 0)
3167 return fold (build (LE_EXPR, type, exp, high));
3169 if (high == 0)
3170 return fold (build (GE_EXPR, type, exp, low));
3172 if (operand_equal_p (low, high, 0))
3173 return fold (build (EQ_EXPR, type, exp, low));
3175 if (integer_zerop (low))
3177 if (! TREE_UNSIGNED (etype))
3179 etype = (*lang_hooks.types.unsigned_type) (etype);
3180 high = convert (etype, high);
3181 exp = convert (etype, exp);
3183 return build_range_check (type, exp, 1, 0, high);
3186 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
3187 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
3189 unsigned HOST_WIDE_INT lo;
3190 HOST_WIDE_INT hi;
3191 int prec;
3193 prec = TYPE_PRECISION (etype);
3194 if (prec <= HOST_BITS_PER_WIDE_INT)
3196 hi = 0;
3197 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
3199 else
3201 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
3202 lo = (unsigned HOST_WIDE_INT) -1;
3205 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
3207 if (TREE_UNSIGNED (etype))
3209 etype = (*lang_hooks.types.signed_type) (etype);
3210 exp = convert (etype, exp);
3212 return fold (build (GT_EXPR, type, exp,
3213 convert (etype, integer_zero_node)));
3217 if (0 != (value = const_binop (MINUS_EXPR, high, low, 0))
3218 && ! TREE_OVERFLOW (value))
3219 return build_range_check (type,
3220 fold (build (MINUS_EXPR, etype, exp, low)),
3221 1, convert (etype, integer_zero_node), value);
3223 return 0;
3226 /* Given two ranges, see if we can merge them into one. Return 1 if we
3227 can, 0 if we can't. Set the output range into the specified parameters. */
3229 static int
3230 merge_ranges (pin_p, plow, phigh, in0_p, low0, high0, in1_p, low1, high1)
3231 int *pin_p;
3232 tree *plow, *phigh;
3233 int in0_p, in1_p;
3234 tree low0, high0, low1, high1;
3236 int no_overlap;
3237 int subset;
3238 int temp;
3239 tree tem;
3240 int in_p;
3241 tree low, high;
3242 int lowequal = ((low0 == 0 && low1 == 0)
3243 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3244 low0, 0, low1, 0)));
3245 int highequal = ((high0 == 0 && high1 == 0)
3246 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3247 high0, 1, high1, 1)));
3249 /* Make range 0 be the range that starts first, or ends last if they
3250 start at the same value. Swap them if it isn't. */
3251 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
3252 low0, 0, low1, 0))
3253 || (lowequal
3254 && integer_onep (range_binop (GT_EXPR, integer_type_node,
3255 high1, 1, high0, 1))))
3257 temp = in0_p, in0_p = in1_p, in1_p = temp;
3258 tem = low0, low0 = low1, low1 = tem;
3259 tem = high0, high0 = high1, high1 = tem;
3262 /* Now flag two cases, whether the ranges are disjoint or whether the
3263 second range is totally subsumed in the first. Note that the tests
3264 below are simplified by the ones above. */
3265 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
3266 high0, 1, low1, 0));
3267 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
3268 high1, 1, high0, 1));
3270 /* We now have four cases, depending on whether we are including or
3271 excluding the two ranges. */
3272 if (in0_p && in1_p)
3274 /* If they don't overlap, the result is false. If the second range
3275 is a subset it is the result. Otherwise, the range is from the start
3276 of the second to the end of the first. */
3277 if (no_overlap)
3278 in_p = 0, low = high = 0;
3279 else if (subset)
3280 in_p = 1, low = low1, high = high1;
3281 else
3282 in_p = 1, low = low1, high = high0;
3285 else if (in0_p && ! in1_p)
3287 /* If they don't overlap, the result is the first range. If they are
3288 equal, the result is false. If the second range is a subset of the
3289 first, and the ranges begin at the same place, we go from just after
3290 the end of the first range to the end of the second. If the second
3291 range is not a subset of the first, or if it is a subset and both
3292 ranges end at the same place, the range starts at the start of the
3293 first range and ends just before the second range.
3294 Otherwise, we can't describe this as a single range. */
3295 if (no_overlap)
3296 in_p = 1, low = low0, high = high0;
3297 else if (lowequal && highequal)
3298 in_p = 0, low = high = 0;
3299 else if (subset && lowequal)
3301 in_p = 1, high = high0;
3302 low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
3303 integer_one_node, 0);
3305 else if (! subset || highequal)
3307 in_p = 1, low = low0;
3308 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
3309 integer_one_node, 0);
3311 else
3312 return 0;
3315 else if (! in0_p && in1_p)
3317 /* If they don't overlap, the result is the second range. If the second
3318 is a subset of the first, the result is false. Otherwise,
3319 the range starts just after the first range and ends at the
3320 end of the second. */
3321 if (no_overlap)
3322 in_p = 1, low = low1, high = high1;
3323 else if (subset || highequal)
3324 in_p = 0, low = high = 0;
3325 else
3327 in_p = 1, high = high1;
3328 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
3329 integer_one_node, 0);
3333 else
3335 /* The case where we are excluding both ranges. Here the complex case
3336 is if they don't overlap. In that case, the only time we have a
3337 range is if they are adjacent. If the second is a subset of the
3338 first, the result is the first. Otherwise, the range to exclude
3339 starts at the beginning of the first range and ends at the end of the
3340 second. */
3341 if (no_overlap)
3343 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
3344 range_binop (PLUS_EXPR, NULL_TREE,
3345 high0, 1,
3346 integer_one_node, 1),
3347 1, low1, 0)))
3348 in_p = 0, low = low0, high = high1;
3349 else
3350 return 0;
3352 else if (subset)
3353 in_p = 0, low = low0, high = high0;
3354 else
3355 in_p = 0, low = low0, high = high1;
3358 *pin_p = in_p, *plow = low, *phigh = high;
3359 return 1;
3362 /* EXP is some logical combination of boolean tests. See if we can
3363 merge it into some range test. Return the new tree if so. */
3365 static tree
3366 fold_range_test (exp)
3367 tree exp;
3369 int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
3370 || TREE_CODE (exp) == TRUTH_OR_EXPR);
3371 int in0_p, in1_p, in_p;
3372 tree low0, low1, low, high0, high1, high;
3373 tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
3374 tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
3375 tree tem;
3377 /* If this is an OR operation, invert both sides; we will invert
3378 again at the end. */
3379 if (or_op)
3380 in0_p = ! in0_p, in1_p = ! in1_p;
3382 /* If both expressions are the same, if we can merge the ranges, and we
3383 can build the range test, return it or it inverted. If one of the
3384 ranges is always true or always false, consider it to be the same
3385 expression as the other. */
3386 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
3387 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
3388 in1_p, low1, high1)
3389 && 0 != (tem = (build_range_check (TREE_TYPE (exp),
3390 lhs != 0 ? lhs
3391 : rhs != 0 ? rhs : integer_zero_node,
3392 in_p, low, high))))
3393 return or_op ? invert_truthvalue (tem) : tem;
3395 /* On machines where the branch cost is expensive, if this is a
3396 short-circuited branch and the underlying object on both sides
3397 is the same, make a non-short-circuit operation. */
3398 else if (BRANCH_COST >= 2
3399 && lhs != 0 && rhs != 0
3400 && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3401 || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
3402 && operand_equal_p (lhs, rhs, 0))
3404 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
3405 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
3406 which cases we can't do this. */
3407 if (simple_operand_p (lhs))
3408 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3409 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3410 TREE_TYPE (exp), TREE_OPERAND (exp, 0),
3411 TREE_OPERAND (exp, 1));
3413 else if ((*lang_hooks.decls.global_bindings_p) () == 0
3414 && ! contains_placeholder_p (lhs))
3416 tree common = save_expr (lhs);
3418 if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
3419 or_op ? ! in0_p : in0_p,
3420 low0, high0))
3421 && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
3422 or_op ? ! in1_p : in1_p,
3423 low1, high1))))
3424 return build (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
3425 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
3426 TREE_TYPE (exp), lhs, rhs);
3430 return 0;
3433 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
3434 bit value. Arrange things so the extra bits will be set to zero if and
3435 only if C is signed-extended to its full width. If MASK is nonzero,
3436 it is an INTEGER_CST that should be AND'ed with the extra bits. */
3438 static tree
3439 unextend (c, p, unsignedp, mask)
3440 tree c;
3441 int p;
3442 int unsignedp;
3443 tree mask;
3445 tree type = TREE_TYPE (c);
3446 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
3447 tree temp;
3449 if (p == modesize || unsignedp)
3450 return c;
3452 /* We work by getting just the sign bit into the low-order bit, then
3453 into the high-order bit, then sign-extend. We then XOR that value
3454 with C. */
3455 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
3456 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
3458 /* We must use a signed type in order to get an arithmetic right shift.
3459 However, we must also avoid introducing accidental overflows, so that
3460 a subsequent call to integer_zerop will work. Hence we must
3461 do the type conversion here. At this point, the constant is either
3462 zero or one, and the conversion to a signed type can never overflow.
3463 We could get an overflow if this conversion is done anywhere else. */
3464 if (TREE_UNSIGNED (type))
3465 temp = convert ((*lang_hooks.types.signed_type) (type), temp);
3467 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
3468 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
3469 if (mask != 0)
3470 temp = const_binop (BIT_AND_EXPR, temp, convert (TREE_TYPE (c), mask), 0);
3471 /* If necessary, convert the type back to match the type of C. */
3472 if (TREE_UNSIGNED (type))
3473 temp = convert (type, temp);
3475 return convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
3478 /* Find ways of folding logical expressions of LHS and RHS:
3479 Try to merge two comparisons to the same innermost item.
3480 Look for range tests like "ch >= '0' && ch <= '9'".
3481 Look for combinations of simple terms on machines with expensive branches
3482 and evaluate the RHS unconditionally.
3484 For example, if we have p->a == 2 && p->b == 4 and we can make an
3485 object large enough to span both A and B, we can do this with a comparison
3486 against the object ANDed with the a mask.
3488 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
3489 operations to do this with one comparison.
3491 We check for both normal comparisons and the BIT_AND_EXPRs made this by
3492 function and the one above.
3494 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
3495 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
3497 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
3498 two operands.
3500 We return the simplified tree or 0 if no optimization is possible. */
3502 static tree
3503 fold_truthop (code, truth_type, lhs, rhs)
3504 enum tree_code code;
3505 tree truth_type, lhs, rhs;
3507 /* If this is the "or" of two comparisons, we can do something if
3508 the comparisons are NE_EXPR. If this is the "and", we can do something
3509 if the comparisons are EQ_EXPR. I.e.,
3510 (a->b == 2 && a->c == 4) can become (a->new == NEW).
3512 WANTED_CODE is this operation code. For single bit fields, we can
3513 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
3514 comparison for one-bit fields. */
3516 enum tree_code wanted_code;
3517 enum tree_code lcode, rcode;
3518 tree ll_arg, lr_arg, rl_arg, rr_arg;
3519 tree ll_inner, lr_inner, rl_inner, rr_inner;
3520 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
3521 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
3522 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
3523 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
3524 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
3525 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
3526 enum machine_mode lnmode, rnmode;
3527 tree ll_mask, lr_mask, rl_mask, rr_mask;
3528 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
3529 tree l_const, r_const;
3530 tree lntype, rntype, result;
3531 int first_bit, end_bit;
3532 int volatilep;
3534 /* Start by getting the comparison codes. Fail if anything is volatile.
3535 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
3536 it were surrounded with a NE_EXPR. */
3538 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
3539 return 0;
3541 lcode = TREE_CODE (lhs);
3542 rcode = TREE_CODE (rhs);
3544 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
3545 lcode = NE_EXPR, lhs = build (NE_EXPR, truth_type, lhs, integer_zero_node);
3547 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
3548 rcode = NE_EXPR, rhs = build (NE_EXPR, truth_type, rhs, integer_zero_node);
3550 if (TREE_CODE_CLASS (lcode) != '<' || TREE_CODE_CLASS (rcode) != '<')
3551 return 0;
3553 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
3554 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
3556 ll_arg = TREE_OPERAND (lhs, 0);
3557 lr_arg = TREE_OPERAND (lhs, 1);
3558 rl_arg = TREE_OPERAND (rhs, 0);
3559 rr_arg = TREE_OPERAND (rhs, 1);
3561 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
3562 if (simple_operand_p (ll_arg)
3563 && simple_operand_p (lr_arg)
3564 && !FLOAT_TYPE_P (TREE_TYPE (ll_arg)))
3566 int compcode;
3568 if (operand_equal_p (ll_arg, rl_arg, 0)
3569 && operand_equal_p (lr_arg, rr_arg, 0))
3571 int lcompcode, rcompcode;
3573 lcompcode = comparison_to_compcode (lcode);
3574 rcompcode = comparison_to_compcode (rcode);
3575 compcode = (code == TRUTH_AND_EXPR)
3576 ? lcompcode & rcompcode
3577 : lcompcode | rcompcode;
3579 else if (operand_equal_p (ll_arg, rr_arg, 0)
3580 && operand_equal_p (lr_arg, rl_arg, 0))
3582 int lcompcode, rcompcode;
3584 rcode = swap_tree_comparison (rcode);
3585 lcompcode = comparison_to_compcode (lcode);
3586 rcompcode = comparison_to_compcode (rcode);
3587 compcode = (code == TRUTH_AND_EXPR)
3588 ? lcompcode & rcompcode
3589 : lcompcode | rcompcode;
3591 else
3592 compcode = -1;
3594 if (compcode == COMPCODE_TRUE)
3595 return convert (truth_type, integer_one_node);
3596 else if (compcode == COMPCODE_FALSE)
3597 return convert (truth_type, integer_zero_node);
3598 else if (compcode != -1)
3599 return build (compcode_to_comparison (compcode),
3600 truth_type, ll_arg, lr_arg);
3603 /* If the RHS can be evaluated unconditionally and its operands are
3604 simple, it wins to evaluate the RHS unconditionally on machines
3605 with expensive branches. In this case, this isn't a comparison
3606 that can be merged. Avoid doing this if the RHS is a floating-point
3607 comparison since those can trap. */
3609 if (BRANCH_COST >= 2
3610 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
3611 && simple_operand_p (rl_arg)
3612 && simple_operand_p (rr_arg))
3614 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
3615 if (code == TRUTH_OR_EXPR
3616 && lcode == NE_EXPR && integer_zerop (lr_arg)
3617 && rcode == NE_EXPR && integer_zerop (rr_arg)
3618 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
3619 return build (NE_EXPR, truth_type,
3620 build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
3621 ll_arg, rl_arg),
3622 integer_zero_node);
3624 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
3625 if (code == TRUTH_AND_EXPR
3626 && lcode == EQ_EXPR && integer_zerop (lr_arg)
3627 && rcode == EQ_EXPR && integer_zerop (rr_arg)
3628 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
3629 return build (EQ_EXPR, truth_type,
3630 build (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
3631 ll_arg, rl_arg),
3632 integer_zero_node);
3634 return build (code, truth_type, lhs, rhs);
3637 /* See if the comparisons can be merged. Then get all the parameters for
3638 each side. */
3640 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
3641 || (rcode != EQ_EXPR && rcode != NE_EXPR))
3642 return 0;
3644 volatilep = 0;
3645 ll_inner = decode_field_reference (ll_arg,
3646 &ll_bitsize, &ll_bitpos, &ll_mode,
3647 &ll_unsignedp, &volatilep, &ll_mask,
3648 &ll_and_mask);
3649 lr_inner = decode_field_reference (lr_arg,
3650 &lr_bitsize, &lr_bitpos, &lr_mode,
3651 &lr_unsignedp, &volatilep, &lr_mask,
3652 &lr_and_mask);
3653 rl_inner = decode_field_reference (rl_arg,
3654 &rl_bitsize, &rl_bitpos, &rl_mode,
3655 &rl_unsignedp, &volatilep, &rl_mask,
3656 &rl_and_mask);
3657 rr_inner = decode_field_reference (rr_arg,
3658 &rr_bitsize, &rr_bitpos, &rr_mode,
3659 &rr_unsignedp, &volatilep, &rr_mask,
3660 &rr_and_mask);
3662 /* It must be true that the inner operation on the lhs of each
3663 comparison must be the same if we are to be able to do anything.
3664 Then see if we have constants. If not, the same must be true for
3665 the rhs's. */
3666 if (volatilep || ll_inner == 0 || rl_inner == 0
3667 || ! operand_equal_p (ll_inner, rl_inner, 0))
3668 return 0;
3670 if (TREE_CODE (lr_arg) == INTEGER_CST
3671 && TREE_CODE (rr_arg) == INTEGER_CST)
3672 l_const = lr_arg, r_const = rr_arg;
3673 else if (lr_inner == 0 || rr_inner == 0
3674 || ! operand_equal_p (lr_inner, rr_inner, 0))
3675 return 0;
3676 else
3677 l_const = r_const = 0;
3679 /* If either comparison code is not correct for our logical operation,
3680 fail. However, we can convert a one-bit comparison against zero into
3681 the opposite comparison against that bit being set in the field. */
3683 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
3684 if (lcode != wanted_code)
3686 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
3688 /* Make the left operand unsigned, since we are only interested
3689 in the value of one bit. Otherwise we are doing the wrong
3690 thing below. */
3691 ll_unsignedp = 1;
3692 l_const = ll_mask;
3694 else
3695 return 0;
3698 /* This is analogous to the code for l_const above. */
3699 if (rcode != wanted_code)
3701 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
3703 rl_unsignedp = 1;
3704 r_const = rl_mask;
3706 else
3707 return 0;
3710 /* After this point all optimizations will generate bit-field
3711 references, which we might not want. */
3712 if (! (*lang_hooks.can_use_bit_fields_p) ())
3713 return 0;
3715 /* See if we can find a mode that contains both fields being compared on
3716 the left. If we can't, fail. Otherwise, update all constants and masks
3717 to be relative to a field of that size. */
3718 first_bit = MIN (ll_bitpos, rl_bitpos);
3719 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
3720 lnmode = get_best_mode (end_bit - first_bit, first_bit,
3721 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
3722 volatilep);
3723 if (lnmode == VOIDmode)
3724 return 0;
3726 lnbitsize = GET_MODE_BITSIZE (lnmode);
3727 lnbitpos = first_bit & ~ (lnbitsize - 1);
3728 lntype = (*lang_hooks.types.type_for_size) (lnbitsize, 1);
3729 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
3731 if (BYTES_BIG_ENDIAN)
3733 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
3734 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
3737 ll_mask = const_binop (LSHIFT_EXPR, convert (lntype, ll_mask),
3738 size_int (xll_bitpos), 0);
3739 rl_mask = const_binop (LSHIFT_EXPR, convert (lntype, rl_mask),
3740 size_int (xrl_bitpos), 0);
3742 if (l_const)
3744 l_const = convert (lntype, l_const);
3745 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
3746 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
3747 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
3748 fold (build1 (BIT_NOT_EXPR,
3749 lntype, ll_mask)),
3750 0)))
3752 warning ("comparison is always %d", wanted_code == NE_EXPR);
3754 return convert (truth_type,
3755 wanted_code == NE_EXPR
3756 ? integer_one_node : integer_zero_node);
3759 if (r_const)
3761 r_const = convert (lntype, r_const);
3762 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
3763 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
3764 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
3765 fold (build1 (BIT_NOT_EXPR,
3766 lntype, rl_mask)),
3767 0)))
3769 warning ("comparison is always %d", wanted_code == NE_EXPR);
3771 return convert (truth_type,
3772 wanted_code == NE_EXPR
3773 ? integer_one_node : integer_zero_node);
3777 /* If the right sides are not constant, do the same for it. Also,
3778 disallow this optimization if a size or signedness mismatch occurs
3779 between the left and right sides. */
3780 if (l_const == 0)
3782 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
3783 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
3784 /* Make sure the two fields on the right
3785 correspond to the left without being swapped. */
3786 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
3787 return 0;
3789 first_bit = MIN (lr_bitpos, rr_bitpos);
3790 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
3791 rnmode = get_best_mode (end_bit - first_bit, first_bit,
3792 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
3793 volatilep);
3794 if (rnmode == VOIDmode)
3795 return 0;
3797 rnbitsize = GET_MODE_BITSIZE (rnmode);
3798 rnbitpos = first_bit & ~ (rnbitsize - 1);
3799 rntype = (*lang_hooks.types.type_for_size) (rnbitsize, 1);
3800 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
3802 if (BYTES_BIG_ENDIAN)
3804 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
3805 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
3808 lr_mask = const_binop (LSHIFT_EXPR, convert (rntype, lr_mask),
3809 size_int (xlr_bitpos), 0);
3810 rr_mask = const_binop (LSHIFT_EXPR, convert (rntype, rr_mask),
3811 size_int (xrr_bitpos), 0);
3813 /* Make a mask that corresponds to both fields being compared.
3814 Do this for both items being compared. If the operands are the
3815 same size and the bits being compared are in the same position
3816 then we can do this by masking both and comparing the masked
3817 results. */
3818 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
3819 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
3820 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
3822 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
3823 ll_unsignedp || rl_unsignedp);
3824 if (! all_ones_mask_p (ll_mask, lnbitsize))
3825 lhs = build (BIT_AND_EXPR, lntype, lhs, ll_mask);
3827 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
3828 lr_unsignedp || rr_unsignedp);
3829 if (! all_ones_mask_p (lr_mask, rnbitsize))
3830 rhs = build (BIT_AND_EXPR, rntype, rhs, lr_mask);
3832 return build (wanted_code, truth_type, lhs, rhs);
3835 /* There is still another way we can do something: If both pairs of
3836 fields being compared are adjacent, we may be able to make a wider
3837 field containing them both.
3839 Note that we still must mask the lhs/rhs expressions. Furthermore,
3840 the mask must be shifted to account for the shift done by
3841 make_bit_field_ref. */
3842 if ((ll_bitsize + ll_bitpos == rl_bitpos
3843 && lr_bitsize + lr_bitpos == rr_bitpos)
3844 || (ll_bitpos == rl_bitpos + rl_bitsize
3845 && lr_bitpos == rr_bitpos + rr_bitsize))
3847 tree type;
3849 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
3850 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
3851 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
3852 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
3854 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
3855 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
3856 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
3857 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
3859 /* Convert to the smaller type before masking out unwanted bits. */
3860 type = lntype;
3861 if (lntype != rntype)
3863 if (lnbitsize > rnbitsize)
3865 lhs = convert (rntype, lhs);
3866 ll_mask = convert (rntype, ll_mask);
3867 type = rntype;
3869 else if (lnbitsize < rnbitsize)
3871 rhs = convert (lntype, rhs);
3872 lr_mask = convert (lntype, lr_mask);
3873 type = lntype;
3877 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
3878 lhs = build (BIT_AND_EXPR, type, lhs, ll_mask);
3880 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
3881 rhs = build (BIT_AND_EXPR, type, rhs, lr_mask);
3883 return build (wanted_code, truth_type, lhs, rhs);
3886 return 0;
3889 /* Handle the case of comparisons with constants. If there is something in
3890 common between the masks, those bits of the constants must be the same.
3891 If not, the condition is always false. Test for this to avoid generating
3892 incorrect code below. */
3893 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
3894 if (! integer_zerop (result)
3895 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
3896 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
3898 if (wanted_code == NE_EXPR)
3900 warning ("`or' of unmatched not-equal tests is always 1");
3901 return convert (truth_type, integer_one_node);
3903 else
3905 warning ("`and' of mutually exclusive equal-tests is always 0");
3906 return convert (truth_type, integer_zero_node);
3910 /* Construct the expression we will return. First get the component
3911 reference we will make. Unless the mask is all ones the width of
3912 that field, perform the mask operation. Then compare with the
3913 merged constant. */
3914 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
3915 ll_unsignedp || rl_unsignedp);
3917 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
3918 if (! all_ones_mask_p (ll_mask, lnbitsize))
3919 result = build (BIT_AND_EXPR, lntype, result, ll_mask);
3921 return build (wanted_code, truth_type, result,
3922 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
3925 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
3926 constant. */
3928 static tree
3929 optimize_minmax_comparison (t)
3930 tree t;
3932 tree type = TREE_TYPE (t);
3933 tree arg0 = TREE_OPERAND (t, 0);
3934 enum tree_code op_code;
3935 tree comp_const = TREE_OPERAND (t, 1);
3936 tree minmax_const;
3937 int consts_equal, consts_lt;
3938 tree inner;
3940 STRIP_SIGN_NOPS (arg0);
3942 op_code = TREE_CODE (arg0);
3943 minmax_const = TREE_OPERAND (arg0, 1);
3944 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
3945 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
3946 inner = TREE_OPERAND (arg0, 0);
3948 /* If something does not permit us to optimize, return the original tree. */
3949 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
3950 || TREE_CODE (comp_const) != INTEGER_CST
3951 || TREE_CONSTANT_OVERFLOW (comp_const)
3952 || TREE_CODE (minmax_const) != INTEGER_CST
3953 || TREE_CONSTANT_OVERFLOW (minmax_const))
3954 return t;
3956 /* Now handle all the various comparison codes. We only handle EQ_EXPR
3957 and GT_EXPR, doing the rest with recursive calls using logical
3958 simplifications. */
3959 switch (TREE_CODE (t))
3961 case NE_EXPR: case LT_EXPR: case LE_EXPR:
3962 return
3963 invert_truthvalue (optimize_minmax_comparison (invert_truthvalue (t)));
3965 case GE_EXPR:
3966 return
3967 fold (build (TRUTH_ORIF_EXPR, type,
3968 optimize_minmax_comparison
3969 (build (EQ_EXPR, type, arg0, comp_const)),
3970 optimize_minmax_comparison
3971 (build (GT_EXPR, type, arg0, comp_const))));
3973 case EQ_EXPR:
3974 if (op_code == MAX_EXPR && consts_equal)
3975 /* MAX (X, 0) == 0 -> X <= 0 */
3976 return fold (build (LE_EXPR, type, inner, comp_const));
3978 else if (op_code == MAX_EXPR && consts_lt)
3979 /* MAX (X, 0) == 5 -> X == 5 */
3980 return fold (build (EQ_EXPR, type, inner, comp_const));
3982 else if (op_code == MAX_EXPR)
3983 /* MAX (X, 0) == -1 -> false */
3984 return omit_one_operand (type, integer_zero_node, inner);
3986 else if (consts_equal)
3987 /* MIN (X, 0) == 0 -> X >= 0 */
3988 return fold (build (GE_EXPR, type, inner, comp_const));
3990 else if (consts_lt)
3991 /* MIN (X, 0) == 5 -> false */
3992 return omit_one_operand (type, integer_zero_node, inner);
3994 else
3995 /* MIN (X, 0) == -1 -> X == -1 */
3996 return fold (build (EQ_EXPR, type, inner, comp_const));
3998 case GT_EXPR:
3999 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
4000 /* MAX (X, 0) > 0 -> X > 0
4001 MAX (X, 0) > 5 -> X > 5 */
4002 return fold (build (GT_EXPR, type, inner, comp_const));
4004 else if (op_code == MAX_EXPR)
4005 /* MAX (X, 0) > -1 -> true */
4006 return omit_one_operand (type, integer_one_node, inner);
4008 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
4009 /* MIN (X, 0) > 0 -> false
4010 MIN (X, 0) > 5 -> false */
4011 return omit_one_operand (type, integer_zero_node, inner);
4013 else
4014 /* MIN (X, 0) > -1 -> X > -1 */
4015 return fold (build (GT_EXPR, type, inner, comp_const));
4017 default:
4018 return t;
4022 /* T is an integer expression that is being multiplied, divided, or taken a
4023 modulus (CODE says which and what kind of divide or modulus) by a
4024 constant C. See if we can eliminate that operation by folding it with
4025 other operations already in T. WIDE_TYPE, if non-null, is a type that
4026 should be used for the computation if wider than our type.
4028 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
4029 (X * 2) + (Y * 4). We must, however, be assured that either the original
4030 expression would not overflow or that overflow is undefined for the type
4031 in the language in question.
4033 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
4034 the machine has a multiply-accumulate insn or that this is part of an
4035 addressing calculation.
4037 If we return a non-null expression, it is an equivalent form of the
4038 original computation, but need not be in the original type. */
4040 static tree
4041 extract_muldiv (t, c, code, wide_type)
4042 tree t;
4043 tree c;
4044 enum tree_code code;
4045 tree wide_type;
4047 tree type = TREE_TYPE (t);
4048 enum tree_code tcode = TREE_CODE (t);
4049 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
4050 > GET_MODE_SIZE (TYPE_MODE (type)))
4051 ? wide_type : type);
4052 tree t1, t2;
4053 int same_p = tcode == code;
4054 tree op0 = NULL_TREE, op1 = NULL_TREE;
4056 /* Don't deal with constants of zero here; they confuse the code below. */
4057 if (integer_zerop (c))
4058 return NULL_TREE;
4060 if (TREE_CODE_CLASS (tcode) == '1')
4061 op0 = TREE_OPERAND (t, 0);
4063 if (TREE_CODE_CLASS (tcode) == '2')
4064 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
4066 /* Note that we need not handle conditional operations here since fold
4067 already handles those cases. So just do arithmetic here. */
4068 switch (tcode)
4070 case INTEGER_CST:
4071 /* For a constant, we can always simplify if we are a multiply
4072 or (for divide and modulus) if it is a multiple of our constant. */
4073 if (code == MULT_EXPR
4074 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
4075 return const_binop (code, convert (ctype, t), convert (ctype, c), 0);
4076 break;
4078 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
4079 /* If op0 is an expression ... */
4080 if ((TREE_CODE_CLASS (TREE_CODE (op0)) == '<'
4081 || TREE_CODE_CLASS (TREE_CODE (op0)) == '1'
4082 || TREE_CODE_CLASS (TREE_CODE (op0)) == '2'
4083 || TREE_CODE_CLASS (TREE_CODE (op0)) == 'e')
4084 /* ... and is unsigned, and its type is smaller than ctype,
4085 then we cannot pass through as widening. */
4086 && ((TREE_UNSIGNED (TREE_TYPE (op0))
4087 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
4088 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
4089 && (GET_MODE_SIZE (TYPE_MODE (ctype))
4090 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
4091 /* ... or its type is larger than ctype,
4092 then we cannot pass through this truncation. */
4093 || (GET_MODE_SIZE (TYPE_MODE (ctype))
4094 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))))
4095 break;
4097 /* Pass the constant down and see if we can make a simplification. If
4098 we can, replace this expression with the inner simplification for
4099 possible later conversion to our or some other type. */
4100 if (0 != (t1 = extract_muldiv (op0, convert (TREE_TYPE (op0), c), code,
4101 code == MULT_EXPR ? ctype : NULL_TREE)))
4102 return t1;
4103 break;
4105 case NEGATE_EXPR: case ABS_EXPR:
4106 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
4107 return fold (build1 (tcode, ctype, convert (ctype, t1)));
4108 break;
4110 case MIN_EXPR: case MAX_EXPR:
4111 /* If widening the type changes the signedness, then we can't perform
4112 this optimization as that changes the result. */
4113 if (TREE_UNSIGNED (ctype) != TREE_UNSIGNED (type))
4114 break;
4116 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
4117 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
4118 && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
4120 if (tree_int_cst_sgn (c) < 0)
4121 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
4123 return fold (build (tcode, ctype, convert (ctype, t1),
4124 convert (ctype, t2)));
4126 break;
4128 case WITH_RECORD_EXPR:
4129 if ((t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code, wide_type)) != 0)
4130 return build (WITH_RECORD_EXPR, TREE_TYPE (t1), t1,
4131 TREE_OPERAND (t, 1));
4132 break;
4134 case SAVE_EXPR:
4135 /* If this has not been evaluated and the operand has no side effects,
4136 we can see if we can do something inside it and make a new one.
4137 Note that this test is overly conservative since we can do this
4138 if the only reason it had side effects is that it was another
4139 similar SAVE_EXPR, but that isn't worth bothering with. */
4140 if (SAVE_EXPR_RTL (t) == 0 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0))
4141 && 0 != (t1 = extract_muldiv (TREE_OPERAND (t, 0), c, code,
4142 wide_type)))
4144 t1 = save_expr (t1);
4145 if (SAVE_EXPR_PERSISTENT_P (t) && TREE_CODE (t1) == SAVE_EXPR)
4146 SAVE_EXPR_PERSISTENT_P (t1) = 1;
4147 if (is_pending_size (t))
4148 put_pending_size (t1);
4149 return t1;
4151 break;
4153 case LSHIFT_EXPR: case RSHIFT_EXPR:
4154 /* If the second operand is constant, this is a multiplication
4155 or floor division, by a power of two, so we can treat it that
4156 way unless the multiplier or divisor overflows. */
4157 if (TREE_CODE (op1) == INTEGER_CST
4158 /* const_binop may not detect overflow correctly,
4159 so check for it explicitly here. */
4160 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
4161 && TREE_INT_CST_HIGH (op1) == 0
4162 && 0 != (t1 = convert (ctype,
4163 const_binop (LSHIFT_EXPR, size_one_node,
4164 op1, 0)))
4165 && ! TREE_OVERFLOW (t1))
4166 return extract_muldiv (build (tcode == LSHIFT_EXPR
4167 ? MULT_EXPR : FLOOR_DIV_EXPR,
4168 ctype, convert (ctype, op0), t1),
4169 c, code, wide_type);
4170 break;
4172 case PLUS_EXPR: case MINUS_EXPR:
4173 /* See if we can eliminate the operation on both sides. If we can, we
4174 can return a new PLUS or MINUS. If we can't, the only remaining
4175 cases where we can do anything are if the second operand is a
4176 constant. */
4177 t1 = extract_muldiv (op0, c, code, wide_type);
4178 t2 = extract_muldiv (op1, c, code, wide_type);
4179 if (t1 != 0 && t2 != 0
4180 && (code == MULT_EXPR
4181 /* If not multiplication, we can only do this if either operand
4182 is divisible by c. */
4183 || multiple_of_p (ctype, op0, c)
4184 || multiple_of_p (ctype, op1, c)))
4185 return fold (build (tcode, ctype, convert (ctype, t1),
4186 convert (ctype, t2)));
4188 /* If this was a subtraction, negate OP1 and set it to be an addition.
4189 This simplifies the logic below. */
4190 if (tcode == MINUS_EXPR)
4191 tcode = PLUS_EXPR, op1 = negate_expr (op1);
4193 if (TREE_CODE (op1) != INTEGER_CST)
4194 break;
4196 /* If either OP1 or C are negative, this optimization is not safe for
4197 some of the division and remainder types while for others we need
4198 to change the code. */
4199 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
4201 if (code == CEIL_DIV_EXPR)
4202 code = FLOOR_DIV_EXPR;
4203 else if (code == FLOOR_DIV_EXPR)
4204 code = CEIL_DIV_EXPR;
4205 else if (code != MULT_EXPR
4206 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
4207 break;
4210 /* If it's a multiply or a division/modulus operation of a multiple
4211 of our constant, do the operation and verify it doesn't overflow. */
4212 if (code == MULT_EXPR
4213 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4215 op1 = const_binop (code, convert (ctype, op1), convert (ctype, c), 0);
4216 if (op1 == 0 || TREE_OVERFLOW (op1))
4217 break;
4219 else
4220 break;
4222 /* If we have an unsigned type is not a sizetype, we cannot widen
4223 the operation since it will change the result if the original
4224 computation overflowed. */
4225 if (TREE_UNSIGNED (ctype)
4226 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
4227 && ctype != type)
4228 break;
4230 /* If we were able to eliminate our operation from the first side,
4231 apply our operation to the second side and reform the PLUS. */
4232 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
4233 return fold (build (tcode, ctype, convert (ctype, t1), op1));
4235 /* The last case is if we are a multiply. In that case, we can
4236 apply the distributive law to commute the multiply and addition
4237 if the multiplication of the constants doesn't overflow. */
4238 if (code == MULT_EXPR)
4239 return fold (build (tcode, ctype, fold (build (code, ctype,
4240 convert (ctype, op0),
4241 convert (ctype, c))),
4242 op1));
4244 break;
4246 case MULT_EXPR:
4247 /* We have a special case here if we are doing something like
4248 (C * 8) % 4 since we know that's zero. */
4249 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
4250 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
4251 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
4252 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4253 return omit_one_operand (type, integer_zero_node, op0);
4255 /* ... fall through ... */
4257 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
4258 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
4259 /* If we can extract our operation from the LHS, do so and return a
4260 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
4261 do something only if the second operand is a constant. */
4262 if (same_p
4263 && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
4264 return fold (build (tcode, ctype, convert (ctype, t1),
4265 convert (ctype, op1)));
4266 else if (tcode == MULT_EXPR && code == MULT_EXPR
4267 && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
4268 return fold (build (tcode, ctype, convert (ctype, op0),
4269 convert (ctype, t1)));
4270 else if (TREE_CODE (op1) != INTEGER_CST)
4271 return 0;
4273 /* If these are the same operation types, we can associate them
4274 assuming no overflow. */
4275 if (tcode == code
4276 && 0 != (t1 = const_binop (MULT_EXPR, convert (ctype, op1),
4277 convert (ctype, c), 0))
4278 && ! TREE_OVERFLOW (t1))
4279 return fold (build (tcode, ctype, convert (ctype, op0), t1));
4281 /* If these operations "cancel" each other, we have the main
4282 optimizations of this pass, which occur when either constant is a
4283 multiple of the other, in which case we replace this with either an
4284 operation or CODE or TCODE.
4286 If we have an unsigned type that is not a sizetype, we cannot do
4287 this since it will change the result if the original computation
4288 overflowed. */
4289 if ((! TREE_UNSIGNED (ctype)
4290 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
4291 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
4292 || (tcode == MULT_EXPR
4293 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
4294 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
4296 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
4297 return fold (build (tcode, ctype, convert (ctype, op0),
4298 convert (ctype,
4299 const_binop (TRUNC_DIV_EXPR,
4300 op1, c, 0))));
4301 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
4302 return fold (build (code, ctype, convert (ctype, op0),
4303 convert (ctype,
4304 const_binop (TRUNC_DIV_EXPR,
4305 c, op1, 0))));
4307 break;
4309 default:
4310 break;
4313 return 0;
4316 /* If T contains a COMPOUND_EXPR which was inserted merely to evaluate
4317 S, a SAVE_EXPR, return the expression actually being evaluated. Note
4318 that we may sometimes modify the tree. */
4320 static tree
4321 strip_compound_expr (t, s)
4322 tree t;
4323 tree s;
4325 enum tree_code code = TREE_CODE (t);
4327 /* See if this is the COMPOUND_EXPR we want to eliminate. */
4328 if (code == COMPOUND_EXPR && TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR
4329 && TREE_OPERAND (TREE_OPERAND (t, 0), 0) == s)
4330 return TREE_OPERAND (t, 1);
4332 /* See if this is a COND_EXPR or a simple arithmetic operator. We
4333 don't bother handling any other types. */
4334 else if (code == COND_EXPR)
4336 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4337 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4338 TREE_OPERAND (t, 2) = strip_compound_expr (TREE_OPERAND (t, 2), s);
4340 else if (TREE_CODE_CLASS (code) == '1')
4341 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4342 else if (TREE_CODE_CLASS (code) == '<'
4343 || TREE_CODE_CLASS (code) == '2')
4345 TREE_OPERAND (t, 0) = strip_compound_expr (TREE_OPERAND (t, 0), s);
4346 TREE_OPERAND (t, 1) = strip_compound_expr (TREE_OPERAND (t, 1), s);
4349 return t;
4352 /* Return a node which has the indicated constant VALUE (either 0 or
4353 1), and is of the indicated TYPE. */
4355 static tree
4356 constant_boolean_node (value, type)
4357 int value;
4358 tree type;
4360 if (type == integer_type_node)
4361 return value ? integer_one_node : integer_zero_node;
4362 else if (TREE_CODE (type) == BOOLEAN_TYPE)
4363 return (*lang_hooks.truthvalue_conversion) (value ? integer_one_node :
4364 integer_zero_node);
4365 else
4367 tree t = build_int_2 (value, 0);
4369 TREE_TYPE (t) = type;
4370 return t;
4374 /* Utility function for the following routine, to see how complex a nesting of
4375 COND_EXPRs can be. EXPR is the expression and LIMIT is a count beyond which
4376 we don't care (to avoid spending too much time on complex expressions.). */
4378 static int
4379 count_cond (expr, lim)
4380 tree expr;
4381 int lim;
4383 int ctrue, cfalse;
4385 if (TREE_CODE (expr) != COND_EXPR)
4386 return 0;
4387 else if (lim <= 0)
4388 return 0;
4390 ctrue = count_cond (TREE_OPERAND (expr, 1), lim - 1);
4391 cfalse = count_cond (TREE_OPERAND (expr, 2), lim - 1 - ctrue);
4392 return MIN (lim, 1 + ctrue + cfalse);
4395 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
4396 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
4397 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
4398 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
4399 COND is the first argument to CODE; otherwise (as in the example
4400 given here), it is the second argument. TYPE is the type of the
4401 original expression. */
4403 static tree
4404 fold_binary_op_with_conditional_arg (code, type, cond, arg, cond_first_p)
4405 enum tree_code code;
4406 tree type;
4407 tree cond;
4408 tree arg;
4409 int cond_first_p;
4411 tree test, true_value, false_value;
4412 tree lhs = NULL_TREE;
4413 tree rhs = NULL_TREE;
4414 /* In the end, we'll produce a COND_EXPR. Both arms of the
4415 conditional expression will be binary operations. The left-hand
4416 side of the expression to be executed if the condition is true
4417 will be pointed to by TRUE_LHS. Similarly, the right-hand side
4418 of the expression to be executed if the condition is true will be
4419 pointed to by TRUE_RHS. FALSE_LHS and FALSE_RHS are analogous --
4420 but apply to the expression to be executed if the conditional is
4421 false. */
4422 tree *true_lhs;
4423 tree *true_rhs;
4424 tree *false_lhs;
4425 tree *false_rhs;
4426 /* These are the codes to use for the left-hand side and right-hand
4427 side of the COND_EXPR. Normally, they are the same as CODE. */
4428 enum tree_code lhs_code = code;
4429 enum tree_code rhs_code = code;
4430 /* And these are the types of the expressions. */
4431 tree lhs_type = type;
4432 tree rhs_type = type;
4434 if (cond_first_p)
4436 true_rhs = false_rhs = &arg;
4437 true_lhs = &true_value;
4438 false_lhs = &false_value;
4440 else
4442 true_lhs = false_lhs = &arg;
4443 true_rhs = &true_value;
4444 false_rhs = &false_value;
4447 if (TREE_CODE (cond) == COND_EXPR)
4449 test = TREE_OPERAND (cond, 0);
4450 true_value = TREE_OPERAND (cond, 1);
4451 false_value = TREE_OPERAND (cond, 2);
4452 /* If this operand throws an expression, then it does not make
4453 sense to try to perform a logical or arithmetic operation
4454 involving it. Instead of building `a + throw 3' for example,
4455 we simply build `a, throw 3'. */
4456 if (VOID_TYPE_P (TREE_TYPE (true_value)))
4458 lhs_code = COMPOUND_EXPR;
4459 if (!cond_first_p)
4460 lhs_type = void_type_node;
4462 if (VOID_TYPE_P (TREE_TYPE (false_value)))
4464 rhs_code = COMPOUND_EXPR;
4465 if (!cond_first_p)
4466 rhs_type = void_type_node;
4469 else
4471 tree testtype = TREE_TYPE (cond);
4472 test = cond;
4473 true_value = convert (testtype, integer_one_node);
4474 false_value = convert (testtype, integer_zero_node);
4477 /* If ARG is complex we want to make sure we only evaluate
4478 it once. Though this is only required if it is volatile, it
4479 might be more efficient even if it is not. However, if we
4480 succeed in folding one part to a constant, we do not need
4481 to make this SAVE_EXPR. Since we do this optimization
4482 primarily to see if we do end up with constant and this
4483 SAVE_EXPR interferes with later optimizations, suppressing
4484 it when we can is important.
4486 If we are not in a function, we can't make a SAVE_EXPR, so don't
4487 try to do so. Don't try to see if the result is a constant
4488 if an arm is a COND_EXPR since we get exponential behavior
4489 in that case. */
4491 if (TREE_CODE (arg) != SAVE_EXPR && ! TREE_CONSTANT (arg)
4492 && (*lang_hooks.decls.global_bindings_p) () == 0
4493 && ((TREE_CODE (arg) != VAR_DECL
4494 && TREE_CODE (arg) != PARM_DECL)
4495 || TREE_SIDE_EFFECTS (arg)))
4497 if (TREE_CODE (true_value) != COND_EXPR)
4498 lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
4500 if (TREE_CODE (false_value) != COND_EXPR)
4501 rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));
4503 if ((lhs == 0 || ! TREE_CONSTANT (lhs))
4504 && (rhs == 0 || !TREE_CONSTANT (rhs)))
4505 arg = save_expr (arg), lhs = rhs = 0;
4508 if (lhs == 0)
4509 lhs = fold (build (lhs_code, lhs_type, *true_lhs, *true_rhs));
4510 if (rhs == 0)
4511 rhs = fold (build (rhs_code, rhs_type, *false_lhs, *false_rhs));
4513 test = fold (build (COND_EXPR, type, test, lhs, rhs));
4515 if (TREE_CODE (arg) == SAVE_EXPR)
4516 return build (COMPOUND_EXPR, type,
4517 convert (void_type_node, arg),
4518 strip_compound_expr (test, arg));
4519 else
4520 return convert (type, test);
4524 /* Subroutine of fold() that checks for the addition of +/- 0.0.
4526 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
4527 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
4528 ADDEND is the same as X.
4530 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
4531 and finite. The problematic cases are when X is zero, and its mode
4532 has signed zeros. In the case of rounding towards -infinity,
4533 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
4534 modes, X + 0 is not the same as X because -0 + 0 is 0. */
4536 static bool
4537 fold_real_zero_addition_p (type, addend, negate)
4538 tree type, addend;
4539 int negate;
4541 if (!real_zerop (addend))
4542 return false;
4544 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
4545 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
4546 return true;
4548 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
4549 if (TREE_CODE (addend) == REAL_CST
4550 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
4551 negate = !negate;
4553 /* The mode has signed zeros, and we have to honor their sign.
4554 In this situation, there is only one case we can return true for.
4555 X - 0 is the same as X unless rounding towards -infinity is
4556 supported. */
4557 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
4561 /* Perform constant folding and related simplification of EXPR.
4562 The related simplifications include x*1 => x, x*0 => 0, etc.,
4563 and application of the associative law.
4564 NOP_EXPR conversions may be removed freely (as long as we
4565 are careful not to change the C type of the overall expression)
4566 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
4567 but we can constant-fold them if they have constant operands. */
4569 tree
4570 fold (expr)
4571 tree expr;
4573 tree t = expr;
4574 tree t1 = NULL_TREE;
4575 tree tem;
4576 tree type = TREE_TYPE (expr);
4577 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
4578 enum tree_code code = TREE_CODE (t);
4579 int kind = TREE_CODE_CLASS (code);
4580 int invert;
4581 /* WINS will be nonzero when the switch is done
4582 if all operands are constant. */
4583 int wins = 1;
4585 /* Don't try to process an RTL_EXPR since its operands aren't trees.
4586 Likewise for a SAVE_EXPR that's already been evaluated. */
4587 if (code == RTL_EXPR || (code == SAVE_EXPR && SAVE_EXPR_RTL (t) != 0))
4588 return t;
4590 /* Return right away if a constant. */
4591 if (kind == 'c')
4592 return t;
4594 #ifdef MAX_INTEGER_COMPUTATION_MODE
4595 check_max_integer_computation_mode (expr);
4596 #endif
4598 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
4600 tree subop;
4602 /* Special case for conversion ops that can have fixed point args. */
4603 arg0 = TREE_OPERAND (t, 0);
4605 /* Don't use STRIP_NOPS, because signedness of argument type matters. */
4606 if (arg0 != 0)
4607 STRIP_SIGN_NOPS (arg0);
4609 if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
4610 subop = TREE_REALPART (arg0);
4611 else
4612 subop = arg0;
4614 if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
4615 && TREE_CODE (subop) != REAL_CST
4617 /* Note that TREE_CONSTANT isn't enough:
4618 static var addresses are constant but we can't
4619 do arithmetic on them. */
4620 wins = 0;
4622 else if (IS_EXPR_CODE_CLASS (kind) || kind == 'r')
4624 int len = first_rtl_op (code);
4625 int i;
4626 for (i = 0; i < len; i++)
4628 tree op = TREE_OPERAND (t, i);
4629 tree subop;
4631 if (op == 0)
4632 continue; /* Valid for CALL_EXPR, at least. */
4634 if (kind == '<' || code == RSHIFT_EXPR)
4636 /* Signedness matters here. Perhaps we can refine this
4637 later. */
4638 STRIP_SIGN_NOPS (op);
4640 else
4641 /* Strip any conversions that don't change the mode. */
4642 STRIP_NOPS (op);
4644 if (TREE_CODE (op) == COMPLEX_CST)
4645 subop = TREE_REALPART (op);
4646 else
4647 subop = op;
4649 if (TREE_CODE (subop) != INTEGER_CST
4650 && TREE_CODE (subop) != REAL_CST)
4651 /* Note that TREE_CONSTANT isn't enough:
4652 static var addresses are constant but we can't
4653 do arithmetic on them. */
4654 wins = 0;
4656 if (i == 0)
4657 arg0 = op;
4658 else if (i == 1)
4659 arg1 = op;
4663 /* If this is a commutative operation, and ARG0 is a constant, move it
4664 to ARG1 to reduce the number of tests below. */
4665 if ((code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
4666 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
4667 || code == BIT_AND_EXPR)
4668 && (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST))
4670 tem = arg0; arg0 = arg1; arg1 = tem;
4672 tem = TREE_OPERAND (t, 0); TREE_OPERAND (t, 0) = TREE_OPERAND (t, 1);
4673 TREE_OPERAND (t, 1) = tem;
4676 /* Now WINS is set as described above,
4677 ARG0 is the first operand of EXPR,
4678 and ARG1 is the second operand (if it has more than one operand).
4680 First check for cases where an arithmetic operation is applied to a
4681 compound, conditional, or comparison operation. Push the arithmetic
4682 operation inside the compound or conditional to see if any folding
4683 can then be done. Convert comparison to conditional for this purpose.
4684 The also optimizes non-constant cases that used to be done in
4685 expand_expr.
4687 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
4688 one of the operands is a comparison and the other is a comparison, a
4689 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
4690 code below would make the expression more complex. Change it to a
4691 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
4692 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
4694 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
4695 || code == EQ_EXPR || code == NE_EXPR)
4696 && ((truth_value_p (TREE_CODE (arg0))
4697 && (truth_value_p (TREE_CODE (arg1))
4698 || (TREE_CODE (arg1) == BIT_AND_EXPR
4699 && integer_onep (TREE_OPERAND (arg1, 1)))))
4700 || (truth_value_p (TREE_CODE (arg1))
4701 && (truth_value_p (TREE_CODE (arg0))
4702 || (TREE_CODE (arg0) == BIT_AND_EXPR
4703 && integer_onep (TREE_OPERAND (arg0, 1)))))))
4705 t = fold (build (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
4706 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
4707 : TRUTH_XOR_EXPR,
4708 type, arg0, arg1));
4710 if (code == EQ_EXPR)
4711 t = invert_truthvalue (t);
4713 return t;
4716 if (TREE_CODE_CLASS (code) == '1')
4718 if (TREE_CODE (arg0) == COMPOUND_EXPR)
4719 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
4720 fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
4721 else if (TREE_CODE (arg0) == COND_EXPR)
4723 t = fold (build (COND_EXPR, type, TREE_OPERAND (arg0, 0),
4724 fold (build1 (code, type, TREE_OPERAND (arg0, 1))),
4725 fold (build1 (code, type, TREE_OPERAND (arg0, 2)))));
4727 /* If this was a conversion, and all we did was to move into
4728 inside the COND_EXPR, bring it back out. But leave it if
4729 it is a conversion from integer to integer and the
4730 result precision is no wider than a word since such a
4731 conversion is cheap and may be optimized away by combine,
4732 while it couldn't if it were outside the COND_EXPR. Then return
4733 so we don't get into an infinite recursion loop taking the
4734 conversion out and then back in. */
4736 if ((code == NOP_EXPR || code == CONVERT_EXPR
4737 || code == NON_LVALUE_EXPR)
4738 && TREE_CODE (t) == COND_EXPR
4739 && TREE_CODE (TREE_OPERAND (t, 1)) == code
4740 && TREE_CODE (TREE_OPERAND (t, 2)) == code
4741 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))
4742 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 2), 0)))
4743 && ! (INTEGRAL_TYPE_P (TREE_TYPE (t))
4744 && (INTEGRAL_TYPE_P
4745 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0))))
4746 && TYPE_PRECISION (TREE_TYPE (t)) <= BITS_PER_WORD))
4747 t = build1 (code, type,
4748 build (COND_EXPR,
4749 TREE_TYPE (TREE_OPERAND
4750 (TREE_OPERAND (t, 1), 0)),
4751 TREE_OPERAND (t, 0),
4752 TREE_OPERAND (TREE_OPERAND (t, 1), 0),
4753 TREE_OPERAND (TREE_OPERAND (t, 2), 0)));
4754 return t;
4756 else if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
4757 return fold (build (COND_EXPR, type, arg0,
4758 fold (build1 (code, type, integer_one_node)),
4759 fold (build1 (code, type, integer_zero_node))));
4761 else if (TREE_CODE_CLASS (code) == '2'
4762 || TREE_CODE_CLASS (code) == '<')
4764 if (TREE_CODE (arg1) == COMPOUND_EXPR)
4765 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
4766 fold (build (code, type,
4767 arg0, TREE_OPERAND (arg1, 1))));
4768 else if ((TREE_CODE (arg1) == COND_EXPR
4769 || (TREE_CODE_CLASS (TREE_CODE (arg1)) == '<'
4770 && TREE_CODE_CLASS (code) != '<'))
4771 && (TREE_CODE (arg0) != COND_EXPR
4772 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
4773 && (! TREE_SIDE_EFFECTS (arg0)
4774 || ((*lang_hooks.decls.global_bindings_p) () == 0
4775 && ! contains_placeholder_p (arg0))))
4776 return
4777 fold_binary_op_with_conditional_arg (code, type, arg1, arg0,
4778 /*cond_first_p=*/0);
4779 else if (TREE_CODE (arg0) == COMPOUND_EXPR)
4780 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
4781 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
4782 else if ((TREE_CODE (arg0) == COND_EXPR
4783 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
4784 && TREE_CODE_CLASS (code) != '<'))
4785 && (TREE_CODE (arg1) != COND_EXPR
4786 || count_cond (arg0, 25) + count_cond (arg1, 25) <= 25)
4787 && (! TREE_SIDE_EFFECTS (arg1)
4788 || ((*lang_hooks.decls.global_bindings_p) () == 0
4789 && ! contains_placeholder_p (arg1))))
4790 return
4791 fold_binary_op_with_conditional_arg (code, type, arg0, arg1,
4792 /*cond_first_p=*/1);
4794 else if (TREE_CODE_CLASS (code) == '<'
4795 && TREE_CODE (arg0) == COMPOUND_EXPR)
4796 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
4797 fold (build (code, type, TREE_OPERAND (arg0, 1), arg1)));
4798 else if (TREE_CODE_CLASS (code) == '<'
4799 && TREE_CODE (arg1) == COMPOUND_EXPR)
4800 return build (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
4801 fold (build (code, type, arg0, TREE_OPERAND (arg1, 1))));
4803 switch (code)
4805 case INTEGER_CST:
4806 case REAL_CST:
4807 case VECTOR_CST:
4808 case STRING_CST:
4809 case COMPLEX_CST:
4810 case CONSTRUCTOR:
4811 return t;
4813 case CONST_DECL:
4814 return fold (DECL_INITIAL (t));
4816 case NOP_EXPR:
4817 case FLOAT_EXPR:
4818 case CONVERT_EXPR:
4819 case FIX_TRUNC_EXPR:
4820 /* Other kinds of FIX are not handled properly by fold_convert. */
4822 if (TREE_TYPE (TREE_OPERAND (t, 0)) == TREE_TYPE (t))
4823 return TREE_OPERAND (t, 0);
4825 /* Handle cases of two conversions in a row. */
4826 if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
4827 || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
4829 tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4830 tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
4831 tree final_type = TREE_TYPE (t);
4832 int inside_int = INTEGRAL_TYPE_P (inside_type);
4833 int inside_ptr = POINTER_TYPE_P (inside_type);
4834 int inside_float = FLOAT_TYPE_P (inside_type);
4835 unsigned int inside_prec = TYPE_PRECISION (inside_type);
4836 int inside_unsignedp = TREE_UNSIGNED (inside_type);
4837 int inter_int = INTEGRAL_TYPE_P (inter_type);
4838 int inter_ptr = POINTER_TYPE_P (inter_type);
4839 int inter_float = FLOAT_TYPE_P (inter_type);
4840 unsigned int inter_prec = TYPE_PRECISION (inter_type);
4841 int inter_unsignedp = TREE_UNSIGNED (inter_type);
4842 int final_int = INTEGRAL_TYPE_P (final_type);
4843 int final_ptr = POINTER_TYPE_P (final_type);
4844 int final_float = FLOAT_TYPE_P (final_type);
4845 unsigned int final_prec = TYPE_PRECISION (final_type);
4846 int final_unsignedp = TREE_UNSIGNED (final_type);
4848 /* In addition to the cases of two conversions in a row
4849 handled below, if we are converting something to its own
4850 type via an object of identical or wider precision, neither
4851 conversion is needed. */
4852 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (final_type)
4853 && ((inter_int && final_int) || (inter_float && final_float))
4854 && inter_prec >= final_prec)
4855 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4857 /* Likewise, if the intermediate and final types are either both
4858 float or both integer, we don't need the middle conversion if
4859 it is wider than the final type and doesn't change the signedness
4860 (for integers). Avoid this if the final type is a pointer
4861 since then we sometimes need the inner conversion. Likewise if
4862 the outer has a precision not equal to the size of its mode. */
4863 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
4864 || (inter_float && inside_float))
4865 && inter_prec >= inside_prec
4866 && (inter_float || inter_unsignedp == inside_unsignedp)
4867 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
4868 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
4869 && ! final_ptr)
4870 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4872 /* If we have a sign-extension of a zero-extended value, we can
4873 replace that by a single zero-extension. */
4874 if (inside_int && inter_int && final_int
4875 && inside_prec < inter_prec && inter_prec < final_prec
4876 && inside_unsignedp && !inter_unsignedp)
4877 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4879 /* Two conversions in a row are not needed unless:
4880 - some conversion is floating-point (overstrict for now), or
4881 - the intermediate type is narrower than both initial and
4882 final, or
4883 - the intermediate type and innermost type differ in signedness,
4884 and the outermost type is wider than the intermediate, or
4885 - the initial type is a pointer type and the precisions of the
4886 intermediate and final types differ, or
4887 - the final type is a pointer type and the precisions of the
4888 initial and intermediate types differ. */
4889 if (! inside_float && ! inter_float && ! final_float
4890 && (inter_prec > inside_prec || inter_prec > final_prec)
4891 && ! (inside_int && inter_int
4892 && inter_unsignedp != inside_unsignedp
4893 && inter_prec < final_prec)
4894 && ((inter_unsignedp && inter_prec > inside_prec)
4895 == (final_unsignedp && final_prec > inter_prec))
4896 && ! (inside_ptr && inter_prec != final_prec)
4897 && ! (final_ptr && inside_prec != inter_prec)
4898 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (final_type))
4899 && TYPE_MODE (final_type) == TYPE_MODE (inter_type))
4900 && ! final_ptr)
4901 return convert (final_type, TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4904 if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
4905 && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
4906 /* Detect assigning a bitfield. */
4907 && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
4908 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
4910 /* Don't leave an assignment inside a conversion
4911 unless assigning a bitfield. */
4912 tree prev = TREE_OPERAND (t, 0);
4913 TREE_OPERAND (t, 0) = TREE_OPERAND (prev, 1);
4914 /* First do the assignment, then return converted constant. */
4915 t = build (COMPOUND_EXPR, TREE_TYPE (t), prev, fold (t));
4916 TREE_USED (t) = 1;
4917 return t;
4920 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
4921 constants (if x has signed type, the sign bit cannot be set
4922 in c). This folds extension into the BIT_AND_EXPR. */
4923 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
4924 && TREE_CODE (TREE_TYPE (t)) != BOOLEAN_TYPE
4925 && TREE_CODE (TREE_OPERAND (t, 0)) == BIT_AND_EXPR
4926 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 1)) == INTEGER_CST)
4928 tree and = TREE_OPERAND (t, 0);
4929 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
4930 int change = 0;
4932 if (TREE_UNSIGNED (TREE_TYPE (and))
4933 || (TYPE_PRECISION (TREE_TYPE (t))
4934 <= TYPE_PRECISION (TREE_TYPE (and))))
4935 change = 1;
4936 else if (TYPE_PRECISION (TREE_TYPE (and1))
4937 <= HOST_BITS_PER_WIDE_INT
4938 && host_integerp (and1, 1))
4940 unsigned HOST_WIDE_INT cst;
4942 cst = tree_low_cst (and1, 1);
4943 cst &= (HOST_WIDE_INT) -1
4944 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
4945 change = (cst == 0);
4946 #ifdef LOAD_EXTEND_OP
4947 if (change
4948 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
4949 == ZERO_EXTEND))
4951 tree uns = (*lang_hooks.types.unsigned_type) (TREE_TYPE (and0));
4952 and0 = convert (uns, and0);
4953 and1 = convert (uns, and1);
4955 #endif
4957 if (change)
4958 return fold (build (BIT_AND_EXPR, TREE_TYPE (t),
4959 convert (TREE_TYPE (t), and0),
4960 convert (TREE_TYPE (t), and1)));
4963 if (!wins)
4965 TREE_CONSTANT (t) = TREE_CONSTANT (arg0);
4966 return t;
4968 return fold_convert (t, arg0);
4970 case VIEW_CONVERT_EXPR:
4971 if (TREE_CODE (TREE_OPERAND (t, 0)) == VIEW_CONVERT_EXPR)
4972 return build1 (VIEW_CONVERT_EXPR, type,
4973 TREE_OPERAND (TREE_OPERAND (t, 0), 0));
4974 return t;
4976 case COMPONENT_REF:
4977 if (TREE_CODE (arg0) == CONSTRUCTOR)
4979 tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
4980 if (m)
4981 t = TREE_VALUE (m);
4983 return t;
4985 case RANGE_EXPR:
4986 TREE_CONSTANT (t) = wins;
4987 return t;
4989 case NEGATE_EXPR:
4990 if (wins)
4992 if (TREE_CODE (arg0) == INTEGER_CST)
4994 unsigned HOST_WIDE_INT low;
4995 HOST_WIDE_INT high;
4996 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
4997 TREE_INT_CST_HIGH (arg0),
4998 &low, &high);
4999 t = build_int_2 (low, high);
5000 TREE_TYPE (t) = type;
5001 TREE_OVERFLOW (t)
5002 = (TREE_OVERFLOW (arg0)
5003 | force_fit_type (t, overflow && !TREE_UNSIGNED (type)));
5004 TREE_CONSTANT_OVERFLOW (t)
5005 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
5007 else if (TREE_CODE (arg0) == REAL_CST)
5008 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
5010 else if (TREE_CODE (arg0) == NEGATE_EXPR)
5011 return TREE_OPERAND (arg0, 0);
5013 /* Convert - (a - b) to (b - a) for non-floating-point. */
5014 else if (TREE_CODE (arg0) == MINUS_EXPR
5015 && (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
5016 return build (MINUS_EXPR, type, TREE_OPERAND (arg0, 1),
5017 TREE_OPERAND (arg0, 0));
5019 return t;
5021 case ABS_EXPR:
5022 if (wins)
5024 if (TREE_CODE (arg0) == INTEGER_CST)
5026 /* If the value is unsigned, then the absolute value is
5027 the same as the ordinary value. */
5028 if (TREE_UNSIGNED (type))
5029 return arg0;
5030 /* Similarly, if the value is non-negative. */
5031 else if (INT_CST_LT (integer_minus_one_node, arg0))
5032 return arg0;
5033 /* If the value is negative, then the absolute value is
5034 its negation. */
5035 else
5037 unsigned HOST_WIDE_INT low;
5038 HOST_WIDE_INT high;
5039 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
5040 TREE_INT_CST_HIGH (arg0),
5041 &low, &high);
5042 t = build_int_2 (low, high);
5043 TREE_TYPE (t) = type;
5044 TREE_OVERFLOW (t)
5045 = (TREE_OVERFLOW (arg0)
5046 | force_fit_type (t, overflow));
5047 TREE_CONSTANT_OVERFLOW (t)
5048 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg0);
5051 else if (TREE_CODE (arg0) == REAL_CST)
5053 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
5054 t = build_real (type,
5055 REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
5058 else if (TREE_CODE (arg0) == ABS_EXPR || TREE_CODE (arg0) == NEGATE_EXPR)
5059 return build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
5060 return t;
5062 case CONJ_EXPR:
5063 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
5064 return convert (type, arg0);
5065 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
5066 return build (COMPLEX_EXPR, type,
5067 TREE_OPERAND (arg0, 0),
5068 negate_expr (TREE_OPERAND (arg0, 1)));
5069 else if (TREE_CODE (arg0) == COMPLEX_CST)
5070 return build_complex (type, TREE_REALPART (arg0),
5071 negate_expr (TREE_IMAGPART (arg0)));
5072 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
5073 return fold (build (TREE_CODE (arg0), type,
5074 fold (build1 (CONJ_EXPR, type,
5075 TREE_OPERAND (arg0, 0))),
5076 fold (build1 (CONJ_EXPR,
5077 type, TREE_OPERAND (arg0, 1)))));
5078 else if (TREE_CODE (arg0) == CONJ_EXPR)
5079 return TREE_OPERAND (arg0, 0);
5080 return t;
5082 case BIT_NOT_EXPR:
5083 if (wins)
5085 t = build_int_2 (~ TREE_INT_CST_LOW (arg0),
5086 ~ TREE_INT_CST_HIGH (arg0));
5087 TREE_TYPE (t) = type;
5088 force_fit_type (t, 0);
5089 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg0);
5090 TREE_CONSTANT_OVERFLOW (t) = TREE_CONSTANT_OVERFLOW (arg0);
5092 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
5093 return TREE_OPERAND (arg0, 0);
5094 return t;
5096 case PLUS_EXPR:
5097 /* A + (-B) -> A - B */
5098 if (TREE_CODE (arg1) == NEGATE_EXPR)
5099 return fold (build (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
5100 /* (-A) + B -> B - A */
5101 if (TREE_CODE (arg0) == NEGATE_EXPR)
5102 return fold (build (MINUS_EXPR, type, arg1, TREE_OPERAND (arg0, 0)));
5103 else if (! FLOAT_TYPE_P (type))
5105 if (integer_zerop (arg1))
5106 return non_lvalue (convert (type, arg0));
5108 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
5109 with a constant, and the two constants have no bits in common,
5110 we should treat this as a BIT_IOR_EXPR since this may produce more
5111 simplifications. */
5112 if (TREE_CODE (arg0) == BIT_AND_EXPR
5113 && TREE_CODE (arg1) == BIT_AND_EXPR
5114 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5115 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
5116 && integer_zerop (const_binop (BIT_AND_EXPR,
5117 TREE_OPERAND (arg0, 1),
5118 TREE_OPERAND (arg1, 1), 0)))
5120 code = BIT_IOR_EXPR;
5121 goto bit_ior;
5124 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
5125 (plus (plus (mult) (mult)) (foo)) so that we can
5126 take advantage of the factoring cases below. */
5127 if ((TREE_CODE (arg0) == PLUS_EXPR
5128 && TREE_CODE (arg1) == MULT_EXPR)
5129 || (TREE_CODE (arg1) == PLUS_EXPR
5130 && TREE_CODE (arg0) == MULT_EXPR))
5132 tree parg0, parg1, parg, marg;
5134 if (TREE_CODE (arg0) == PLUS_EXPR)
5135 parg = arg0, marg = arg1;
5136 else
5137 parg = arg1, marg = arg0;
5138 parg0 = TREE_OPERAND (parg, 0);
5139 parg1 = TREE_OPERAND (parg, 1);
5140 STRIP_NOPS (parg0);
5141 STRIP_NOPS (parg1);
5143 if (TREE_CODE (parg0) == MULT_EXPR
5144 && TREE_CODE (parg1) != MULT_EXPR)
5145 return fold (build (PLUS_EXPR, type,
5146 fold (build (PLUS_EXPR, type, parg0, marg)),
5147 parg1));
5148 if (TREE_CODE (parg0) != MULT_EXPR
5149 && TREE_CODE (parg1) == MULT_EXPR)
5150 return fold (build (PLUS_EXPR, type,
5151 fold (build (PLUS_EXPR, type, parg1, marg)),
5152 parg0));
5155 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
5157 tree arg00, arg01, arg10, arg11;
5158 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
5160 /* (A * C) + (B * C) -> (A+B) * C.
5161 We are most concerned about the case where C is a constant,
5162 but other combinations show up during loop reduction. Since
5163 it is not difficult, try all four possibilities. */
5165 arg00 = TREE_OPERAND (arg0, 0);
5166 arg01 = TREE_OPERAND (arg0, 1);
5167 arg10 = TREE_OPERAND (arg1, 0);
5168 arg11 = TREE_OPERAND (arg1, 1);
5169 same = NULL_TREE;
5171 if (operand_equal_p (arg01, arg11, 0))
5172 same = arg01, alt0 = arg00, alt1 = arg10;
5173 else if (operand_equal_p (arg00, arg10, 0))
5174 same = arg00, alt0 = arg01, alt1 = arg11;
5175 else if (operand_equal_p (arg00, arg11, 0))
5176 same = arg00, alt0 = arg01, alt1 = arg10;
5177 else if (operand_equal_p (arg01, arg10, 0))
5178 same = arg01, alt0 = arg00, alt1 = arg11;
5180 /* No identical multiplicands; see if we can find a common
5181 power-of-two factor in non-power-of-two multiplies. This
5182 can help in multi-dimensional array access. */
5183 else if (TREE_CODE (arg01) == INTEGER_CST
5184 && TREE_CODE (arg11) == INTEGER_CST
5185 && TREE_INT_CST_HIGH (arg01) == 0
5186 && TREE_INT_CST_HIGH (arg11) == 0)
5188 HOST_WIDE_INT int01, int11, tmp;
5189 int01 = TREE_INT_CST_LOW (arg01);
5190 int11 = TREE_INT_CST_LOW (arg11);
5192 /* Move min of absolute values to int11. */
5193 if ((int01 >= 0 ? int01 : -int01)
5194 < (int11 >= 0 ? int11 : -int11))
5196 tmp = int01, int01 = int11, int11 = tmp;
5197 alt0 = arg00, arg00 = arg10, arg10 = alt0;
5198 alt0 = arg01, arg01 = arg11, arg11 = alt0;
5201 if (exact_log2 (int11) > 0 && int01 % int11 == 0)
5203 alt0 = fold (build (MULT_EXPR, type, arg00,
5204 build_int_2 (int01 / int11, 0)));
5205 alt1 = arg10;
5206 same = arg11;
5210 if (same)
5211 return fold (build (MULT_EXPR, type,
5212 fold (build (PLUS_EXPR, type, alt0, alt1)),
5213 same));
5217 /* See if ARG1 is zero and X + ARG1 reduces to X. */
5218 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
5219 return non_lvalue (convert (type, arg0));
5221 /* Likewise if the operands are reversed. */
5222 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
5223 return non_lvalue (convert (type, arg1));
5225 bit_rotate:
5226 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
5227 is a rotate of A by C1 bits. */
5228 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
5229 is a rotate of A by B bits. */
5231 enum tree_code code0, code1;
5232 code0 = TREE_CODE (arg0);
5233 code1 = TREE_CODE (arg1);
5234 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
5235 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
5236 && operand_equal_p (TREE_OPERAND (arg0, 0),
5237 TREE_OPERAND (arg1, 0), 0)
5238 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5240 tree tree01, tree11;
5241 enum tree_code code01, code11;
5243 tree01 = TREE_OPERAND (arg0, 1);
5244 tree11 = TREE_OPERAND (arg1, 1);
5245 STRIP_NOPS (tree01);
5246 STRIP_NOPS (tree11);
5247 code01 = TREE_CODE (tree01);
5248 code11 = TREE_CODE (tree11);
5249 if (code01 == INTEGER_CST
5250 && code11 == INTEGER_CST
5251 && TREE_INT_CST_HIGH (tree01) == 0
5252 && TREE_INT_CST_HIGH (tree11) == 0
5253 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
5254 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
5255 return build (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
5256 code0 == LSHIFT_EXPR ? tree01 : tree11);
5257 else if (code11 == MINUS_EXPR)
5259 tree tree110, tree111;
5260 tree110 = TREE_OPERAND (tree11, 0);
5261 tree111 = TREE_OPERAND (tree11, 1);
5262 STRIP_NOPS (tree110);
5263 STRIP_NOPS (tree111);
5264 if (TREE_CODE (tree110) == INTEGER_CST
5265 && 0 == compare_tree_int (tree110,
5266 TYPE_PRECISION
5267 (TREE_TYPE (TREE_OPERAND
5268 (arg0, 0))))
5269 && operand_equal_p (tree01, tree111, 0))
5270 return build ((code0 == LSHIFT_EXPR
5271 ? LROTATE_EXPR
5272 : RROTATE_EXPR),
5273 type, TREE_OPERAND (arg0, 0), tree01);
5275 else if (code01 == MINUS_EXPR)
5277 tree tree010, tree011;
5278 tree010 = TREE_OPERAND (tree01, 0);
5279 tree011 = TREE_OPERAND (tree01, 1);
5280 STRIP_NOPS (tree010);
5281 STRIP_NOPS (tree011);
5282 if (TREE_CODE (tree010) == INTEGER_CST
5283 && 0 == compare_tree_int (tree010,
5284 TYPE_PRECISION
5285 (TREE_TYPE (TREE_OPERAND
5286 (arg0, 0))))
5287 && operand_equal_p (tree11, tree011, 0))
5288 return build ((code0 != LSHIFT_EXPR
5289 ? LROTATE_EXPR
5290 : RROTATE_EXPR),
5291 type, TREE_OPERAND (arg0, 0), tree11);
5296 associate:
5297 /* In most languages, can't associate operations on floats through
5298 parentheses. Rather than remember where the parentheses were, we
5299 don't associate floats at all. It shouldn't matter much. However,
5300 associating multiplications is only very slightly inaccurate, so do
5301 that if -funsafe-math-optimizations is specified. */
5303 if (! wins
5304 && (! FLOAT_TYPE_P (type)
5305 || (flag_unsafe_math_optimizations && code == MULT_EXPR)))
5307 tree var0, con0, lit0, minus_lit0;
5308 tree var1, con1, lit1, minus_lit1;
5310 /* Split both trees into variables, constants, and literals. Then
5311 associate each group together, the constants with literals,
5312 then the result with variables. This increases the chances of
5313 literals being recombined later and of generating relocatable
5314 expressions for the sum of a constant and literal. */
5315 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
5316 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
5317 code == MINUS_EXPR);
5319 /* Only do something if we found more than two objects. Otherwise,
5320 nothing has changed and we risk infinite recursion. */
5321 if (2 < ((var0 != 0) + (var1 != 0)
5322 + (con0 != 0) + (con1 != 0)
5323 + (lit0 != 0) + (lit1 != 0)
5324 + (minus_lit0 != 0) + (minus_lit1 != 0)))
5326 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
5327 if (code == MINUS_EXPR)
5328 code = PLUS_EXPR;
5330 var0 = associate_trees (var0, var1, code, type);
5331 con0 = associate_trees (con0, con1, code, type);
5332 lit0 = associate_trees (lit0, lit1, code, type);
5333 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
5335 /* Preserve the MINUS_EXPR if the negative part of the literal is
5336 greater than the positive part. Otherwise, the multiplicative
5337 folding code (i.e extract_muldiv) may be fooled in case
5338 unsigned constants are substracted, like in the following
5339 example: ((X*2 + 4) - 8U)/2. */
5340 if (minus_lit0 && lit0)
5342 if (tree_int_cst_lt (lit0, minus_lit0))
5344 minus_lit0 = associate_trees (minus_lit0, lit0,
5345 MINUS_EXPR, type);
5346 lit0 = 0;
5348 else
5350 lit0 = associate_trees (lit0, minus_lit0,
5351 MINUS_EXPR, type);
5352 minus_lit0 = 0;
5355 if (minus_lit0)
5357 if (con0 == 0)
5358 return convert (type, associate_trees (var0, minus_lit0,
5359 MINUS_EXPR, type));
5360 else
5362 con0 = associate_trees (con0, minus_lit0,
5363 MINUS_EXPR, type);
5364 return convert (type, associate_trees (var0, con0,
5365 PLUS_EXPR, type));
5369 con0 = associate_trees (con0, lit0, code, type);
5370 return convert (type, associate_trees (var0, con0, code, type));
5374 binary:
5375 if (wins)
5376 t1 = const_binop (code, arg0, arg1, 0);
5377 if (t1 != NULL_TREE)
5379 /* The return value should always have
5380 the same type as the original expression. */
5381 if (TREE_TYPE (t1) != TREE_TYPE (t))
5382 t1 = convert (TREE_TYPE (t), t1);
5384 return t1;
5386 return t;
5388 case MINUS_EXPR:
5389 /* A - (-B) -> A + B */
5390 if (TREE_CODE (arg1) == NEGATE_EXPR)
5391 return fold (build (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
5392 /* (-A) - CST -> (-CST) - A for floating point (what about ints ?) */
5393 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == REAL_CST)
5394 return
5395 fold (build (MINUS_EXPR, type,
5396 build_real (TREE_TYPE (arg1),
5397 REAL_VALUE_NEGATE (TREE_REAL_CST (arg1))),
5398 TREE_OPERAND (arg0, 0)));
5400 if (! FLOAT_TYPE_P (type))
5402 if (! wins && integer_zerop (arg0))
5403 return negate_expr (convert (type, arg1));
5404 if (integer_zerop (arg1))
5405 return non_lvalue (convert (type, arg0));
5407 /* (A * C) - (B * C) -> (A-B) * C. Since we are most concerned
5408 about the case where C is a constant, just try one of the
5409 four possibilities. */
5411 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR
5412 && operand_equal_p (TREE_OPERAND (arg0, 1),
5413 TREE_OPERAND (arg1, 1), 0))
5414 return fold (build (MULT_EXPR, type,
5415 fold (build (MINUS_EXPR, type,
5416 TREE_OPERAND (arg0, 0),
5417 TREE_OPERAND (arg1, 0))),
5418 TREE_OPERAND (arg0, 1)));
5421 /* See if ARG1 is zero and X - ARG1 reduces to X. */
5422 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
5423 return non_lvalue (convert (type, arg0));
5425 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
5426 ARG0 is zero and X + ARG0 reduces to X, since that would mean
5427 (-ARG1 + ARG0) reduces to -ARG1. */
5428 else if (!wins && fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
5429 return negate_expr (convert (type, arg1));
5431 /* Fold &x - &x. This can happen from &x.foo - &x.
5432 This is unsafe for certain floats even in non-IEEE formats.
5433 In IEEE, it is unsafe because it does wrong for NaNs.
5434 Also note that operand_equal_p is always false if an operand
5435 is volatile. */
5437 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
5438 && operand_equal_p (arg0, arg1, 0))
5439 return convert (type, integer_zero_node);
5441 goto associate;
5443 case MULT_EXPR:
5444 /* (-A) * (-B) -> A * B */
5445 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
5446 return fold (build (MULT_EXPR, type, TREE_OPERAND (arg0, 0),
5447 TREE_OPERAND (arg1, 0)));
5449 if (! FLOAT_TYPE_P (type))
5451 if (integer_zerop (arg1))
5452 return omit_one_operand (type, arg1, arg0);
5453 if (integer_onep (arg1))
5454 return non_lvalue (convert (type, arg0));
5456 /* (a * (1 << b)) is (a << b) */
5457 if (TREE_CODE (arg1) == LSHIFT_EXPR
5458 && integer_onep (TREE_OPERAND (arg1, 0)))
5459 return fold (build (LSHIFT_EXPR, type, arg0,
5460 TREE_OPERAND (arg1, 1)));
5461 if (TREE_CODE (arg0) == LSHIFT_EXPR
5462 && integer_onep (TREE_OPERAND (arg0, 0)))
5463 return fold (build (LSHIFT_EXPR, type, arg1,
5464 TREE_OPERAND (arg0, 1)));
5466 if (TREE_CODE (arg1) == INTEGER_CST
5467 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
5468 code, NULL_TREE)))
5469 return convert (type, tem);
5472 else
5474 /* Maybe fold x * 0 to 0. The expressions aren't the same
5475 when x is NaN, since x * 0 is also NaN. Nor are they the
5476 same in modes with signed zeros, since multiplying a
5477 negative value by 0 gives -0, not +0. */
5478 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
5479 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
5480 && real_zerop (arg1))
5481 return omit_one_operand (type, arg1, arg0);
5482 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
5483 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
5484 && real_onep (arg1))
5485 return non_lvalue (convert (type, arg0));
5487 /* Transform x * -1.0 into -x. */
5488 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
5489 && real_minus_onep (arg1))
5490 return fold (build1 (NEGATE_EXPR, type, arg0));
5492 /* x*2 is x+x */
5493 if (! wins && real_twop (arg1)
5494 && (*lang_hooks.decls.global_bindings_p) () == 0
5495 && ! contains_placeholder_p (arg0))
5497 tree arg = save_expr (arg0);
5498 return build (PLUS_EXPR, type, arg, arg);
5501 goto associate;
5503 case BIT_IOR_EXPR:
5504 bit_ior:
5505 if (integer_all_onesp (arg1))
5506 return omit_one_operand (type, arg1, arg0);
5507 if (integer_zerop (arg1))
5508 return non_lvalue (convert (type, arg0));
5509 t1 = distribute_bit_expr (code, type, arg0, arg1);
5510 if (t1 != NULL_TREE)
5511 return t1;
5513 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
5515 This results in more efficient code for machines without a NAND
5516 instruction. Combine will canonicalize to the first form
5517 which will allow use of NAND instructions provided by the
5518 backend if they exist. */
5519 if (TREE_CODE (arg0) == BIT_NOT_EXPR
5520 && TREE_CODE (arg1) == BIT_NOT_EXPR)
5522 return fold (build1 (BIT_NOT_EXPR, type,
5523 build (BIT_AND_EXPR, type,
5524 TREE_OPERAND (arg0, 0),
5525 TREE_OPERAND (arg1, 0))));
5528 /* See if this can be simplified into a rotate first. If that
5529 is unsuccessful continue in the association code. */
5530 goto bit_rotate;
5532 case BIT_XOR_EXPR:
5533 if (integer_zerop (arg1))
5534 return non_lvalue (convert (type, arg0));
5535 if (integer_all_onesp (arg1))
5536 return fold (build1 (BIT_NOT_EXPR, type, arg0));
5538 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
5539 with a constant, and the two constants have no bits in common,
5540 we should treat this as a BIT_IOR_EXPR since this may produce more
5541 simplifications. */
5542 if (TREE_CODE (arg0) == BIT_AND_EXPR
5543 && TREE_CODE (arg1) == BIT_AND_EXPR
5544 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5545 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
5546 && integer_zerop (const_binop (BIT_AND_EXPR,
5547 TREE_OPERAND (arg0, 1),
5548 TREE_OPERAND (arg1, 1), 0)))
5550 code = BIT_IOR_EXPR;
5551 goto bit_ior;
5554 /* See if this can be simplified into a rotate first. If that
5555 is unsuccessful continue in the association code. */
5556 goto bit_rotate;
5558 case BIT_AND_EXPR:
5559 bit_and:
5560 if (integer_all_onesp (arg1))
5561 return non_lvalue (convert (type, arg0));
5562 if (integer_zerop (arg1))
5563 return omit_one_operand (type, arg1, arg0);
5564 t1 = distribute_bit_expr (code, type, arg0, arg1);
5565 if (t1 != NULL_TREE)
5566 return t1;
5567 /* Simplify ((int)c & 0x377) into (int)c, if c is unsigned char. */
5568 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
5569 && TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
5571 unsigned int prec
5572 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
5574 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
5575 && (~TREE_INT_CST_LOW (arg1)
5576 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
5577 return build1 (NOP_EXPR, type, TREE_OPERAND (arg0, 0));
5580 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
5582 This results in more efficient code for machines without a NOR
5583 instruction. Combine will canonicalize to the first form
5584 which will allow use of NOR instructions provided by the
5585 backend if they exist. */
5586 if (TREE_CODE (arg0) == BIT_NOT_EXPR
5587 && TREE_CODE (arg1) == BIT_NOT_EXPR)
5589 return fold (build1 (BIT_NOT_EXPR, type,
5590 build (BIT_IOR_EXPR, type,
5591 TREE_OPERAND (arg0, 0),
5592 TREE_OPERAND (arg1, 0))));
5595 goto associate;
5597 case BIT_ANDTC_EXPR:
5598 if (integer_all_onesp (arg0))
5599 return non_lvalue (convert (type, arg1));
5600 if (integer_zerop (arg0))
5601 return omit_one_operand (type, arg0, arg1);
5602 if (TREE_CODE (arg1) == INTEGER_CST)
5604 arg1 = fold (build1 (BIT_NOT_EXPR, type, arg1));
5605 code = BIT_AND_EXPR;
5606 goto bit_and;
5608 goto binary;
5610 case RDIV_EXPR:
5611 /* Don't touch a floating-point divide by zero unless the mode
5612 of the constant can represent infinity. */
5613 if (TREE_CODE (arg1) == REAL_CST
5614 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
5615 && real_zerop (arg1))
5616 return t;
5618 /* (-A) / (-B) -> A / B */
5619 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == NEGATE_EXPR)
5620 return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
5621 TREE_OPERAND (arg1, 0)));
5623 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
5624 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
5625 && real_onep (arg1))
5626 return non_lvalue (convert (type, arg0));
5628 /* If ARG1 is a constant, we can convert this to a multiply by the
5629 reciprocal. This does not have the same rounding properties,
5630 so only do this if -funsafe-math-optimizations. We can actually
5631 always safely do it if ARG1 is a power of two, but it's hard to
5632 tell if it is or not in a portable manner. */
5633 if (TREE_CODE (arg1) == REAL_CST)
5635 if (flag_unsafe_math_optimizations
5636 && 0 != (tem = const_binop (code, build_real (type, dconst1),
5637 arg1, 0)))
5638 return fold (build (MULT_EXPR, type, arg0, tem));
5639 /* Find the reciprocal if optimizing and the result is exact. */
5640 else if (optimize)
5642 REAL_VALUE_TYPE r;
5643 r = TREE_REAL_CST (arg1);
5644 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
5646 tem = build_real (type, r);
5647 return fold (build (MULT_EXPR, type, arg0, tem));
5651 /* Convert A/B/C to A/(B*C). */
5652 if (flag_unsafe_math_optimizations
5653 && TREE_CODE (arg0) == RDIV_EXPR)
5655 return fold (build (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
5656 build (MULT_EXPR, type, TREE_OPERAND (arg0, 1),
5657 arg1)));
5659 /* Convert A/(B/C) to (A/B)*C. */
5660 if (flag_unsafe_math_optimizations
5661 && TREE_CODE (arg1) == RDIV_EXPR)
5663 return fold (build (MULT_EXPR, type,
5664 build (RDIV_EXPR, type, arg0,
5665 TREE_OPERAND (arg1, 0)),
5666 TREE_OPERAND (arg1, 1)));
5668 goto binary;
5670 case TRUNC_DIV_EXPR:
5671 case ROUND_DIV_EXPR:
5672 case FLOOR_DIV_EXPR:
5673 case CEIL_DIV_EXPR:
5674 case EXACT_DIV_EXPR:
5675 if (integer_onep (arg1))
5676 return non_lvalue (convert (type, arg0));
5677 if (integer_zerop (arg1))
5678 return t;
5680 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
5681 operation, EXACT_DIV_EXPR.
5683 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
5684 At one time others generated faster code, it's not clear if they do
5685 after the last round to changes to the DIV code in expmed.c. */
5686 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
5687 && multiple_of_p (type, arg0, arg1))
5688 return fold (build (EXACT_DIV_EXPR, type, arg0, arg1));
5690 if (TREE_CODE (arg1) == INTEGER_CST
5691 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
5692 code, NULL_TREE)))
5693 return convert (type, tem);
5695 goto binary;
5697 case CEIL_MOD_EXPR:
5698 case FLOOR_MOD_EXPR:
5699 case ROUND_MOD_EXPR:
5700 case TRUNC_MOD_EXPR:
5701 if (integer_onep (arg1))
5702 return omit_one_operand (type, integer_zero_node, arg0);
5703 if (integer_zerop (arg1))
5704 return t;
5706 if (TREE_CODE (arg1) == INTEGER_CST
5707 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
5708 code, NULL_TREE)))
5709 return convert (type, tem);
5711 goto binary;
5713 case LSHIFT_EXPR:
5714 case RSHIFT_EXPR:
5715 case LROTATE_EXPR:
5716 case RROTATE_EXPR:
5717 if (integer_zerop (arg1))
5718 return non_lvalue (convert (type, arg0));
5719 /* Since negative shift count is not well-defined,
5720 don't try to compute it in the compiler. */
5721 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
5722 return t;
5723 /* Rewrite an LROTATE_EXPR by a constant into an
5724 RROTATE_EXPR by a new constant. */
5725 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
5727 TREE_SET_CODE (t, RROTATE_EXPR);
5728 code = RROTATE_EXPR;
5729 TREE_OPERAND (t, 1) = arg1
5730 = const_binop
5731 (MINUS_EXPR,
5732 convert (TREE_TYPE (arg1),
5733 build_int_2 (GET_MODE_BITSIZE (TYPE_MODE (type)), 0)),
5734 arg1, 0);
5735 if (tree_int_cst_sgn (arg1) < 0)
5736 return t;
5739 /* If we have a rotate of a bit operation with the rotate count and
5740 the second operand of the bit operation both constant,
5741 permute the two operations. */
5742 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
5743 && (TREE_CODE (arg0) == BIT_AND_EXPR
5744 || TREE_CODE (arg0) == BIT_ANDTC_EXPR
5745 || TREE_CODE (arg0) == BIT_IOR_EXPR
5746 || TREE_CODE (arg0) == BIT_XOR_EXPR)
5747 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
5748 return fold (build (TREE_CODE (arg0), type,
5749 fold (build (code, type,
5750 TREE_OPERAND (arg0, 0), arg1)),
5751 fold (build (code, type,
5752 TREE_OPERAND (arg0, 1), arg1))));
5754 /* Two consecutive rotates adding up to the width of the mode can
5755 be ignored. */
5756 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
5757 && TREE_CODE (arg0) == RROTATE_EXPR
5758 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
5759 && TREE_INT_CST_HIGH (arg1) == 0
5760 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
5761 && ((TREE_INT_CST_LOW (arg1)
5762 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
5763 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
5764 return TREE_OPERAND (arg0, 0);
5766 goto binary;
5768 case MIN_EXPR:
5769 if (operand_equal_p (arg0, arg1, 0))
5770 return omit_one_operand (type, arg0, arg1);
5771 if (INTEGRAL_TYPE_P (type)
5772 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), 1))
5773 return omit_one_operand (type, arg1, arg0);
5774 goto associate;
5776 case MAX_EXPR:
5777 if (operand_equal_p (arg0, arg1, 0))
5778 return omit_one_operand (type, arg0, arg1);
5779 if (INTEGRAL_TYPE_P (type)
5780 && TYPE_MAX_VALUE (type)
5781 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), 1))
5782 return omit_one_operand (type, arg1, arg0);
5783 goto associate;
5785 case TRUTH_NOT_EXPR:
5786 /* Note that the operand of this must be an int
5787 and its values must be 0 or 1.
5788 ("true" is a fixed value perhaps depending on the language,
5789 but we don't handle values other than 1 correctly yet.) */
5790 tem = invert_truthvalue (arg0);
5791 /* Avoid infinite recursion. */
5792 if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
5793 return t;
5794 return convert (type, tem);
5796 case TRUTH_ANDIF_EXPR:
5797 /* Note that the operands of this must be ints
5798 and their values must be 0 or 1.
5799 ("true" is a fixed value perhaps depending on the language.) */
5800 /* If first arg is constant zero, return it. */
5801 if (integer_zerop (arg0))
5802 return convert (type, arg0);
5803 case TRUTH_AND_EXPR:
5804 /* If either arg is constant true, drop it. */
5805 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
5806 return non_lvalue (convert (type, arg1));
5807 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
5808 /* Preserve sequence points. */
5809 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
5810 return non_lvalue (convert (type, arg0));
5811 /* If second arg is constant zero, result is zero, but first arg
5812 must be evaluated. */
5813 if (integer_zerop (arg1))
5814 return omit_one_operand (type, arg1, arg0);
5815 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
5816 case will be handled here. */
5817 if (integer_zerop (arg0))
5818 return omit_one_operand (type, arg0, arg1);
5820 truth_andor:
5821 /* We only do these simplifications if we are optimizing. */
5822 if (!optimize)
5823 return t;
5825 /* Check for things like (A || B) && (A || C). We can convert this
5826 to A || (B && C). Note that either operator can be any of the four
5827 truth and/or operations and the transformation will still be
5828 valid. Also note that we only care about order for the
5829 ANDIF and ORIF operators. If B contains side effects, this
5830 might change the truth-value of A. */
5831 if (TREE_CODE (arg0) == TREE_CODE (arg1)
5832 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
5833 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
5834 || TREE_CODE (arg0) == TRUTH_AND_EXPR
5835 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
5836 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
5838 tree a00 = TREE_OPERAND (arg0, 0);
5839 tree a01 = TREE_OPERAND (arg0, 1);
5840 tree a10 = TREE_OPERAND (arg1, 0);
5841 tree a11 = TREE_OPERAND (arg1, 1);
5842 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
5843 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
5844 && (code == TRUTH_AND_EXPR
5845 || code == TRUTH_OR_EXPR));
5847 if (operand_equal_p (a00, a10, 0))
5848 return fold (build (TREE_CODE (arg0), type, a00,
5849 fold (build (code, type, a01, a11))));
5850 else if (commutative && operand_equal_p (a00, a11, 0))
5851 return fold (build (TREE_CODE (arg0), type, a00,
5852 fold (build (code, type, a01, a10))));
5853 else if (commutative && operand_equal_p (a01, a10, 0))
5854 return fold (build (TREE_CODE (arg0), type, a01,
5855 fold (build (code, type, a00, a11))));
5857 /* This case if tricky because we must either have commutative
5858 operators or else A10 must not have side-effects. */
5860 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
5861 && operand_equal_p (a01, a11, 0))
5862 return fold (build (TREE_CODE (arg0), type,
5863 fold (build (code, type, a00, a10)),
5864 a01));
5867 /* See if we can build a range comparison. */
5868 if (0 != (tem = fold_range_test (t)))
5869 return tem;
5871 /* Check for the possibility of merging component references. If our
5872 lhs is another similar operation, try to merge its rhs with our
5873 rhs. Then try to merge our lhs and rhs. */
5874 if (TREE_CODE (arg0) == code
5875 && 0 != (tem = fold_truthop (code, type,
5876 TREE_OPERAND (arg0, 1), arg1)))
5877 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
5879 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
5880 return tem;
5882 return t;
5884 case TRUTH_ORIF_EXPR:
5885 /* Note that the operands of this must be ints
5886 and their values must be 0 or true.
5887 ("true" is a fixed value perhaps depending on the language.) */
5888 /* If first arg is constant true, return it. */
5889 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
5890 return convert (type, arg0);
5891 case TRUTH_OR_EXPR:
5892 /* If either arg is constant zero, drop it. */
5893 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
5894 return non_lvalue (convert (type, arg1));
5895 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
5896 /* Preserve sequence points. */
5897 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
5898 return non_lvalue (convert (type, arg0));
5899 /* If second arg is constant true, result is true, but we must
5900 evaluate first arg. */
5901 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
5902 return omit_one_operand (type, arg1, arg0);
5903 /* Likewise for first arg, but note this only occurs here for
5904 TRUTH_OR_EXPR. */
5905 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
5906 return omit_one_operand (type, arg0, arg1);
5907 goto truth_andor;
5909 case TRUTH_XOR_EXPR:
5910 /* If either arg is constant zero, drop it. */
5911 if (integer_zerop (arg0))
5912 return non_lvalue (convert (type, arg1));
5913 if (integer_zerop (arg1))
5914 return non_lvalue (convert (type, arg0));
5915 /* If either arg is constant true, this is a logical inversion. */
5916 if (integer_onep (arg0))
5917 return non_lvalue (convert (type, invert_truthvalue (arg1)));
5918 if (integer_onep (arg1))
5919 return non_lvalue (convert (type, invert_truthvalue (arg0)));
5920 return t;
5922 case EQ_EXPR:
5923 case NE_EXPR:
5924 case LT_EXPR:
5925 case GT_EXPR:
5926 case LE_EXPR:
5927 case GE_EXPR:
5928 /* If one arg is a real or integer constant, put it last. */
5929 if ((TREE_CODE (arg0) == INTEGER_CST
5930 && TREE_CODE (arg1) != INTEGER_CST)
5931 || (TREE_CODE (arg0) == REAL_CST
5932 && TREE_CODE (arg0) != REAL_CST))
5934 TREE_OPERAND (t, 0) = arg1;
5935 TREE_OPERAND (t, 1) = arg0;
5936 arg0 = TREE_OPERAND (t, 0);
5937 arg1 = TREE_OPERAND (t, 1);
5938 code = swap_tree_comparison (code);
5939 TREE_SET_CODE (t, code);
5942 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
5944 /* (-a) CMP (-b) -> b CMP a */
5945 if (TREE_CODE (arg0) == NEGATE_EXPR
5946 && TREE_CODE (arg1) == NEGATE_EXPR)
5947 return fold (build (code, type, TREE_OPERAND (arg1, 0),
5948 TREE_OPERAND (arg0, 0)));
5949 /* (-a) CMP CST -> a swap(CMP) (-CST) */
5950 if (TREE_CODE (arg0) == NEGATE_EXPR && TREE_CODE (arg1) == REAL_CST)
5951 return
5952 fold (build
5953 (swap_tree_comparison (code), type,
5954 TREE_OPERAND (arg0, 0),
5955 build_real (TREE_TYPE (arg1),
5956 REAL_VALUE_NEGATE (TREE_REAL_CST (arg1)))));
5957 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
5958 /* a CMP (-0) -> a CMP 0 */
5959 if (TREE_CODE (arg1) == REAL_CST
5960 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (arg1)))
5961 return fold (build (code, type, arg0,
5962 build_real (TREE_TYPE (arg1), dconst0)));
5964 /* If this is a comparison of a real constant with a PLUS_EXPR
5965 or a MINUS_EXPR of a real constant, we can convert it into a
5966 comparison with a revised real constant as long as no overflow
5967 occurs when unsafe_math_optimizations are enabled. */
5968 if (flag_unsafe_math_optimizations
5969 && TREE_CODE (arg1) == REAL_CST
5970 && (TREE_CODE (arg0) == PLUS_EXPR
5971 || TREE_CODE (arg0) == MINUS_EXPR)
5972 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
5973 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
5974 ? MINUS_EXPR : PLUS_EXPR,
5975 arg1, TREE_OPERAND (arg0, 1), 0))
5976 && ! TREE_CONSTANT_OVERFLOW (tem))
5977 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
5980 /* Convert foo++ == CONST into ++foo == CONST + INCR.
5981 First, see if one arg is constant; find the constant arg
5982 and the other one. */
5984 tree constop = 0, varop = NULL_TREE;
5985 int constopnum = -1;
5987 if (TREE_CONSTANT (arg1))
5988 constopnum = 1, constop = arg1, varop = arg0;
5989 if (TREE_CONSTANT (arg0))
5990 constopnum = 0, constop = arg0, varop = arg1;
5992 if (constop && TREE_CODE (varop) == POSTINCREMENT_EXPR)
5994 /* This optimization is invalid for ordered comparisons
5995 if CONST+INCR overflows or if foo+incr might overflow.
5996 This optimization is invalid for floating point due to rounding.
5997 For pointer types we assume overflow doesn't happen. */
5998 if (POINTER_TYPE_P (TREE_TYPE (varop))
5999 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
6000 && (code == EQ_EXPR || code == NE_EXPR)))
6002 tree newconst
6003 = fold (build (PLUS_EXPR, TREE_TYPE (varop),
6004 constop, TREE_OPERAND (varop, 1)));
6006 /* Do not overwrite the current varop to be a preincrement,
6007 create a new node so that we won't confuse our caller who
6008 might create trees and throw them away, reusing the
6009 arguments that they passed to build. This shows up in
6010 the THEN or ELSE parts of ?: being postincrements. */
6011 varop = build (PREINCREMENT_EXPR, TREE_TYPE (varop),
6012 TREE_OPERAND (varop, 0),
6013 TREE_OPERAND (varop, 1));
6015 /* If VAROP is a reference to a bitfield, we must mask
6016 the constant by the width of the field. */
6017 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
6018 && DECL_BIT_FIELD(TREE_OPERAND
6019 (TREE_OPERAND (varop, 0), 1)))
6021 int size
6022 = TREE_INT_CST_LOW (DECL_SIZE
6023 (TREE_OPERAND
6024 (TREE_OPERAND (varop, 0), 1)));
6025 tree mask, unsigned_type;
6026 unsigned int precision;
6027 tree folded_compare;
6029 /* First check whether the comparison would come out
6030 always the same. If we don't do that we would
6031 change the meaning with the masking. */
6032 if (constopnum == 0)
6033 folded_compare = fold (build (code, type, constop,
6034 TREE_OPERAND (varop, 0)));
6035 else
6036 folded_compare = fold (build (code, type,
6037 TREE_OPERAND (varop, 0),
6038 constop));
6039 if (integer_zerop (folded_compare)
6040 || integer_onep (folded_compare))
6041 return omit_one_operand (type, folded_compare, varop);
6043 unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
6044 precision = TYPE_PRECISION (unsigned_type);
6045 mask = build_int_2 (~0, ~0);
6046 TREE_TYPE (mask) = unsigned_type;
6047 force_fit_type (mask, 0);
6048 mask = const_binop (RSHIFT_EXPR, mask,
6049 size_int (precision - size), 0);
6050 newconst = fold (build (BIT_AND_EXPR,
6051 TREE_TYPE (varop), newconst,
6052 convert (TREE_TYPE (varop),
6053 mask)));
6056 t = build (code, type,
6057 (constopnum == 0) ? newconst : varop,
6058 (constopnum == 1) ? newconst : varop);
6059 return t;
6062 else if (constop && TREE_CODE (varop) == POSTDECREMENT_EXPR)
6064 if (POINTER_TYPE_P (TREE_TYPE (varop))
6065 || (! FLOAT_TYPE_P (TREE_TYPE (varop))
6066 && (code == EQ_EXPR || code == NE_EXPR)))
6068 tree newconst
6069 = fold (build (MINUS_EXPR, TREE_TYPE (varop),
6070 constop, TREE_OPERAND (varop, 1)));
6072 /* Do not overwrite the current varop to be a predecrement,
6073 create a new node so that we won't confuse our caller who
6074 might create trees and throw them away, reusing the
6075 arguments that they passed to build. This shows up in
6076 the THEN or ELSE parts of ?: being postdecrements. */
6077 varop = build (PREDECREMENT_EXPR, TREE_TYPE (varop),
6078 TREE_OPERAND (varop, 0),
6079 TREE_OPERAND (varop, 1));
6081 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
6082 && DECL_BIT_FIELD(TREE_OPERAND
6083 (TREE_OPERAND (varop, 0), 1)))
6085 int size
6086 = TREE_INT_CST_LOW (DECL_SIZE
6087 (TREE_OPERAND
6088 (TREE_OPERAND (varop, 0), 1)));
6089 tree mask, unsigned_type;
6090 unsigned int precision;
6091 tree folded_compare;
6093 if (constopnum == 0)
6094 folded_compare = fold (build (code, type, constop,
6095 TREE_OPERAND (varop, 0)));
6096 else
6097 folded_compare = fold (build (code, type,
6098 TREE_OPERAND (varop, 0),
6099 constop));
6100 if (integer_zerop (folded_compare)
6101 || integer_onep (folded_compare))
6102 return omit_one_operand (type, folded_compare, varop);
6104 unsigned_type = (*lang_hooks.types.type_for_size)(size, 1);
6105 precision = TYPE_PRECISION (unsigned_type);
6106 mask = build_int_2 (~0, ~0);
6107 TREE_TYPE (mask) = TREE_TYPE (varop);
6108 force_fit_type (mask, 0);
6109 mask = const_binop (RSHIFT_EXPR, mask,
6110 size_int (precision - size), 0);
6111 newconst = fold (build (BIT_AND_EXPR,
6112 TREE_TYPE (varop), newconst,
6113 convert (TREE_TYPE (varop),
6114 mask)));
6117 t = build (code, type,
6118 (constopnum == 0) ? newconst : varop,
6119 (constopnum == 1) ? newconst : varop);
6120 return t;
6125 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
6126 This transformation affects the cases which are handled in later
6127 optimizations involving comparisons with non-negative constants. */
6128 if (TREE_CODE (arg1) == INTEGER_CST
6129 && TREE_CODE (arg0) != INTEGER_CST
6130 && tree_int_cst_sgn (arg1) > 0)
6132 switch (code)
6134 case GE_EXPR:
6135 code = GT_EXPR;
6136 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6137 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6138 break;
6140 case LT_EXPR:
6141 code = LE_EXPR;
6142 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6143 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6144 break;
6146 default:
6147 break;
6151 /* Comparisons with the highest or lowest possible integer of
6152 the specified size will have known values. */
6154 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
6156 if (TREE_CODE (arg1) == INTEGER_CST
6157 && ! TREE_CONSTANT_OVERFLOW (arg1)
6158 && width <= HOST_BITS_PER_WIDE_INT
6159 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
6160 || POINTER_TYPE_P (TREE_TYPE (arg1))))
6162 unsigned HOST_WIDE_INT signed_max;
6163 unsigned HOST_WIDE_INT max, min;
6165 signed_max = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
6167 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
6169 max = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
6170 min = 0;
6172 else
6174 max = signed_max;
6175 min = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
6178 if (TREE_INT_CST_HIGH (arg1) == 0
6179 && TREE_INT_CST_LOW (arg1) == max)
6180 switch (code)
6182 case GT_EXPR:
6183 return omit_one_operand (type,
6184 convert (type, integer_zero_node),
6185 arg0);
6186 case GE_EXPR:
6187 code = EQ_EXPR;
6188 TREE_SET_CODE (t, EQ_EXPR);
6189 break;
6190 case LE_EXPR:
6191 return omit_one_operand (type,
6192 convert (type, integer_one_node),
6193 arg0);
6194 case LT_EXPR:
6195 code = NE_EXPR;
6196 TREE_SET_CODE (t, NE_EXPR);
6197 break;
6199 /* The GE_EXPR and LT_EXPR cases above are not normally
6200 reached because of previous transformations. */
6202 default:
6203 break;
6205 else if (TREE_INT_CST_HIGH (arg1) == 0
6206 && TREE_INT_CST_LOW (arg1) == max - 1)
6207 switch (code)
6209 case GT_EXPR:
6210 code = EQ_EXPR;
6211 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
6212 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6213 break;
6214 case LE_EXPR:
6215 code = NE_EXPR;
6216 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
6217 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6218 break;
6219 default:
6220 break;
6222 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
6223 && TREE_INT_CST_LOW (arg1) == min)
6224 switch (code)
6226 case LT_EXPR:
6227 return omit_one_operand (type,
6228 convert (type, integer_zero_node),
6229 arg0);
6230 case LE_EXPR:
6231 code = EQ_EXPR;
6232 TREE_SET_CODE (t, EQ_EXPR);
6233 break;
6235 case GE_EXPR:
6236 return omit_one_operand (type,
6237 convert (type, integer_one_node),
6238 arg0);
6239 case GT_EXPR:
6240 code = NE_EXPR;
6241 TREE_SET_CODE (t, NE_EXPR);
6242 break;
6244 default:
6245 break;
6247 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
6248 && TREE_INT_CST_LOW (arg1) == min + 1)
6249 switch (code)
6251 case GE_EXPR:
6252 code = NE_EXPR;
6253 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6254 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6255 break;
6256 case LT_EXPR:
6257 code = EQ_EXPR;
6258 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
6259 t = build (code, type, TREE_OPERAND (t, 0), arg1);
6260 break;
6261 default:
6262 break;
6265 else if (TREE_INT_CST_HIGH (arg1) == 0
6266 && TREE_INT_CST_LOW (arg1) == signed_max
6267 && TREE_UNSIGNED (TREE_TYPE (arg1))
6268 /* signed_type does not work on pointer types. */
6269 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
6271 /* The following case also applies to X < signed_max+1
6272 and X >= signed_max+1 because previous transformations. */
6273 if (code == LE_EXPR || code == GT_EXPR)
6275 tree st0, st1;
6276 st0 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg0));
6277 st1 = (*lang_hooks.types.signed_type) (TREE_TYPE (arg1));
6278 return fold
6279 (build (code == LE_EXPR ? GE_EXPR: LT_EXPR,
6280 type, convert (st0, arg0),
6281 convert (st1, integer_zero_node)));
6287 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
6288 a MINUS_EXPR of a constant, we can convert it into a comparison with
6289 a revised constant as long as no overflow occurs. */
6290 if ((code == EQ_EXPR || code == NE_EXPR)
6291 && TREE_CODE (arg1) == INTEGER_CST
6292 && (TREE_CODE (arg0) == PLUS_EXPR
6293 || TREE_CODE (arg0) == MINUS_EXPR)
6294 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6295 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
6296 ? MINUS_EXPR : PLUS_EXPR,
6297 arg1, TREE_OPERAND (arg0, 1), 0))
6298 && ! TREE_CONSTANT_OVERFLOW (tem))
6299 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6301 /* Similarly for a NEGATE_EXPR. */
6302 else if ((code == EQ_EXPR || code == NE_EXPR)
6303 && TREE_CODE (arg0) == NEGATE_EXPR
6304 && TREE_CODE (arg1) == INTEGER_CST
6305 && 0 != (tem = negate_expr (arg1))
6306 && TREE_CODE (tem) == INTEGER_CST
6307 && ! TREE_CONSTANT_OVERFLOW (tem))
6308 return fold (build (code, type, TREE_OPERAND (arg0, 0), tem));
6310 /* If we have X - Y == 0, we can convert that to X == Y and similarly
6311 for !=. Don't do this for ordered comparisons due to overflow. */
6312 else if ((code == NE_EXPR || code == EQ_EXPR)
6313 && integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
6314 return fold (build (code, type,
6315 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)));
6317 /* If we are widening one operand of an integer comparison,
6318 see if the other operand is similarly being widened. Perhaps we
6319 can do the comparison in the narrower type. */
6320 else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
6321 && TREE_CODE (arg0) == NOP_EXPR
6322 && (tem = get_unwidened (arg0, NULL_TREE)) != arg0
6323 && (t1 = get_unwidened (arg1, TREE_TYPE (tem))) != 0
6324 && (TREE_TYPE (t1) == TREE_TYPE (tem)
6325 || (TREE_CODE (t1) == INTEGER_CST
6326 && int_fits_type_p (t1, TREE_TYPE (tem)))))
6327 return fold (build (code, type, tem, convert (TREE_TYPE (tem), t1)));
6329 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
6330 constant, we can simplify it. */
6331 else if (TREE_CODE (arg1) == INTEGER_CST
6332 && (TREE_CODE (arg0) == MIN_EXPR
6333 || TREE_CODE (arg0) == MAX_EXPR)
6334 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
6335 return optimize_minmax_comparison (t);
6337 /* If we are comparing an ABS_EXPR with a constant, we can
6338 convert all the cases into explicit comparisons, but they may
6339 well not be faster than doing the ABS and one comparison.
6340 But ABS (X) <= C is a range comparison, which becomes a subtraction
6341 and a comparison, and is probably faster. */
6342 else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
6343 && TREE_CODE (arg0) == ABS_EXPR
6344 && ! TREE_SIDE_EFFECTS (arg0)
6345 && (0 != (tem = negate_expr (arg1)))
6346 && TREE_CODE (tem) == INTEGER_CST
6347 && ! TREE_CONSTANT_OVERFLOW (tem))
6348 return fold (build (TRUTH_ANDIF_EXPR, type,
6349 build (GE_EXPR, type, TREE_OPERAND (arg0, 0), tem),
6350 build (LE_EXPR, type,
6351 TREE_OPERAND (arg0, 0), arg1)));
6353 /* If this is an EQ or NE comparison with zero and ARG0 is
6354 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
6355 two operations, but the latter can be done in one less insn
6356 on machines that have only two-operand insns or on which a
6357 constant cannot be the first operand. */
6358 if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
6359 && TREE_CODE (arg0) == BIT_AND_EXPR)
6361 if (TREE_CODE (TREE_OPERAND (arg0, 0)) == LSHIFT_EXPR
6362 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 0), 0)))
6363 return
6364 fold (build (code, type,
6365 build (BIT_AND_EXPR, TREE_TYPE (arg0),
6366 build (RSHIFT_EXPR,
6367 TREE_TYPE (TREE_OPERAND (arg0, 0)),
6368 TREE_OPERAND (arg0, 1),
6369 TREE_OPERAND (TREE_OPERAND (arg0, 0), 1)),
6370 convert (TREE_TYPE (arg0),
6371 integer_one_node)),
6372 arg1));
6373 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
6374 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
6375 return
6376 fold (build (code, type,
6377 build (BIT_AND_EXPR, TREE_TYPE (arg0),
6378 build (RSHIFT_EXPR,
6379 TREE_TYPE (TREE_OPERAND (arg0, 1)),
6380 TREE_OPERAND (arg0, 0),
6381 TREE_OPERAND (TREE_OPERAND (arg0, 1), 1)),
6382 convert (TREE_TYPE (arg0),
6383 integer_one_node)),
6384 arg1));
6387 /* If this is an NE or EQ comparison of zero against the result of a
6388 signed MOD operation whose second operand is a power of 2, make
6389 the MOD operation unsigned since it is simpler and equivalent. */
6390 if ((code == NE_EXPR || code == EQ_EXPR)
6391 && integer_zerop (arg1)
6392 && ! TREE_UNSIGNED (TREE_TYPE (arg0))
6393 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
6394 || TREE_CODE (arg0) == CEIL_MOD_EXPR
6395 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
6396 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
6397 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6399 tree newtype = (*lang_hooks.types.unsigned_type) (TREE_TYPE (arg0));
6400 tree newmod = build (TREE_CODE (arg0), newtype,
6401 convert (newtype, TREE_OPERAND (arg0, 0)),
6402 convert (newtype, TREE_OPERAND (arg0, 1)));
6404 return build (code, type, newmod, convert (newtype, arg1));
6407 /* If this is an NE comparison of zero with an AND of one, remove the
6408 comparison since the AND will give the correct value. */
6409 if (code == NE_EXPR && integer_zerop (arg1)
6410 && TREE_CODE (arg0) == BIT_AND_EXPR
6411 && integer_onep (TREE_OPERAND (arg0, 1)))
6412 return convert (type, arg0);
6414 /* If we have (A & C) == C where C is a power of 2, convert this into
6415 (A & C) != 0. Similarly for NE_EXPR. */
6416 if ((code == EQ_EXPR || code == NE_EXPR)
6417 && TREE_CODE (arg0) == BIT_AND_EXPR
6418 && integer_pow2p (TREE_OPERAND (arg0, 1))
6419 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
6420 return fold (build (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
6421 arg0, integer_zero_node));
6423 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6424 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6425 if ((code == EQ_EXPR || code == NE_EXPR)
6426 && TREE_CODE (arg0) == BIT_AND_EXPR
6427 && integer_zerop (arg1))
6429 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0),
6430 TREE_OPERAND (arg0, 1));
6431 if (arg00 != NULL_TREE)
6433 tree stype = (*lang_hooks.types.signed_type) (TREE_TYPE (arg00));
6434 return fold (build (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
6435 convert (stype, arg00),
6436 convert (stype, integer_zero_node)));
6440 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
6441 and similarly for >= into !=. */
6442 if ((code == LT_EXPR || code == GE_EXPR)
6443 && TREE_UNSIGNED (TREE_TYPE (arg0))
6444 && TREE_CODE (arg1) == LSHIFT_EXPR
6445 && integer_onep (TREE_OPERAND (arg1, 0)))
6446 return build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
6447 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
6448 TREE_OPERAND (arg1, 1)),
6449 convert (TREE_TYPE (arg0), integer_zero_node));
6451 else if ((code == LT_EXPR || code == GE_EXPR)
6452 && TREE_UNSIGNED (TREE_TYPE (arg0))
6453 && (TREE_CODE (arg1) == NOP_EXPR
6454 || TREE_CODE (arg1) == CONVERT_EXPR)
6455 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
6456 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
6457 return
6458 build (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
6459 convert (TREE_TYPE (arg0),
6460 build (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
6461 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1))),
6462 convert (TREE_TYPE (arg0), integer_zero_node));
6464 /* Simplify comparison of something with itself. (For IEEE
6465 floating-point, we can only do some of these simplifications.) */
6466 if (operand_equal_p (arg0, arg1, 0))
6468 switch (code)
6470 case EQ_EXPR:
6471 case GE_EXPR:
6472 case LE_EXPR:
6473 if (! FLOAT_TYPE_P (TREE_TYPE (arg0)))
6474 return constant_boolean_node (1, type);
6475 code = EQ_EXPR;
6476 TREE_SET_CODE (t, code);
6477 break;
6479 case NE_EXPR:
6480 /* For NE, we can only do this simplification if integer. */
6481 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
6482 break;
6483 /* ... fall through ... */
6484 case GT_EXPR:
6485 case LT_EXPR:
6486 return constant_boolean_node (0, type);
6487 default:
6488 abort ();
6492 /* If we are comparing an expression that just has comparisons
6493 of two integer values, arithmetic expressions of those comparisons,
6494 and constants, we can simplify it. There are only three cases
6495 to check: the two values can either be equal, the first can be
6496 greater, or the second can be greater. Fold the expression for
6497 those three values. Since each value must be 0 or 1, we have
6498 eight possibilities, each of which corresponds to the constant 0
6499 or 1 or one of the six possible comparisons.
6501 This handles common cases like (a > b) == 0 but also handles
6502 expressions like ((x > y) - (y > x)) > 0, which supposedly
6503 occur in macroized code. */
6505 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
6507 tree cval1 = 0, cval2 = 0;
6508 int save_p = 0;
6510 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
6511 /* Don't handle degenerate cases here; they should already
6512 have been handled anyway. */
6513 && cval1 != 0 && cval2 != 0
6514 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
6515 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
6516 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
6517 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
6518 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
6519 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
6520 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
6522 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
6523 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
6525 /* We can't just pass T to eval_subst in case cval1 or cval2
6526 was the same as ARG1. */
6528 tree high_result
6529 = fold (build (code, type,
6530 eval_subst (arg0, cval1, maxval, cval2, minval),
6531 arg1));
6532 tree equal_result
6533 = fold (build (code, type,
6534 eval_subst (arg0, cval1, maxval, cval2, maxval),
6535 arg1));
6536 tree low_result
6537 = fold (build (code, type,
6538 eval_subst (arg0, cval1, minval, cval2, maxval),
6539 arg1));
6541 /* All three of these results should be 0 or 1. Confirm they
6542 are. Then use those values to select the proper code
6543 to use. */
6545 if ((integer_zerop (high_result)
6546 || integer_onep (high_result))
6547 && (integer_zerop (equal_result)
6548 || integer_onep (equal_result))
6549 && (integer_zerop (low_result)
6550 || integer_onep (low_result)))
6552 /* Make a 3-bit mask with the high-order bit being the
6553 value for `>', the next for '=', and the low for '<'. */
6554 switch ((integer_onep (high_result) * 4)
6555 + (integer_onep (equal_result) * 2)
6556 + integer_onep (low_result))
6558 case 0:
6559 /* Always false. */
6560 return omit_one_operand (type, integer_zero_node, arg0);
6561 case 1:
6562 code = LT_EXPR;
6563 break;
6564 case 2:
6565 code = EQ_EXPR;
6566 break;
6567 case 3:
6568 code = LE_EXPR;
6569 break;
6570 case 4:
6571 code = GT_EXPR;
6572 break;
6573 case 5:
6574 code = NE_EXPR;
6575 break;
6576 case 6:
6577 code = GE_EXPR;
6578 break;
6579 case 7:
6580 /* Always true. */
6581 return omit_one_operand (type, integer_one_node, arg0);
6584 t = build (code, type, cval1, cval2);
6585 if (save_p)
6586 return save_expr (t);
6587 else
6588 return fold (t);
6593 /* If this is a comparison of a field, we may be able to simplify it. */
6594 if (((TREE_CODE (arg0) == COMPONENT_REF
6595 && (*lang_hooks.can_use_bit_fields_p) ())
6596 || TREE_CODE (arg0) == BIT_FIELD_REF)
6597 && (code == EQ_EXPR || code == NE_EXPR)
6598 /* Handle the constant case even without -O
6599 to make sure the warnings are given. */
6600 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
6602 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
6603 return t1 ? t1 : t;
6606 /* If this is a comparison of complex values and either or both sides
6607 are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
6608 comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
6609 This may prevent needless evaluations. */
6610 if ((code == EQ_EXPR || code == NE_EXPR)
6611 && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
6612 && (TREE_CODE (arg0) == COMPLEX_EXPR
6613 || TREE_CODE (arg1) == COMPLEX_EXPR
6614 || TREE_CODE (arg0) == COMPLEX_CST
6615 || TREE_CODE (arg1) == COMPLEX_CST))
6617 tree subtype = TREE_TYPE (TREE_TYPE (arg0));
6618 tree real0, imag0, real1, imag1;
6620 arg0 = save_expr (arg0);
6621 arg1 = save_expr (arg1);
6622 real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
6623 imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
6624 real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
6625 imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));
6627 return fold (build ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
6628 : TRUTH_ORIF_EXPR),
6629 type,
6630 fold (build (code, type, real0, real1)),
6631 fold (build (code, type, imag0, imag1))));
6634 /* Optimize comparisons of strlen vs zero to a compare of the
6635 first character of the string vs zero. To wit,
6636 strlen(ptr) == 0 => *ptr == 0
6637 strlen(ptr) != 0 => *ptr != 0
6638 Other cases should reduce to one of these two (or a constant)
6639 due to the return value of strlen being unsigned. */
6640 if ((code == EQ_EXPR || code == NE_EXPR)
6641 && integer_zerop (arg1)
6642 && TREE_CODE (arg0) == CALL_EXPR
6643 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR)
6645 tree fndecl = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
6646 tree arglist;
6648 if (TREE_CODE (fndecl) == FUNCTION_DECL
6649 && DECL_BUILT_IN (fndecl)
6650 && DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD
6651 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
6652 && (arglist = TREE_OPERAND (arg0, 1))
6653 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
6654 && ! TREE_CHAIN (arglist))
6655 return fold (build (code, type,
6656 build1 (INDIRECT_REF, char_type_node,
6657 TREE_VALUE(arglist)),
6658 integer_zero_node));
6661 /* From here on, the only cases we handle are when the result is
6662 known to be a constant.
6664 To compute GT, swap the arguments and do LT.
6665 To compute GE, do LT and invert the result.
6666 To compute LE, swap the arguments, do LT and invert the result.
6667 To compute NE, do EQ and invert the result.
6669 Therefore, the code below must handle only EQ and LT. */
6671 if (code == LE_EXPR || code == GT_EXPR)
6673 tem = arg0, arg0 = arg1, arg1 = tem;
6674 code = swap_tree_comparison (code);
6677 /* Note that it is safe to invert for real values here because we
6678 will check below in the one case that it matters. */
6680 t1 = NULL_TREE;
6681 invert = 0;
6682 if (code == NE_EXPR || code == GE_EXPR)
6684 invert = 1;
6685 code = invert_tree_comparison (code);
6688 /* Compute a result for LT or EQ if args permit;
6689 otherwise return T. */
6690 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
6692 if (code == EQ_EXPR)
6693 t1 = build_int_2 (tree_int_cst_equal (arg0, arg1), 0);
6694 else
6695 t1 = build_int_2 ((TREE_UNSIGNED (TREE_TYPE (arg0))
6696 ? INT_CST_LT_UNSIGNED (arg0, arg1)
6697 : INT_CST_LT (arg0, arg1)),
6701 #if 0 /* This is no longer useful, but breaks some real code. */
6702 /* Assume a nonexplicit constant cannot equal an explicit one,
6703 since such code would be undefined anyway.
6704 Exception: on sysvr4, using #pragma weak,
6705 a label can come out as 0. */
6706 else if (TREE_CODE (arg1) == INTEGER_CST
6707 && !integer_zerop (arg1)
6708 && TREE_CONSTANT (arg0)
6709 && TREE_CODE (arg0) == ADDR_EXPR
6710 && code == EQ_EXPR)
6711 t1 = build_int_2 (0, 0);
6712 #endif
6713 /* Two real constants can be compared explicitly. */
6714 else if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
6716 /* If either operand is a NaN, the result is false with two
6717 exceptions: First, an NE_EXPR is true on NaNs, but that case
6718 is already handled correctly since we will be inverting the
6719 result for NE_EXPR. Second, if we had inverted a LE_EXPR
6720 or a GE_EXPR into a LT_EXPR, we must return true so that it
6721 will be inverted into false. */
6723 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
6724 || REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
6725 t1 = build_int_2 (invert && code == LT_EXPR, 0);
6727 else if (code == EQ_EXPR)
6728 t1 = build_int_2 (REAL_VALUES_EQUAL (TREE_REAL_CST (arg0),
6729 TREE_REAL_CST (arg1)),
6731 else
6732 t1 = build_int_2 (REAL_VALUES_LESS (TREE_REAL_CST (arg0),
6733 TREE_REAL_CST (arg1)),
6737 if (t1 == NULL_TREE)
6738 return t;
6740 if (invert)
6741 TREE_INT_CST_LOW (t1) ^= 1;
6743 TREE_TYPE (t1) = type;
6744 if (TREE_CODE (type) == BOOLEAN_TYPE)
6745 return (*lang_hooks.truthvalue_conversion) (t1);
6746 return t1;
6748 case COND_EXPR:
6749 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
6750 so all simple results must be passed through pedantic_non_lvalue. */
6751 if (TREE_CODE (arg0) == INTEGER_CST)
6752 return pedantic_non_lvalue
6753 (TREE_OPERAND (t, (integer_zerop (arg0) ? 2 : 1)));
6754 else if (operand_equal_p (arg1, TREE_OPERAND (expr, 2), 0))
6755 return pedantic_omit_one_operand (type, arg1, arg0);
6757 /* If the second operand is zero, invert the comparison and swap
6758 the second and third operands. Likewise if the second operand
6759 is constant and the third is not or if the third operand is
6760 equivalent to the first operand of the comparison. */
6762 if (integer_zerop (arg1)
6763 || (TREE_CONSTANT (arg1) && ! TREE_CONSTANT (TREE_OPERAND (t, 2)))
6764 || (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
6765 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
6766 TREE_OPERAND (t, 2),
6767 TREE_OPERAND (arg0, 1))))
6769 /* See if this can be inverted. If it can't, possibly because
6770 it was a floating-point inequality comparison, don't do
6771 anything. */
6772 tem = invert_truthvalue (arg0);
6774 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
6776 t = build (code, type, tem,
6777 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
6778 arg0 = tem;
6779 /* arg1 should be the first argument of the new T. */
6780 arg1 = TREE_OPERAND (t, 1);
6781 STRIP_NOPS (arg1);
6785 /* If we have A op B ? A : C, we may be able to convert this to a
6786 simpler expression, depending on the operation and the values
6787 of B and C. Signed zeros prevent all of these transformations,
6788 for reasons given above each one. */
6790 if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
6791 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
6792 arg1, TREE_OPERAND (arg0, 1))
6793 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
6795 tree arg2 = TREE_OPERAND (t, 2);
6796 enum tree_code comp_code = TREE_CODE (arg0);
6798 STRIP_NOPS (arg2);
6800 /* If we have A op 0 ? A : -A, consider applying the following
6801 transformations:
6803 A == 0? A : -A same as -A
6804 A != 0? A : -A same as A
6805 A >= 0? A : -A same as abs (A)
6806 A > 0? A : -A same as abs (A)
6807 A <= 0? A : -A same as -abs (A)
6808 A < 0? A : -A same as -abs (A)
6810 None of these transformations work for modes with signed
6811 zeros. If A is +/-0, the first two transformations will
6812 change the sign of the result (from +0 to -0, or vice
6813 versa). The last four will fix the sign of the result,
6814 even though the original expressions could be positive or
6815 negative, depending on the sign of A.
6817 Note that all these transformations are correct if A is
6818 NaN, since the two alternatives (A and -A) are also NaNs. */
6819 if ((FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 1)))
6820 ? real_zerop (TREE_OPERAND (arg0, 1))
6821 : integer_zerop (TREE_OPERAND (arg0, 1)))
6822 && TREE_CODE (arg2) == NEGATE_EXPR
6823 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
6824 switch (comp_code)
6826 case EQ_EXPR:
6827 return
6828 pedantic_non_lvalue
6829 (convert (type,
6830 negate_expr
6831 (convert (TREE_TYPE (TREE_OPERAND (t, 1)),
6832 arg1))));
6833 case NE_EXPR:
6834 return pedantic_non_lvalue (convert (type, arg1));
6835 case GE_EXPR:
6836 case GT_EXPR:
6837 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
6838 arg1 = convert ((*lang_hooks.types.signed_type)
6839 (TREE_TYPE (arg1)), arg1);
6840 return pedantic_non_lvalue
6841 (convert (type, fold (build1 (ABS_EXPR,
6842 TREE_TYPE (arg1), arg1))));
6843 case LE_EXPR:
6844 case LT_EXPR:
6845 if (TREE_UNSIGNED (TREE_TYPE (arg1)))
6846 arg1 = convert ((lang_hooks.types.signed_type)
6847 (TREE_TYPE (arg1)), arg1);
6848 return pedantic_non_lvalue
6849 (negate_expr (convert (type,
6850 fold (build1 (ABS_EXPR,
6851 TREE_TYPE (arg1),
6852 arg1)))));
6853 default:
6854 abort ();
6857 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
6858 A == 0 ? A : 0 is always 0 unless A is -0. Note that
6859 both transformations are correct when A is NaN: A != 0
6860 is then true, and A == 0 is false. */
6862 if (integer_zerop (TREE_OPERAND (arg0, 1)) && integer_zerop (arg2))
6864 if (comp_code == NE_EXPR)
6865 return pedantic_non_lvalue (convert (type, arg1));
6866 else if (comp_code == EQ_EXPR)
6867 return pedantic_non_lvalue (convert (type, integer_zero_node));
6870 /* Try some transformations of A op B ? A : B.
6872 A == B? A : B same as B
6873 A != B? A : B same as A
6874 A >= B? A : B same as max (A, B)
6875 A > B? A : B same as max (B, A)
6876 A <= B? A : B same as min (A, B)
6877 A < B? A : B same as min (B, A)
6879 As above, these transformations don't work in the presence
6880 of signed zeros. For example, if A and B are zeros of
6881 opposite sign, the first two transformations will change
6882 the sign of the result. In the last four, the original
6883 expressions give different results for (A=+0, B=-0) and
6884 (A=-0, B=+0), but the transformed expressions do not.
6886 The first two transformations are correct if either A or B
6887 is a NaN. In the first transformation, the condition will
6888 be false, and B will indeed be chosen. In the case of the
6889 second transformation, the condition A != B will be true,
6890 and A will be chosen.
6892 The conversions to max() and min() are not correct if B is
6893 a number and A is not. The conditions in the original
6894 expressions will be false, so all four give B. The min()
6895 and max() versions would give a NaN instead. */
6896 if (operand_equal_for_comparison_p (TREE_OPERAND (arg0, 1),
6897 arg2, TREE_OPERAND (arg0, 0)))
6899 tree comp_op0 = TREE_OPERAND (arg0, 0);
6900 tree comp_op1 = TREE_OPERAND (arg0, 1);
6901 tree comp_type = TREE_TYPE (comp_op0);
6903 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
6904 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
6905 comp_type = type;
6907 switch (comp_code)
6909 case EQ_EXPR:
6910 return pedantic_non_lvalue (convert (type, arg2));
6911 case NE_EXPR:
6912 return pedantic_non_lvalue (convert (type, arg1));
6913 case LE_EXPR:
6914 case LT_EXPR:
6915 /* In C++ a ?: expression can be an lvalue, so put the
6916 operand which will be used if they are equal first
6917 so that we can convert this back to the
6918 corresponding COND_EXPR. */
6919 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
6920 return pedantic_non_lvalue
6921 (convert (type, fold (build (MIN_EXPR, comp_type,
6922 (comp_code == LE_EXPR
6923 ? comp_op0 : comp_op1),
6924 (comp_code == LE_EXPR
6925 ? comp_op1 : comp_op0)))));
6926 break;
6927 case GE_EXPR:
6928 case GT_EXPR:
6929 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
6930 return pedantic_non_lvalue
6931 (convert (type, fold (build (MAX_EXPR, comp_type,
6932 (comp_code == GE_EXPR
6933 ? comp_op0 : comp_op1),
6934 (comp_code == GE_EXPR
6935 ? comp_op1 : comp_op0)))));
6936 break;
6937 default:
6938 abort ();
6942 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
6943 we might still be able to simplify this. For example,
6944 if C1 is one less or one more than C2, this might have started
6945 out as a MIN or MAX and been transformed by this function.
6946 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
6948 if (INTEGRAL_TYPE_P (type)
6949 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6950 && TREE_CODE (arg2) == INTEGER_CST)
6951 switch (comp_code)
6953 case EQ_EXPR:
6954 /* We can replace A with C1 in this case. */
6955 arg1 = convert (type, TREE_OPERAND (arg0, 1));
6956 t = build (code, type, TREE_OPERAND (t, 0), arg1,
6957 TREE_OPERAND (t, 2));
6958 break;
6960 case LT_EXPR:
6961 /* If C1 is C2 + 1, this is min(A, C2). */
6962 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
6963 && operand_equal_p (TREE_OPERAND (arg0, 1),
6964 const_binop (PLUS_EXPR, arg2,
6965 integer_one_node, 0), 1))
6966 return pedantic_non_lvalue
6967 (fold (build (MIN_EXPR, type, arg1, arg2)));
6968 break;
6970 case LE_EXPR:
6971 /* If C1 is C2 - 1, this is min(A, C2). */
6972 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
6973 && operand_equal_p (TREE_OPERAND (arg0, 1),
6974 const_binop (MINUS_EXPR, arg2,
6975 integer_one_node, 0), 1))
6976 return pedantic_non_lvalue
6977 (fold (build (MIN_EXPR, type, arg1, arg2)));
6978 break;
6980 case GT_EXPR:
6981 /* If C1 is C2 - 1, this is max(A, C2). */
6982 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type), 1)
6983 && operand_equal_p (TREE_OPERAND (arg0, 1),
6984 const_binop (MINUS_EXPR, arg2,
6985 integer_one_node, 0), 1))
6986 return pedantic_non_lvalue
6987 (fold (build (MAX_EXPR, type, arg1, arg2)));
6988 break;
6990 case GE_EXPR:
6991 /* If C1 is C2 + 1, this is max(A, C2). */
6992 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type), 1)
6993 && operand_equal_p (TREE_OPERAND (arg0, 1),
6994 const_binop (PLUS_EXPR, arg2,
6995 integer_one_node, 0), 1))
6996 return pedantic_non_lvalue
6997 (fold (build (MAX_EXPR, type, arg1, arg2)));
6998 break;
6999 case NE_EXPR:
7000 break;
7001 default:
7002 abort ();
7006 /* If the second operand is simpler than the third, swap them
7007 since that produces better jump optimization results. */
7008 if ((TREE_CONSTANT (arg1) || DECL_P (arg1)
7009 || TREE_CODE (arg1) == SAVE_EXPR)
7010 && ! (TREE_CONSTANT (TREE_OPERAND (t, 2))
7011 || DECL_P (TREE_OPERAND (t, 2))
7012 || TREE_CODE (TREE_OPERAND (t, 2)) == SAVE_EXPR))
7014 /* See if this can be inverted. If it can't, possibly because
7015 it was a floating-point inequality comparison, don't do
7016 anything. */
7017 tem = invert_truthvalue (arg0);
7019 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7021 t = build (code, type, tem,
7022 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1));
7023 arg0 = tem;
7024 /* arg1 should be the first argument of the new T. */
7025 arg1 = TREE_OPERAND (t, 1);
7026 STRIP_NOPS (arg1);
7030 /* Convert A ? 1 : 0 to simply A. */
7031 if (integer_onep (TREE_OPERAND (t, 1))
7032 && integer_zerop (TREE_OPERAND (t, 2))
7033 /* If we try to convert TREE_OPERAND (t, 0) to our type, the
7034 call to fold will try to move the conversion inside
7035 a COND, which will recurse. In that case, the COND_EXPR
7036 is probably the best choice, so leave it alone. */
7037 && type == TREE_TYPE (arg0))
7038 return pedantic_non_lvalue (arg0);
7040 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
7041 over COND_EXPR in cases such as floating point comparisons. */
7042 if (integer_zerop (TREE_OPERAND (t, 1))
7043 && integer_onep (TREE_OPERAND (t, 2))
7044 && truth_value_p (TREE_CODE (arg0)))
7045 return pedantic_non_lvalue (convert (type,
7046 invert_truthvalue (arg0)));
7048 /* Look for expressions of the form A & 2 ? 2 : 0. The result of this
7049 operation is simply A & 2. */
7051 if (integer_zerop (TREE_OPERAND (t, 2))
7052 && TREE_CODE (arg0) == NE_EXPR
7053 && integer_zerop (TREE_OPERAND (arg0, 1))
7054 && integer_pow2p (arg1)
7055 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
7056 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
7057 arg1, 1))
7058 return pedantic_non_lvalue (convert (type, TREE_OPERAND (arg0, 0)));
7060 /* Convert A ? B : 0 into A && B if A and B are truth values. */
7061 if (integer_zerop (TREE_OPERAND (t, 2))
7062 && truth_value_p (TREE_CODE (arg0))
7063 && truth_value_p (TREE_CODE (arg1)))
7064 return pedantic_non_lvalue (fold (build (TRUTH_ANDIF_EXPR, type,
7065 arg0, arg1)));
7067 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
7068 if (integer_onep (TREE_OPERAND (t, 2))
7069 && truth_value_p (TREE_CODE (arg0))
7070 && truth_value_p (TREE_CODE (arg1)))
7072 /* Only perform transformation if ARG0 is easily inverted. */
7073 tem = invert_truthvalue (arg0);
7074 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
7075 return pedantic_non_lvalue (fold (build (TRUTH_ORIF_EXPR, type,
7076 tem, arg1)));
7079 return t;
7081 case COMPOUND_EXPR:
7082 /* When pedantic, a compound expression can be neither an lvalue
7083 nor an integer constant expression. */
7084 if (TREE_SIDE_EFFECTS (arg0) || pedantic)
7085 return t;
7086 /* Don't let (0, 0) be null pointer constant. */
7087 if (integer_zerop (arg1))
7088 return build1 (NOP_EXPR, type, arg1);
7089 return convert (type, arg1);
7091 case COMPLEX_EXPR:
7092 if (wins)
7093 return build_complex (type, arg0, arg1);
7094 return t;
7096 case REALPART_EXPR:
7097 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7098 return t;
7099 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7100 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
7101 TREE_OPERAND (arg0, 1));
7102 else if (TREE_CODE (arg0) == COMPLEX_CST)
7103 return TREE_REALPART (arg0);
7104 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7105 return fold (build (TREE_CODE (arg0), type,
7106 fold (build1 (REALPART_EXPR, type,
7107 TREE_OPERAND (arg0, 0))),
7108 fold (build1 (REALPART_EXPR,
7109 type, TREE_OPERAND (arg0, 1)))));
7110 return t;
7112 case IMAGPART_EXPR:
7113 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7114 return convert (type, integer_zero_node);
7115 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
7116 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
7117 TREE_OPERAND (arg0, 0));
7118 else if (TREE_CODE (arg0) == COMPLEX_CST)
7119 return TREE_IMAGPART (arg0);
7120 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7121 return fold (build (TREE_CODE (arg0), type,
7122 fold (build1 (IMAGPART_EXPR, type,
7123 TREE_OPERAND (arg0, 0))),
7124 fold (build1 (IMAGPART_EXPR, type,
7125 TREE_OPERAND (arg0, 1)))));
7126 return t;
7128 /* Pull arithmetic ops out of the CLEANUP_POINT_EXPR where
7129 appropriate. */
7130 case CLEANUP_POINT_EXPR:
7131 if (! has_cleanups (arg0))
7132 return TREE_OPERAND (t, 0);
7135 enum tree_code code0 = TREE_CODE (arg0);
7136 int kind0 = TREE_CODE_CLASS (code0);
7137 tree arg00 = TREE_OPERAND (arg0, 0);
7138 tree arg01;
7140 if (kind0 == '1' || code0 == TRUTH_NOT_EXPR)
7141 return fold (build1 (code0, type,
7142 fold (build1 (CLEANUP_POINT_EXPR,
7143 TREE_TYPE (arg00), arg00))));
7145 if (kind0 == '<' || kind0 == '2'
7146 || code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR
7147 || code0 == TRUTH_AND_EXPR || code0 == TRUTH_OR_EXPR
7148 || code0 == TRUTH_XOR_EXPR)
7150 arg01 = TREE_OPERAND (arg0, 1);
7152 if (TREE_CONSTANT (arg00)
7153 || ((code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR)
7154 && ! has_cleanups (arg00)))
7155 return fold (build (code0, type, arg00,
7156 fold (build1 (CLEANUP_POINT_EXPR,
7157 TREE_TYPE (arg01), arg01))));
7159 if (TREE_CONSTANT (arg01))
7160 return fold (build (code0, type,
7161 fold (build1 (CLEANUP_POINT_EXPR,
7162 TREE_TYPE (arg00), arg00)),
7163 arg01));
7166 return t;
7169 case CALL_EXPR:
7170 /* Check for a built-in function. */
7171 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR
7172 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (expr, 0), 0))
7173 == FUNCTION_DECL)
7174 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (expr, 0), 0)))
7176 tree tmp = fold_builtin (expr);
7177 if (tmp)
7178 return tmp;
7180 return t;
7182 default:
7183 return t;
7184 } /* switch (code) */
7187 /* Determine if first argument is a multiple of second argument. Return 0 if
7188 it is not, or we cannot easily determined it to be.
7190 An example of the sort of thing we care about (at this point; this routine
7191 could surely be made more general, and expanded to do what the *_DIV_EXPR's
7192 fold cases do now) is discovering that
7194 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
7196 is a multiple of
7198 SAVE_EXPR (J * 8)
7200 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
7202 This code also handles discovering that
7204 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
7206 is a multiple of 8 so we don't have to worry about dealing with a
7207 possible remainder.
7209 Note that we *look* inside a SAVE_EXPR only to determine how it was
7210 calculated; it is not safe for fold to do much of anything else with the
7211 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
7212 at run time. For example, the latter example above *cannot* be implemented
7213 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
7214 evaluation time of the original SAVE_EXPR is not necessarily the same at
7215 the time the new expression is evaluated. The only optimization of this
7216 sort that would be valid is changing
7218 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
7220 divided by 8 to
7222 SAVE_EXPR (I) * SAVE_EXPR (J)
7224 (where the same SAVE_EXPR (J) is used in the original and the
7225 transformed version). */
7227 static int
7228 multiple_of_p (type, top, bottom)
7229 tree type;
7230 tree top;
7231 tree bottom;
7233 if (operand_equal_p (top, bottom, 0))
7234 return 1;
7236 if (TREE_CODE (type) != INTEGER_TYPE)
7237 return 0;
7239 switch (TREE_CODE (top))
7241 case MULT_EXPR:
7242 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
7243 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
7245 case PLUS_EXPR:
7246 case MINUS_EXPR:
7247 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
7248 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
7250 case LSHIFT_EXPR:
7251 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
7253 tree op1, t1;
7255 op1 = TREE_OPERAND (top, 1);
7256 /* const_binop may not detect overflow correctly,
7257 so check for it explicitly here. */
7258 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
7259 > TREE_INT_CST_LOW (op1)
7260 && TREE_INT_CST_HIGH (op1) == 0
7261 && 0 != (t1 = convert (type,
7262 const_binop (LSHIFT_EXPR, size_one_node,
7263 op1, 0)))
7264 && ! TREE_OVERFLOW (t1))
7265 return multiple_of_p (type, t1, bottom);
7267 return 0;
7269 case NOP_EXPR:
7270 /* Can't handle conversions from non-integral or wider integral type. */
7271 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
7272 || (TYPE_PRECISION (type)
7273 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
7274 return 0;
7276 /* .. fall through ... */
7278 case SAVE_EXPR:
7279 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
7281 case INTEGER_CST:
7282 if (TREE_CODE (bottom) != INTEGER_CST
7283 || (TREE_UNSIGNED (type)
7284 && (tree_int_cst_sgn (top) < 0
7285 || tree_int_cst_sgn (bottom) < 0)))
7286 return 0;
7287 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
7288 top, bottom, 0));
7290 default:
7291 return 0;
7295 /* Return true if `t' is known to be non-negative. */
7298 tree_expr_nonnegative_p (t)
7299 tree t;
7301 switch (TREE_CODE (t))
7303 case ABS_EXPR:
7304 case FFS_EXPR:
7305 return 1;
7306 case INTEGER_CST:
7307 return tree_int_cst_sgn (t) >= 0;
7308 case TRUNC_DIV_EXPR:
7309 case CEIL_DIV_EXPR:
7310 case FLOOR_DIV_EXPR:
7311 case ROUND_DIV_EXPR:
7312 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7313 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7314 case TRUNC_MOD_EXPR:
7315 case CEIL_MOD_EXPR:
7316 case FLOOR_MOD_EXPR:
7317 case ROUND_MOD_EXPR:
7318 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7319 case COND_EXPR:
7320 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
7321 && tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
7322 case COMPOUND_EXPR:
7323 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7324 case MIN_EXPR:
7325 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7326 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7327 case MAX_EXPR:
7328 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
7329 || tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7330 case MODIFY_EXPR:
7331 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7332 case BIND_EXPR:
7333 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
7334 case SAVE_EXPR:
7335 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7336 case NON_LVALUE_EXPR:
7337 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
7338 case RTL_EXPR:
7339 return rtl_expr_nonnegative_p (RTL_EXPR_RTL (t));
7341 default:
7342 if (truth_value_p (TREE_CODE (t)))
7343 /* Truth values evaluate to 0 or 1, which is nonnegative. */
7344 return 1;
7345 else
7346 /* We don't know sign of `t', so be conservative and return false. */
7347 return 0;
7351 /* Return true if `r' is known to be non-negative.
7352 Only handles constants at the moment. */
7355 rtl_expr_nonnegative_p (r)
7356 rtx r;
7358 switch (GET_CODE (r))
7360 case CONST_INT:
7361 return INTVAL (r) >= 0;
7363 case CONST_DOUBLE:
7364 if (GET_MODE (r) == VOIDmode)
7365 return CONST_DOUBLE_HIGH (r) >= 0;
7366 return 0;
7368 case CONST_VECTOR:
7370 int units, i;
7371 rtx elt;
7373 units = CONST_VECTOR_NUNITS (r);
7375 for (i = 0; i < units; ++i)
7377 elt = CONST_VECTOR_ELT (r, i);
7378 if (!rtl_expr_nonnegative_p (elt))
7379 return 0;
7382 return 1;
7385 case SYMBOL_REF:
7386 case LABEL_REF:
7387 /* These are always nonnegative. */
7388 return 1;
7390 default:
7391 return 0;
7395 #include "gt-fold-const.h"