Add x prefix to v850e case for handling --with-cpu=v850e.
[official-gcc.git] / gcc / alias.c
blob914b1532e5d7192c6408879d48d3c18af7456cd6
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "function.h"
28 #include "expr.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "output.h"
34 #include "toplev.h"
35 #include "cselib.h"
36 #include "splay-tree.h"
37 #include "ggc.h"
38 #include "langhooks.h"
39 #include "target.h"
41 /* The alias sets assigned to MEMs assist the back-end in determining
42 which MEMs can alias which other MEMs. In general, two MEMs in
43 different alias sets cannot alias each other, with one important
44 exception. Consider something like:
46 struct S {int i; double d; };
48 a store to an `S' can alias something of either type `int' or type
49 `double'. (However, a store to an `int' cannot alias a `double'
50 and vice versa.) We indicate this via a tree structure that looks
51 like:
52 struct S
53 / \
54 / \
55 |/_ _\|
56 int double
58 (The arrows are directed and point downwards.)
59 In this situation we say the alias set for `struct S' is the
60 `superset' and that those for `int' and `double' are `subsets'.
62 To see whether two alias sets can point to the same memory, we must
63 see if either alias set is a subset of the other. We need not trace
64 past immediate descendents, however, since we propagate all
65 grandchildren up one level.
67 Alias set zero is implicitly a superset of all other alias sets.
68 However, this is no actual entry for alias set zero. It is an
69 error to attempt to explicitly construct a subset of zero. */
71 typedef struct alias_set_entry
73 /* The alias set number, as stored in MEM_ALIAS_SET. */
74 HOST_WIDE_INT alias_set;
76 /* The children of the alias set. These are not just the immediate
77 children, but, in fact, all descendents. So, if we have:
79 struct T { struct S s; float f; }
81 continuing our example above, the children here will be all of
82 `int', `double', `float', and `struct S'. */
83 splay_tree children;
85 /* Nonzero if would have a child of zero: this effectively makes this
86 alias set the same as alias set zero. */
87 int has_zero_child;
88 } *alias_set_entry;
90 static int rtx_equal_for_memref_p PARAMS ((rtx, rtx));
91 static rtx find_symbolic_term PARAMS ((rtx));
92 rtx get_addr PARAMS ((rtx));
93 static int memrefs_conflict_p PARAMS ((int, rtx, int, rtx,
94 HOST_WIDE_INT));
95 static void record_set PARAMS ((rtx, rtx, void *));
96 static rtx find_base_term PARAMS ((rtx));
97 static int base_alias_check PARAMS ((rtx, rtx, enum machine_mode,
98 enum machine_mode));
99 static rtx find_base_value PARAMS ((rtx));
100 static int mems_in_disjoint_alias_sets_p PARAMS ((rtx, rtx));
101 static int insert_subset_children PARAMS ((splay_tree_node, void*));
102 static tree find_base_decl PARAMS ((tree));
103 static alias_set_entry get_alias_set_entry PARAMS ((HOST_WIDE_INT));
104 static rtx fixed_scalar_and_varying_struct_p PARAMS ((rtx, rtx, rtx, rtx,
105 int (*) (rtx, int)));
106 static int aliases_everything_p PARAMS ((rtx));
107 static bool nonoverlapping_component_refs_p PARAMS ((tree, tree));
108 static tree decl_for_component_ref PARAMS ((tree));
109 static rtx adjust_offset_for_component_ref PARAMS ((tree, rtx));
110 static int nonoverlapping_memrefs_p PARAMS ((rtx, rtx));
111 static int write_dependence_p PARAMS ((rtx, rtx, int));
113 static int nonlocal_mentioned_p_1 PARAMS ((rtx *, void *));
114 static int nonlocal_mentioned_p PARAMS ((rtx));
115 static int nonlocal_referenced_p_1 PARAMS ((rtx *, void *));
116 static int nonlocal_referenced_p PARAMS ((rtx));
117 static int nonlocal_set_p_1 PARAMS ((rtx *, void *));
118 static int nonlocal_set_p PARAMS ((rtx));
120 /* Set up all info needed to perform alias analysis on memory references. */
122 /* Returns the size in bytes of the mode of X. */
123 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
125 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
126 different alias sets. We ignore alias sets in functions making use
127 of variable arguments because the va_arg macros on some systems are
128 not legal ANSI C. */
129 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
130 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
132 /* Cap the number of passes we make over the insns propagating alias
133 information through set chains. 10 is a completely arbitrary choice. */
134 #define MAX_ALIAS_LOOP_PASSES 10
136 /* reg_base_value[N] gives an address to which register N is related.
137 If all sets after the first add or subtract to the current value
138 or otherwise modify it so it does not point to a different top level
139 object, reg_base_value[N] is equal to the address part of the source
140 of the first set.
142 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
143 expressions represent certain special values: function arguments and
144 the stack, frame, and argument pointers.
146 The contents of an ADDRESS is not normally used, the mode of the
147 ADDRESS determines whether the ADDRESS is a function argument or some
148 other special value. Pointer equality, not rtx_equal_p, determines whether
149 two ADDRESS expressions refer to the same base address.
151 The only use of the contents of an ADDRESS is for determining if the
152 current function performs nonlocal memory memory references for the
153 purposes of marking the function as a constant function. */
155 static GTY((length ("reg_base_value_size"))) rtx *reg_base_value;
156 static rtx *new_reg_base_value;
157 static unsigned int reg_base_value_size; /* size of reg_base_value array */
159 /* Static hunks of RTL used by the aliasing code; these are initialized
160 once per function to avoid unnecessary RTL allocations. */
161 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
163 #define REG_BASE_VALUE(X) \
164 (REGNO (X) < reg_base_value_size \
165 ? reg_base_value[REGNO (X)] : 0)
167 /* Vector of known invariant relationships between registers. Set in
168 loop unrolling. Indexed by register number, if nonzero the value
169 is an expression describing this register in terms of another.
171 The length of this array is REG_BASE_VALUE_SIZE.
173 Because this array contains only pseudo registers it has no effect
174 after reload. */
175 static rtx *alias_invariant;
177 /* Vector indexed by N giving the initial (unchanging) value known for
178 pseudo-register N. This array is initialized in
179 init_alias_analysis, and does not change until end_alias_analysis
180 is called. */
181 rtx *reg_known_value;
183 /* Indicates number of valid entries in reg_known_value. */
184 static unsigned int reg_known_value_size;
186 /* Vector recording for each reg_known_value whether it is due to a
187 REG_EQUIV note. Future passes (viz., reload) may replace the
188 pseudo with the equivalent expression and so we account for the
189 dependences that would be introduced if that happens.
191 The REG_EQUIV notes created in assign_parms may mention the arg
192 pointer, and there are explicit insns in the RTL that modify the
193 arg pointer. Thus we must ensure that such insns don't get
194 scheduled across each other because that would invalidate the
195 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
196 wrong, but solving the problem in the scheduler will likely give
197 better code, so we do it here. */
198 char *reg_known_equiv_p;
200 /* True when scanning insns from the start of the rtl to the
201 NOTE_INSN_FUNCTION_BEG note. */
202 static int copying_arguments;
204 /* The splay-tree used to store the various alias set entries. */
205 static splay_tree alias_sets;
207 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
208 such an entry, or NULL otherwise. */
210 static alias_set_entry
211 get_alias_set_entry (alias_set)
212 HOST_WIDE_INT alias_set;
214 splay_tree_node sn
215 = splay_tree_lookup (alias_sets, (splay_tree_key) alias_set);
217 return sn != 0 ? ((alias_set_entry) sn->value) : 0;
220 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
221 the two MEMs cannot alias each other. */
223 static int
224 mems_in_disjoint_alias_sets_p (mem1, mem2)
225 rtx mem1;
226 rtx mem2;
228 #ifdef ENABLE_CHECKING
229 /* Perform a basic sanity check. Namely, that there are no alias sets
230 if we're not using strict aliasing. This helps to catch bugs
231 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
232 where a MEM is allocated in some way other than by the use of
233 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
234 use alias sets to indicate that spilled registers cannot alias each
235 other, we might need to remove this check. */
236 if (! flag_strict_aliasing
237 && (MEM_ALIAS_SET (mem1) != 0 || MEM_ALIAS_SET (mem2) != 0))
238 abort ();
239 #endif
241 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
244 /* Insert the NODE into the splay tree given by DATA. Used by
245 record_alias_subset via splay_tree_foreach. */
247 static int
248 insert_subset_children (node, data)
249 splay_tree_node node;
250 void *data;
252 splay_tree_insert ((splay_tree) data, node->key, node->value);
254 return 0;
257 /* Return 1 if the two specified alias sets may conflict. */
260 alias_sets_conflict_p (set1, set2)
261 HOST_WIDE_INT set1, set2;
263 alias_set_entry ase;
265 /* If have no alias set information for one of the operands, we have
266 to assume it can alias anything. */
267 if (set1 == 0 || set2 == 0
268 /* If the two alias sets are the same, they may alias. */
269 || set1 == set2)
270 return 1;
272 /* See if the first alias set is a subset of the second. */
273 ase = get_alias_set_entry (set1);
274 if (ase != 0
275 && (ase->has_zero_child
276 || splay_tree_lookup (ase->children,
277 (splay_tree_key) set2)))
278 return 1;
280 /* Now do the same, but with the alias sets reversed. */
281 ase = get_alias_set_entry (set2);
282 if (ase != 0
283 && (ase->has_zero_child
284 || splay_tree_lookup (ase->children,
285 (splay_tree_key) set1)))
286 return 1;
288 /* The two alias sets are distinct and neither one is the
289 child of the other. Therefore, they cannot alias. */
290 return 0;
293 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
294 has any readonly fields. If any of the fields have types that
295 contain readonly fields, return true as well. */
298 readonly_fields_p (type)
299 tree type;
301 tree field;
303 if (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
304 && TREE_CODE (type) != QUAL_UNION_TYPE)
305 return 0;
307 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
308 if (TREE_CODE (field) == FIELD_DECL
309 && (TREE_READONLY (field)
310 || readonly_fields_p (TREE_TYPE (field))))
311 return 1;
313 return 0;
316 /* Return 1 if any MEM object of type T1 will always conflict (using the
317 dependency routines in this file) with any MEM object of type T2.
318 This is used when allocating temporary storage. If T1 and/or T2 are
319 NULL_TREE, it means we know nothing about the storage. */
322 objects_must_conflict_p (t1, t2)
323 tree t1, t2;
325 /* If neither has a type specified, we don't know if they'll conflict
326 because we may be using them to store objects of various types, for
327 example the argument and local variables areas of inlined functions. */
328 if (t1 == 0 && t2 == 0)
329 return 0;
331 /* If one or the other has readonly fields or is readonly,
332 then they may not conflict. */
333 if ((t1 != 0 && readonly_fields_p (t1))
334 || (t2 != 0 && readonly_fields_p (t2))
335 || (t1 != 0 && TYPE_READONLY (t1))
336 || (t2 != 0 && TYPE_READONLY (t2)))
337 return 0;
339 /* If they are the same type, they must conflict. */
340 if (t1 == t2
341 /* Likewise if both are volatile. */
342 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
343 return 1;
345 /* If one is aggregate and the other is scalar then they may not
346 conflict. */
347 if ((t1 != 0 && AGGREGATE_TYPE_P (t1))
348 != (t2 != 0 && AGGREGATE_TYPE_P (t2)))
349 return 0;
351 /* Otherwise they conflict only if the alias sets conflict. */
352 return alias_sets_conflict_p (t1 ? get_alias_set (t1) : 0,
353 t2 ? get_alias_set (t2) : 0);
356 /* T is an expression with pointer type. Find the DECL on which this
357 expression is based. (For example, in `a[i]' this would be `a'.)
358 If there is no such DECL, or a unique decl cannot be determined,
359 NULL_TREE is returned. */
361 static tree
362 find_base_decl (t)
363 tree t;
365 tree d0, d1, d2;
367 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
368 return 0;
370 /* If this is a declaration, return it. */
371 if (TREE_CODE_CLASS (TREE_CODE (t)) == 'd')
372 return t;
374 /* Handle general expressions. It would be nice to deal with
375 COMPONENT_REFs here. If we could tell that `a' and `b' were the
376 same, then `a->f' and `b->f' are also the same. */
377 switch (TREE_CODE_CLASS (TREE_CODE (t)))
379 case '1':
380 return find_base_decl (TREE_OPERAND (t, 0));
382 case '2':
383 /* Return 0 if found in neither or both are the same. */
384 d0 = find_base_decl (TREE_OPERAND (t, 0));
385 d1 = find_base_decl (TREE_OPERAND (t, 1));
386 if (d0 == d1)
387 return d0;
388 else if (d0 == 0)
389 return d1;
390 else if (d1 == 0)
391 return d0;
392 else
393 return 0;
395 case '3':
396 d0 = find_base_decl (TREE_OPERAND (t, 0));
397 d1 = find_base_decl (TREE_OPERAND (t, 1));
398 d2 = find_base_decl (TREE_OPERAND (t, 2));
400 /* Set any nonzero values from the last, then from the first. */
401 if (d1 == 0) d1 = d2;
402 if (d0 == 0) d0 = d1;
403 if (d1 == 0) d1 = d0;
404 if (d2 == 0) d2 = d1;
406 /* At this point all are nonzero or all are zero. If all three are the
407 same, return it. Otherwise, return zero. */
408 return (d0 == d1 && d1 == d2) ? d0 : 0;
410 default:
411 return 0;
415 /* Return 1 if all the nested component references handled by
416 get_inner_reference in T are such that we can address the object in T. */
419 can_address_p (t)
420 tree t;
422 /* If we're at the end, it is vacuously addressable. */
423 if (! handled_component_p (t))
424 return 1;
426 /* Bitfields are never addressable. */
427 else if (TREE_CODE (t) == BIT_FIELD_REF)
428 return 0;
430 /* Fields are addressable unless they are marked as nonaddressable or
431 the containing type has alias set 0. */
432 else if (TREE_CODE (t) == COMPONENT_REF
433 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1))
434 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
435 && can_address_p (TREE_OPERAND (t, 0)))
436 return 1;
438 /* Likewise for arrays. */
439 else if ((TREE_CODE (t) == ARRAY_REF || TREE_CODE (t) == ARRAY_RANGE_REF)
440 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0)))
441 && get_alias_set (TREE_TYPE (TREE_OPERAND (t, 0))) != 0
442 && can_address_p (TREE_OPERAND (t, 0)))
443 return 1;
445 return 0;
448 /* Return the alias set for T, which may be either a type or an
449 expression. Call language-specific routine for help, if needed. */
451 HOST_WIDE_INT
452 get_alias_set (t)
453 tree t;
455 HOST_WIDE_INT set;
457 /* If we're not doing any alias analysis, just assume everything
458 aliases everything else. Also return 0 if this or its type is
459 an error. */
460 if (! flag_strict_aliasing || t == error_mark_node
461 || (! TYPE_P (t)
462 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
463 return 0;
465 /* We can be passed either an expression or a type. This and the
466 language-specific routine may make mutually-recursive calls to each other
467 to figure out what to do. At each juncture, we see if this is a tree
468 that the language may need to handle specially. First handle things that
469 aren't types. */
470 if (! TYPE_P (t))
472 tree inner = t;
473 tree placeholder_ptr = 0;
475 /* Remove any nops, then give the language a chance to do
476 something with this tree before we look at it. */
477 STRIP_NOPS (t);
478 set = (*lang_hooks.get_alias_set) (t);
479 if (set != -1)
480 return set;
482 /* First see if the actual object referenced is an INDIRECT_REF from a
483 restrict-qualified pointer or a "void *". Replace
484 PLACEHOLDER_EXPRs. */
485 while (TREE_CODE (inner) == PLACEHOLDER_EXPR
486 || handled_component_p (inner))
488 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
489 inner = find_placeholder (inner, &placeholder_ptr);
490 else
491 inner = TREE_OPERAND (inner, 0);
493 STRIP_NOPS (inner);
496 /* Check for accesses through restrict-qualified pointers. */
497 if (TREE_CODE (inner) == INDIRECT_REF)
499 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
501 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
503 /* If we haven't computed the actual alias set, do it now. */
504 if (DECL_POINTER_ALIAS_SET (decl) == -2)
506 /* No two restricted pointers can point at the same thing.
507 However, a restricted pointer can point at the same thing
508 as an unrestricted pointer, if that unrestricted pointer
509 is based on the restricted pointer. So, we make the
510 alias set for the restricted pointer a subset of the
511 alias set for the type pointed to by the type of the
512 decl. */
513 HOST_WIDE_INT pointed_to_alias_set
514 = get_alias_set (TREE_TYPE (TREE_TYPE (decl)));
516 if (pointed_to_alias_set == 0)
517 /* It's not legal to make a subset of alias set zero. */
519 else
521 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
522 record_alias_subset (pointed_to_alias_set,
523 DECL_POINTER_ALIAS_SET (decl));
527 /* We use the alias set indicated in the declaration. */
528 return DECL_POINTER_ALIAS_SET (decl);
531 /* If we have an INDIRECT_REF via a void pointer, we don't
532 know anything about what that might alias. */
533 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE)
534 return 0;
537 /* Otherwise, pick up the outermost object that we could have a pointer
538 to, processing conversion and PLACEHOLDER_EXPR as above. */
539 placeholder_ptr = 0;
540 while (TREE_CODE (t) == PLACEHOLDER_EXPR
541 || (handled_component_p (t) && ! can_address_p (t)))
543 if (TREE_CODE (t) == PLACEHOLDER_EXPR)
544 t = find_placeholder (t, &placeholder_ptr);
545 else
546 t = TREE_OPERAND (t, 0);
548 STRIP_NOPS (t);
551 /* If we've already determined the alias set for a decl, just return
552 it. This is necessary for C++ anonymous unions, whose component
553 variables don't look like union members (boo!). */
554 if (TREE_CODE (t) == VAR_DECL
555 && DECL_RTL_SET_P (t) && GET_CODE (DECL_RTL (t)) == MEM)
556 return MEM_ALIAS_SET (DECL_RTL (t));
558 /* Now all we care about is the type. */
559 t = TREE_TYPE (t);
562 /* Variant qualifiers don't affect the alias set, so get the main
563 variant. If this is a type with a known alias set, return it. */
564 t = TYPE_MAIN_VARIANT (t);
565 if (TYPE_ALIAS_SET_KNOWN_P (t))
566 return TYPE_ALIAS_SET (t);
568 /* See if the language has special handling for this type. */
569 set = (*lang_hooks.get_alias_set) (t);
570 if (set != -1)
571 return set;
573 /* There are no objects of FUNCTION_TYPE, so there's no point in
574 using up an alias set for them. (There are, of course, pointers
575 and references to functions, but that's different.) */
576 else if (TREE_CODE (t) == FUNCTION_TYPE)
577 set = 0;
579 /* Unless the language specifies otherwise, let vector types alias
580 their components. This avoids some nasty type punning issues in
581 normal usage. And indeed lets vectors be treated more like an
582 array slice. */
583 else if (TREE_CODE (t) == VECTOR_TYPE)
584 set = get_alias_set (TREE_TYPE (t));
586 else
587 /* Otherwise make a new alias set for this type. */
588 set = new_alias_set ();
590 TYPE_ALIAS_SET (t) = set;
592 /* If this is an aggregate type, we must record any component aliasing
593 information. */
594 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
595 record_component_aliases (t);
597 return set;
600 /* Return a brand-new alias set. */
602 HOST_WIDE_INT
603 new_alias_set ()
605 static HOST_WIDE_INT last_alias_set;
607 if (flag_strict_aliasing)
608 return ++last_alias_set;
609 else
610 return 0;
613 /* Indicate that things in SUBSET can alias things in SUPERSET, but
614 not vice versa. For example, in C, a store to an `int' can alias a
615 structure containing an `int', but not vice versa. Here, the
616 structure would be the SUPERSET and `int' the SUBSET. This
617 function should be called only once per SUPERSET/SUBSET pair.
619 It is illegal for SUPERSET to be zero; everything is implicitly a
620 subset of alias set zero. */
622 void
623 record_alias_subset (superset, subset)
624 HOST_WIDE_INT superset;
625 HOST_WIDE_INT subset;
627 alias_set_entry superset_entry;
628 alias_set_entry subset_entry;
630 /* It is possible in complex type situations for both sets to be the same,
631 in which case we can ignore this operation. */
632 if (superset == subset)
633 return;
635 if (superset == 0)
636 abort ();
638 superset_entry = get_alias_set_entry (superset);
639 if (superset_entry == 0)
641 /* Create an entry for the SUPERSET, so that we have a place to
642 attach the SUBSET. */
643 superset_entry
644 = (alias_set_entry) xmalloc (sizeof (struct alias_set_entry));
645 superset_entry->alias_set = superset;
646 superset_entry->children
647 = splay_tree_new (splay_tree_compare_ints, 0, 0);
648 superset_entry->has_zero_child = 0;
649 splay_tree_insert (alias_sets, (splay_tree_key) superset,
650 (splay_tree_value) superset_entry);
653 if (subset == 0)
654 superset_entry->has_zero_child = 1;
655 else
657 subset_entry = get_alias_set_entry (subset);
658 /* If there is an entry for the subset, enter all of its children
659 (if they are not already present) as children of the SUPERSET. */
660 if (subset_entry)
662 if (subset_entry->has_zero_child)
663 superset_entry->has_zero_child = 1;
665 splay_tree_foreach (subset_entry->children, insert_subset_children,
666 superset_entry->children);
669 /* Enter the SUBSET itself as a child of the SUPERSET. */
670 splay_tree_insert (superset_entry->children,
671 (splay_tree_key) subset, 0);
675 /* Record that component types of TYPE, if any, are part of that type for
676 aliasing purposes. For record types, we only record component types
677 for fields that are marked addressable. For array types, we always
678 record the component types, so the front end should not call this
679 function if the individual component aren't addressable. */
681 void
682 record_component_aliases (type)
683 tree type;
685 HOST_WIDE_INT superset = get_alias_set (type);
686 tree field;
688 if (superset == 0)
689 return;
691 switch (TREE_CODE (type))
693 case ARRAY_TYPE:
694 if (! TYPE_NONALIASED_COMPONENT (type))
695 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
696 break;
698 case RECORD_TYPE:
699 case UNION_TYPE:
700 case QUAL_UNION_TYPE:
701 /* Recursively record aliases for the base classes, if there are any */
702 if (TYPE_BINFO (type) != NULL && TYPE_BINFO_BASETYPES (type) != NULL)
704 int i;
705 for (i = 0; i < TREE_VEC_LENGTH (TYPE_BINFO_BASETYPES (type)); i++)
707 tree binfo = TREE_VEC_ELT (TYPE_BINFO_BASETYPES (type), i);
708 record_alias_subset (superset,
709 get_alias_set (BINFO_TYPE (binfo)));
712 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
713 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
714 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
715 break;
717 case COMPLEX_TYPE:
718 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
719 break;
721 default:
722 break;
726 /* Allocate an alias set for use in storing and reading from the varargs
727 spill area. */
729 HOST_WIDE_INT
730 get_varargs_alias_set ()
732 static HOST_WIDE_INT set = -1;
734 if (set == -1)
735 set = new_alias_set ();
737 return set;
740 /* Likewise, but used for the fixed portions of the frame, e.g., register
741 save areas. */
743 HOST_WIDE_INT
744 get_frame_alias_set ()
746 static HOST_WIDE_INT set = -1;
748 if (set == -1)
749 set = new_alias_set ();
751 return set;
754 /* Inside SRC, the source of a SET, find a base address. */
756 static rtx
757 find_base_value (src)
758 rtx src;
760 unsigned int regno;
762 switch (GET_CODE (src))
764 case SYMBOL_REF:
765 case LABEL_REF:
766 return src;
768 case REG:
769 regno = REGNO (src);
770 /* At the start of a function, argument registers have known base
771 values which may be lost later. Returning an ADDRESS
772 expression here allows optimization based on argument values
773 even when the argument registers are used for other purposes. */
774 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
775 return new_reg_base_value[regno];
777 /* If a pseudo has a known base value, return it. Do not do this
778 for non-fixed hard regs since it can result in a circular
779 dependency chain for registers which have values at function entry.
781 The test above is not sufficient because the scheduler may move
782 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
783 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
784 && regno < reg_base_value_size
785 && reg_base_value[regno])
786 return reg_base_value[regno];
788 return src;
790 case MEM:
791 /* Check for an argument passed in memory. Only record in the
792 copying-arguments block; it is too hard to track changes
793 otherwise. */
794 if (copying_arguments
795 && (XEXP (src, 0) == arg_pointer_rtx
796 || (GET_CODE (XEXP (src, 0)) == PLUS
797 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
798 return gen_rtx_ADDRESS (VOIDmode, src);
799 return 0;
801 case CONST:
802 src = XEXP (src, 0);
803 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
804 break;
806 /* ... fall through ... */
808 case PLUS:
809 case MINUS:
811 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
813 /* If either operand is a REG that is a known pointer, then it
814 is the base. */
815 if (REG_P (src_0) && REG_POINTER (src_0))
816 return find_base_value (src_0);
817 if (REG_P (src_1) && REG_POINTER (src_1))
818 return find_base_value (src_1);
820 /* If either operand is a REG, then see if we already have
821 a known value for it. */
822 if (REG_P (src_0))
824 temp = find_base_value (src_0);
825 if (temp != 0)
826 src_0 = temp;
829 if (REG_P (src_1))
831 temp = find_base_value (src_1);
832 if (temp!= 0)
833 src_1 = temp;
836 /* If either base is named object or a special address
837 (like an argument or stack reference), then use it for the
838 base term. */
839 if (src_0 != 0
840 && (GET_CODE (src_0) == SYMBOL_REF
841 || GET_CODE (src_0) == LABEL_REF
842 || (GET_CODE (src_0) == ADDRESS
843 && GET_MODE (src_0) != VOIDmode)))
844 return src_0;
846 if (src_1 != 0
847 && (GET_CODE (src_1) == SYMBOL_REF
848 || GET_CODE (src_1) == LABEL_REF
849 || (GET_CODE (src_1) == ADDRESS
850 && GET_MODE (src_1) != VOIDmode)))
851 return src_1;
853 /* Guess which operand is the base address:
854 If either operand is a symbol, then it is the base. If
855 either operand is a CONST_INT, then the other is the base. */
856 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
857 return find_base_value (src_0);
858 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
859 return find_base_value (src_1);
861 return 0;
864 case LO_SUM:
865 /* The standard form is (lo_sum reg sym) so look only at the
866 second operand. */
867 return find_base_value (XEXP (src, 1));
869 case AND:
870 /* If the second operand is constant set the base
871 address to the first operand. */
872 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
873 return find_base_value (XEXP (src, 0));
874 return 0;
876 case TRUNCATE:
877 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
878 break;
879 /* Fall through. */
880 case HIGH:
881 case PRE_INC:
882 case PRE_DEC:
883 case POST_INC:
884 case POST_DEC:
885 case PRE_MODIFY:
886 case POST_MODIFY:
887 return find_base_value (XEXP (src, 0));
889 case ZERO_EXTEND:
890 case SIGN_EXTEND: /* used for NT/Alpha pointers */
892 rtx temp = find_base_value (XEXP (src, 0));
894 #ifdef POINTERS_EXTEND_UNSIGNED
895 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
896 temp = convert_memory_address (Pmode, temp);
897 #endif
899 return temp;
902 default:
903 break;
906 return 0;
909 /* Called from init_alias_analysis indirectly through note_stores. */
911 /* While scanning insns to find base values, reg_seen[N] is nonzero if
912 register N has been set in this function. */
913 static char *reg_seen;
915 /* Addresses which are known not to alias anything else are identified
916 by a unique integer. */
917 static int unique_id;
919 static void
920 record_set (dest, set, data)
921 rtx dest, set;
922 void *data ATTRIBUTE_UNUSED;
924 unsigned regno;
925 rtx src;
927 if (GET_CODE (dest) != REG)
928 return;
930 regno = REGNO (dest);
932 if (regno >= reg_base_value_size)
933 abort ();
935 if (set)
937 /* A CLOBBER wipes out any old value but does not prevent a previously
938 unset register from acquiring a base address (i.e. reg_seen is not
939 set). */
940 if (GET_CODE (set) == CLOBBER)
942 new_reg_base_value[regno] = 0;
943 return;
945 src = SET_SRC (set);
947 else
949 if (reg_seen[regno])
951 new_reg_base_value[regno] = 0;
952 return;
954 reg_seen[regno] = 1;
955 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
956 GEN_INT (unique_id++));
957 return;
960 /* This is not the first set. If the new value is not related to the
961 old value, forget the base value. Note that the following code is
962 not detected:
963 extern int x, y; int *p = &x; p += (&y-&x);
964 ANSI C does not allow computing the difference of addresses
965 of distinct top level objects. */
966 if (new_reg_base_value[regno])
967 switch (GET_CODE (src))
969 case LO_SUM:
970 case MINUS:
971 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
972 new_reg_base_value[regno] = 0;
973 break;
974 case PLUS:
975 /* If the value we add in the PLUS is also a valid base value,
976 this might be the actual base value, and the original value
977 an index. */
979 rtx other = NULL_RTX;
981 if (XEXP (src, 0) == dest)
982 other = XEXP (src, 1);
983 else if (XEXP (src, 1) == dest)
984 other = XEXP (src, 0);
986 if (! other || find_base_value (other))
987 new_reg_base_value[regno] = 0;
988 break;
990 case AND:
991 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
992 new_reg_base_value[regno] = 0;
993 break;
994 default:
995 new_reg_base_value[regno] = 0;
996 break;
998 /* If this is the first set of a register, record the value. */
999 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1000 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1001 new_reg_base_value[regno] = find_base_value (src);
1003 reg_seen[regno] = 1;
1006 /* Called from loop optimization when a new pseudo-register is
1007 created. It indicates that REGNO is being set to VAL. f INVARIANT
1008 is true then this value also describes an invariant relationship
1009 which can be used to deduce that two registers with unknown values
1010 are different. */
1012 void
1013 record_base_value (regno, val, invariant)
1014 unsigned int regno;
1015 rtx val;
1016 int invariant;
1018 if (regno >= reg_base_value_size)
1019 return;
1021 if (invariant && alias_invariant)
1022 alias_invariant[regno] = val;
1024 if (GET_CODE (val) == REG)
1026 if (REGNO (val) < reg_base_value_size)
1027 reg_base_value[regno] = reg_base_value[REGNO (val)];
1029 return;
1032 reg_base_value[regno] = find_base_value (val);
1035 /* Clear alias info for a register. This is used if an RTL transformation
1036 changes the value of a register. This is used in flow by AUTO_INC_DEC
1037 optimizations. We don't need to clear reg_base_value, since flow only
1038 changes the offset. */
1040 void
1041 clear_reg_alias_info (reg)
1042 rtx reg;
1044 unsigned int regno = REGNO (reg);
1046 if (regno < reg_known_value_size && regno >= FIRST_PSEUDO_REGISTER)
1047 reg_known_value[regno] = reg;
1050 /* Returns a canonical version of X, from the point of view alias
1051 analysis. (For example, if X is a MEM whose address is a register,
1052 and the register has a known value (say a SYMBOL_REF), then a MEM
1053 whose address is the SYMBOL_REF is returned.) */
1056 canon_rtx (x)
1057 rtx x;
1059 /* Recursively look for equivalences. */
1060 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
1061 && REGNO (x) < reg_known_value_size)
1062 return reg_known_value[REGNO (x)] == x
1063 ? x : canon_rtx (reg_known_value[REGNO (x)]);
1064 else if (GET_CODE (x) == PLUS)
1066 rtx x0 = canon_rtx (XEXP (x, 0));
1067 rtx x1 = canon_rtx (XEXP (x, 1));
1069 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1071 if (GET_CODE (x0) == CONST_INT)
1072 return plus_constant (x1, INTVAL (x0));
1073 else if (GET_CODE (x1) == CONST_INT)
1074 return plus_constant (x0, INTVAL (x1));
1075 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1079 /* This gives us much better alias analysis when called from
1080 the loop optimizer. Note we want to leave the original
1081 MEM alone, but need to return the canonicalized MEM with
1082 all the flags with their original values. */
1083 else if (GET_CODE (x) == MEM)
1084 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1086 return x;
1089 /* Return 1 if X and Y are identical-looking rtx's.
1091 We use the data in reg_known_value above to see if two registers with
1092 different numbers are, in fact, equivalent. */
1094 static int
1095 rtx_equal_for_memref_p (x, y)
1096 rtx x, y;
1098 int i;
1099 int j;
1100 enum rtx_code code;
1101 const char *fmt;
1103 if (x == 0 && y == 0)
1104 return 1;
1105 if (x == 0 || y == 0)
1106 return 0;
1108 x = canon_rtx (x);
1109 y = canon_rtx (y);
1111 if (x == y)
1112 return 1;
1114 code = GET_CODE (x);
1115 /* Rtx's of different codes cannot be equal. */
1116 if (code != GET_CODE (y))
1117 return 0;
1119 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1120 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1122 if (GET_MODE (x) != GET_MODE (y))
1123 return 0;
1125 /* Some RTL can be compared without a recursive examination. */
1126 switch (code)
1128 case VALUE:
1129 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
1131 case REG:
1132 return REGNO (x) == REGNO (y);
1134 case LABEL_REF:
1135 return XEXP (x, 0) == XEXP (y, 0);
1137 case SYMBOL_REF:
1138 return XSTR (x, 0) == XSTR (y, 0);
1140 case CONST_INT:
1141 case CONST_DOUBLE:
1142 /* There's no need to compare the contents of CONST_DOUBLEs or
1143 CONST_INTs because pointer equality is a good enough
1144 comparison for these nodes. */
1145 return 0;
1147 case ADDRESSOF:
1148 return (XINT (x, 1) == XINT (y, 1)
1149 && rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0)));
1151 default:
1152 break;
1155 /* For commutative operations, the RTX match if the operand match in any
1156 order. Also handle the simple binary and unary cases without a loop. */
1157 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
1158 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1159 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1160 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1161 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1162 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
1163 return (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1164 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)));
1165 else if (GET_RTX_CLASS (code) == '1')
1166 return rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0));
1168 /* Compare the elements. If any pair of corresponding elements
1169 fail to match, return 0 for the whole things.
1171 Limit cases to types which actually appear in addresses. */
1173 fmt = GET_RTX_FORMAT (code);
1174 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1176 switch (fmt[i])
1178 case 'i':
1179 if (XINT (x, i) != XINT (y, i))
1180 return 0;
1181 break;
1183 case 'E':
1184 /* Two vectors must have the same length. */
1185 if (XVECLEN (x, i) != XVECLEN (y, i))
1186 return 0;
1188 /* And the corresponding elements must match. */
1189 for (j = 0; j < XVECLEN (x, i); j++)
1190 if (rtx_equal_for_memref_p (XVECEXP (x, i, j),
1191 XVECEXP (y, i, j)) == 0)
1192 return 0;
1193 break;
1195 case 'e':
1196 if (rtx_equal_for_memref_p (XEXP (x, i), XEXP (y, i)) == 0)
1197 return 0;
1198 break;
1200 /* This can happen for asm operands. */
1201 case 's':
1202 if (strcmp (XSTR (x, i), XSTR (y, i)))
1203 return 0;
1204 break;
1206 /* This can happen for an asm which clobbers memory. */
1207 case '0':
1208 break;
1210 /* It is believed that rtx's at this level will never
1211 contain anything but integers and other rtx's,
1212 except for within LABEL_REFs and SYMBOL_REFs. */
1213 default:
1214 abort ();
1217 return 1;
1220 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1221 X and return it, or return 0 if none found. */
1223 static rtx
1224 find_symbolic_term (x)
1225 rtx x;
1227 int i;
1228 enum rtx_code code;
1229 const char *fmt;
1231 code = GET_CODE (x);
1232 if (code == SYMBOL_REF || code == LABEL_REF)
1233 return x;
1234 if (GET_RTX_CLASS (code) == 'o')
1235 return 0;
1237 fmt = GET_RTX_FORMAT (code);
1238 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1240 rtx t;
1242 if (fmt[i] == 'e')
1244 t = find_symbolic_term (XEXP (x, i));
1245 if (t != 0)
1246 return t;
1248 else if (fmt[i] == 'E')
1249 break;
1251 return 0;
1254 static rtx
1255 find_base_term (x)
1256 rtx x;
1258 cselib_val *val;
1259 struct elt_loc_list *l;
1261 #if defined (FIND_BASE_TERM)
1262 /* Try machine-dependent ways to find the base term. */
1263 x = FIND_BASE_TERM (x);
1264 #endif
1266 switch (GET_CODE (x))
1268 case REG:
1269 return REG_BASE_VALUE (x);
1271 case TRUNCATE:
1272 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1273 return 0;
1274 /* Fall through. */
1275 case HIGH:
1276 case PRE_INC:
1277 case PRE_DEC:
1278 case POST_INC:
1279 case POST_DEC:
1280 case PRE_MODIFY:
1281 case POST_MODIFY:
1282 return find_base_term (XEXP (x, 0));
1284 case ZERO_EXTEND:
1285 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1287 rtx temp = find_base_term (XEXP (x, 0));
1289 #ifdef POINTERS_EXTEND_UNSIGNED
1290 if (temp != 0 && CONSTANT_P (temp) && GET_MODE (temp) != Pmode)
1291 temp = convert_memory_address (Pmode, temp);
1292 #endif
1294 return temp;
1297 case VALUE:
1298 val = CSELIB_VAL_PTR (x);
1299 for (l = val->locs; l; l = l->next)
1300 if ((x = find_base_term (l->loc)) != 0)
1301 return x;
1302 return 0;
1304 case CONST:
1305 x = XEXP (x, 0);
1306 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1307 return 0;
1308 /* fall through */
1309 case LO_SUM:
1310 case PLUS:
1311 case MINUS:
1313 rtx tmp1 = XEXP (x, 0);
1314 rtx tmp2 = XEXP (x, 1);
1316 /* This is a little bit tricky since we have to determine which of
1317 the two operands represents the real base address. Otherwise this
1318 routine may return the index register instead of the base register.
1320 That may cause us to believe no aliasing was possible, when in
1321 fact aliasing is possible.
1323 We use a few simple tests to guess the base register. Additional
1324 tests can certainly be added. For example, if one of the operands
1325 is a shift or multiply, then it must be the index register and the
1326 other operand is the base register. */
1328 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1329 return find_base_term (tmp2);
1331 /* If either operand is known to be a pointer, then use it
1332 to determine the base term. */
1333 if (REG_P (tmp1) && REG_POINTER (tmp1))
1334 return find_base_term (tmp1);
1336 if (REG_P (tmp2) && REG_POINTER (tmp2))
1337 return find_base_term (tmp2);
1339 /* Neither operand was known to be a pointer. Go ahead and find the
1340 base term for both operands. */
1341 tmp1 = find_base_term (tmp1);
1342 tmp2 = find_base_term (tmp2);
1344 /* If either base term is named object or a special address
1345 (like an argument or stack reference), then use it for the
1346 base term. */
1347 if (tmp1 != 0
1348 && (GET_CODE (tmp1) == SYMBOL_REF
1349 || GET_CODE (tmp1) == LABEL_REF
1350 || (GET_CODE (tmp1) == ADDRESS
1351 && GET_MODE (tmp1) != VOIDmode)))
1352 return tmp1;
1354 if (tmp2 != 0
1355 && (GET_CODE (tmp2) == SYMBOL_REF
1356 || GET_CODE (tmp2) == LABEL_REF
1357 || (GET_CODE (tmp2) == ADDRESS
1358 && GET_MODE (tmp2) != VOIDmode)))
1359 return tmp2;
1361 /* We could not determine which of the two operands was the
1362 base register and which was the index. So we can determine
1363 nothing from the base alias check. */
1364 return 0;
1367 case AND:
1368 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1369 return find_base_term (XEXP (x, 0));
1370 return 0;
1372 case SYMBOL_REF:
1373 case LABEL_REF:
1374 return x;
1376 case ADDRESSOF:
1377 return REG_BASE_VALUE (frame_pointer_rtx);
1379 default:
1380 return 0;
1384 /* Return 0 if the addresses X and Y are known to point to different
1385 objects, 1 if they might be pointers to the same object. */
1387 static int
1388 base_alias_check (x, y, x_mode, y_mode)
1389 rtx x, y;
1390 enum machine_mode x_mode, y_mode;
1392 rtx x_base = find_base_term (x);
1393 rtx y_base = find_base_term (y);
1395 /* If the address itself has no known base see if a known equivalent
1396 value has one. If either address still has no known base, nothing
1397 is known about aliasing. */
1398 if (x_base == 0)
1400 rtx x_c;
1402 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1403 return 1;
1405 x_base = find_base_term (x_c);
1406 if (x_base == 0)
1407 return 1;
1410 if (y_base == 0)
1412 rtx y_c;
1413 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1414 return 1;
1416 y_base = find_base_term (y_c);
1417 if (y_base == 0)
1418 return 1;
1421 /* If the base addresses are equal nothing is known about aliasing. */
1422 if (rtx_equal_p (x_base, y_base))
1423 return 1;
1425 /* The base addresses of the read and write are different expressions.
1426 If they are both symbols and they are not accessed via AND, there is
1427 no conflict. We can bring knowledge of object alignment into play
1428 here. For example, on alpha, "char a, b;" can alias one another,
1429 though "char a; long b;" cannot. */
1430 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1432 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1433 return 1;
1434 if (GET_CODE (x) == AND
1435 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1436 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1437 return 1;
1438 if (GET_CODE (y) == AND
1439 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1440 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1441 return 1;
1442 /* Differing symbols never alias. */
1443 return 0;
1446 /* If one address is a stack reference there can be no alias:
1447 stack references using different base registers do not alias,
1448 a stack reference can not alias a parameter, and a stack reference
1449 can not alias a global. */
1450 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1451 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1452 return 0;
1454 if (! flag_argument_noalias)
1455 return 1;
1457 if (flag_argument_noalias > 1)
1458 return 0;
1460 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1461 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1464 /* Convert the address X into something we can use. This is done by returning
1465 it unchanged unless it is a value; in the latter case we call cselib to get
1466 a more useful rtx. */
1469 get_addr (x)
1470 rtx x;
1472 cselib_val *v;
1473 struct elt_loc_list *l;
1475 if (GET_CODE (x) != VALUE)
1476 return x;
1477 v = CSELIB_VAL_PTR (x);
1478 for (l = v->locs; l; l = l->next)
1479 if (CONSTANT_P (l->loc))
1480 return l->loc;
1481 for (l = v->locs; l; l = l->next)
1482 if (GET_CODE (l->loc) != REG && GET_CODE (l->loc) != MEM)
1483 return l->loc;
1484 if (v->locs)
1485 return v->locs->loc;
1486 return x;
1489 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1490 where SIZE is the size in bytes of the memory reference. If ADDR
1491 is not modified by the memory reference then ADDR is returned. */
1494 addr_side_effect_eval (addr, size, n_refs)
1495 rtx addr;
1496 int size;
1497 int n_refs;
1499 int offset = 0;
1501 switch (GET_CODE (addr))
1503 case PRE_INC:
1504 offset = (n_refs + 1) * size;
1505 break;
1506 case PRE_DEC:
1507 offset = -(n_refs + 1) * size;
1508 break;
1509 case POST_INC:
1510 offset = n_refs * size;
1511 break;
1512 case POST_DEC:
1513 offset = -n_refs * size;
1514 break;
1516 default:
1517 return addr;
1520 if (offset)
1521 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0), GEN_INT (offset));
1522 else
1523 addr = XEXP (addr, 0);
1525 return addr;
1528 /* Return nonzero if X and Y (memory addresses) could reference the
1529 same location in memory. C is an offset accumulator. When
1530 C is nonzero, we are testing aliases between X and Y + C.
1531 XSIZE is the size in bytes of the X reference,
1532 similarly YSIZE is the size in bytes for Y.
1534 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1535 referenced (the reference was BLKmode), so make the most pessimistic
1536 assumptions.
1538 If XSIZE or YSIZE is negative, we may access memory outside the object
1539 being referenced as a side effect. This can happen when using AND to
1540 align memory references, as is done on the Alpha.
1542 Nice to notice that varying addresses cannot conflict with fp if no
1543 local variables had their addresses taken, but that's too hard now. */
1545 static int
1546 memrefs_conflict_p (xsize, x, ysize, y, c)
1547 rtx x, y;
1548 int xsize, ysize;
1549 HOST_WIDE_INT c;
1551 if (GET_CODE (x) == VALUE)
1552 x = get_addr (x);
1553 if (GET_CODE (y) == VALUE)
1554 y = get_addr (y);
1555 if (GET_CODE (x) == HIGH)
1556 x = XEXP (x, 0);
1557 else if (GET_CODE (x) == LO_SUM)
1558 x = XEXP (x, 1);
1559 else
1560 x = canon_rtx (addr_side_effect_eval (x, xsize, 0));
1561 if (GET_CODE (y) == HIGH)
1562 y = XEXP (y, 0);
1563 else if (GET_CODE (y) == LO_SUM)
1564 y = XEXP (y, 1);
1565 else
1566 y = canon_rtx (addr_side_effect_eval (y, ysize, 0));
1568 if (rtx_equal_for_memref_p (x, y))
1570 if (xsize <= 0 || ysize <= 0)
1571 return 1;
1572 if (c >= 0 && xsize > c)
1573 return 1;
1574 if (c < 0 && ysize+c > 0)
1575 return 1;
1576 return 0;
1579 /* This code used to check for conflicts involving stack references and
1580 globals but the base address alias code now handles these cases. */
1582 if (GET_CODE (x) == PLUS)
1584 /* The fact that X is canonicalized means that this
1585 PLUS rtx is canonicalized. */
1586 rtx x0 = XEXP (x, 0);
1587 rtx x1 = XEXP (x, 1);
1589 if (GET_CODE (y) == PLUS)
1591 /* The fact that Y is canonicalized means that this
1592 PLUS rtx is canonicalized. */
1593 rtx y0 = XEXP (y, 0);
1594 rtx y1 = XEXP (y, 1);
1596 if (rtx_equal_for_memref_p (x1, y1))
1597 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1598 if (rtx_equal_for_memref_p (x0, y0))
1599 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1600 if (GET_CODE (x1) == CONST_INT)
1602 if (GET_CODE (y1) == CONST_INT)
1603 return memrefs_conflict_p (xsize, x0, ysize, y0,
1604 c - INTVAL (x1) + INTVAL (y1));
1605 else
1606 return memrefs_conflict_p (xsize, x0, ysize, y,
1607 c - INTVAL (x1));
1609 else if (GET_CODE (y1) == CONST_INT)
1610 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1612 return 1;
1614 else if (GET_CODE (x1) == CONST_INT)
1615 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1617 else if (GET_CODE (y) == PLUS)
1619 /* The fact that Y is canonicalized means that this
1620 PLUS rtx is canonicalized. */
1621 rtx y0 = XEXP (y, 0);
1622 rtx y1 = XEXP (y, 1);
1624 if (GET_CODE (y1) == CONST_INT)
1625 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1626 else
1627 return 1;
1630 if (GET_CODE (x) == GET_CODE (y))
1631 switch (GET_CODE (x))
1633 case MULT:
1635 /* Handle cases where we expect the second operands to be the
1636 same, and check only whether the first operand would conflict
1637 or not. */
1638 rtx x0, y0;
1639 rtx x1 = canon_rtx (XEXP (x, 1));
1640 rtx y1 = canon_rtx (XEXP (y, 1));
1641 if (! rtx_equal_for_memref_p (x1, y1))
1642 return 1;
1643 x0 = canon_rtx (XEXP (x, 0));
1644 y0 = canon_rtx (XEXP (y, 0));
1645 if (rtx_equal_for_memref_p (x0, y0))
1646 return (xsize == 0 || ysize == 0
1647 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1649 /* Can't properly adjust our sizes. */
1650 if (GET_CODE (x1) != CONST_INT)
1651 return 1;
1652 xsize /= INTVAL (x1);
1653 ysize /= INTVAL (x1);
1654 c /= INTVAL (x1);
1655 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1658 case REG:
1659 /* Are these registers known not to be equal? */
1660 if (alias_invariant)
1662 unsigned int r_x = REGNO (x), r_y = REGNO (y);
1663 rtx i_x, i_y; /* invariant relationships of X and Y */
1665 i_x = r_x >= reg_base_value_size ? 0 : alias_invariant[r_x];
1666 i_y = r_y >= reg_base_value_size ? 0 : alias_invariant[r_y];
1668 if (i_x == 0 && i_y == 0)
1669 break;
1671 if (! memrefs_conflict_p (xsize, i_x ? i_x : x,
1672 ysize, i_y ? i_y : y, c))
1673 return 0;
1675 break;
1677 default:
1678 break;
1681 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1682 as an access with indeterminate size. Assume that references
1683 besides AND are aligned, so if the size of the other reference is
1684 at least as large as the alignment, assume no other overlap. */
1685 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1687 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1688 xsize = -1;
1689 return memrefs_conflict_p (xsize, XEXP (x, 0), ysize, y, c);
1691 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1693 /* ??? If we are indexing far enough into the array/structure, we
1694 may yet be able to determine that we can not overlap. But we
1695 also need to that we are far enough from the end not to overlap
1696 a following reference, so we do nothing with that for now. */
1697 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1698 ysize = -1;
1699 return memrefs_conflict_p (xsize, x, ysize, XEXP (y, 0), c);
1702 if (GET_CODE (x) == ADDRESSOF)
1704 if (y == frame_pointer_rtx
1705 || GET_CODE (y) == ADDRESSOF)
1706 return xsize <= 0 || ysize <= 0;
1708 if (GET_CODE (y) == ADDRESSOF)
1710 if (x == frame_pointer_rtx)
1711 return xsize <= 0 || ysize <= 0;
1714 if (CONSTANT_P (x))
1716 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1718 c += (INTVAL (y) - INTVAL (x));
1719 return (xsize <= 0 || ysize <= 0
1720 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1723 if (GET_CODE (x) == CONST)
1725 if (GET_CODE (y) == CONST)
1726 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1727 ysize, canon_rtx (XEXP (y, 0)), c);
1728 else
1729 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1730 ysize, y, c);
1732 if (GET_CODE (y) == CONST)
1733 return memrefs_conflict_p (xsize, x, ysize,
1734 canon_rtx (XEXP (y, 0)), c);
1736 if (CONSTANT_P (y))
1737 return (xsize <= 0 || ysize <= 0
1738 || (rtx_equal_for_memref_p (x, y)
1739 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1741 return 1;
1743 return 1;
1746 /* Functions to compute memory dependencies.
1748 Since we process the insns in execution order, we can build tables
1749 to keep track of what registers are fixed (and not aliased), what registers
1750 are varying in known ways, and what registers are varying in unknown
1751 ways.
1753 If both memory references are volatile, then there must always be a
1754 dependence between the two references, since their order can not be
1755 changed. A volatile and non-volatile reference can be interchanged
1756 though.
1758 A MEM_IN_STRUCT reference at a non-AND varying address can never
1759 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1760 also must allow AND addresses, because they may generate accesses
1761 outside the object being referenced. This is used to generate
1762 aligned addresses from unaligned addresses, for instance, the alpha
1763 storeqi_unaligned pattern. */
1765 /* Read dependence: X is read after read in MEM takes place. There can
1766 only be a dependence here if both reads are volatile. */
1769 read_dependence (mem, x)
1770 rtx mem;
1771 rtx x;
1773 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1776 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1777 MEM2 is a reference to a structure at a varying address, or returns
1778 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1779 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1780 to decide whether or not an address may vary; it should return
1781 nonzero whenever variation is possible.
1782 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1784 static rtx
1785 fixed_scalar_and_varying_struct_p (mem1, mem2, mem1_addr, mem2_addr, varies_p)
1786 rtx mem1, mem2;
1787 rtx mem1_addr, mem2_addr;
1788 int (*varies_p) PARAMS ((rtx, int));
1790 if (! flag_strict_aliasing)
1791 return NULL_RTX;
1793 if (MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1794 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1795 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1796 varying address. */
1797 return mem1;
1799 if (MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1800 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1801 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1802 varying address. */
1803 return mem2;
1805 return NULL_RTX;
1808 /* Returns nonzero if something about the mode or address format MEM1
1809 indicates that it might well alias *anything*. */
1811 static int
1812 aliases_everything_p (mem)
1813 rtx mem;
1815 if (GET_CODE (XEXP (mem, 0)) == AND)
1816 /* If the address is an AND, its very hard to know at what it is
1817 actually pointing. */
1818 return 1;
1820 return 0;
1823 /* Return true if we can determine that the fields referenced cannot
1824 overlap for any pair of objects. */
1826 static bool
1827 nonoverlapping_component_refs_p (x, y)
1828 tree x, y;
1830 tree fieldx, fieldy, typex, typey, orig_y;
1834 /* The comparison has to be done at a common type, since we don't
1835 know how the inheritance hierarchy works. */
1836 orig_y = y;
1839 fieldx = TREE_OPERAND (x, 1);
1840 typex = DECL_FIELD_CONTEXT (fieldx);
1842 y = orig_y;
1845 fieldy = TREE_OPERAND (y, 1);
1846 typey = DECL_FIELD_CONTEXT (fieldy);
1848 if (typex == typey)
1849 goto found;
1851 y = TREE_OPERAND (y, 0);
1853 while (y && TREE_CODE (y) == COMPONENT_REF);
1855 x = TREE_OPERAND (x, 0);
1857 while (x && TREE_CODE (x) == COMPONENT_REF);
1859 /* Never found a common type. */
1860 return false;
1862 found:
1863 /* If we're left with accessing different fields of a structure,
1864 then no overlap. */
1865 if (TREE_CODE (typex) == RECORD_TYPE
1866 && fieldx != fieldy)
1867 return true;
1869 /* The comparison on the current field failed. If we're accessing
1870 a very nested structure, look at the next outer level. */
1871 x = TREE_OPERAND (x, 0);
1872 y = TREE_OPERAND (y, 0);
1874 while (x && y
1875 && TREE_CODE (x) == COMPONENT_REF
1876 && TREE_CODE (y) == COMPONENT_REF);
1878 return false;
1881 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1883 static tree
1884 decl_for_component_ref (x)
1885 tree x;
1889 x = TREE_OPERAND (x, 0);
1891 while (x && TREE_CODE (x) == COMPONENT_REF);
1893 return x && DECL_P (x) ? x : NULL_TREE;
1896 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1897 offset of the field reference. */
1899 static rtx
1900 adjust_offset_for_component_ref (x, offset)
1901 tree x;
1902 rtx offset;
1904 HOST_WIDE_INT ioffset;
1906 if (! offset)
1907 return NULL_RTX;
1909 ioffset = INTVAL (offset);
1912 tree field = TREE_OPERAND (x, 1);
1914 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
1915 return NULL_RTX;
1916 ioffset += (tree_low_cst (DECL_FIELD_OFFSET (field), 1)
1917 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1918 / BITS_PER_UNIT));
1920 x = TREE_OPERAND (x, 0);
1922 while (x && TREE_CODE (x) == COMPONENT_REF);
1924 return GEN_INT (ioffset);
1927 /* Return nonzero if we can deterimine the exprs corresponding to memrefs
1928 X and Y and they do not overlap. */
1930 static int
1931 nonoverlapping_memrefs_p (x, y)
1932 rtx x, y;
1934 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1935 rtx rtlx, rtly;
1936 rtx basex, basey;
1937 rtx moffsetx, moffsety;
1938 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1940 /* Unless both have exprs, we can't tell anything. */
1941 if (exprx == 0 || expry == 0)
1942 return 0;
1944 /* If both are field references, we may be able to determine something. */
1945 if (TREE_CODE (exprx) == COMPONENT_REF
1946 && TREE_CODE (expry) == COMPONENT_REF
1947 && nonoverlapping_component_refs_p (exprx, expry))
1948 return 1;
1950 /* If the field reference test failed, look at the DECLs involved. */
1951 moffsetx = MEM_OFFSET (x);
1952 if (TREE_CODE (exprx) == COMPONENT_REF)
1954 tree t = decl_for_component_ref (exprx);
1955 if (! t)
1956 return 0;
1957 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
1958 exprx = t;
1960 else if (TREE_CODE (exprx) == INDIRECT_REF)
1962 exprx = TREE_OPERAND (exprx, 0);
1963 if (flag_argument_noalias < 2
1964 || TREE_CODE (exprx) != PARM_DECL)
1965 return 0;
1968 moffsety = MEM_OFFSET (y);
1969 if (TREE_CODE (expry) == COMPONENT_REF)
1971 tree t = decl_for_component_ref (expry);
1972 if (! t)
1973 return 0;
1974 moffsety = adjust_offset_for_component_ref (expry, moffsety);
1975 expry = t;
1977 else if (TREE_CODE (expry) == INDIRECT_REF)
1979 expry = TREE_OPERAND (expry, 0);
1980 if (flag_argument_noalias < 2
1981 || TREE_CODE (expry) != PARM_DECL)
1982 return 0;
1985 if (! DECL_P (exprx) || ! DECL_P (expry))
1986 return 0;
1988 rtlx = DECL_RTL (exprx);
1989 rtly = DECL_RTL (expry);
1991 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
1992 can't overlap unless they are the same because we never reuse that part
1993 of the stack frame used for locals for spilled pseudos. */
1994 if ((GET_CODE (rtlx) != MEM || GET_CODE (rtly) != MEM)
1995 && ! rtx_equal_p (rtlx, rtly))
1996 return 1;
1998 /* Get the base and offsets of both decls. If either is a register, we
1999 know both are and are the same, so use that as the base. The only
2000 we can avoid overlap is if we can deduce that they are nonoverlapping
2001 pieces of that decl, which is very rare. */
2002 basex = GET_CODE (rtlx) == MEM ? XEXP (rtlx, 0) : rtlx;
2003 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2004 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2006 basey = GET_CODE (rtly) == MEM ? XEXP (rtly, 0) : rtly;
2007 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2008 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2010 /* If the bases are different, we know they do not overlap if both
2011 are constants or if one is a constant and the other a pointer into the
2012 stack frame. Otherwise a different base means we can't tell if they
2013 overlap or not. */
2014 if (! rtx_equal_p (basex, basey))
2015 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2016 || (CONSTANT_P (basex) && REG_P (basey)
2017 && REGNO_PTR_FRAME_P (REGNO (basey)))
2018 || (CONSTANT_P (basey) && REG_P (basex)
2019 && REGNO_PTR_FRAME_P (REGNO (basex))));
2021 sizex = (GET_CODE (rtlx) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2022 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2023 : -1);
2024 sizey = (GET_CODE (rtly) != MEM ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2025 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2026 -1);
2028 /* If we have an offset for either memref, it can update the values computed
2029 above. */
2030 if (moffsetx)
2031 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2032 if (moffsety)
2033 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2035 /* If a memref has both a size and an offset, we can use the smaller size.
2036 We can't do this if the offset isn't known because we must view this
2037 memref as being anywhere inside the DECL's MEM. */
2038 if (MEM_SIZE (x) && moffsetx)
2039 sizex = INTVAL (MEM_SIZE (x));
2040 if (MEM_SIZE (y) && moffsety)
2041 sizey = INTVAL (MEM_SIZE (y));
2043 /* Put the values of the memref with the lower offset in X's values. */
2044 if (offsetx > offsety)
2046 tem = offsetx, offsetx = offsety, offsety = tem;
2047 tem = sizex, sizex = sizey, sizey = tem;
2050 /* If we don't know the size of the lower-offset value, we can't tell
2051 if they conflict. Otherwise, we do the test. */
2052 return sizex >= 0 && offsety >= offsetx + sizex;
2055 /* True dependence: X is read after store in MEM takes place. */
2058 true_dependence (mem, mem_mode, x, varies)
2059 rtx mem;
2060 enum machine_mode mem_mode;
2061 rtx x;
2062 int (*varies) PARAMS ((rtx, int));
2064 rtx x_addr, mem_addr;
2065 rtx base;
2067 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2068 return 1;
2070 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2071 This is used in epilogue deallocation functions. */
2072 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2073 return 1;
2074 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2075 return 1;
2077 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2078 return 0;
2080 /* Unchanging memory can't conflict with non-unchanging memory.
2081 A non-unchanging read can conflict with a non-unchanging write.
2082 An unchanging read can conflict with an unchanging write since
2083 there may be a single store to this address to initialize it.
2084 Note that an unchanging store can conflict with a non-unchanging read
2085 since we have to make conservative assumptions when we have a
2086 record with readonly fields and we are copying the whole thing.
2087 Just fall through to the code below to resolve potential conflicts.
2088 This won't handle all cases optimally, but the possible performance
2089 loss should be negligible. */
2090 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2091 return 0;
2093 if (nonoverlapping_memrefs_p (mem, x))
2094 return 0;
2096 if (mem_mode == VOIDmode)
2097 mem_mode = GET_MODE (mem);
2099 x_addr = get_addr (XEXP (x, 0));
2100 mem_addr = get_addr (XEXP (mem, 0));
2102 base = find_base_term (x_addr);
2103 if (base && (GET_CODE (base) == LABEL_REF
2104 || (GET_CODE (base) == SYMBOL_REF
2105 && CONSTANT_POOL_ADDRESS_P (base))))
2106 return 0;
2108 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2109 return 0;
2111 x_addr = canon_rtx (x_addr);
2112 mem_addr = canon_rtx (mem_addr);
2114 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2115 SIZE_FOR_MODE (x), x_addr, 0))
2116 return 0;
2118 if (aliases_everything_p (x))
2119 return 1;
2121 /* We cannot use aliases_everything_p to test MEM, since we must look
2122 at MEM_MODE, rather than GET_MODE (MEM). */
2123 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2124 return 1;
2126 /* In true_dependence we also allow BLKmode to alias anything. Why
2127 don't we do this in anti_dependence and output_dependence? */
2128 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2129 return 1;
2131 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2132 varies);
2135 /* Canonical true dependence: X is read after store in MEM takes place.
2136 Variant of true_dependence which assumes MEM has already been
2137 canonicalized (hence we no longer do that here).
2138 The mem_addr argument has been added, since true_dependence computed
2139 this value prior to canonicalizing. */
2142 canon_true_dependence (mem, mem_mode, mem_addr, x, varies)
2143 rtx mem, mem_addr, x;
2144 enum machine_mode mem_mode;
2145 int (*varies) PARAMS ((rtx, int));
2147 rtx x_addr;
2149 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2150 return 1;
2152 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2153 This is used in epilogue deallocation functions. */
2154 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2155 return 1;
2156 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2157 return 1;
2159 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2160 return 0;
2162 /* If X is an unchanging read, then it can't possibly conflict with any
2163 non-unchanging store. It may conflict with an unchanging write though,
2164 because there may be a single store to this address to initialize it.
2165 Just fall through to the code below to resolve the case where we have
2166 both an unchanging read and an unchanging write. This won't handle all
2167 cases optimally, but the possible performance loss should be
2168 negligible. */
2169 if (RTX_UNCHANGING_P (x) && ! RTX_UNCHANGING_P (mem))
2170 return 0;
2172 if (nonoverlapping_memrefs_p (x, mem))
2173 return 0;
2175 x_addr = get_addr (XEXP (x, 0));
2177 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2178 return 0;
2180 x_addr = canon_rtx (x_addr);
2181 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2182 SIZE_FOR_MODE (x), x_addr, 0))
2183 return 0;
2185 if (aliases_everything_p (x))
2186 return 1;
2188 /* We cannot use aliases_everything_p to test MEM, since we must look
2189 at MEM_MODE, rather than GET_MODE (MEM). */
2190 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2191 return 1;
2193 /* In true_dependence we also allow BLKmode to alias anything. Why
2194 don't we do this in anti_dependence and output_dependence? */
2195 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2196 return 1;
2198 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2199 varies);
2202 /* Returns nonzero if a write to X might alias a previous read from
2203 (or, if WRITEP is nonzero, a write to) MEM. */
2205 static int
2206 write_dependence_p (mem, x, writep)
2207 rtx mem;
2208 rtx x;
2209 int writep;
2211 rtx x_addr, mem_addr;
2212 rtx fixed_scalar;
2213 rtx base;
2215 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2216 return 1;
2218 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2219 This is used in epilogue deallocation functions. */
2220 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2221 return 1;
2222 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2223 return 1;
2225 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2226 return 0;
2228 /* Unchanging memory can't conflict with non-unchanging memory. */
2229 if (RTX_UNCHANGING_P (x) != RTX_UNCHANGING_P (mem))
2230 return 0;
2232 /* If MEM is an unchanging read, then it can't possibly conflict with
2233 the store to X, because there is at most one store to MEM, and it must
2234 have occurred somewhere before MEM. */
2235 if (! writep && RTX_UNCHANGING_P (mem))
2236 return 0;
2238 if (nonoverlapping_memrefs_p (x, mem))
2239 return 0;
2241 x_addr = get_addr (XEXP (x, 0));
2242 mem_addr = get_addr (XEXP (mem, 0));
2244 if (! writep)
2246 base = find_base_term (mem_addr);
2247 if (base && (GET_CODE (base) == LABEL_REF
2248 || (GET_CODE (base) == SYMBOL_REF
2249 && CONSTANT_POOL_ADDRESS_P (base))))
2250 return 0;
2253 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2254 GET_MODE (mem)))
2255 return 0;
2257 x_addr = canon_rtx (x_addr);
2258 mem_addr = canon_rtx (mem_addr);
2260 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2261 SIZE_FOR_MODE (x), x_addr, 0))
2262 return 0;
2264 fixed_scalar
2265 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2266 rtx_addr_varies_p);
2268 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2269 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2272 /* Anti dependence: X is written after read in MEM takes place. */
2275 anti_dependence (mem, x)
2276 rtx mem;
2277 rtx x;
2279 return write_dependence_p (mem, x, /*writep=*/0);
2282 /* Output dependence: X is written after store in MEM takes place. */
2285 output_dependence (mem, x)
2286 rtx mem;
2287 rtx x;
2289 return write_dependence_p (mem, x, /*writep=*/1);
2292 /* A subroutine of nonlocal_mentioned_p, returns 1 if *LOC mentions
2293 something which is not local to the function and is not constant. */
2295 static int
2296 nonlocal_mentioned_p_1 (loc, data)
2297 rtx *loc;
2298 void *data ATTRIBUTE_UNUSED;
2300 rtx x = *loc;
2301 rtx base;
2302 int regno;
2304 if (! x)
2305 return 0;
2307 switch (GET_CODE (x))
2309 case SUBREG:
2310 if (GET_CODE (SUBREG_REG (x)) == REG)
2312 /* Global registers are not local. */
2313 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
2314 && global_regs[subreg_regno (x)])
2315 return 1;
2316 return 0;
2318 break;
2320 case REG:
2321 regno = REGNO (x);
2322 /* Global registers are not local. */
2323 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2324 return 1;
2325 return 0;
2327 case SCRATCH:
2328 case PC:
2329 case CC0:
2330 case CONST_INT:
2331 case CONST_DOUBLE:
2332 case CONST_VECTOR:
2333 case CONST:
2334 case LABEL_REF:
2335 return 0;
2337 case SYMBOL_REF:
2338 /* Constants in the function's constants pool are constant. */
2339 if (CONSTANT_POOL_ADDRESS_P (x))
2340 return 0;
2341 return 1;
2343 case CALL:
2344 /* Non-constant calls and recursion are not local. */
2345 return 1;
2347 case MEM:
2348 /* Be overly conservative and consider any volatile memory
2349 reference as not local. */
2350 if (MEM_VOLATILE_P (x))
2351 return 1;
2352 base = find_base_term (XEXP (x, 0));
2353 if (base)
2355 /* A Pmode ADDRESS could be a reference via the structure value
2356 address or static chain. Such memory references are nonlocal.
2358 Thus, we have to examine the contents of the ADDRESS to find
2359 out if this is a local reference or not. */
2360 if (GET_CODE (base) == ADDRESS
2361 && GET_MODE (base) == Pmode
2362 && (XEXP (base, 0) == stack_pointer_rtx
2363 || XEXP (base, 0) == arg_pointer_rtx
2364 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2365 || XEXP (base, 0) == hard_frame_pointer_rtx
2366 #endif
2367 || XEXP (base, 0) == frame_pointer_rtx))
2368 return 0;
2369 /* Constants in the function's constant pool are constant. */
2370 if (GET_CODE (base) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (base))
2371 return 0;
2373 return 1;
2375 case UNSPEC_VOLATILE:
2376 case ASM_INPUT:
2377 return 1;
2379 case ASM_OPERANDS:
2380 if (MEM_VOLATILE_P (x))
2381 return 1;
2383 /* FALLTHROUGH */
2385 default:
2386 break;
2389 return 0;
2392 /* Returns nonzero if X might mention something which is not
2393 local to the function and is not constant. */
2395 static int
2396 nonlocal_mentioned_p (x)
2397 rtx x;
2400 if (INSN_P (x))
2402 if (GET_CODE (x) == CALL_INSN)
2404 if (! CONST_OR_PURE_CALL_P (x))
2405 return 1;
2406 x = CALL_INSN_FUNCTION_USAGE (x);
2407 if (x == 0)
2408 return 0;
2410 else
2411 x = PATTERN (x);
2414 return for_each_rtx (&x, nonlocal_mentioned_p_1, NULL);
2417 /* A subroutine of nonlocal_referenced_p, returns 1 if *LOC references
2418 something which is not local to the function and is not constant. */
2420 static int
2421 nonlocal_referenced_p_1 (loc, data)
2422 rtx *loc;
2423 void *data ATTRIBUTE_UNUSED;
2425 rtx x = *loc;
2427 if (! x)
2428 return 0;
2430 switch (GET_CODE (x))
2432 case MEM:
2433 case REG:
2434 case SYMBOL_REF:
2435 case SUBREG:
2436 return nonlocal_mentioned_p (x);
2438 case CALL:
2439 /* Non-constant calls and recursion are not local. */
2440 return 1;
2442 case SET:
2443 if (nonlocal_mentioned_p (SET_SRC (x)))
2444 return 1;
2446 if (GET_CODE (SET_DEST (x)) == MEM)
2447 return nonlocal_mentioned_p (XEXP (SET_DEST (x), 0));
2449 /* If the destination is anything other than a CC0, PC,
2450 MEM, REG, or a SUBREG of a REG that occupies all of
2451 the REG, then X references nonlocal memory if it is
2452 mentioned in the destination. */
2453 if (GET_CODE (SET_DEST (x)) != CC0
2454 && GET_CODE (SET_DEST (x)) != PC
2455 && GET_CODE (SET_DEST (x)) != REG
2456 && ! (GET_CODE (SET_DEST (x)) == SUBREG
2457 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
2458 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
2459 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
2460 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2461 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
2462 return nonlocal_mentioned_p (SET_DEST (x));
2463 return 0;
2465 case CLOBBER:
2466 if (GET_CODE (XEXP (x, 0)) == MEM)
2467 return nonlocal_mentioned_p (XEXP (XEXP (x, 0), 0));
2468 return 0;
2470 case USE:
2471 return nonlocal_mentioned_p (XEXP (x, 0));
2473 case ASM_INPUT:
2474 case UNSPEC_VOLATILE:
2475 return 1;
2477 case ASM_OPERANDS:
2478 if (MEM_VOLATILE_P (x))
2479 return 1;
2481 /* FALLTHROUGH */
2483 default:
2484 break;
2487 return 0;
2490 /* Returns nonzero if X might reference something which is not
2491 local to the function and is not constant. */
2493 static int
2494 nonlocal_referenced_p (x)
2495 rtx x;
2498 if (INSN_P (x))
2500 if (GET_CODE (x) == CALL_INSN)
2502 if (! CONST_OR_PURE_CALL_P (x))
2503 return 1;
2504 x = CALL_INSN_FUNCTION_USAGE (x);
2505 if (x == 0)
2506 return 0;
2508 else
2509 x = PATTERN (x);
2512 return for_each_rtx (&x, nonlocal_referenced_p_1, NULL);
2515 /* A subroutine of nonlocal_set_p, returns 1 if *LOC sets
2516 something which is not local to the function and is not constant. */
2518 static int
2519 nonlocal_set_p_1 (loc, data)
2520 rtx *loc;
2521 void *data ATTRIBUTE_UNUSED;
2523 rtx x = *loc;
2525 if (! x)
2526 return 0;
2528 switch (GET_CODE (x))
2530 case CALL:
2531 /* Non-constant calls and recursion are not local. */
2532 return 1;
2534 case PRE_INC:
2535 case PRE_DEC:
2536 case POST_INC:
2537 case POST_DEC:
2538 case PRE_MODIFY:
2539 case POST_MODIFY:
2540 return nonlocal_mentioned_p (XEXP (x, 0));
2542 case SET:
2543 if (nonlocal_mentioned_p (SET_DEST (x)))
2544 return 1;
2545 return nonlocal_set_p (SET_SRC (x));
2547 case CLOBBER:
2548 return nonlocal_mentioned_p (XEXP (x, 0));
2550 case USE:
2551 return 0;
2553 case ASM_INPUT:
2554 case UNSPEC_VOLATILE:
2555 return 1;
2557 case ASM_OPERANDS:
2558 if (MEM_VOLATILE_P (x))
2559 return 1;
2561 /* FALLTHROUGH */
2563 default:
2564 break;
2567 return 0;
2570 /* Returns nonzero if X might set something which is not
2571 local to the function and is not constant. */
2573 static int
2574 nonlocal_set_p (x)
2575 rtx x;
2578 if (INSN_P (x))
2580 if (GET_CODE (x) == CALL_INSN)
2582 if (! CONST_OR_PURE_CALL_P (x))
2583 return 1;
2584 x = CALL_INSN_FUNCTION_USAGE (x);
2585 if (x == 0)
2586 return 0;
2588 else
2589 x = PATTERN (x);
2592 return for_each_rtx (&x, nonlocal_set_p_1, NULL);
2595 /* Mark the function if it is constant. */
2597 void
2598 mark_constant_function ()
2600 rtx insn;
2601 int nonlocal_memory_referenced;
2603 if (TREE_READONLY (current_function_decl)
2604 || DECL_IS_PURE (current_function_decl)
2605 || TREE_THIS_VOLATILE (current_function_decl)
2606 || TYPE_MODE (TREE_TYPE (current_function_decl)) == VOIDmode
2607 || current_function_has_nonlocal_goto
2608 || !(*targetm.binds_local_p) (current_function_decl))
2609 return;
2611 /* A loop might not return which counts as a side effect. */
2612 if (mark_dfs_back_edges ())
2613 return;
2615 nonlocal_memory_referenced = 0;
2617 init_alias_analysis ();
2619 /* Determine if this is a constant or pure function. */
2621 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2623 if (! INSN_P (insn))
2624 continue;
2626 if (nonlocal_set_p (insn) || global_reg_mentioned_p (insn)
2627 || volatile_refs_p (PATTERN (insn)))
2628 break;
2630 if (! nonlocal_memory_referenced)
2631 nonlocal_memory_referenced = nonlocal_referenced_p (insn);
2634 end_alias_analysis ();
2636 /* Mark the function. */
2638 if (insn)
2640 else if (nonlocal_memory_referenced)
2641 DECL_IS_PURE (current_function_decl) = 1;
2642 else
2643 TREE_READONLY (current_function_decl) = 1;
2647 void
2648 init_alias_once ()
2650 int i;
2652 #ifndef OUTGOING_REGNO
2653 #define OUTGOING_REGNO(N) N
2654 #endif
2655 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2656 /* Check whether this register can hold an incoming pointer
2657 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2658 numbers, so translate if necessary due to register windows. */
2659 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2660 && HARD_REGNO_MODE_OK (i, Pmode))
2661 static_reg_base_value[i]
2662 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2664 static_reg_base_value[STACK_POINTER_REGNUM]
2665 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2666 static_reg_base_value[ARG_POINTER_REGNUM]
2667 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2668 static_reg_base_value[FRAME_POINTER_REGNUM]
2669 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2670 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2671 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2672 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2673 #endif
2675 alias_sets = splay_tree_new (splay_tree_compare_ints, 0, 0);
2678 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2679 array. */
2681 void
2682 init_alias_analysis ()
2684 int maxreg = max_reg_num ();
2685 int changed, pass;
2686 int i;
2687 unsigned int ui;
2688 rtx insn;
2690 reg_known_value_size = maxreg;
2692 reg_known_value
2693 = (rtx *) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (rtx))
2694 - FIRST_PSEUDO_REGISTER;
2695 reg_known_equiv_p
2696 = (char*) xcalloc ((maxreg - FIRST_PSEUDO_REGISTER), sizeof (char))
2697 - FIRST_PSEUDO_REGISTER;
2699 /* Overallocate reg_base_value to allow some growth during loop
2700 optimization. Loop unrolling can create a large number of
2701 registers. */
2702 reg_base_value_size = maxreg * 2;
2703 reg_base_value = (rtx *) ggc_alloc_cleared (reg_base_value_size
2704 * sizeof (rtx));
2706 new_reg_base_value = (rtx *) xmalloc (reg_base_value_size * sizeof (rtx));
2707 reg_seen = (char *) xmalloc (reg_base_value_size);
2708 if (! reload_completed && flag_unroll_loops)
2710 /* ??? Why are we realloc'ing if we're just going to zero it? */
2711 alias_invariant = (rtx *)xrealloc (alias_invariant,
2712 reg_base_value_size * sizeof (rtx));
2713 memset ((char *)alias_invariant, 0, reg_base_value_size * sizeof (rtx));
2716 /* The basic idea is that each pass through this loop will use the
2717 "constant" information from the previous pass to propagate alias
2718 information through another level of assignments.
2720 This could get expensive if the assignment chains are long. Maybe
2721 we should throttle the number of iterations, possibly based on
2722 the optimization level or flag_expensive_optimizations.
2724 We could propagate more information in the first pass by making use
2725 of REG_N_SETS to determine immediately that the alias information
2726 for a pseudo is "constant".
2728 A program with an uninitialized variable can cause an infinite loop
2729 here. Instead of doing a full dataflow analysis to detect such problems
2730 we just cap the number of iterations for the loop.
2732 The state of the arrays for the set chain in question does not matter
2733 since the program has undefined behavior. */
2735 pass = 0;
2738 /* Assume nothing will change this iteration of the loop. */
2739 changed = 0;
2741 /* We want to assign the same IDs each iteration of this loop, so
2742 start counting from zero each iteration of the loop. */
2743 unique_id = 0;
2745 /* We're at the start of the function each iteration through the
2746 loop, so we're copying arguments. */
2747 copying_arguments = 1;
2749 /* Wipe the potential alias information clean for this pass. */
2750 memset ((char *) new_reg_base_value, 0, reg_base_value_size * sizeof (rtx));
2752 /* Wipe the reg_seen array clean. */
2753 memset ((char *) reg_seen, 0, reg_base_value_size);
2755 /* Mark all hard registers which may contain an address.
2756 The stack, frame and argument pointers may contain an address.
2757 An argument register which can hold a Pmode value may contain
2758 an address even if it is not in BASE_REGS.
2760 The address expression is VOIDmode for an argument and
2761 Pmode for other registers. */
2763 memcpy (new_reg_base_value, static_reg_base_value,
2764 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2766 /* Walk the insns adding values to the new_reg_base_value array. */
2767 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2769 if (INSN_P (insn))
2771 rtx note, set;
2773 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2774 /* The prologue/epilogue insns are not threaded onto the
2775 insn chain until after reload has completed. Thus,
2776 there is no sense wasting time checking if INSN is in
2777 the prologue/epilogue until after reload has completed. */
2778 if (reload_completed
2779 && prologue_epilogue_contains (insn))
2780 continue;
2781 #endif
2783 /* If this insn has a noalias note, process it, Otherwise,
2784 scan for sets. A simple set will have no side effects
2785 which could change the base value of any other register. */
2787 if (GET_CODE (PATTERN (insn)) == SET
2788 && REG_NOTES (insn) != 0
2789 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2790 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2791 else
2792 note_stores (PATTERN (insn), record_set, NULL);
2794 set = single_set (insn);
2796 if (set != 0
2797 && GET_CODE (SET_DEST (set)) == REG
2798 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2800 unsigned int regno = REGNO (SET_DEST (set));
2801 rtx src = SET_SRC (set);
2803 if (REG_NOTES (insn) != 0
2804 && (((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2805 && REG_N_SETS (regno) == 1)
2806 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != 0)
2807 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2808 && ! rtx_varies_p (XEXP (note, 0), 1)
2809 && ! reg_overlap_mentioned_p (SET_DEST (set), XEXP (note, 0)))
2811 reg_known_value[regno] = XEXP (note, 0);
2812 reg_known_equiv_p[regno] = REG_NOTE_KIND (note) == REG_EQUIV;
2814 else if (REG_N_SETS (regno) == 1
2815 && GET_CODE (src) == PLUS
2816 && GET_CODE (XEXP (src, 0)) == REG
2817 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
2818 && (reg_known_value[REGNO (XEXP (src, 0))])
2819 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2821 rtx op0 = XEXP (src, 0);
2822 op0 = reg_known_value[REGNO (op0)];
2823 reg_known_value[regno]
2824 = plus_constant (op0, INTVAL (XEXP (src, 1)));
2825 reg_known_equiv_p[regno] = 0;
2827 else if (REG_N_SETS (regno) == 1
2828 && ! rtx_varies_p (src, 1))
2830 reg_known_value[regno] = src;
2831 reg_known_equiv_p[regno] = 0;
2835 else if (GET_CODE (insn) == NOTE
2836 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
2837 copying_arguments = 0;
2840 /* Now propagate values from new_reg_base_value to reg_base_value. */
2841 for (ui = 0; ui < reg_base_value_size; ui++)
2843 if (new_reg_base_value[ui]
2844 && new_reg_base_value[ui] != reg_base_value[ui]
2845 && ! rtx_equal_p (new_reg_base_value[ui], reg_base_value[ui]))
2847 reg_base_value[ui] = new_reg_base_value[ui];
2848 changed = 1;
2852 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2854 /* Fill in the remaining entries. */
2855 for (i = FIRST_PSEUDO_REGISTER; i < maxreg; i++)
2856 if (reg_known_value[i] == 0)
2857 reg_known_value[i] = regno_reg_rtx[i];
2859 /* Simplify the reg_base_value array so that no register refers to
2860 another register, except to special registers indirectly through
2861 ADDRESS expressions.
2863 In theory this loop can take as long as O(registers^2), but unless
2864 there are very long dependency chains it will run in close to linear
2865 time.
2867 This loop may not be needed any longer now that the main loop does
2868 a better job at propagating alias information. */
2869 pass = 0;
2872 changed = 0;
2873 pass++;
2874 for (ui = 0; ui < reg_base_value_size; ui++)
2876 rtx base = reg_base_value[ui];
2877 if (base && GET_CODE (base) == REG)
2879 unsigned int base_regno = REGNO (base);
2880 if (base_regno == ui) /* register set from itself */
2881 reg_base_value[ui] = 0;
2882 else
2883 reg_base_value[ui] = reg_base_value[base_regno];
2884 changed = 1;
2888 while (changed && pass < MAX_ALIAS_LOOP_PASSES);
2890 /* Clean up. */
2891 free (new_reg_base_value);
2892 new_reg_base_value = 0;
2893 free (reg_seen);
2894 reg_seen = 0;
2897 void
2898 end_alias_analysis ()
2900 free (reg_known_value + FIRST_PSEUDO_REGISTER);
2901 reg_known_value = 0;
2902 reg_known_value_size = 0;
2903 free (reg_known_equiv_p + FIRST_PSEUDO_REGISTER);
2904 reg_known_equiv_p = 0;
2905 reg_base_value = 0;
2906 reg_base_value_size = 0;
2907 if (alias_invariant)
2909 free (alias_invariant);
2910 alias_invariant = 0;
2914 #include "gt-alias.h"