* argv.c (expandargv): Do not use xmalloc_failed.
[official-gcc.git] / gcc / tree-ssa-dse.c
blob7087018063c6fdb1e4249d955911be23259497be
1 /* Dead store elimination
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "timevar.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-pass.h"
34 #include "tree-dump.h"
35 #include "domwalk.h"
36 #include "flags.h"
38 /* This file implements dead store elimination.
40 A dead store is a store into a memory location which will later be
41 overwritten by another store without any intervening loads. In this
42 case the earlier store can be deleted.
44 In our SSA + virtual operand world we use immediate uses of virtual
45 operands to detect dead stores. If a store's virtual definition
46 is used precisely once by a later store to the same location which
47 post dominates the first store, then the first store is dead.
49 The single use of the store's virtual definition ensures that
50 there are no intervening aliased loads and the requirement that
51 the second load post dominate the first ensures that if the earlier
52 store executes, then the later stores will execute before the function
53 exits.
55 It may help to think of this as first moving the earlier store to
56 the point immediately before the later store. Again, the single
57 use of the virtual definition and the post-dominance relationship
58 ensure that such movement would be safe. Clearly if there are
59 back to back stores, then the second is redundant.
61 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
62 may also help in understanding this code since it discusses the
63 relationship between dead store and redundant load elimination. In
64 fact, they are the same transformation applied to different views of
65 the CFG. */
68 struct dse_global_data
70 /* This is the global bitmap for store statements.
72 Each statement has a unique ID. When we encounter a store statement
73 that we want to record, set the bit corresponding to the statement's
74 unique ID in this bitmap. */
75 bitmap stores;
78 /* We allocate a bitmap-per-block for stores which are encountered
79 during the scan of that block. This allows us to restore the
80 global bitmap of stores when we finish processing a block. */
81 struct dse_block_local_data
83 bitmap stores;
86 static bool gate_dse (void);
87 static void tree_ssa_dse (void);
88 static void dse_initialize_block_local_data (struct dom_walk_data *,
89 basic_block,
90 bool);
91 static void dse_optimize_stmt (struct dom_walk_data *,
92 basic_block,
93 block_stmt_iterator);
94 static void dse_record_phis (struct dom_walk_data *, basic_block);
95 static void dse_finalize_block (struct dom_walk_data *, basic_block);
96 static void record_voperand_set (bitmap, bitmap *, unsigned int);
98 static unsigned max_stmt_uid; /* Maximal uid of a statement. Uids to phi
99 nodes are assigned using the versions of
100 ssa names they define. */
102 /* Returns uid of statement STMT. */
104 static unsigned
105 get_stmt_uid (tree stmt)
107 if (TREE_CODE (stmt) == PHI_NODE)
108 return SSA_NAME_VERSION (PHI_RESULT (stmt)) + max_stmt_uid;
110 return stmt_ann (stmt)->uid;
113 /* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed. */
115 static void
116 record_voperand_set (bitmap global, bitmap *local, unsigned int uid)
118 /* Lazily allocate the bitmap. Note that we do not get a notification
119 when the block local data structures die, so we allocate the local
120 bitmap backed by the GC system. */
121 if (*local == NULL)
122 *local = BITMAP_GGC_ALLOC ();
124 /* Set the bit in the local and global bitmaps. */
125 bitmap_set_bit (*local, uid);
126 bitmap_set_bit (global, uid);
129 /* Initialize block local data structures. */
131 static void
132 dse_initialize_block_local_data (struct dom_walk_data *walk_data,
133 basic_block bb ATTRIBUTE_UNUSED,
134 bool recycled)
136 struct dse_block_local_data *bd
137 = VEC_last (void_p, walk_data->block_data_stack);
139 /* If we are given a recycled block local data structure, ensure any
140 bitmap associated with the block is cleared. */
141 if (recycled)
143 if (bd->stores)
144 bitmap_clear (bd->stores);
148 /* Attempt to eliminate dead stores in the statement referenced by BSI.
150 A dead store is a store into a memory location which will later be
151 overwritten by another store without any intervening loads. In this
152 case the earlier store can be deleted.
154 In our SSA + virtual operand world we use immediate uses of virtual
155 operands to detect dead stores. If a store's virtual definition
156 is used precisely once by a later store to the same location which
157 post dominates the first store, then the first store is dead. */
159 static void
160 dse_optimize_stmt (struct dom_walk_data *walk_data,
161 basic_block bb ATTRIBUTE_UNUSED,
162 block_stmt_iterator bsi)
164 struct dse_block_local_data *bd
165 = VEC_last (void_p, walk_data->block_data_stack);
166 struct dse_global_data *dse_gd = walk_data->global_data;
167 tree stmt = bsi_stmt (bsi);
168 stmt_ann_t ann = stmt_ann (stmt);
170 /* If this statement has no virtual defs, then there is nothing
171 to do. */
172 if (ZERO_SSA_OPERANDS (stmt, (SSA_OP_VMAYDEF|SSA_OP_VMUSTDEF)))
173 return;
175 /* We know we have virtual definitions. If this is a MODIFY_EXPR that's
176 not also a function call, then record it into our table. */
177 if (get_call_expr_in (stmt))
178 return;
180 if (ann->has_volatile_ops)
181 return;
183 if (TREE_CODE (stmt) == MODIFY_EXPR)
185 use_operand_p first_use_p = NULL_USE_OPERAND_P;
186 use_operand_p use_p = NULL;
187 tree use, use_stmt, temp;
188 tree defvar = NULL_TREE, usevar = NULL_TREE;
189 bool fail = false;
190 use_operand_p var2;
191 def_operand_p var1;
192 ssa_op_iter op_iter;
194 /* We want to verify that each virtual definition in STMT has
195 precisely one use and that all the virtual definitions are
196 used by the same single statement. When complete, we
197 want USE_STMT to refer to the one statement which uses
198 all of the virtual definitions from STMT. */
199 use_stmt = NULL;
200 FOR_EACH_SSA_MUST_AND_MAY_DEF_OPERAND (var1, var2, stmt, op_iter)
202 defvar = DEF_FROM_PTR (var1);
203 usevar = USE_FROM_PTR (var2);
205 /* If this virtual def does not have precisely one use, then
206 we will not be able to eliminate STMT. */
207 if (num_imm_uses (defvar) != 1)
209 fail = true;
210 break;
213 /* Get the one and only immediate use of DEFVAR. */
214 single_imm_use (defvar, &use_p, &temp);
215 gcc_assert (use_p != NULL_USE_OPERAND_P);
216 first_use_p = use_p;
217 use = USE_FROM_PTR (use_p);
219 /* If the immediate use of DEF_VAR is not the same as the
220 previously find immediate uses, then we will not be able
221 to eliminate STMT. */
222 if (use_stmt == NULL)
223 use_stmt = temp;
224 else if (temp != use_stmt)
226 fail = true;
227 break;
231 if (fail)
233 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
234 return;
237 /* Skip through any PHI nodes we have already seen if the PHI
238 represents the only use of this store.
240 Note this does not handle the case where the store has
241 multiple V_{MAY,MUST}_DEFs which all reach a set of PHI nodes in the
242 same block. */
243 while (use_p != NULL_USE_OPERAND_P
244 && TREE_CODE (use_stmt) == PHI_NODE
245 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt)))
247 /* Skip past this PHI and loop again in case we had a PHI
248 chain. */
249 if (single_imm_use (PHI_RESULT (use_stmt), &use_p, &use_stmt))
250 use = USE_FROM_PTR (use_p);
253 /* If we have precisely one immediate use at this point, then we may
254 have found redundant store. */
255 if (use_p != NULL_USE_OPERAND_P
256 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
257 && operand_equal_p (TREE_OPERAND (stmt, 0),
258 TREE_OPERAND (use_stmt, 0), 0))
260 /* Make sure we propagate the ABNORMAL bit setting. */
261 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (first_use_p)))
262 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (usevar) = 1;
264 if (dump_file && (dump_flags & TDF_DETAILS))
266 fprintf (dump_file, " Deleted dead store '");
267 print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags);
268 fprintf (dump_file, "'\n");
270 /* Then we need to fix the operand of the consuming stmt. */
271 FOR_EACH_SSA_MUST_AND_MAY_DEF_OPERAND (var1, var2, stmt, op_iter)
273 single_imm_use (DEF_FROM_PTR (var1), &use_p, &temp);
274 SET_USE (use_p, USE_FROM_PTR (var2));
276 /* Remove the dead store. */
277 bsi_remove (&bsi);
279 /* And release any SSA_NAMEs set in this statement back to the
280 SSA_NAME manager. */
281 release_defs (stmt);
284 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
288 /* Record that we have seen the PHIs at the start of BB which correspond
289 to virtual operands. */
290 static void
291 dse_record_phis (struct dom_walk_data *walk_data, basic_block bb)
293 struct dse_block_local_data *bd
294 = VEC_last (void_p, walk_data->block_data_stack);
295 struct dse_global_data *dse_gd = walk_data->global_data;
296 tree phi;
298 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
299 if (!is_gimple_reg (PHI_RESULT (phi)))
300 record_voperand_set (dse_gd->stores,
301 &bd->stores,
302 get_stmt_uid (phi));
305 static void
306 dse_finalize_block (struct dom_walk_data *walk_data,
307 basic_block bb ATTRIBUTE_UNUSED)
309 struct dse_block_local_data *bd
310 = VEC_last (void_p, walk_data->block_data_stack);
311 struct dse_global_data *dse_gd = walk_data->global_data;
312 bitmap stores = dse_gd->stores;
313 unsigned int i;
314 bitmap_iterator bi;
316 /* Unwind the stores noted in this basic block. */
317 if (bd->stores)
318 EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bi)
320 bitmap_clear_bit (stores, i);
324 static void
325 tree_ssa_dse (void)
327 struct dom_walk_data walk_data;
328 struct dse_global_data dse_gd;
329 basic_block bb;
331 /* Create a UID for each statement in the function. Ordering of the
332 UIDs is not important for this pass. */
333 max_stmt_uid = 0;
334 FOR_EACH_BB (bb)
336 block_stmt_iterator bsi;
338 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
339 stmt_ann (bsi_stmt (bsi))->uid = max_stmt_uid++;
342 /* We might consider making this a property of each pass so that it
343 can be [re]computed on an as-needed basis. Particularly since
344 this pass could be seen as an extension of DCE which needs post
345 dominators. */
346 calculate_dominance_info (CDI_POST_DOMINATORS);
348 /* Dead store elimination is fundamentally a walk of the post-dominator
349 tree and a backwards walk of statements within each block. */
350 walk_data.walk_stmts_backward = true;
351 walk_data.dom_direction = CDI_POST_DOMINATORS;
352 walk_data.initialize_block_local_data = dse_initialize_block_local_data;
353 walk_data.before_dom_children_before_stmts = NULL;
354 walk_data.before_dom_children_walk_stmts = dse_optimize_stmt;
355 walk_data.before_dom_children_after_stmts = dse_record_phis;
356 walk_data.after_dom_children_before_stmts = NULL;
357 walk_data.after_dom_children_walk_stmts = NULL;
358 walk_data.after_dom_children_after_stmts = dse_finalize_block;
359 walk_data.interesting_blocks = NULL;
361 walk_data.block_local_data_size = sizeof (struct dse_block_local_data);
363 /* This is the main hash table for the dead store elimination pass. */
364 dse_gd.stores = BITMAP_ALLOC (NULL);
365 walk_data.global_data = &dse_gd;
367 /* Initialize the dominator walker. */
368 init_walk_dominator_tree (&walk_data);
370 /* Recursively walk the dominator tree. */
371 walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR);
373 /* Finalize the dominator walker. */
374 fini_walk_dominator_tree (&walk_data);
376 /* Release the main bitmap. */
377 BITMAP_FREE (dse_gd.stores);
379 /* For now, just wipe the post-dominator information. */
380 free_dominance_info (CDI_POST_DOMINATORS);
383 static bool
384 gate_dse (void)
386 return flag_tree_dse != 0;
389 struct tree_opt_pass pass_dse = {
390 "dse", /* name */
391 gate_dse, /* gate */
392 tree_ssa_dse, /* execute */
393 NULL, /* sub */
394 NULL, /* next */
395 0, /* static_pass_number */
396 TV_TREE_DSE, /* tv_id */
397 PROP_cfg
398 | PROP_ssa
399 | PROP_alias, /* properties_required */
400 0, /* properties_provided */
401 0, /* properties_destroyed */
402 0, /* todo_flags_start */
403 TODO_dump_func
404 | TODO_ggc_collect
405 | TODO_verify_ssa, /* todo_flags_finish */
406 0 /* letter */