2011-03-27 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / ira.c
blobde7f5b667f6ab99039e2b71249d5177b30071a7d
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
32 Major IRA notions are:
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
41 o *Allocno class* is a register class used for allocation of
42 given allocno. It means that only hard register of given
43 register class can be assigned to given allocno. In reality,
44 even smaller subset of (*profitable*) hard registers can be
45 assigned. In rare cases, the subset can be even smaller
46 because our modification of Chaitin-Briggs algorithm requires
47 that sets of hard registers can be assigned to allocnos forms a
48 forest, i.e. the sets can be ordered in a way where any
49 previous set is not intersected with given set or is a superset
50 of given set.
52 o *Pressure class* is a register class belonging to a set of
53 register classes containing all of the hard-registers available
54 for register allocation. The set of all pressure classes for a
55 target is defined in the corresponding machine-description file
56 according some criteria. Register pressure is calculated only
57 for pressure classes and it affects some IRA decisions as
58 forming allocation regions.
60 o *Allocno* represents the live range of a pseudo-register in a
61 region. Besides the obvious attributes like the corresponding
62 pseudo-register number, allocno class, conflicting allocnos and
63 conflicting hard-registers, there are a few allocno attributes
64 which are important for understanding the allocation algorithm:
66 - *Live ranges*. This is a list of ranges of *program points*
67 where the allocno lives. Program points represent places
68 where a pseudo can be born or become dead (there are
69 approximately two times more program points than the insns)
70 and they are represented by integers starting with 0. The
71 live ranges are used to find conflicts between allocnos.
72 They also play very important role for the transformation of
73 the IRA internal representation of several regions into a one
74 region representation. The later is used during the reload
75 pass work because each allocno represents all of the
76 corresponding pseudo-registers.
78 - *Hard-register costs*. This is a vector of size equal to the
79 number of available hard-registers of the allocno class. The
80 cost of a callee-clobbered hard-register for an allocno is
81 increased by the cost of save/restore code around the calls
82 through the given allocno's life. If the allocno is a move
83 instruction operand and another operand is a hard-register of
84 the allocno class, the cost of the hard-register is decreased
85 by the move cost.
87 When an allocno is assigned, the hard-register with minimal
88 full cost is used. Initially, a hard-register's full cost is
89 the corresponding value from the hard-register's cost vector.
90 If the allocno is connected by a *copy* (see below) to
91 another allocno which has just received a hard-register, the
92 cost of the hard-register is decreased. Before choosing a
93 hard-register for an allocno, the allocno's current costs of
94 the hard-registers are modified by the conflict hard-register
95 costs of all of the conflicting allocnos which are not
96 assigned yet.
98 - *Conflict hard-register costs*. This is a vector of the same
99 size as the hard-register costs vector. To permit an
100 unassigned allocno to get a better hard-register, IRA uses
101 this vector to calculate the final full cost of the
102 available hard-registers. Conflict hard-register costs of an
103 unassigned allocno are also changed with a change of the
104 hard-register cost of the allocno when a copy involving the
105 allocno is processed as described above. This is done to
106 show other unassigned allocnos that a given allocno prefers
107 some hard-registers in order to remove the move instruction
108 corresponding to the copy.
110 o *Cap*. If a pseudo-register does not live in a region but
111 lives in a nested region, IRA creates a special allocno called
112 a cap in the outer region. A region cap is also created for a
113 subregion cap.
115 o *Copy*. Allocnos can be connected by copies. Copies are used
116 to modify hard-register costs for allocnos during coloring.
117 Such modifications reflects a preference to use the same
118 hard-register for the allocnos connected by copies. Usually
119 copies are created for move insns (in this case it results in
120 register coalescing). But IRA also creates copies for operands
121 of an insn which should be assigned to the same hard-register
122 due to constraints in the machine description (it usually
123 results in removing a move generated in reload to satisfy
124 the constraints) and copies referring to the allocno which is
125 the output operand of an instruction and the allocno which is
126 an input operand dying in the instruction (creation of such
127 copies results in less register shuffling). IRA *does not*
128 create copies between the same register allocnos from different
129 regions because we use another technique for propagating
130 hard-register preference on the borders of regions.
132 Allocnos (including caps) for the upper region in the region tree
133 *accumulate* information important for coloring from allocnos with
134 the same pseudo-register from nested regions. This includes
135 hard-register and memory costs, conflicts with hard-registers,
136 allocno conflicts, allocno copies and more. *Thus, attributes for
137 allocnos in a region have the same values as if the region had no
138 subregions*. It means that attributes for allocnos in the
139 outermost region corresponding to the function have the same values
140 as though the allocation used only one region which is the entire
141 function. It also means that we can look at IRA work as if the
142 first IRA did allocation for all function then it improved the
143 allocation for loops then their subloops and so on.
145 IRA major passes are:
147 o Building IRA internal representation which consists of the
148 following subpasses:
150 * First, IRA builds regions and creates allocnos (file
151 ira-build.c) and initializes most of their attributes.
153 * Then IRA finds an allocno class for each allocno and
154 calculates its initial (non-accumulated) cost of memory and
155 each hard-register of its allocno class (file ira-cost.c).
157 * IRA creates live ranges of each allocno, calulates register
158 pressure for each pressure class in each region, sets up
159 conflict hard registers for each allocno and info about calls
160 the allocno lives through (file ira-lives.c).
162 * IRA removes low register pressure loops from the regions
163 mostly to speed IRA up (file ira-build.c).
165 * IRA propagates accumulated allocno info from lower region
166 allocnos to corresponding upper region allocnos (file
167 ira-build.c).
169 * IRA creates all caps (file ira-build.c).
171 * Having live-ranges of allocnos and their classes, IRA creates
172 conflicting allocnos for each allocno. Conflicting allocnos
173 are stored as a bit vector or array of pointers to the
174 conflicting allocnos whatever is more profitable (file
175 ira-conflicts.c). At this point IRA creates allocno copies.
177 o Coloring. Now IRA has all necessary info to start graph coloring
178 process. It is done in each region on top-down traverse of the
179 region tree (file ira-color.c). There are following subpasses:
181 * Finding profitable hard registers of corresponding allocno
182 class for each allocno. For example, only callee-saved hard
183 registers are frequently profitable for allocnos living
184 through colors. If the profitable hard register set of
185 allocno does not form a tree based on subset relation, we use
186 some approximation to form the tree. This approximation is
187 used to figure out trivial colorability of allocnos. The
188 approximation is a pretty rare case.
190 * Putting allocnos onto the coloring stack. IRA uses Briggs
191 optimistic coloring which is a major improvement over
192 Chaitin's coloring. Therefore IRA does not spill allocnos at
193 this point. There is some freedom in the order of putting
194 allocnos on the stack which can affect the final result of
195 the allocation. IRA uses some heuristics to improve the
196 order.
198 We also use a modification of Chaitin-Briggs algorithm which
199 works for intersected register classes of allocnos. To
200 figure out trivial colorability of allocnos, the mentioned
201 above tree of hard register sets is used. To get an idea how
202 the algorithm works in i386 example, let us consider an
203 allocno to which any general hard register can be assigned.
204 If the allocno conflicts with eight allocnos to which only
205 EAX register can be assigned, given allocno is still
206 trivially colorable because all conflicting allocnos might be
207 assigned only to EAX and all other general hard registers are
208 still free.
210 To get an idea of the used trivial colorability criterion, it
211 is also useful to read article "Graph-Coloring Register
212 Allocation for Irregular Architectures" by Michael D. Smith
213 and Glen Holloway. Major difference between the article
214 approach and approach used in IRA is that Smith's approach
215 takes register classes only from machine description and IRA
216 calculate register classes from intermediate code too
217 (e.g. an explicit usage of hard registers in RTL code for
218 parameter passing can result in creation of additional
219 register classes which contain or exclude the hard
220 registers). That makes IRA approach useful for improving
221 coloring even for architectures with regular register files
222 and in fact some benchmarking shows the improvement for
223 regular class architectures is even bigger than for irregular
224 ones. Another difference is that Smith's approach chooses
225 intersection of classes of all insn operands in which a given
226 pseudo occurs. IRA can use bigger classes if it is still
227 more profitable than memory usage.
229 * Popping the allocnos from the stack and assigning them hard
230 registers. If IRA can not assign a hard register to an
231 allocno and the allocno is coalesced, IRA undoes the
232 coalescing and puts the uncoalesced allocnos onto the stack in
233 the hope that some such allocnos will get a hard register
234 separately. If IRA fails to assign hard register or memory
235 is more profitable for it, IRA spills the allocno. IRA
236 assigns the allocno the hard-register with minimal full
237 allocation cost which reflects the cost of usage of the
238 hard-register for the allocno and cost of usage of the
239 hard-register for allocnos conflicting with given allocno.
241 * Chaitin-Briggs coloring assigns as many pseudos as possible
242 to hard registers. After coloringh we try to improve
243 allocation with cost point of view. We improve the
244 allocation by spilling some allocnos and assigning the freed
245 hard registers to other allocnos if it decreases the overall
246 allocation cost.
248 * After allono assigning in the region, IRA modifies the hard
249 register and memory costs for the corresponding allocnos in
250 the subregions to reflect the cost of possible loads, stores,
251 or moves on the border of the region and its subregions.
252 When default regional allocation algorithm is used
253 (-fira-algorithm=mixed), IRA just propagates the assignment
254 for allocnos if the register pressure in the region for the
255 corresponding pressure class is less than number of available
256 hard registers for given pressure class.
258 o Spill/restore code moving. When IRA performs an allocation
259 by traversing regions in top-down order, it does not know what
260 happens below in the region tree. Therefore, sometimes IRA
261 misses opportunities to perform a better allocation. A simple
262 optimization tries to improve allocation in a region having
263 subregions and containing in another region. If the
264 corresponding allocnos in the subregion are spilled, it spills
265 the region allocno if it is profitable. The optimization
266 implements a simple iterative algorithm performing profitable
267 transformations while they are still possible. It is fast in
268 practice, so there is no real need for a better time complexity
269 algorithm.
271 o Code change. After coloring, two allocnos representing the
272 same pseudo-register outside and inside a region respectively
273 may be assigned to different locations (hard-registers or
274 memory). In this case IRA creates and uses a new
275 pseudo-register inside the region and adds code to move allocno
276 values on the region's borders. This is done during top-down
277 traversal of the regions (file ira-emit.c). In some
278 complicated cases IRA can create a new allocno to move allocno
279 values (e.g. when a swap of values stored in two hard-registers
280 is needed). At this stage, the new allocno is marked as
281 spilled. IRA still creates the pseudo-register and the moves
282 on the region borders even when both allocnos were assigned to
283 the same hard-register. If the reload pass spills a
284 pseudo-register for some reason, the effect will be smaller
285 because another allocno will still be in the hard-register. In
286 most cases, this is better then spilling both allocnos. If
287 reload does not change the allocation for the two
288 pseudo-registers, the trivial move will be removed by
289 post-reload optimizations. IRA does not generate moves for
290 allocnos assigned to the same hard register when the default
291 regional allocation algorithm is used and the register pressure
292 in the region for the corresponding pressure class is less than
293 number of available hard registers for given pressure class.
294 IRA also does some optimizations to remove redundant stores and
295 to reduce code duplication on the region borders.
297 o Flattening internal representation. After changing code, IRA
298 transforms its internal representation for several regions into
299 one region representation (file ira-build.c). This process is
300 called IR flattening. Such process is more complicated than IR
301 rebuilding would be, but is much faster.
303 o After IR flattening, IRA tries to assign hard registers to all
304 spilled allocnos. This is impelemented by a simple and fast
305 priority coloring algorithm (see function
306 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
307 created during the code change pass can be assigned to hard
308 registers.
310 o At the end IRA calls the reload pass. The reload pass
311 communicates with IRA through several functions in file
312 ira-color.c to improve its decisions in
314 * sharing stack slots for the spilled pseudos based on IRA info
315 about pseudo-register conflicts.
317 * reassigning hard-registers to all spilled pseudos at the end
318 of each reload iteration.
320 * choosing a better hard-register to spill based on IRA info
321 about pseudo-register live ranges and the register pressure
322 in places where the pseudo-register lives.
324 IRA uses a lot of data representing the target processors. These
325 data are initilized in file ira.c.
327 If function has no loops (or the loops are ignored when
328 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
329 coloring (only instead of separate pass of coalescing, we use hard
330 register preferencing). In such case, IRA works much faster
331 because many things are not made (like IR flattening, the
332 spill/restore optimization, and the code change).
334 Literature is worth to read for better understanding the code:
336 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
337 Graph Coloring Register Allocation.
339 o David Callahan, Brian Koblenz. Register allocation via
340 hierarchical graph coloring.
342 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
343 Coloring Register Allocation: A Study of the Chaitin-Briggs and
344 Callahan-Koblenz Algorithms.
346 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
347 Register Allocation Based on Graph Fusion.
349 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
350 Allocation for Irregular Architectures
352 o Vladimir Makarov. The Integrated Register Allocator for GCC.
354 o Vladimir Makarov. The top-down register allocator for irregular
355 register file architectures.
360 #include "config.h"
361 #include "system.h"
362 #include "coretypes.h"
363 #include "tm.h"
364 #include "regs.h"
365 #include "rtl.h"
366 #include "tm_p.h"
367 #include "target.h"
368 #include "flags.h"
369 #include "obstack.h"
370 #include "bitmap.h"
371 #include "hard-reg-set.h"
372 #include "basic-block.h"
373 #include "df.h"
374 #include "expr.h"
375 #include "recog.h"
376 #include "params.h"
377 #include "timevar.h"
378 #include "tree-pass.h"
379 #include "output.h"
380 #include "except.h"
381 #include "reload.h"
382 #include "diagnostic-core.h"
383 #include "integrate.h"
384 #include "ggc.h"
385 #include "ira-int.h"
388 struct target_ira default_target_ira;
389 struct target_ira_int default_target_ira_int;
390 #if SWITCHABLE_TARGET
391 struct target_ira *this_target_ira = &default_target_ira;
392 struct target_ira_int *this_target_ira_int = &default_target_ira_int;
393 #endif
395 /* A modified value of flag `-fira-verbose' used internally. */
396 int internal_flag_ira_verbose;
398 /* Dump file of the allocator if it is not NULL. */
399 FILE *ira_dump_file;
401 /* The number of elements in the following array. */
402 int ira_spilled_reg_stack_slots_num;
404 /* The following array contains info about spilled pseudo-registers
405 stack slots used in current function so far. */
406 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
408 /* Correspondingly overall cost of the allocation, cost of the
409 allocnos assigned to hard-registers, cost of the allocnos assigned
410 to memory, cost of loads, stores and register move insns generated
411 for pseudo-register live range splitting (see ira-emit.c). */
412 int ira_overall_cost;
413 int ira_reg_cost, ira_mem_cost;
414 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
415 int ira_move_loops_num, ira_additional_jumps_num;
417 /* All registers that can be eliminated. */
419 HARD_REG_SET eliminable_regset;
421 /* Temporary hard reg set used for a different calculation. */
422 static HARD_REG_SET temp_hard_regset;
426 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
427 static void
428 setup_reg_mode_hard_regset (void)
430 int i, m, hard_regno;
432 for (m = 0; m < NUM_MACHINE_MODES; m++)
433 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
435 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
436 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
437 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
438 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
439 hard_regno + i);
444 #define no_unit_alloc_regs \
445 (this_target_ira_int->x_no_unit_alloc_regs)
447 /* The function sets up the three arrays declared above. */
448 static void
449 setup_class_hard_regs (void)
451 int cl, i, hard_regno, n;
452 HARD_REG_SET processed_hard_reg_set;
454 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
455 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
457 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
458 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
459 CLEAR_HARD_REG_SET (processed_hard_reg_set);
460 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
462 ira_non_ordered_class_hard_regs[cl][i] = -1;
463 ira_class_hard_reg_index[cl][i] = -1;
465 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
467 #ifdef REG_ALLOC_ORDER
468 hard_regno = reg_alloc_order[i];
469 #else
470 hard_regno = i;
471 #endif
472 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
473 continue;
474 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
475 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
476 ira_class_hard_reg_index[cl][hard_regno] = -1;
477 else
479 ira_class_hard_reg_index[cl][hard_regno] = n;
480 ira_class_hard_regs[cl][n++] = hard_regno;
483 ira_class_hard_regs_num[cl] = n;
484 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
485 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
486 ira_non_ordered_class_hard_regs[cl][n++] = i;
487 ira_assert (ira_class_hard_regs_num[cl] == n);
491 /* Set up IRA_AVAILABLE_CLASS_REGS. */
492 static void
493 setup_available_class_regs (void)
495 int i, j;
497 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
498 for (i = 0; i < N_REG_CLASSES; i++)
500 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
501 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
502 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
503 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
504 ira_available_class_regs[i]++;
508 /* Set up global variables defining info about hard registers for the
509 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
510 that we can use the hard frame pointer for the allocation. */
511 static void
512 setup_alloc_regs (bool use_hard_frame_p)
514 #ifdef ADJUST_REG_ALLOC_ORDER
515 ADJUST_REG_ALLOC_ORDER;
516 #endif
517 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
518 if (! use_hard_frame_p)
519 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
520 setup_class_hard_regs ();
521 setup_available_class_regs ();
526 #define alloc_reg_class_subclasses \
527 (this_target_ira_int->x_alloc_reg_class_subclasses)
529 /* Initialize the table of subclasses of each reg class. */
530 static void
531 setup_reg_subclasses (void)
533 int i, j;
534 HARD_REG_SET temp_hard_regset2;
536 for (i = 0; i < N_REG_CLASSES; i++)
537 for (j = 0; j < N_REG_CLASSES; j++)
538 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
540 for (i = 0; i < N_REG_CLASSES; i++)
542 if (i == (int) NO_REGS)
543 continue;
545 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
546 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
547 if (hard_reg_set_empty_p (temp_hard_regset))
548 continue;
549 for (j = 0; j < N_REG_CLASSES; j++)
550 if (i != j)
552 enum reg_class *p;
554 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
555 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
556 if (! hard_reg_set_subset_p (temp_hard_regset,
557 temp_hard_regset2))
558 continue;
559 p = &alloc_reg_class_subclasses[j][0];
560 while (*p != LIM_REG_CLASSES) p++;
561 *p = (enum reg_class) i;
568 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
569 static void
570 setup_class_subset_and_memory_move_costs (void)
572 int cl, cl2, mode, cost;
573 HARD_REG_SET temp_hard_regset2;
575 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
576 ira_memory_move_cost[mode][NO_REGS][0]
577 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
578 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
580 if (cl != (int) NO_REGS)
581 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
583 ira_max_memory_move_cost[mode][cl][0]
584 = ira_memory_move_cost[mode][cl][0]
585 = memory_move_cost ((enum machine_mode) mode,
586 (enum reg_class) cl, false);
587 ira_max_memory_move_cost[mode][cl][1]
588 = ira_memory_move_cost[mode][cl][1]
589 = memory_move_cost ((enum machine_mode) mode,
590 (enum reg_class) cl, true);
591 /* Costs for NO_REGS are used in cost calculation on the
592 1st pass when the preferred register classes are not
593 known yet. In this case we take the best scenario. */
594 if (ira_memory_move_cost[mode][NO_REGS][0]
595 > ira_memory_move_cost[mode][cl][0])
596 ira_max_memory_move_cost[mode][NO_REGS][0]
597 = ira_memory_move_cost[mode][NO_REGS][0]
598 = ira_memory_move_cost[mode][cl][0];
599 if (ira_memory_move_cost[mode][NO_REGS][1]
600 > ira_memory_move_cost[mode][cl][1])
601 ira_max_memory_move_cost[mode][NO_REGS][1]
602 = ira_memory_move_cost[mode][NO_REGS][1]
603 = ira_memory_move_cost[mode][cl][1];
606 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
607 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
609 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
610 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
611 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
612 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
613 ira_class_subset_p[cl][cl2]
614 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
615 if (! hard_reg_set_empty_p (temp_hard_regset2)
616 && hard_reg_set_subset_p (reg_class_contents[cl2],
617 reg_class_contents[cl]))
618 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
620 cost = ira_memory_move_cost[mode][cl2][0];
621 if (cost > ira_max_memory_move_cost[mode][cl][0])
622 ira_max_memory_move_cost[mode][cl][0] = cost;
623 cost = ira_memory_move_cost[mode][cl2][1];
624 if (cost > ira_max_memory_move_cost[mode][cl][1])
625 ira_max_memory_move_cost[mode][cl][1] = cost;
628 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
629 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
631 ira_memory_move_cost[mode][cl][0]
632 = ira_max_memory_move_cost[mode][cl][0];
633 ira_memory_move_cost[mode][cl][1]
634 = ira_max_memory_move_cost[mode][cl][1];
636 setup_reg_subclasses ();
641 /* Define the following macro if allocation through malloc if
642 preferable. */
643 #define IRA_NO_OBSTACK
645 #ifndef IRA_NO_OBSTACK
646 /* Obstack used for storing all dynamic data (except bitmaps) of the
647 IRA. */
648 static struct obstack ira_obstack;
649 #endif
651 /* Obstack used for storing all bitmaps of the IRA. */
652 static struct bitmap_obstack ira_bitmap_obstack;
654 /* Allocate memory of size LEN for IRA data. */
655 void *
656 ira_allocate (size_t len)
658 void *res;
660 #ifndef IRA_NO_OBSTACK
661 res = obstack_alloc (&ira_obstack, len);
662 #else
663 res = xmalloc (len);
664 #endif
665 return res;
668 /* Free memory ADDR allocated for IRA data. */
669 void
670 ira_free (void *addr ATTRIBUTE_UNUSED)
672 #ifndef IRA_NO_OBSTACK
673 /* do nothing */
674 #else
675 free (addr);
676 #endif
680 /* Allocate and returns bitmap for IRA. */
681 bitmap
682 ira_allocate_bitmap (void)
684 return BITMAP_ALLOC (&ira_bitmap_obstack);
687 /* Free bitmap B allocated for IRA. */
688 void
689 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
691 /* do nothing */
696 /* Output information about allocation of all allocnos (except for
697 caps) into file F. */
698 void
699 ira_print_disposition (FILE *f)
701 int i, n, max_regno;
702 ira_allocno_t a;
703 basic_block bb;
705 fprintf (f, "Disposition:");
706 max_regno = max_reg_num ();
707 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
708 for (a = ira_regno_allocno_map[i];
709 a != NULL;
710 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
712 if (n % 4 == 0)
713 fprintf (f, "\n");
714 n++;
715 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
716 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
717 fprintf (f, "b%-3d", bb->index);
718 else
719 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
720 if (ALLOCNO_HARD_REGNO (a) >= 0)
721 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
722 else
723 fprintf (f, " mem");
725 fprintf (f, "\n");
728 /* Outputs information about allocation of all allocnos into
729 stderr. */
730 void
731 ira_debug_disposition (void)
733 ira_print_disposition (stderr);
738 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
739 register class containing stack registers or NO_REGS if there are
740 no stack registers. To find this class, we iterate through all
741 register pressure classes and choose the first register pressure
742 class containing all the stack registers and having the biggest
743 size. */
744 static void
745 setup_stack_reg_pressure_class (void)
747 ira_stack_reg_pressure_class = NO_REGS;
748 #ifdef STACK_REGS
750 int i, best, size;
751 enum reg_class cl;
752 HARD_REG_SET temp_hard_regset2;
754 CLEAR_HARD_REG_SET (temp_hard_regset);
755 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
756 SET_HARD_REG_BIT (temp_hard_regset, i);
757 best = 0;
758 for (i = 0; i < ira_pressure_classes_num; i++)
760 cl = ira_pressure_classes[i];
761 COPY_HARD_REG_SET (temp_hard_regset2, temp_hard_regset);
762 AND_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
763 size = hard_reg_set_size (temp_hard_regset2);
764 if (best < size)
766 best = size;
767 ira_stack_reg_pressure_class = cl;
771 #endif
774 /* Find pressure classes which are register classes for which we
775 calculate register pressure in IRA, register pressure sensitive
776 insn scheduling, and register pressure sensitive loop invariant
777 motion.
779 To make register pressure calculation easy, we always use
780 non-intersected register pressure classes. A move of hard
781 registers from one register pressure class is not more expensive
782 than load and store of the hard registers. Most likely an allocno
783 class will be a subset of a register pressure class and in many
784 cases a register pressure class. That makes usage of register
785 pressure classes a good approximation to find a high register
786 pressure. */
787 static void
788 setup_pressure_classes (void)
790 int cost, i, n, curr;
791 int cl, cl2;
792 enum reg_class pressure_classes[N_REG_CLASSES];
793 int m;
794 HARD_REG_SET temp_hard_regset2;
795 bool insert_p;
797 n = 0;
798 for (cl = 0; cl < N_REG_CLASSES; cl++)
800 if (ira_available_class_regs[cl] == 0)
801 continue;
802 /* Check that the moves between any hard registers of the
803 current class are not more expensive for a legal mode than
804 load/store of the hard registers of the current class. Such
805 class is a potential candidate to be a register pressure
806 class. */
807 for (m = 0; m < NUM_MACHINE_MODES; m++)
809 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
810 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
811 AND_COMPL_HARD_REG_SET (temp_hard_regset,
812 ira_prohibited_class_mode_regs[cl][m]);
813 if (hard_reg_set_empty_p (temp_hard_regset))
814 continue;
815 ira_init_register_move_cost_if_necessary ((enum machine_mode) m);
816 cost = ira_register_move_cost[m][cl][cl];
817 if (cost <= ira_max_memory_move_cost[m][cl][1]
818 || cost <= ira_max_memory_move_cost[m][cl][0])
819 break;
821 if (m >= NUM_MACHINE_MODES)
822 continue;
823 curr = 0;
824 insert_p = true;
825 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
826 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
827 /* Remove so far added pressure classes which are subset of the
828 current candidate class. Prefer GENERAL_REGS as a pressure
829 register class to another class containing the same
830 allocatable hard registers. We do this because machine
831 dependent cost hooks might give wrong costs for the latter
832 class but always give the right cost for the former class
833 (GENERAL_REGS). */
834 for (i = 0; i < n; i++)
836 cl2 = pressure_classes[i];
837 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
838 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
839 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
840 && (! hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2)
841 || cl2 == (int) GENERAL_REGS))
843 pressure_classes[curr++] = (enum reg_class) cl2;
844 insert_p = false;
845 continue;
847 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
848 && (! hard_reg_set_equal_p (temp_hard_regset2, temp_hard_regset)
849 || cl == (int) GENERAL_REGS))
850 continue;
851 pressure_classes[curr++] = (enum reg_class) cl2;
853 /* If the current candidate is a subset of a so far added
854 pressure class, don't add it to the list of the pressure
855 classes. */
856 if (insert_p)
857 pressure_classes[curr++] = (enum reg_class) cl;
858 n = curr;
860 #ifdef ENABLE_IRA_CHECKING
861 /* Check pressure classes correctness: here we check that hard
862 registers from all register pressure classes contains all hard
863 registers available for the allocation. */
864 CLEAR_HARD_REG_SET (temp_hard_regset);
865 CLEAR_HARD_REG_SET (temp_hard_regset2);
866 for (cl = 0; cl <= LIM_REG_CLASSES; cl++)
868 for (i = 0; i < n; i++)
869 if ((int) pressure_classes[i] == cl)
870 break;
871 IOR_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
872 if (i >= n)
873 IOR_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
875 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
876 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
877 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
878 #endif
879 ira_pressure_classes_num = 0;
880 for (i = 0; i < n; i++)
882 cl = (int) pressure_classes[i];
883 ira_reg_pressure_class_p[cl] = true;
884 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
886 setup_stack_reg_pressure_class ();
889 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
890 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
892 Target may have many subtargets and not all target hard regiters can
893 be used for allocation, e.g. x86 port in 32-bit mode can not use
894 hard registers introduced in x86-64 like r8-r15). Some classes
895 might have the same allocatable hard registers, e.g. INDEX_REGS
896 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
897 calculations efforts we introduce allocno classes which contain
898 unique non-empty sets of allocatable hard-registers.
900 Pseudo class cost calculation in ira-costs.c is very expensive.
901 Therefore we are trying to decrease number of classes involved in
902 such calculation. Register classes used in the cost calculation
903 are called important classes. They are allocno classes and other
904 non-empty classes whose allocatable hard register sets are inside
905 of an allocno class hard register set. From the first sight, it
906 looks like that they are just allocno classes. It is not true. In
907 example of x86-port in 32-bit mode, allocno classes will contain
908 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
909 registers are the same for the both classes). The important
910 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
911 because a machine description insn constraint may refers for
912 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
913 of the insn constraints. */
914 static void
915 setup_allocno_and_important_classes (void)
917 int i, j, n, cl;
918 bool set_p;
919 HARD_REG_SET temp_hard_regset2;
920 static enum reg_class classes[LIM_REG_CLASSES + 1];
922 n = 0;
923 /* Collect classes which contain unique sets of allocatable hard
924 registers. Prefer GENERAL_REGS to other classes containing the
925 same set of hard registers. */
926 for (i = 0; i <= LIM_REG_CLASSES; i++)
928 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
929 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
930 for (j = 0; j < n; j++)
932 cl = classes[j];
933 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl]);
934 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
935 no_unit_alloc_regs);
936 if (hard_reg_set_equal_p (temp_hard_regset,
937 temp_hard_regset2))
938 break;
940 if (j >= n)
941 classes[n++] = (enum reg_class) i;
942 else if (i == GENERAL_REGS)
943 /* Prefer general regs. For i386 example, it means that
944 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
945 (all of them consists of the same available hard
946 registers). */
947 classes[j] = (enum reg_class) i;
949 classes[n] = LIM_REG_CLASSES;
951 /* Set up classes which can be used for allocnos as classes
952 conatining non-empty unique sets of allocatable hard
953 registers. */
954 ira_allocno_classes_num = 0;
955 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
957 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
958 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
959 if (hard_reg_set_empty_p (temp_hard_regset))
960 continue;
961 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
963 ira_important_classes_num = 0;
964 /* Add non-allocno classes containing to non-empty set of
965 allocatable hard regs. */
966 for (cl = 0; cl < N_REG_CLASSES; cl++)
968 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
969 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
970 if (! hard_reg_set_empty_p (temp_hard_regset))
972 set_p = false;
973 for (j = 0; j < ira_allocno_classes_num; j++)
975 COPY_HARD_REG_SET (temp_hard_regset2,
976 reg_class_contents[ira_allocno_classes[j]]);
977 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
978 if ((enum reg_class) cl == ira_allocno_classes[j])
979 break;
980 else if (hard_reg_set_subset_p (temp_hard_regset,
981 temp_hard_regset2))
982 set_p = true;
984 if (set_p && j >= ira_allocno_classes_num)
985 ira_important_classes[ira_important_classes_num++]
986 = (enum reg_class) cl;
989 /* Now add allocno classes to the important classes. */
990 for (j = 0; j < ira_allocno_classes_num; j++)
991 ira_important_classes[ira_important_classes_num++]
992 = ira_allocno_classes[j];
993 for (cl = 0; cl < N_REG_CLASSES; cl++)
995 ira_reg_allocno_class_p[cl] = false;
996 ira_reg_pressure_class_p[cl] = false;
998 for (j = 0; j < ira_allocno_classes_num; j++)
999 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1000 setup_pressure_classes ();
1003 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1004 given by array CLASSES of length CLASSES_NUM. The function is used
1005 make translation any reg class to an allocno class or to an
1006 pressure class. This translation is necessary for some
1007 calculations when we can use only allocno or pressure classes and
1008 such translation represents an approximate representation of all
1009 classes.
1011 The translation in case when allocatable hard register set of a
1012 given class is subset of allocatable hard register set of a class
1013 in CLASSES is pretty simple. We use smallest classes from CLASSES
1014 containing a given class. If allocatable hard register set of a
1015 given class is not a subset of any corresponding set of a class
1016 from CLASSES, we use the cheapest (with load/store point of view)
1017 class from CLASSES whose set intersects with given class set */
1018 static void
1019 setup_class_translate_array (enum reg_class *class_translate,
1020 int classes_num, enum reg_class *classes)
1022 int cl, mode;
1023 enum reg_class aclass, best_class, *cl_ptr;
1024 int i, cost, min_cost, best_cost;
1026 for (cl = 0; cl < N_REG_CLASSES; cl++)
1027 class_translate[cl] = NO_REGS;
1029 for (i = 0; i < classes_num; i++)
1031 aclass = classes[i];
1032 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1033 (cl = *cl_ptr) != LIM_REG_CLASSES;
1034 cl_ptr++)
1035 if (class_translate[cl] == NO_REGS)
1036 class_translate[cl] = aclass;
1037 class_translate[aclass] = aclass;
1039 /* For classes which are not fully covered by one of given classes
1040 (in other words covered by more one given class), use the
1041 cheapest class. */
1042 for (cl = 0; cl < N_REG_CLASSES; cl++)
1044 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1045 continue;
1046 best_class = NO_REGS;
1047 best_cost = INT_MAX;
1048 for (i = 0; i < classes_num; i++)
1050 aclass = classes[i];
1051 COPY_HARD_REG_SET (temp_hard_regset,
1052 reg_class_contents[aclass]);
1053 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
1054 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1055 if (! hard_reg_set_empty_p (temp_hard_regset))
1057 min_cost = INT_MAX;
1058 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1060 cost = (ira_memory_move_cost[mode][cl][0]
1061 + ira_memory_move_cost[mode][cl][1]);
1062 if (min_cost > cost)
1063 min_cost = cost;
1065 if (best_class == NO_REGS || best_cost > min_cost)
1067 best_class = aclass;
1068 best_cost = min_cost;
1072 class_translate[cl] = best_class;
1076 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1077 IRA_PRESSURE_CLASS_TRANSLATE. */
1078 static void
1079 setup_class_translate (void)
1081 setup_class_translate_array (ira_allocno_class_translate,
1082 ira_allocno_classes_num, ira_allocno_classes);
1083 setup_class_translate_array (ira_pressure_class_translate,
1084 ira_pressure_classes_num, ira_pressure_classes);
1087 /* Order numbers of allocno classes in original target allocno class
1088 array, -1 for non-allocno classes. */
1089 static int allocno_class_order[N_REG_CLASSES];
1091 /* The function used to sort the important classes. */
1092 static int
1093 comp_reg_classes_func (const void *v1p, const void *v2p)
1095 enum reg_class cl1 = *(const enum reg_class *) v1p;
1096 enum reg_class cl2 = *(const enum reg_class *) v2p;
1097 enum reg_class tcl1, tcl2;
1098 int diff;
1100 tcl1 = ira_allocno_class_translate[cl1];
1101 tcl2 = ira_allocno_class_translate[cl2];
1102 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1103 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1104 return diff;
1105 return (int) cl1 - (int) cl2;
1108 /* For correct work of function setup_reg_class_relation we need to
1109 reorder important classes according to the order of their allocno
1110 classes. It places important classes containing the same
1111 allocatable hard register set adjacent to each other and allocno
1112 class with the allocatable hard register set right after the other
1113 important classes with the same set.
1115 In example from comments of function
1116 setup_allocno_and_important_classes, it places LEGACY_REGS and
1117 GENERAL_REGS close to each other and GENERAL_REGS is after
1118 LEGACY_REGS. */
1119 static void
1120 reorder_important_classes (void)
1122 int i;
1124 for (i = 0; i < N_REG_CLASSES; i++)
1125 allocno_class_order[i] = -1;
1126 for (i = 0; i < ira_allocno_classes_num; i++)
1127 allocno_class_order[ira_allocno_classes[i]] = i;
1128 qsort (ira_important_classes, ira_important_classes_num,
1129 sizeof (enum reg_class), comp_reg_classes_func);
1130 for (i = 0; i < ira_important_classes_num; i++)
1131 ira_important_class_nums[ira_important_classes[i]] = i;
1134 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1135 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1136 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1137 please see corresponding comments in ira-int.h. */
1138 static void
1139 setup_reg_class_relations (void)
1141 int i, cl1, cl2, cl3;
1142 HARD_REG_SET intersection_set, union_set, temp_set2;
1143 bool important_class_p[N_REG_CLASSES];
1145 memset (important_class_p, 0, sizeof (important_class_p));
1146 for (i = 0; i < ira_important_classes_num; i++)
1147 important_class_p[ira_important_classes[i]] = true;
1148 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1150 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1151 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1153 ira_reg_classes_intersect_p[cl1][cl2] = false;
1154 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1155 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1156 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1157 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1158 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1159 if (hard_reg_set_empty_p (temp_hard_regset)
1160 && hard_reg_set_empty_p (temp_set2))
1162 /* The both classes have no allocatable hard registers
1163 -- take all class hard registers into account and use
1164 reg_class_subunion and reg_class_superunion. */
1165 for (i = 0;; i++)
1167 cl3 = reg_class_subclasses[cl1][i];
1168 if (cl3 == LIM_REG_CLASSES)
1169 break;
1170 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1171 (enum reg_class) cl3))
1172 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1174 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1175 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1176 continue;
1178 ira_reg_classes_intersect_p[cl1][cl2]
1179 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1180 if (important_class_p[cl1] && important_class_p[cl2]
1181 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1183 /* CL1 and CL2 are important classes and CL1 allocatable
1184 hard register set is inside of CL2 allocatable hard
1185 registers -- make CL1 a superset of CL2. */
1186 enum reg_class *p;
1188 p = &ira_reg_class_super_classes[cl1][0];
1189 while (*p != LIM_REG_CLASSES)
1190 p++;
1191 *p++ = (enum reg_class) cl2;
1192 *p = LIM_REG_CLASSES;
1194 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1195 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1196 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1197 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1198 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1199 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1200 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1201 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1202 for (i = 0; i < ira_important_classes_num; i++)
1204 cl3 = ira_important_classes[i];
1205 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1206 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1207 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1209 /* CL3 allocatable hard register set is inside of
1210 intersection of allocatable hard register sets
1211 of CL1 and CL2. */
1212 COPY_HARD_REG_SET
1213 (temp_set2,
1214 reg_class_contents[(int)
1215 ira_reg_class_intersect[cl1][cl2]]);
1216 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1217 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1218 /* If the allocatable hard register sets are the
1219 same, prefer GENERAL_REGS or the smallest
1220 class for debugging purposes. */
1221 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1222 && (cl3 == GENERAL_REGS
1223 || (ira_reg_class_intersect[cl1][cl2] != GENERAL_REGS
1224 && hard_reg_set_subset_p
1225 (reg_class_contents[cl3],
1226 reg_class_contents
1227 [(int) ira_reg_class_intersect[cl1][cl2]])))))
1228 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1230 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1232 /* CL3 allocatbale hard register set is inside of
1233 union of allocatable hard register sets of CL1
1234 and CL2. */
1235 COPY_HARD_REG_SET
1236 (temp_set2,
1237 reg_class_contents[(int) ira_reg_class_subunion[cl1][cl2]]);
1238 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1239 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1240 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1242 && (! hard_reg_set_equal_p (temp_set2,
1243 temp_hard_regset)
1244 || cl3 == GENERAL_REGS
1245 /* If the allocatable hard register sets are the
1246 same, prefer GENERAL_REGS or the smallest
1247 class for debugging purposes. */
1248 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1249 && hard_reg_set_subset_p
1250 (reg_class_contents[cl3],
1251 reg_class_contents
1252 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1253 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1255 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1257 /* CL3 allocatable hard register set contains union
1258 of allocatable hard register sets of CL1 and
1259 CL2. */
1260 COPY_HARD_REG_SET
1261 (temp_set2,
1262 reg_class_contents[(int) ira_reg_class_superunion[cl1][cl2]]);
1263 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1264 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1265 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1267 && (! hard_reg_set_equal_p (temp_set2,
1268 temp_hard_regset)
1269 || cl3 == GENERAL_REGS
1270 /* If the allocatable hard register sets are the
1271 same, prefer GENERAL_REGS or the smallest
1272 class for debugging purposes. */
1273 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1274 && hard_reg_set_subset_p
1275 (reg_class_contents[cl3],
1276 reg_class_contents
1277 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1278 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1285 /* Output all possible allocno classes and the translation map into
1286 file F. */
1287 static void
1288 print_classes (FILE *f, bool pressure_p)
1290 int classes_num = (pressure_p
1291 ? ira_pressure_classes_num : ira_allocno_classes_num);
1292 enum reg_class *classes = (pressure_p
1293 ? ira_pressure_classes : ira_allocno_classes);
1294 enum reg_class *class_translate = (pressure_p
1295 ? ira_pressure_class_translate
1296 : ira_allocno_class_translate);
1297 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1298 int i;
1300 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1301 for (i = 0; i < classes_num; i++)
1302 fprintf (f, " %s", reg_class_names[classes[i]]);
1303 fprintf (f, "\nClass translation:\n");
1304 for (i = 0; i < N_REG_CLASSES; i++)
1305 fprintf (f, " %s -> %s\n", reg_class_names[i],
1306 reg_class_names[class_translate[i]]);
1309 /* Output all possible allocno and translation classes and the
1310 translation maps into stderr. */
1311 void
1312 ira_debug_allocno_classes (void)
1314 print_classes (stderr, false);
1315 print_classes (stderr, true);
1318 /* Set up different arrays concerning class subsets, allocno and
1319 important classes. */
1320 static void
1321 find_reg_classes (void)
1323 setup_allocno_and_important_classes ();
1324 setup_class_translate ();
1325 reorder_important_classes ();
1326 setup_reg_class_relations ();
1331 /* Set up the array above. */
1332 static void
1333 setup_hard_regno_aclass (void)
1335 int i;
1337 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1339 #if 1
1340 ira_hard_regno_allocno_class[i]
1341 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1342 ? NO_REGS
1343 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1344 #else
1345 int j;
1346 enum reg_class cl;
1347 ira_hard_regno_allocno_class[i] = NO_REGS;
1348 for (j = 0; j < ira_allocno_classes_num; j++)
1350 cl = ira_allocno_classes[j];
1351 if (ira_class_hard_reg_index[cl][i] >= 0)
1353 ira_hard_regno_allocno_class[i] = cl;
1354 break;
1357 #endif
1363 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1364 static void
1365 setup_reg_class_nregs (void)
1367 int i, cl, cl2, m;
1369 for (m = 0; m < MAX_MACHINE_MODE; m++)
1371 for (cl = 0; cl < N_REG_CLASSES; cl++)
1372 ira_reg_class_max_nregs[cl][m]
1373 = ira_reg_class_min_nregs[cl][m]
1374 = CLASS_MAX_NREGS ((enum reg_class) cl, (enum machine_mode) m);
1375 for (cl = 0; cl < N_REG_CLASSES; cl++)
1376 for (i = 0;
1377 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1378 i++)
1379 if (ira_reg_class_min_nregs[cl2][m]
1380 < ira_reg_class_min_nregs[cl][m])
1381 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1387 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS. */
1388 static void
1389 setup_prohibited_class_mode_regs (void)
1391 int j, k, hard_regno, cl;
1393 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1395 for (j = 0; j < NUM_MACHINE_MODES; j++)
1397 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1398 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1400 hard_regno = ira_class_hard_regs[cl][k];
1401 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1402 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1403 hard_regno);
1409 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1410 spanning from one register pressure class to another one. It is
1411 called after defining the pressure classes. */
1412 static void
1413 clarify_prohibited_class_mode_regs (void)
1415 int j, k, hard_regno, cl, pclass, nregs;
1417 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1418 for (j = 0; j < NUM_MACHINE_MODES; j++)
1419 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1421 hard_regno = ira_class_hard_regs[cl][k];
1422 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1423 continue;
1424 nregs = hard_regno_nregs[hard_regno][j];
1425 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1426 for (nregs-- ;nregs >= 0; nregs--)
1427 if (((enum reg_class) pclass
1428 != ira_pressure_class_translate[REGNO_REG_CLASS
1429 (hard_regno + nregs)]))
1431 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1432 hard_regno);
1433 break;
1440 /* Allocate and initialize IRA_REGISTER_MOVE_COST,
1441 IRA_MAX_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST,
1442 IRA_MAY_MOVE_OUT_COST, IRA_MAX_MAY_MOVE_IN_COST, and
1443 IRA_MAX_MAY_MOVE_OUT_COST for MODE if it is not done yet. */
1444 void
1445 ira_init_register_move_cost (enum machine_mode mode)
1447 int cl1, cl2, cl3;
1449 ira_assert (ira_register_move_cost[mode] == NULL
1450 && ira_max_register_move_cost[mode] == NULL
1451 && ira_may_move_in_cost[mode] == NULL
1452 && ira_may_move_out_cost[mode] == NULL
1453 && ira_max_may_move_in_cost[mode] == NULL
1454 && ira_max_may_move_out_cost[mode] == NULL);
1455 if (move_cost[mode] == NULL)
1456 init_move_cost (mode);
1457 ira_register_move_cost[mode] = move_cost[mode];
1458 /* Don't use ira_allocate because the tables exist out of scope of a
1459 IRA call. */
1460 ira_max_register_move_cost[mode]
1461 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1462 memcpy (ira_max_register_move_cost[mode], ira_register_move_cost[mode],
1463 sizeof (move_table) * N_REG_CLASSES);
1464 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1466 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1467 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1468 if (hard_reg_set_empty_p (temp_hard_regset))
1469 continue;
1470 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1471 if (hard_reg_set_subset_p (reg_class_contents[cl1],
1472 reg_class_contents[cl2]))
1473 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1475 if (ira_max_register_move_cost[mode][cl2][cl3]
1476 < ira_register_move_cost[mode][cl1][cl3])
1477 ira_max_register_move_cost[mode][cl2][cl3]
1478 = ira_register_move_cost[mode][cl1][cl3];
1479 if (ira_max_register_move_cost[mode][cl3][cl2]
1480 < ira_register_move_cost[mode][cl3][cl1])
1481 ira_max_register_move_cost[mode][cl3][cl2]
1482 = ira_register_move_cost[mode][cl3][cl1];
1485 ira_may_move_in_cost[mode]
1486 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1487 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1488 sizeof (move_table) * N_REG_CLASSES);
1489 ira_may_move_out_cost[mode]
1490 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1491 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1492 sizeof (move_table) * N_REG_CLASSES);
1493 ira_max_may_move_in_cost[mode]
1494 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1495 memcpy (ira_max_may_move_in_cost[mode], ira_max_register_move_cost[mode],
1496 sizeof (move_table) * N_REG_CLASSES);
1497 ira_max_may_move_out_cost[mode]
1498 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1499 memcpy (ira_max_may_move_out_cost[mode], ira_max_register_move_cost[mode],
1500 sizeof (move_table) * N_REG_CLASSES);
1501 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1503 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1505 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl2]);
1506 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1507 if (hard_reg_set_empty_p (temp_hard_regset))
1508 continue;
1509 if (ira_class_subset_p[cl1][cl2])
1510 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1511 if (ira_class_subset_p[cl2][cl1])
1512 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1513 if (ira_class_subset_p[cl1][cl2])
1514 ira_max_may_move_in_cost[mode][cl1][cl2] = 0;
1515 if (ira_class_subset_p[cl2][cl1])
1516 ira_max_may_move_out_cost[mode][cl1][cl2] = 0;
1517 ira_register_move_cost[mode][cl1][cl2]
1518 = ira_max_register_move_cost[mode][cl1][cl2];
1519 ira_may_move_in_cost[mode][cl1][cl2]
1520 = ira_max_may_move_in_cost[mode][cl1][cl2];
1521 ira_may_move_out_cost[mode][cl1][cl2]
1522 = ira_max_may_move_out_cost[mode][cl1][cl2];
1529 /* This is called once during compiler work. It sets up
1530 different arrays whose values don't depend on the compiled
1531 function. */
1532 void
1533 ira_init_once (void)
1535 int mode;
1537 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1539 ira_register_move_cost[mode] = NULL;
1540 ira_max_register_move_cost[mode] = NULL;
1541 ira_may_move_in_cost[mode] = NULL;
1542 ira_may_move_out_cost[mode] = NULL;
1543 ira_max_may_move_in_cost[mode] = NULL;
1544 ira_max_may_move_out_cost[mode] = NULL;
1546 ira_init_costs_once ();
1549 /* Free ira_max_register_move_cost, ira_may_move_in_cost,
1550 ira_may_move_out_cost, ira_max_may_move_in_cost, and
1551 ira_max_may_move_out_cost for each mode. */
1552 static void
1553 free_register_move_costs (void)
1555 int mode;
1557 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1559 if (ira_max_register_move_cost[mode] != NULL)
1560 free (ira_max_register_move_cost[mode]);
1561 if (ira_may_move_in_cost[mode] != NULL)
1562 free (ira_may_move_in_cost[mode]);
1563 if (ira_may_move_out_cost[mode] != NULL)
1564 free (ira_may_move_out_cost[mode]);
1565 if (ira_max_may_move_in_cost[mode] != NULL)
1566 free (ira_max_may_move_in_cost[mode]);
1567 if (ira_max_may_move_out_cost[mode] != NULL)
1568 free (ira_max_may_move_out_cost[mode]);
1569 ira_register_move_cost[mode] = NULL;
1570 ira_max_register_move_cost[mode] = NULL;
1571 ira_may_move_in_cost[mode] = NULL;
1572 ira_may_move_out_cost[mode] = NULL;
1573 ira_max_may_move_in_cost[mode] = NULL;
1574 ira_max_may_move_out_cost[mode] = NULL;
1578 /* This is called every time when register related information is
1579 changed. */
1580 void
1581 ira_init (void)
1583 free_register_move_costs ();
1584 setup_reg_mode_hard_regset ();
1585 setup_alloc_regs (flag_omit_frame_pointer != 0);
1586 setup_class_subset_and_memory_move_costs ();
1587 setup_reg_class_nregs ();
1588 setup_prohibited_class_mode_regs ();
1589 find_reg_classes ();
1590 clarify_prohibited_class_mode_regs ();
1591 setup_hard_regno_aclass ();
1592 ira_init_costs ();
1595 /* Function called once at the end of compiler work. */
1596 void
1597 ira_finish_once (void)
1599 ira_finish_costs_once ();
1600 free_register_move_costs ();
1604 #define ira_prohibited_mode_move_regs_initialized_p \
1605 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1607 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1608 static void
1609 setup_prohibited_mode_move_regs (void)
1611 int i, j;
1612 rtx test_reg1, test_reg2, move_pat, move_insn;
1614 if (ira_prohibited_mode_move_regs_initialized_p)
1615 return;
1616 ira_prohibited_mode_move_regs_initialized_p = true;
1617 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1618 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1619 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1620 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, move_pat, 0, -1, 0);
1621 for (i = 0; i < NUM_MACHINE_MODES; i++)
1623 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1624 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1626 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1627 continue;
1628 SET_REGNO_RAW (test_reg1, j);
1629 PUT_MODE (test_reg1, (enum machine_mode) i);
1630 SET_REGNO_RAW (test_reg2, j);
1631 PUT_MODE (test_reg2, (enum machine_mode) i);
1632 INSN_CODE (move_insn) = -1;
1633 recog_memoized (move_insn);
1634 if (INSN_CODE (move_insn) < 0)
1635 continue;
1636 extract_insn (move_insn);
1637 if (! constrain_operands (1))
1638 continue;
1639 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1646 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
1647 static bool
1648 ira_bad_reload_regno_1 (int regno, rtx x)
1650 int x_regno, n, i;
1651 ira_allocno_t a;
1652 enum reg_class pref;
1654 /* We only deal with pseudo regs. */
1655 if (! x || GET_CODE (x) != REG)
1656 return false;
1658 x_regno = REGNO (x);
1659 if (x_regno < FIRST_PSEUDO_REGISTER)
1660 return false;
1662 /* If the pseudo prefers REGNO explicitly, then do not consider
1663 REGNO a bad spill choice. */
1664 pref = reg_preferred_class (x_regno);
1665 if (reg_class_size[pref] == 1)
1666 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
1668 /* If the pseudo conflicts with REGNO, then we consider REGNO a
1669 poor choice for a reload regno. */
1670 a = ira_regno_allocno_map[x_regno];
1671 n = ALLOCNO_NUM_OBJECTS (a);
1672 for (i = 0; i < n; i++)
1674 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1675 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
1676 return true;
1678 return false;
1681 /* Return nonzero if REGNO is a particularly bad choice for reloading
1682 IN or OUT. */
1683 bool
1684 ira_bad_reload_regno (int regno, rtx in, rtx out)
1686 return (ira_bad_reload_regno_1 (regno, in)
1687 || ira_bad_reload_regno_1 (regno, out));
1690 /* Return TRUE if *LOC contains an asm. */
1691 static int
1692 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1694 if ( !*loc)
1695 return FALSE;
1696 if (GET_CODE (*loc) == ASM_OPERANDS)
1697 return TRUE;
1698 return FALSE;
1702 /* Return TRUE if INSN contains an ASM. */
1703 static bool
1704 insn_contains_asm (rtx insn)
1706 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1709 /* Add register clobbers from asm statements. */
1710 static void
1711 compute_regs_asm_clobbered (void)
1713 basic_block bb;
1715 FOR_EACH_BB (bb)
1717 rtx insn;
1718 FOR_BB_INSNS_REVERSE (bb, insn)
1720 df_ref *def_rec;
1722 if (insn_contains_asm (insn))
1723 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1725 df_ref def = *def_rec;
1726 unsigned int dregno = DF_REF_REGNO (def);
1727 if (dregno < FIRST_PSEUDO_REGISTER)
1729 unsigned int i;
1730 enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
1731 unsigned int end = dregno
1732 + hard_regno_nregs[dregno][mode] - 1;
1734 for (i = dregno; i <= end; ++i)
1735 SET_HARD_REG_BIT(crtl->asm_clobbers, i);
1743 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1744 void
1745 ira_setup_eliminable_regset (void)
1747 #ifdef ELIMINABLE_REGS
1748 int i;
1749 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1750 #endif
1751 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1752 sp for alloca. So we can't eliminate the frame pointer in that
1753 case. At some point, we should improve this by emitting the
1754 sp-adjusting insns for this case. */
1755 int need_fp
1756 = (! flag_omit_frame_pointer
1757 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1758 /* We need the frame pointer to catch stack overflow exceptions
1759 if the stack pointer is moving. */
1760 || (flag_stack_check && STACK_CHECK_MOVING_SP)
1761 || crtl->accesses_prior_frames
1762 || crtl->stack_realign_needed
1763 || targetm.frame_pointer_required ());
1765 frame_pointer_needed = need_fp;
1767 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1768 CLEAR_HARD_REG_SET (eliminable_regset);
1770 compute_regs_asm_clobbered ();
1772 /* Build the regset of all eliminable registers and show we can't
1773 use those that we already know won't be eliminated. */
1774 #ifdef ELIMINABLE_REGS
1775 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1777 bool cannot_elim
1778 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
1779 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1781 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
1783 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1785 if (cannot_elim)
1786 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1788 else if (cannot_elim)
1789 error ("%s cannot be used in asm here",
1790 reg_names[eliminables[i].from]);
1791 else
1792 df_set_regs_ever_live (eliminables[i].from, true);
1794 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1795 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1797 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1798 if (need_fp)
1799 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1801 else if (need_fp)
1802 error ("%s cannot be used in asm here",
1803 reg_names[HARD_FRAME_POINTER_REGNUM]);
1804 else
1805 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1806 #endif
1808 #else
1809 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1811 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1812 if (need_fp)
1813 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1815 else if (need_fp)
1816 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1817 else
1818 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1819 #endif
1824 /* The length of the following two arrays. */
1825 int ira_reg_equiv_len;
1827 /* The element value is TRUE if the corresponding regno value is
1828 invariant. */
1829 bool *ira_reg_equiv_invariant_p;
1831 /* The element value is equiv constant of given pseudo-register or
1832 NULL_RTX. */
1833 rtx *ira_reg_equiv_const;
1835 /* Set up the two arrays declared above. */
1836 static void
1837 find_reg_equiv_invariant_const (void)
1839 int i;
1840 bool invariant_p;
1841 rtx list, insn, note, constant, x;
1843 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1845 constant = NULL_RTX;
1846 invariant_p = false;
1847 for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
1849 insn = XEXP (list, 0);
1850 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1852 if (note == NULL_RTX)
1853 continue;
1855 x = XEXP (note, 0);
1857 if (! CONSTANT_P (x)
1858 || ! flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
1860 /* It can happen that a REG_EQUIV note contains a MEM
1861 that is not a legitimate memory operand. As later
1862 stages of the reload assume that all addresses found
1863 in the reg_equiv_* arrays were originally legitimate,
1864 we ignore such REG_EQUIV notes. */
1865 if (memory_operand (x, VOIDmode))
1866 invariant_p = MEM_READONLY_P (x);
1867 else if (function_invariant_p (x))
1869 if (GET_CODE (x) == PLUS
1870 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1871 invariant_p = true;
1872 else
1873 constant = x;
1877 ira_reg_equiv_invariant_p[i] = invariant_p;
1878 ira_reg_equiv_const[i] = constant;
1884 /* Vector of substitutions of register numbers,
1885 used to map pseudo regs into hardware regs.
1886 This is set up as a result of register allocation.
1887 Element N is the hard reg assigned to pseudo reg N,
1888 or is -1 if no hard reg was assigned.
1889 If N is a hard reg number, element N is N. */
1890 short *reg_renumber;
1892 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1893 the allocation found by IRA. */
1894 static void
1895 setup_reg_renumber (void)
1897 int regno, hard_regno;
1898 ira_allocno_t a;
1899 ira_allocno_iterator ai;
1901 caller_save_needed = 0;
1902 FOR_EACH_ALLOCNO (a, ai)
1904 /* There are no caps at this point. */
1905 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1906 if (! ALLOCNO_ASSIGNED_P (a))
1907 /* It can happen if A is not referenced but partially anticipated
1908 somewhere in a region. */
1909 ALLOCNO_ASSIGNED_P (a) = true;
1910 ira_free_allocno_updated_costs (a);
1911 hard_regno = ALLOCNO_HARD_REGNO (a);
1912 regno = ALLOCNO_REGNO (a);
1913 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1914 if (hard_regno >= 0)
1916 int i, nwords;
1917 enum reg_class pclass;
1918 ira_object_t obj;
1920 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1921 nwords = ALLOCNO_NUM_OBJECTS (a);
1922 for (i = 0; i < nwords; i++)
1924 obj = ALLOCNO_OBJECT (a, i);
1925 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1926 reg_class_contents[pclass]);
1928 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1929 && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1930 call_used_reg_set))
1932 ira_assert (!optimize || flag_caller_saves
1933 || regno >= ira_reg_equiv_len
1934 || ira_reg_equiv_const[regno]
1935 || ira_reg_equiv_invariant_p[regno]);
1936 caller_save_needed = 1;
1942 /* Set up allocno assignment flags for further allocation
1943 improvements. */
1944 static void
1945 setup_allocno_assignment_flags (void)
1947 int hard_regno;
1948 ira_allocno_t a;
1949 ira_allocno_iterator ai;
1951 FOR_EACH_ALLOCNO (a, ai)
1953 if (! ALLOCNO_ASSIGNED_P (a))
1954 /* It can happen if A is not referenced but partially anticipated
1955 somewhere in a region. */
1956 ira_free_allocno_updated_costs (a);
1957 hard_regno = ALLOCNO_HARD_REGNO (a);
1958 /* Don't assign hard registers to allocnos which are destination
1959 of removed store at the end of loop. It has no sense to keep
1960 the same value in different hard registers. It is also
1961 impossible to assign hard registers correctly to such
1962 allocnos because the cost info and info about intersected
1963 calls are incorrect for them. */
1964 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1965 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
1966 || (ALLOCNO_MEMORY_COST (a)
1967 - ALLOCNO_CLASS_COST (a)) < 0);
1968 ira_assert (hard_regno < 0
1969 || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1970 reg_class_contents
1971 [ALLOCNO_CLASS (a)]));
1975 /* Evaluate overall allocation cost and the costs for using hard
1976 registers and memory for allocnos. */
1977 static void
1978 calculate_allocation_cost (void)
1980 int hard_regno, cost;
1981 ira_allocno_t a;
1982 ira_allocno_iterator ai;
1984 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1985 FOR_EACH_ALLOCNO (a, ai)
1987 hard_regno = ALLOCNO_HARD_REGNO (a);
1988 ira_assert (hard_regno < 0
1989 || ! ira_hard_reg_not_in_set_p
1990 (hard_regno, ALLOCNO_MODE (a),
1991 reg_class_contents[ALLOCNO_CLASS (a)]));
1992 if (hard_regno < 0)
1994 cost = ALLOCNO_MEMORY_COST (a);
1995 ira_mem_cost += cost;
1997 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1999 cost = (ALLOCNO_HARD_REG_COSTS (a)
2000 [ira_class_hard_reg_index
2001 [ALLOCNO_CLASS (a)][hard_regno]]);
2002 ira_reg_cost += cost;
2004 else
2006 cost = ALLOCNO_CLASS_COST (a);
2007 ira_reg_cost += cost;
2009 ira_overall_cost += cost;
2012 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2014 fprintf (ira_dump_file,
2015 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
2016 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2017 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2018 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
2019 ira_move_loops_num, ira_additional_jumps_num);
2024 #ifdef ENABLE_IRA_CHECKING
2025 /* Check the correctness of the allocation. We do need this because
2026 of complicated code to transform more one region internal
2027 representation into one region representation. */
2028 static void
2029 check_allocation (void)
2031 ira_allocno_t a;
2032 int hard_regno, nregs, conflict_nregs;
2033 ira_allocno_iterator ai;
2035 FOR_EACH_ALLOCNO (a, ai)
2037 int n = ALLOCNO_NUM_OBJECTS (a);
2038 int i;
2040 if (ALLOCNO_CAP_MEMBER (a) != NULL
2041 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2042 continue;
2043 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
2044 if (nregs == 1)
2045 /* We allocated a single hard register. */
2046 n = 1;
2047 else if (n > 1)
2048 /* We allocated multiple hard registers, and we will test
2049 conflicts in a granularity of single hard regs. */
2050 nregs = 1;
2052 for (i = 0; i < n; i++)
2054 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2055 ira_object_t conflict_obj;
2056 ira_object_conflict_iterator oci;
2057 int this_regno = hard_regno;
2058 if (n > 1)
2060 if (WORDS_BIG_ENDIAN)
2061 this_regno += n - i - 1;
2062 else
2063 this_regno += i;
2065 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2067 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2068 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2069 if (conflict_hard_regno < 0)
2070 continue;
2072 conflict_nregs
2073 = (hard_regno_nregs
2074 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
2076 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2077 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2079 if (WORDS_BIG_ENDIAN)
2080 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2081 - OBJECT_SUBWORD (conflict_obj) - 1);
2082 else
2083 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2084 conflict_nregs = 1;
2087 if ((conflict_hard_regno <= this_regno
2088 && this_regno < conflict_hard_regno + conflict_nregs)
2089 || (this_regno <= conflict_hard_regno
2090 && conflict_hard_regno < this_regno + nregs))
2092 fprintf (stderr, "bad allocation for %d and %d\n",
2093 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2094 gcc_unreachable ();
2100 #endif
2102 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2103 by IRA. */
2104 static void
2105 fix_reg_equiv_init (void)
2107 int max_regno = max_reg_num ();
2108 int i, new_regno;
2109 rtx x, prev, next, insn, set;
2111 if (reg_equiv_init_size < max_regno)
2113 reg_equiv_init = GGC_RESIZEVEC (rtx, reg_equiv_init, max_regno);
2114 while (reg_equiv_init_size < max_regno)
2115 reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
2116 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
2117 for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
2119 next = XEXP (x, 1);
2120 insn = XEXP (x, 0);
2121 set = single_set (insn);
2122 ira_assert (set != NULL_RTX
2123 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2124 if (REG_P (SET_DEST (set))
2125 && ((int) REGNO (SET_DEST (set)) == i
2126 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2127 new_regno = REGNO (SET_DEST (set));
2128 else if (REG_P (SET_SRC (set))
2129 && ((int) REGNO (SET_SRC (set)) == i
2130 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2131 new_regno = REGNO (SET_SRC (set));
2132 else
2133 gcc_unreachable ();
2134 if (new_regno == i)
2135 prev = x;
2136 else
2138 if (prev == NULL_RTX)
2139 reg_equiv_init[i] = next;
2140 else
2141 XEXP (prev, 1) = next;
2142 XEXP (x, 1) = reg_equiv_init[new_regno];
2143 reg_equiv_init[new_regno] = x;
2149 #ifdef ENABLE_IRA_CHECKING
2150 /* Print redundant memory-memory copies. */
2151 static void
2152 print_redundant_copies (void)
2154 int hard_regno;
2155 ira_allocno_t a;
2156 ira_copy_t cp, next_cp;
2157 ira_allocno_iterator ai;
2159 FOR_EACH_ALLOCNO (a, ai)
2161 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2162 /* It is a cap. */
2163 continue;
2164 hard_regno = ALLOCNO_HARD_REGNO (a);
2165 if (hard_regno >= 0)
2166 continue;
2167 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2168 if (cp->first == a)
2169 next_cp = cp->next_first_allocno_copy;
2170 else
2172 next_cp = cp->next_second_allocno_copy;
2173 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2174 && cp->insn != NULL_RTX
2175 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2176 fprintf (ira_dump_file,
2177 " Redundant move from %d(freq %d):%d\n",
2178 INSN_UID (cp->insn), cp->freq, hard_regno);
2182 #endif
2184 /* Setup preferred and alternative classes for new pseudo-registers
2185 created by IRA starting with START. */
2186 static void
2187 setup_preferred_alternate_classes_for_new_pseudos (int start)
2189 int i, old_regno;
2190 int max_regno = max_reg_num ();
2192 for (i = start; i < max_regno; i++)
2194 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2195 ira_assert (i != old_regno);
2196 setup_reg_classes (i, reg_preferred_class (old_regno),
2197 reg_alternate_class (old_regno),
2198 reg_allocno_class (old_regno));
2199 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2200 fprintf (ira_dump_file,
2201 " New r%d: setting preferred %s, alternative %s\n",
2202 i, reg_class_names[reg_preferred_class (old_regno)],
2203 reg_class_names[reg_alternate_class (old_regno)]);
2209 /* Regional allocation can create new pseudo-registers. This function
2210 expands some arrays for pseudo-registers. */
2211 static void
2212 expand_reg_info (int old_size)
2214 int i;
2215 int size = max_reg_num ();
2217 resize_reg_info ();
2218 for (i = old_size; i < size; i++)
2219 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2222 /* Return TRUE if there is too high register pressure in the function.
2223 It is used to decide when stack slot sharing is worth to do. */
2224 static bool
2225 too_high_register_pressure_p (void)
2227 int i;
2228 enum reg_class pclass;
2230 for (i = 0; i < ira_pressure_classes_num; i++)
2232 pclass = ira_pressure_classes[i];
2233 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2234 return true;
2236 return false;
2241 /* Indicate that hard register number FROM was eliminated and replaced with
2242 an offset from hard register number TO. The status of hard registers live
2243 at the start of a basic block is updated by replacing a use of FROM with
2244 a use of TO. */
2246 void
2247 mark_elimination (int from, int to)
2249 basic_block bb;
2251 FOR_EACH_BB (bb)
2253 /* We don't use LIVE info in IRA. */
2254 bitmap r = DF_LR_IN (bb);
2256 if (REGNO_REG_SET_P (r, from))
2258 CLEAR_REGNO_REG_SET (r, from);
2259 SET_REGNO_REG_SET (r, to);
2266 struct equivalence
2268 /* Set when a REG_EQUIV note is found or created. Use to
2269 keep track of what memory accesses might be created later,
2270 e.g. by reload. */
2271 rtx replacement;
2272 rtx *src_p;
2273 /* The list of each instruction which initializes this register. */
2274 rtx init_insns;
2275 /* Loop depth is used to recognize equivalences which appear
2276 to be present within the same loop (or in an inner loop). */
2277 int loop_depth;
2278 /* Nonzero if this had a preexisting REG_EQUIV note. */
2279 int is_arg_equivalence;
2280 /* Set when an attempt should be made to replace a register
2281 with the associated src_p entry. */
2282 char replace;
2285 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2286 structure for that register. */
2287 static struct equivalence *reg_equiv;
2289 /* Used for communication between the following two functions: contains
2290 a MEM that we wish to ensure remains unchanged. */
2291 static rtx equiv_mem;
2293 /* Set nonzero if EQUIV_MEM is modified. */
2294 static int equiv_mem_modified;
2296 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2297 Called via note_stores. */
2298 static void
2299 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2300 void *data ATTRIBUTE_UNUSED)
2302 if ((REG_P (dest)
2303 && reg_overlap_mentioned_p (dest, equiv_mem))
2304 || (MEM_P (dest)
2305 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
2306 equiv_mem_modified = 1;
2309 /* Verify that no store between START and the death of REG invalidates
2310 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2311 by storing into an overlapping memory location, or with a non-const
2312 CALL_INSN.
2314 Return 1 if MEMREF remains valid. */
2315 static int
2316 validate_equiv_mem (rtx start, rtx reg, rtx memref)
2318 rtx insn;
2319 rtx note;
2321 equiv_mem = memref;
2322 equiv_mem_modified = 0;
2324 /* If the memory reference has side effects or is volatile, it isn't a
2325 valid equivalence. */
2326 if (side_effects_p (memref))
2327 return 0;
2329 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2331 if (! INSN_P (insn))
2332 continue;
2334 if (find_reg_note (insn, REG_DEAD, reg))
2335 return 1;
2337 /* This used to ignore readonly memory and const/pure calls. The problem
2338 is the equivalent form may reference a pseudo which gets assigned a
2339 call clobbered hard reg. When we later replace REG with its
2340 equivalent form, the value in the call-clobbered reg has been
2341 changed and all hell breaks loose. */
2342 if (CALL_P (insn))
2343 return 0;
2345 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2347 /* If a register mentioned in MEMREF is modified via an
2348 auto-increment, we lose the equivalence. Do the same if one
2349 dies; although we could extend the life, it doesn't seem worth
2350 the trouble. */
2352 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2353 if ((REG_NOTE_KIND (note) == REG_INC
2354 || REG_NOTE_KIND (note) == REG_DEAD)
2355 && REG_P (XEXP (note, 0))
2356 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2357 return 0;
2360 return 0;
2363 /* Returns zero if X is known to be invariant. */
2364 static int
2365 equiv_init_varies_p (rtx x)
2367 RTX_CODE code = GET_CODE (x);
2368 int i;
2369 const char *fmt;
2371 switch (code)
2373 case MEM:
2374 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2376 case CONST:
2377 case CONST_INT:
2378 case CONST_DOUBLE:
2379 case CONST_FIXED:
2380 case CONST_VECTOR:
2381 case SYMBOL_REF:
2382 case LABEL_REF:
2383 return 0;
2385 case REG:
2386 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2388 case ASM_OPERANDS:
2389 if (MEM_VOLATILE_P (x))
2390 return 1;
2392 /* Fall through. */
2394 default:
2395 break;
2398 fmt = GET_RTX_FORMAT (code);
2399 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2400 if (fmt[i] == 'e')
2402 if (equiv_init_varies_p (XEXP (x, i)))
2403 return 1;
2405 else if (fmt[i] == 'E')
2407 int j;
2408 for (j = 0; j < XVECLEN (x, i); j++)
2409 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2410 return 1;
2413 return 0;
2416 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2417 X is only movable if the registers it uses have equivalent initializations
2418 which appear to be within the same loop (or in an inner loop) and movable
2419 or if they are not candidates for local_alloc and don't vary. */
2420 static int
2421 equiv_init_movable_p (rtx x, int regno)
2423 int i, j;
2424 const char *fmt;
2425 enum rtx_code code = GET_CODE (x);
2427 switch (code)
2429 case SET:
2430 return equiv_init_movable_p (SET_SRC (x), regno);
2432 case CC0:
2433 case CLOBBER:
2434 return 0;
2436 case PRE_INC:
2437 case PRE_DEC:
2438 case POST_INC:
2439 case POST_DEC:
2440 case PRE_MODIFY:
2441 case POST_MODIFY:
2442 return 0;
2444 case REG:
2445 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2446 && reg_equiv[REGNO (x)].replace)
2447 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
2448 && ! rtx_varies_p (x, 0)));
2450 case UNSPEC_VOLATILE:
2451 return 0;
2453 case ASM_OPERANDS:
2454 if (MEM_VOLATILE_P (x))
2455 return 0;
2457 /* Fall through. */
2459 default:
2460 break;
2463 fmt = GET_RTX_FORMAT (code);
2464 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2465 switch (fmt[i])
2467 case 'e':
2468 if (! equiv_init_movable_p (XEXP (x, i), regno))
2469 return 0;
2470 break;
2471 case 'E':
2472 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2473 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2474 return 0;
2475 break;
2478 return 1;
2481 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is
2482 true. */
2483 static int
2484 contains_replace_regs (rtx x)
2486 int i, j;
2487 const char *fmt;
2488 enum rtx_code code = GET_CODE (x);
2490 switch (code)
2492 case CONST_INT:
2493 case CONST:
2494 case LABEL_REF:
2495 case SYMBOL_REF:
2496 case CONST_DOUBLE:
2497 case CONST_FIXED:
2498 case CONST_VECTOR:
2499 case PC:
2500 case CC0:
2501 case HIGH:
2502 return 0;
2504 case REG:
2505 return reg_equiv[REGNO (x)].replace;
2507 default:
2508 break;
2511 fmt = GET_RTX_FORMAT (code);
2512 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2513 switch (fmt[i])
2515 case 'e':
2516 if (contains_replace_regs (XEXP (x, i)))
2517 return 1;
2518 break;
2519 case 'E':
2520 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2521 if (contains_replace_regs (XVECEXP (x, i, j)))
2522 return 1;
2523 break;
2526 return 0;
2529 /* TRUE if X references a memory location that would be affected by a store
2530 to MEMREF. */
2531 static int
2532 memref_referenced_p (rtx memref, rtx x)
2534 int i, j;
2535 const char *fmt;
2536 enum rtx_code code = GET_CODE (x);
2538 switch (code)
2540 case CONST_INT:
2541 case CONST:
2542 case LABEL_REF:
2543 case SYMBOL_REF:
2544 case CONST_DOUBLE:
2545 case CONST_FIXED:
2546 case CONST_VECTOR:
2547 case PC:
2548 case CC0:
2549 case HIGH:
2550 case LO_SUM:
2551 return 0;
2553 case REG:
2554 return (reg_equiv[REGNO (x)].replacement
2555 && memref_referenced_p (memref,
2556 reg_equiv[REGNO (x)].replacement));
2558 case MEM:
2559 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2560 return 1;
2561 break;
2563 case SET:
2564 /* If we are setting a MEM, it doesn't count (its address does), but any
2565 other SET_DEST that has a MEM in it is referencing the MEM. */
2566 if (MEM_P (SET_DEST (x)))
2568 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2569 return 1;
2571 else if (memref_referenced_p (memref, SET_DEST (x)))
2572 return 1;
2574 return memref_referenced_p (memref, SET_SRC (x));
2576 default:
2577 break;
2580 fmt = GET_RTX_FORMAT (code);
2581 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2582 switch (fmt[i])
2584 case 'e':
2585 if (memref_referenced_p (memref, XEXP (x, i)))
2586 return 1;
2587 break;
2588 case 'E':
2589 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2590 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2591 return 1;
2592 break;
2595 return 0;
2598 /* TRUE if some insn in the range (START, END] references a memory location
2599 that would be affected by a store to MEMREF. */
2600 static int
2601 memref_used_between_p (rtx memref, rtx start, rtx end)
2603 rtx insn;
2605 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2606 insn = NEXT_INSN (insn))
2608 if (!NONDEBUG_INSN_P (insn))
2609 continue;
2611 if (memref_referenced_p (memref, PATTERN (insn)))
2612 return 1;
2614 /* Nonconst functions may access memory. */
2615 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2616 return 1;
2619 return 0;
2622 /* Mark REG as having no known equivalence.
2623 Some instructions might have been processed before and furnished
2624 with REG_EQUIV notes for this register; these notes will have to be
2625 removed.
2626 STORE is the piece of RTL that does the non-constant / conflicting
2627 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2628 but needs to be there because this function is called from note_stores. */
2629 static void
2630 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
2631 void *data ATTRIBUTE_UNUSED)
2633 int regno;
2634 rtx list;
2636 if (!REG_P (reg))
2637 return;
2638 regno = REGNO (reg);
2639 list = reg_equiv[regno].init_insns;
2640 if (list == const0_rtx)
2641 return;
2642 reg_equiv[regno].init_insns = const0_rtx;
2643 reg_equiv[regno].replacement = NULL_RTX;
2644 /* This doesn't matter for equivalences made for argument registers, we
2645 should keep their initialization insns. */
2646 if (reg_equiv[regno].is_arg_equivalence)
2647 return;
2648 reg_equiv_init[regno] = NULL_RTX;
2649 for (; list; list = XEXP (list, 1))
2651 rtx insn = XEXP (list, 0);
2652 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2656 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2657 equivalent replacement. */
2659 static rtx
2660 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2662 if (REG_P (loc))
2664 bitmap cleared_regs = (bitmap) data;
2665 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2666 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2667 NULL_RTX, adjust_cleared_regs, data);
2669 return NULL_RTX;
2672 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2673 static int recorded_label_ref;
2675 /* Find registers that are equivalent to a single value throughout the
2676 compilation (either because they can be referenced in memory or are
2677 set once from a single constant). Lower their priority for a
2678 register.
2680 If such a register is only referenced once, try substituting its
2681 value into the using insn. If it succeeds, we can eliminate the
2682 register completely.
2684 Initialize the REG_EQUIV_INIT array of initializing insns.
2686 Return non-zero if jump label rebuilding should be done. */
2687 static int
2688 update_equiv_regs (void)
2690 rtx insn;
2691 basic_block bb;
2692 int loop_depth;
2693 bitmap cleared_regs;
2695 /* We need to keep track of whether or not we recorded a LABEL_REF so
2696 that we know if the jump optimizer needs to be rerun. */
2697 recorded_label_ref = 0;
2699 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2700 reg_equiv_init = ggc_alloc_cleared_vec_rtx (max_regno);
2701 reg_equiv_init_size = max_regno;
2703 init_alias_analysis ();
2705 /* Scan the insns and find which registers have equivalences. Do this
2706 in a separate scan of the insns because (due to -fcse-follow-jumps)
2707 a register can be set below its use. */
2708 FOR_EACH_BB (bb)
2710 loop_depth = bb->loop_depth;
2712 for (insn = BB_HEAD (bb);
2713 insn != NEXT_INSN (BB_END (bb));
2714 insn = NEXT_INSN (insn))
2716 rtx note;
2717 rtx set;
2718 rtx dest, src;
2719 int regno;
2721 if (! INSN_P (insn))
2722 continue;
2724 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2725 if (REG_NOTE_KIND (note) == REG_INC)
2726 no_equiv (XEXP (note, 0), note, NULL);
2728 set = single_set (insn);
2730 /* If this insn contains more (or less) than a single SET,
2731 only mark all destinations as having no known equivalence. */
2732 if (set == 0)
2734 note_stores (PATTERN (insn), no_equiv, NULL);
2735 continue;
2737 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2739 int i;
2741 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2743 rtx part = XVECEXP (PATTERN (insn), 0, i);
2744 if (part != set)
2745 note_stores (part, no_equiv, NULL);
2749 dest = SET_DEST (set);
2750 src = SET_SRC (set);
2752 /* See if this is setting up the equivalence between an argument
2753 register and its stack slot. */
2754 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2755 if (note)
2757 gcc_assert (REG_P (dest));
2758 regno = REGNO (dest);
2760 /* Note that we don't want to clear reg_equiv_init even if there
2761 are multiple sets of this register. */
2762 reg_equiv[regno].is_arg_equivalence = 1;
2764 /* Record for reload that this is an equivalencing insn. */
2765 if (rtx_equal_p (src, XEXP (note, 0)))
2766 reg_equiv_init[regno]
2767 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2769 /* Continue normally in case this is a candidate for
2770 replacements. */
2773 if (!optimize)
2774 continue;
2776 /* We only handle the case of a pseudo register being set
2777 once, or always to the same value. */
2778 /* ??? The mn10200 port breaks if we add equivalences for
2779 values that need an ADDRESS_REGS register and set them equivalent
2780 to a MEM of a pseudo. The actual problem is in the over-conservative
2781 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2782 calculate_needs, but we traditionally work around this problem
2783 here by rejecting equivalences when the destination is in a register
2784 that's likely spilled. This is fragile, of course, since the
2785 preferred class of a pseudo depends on all instructions that set
2786 or use it. */
2788 if (!REG_P (dest)
2789 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2790 || reg_equiv[regno].init_insns == const0_rtx
2791 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
2792 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2794 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2795 also set somewhere else to a constant. */
2796 note_stores (set, no_equiv, NULL);
2797 continue;
2800 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2802 /* cse sometimes generates function invariants, but doesn't put a
2803 REG_EQUAL note on the insn. Since this note would be redundant,
2804 there's no point creating it earlier than here. */
2805 if (! note && ! rtx_varies_p (src, 0))
2806 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2808 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2809 since it represents a function call */
2810 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2811 note = NULL_RTX;
2813 if (DF_REG_DEF_COUNT (regno) != 1
2814 && (! note
2815 || rtx_varies_p (XEXP (note, 0), 0)
2816 || (reg_equiv[regno].replacement
2817 && ! rtx_equal_p (XEXP (note, 0),
2818 reg_equiv[regno].replacement))))
2820 no_equiv (dest, set, NULL);
2821 continue;
2823 /* Record this insn as initializing this register. */
2824 reg_equiv[regno].init_insns
2825 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2827 /* If this register is known to be equal to a constant, record that
2828 it is always equivalent to the constant. */
2829 if (DF_REG_DEF_COUNT (regno) == 1
2830 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2832 rtx note_value = XEXP (note, 0);
2833 remove_note (insn, note);
2834 set_unique_reg_note (insn, REG_EQUIV, note_value);
2837 /* If this insn introduces a "constant" register, decrease the priority
2838 of that register. Record this insn if the register is only used once
2839 more and the equivalence value is the same as our source.
2841 The latter condition is checked for two reasons: First, it is an
2842 indication that it may be more efficient to actually emit the insn
2843 as written (if no registers are available, reload will substitute
2844 the equivalence). Secondly, it avoids problems with any registers
2845 dying in this insn whose death notes would be missed.
2847 If we don't have a REG_EQUIV note, see if this insn is loading
2848 a register used only in one basic block from a MEM. If so, and the
2849 MEM remains unchanged for the life of the register, add a REG_EQUIV
2850 note. */
2852 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2854 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2855 && MEM_P (SET_SRC (set))
2856 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2857 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2859 if (note)
2861 int regno = REGNO (dest);
2862 rtx x = XEXP (note, 0);
2864 /* If we haven't done so, record for reload that this is an
2865 equivalencing insn. */
2866 if (!reg_equiv[regno].is_arg_equivalence)
2867 reg_equiv_init[regno]
2868 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2870 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2871 We might end up substituting the LABEL_REF for uses of the
2872 pseudo here or later. That kind of transformation may turn an
2873 indirect jump into a direct jump, in which case we must rerun the
2874 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2875 if (GET_CODE (x) == LABEL_REF
2876 || (GET_CODE (x) == CONST
2877 && GET_CODE (XEXP (x, 0)) == PLUS
2878 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2879 recorded_label_ref = 1;
2881 reg_equiv[regno].replacement = x;
2882 reg_equiv[regno].src_p = &SET_SRC (set);
2883 reg_equiv[regno].loop_depth = loop_depth;
2885 /* Don't mess with things live during setjmp. */
2886 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2888 /* Note that the statement below does not affect the priority
2889 in local-alloc! */
2890 REG_LIVE_LENGTH (regno) *= 2;
2892 /* If the register is referenced exactly twice, meaning it is
2893 set once and used once, indicate that the reference may be
2894 replaced by the equivalence we computed above. Do this
2895 even if the register is only used in one block so that
2896 dependencies can be handled where the last register is
2897 used in a different block (i.e. HIGH / LO_SUM sequences)
2898 and to reduce the number of registers alive across
2899 calls. */
2901 if (REG_N_REFS (regno) == 2
2902 && (rtx_equal_p (x, src)
2903 || ! equiv_init_varies_p (src))
2904 && NONJUMP_INSN_P (insn)
2905 && equiv_init_movable_p (PATTERN (insn), regno))
2906 reg_equiv[regno].replace = 1;
2912 if (!optimize)
2913 goto out;
2915 /* A second pass, to gather additional equivalences with memory. This needs
2916 to be done after we know which registers we are going to replace. */
2918 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2920 rtx set, src, dest;
2921 unsigned regno;
2923 if (! INSN_P (insn))
2924 continue;
2926 set = single_set (insn);
2927 if (! set)
2928 continue;
2930 dest = SET_DEST (set);
2931 src = SET_SRC (set);
2933 /* If this sets a MEM to the contents of a REG that is only used
2934 in a single basic block, see if the register is always equivalent
2935 to that memory location and if moving the store from INSN to the
2936 insn that set REG is safe. If so, put a REG_EQUIV note on the
2937 initializing insn.
2939 Don't add a REG_EQUIV note if the insn already has one. The existing
2940 REG_EQUIV is likely more useful than the one we are adding.
2942 If one of the regs in the address has reg_equiv[REGNO].replace set,
2943 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
2944 optimization may move the set of this register immediately before
2945 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
2946 the mention in the REG_EQUIV note would be to an uninitialized
2947 pseudo. */
2949 if (MEM_P (dest) && REG_P (src)
2950 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
2951 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2952 && DF_REG_DEF_COUNT (regno) == 1
2953 && reg_equiv[regno].init_insns != 0
2954 && reg_equiv[regno].init_insns != const0_rtx
2955 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
2956 REG_EQUIV, NULL_RTX)
2957 && ! contains_replace_regs (XEXP (dest, 0)))
2959 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
2960 if (validate_equiv_mem (init_insn, src, dest)
2961 && ! memref_used_between_p (dest, init_insn, insn)
2962 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
2963 multiple sets. */
2964 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2966 /* This insn makes the equivalence, not the one initializing
2967 the register. */
2968 reg_equiv_init[regno]
2969 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
2970 df_notes_rescan (init_insn);
2975 cleared_regs = BITMAP_ALLOC (NULL);
2976 /* Now scan all regs killed in an insn to see if any of them are
2977 registers only used that once. If so, see if we can replace the
2978 reference with the equivalent form. If we can, delete the
2979 initializing reference and this register will go away. If we
2980 can't replace the reference, and the initializing reference is
2981 within the same loop (or in an inner loop), then move the register
2982 initialization just before the use, so that they are in the same
2983 basic block. */
2984 FOR_EACH_BB_REVERSE (bb)
2986 loop_depth = bb->loop_depth;
2987 for (insn = BB_END (bb);
2988 insn != PREV_INSN (BB_HEAD (bb));
2989 insn = PREV_INSN (insn))
2991 rtx link;
2993 if (! INSN_P (insn))
2994 continue;
2996 /* Don't substitute into a non-local goto, this confuses CFG. */
2997 if (JUMP_P (insn)
2998 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2999 continue;
3001 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
3003 if (REG_NOTE_KIND (link) == REG_DEAD
3004 /* Make sure this insn still refers to the register. */
3005 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
3007 int regno = REGNO (XEXP (link, 0));
3008 rtx equiv_insn;
3010 if (! reg_equiv[regno].replace
3011 || reg_equiv[regno].loop_depth < loop_depth
3012 /* There is no sense to move insns if we did
3013 register pressure-sensitive scheduling was
3014 done because it will not improve allocation
3015 but worsen insn schedule with a big
3016 probability. */
3017 || (flag_sched_pressure && flag_schedule_insns))
3018 continue;
3020 /* reg_equiv[REGNO].replace gets set only when
3021 REG_N_REFS[REGNO] is 2, i.e. the register is set
3022 once and used once. (If it were only set, but not used,
3023 flow would have deleted the setting insns.) Hence
3024 there can only be one insn in reg_equiv[REGNO].init_insns. */
3025 gcc_assert (reg_equiv[regno].init_insns
3026 && !XEXP (reg_equiv[regno].init_insns, 1));
3027 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
3029 /* We may not move instructions that can throw, since
3030 that changes basic block boundaries and we are not
3031 prepared to adjust the CFG to match. */
3032 if (can_throw_internal (equiv_insn))
3033 continue;
3035 if (asm_noperands (PATTERN (equiv_insn)) < 0
3036 && validate_replace_rtx (regno_reg_rtx[regno],
3037 *(reg_equiv[regno].src_p), insn))
3039 rtx equiv_link;
3040 rtx last_link;
3041 rtx note;
3043 /* Find the last note. */
3044 for (last_link = link; XEXP (last_link, 1);
3045 last_link = XEXP (last_link, 1))
3048 /* Append the REG_DEAD notes from equiv_insn. */
3049 equiv_link = REG_NOTES (equiv_insn);
3050 while (equiv_link)
3052 note = equiv_link;
3053 equiv_link = XEXP (equiv_link, 1);
3054 if (REG_NOTE_KIND (note) == REG_DEAD)
3056 remove_note (equiv_insn, note);
3057 XEXP (last_link, 1) = note;
3058 XEXP (note, 1) = NULL_RTX;
3059 last_link = note;
3063 remove_death (regno, insn);
3064 SET_REG_N_REFS (regno, 0);
3065 REG_FREQ (regno) = 0;
3066 delete_insn (equiv_insn);
3068 reg_equiv[regno].init_insns
3069 = XEXP (reg_equiv[regno].init_insns, 1);
3071 reg_equiv_init[regno] = NULL_RTX;
3072 bitmap_set_bit (cleared_regs, regno);
3074 /* Move the initialization of the register to just before
3075 INSN. Update the flow information. */
3076 else if (prev_nondebug_insn (insn) != equiv_insn)
3078 rtx new_insn;
3080 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
3081 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
3082 REG_NOTES (equiv_insn) = 0;
3083 /* Rescan it to process the notes. */
3084 df_insn_rescan (new_insn);
3086 /* Make sure this insn is recognized before
3087 reload begins, otherwise
3088 eliminate_regs_in_insn will die. */
3089 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
3091 delete_insn (equiv_insn);
3093 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3095 REG_BASIC_BLOCK (regno) = bb->index;
3096 REG_N_CALLS_CROSSED (regno) = 0;
3097 REG_FREQ_CALLS_CROSSED (regno) = 0;
3098 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
3099 REG_LIVE_LENGTH (regno) = 2;
3101 if (insn == BB_HEAD (bb))
3102 BB_HEAD (bb) = PREV_INSN (insn);
3104 reg_equiv_init[regno]
3105 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3106 bitmap_set_bit (cleared_regs, regno);
3113 if (!bitmap_empty_p (cleared_regs))
3115 FOR_EACH_BB (bb)
3117 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3118 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3119 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3120 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3123 /* Last pass - adjust debug insns referencing cleared regs. */
3124 if (MAY_HAVE_DEBUG_INSNS)
3125 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3126 if (DEBUG_INSN_P (insn))
3128 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3129 INSN_VAR_LOCATION_LOC (insn)
3130 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3131 adjust_cleared_regs,
3132 (void *) cleared_regs);
3133 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3134 df_insn_rescan (insn);
3138 BITMAP_FREE (cleared_regs);
3140 out:
3141 /* Clean up. */
3143 end_alias_analysis ();
3144 free (reg_equiv);
3145 return recorded_label_ref;
3150 /* Print chain C to FILE. */
3151 static void
3152 print_insn_chain (FILE *file, struct insn_chain *c)
3154 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
3155 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
3156 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
3160 /* Print all reload_insn_chains to FILE. */
3161 static void
3162 print_insn_chains (FILE *file)
3164 struct insn_chain *c;
3165 for (c = reload_insn_chain; c ; c = c->next)
3166 print_insn_chain (file, c);
3169 /* Return true if pseudo REGNO should be added to set live_throughout
3170 or dead_or_set of the insn chains for reload consideration. */
3171 static bool
3172 pseudo_for_reload_consideration_p (int regno)
3174 /* Consider spilled pseudos too for IRA because they still have a
3175 chance to get hard-registers in the reload when IRA is used. */
3176 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
3179 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
3180 REG to the number of nregs, and INIT_VALUE to get the
3181 initialization. ALLOCNUM need not be the regno of REG. */
3182 static void
3183 init_live_subregs (bool init_value, sbitmap *live_subregs,
3184 int *live_subregs_used, int allocnum, rtx reg)
3186 unsigned int regno = REGNO (SUBREG_REG (reg));
3187 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
3189 gcc_assert (size > 0);
3191 /* Been there, done that. */
3192 if (live_subregs_used[allocnum])
3193 return;
3195 /* Create a new one with zeros. */
3196 if (live_subregs[allocnum] == NULL)
3197 live_subregs[allocnum] = sbitmap_alloc (size);
3199 /* If the entire reg was live before blasting into subregs, we need
3200 to init all of the subregs to ones else init to 0. */
3201 if (init_value)
3202 sbitmap_ones (live_subregs[allocnum]);
3203 else
3204 sbitmap_zero (live_subregs[allocnum]);
3206 /* Set the number of bits that we really want. */
3207 live_subregs_used[allocnum] = size;
3210 /* Walk the insns of the current function and build reload_insn_chain,
3211 and record register life information. */
3212 static void
3213 build_insn_chain (void)
3215 unsigned int i;
3216 struct insn_chain **p = &reload_insn_chain;
3217 basic_block bb;
3218 struct insn_chain *c = NULL;
3219 struct insn_chain *next = NULL;
3220 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
3221 bitmap elim_regset = BITMAP_ALLOC (NULL);
3222 /* live_subregs is a vector used to keep accurate information about
3223 which hardregs are live in multiword pseudos. live_subregs and
3224 live_subregs_used are indexed by pseudo number. The live_subreg
3225 entry for a particular pseudo is only used if the corresponding
3226 element is non zero in live_subregs_used. The value in
3227 live_subregs_used is number of bytes that the pseudo can
3228 occupy. */
3229 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
3230 int *live_subregs_used = XNEWVEC (int, max_regno);
3232 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3233 if (TEST_HARD_REG_BIT (eliminable_regset, i))
3234 bitmap_set_bit (elim_regset, i);
3235 FOR_EACH_BB_REVERSE (bb)
3237 bitmap_iterator bi;
3238 rtx insn;
3240 CLEAR_REG_SET (live_relevant_regs);
3241 memset (live_subregs_used, 0, max_regno * sizeof (int));
3243 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
3245 if (i >= FIRST_PSEUDO_REGISTER)
3246 break;
3247 bitmap_set_bit (live_relevant_regs, i);
3250 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
3251 FIRST_PSEUDO_REGISTER, i, bi)
3253 if (pseudo_for_reload_consideration_p (i))
3254 bitmap_set_bit (live_relevant_regs, i);
3257 FOR_BB_INSNS_REVERSE (bb, insn)
3259 if (!NOTE_P (insn) && !BARRIER_P (insn))
3261 unsigned int uid = INSN_UID (insn);
3262 df_ref *def_rec;
3263 df_ref *use_rec;
3265 c = new_insn_chain ();
3266 c->next = next;
3267 next = c;
3268 *p = c;
3269 p = &c->prev;
3271 c->insn = insn;
3272 c->block = bb->index;
3274 if (INSN_P (insn))
3275 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3277 df_ref def = *def_rec;
3278 unsigned int regno = DF_REF_REGNO (def);
3280 /* Ignore may clobbers because these are generated
3281 from calls. However, every other kind of def is
3282 added to dead_or_set. */
3283 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
3285 if (regno < FIRST_PSEUDO_REGISTER)
3287 if (!fixed_regs[regno])
3288 bitmap_set_bit (&c->dead_or_set, regno);
3290 else if (pseudo_for_reload_consideration_p (regno))
3291 bitmap_set_bit (&c->dead_or_set, regno);
3294 if ((regno < FIRST_PSEUDO_REGISTER
3295 || reg_renumber[regno] >= 0
3296 || ira_conflicts_p)
3297 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
3299 rtx reg = DF_REF_REG (def);
3301 /* We can model subregs, but not if they are
3302 wrapped in ZERO_EXTRACTS. */
3303 if (GET_CODE (reg) == SUBREG
3304 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
3306 unsigned int start = SUBREG_BYTE (reg);
3307 unsigned int last = start
3308 + GET_MODE_SIZE (GET_MODE (reg));
3310 init_live_subregs
3311 (bitmap_bit_p (live_relevant_regs, regno),
3312 live_subregs, live_subregs_used, regno, reg);
3314 if (!DF_REF_FLAGS_IS_SET
3315 (def, DF_REF_STRICT_LOW_PART))
3317 /* Expand the range to cover entire words.
3318 Bytes added here are "don't care". */
3319 start
3320 = start / UNITS_PER_WORD * UNITS_PER_WORD;
3321 last = ((last + UNITS_PER_WORD - 1)
3322 / UNITS_PER_WORD * UNITS_PER_WORD);
3325 /* Ignore the paradoxical bits. */
3326 if ((int)last > live_subregs_used[regno])
3327 last = live_subregs_used[regno];
3329 while (start < last)
3331 RESET_BIT (live_subregs[regno], start);
3332 start++;
3335 if (sbitmap_empty_p (live_subregs[regno]))
3337 live_subregs_used[regno] = 0;
3338 bitmap_clear_bit (live_relevant_regs, regno);
3340 else
3341 /* Set live_relevant_regs here because
3342 that bit has to be true to get us to
3343 look at the live_subregs fields. */
3344 bitmap_set_bit (live_relevant_regs, regno);
3346 else
3348 /* DF_REF_PARTIAL is generated for
3349 subregs, STRICT_LOW_PART, and
3350 ZERO_EXTRACT. We handle the subreg
3351 case above so here we have to keep from
3352 modeling the def as a killing def. */
3353 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
3355 bitmap_clear_bit (live_relevant_regs, regno);
3356 live_subregs_used[regno] = 0;
3362 bitmap_and_compl_into (live_relevant_regs, elim_regset);
3363 bitmap_copy (&c->live_throughout, live_relevant_regs);
3365 if (INSN_P (insn))
3366 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3368 df_ref use = *use_rec;
3369 unsigned int regno = DF_REF_REGNO (use);
3370 rtx reg = DF_REF_REG (use);
3372 /* DF_REF_READ_WRITE on a use means that this use
3373 is fabricated from a def that is a partial set
3374 to a multiword reg. Here, we only model the
3375 subreg case that is not wrapped in ZERO_EXTRACT
3376 precisely so we do not need to look at the
3377 fabricated use. */
3378 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
3379 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
3380 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
3381 continue;
3383 /* Add the last use of each var to dead_or_set. */
3384 if (!bitmap_bit_p (live_relevant_regs, regno))
3386 if (regno < FIRST_PSEUDO_REGISTER)
3388 if (!fixed_regs[regno])
3389 bitmap_set_bit (&c->dead_or_set, regno);
3391 else if (pseudo_for_reload_consideration_p (regno))
3392 bitmap_set_bit (&c->dead_or_set, regno);
3395 if (regno < FIRST_PSEUDO_REGISTER
3396 || pseudo_for_reload_consideration_p (regno))
3398 if (GET_CODE (reg) == SUBREG
3399 && !DF_REF_FLAGS_IS_SET (use,
3400 DF_REF_SIGN_EXTRACT
3401 | DF_REF_ZERO_EXTRACT))
3403 unsigned int start = SUBREG_BYTE (reg);
3404 unsigned int last = start
3405 + GET_MODE_SIZE (GET_MODE (reg));
3407 init_live_subregs
3408 (bitmap_bit_p (live_relevant_regs, regno),
3409 live_subregs, live_subregs_used, regno, reg);
3411 /* Ignore the paradoxical bits. */
3412 if ((int)last > live_subregs_used[regno])
3413 last = live_subregs_used[regno];
3415 while (start < last)
3417 SET_BIT (live_subregs[regno], start);
3418 start++;
3421 else
3422 /* Resetting the live_subregs_used is
3423 effectively saying do not use the subregs
3424 because we are reading the whole
3425 pseudo. */
3426 live_subregs_used[regno] = 0;
3427 bitmap_set_bit (live_relevant_regs, regno);
3433 /* FIXME!! The following code is a disaster. Reload needs to see the
3434 labels and jump tables that are just hanging out in between
3435 the basic blocks. See pr33676. */
3436 insn = BB_HEAD (bb);
3438 /* Skip over the barriers and cruft. */
3439 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
3440 || BLOCK_FOR_INSN (insn) == bb))
3441 insn = PREV_INSN (insn);
3443 /* While we add anything except barriers and notes, the focus is
3444 to get the labels and jump tables into the
3445 reload_insn_chain. */
3446 while (insn)
3448 if (!NOTE_P (insn) && !BARRIER_P (insn))
3450 if (BLOCK_FOR_INSN (insn))
3451 break;
3453 c = new_insn_chain ();
3454 c->next = next;
3455 next = c;
3456 *p = c;
3457 p = &c->prev;
3459 /* The block makes no sense here, but it is what the old
3460 code did. */
3461 c->block = bb->index;
3462 c->insn = insn;
3463 bitmap_copy (&c->live_throughout, live_relevant_regs);
3465 insn = PREV_INSN (insn);
3469 for (i = 0; i < (unsigned int) max_regno; i++)
3470 if (live_subregs[i])
3471 free (live_subregs[i]);
3473 reload_insn_chain = c;
3474 *p = NULL;
3476 free (live_subregs);
3477 free (live_subregs_used);
3478 BITMAP_FREE (live_relevant_regs);
3479 BITMAP_FREE (elim_regset);
3481 if (dump_file)
3482 print_insn_chains (dump_file);
3485 /* Allocate memory for reg_equiv_memory_loc. */
3486 static void
3487 init_reg_equiv_memory_loc (void)
3489 max_regno = max_reg_num ();
3491 /* And the reg_equiv_memory_loc array. */
3492 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
3493 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
3494 sizeof (rtx) * max_regno);
3495 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
3498 /* All natural loops. */
3499 struct loops ira_loops;
3501 /* True if we have allocno conflicts. It is false for non-optimized
3502 mode or when the conflict table is too big. */
3503 bool ira_conflicts_p;
3505 /* This is the main entry of IRA. */
3506 static void
3507 ira (FILE *f)
3509 int overall_cost_before, allocated_reg_info_size;
3510 bool loops_p;
3511 int max_regno_before_ira, ira_max_point_before_emit;
3512 int rebuild_p;
3513 int saved_flag_ira_share_spill_slots;
3514 basic_block bb;
3516 timevar_push (TV_IRA);
3518 if (flag_caller_saves)
3519 init_caller_save ();
3521 if (flag_ira_verbose < 10)
3523 internal_flag_ira_verbose = flag_ira_verbose;
3524 ira_dump_file = f;
3526 else
3528 internal_flag_ira_verbose = flag_ira_verbose - 10;
3529 ira_dump_file = stderr;
3532 ira_conflicts_p = optimize > 0;
3533 setup_prohibited_mode_move_regs ();
3535 df_note_add_problem ();
3537 if (optimize == 1)
3539 df_live_add_problem ();
3540 df_live_set_all_dirty ();
3542 #ifdef ENABLE_CHECKING
3543 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3544 #endif
3545 df_analyze ();
3546 df_clear_flags (DF_NO_INSN_RESCAN);
3547 regstat_init_n_sets_and_refs ();
3548 regstat_compute_ri ();
3550 /* If we are not optimizing, then this is the only place before
3551 register allocation where dataflow is done. And that is needed
3552 to generate these warnings. */
3553 if (warn_clobbered)
3554 generate_setjmp_warnings ();
3556 /* Determine if the current function is a leaf before running IRA
3557 since this can impact optimizations done by the prologue and
3558 epilogue thus changing register elimination offsets. */
3559 current_function_is_leaf = leaf_function_p ();
3561 if (resize_reg_info () && flag_ira_loop_pressure)
3562 ira_set_pseudo_classes (ira_dump_file);
3564 rebuild_p = update_equiv_regs ();
3566 #ifndef IRA_NO_OBSTACK
3567 gcc_obstack_init (&ira_obstack);
3568 #endif
3569 bitmap_obstack_initialize (&ira_bitmap_obstack);
3570 if (optimize)
3572 max_regno = max_reg_num ();
3573 ira_reg_equiv_len = max_regno;
3574 ira_reg_equiv_invariant_p
3575 = (bool *) ira_allocate (max_regno * sizeof (bool));
3576 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
3577 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
3578 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
3579 find_reg_equiv_invariant_const ();
3580 if (rebuild_p)
3582 timevar_push (TV_JUMP);
3583 rebuild_jump_labels (get_insns ());
3584 if (purge_all_dead_edges ())
3585 delete_unreachable_blocks ();
3586 timevar_pop (TV_JUMP);
3590 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
3591 ira_setup_eliminable_regset ();
3593 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
3594 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
3595 ira_move_loops_num = ira_additional_jumps_num = 0;
3597 ira_assert (current_loops == NULL);
3598 flow_loops_find (&ira_loops);
3599 record_loop_exits ();
3600 current_loops = &ira_loops;
3602 init_reg_equiv_memory_loc ();
3604 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3605 fprintf (ira_dump_file, "Building IRA IR\n");
3606 loops_p = ira_build (optimize
3607 && (flag_ira_region == IRA_REGION_ALL
3608 || flag_ira_region == IRA_REGION_MIXED));
3610 ira_assert (ira_conflicts_p || !loops_p);
3612 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
3613 if (too_high_register_pressure_p () || cfun->calls_setjmp)
3614 /* It is just wasting compiler's time to pack spilled pseudos into
3615 stack slots in this case -- prohibit it. We also do this if
3616 there is setjmp call because a variable not modified between
3617 setjmp and longjmp the compiler is required to preserve its
3618 value and sharing slots does not guarantee it. */
3619 flag_ira_share_spill_slots = FALSE;
3621 ira_color ();
3623 ira_max_point_before_emit = ira_max_point;
3625 ira_initiate_emit_data ();
3627 ira_emit (loops_p);
3629 if (ira_conflicts_p)
3631 max_regno = max_reg_num ();
3633 if (! loops_p)
3634 ira_initiate_assign ();
3635 else
3637 expand_reg_info (allocated_reg_info_size);
3638 setup_preferred_alternate_classes_for_new_pseudos
3639 (allocated_reg_info_size);
3640 allocated_reg_info_size = max_regno;
3642 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3643 fprintf (ira_dump_file, "Flattening IR\n");
3644 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
3645 /* New insns were generated: add notes and recalculate live
3646 info. */
3647 df_analyze ();
3649 flow_loops_find (&ira_loops);
3650 record_loop_exits ();
3651 current_loops = &ira_loops;
3653 setup_allocno_assignment_flags ();
3654 ira_initiate_assign ();
3655 ira_reassign_conflict_allocnos (max_regno);
3659 ira_finish_emit_data ();
3661 setup_reg_renumber ();
3663 calculate_allocation_cost ();
3665 #ifdef ENABLE_IRA_CHECKING
3666 if (ira_conflicts_p)
3667 check_allocation ();
3668 #endif
3670 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
3671 df_analyze ();
3673 init_reg_equiv_memory_loc ();
3675 if (max_regno != max_regno_before_ira)
3677 regstat_free_n_sets_and_refs ();
3678 regstat_free_ri ();
3679 regstat_init_n_sets_and_refs ();
3680 regstat_compute_ri ();
3683 allocate_initial_values (reg_equiv_memory_loc);
3685 overall_cost_before = ira_overall_cost;
3686 if (ira_conflicts_p)
3688 fix_reg_equiv_init ();
3690 #ifdef ENABLE_IRA_CHECKING
3691 print_redundant_copies ();
3692 #endif
3694 ira_spilled_reg_stack_slots_num = 0;
3695 ira_spilled_reg_stack_slots
3696 = ((struct ira_spilled_reg_stack_slot *)
3697 ira_allocate (max_regno
3698 * sizeof (struct ira_spilled_reg_stack_slot)));
3699 memset (ira_spilled_reg_stack_slots, 0,
3700 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
3703 timevar_pop (TV_IRA);
3705 timevar_push (TV_RELOAD);
3706 df_set_flags (DF_NO_INSN_RESCAN);
3707 build_insn_chain ();
3709 reload_completed = !reload (get_insns (), ira_conflicts_p);
3711 timevar_pop (TV_RELOAD);
3713 timevar_push (TV_IRA);
3715 if (ira_conflicts_p)
3717 ira_free (ira_spilled_reg_stack_slots);
3719 ira_finish_assign ();
3722 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
3723 && overall_cost_before != ira_overall_cost)
3724 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
3725 ira_destroy ();
3727 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
3729 flow_loops_free (&ira_loops);
3730 free_dominance_info (CDI_DOMINATORS);
3731 FOR_ALL_BB (bb)
3732 bb->loop_father = NULL;
3733 current_loops = NULL;
3735 regstat_free_ri ();
3736 regstat_free_n_sets_and_refs ();
3738 if (optimize)
3740 cleanup_cfg (CLEANUP_EXPENSIVE);
3742 ira_free (ira_reg_equiv_invariant_p);
3743 ira_free (ira_reg_equiv_const);
3746 bitmap_obstack_release (&ira_bitmap_obstack);
3747 #ifndef IRA_NO_OBSTACK
3748 obstack_free (&ira_obstack, NULL);
3749 #endif
3751 /* The code after the reload has changed so much that at this point
3752 we might as well just rescan everything. Not that
3753 df_rescan_all_insns is not going to help here because it does not
3754 touch the artificial uses and defs. */
3755 df_finish_pass (true);
3756 if (optimize > 1)
3757 df_live_add_problem ();
3758 df_scan_alloc (NULL);
3759 df_scan_blocks ();
3761 if (optimize)
3762 df_analyze ();
3764 timevar_pop (TV_IRA);
3769 static bool
3770 gate_ira (void)
3772 return true;
3775 /* Run the integrated register allocator. */
3776 static unsigned int
3777 rest_of_handle_ira (void)
3779 ira (dump_file);
3780 return 0;
3783 struct rtl_opt_pass pass_ira =
3786 RTL_PASS,
3787 "ira", /* name */
3788 gate_ira, /* gate */
3789 rest_of_handle_ira, /* execute */
3790 NULL, /* sub */
3791 NULL, /* next */
3792 0, /* static_pass_number */
3793 TV_NONE, /* tv_id */
3794 0, /* properties_required */
3795 0, /* properties_provided */
3796 0, /* properties_destroyed */
3797 0, /* todo_flags_start */
3798 TODO_dump_func |
3799 TODO_ggc_collect /* todo_flags_finish */