* gcc.c-torture/execute/20020307-1.c: New test.
[official-gcc.git] / gcc / cse.c
blob7a05dad03077c4bb391caa6012862826abb1ebd4
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "timevar.h"
42 /* The basic idea of common subexpression elimination is to go
43 through the code, keeping a record of expressions that would
44 have the same value at the current scan point, and replacing
45 expressions encountered with the cheapest equivalent expression.
47 It is too complicated to keep track of the different possibilities
48 when control paths merge in this code; so, at each label, we forget all
49 that is known and start fresh. This can be described as processing each
50 extended basic block separately. We have a separate pass to perform
51 global CSE.
53 Note CSE can turn a conditional or computed jump into a nop or
54 an unconditional jump. When this occurs we arrange to run the jump
55 optimizer after CSE to delete the unreachable code.
57 We use two data structures to record the equivalent expressions:
58 a hash table for most expressions, and a vector of "quantity
59 numbers" to record equivalent (pseudo) registers.
61 The use of the special data structure for registers is desirable
62 because it is faster. It is possible because registers references
63 contain a fairly small number, the register number, taken from
64 a contiguously allocated series, and two register references are
65 identical if they have the same number. General expressions
66 do not have any such thing, so the only way to retrieve the
67 information recorded on an expression other than a register
68 is to keep it in a hash table.
70 Registers and "quantity numbers":
72 At the start of each basic block, all of the (hardware and pseudo)
73 registers used in the function are given distinct quantity
74 numbers to indicate their contents. During scan, when the code
75 copies one register into another, we copy the quantity number.
76 When a register is loaded in any other way, we allocate a new
77 quantity number to describe the value generated by this operation.
78 `reg_qty' records what quantity a register is currently thought
79 of as containing.
81 All real quantity numbers are greater than or equal to `max_reg'.
82 If register N has not been assigned a quantity, reg_qty[N] will equal N.
84 Quantity numbers below `max_reg' do not exist and none of the `qty_table'
85 entries should be referenced with an index below `max_reg'.
87 We also maintain a bidirectional chain of registers for each
88 quantity number. The `qty_table` members `first_reg' and `last_reg',
89 and `reg_eqv_table' members `next' and `prev' hold these chains.
91 The first register in a chain is the one whose lifespan is least local.
92 Among equals, it is the one that was seen first.
93 We replace any equivalent register with that one.
95 If two registers have the same quantity number, it must be true that
96 REG expressions with qty_table `mode' must be in the hash table for both
97 registers and must be in the same class.
99 The converse is not true. Since hard registers may be referenced in
100 any mode, two REG expressions might be equivalent in the hash table
101 but not have the same quantity number if the quantity number of one
102 of the registers is not the same mode as those expressions.
104 Constants and quantity numbers
106 When a quantity has a known constant value, that value is stored
107 in the appropriate qty_table `const_rtx'. This is in addition to
108 putting the constant in the hash table as is usual for non-regs.
110 Whether a reg or a constant is preferred is determined by the configuration
111 macro CONST_COSTS and will often depend on the constant value. In any
112 event, expressions containing constants can be simplified, by fold_rtx.
114 When a quantity has a known nearly constant value (such as an address
115 of a stack slot), that value is stored in the appropriate qty_table
116 `const_rtx'.
118 Integer constants don't have a machine mode. However, cse
119 determines the intended machine mode from the destination
120 of the instruction that moves the constant. The machine mode
121 is recorded in the hash table along with the actual RTL
122 constant expression so that different modes are kept separate.
124 Other expressions:
126 To record known equivalences among expressions in general
127 we use a hash table called `table'. It has a fixed number of buckets
128 that contain chains of `struct table_elt' elements for expressions.
129 These chains connect the elements whose expressions have the same
130 hash codes.
132 Other chains through the same elements connect the elements which
133 currently have equivalent values.
135 Register references in an expression are canonicalized before hashing
136 the expression. This is done using `reg_qty' and qty_table `first_reg'.
137 The hash code of a register reference is computed using the quantity
138 number, not the register number.
140 When the value of an expression changes, it is necessary to remove from the
141 hash table not just that expression but all expressions whose values
142 could be different as a result.
144 1. If the value changing is in memory, except in special cases
145 ANYTHING referring to memory could be changed. That is because
146 nobody knows where a pointer does not point.
147 The function `invalidate_memory' removes what is necessary.
149 The special cases are when the address is constant or is
150 a constant plus a fixed register such as the frame pointer
151 or a static chain pointer. When such addresses are stored in,
152 we can tell exactly which other such addresses must be invalidated
153 due to overlap. `invalidate' does this.
154 All expressions that refer to non-constant
155 memory addresses are also invalidated. `invalidate_memory' does this.
157 2. If the value changing is a register, all expressions
158 containing references to that register, and only those,
159 must be removed.
161 Because searching the entire hash table for expressions that contain
162 a register is very slow, we try to figure out when it isn't necessary.
163 Precisely, this is necessary only when expressions have been
164 entered in the hash table using this register, and then the value has
165 changed, and then another expression wants to be added to refer to
166 the register's new value. This sequence of circumstances is rare
167 within any one basic block.
169 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
170 reg_tick[i] is incremented whenever a value is stored in register i.
171 reg_in_table[i] holds -1 if no references to register i have been
172 entered in the table; otherwise, it contains the value reg_tick[i] had
173 when the references were entered. If we want to enter a reference
174 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
175 Until we want to enter a new entry, the mere fact that the two vectors
176 don't match makes the entries be ignored if anyone tries to match them.
178 Registers themselves are entered in the hash table as well as in
179 the equivalent-register chains. However, the vectors `reg_tick'
180 and `reg_in_table' do not apply to expressions which are simple
181 register references. These expressions are removed from the table
182 immediately when they become invalid, and this can be done even if
183 we do not immediately search for all the expressions that refer to
184 the register.
186 A CLOBBER rtx in an instruction invalidates its operand for further
187 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
188 invalidates everything that resides in memory.
190 Related expressions:
192 Constant expressions that differ only by an additive integer
193 are called related. When a constant expression is put in
194 the table, the related expression with no constant term
195 is also entered. These are made to point at each other
196 so that it is possible to find out if there exists any
197 register equivalent to an expression related to a given expression. */
199 /* One plus largest register number used in this function. */
201 static int max_reg;
203 /* One plus largest instruction UID used in this function at time of
204 cse_main call. */
206 static int max_insn_uid;
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
211 static int max_qty;
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
216 static int next_qty;
218 /* Per-qty information tracking.
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
223 `mode' contains the machine mode of this quantity.
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
229 constant value.
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
243 struct qty_table_elem
245 rtx const_rtx;
246 rtx const_insn;
247 rtx comparison_const;
248 int comparison_qty;
249 unsigned int first_reg, last_reg;
250 enum machine_mode mode;
251 enum rtx_code comparison_code;
254 /* The table of all qtys, indexed by qty number. */
255 static struct qty_table_elem *qty_table;
257 #ifdef HAVE_cc0
258 /* For machines that have a CC0, we do not record its value in the hash
259 table since its use is guaranteed to be the insn immediately following
260 its definition and any other insn is presumed to invalidate it.
262 Instead, we store below the value last assigned to CC0. If it should
263 happen to be a constant, it is stored in preference to the actual
264 assigned value. In case it is a constant, we store the mode in which
265 the constant should be interpreted. */
267 static rtx prev_insn_cc0;
268 static enum machine_mode prev_insn_cc0_mode;
269 #endif
271 /* Previous actual insn. 0 if at first insn of basic block. */
273 static rtx prev_insn;
275 /* Insn being scanned. */
277 static rtx this_insn;
279 /* Index by register number, gives the number of the next (or
280 previous) register in the chain of registers sharing the same
281 value.
283 Or -1 if this register is at the end of the chain.
285 If reg_qty[N] == N, reg_eqv_table[N].next is undefined. */
287 /* Per-register equivalence chain. */
288 struct reg_eqv_elem
290 int next, prev;
293 /* The table of all register equivalence chains. */
294 static struct reg_eqv_elem *reg_eqv_table;
296 struct cse_reg_info
298 /* Next in hash chain. */
299 struct cse_reg_info *hash_next;
301 /* The next cse_reg_info structure in the free or used list. */
302 struct cse_reg_info *next;
304 /* Search key */
305 unsigned int regno;
307 /* The quantity number of the register's current contents. */
308 int reg_qty;
310 /* The number of times the register has been altered in the current
311 basic block. */
312 int reg_tick;
314 /* The REG_TICK value at which rtx's containing this register are
315 valid in the hash table. If this does not equal the current
316 reg_tick value, such expressions existing in the hash table are
317 invalid. */
318 int reg_in_table;
321 /* A free list of cse_reg_info entries. */
322 static struct cse_reg_info *cse_reg_info_free_list;
324 /* A used list of cse_reg_info entries. */
325 static struct cse_reg_info *cse_reg_info_used_list;
326 static struct cse_reg_info *cse_reg_info_used_list_end;
328 /* A mapping from registers to cse_reg_info data structures. */
329 #define REGHASH_SHIFT 7
330 #define REGHASH_SIZE (1 << REGHASH_SHIFT)
331 #define REGHASH_MASK (REGHASH_SIZE - 1)
332 static struct cse_reg_info *reg_hash[REGHASH_SIZE];
334 #define REGHASH_FN(REGNO) \
335 (((REGNO) ^ ((REGNO) >> REGHASH_SHIFT)) & REGHASH_MASK)
337 /* The last lookup we did into the cse_reg_info_tree. This allows us
338 to cache repeated lookups. */
339 static unsigned int cached_regno;
340 static struct cse_reg_info *cached_cse_reg_info;
342 /* A HARD_REG_SET containing all the hard registers for which there is
343 currently a REG expression in the hash table. Note the difference
344 from the above variables, which indicate if the REG is mentioned in some
345 expression in the table. */
347 static HARD_REG_SET hard_regs_in_table;
349 /* CUID of insn that starts the basic block currently being cse-processed. */
351 static int cse_basic_block_start;
353 /* CUID of insn that ends the basic block currently being cse-processed. */
355 static int cse_basic_block_end;
357 /* Vector mapping INSN_UIDs to cuids.
358 The cuids are like uids but increase monotonically always.
359 We use them to see whether a reg is used outside a given basic block. */
361 static int *uid_cuid;
363 /* Highest UID in UID_CUID. */
364 static int max_uid;
366 /* Get the cuid of an insn. */
368 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
370 /* Nonzero if this pass has made changes, and therefore it's
371 worthwhile to run the garbage collector. */
373 static int cse_altered;
375 /* Nonzero if cse has altered conditional jump insns
376 in such a way that jump optimization should be redone. */
378 static int cse_jumps_altered;
380 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
381 REG_LABEL, we have to rerun jump after CSE to put in the note. */
382 static int recorded_label_ref;
384 /* canon_hash stores 1 in do_not_record
385 if it notices a reference to CC0, PC, or some other volatile
386 subexpression. */
388 static int do_not_record;
390 #ifdef LOAD_EXTEND_OP
392 /* Scratch rtl used when looking for load-extended copy of a MEM. */
393 static rtx memory_extend_rtx;
394 #endif
396 /* canon_hash stores 1 in hash_arg_in_memory
397 if it notices a reference to memory within the expression being hashed. */
399 static int hash_arg_in_memory;
401 /* The hash table contains buckets which are chains of `struct table_elt's,
402 each recording one expression's information.
403 That expression is in the `exp' field.
405 The canon_exp field contains a canonical (from the point of view of
406 alias analysis) version of the `exp' field.
408 Those elements with the same hash code are chained in both directions
409 through the `next_same_hash' and `prev_same_hash' fields.
411 Each set of expressions with equivalent values
412 are on a two-way chain through the `next_same_value'
413 and `prev_same_value' fields, and all point with
414 the `first_same_value' field at the first element in
415 that chain. The chain is in order of increasing cost.
416 Each element's cost value is in its `cost' field.
418 The `in_memory' field is nonzero for elements that
419 involve any reference to memory. These elements are removed
420 whenever a write is done to an unidentified location in memory.
421 To be safe, we assume that a memory address is unidentified unless
422 the address is either a symbol constant or a constant plus
423 the frame pointer or argument pointer.
425 The `related_value' field is used to connect related expressions
426 (that differ by adding an integer).
427 The related expressions are chained in a circular fashion.
428 `related_value' is zero for expressions for which this
429 chain is not useful.
431 The `cost' field stores the cost of this element's expression.
432 The `regcost' field stores the value returned by approx_reg_cost for
433 this element's expression.
435 The `is_const' flag is set if the element is a constant (including
436 a fixed address).
438 The `flag' field is used as a temporary during some search routines.
440 The `mode' field is usually the same as GET_MODE (`exp'), but
441 if `exp' is a CONST_INT and has no machine mode then the `mode'
442 field is the mode it was being used as. Each constant is
443 recorded separately for each mode it is used with. */
445 struct table_elt
447 rtx exp;
448 rtx canon_exp;
449 struct table_elt *next_same_hash;
450 struct table_elt *prev_same_hash;
451 struct table_elt *next_same_value;
452 struct table_elt *prev_same_value;
453 struct table_elt *first_same_value;
454 struct table_elt *related_value;
455 int cost;
456 int regcost;
457 enum machine_mode mode;
458 char in_memory;
459 char is_const;
460 char flag;
463 /* We don't want a lot of buckets, because we rarely have very many
464 things stored in the hash table, and a lot of buckets slows
465 down a lot of loops that happen frequently. */
466 #define HASH_SHIFT 5
467 #define HASH_SIZE (1 << HASH_SHIFT)
468 #define HASH_MASK (HASH_SIZE - 1)
470 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
471 register (hard registers may require `do_not_record' to be set). */
473 #define HASH(X, M) \
474 ((GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
475 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
476 : canon_hash (X, M)) & HASH_MASK)
478 /* Determine whether register number N is considered a fixed register for the
479 purpose of approximating register costs.
480 It is desirable to replace other regs with fixed regs, to reduce need for
481 non-fixed hard regs.
482 A reg wins if it is either the frame pointer or designated as fixed. */
483 #define FIXED_REGNO_P(N) \
484 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
485 || fixed_regs[N] || global_regs[N])
487 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
488 hard registers and pointers into the frame are the cheapest with a cost
489 of 0. Next come pseudos with a cost of one and other hard registers with
490 a cost of 2. Aside from these special cases, call `rtx_cost'. */
492 #define CHEAP_REGNO(N) \
493 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
494 || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
495 || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
496 || ((N) < FIRST_PSEUDO_REGISTER \
497 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
499 #define COST(X) (GET_CODE (X) == REG ? 0 : notreg_cost (X, SET))
500 #define COST_IN(X,OUTER) (GET_CODE (X) == REG ? 0 : notreg_cost (X, OUTER))
502 /* Get the info associated with register N. */
504 #define GET_CSE_REG_INFO(N) \
505 (((N) == cached_regno && cached_cse_reg_info) \
506 ? cached_cse_reg_info : get_cse_reg_info ((N)))
508 /* Get the number of times this register has been updated in this
509 basic block. */
511 #define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)
513 /* Get the point at which REG was recorded in the table. */
515 #define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)
517 /* Get the quantity number for REG. */
519 #define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)
521 /* Determine if the quantity number for register X represents a valid index
522 into the qty_table. */
524 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (int) (N))
526 static struct table_elt *table[HASH_SIZE];
528 /* Chain of `struct table_elt's made so far for this function
529 but currently removed from the table. */
531 static struct table_elt *free_element_chain;
533 /* Number of `struct table_elt' structures made so far for this function. */
535 static int n_elements_made;
537 /* Maximum value `n_elements_made' has had so far in this compilation
538 for functions previously processed. */
540 static int max_elements_made;
542 /* Surviving equivalence class when two equivalence classes are merged
543 by recording the effects of a jump in the last insn. Zero if the
544 last insn was not a conditional jump. */
546 static struct table_elt *last_jump_equiv_class;
548 /* Set to the cost of a constant pool reference if one was found for a
549 symbolic constant. If this was found, it means we should try to
550 convert constants into constant pool entries if they don't fit in
551 the insn. */
553 static int constant_pool_entries_cost;
555 /* Define maximum length of a branch path. */
557 #define PATHLENGTH 10
559 /* This data describes a block that will be processed by cse_basic_block. */
561 struct cse_basic_block_data
563 /* Lowest CUID value of insns in block. */
564 int low_cuid;
565 /* Highest CUID value of insns in block. */
566 int high_cuid;
567 /* Total number of SETs in block. */
568 int nsets;
569 /* Last insn in the block. */
570 rtx last;
571 /* Size of current branch path, if any. */
572 int path_size;
573 /* Current branch path, indicating which branches will be taken. */
574 struct branch_path
576 /* The branch insn. */
577 rtx branch;
578 /* Whether it should be taken or not. AROUND is the same as taken
579 except that it is used when the destination label is not preceded
580 by a BARRIER. */
581 enum taken {TAKEN, NOT_TAKEN, AROUND} status;
582 } path[PATHLENGTH];
585 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
586 virtual regs here because the simplify_*_operation routines are called
587 by integrate.c, which is called before virtual register instantiation.
589 ?!? FIXED_BASE_PLUS_P and NONZERO_BASE_PLUS_P need to move into
590 a header file so that their definitions can be shared with the
591 simplification routines in simplify-rtx.c. Until then, do not
592 change these macros without also changing the copy in simplify-rtx.c. */
594 #define FIXED_BASE_PLUS_P(X) \
595 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
596 || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
597 || (X) == virtual_stack_vars_rtx \
598 || (X) == virtual_incoming_args_rtx \
599 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
600 && (XEXP (X, 0) == frame_pointer_rtx \
601 || XEXP (X, 0) == hard_frame_pointer_rtx \
602 || ((X) == arg_pointer_rtx \
603 && fixed_regs[ARG_POINTER_REGNUM]) \
604 || XEXP (X, 0) == virtual_stack_vars_rtx \
605 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
606 || GET_CODE (X) == ADDRESSOF)
608 /* Similar, but also allows reference to the stack pointer.
610 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
611 arg_pointer_rtx by itself is nonzero, because on at least one machine,
612 the i960, the arg pointer is zero when it is unused. */
614 #define NONZERO_BASE_PLUS_P(X) \
615 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
616 || (X) == virtual_stack_vars_rtx \
617 || (X) == virtual_incoming_args_rtx \
618 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
619 && (XEXP (X, 0) == frame_pointer_rtx \
620 || XEXP (X, 0) == hard_frame_pointer_rtx \
621 || ((X) == arg_pointer_rtx \
622 && fixed_regs[ARG_POINTER_REGNUM]) \
623 || XEXP (X, 0) == virtual_stack_vars_rtx \
624 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
625 || (X) == stack_pointer_rtx \
626 || (X) == virtual_stack_dynamic_rtx \
627 || (X) == virtual_outgoing_args_rtx \
628 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
629 && (XEXP (X, 0) == stack_pointer_rtx \
630 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
631 || XEXP (X, 0) == virtual_outgoing_args_rtx)) \
632 || GET_CODE (X) == ADDRESSOF)
634 static int notreg_cost PARAMS ((rtx, enum rtx_code));
635 static int approx_reg_cost_1 PARAMS ((rtx *, void *));
636 static int approx_reg_cost PARAMS ((rtx));
637 static int preferrable PARAMS ((int, int, int, int));
638 static void new_basic_block PARAMS ((void));
639 static void make_new_qty PARAMS ((unsigned int, enum machine_mode));
640 static void make_regs_eqv PARAMS ((unsigned int, unsigned int));
641 static void delete_reg_equiv PARAMS ((unsigned int));
642 static int mention_regs PARAMS ((rtx));
643 static int insert_regs PARAMS ((rtx, struct table_elt *, int));
644 static void remove_from_table PARAMS ((struct table_elt *, unsigned));
645 static struct table_elt *lookup PARAMS ((rtx, unsigned, enum machine_mode)),
646 *lookup_for_remove PARAMS ((rtx, unsigned, enum machine_mode));
647 static rtx lookup_as_function PARAMS ((rtx, enum rtx_code));
648 static struct table_elt *insert PARAMS ((rtx, struct table_elt *, unsigned,
649 enum machine_mode));
650 static void merge_equiv_classes PARAMS ((struct table_elt *,
651 struct table_elt *));
652 static void invalidate PARAMS ((rtx, enum machine_mode));
653 static int cse_rtx_varies_p PARAMS ((rtx, int));
654 static void remove_invalid_refs PARAMS ((unsigned int));
655 static void remove_invalid_subreg_refs PARAMS ((unsigned int, unsigned int,
656 enum machine_mode));
657 static void rehash_using_reg PARAMS ((rtx));
658 static void invalidate_memory PARAMS ((void));
659 static void invalidate_for_call PARAMS ((void));
660 static rtx use_related_value PARAMS ((rtx, struct table_elt *));
661 static unsigned canon_hash PARAMS ((rtx, enum machine_mode));
662 static unsigned canon_hash_string PARAMS ((const char *));
663 static unsigned safe_hash PARAMS ((rtx, enum machine_mode));
664 static int exp_equiv_p PARAMS ((rtx, rtx, int, int));
665 static rtx canon_reg PARAMS ((rtx, rtx));
666 static void find_best_addr PARAMS ((rtx, rtx *, enum machine_mode));
667 static enum rtx_code find_comparison_args PARAMS ((enum rtx_code, rtx *, rtx *,
668 enum machine_mode *,
669 enum machine_mode *));
670 static rtx fold_rtx PARAMS ((rtx, rtx));
671 static rtx equiv_constant PARAMS ((rtx));
672 static void record_jump_equiv PARAMS ((rtx, int));
673 static void record_jump_cond PARAMS ((enum rtx_code, enum machine_mode,
674 rtx, rtx, int));
675 static void cse_insn PARAMS ((rtx, rtx));
676 static int addr_affects_sp_p PARAMS ((rtx));
677 static void invalidate_from_clobbers PARAMS ((rtx));
678 static rtx cse_process_notes PARAMS ((rtx, rtx));
679 static void cse_around_loop PARAMS ((rtx));
680 static void invalidate_skipped_set PARAMS ((rtx, rtx, void *));
681 static void invalidate_skipped_block PARAMS ((rtx));
682 static void cse_check_loop_start PARAMS ((rtx, rtx, void *));
683 static void cse_set_around_loop PARAMS ((rtx, rtx, rtx));
684 static rtx cse_basic_block PARAMS ((rtx, rtx, struct branch_path *, int));
685 static void count_reg_usage PARAMS ((rtx, int *, rtx, int));
686 static int check_for_label_ref PARAMS ((rtx *, void *));
687 extern void dump_class PARAMS ((struct table_elt*));
688 static struct cse_reg_info * get_cse_reg_info PARAMS ((unsigned int));
689 static int check_dependence PARAMS ((rtx *, void *));
691 static void flush_hash_table PARAMS ((void));
692 static bool insn_live_p PARAMS ((rtx, int *));
693 static bool set_live_p PARAMS ((rtx, rtx, int *));
694 static bool dead_libcall_p PARAMS ((rtx));
696 /* Dump the expressions in the equivalence class indicated by CLASSP.
697 This function is used only for debugging. */
698 void
699 dump_class (classp)
700 struct table_elt *classp;
702 struct table_elt *elt;
704 fprintf (stderr, "Equivalence chain for ");
705 print_rtl (stderr, classp->exp);
706 fprintf (stderr, ": \n");
708 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
710 print_rtl (stderr, elt->exp);
711 fprintf (stderr, "\n");
715 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
717 static int
718 approx_reg_cost_1 (xp, data)
719 rtx *xp;
720 void *data;
722 rtx x = *xp;
723 regset set = (regset) data;
725 if (x && GET_CODE (x) == REG)
726 SET_REGNO_REG_SET (set, REGNO (x));
727 return 0;
730 /* Return an estimate of the cost of the registers used in an rtx.
731 This is mostly the number of different REG expressions in the rtx;
732 however for some exceptions like fixed registers we use a cost of
733 0. If any other hard register reference occurs, return MAX_COST. */
735 static int
736 approx_reg_cost (x)
737 rtx x;
739 regset_head set;
740 int i;
741 int cost = 0;
742 int hardregs = 0;
744 INIT_REG_SET (&set);
745 for_each_rtx (&x, approx_reg_cost_1, (void *)&set);
747 EXECUTE_IF_SET_IN_REG_SET
748 (&set, 0, i,
750 if (! CHEAP_REGNO (i))
752 if (i < FIRST_PSEUDO_REGISTER)
753 hardregs++;
755 cost += i < FIRST_PSEUDO_REGISTER ? 2 : 1;
759 CLEAR_REG_SET (&set);
760 return hardregs && SMALL_REGISTER_CLASSES ? MAX_COST : cost;
763 /* Return a negative value if an rtx A, whose costs are given by COST_A
764 and REGCOST_A, is more desirable than an rtx B.
765 Return a positive value if A is less desirable, or 0 if the two are
766 equally good. */
767 static int
768 preferrable (cost_a, regcost_a, cost_b, regcost_b)
769 int cost_a, regcost_a, cost_b, regcost_b;
771 /* First, get rid of a cases involving expressions that are entirely
772 unwanted. */
773 if (cost_a != cost_b)
775 if (cost_a == MAX_COST)
776 return 1;
777 if (cost_b == MAX_COST)
778 return -1;
781 /* Avoid extending lifetimes of hardregs. */
782 if (regcost_a != regcost_b)
784 if (regcost_a == MAX_COST)
785 return 1;
786 if (regcost_b == MAX_COST)
787 return -1;
790 /* Normal operation costs take precedence. */
791 if (cost_a != cost_b)
792 return cost_a - cost_b;
793 /* Only if these are identical consider effects on register pressure. */
794 if (regcost_a != regcost_b)
795 return regcost_a - regcost_b;
796 return 0;
799 /* Internal function, to compute cost when X is not a register; called
800 from COST macro to keep it simple. */
802 static int
803 notreg_cost (x, outer)
804 rtx x;
805 enum rtx_code outer;
807 return ((GET_CODE (x) == SUBREG
808 && GET_CODE (SUBREG_REG (x)) == REG
809 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
810 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
811 && (GET_MODE_SIZE (GET_MODE (x))
812 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
813 && subreg_lowpart_p (x)
814 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
815 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
817 : rtx_cost (x, outer) * 2);
820 /* Return an estimate of the cost of computing rtx X.
821 One use is in cse, to decide which expression to keep in the hash table.
822 Another is in rtl generation, to pick the cheapest way to multiply.
823 Other uses like the latter are expected in the future. */
826 rtx_cost (x, outer_code)
827 rtx x;
828 enum rtx_code outer_code ATTRIBUTE_UNUSED;
830 int i, j;
831 enum rtx_code code;
832 const char *fmt;
833 int total;
835 if (x == 0)
836 return 0;
838 /* Compute the default costs of certain things.
839 Note that RTX_COSTS can override the defaults. */
841 code = GET_CODE (x);
842 switch (code)
844 case MULT:
845 /* Count multiplication by 2**n as a shift,
846 because if we are considering it, we would output it as a shift. */
847 if (GET_CODE (XEXP (x, 1)) == CONST_INT
848 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
849 total = 2;
850 else
851 total = COSTS_N_INSNS (5);
852 break;
853 case DIV:
854 case UDIV:
855 case MOD:
856 case UMOD:
857 total = COSTS_N_INSNS (7);
858 break;
859 case USE:
860 /* Used in loop.c and combine.c as a marker. */
861 total = 0;
862 break;
863 default:
864 total = COSTS_N_INSNS (1);
867 switch (code)
869 case REG:
870 return 0;
872 case SUBREG:
873 /* If we can't tie these modes, make this expensive. The larger
874 the mode, the more expensive it is. */
875 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
876 return COSTS_N_INSNS (2
877 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
878 break;
880 #ifdef RTX_COSTS
881 RTX_COSTS (x, code, outer_code);
882 #endif
883 #ifdef CONST_COSTS
884 CONST_COSTS (x, code, outer_code);
885 #endif
887 default:
888 #ifdef DEFAULT_RTX_COSTS
889 DEFAULT_RTX_COSTS (x, code, outer_code);
890 #endif
891 break;
894 /* Sum the costs of the sub-rtx's, plus cost of this operation,
895 which is already in total. */
897 fmt = GET_RTX_FORMAT (code);
898 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
899 if (fmt[i] == 'e')
900 total += rtx_cost (XEXP (x, i), code);
901 else if (fmt[i] == 'E')
902 for (j = 0; j < XVECLEN (x, i); j++)
903 total += rtx_cost (XVECEXP (x, i, j), code);
905 return total;
908 /* Return cost of address expression X.
909 Expect that X is properly formed address reference. */
912 address_cost (x, mode)
913 rtx x;
914 enum machine_mode mode;
916 /* The ADDRESS_COST macro does not deal with ADDRESSOF nodes. But,
917 during CSE, such nodes are present. Using an ADDRESSOF node which
918 refers to the address of a REG is a good thing because we can then
919 turn (MEM (ADDRESSSOF (REG))) into just plain REG. */
921 if (GET_CODE (x) == ADDRESSOF && REG_P (XEXP ((x), 0)))
922 return -1;
924 /* We may be asked for cost of various unusual addresses, such as operands
925 of push instruction. It is not worthwhile to complicate writing
926 of ADDRESS_COST macro by such cases. */
928 if (!memory_address_p (mode, x))
929 return 1000;
930 #ifdef ADDRESS_COST
931 return ADDRESS_COST (x);
932 #else
933 return rtx_cost (x, MEM);
934 #endif
938 static struct cse_reg_info *
939 get_cse_reg_info (regno)
940 unsigned int regno;
942 struct cse_reg_info **hash_head = &reg_hash[REGHASH_FN (regno)];
943 struct cse_reg_info *p;
945 for (p = *hash_head; p != NULL; p = p->hash_next)
946 if (p->regno == regno)
947 break;
949 if (p == NULL)
951 /* Get a new cse_reg_info structure. */
952 if (cse_reg_info_free_list)
954 p = cse_reg_info_free_list;
955 cse_reg_info_free_list = p->next;
957 else
958 p = (struct cse_reg_info *) xmalloc (sizeof (struct cse_reg_info));
960 /* Insert into hash table. */
961 p->hash_next = *hash_head;
962 *hash_head = p;
964 /* Initialize it. */
965 p->reg_tick = 1;
966 p->reg_in_table = -1;
967 p->reg_qty = regno;
968 p->regno = regno;
969 p->next = cse_reg_info_used_list;
970 cse_reg_info_used_list = p;
971 if (!cse_reg_info_used_list_end)
972 cse_reg_info_used_list_end = p;
975 /* Cache this lookup; we tend to be looking up information about the
976 same register several times in a row. */
977 cached_regno = regno;
978 cached_cse_reg_info = p;
980 return p;
983 /* Clear the hash table and initialize each register with its own quantity,
984 for a new basic block. */
986 static void
987 new_basic_block ()
989 int i;
991 next_qty = max_reg;
993 /* Clear out hash table state for this pass. */
995 memset ((char *) reg_hash, 0, sizeof reg_hash);
997 if (cse_reg_info_used_list)
999 cse_reg_info_used_list_end->next = cse_reg_info_free_list;
1000 cse_reg_info_free_list = cse_reg_info_used_list;
1001 cse_reg_info_used_list = cse_reg_info_used_list_end = 0;
1003 cached_cse_reg_info = 0;
1005 CLEAR_HARD_REG_SET (hard_regs_in_table);
1007 /* The per-quantity values used to be initialized here, but it is
1008 much faster to initialize each as it is made in `make_new_qty'. */
1010 for (i = 0; i < HASH_SIZE; i++)
1012 struct table_elt *first;
1014 first = table[i];
1015 if (first != NULL)
1017 struct table_elt *last = first;
1019 table[i] = NULL;
1021 while (last->next_same_hash != NULL)
1022 last = last->next_same_hash;
1024 /* Now relink this hash entire chain into
1025 the free element list. */
1027 last->next_same_hash = free_element_chain;
1028 free_element_chain = first;
1032 prev_insn = 0;
1034 #ifdef HAVE_cc0
1035 prev_insn_cc0 = 0;
1036 #endif
1039 /* Say that register REG contains a quantity in mode MODE not in any
1040 register before and initialize that quantity. */
1042 static void
1043 make_new_qty (reg, mode)
1044 unsigned int reg;
1045 enum machine_mode mode;
1047 int q;
1048 struct qty_table_elem *ent;
1049 struct reg_eqv_elem *eqv;
1051 if (next_qty >= max_qty)
1052 abort ();
1054 q = REG_QTY (reg) = next_qty++;
1055 ent = &qty_table[q];
1056 ent->first_reg = reg;
1057 ent->last_reg = reg;
1058 ent->mode = mode;
1059 ent->const_rtx = ent->const_insn = NULL_RTX;
1060 ent->comparison_code = UNKNOWN;
1062 eqv = &reg_eqv_table[reg];
1063 eqv->next = eqv->prev = -1;
1066 /* Make reg NEW equivalent to reg OLD.
1067 OLD is not changing; NEW is. */
1069 static void
1070 make_regs_eqv (new, old)
1071 unsigned int new, old;
1073 unsigned int lastr, firstr;
1074 int q = REG_QTY (old);
1075 struct qty_table_elem *ent;
1077 ent = &qty_table[q];
1079 /* Nothing should become eqv until it has a "non-invalid" qty number. */
1080 if (! REGNO_QTY_VALID_P (old))
1081 abort ();
1083 REG_QTY (new) = q;
1084 firstr = ent->first_reg;
1085 lastr = ent->last_reg;
1087 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1088 hard regs. Among pseudos, if NEW will live longer than any other reg
1089 of the same qty, and that is beyond the current basic block,
1090 make it the new canonical replacement for this qty. */
1091 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1092 /* Certain fixed registers might be of the class NO_REGS. This means
1093 that not only can they not be allocated by the compiler, but
1094 they cannot be used in substitutions or canonicalizations
1095 either. */
1096 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1097 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1098 || (new >= FIRST_PSEUDO_REGISTER
1099 && (firstr < FIRST_PSEUDO_REGISTER
1100 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1101 || (uid_cuid[REGNO_FIRST_UID (new)]
1102 < cse_basic_block_start))
1103 && (uid_cuid[REGNO_LAST_UID (new)]
1104 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
1106 reg_eqv_table[firstr].prev = new;
1107 reg_eqv_table[new].next = firstr;
1108 reg_eqv_table[new].prev = -1;
1109 ent->first_reg = new;
1111 else
1113 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1114 Otherwise, insert before any non-fixed hard regs that are at the
1115 end. Registers of class NO_REGS cannot be used as an
1116 equivalent for anything. */
1117 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
1118 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1119 && new >= FIRST_PSEUDO_REGISTER)
1120 lastr = reg_eqv_table[lastr].prev;
1121 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1122 if (reg_eqv_table[lastr].next >= 0)
1123 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
1124 else
1125 qty_table[q].last_reg = new;
1126 reg_eqv_table[lastr].next = new;
1127 reg_eqv_table[new].prev = lastr;
1131 /* Remove REG from its equivalence class. */
1133 static void
1134 delete_reg_equiv (reg)
1135 unsigned int reg;
1137 struct qty_table_elem *ent;
1138 int q = REG_QTY (reg);
1139 int p, n;
1141 /* If invalid, do nothing. */
1142 if (q == (int) reg)
1143 return;
1145 ent = &qty_table[q];
1147 p = reg_eqv_table[reg].prev;
1148 n = reg_eqv_table[reg].next;
1150 if (n != -1)
1151 reg_eqv_table[n].prev = p;
1152 else
1153 ent->last_reg = p;
1154 if (p != -1)
1155 reg_eqv_table[p].next = n;
1156 else
1157 ent->first_reg = n;
1159 REG_QTY (reg) = reg;
1162 /* Remove any invalid expressions from the hash table
1163 that refer to any of the registers contained in expression X.
1165 Make sure that newly inserted references to those registers
1166 as subexpressions will be considered valid.
1168 mention_regs is not called when a register itself
1169 is being stored in the table.
1171 Return 1 if we have done something that may have changed the hash code
1172 of X. */
1174 static int
1175 mention_regs (x)
1176 rtx x;
1178 enum rtx_code code;
1179 int i, j;
1180 const char *fmt;
1181 int changed = 0;
1183 if (x == 0)
1184 return 0;
1186 code = GET_CODE (x);
1187 if (code == REG)
1189 unsigned int regno = REGNO (x);
1190 unsigned int endregno
1191 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1192 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
1193 unsigned int i;
1195 for (i = regno; i < endregno; i++)
1197 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1198 remove_invalid_refs (i);
1200 REG_IN_TABLE (i) = REG_TICK (i);
1203 return 0;
1206 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1207 pseudo if they don't use overlapping words. We handle only pseudos
1208 here for simplicity. */
1209 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1210 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1212 unsigned int i = REGNO (SUBREG_REG (x));
1214 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1216 /* If reg_tick has been incremented more than once since
1217 reg_in_table was last set, that means that the entire
1218 register has been set before, so discard anything memorized
1219 for the entire register, including all SUBREG expressions. */
1220 if (REG_IN_TABLE (i) != REG_TICK (i) - 1)
1221 remove_invalid_refs (i);
1222 else
1223 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1226 REG_IN_TABLE (i) = REG_TICK (i);
1227 return 0;
1230 /* If X is a comparison or a COMPARE and either operand is a register
1231 that does not have a quantity, give it one. This is so that a later
1232 call to record_jump_equiv won't cause X to be assigned a different
1233 hash code and not found in the table after that call.
1235 It is not necessary to do this here, since rehash_using_reg can
1236 fix up the table later, but doing this here eliminates the need to
1237 call that expensive function in the most common case where the only
1238 use of the register is in the comparison. */
1240 if (code == COMPARE || GET_RTX_CLASS (code) == '<')
1242 if (GET_CODE (XEXP (x, 0)) == REG
1243 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1244 if (insert_regs (XEXP (x, 0), NULL, 0))
1246 rehash_using_reg (XEXP (x, 0));
1247 changed = 1;
1250 if (GET_CODE (XEXP (x, 1)) == REG
1251 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1252 if (insert_regs (XEXP (x, 1), NULL, 0))
1254 rehash_using_reg (XEXP (x, 1));
1255 changed = 1;
1259 fmt = GET_RTX_FORMAT (code);
1260 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1261 if (fmt[i] == 'e')
1262 changed |= mention_regs (XEXP (x, i));
1263 else if (fmt[i] == 'E')
1264 for (j = 0; j < XVECLEN (x, i); j++)
1265 changed |= mention_regs (XVECEXP (x, i, j));
1267 return changed;
1270 /* Update the register quantities for inserting X into the hash table
1271 with a value equivalent to CLASSP.
1272 (If the class does not contain a REG, it is irrelevant.)
1273 If MODIFIED is nonzero, X is a destination; it is being modified.
1274 Note that delete_reg_equiv should be called on a register
1275 before insert_regs is done on that register with MODIFIED != 0.
1277 Nonzero value means that elements of reg_qty have changed
1278 so X's hash code may be different. */
1280 static int
1281 insert_regs (x, classp, modified)
1282 rtx x;
1283 struct table_elt *classp;
1284 int modified;
1286 if (GET_CODE (x) == REG)
1288 unsigned int regno = REGNO (x);
1289 int qty_valid;
1291 /* If REGNO is in the equivalence table already but is of the
1292 wrong mode for that equivalence, don't do anything here. */
1294 qty_valid = REGNO_QTY_VALID_P (regno);
1295 if (qty_valid)
1297 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1299 if (ent->mode != GET_MODE (x))
1300 return 0;
1303 if (modified || ! qty_valid)
1305 if (classp)
1306 for (classp = classp->first_same_value;
1307 classp != 0;
1308 classp = classp->next_same_value)
1309 if (GET_CODE (classp->exp) == REG
1310 && GET_MODE (classp->exp) == GET_MODE (x))
1312 make_regs_eqv (regno, REGNO (classp->exp));
1313 return 1;
1316 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1317 than REG_IN_TABLE to find out if there was only a single preceding
1318 invalidation - for the SUBREG - or another one, which would be
1319 for the full register. However, if we find here that REG_TICK
1320 indicates that the register is invalid, it means that it has
1321 been invalidated in a separate operation. The SUBREG might be used
1322 now (then this is a recursive call), or we might use the full REG
1323 now and a SUBREG of it later. So bump up REG_TICK so that
1324 mention_regs will do the right thing. */
1325 if (! modified
1326 && REG_IN_TABLE (regno) >= 0
1327 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1328 REG_TICK (regno)++;
1329 make_new_qty (regno, GET_MODE (x));
1330 return 1;
1333 return 0;
1336 /* If X is a SUBREG, we will likely be inserting the inner register in the
1337 table. If that register doesn't have an assigned quantity number at
1338 this point but does later, the insertion that we will be doing now will
1339 not be accessible because its hash code will have changed. So assign
1340 a quantity number now. */
1342 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1343 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1345 insert_regs (SUBREG_REG (x), NULL, 0);
1346 mention_regs (x);
1347 return 1;
1349 else
1350 return mention_regs (x);
1353 /* Look in or update the hash table. */
1355 /* Remove table element ELT from use in the table.
1356 HASH is its hash code, made using the HASH macro.
1357 It's an argument because often that is known in advance
1358 and we save much time not recomputing it. */
1360 static void
1361 remove_from_table (elt, hash)
1362 struct table_elt *elt;
1363 unsigned hash;
1365 if (elt == 0)
1366 return;
1368 /* Mark this element as removed. See cse_insn. */
1369 elt->first_same_value = 0;
1371 /* Remove the table element from its equivalence class. */
1374 struct table_elt *prev = elt->prev_same_value;
1375 struct table_elt *next = elt->next_same_value;
1377 if (next)
1378 next->prev_same_value = prev;
1380 if (prev)
1381 prev->next_same_value = next;
1382 else
1384 struct table_elt *newfirst = next;
1385 while (next)
1387 next->first_same_value = newfirst;
1388 next = next->next_same_value;
1393 /* Remove the table element from its hash bucket. */
1396 struct table_elt *prev = elt->prev_same_hash;
1397 struct table_elt *next = elt->next_same_hash;
1399 if (next)
1400 next->prev_same_hash = prev;
1402 if (prev)
1403 prev->next_same_hash = next;
1404 else if (table[hash] == elt)
1405 table[hash] = next;
1406 else
1408 /* This entry is not in the proper hash bucket. This can happen
1409 when two classes were merged by `merge_equiv_classes'. Search
1410 for the hash bucket that it heads. This happens only very
1411 rarely, so the cost is acceptable. */
1412 for (hash = 0; hash < HASH_SIZE; hash++)
1413 if (table[hash] == elt)
1414 table[hash] = next;
1418 /* Remove the table element from its related-value circular chain. */
1420 if (elt->related_value != 0 && elt->related_value != elt)
1422 struct table_elt *p = elt->related_value;
1424 while (p->related_value != elt)
1425 p = p->related_value;
1426 p->related_value = elt->related_value;
1427 if (p->related_value == p)
1428 p->related_value = 0;
1431 /* Now add it to the free element chain. */
1432 elt->next_same_hash = free_element_chain;
1433 free_element_chain = elt;
1436 /* Look up X in the hash table and return its table element,
1437 or 0 if X is not in the table.
1439 MODE is the machine-mode of X, or if X is an integer constant
1440 with VOIDmode then MODE is the mode with which X will be used.
1442 Here we are satisfied to find an expression whose tree structure
1443 looks like X. */
1445 static struct table_elt *
1446 lookup (x, hash, mode)
1447 rtx x;
1448 unsigned hash;
1449 enum machine_mode mode;
1451 struct table_elt *p;
1453 for (p = table[hash]; p; p = p->next_same_hash)
1454 if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
1455 || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
1456 return p;
1458 return 0;
1461 /* Like `lookup' but don't care whether the table element uses invalid regs.
1462 Also ignore discrepancies in the machine mode of a register. */
1464 static struct table_elt *
1465 lookup_for_remove (x, hash, mode)
1466 rtx x;
1467 unsigned hash;
1468 enum machine_mode mode;
1470 struct table_elt *p;
1472 if (GET_CODE (x) == REG)
1474 unsigned int regno = REGNO (x);
1476 /* Don't check the machine mode when comparing registers;
1477 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1478 for (p = table[hash]; p; p = p->next_same_hash)
1479 if (GET_CODE (p->exp) == REG
1480 && REGNO (p->exp) == regno)
1481 return p;
1483 else
1485 for (p = table[hash]; p; p = p->next_same_hash)
1486 if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
1487 return p;
1490 return 0;
1493 /* Look for an expression equivalent to X and with code CODE.
1494 If one is found, return that expression. */
1496 static rtx
1497 lookup_as_function (x, code)
1498 rtx x;
1499 enum rtx_code code;
1501 struct table_elt *p
1502 = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, GET_MODE (x));
1504 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1505 long as we are narrowing. So if we looked in vain for a mode narrower
1506 than word_mode before, look for word_mode now. */
1507 if (p == 0 && code == CONST_INT
1508 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1510 x = copy_rtx (x);
1511 PUT_MODE (x, word_mode);
1512 p = lookup (x, safe_hash (x, VOIDmode) & HASH_MASK, word_mode);
1515 if (p == 0)
1516 return 0;
1518 for (p = p->first_same_value; p; p = p->next_same_value)
1519 if (GET_CODE (p->exp) == code
1520 /* Make sure this is a valid entry in the table. */
1521 && exp_equiv_p (p->exp, p->exp, 1, 0))
1522 return p->exp;
1524 return 0;
1527 /* Insert X in the hash table, assuming HASH is its hash code
1528 and CLASSP is an element of the class it should go in
1529 (or 0 if a new class should be made).
1530 It is inserted at the proper position to keep the class in
1531 the order cheapest first.
1533 MODE is the machine-mode of X, or if X is an integer constant
1534 with VOIDmode then MODE is the mode with which X will be used.
1536 For elements of equal cheapness, the most recent one
1537 goes in front, except that the first element in the list
1538 remains first unless a cheaper element is added. The order of
1539 pseudo-registers does not matter, as canon_reg will be called to
1540 find the cheapest when a register is retrieved from the table.
1542 The in_memory field in the hash table element is set to 0.
1543 The caller must set it nonzero if appropriate.
1545 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1546 and if insert_regs returns a nonzero value
1547 you must then recompute its hash code before calling here.
1549 If necessary, update table showing constant values of quantities. */
1551 #define CHEAPER(X, Y) \
1552 (preferrable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1554 static struct table_elt *
1555 insert (x, classp, hash, mode)
1556 rtx x;
1557 struct table_elt *classp;
1558 unsigned hash;
1559 enum machine_mode mode;
1561 struct table_elt *elt;
1563 /* If X is a register and we haven't made a quantity for it,
1564 something is wrong. */
1565 if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
1566 abort ();
1568 /* If X is a hard register, show it is being put in the table. */
1569 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
1571 unsigned int regno = REGNO (x);
1572 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1573 unsigned int i;
1575 for (i = regno; i < endregno; i++)
1576 SET_HARD_REG_BIT (hard_regs_in_table, i);
1579 /* Put an element for X into the right hash bucket. */
1581 elt = free_element_chain;
1582 if (elt)
1583 free_element_chain = elt->next_same_hash;
1584 else
1586 n_elements_made++;
1587 elt = (struct table_elt *) xmalloc (sizeof (struct table_elt));
1590 elt->exp = x;
1591 elt->canon_exp = NULL_RTX;
1592 elt->cost = COST (x);
1593 elt->regcost = approx_reg_cost (x);
1594 elt->next_same_value = 0;
1595 elt->prev_same_value = 0;
1596 elt->next_same_hash = table[hash];
1597 elt->prev_same_hash = 0;
1598 elt->related_value = 0;
1599 elt->in_memory = 0;
1600 elt->mode = mode;
1601 elt->is_const = (CONSTANT_P (x)
1602 /* GNU C++ takes advantage of this for `this'
1603 (and other const values). */
1604 || (RTX_UNCHANGING_P (x)
1605 && GET_CODE (x) == REG
1606 && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1607 || FIXED_BASE_PLUS_P (x));
1609 if (table[hash])
1610 table[hash]->prev_same_hash = elt;
1611 table[hash] = elt;
1613 /* Put it into the proper value-class. */
1614 if (classp)
1616 classp = classp->first_same_value;
1617 if (CHEAPER (elt, classp))
1618 /* Insert at the head of the class */
1620 struct table_elt *p;
1621 elt->next_same_value = classp;
1622 classp->prev_same_value = elt;
1623 elt->first_same_value = elt;
1625 for (p = classp; p; p = p->next_same_value)
1626 p->first_same_value = elt;
1628 else
1630 /* Insert not at head of the class. */
1631 /* Put it after the last element cheaper than X. */
1632 struct table_elt *p, *next;
1634 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1635 p = next);
1637 /* Put it after P and before NEXT. */
1638 elt->next_same_value = next;
1639 if (next)
1640 next->prev_same_value = elt;
1642 elt->prev_same_value = p;
1643 p->next_same_value = elt;
1644 elt->first_same_value = classp;
1647 else
1648 elt->first_same_value = elt;
1650 /* If this is a constant being set equivalent to a register or a register
1651 being set equivalent to a constant, note the constant equivalence.
1653 If this is a constant, it cannot be equivalent to a different constant,
1654 and a constant is the only thing that can be cheaper than a register. So
1655 we know the register is the head of the class (before the constant was
1656 inserted).
1658 If this is a register that is not already known equivalent to a
1659 constant, we must check the entire class.
1661 If this is a register that is already known equivalent to an insn,
1662 update the qtys `const_insn' to show that `this_insn' is the latest
1663 insn making that quantity equivalent to the constant. */
1665 if (elt->is_const && classp && GET_CODE (classp->exp) == REG
1666 && GET_CODE (x) != REG)
1668 int exp_q = REG_QTY (REGNO (classp->exp));
1669 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1671 exp_ent->const_rtx = gen_lowpart_if_possible (exp_ent->mode, x);
1672 exp_ent->const_insn = this_insn;
1675 else if (GET_CODE (x) == REG
1676 && classp
1677 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1678 && ! elt->is_const)
1680 struct table_elt *p;
1682 for (p = classp; p != 0; p = p->next_same_value)
1684 if (p->is_const && GET_CODE (p->exp) != REG)
1686 int x_q = REG_QTY (REGNO (x));
1687 struct qty_table_elem *x_ent = &qty_table[x_q];
1689 x_ent->const_rtx
1690 = gen_lowpart_if_possible (GET_MODE (x), p->exp);
1691 x_ent->const_insn = this_insn;
1692 break;
1697 else if (GET_CODE (x) == REG
1698 && qty_table[REG_QTY (REGNO (x))].const_rtx
1699 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1700 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1702 /* If this is a constant with symbolic value,
1703 and it has a term with an explicit integer value,
1704 link it up with related expressions. */
1705 if (GET_CODE (x) == CONST)
1707 rtx subexp = get_related_value (x);
1708 unsigned subhash;
1709 struct table_elt *subelt, *subelt_prev;
1711 if (subexp != 0)
1713 /* Get the integer-free subexpression in the hash table. */
1714 subhash = safe_hash (subexp, mode) & HASH_MASK;
1715 subelt = lookup (subexp, subhash, mode);
1716 if (subelt == 0)
1717 subelt = insert (subexp, NULL, subhash, mode);
1718 /* Initialize SUBELT's circular chain if it has none. */
1719 if (subelt->related_value == 0)
1720 subelt->related_value = subelt;
1721 /* Find the element in the circular chain that precedes SUBELT. */
1722 subelt_prev = subelt;
1723 while (subelt_prev->related_value != subelt)
1724 subelt_prev = subelt_prev->related_value;
1725 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1726 This way the element that follows SUBELT is the oldest one. */
1727 elt->related_value = subelt_prev->related_value;
1728 subelt_prev->related_value = elt;
1732 return elt;
1735 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1736 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1737 the two classes equivalent.
1739 CLASS1 will be the surviving class; CLASS2 should not be used after this
1740 call.
1742 Any invalid entries in CLASS2 will not be copied. */
1744 static void
1745 merge_equiv_classes (class1, class2)
1746 struct table_elt *class1, *class2;
1748 struct table_elt *elt, *next, *new;
1750 /* Ensure we start with the head of the classes. */
1751 class1 = class1->first_same_value;
1752 class2 = class2->first_same_value;
1754 /* If they were already equal, forget it. */
1755 if (class1 == class2)
1756 return;
1758 for (elt = class2; elt; elt = next)
1760 unsigned int hash;
1761 rtx exp = elt->exp;
1762 enum machine_mode mode = elt->mode;
1764 next = elt->next_same_value;
1766 /* Remove old entry, make a new one in CLASS1's class.
1767 Don't do this for invalid entries as we cannot find their
1768 hash code (it also isn't necessary). */
1769 if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
1771 hash_arg_in_memory = 0;
1772 hash = HASH (exp, mode);
1774 if (GET_CODE (exp) == REG)
1775 delete_reg_equiv (REGNO (exp));
1777 remove_from_table (elt, hash);
1779 if (insert_regs (exp, class1, 0))
1781 rehash_using_reg (exp);
1782 hash = HASH (exp, mode);
1784 new = insert (exp, class1, hash, mode);
1785 new->in_memory = hash_arg_in_memory;
1790 /* Flush the entire hash table. */
1792 static void
1793 flush_hash_table ()
1795 int i;
1796 struct table_elt *p;
1798 for (i = 0; i < HASH_SIZE; i++)
1799 for (p = table[i]; p; p = table[i])
1801 /* Note that invalidate can remove elements
1802 after P in the current hash chain. */
1803 if (GET_CODE (p->exp) == REG)
1804 invalidate (p->exp, p->mode);
1805 else
1806 remove_from_table (p, i);
1810 /* Function called for each rtx to check whether true dependence exist. */
1811 struct check_dependence_data
1813 enum machine_mode mode;
1814 rtx exp;
1817 static int
1818 check_dependence (x, data)
1819 rtx *x;
1820 void *data;
1822 struct check_dependence_data *d = (struct check_dependence_data *) data;
1823 if (*x && GET_CODE (*x) == MEM)
1824 return true_dependence (d->exp, d->mode, *x, cse_rtx_varies_p);
1825 else
1826 return 0;
1829 /* Remove from the hash table, or mark as invalid, all expressions whose
1830 values could be altered by storing in X. X is a register, a subreg, or
1831 a memory reference with nonvarying address (because, when a memory
1832 reference with a varying address is stored in, all memory references are
1833 removed by invalidate_memory so specific invalidation is superfluous).
1834 FULL_MODE, if not VOIDmode, indicates that this much should be
1835 invalidated instead of just the amount indicated by the mode of X. This
1836 is only used for bitfield stores into memory.
1838 A nonvarying address may be just a register or just a symbol reference,
1839 or it may be either of those plus a numeric offset. */
1841 static void
1842 invalidate (x, full_mode)
1843 rtx x;
1844 enum machine_mode full_mode;
1846 int i;
1847 struct table_elt *p;
1849 switch (GET_CODE (x))
1851 case REG:
1853 /* If X is a register, dependencies on its contents are recorded
1854 through the qty number mechanism. Just change the qty number of
1855 the register, mark it as invalid for expressions that refer to it,
1856 and remove it itself. */
1857 unsigned int regno = REGNO (x);
1858 unsigned int hash = HASH (x, GET_MODE (x));
1860 /* Remove REGNO from any quantity list it might be on and indicate
1861 that its value might have changed. If it is a pseudo, remove its
1862 entry from the hash table.
1864 For a hard register, we do the first two actions above for any
1865 additional hard registers corresponding to X. Then, if any of these
1866 registers are in the table, we must remove any REG entries that
1867 overlap these registers. */
1869 delete_reg_equiv (regno);
1870 REG_TICK (regno)++;
1872 if (regno >= FIRST_PSEUDO_REGISTER)
1874 /* Because a register can be referenced in more than one mode,
1875 we might have to remove more than one table entry. */
1876 struct table_elt *elt;
1878 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1879 remove_from_table (elt, hash);
1881 else
1883 HOST_WIDE_INT in_table
1884 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1885 unsigned int endregno
1886 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1887 unsigned int tregno, tendregno, rn;
1888 struct table_elt *p, *next;
1890 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1892 for (rn = regno + 1; rn < endregno; rn++)
1894 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1895 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1896 delete_reg_equiv (rn);
1897 REG_TICK (rn)++;
1900 if (in_table)
1901 for (hash = 0; hash < HASH_SIZE; hash++)
1902 for (p = table[hash]; p; p = next)
1904 next = p->next_same_hash;
1906 if (GET_CODE (p->exp) != REG
1907 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1908 continue;
1910 tregno = REGNO (p->exp);
1911 tendregno
1912 = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
1913 if (tendregno > regno && tregno < endregno)
1914 remove_from_table (p, hash);
1918 return;
1920 case SUBREG:
1921 invalidate (SUBREG_REG (x), VOIDmode);
1922 return;
1924 case PARALLEL:
1925 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1926 invalidate (XVECEXP (x, 0, i), VOIDmode);
1927 return;
1929 case EXPR_LIST:
1930 /* This is part of a disjoint return value; extract the location in
1931 question ignoring the offset. */
1932 invalidate (XEXP (x, 0), VOIDmode);
1933 return;
1935 case MEM:
1936 /* Calculate the canonical version of X here so that
1937 true_dependence doesn't generate new RTL for X on each call. */
1938 x = canon_rtx (x);
1940 /* Remove all hash table elements that refer to overlapping pieces of
1941 memory. */
1942 if (full_mode == VOIDmode)
1943 full_mode = GET_MODE (x);
1945 for (i = 0; i < HASH_SIZE; i++)
1947 struct table_elt *next;
1949 for (p = table[i]; p; p = next)
1951 next = p->next_same_hash;
1952 if (p->in_memory)
1954 struct check_dependence_data d;
1956 /* Just canonicalize the expression once;
1957 otherwise each time we call invalidate
1958 true_dependence will canonicalize the
1959 expression again. */
1960 if (!p->canon_exp)
1961 p->canon_exp = canon_rtx (p->exp);
1962 d.exp = x;
1963 d.mode = full_mode;
1964 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1965 remove_from_table (p, i);
1969 return;
1971 default:
1972 abort ();
1976 /* Remove all expressions that refer to register REGNO,
1977 since they are already invalid, and we are about to
1978 mark that register valid again and don't want the old
1979 expressions to reappear as valid. */
1981 static void
1982 remove_invalid_refs (regno)
1983 unsigned int regno;
1985 unsigned int i;
1986 struct table_elt *p, *next;
1988 for (i = 0; i < HASH_SIZE; i++)
1989 for (p = table[i]; p; p = next)
1991 next = p->next_same_hash;
1992 if (GET_CODE (p->exp) != REG
1993 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx*) 0))
1994 remove_from_table (p, i);
1998 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1999 and mode MODE. */
2000 static void
2001 remove_invalid_subreg_refs (regno, offset, mode)
2002 unsigned int regno;
2003 unsigned int offset;
2004 enum machine_mode mode;
2006 unsigned int i;
2007 struct table_elt *p, *next;
2008 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2010 for (i = 0; i < HASH_SIZE; i++)
2011 for (p = table[i]; p; p = next)
2013 rtx exp = p->exp;
2014 next = p->next_same_hash;
2016 if (GET_CODE (exp) != REG
2017 && (GET_CODE (exp) != SUBREG
2018 || GET_CODE (SUBREG_REG (exp)) != REG
2019 || REGNO (SUBREG_REG (exp)) != regno
2020 || (((SUBREG_BYTE (exp)
2021 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2022 && SUBREG_BYTE (exp) <= end))
2023 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx*) 0))
2024 remove_from_table (p, i);
2028 /* Recompute the hash codes of any valid entries in the hash table that
2029 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2031 This is called when we make a jump equivalence. */
2033 static void
2034 rehash_using_reg (x)
2035 rtx x;
2037 unsigned int i;
2038 struct table_elt *p, *next;
2039 unsigned hash;
2041 if (GET_CODE (x) == SUBREG)
2042 x = SUBREG_REG (x);
2044 /* If X is not a register or if the register is known not to be in any
2045 valid entries in the table, we have no work to do. */
2047 if (GET_CODE (x) != REG
2048 || REG_IN_TABLE (REGNO (x)) < 0
2049 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2050 return;
2052 /* Scan all hash chains looking for valid entries that mention X.
2053 If we find one and it is in the wrong hash chain, move it. We can skip
2054 objects that are registers, since they are handled specially. */
2056 for (i = 0; i < HASH_SIZE; i++)
2057 for (p = table[i]; p; p = next)
2059 next = p->next_same_hash;
2060 if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
2061 && exp_equiv_p (p->exp, p->exp, 1, 0)
2062 && i != (hash = safe_hash (p->exp, p->mode) & HASH_MASK))
2064 if (p->next_same_hash)
2065 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2067 if (p->prev_same_hash)
2068 p->prev_same_hash->next_same_hash = p->next_same_hash;
2069 else
2070 table[i] = p->next_same_hash;
2072 p->next_same_hash = table[hash];
2073 p->prev_same_hash = 0;
2074 if (table[hash])
2075 table[hash]->prev_same_hash = p;
2076 table[hash] = p;
2081 /* Remove from the hash table any expression that is a call-clobbered
2082 register. Also update their TICK values. */
2084 static void
2085 invalidate_for_call ()
2087 unsigned int regno, endregno;
2088 unsigned int i;
2089 unsigned hash;
2090 struct table_elt *p, *next;
2091 int in_table = 0;
2093 /* Go through all the hard registers. For each that is clobbered in
2094 a CALL_INSN, remove the register from quantity chains and update
2095 reg_tick if defined. Also see if any of these registers is currently
2096 in the table. */
2098 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2099 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2101 delete_reg_equiv (regno);
2102 if (REG_TICK (regno) >= 0)
2103 REG_TICK (regno)++;
2105 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2108 /* In the case where we have no call-clobbered hard registers in the
2109 table, we are done. Otherwise, scan the table and remove any
2110 entry that overlaps a call-clobbered register. */
2112 if (in_table)
2113 for (hash = 0; hash < HASH_SIZE; hash++)
2114 for (p = table[hash]; p; p = next)
2116 next = p->next_same_hash;
2118 if (GET_CODE (p->exp) != REG
2119 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2120 continue;
2122 regno = REGNO (p->exp);
2123 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));
2125 for (i = regno; i < endregno; i++)
2126 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2128 remove_from_table (p, hash);
2129 break;
2134 /* Given an expression X of type CONST,
2135 and ELT which is its table entry (or 0 if it
2136 is not in the hash table),
2137 return an alternate expression for X as a register plus integer.
2138 If none can be found, return 0. */
2140 static rtx
2141 use_related_value (x, elt)
2142 rtx x;
2143 struct table_elt *elt;
2145 struct table_elt *relt = 0;
2146 struct table_elt *p, *q;
2147 HOST_WIDE_INT offset;
2149 /* First, is there anything related known?
2150 If we have a table element, we can tell from that.
2151 Otherwise, must look it up. */
2153 if (elt != 0 && elt->related_value != 0)
2154 relt = elt;
2155 else if (elt == 0 && GET_CODE (x) == CONST)
2157 rtx subexp = get_related_value (x);
2158 if (subexp != 0)
2159 relt = lookup (subexp,
2160 safe_hash (subexp, GET_MODE (subexp)) & HASH_MASK,
2161 GET_MODE (subexp));
2164 if (relt == 0)
2165 return 0;
2167 /* Search all related table entries for one that has an
2168 equivalent register. */
2170 p = relt;
2171 while (1)
2173 /* This loop is strange in that it is executed in two different cases.
2174 The first is when X is already in the table. Then it is searching
2175 the RELATED_VALUE list of X's class (RELT). The second case is when
2176 X is not in the table. Then RELT points to a class for the related
2177 value.
2179 Ensure that, whatever case we are in, that we ignore classes that have
2180 the same value as X. */
2182 if (rtx_equal_p (x, p->exp))
2183 q = 0;
2184 else
2185 for (q = p->first_same_value; q; q = q->next_same_value)
2186 if (GET_CODE (q->exp) == REG)
2187 break;
2189 if (q)
2190 break;
2192 p = p->related_value;
2194 /* We went all the way around, so there is nothing to be found.
2195 Alternatively, perhaps RELT was in the table for some other reason
2196 and it has no related values recorded. */
2197 if (p == relt || p == 0)
2198 break;
2201 if (q == 0)
2202 return 0;
2204 offset = (get_integer_term (x) - get_integer_term (p->exp));
2205 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2206 return plus_constant (q->exp, offset);
2209 /* Hash a string. Just add its bytes up. */
2210 static inline unsigned
2211 canon_hash_string (ps)
2212 const char *ps;
2214 unsigned hash = 0;
2215 const unsigned char *p = (const unsigned char *)ps;
2217 if (p)
2218 while (*p)
2219 hash += *p++;
2221 return hash;
2224 /* Hash an rtx. We are careful to make sure the value is never negative.
2225 Equivalent registers hash identically.
2226 MODE is used in hashing for CONST_INTs only;
2227 otherwise the mode of X is used.
2229 Store 1 in do_not_record if any subexpression is volatile.
2231 Store 1 in hash_arg_in_memory if X contains a MEM rtx
2232 which does not have the RTX_UNCHANGING_P bit set.
2234 Note that cse_insn knows that the hash code of a MEM expression
2235 is just (int) MEM plus the hash code of the address. */
2237 static unsigned
2238 canon_hash (x, mode)
2239 rtx x;
2240 enum machine_mode mode;
2242 int i, j;
2243 unsigned hash = 0;
2244 enum rtx_code code;
2245 const char *fmt;
2247 /* repeat is used to turn tail-recursion into iteration. */
2248 repeat:
2249 if (x == 0)
2250 return hash;
2252 code = GET_CODE (x);
2253 switch (code)
2255 case REG:
2257 unsigned int regno = REGNO (x);
2259 /* On some machines, we can't record any non-fixed hard register,
2260 because extending its life will cause reload problems. We
2261 consider ap, fp, and sp to be fixed for this purpose.
2263 We also consider CCmode registers to be fixed for this purpose;
2264 failure to do so leads to failure to simplify 0<100 type of
2265 conditionals.
2267 On all machines, we can't record any global registers.
2268 Nor should we record any register that is in a small
2269 class, as defined by CLASS_LIKELY_SPILLED_P. */
2271 if (regno < FIRST_PSEUDO_REGISTER
2272 && (global_regs[regno]
2273 || CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno))
2274 || (SMALL_REGISTER_CLASSES
2275 && ! fixed_regs[regno]
2276 && x != frame_pointer_rtx
2277 && x != hard_frame_pointer_rtx
2278 && x != arg_pointer_rtx
2279 && x != stack_pointer_rtx
2280 && GET_MODE_CLASS (GET_MODE (x)) != MODE_CC)))
2282 do_not_record = 1;
2283 return 0;
2286 hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
2287 return hash;
2290 /* We handle SUBREG of a REG specially because the underlying
2291 reg changes its hash value with every value change; we don't
2292 want to have to forget unrelated subregs when one subreg changes. */
2293 case SUBREG:
2295 if (GET_CODE (SUBREG_REG (x)) == REG)
2297 hash += (((unsigned) SUBREG << 7)
2298 + REGNO (SUBREG_REG (x))
2299 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2300 return hash;
2302 break;
2305 case CONST_INT:
2307 unsigned HOST_WIDE_INT tem = INTVAL (x);
2308 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
2309 return hash;
2312 case CONST_DOUBLE:
2313 /* This is like the general case, except that it only counts
2314 the integers representing the constant. */
2315 hash += (unsigned) code + (unsigned) GET_MODE (x);
2316 if (GET_MODE (x) != VOIDmode)
2317 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
2319 unsigned HOST_WIDE_INT tem = XWINT (x, i);
2320 hash += tem;
2322 else
2323 hash += ((unsigned) CONST_DOUBLE_LOW (x)
2324 + (unsigned) CONST_DOUBLE_HIGH (x));
2325 return hash;
2327 case CONST_VECTOR:
2329 int units;
2330 rtx elt;
2332 units = CONST_VECTOR_NUNITS (x);
2334 for (i = 0; i < units; ++i)
2336 elt = CONST_VECTOR_ELT (x, i);
2337 hash += canon_hash (elt, GET_MODE (elt));
2340 return hash;
2343 /* Assume there is only one rtx object for any given label. */
2344 case LABEL_REF:
2345 hash += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
2346 return hash;
2348 case SYMBOL_REF:
2349 hash += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
2350 return hash;
2352 case MEM:
2353 /* We don't record if marked volatile or if BLKmode since we don't
2354 know the size of the move. */
2355 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2357 do_not_record = 1;
2358 return 0;
2360 if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
2362 hash_arg_in_memory = 1;
2364 /* Now that we have already found this special case,
2365 might as well speed it up as much as possible. */
2366 hash += (unsigned) MEM;
2367 x = XEXP (x, 0);
2368 goto repeat;
2370 case USE:
2371 /* A USE that mentions non-volatile memory needs special
2372 handling since the MEM may be BLKmode which normally
2373 prevents an entry from being made. Pure calls are
2374 marked by a USE which mentions BLKmode memory. */
2375 if (GET_CODE (XEXP (x, 0)) == MEM
2376 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2378 hash += (unsigned)USE;
2379 x = XEXP (x, 0);
2381 if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
2382 hash_arg_in_memory = 1;
2384 /* Now that we have already found this special case,
2385 might as well speed it up as much as possible. */
2386 hash += (unsigned) MEM;
2387 x = XEXP (x, 0);
2388 goto repeat;
2390 break;
2392 case PRE_DEC:
2393 case PRE_INC:
2394 case POST_DEC:
2395 case POST_INC:
2396 case PRE_MODIFY:
2397 case POST_MODIFY:
2398 case PC:
2399 case CC0:
2400 case CALL:
2401 case UNSPEC_VOLATILE:
2402 do_not_record = 1;
2403 return 0;
2405 case ASM_OPERANDS:
2406 if (MEM_VOLATILE_P (x))
2408 do_not_record = 1;
2409 return 0;
2411 else
2413 /* We don't want to take the filename and line into account. */
2414 hash += (unsigned) code + (unsigned) GET_MODE (x)
2415 + canon_hash_string (ASM_OPERANDS_TEMPLATE (x))
2416 + canon_hash_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2417 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2419 if (ASM_OPERANDS_INPUT_LENGTH (x))
2421 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2423 hash += (canon_hash (ASM_OPERANDS_INPUT (x, i),
2424 GET_MODE (ASM_OPERANDS_INPUT (x, i)))
2425 + canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT
2426 (x, i)));
2429 hash += canon_hash_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2430 x = ASM_OPERANDS_INPUT (x, 0);
2431 mode = GET_MODE (x);
2432 goto repeat;
2435 return hash;
2437 break;
2439 default:
2440 break;
2443 i = GET_RTX_LENGTH (code) - 1;
2444 hash += (unsigned) code + (unsigned) GET_MODE (x);
2445 fmt = GET_RTX_FORMAT (code);
2446 for (; i >= 0; i--)
2448 if (fmt[i] == 'e')
2450 rtx tem = XEXP (x, i);
2452 /* If we are about to do the last recursive call
2453 needed at this level, change it into iteration.
2454 This function is called enough to be worth it. */
2455 if (i == 0)
2457 x = tem;
2458 goto repeat;
2460 hash += canon_hash (tem, 0);
2462 else if (fmt[i] == 'E')
2463 for (j = 0; j < XVECLEN (x, i); j++)
2464 hash += canon_hash (XVECEXP (x, i, j), 0);
2465 else if (fmt[i] == 's')
2466 hash += canon_hash_string (XSTR (x, i));
2467 else if (fmt[i] == 'i')
2469 unsigned tem = XINT (x, i);
2470 hash += tem;
2472 else if (fmt[i] == '0' || fmt[i] == 't')
2473 /* Unused. */
2475 else
2476 abort ();
2478 return hash;
2481 /* Like canon_hash but with no side effects. */
2483 static unsigned
2484 safe_hash (x, mode)
2485 rtx x;
2486 enum machine_mode mode;
2488 int save_do_not_record = do_not_record;
2489 int save_hash_arg_in_memory = hash_arg_in_memory;
2490 unsigned hash = canon_hash (x, mode);
2491 hash_arg_in_memory = save_hash_arg_in_memory;
2492 do_not_record = save_do_not_record;
2493 return hash;
2496 /* Return 1 iff X and Y would canonicalize into the same thing,
2497 without actually constructing the canonicalization of either one.
2498 If VALIDATE is nonzero,
2499 we assume X is an expression being processed from the rtl
2500 and Y was found in the hash table. We check register refs
2501 in Y for being marked as valid.
2503 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
2504 that is known to be in the register. Ordinarily, we don't allow them
2505 to match, because letting them match would cause unpredictable results
2506 in all the places that search a hash table chain for an equivalent
2507 for a given value. A possible equivalent that has different structure
2508 has its hash code computed from different data. Whether the hash code
2509 is the same as that of the given value is pure luck. */
2511 static int
2512 exp_equiv_p (x, y, validate, equal_values)
2513 rtx x, y;
2514 int validate;
2515 int equal_values;
2517 int i, j;
2518 enum rtx_code code;
2519 const char *fmt;
2521 /* Note: it is incorrect to assume an expression is equivalent to itself
2522 if VALIDATE is nonzero. */
2523 if (x == y && !validate)
2524 return 1;
2525 if (x == 0 || y == 0)
2526 return x == y;
2528 code = GET_CODE (x);
2529 if (code != GET_CODE (y))
2531 if (!equal_values)
2532 return 0;
2534 /* If X is a constant and Y is a register or vice versa, they may be
2535 equivalent. We only have to validate if Y is a register. */
2536 if (CONSTANT_P (x) && GET_CODE (y) == REG
2537 && REGNO_QTY_VALID_P (REGNO (y)))
2539 int y_q = REG_QTY (REGNO (y));
2540 struct qty_table_elem *y_ent = &qty_table[y_q];
2542 if (GET_MODE (y) == y_ent->mode
2543 && rtx_equal_p (x, y_ent->const_rtx)
2544 && (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
2545 return 1;
2548 if (CONSTANT_P (y) && code == REG
2549 && REGNO_QTY_VALID_P (REGNO (x)))
2551 int x_q = REG_QTY (REGNO (x));
2552 struct qty_table_elem *x_ent = &qty_table[x_q];
2554 if (GET_MODE (x) == x_ent->mode
2555 && rtx_equal_p (y, x_ent->const_rtx))
2556 return 1;
2559 return 0;
2562 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2563 if (GET_MODE (x) != GET_MODE (y))
2564 return 0;
2566 switch (code)
2568 case PC:
2569 case CC0:
2570 case CONST_INT:
2571 return x == y;
2573 case LABEL_REF:
2574 return XEXP (x, 0) == XEXP (y, 0);
2576 case SYMBOL_REF:
2577 return XSTR (x, 0) == XSTR (y, 0);
2579 case REG:
2581 unsigned int regno = REGNO (y);
2582 unsigned int endregno
2583 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2584 : HARD_REGNO_NREGS (regno, GET_MODE (y)));
2585 unsigned int i;
2587 /* If the quantities are not the same, the expressions are not
2588 equivalent. If there are and we are not to validate, they
2589 are equivalent. Otherwise, ensure all regs are up-to-date. */
2591 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2592 return 0;
2594 if (! validate)
2595 return 1;
2597 for (i = regno; i < endregno; i++)
2598 if (REG_IN_TABLE (i) != REG_TICK (i))
2599 return 0;
2601 return 1;
2604 /* For commutative operations, check both orders. */
2605 case PLUS:
2606 case MULT:
2607 case AND:
2608 case IOR:
2609 case XOR:
2610 case NE:
2611 case EQ:
2612 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
2613 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2614 validate, equal_values))
2615 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2616 validate, equal_values)
2617 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2618 validate, equal_values)));
2620 case ASM_OPERANDS:
2621 /* We don't use the generic code below because we want to
2622 disregard filename and line numbers. */
2624 /* A volatile asm isn't equivalent to any other. */
2625 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2626 return 0;
2628 if (GET_MODE (x) != GET_MODE (y)
2629 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2630 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2631 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2632 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2633 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2634 return 0;
2636 if (ASM_OPERANDS_INPUT_LENGTH (x))
2638 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2639 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2640 ASM_OPERANDS_INPUT (y, i),
2641 validate, equal_values)
2642 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2643 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2644 return 0;
2647 return 1;
2649 default:
2650 break;
2653 /* Compare the elements. If any pair of corresponding elements
2654 fail to match, return 0 for the whole things. */
2656 fmt = GET_RTX_FORMAT (code);
2657 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2659 switch (fmt[i])
2661 case 'e':
2662 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
2663 return 0;
2664 break;
2666 case 'E':
2667 if (XVECLEN (x, i) != XVECLEN (y, i))
2668 return 0;
2669 for (j = 0; j < XVECLEN (x, i); j++)
2670 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2671 validate, equal_values))
2672 return 0;
2673 break;
2675 case 's':
2676 if (strcmp (XSTR (x, i), XSTR (y, i)))
2677 return 0;
2678 break;
2680 case 'i':
2681 if (XINT (x, i) != XINT (y, i))
2682 return 0;
2683 break;
2685 case 'w':
2686 if (XWINT (x, i) != XWINT (y, i))
2687 return 0;
2688 break;
2690 case '0':
2691 case 't':
2692 break;
2694 default:
2695 abort ();
2699 return 1;
2702 /* Return 1 if X has a value that can vary even between two
2703 executions of the program. 0 means X can be compared reliably
2704 against certain constants or near-constants. */
2706 static int
2707 cse_rtx_varies_p (x, from_alias)
2708 rtx x;
2709 int from_alias;
2711 /* We need not check for X and the equivalence class being of the same
2712 mode because if X is equivalent to a constant in some mode, it
2713 doesn't vary in any mode. */
2715 if (GET_CODE (x) == REG
2716 && REGNO_QTY_VALID_P (REGNO (x)))
2718 int x_q = REG_QTY (REGNO (x));
2719 struct qty_table_elem *x_ent = &qty_table[x_q];
2721 if (GET_MODE (x) == x_ent->mode
2722 && x_ent->const_rtx != NULL_RTX)
2723 return 0;
2726 if (GET_CODE (x) == PLUS
2727 && GET_CODE (XEXP (x, 1)) == CONST_INT
2728 && GET_CODE (XEXP (x, 0)) == REG
2729 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2731 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2732 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2734 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2735 && x0_ent->const_rtx != NULL_RTX)
2736 return 0;
2739 /* This can happen as the result of virtual register instantiation, if
2740 the initial constant is too large to be a valid address. This gives
2741 us a three instruction sequence, load large offset into a register,
2742 load fp minus a constant into a register, then a MEM which is the
2743 sum of the two `constant' registers. */
2744 if (GET_CODE (x) == PLUS
2745 && GET_CODE (XEXP (x, 0)) == REG
2746 && GET_CODE (XEXP (x, 1)) == REG
2747 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2748 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2750 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2751 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2752 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2753 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2755 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2756 && x0_ent->const_rtx != NULL_RTX
2757 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2758 && x1_ent->const_rtx != NULL_RTX)
2759 return 0;
2762 return rtx_varies_p (x, from_alias);
2765 /* Canonicalize an expression:
2766 replace each register reference inside it
2767 with the "oldest" equivalent register.
2769 If INSN is non-zero and we are replacing a pseudo with a hard register
2770 or vice versa, validate_change is used to ensure that INSN remains valid
2771 after we make our substitution. The calls are made with IN_GROUP non-zero
2772 so apply_change_group must be called upon the outermost return from this
2773 function (unless INSN is zero). The result of apply_change_group can
2774 generally be discarded since the changes we are making are optional. */
2776 static rtx
2777 canon_reg (x, insn)
2778 rtx x;
2779 rtx insn;
2781 int i;
2782 enum rtx_code code;
2783 const char *fmt;
2785 if (x == 0)
2786 return x;
2788 code = GET_CODE (x);
2789 switch (code)
2791 case PC:
2792 case CC0:
2793 case CONST:
2794 case CONST_INT:
2795 case CONST_DOUBLE:
2796 case CONST_VECTOR:
2797 case SYMBOL_REF:
2798 case LABEL_REF:
2799 case ADDR_VEC:
2800 case ADDR_DIFF_VEC:
2801 return x;
2803 case REG:
2805 int first;
2806 int q;
2807 struct qty_table_elem *ent;
2809 /* Never replace a hard reg, because hard regs can appear
2810 in more than one machine mode, and we must preserve the mode
2811 of each occurrence. Also, some hard regs appear in
2812 MEMs that are shared and mustn't be altered. Don't try to
2813 replace any reg that maps to a reg of class NO_REGS. */
2814 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2815 || ! REGNO_QTY_VALID_P (REGNO (x)))
2816 return x;
2818 q = REG_QTY (REGNO (x));
2819 ent = &qty_table[q];
2820 first = ent->first_reg;
2821 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2822 : REGNO_REG_CLASS (first) == NO_REGS ? x
2823 : gen_rtx_REG (ent->mode, first));
2826 default:
2827 break;
2830 fmt = GET_RTX_FORMAT (code);
2831 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2833 int j;
2835 if (fmt[i] == 'e')
2837 rtx new = canon_reg (XEXP (x, i), insn);
2838 int insn_code;
2840 /* If replacing pseudo with hard reg or vice versa, ensure the
2841 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2842 if (insn != 0 && new != 0
2843 && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2844 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2845 != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2846 || (insn_code = recog_memoized (insn)) < 0
2847 || insn_data[insn_code].n_dups > 0))
2848 validate_change (insn, &XEXP (x, i), new, 1);
2849 else
2850 XEXP (x, i) = new;
2852 else if (fmt[i] == 'E')
2853 for (j = 0; j < XVECLEN (x, i); j++)
2854 XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
2857 return x;
2860 /* LOC is a location within INSN that is an operand address (the contents of
2861 a MEM). Find the best equivalent address to use that is valid for this
2862 insn.
2864 On most CISC machines, complicated address modes are costly, and rtx_cost
2865 is a good approximation for that cost. However, most RISC machines have
2866 only a few (usually only one) memory reference formats. If an address is
2867 valid at all, it is often just as cheap as any other address. Hence, for
2868 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2869 costs of various addresses. For two addresses of equal cost, choose the one
2870 with the highest `rtx_cost' value as that has the potential of eliminating
2871 the most insns. For equal costs, we choose the first in the equivalence
2872 class. Note that we ignore the fact that pseudo registers are cheaper
2873 than hard registers here because we would also prefer the pseudo registers.
2876 static void
2877 find_best_addr (insn, loc, mode)
2878 rtx insn;
2879 rtx *loc;
2880 enum machine_mode mode;
2882 struct table_elt *elt;
2883 rtx addr = *loc;
2884 #ifdef ADDRESS_COST
2885 struct table_elt *p;
2886 int found_better = 1;
2887 #endif
2888 int save_do_not_record = do_not_record;
2889 int save_hash_arg_in_memory = hash_arg_in_memory;
2890 int addr_volatile;
2891 int regno;
2892 unsigned hash;
2894 /* Do not try to replace constant addresses or addresses of local and
2895 argument slots. These MEM expressions are made only once and inserted
2896 in many instructions, as well as being used to control symbol table
2897 output. It is not safe to clobber them.
2899 There are some uncommon cases where the address is already in a register
2900 for some reason, but we cannot take advantage of that because we have
2901 no easy way to unshare the MEM. In addition, looking up all stack
2902 addresses is costly. */
2903 if ((GET_CODE (addr) == PLUS
2904 && GET_CODE (XEXP (addr, 0)) == REG
2905 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2906 && (regno = REGNO (XEXP (addr, 0)),
2907 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2908 || regno == ARG_POINTER_REGNUM))
2909 || (GET_CODE (addr) == REG
2910 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2911 || regno == HARD_FRAME_POINTER_REGNUM
2912 || regno == ARG_POINTER_REGNUM))
2913 || GET_CODE (addr) == ADDRESSOF
2914 || CONSTANT_ADDRESS_P (addr))
2915 return;
2917 /* If this address is not simply a register, try to fold it. This will
2918 sometimes simplify the expression. Many simplifications
2919 will not be valid, but some, usually applying the associative rule, will
2920 be valid and produce better code. */
2921 if (GET_CODE (addr) != REG)
2923 rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);
2924 int addr_folded_cost = address_cost (folded, mode);
2925 int addr_cost = address_cost (addr, mode);
2927 if ((addr_folded_cost < addr_cost
2928 || (addr_folded_cost == addr_cost
2929 /* ??? The rtx_cost comparison is left over from an older
2930 version of this code. It is probably no longer helpful. */
2931 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2932 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2933 && validate_change (insn, loc, folded, 0))
2934 addr = folded;
2937 /* If this address is not in the hash table, we can't look for equivalences
2938 of the whole address. Also, ignore if volatile. */
2940 do_not_record = 0;
2941 hash = HASH (addr, Pmode);
2942 addr_volatile = do_not_record;
2943 do_not_record = save_do_not_record;
2944 hash_arg_in_memory = save_hash_arg_in_memory;
2946 if (addr_volatile)
2947 return;
2949 elt = lookup (addr, hash, Pmode);
2951 #ifndef ADDRESS_COST
2952 if (elt)
2954 int our_cost = elt->cost;
2956 /* Find the lowest cost below ours that works. */
2957 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
2958 if (elt->cost < our_cost
2959 && (GET_CODE (elt->exp) == REG
2960 || exp_equiv_p (elt->exp, elt->exp, 1, 0))
2961 && validate_change (insn, loc,
2962 canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
2963 return;
2965 #else
2967 if (elt)
2969 /* We need to find the best (under the criteria documented above) entry
2970 in the class that is valid. We use the `flag' field to indicate
2971 choices that were invalid and iterate until we can't find a better
2972 one that hasn't already been tried. */
2974 for (p = elt->first_same_value; p; p = p->next_same_value)
2975 p->flag = 0;
2977 while (found_better)
2979 int best_addr_cost = address_cost (*loc, mode);
2980 int best_rtx_cost = (elt->cost + 1) >> 1;
2981 int exp_cost;
2982 struct table_elt *best_elt = elt;
2984 found_better = 0;
2985 for (p = elt->first_same_value; p; p = p->next_same_value)
2986 if (! p->flag)
2988 if ((GET_CODE (p->exp) == REG
2989 || exp_equiv_p (p->exp, p->exp, 1, 0))
2990 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2991 || (exp_cost == best_addr_cost
2992 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2994 found_better = 1;
2995 best_addr_cost = exp_cost;
2996 best_rtx_cost = (p->cost + 1) >> 1;
2997 best_elt = p;
3001 if (found_better)
3003 if (validate_change (insn, loc,
3004 canon_reg (copy_rtx (best_elt->exp),
3005 NULL_RTX), 0))
3006 return;
3007 else
3008 best_elt->flag = 1;
3013 /* If the address is a binary operation with the first operand a register
3014 and the second a constant, do the same as above, but looking for
3015 equivalences of the register. Then try to simplify before checking for
3016 the best address to use. This catches a few cases: First is when we
3017 have REG+const and the register is another REG+const. We can often merge
3018 the constants and eliminate one insn and one register. It may also be
3019 that a machine has a cheap REG+REG+const. Finally, this improves the
3020 code on the Alpha for unaligned byte stores. */
3022 if (flag_expensive_optimizations
3023 && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
3024 || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
3025 && GET_CODE (XEXP (*loc, 0)) == REG
3026 && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
3028 rtx c = XEXP (*loc, 1);
3030 do_not_record = 0;
3031 hash = HASH (XEXP (*loc, 0), Pmode);
3032 do_not_record = save_do_not_record;
3033 hash_arg_in_memory = save_hash_arg_in_memory;
3035 elt = lookup (XEXP (*loc, 0), hash, Pmode);
3036 if (elt == 0)
3037 return;
3039 /* We need to find the best (under the criteria documented above) entry
3040 in the class that is valid. We use the `flag' field to indicate
3041 choices that were invalid and iterate until we can't find a better
3042 one that hasn't already been tried. */
3044 for (p = elt->first_same_value; p; p = p->next_same_value)
3045 p->flag = 0;
3047 while (found_better)
3049 int best_addr_cost = address_cost (*loc, mode);
3050 int best_rtx_cost = (COST (*loc) + 1) >> 1;
3051 struct table_elt *best_elt = elt;
3052 rtx best_rtx = *loc;
3053 int count;
3055 /* This is at worst case an O(n^2) algorithm, so limit our search
3056 to the first 32 elements on the list. This avoids trouble
3057 compiling code with very long basic blocks that can easily
3058 call simplify_gen_binary so many times that we run out of
3059 memory. */
3061 found_better = 0;
3062 for (p = elt->first_same_value, count = 0;
3063 p && count < 32;
3064 p = p->next_same_value, count++)
3065 if (! p->flag
3066 && (GET_CODE (p->exp) == REG
3067 || exp_equiv_p (p->exp, p->exp, 1, 0)))
3069 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
3070 p->exp, c);
3071 int new_cost;
3072 new_cost = address_cost (new, mode);
3074 if (new_cost < best_addr_cost
3075 || (new_cost == best_addr_cost
3076 && (COST (new) + 1) >> 1 > best_rtx_cost))
3078 found_better = 1;
3079 best_addr_cost = new_cost;
3080 best_rtx_cost = (COST (new) + 1) >> 1;
3081 best_elt = p;
3082 best_rtx = new;
3086 if (found_better)
3088 if (validate_change (insn, loc,
3089 canon_reg (copy_rtx (best_rtx),
3090 NULL_RTX), 0))
3091 return;
3092 else
3093 best_elt->flag = 1;
3097 #endif
3100 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3101 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3102 what values are being compared.
3104 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3105 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3106 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3107 compared to produce cc0.
3109 The return value is the comparison operator and is either the code of
3110 A or the code corresponding to the inverse of the comparison. */
3112 static enum rtx_code
3113 find_comparison_args (code, parg1, parg2, pmode1, pmode2)
3114 enum rtx_code code;
3115 rtx *parg1, *parg2;
3116 enum machine_mode *pmode1, *pmode2;
3118 rtx arg1, arg2;
3120 arg1 = *parg1, arg2 = *parg2;
3122 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3124 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3126 /* Set non-zero when we find something of interest. */
3127 rtx x = 0;
3128 int reverse_code = 0;
3129 struct table_elt *p = 0;
3131 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3132 On machines with CC0, this is the only case that can occur, since
3133 fold_rtx will return the COMPARE or item being compared with zero
3134 when given CC0. */
3136 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3137 x = arg1;
3139 /* If ARG1 is a comparison operator and CODE is testing for
3140 STORE_FLAG_VALUE, get the inner arguments. */
3142 else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
3144 if (code == NE
3145 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3146 && code == LT && STORE_FLAG_VALUE == -1)
3147 #ifdef FLOAT_STORE_FLAG_VALUE
3148 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3149 && (REAL_VALUE_NEGATIVE
3150 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3151 #endif
3153 x = arg1;
3154 else if (code == EQ
3155 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3156 && code == GE && STORE_FLAG_VALUE == -1)
3157 #ifdef FLOAT_STORE_FLAG_VALUE
3158 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3159 && (REAL_VALUE_NEGATIVE
3160 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3161 #endif
3163 x = arg1, reverse_code = 1;
3166 /* ??? We could also check for
3168 (ne (and (eq (...) (const_int 1))) (const_int 0))
3170 and related forms, but let's wait until we see them occurring. */
3172 if (x == 0)
3173 /* Look up ARG1 in the hash table and see if it has an equivalence
3174 that lets us see what is being compared. */
3175 p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) & HASH_MASK,
3176 GET_MODE (arg1));
3177 if (p)
3179 p = p->first_same_value;
3181 /* If what we compare is already known to be constant, that is as
3182 good as it gets.
3183 We need to break the loop in this case, because otherwise we
3184 can have an infinite loop when looking at a reg that is known
3185 to be a constant which is the same as a comparison of a reg
3186 against zero which appears later in the insn stream, which in
3187 turn is constant and the same as the comparison of the first reg
3188 against zero... */
3189 if (p->is_const)
3190 break;
3193 for (; p; p = p->next_same_value)
3195 enum machine_mode inner_mode = GET_MODE (p->exp);
3197 /* If the entry isn't valid, skip it. */
3198 if (! exp_equiv_p (p->exp, p->exp, 1, 0))
3199 continue;
3201 if (GET_CODE (p->exp) == COMPARE
3202 /* Another possibility is that this machine has a compare insn
3203 that includes the comparison code. In that case, ARG1 would
3204 be equivalent to a comparison operation that would set ARG1 to
3205 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3206 ORIG_CODE is the actual comparison being done; if it is an EQ,
3207 we must reverse ORIG_CODE. On machine with a negative value
3208 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3209 || ((code == NE
3210 || (code == LT
3211 && GET_MODE_CLASS (inner_mode) == MODE_INT
3212 && (GET_MODE_BITSIZE (inner_mode)
3213 <= HOST_BITS_PER_WIDE_INT)
3214 && (STORE_FLAG_VALUE
3215 & ((HOST_WIDE_INT) 1
3216 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3217 #ifdef FLOAT_STORE_FLAG_VALUE
3218 || (code == LT
3219 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3220 && (REAL_VALUE_NEGATIVE
3221 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3222 #endif
3224 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
3226 x = p->exp;
3227 break;
3229 else if ((code == EQ
3230 || (code == GE
3231 && GET_MODE_CLASS (inner_mode) == MODE_INT
3232 && (GET_MODE_BITSIZE (inner_mode)
3233 <= HOST_BITS_PER_WIDE_INT)
3234 && (STORE_FLAG_VALUE
3235 & ((HOST_WIDE_INT) 1
3236 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3237 #ifdef FLOAT_STORE_FLAG_VALUE
3238 || (code == GE
3239 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3240 && (REAL_VALUE_NEGATIVE
3241 (FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)))))
3242 #endif
3244 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
3246 reverse_code = 1;
3247 x = p->exp;
3248 break;
3251 /* If this is fp + constant, the equivalent is a better operand since
3252 it may let us predict the value of the comparison. */
3253 else if (NONZERO_BASE_PLUS_P (p->exp))
3255 arg1 = p->exp;
3256 continue;
3260 /* If we didn't find a useful equivalence for ARG1, we are done.
3261 Otherwise, set up for the next iteration. */
3262 if (x == 0)
3263 break;
3265 /* If we need to reverse the comparison, make sure that that is
3266 possible -- we can't necessarily infer the value of GE from LT
3267 with floating-point operands. */
3268 if (reverse_code)
3270 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3271 if (reversed == UNKNOWN)
3272 break;
3273 else code = reversed;
3275 else if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3276 code = GET_CODE (x);
3277 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3280 /* Return our results. Return the modes from before fold_rtx
3281 because fold_rtx might produce const_int, and then it's too late. */
3282 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3283 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3285 return code;
3288 /* If X is a nontrivial arithmetic operation on an argument
3289 for which a constant value can be determined, return
3290 the result of operating on that value, as a constant.
3291 Otherwise, return X, possibly with one or more operands
3292 modified by recursive calls to this function.
3294 If X is a register whose contents are known, we do NOT
3295 return those contents here. equiv_constant is called to
3296 perform that task.
3298 INSN is the insn that we may be modifying. If it is 0, make a copy
3299 of X before modifying it. */
3301 static rtx
3302 fold_rtx (x, insn)
3303 rtx x;
3304 rtx insn;
3306 enum rtx_code code;
3307 enum machine_mode mode;
3308 const char *fmt;
3309 int i;
3310 rtx new = 0;
3311 int copied = 0;
3312 int must_swap = 0;
3314 /* Folded equivalents of first two operands of X. */
3315 rtx folded_arg0;
3316 rtx folded_arg1;
3318 /* Constant equivalents of first three operands of X;
3319 0 when no such equivalent is known. */
3320 rtx const_arg0;
3321 rtx const_arg1;
3322 rtx const_arg2;
3324 /* The mode of the first operand of X. We need this for sign and zero
3325 extends. */
3326 enum machine_mode mode_arg0;
3328 if (x == 0)
3329 return x;
3331 mode = GET_MODE (x);
3332 code = GET_CODE (x);
3333 switch (code)
3335 case CONST:
3336 case CONST_INT:
3337 case CONST_DOUBLE:
3338 case CONST_VECTOR:
3339 case SYMBOL_REF:
3340 case LABEL_REF:
3341 case REG:
3342 /* No use simplifying an EXPR_LIST
3343 since they are used only for lists of args
3344 in a function call's REG_EQUAL note. */
3345 case EXPR_LIST:
3346 /* Changing anything inside an ADDRESSOF is incorrect; we don't
3347 want to (e.g.,) make (addressof (const_int 0)) just because
3348 the location is known to be zero. */
3349 case ADDRESSOF:
3350 return x;
3352 #ifdef HAVE_cc0
3353 case CC0:
3354 return prev_insn_cc0;
3355 #endif
3357 case PC:
3358 /* If the next insn is a CODE_LABEL followed by a jump table,
3359 PC's value is a LABEL_REF pointing to that label. That
3360 lets us fold switch statements on the VAX. */
3361 if (insn && GET_CODE (insn) == JUMP_INSN)
3363 rtx next = next_nonnote_insn (insn);
3365 if (next && GET_CODE (next) == CODE_LABEL
3366 && NEXT_INSN (next) != 0
3367 && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
3368 && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
3369 || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
3370 return gen_rtx_LABEL_REF (Pmode, next);
3372 break;
3374 case SUBREG:
3375 /* See if we previously assigned a constant value to this SUBREG. */
3376 if ((new = lookup_as_function (x, CONST_INT)) != 0
3377 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3378 return new;
3380 /* If this is a paradoxical SUBREG, we have no idea what value the
3381 extra bits would have. However, if the operand is equivalent
3382 to a SUBREG whose operand is the same as our mode, and all the
3383 modes are within a word, we can just use the inner operand
3384 because these SUBREGs just say how to treat the register.
3386 Similarly if we find an integer constant. */
3388 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3390 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3391 struct table_elt *elt;
3393 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3394 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3395 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3396 imode)) != 0)
3397 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3399 if (CONSTANT_P (elt->exp)
3400 && GET_MODE (elt->exp) == VOIDmode)
3401 return elt->exp;
3403 if (GET_CODE (elt->exp) == SUBREG
3404 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3405 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3406 return copy_rtx (SUBREG_REG (elt->exp));
3409 return x;
3412 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
3413 We might be able to if the SUBREG is extracting a single word in an
3414 integral mode or extracting the low part. */
3416 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3417 const_arg0 = equiv_constant (folded_arg0);
3418 if (const_arg0)
3419 folded_arg0 = const_arg0;
3421 if (folded_arg0 != SUBREG_REG (x))
3423 new = simplify_subreg (mode, folded_arg0,
3424 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3425 if (new)
3426 return new;
3429 /* If this is a narrowing SUBREG and our operand is a REG, see if
3430 we can find an equivalence for REG that is an arithmetic operation
3431 in a wider mode where both operands are paradoxical SUBREGs
3432 from objects of our result mode. In that case, we couldn't report
3433 an equivalent value for that operation, since we don't know what the
3434 extra bits will be. But we can find an equivalence for this SUBREG
3435 by folding that operation is the narrow mode. This allows us to
3436 fold arithmetic in narrow modes when the machine only supports
3437 word-sized arithmetic.
3439 Also look for a case where we have a SUBREG whose operand is the
3440 same as our result. If both modes are smaller than a word, we
3441 are simply interpreting a register in different modes and we
3442 can use the inner value. */
3444 if (GET_CODE (folded_arg0) == REG
3445 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
3446 && subreg_lowpart_p (x))
3448 struct table_elt *elt;
3450 /* We can use HASH here since we know that canon_hash won't be
3451 called. */
3452 elt = lookup (folded_arg0,
3453 HASH (folded_arg0, GET_MODE (folded_arg0)),
3454 GET_MODE (folded_arg0));
3456 if (elt)
3457 elt = elt->first_same_value;
3459 for (; elt; elt = elt->next_same_value)
3461 enum rtx_code eltcode = GET_CODE (elt->exp);
3463 /* Just check for unary and binary operations. */
3464 if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
3465 && GET_CODE (elt->exp) != SIGN_EXTEND
3466 && GET_CODE (elt->exp) != ZERO_EXTEND
3467 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3468 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode)
3470 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3472 if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3473 op0 = fold_rtx (op0, NULL_RTX);
3475 op0 = equiv_constant (op0);
3476 if (op0)
3477 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3478 op0, mode);
3480 else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
3481 || GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
3482 && eltcode != DIV && eltcode != MOD
3483 && eltcode != UDIV && eltcode != UMOD
3484 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3485 && eltcode != ROTATE && eltcode != ROTATERT
3486 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3487 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3488 == mode))
3489 || CONSTANT_P (XEXP (elt->exp, 0)))
3490 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3491 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3492 == mode))
3493 || CONSTANT_P (XEXP (elt->exp, 1))))
3495 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3496 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3498 if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
3499 op0 = fold_rtx (op0, NULL_RTX);
3501 if (op0)
3502 op0 = equiv_constant (op0);
3504 if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
3505 op1 = fold_rtx (op1, NULL_RTX);
3507 if (op1)
3508 op1 = equiv_constant (op1);
3510 /* If we are looking for the low SImode part of
3511 (ashift:DI c (const_int 32)), it doesn't work
3512 to compute that in SImode, because a 32-bit shift
3513 in SImode is unpredictable. We know the value is 0. */
3514 if (op0 && op1
3515 && GET_CODE (elt->exp) == ASHIFT
3516 && GET_CODE (op1) == CONST_INT
3517 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3519 if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3521 /* If the count fits in the inner mode's width,
3522 but exceeds the outer mode's width,
3523 the value will get truncated to 0
3524 by the subreg. */
3525 new = const0_rtx;
3526 else
3527 /* If the count exceeds even the inner mode's width,
3528 don't fold this expression. */
3529 new = 0;
3531 else if (op0 && op1)
3532 new = simplify_binary_operation (GET_CODE (elt->exp), mode,
3533 op0, op1);
3536 else if (GET_CODE (elt->exp) == SUBREG
3537 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3538 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3539 <= UNITS_PER_WORD)
3540 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
3541 new = copy_rtx (SUBREG_REG (elt->exp));
3543 if (new)
3544 return new;
3548 return x;
3550 case NOT:
3551 case NEG:
3552 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3553 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3554 new = lookup_as_function (XEXP (x, 0), code);
3555 if (new)
3556 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3557 break;
3559 case MEM:
3560 /* If we are not actually processing an insn, don't try to find the
3561 best address. Not only don't we care, but we could modify the
3562 MEM in an invalid way since we have no insn to validate against. */
3563 if (insn != 0)
3564 find_best_addr (insn, &XEXP (x, 0), GET_MODE (x));
3567 /* Even if we don't fold in the insn itself,
3568 we can safely do so here, in hopes of getting a constant. */
3569 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3570 rtx base = 0;
3571 HOST_WIDE_INT offset = 0;
3573 if (GET_CODE (addr) == REG
3574 && REGNO_QTY_VALID_P (REGNO (addr)))
3576 int addr_q = REG_QTY (REGNO (addr));
3577 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3579 if (GET_MODE (addr) == addr_ent->mode
3580 && addr_ent->const_rtx != NULL_RTX)
3581 addr = addr_ent->const_rtx;
3584 /* If address is constant, split it into a base and integer offset. */
3585 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3586 base = addr;
3587 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3588 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3590 base = XEXP (XEXP (addr, 0), 0);
3591 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3593 else if (GET_CODE (addr) == LO_SUM
3594 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3595 base = XEXP (addr, 1);
3596 else if (GET_CODE (addr) == ADDRESSOF)
3597 return change_address (x, VOIDmode, addr);
3599 /* If this is a constant pool reference, we can fold it into its
3600 constant to allow better value tracking. */
3601 if (base && GET_CODE (base) == SYMBOL_REF
3602 && CONSTANT_POOL_ADDRESS_P (base))
3604 rtx constant = get_pool_constant (base);
3605 enum machine_mode const_mode = get_pool_mode (base);
3606 rtx new;
3608 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3609 constant_pool_entries_cost = COST (constant);
3611 /* If we are loading the full constant, we have an equivalence. */
3612 if (offset == 0 && mode == const_mode)
3613 return constant;
3615 /* If this actually isn't a constant (weird!), we can't do
3616 anything. Otherwise, handle the two most common cases:
3617 extracting a word from a multi-word constant, and extracting
3618 the low-order bits. Other cases don't seem common enough to
3619 worry about. */
3620 if (! CONSTANT_P (constant))
3621 return x;
3623 if (GET_MODE_CLASS (mode) == MODE_INT
3624 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3625 && offset % UNITS_PER_WORD == 0
3626 && (new = operand_subword (constant,
3627 offset / UNITS_PER_WORD,
3628 0, const_mode)) != 0)
3629 return new;
3631 if (((BYTES_BIG_ENDIAN
3632 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3633 || (! BYTES_BIG_ENDIAN && offset == 0))
3634 && (new = gen_lowpart_if_possible (mode, constant)) != 0)
3635 return new;
3638 /* If this is a reference to a label at a known position in a jump
3639 table, we also know its value. */
3640 if (base && GET_CODE (base) == LABEL_REF)
3642 rtx label = XEXP (base, 0);
3643 rtx table_insn = NEXT_INSN (label);
3645 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
3646 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3648 rtx table = PATTERN (table_insn);
3650 if (offset >= 0
3651 && (offset / GET_MODE_SIZE (GET_MODE (table))
3652 < XVECLEN (table, 0)))
3653 return XVECEXP (table, 0,
3654 offset / GET_MODE_SIZE (GET_MODE (table)));
3656 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
3657 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3659 rtx table = PATTERN (table_insn);
3661 if (offset >= 0
3662 && (offset / GET_MODE_SIZE (GET_MODE (table))
3663 < XVECLEN (table, 1)))
3665 offset /= GET_MODE_SIZE (GET_MODE (table));
3666 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3667 XEXP (table, 0));
3669 if (GET_MODE (table) != Pmode)
3670 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3672 /* Indicate this is a constant. This isn't a
3673 valid form of CONST, but it will only be used
3674 to fold the next insns and then discarded, so
3675 it should be safe.
3677 Note this expression must be explicitly discarded,
3678 by cse_insn, else it may end up in a REG_EQUAL note
3679 and "escape" to cause problems elsewhere. */
3680 return gen_rtx_CONST (GET_MODE (new), new);
3685 return x;
3688 #ifdef NO_FUNCTION_CSE
3689 case CALL:
3690 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3691 return x;
3692 break;
3693 #endif
3695 case ASM_OPERANDS:
3696 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3697 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3698 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3699 break;
3701 default:
3702 break;
3705 const_arg0 = 0;
3706 const_arg1 = 0;
3707 const_arg2 = 0;
3708 mode_arg0 = VOIDmode;
3710 /* Try folding our operands.
3711 Then see which ones have constant values known. */
3713 fmt = GET_RTX_FORMAT (code);
3714 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3715 if (fmt[i] == 'e')
3717 rtx arg = XEXP (x, i);
3718 rtx folded_arg = arg, const_arg = 0;
3719 enum machine_mode mode_arg = GET_MODE (arg);
3720 rtx cheap_arg, expensive_arg;
3721 rtx replacements[2];
3722 int j;
3724 /* Most arguments are cheap, so handle them specially. */
3725 switch (GET_CODE (arg))
3727 case REG:
3728 /* This is the same as calling equiv_constant; it is duplicated
3729 here for speed. */
3730 if (REGNO_QTY_VALID_P (REGNO (arg)))
3732 int arg_q = REG_QTY (REGNO (arg));
3733 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3735 if (arg_ent->const_rtx != NULL_RTX
3736 && GET_CODE (arg_ent->const_rtx) != REG
3737 && GET_CODE (arg_ent->const_rtx) != PLUS)
3738 const_arg
3739 = gen_lowpart_if_possible (GET_MODE (arg),
3740 arg_ent->const_rtx);
3742 break;
3744 case CONST:
3745 case CONST_INT:
3746 case SYMBOL_REF:
3747 case LABEL_REF:
3748 case CONST_DOUBLE:
3749 case CONST_VECTOR:
3750 const_arg = arg;
3751 break;
3753 #ifdef HAVE_cc0
3754 case CC0:
3755 folded_arg = prev_insn_cc0;
3756 mode_arg = prev_insn_cc0_mode;
3757 const_arg = equiv_constant (folded_arg);
3758 break;
3759 #endif
3761 default:
3762 folded_arg = fold_rtx (arg, insn);
3763 const_arg = equiv_constant (folded_arg);
3766 /* For the first three operands, see if the operand
3767 is constant or equivalent to a constant. */
3768 switch (i)
3770 case 0:
3771 folded_arg0 = folded_arg;
3772 const_arg0 = const_arg;
3773 mode_arg0 = mode_arg;
3774 break;
3775 case 1:
3776 folded_arg1 = folded_arg;
3777 const_arg1 = const_arg;
3778 break;
3779 case 2:
3780 const_arg2 = const_arg;
3781 break;
3784 /* Pick the least expensive of the folded argument and an
3785 equivalent constant argument. */
3786 if (const_arg == 0 || const_arg == folded_arg
3787 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
3788 cheap_arg = folded_arg, expensive_arg = const_arg;
3789 else
3790 cheap_arg = const_arg, expensive_arg = folded_arg;
3792 /* Try to replace the operand with the cheapest of the two
3793 possibilities. If it doesn't work and this is either of the first
3794 two operands of a commutative operation, try swapping them.
3795 If THAT fails, try the more expensive, provided it is cheaper
3796 than what is already there. */
3798 if (cheap_arg == XEXP (x, i))
3799 continue;
3801 if (insn == 0 && ! copied)
3803 x = copy_rtx (x);
3804 copied = 1;
3807 /* Order the replacements from cheapest to most expensive. */
3808 replacements[0] = cheap_arg;
3809 replacements[1] = expensive_arg;
3811 for (j = 0; j < 2 && replacements[j]; j++)
3813 int old_cost = COST_IN (XEXP (x, i), code);
3814 int new_cost = COST_IN (replacements[j], code);
3816 /* Stop if what existed before was cheaper. Prefer constants
3817 in the case of a tie. */
3818 if (new_cost > old_cost
3819 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3820 break;
3822 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3823 break;
3825 if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c'
3826 || code == LTGT || code == UNEQ || code == ORDERED
3827 || code == UNORDERED)
3829 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3830 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3832 if (apply_change_group ())
3834 /* Swap them back to be invalid so that this loop can
3835 continue and flag them to be swapped back later. */
3836 rtx tem;
3838 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3839 XEXP (x, 1) = tem;
3840 must_swap = 1;
3841 break;
3847 else
3849 if (fmt[i] == 'E')
3850 /* Don't try to fold inside of a vector of expressions.
3851 Doing nothing is harmless. */
3855 /* If a commutative operation, place a constant integer as the second
3856 operand unless the first operand is also a constant integer. Otherwise,
3857 place any constant second unless the first operand is also a constant. */
3859 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c'
3860 || code == LTGT || code == UNEQ || code == ORDERED
3861 || code == UNORDERED)
3863 if (must_swap || (const_arg0
3864 && (const_arg1 == 0
3865 || (GET_CODE (const_arg0) == CONST_INT
3866 && GET_CODE (const_arg1) != CONST_INT))))
3868 rtx tem = XEXP (x, 0);
3870 if (insn == 0 && ! copied)
3872 x = copy_rtx (x);
3873 copied = 1;
3876 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3877 validate_change (insn, &XEXP (x, 1), tem, 1);
3878 if (apply_change_group ())
3880 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3881 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3886 /* If X is an arithmetic operation, see if we can simplify it. */
3888 switch (GET_RTX_CLASS (code))
3890 case '1':
3892 int is_const = 0;
3894 /* We can't simplify extension ops unless we know the
3895 original mode. */
3896 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3897 && mode_arg0 == VOIDmode)
3898 break;
3900 /* If we had a CONST, strip it off and put it back later if we
3901 fold. */
3902 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3903 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3905 new = simplify_unary_operation (code, mode,
3906 const_arg0 ? const_arg0 : folded_arg0,
3907 mode_arg0);
3908 if (new != 0 && is_const)
3909 new = gen_rtx_CONST (mode, new);
3911 break;
3913 case '<':
3914 /* See what items are actually being compared and set FOLDED_ARG[01]
3915 to those values and CODE to the actual comparison code. If any are
3916 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3917 do anything if both operands are already known to be constant. */
3919 if (const_arg0 == 0 || const_arg1 == 0)
3921 struct table_elt *p0, *p1;
3922 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3923 enum machine_mode mode_arg1;
3925 #ifdef FLOAT_STORE_FLAG_VALUE
3926 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3928 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3929 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3930 false_rtx = CONST0_RTX (mode);
3932 #endif
3934 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3935 &mode_arg0, &mode_arg1);
3936 const_arg0 = equiv_constant (folded_arg0);
3937 const_arg1 = equiv_constant (folded_arg1);
3939 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3940 what kinds of things are being compared, so we can't do
3941 anything with this comparison. */
3943 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3944 break;
3946 /* If we do not now have two constants being compared, see
3947 if we can nevertheless deduce some things about the
3948 comparison. */
3949 if (const_arg0 == 0 || const_arg1 == 0)
3951 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or
3952 non-explicit constant? These aren't zero, but we
3953 don't know their sign. */
3954 if (const_arg1 == const0_rtx
3955 && (NONZERO_BASE_PLUS_P (folded_arg0)
3956 #if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
3957 come out as 0. */
3958 || GET_CODE (folded_arg0) == SYMBOL_REF
3959 #endif
3960 || GET_CODE (folded_arg0) == LABEL_REF
3961 || GET_CODE (folded_arg0) == CONST))
3963 if (code == EQ)
3964 return false_rtx;
3965 else if (code == NE)
3966 return true_rtx;
3969 /* See if the two operands are the same. */
3971 if (folded_arg0 == folded_arg1
3972 || (GET_CODE (folded_arg0) == REG
3973 && GET_CODE (folded_arg1) == REG
3974 && (REG_QTY (REGNO (folded_arg0))
3975 == REG_QTY (REGNO (folded_arg1))))
3976 || ((p0 = lookup (folded_arg0,
3977 (safe_hash (folded_arg0, mode_arg0)
3978 & HASH_MASK), mode_arg0))
3979 && (p1 = lookup (folded_arg1,
3980 (safe_hash (folded_arg1, mode_arg0)
3981 & HASH_MASK), mode_arg0))
3982 && p0->first_same_value == p1->first_same_value))
3984 /* Sadly two equal NaNs are not equivalent. */
3985 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3986 || ! FLOAT_MODE_P (mode_arg0)
3987 || flag_unsafe_math_optimizations)
3988 return ((code == EQ || code == LE || code == GE
3989 || code == LEU || code == GEU || code == UNEQ
3990 || code == UNLE || code == UNGE || code == ORDERED)
3991 ? true_rtx : false_rtx);
3992 /* Take care for the FP compares we can resolve. */
3993 if (code == UNEQ || code == UNLE || code == UNGE)
3994 return true_rtx;
3995 if (code == LTGT || code == LT || code == GT)
3996 return false_rtx;
3999 /* If FOLDED_ARG0 is a register, see if the comparison we are
4000 doing now is either the same as we did before or the reverse
4001 (we only check the reverse if not floating-point). */
4002 else if (GET_CODE (folded_arg0) == REG)
4004 int qty = REG_QTY (REGNO (folded_arg0));
4006 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
4008 struct qty_table_elem *ent = &qty_table[qty];
4010 if ((comparison_dominates_p (ent->comparison_code, code)
4011 || (! FLOAT_MODE_P (mode_arg0)
4012 && comparison_dominates_p (ent->comparison_code,
4013 reverse_condition (code))))
4014 && (rtx_equal_p (ent->comparison_const, folded_arg1)
4015 || (const_arg1
4016 && rtx_equal_p (ent->comparison_const,
4017 const_arg1))
4018 || (GET_CODE (folded_arg1) == REG
4019 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
4020 return (comparison_dominates_p (ent->comparison_code, code)
4021 ? true_rtx : false_rtx);
4027 /* If we are comparing against zero, see if the first operand is
4028 equivalent to an IOR with a constant. If so, we may be able to
4029 determine the result of this comparison. */
4031 if (const_arg1 == const0_rtx)
4033 rtx y = lookup_as_function (folded_arg0, IOR);
4034 rtx inner_const;
4036 if (y != 0
4037 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
4038 && GET_CODE (inner_const) == CONST_INT
4039 && INTVAL (inner_const) != 0)
4041 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4042 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4043 && (INTVAL (inner_const)
4044 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4045 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
4047 #ifdef FLOAT_STORE_FLAG_VALUE
4048 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4050 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
4051 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4052 false_rtx = CONST0_RTX (mode);
4054 #endif
4056 switch (code)
4058 case EQ:
4059 return false_rtx;
4060 case NE:
4061 return true_rtx;
4062 case LT: case LE:
4063 if (has_sign)
4064 return true_rtx;
4065 break;
4066 case GT: case GE:
4067 if (has_sign)
4068 return false_rtx;
4069 break;
4070 default:
4071 break;
4076 new = simplify_relational_operation (code,
4077 (mode_arg0 != VOIDmode
4078 ? mode_arg0
4079 : (GET_MODE (const_arg0
4080 ? const_arg0
4081 : folded_arg0)
4082 != VOIDmode)
4083 ? GET_MODE (const_arg0
4084 ? const_arg0
4085 : folded_arg0)
4086 : GET_MODE (const_arg1
4087 ? const_arg1
4088 : folded_arg1)),
4089 const_arg0 ? const_arg0 : folded_arg0,
4090 const_arg1 ? const_arg1 : folded_arg1);
4091 #ifdef FLOAT_STORE_FLAG_VALUE
4092 if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
4094 if (new == const0_rtx)
4095 new = CONST0_RTX (mode);
4096 else
4097 new = (CONST_DOUBLE_FROM_REAL_VALUE
4098 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4100 #endif
4101 break;
4103 case '2':
4104 case 'c':
4105 switch (code)
4107 case PLUS:
4108 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4109 with that LABEL_REF as its second operand. If so, the result is
4110 the first operand of that MINUS. This handles switches with an
4111 ADDR_DIFF_VEC table. */
4112 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4114 rtx y
4115 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
4116 : lookup_as_function (folded_arg0, MINUS);
4118 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4119 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4120 return XEXP (y, 0);
4122 /* Now try for a CONST of a MINUS like the above. */
4123 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4124 : lookup_as_function (folded_arg0, CONST))) != 0
4125 && GET_CODE (XEXP (y, 0)) == MINUS
4126 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4127 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4128 return XEXP (XEXP (y, 0), 0);
4131 /* Likewise if the operands are in the other order. */
4132 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4134 rtx y
4135 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
4136 : lookup_as_function (folded_arg1, MINUS);
4138 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4139 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4140 return XEXP (y, 0);
4142 /* Now try for a CONST of a MINUS like the above. */
4143 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4144 : lookup_as_function (folded_arg1, CONST))) != 0
4145 && GET_CODE (XEXP (y, 0)) == MINUS
4146 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4147 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4148 return XEXP (XEXP (y, 0), 0);
4151 /* If second operand is a register equivalent to a negative
4152 CONST_INT, see if we can find a register equivalent to the
4153 positive constant. Make a MINUS if so. Don't do this for
4154 a non-negative constant since we might then alternate between
4155 choosing positive and negative constants. Having the positive
4156 constant previously-used is the more common case. Be sure
4157 the resulting constant is non-negative; if const_arg1 were
4158 the smallest negative number this would overflow: depending
4159 on the mode, this would either just be the same value (and
4160 hence not save anything) or be incorrect. */
4161 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4162 && INTVAL (const_arg1) < 0
4163 /* This used to test
4165 -INTVAL (const_arg1) >= 0
4167 But The Sun V5.0 compilers mis-compiled that test. So
4168 instead we test for the problematic value in a more direct
4169 manner and hope the Sun compilers get it correct. */
4170 && INTVAL (const_arg1) !=
4171 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4172 && GET_CODE (folded_arg1) == REG)
4174 rtx new_const = GEN_INT (-INTVAL (const_arg1));
4175 struct table_elt *p
4176 = lookup (new_const, safe_hash (new_const, mode) & HASH_MASK,
4177 mode);
4179 if (p)
4180 for (p = p->first_same_value; p; p = p->next_same_value)
4181 if (GET_CODE (p->exp) == REG)
4182 return simplify_gen_binary (MINUS, mode, folded_arg0,
4183 canon_reg (p->exp, NULL_RTX));
4185 goto from_plus;
4187 case MINUS:
4188 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4189 If so, produce (PLUS Z C2-C). */
4190 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4192 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4193 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4194 return fold_rtx (plus_constant (copy_rtx (y),
4195 -INTVAL (const_arg1)),
4196 NULL_RTX);
4199 /* Fall through. */
4201 from_plus:
4202 case SMIN: case SMAX: case UMIN: case UMAX:
4203 case IOR: case AND: case XOR:
4204 case MULT: case DIV: case UDIV:
4205 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4206 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4207 is known to be of similar form, we may be able to replace the
4208 operation with a combined operation. This may eliminate the
4209 intermediate operation if every use is simplified in this way.
4210 Note that the similar optimization done by combine.c only works
4211 if the intermediate operation's result has only one reference. */
4213 if (GET_CODE (folded_arg0) == REG
4214 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4216 int is_shift
4217 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4218 rtx y = lookup_as_function (folded_arg0, code);
4219 rtx inner_const;
4220 enum rtx_code associate_code;
4221 rtx new_const;
4223 if (y == 0
4224 || 0 == (inner_const
4225 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4226 || GET_CODE (inner_const) != CONST_INT
4227 /* If we have compiled a statement like
4228 "if (x == (x & mask1))", and now are looking at
4229 "x & mask2", we will have a case where the first operand
4230 of Y is the same as our first operand. Unless we detect
4231 this case, an infinite loop will result. */
4232 || XEXP (y, 0) == folded_arg0)
4233 break;
4235 /* Don't associate these operations if they are a PLUS with the
4236 same constant and it is a power of two. These might be doable
4237 with a pre- or post-increment. Similarly for two subtracts of
4238 identical powers of two with post decrement. */
4240 if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
4241 && ((HAVE_PRE_INCREMENT
4242 && exact_log2 (INTVAL (const_arg1)) >= 0)
4243 || (HAVE_POST_INCREMENT
4244 && exact_log2 (INTVAL (const_arg1)) >= 0)
4245 || (HAVE_PRE_DECREMENT
4246 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4247 || (HAVE_POST_DECREMENT
4248 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
4249 break;
4251 /* Compute the code used to compose the constants. For example,
4252 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
4254 associate_code
4255 = (code == MULT || code == DIV || code == UDIV ? MULT
4256 : is_shift || code == PLUS || code == MINUS ? PLUS : code);
4258 new_const = simplify_binary_operation (associate_code, mode,
4259 const_arg1, inner_const);
4261 if (new_const == 0)
4262 break;
4264 /* If we are associating shift operations, don't let this
4265 produce a shift of the size of the object or larger.
4266 This could occur when we follow a sign-extend by a right
4267 shift on a machine that does a sign-extend as a pair
4268 of shifts. */
4270 if (is_shift && GET_CODE (new_const) == CONST_INT
4271 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4273 /* As an exception, we can turn an ASHIFTRT of this
4274 form into a shift of the number of bits - 1. */
4275 if (code == ASHIFTRT)
4276 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4277 else
4278 break;
4281 y = copy_rtx (XEXP (y, 0));
4283 /* If Y contains our first operand (the most common way this
4284 can happen is if Y is a MEM), we would do into an infinite
4285 loop if we tried to fold it. So don't in that case. */
4287 if (! reg_mentioned_p (folded_arg0, y))
4288 y = fold_rtx (y, insn);
4290 return simplify_gen_binary (code, mode, y, new_const);
4292 break;
4294 default:
4295 break;
4298 new = simplify_binary_operation (code, mode,
4299 const_arg0 ? const_arg0 : folded_arg0,
4300 const_arg1 ? const_arg1 : folded_arg1);
4301 break;
4303 case 'o':
4304 /* (lo_sum (high X) X) is simply X. */
4305 if (code == LO_SUM && const_arg0 != 0
4306 && GET_CODE (const_arg0) == HIGH
4307 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4308 return const_arg1;
4309 break;
4311 case '3':
4312 case 'b':
4313 new = simplify_ternary_operation (code, mode, mode_arg0,
4314 const_arg0 ? const_arg0 : folded_arg0,
4315 const_arg1 ? const_arg1 : folded_arg1,
4316 const_arg2 ? const_arg2 : XEXP (x, 2));
4317 break;
4319 case 'x':
4320 /* Always eliminate CONSTANT_P_RTX at this stage. */
4321 if (code == CONSTANT_P_RTX)
4322 return (const_arg0 ? const1_rtx : const0_rtx);
4323 break;
4326 return new ? new : x;
4329 /* Return a constant value currently equivalent to X.
4330 Return 0 if we don't know one. */
4332 static rtx
4333 equiv_constant (x)
4334 rtx x;
4336 if (GET_CODE (x) == REG
4337 && REGNO_QTY_VALID_P (REGNO (x)))
4339 int x_q = REG_QTY (REGNO (x));
4340 struct qty_table_elem *x_ent = &qty_table[x_q];
4342 if (x_ent->const_rtx)
4343 x = gen_lowpart_if_possible (GET_MODE (x), x_ent->const_rtx);
4346 if (x == 0 || CONSTANT_P (x))
4347 return x;
4349 /* If X is a MEM, try to fold it outside the context of any insn to see if
4350 it might be equivalent to a constant. That handles the case where it
4351 is a constant-pool reference. Then try to look it up in the hash table
4352 in case it is something whose value we have seen before. */
4354 if (GET_CODE (x) == MEM)
4356 struct table_elt *elt;
4358 x = fold_rtx (x, NULL_RTX);
4359 if (CONSTANT_P (x))
4360 return x;
4362 elt = lookup (x, safe_hash (x, GET_MODE (x)) & HASH_MASK, GET_MODE (x));
4363 if (elt == 0)
4364 return 0;
4366 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4367 if (elt->is_const && CONSTANT_P (elt->exp))
4368 return elt->exp;
4371 return 0;
4374 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4375 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4376 least-significant part of X.
4377 MODE specifies how big a part of X to return.
4379 If the requested operation cannot be done, 0 is returned.
4381 This is similar to gen_lowpart in emit-rtl.c. */
4384 gen_lowpart_if_possible (mode, x)
4385 enum machine_mode mode;
4386 rtx x;
4388 rtx result = gen_lowpart_common (mode, x);
4390 if (result)
4391 return result;
4392 else if (GET_CODE (x) == MEM)
4394 /* This is the only other case we handle. */
4395 int offset = 0;
4396 rtx new;
4398 if (WORDS_BIG_ENDIAN)
4399 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
4400 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4401 if (BYTES_BIG_ENDIAN)
4402 /* Adjust the address so that the address-after-the-data is
4403 unchanged. */
4404 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
4405 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4407 new = adjust_address_nv (x, mode, offset);
4408 if (! memory_address_p (mode, XEXP (new, 0)))
4409 return 0;
4411 return new;
4413 else
4414 return 0;
4417 /* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
4418 branch. It will be zero if not.
4420 In certain cases, this can cause us to add an equivalence. For example,
4421 if we are following the taken case of
4422 if (i == 2)
4423 we can add the fact that `i' and '2' are now equivalent.
4425 In any case, we can record that this comparison was passed. If the same
4426 comparison is seen later, we will know its value. */
4428 static void
4429 record_jump_equiv (insn, taken)
4430 rtx insn;
4431 int taken;
4433 int cond_known_true;
4434 rtx op0, op1;
4435 rtx set;
4436 enum machine_mode mode, mode0, mode1;
4437 int reversed_nonequality = 0;
4438 enum rtx_code code;
4440 /* Ensure this is the right kind of insn. */
4441 if (! any_condjump_p (insn))
4442 return;
4443 set = pc_set (insn);
4445 /* See if this jump condition is known true or false. */
4446 if (taken)
4447 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
4448 else
4449 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
4451 /* Get the type of comparison being done and the operands being compared.
4452 If we had to reverse a non-equality condition, record that fact so we
4453 know that it isn't valid for floating-point. */
4454 code = GET_CODE (XEXP (SET_SRC (set), 0));
4455 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4456 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
4458 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4459 if (! cond_known_true)
4461 code = reversed_comparison_code_parts (code, op0, op1, insn);
4463 /* Don't remember if we can't find the inverse. */
4464 if (code == UNKNOWN)
4465 return;
4468 /* The mode is the mode of the non-constant. */
4469 mode = mode0;
4470 if (mode1 != VOIDmode)
4471 mode = mode1;
4473 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4476 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4477 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4478 Make any useful entries we can with that information. Called from
4479 above function and called recursively. */
4481 static void
4482 record_jump_cond (code, mode, op0, op1, reversed_nonequality)
4483 enum rtx_code code;
4484 enum machine_mode mode;
4485 rtx op0, op1;
4486 int reversed_nonequality;
4488 unsigned op0_hash, op1_hash;
4489 int op0_in_memory, op1_in_memory;
4490 struct table_elt *op0_elt, *op1_elt;
4492 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4493 we know that they are also equal in the smaller mode (this is also
4494 true for all smaller modes whether or not there is a SUBREG, but
4495 is not worth testing for with no SUBREG). */
4497 /* Note that GET_MODE (op0) may not equal MODE. */
4498 if (code == EQ && GET_CODE (op0) == SUBREG
4499 && (GET_MODE_SIZE (GET_MODE (op0))
4500 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4502 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4503 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
4505 record_jump_cond (code, mode, SUBREG_REG (op0),
4506 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
4507 reversed_nonequality);
4510 if (code == EQ && GET_CODE (op1) == SUBREG
4511 && (GET_MODE_SIZE (GET_MODE (op1))
4512 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4514 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4515 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
4517 record_jump_cond (code, mode, SUBREG_REG (op1),
4518 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
4519 reversed_nonequality);
4522 /* Similarly, if this is an NE comparison, and either is a SUBREG
4523 making a smaller mode, we know the whole thing is also NE. */
4525 /* Note that GET_MODE (op0) may not equal MODE;
4526 if we test MODE instead, we can get an infinite recursion
4527 alternating between two modes each wider than MODE. */
4529 if (code == NE && GET_CODE (op0) == SUBREG
4530 && subreg_lowpart_p (op0)
4531 && (GET_MODE_SIZE (GET_MODE (op0))
4532 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4534 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4535 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
4537 record_jump_cond (code, mode, SUBREG_REG (op0),
4538 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
4539 reversed_nonequality);
4542 if (code == NE && GET_CODE (op1) == SUBREG
4543 && subreg_lowpart_p (op1)
4544 && (GET_MODE_SIZE (GET_MODE (op1))
4545 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4547 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4548 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
4550 record_jump_cond (code, mode, SUBREG_REG (op1),
4551 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
4552 reversed_nonequality);
4555 /* Hash both operands. */
4557 do_not_record = 0;
4558 hash_arg_in_memory = 0;
4559 op0_hash = HASH (op0, mode);
4560 op0_in_memory = hash_arg_in_memory;
4562 if (do_not_record)
4563 return;
4565 do_not_record = 0;
4566 hash_arg_in_memory = 0;
4567 op1_hash = HASH (op1, mode);
4568 op1_in_memory = hash_arg_in_memory;
4570 if (do_not_record)
4571 return;
4573 /* Look up both operands. */
4574 op0_elt = lookup (op0, op0_hash, mode);
4575 op1_elt = lookup (op1, op1_hash, mode);
4577 /* If both operands are already equivalent or if they are not in the
4578 table but are identical, do nothing. */
4579 if ((op0_elt != 0 && op1_elt != 0
4580 && op0_elt->first_same_value == op1_elt->first_same_value)
4581 || op0 == op1 || rtx_equal_p (op0, op1))
4582 return;
4584 /* If we aren't setting two things equal all we can do is save this
4585 comparison. Similarly if this is floating-point. In the latter
4586 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4587 If we record the equality, we might inadvertently delete code
4588 whose intent was to change -0 to +0. */
4590 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4592 struct qty_table_elem *ent;
4593 int qty;
4595 /* If we reversed a floating-point comparison, if OP0 is not a
4596 register, or if OP1 is neither a register or constant, we can't
4597 do anything. */
4599 if (GET_CODE (op1) != REG)
4600 op1 = equiv_constant (op1);
4602 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4603 || GET_CODE (op0) != REG || op1 == 0)
4604 return;
4606 /* Put OP0 in the hash table if it isn't already. This gives it a
4607 new quantity number. */
4608 if (op0_elt == 0)
4610 if (insert_regs (op0, NULL, 0))
4612 rehash_using_reg (op0);
4613 op0_hash = HASH (op0, mode);
4615 /* If OP0 is contained in OP1, this changes its hash code
4616 as well. Faster to rehash than to check, except
4617 for the simple case of a constant. */
4618 if (! CONSTANT_P (op1))
4619 op1_hash = HASH (op1,mode);
4622 op0_elt = insert (op0, NULL, op0_hash, mode);
4623 op0_elt->in_memory = op0_in_memory;
4626 qty = REG_QTY (REGNO (op0));
4627 ent = &qty_table[qty];
4629 ent->comparison_code = code;
4630 if (GET_CODE (op1) == REG)
4632 /* Look it up again--in case op0 and op1 are the same. */
4633 op1_elt = lookup (op1, op1_hash, mode);
4635 /* Put OP1 in the hash table so it gets a new quantity number. */
4636 if (op1_elt == 0)
4638 if (insert_regs (op1, NULL, 0))
4640 rehash_using_reg (op1);
4641 op1_hash = HASH (op1, mode);
4644 op1_elt = insert (op1, NULL, op1_hash, mode);
4645 op1_elt->in_memory = op1_in_memory;
4648 ent->comparison_const = NULL_RTX;
4649 ent->comparison_qty = REG_QTY (REGNO (op1));
4651 else
4653 ent->comparison_const = op1;
4654 ent->comparison_qty = -1;
4657 return;
4660 /* If either side is still missing an equivalence, make it now,
4661 then merge the equivalences. */
4663 if (op0_elt == 0)
4665 if (insert_regs (op0, NULL, 0))
4667 rehash_using_reg (op0);
4668 op0_hash = HASH (op0, mode);
4671 op0_elt = insert (op0, NULL, op0_hash, mode);
4672 op0_elt->in_memory = op0_in_memory;
4675 if (op1_elt == 0)
4677 if (insert_regs (op1, NULL, 0))
4679 rehash_using_reg (op1);
4680 op1_hash = HASH (op1, mode);
4683 op1_elt = insert (op1, NULL, op1_hash, mode);
4684 op1_elt->in_memory = op1_in_memory;
4687 merge_equiv_classes (op0_elt, op1_elt);
4688 last_jump_equiv_class = op0_elt;
4691 /* CSE processing for one instruction.
4692 First simplify sources and addresses of all assignments
4693 in the instruction, using previously-computed equivalents values.
4694 Then install the new sources and destinations in the table
4695 of available values.
4697 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4698 the insn. It means that INSN is inside libcall block. In this
4699 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4701 /* Data on one SET contained in the instruction. */
4703 struct set
4705 /* The SET rtx itself. */
4706 rtx rtl;
4707 /* The SET_SRC of the rtx (the original value, if it is changing). */
4708 rtx src;
4709 /* The hash-table element for the SET_SRC of the SET. */
4710 struct table_elt *src_elt;
4711 /* Hash value for the SET_SRC. */
4712 unsigned src_hash;
4713 /* Hash value for the SET_DEST. */
4714 unsigned dest_hash;
4715 /* The SET_DEST, with SUBREG, etc., stripped. */
4716 rtx inner_dest;
4717 /* Nonzero if the SET_SRC is in memory. */
4718 char src_in_memory;
4719 /* Nonzero if the SET_SRC contains something
4720 whose value cannot be predicted and understood. */
4721 char src_volatile;
4722 /* Original machine mode, in case it becomes a CONST_INT. */
4723 enum machine_mode mode;
4724 /* A constant equivalent for SET_SRC, if any. */
4725 rtx src_const;
4726 /* Original SET_SRC value used for libcall notes. */
4727 rtx orig_src;
4728 /* Hash value of constant equivalent for SET_SRC. */
4729 unsigned src_const_hash;
4730 /* Table entry for constant equivalent for SET_SRC, if any. */
4731 struct table_elt *src_const_elt;
4734 static void
4735 cse_insn (insn, libcall_insn)
4736 rtx insn;
4737 rtx libcall_insn;
4739 rtx x = PATTERN (insn);
4740 int i;
4741 rtx tem;
4742 int n_sets = 0;
4744 #ifdef HAVE_cc0
4745 /* Records what this insn does to set CC0. */
4746 rtx this_insn_cc0 = 0;
4747 enum machine_mode this_insn_cc0_mode = VOIDmode;
4748 #endif
4750 rtx src_eqv = 0;
4751 struct table_elt *src_eqv_elt = 0;
4752 int src_eqv_volatile = 0;
4753 int src_eqv_in_memory = 0;
4754 unsigned src_eqv_hash = 0;
4756 struct set *sets = (struct set *) 0;
4758 this_insn = insn;
4760 /* Find all the SETs and CLOBBERs in this instruction.
4761 Record all the SETs in the array `set' and count them.
4762 Also determine whether there is a CLOBBER that invalidates
4763 all memory references, or all references at varying addresses. */
4765 if (GET_CODE (insn) == CALL_INSN)
4767 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4769 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4770 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4771 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4775 if (GET_CODE (x) == SET)
4777 sets = (struct set *) alloca (sizeof (struct set));
4778 sets[0].rtl = x;
4780 /* Ignore SETs that are unconditional jumps.
4781 They never need cse processing, so this does not hurt.
4782 The reason is not efficiency but rather
4783 so that we can test at the end for instructions
4784 that have been simplified to unconditional jumps
4785 and not be misled by unchanged instructions
4786 that were unconditional jumps to begin with. */
4787 if (SET_DEST (x) == pc_rtx
4788 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4791 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4792 The hard function value register is used only once, to copy to
4793 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4794 Ensure we invalidate the destination register. On the 80386 no
4795 other code would invalidate it since it is a fixed_reg.
4796 We need not check the return of apply_change_group; see canon_reg. */
4798 else if (GET_CODE (SET_SRC (x)) == CALL)
4800 canon_reg (SET_SRC (x), insn);
4801 apply_change_group ();
4802 fold_rtx (SET_SRC (x), insn);
4803 invalidate (SET_DEST (x), VOIDmode);
4805 else
4806 n_sets = 1;
4808 else if (GET_CODE (x) == PARALLEL)
4810 int lim = XVECLEN (x, 0);
4812 sets = (struct set *) alloca (lim * sizeof (struct set));
4814 /* Find all regs explicitly clobbered in this insn,
4815 and ensure they are not replaced with any other regs
4816 elsewhere in this insn.
4817 When a reg that is clobbered is also used for input,
4818 we should presume that that is for a reason,
4819 and we should not substitute some other register
4820 which is not supposed to be clobbered.
4821 Therefore, this loop cannot be merged into the one below
4822 because a CALL may precede a CLOBBER and refer to the
4823 value clobbered. We must not let a canonicalization do
4824 anything in that case. */
4825 for (i = 0; i < lim; i++)
4827 rtx y = XVECEXP (x, 0, i);
4828 if (GET_CODE (y) == CLOBBER)
4830 rtx clobbered = XEXP (y, 0);
4832 if (GET_CODE (clobbered) == REG
4833 || GET_CODE (clobbered) == SUBREG)
4834 invalidate (clobbered, VOIDmode);
4835 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4836 || GET_CODE (clobbered) == ZERO_EXTRACT)
4837 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4841 for (i = 0; i < lim; i++)
4843 rtx y = XVECEXP (x, 0, i);
4844 if (GET_CODE (y) == SET)
4846 /* As above, we ignore unconditional jumps and call-insns and
4847 ignore the result of apply_change_group. */
4848 if (GET_CODE (SET_SRC (y)) == CALL)
4850 canon_reg (SET_SRC (y), insn);
4851 apply_change_group ();
4852 fold_rtx (SET_SRC (y), insn);
4853 invalidate (SET_DEST (y), VOIDmode);
4855 else if (SET_DEST (y) == pc_rtx
4856 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4858 else
4859 sets[n_sets++].rtl = y;
4861 else if (GET_CODE (y) == CLOBBER)
4863 /* If we clobber memory, canon the address.
4864 This does nothing when a register is clobbered
4865 because we have already invalidated the reg. */
4866 if (GET_CODE (XEXP (y, 0)) == MEM)
4867 canon_reg (XEXP (y, 0), NULL_RTX);
4869 else if (GET_CODE (y) == USE
4870 && ! (GET_CODE (XEXP (y, 0)) == REG
4871 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4872 canon_reg (y, NULL_RTX);
4873 else if (GET_CODE (y) == CALL)
4875 /* The result of apply_change_group can be ignored; see
4876 canon_reg. */
4877 canon_reg (y, insn);
4878 apply_change_group ();
4879 fold_rtx (y, insn);
4883 else if (GET_CODE (x) == CLOBBER)
4885 if (GET_CODE (XEXP (x, 0)) == MEM)
4886 canon_reg (XEXP (x, 0), NULL_RTX);
4889 /* Canonicalize a USE of a pseudo register or memory location. */
4890 else if (GET_CODE (x) == USE
4891 && ! (GET_CODE (XEXP (x, 0)) == REG
4892 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4893 canon_reg (XEXP (x, 0), NULL_RTX);
4894 else if (GET_CODE (x) == CALL)
4896 /* The result of apply_change_group can be ignored; see canon_reg. */
4897 canon_reg (x, insn);
4898 apply_change_group ();
4899 fold_rtx (x, insn);
4902 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4903 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4904 is handled specially for this case, and if it isn't set, then there will
4905 be no equivalence for the destination. */
4906 if (n_sets == 1 && REG_NOTES (insn) != 0
4907 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4908 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4909 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4910 src_eqv = canon_reg (XEXP (tem, 0), NULL_RTX);
4912 /* Canonicalize sources and addresses of destinations.
4913 We do this in a separate pass to avoid problems when a MATCH_DUP is
4914 present in the insn pattern. In that case, we want to ensure that
4915 we don't break the duplicate nature of the pattern. So we will replace
4916 both operands at the same time. Otherwise, we would fail to find an
4917 equivalent substitution in the loop calling validate_change below.
4919 We used to suppress canonicalization of DEST if it appears in SRC,
4920 but we don't do this any more. */
4922 for (i = 0; i < n_sets; i++)
4924 rtx dest = SET_DEST (sets[i].rtl);
4925 rtx src = SET_SRC (sets[i].rtl);
4926 rtx new = canon_reg (src, insn);
4927 int insn_code;
4929 sets[i].orig_src = src;
4930 if ((GET_CODE (new) == REG && GET_CODE (src) == REG
4931 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4932 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4933 || (insn_code = recog_memoized (insn)) < 0
4934 || insn_data[insn_code].n_dups > 0)
4935 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4936 else
4937 SET_SRC (sets[i].rtl) = new;
4939 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
4941 validate_change (insn, &XEXP (dest, 1),
4942 canon_reg (XEXP (dest, 1), insn), 1);
4943 validate_change (insn, &XEXP (dest, 2),
4944 canon_reg (XEXP (dest, 2), insn), 1);
4947 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
4948 || GET_CODE (dest) == ZERO_EXTRACT
4949 || GET_CODE (dest) == SIGN_EXTRACT)
4950 dest = XEXP (dest, 0);
4952 if (GET_CODE (dest) == MEM)
4953 canon_reg (dest, insn);
4956 /* Now that we have done all the replacements, we can apply the change
4957 group and see if they all work. Note that this will cause some
4958 canonicalizations that would have worked individually not to be applied
4959 because some other canonicalization didn't work, but this should not
4960 occur often.
4962 The result of apply_change_group can be ignored; see canon_reg. */
4964 apply_change_group ();
4966 /* Set sets[i].src_elt to the class each source belongs to.
4967 Detect assignments from or to volatile things
4968 and set set[i] to zero so they will be ignored
4969 in the rest of this function.
4971 Nothing in this loop changes the hash table or the register chains. */
4973 for (i = 0; i < n_sets; i++)
4975 rtx src, dest;
4976 rtx src_folded;
4977 struct table_elt *elt = 0, *p;
4978 enum machine_mode mode;
4979 rtx src_eqv_here;
4980 rtx src_const = 0;
4981 rtx src_related = 0;
4982 struct table_elt *src_const_elt = 0;
4983 int src_cost = MAX_COST;
4984 int src_eqv_cost = MAX_COST;
4985 int src_folded_cost = MAX_COST;
4986 int src_related_cost = MAX_COST;
4987 int src_elt_cost = MAX_COST;
4988 int src_regcost = MAX_COST;
4989 int src_eqv_regcost = MAX_COST;
4990 int src_folded_regcost = MAX_COST;
4991 int src_related_regcost = MAX_COST;
4992 int src_elt_regcost = MAX_COST;
4993 /* Set non-zero if we need to call force_const_mem on with the
4994 contents of src_folded before using it. */
4995 int src_folded_force_flag = 0;
4997 dest = SET_DEST (sets[i].rtl);
4998 src = SET_SRC (sets[i].rtl);
5000 /* If SRC is a constant that has no machine mode,
5001 hash it with the destination's machine mode.
5002 This way we can keep different modes separate. */
5004 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5005 sets[i].mode = mode;
5007 if (src_eqv)
5009 enum machine_mode eqvmode = mode;
5010 if (GET_CODE (dest) == STRICT_LOW_PART)
5011 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5012 do_not_record = 0;
5013 hash_arg_in_memory = 0;
5014 src_eqv = fold_rtx (src_eqv, insn);
5015 src_eqv_hash = HASH (src_eqv, eqvmode);
5017 /* Find the equivalence class for the equivalent expression. */
5019 if (!do_not_record)
5020 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
5022 src_eqv_volatile = do_not_record;
5023 src_eqv_in_memory = hash_arg_in_memory;
5026 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
5027 value of the INNER register, not the destination. So it is not
5028 a valid substitution for the source. But save it for later. */
5029 if (GET_CODE (dest) == STRICT_LOW_PART)
5030 src_eqv_here = 0;
5031 else
5032 src_eqv_here = src_eqv;
5034 /* Simplify and foldable subexpressions in SRC. Then get the fully-
5035 simplified result, which may not necessarily be valid. */
5036 src_folded = fold_rtx (src, insn);
5038 #if 0
5039 /* ??? This caused bad code to be generated for the m68k port with -O2.
5040 Suppose src is (CONST_INT -1), and that after truncation src_folded
5041 is (CONST_INT 3). Suppose src_folded is then used for src_const.
5042 At the end we will add src and src_const to the same equivalence
5043 class. We now have 3 and -1 on the same equivalence class. This
5044 causes later instructions to be mis-optimized. */
5045 /* If storing a constant in a bitfield, pre-truncate the constant
5046 so we will be able to record it later. */
5047 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5048 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
5050 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5052 if (GET_CODE (src) == CONST_INT
5053 && GET_CODE (width) == CONST_INT
5054 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5055 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5056 src_folded
5057 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
5058 << INTVAL (width)) - 1));
5060 #endif
5062 /* Compute SRC's hash code, and also notice if it
5063 should not be recorded at all. In that case,
5064 prevent any further processing of this assignment. */
5065 do_not_record = 0;
5066 hash_arg_in_memory = 0;
5068 sets[i].src = src;
5069 sets[i].src_hash = HASH (src, mode);
5070 sets[i].src_volatile = do_not_record;
5071 sets[i].src_in_memory = hash_arg_in_memory;
5073 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
5074 a pseudo, do not record SRC. Using SRC as a replacement for
5075 anything else will be incorrect in that situation. Note that
5076 this usually occurs only for stack slots, in which case all the
5077 RTL would be referring to SRC, so we don't lose any optimization
5078 opportunities by not having SRC in the hash table. */
5080 if (GET_CODE (src) == MEM
5081 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5082 && GET_CODE (dest) == REG
5083 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5084 sets[i].src_volatile = 1;
5086 #if 0
5087 /* It is no longer clear why we used to do this, but it doesn't
5088 appear to still be needed. So let's try without it since this
5089 code hurts cse'ing widened ops. */
5090 /* If source is a perverse subreg (such as QI treated as an SI),
5091 treat it as volatile. It may do the work of an SI in one context
5092 where the extra bits are not being used, but cannot replace an SI
5093 in general. */
5094 if (GET_CODE (src) == SUBREG
5095 && (GET_MODE_SIZE (GET_MODE (src))
5096 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5097 sets[i].src_volatile = 1;
5098 #endif
5100 /* Locate all possible equivalent forms for SRC. Try to replace
5101 SRC in the insn with each cheaper equivalent.
5103 We have the following types of equivalents: SRC itself, a folded
5104 version, a value given in a REG_EQUAL note, or a value related
5105 to a constant.
5107 Each of these equivalents may be part of an additional class
5108 of equivalents (if more than one is in the table, they must be in
5109 the same class; we check for this).
5111 If the source is volatile, we don't do any table lookups.
5113 We note any constant equivalent for possible later use in a
5114 REG_NOTE. */
5116 if (!sets[i].src_volatile)
5117 elt = lookup (src, sets[i].src_hash, mode);
5119 sets[i].src_elt = elt;
5121 if (elt && src_eqv_here && src_eqv_elt)
5123 if (elt->first_same_value != src_eqv_elt->first_same_value)
5125 /* The REG_EQUAL is indicating that two formerly distinct
5126 classes are now equivalent. So merge them. */
5127 merge_equiv_classes (elt, src_eqv_elt);
5128 src_eqv_hash = HASH (src_eqv, elt->mode);
5129 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
5132 src_eqv_here = 0;
5135 else if (src_eqv_elt)
5136 elt = src_eqv_elt;
5138 /* Try to find a constant somewhere and record it in `src_const'.
5139 Record its table element, if any, in `src_const_elt'. Look in
5140 any known equivalences first. (If the constant is not in the
5141 table, also set `sets[i].src_const_hash'). */
5142 if (elt)
5143 for (p = elt->first_same_value; p; p = p->next_same_value)
5144 if (p->is_const)
5146 src_const = p->exp;
5147 src_const_elt = elt;
5148 break;
5151 if (src_const == 0
5152 && (CONSTANT_P (src_folded)
5153 /* Consider (minus (label_ref L1) (label_ref L2)) as
5154 "constant" here so we will record it. This allows us
5155 to fold switch statements when an ADDR_DIFF_VEC is used. */
5156 || (GET_CODE (src_folded) == MINUS
5157 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5158 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5159 src_const = src_folded, src_const_elt = elt;
5160 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5161 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5163 /* If we don't know if the constant is in the table, get its
5164 hash code and look it up. */
5165 if (src_const && src_const_elt == 0)
5167 sets[i].src_const_hash = HASH (src_const, mode);
5168 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
5171 sets[i].src_const = src_const;
5172 sets[i].src_const_elt = src_const_elt;
5174 /* If the constant and our source are both in the table, mark them as
5175 equivalent. Otherwise, if a constant is in the table but the source
5176 isn't, set ELT to it. */
5177 if (src_const_elt && elt
5178 && src_const_elt->first_same_value != elt->first_same_value)
5179 merge_equiv_classes (elt, src_const_elt);
5180 else if (src_const_elt && elt == 0)
5181 elt = src_const_elt;
5183 /* See if there is a register linearly related to a constant
5184 equivalent of SRC. */
5185 if (src_const
5186 && (GET_CODE (src_const) == CONST
5187 || (src_const_elt && src_const_elt->related_value != 0)))
5189 src_related = use_related_value (src_const, src_const_elt);
5190 if (src_related)
5192 struct table_elt *src_related_elt
5193 = lookup (src_related, HASH (src_related, mode), mode);
5194 if (src_related_elt && elt)
5196 if (elt->first_same_value
5197 != src_related_elt->first_same_value)
5198 /* This can occur when we previously saw a CONST
5199 involving a SYMBOL_REF and then see the SYMBOL_REF
5200 twice. Merge the involved classes. */
5201 merge_equiv_classes (elt, src_related_elt);
5203 src_related = 0;
5204 src_related_elt = 0;
5206 else if (src_related_elt && elt == 0)
5207 elt = src_related_elt;
5211 /* See if we have a CONST_INT that is already in a register in a
5212 wider mode. */
5214 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5215 && GET_MODE_CLASS (mode) == MODE_INT
5216 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5218 enum machine_mode wider_mode;
5220 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5221 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5222 && src_related == 0;
5223 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5225 struct table_elt *const_elt
5226 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5228 if (const_elt == 0)
5229 continue;
5231 for (const_elt = const_elt->first_same_value;
5232 const_elt; const_elt = const_elt->next_same_value)
5233 if (GET_CODE (const_elt->exp) == REG)
5235 src_related = gen_lowpart_if_possible (mode,
5236 const_elt->exp);
5237 break;
5242 /* Another possibility is that we have an AND with a constant in
5243 a mode narrower than a word. If so, it might have been generated
5244 as part of an "if" which would narrow the AND. If we already
5245 have done the AND in a wider mode, we can use a SUBREG of that
5246 value. */
5248 if (flag_expensive_optimizations && ! src_related
5249 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5250 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5252 enum machine_mode tmode;
5253 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5255 for (tmode = GET_MODE_WIDER_MODE (mode);
5256 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5257 tmode = GET_MODE_WIDER_MODE (tmode))
5259 rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
5260 struct table_elt *larger_elt;
5262 if (inner)
5264 PUT_MODE (new_and, tmode);
5265 XEXP (new_and, 0) = inner;
5266 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5267 if (larger_elt == 0)
5268 continue;
5270 for (larger_elt = larger_elt->first_same_value;
5271 larger_elt; larger_elt = larger_elt->next_same_value)
5272 if (GET_CODE (larger_elt->exp) == REG)
5274 src_related
5275 = gen_lowpart_if_possible (mode, larger_elt->exp);
5276 break;
5279 if (src_related)
5280 break;
5285 #ifdef LOAD_EXTEND_OP
5286 /* See if a MEM has already been loaded with a widening operation;
5287 if it has, we can use a subreg of that. Many CISC machines
5288 also have such operations, but this is only likely to be
5289 beneficial these machines. */
5291 if (flag_expensive_optimizations && src_related == 0
5292 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5293 && GET_MODE_CLASS (mode) == MODE_INT
5294 && GET_CODE (src) == MEM && ! do_not_record
5295 && LOAD_EXTEND_OP (mode) != NIL)
5297 enum machine_mode tmode;
5299 /* Set what we are trying to extend and the operation it might
5300 have been extended with. */
5301 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5302 XEXP (memory_extend_rtx, 0) = src;
5304 for (tmode = GET_MODE_WIDER_MODE (mode);
5305 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5306 tmode = GET_MODE_WIDER_MODE (tmode))
5308 struct table_elt *larger_elt;
5310 PUT_MODE (memory_extend_rtx, tmode);
5311 larger_elt = lookup (memory_extend_rtx,
5312 HASH (memory_extend_rtx, tmode), tmode);
5313 if (larger_elt == 0)
5314 continue;
5316 for (larger_elt = larger_elt->first_same_value;
5317 larger_elt; larger_elt = larger_elt->next_same_value)
5318 if (GET_CODE (larger_elt->exp) == REG)
5320 src_related = gen_lowpart_if_possible (mode,
5321 larger_elt->exp);
5322 break;
5325 if (src_related)
5326 break;
5329 #endif /* LOAD_EXTEND_OP */
5331 if (src == src_folded)
5332 src_folded = 0;
5334 /* At this point, ELT, if non-zero, points to a class of expressions
5335 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5336 and SRC_RELATED, if non-zero, each contain additional equivalent
5337 expressions. Prune these latter expressions by deleting expressions
5338 already in the equivalence class.
5340 Check for an equivalent identical to the destination. If found,
5341 this is the preferred equivalent since it will likely lead to
5342 elimination of the insn. Indicate this by placing it in
5343 `src_related'. */
5345 if (elt)
5346 elt = elt->first_same_value;
5347 for (p = elt; p; p = p->next_same_value)
5349 enum rtx_code code = GET_CODE (p->exp);
5351 /* If the expression is not valid, ignore it. Then we do not
5352 have to check for validity below. In most cases, we can use
5353 `rtx_equal_p', since canonicalization has already been done. */
5354 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
5355 continue;
5357 /* Also skip paradoxical subregs, unless that's what we're
5358 looking for. */
5359 if (code == SUBREG
5360 && (GET_MODE_SIZE (GET_MODE (p->exp))
5361 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5362 && ! (src != 0
5363 && GET_CODE (src) == SUBREG
5364 && GET_MODE (src) == GET_MODE (p->exp)
5365 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5366 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5367 continue;
5369 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5370 src = 0;
5371 else if (src_folded && GET_CODE (src_folded) == code
5372 && rtx_equal_p (src_folded, p->exp))
5373 src_folded = 0;
5374 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5375 && rtx_equal_p (src_eqv_here, p->exp))
5376 src_eqv_here = 0;
5377 else if (src_related && GET_CODE (src_related) == code
5378 && rtx_equal_p (src_related, p->exp))
5379 src_related = 0;
5381 /* This is the same as the destination of the insns, we want
5382 to prefer it. Copy it to src_related. The code below will
5383 then give it a negative cost. */
5384 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5385 src_related = dest;
5388 /* Find the cheapest valid equivalent, trying all the available
5389 possibilities. Prefer items not in the hash table to ones
5390 that are when they are equal cost. Note that we can never
5391 worsen an insn as the current contents will also succeed.
5392 If we find an equivalent identical to the destination, use it as best,
5393 since this insn will probably be eliminated in that case. */
5394 if (src)
5396 if (rtx_equal_p (src, dest))
5397 src_cost = src_regcost = -1;
5398 else
5400 src_cost = COST (src);
5401 src_regcost = approx_reg_cost (src);
5405 if (src_eqv_here)
5407 if (rtx_equal_p (src_eqv_here, dest))
5408 src_eqv_cost = src_eqv_regcost = -1;
5409 else
5411 src_eqv_cost = COST (src_eqv_here);
5412 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5416 if (src_folded)
5418 if (rtx_equal_p (src_folded, dest))
5419 src_folded_cost = src_folded_regcost = -1;
5420 else
5422 src_folded_cost = COST (src_folded);
5423 src_folded_regcost = approx_reg_cost (src_folded);
5427 if (src_related)
5429 if (rtx_equal_p (src_related, dest))
5430 src_related_cost = src_related_regcost = -1;
5431 else
5433 src_related_cost = COST (src_related);
5434 src_related_regcost = approx_reg_cost (src_related);
5438 /* If this was an indirect jump insn, a known label will really be
5439 cheaper even though it looks more expensive. */
5440 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5441 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5443 /* Terminate loop when replacement made. This must terminate since
5444 the current contents will be tested and will always be valid. */
5445 while (1)
5447 rtx trial;
5449 /* Skip invalid entries. */
5450 while (elt && GET_CODE (elt->exp) != REG
5451 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
5452 elt = elt->next_same_value;
5454 /* A paradoxical subreg would be bad here: it'll be the right
5455 size, but later may be adjusted so that the upper bits aren't
5456 what we want. So reject it. */
5457 if (elt != 0
5458 && GET_CODE (elt->exp) == SUBREG
5459 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5460 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5461 /* It is okay, though, if the rtx we're trying to match
5462 will ignore any of the bits we can't predict. */
5463 && ! (src != 0
5464 && GET_CODE (src) == SUBREG
5465 && GET_MODE (src) == GET_MODE (elt->exp)
5466 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5467 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5469 elt = elt->next_same_value;
5470 continue;
5473 if (elt)
5475 src_elt_cost = elt->cost;
5476 src_elt_regcost = elt->regcost;
5479 /* Find cheapest and skip it for the next time. For items
5480 of equal cost, use this order:
5481 src_folded, src, src_eqv, src_related and hash table entry. */
5482 if (src_folded
5483 && preferrable (src_folded_cost, src_folded_regcost,
5484 src_cost, src_regcost) <= 0
5485 && preferrable (src_folded_cost, src_folded_regcost,
5486 src_eqv_cost, src_eqv_regcost) <= 0
5487 && preferrable (src_folded_cost, src_folded_regcost,
5488 src_related_cost, src_related_regcost) <= 0
5489 && preferrable (src_folded_cost, src_folded_regcost,
5490 src_elt_cost, src_elt_regcost) <= 0)
5492 trial = src_folded, src_folded_cost = MAX_COST;
5493 if (src_folded_force_flag)
5494 trial = force_const_mem (mode, trial);
5496 else if (src
5497 && preferrable (src_cost, src_regcost,
5498 src_eqv_cost, src_eqv_regcost) <= 0
5499 && preferrable (src_cost, src_regcost,
5500 src_related_cost, src_related_regcost) <= 0
5501 && preferrable (src_cost, src_regcost,
5502 src_elt_cost, src_elt_regcost) <= 0)
5503 trial = src, src_cost = MAX_COST;
5504 else if (src_eqv_here
5505 && preferrable (src_eqv_cost, src_eqv_regcost,
5506 src_related_cost, src_related_regcost) <= 0
5507 && preferrable (src_eqv_cost, src_eqv_regcost,
5508 src_elt_cost, src_elt_regcost) <= 0)
5509 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5510 else if (src_related
5511 && preferrable (src_related_cost, src_related_regcost,
5512 src_elt_cost, src_elt_regcost) <= 0)
5513 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5514 else
5516 trial = copy_rtx (elt->exp);
5517 elt = elt->next_same_value;
5518 src_elt_cost = MAX_COST;
5521 /* We don't normally have an insn matching (set (pc) (pc)), so
5522 check for this separately here. We will delete such an
5523 insn below.
5525 For other cases such as a table jump or conditional jump
5526 where we know the ultimate target, go ahead and replace the
5527 operand. While that may not make a valid insn, we will
5528 reemit the jump below (and also insert any necessary
5529 barriers). */
5530 if (n_sets == 1 && dest == pc_rtx
5531 && (trial == pc_rtx
5532 || (GET_CODE (trial) == LABEL_REF
5533 && ! condjump_p (insn))))
5535 SET_SRC (sets[i].rtl) = trial;
5536 cse_jumps_altered = 1;
5537 break;
5540 /* Look for a substitution that makes a valid insn. */
5541 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5543 /* If we just made a substitution inside a libcall, then we
5544 need to make the same substitution in any notes attached
5545 to the RETVAL insn. */
5546 if (libcall_insn
5547 && (GET_CODE (sets[i].orig_src) == REG
5548 || GET_CODE (sets[i].orig_src) == SUBREG
5549 || GET_CODE (sets[i].orig_src) == MEM))
5550 replace_rtx (REG_NOTES (libcall_insn), sets[i].orig_src,
5551 canon_reg (SET_SRC (sets[i].rtl), insn));
5553 /* The result of apply_change_group can be ignored; see
5554 canon_reg. */
5556 validate_change (insn, &SET_SRC (sets[i].rtl),
5557 canon_reg (SET_SRC (sets[i].rtl), insn),
5559 apply_change_group ();
5560 break;
5563 /* If we previously found constant pool entries for
5564 constants and this is a constant, try making a
5565 pool entry. Put it in src_folded unless we already have done
5566 this since that is where it likely came from. */
5568 else if (constant_pool_entries_cost
5569 && CONSTANT_P (trial)
5570 /* Reject cases that will abort in decode_rtx_const.
5571 On the alpha when simplifying a switch, we get
5572 (const (truncate (minus (label_ref) (label_ref)))). */
5573 && ! (GET_CODE (trial) == CONST
5574 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5575 /* Likewise on IA-64, except without the truncate. */
5576 && ! (GET_CODE (trial) == CONST
5577 && GET_CODE (XEXP (trial, 0)) == MINUS
5578 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5579 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5580 && (src_folded == 0
5581 || (GET_CODE (src_folded) != MEM
5582 && ! src_folded_force_flag))
5583 && GET_MODE_CLASS (mode) != MODE_CC
5584 && mode != VOIDmode)
5586 src_folded_force_flag = 1;
5587 src_folded = trial;
5588 src_folded_cost = constant_pool_entries_cost;
5592 src = SET_SRC (sets[i].rtl);
5594 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5595 However, there is an important exception: If both are registers
5596 that are not the head of their equivalence class, replace SET_SRC
5597 with the head of the class. If we do not do this, we will have
5598 both registers live over a portion of the basic block. This way,
5599 their lifetimes will likely abut instead of overlapping. */
5600 if (GET_CODE (dest) == REG
5601 && REGNO_QTY_VALID_P (REGNO (dest)))
5603 int dest_q = REG_QTY (REGNO (dest));
5604 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5606 if (dest_ent->mode == GET_MODE (dest)
5607 && dest_ent->first_reg != REGNO (dest)
5608 && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
5609 /* Don't do this if the original insn had a hard reg as
5610 SET_SRC or SET_DEST. */
5611 && (GET_CODE (sets[i].src) != REG
5612 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5613 && (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5614 /* We can't call canon_reg here because it won't do anything if
5615 SRC is a hard register. */
5617 int src_q = REG_QTY (REGNO (src));
5618 struct qty_table_elem *src_ent = &qty_table[src_q];
5619 int first = src_ent->first_reg;
5620 rtx new_src
5621 = (first >= FIRST_PSEUDO_REGISTER
5622 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5624 /* We must use validate-change even for this, because this
5625 might be a special no-op instruction, suitable only to
5626 tag notes onto. */
5627 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5629 src = new_src;
5630 /* If we had a constant that is cheaper than what we are now
5631 setting SRC to, use that constant. We ignored it when we
5632 thought we could make this into a no-op. */
5633 if (src_const && COST (src_const) < COST (src)
5634 && validate_change (insn, &SET_SRC (sets[i].rtl),
5635 src_const, 0))
5636 src = src_const;
5641 /* If we made a change, recompute SRC values. */
5642 if (src != sets[i].src)
5644 cse_altered = 1;
5645 do_not_record = 0;
5646 hash_arg_in_memory = 0;
5647 sets[i].src = src;
5648 sets[i].src_hash = HASH (src, mode);
5649 sets[i].src_volatile = do_not_record;
5650 sets[i].src_in_memory = hash_arg_in_memory;
5651 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5654 /* If this is a single SET, we are setting a register, and we have an
5655 equivalent constant, we want to add a REG_NOTE. We don't want
5656 to write a REG_EQUAL note for a constant pseudo since verifying that
5657 that pseudo hasn't been eliminated is a pain. Such a note also
5658 won't help anything.
5660 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5661 which can be created for a reference to a compile time computable
5662 entry in a jump table. */
5664 if (n_sets == 1 && src_const && GET_CODE (dest) == REG
5665 && GET_CODE (src_const) != REG
5666 && ! (GET_CODE (src_const) == CONST
5667 && GET_CODE (XEXP (src_const, 0)) == MINUS
5668 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5669 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5671 /* Make sure that the rtx is not shared with any other insn. */
5672 src_const = copy_rtx (src_const);
5674 /* Record the actual constant value in a REG_EQUAL note, making
5675 a new one if one does not already exist. */
5676 set_unique_reg_note (insn, REG_EQUAL, src_const);
5678 /* If storing a constant value in a register that
5679 previously held the constant value 0,
5680 record this fact with a REG_WAS_0 note on this insn.
5682 Note that the *register* is required to have previously held 0,
5683 not just any register in the quantity and we must point to the
5684 insn that set that register to zero.
5686 Rather than track each register individually, we just see if
5687 the last set for this quantity was for this register. */
5689 if (REGNO_QTY_VALID_P (REGNO (dest)))
5691 int dest_q = REG_QTY (REGNO (dest));
5692 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5694 if (dest_ent->const_rtx == const0_rtx)
5696 /* See if we previously had a REG_WAS_0 note. */
5697 rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
5698 rtx const_insn = dest_ent->const_insn;
5700 if ((tem = single_set (const_insn)) != 0
5701 && rtx_equal_p (SET_DEST (tem), dest))
5703 if (note)
5704 XEXP (note, 0) = const_insn;
5705 else
5706 REG_NOTES (insn)
5707 = gen_rtx_INSN_LIST (REG_WAS_0, const_insn,
5708 REG_NOTES (insn));
5714 /* Now deal with the destination. */
5715 do_not_record = 0;
5717 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
5718 to the MEM or REG within it. */
5719 while (GET_CODE (dest) == SIGN_EXTRACT
5720 || GET_CODE (dest) == ZERO_EXTRACT
5721 || GET_CODE (dest) == SUBREG
5722 || GET_CODE (dest) == STRICT_LOW_PART)
5723 dest = XEXP (dest, 0);
5725 sets[i].inner_dest = dest;
5727 if (GET_CODE (dest) == MEM)
5729 #ifdef PUSH_ROUNDING
5730 /* Stack pushes invalidate the stack pointer. */
5731 rtx addr = XEXP (dest, 0);
5732 if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
5733 && XEXP (addr, 0) == stack_pointer_rtx)
5734 invalidate (stack_pointer_rtx, Pmode);
5735 #endif
5736 dest = fold_rtx (dest, insn);
5739 /* Compute the hash code of the destination now,
5740 before the effects of this instruction are recorded,
5741 since the register values used in the address computation
5742 are those before this instruction. */
5743 sets[i].dest_hash = HASH (dest, mode);
5745 /* Don't enter a bit-field in the hash table
5746 because the value in it after the store
5747 may not equal what was stored, due to truncation. */
5749 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5750 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
5752 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5754 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5755 && GET_CODE (width) == CONST_INT
5756 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5757 && ! (INTVAL (src_const)
5758 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5759 /* Exception: if the value is constant,
5760 and it won't be truncated, record it. */
5762 else
5764 /* This is chosen so that the destination will be invalidated
5765 but no new value will be recorded.
5766 We must invalidate because sometimes constant
5767 values can be recorded for bitfields. */
5768 sets[i].src_elt = 0;
5769 sets[i].src_volatile = 1;
5770 src_eqv = 0;
5771 src_eqv_elt = 0;
5775 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5776 the insn. */
5777 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5779 /* One less use of the label this insn used to jump to. */
5780 delete_insn (insn);
5781 cse_jumps_altered = 1;
5782 /* No more processing for this set. */
5783 sets[i].rtl = 0;
5786 /* If this SET is now setting PC to a label, we know it used to
5787 be a conditional or computed branch. */
5788 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
5790 /* Now emit a BARRIER after the unconditional jump. */
5791 if (NEXT_INSN (insn) == 0
5792 || GET_CODE (NEXT_INSN (insn)) != BARRIER)
5793 emit_barrier_after (insn);
5795 /* We reemit the jump in as many cases as possible just in
5796 case the form of an unconditional jump is significantly
5797 different than a computed jump or conditional jump.
5799 If this insn has multiple sets, then reemitting the
5800 jump is nontrivial. So instead we just force rerecognition
5801 and hope for the best. */
5802 if (n_sets == 1)
5804 rtx new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5806 JUMP_LABEL (new) = XEXP (src, 0);
5807 LABEL_NUSES (XEXP (src, 0))++;
5808 delete_insn (insn);
5809 insn = new;
5811 /* Now emit a BARRIER after the unconditional jump. */
5812 if (NEXT_INSN (insn) == 0
5813 || GET_CODE (NEXT_INSN (insn)) != BARRIER)
5814 emit_barrier_after (insn);
5816 else
5817 INSN_CODE (insn) = -1;
5819 never_reached_warning (insn, NULL);
5821 /* Do not bother deleting any unreachable code,
5822 let jump/flow do that. */
5824 cse_jumps_altered = 1;
5825 sets[i].rtl = 0;
5828 /* If destination is volatile, invalidate it and then do no further
5829 processing for this assignment. */
5831 else if (do_not_record)
5833 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
5834 invalidate (dest, VOIDmode);
5835 else if (GET_CODE (dest) == MEM)
5837 /* Outgoing arguments for a libcall don't
5838 affect any recorded expressions. */
5839 if (! libcall_insn || insn == libcall_insn)
5840 invalidate (dest, VOIDmode);
5842 else if (GET_CODE (dest) == STRICT_LOW_PART
5843 || GET_CODE (dest) == ZERO_EXTRACT)
5844 invalidate (XEXP (dest, 0), GET_MODE (dest));
5845 sets[i].rtl = 0;
5848 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5849 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5851 #ifdef HAVE_cc0
5852 /* If setting CC0, record what it was set to, or a constant, if it
5853 is equivalent to a constant. If it is being set to a floating-point
5854 value, make a COMPARE with the appropriate constant of 0. If we
5855 don't do this, later code can interpret this as a test against
5856 const0_rtx, which can cause problems if we try to put it into an
5857 insn as a floating-point operand. */
5858 if (dest == cc0_rtx)
5860 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5861 this_insn_cc0_mode = mode;
5862 if (FLOAT_MODE_P (mode))
5863 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5864 CONST0_RTX (mode));
5866 #endif
5869 /* Now enter all non-volatile source expressions in the hash table
5870 if they are not already present.
5871 Record their equivalence classes in src_elt.
5872 This way we can insert the corresponding destinations into
5873 the same classes even if the actual sources are no longer in them
5874 (having been invalidated). */
5876 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5877 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5879 struct table_elt *elt;
5880 struct table_elt *classp = sets[0].src_elt;
5881 rtx dest = SET_DEST (sets[0].rtl);
5882 enum machine_mode eqvmode = GET_MODE (dest);
5884 if (GET_CODE (dest) == STRICT_LOW_PART)
5886 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5887 classp = 0;
5889 if (insert_regs (src_eqv, classp, 0))
5891 rehash_using_reg (src_eqv);
5892 src_eqv_hash = HASH (src_eqv, eqvmode);
5894 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5895 elt->in_memory = src_eqv_in_memory;
5896 src_eqv_elt = elt;
5898 /* Check to see if src_eqv_elt is the same as a set source which
5899 does not yet have an elt, and if so set the elt of the set source
5900 to src_eqv_elt. */
5901 for (i = 0; i < n_sets; i++)
5902 if (sets[i].rtl && sets[i].src_elt == 0
5903 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5904 sets[i].src_elt = src_eqv_elt;
5907 for (i = 0; i < n_sets; i++)
5908 if (sets[i].rtl && ! sets[i].src_volatile
5909 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5911 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5913 /* REG_EQUAL in setting a STRICT_LOW_PART
5914 gives an equivalent for the entire destination register,
5915 not just for the subreg being stored in now.
5916 This is a more interesting equivalence, so we arrange later
5917 to treat the entire reg as the destination. */
5918 sets[i].src_elt = src_eqv_elt;
5919 sets[i].src_hash = src_eqv_hash;
5921 else
5923 /* Insert source and constant equivalent into hash table, if not
5924 already present. */
5925 struct table_elt *classp = src_eqv_elt;
5926 rtx src = sets[i].src;
5927 rtx dest = SET_DEST (sets[i].rtl);
5928 enum machine_mode mode
5929 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5931 if (sets[i].src_elt == 0)
5933 /* Don't put a hard register source into the table if this is
5934 the last insn of a libcall. In this case, we only need
5935 to put src_eqv_elt in src_elt. */
5936 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5938 struct table_elt *elt;
5940 /* Note that these insert_regs calls cannot remove
5941 any of the src_elt's, because they would have failed to
5942 match if not still valid. */
5943 if (insert_regs (src, classp, 0))
5945 rehash_using_reg (src);
5946 sets[i].src_hash = HASH (src, mode);
5948 elt = insert (src, classp, sets[i].src_hash, mode);
5949 elt->in_memory = sets[i].src_in_memory;
5950 sets[i].src_elt = classp = elt;
5952 else
5953 sets[i].src_elt = classp;
5955 if (sets[i].src_const && sets[i].src_const_elt == 0
5956 && src != sets[i].src_const
5957 && ! rtx_equal_p (sets[i].src_const, src))
5958 sets[i].src_elt = insert (sets[i].src_const, classp,
5959 sets[i].src_const_hash, mode);
5962 else if (sets[i].src_elt == 0)
5963 /* If we did not insert the source into the hash table (e.g., it was
5964 volatile), note the equivalence class for the REG_EQUAL value, if any,
5965 so that the destination goes into that class. */
5966 sets[i].src_elt = src_eqv_elt;
5968 invalidate_from_clobbers (x);
5970 /* Some registers are invalidated by subroutine calls. Memory is
5971 invalidated by non-constant calls. */
5973 if (GET_CODE (insn) == CALL_INSN)
5975 if (! CONST_OR_PURE_CALL_P (insn))
5976 invalidate_memory ();
5977 invalidate_for_call ();
5980 /* Now invalidate everything set by this instruction.
5981 If a SUBREG or other funny destination is being set,
5982 sets[i].rtl is still nonzero, so here we invalidate the reg
5983 a part of which is being set. */
5985 for (i = 0; i < n_sets; i++)
5986 if (sets[i].rtl)
5988 /* We can't use the inner dest, because the mode associated with
5989 a ZERO_EXTRACT is significant. */
5990 rtx dest = SET_DEST (sets[i].rtl);
5992 /* Needed for registers to remove the register from its
5993 previous quantity's chain.
5994 Needed for memory if this is a nonvarying address, unless
5995 we have just done an invalidate_memory that covers even those. */
5996 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
5997 invalidate (dest, VOIDmode);
5998 else if (GET_CODE (dest) == MEM)
6000 /* Outgoing arguments for a libcall don't
6001 affect any recorded expressions. */
6002 if (! libcall_insn || insn == libcall_insn)
6003 invalidate (dest, VOIDmode);
6005 else if (GET_CODE (dest) == STRICT_LOW_PART
6006 || GET_CODE (dest) == ZERO_EXTRACT)
6007 invalidate (XEXP (dest, 0), GET_MODE (dest));
6010 /* A volatile ASM invalidates everything. */
6011 if (GET_CODE (insn) == INSN
6012 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
6013 && MEM_VOLATILE_P (PATTERN (insn)))
6014 flush_hash_table ();
6016 /* Make sure registers mentioned in destinations
6017 are safe for use in an expression to be inserted.
6018 This removes from the hash table
6019 any invalid entry that refers to one of these registers.
6021 We don't care about the return value from mention_regs because
6022 we are going to hash the SET_DEST values unconditionally. */
6024 for (i = 0; i < n_sets; i++)
6026 if (sets[i].rtl)
6028 rtx x = SET_DEST (sets[i].rtl);
6030 if (GET_CODE (x) != REG)
6031 mention_regs (x);
6032 else
6034 /* We used to rely on all references to a register becoming
6035 inaccessible when a register changes to a new quantity,
6036 since that changes the hash code. However, that is not
6037 safe, since after HASH_SIZE new quantities we get a
6038 hash 'collision' of a register with its own invalid
6039 entries. And since SUBREGs have been changed not to
6040 change their hash code with the hash code of the register,
6041 it wouldn't work any longer at all. So we have to check
6042 for any invalid references lying around now.
6043 This code is similar to the REG case in mention_regs,
6044 but it knows that reg_tick has been incremented, and
6045 it leaves reg_in_table as -1 . */
6046 unsigned int regno = REGNO (x);
6047 unsigned int endregno
6048 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
6049 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
6050 unsigned int i;
6052 for (i = regno; i < endregno; i++)
6054 if (REG_IN_TABLE (i) >= 0)
6056 remove_invalid_refs (i);
6057 REG_IN_TABLE (i) = -1;
6064 /* We may have just removed some of the src_elt's from the hash table.
6065 So replace each one with the current head of the same class. */
6067 for (i = 0; i < n_sets; i++)
6068 if (sets[i].rtl)
6070 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
6071 /* If elt was removed, find current head of same class,
6072 or 0 if nothing remains of that class. */
6074 struct table_elt *elt = sets[i].src_elt;
6076 while (elt && elt->prev_same_value)
6077 elt = elt->prev_same_value;
6079 while (elt && elt->first_same_value == 0)
6080 elt = elt->next_same_value;
6081 sets[i].src_elt = elt ? elt->first_same_value : 0;
6085 /* Now insert the destinations into their equivalence classes. */
6087 for (i = 0; i < n_sets; i++)
6088 if (sets[i].rtl)
6090 rtx dest = SET_DEST (sets[i].rtl);
6091 rtx inner_dest = sets[i].inner_dest;
6092 struct table_elt *elt;
6094 /* Don't record value if we are not supposed to risk allocating
6095 floating-point values in registers that might be wider than
6096 memory. */
6097 if ((flag_float_store
6098 && GET_CODE (dest) == MEM
6099 && FLOAT_MODE_P (GET_MODE (dest)))
6100 /* Don't record BLKmode values, because we don't know the
6101 size of it, and can't be sure that other BLKmode values
6102 have the same or smaller size. */
6103 || GET_MODE (dest) == BLKmode
6104 /* Don't record values of destinations set inside a libcall block
6105 since we might delete the libcall. Things should have been set
6106 up so we won't want to reuse such a value, but we play it safe
6107 here. */
6108 || libcall_insn
6109 /* If we didn't put a REG_EQUAL value or a source into the hash
6110 table, there is no point is recording DEST. */
6111 || sets[i].src_elt == 0
6112 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6113 or SIGN_EXTEND, don't record DEST since it can cause
6114 some tracking to be wrong.
6116 ??? Think about this more later. */
6117 || (GET_CODE (dest) == SUBREG
6118 && (GET_MODE_SIZE (GET_MODE (dest))
6119 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6120 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6121 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
6122 continue;
6124 /* STRICT_LOW_PART isn't part of the value BEING set,
6125 and neither is the SUBREG inside it.
6126 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6127 if (GET_CODE (dest) == STRICT_LOW_PART)
6128 dest = SUBREG_REG (XEXP (dest, 0));
6130 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
6131 /* Registers must also be inserted into chains for quantities. */
6132 if (insert_regs (dest, sets[i].src_elt, 1))
6134 /* If `insert_regs' changes something, the hash code must be
6135 recalculated. */
6136 rehash_using_reg (dest);
6137 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6140 if (GET_CODE (inner_dest) == MEM
6141 && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
6142 /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
6143 that (MEM (ADDRESSOF (X))) is equivalent to Y.
6144 Consider the case in which the address of the MEM is
6145 passed to a function, which alters the MEM. Then, if we
6146 later use Y instead of the MEM we'll miss the update. */
6147 elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
6148 else
6149 elt = insert (dest, sets[i].src_elt,
6150 sets[i].dest_hash, GET_MODE (dest));
6152 elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
6153 && (! RTX_UNCHANGING_P (sets[i].inner_dest)
6154 || FIXED_BASE_PLUS_P (XEXP (sets[i].inner_dest,
6155 0))));
6157 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6158 narrower than M2, and both M1 and M2 are the same number of words,
6159 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6160 make that equivalence as well.
6162 However, BAR may have equivalences for which gen_lowpart_if_possible
6163 will produce a simpler value than gen_lowpart_if_possible applied to
6164 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6165 BAR's equivalences. If we don't get a simplified form, make
6166 the SUBREG. It will not be used in an equivalence, but will
6167 cause two similar assignments to be detected.
6169 Note the loop below will find SUBREG_REG (DEST) since we have
6170 already entered SRC and DEST of the SET in the table. */
6172 if (GET_CODE (dest) == SUBREG
6173 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6174 / UNITS_PER_WORD)
6175 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
6176 && (GET_MODE_SIZE (GET_MODE (dest))
6177 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6178 && sets[i].src_elt != 0)
6180 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6181 struct table_elt *elt, *classp = 0;
6183 for (elt = sets[i].src_elt->first_same_value; elt;
6184 elt = elt->next_same_value)
6186 rtx new_src = 0;
6187 unsigned src_hash;
6188 struct table_elt *src_elt;
6190 /* Ignore invalid entries. */
6191 if (GET_CODE (elt->exp) != REG
6192 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
6193 continue;
6195 new_src = gen_lowpart_if_possible (new_mode, elt->exp);
6196 if (new_src == 0)
6197 new_src = gen_rtx_SUBREG (new_mode, elt->exp, 0);
6199 src_hash = HASH (new_src, new_mode);
6200 src_elt = lookup (new_src, src_hash, new_mode);
6202 /* Put the new source in the hash table is if isn't
6203 already. */
6204 if (src_elt == 0)
6206 if (insert_regs (new_src, classp, 0))
6208 rehash_using_reg (new_src);
6209 src_hash = HASH (new_src, new_mode);
6211 src_elt = insert (new_src, classp, src_hash, new_mode);
6212 src_elt->in_memory = elt->in_memory;
6214 else if (classp && classp != src_elt->first_same_value)
6215 /* Show that two things that we've seen before are
6216 actually the same. */
6217 merge_equiv_classes (src_elt, classp);
6219 classp = src_elt->first_same_value;
6220 /* Ignore invalid entries. */
6221 while (classp
6222 && GET_CODE (classp->exp) != REG
6223 && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
6224 classp = classp->next_same_value;
6229 /* Special handling for (set REG0 REG1) where REG0 is the
6230 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6231 be used in the sequel, so (if easily done) change this insn to
6232 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6233 that computed their value. Then REG1 will become a dead store
6234 and won't cloud the situation for later optimizations.
6236 Do not make this change if REG1 is a hard register, because it will
6237 then be used in the sequel and we may be changing a two-operand insn
6238 into a three-operand insn.
6240 Also do not do this if we are operating on a copy of INSN.
6242 Also don't do this if INSN ends a libcall; this would cause an unrelated
6243 register to be set in the middle of a libcall, and we then get bad code
6244 if the libcall is deleted. */
6246 if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
6247 && NEXT_INSN (PREV_INSN (insn)) == insn
6248 && GET_CODE (SET_SRC (sets[0].rtl)) == REG
6249 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6250 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
6252 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6253 struct qty_table_elem *src_ent = &qty_table[src_q];
6255 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6256 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6258 rtx prev = prev_nonnote_insn (insn);
6260 /* Do not swap the registers around if the previous instruction
6261 attaches a REG_EQUIV note to REG1.
6263 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6264 from the pseudo that originally shadowed an incoming argument
6265 to another register. Some uses of REG_EQUIV might rely on it
6266 being attached to REG1 rather than REG2.
6268 This section previously turned the REG_EQUIV into a REG_EQUAL
6269 note. We cannot do that because REG_EQUIV may provide an
6270 uninitialised stack slot when REG_PARM_STACK_SPACE is used. */
6272 if (prev != 0 && GET_CODE (prev) == INSN
6273 && GET_CODE (PATTERN (prev)) == SET
6274 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6275 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6277 rtx dest = SET_DEST (sets[0].rtl);
6278 rtx src = SET_SRC (sets[0].rtl);
6279 rtx note;
6281 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6282 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6283 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6284 apply_change_group ();
6286 /* If there was a REG_WAS_0 note on PREV, remove it. Move
6287 any REG_WAS_0 note on INSN to PREV. */
6288 note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
6289 if (note)
6290 remove_note (prev, note);
6292 note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
6293 if (note)
6295 remove_note (insn, note);
6296 XEXP (note, 1) = REG_NOTES (prev);
6297 REG_NOTES (prev) = note;
6300 /* If INSN has a REG_EQUAL note, and this note mentions
6301 REG0, then we must delete it, because the value in
6302 REG0 has changed. If the note's value is REG1, we must
6303 also delete it because that is now this insn's dest. */
6304 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6305 if (note != 0
6306 && (reg_mentioned_p (dest, XEXP (note, 0))
6307 || rtx_equal_p (src, XEXP (note, 0))))
6308 remove_note (insn, note);
6313 /* If this is a conditional jump insn, record any known equivalences due to
6314 the condition being tested. */
6316 last_jump_equiv_class = 0;
6317 if (GET_CODE (insn) == JUMP_INSN
6318 && n_sets == 1 && GET_CODE (x) == SET
6319 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6320 record_jump_equiv (insn, 0);
6322 #ifdef HAVE_cc0
6323 /* If the previous insn set CC0 and this insn no longer references CC0,
6324 delete the previous insn. Here we use the fact that nothing expects CC0
6325 to be valid over an insn, which is true until the final pass. */
6326 if (prev_insn && GET_CODE (prev_insn) == INSN
6327 && (tem = single_set (prev_insn)) != 0
6328 && SET_DEST (tem) == cc0_rtx
6329 && ! reg_mentioned_p (cc0_rtx, x))
6330 delete_insn (prev_insn);
6332 prev_insn_cc0 = this_insn_cc0;
6333 prev_insn_cc0_mode = this_insn_cc0_mode;
6334 #endif
6336 prev_insn = insn;
6339 /* Remove from the hash table all expressions that reference memory. */
6341 static void
6342 invalidate_memory ()
6344 int i;
6345 struct table_elt *p, *next;
6347 for (i = 0; i < HASH_SIZE; i++)
6348 for (p = table[i]; p; p = next)
6350 next = p->next_same_hash;
6351 if (p->in_memory)
6352 remove_from_table (p, i);
6356 /* If ADDR is an address that implicitly affects the stack pointer, return
6357 1 and update the register tables to show the effect. Else, return 0. */
6359 static int
6360 addr_affects_sp_p (addr)
6361 rtx addr;
6363 if (GET_RTX_CLASS (GET_CODE (addr)) == 'a'
6364 && GET_CODE (XEXP (addr, 0)) == REG
6365 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6367 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6368 REG_TICK (STACK_POINTER_REGNUM)++;
6370 /* This should be *very* rare. */
6371 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6372 invalidate (stack_pointer_rtx, VOIDmode);
6374 return 1;
6377 return 0;
6380 /* Perform invalidation on the basis of everything about an insn
6381 except for invalidating the actual places that are SET in it.
6382 This includes the places CLOBBERed, and anything that might
6383 alias with something that is SET or CLOBBERed.
6385 X is the pattern of the insn. */
6387 static void
6388 invalidate_from_clobbers (x)
6389 rtx x;
6391 if (GET_CODE (x) == CLOBBER)
6393 rtx ref = XEXP (x, 0);
6394 if (ref)
6396 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
6397 || GET_CODE (ref) == MEM)
6398 invalidate (ref, VOIDmode);
6399 else if (GET_CODE (ref) == STRICT_LOW_PART
6400 || GET_CODE (ref) == ZERO_EXTRACT)
6401 invalidate (XEXP (ref, 0), GET_MODE (ref));
6404 else if (GET_CODE (x) == PARALLEL)
6406 int i;
6407 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6409 rtx y = XVECEXP (x, 0, i);
6410 if (GET_CODE (y) == CLOBBER)
6412 rtx ref = XEXP (y, 0);
6413 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
6414 || GET_CODE (ref) == MEM)
6415 invalidate (ref, VOIDmode);
6416 else if (GET_CODE (ref) == STRICT_LOW_PART
6417 || GET_CODE (ref) == ZERO_EXTRACT)
6418 invalidate (XEXP (ref, 0), GET_MODE (ref));
6424 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6425 and replace any registers in them with either an equivalent constant
6426 or the canonical form of the register. If we are inside an address,
6427 only do this if the address remains valid.
6429 OBJECT is 0 except when within a MEM in which case it is the MEM.
6431 Return the replacement for X. */
6433 static rtx
6434 cse_process_notes (x, object)
6435 rtx x;
6436 rtx object;
6438 enum rtx_code code = GET_CODE (x);
6439 const char *fmt = GET_RTX_FORMAT (code);
6440 int i;
6442 switch (code)
6444 case CONST_INT:
6445 case CONST:
6446 case SYMBOL_REF:
6447 case LABEL_REF:
6448 case CONST_DOUBLE:
6449 case CONST_VECTOR:
6450 case PC:
6451 case CC0:
6452 case LO_SUM:
6453 return x;
6455 case MEM:
6456 validate_change (x, &XEXP (x, 0),
6457 cse_process_notes (XEXP (x, 0), x), 0);
6458 return x;
6460 case EXPR_LIST:
6461 case INSN_LIST:
6462 if (REG_NOTE_KIND (x) == REG_EQUAL)
6463 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6464 if (XEXP (x, 1))
6465 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6466 return x;
6468 case SIGN_EXTEND:
6469 case ZERO_EXTEND:
6470 case SUBREG:
6472 rtx new = cse_process_notes (XEXP (x, 0), object);
6473 /* We don't substitute VOIDmode constants into these rtx,
6474 since they would impede folding. */
6475 if (GET_MODE (new) != VOIDmode)
6476 validate_change (object, &XEXP (x, 0), new, 0);
6477 return x;
6480 case REG:
6481 i = REG_QTY (REGNO (x));
6483 /* Return a constant or a constant register. */
6484 if (REGNO_QTY_VALID_P (REGNO (x)))
6486 struct qty_table_elem *ent = &qty_table[i];
6488 if (ent->const_rtx != NULL_RTX
6489 && (CONSTANT_P (ent->const_rtx)
6490 || GET_CODE (ent->const_rtx) == REG))
6492 rtx new = gen_lowpart_if_possible (GET_MODE (x), ent->const_rtx);
6493 if (new)
6494 return new;
6498 /* Otherwise, canonicalize this register. */
6499 return canon_reg (x, NULL_RTX);
6501 default:
6502 break;
6505 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6506 if (fmt[i] == 'e')
6507 validate_change (object, &XEXP (x, i),
6508 cse_process_notes (XEXP (x, i), object), 0);
6510 return x;
6513 /* Find common subexpressions between the end test of a loop and the beginning
6514 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
6516 Often we have a loop where an expression in the exit test is used
6517 in the body of the loop. For example "while (*p) *q++ = *p++;".
6518 Because of the way we duplicate the loop exit test in front of the loop,
6519 however, we don't detect that common subexpression. This will be caught
6520 when global cse is implemented, but this is a quite common case.
6522 This function handles the most common cases of these common expressions.
6523 It is called after we have processed the basic block ending with the
6524 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
6525 jumps to a label used only once. */
6527 static void
6528 cse_around_loop (loop_start)
6529 rtx loop_start;
6531 rtx insn;
6532 int i;
6533 struct table_elt *p;
6535 /* If the jump at the end of the loop doesn't go to the start, we don't
6536 do anything. */
6537 for (insn = PREV_INSN (loop_start);
6538 insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
6539 insn = PREV_INSN (insn))
6542 if (insn == 0
6543 || GET_CODE (insn) != NOTE
6544 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
6545 return;
6547 /* If the last insn of the loop (the end test) was an NE comparison,
6548 we will interpret it as an EQ comparison, since we fell through
6549 the loop. Any equivalences resulting from that comparison are
6550 therefore not valid and must be invalidated. */
6551 if (last_jump_equiv_class)
6552 for (p = last_jump_equiv_class->first_same_value; p;
6553 p = p->next_same_value)
6555 if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
6556 || (GET_CODE (p->exp) == SUBREG
6557 && GET_CODE (SUBREG_REG (p->exp)) == REG))
6558 invalidate (p->exp, VOIDmode);
6559 else if (GET_CODE (p->exp) == STRICT_LOW_PART
6560 || GET_CODE (p->exp) == ZERO_EXTRACT)
6561 invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
6564 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
6565 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
6567 The only thing we do with SET_DEST is invalidate entries, so we
6568 can safely process each SET in order. It is slightly less efficient
6569 to do so, but we only want to handle the most common cases.
6571 The gen_move_insn call in cse_set_around_loop may create new pseudos.
6572 These pseudos won't have valid entries in any of the tables indexed
6573 by register number, such as reg_qty. We avoid out-of-range array
6574 accesses by not processing any instructions created after cse started. */
6576 for (insn = NEXT_INSN (loop_start);
6577 GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
6578 && INSN_UID (insn) < max_insn_uid
6579 && ! (GET_CODE (insn) == NOTE
6580 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
6581 insn = NEXT_INSN (insn))
6583 if (INSN_P (insn)
6584 && (GET_CODE (PATTERN (insn)) == SET
6585 || GET_CODE (PATTERN (insn)) == CLOBBER))
6586 cse_set_around_loop (PATTERN (insn), insn, loop_start);
6587 else if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == PARALLEL)
6588 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6589 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
6590 || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
6591 cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
6592 loop_start);
6596 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6597 since they are done elsewhere. This function is called via note_stores. */
6599 static void
6600 invalidate_skipped_set (dest, set, data)
6601 rtx set;
6602 rtx dest;
6603 void *data ATTRIBUTE_UNUSED;
6605 enum rtx_code code = GET_CODE (dest);
6607 if (code == MEM
6608 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6609 /* There are times when an address can appear varying and be a PLUS
6610 during this scan when it would be a fixed address were we to know
6611 the proper equivalences. So invalidate all memory if there is
6612 a BLKmode or nonscalar memory reference or a reference to a
6613 variable address. */
6614 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6615 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6617 invalidate_memory ();
6618 return;
6621 if (GET_CODE (set) == CLOBBER
6622 #ifdef HAVE_cc0
6623 || dest == cc0_rtx
6624 #endif
6625 || dest == pc_rtx)
6626 return;
6628 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6629 invalidate (XEXP (dest, 0), GET_MODE (dest));
6630 else if (code == REG || code == SUBREG || code == MEM)
6631 invalidate (dest, VOIDmode);
6634 /* Invalidate all insns from START up to the end of the function or the
6635 next label. This called when we wish to CSE around a block that is
6636 conditionally executed. */
6638 static void
6639 invalidate_skipped_block (start)
6640 rtx start;
6642 rtx insn;
6644 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
6645 insn = NEXT_INSN (insn))
6647 if (! INSN_P (insn))
6648 continue;
6650 if (GET_CODE (insn) == CALL_INSN)
6652 if (! CONST_OR_PURE_CALL_P (insn))
6653 invalidate_memory ();
6654 invalidate_for_call ();
6657 invalidate_from_clobbers (PATTERN (insn));
6658 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6662 /* If modifying X will modify the value in *DATA (which is really an
6663 `rtx *'), indicate that fact by setting the pointed to value to
6664 NULL_RTX. */
6666 static void
6667 cse_check_loop_start (x, set, data)
6668 rtx x;
6669 rtx set ATTRIBUTE_UNUSED;
6670 void *data;
6672 rtx *cse_check_loop_start_value = (rtx *) data;
6674 if (*cse_check_loop_start_value == NULL_RTX
6675 || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
6676 return;
6678 if ((GET_CODE (x) == MEM && GET_CODE (*cse_check_loop_start_value) == MEM)
6679 || reg_overlap_mentioned_p (x, *cse_check_loop_start_value))
6680 *cse_check_loop_start_value = NULL_RTX;
6683 /* X is a SET or CLOBBER contained in INSN that was found near the start of
6684 a loop that starts with the label at LOOP_START.
6686 If X is a SET, we see if its SET_SRC is currently in our hash table.
6687 If so, we see if it has a value equal to some register used only in the
6688 loop exit code (as marked by jump.c).
6690 If those two conditions are true, we search backwards from the start of
6691 the loop to see if that same value was loaded into a register that still
6692 retains its value at the start of the loop.
6694 If so, we insert an insn after the load to copy the destination of that
6695 load into the equivalent register and (try to) replace our SET_SRC with that
6696 register.
6698 In any event, we invalidate whatever this SET or CLOBBER modifies. */
6700 static void
6701 cse_set_around_loop (x, insn, loop_start)
6702 rtx x;
6703 rtx insn;
6704 rtx loop_start;
6706 struct table_elt *src_elt;
6708 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
6709 are setting PC or CC0 or whose SET_SRC is already a register. */
6710 if (GET_CODE (x) == SET
6711 && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
6712 && GET_CODE (SET_SRC (x)) != REG)
6714 src_elt = lookup (SET_SRC (x),
6715 HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
6716 GET_MODE (SET_DEST (x)));
6718 if (src_elt)
6719 for (src_elt = src_elt->first_same_value; src_elt;
6720 src_elt = src_elt->next_same_value)
6721 if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
6722 && COST (src_elt->exp) < COST (SET_SRC (x)))
6724 rtx p, set;
6726 /* Look for an insn in front of LOOP_START that sets
6727 something in the desired mode to SET_SRC (x) before we hit
6728 a label or CALL_INSN. */
6730 for (p = prev_nonnote_insn (loop_start);
6731 p && GET_CODE (p) != CALL_INSN
6732 && GET_CODE (p) != CODE_LABEL;
6733 p = prev_nonnote_insn (p))
6734 if ((set = single_set (p)) != 0
6735 && GET_CODE (SET_DEST (set)) == REG
6736 && GET_MODE (SET_DEST (set)) == src_elt->mode
6737 && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
6739 /* We now have to ensure that nothing between P
6740 and LOOP_START modified anything referenced in
6741 SET_SRC (x). We know that nothing within the loop
6742 can modify it, or we would have invalidated it in
6743 the hash table. */
6744 rtx q;
6745 rtx cse_check_loop_start_value = SET_SRC (x);
6746 for (q = p; q != loop_start; q = NEXT_INSN (q))
6747 if (INSN_P (q))
6748 note_stores (PATTERN (q),
6749 cse_check_loop_start,
6750 &cse_check_loop_start_value);
6752 /* If nothing was changed and we can replace our
6753 SET_SRC, add an insn after P to copy its destination
6754 to what we will be replacing SET_SRC with. */
6755 if (cse_check_loop_start_value
6756 && validate_change (insn, &SET_SRC (x),
6757 src_elt->exp, 0))
6759 /* If this creates new pseudos, this is unsafe,
6760 because the regno of new pseudo is unsuitable
6761 to index into reg_qty when cse_insn processes
6762 the new insn. Therefore, if a new pseudo was
6763 created, discard this optimization. */
6764 int nregs = max_reg_num ();
6765 rtx move
6766 = gen_move_insn (src_elt->exp, SET_DEST (set));
6767 if (nregs != max_reg_num ())
6769 if (! validate_change (insn, &SET_SRC (x),
6770 SET_SRC (set), 0))
6771 abort ();
6773 else
6774 emit_insn_after (move, p);
6776 break;
6781 /* Deal with the destination of X affecting the stack pointer. */
6782 addr_affects_sp_p (SET_DEST (x));
6784 /* See comment on similar code in cse_insn for explanation of these
6785 tests. */
6786 if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
6787 || GET_CODE (SET_DEST (x)) == MEM)
6788 invalidate (SET_DEST (x), VOIDmode);
6789 else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6790 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
6791 invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
6794 /* Find the end of INSN's basic block and return its range,
6795 the total number of SETs in all the insns of the block, the last insn of the
6796 block, and the branch path.
6798 The branch path indicates which branches should be followed. If a non-zero
6799 path size is specified, the block should be rescanned and a different set
6800 of branches will be taken. The branch path is only used if
6801 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
6803 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6804 used to describe the block. It is filled in with the information about
6805 the current block. The incoming structure's branch path, if any, is used
6806 to construct the output branch path. */
6808 void
6809 cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
6810 rtx insn;
6811 struct cse_basic_block_data *data;
6812 int follow_jumps;
6813 int after_loop;
6814 int skip_blocks;
6816 rtx p = insn, q;
6817 int nsets = 0;
6818 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6819 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
6820 int path_size = data->path_size;
6821 int path_entry = 0;
6822 int i;
6824 /* Update the previous branch path, if any. If the last branch was
6825 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
6826 shorten the path by one and look at the previous branch. We know that
6827 at least one branch must have been taken if PATH_SIZE is non-zero. */
6828 while (path_size > 0)
6830 if (data->path[path_size - 1].status != NOT_TAKEN)
6832 data->path[path_size - 1].status = NOT_TAKEN;
6833 break;
6835 else
6836 path_size--;
6839 /* If the first instruction is marked with QImode, that means we've
6840 already processed this block. Our caller will look at DATA->LAST
6841 to figure out where to go next. We want to return the next block
6842 in the instruction stream, not some branched-to block somewhere
6843 else. We accomplish this by pretending our called forbid us to
6844 follow jumps, or skip blocks. */
6845 if (GET_MODE (insn) == QImode)
6846 follow_jumps = skip_blocks = 0;
6848 /* Scan to end of this basic block. */
6849 while (p && GET_CODE (p) != CODE_LABEL)
6851 /* Don't cse out the end of a loop. This makes a difference
6852 only for the unusual loops that always execute at least once;
6853 all other loops have labels there so we will stop in any case.
6854 Cse'ing out the end of the loop is dangerous because it
6855 might cause an invariant expression inside the loop
6856 to be reused after the end of the loop. This would make it
6857 hard to move the expression out of the loop in loop.c,
6858 especially if it is one of several equivalent expressions
6859 and loop.c would like to eliminate it.
6861 If we are running after loop.c has finished, we can ignore
6862 the NOTE_INSN_LOOP_END. */
6864 if (! after_loop && GET_CODE (p) == NOTE
6865 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
6866 break;
6868 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6869 the regs restored by the longjmp come from
6870 a later time than the setjmp. */
6871 if (PREV_INSN (p) && GET_CODE (PREV_INSN (p)) == CALL_INSN
6872 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
6873 break;
6875 /* A PARALLEL can have lots of SETs in it,
6876 especially if it is really an ASM_OPERANDS. */
6877 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
6878 nsets += XVECLEN (PATTERN (p), 0);
6879 else if (GET_CODE (p) != NOTE)
6880 nsets += 1;
6882 /* Ignore insns made by CSE; they cannot affect the boundaries of
6883 the basic block. */
6885 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6886 high_cuid = INSN_CUID (p);
6887 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6888 low_cuid = INSN_CUID (p);
6890 /* See if this insn is in our branch path. If it is and we are to
6891 take it, do so. */
6892 if (path_entry < path_size && data->path[path_entry].branch == p)
6894 if (data->path[path_entry].status != NOT_TAKEN)
6895 p = JUMP_LABEL (p);
6897 /* Point to next entry in path, if any. */
6898 path_entry++;
6901 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6902 was specified, we haven't reached our maximum path length, there are
6903 insns following the target of the jump, this is the only use of the
6904 jump label, and the target label is preceded by a BARRIER.
6906 Alternatively, we can follow the jump if it branches around a
6907 block of code and there are no other branches into the block.
6908 In this case invalidate_skipped_block will be called to invalidate any
6909 registers set in the block when following the jump. */
6911 else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
6912 && GET_CODE (p) == JUMP_INSN
6913 && GET_CODE (PATTERN (p)) == SET
6914 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6915 && JUMP_LABEL (p) != 0
6916 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6917 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6919 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6920 if ((GET_CODE (q) != NOTE
6921 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6922 || (PREV_INSN (q) && GET_CODE (PREV_INSN (q)) == CALL_INSN
6923 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6924 && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
6925 break;
6927 /* If we ran into a BARRIER, this code is an extension of the
6928 basic block when the branch is taken. */
6929 if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
6931 /* Don't allow ourself to keep walking around an
6932 always-executed loop. */
6933 if (next_real_insn (q) == next)
6935 p = NEXT_INSN (p);
6936 continue;
6939 /* Similarly, don't put a branch in our path more than once. */
6940 for (i = 0; i < path_entry; i++)
6941 if (data->path[i].branch == p)
6942 break;
6944 if (i != path_entry)
6945 break;
6947 data->path[path_entry].branch = p;
6948 data->path[path_entry++].status = TAKEN;
6950 /* This branch now ends our path. It was possible that we
6951 didn't see this branch the last time around (when the
6952 insn in front of the target was a JUMP_INSN that was
6953 turned into a no-op). */
6954 path_size = path_entry;
6956 p = JUMP_LABEL (p);
6957 /* Mark block so we won't scan it again later. */
6958 PUT_MODE (NEXT_INSN (p), QImode);
6960 /* Detect a branch around a block of code. */
6961 else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
6963 rtx tmp;
6965 if (next_real_insn (q) == next)
6967 p = NEXT_INSN (p);
6968 continue;
6971 for (i = 0; i < path_entry; i++)
6972 if (data->path[i].branch == p)
6973 break;
6975 if (i != path_entry)
6976 break;
6978 /* This is no_labels_between_p (p, q) with an added check for
6979 reaching the end of a function (in case Q precedes P). */
6980 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6981 if (GET_CODE (tmp) == CODE_LABEL)
6982 break;
6984 if (tmp == q)
6986 data->path[path_entry].branch = p;
6987 data->path[path_entry++].status = AROUND;
6989 path_size = path_entry;
6991 p = JUMP_LABEL (p);
6992 /* Mark block so we won't scan it again later. */
6993 PUT_MODE (NEXT_INSN (p), QImode);
6997 p = NEXT_INSN (p);
7000 data->low_cuid = low_cuid;
7001 data->high_cuid = high_cuid;
7002 data->nsets = nsets;
7003 data->last = p;
7005 /* If all jumps in the path are not taken, set our path length to zero
7006 so a rescan won't be done. */
7007 for (i = path_size - 1; i >= 0; i--)
7008 if (data->path[i].status != NOT_TAKEN)
7009 break;
7011 if (i == -1)
7012 data->path_size = 0;
7013 else
7014 data->path_size = path_size;
7016 /* End the current branch path. */
7017 data->path[path_size].branch = 0;
7020 /* Perform cse on the instructions of a function.
7021 F is the first instruction.
7022 NREGS is one plus the highest pseudo-reg number used in the instruction.
7024 AFTER_LOOP is 1 if this is the cse call done after loop optimization
7025 (only if -frerun-cse-after-loop).
7027 Returns 1 if jump_optimize should be redone due to simplifications
7028 in conditional jump instructions. */
7031 cse_main (f, nregs, after_loop, file)
7032 rtx f;
7033 int nregs;
7034 int after_loop;
7035 FILE *file;
7037 struct cse_basic_block_data val;
7038 rtx insn = f;
7039 int i;
7041 cse_jumps_altered = 0;
7042 recorded_label_ref = 0;
7043 constant_pool_entries_cost = 0;
7044 val.path_size = 0;
7046 init_recog ();
7047 init_alias_analysis ();
7049 max_reg = nregs;
7051 max_insn_uid = get_max_uid ();
7053 reg_eqv_table = (struct reg_eqv_elem *)
7054 xmalloc (nregs * sizeof (struct reg_eqv_elem));
7056 #ifdef LOAD_EXTEND_OP
7058 /* Allocate scratch rtl here. cse_insn will fill in the memory reference
7059 and change the code and mode as appropriate. */
7060 memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
7061 #endif
7063 /* Reset the counter indicating how many elements have been made
7064 thus far. */
7065 n_elements_made = 0;
7067 /* Find the largest uid. */
7069 max_uid = get_max_uid ();
7070 uid_cuid = (int *) xcalloc (max_uid + 1, sizeof (int));
7072 /* Compute the mapping from uids to cuids.
7073 CUIDs are numbers assigned to insns, like uids,
7074 except that cuids increase monotonically through the code.
7075 Don't assign cuids to line-number NOTEs, so that the distance in cuids
7076 between two insns is not affected by -g. */
7078 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
7080 if (GET_CODE (insn) != NOTE
7081 || NOTE_LINE_NUMBER (insn) < 0)
7082 INSN_CUID (insn) = ++i;
7083 else
7084 /* Give a line number note the same cuid as preceding insn. */
7085 INSN_CUID (insn) = i;
7088 ggc_push_context ();
7090 /* Loop over basic blocks.
7091 Compute the maximum number of qty's needed for each basic block
7092 (which is 2 for each SET). */
7093 insn = f;
7094 while (insn)
7096 cse_altered = 0;
7097 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
7098 flag_cse_skip_blocks);
7100 /* If this basic block was already processed or has no sets, skip it. */
7101 if (val.nsets == 0 || GET_MODE (insn) == QImode)
7103 PUT_MODE (insn, VOIDmode);
7104 insn = (val.last ? NEXT_INSN (val.last) : 0);
7105 val.path_size = 0;
7106 continue;
7109 cse_basic_block_start = val.low_cuid;
7110 cse_basic_block_end = val.high_cuid;
7111 max_qty = val.nsets * 2;
7113 if (file)
7114 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
7115 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
7116 val.nsets);
7118 /* Make MAX_QTY bigger to give us room to optimize
7119 past the end of this basic block, if that should prove useful. */
7120 if (max_qty < 500)
7121 max_qty = 500;
7123 max_qty += max_reg;
7125 /* If this basic block is being extended by following certain jumps,
7126 (see `cse_end_of_basic_block'), we reprocess the code from the start.
7127 Otherwise, we start after this basic block. */
7128 if (val.path_size > 0)
7129 cse_basic_block (insn, val.last, val.path, 0);
7130 else
7132 int old_cse_jumps_altered = cse_jumps_altered;
7133 rtx temp;
7135 /* When cse changes a conditional jump to an unconditional
7136 jump, we want to reprocess the block, since it will give
7137 us a new branch path to investigate. */
7138 cse_jumps_altered = 0;
7139 temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
7140 if (cse_jumps_altered == 0
7141 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7142 insn = temp;
7144 cse_jumps_altered |= old_cse_jumps_altered;
7147 if (cse_altered)
7148 ggc_collect ();
7150 #ifdef USE_C_ALLOCA
7151 alloca (0);
7152 #endif
7155 ggc_pop_context ();
7157 if (max_elements_made < n_elements_made)
7158 max_elements_made = n_elements_made;
7160 /* Clean up. */
7161 end_alias_analysis ();
7162 free (uid_cuid);
7163 free (reg_eqv_table);
7165 return cse_jumps_altered || recorded_label_ref;
7168 /* Process a single basic block. FROM and TO and the limits of the basic
7169 block. NEXT_BRANCH points to the branch path when following jumps or
7170 a null path when not following jumps.
7172 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
7173 loop. This is true when we are being called for the last time on a
7174 block and this CSE pass is before loop.c. */
7176 static rtx
7177 cse_basic_block (from, to, next_branch, around_loop)
7178 rtx from, to;
7179 struct branch_path *next_branch;
7180 int around_loop;
7182 rtx insn;
7183 int to_usage = 0;
7184 rtx libcall_insn = NULL_RTX;
7185 int num_insns = 0;
7187 /* This array is undefined before max_reg, so only allocate
7188 the space actually needed and adjust the start. */
7190 qty_table
7191 = (struct qty_table_elem *) xmalloc ((max_qty - max_reg)
7192 * sizeof (struct qty_table_elem));
7193 qty_table -= max_reg;
7195 new_basic_block ();
7197 /* TO might be a label. If so, protect it from being deleted. */
7198 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7199 ++LABEL_NUSES (to);
7201 for (insn = from; insn != to; insn = NEXT_INSN (insn))
7203 enum rtx_code code = GET_CODE (insn);
7205 /* If we have processed 1,000 insns, flush the hash table to
7206 avoid extreme quadratic behavior. We must not include NOTEs
7207 in the count since there may be more of them when generating
7208 debugging information. If we clear the table at different
7209 times, code generated with -g -O might be different than code
7210 generated with -O but not -g.
7212 ??? This is a real kludge and needs to be done some other way.
7213 Perhaps for 2.9. */
7214 if (code != NOTE && num_insns++ > 1000)
7216 flush_hash_table ();
7217 num_insns = 0;
7220 /* See if this is a branch that is part of the path. If so, and it is
7221 to be taken, do so. */
7222 if (next_branch->branch == insn)
7224 enum taken status = next_branch++->status;
7225 if (status != NOT_TAKEN)
7227 if (status == TAKEN)
7228 record_jump_equiv (insn, 1);
7229 else
7230 invalidate_skipped_block (NEXT_INSN (insn));
7232 /* Set the last insn as the jump insn; it doesn't affect cc0.
7233 Then follow this branch. */
7234 #ifdef HAVE_cc0
7235 prev_insn_cc0 = 0;
7236 #endif
7237 prev_insn = insn;
7238 insn = JUMP_LABEL (insn);
7239 continue;
7243 if (GET_MODE (insn) == QImode)
7244 PUT_MODE (insn, VOIDmode);
7246 if (GET_RTX_CLASS (code) == 'i')
7248 rtx p;
7250 /* Process notes first so we have all notes in canonical forms when
7251 looking for duplicate operations. */
7253 if (REG_NOTES (insn))
7254 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
7256 /* Track when we are inside in LIBCALL block. Inside such a block,
7257 we do not want to record destinations. The last insn of a
7258 LIBCALL block is not considered to be part of the block, since
7259 its destination is the result of the block and hence should be
7260 recorded. */
7262 if (REG_NOTES (insn) != 0)
7264 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
7265 libcall_insn = XEXP (p, 0);
7266 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7267 libcall_insn = 0;
7270 cse_insn (insn, libcall_insn);
7272 /* If we haven't already found an insn where we added a LABEL_REF,
7273 check this one. */
7274 if (GET_CODE (insn) == INSN && ! recorded_label_ref
7275 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
7276 (void *) insn))
7277 recorded_label_ref = 1;
7280 /* If INSN is now an unconditional jump, skip to the end of our
7281 basic block by pretending that we just did the last insn in the
7282 basic block. If we are jumping to the end of our block, show
7283 that we can have one usage of TO. */
7285 if (any_uncondjump_p (insn))
7287 if (to == 0)
7289 free (qty_table + max_reg);
7290 return 0;
7293 if (JUMP_LABEL (insn) == to)
7294 to_usage = 1;
7296 /* Maybe TO was deleted because the jump is unconditional.
7297 If so, there is nothing left in this basic block. */
7298 /* ??? Perhaps it would be smarter to set TO
7299 to whatever follows this insn,
7300 and pretend the basic block had always ended here. */
7301 if (INSN_DELETED_P (to))
7302 break;
7304 insn = PREV_INSN (to);
7307 /* See if it is ok to keep on going past the label
7308 which used to end our basic block. Remember that we incremented
7309 the count of that label, so we decrement it here. If we made
7310 a jump unconditional, TO_USAGE will be one; in that case, we don't
7311 want to count the use in that jump. */
7313 if (to != 0 && NEXT_INSN (insn) == to
7314 && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
7316 struct cse_basic_block_data val;
7317 rtx prev;
7319 insn = NEXT_INSN (to);
7321 /* If TO was the last insn in the function, we are done. */
7322 if (insn == 0)
7324 free (qty_table + max_reg);
7325 return 0;
7328 /* If TO was preceded by a BARRIER we are done with this block
7329 because it has no continuation. */
7330 prev = prev_nonnote_insn (to);
7331 if (prev && GET_CODE (prev) == BARRIER)
7333 free (qty_table + max_reg);
7334 return insn;
7337 /* Find the end of the following block. Note that we won't be
7338 following branches in this case. */
7339 to_usage = 0;
7340 val.path_size = 0;
7341 cse_end_of_basic_block (insn, &val, 0, 0, 0);
7343 /* If the tables we allocated have enough space left
7344 to handle all the SETs in the next basic block,
7345 continue through it. Otherwise, return,
7346 and that block will be scanned individually. */
7347 if (val.nsets * 2 + next_qty > max_qty)
7348 break;
7350 cse_basic_block_start = val.low_cuid;
7351 cse_basic_block_end = val.high_cuid;
7352 to = val.last;
7354 /* Prevent TO from being deleted if it is a label. */
7355 if (to != 0 && GET_CODE (to) == CODE_LABEL)
7356 ++LABEL_NUSES (to);
7358 /* Back up so we process the first insn in the extension. */
7359 insn = PREV_INSN (insn);
7363 if (next_qty > max_qty)
7364 abort ();
7366 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
7367 the previous insn is the only insn that branches to the head of a loop,
7368 we can cse into the loop. Don't do this if we changed the jump
7369 structure of a loop unless we aren't going to be following jumps. */
7371 insn = prev_nonnote_insn(to);
7372 if ((cse_jumps_altered == 0
7373 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
7374 && around_loop && to != 0
7375 && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
7376 && GET_CODE (insn) == JUMP_INSN
7377 && JUMP_LABEL (insn) != 0
7378 && LABEL_NUSES (JUMP_LABEL (insn)) == 1)
7379 cse_around_loop (JUMP_LABEL (insn));
7381 free (qty_table + max_reg);
7383 return to ? NEXT_INSN (to) : 0;
7386 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7387 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7389 static int
7390 check_for_label_ref (rtl, data)
7391 rtx *rtl;
7392 void *data;
7394 rtx insn = (rtx) data;
7396 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7397 we must rerun jump since it needs to place the note. If this is a
7398 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7399 since no REG_LABEL will be added. */
7400 return (GET_CODE (*rtl) == LABEL_REF
7401 && ! LABEL_REF_NONLOCAL_P (*rtl)
7402 && LABEL_P (XEXP (*rtl, 0))
7403 && INSN_UID (XEXP (*rtl, 0)) != 0
7404 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7407 /* Count the number of times registers are used (not set) in X.
7408 COUNTS is an array in which we accumulate the count, INCR is how much
7409 we count each register usage.
7411 Don't count a usage of DEST, which is the SET_DEST of a SET which
7412 contains X in its SET_SRC. This is because such a SET does not
7413 modify the liveness of DEST. */
7415 static void
7416 count_reg_usage (x, counts, dest, incr)
7417 rtx x;
7418 int *counts;
7419 rtx dest;
7420 int incr;
7422 enum rtx_code code;
7423 const char *fmt;
7424 int i, j;
7426 if (x == 0)
7427 return;
7429 switch (code = GET_CODE (x))
7431 case REG:
7432 if (x != dest)
7433 counts[REGNO (x)] += incr;
7434 return;
7436 case PC:
7437 case CC0:
7438 case CONST:
7439 case CONST_INT:
7440 case CONST_DOUBLE:
7441 case CONST_VECTOR:
7442 case SYMBOL_REF:
7443 case LABEL_REF:
7444 return;
7446 case CLOBBER:
7447 /* If we are clobbering a MEM, mark any registers inside the address
7448 as being used. */
7449 if (GET_CODE (XEXP (x, 0)) == MEM)
7450 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7451 return;
7453 case SET:
7454 /* Unless we are setting a REG, count everything in SET_DEST. */
7455 if (GET_CODE (SET_DEST (x)) != REG)
7456 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
7458 /* If SRC has side-effects, then we can't delete this insn, so the
7459 usage of SET_DEST inside SRC counts.
7461 ??? Strictly-speaking, we might be preserving this insn
7462 because some other SET has side-effects, but that's hard
7463 to do and can't happen now. */
7464 count_reg_usage (SET_SRC (x), counts,
7465 side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
7466 incr);
7467 return;
7469 case CALL_INSN:
7470 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);
7471 /* Fall through. */
7473 case INSN:
7474 case JUMP_INSN:
7475 count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
7477 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7478 use them. */
7480 count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
7481 return;
7483 case EXPR_LIST:
7484 case INSN_LIST:
7485 if (REG_NOTE_KIND (x) == REG_EQUAL
7486 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE))
7487 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
7488 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
7489 return;
7491 default:
7492 break;
7495 fmt = GET_RTX_FORMAT (code);
7496 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7498 if (fmt[i] == 'e')
7499 count_reg_usage (XEXP (x, i), counts, dest, incr);
7500 else if (fmt[i] == 'E')
7501 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7502 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7506 /* Return true if set is live. */
7507 static bool
7508 set_live_p (set, insn, counts)
7509 rtx set;
7510 rtx insn ATTRIBUTE_UNUSED; /* Only used with HAVE_cc0. */
7511 int *counts;
7513 #ifdef HAVE_cc0
7514 rtx tem;
7515 #endif
7517 if (set_noop_p (set))
7520 #ifdef HAVE_cc0
7521 else if (GET_CODE (SET_DEST (set)) == CC0
7522 && !side_effects_p (SET_SRC (set))
7523 && ((tem = next_nonnote_insn (insn)) == 0
7524 || !INSN_P (tem)
7525 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7526 return false;
7527 #endif
7528 else if (GET_CODE (SET_DEST (set)) != REG
7529 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7530 || counts[REGNO (SET_DEST (set))] != 0
7531 || side_effects_p (SET_SRC (set))
7532 /* An ADDRESSOF expression can turn into a use of the
7533 internal arg pointer, so always consider the
7534 internal arg pointer live. If it is truly dead,
7535 flow will delete the initializing insn. */
7536 || (SET_DEST (set) == current_function_internal_arg_pointer))
7537 return true;
7538 return false;
7541 /* Return true if insn is live. */
7543 static bool
7544 insn_live_p (insn, counts)
7545 rtx insn;
7546 int *counts;
7548 int i;
7549 if (GET_CODE (PATTERN (insn)) == SET)
7550 return set_live_p (PATTERN (insn), insn, counts);
7551 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7553 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7555 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7557 if (GET_CODE (elt) == SET)
7559 if (set_live_p (elt, insn, counts))
7560 return true;
7562 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7563 return true;
7565 return false;
7567 else
7568 return true;
7571 /* Return true if libcall is dead as a whole. */
7573 static bool
7574 dead_libcall_p (insn)
7575 rtx insn;
7577 rtx note;
7578 /* See if there's a REG_EQUAL note on this insn and try to
7579 replace the source with the REG_EQUAL expression.
7581 We assume that insns with REG_RETVALs can only be reg->reg
7582 copies at this point. */
7583 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7584 if (note)
7586 rtx set = single_set (insn);
7587 rtx new = simplify_rtx (XEXP (note, 0));
7589 if (!new)
7590 new = XEXP (note, 0);
7592 if (set && validate_change (insn, &SET_SRC (set), new, 0))
7594 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7595 return true;
7598 return false;
7601 /* Scan all the insns and delete any that are dead; i.e., they store a register
7602 that is never used or they copy a register to itself.
7604 This is used to remove insns made obviously dead by cse, loop or other
7605 optimizations. It improves the heuristics in loop since it won't try to
7606 move dead invariants out of loops or make givs for dead quantities. The
7607 remaining passes of the compilation are also sped up. */
7610 delete_trivially_dead_insns (insns, nreg)
7611 rtx insns;
7612 int nreg;
7614 int *counts;
7615 rtx insn, prev;
7616 int in_libcall = 0, dead_libcall = 0;
7617 int ndead = 0, nlastdead, niterations = 0;
7619 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7620 /* First count the number of times each register is used. */
7621 counts = (int *) xcalloc (nreg, sizeof (int));
7622 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
7623 count_reg_usage (insn, counts, NULL_RTX, 1);
7627 nlastdead = ndead;
7628 niterations++;
7629 /* Go from the last insn to the first and delete insns that only set unused
7630 registers or copy a register to itself. As we delete an insn, remove
7631 usage counts for registers it uses.
7633 The first jump optimization pass may leave a real insn as the last
7634 insn in the function. We must not skip that insn or we may end
7635 up deleting code that is not really dead. */
7636 insn = get_last_insn ();
7637 if (! INSN_P (insn))
7638 insn = prev_real_insn (insn);
7640 for (; insn; insn = prev)
7642 int live_insn = 0;
7644 prev = prev_real_insn (insn);
7646 /* Don't delete any insns that are part of a libcall block unless
7647 we can delete the whole libcall block.
7649 Flow or loop might get confused if we did that. Remember
7650 that we are scanning backwards. */
7651 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7653 in_libcall = 1;
7654 live_insn = 1;
7655 dead_libcall = dead_libcall_p (insn);
7657 else if (in_libcall)
7658 live_insn = ! dead_libcall;
7659 else
7660 live_insn = insn_live_p (insn, counts);
7662 /* If this is a dead insn, delete it and show registers in it aren't
7663 being used. */
7665 if (! live_insn)
7667 count_reg_usage (insn, counts, NULL_RTX, -1);
7668 delete_insn_and_edges (insn);
7669 ndead++;
7672 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7674 in_libcall = 0;
7675 dead_libcall = 0;
7678 } while (ndead != nlastdead);
7680 if (rtl_dump_file && ndead)
7681 fprintf (rtl_dump_file, "Deleted %i trivially dead insns; %i iterations\n",
7682 ndead, niterations);
7683 /* Clean up. */
7684 free (counts);
7685 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7686 return ndead;