Fix undefined behavior spotted by the sanitizer
[official-gcc.git] / gcc / rtlanal.c
bloba8ea1d72636f293f602c6b4da3f102734eff3f2f
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "rtlanal.h"
28 #include "tree.h"
29 #include "predict.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "insn-config.h"
34 #include "regs.h"
35 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
36 #include "recog.h"
37 #include "addresses.h"
38 #include "rtl-iter.h"
39 #include "hard-reg-set.h"
40 #include "function-abi.h"
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int computed_jump_p_1 (const_rtx);
47 static void parms_set (rtx, const_rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
50 const_rtx, machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
53 const_rtx, machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
56 const_rtx, machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
59 const_rtx, machine_mode,
60 unsigned int);
62 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
63 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
65 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
66 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
67 SIGN_EXTEND then while narrowing we also have to enforce the
68 representation and sign-extend the value to mode DESTINATION_REP.
70 If the value is already sign-extended to DESTINATION_REP mode we
71 can just switch to DESTINATION mode on it. For each pair of
72 integral modes SOURCE and DESTINATION, when truncating from SOURCE
73 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
74 contains the number of high-order bits in SOURCE that have to be
75 copies of the sign-bit so that we can do this mode-switch to
76 DESTINATION. */
78 static unsigned int
79 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
81 /* Store X into index I of ARRAY. ARRAY is known to have at least I
82 elements. Return the new base of ARRAY. */
84 template <typename T>
85 typename T::value_type *
86 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
87 value_type *base,
88 size_t i, value_type x)
90 if (base == array.stack)
92 if (i < LOCAL_ELEMS)
94 base[i] = x;
95 return base;
97 gcc_checking_assert (i == LOCAL_ELEMS);
98 /* A previous iteration might also have moved from the stack to the
99 heap, in which case the heap array will already be big enough. */
100 if (vec_safe_length (array.heap) <= i)
101 vec_safe_grow (array.heap, i + 1, true);
102 base = array.heap->address ();
103 memcpy (base, array.stack, sizeof (array.stack));
104 base[LOCAL_ELEMS] = x;
105 return base;
107 unsigned int length = array.heap->length ();
108 if (length > i)
110 gcc_checking_assert (base == array.heap->address ());
111 base[i] = x;
112 return base;
114 else
116 gcc_checking_assert (i == length);
117 vec_safe_push (array.heap, x);
118 return array.heap->address ();
122 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
123 number of elements added to the worklist. */
125 template <typename T>
126 size_t
127 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
128 value_type *base,
129 size_t end, rtx_type x)
131 enum rtx_code code = GET_CODE (x);
132 const char *format = GET_RTX_FORMAT (code);
133 size_t orig_end = end;
134 if (__builtin_expect (INSN_P (x), false))
136 /* Put the pattern at the top of the queue, since that's what
137 we're likely to want most. It also allows for the SEQUENCE
138 code below. */
139 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
140 if (format[i] == 'e')
142 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
143 if (__builtin_expect (end < LOCAL_ELEMS, true))
144 base[end++] = subx;
145 else
146 base = add_single_to_queue (array, base, end++, subx);
149 else
150 for (int i = 0; format[i]; ++i)
151 if (format[i] == 'e')
153 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
154 if (__builtin_expect (end < LOCAL_ELEMS, true))
155 base[end++] = subx;
156 else
157 base = add_single_to_queue (array, base, end++, subx);
159 else if (format[i] == 'E')
161 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
162 rtx *vec = x->u.fld[i].rt_rtvec->elem;
163 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
164 for (unsigned int j = 0; j < length; j++)
165 base[end++] = T::get_value (vec[j]);
166 else
167 for (unsigned int j = 0; j < length; j++)
168 base = add_single_to_queue (array, base, end++,
169 T::get_value (vec[j]));
170 if (code == SEQUENCE && end == length)
171 /* If the subrtxes of the sequence fill the entire array then
172 we know that no other parts of a containing insn are queued.
173 The caller is therefore iterating over the sequence as a
174 PATTERN (...), so we also want the patterns of the
175 subinstructions. */
176 for (unsigned int j = 0; j < length; j++)
178 typename T::rtx_type x = T::get_rtx (base[j]);
179 if (INSN_P (x))
180 base[j] = T::get_value (PATTERN (x));
183 return end - orig_end;
186 template <typename T>
187 void
188 generic_subrtx_iterator <T>::free_array (array_type &array)
190 vec_free (array.heap);
193 template <typename T>
194 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
196 template class generic_subrtx_iterator <const_rtx_accessor>;
197 template class generic_subrtx_iterator <rtx_var_accessor>;
198 template class generic_subrtx_iterator <rtx_ptr_accessor>;
200 /* Return 1 if the value of X is unstable
201 (would be different at a different point in the program).
202 The frame pointer, arg pointer, etc. are considered stable
203 (within one function) and so is anything marked `unchanging'. */
206 rtx_unstable_p (const_rtx x)
208 const RTX_CODE code = GET_CODE (x);
209 int i;
210 const char *fmt;
212 switch (code)
214 case MEM:
215 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
217 case CONST:
218 CASE_CONST_ANY:
219 case SYMBOL_REF:
220 case LABEL_REF:
221 return 0;
223 case REG:
224 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
225 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
226 /* The arg pointer varies if it is not a fixed register. */
227 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
228 return 0;
229 /* ??? When call-clobbered, the value is stable modulo the restore
230 that must happen after a call. This currently screws up local-alloc
231 into believing that the restore is not needed. */
232 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
233 return 0;
234 return 1;
236 case ASM_OPERANDS:
237 if (MEM_VOLATILE_P (x))
238 return 1;
240 /* Fall through. */
242 default:
243 break;
246 fmt = GET_RTX_FORMAT (code);
247 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
248 if (fmt[i] == 'e')
250 if (rtx_unstable_p (XEXP (x, i)))
251 return 1;
253 else if (fmt[i] == 'E')
255 int j;
256 for (j = 0; j < XVECLEN (x, i); j++)
257 if (rtx_unstable_p (XVECEXP (x, i, j)))
258 return 1;
261 return 0;
264 /* Return 1 if X has a value that can vary even between two
265 executions of the program. 0 means X can be compared reliably
266 against certain constants or near-constants.
267 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
268 zero, we are slightly more conservative.
269 The frame pointer and the arg pointer are considered constant. */
271 bool
272 rtx_varies_p (const_rtx x, bool for_alias)
274 RTX_CODE code;
275 int i;
276 const char *fmt;
278 if (!x)
279 return 0;
281 code = GET_CODE (x);
282 switch (code)
284 case MEM:
285 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
287 case CONST:
288 CASE_CONST_ANY:
289 case SYMBOL_REF:
290 case LABEL_REF:
291 return 0;
293 case REG:
294 /* Note that we have to test for the actual rtx used for the frame
295 and arg pointers and not just the register number in case we have
296 eliminated the frame and/or arg pointer and are using it
297 for pseudos. */
298 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
299 /* The arg pointer varies if it is not a fixed register. */
300 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
301 return 0;
302 if (x == pic_offset_table_rtx
303 /* ??? When call-clobbered, the value is stable modulo the restore
304 that must happen after a call. This currently screws up
305 local-alloc into believing that the restore is not needed, so we
306 must return 0 only if we are called from alias analysis. */
307 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
308 return 0;
309 return 1;
311 case LO_SUM:
312 /* The operand 0 of a LO_SUM is considered constant
313 (in fact it is related specifically to operand 1)
314 during alias analysis. */
315 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
316 || rtx_varies_p (XEXP (x, 1), for_alias);
318 case ASM_OPERANDS:
319 if (MEM_VOLATILE_P (x))
320 return 1;
322 /* Fall through. */
324 default:
325 break;
328 fmt = GET_RTX_FORMAT (code);
329 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
330 if (fmt[i] == 'e')
332 if (rtx_varies_p (XEXP (x, i), for_alias))
333 return 1;
335 else if (fmt[i] == 'E')
337 int j;
338 for (j = 0; j < XVECLEN (x, i); j++)
339 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
340 return 1;
343 return 0;
346 /* Compute an approximation for the offset between the register
347 FROM and TO for the current function, as it was at the start
348 of the routine. */
350 static poly_int64
351 get_initial_register_offset (int from, int to)
353 static const struct elim_table_t
355 const int from;
356 const int to;
357 } table[] = ELIMINABLE_REGS;
358 poly_int64 offset1, offset2;
359 unsigned int i, j;
361 if (to == from)
362 return 0;
364 /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
365 is completed, but we need to give at least an estimate for the stack
366 pointer based on the frame size. */
367 if (!epilogue_completed)
369 offset1 = crtl->outgoing_args_size + get_frame_size ();
370 #if !STACK_GROWS_DOWNWARD
371 offset1 = - offset1;
372 #endif
373 if (to == STACK_POINTER_REGNUM)
374 return offset1;
375 else if (from == STACK_POINTER_REGNUM)
376 return - offset1;
377 else
378 return 0;
381 for (i = 0; i < ARRAY_SIZE (table); i++)
382 if (table[i].from == from)
384 if (table[i].to == to)
386 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
387 offset1);
388 return offset1;
390 for (j = 0; j < ARRAY_SIZE (table); j++)
392 if (table[j].to == to
393 && table[j].from == table[i].to)
395 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
396 offset1);
397 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
398 offset2);
399 return offset1 + offset2;
401 if (table[j].from == to
402 && table[j].to == table[i].to)
404 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
405 offset1);
406 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
407 offset2);
408 return offset1 - offset2;
412 else if (table[i].to == from)
414 if (table[i].from == to)
416 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
417 offset1);
418 return - offset1;
420 for (j = 0; j < ARRAY_SIZE (table); j++)
422 if (table[j].to == to
423 && table[j].from == table[i].from)
425 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
426 offset1);
427 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
428 offset2);
429 return - offset1 + offset2;
431 if (table[j].from == to
432 && table[j].to == table[i].from)
434 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
435 offset1);
436 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
437 offset2);
438 return - offset1 - offset2;
443 /* If the requested register combination was not found,
444 try a different more simple combination. */
445 if (from == ARG_POINTER_REGNUM)
446 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
447 else if (to == ARG_POINTER_REGNUM)
448 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
449 else if (from == HARD_FRAME_POINTER_REGNUM)
450 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
451 else if (to == HARD_FRAME_POINTER_REGNUM)
452 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
453 else
454 return 0;
457 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
458 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
459 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
460 references on strict alignment machines. */
462 static int
463 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
464 machine_mode mode, bool unaligned_mems)
466 enum rtx_code code = GET_CODE (x);
467 gcc_checking_assert (mode == BLKmode || known_size_p (size));
468 poly_int64 const_x1;
470 /* The offset must be a multiple of the mode size if we are considering
471 unaligned memory references on strict alignment machines. */
472 if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
474 poly_int64 actual_offset = offset;
476 #ifdef SPARC_STACK_BOUNDARY_HACK
477 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
478 the real alignment of %sp. However, when it does this, the
479 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
480 if (SPARC_STACK_BOUNDARY_HACK
481 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
482 actual_offset -= STACK_POINTER_OFFSET;
483 #endif
485 if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
486 return 1;
489 switch (code)
491 case SYMBOL_REF:
492 if (SYMBOL_REF_WEAK (x))
493 return 1;
494 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
496 tree decl;
497 poly_int64 decl_size;
499 if (maybe_lt (offset, 0))
500 return 1;
501 if (!known_size_p (size))
502 return maybe_ne (offset, 0);
504 /* If the size of the access or of the symbol is unknown,
505 assume the worst. */
506 decl = SYMBOL_REF_DECL (x);
508 /* Else check that the access is in bounds. TODO: restructure
509 expr_size/tree_expr_size/int_expr_size and just use the latter. */
510 if (!decl)
511 decl_size = -1;
512 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
514 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
515 decl_size = -1;
517 else if (TREE_CODE (decl) == STRING_CST)
518 decl_size = TREE_STRING_LENGTH (decl);
519 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
520 decl_size = int_size_in_bytes (TREE_TYPE (decl));
521 else
522 decl_size = -1;
524 return (!known_size_p (decl_size) || known_eq (decl_size, 0)
525 ? maybe_ne (offset, 0)
526 : !known_subrange_p (offset, size, 0, decl_size));
529 return 0;
531 case LABEL_REF:
532 return 0;
534 case REG:
535 /* Stack references are assumed not to trap, but we need to deal with
536 nonsensical offsets. */
537 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
538 || x == stack_pointer_rtx
539 /* The arg pointer varies if it is not a fixed register. */
540 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
542 #ifdef RED_ZONE_SIZE
543 poly_int64 red_zone_size = RED_ZONE_SIZE;
544 #else
545 poly_int64 red_zone_size = 0;
546 #endif
547 poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
548 poly_int64 low_bound, high_bound;
550 if (!known_size_p (size))
551 return 1;
553 if (x == frame_pointer_rtx)
555 if (FRAME_GROWS_DOWNWARD)
557 high_bound = targetm.starting_frame_offset ();
558 low_bound = high_bound - get_frame_size ();
560 else
562 low_bound = targetm.starting_frame_offset ();
563 high_bound = low_bound + get_frame_size ();
566 else if (x == hard_frame_pointer_rtx)
568 poly_int64 sp_offset
569 = get_initial_register_offset (STACK_POINTER_REGNUM,
570 HARD_FRAME_POINTER_REGNUM);
571 poly_int64 ap_offset
572 = get_initial_register_offset (ARG_POINTER_REGNUM,
573 HARD_FRAME_POINTER_REGNUM);
575 #if STACK_GROWS_DOWNWARD
576 low_bound = sp_offset - red_zone_size - stack_boundary;
577 high_bound = ap_offset
578 + FIRST_PARM_OFFSET (current_function_decl)
579 #if !ARGS_GROW_DOWNWARD
580 + crtl->args.size
581 #endif
582 + stack_boundary;
583 #else
584 high_bound = sp_offset + red_zone_size + stack_boundary;
585 low_bound = ap_offset
586 + FIRST_PARM_OFFSET (current_function_decl)
587 #if ARGS_GROW_DOWNWARD
588 - crtl->args.size
589 #endif
590 - stack_boundary;
591 #endif
593 else if (x == stack_pointer_rtx)
595 poly_int64 ap_offset
596 = get_initial_register_offset (ARG_POINTER_REGNUM,
597 STACK_POINTER_REGNUM);
599 #if STACK_GROWS_DOWNWARD
600 low_bound = - red_zone_size - stack_boundary;
601 high_bound = ap_offset
602 + FIRST_PARM_OFFSET (current_function_decl)
603 #if !ARGS_GROW_DOWNWARD
604 + crtl->args.size
605 #endif
606 + stack_boundary;
607 #else
608 high_bound = red_zone_size + stack_boundary;
609 low_bound = ap_offset
610 + FIRST_PARM_OFFSET (current_function_decl)
611 #if ARGS_GROW_DOWNWARD
612 - crtl->args.size
613 #endif
614 - stack_boundary;
615 #endif
617 else
619 /* We assume that accesses are safe to at least the
620 next stack boundary.
621 Examples are varargs and __builtin_return_address. */
622 #if ARGS_GROW_DOWNWARD
623 high_bound = FIRST_PARM_OFFSET (current_function_decl)
624 + stack_boundary;
625 low_bound = FIRST_PARM_OFFSET (current_function_decl)
626 - crtl->args.size - stack_boundary;
627 #else
628 low_bound = FIRST_PARM_OFFSET (current_function_decl)
629 - stack_boundary;
630 high_bound = FIRST_PARM_OFFSET (current_function_decl)
631 + crtl->args.size + stack_boundary;
632 #endif
635 if (known_ge (offset, low_bound)
636 && known_le (offset, high_bound - size))
637 return 0;
638 return 1;
640 /* All of the virtual frame registers are stack references. */
641 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
642 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
643 return 0;
644 return 1;
646 case CONST:
647 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
648 mode, unaligned_mems);
650 case PLUS:
651 /* An address is assumed not to trap if:
652 - it is the pic register plus a const unspec without offset. */
653 if (XEXP (x, 0) == pic_offset_table_rtx
654 && GET_CODE (XEXP (x, 1)) == CONST
655 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
656 && known_eq (offset, 0))
657 return 0;
659 /* - or it is an address that can't trap plus a constant integer. */
660 if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
661 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
662 size, mode, unaligned_mems))
663 return 0;
665 return 1;
667 case LO_SUM:
668 case PRE_MODIFY:
669 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
670 mode, unaligned_mems);
672 case PRE_DEC:
673 case PRE_INC:
674 case POST_DEC:
675 case POST_INC:
676 case POST_MODIFY:
677 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
678 mode, unaligned_mems);
680 default:
681 break;
684 /* If it isn't one of the case above, it can cause a trap. */
685 return 1;
688 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
691 rtx_addr_can_trap_p (const_rtx x)
693 return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
696 /* Return true if X contains a MEM subrtx. */
698 bool
699 contains_mem_rtx_p (rtx x)
701 subrtx_iterator::array_type array;
702 FOR_EACH_SUBRTX (iter, array, x, ALL)
703 if (MEM_P (*iter))
704 return true;
706 return false;
709 /* Return true if X is an address that is known to not be zero. */
711 bool
712 nonzero_address_p (const_rtx x)
714 const enum rtx_code code = GET_CODE (x);
716 switch (code)
718 case SYMBOL_REF:
719 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
721 case LABEL_REF:
722 return true;
724 case REG:
725 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
726 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
727 || x == stack_pointer_rtx
728 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
729 return true;
730 /* All of the virtual frame registers are stack references. */
731 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
732 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
733 return true;
734 return false;
736 case CONST:
737 return nonzero_address_p (XEXP (x, 0));
739 case PLUS:
740 /* Handle PIC references. */
741 if (XEXP (x, 0) == pic_offset_table_rtx
742 && CONSTANT_P (XEXP (x, 1)))
743 return true;
744 return false;
746 case PRE_MODIFY:
747 /* Similar to the above; allow positive offsets. Further, since
748 auto-inc is only allowed in memories, the register must be a
749 pointer. */
750 if (CONST_INT_P (XEXP (x, 1))
751 && INTVAL (XEXP (x, 1)) > 0)
752 return true;
753 return nonzero_address_p (XEXP (x, 0));
755 case PRE_INC:
756 /* Similarly. Further, the offset is always positive. */
757 return true;
759 case PRE_DEC:
760 case POST_DEC:
761 case POST_INC:
762 case POST_MODIFY:
763 return nonzero_address_p (XEXP (x, 0));
765 case LO_SUM:
766 return nonzero_address_p (XEXP (x, 1));
768 default:
769 break;
772 /* If it isn't one of the case above, might be zero. */
773 return false;
776 /* Return 1 if X refers to a memory location whose address
777 cannot be compared reliably with constant addresses,
778 or if X refers to a BLKmode memory object.
779 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
780 zero, we are slightly more conservative. */
782 bool
783 rtx_addr_varies_p (const_rtx x, bool for_alias)
785 enum rtx_code code;
786 int i;
787 const char *fmt;
789 if (x == 0)
790 return 0;
792 code = GET_CODE (x);
793 if (code == MEM)
794 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
796 fmt = GET_RTX_FORMAT (code);
797 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
798 if (fmt[i] == 'e')
800 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
801 return 1;
803 else if (fmt[i] == 'E')
805 int j;
806 for (j = 0; j < XVECLEN (x, i); j++)
807 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
808 return 1;
810 return 0;
813 /* Return the CALL in X if there is one. */
816 get_call_rtx_from (const rtx_insn *insn)
818 rtx x = PATTERN (insn);
819 if (GET_CODE (x) == PARALLEL)
820 x = XVECEXP (x, 0, 0);
821 if (GET_CODE (x) == SET)
822 x = SET_SRC (x);
823 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
824 return x;
825 return NULL_RTX;
828 /* Get the declaration of the function called by INSN. */
830 tree
831 get_call_fndecl (const rtx_insn *insn)
833 rtx note, datum;
835 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
836 if (note == NULL_RTX)
837 return NULL_TREE;
839 datum = XEXP (note, 0);
840 if (datum != NULL_RTX)
841 return SYMBOL_REF_DECL (datum);
843 return NULL_TREE;
846 /* Return the value of the integer term in X, if one is apparent;
847 otherwise return 0.
848 Only obvious integer terms are detected.
849 This is used in cse.c with the `related_value' field. */
851 HOST_WIDE_INT
852 get_integer_term (const_rtx x)
854 if (GET_CODE (x) == CONST)
855 x = XEXP (x, 0);
857 if (GET_CODE (x) == MINUS
858 && CONST_INT_P (XEXP (x, 1)))
859 return - INTVAL (XEXP (x, 1));
860 if (GET_CODE (x) == PLUS
861 && CONST_INT_P (XEXP (x, 1)))
862 return INTVAL (XEXP (x, 1));
863 return 0;
866 /* If X is a constant, return the value sans apparent integer term;
867 otherwise return 0.
868 Only obvious integer terms are detected. */
871 get_related_value (const_rtx x)
873 if (GET_CODE (x) != CONST)
874 return 0;
875 x = XEXP (x, 0);
876 if (GET_CODE (x) == PLUS
877 && CONST_INT_P (XEXP (x, 1)))
878 return XEXP (x, 0);
879 else if (GET_CODE (x) == MINUS
880 && CONST_INT_P (XEXP (x, 1)))
881 return XEXP (x, 0);
882 return 0;
885 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
886 to somewhere in the same object or object_block as SYMBOL. */
888 bool
889 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
891 tree decl;
893 if (GET_CODE (symbol) != SYMBOL_REF)
894 return false;
896 if (offset == 0)
897 return true;
899 if (offset > 0)
901 if (CONSTANT_POOL_ADDRESS_P (symbol)
902 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
903 return true;
905 decl = SYMBOL_REF_DECL (symbol);
906 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
907 return true;
910 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
911 && SYMBOL_REF_BLOCK (symbol)
912 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
913 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
914 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
915 return true;
917 return false;
920 /* Split X into a base and a constant offset, storing them in *BASE_OUT
921 and *OFFSET_OUT respectively. */
923 void
924 split_const (rtx x, rtx *base_out, rtx *offset_out)
926 if (GET_CODE (x) == CONST)
928 x = XEXP (x, 0);
929 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
931 *base_out = XEXP (x, 0);
932 *offset_out = XEXP (x, 1);
933 return;
936 *base_out = x;
937 *offset_out = const0_rtx;
940 /* Express integer value X as some value Y plus a polynomial offset,
941 where Y is either const0_rtx, X or something within X (as opposed
942 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
945 strip_offset (rtx x, poly_int64_pod *offset_out)
947 rtx base = const0_rtx;
948 rtx test = x;
949 if (GET_CODE (test) == CONST)
950 test = XEXP (test, 0);
951 if (GET_CODE (test) == PLUS)
953 base = XEXP (test, 0);
954 test = XEXP (test, 1);
956 if (poly_int_rtx_p (test, offset_out))
957 return base;
958 *offset_out = 0;
959 return x;
962 /* Return the argument size in REG_ARGS_SIZE note X. */
964 poly_int64
965 get_args_size (const_rtx x)
967 gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
968 return rtx_to_poly_int64 (XEXP (x, 0));
971 /* Return the number of places FIND appears within X. If COUNT_DEST is
972 zero, we do not count occurrences inside the destination of a SET. */
975 count_occurrences (const_rtx x, const_rtx find, int count_dest)
977 int i, j;
978 enum rtx_code code;
979 const char *format_ptr;
980 int count;
982 if (x == find)
983 return 1;
985 code = GET_CODE (x);
987 switch (code)
989 case REG:
990 CASE_CONST_ANY:
991 case SYMBOL_REF:
992 case CODE_LABEL:
993 case PC:
994 case CC0:
995 return 0;
997 case EXPR_LIST:
998 count = count_occurrences (XEXP (x, 0), find, count_dest);
999 if (XEXP (x, 1))
1000 count += count_occurrences (XEXP (x, 1), find, count_dest);
1001 return count;
1003 case MEM:
1004 if (MEM_P (find) && rtx_equal_p (x, find))
1005 return 1;
1006 break;
1008 case SET:
1009 if (SET_DEST (x) == find && ! count_dest)
1010 return count_occurrences (SET_SRC (x), find, count_dest);
1011 break;
1013 default:
1014 break;
1017 format_ptr = GET_RTX_FORMAT (code);
1018 count = 0;
1020 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1022 switch (*format_ptr++)
1024 case 'e':
1025 count += count_occurrences (XEXP (x, i), find, count_dest);
1026 break;
1028 case 'E':
1029 for (j = 0; j < XVECLEN (x, i); j++)
1030 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1031 break;
1034 return count;
1038 /* Return TRUE if OP is a register or subreg of a register that
1039 holds an unsigned quantity. Otherwise, return FALSE. */
1041 bool
1042 unsigned_reg_p (rtx op)
1044 if (REG_P (op)
1045 && REG_EXPR (op)
1046 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1047 return true;
1049 if (GET_CODE (op) == SUBREG
1050 && SUBREG_PROMOTED_SIGN (op))
1051 return true;
1053 return false;
1057 /* Nonzero if register REG appears somewhere within IN.
1058 Also works if REG is not a register; in this case it checks
1059 for a subexpression of IN that is Lisp "equal" to REG. */
1062 reg_mentioned_p (const_rtx reg, const_rtx in)
1064 const char *fmt;
1065 int i;
1066 enum rtx_code code;
1068 if (in == 0)
1069 return 0;
1071 if (reg == in)
1072 return 1;
1074 if (GET_CODE (in) == LABEL_REF)
1075 return reg == label_ref_label (in);
1077 code = GET_CODE (in);
1079 switch (code)
1081 /* Compare registers by number. */
1082 case REG:
1083 return REG_P (reg) && REGNO (in) == REGNO (reg);
1085 /* These codes have no constituent expressions
1086 and are unique. */
1087 case SCRATCH:
1088 case CC0:
1089 case PC:
1090 return 0;
1092 CASE_CONST_ANY:
1093 /* These are kept unique for a given value. */
1094 return 0;
1096 default:
1097 break;
1100 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1101 return 1;
1103 fmt = GET_RTX_FORMAT (code);
1105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1107 if (fmt[i] == 'E')
1109 int j;
1110 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1111 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1112 return 1;
1114 else if (fmt[i] == 'e'
1115 && reg_mentioned_p (reg, XEXP (in, i)))
1116 return 1;
1118 return 0;
1121 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1122 no CODE_LABEL insn. */
1125 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1127 rtx_insn *p;
1128 if (beg == end)
1129 return 0;
1130 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1131 if (LABEL_P (p))
1132 return 0;
1133 return 1;
1136 /* Nonzero if register REG is used in an insn between
1137 FROM_INSN and TO_INSN (exclusive of those two). */
1140 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1141 const rtx_insn *to_insn)
1143 rtx_insn *insn;
1145 if (from_insn == to_insn)
1146 return 0;
1148 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1149 if (NONDEBUG_INSN_P (insn)
1150 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1151 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1152 return 1;
1153 return 0;
1156 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1157 is entirely replaced by a new value and the only use is as a SET_DEST,
1158 we do not consider it a reference. */
1161 reg_referenced_p (const_rtx x, const_rtx body)
1163 int i;
1165 switch (GET_CODE (body))
1167 case SET:
1168 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1169 return 1;
1171 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1172 of a REG that occupies all of the REG, the insn references X if
1173 it is mentioned in the destination. */
1174 if (GET_CODE (SET_DEST (body)) != CC0
1175 && GET_CODE (SET_DEST (body)) != PC
1176 && !REG_P (SET_DEST (body))
1177 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1178 && REG_P (SUBREG_REG (SET_DEST (body)))
1179 && !read_modify_subreg_p (SET_DEST (body)))
1180 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1181 return 1;
1182 return 0;
1184 case ASM_OPERANDS:
1185 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1186 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1187 return 1;
1188 return 0;
1190 case CALL:
1191 case USE:
1192 case IF_THEN_ELSE:
1193 return reg_overlap_mentioned_p (x, body);
1195 case TRAP_IF:
1196 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1198 case PREFETCH:
1199 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1201 case UNSPEC:
1202 case UNSPEC_VOLATILE:
1203 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1204 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1205 return 1;
1206 return 0;
1208 case PARALLEL:
1209 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1210 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1211 return 1;
1212 return 0;
1214 case CLOBBER:
1215 if (MEM_P (XEXP (body, 0)))
1216 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1217 return 1;
1218 return 0;
1220 case COND_EXEC:
1221 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1222 return 1;
1223 return reg_referenced_p (x, COND_EXEC_CODE (body));
1225 default:
1226 return 0;
1230 /* Nonzero if register REG is set or clobbered in an insn between
1231 FROM_INSN and TO_INSN (exclusive of those two). */
1234 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1235 const rtx_insn *to_insn)
1237 const rtx_insn *insn;
1239 if (from_insn == to_insn)
1240 return 0;
1242 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1243 if (INSN_P (insn) && reg_set_p (reg, insn))
1244 return 1;
1245 return 0;
1248 /* Return true if REG is set or clobbered inside INSN. */
1251 reg_set_p (const_rtx reg, const_rtx insn)
1253 /* After delay slot handling, call and branch insns might be in a
1254 sequence. Check all the elements there. */
1255 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1257 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1258 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1259 return true;
1261 return false;
1264 /* We can be passed an insn or part of one. If we are passed an insn,
1265 check if a side-effect of the insn clobbers REG. */
1266 if (INSN_P (insn)
1267 && (FIND_REG_INC_NOTE (insn, reg)
1268 || (CALL_P (insn)
1269 && ((REG_P (reg)
1270 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1271 && (insn_callee_abi (as_a<const rtx_insn *> (insn))
1272 .clobbers_reg_p (GET_MODE (reg), REGNO (reg))))
1273 || MEM_P (reg)
1274 || find_reg_fusage (insn, CLOBBER, reg)))))
1275 return true;
1277 /* There are no REG_INC notes for SP autoinc. */
1278 if (reg == stack_pointer_rtx && INSN_P (insn))
1280 subrtx_var_iterator::array_type array;
1281 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1283 rtx mem = *iter;
1284 if (mem
1285 && MEM_P (mem)
1286 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1288 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1289 return true;
1290 iter.skip_subrtxes ();
1295 return set_of (reg, insn) != NULL_RTX;
1298 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1299 only if none of them are modified between START and END. Return 1 if
1300 X contains a MEM; this routine does use memory aliasing. */
1303 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1305 const enum rtx_code code = GET_CODE (x);
1306 const char *fmt;
1307 int i, j;
1308 rtx_insn *insn;
1310 if (start == end)
1311 return 0;
1313 switch (code)
1315 CASE_CONST_ANY:
1316 case CONST:
1317 case SYMBOL_REF:
1318 case LABEL_REF:
1319 return 0;
1321 case PC:
1322 case CC0:
1323 return 1;
1325 case MEM:
1326 if (modified_between_p (XEXP (x, 0), start, end))
1327 return 1;
1328 if (MEM_READONLY_P (x))
1329 return 0;
1330 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1331 if (memory_modified_in_insn_p (x, insn))
1332 return 1;
1333 return 0;
1335 case REG:
1336 return reg_set_between_p (x, start, end);
1338 default:
1339 break;
1342 fmt = GET_RTX_FORMAT (code);
1343 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1345 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1346 return 1;
1348 else if (fmt[i] == 'E')
1349 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1350 if (modified_between_p (XVECEXP (x, i, j), start, end))
1351 return 1;
1354 return 0;
1357 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1358 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1359 does use memory aliasing. */
1362 modified_in_p (const_rtx x, const_rtx insn)
1364 const enum rtx_code code = GET_CODE (x);
1365 const char *fmt;
1366 int i, j;
1368 switch (code)
1370 CASE_CONST_ANY:
1371 case CONST:
1372 case SYMBOL_REF:
1373 case LABEL_REF:
1374 return 0;
1376 case PC:
1377 case CC0:
1378 return 1;
1380 case MEM:
1381 if (modified_in_p (XEXP (x, 0), insn))
1382 return 1;
1383 if (MEM_READONLY_P (x))
1384 return 0;
1385 if (memory_modified_in_insn_p (x, insn))
1386 return 1;
1387 return 0;
1389 case REG:
1390 return reg_set_p (x, insn);
1392 default:
1393 break;
1396 fmt = GET_RTX_FORMAT (code);
1397 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1399 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1400 return 1;
1402 else if (fmt[i] == 'E')
1403 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1404 if (modified_in_p (XVECEXP (x, i, j), insn))
1405 return 1;
1408 return 0;
1411 /* Return true if X is a SUBREG and if storing a value to X would
1412 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1413 target, using a SUBREG to store to one half of a DImode REG would
1414 preserve the other half. */
1416 bool
1417 read_modify_subreg_p (const_rtx x)
1419 if (GET_CODE (x) != SUBREG)
1420 return false;
1421 poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1422 poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1423 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1424 /* The inner and outer modes of a subreg must be ordered, so that we
1425 can tell whether they're paradoxical or partial. */
1426 gcc_checking_assert (ordered_p (isize, osize));
1427 return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1430 /* Helper function for set_of. */
1431 struct set_of_data
1433 const_rtx found;
1434 const_rtx pat;
1437 static void
1438 set_of_1 (rtx x, const_rtx pat, void *data1)
1440 struct set_of_data *const data = (struct set_of_data *) (data1);
1441 if (rtx_equal_p (x, data->pat)
1442 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1443 data->found = pat;
1446 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1447 (either directly or via STRICT_LOW_PART and similar modifiers). */
1448 const_rtx
1449 set_of (const_rtx pat, const_rtx insn)
1451 struct set_of_data data;
1452 data.found = NULL_RTX;
1453 data.pat = pat;
1454 note_pattern_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1455 return data.found;
1458 /* Check whether instruction pattern PAT contains a SET with the following
1459 properties:
1461 - the SET is executed unconditionally; and
1462 - either:
1463 - the destination of the SET is a REG that contains REGNO; or
1464 - both:
1465 - the destination of the SET is a SUBREG of such a REG; and
1466 - writing to the subreg clobbers all of the SUBREG_REG
1467 (in other words, read_modify_subreg_p is false).
1469 If PAT does have a SET like that, return the set, otherwise return null.
1471 This is intended to be an alternative to single_set for passes that
1472 can handle patterns with multiple_sets. */
1474 simple_regno_set (rtx pat, unsigned int regno)
1476 if (GET_CODE (pat) == PARALLEL)
1478 int last = XVECLEN (pat, 0) - 1;
1479 for (int i = 0; i < last; ++i)
1480 if (rtx set = simple_regno_set (XVECEXP (pat, 0, i), regno))
1481 return set;
1483 pat = XVECEXP (pat, 0, last);
1486 if (GET_CODE (pat) == SET
1487 && covers_regno_no_parallel_p (SET_DEST (pat), regno))
1488 return pat;
1490 return nullptr;
1493 /* Add all hard register in X to *PSET. */
1494 void
1495 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1497 subrtx_iterator::array_type array;
1498 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1500 const_rtx x = *iter;
1501 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1502 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1506 /* This function, called through note_stores, collects sets and
1507 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1508 by DATA. */
1509 void
1510 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1512 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1513 if (REG_P (x) && HARD_REGISTER_P (x))
1514 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1517 /* Examine INSN, and compute the set of hard registers written by it.
1518 Store it in *PSET. Should only be called after reload.
1520 IMPLICIT is true if we should include registers that are fully-clobbered
1521 by calls. This should be used with caution, since it doesn't include
1522 partially-clobbered registers. */
1523 void
1524 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1526 rtx link;
1528 CLEAR_HARD_REG_SET (*pset);
1529 note_stores (insn, record_hard_reg_sets, pset);
1530 if (CALL_P (insn) && implicit)
1531 *pset |= insn_callee_abi (insn).full_reg_clobbers ();
1532 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1533 if (REG_NOTE_KIND (link) == REG_INC)
1534 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1537 /* Like record_hard_reg_sets, but called through note_uses. */
1538 void
1539 record_hard_reg_uses (rtx *px, void *data)
1541 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1544 /* Given an INSN, return a SET expression if this insn has only a single SET.
1545 It may also have CLOBBERs, USEs, or SET whose output
1546 will not be used, which we ignore. */
1549 single_set_2 (const rtx_insn *insn, const_rtx pat)
1551 rtx set = NULL;
1552 int set_verified = 1;
1553 int i;
1555 if (GET_CODE (pat) == PARALLEL)
1557 for (i = 0; i < XVECLEN (pat, 0); i++)
1559 rtx sub = XVECEXP (pat, 0, i);
1560 switch (GET_CODE (sub))
1562 case USE:
1563 case CLOBBER:
1564 break;
1566 case SET:
1567 /* We can consider insns having multiple sets, where all
1568 but one are dead as single set insns. In common case
1569 only single set is present in the pattern so we want
1570 to avoid checking for REG_UNUSED notes unless necessary.
1572 When we reach set first time, we just expect this is
1573 the single set we are looking for and only when more
1574 sets are found in the insn, we check them. */
1575 if (!set_verified)
1577 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1578 && !side_effects_p (set))
1579 set = NULL;
1580 else
1581 set_verified = 1;
1583 if (!set)
1584 set = sub, set_verified = 0;
1585 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1586 || side_effects_p (sub))
1587 return NULL_RTX;
1588 break;
1590 default:
1591 return NULL_RTX;
1595 return set;
1598 /* Given an INSN, return nonzero if it has more than one SET, else return
1599 zero. */
1602 multiple_sets (const_rtx insn)
1604 int found;
1605 int i;
1607 /* INSN must be an insn. */
1608 if (! INSN_P (insn))
1609 return 0;
1611 /* Only a PARALLEL can have multiple SETs. */
1612 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1614 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1615 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1617 /* If we have already found a SET, then return now. */
1618 if (found)
1619 return 1;
1620 else
1621 found = 1;
1625 /* Either zero or one SET. */
1626 return 0;
1629 /* Return nonzero if the destination of SET equals the source
1630 and there are no side effects. */
1633 set_noop_p (const_rtx set)
1635 rtx src = SET_SRC (set);
1636 rtx dst = SET_DEST (set);
1638 if (dst == pc_rtx && src == pc_rtx)
1639 return 1;
1641 if (MEM_P (dst) && MEM_P (src))
1642 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1644 if (GET_CODE (dst) == ZERO_EXTRACT)
1645 return rtx_equal_p (XEXP (dst, 0), src)
1646 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1647 && !side_effects_p (src);
1649 if (GET_CODE (dst) == STRICT_LOW_PART)
1650 dst = XEXP (dst, 0);
1652 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1654 if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1655 return 0;
1656 src = SUBREG_REG (src);
1657 dst = SUBREG_REG (dst);
1658 if (GET_MODE (src) != GET_MODE (dst))
1659 /* It is hard to tell whether subregs refer to the same bits, so act
1660 conservatively and return 0. */
1661 return 0;
1664 /* It is a NOOP if destination overlaps with selected src vector
1665 elements. */
1666 if (GET_CODE (src) == VEC_SELECT
1667 && REG_P (XEXP (src, 0)) && REG_P (dst)
1668 && HARD_REGISTER_P (XEXP (src, 0))
1669 && HARD_REGISTER_P (dst))
1671 int i;
1672 rtx par = XEXP (src, 1);
1673 rtx src0 = XEXP (src, 0);
1674 poly_int64 c0;
1675 if (!poly_int_rtx_p (XVECEXP (par, 0, 0), &c0))
1676 return 0;
1677 poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1679 for (i = 1; i < XVECLEN (par, 0); i++)
1681 poly_int64 c0i;
1682 if (!poly_int_rtx_p (XVECEXP (par, 0, i), &c0i)
1683 || maybe_ne (c0i, c0 + i))
1684 return 0;
1686 return
1687 REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
1688 && simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1689 offset, GET_MODE (dst)) == (int) REGNO (dst);
1692 return (REG_P (src) && REG_P (dst)
1693 && REGNO (src) == REGNO (dst));
1696 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1697 value to itself. */
1700 noop_move_p (const rtx_insn *insn)
1702 rtx pat = PATTERN (insn);
1704 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1705 return 1;
1707 /* Check the code to be executed for COND_EXEC. */
1708 if (GET_CODE (pat) == COND_EXEC)
1709 pat = COND_EXEC_CODE (pat);
1711 if (GET_CODE (pat) == SET && set_noop_p (pat))
1712 return 1;
1714 if (GET_CODE (pat) == PARALLEL)
1716 int i;
1717 /* If nothing but SETs of registers to themselves,
1718 this insn can also be deleted. */
1719 for (i = 0; i < XVECLEN (pat, 0); i++)
1721 rtx tem = XVECEXP (pat, 0, i);
1723 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1724 continue;
1726 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1727 return 0;
1730 return 1;
1732 return 0;
1736 /* Return nonzero if register in range [REGNO, ENDREGNO)
1737 appears either explicitly or implicitly in X
1738 other than being stored into.
1740 References contained within the substructure at LOC do not count.
1741 LOC may be zero, meaning don't ignore anything. */
1743 bool
1744 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1745 rtx *loc)
1747 int i;
1748 unsigned int x_regno;
1749 RTX_CODE code;
1750 const char *fmt;
1752 repeat:
1753 /* The contents of a REG_NONNEG note is always zero, so we must come here
1754 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1755 if (x == 0)
1756 return false;
1758 code = GET_CODE (x);
1760 switch (code)
1762 case REG:
1763 x_regno = REGNO (x);
1765 /* If we modifying the stack, frame, or argument pointer, it will
1766 clobber a virtual register. In fact, we could be more precise,
1767 but it isn't worth it. */
1768 if ((x_regno == STACK_POINTER_REGNUM
1769 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1770 && x_regno == ARG_POINTER_REGNUM)
1771 || x_regno == FRAME_POINTER_REGNUM)
1772 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1773 return true;
1775 return endregno > x_regno && regno < END_REGNO (x);
1777 case SUBREG:
1778 /* If this is a SUBREG of a hard reg, we can see exactly which
1779 registers are being modified. Otherwise, handle normally. */
1780 if (REG_P (SUBREG_REG (x))
1781 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1783 unsigned int inner_regno = subreg_regno (x);
1784 unsigned int inner_endregno
1785 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1786 ? subreg_nregs (x) : 1);
1788 return endregno > inner_regno && regno < inner_endregno;
1790 break;
1792 case CLOBBER:
1793 case SET:
1794 if (&SET_DEST (x) != loc
1795 /* Note setting a SUBREG counts as referring to the REG it is in for
1796 a pseudo but not for hard registers since we can
1797 treat each word individually. */
1798 && ((GET_CODE (SET_DEST (x)) == SUBREG
1799 && loc != &SUBREG_REG (SET_DEST (x))
1800 && REG_P (SUBREG_REG (SET_DEST (x)))
1801 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1802 && refers_to_regno_p (regno, endregno,
1803 SUBREG_REG (SET_DEST (x)), loc))
1804 || (!REG_P (SET_DEST (x))
1805 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1806 return true;
1808 if (code == CLOBBER || loc == &SET_SRC (x))
1809 return false;
1810 x = SET_SRC (x);
1811 goto repeat;
1813 default:
1814 break;
1817 /* X does not match, so try its subexpressions. */
1819 fmt = GET_RTX_FORMAT (code);
1820 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1822 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1824 if (i == 0)
1826 x = XEXP (x, 0);
1827 goto repeat;
1829 else
1830 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1831 return true;
1833 else if (fmt[i] == 'E')
1835 int j;
1836 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1837 if (loc != &XVECEXP (x, i, j)
1838 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1839 return true;
1842 return false;
1845 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1846 we check if any register number in X conflicts with the relevant register
1847 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1848 contains a MEM (we don't bother checking for memory addresses that can't
1849 conflict because we expect this to be a rare case. */
1852 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1854 unsigned int regno, endregno;
1856 /* If either argument is a constant, then modifying X cannot
1857 affect IN. Here we look at IN, we can profitably combine
1858 CONSTANT_P (x) with the switch statement below. */
1859 if (CONSTANT_P (in))
1860 return 0;
1862 recurse:
1863 switch (GET_CODE (x))
1865 case CLOBBER:
1866 case STRICT_LOW_PART:
1867 case ZERO_EXTRACT:
1868 case SIGN_EXTRACT:
1869 /* Overly conservative. */
1870 x = XEXP (x, 0);
1871 goto recurse;
1873 case SUBREG:
1874 regno = REGNO (SUBREG_REG (x));
1875 if (regno < FIRST_PSEUDO_REGISTER)
1876 regno = subreg_regno (x);
1877 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1878 ? subreg_nregs (x) : 1);
1879 goto do_reg;
1881 case REG:
1882 regno = REGNO (x);
1883 endregno = END_REGNO (x);
1884 do_reg:
1885 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1887 case MEM:
1889 const char *fmt;
1890 int i;
1892 if (MEM_P (in))
1893 return 1;
1895 fmt = GET_RTX_FORMAT (GET_CODE (in));
1896 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1897 if (fmt[i] == 'e')
1899 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1900 return 1;
1902 else if (fmt[i] == 'E')
1904 int j;
1905 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1906 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1907 return 1;
1910 return 0;
1913 case SCRATCH:
1914 case PC:
1915 case CC0:
1916 return reg_mentioned_p (x, in);
1918 case PARALLEL:
1920 int i;
1922 /* If any register in here refers to it we return true. */
1923 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1924 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1925 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1926 return 1;
1927 return 0;
1930 default:
1931 gcc_assert (CONSTANT_P (x));
1932 return 0;
1936 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1937 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1938 ignored by note_stores, but passed to FUN.
1940 FUN receives three arguments:
1941 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1942 2. the SET or CLOBBER rtx that does the store,
1943 3. the pointer DATA provided to note_stores.
1945 If the item being stored in or clobbered is a SUBREG of a hard register,
1946 the SUBREG will be passed. */
1948 void
1949 note_pattern_stores (const_rtx x,
1950 void (*fun) (rtx, const_rtx, void *), void *data)
1952 int i;
1954 if (GET_CODE (x) == COND_EXEC)
1955 x = COND_EXEC_CODE (x);
1957 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1959 rtx dest = SET_DEST (x);
1961 while ((GET_CODE (dest) == SUBREG
1962 && (!REG_P (SUBREG_REG (dest))
1963 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1964 || GET_CODE (dest) == ZERO_EXTRACT
1965 || GET_CODE (dest) == STRICT_LOW_PART)
1966 dest = XEXP (dest, 0);
1968 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1969 each of whose first operand is a register. */
1970 if (GET_CODE (dest) == PARALLEL)
1972 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1973 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1974 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1976 else
1977 (*fun) (dest, x, data);
1980 else if (GET_CODE (x) == PARALLEL)
1981 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1982 note_pattern_stores (XVECEXP (x, 0, i), fun, data);
1985 /* Same, but for an instruction. If the instruction is a call, include
1986 any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */
1988 void
1989 note_stores (const rtx_insn *insn,
1990 void (*fun) (rtx, const_rtx, void *), void *data)
1992 if (CALL_P (insn))
1993 for (rtx link = CALL_INSN_FUNCTION_USAGE (insn);
1994 link; link = XEXP (link, 1))
1995 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1996 note_pattern_stores (XEXP (link, 0), fun, data);
1997 note_pattern_stores (PATTERN (insn), fun, data);
2000 /* Like notes_stores, but call FUN for each expression that is being
2001 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
2002 FUN for each expression, not any interior subexpressions. FUN receives a
2003 pointer to the expression and the DATA passed to this function.
2005 Note that this is not quite the same test as that done in reg_referenced_p
2006 since that considers something as being referenced if it is being
2007 partially set, while we do not. */
2009 void
2010 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
2012 rtx body = *pbody;
2013 int i;
2015 switch (GET_CODE (body))
2017 case COND_EXEC:
2018 (*fun) (&COND_EXEC_TEST (body), data);
2019 note_uses (&COND_EXEC_CODE (body), fun, data);
2020 return;
2022 case PARALLEL:
2023 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2024 note_uses (&XVECEXP (body, 0, i), fun, data);
2025 return;
2027 case SEQUENCE:
2028 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2029 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
2030 return;
2032 case USE:
2033 (*fun) (&XEXP (body, 0), data);
2034 return;
2036 case ASM_OPERANDS:
2037 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
2038 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
2039 return;
2041 case TRAP_IF:
2042 (*fun) (&TRAP_CONDITION (body), data);
2043 return;
2045 case PREFETCH:
2046 (*fun) (&XEXP (body, 0), data);
2047 return;
2049 case UNSPEC:
2050 case UNSPEC_VOLATILE:
2051 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2052 (*fun) (&XVECEXP (body, 0, i), data);
2053 return;
2055 case CLOBBER:
2056 if (MEM_P (XEXP (body, 0)))
2057 (*fun) (&XEXP (XEXP (body, 0), 0), data);
2058 return;
2060 case SET:
2062 rtx dest = SET_DEST (body);
2064 /* For sets we replace everything in source plus registers in memory
2065 expression in store and operands of a ZERO_EXTRACT. */
2066 (*fun) (&SET_SRC (body), data);
2068 if (GET_CODE (dest) == ZERO_EXTRACT)
2070 (*fun) (&XEXP (dest, 1), data);
2071 (*fun) (&XEXP (dest, 2), data);
2074 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
2075 dest = XEXP (dest, 0);
2077 if (MEM_P (dest))
2078 (*fun) (&XEXP (dest, 0), data);
2080 return;
2082 default:
2083 /* All the other possibilities never store. */
2084 (*fun) (pbody, data);
2085 return;
2089 /* Try to add a description of REG X to this object, stopping once
2090 the REF_END limit has been reached. FLAGS is a bitmask of
2091 rtx_obj_reference flags that describe the context. */
2093 void
2094 rtx_properties::try_to_add_reg (const_rtx x, unsigned int flags)
2096 if (REG_NREGS (x) != 1)
2097 flags |= rtx_obj_flags::IS_MULTIREG;
2098 machine_mode mode = GET_MODE (x);
2099 unsigned int start_regno = REGNO (x);
2100 unsigned int end_regno = END_REGNO (x);
2101 for (unsigned int regno = start_regno; regno < end_regno; ++regno)
2102 if (ref_iter != ref_end)
2103 *ref_iter++ = rtx_obj_reference (regno, flags, mode,
2104 regno - start_regno);
2107 /* Add a description of destination X to this object. FLAGS is a bitmask
2108 of rtx_obj_reference flags that describe the context.
2110 This routine accepts all rtxes that can legitimately appear in a
2111 SET_DEST. */
2113 void
2114 rtx_properties::try_to_add_dest (const_rtx x, unsigned int flags)
2116 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
2117 each of whose first operand is a register. */
2118 if (__builtin_expect (GET_CODE (x) == PARALLEL, 0))
2120 for (int i = XVECLEN (x, 0) - 1; i >= 0; --i)
2121 if (rtx dest = XEXP (XVECEXP (x, 0, i), 0))
2122 try_to_add_dest (dest, flags);
2123 return;
2126 unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS;
2127 flags |= rtx_obj_flags::IS_WRITE;
2128 for (;;)
2129 if (GET_CODE (x) == ZERO_EXTRACT)
2131 try_to_add_src (XEXP (x, 1), base_flags);
2132 try_to_add_src (XEXP (x, 2), base_flags);
2133 flags |= rtx_obj_flags::IS_READ;
2134 x = XEXP (x, 0);
2136 else if (GET_CODE (x) == STRICT_LOW_PART)
2138 flags |= rtx_obj_flags::IS_READ;
2139 x = XEXP (x, 0);
2141 else if (GET_CODE (x) == SUBREG)
2143 flags |= rtx_obj_flags::IN_SUBREG;
2144 if (read_modify_subreg_p (x))
2145 flags |= rtx_obj_flags::IS_READ;
2146 x = SUBREG_REG (x);
2148 else
2149 break;
2151 if (MEM_P (x))
2153 if (ref_iter != ref_end)
2154 *ref_iter++ = rtx_obj_reference (MEM_REGNO, flags, GET_MODE (x));
2156 unsigned int addr_flags = base_flags | rtx_obj_flags::IN_MEM_STORE;
2157 if (flags & rtx_obj_flags::IS_READ)
2158 addr_flags |= rtx_obj_flags::IN_MEM_LOAD;
2159 try_to_add_src (XEXP (x, 0), addr_flags);
2160 return;
2163 if (__builtin_expect (REG_P (x), 1))
2165 /* We want to keep sp alive everywhere - by making all
2166 writes to sp also use sp. */
2167 if (REGNO (x) == STACK_POINTER_REGNUM)
2168 flags |= rtx_obj_flags::IS_READ;
2169 try_to_add_reg (x, flags);
2170 return;
2174 /* Try to add a description of source X to this object, stopping once
2175 the REF_END limit has been reached. FLAGS is a bitmask of
2176 rtx_obj_reference flags that describe the context.
2178 This routine accepts all rtxes that can legitimately appear in a SET_SRC. */
2180 void
2181 rtx_properties::try_to_add_src (const_rtx x, unsigned int flags)
2183 unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS;
2184 subrtx_iterator::array_type array;
2185 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2187 const_rtx x = *iter;
2188 rtx_code code = GET_CODE (x);
2189 if (code == REG)
2190 try_to_add_reg (x, flags | rtx_obj_flags::IS_READ);
2191 else if (code == MEM)
2193 if (MEM_VOLATILE_P (x))
2194 has_volatile_refs = true;
2196 if (!MEM_READONLY_P (x) && ref_iter != ref_end)
2198 auto mem_flags = flags | rtx_obj_flags::IS_READ;
2199 *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags,
2200 GET_MODE (x));
2203 try_to_add_src (XEXP (x, 0),
2204 base_flags | rtx_obj_flags::IN_MEM_LOAD);
2205 iter.skip_subrtxes ();
2207 else if (code == SUBREG)
2209 try_to_add_src (SUBREG_REG (x), flags | rtx_obj_flags::IN_SUBREG);
2210 iter.skip_subrtxes ();
2212 else if (code == UNSPEC_VOLATILE)
2213 has_volatile_refs = true;
2214 else if (code == ASM_INPUT || code == ASM_OPERANDS)
2216 has_asm = true;
2217 if (MEM_VOLATILE_P (x))
2218 has_volatile_refs = true;
2220 else if (code == PRE_INC
2221 || code == PRE_DEC
2222 || code == POST_INC
2223 || code == POST_DEC
2224 || code == PRE_MODIFY
2225 || code == POST_MODIFY)
2227 has_pre_post_modify = true;
2229 unsigned int addr_flags = (base_flags
2230 | rtx_obj_flags::IS_PRE_POST_MODIFY
2231 | rtx_obj_flags::IS_READ);
2232 try_to_add_dest (XEXP (x, 0), addr_flags);
2233 if (code == PRE_MODIFY || code == POST_MODIFY)
2234 iter.substitute (XEXP (XEXP (x, 1), 1));
2235 else
2236 iter.skip_subrtxes ();
2238 else if (code == CALL)
2239 has_call = true;
2243 /* Try to add a description of instruction pattern PAT to this object,
2244 stopping once the REF_END limit has been reached. */
2246 void
2247 rtx_properties::try_to_add_pattern (const_rtx pat)
2249 switch (GET_CODE (pat))
2251 case COND_EXEC:
2252 try_to_add_src (COND_EXEC_TEST (pat));
2253 try_to_add_pattern (COND_EXEC_CODE (pat));
2254 break;
2256 case PARALLEL:
2258 int last = XVECLEN (pat, 0) - 1;
2259 for (int i = 0; i < last; ++i)
2260 try_to_add_pattern (XVECEXP (pat, 0, i));
2261 try_to_add_pattern (XVECEXP (pat, 0, last));
2262 break;
2265 case ASM_OPERANDS:
2266 for (int i = 0, len = ASM_OPERANDS_INPUT_LENGTH (pat); i < len; ++i)
2267 try_to_add_src (ASM_OPERANDS_INPUT (pat, i));
2268 break;
2270 case CLOBBER:
2271 try_to_add_dest (XEXP (pat, 0), rtx_obj_flags::IS_CLOBBER);
2272 break;
2274 case SET:
2275 try_to_add_dest (SET_DEST (pat));
2276 try_to_add_src (SET_SRC (pat));
2277 break;
2279 default:
2280 /* All the other possibilities never store and can use a normal
2281 rtx walk. This includes:
2283 - USE
2284 - TRAP_IF
2285 - PREFETCH
2286 - UNSPEC
2287 - UNSPEC_VOLATILE. */
2288 try_to_add_src (pat);
2289 break;
2293 /* Try to add a description of INSN to this object, stopping once
2294 the REF_END limit has been reached. INCLUDE_NOTES is true if the
2295 description should include REG_EQUAL and REG_EQUIV notes; all such
2296 references will then be marked with rtx_obj_flags::IN_NOTE.
2298 For calls, this description includes all accesses in
2299 CALL_INSN_FUNCTION_USAGE. It also include all implicit accesses
2300 to global registers by the target function. However, it does not
2301 include clobbers performed by the target function; callers that want
2302 this information should instead use the function_abi interface. */
2304 void
2305 rtx_properties::try_to_add_insn (const rtx_insn *insn, bool include_notes)
2307 if (CALL_P (insn))
2309 /* Adding the global registers first removes a situation in which
2310 a fixed-form clobber of register R could come before a real set
2311 of register R. */
2312 if (!hard_reg_set_empty_p (global_reg_set))
2314 unsigned int flags = (rtx_obj_flags::IS_READ
2315 | rtx_obj_flags::IS_WRITE);
2316 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
2317 if (global_regs[regno] && ref_iter != ref_end)
2318 *ref_iter++ = rtx_obj_reference (regno, flags,
2319 reg_raw_mode[regno], 0);
2321 if (ref_iter != ref_end && !RTL_CONST_CALL_P (insn))
2323 auto mem_flags = rtx_obj_flags::IS_READ;
2324 if (!RTL_PURE_CALL_P (insn))
2325 mem_flags |= rtx_obj_flags::IS_WRITE;
2326 *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, BLKmode);
2328 try_to_add_pattern (PATTERN (insn));
2329 for (rtx link = CALL_INSN_FUNCTION_USAGE (insn); link;
2330 link = XEXP (link, 1))
2332 rtx x = XEXP (link, 0);
2333 if (GET_CODE (x) == CLOBBER)
2334 try_to_add_dest (XEXP (x, 0), rtx_obj_flags::IS_CLOBBER);
2335 else if (GET_CODE (x) == USE)
2336 try_to_add_src (XEXP (x, 0));
2339 else
2340 try_to_add_pattern (PATTERN (insn));
2342 if (include_notes)
2343 for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1))
2344 if (REG_NOTE_KIND (note) == REG_EQUAL
2345 || REG_NOTE_KIND (note) == REG_EQUIV)
2346 try_to_add_note (XEXP (note, 0));
2349 /* Grow the storage by a bit while keeping the contents of the first
2350 START elements. */
2352 void
2353 vec_rtx_properties_base::grow (ptrdiff_t start)
2355 /* The same heuristic that vec uses. */
2356 ptrdiff_t new_elems = (ref_end - ref_begin) * 3 / 2;
2357 if (ref_begin == m_storage)
2359 ref_begin = XNEWVEC (rtx_obj_reference, new_elems);
2360 if (start)
2361 memcpy (ref_begin, m_storage, start * sizeof (rtx_obj_reference));
2363 else
2364 ref_begin = reinterpret_cast<rtx_obj_reference *>
2365 (xrealloc (ref_begin, new_elems * sizeof (rtx_obj_reference)));
2366 ref_iter = ref_begin + start;
2367 ref_end = ref_begin + new_elems;
2370 /* Return nonzero if X's old contents don't survive after INSN.
2371 This will be true if X is (cc0) or if X is a register and
2372 X dies in INSN or because INSN entirely sets X.
2374 "Entirely set" means set directly and not through a SUBREG, or
2375 ZERO_EXTRACT, so no trace of the old contents remains.
2376 Likewise, REG_INC does not count.
2378 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2379 but for this use that makes no difference, since regs don't overlap
2380 during their lifetimes. Therefore, this function may be used
2381 at any time after deaths have been computed.
2383 If REG is a hard reg that occupies multiple machine registers, this
2384 function will only return 1 if each of those registers will be replaced
2385 by INSN. */
2388 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2390 unsigned int regno, end_regno;
2391 unsigned int i;
2393 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2394 if (GET_CODE (x) == CC0)
2395 return 1;
2397 gcc_assert (REG_P (x));
2399 regno = REGNO (x);
2400 end_regno = END_REGNO (x);
2401 for (i = regno; i < end_regno; i++)
2402 if (! dead_or_set_regno_p (insn, i))
2403 return 0;
2405 return 1;
2408 /* Return TRUE iff DEST is a register or subreg of a register, is a
2409 complete rather than read-modify-write destination, and contains
2410 register TEST_REGNO. */
2412 static bool
2413 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2415 unsigned int regno, endregno;
2417 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2418 dest = SUBREG_REG (dest);
2420 if (!REG_P (dest))
2421 return false;
2423 regno = REGNO (dest);
2424 endregno = END_REGNO (dest);
2425 return (test_regno >= regno && test_regno < endregno);
2428 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2429 any member matches the covers_regno_no_parallel_p criteria. */
2431 static bool
2432 covers_regno_p (const_rtx dest, unsigned int test_regno)
2434 if (GET_CODE (dest) == PARALLEL)
2436 /* Some targets place small structures in registers for return
2437 values of functions, and those registers are wrapped in
2438 PARALLELs that we may see as the destination of a SET. */
2439 int i;
2441 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2443 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2444 if (inner != NULL_RTX
2445 && covers_regno_no_parallel_p (inner, test_regno))
2446 return true;
2449 return false;
2451 else
2452 return covers_regno_no_parallel_p (dest, test_regno);
2455 /* Utility function for dead_or_set_p to check an individual register. */
2458 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2460 const_rtx pattern;
2462 /* See if there is a death note for something that includes TEST_REGNO. */
2463 if (find_regno_note (insn, REG_DEAD, test_regno))
2464 return 1;
2466 if (CALL_P (insn)
2467 && find_regno_fusage (insn, CLOBBER, test_regno))
2468 return 1;
2470 pattern = PATTERN (insn);
2472 /* If a COND_EXEC is not executed, the value survives. */
2473 if (GET_CODE (pattern) == COND_EXEC)
2474 return 0;
2476 if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2477 return covers_regno_p (SET_DEST (pattern), test_regno);
2478 else if (GET_CODE (pattern) == PARALLEL)
2480 int i;
2482 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2484 rtx body = XVECEXP (pattern, 0, i);
2486 if (GET_CODE (body) == COND_EXEC)
2487 body = COND_EXEC_CODE (body);
2489 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2490 && covers_regno_p (SET_DEST (body), test_regno))
2491 return 1;
2495 return 0;
2498 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2499 If DATUM is nonzero, look for one whose datum is DATUM. */
2502 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2504 rtx link;
2506 gcc_checking_assert (insn);
2508 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2509 if (! INSN_P (insn))
2510 return 0;
2511 if (datum == 0)
2513 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2514 if (REG_NOTE_KIND (link) == kind)
2515 return link;
2516 return 0;
2519 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2520 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2521 return link;
2522 return 0;
2525 /* Return the reg-note of kind KIND in insn INSN which applies to register
2526 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2527 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2528 it might be the case that the note overlaps REGNO. */
2531 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2533 rtx link;
2535 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2536 if (! INSN_P (insn))
2537 return 0;
2539 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2540 if (REG_NOTE_KIND (link) == kind
2541 /* Verify that it is a register, so that scratch and MEM won't cause a
2542 problem here. */
2543 && REG_P (XEXP (link, 0))
2544 && REGNO (XEXP (link, 0)) <= regno
2545 && END_REGNO (XEXP (link, 0)) > regno)
2546 return link;
2547 return 0;
2550 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2551 has such a note. */
2554 find_reg_equal_equiv_note (const_rtx insn)
2556 rtx link;
2558 if (!INSN_P (insn))
2559 return 0;
2561 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2562 if (REG_NOTE_KIND (link) == REG_EQUAL
2563 || REG_NOTE_KIND (link) == REG_EQUIV)
2565 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2566 insns that have multiple sets. Checking single_set to
2567 make sure of this is not the proper check, as explained
2568 in the comment in set_unique_reg_note.
2570 This should be changed into an assert. */
2571 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2572 return 0;
2573 return link;
2575 return NULL;
2578 /* Check whether INSN is a single_set whose source is known to be
2579 equivalent to a constant. Return that constant if so, otherwise
2580 return null. */
2583 find_constant_src (const rtx_insn *insn)
2585 rtx note, set, x;
2587 set = single_set (insn);
2588 if (set)
2590 x = avoid_constant_pool_reference (SET_SRC (set));
2591 if (CONSTANT_P (x))
2592 return x;
2595 note = find_reg_equal_equiv_note (insn);
2596 if (note && CONSTANT_P (XEXP (note, 0)))
2597 return XEXP (note, 0);
2599 return NULL_RTX;
2602 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2603 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2606 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2608 /* If it's not a CALL_INSN, it can't possibly have a
2609 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2610 if (!CALL_P (insn))
2611 return 0;
2613 gcc_assert (datum);
2615 if (!REG_P (datum))
2617 rtx link;
2619 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2620 link;
2621 link = XEXP (link, 1))
2622 if (GET_CODE (XEXP (link, 0)) == code
2623 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2624 return 1;
2626 else
2628 unsigned int regno = REGNO (datum);
2630 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2631 to pseudo registers, so don't bother checking. */
2633 if (regno < FIRST_PSEUDO_REGISTER)
2635 unsigned int end_regno = END_REGNO (datum);
2636 unsigned int i;
2638 for (i = regno; i < end_regno; i++)
2639 if (find_regno_fusage (insn, code, i))
2640 return 1;
2644 return 0;
2647 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2648 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2651 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2653 rtx link;
2655 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2656 to pseudo registers, so don't bother checking. */
2658 if (regno >= FIRST_PSEUDO_REGISTER
2659 || !CALL_P (insn) )
2660 return 0;
2662 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2664 rtx op, reg;
2666 if (GET_CODE (op = XEXP (link, 0)) == code
2667 && REG_P (reg = XEXP (op, 0))
2668 && REGNO (reg) <= regno
2669 && END_REGNO (reg) > regno)
2670 return 1;
2673 return 0;
2677 /* Return true if KIND is an integer REG_NOTE. */
2679 static bool
2680 int_reg_note_p (enum reg_note kind)
2682 return kind == REG_BR_PROB;
2685 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2686 stored as the pointer to the next register note. */
2689 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2691 rtx note;
2693 gcc_checking_assert (!int_reg_note_p (kind));
2694 switch (kind)
2696 case REG_CC_SETTER:
2697 case REG_CC_USER:
2698 case REG_LABEL_TARGET:
2699 case REG_LABEL_OPERAND:
2700 case REG_TM:
2701 /* These types of register notes use an INSN_LIST rather than an
2702 EXPR_LIST, so that copying is done right and dumps look
2703 better. */
2704 note = alloc_INSN_LIST (datum, list);
2705 PUT_REG_NOTE_KIND (note, kind);
2706 break;
2708 default:
2709 note = alloc_EXPR_LIST (kind, datum, list);
2710 break;
2713 return note;
2716 /* Add register note with kind KIND and datum DATUM to INSN. */
2718 void
2719 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2721 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2724 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2726 void
2727 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2729 gcc_checking_assert (int_reg_note_p (kind));
2730 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2731 datum, REG_NOTES (insn));
2734 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2736 void
2737 add_args_size_note (rtx_insn *insn, poly_int64 value)
2739 gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2740 add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2743 /* Add a register note like NOTE to INSN. */
2745 void
2746 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2748 if (GET_CODE (note) == INT_LIST)
2749 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2750 else
2751 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2754 /* Duplicate NOTE and return the copy. */
2756 duplicate_reg_note (rtx note)
2758 reg_note kind = REG_NOTE_KIND (note);
2760 if (GET_CODE (note) == INT_LIST)
2761 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2762 else if (GET_CODE (note) == EXPR_LIST)
2763 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2764 else
2765 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2768 /* Remove register note NOTE from the REG_NOTES of INSN. */
2770 void
2771 remove_note (rtx_insn *insn, const_rtx note)
2773 rtx link;
2775 if (note == NULL_RTX)
2776 return;
2778 if (REG_NOTES (insn) == note)
2779 REG_NOTES (insn) = XEXP (note, 1);
2780 else
2781 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2782 if (XEXP (link, 1) == note)
2784 XEXP (link, 1) = XEXP (note, 1);
2785 break;
2788 switch (REG_NOTE_KIND (note))
2790 case REG_EQUAL:
2791 case REG_EQUIV:
2792 df_notes_rescan (insn);
2793 break;
2794 default:
2795 break;
2799 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2800 If NO_RESCAN is false and any notes were removed, call
2801 df_notes_rescan. Return true if any note has been removed. */
2803 bool
2804 remove_reg_equal_equiv_notes (rtx_insn *insn, bool no_rescan)
2806 rtx *loc;
2807 bool ret = false;
2809 loc = &REG_NOTES (insn);
2810 while (*loc)
2812 enum reg_note kind = REG_NOTE_KIND (*loc);
2813 if (kind == REG_EQUAL || kind == REG_EQUIV)
2815 *loc = XEXP (*loc, 1);
2816 ret = true;
2818 else
2819 loc = &XEXP (*loc, 1);
2821 if (ret && !no_rescan)
2822 df_notes_rescan (insn);
2823 return ret;
2826 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2828 void
2829 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2831 df_ref eq_use;
2833 if (!df)
2834 return;
2836 /* This loop is a little tricky. We cannot just go down the chain because
2837 it is being modified by some actions in the loop. So we just iterate
2838 over the head. We plan to drain the list anyway. */
2839 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2841 rtx_insn *insn = DF_REF_INSN (eq_use);
2842 rtx note = find_reg_equal_equiv_note (insn);
2844 /* This assert is generally triggered when someone deletes a REG_EQUAL
2845 or REG_EQUIV note by hacking the list manually rather than calling
2846 remove_note. */
2847 gcc_assert (note);
2849 remove_note (insn, note);
2853 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2854 return 1 if it is found. A simple equality test is used to determine if
2855 NODE matches. */
2857 bool
2858 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2860 const_rtx x;
2862 for (x = listp; x; x = XEXP (x, 1))
2863 if (node == XEXP (x, 0))
2864 return true;
2866 return false;
2869 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2870 remove that entry from the list if it is found.
2872 A simple equality test is used to determine if NODE matches. */
2874 void
2875 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2877 rtx_expr_list *temp = *listp;
2878 rtx_expr_list *prev = NULL;
2880 while (temp)
2882 if (node == temp->element ())
2884 /* Splice the node out of the list. */
2885 if (prev)
2886 XEXP (prev, 1) = temp->next ();
2887 else
2888 *listp = temp->next ();
2890 return;
2893 prev = temp;
2894 temp = temp->next ();
2898 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2899 remove that entry from the list if it is found.
2901 A simple equality test is used to determine if NODE matches. */
2903 void
2904 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2906 rtx_insn_list *temp = *listp;
2907 rtx_insn_list *prev = NULL;
2909 while (temp)
2911 if (node == temp->insn ())
2913 /* Splice the node out of the list. */
2914 if (prev)
2915 XEXP (prev, 1) = temp->next ();
2916 else
2917 *listp = temp->next ();
2919 return;
2922 prev = temp;
2923 temp = temp->next ();
2927 /* Nonzero if X contains any volatile instructions. These are instructions
2928 which may cause unpredictable machine state instructions, and thus no
2929 instructions or register uses should be moved or combined across them.
2930 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2933 volatile_insn_p (const_rtx x)
2935 const RTX_CODE code = GET_CODE (x);
2936 switch (code)
2938 case LABEL_REF:
2939 case SYMBOL_REF:
2940 case CONST:
2941 CASE_CONST_ANY:
2942 case CC0:
2943 case PC:
2944 case REG:
2945 case SCRATCH:
2946 case CLOBBER:
2947 case ADDR_VEC:
2948 case ADDR_DIFF_VEC:
2949 case CALL:
2950 case MEM:
2951 return 0;
2953 case UNSPEC_VOLATILE:
2954 return 1;
2956 case ASM_INPUT:
2957 case ASM_OPERANDS:
2958 if (MEM_VOLATILE_P (x))
2959 return 1;
2961 default:
2962 break;
2965 /* Recursively scan the operands of this expression. */
2968 const char *const fmt = GET_RTX_FORMAT (code);
2969 int i;
2971 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2973 if (fmt[i] == 'e')
2975 if (volatile_insn_p (XEXP (x, i)))
2976 return 1;
2978 else if (fmt[i] == 'E')
2980 int j;
2981 for (j = 0; j < XVECLEN (x, i); j++)
2982 if (volatile_insn_p (XVECEXP (x, i, j)))
2983 return 1;
2987 return 0;
2990 /* Nonzero if X contains any volatile memory references
2991 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2994 volatile_refs_p (const_rtx x)
2996 const RTX_CODE code = GET_CODE (x);
2997 switch (code)
2999 case LABEL_REF:
3000 case SYMBOL_REF:
3001 case CONST:
3002 CASE_CONST_ANY:
3003 case CC0:
3004 case PC:
3005 case REG:
3006 case SCRATCH:
3007 case CLOBBER:
3008 case ADDR_VEC:
3009 case ADDR_DIFF_VEC:
3010 return 0;
3012 case UNSPEC_VOLATILE:
3013 return 1;
3015 case MEM:
3016 case ASM_INPUT:
3017 case ASM_OPERANDS:
3018 if (MEM_VOLATILE_P (x))
3019 return 1;
3021 default:
3022 break;
3025 /* Recursively scan the operands of this expression. */
3028 const char *const fmt = GET_RTX_FORMAT (code);
3029 int i;
3031 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3033 if (fmt[i] == 'e')
3035 if (volatile_refs_p (XEXP (x, i)))
3036 return 1;
3038 else if (fmt[i] == 'E')
3040 int j;
3041 for (j = 0; j < XVECLEN (x, i); j++)
3042 if (volatile_refs_p (XVECEXP (x, i, j)))
3043 return 1;
3047 return 0;
3050 /* Similar to above, except that it also rejects register pre- and post-
3051 incrementing. */
3054 side_effects_p (const_rtx x)
3056 const RTX_CODE code = GET_CODE (x);
3057 switch (code)
3059 case LABEL_REF:
3060 case SYMBOL_REF:
3061 case CONST:
3062 CASE_CONST_ANY:
3063 case CC0:
3064 case PC:
3065 case REG:
3066 case SCRATCH:
3067 case ADDR_VEC:
3068 case ADDR_DIFF_VEC:
3069 case VAR_LOCATION:
3070 return 0;
3072 case CLOBBER:
3073 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
3074 when some combination can't be done. If we see one, don't think
3075 that we can simplify the expression. */
3076 return (GET_MODE (x) != VOIDmode);
3078 case PRE_INC:
3079 case PRE_DEC:
3080 case POST_INC:
3081 case POST_DEC:
3082 case PRE_MODIFY:
3083 case POST_MODIFY:
3084 case CALL:
3085 case UNSPEC_VOLATILE:
3086 return 1;
3088 case MEM:
3089 case ASM_INPUT:
3090 case ASM_OPERANDS:
3091 if (MEM_VOLATILE_P (x))
3092 return 1;
3094 default:
3095 break;
3098 /* Recursively scan the operands of this expression. */
3101 const char *fmt = GET_RTX_FORMAT (code);
3102 int i;
3104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3106 if (fmt[i] == 'e')
3108 if (side_effects_p (XEXP (x, i)))
3109 return 1;
3111 else if (fmt[i] == 'E')
3113 int j;
3114 for (j = 0; j < XVECLEN (x, i); j++)
3115 if (side_effects_p (XVECEXP (x, i, j)))
3116 return 1;
3120 return 0;
3123 /* Return nonzero if evaluating rtx X might cause a trap.
3124 FLAGS controls how to consider MEMs. A nonzero means the context
3125 of the access may have changed from the original, such that the
3126 address may have become invalid. */
3129 may_trap_p_1 (const_rtx x, unsigned flags)
3131 int i;
3132 enum rtx_code code;
3133 const char *fmt;
3135 /* We make no distinction currently, but this function is part of
3136 the internal target-hooks ABI so we keep the parameter as
3137 "unsigned flags". */
3138 bool code_changed = flags != 0;
3140 if (x == 0)
3141 return 0;
3142 code = GET_CODE (x);
3143 switch (code)
3145 /* Handle these cases quickly. */
3146 CASE_CONST_ANY:
3147 case SYMBOL_REF:
3148 case LABEL_REF:
3149 case CONST:
3150 case PC:
3151 case CC0:
3152 case REG:
3153 case SCRATCH:
3154 return 0;
3156 case UNSPEC:
3157 return targetm.unspec_may_trap_p (x, flags);
3159 case UNSPEC_VOLATILE:
3160 case ASM_INPUT:
3161 case TRAP_IF:
3162 return 1;
3164 case ASM_OPERANDS:
3165 return MEM_VOLATILE_P (x);
3167 /* Memory ref can trap unless it's a static var or a stack slot. */
3168 case MEM:
3169 /* Recognize specific pattern of stack checking probes. */
3170 if (flag_stack_check
3171 && MEM_VOLATILE_P (x)
3172 && XEXP (x, 0) == stack_pointer_rtx)
3173 return 1;
3174 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
3175 reference; moving it out of context such as when moving code
3176 when optimizing, might cause its address to become invalid. */
3177 code_changed
3178 || !MEM_NOTRAP_P (x))
3180 poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
3181 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
3182 GET_MODE (x), code_changed);
3185 return 0;
3187 /* Division by a non-constant might trap. */
3188 case DIV:
3189 case MOD:
3190 case UDIV:
3191 case UMOD:
3192 if (HONOR_SNANS (x))
3193 return 1;
3194 if (FLOAT_MODE_P (GET_MODE (x)))
3195 return flag_trapping_math;
3196 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
3197 return 1;
3198 if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR)
3200 /* For CONST_VECTOR, return 1 if any element is or might be zero. */
3201 unsigned int n_elts;
3202 rtx op = XEXP (x, 1);
3203 if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts))
3205 if (!CONST_VECTOR_DUPLICATE_P (op))
3206 return 1;
3207 for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++)
3208 if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx)
3209 return 1;
3211 else
3212 for (unsigned i = 0; i < n_elts; i++)
3213 if (CONST_VECTOR_ELT (op, i) == const0_rtx)
3214 return 1;
3216 break;
3218 case EXPR_LIST:
3219 /* An EXPR_LIST is used to represent a function call. This
3220 certainly may trap. */
3221 return 1;
3223 case GE:
3224 case GT:
3225 case LE:
3226 case LT:
3227 case LTGT:
3228 case COMPARE:
3229 /* Some floating point comparisons may trap. */
3230 if (!flag_trapping_math)
3231 break;
3232 /* ??? There is no machine independent way to check for tests that trap
3233 when COMPARE is used, though many targets do make this distinction.
3234 For instance, sparc uses CCFPE for compares which generate exceptions
3235 and CCFP for compares which do not generate exceptions. */
3236 if (HONOR_NANS (x))
3237 return 1;
3238 /* But often the compare has some CC mode, so check operand
3239 modes as well. */
3240 if (HONOR_NANS (XEXP (x, 0))
3241 || HONOR_NANS (XEXP (x, 1)))
3242 return 1;
3243 break;
3245 case EQ:
3246 case NE:
3247 if (HONOR_SNANS (x))
3248 return 1;
3249 /* Often comparison is CC mode, so check operand modes. */
3250 if (HONOR_SNANS (XEXP (x, 0))
3251 || HONOR_SNANS (XEXP (x, 1)))
3252 return 1;
3253 break;
3255 case FIX:
3256 /* Conversion of floating point might trap. */
3257 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
3258 return 1;
3259 break;
3261 case NEG:
3262 case ABS:
3263 case SUBREG:
3264 case VEC_MERGE:
3265 case VEC_SELECT:
3266 case VEC_CONCAT:
3267 case VEC_DUPLICATE:
3268 /* These operations don't trap even with floating point. */
3269 break;
3271 default:
3272 /* Any floating arithmetic may trap. */
3273 if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
3274 return 1;
3277 fmt = GET_RTX_FORMAT (code);
3278 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3280 if (fmt[i] == 'e')
3282 if (may_trap_p_1 (XEXP (x, i), flags))
3283 return 1;
3285 else if (fmt[i] == 'E')
3287 int j;
3288 for (j = 0; j < XVECLEN (x, i); j++)
3289 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
3290 return 1;
3293 return 0;
3296 /* Return nonzero if evaluating rtx X might cause a trap. */
3299 may_trap_p (const_rtx x)
3301 return may_trap_p_1 (x, 0);
3304 /* Same as above, but additionally return nonzero if evaluating rtx X might
3305 cause a fault. We define a fault for the purpose of this function as a
3306 erroneous execution condition that cannot be encountered during the normal
3307 execution of a valid program; the typical example is an unaligned memory
3308 access on a strict alignment machine. The compiler guarantees that it
3309 doesn't generate code that will fault from a valid program, but this
3310 guarantee doesn't mean anything for individual instructions. Consider
3311 the following example:
3313 struct S { int d; union { char *cp; int *ip; }; };
3315 int foo(struct S *s)
3317 if (s->d == 1)
3318 return *s->ip;
3319 else
3320 return *s->cp;
3323 on a strict alignment machine. In a valid program, foo will never be
3324 invoked on a structure for which d is equal to 1 and the underlying
3325 unique field of the union not aligned on a 4-byte boundary, but the
3326 expression *s->ip might cause a fault if considered individually.
3328 At the RTL level, potentially problematic expressions will almost always
3329 verify may_trap_p; for example, the above dereference can be emitted as
3330 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
3331 However, suppose that foo is inlined in a caller that causes s->cp to
3332 point to a local character variable and guarantees that s->d is not set
3333 to 1; foo may have been effectively translated into pseudo-RTL as:
3335 if ((reg:SI) == 1)
3336 (set (reg:SI) (mem:SI (%fp - 7)))
3337 else
3338 (set (reg:QI) (mem:QI (%fp - 7)))
3340 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
3341 memory reference to a stack slot, but it will certainly cause a fault
3342 on a strict alignment machine. */
3345 may_trap_or_fault_p (const_rtx x)
3347 return may_trap_p_1 (x, 1);
3350 /* Replace any occurrence of FROM in X with TO. The function does
3351 not enter into CONST_DOUBLE for the replace.
3353 Note that copying is not done so X must not be shared unless all copies
3354 are to be modified.
3356 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3357 those pointer-equal ones. */
3360 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3362 int i, j;
3363 const char *fmt;
3365 if (x == from)
3366 return to;
3368 /* Allow this function to make replacements in EXPR_LISTs. */
3369 if (x == 0)
3370 return 0;
3372 if (all_regs
3373 && REG_P (x)
3374 && REG_P (from)
3375 && REGNO (x) == REGNO (from))
3377 gcc_assert (GET_MODE (x) == GET_MODE (from));
3378 return to;
3380 else if (GET_CODE (x) == SUBREG)
3382 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3384 if (CONST_INT_P (new_rtx))
3386 x = simplify_subreg (GET_MODE (x), new_rtx,
3387 GET_MODE (SUBREG_REG (x)),
3388 SUBREG_BYTE (x));
3389 gcc_assert (x);
3391 else
3392 SUBREG_REG (x) = new_rtx;
3394 return x;
3396 else if (GET_CODE (x) == ZERO_EXTEND)
3398 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3400 if (CONST_INT_P (new_rtx))
3402 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3403 new_rtx, GET_MODE (XEXP (x, 0)));
3404 gcc_assert (x);
3406 else
3407 XEXP (x, 0) = new_rtx;
3409 return x;
3412 fmt = GET_RTX_FORMAT (GET_CODE (x));
3413 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3415 if (fmt[i] == 'e')
3416 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3417 else if (fmt[i] == 'E')
3418 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3419 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3420 from, to, all_regs);
3423 return x;
3426 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3427 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3429 void
3430 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3432 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3433 rtx x = *loc;
3434 if (JUMP_TABLE_DATA_P (x))
3436 x = PATTERN (x);
3437 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3438 int len = GET_NUM_ELEM (vec);
3439 for (int i = 0; i < len; ++i)
3441 rtx ref = RTVEC_ELT (vec, i);
3442 if (XEXP (ref, 0) == old_label)
3444 XEXP (ref, 0) = new_label;
3445 if (update_label_nuses)
3447 ++LABEL_NUSES (new_label);
3448 --LABEL_NUSES (old_label);
3452 return;
3455 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3456 field. This is not handled by the iterator because it doesn't
3457 handle unprinted ('0') fields. */
3458 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3459 JUMP_LABEL (x) = new_label;
3461 subrtx_ptr_iterator::array_type array;
3462 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3464 rtx *loc = *iter;
3465 if (rtx x = *loc)
3467 if (GET_CODE (x) == SYMBOL_REF
3468 && CONSTANT_POOL_ADDRESS_P (x))
3470 rtx c = get_pool_constant (x);
3471 if (rtx_referenced_p (old_label, c))
3473 /* Create a copy of constant C; replace the label inside
3474 but do not update LABEL_NUSES because uses in constant pool
3475 are not counted. */
3476 rtx new_c = copy_rtx (c);
3477 replace_label (&new_c, old_label, new_label, false);
3479 /* Add the new constant NEW_C to constant pool and replace
3480 the old reference to constant by new reference. */
3481 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3482 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3486 if ((GET_CODE (x) == LABEL_REF
3487 || GET_CODE (x) == INSN_LIST)
3488 && XEXP (x, 0) == old_label)
3490 XEXP (x, 0) = new_label;
3491 if (update_label_nuses)
3493 ++LABEL_NUSES (new_label);
3494 --LABEL_NUSES (old_label);
3501 void
3502 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3503 rtx_insn *new_label, bool update_label_nuses)
3505 rtx insn_as_rtx = insn;
3506 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3507 gcc_checking_assert (insn_as_rtx == insn);
3510 /* Return true if X is referenced in BODY. */
3512 bool
3513 rtx_referenced_p (const_rtx x, const_rtx body)
3515 subrtx_iterator::array_type array;
3516 FOR_EACH_SUBRTX (iter, array, body, ALL)
3517 if (const_rtx y = *iter)
3519 /* Check if a label_ref Y refers to label X. */
3520 if (GET_CODE (y) == LABEL_REF
3521 && LABEL_P (x)
3522 && label_ref_label (y) == x)
3523 return true;
3525 if (rtx_equal_p (x, y))
3526 return true;
3528 /* If Y is a reference to pool constant traverse the constant. */
3529 if (GET_CODE (y) == SYMBOL_REF
3530 && CONSTANT_POOL_ADDRESS_P (y))
3531 iter.substitute (get_pool_constant (y));
3533 return false;
3536 /* If INSN is a tablejump return true and store the label (before jump table) to
3537 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3539 bool
3540 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3541 rtx_jump_table_data **tablep)
3543 if (!JUMP_P (insn))
3544 return false;
3546 rtx target = JUMP_LABEL (insn);
3547 if (target == NULL_RTX || ANY_RETURN_P (target))
3548 return false;
3550 rtx_insn *label = as_a<rtx_insn *> (target);
3551 rtx_insn *table = next_insn (label);
3552 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3553 return false;
3555 if (labelp)
3556 *labelp = label;
3557 if (tablep)
3558 *tablep = as_a <rtx_jump_table_data *> (table);
3559 return true;
3562 /* For INSN known to satisfy tablejump_p, determine if it actually is a
3563 CASESI. Return the insn pattern if so, NULL_RTX otherwise. */
3566 tablejump_casesi_pattern (const rtx_insn *insn)
3568 rtx tmp;
3570 if ((tmp = single_set (insn)) != NULL
3571 && SET_DEST (tmp) == pc_rtx
3572 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
3573 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
3574 return tmp;
3576 return NULL_RTX;
3579 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3580 constant that is not in the constant pool and not in the condition
3581 of an IF_THEN_ELSE. */
3583 static int
3584 computed_jump_p_1 (const_rtx x)
3586 const enum rtx_code code = GET_CODE (x);
3587 int i, j;
3588 const char *fmt;
3590 switch (code)
3592 case LABEL_REF:
3593 case PC:
3594 return 0;
3596 case CONST:
3597 CASE_CONST_ANY:
3598 case SYMBOL_REF:
3599 case REG:
3600 return 1;
3602 case MEM:
3603 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3604 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3606 case IF_THEN_ELSE:
3607 return (computed_jump_p_1 (XEXP (x, 1))
3608 || computed_jump_p_1 (XEXP (x, 2)));
3610 default:
3611 break;
3614 fmt = GET_RTX_FORMAT (code);
3615 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3617 if (fmt[i] == 'e'
3618 && computed_jump_p_1 (XEXP (x, i)))
3619 return 1;
3621 else if (fmt[i] == 'E')
3622 for (j = 0; j < XVECLEN (x, i); j++)
3623 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3624 return 1;
3627 return 0;
3630 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3632 Tablejumps and casesi insns are not considered indirect jumps;
3633 we can recognize them by a (use (label_ref)). */
3636 computed_jump_p (const rtx_insn *insn)
3638 int i;
3639 if (JUMP_P (insn))
3641 rtx pat = PATTERN (insn);
3643 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3644 if (JUMP_LABEL (insn) != NULL)
3645 return 0;
3647 if (GET_CODE (pat) == PARALLEL)
3649 int len = XVECLEN (pat, 0);
3650 int has_use_labelref = 0;
3652 for (i = len - 1; i >= 0; i--)
3653 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3654 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3655 == LABEL_REF))
3657 has_use_labelref = 1;
3658 break;
3661 if (! has_use_labelref)
3662 for (i = len - 1; i >= 0; i--)
3663 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3664 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3665 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3666 return 1;
3668 else if (GET_CODE (pat) == SET
3669 && SET_DEST (pat) == pc_rtx
3670 && computed_jump_p_1 (SET_SRC (pat)))
3671 return 1;
3673 return 0;
3678 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3679 the equivalent add insn and pass the result to FN, using DATA as the
3680 final argument. */
3682 static int
3683 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3685 rtx x = XEXP (mem, 0);
3686 switch (GET_CODE (x))
3688 case PRE_INC:
3689 case POST_INC:
3691 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3692 rtx r1 = XEXP (x, 0);
3693 rtx c = gen_int_mode (size, GET_MODE (r1));
3694 return fn (mem, x, r1, r1, c, data);
3697 case PRE_DEC:
3698 case POST_DEC:
3700 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3701 rtx r1 = XEXP (x, 0);
3702 rtx c = gen_int_mode (-size, GET_MODE (r1));
3703 return fn (mem, x, r1, r1, c, data);
3706 case PRE_MODIFY:
3707 case POST_MODIFY:
3709 rtx r1 = XEXP (x, 0);
3710 rtx add = XEXP (x, 1);
3711 return fn (mem, x, r1, add, NULL, data);
3714 default:
3715 gcc_unreachable ();
3719 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3720 For each such autoinc operation found, call FN, passing it
3721 the innermost enclosing MEM, the operation itself, the RTX modified
3722 by the operation, two RTXs (the second may be NULL) that, once
3723 added, represent the value to be held by the modified RTX
3724 afterwards, and DATA. FN is to return 0 to continue the
3725 traversal or any other value to have it returned to the caller of
3726 for_each_inc_dec. */
3729 for_each_inc_dec (rtx x,
3730 for_each_inc_dec_fn fn,
3731 void *data)
3733 subrtx_var_iterator::array_type array;
3734 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3736 rtx mem = *iter;
3737 if (mem
3738 && MEM_P (mem)
3739 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3741 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3742 if (res != 0)
3743 return res;
3744 iter.skip_subrtxes ();
3747 return 0;
3751 /* Searches X for any reference to REGNO, returning the rtx of the
3752 reference found if any. Otherwise, returns NULL_RTX. */
3755 regno_use_in (unsigned int regno, rtx x)
3757 const char *fmt;
3758 int i, j;
3759 rtx tem;
3761 if (REG_P (x) && REGNO (x) == regno)
3762 return x;
3764 fmt = GET_RTX_FORMAT (GET_CODE (x));
3765 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3767 if (fmt[i] == 'e')
3769 if ((tem = regno_use_in (regno, XEXP (x, i))))
3770 return tem;
3772 else if (fmt[i] == 'E')
3773 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3774 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3775 return tem;
3778 return NULL_RTX;
3781 /* Return a value indicating whether OP, an operand of a commutative
3782 operation, is preferred as the first or second operand. The more
3783 positive the value, the stronger the preference for being the first
3784 operand. */
3787 commutative_operand_precedence (rtx op)
3789 enum rtx_code code = GET_CODE (op);
3791 /* Constants always become the second operand. Prefer "nice" constants. */
3792 if (code == CONST_INT)
3793 return -10;
3794 if (code == CONST_WIDE_INT)
3795 return -9;
3796 if (code == CONST_POLY_INT)
3797 return -8;
3798 if (code == CONST_DOUBLE)
3799 return -8;
3800 if (code == CONST_FIXED)
3801 return -8;
3802 op = avoid_constant_pool_reference (op);
3803 code = GET_CODE (op);
3805 switch (GET_RTX_CLASS (code))
3807 case RTX_CONST_OBJ:
3808 if (code == CONST_INT)
3809 return -7;
3810 if (code == CONST_WIDE_INT)
3811 return -6;
3812 if (code == CONST_POLY_INT)
3813 return -5;
3814 if (code == CONST_DOUBLE)
3815 return -5;
3816 if (code == CONST_FIXED)
3817 return -5;
3818 return -4;
3820 case RTX_EXTRA:
3821 /* SUBREGs of objects should come second. */
3822 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3823 return -3;
3824 return 0;
3826 case RTX_OBJ:
3827 /* Complex expressions should be the first, so decrease priority
3828 of objects. Prefer pointer objects over non pointer objects. */
3829 if ((REG_P (op) && REG_POINTER (op))
3830 || (MEM_P (op) && MEM_POINTER (op)))
3831 return -1;
3832 return -2;
3834 case RTX_COMM_ARITH:
3835 /* Prefer operands that are themselves commutative to be first.
3836 This helps to make things linear. In particular,
3837 (and (and (reg) (reg)) (not (reg))) is canonical. */
3838 return 4;
3840 case RTX_BIN_ARITH:
3841 /* If only one operand is a binary expression, it will be the first
3842 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3843 is canonical, although it will usually be further simplified. */
3844 return 2;
3846 case RTX_UNARY:
3847 /* Then prefer NEG and NOT. */
3848 if (code == NEG || code == NOT)
3849 return 1;
3850 /* FALLTHRU */
3852 default:
3853 return 0;
3857 /* Return 1 iff it is necessary to swap operands of commutative operation
3858 in order to canonicalize expression. */
3860 bool
3861 swap_commutative_operands_p (rtx x, rtx y)
3863 return (commutative_operand_precedence (x)
3864 < commutative_operand_precedence (y));
3867 /* Return 1 if X is an autoincrement side effect and the register is
3868 not the stack pointer. */
3870 auto_inc_p (const_rtx x)
3872 switch (GET_CODE (x))
3874 case PRE_INC:
3875 case POST_INC:
3876 case PRE_DEC:
3877 case POST_DEC:
3878 case PRE_MODIFY:
3879 case POST_MODIFY:
3880 /* There are no REG_INC notes for SP. */
3881 if (XEXP (x, 0) != stack_pointer_rtx)
3882 return 1;
3883 default:
3884 break;
3886 return 0;
3889 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3891 loc_mentioned_in_p (rtx *loc, const_rtx in)
3893 enum rtx_code code;
3894 const char *fmt;
3895 int i, j;
3897 if (!in)
3898 return 0;
3900 code = GET_CODE (in);
3901 fmt = GET_RTX_FORMAT (code);
3902 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3904 if (fmt[i] == 'e')
3906 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3907 return 1;
3909 else if (fmt[i] == 'E')
3910 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3911 if (loc == &XVECEXP (in, i, j)
3912 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3913 return 1;
3915 return 0;
3918 /* Reinterpret a subreg as a bit extraction from an integer and return
3919 the position of the least significant bit of the extracted value.
3920 In other words, if the extraction were performed as a shift right
3921 and mask, return the number of bits to shift right.
3923 The outer value of the subreg has OUTER_BYTES bytes and starts at
3924 byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes. */
3926 poly_uint64
3927 subreg_size_lsb (poly_uint64 outer_bytes,
3928 poly_uint64 inner_bytes,
3929 poly_uint64 subreg_byte)
3931 poly_uint64 subreg_end, trailing_bytes, byte_pos;
3933 /* A paradoxical subreg begins at bit position 0. */
3934 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3935 if (maybe_gt (outer_bytes, inner_bytes))
3937 gcc_checking_assert (known_eq (subreg_byte, 0U));
3938 return 0;
3941 subreg_end = subreg_byte + outer_bytes;
3942 trailing_bytes = inner_bytes - subreg_end;
3943 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3944 byte_pos = trailing_bytes;
3945 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3946 byte_pos = subreg_byte;
3947 else
3949 /* When bytes and words have opposite endianness, we must be able
3950 to split offsets into words and bytes at compile time. */
3951 poly_uint64 leading_word_part
3952 = force_align_down (subreg_byte, UNITS_PER_WORD);
3953 poly_uint64 trailing_word_part
3954 = force_align_down (trailing_bytes, UNITS_PER_WORD);
3955 /* If the subreg crosses a word boundary ensure that
3956 it also begins and ends on a word boundary. */
3957 gcc_assert (known_le (subreg_end - leading_word_part,
3958 (unsigned int) UNITS_PER_WORD)
3959 || (known_eq (leading_word_part, subreg_byte)
3960 && known_eq (trailing_word_part, trailing_bytes)));
3961 if (WORDS_BIG_ENDIAN)
3962 byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3963 else
3964 byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3967 return byte_pos * BITS_PER_UNIT;
3970 /* Given a subreg X, return the bit offset where the subreg begins
3971 (counting from the least significant bit of the reg). */
3973 poly_uint64
3974 subreg_lsb (const_rtx x)
3976 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3977 SUBREG_BYTE (x));
3980 /* Return the subreg byte offset for a subreg whose outer value has
3981 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3982 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3983 lsb of the inner value. This is the inverse of the calculation
3984 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3986 poly_uint64
3987 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3988 poly_uint64 lsb_shift)
3990 /* A paradoxical subreg begins at bit position 0. */
3991 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3992 if (maybe_gt (outer_bytes, inner_bytes))
3994 gcc_checking_assert (known_eq (lsb_shift, 0U));
3995 return 0;
3998 poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3999 poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
4000 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
4001 return upper_bytes;
4002 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
4003 return lower_bytes;
4004 else
4006 /* When bytes and words have opposite endianness, we must be able
4007 to split offsets into words and bytes at compile time. */
4008 poly_uint64 lower_word_part = force_align_down (lower_bytes,
4009 UNITS_PER_WORD);
4010 poly_uint64 upper_word_part = force_align_down (upper_bytes,
4011 UNITS_PER_WORD);
4012 if (WORDS_BIG_ENDIAN)
4013 return upper_word_part + (lower_bytes - lower_word_part);
4014 else
4015 return lower_word_part + (upper_bytes - upper_word_part);
4019 /* Fill in information about a subreg of a hard register.
4020 xregno - A regno of an inner hard subreg_reg (or what will become one).
4021 xmode - The mode of xregno.
4022 offset - The byte offset.
4023 ymode - The mode of a top level SUBREG (or what may become one).
4024 info - Pointer to structure to fill in.
4026 Rather than considering one particular inner register (and thus one
4027 particular "outer" register) in isolation, this function really uses
4028 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
4029 function does not check whether adding INFO->offset to XREGNO gives
4030 a valid hard register; even if INFO->offset + XREGNO is out of range,
4031 there might be another register of the same type that is in range.
4032 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
4033 the new register, since that can depend on things like whether the final
4034 register number is even or odd. Callers that want to check whether
4035 this particular subreg can be replaced by a simple (reg ...) should
4036 use simplify_subreg_regno. */
4038 void
4039 subreg_get_info (unsigned int xregno, machine_mode xmode,
4040 poly_uint64 offset, machine_mode ymode,
4041 struct subreg_info *info)
4043 unsigned int nregs_xmode, nregs_ymode;
4045 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
4047 poly_uint64 xsize = GET_MODE_SIZE (xmode);
4048 poly_uint64 ysize = GET_MODE_SIZE (ymode);
4050 bool rknown = false;
4052 /* If the register representation of a non-scalar mode has holes in it,
4053 we expect the scalar units to be concatenated together, with the holes
4054 distributed evenly among the scalar units. Each scalar unit must occupy
4055 at least one register. */
4056 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
4058 /* As a consequence, we must be dealing with a constant number of
4059 scalars, and thus a constant offset and number of units. */
4060 HOST_WIDE_INT coffset = offset.to_constant ();
4061 HOST_WIDE_INT cysize = ysize.to_constant ();
4062 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
4063 unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
4064 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
4065 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
4066 gcc_assert (nregs_xmode
4067 == (nunits
4068 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
4069 gcc_assert (hard_regno_nregs (xregno, xmode)
4070 == hard_regno_nregs (xregno, xmode_unit) * nunits);
4072 /* You can only ask for a SUBREG of a value with holes in the middle
4073 if you don't cross the holes. (Such a SUBREG should be done by
4074 picking a different register class, or doing it in memory if
4075 necessary.) An example of a value with holes is XCmode on 32-bit
4076 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
4077 3 for each part, but in memory it's two 128-bit parts.
4078 Padding is assumed to be at the end (not necessarily the 'high part')
4079 of each unit. */
4080 if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
4081 && (coffset / GET_MODE_SIZE (xmode_unit)
4082 != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
4084 info->representable_p = false;
4085 rknown = true;
4088 else
4089 nregs_xmode = hard_regno_nregs (xregno, xmode);
4091 nregs_ymode = hard_regno_nregs (xregno, ymode);
4093 /* Subreg sizes must be ordered, so that we can tell whether they are
4094 partial, paradoxical or complete. */
4095 gcc_checking_assert (ordered_p (xsize, ysize));
4097 /* Paradoxical subregs are otherwise valid. */
4098 if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
4100 info->representable_p = true;
4101 /* If this is a big endian paradoxical subreg, which uses more
4102 actual hard registers than the original register, we must
4103 return a negative offset so that we find the proper highpart
4104 of the register.
4106 We assume that the ordering of registers within a multi-register
4107 value has a consistent endianness: if bytes and register words
4108 have different endianness, the hard registers that make up a
4109 multi-register value must be at least word-sized. */
4110 if (REG_WORDS_BIG_ENDIAN)
4111 info->offset = (int) nregs_xmode - (int) nregs_ymode;
4112 else
4113 info->offset = 0;
4114 info->nregs = nregs_ymode;
4115 return;
4118 /* If registers store different numbers of bits in the different
4119 modes, we cannot generally form this subreg. */
4120 poly_uint64 regsize_xmode, regsize_ymode;
4121 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
4122 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
4123 && multiple_p (xsize, nregs_xmode, &regsize_xmode)
4124 && multiple_p (ysize, nregs_ymode, &regsize_ymode))
4126 if (!rknown
4127 && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
4128 || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
4130 info->representable_p = false;
4131 if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
4132 || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
4133 /* Checked by validate_subreg. We must know at compile time
4134 which inner registers are being accessed. */
4135 gcc_unreachable ();
4136 return;
4138 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
4139 would go outside of XMODE. */
4140 if (!rknown && maybe_gt (ysize + offset, xsize))
4142 info->representable_p = false;
4143 info->nregs = nregs_ymode;
4144 if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
4145 /* Checked by validate_subreg. We must know at compile time
4146 which inner registers are being accessed. */
4147 gcc_unreachable ();
4148 return;
4150 /* Quick exit for the simple and common case of extracting whole
4151 subregisters from a multiregister value. */
4152 /* ??? It would be better to integrate this into the code below,
4153 if we can generalize the concept enough and figure out how
4154 odd-sized modes can coexist with the other weird cases we support. */
4155 HOST_WIDE_INT count;
4156 if (!rknown
4157 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
4158 && known_eq (regsize_xmode, regsize_ymode)
4159 && constant_multiple_p (offset, regsize_ymode, &count))
4161 info->representable_p = true;
4162 info->nregs = nregs_ymode;
4163 info->offset = count;
4164 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
4165 return;
4169 /* Lowpart subregs are otherwise valid. */
4170 if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
4172 info->representable_p = true;
4173 rknown = true;
4175 if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
4177 info->offset = 0;
4178 info->nregs = nregs_ymode;
4179 return;
4183 /* Set NUM_BLOCKS to the number of independently-representable YMODE
4184 values there are in (reg:XMODE XREGNO). We can view the register
4185 as consisting of this number of independent "blocks", where each
4186 block occupies NREGS_YMODE registers and contains exactly one
4187 representable YMODE value. */
4188 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
4189 unsigned int num_blocks = nregs_xmode / nregs_ymode;
4191 /* Calculate the number of bytes in each block. This must always
4192 be exact, otherwise we don't know how to verify the constraint.
4193 These conditions may be relaxed but subreg_regno_offset would
4194 need to be redesigned. */
4195 poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
4197 /* Get the number of the first block that contains the subreg and the byte
4198 offset of the subreg from the start of that block. */
4199 unsigned int block_number;
4200 poly_uint64 subblock_offset;
4201 if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
4202 &subblock_offset))
4203 /* Checked by validate_subreg. We must know at compile time which
4204 inner registers are being accessed. */
4205 gcc_unreachable ();
4207 if (!rknown)
4209 /* Only the lowpart of each block is representable. */
4210 info->representable_p
4211 = known_eq (subblock_offset,
4212 subreg_size_lowpart_offset (ysize, bytes_per_block));
4213 rknown = true;
4216 /* We assume that the ordering of registers within a multi-register
4217 value has a consistent endianness: if bytes and register words
4218 have different endianness, the hard registers that make up a
4219 multi-register value must be at least word-sized. */
4220 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
4221 /* The block number we calculated above followed memory endianness.
4222 Convert it to register endianness by counting back from the end.
4223 (Note that, because of the assumption above, each block must be
4224 at least word-sized.) */
4225 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
4226 else
4227 info->offset = block_number * nregs_ymode;
4228 info->nregs = nregs_ymode;
4231 /* This function returns the regno offset of a subreg expression.
4232 xregno - A regno of an inner hard subreg_reg (or what will become one).
4233 xmode - The mode of xregno.
4234 offset - The byte offset.
4235 ymode - The mode of a top level SUBREG (or what may become one).
4236 RETURN - The regno offset which would be used. */
4237 unsigned int
4238 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
4239 poly_uint64 offset, machine_mode ymode)
4241 struct subreg_info info;
4242 subreg_get_info (xregno, xmode, offset, ymode, &info);
4243 return info.offset;
4246 /* This function returns true when the offset is representable via
4247 subreg_offset in the given regno.
4248 xregno - A regno of an inner hard subreg_reg (or what will become one).
4249 xmode - The mode of xregno.
4250 offset - The byte offset.
4251 ymode - The mode of a top level SUBREG (or what may become one).
4252 RETURN - Whether the offset is representable. */
4253 bool
4254 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
4255 poly_uint64 offset, machine_mode ymode)
4257 struct subreg_info info;
4258 subreg_get_info (xregno, xmode, offset, ymode, &info);
4259 return info.representable_p;
4262 /* Return the number of a YMODE register to which
4264 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
4266 can be simplified. Return -1 if the subreg can't be simplified.
4268 XREGNO is a hard register number. */
4271 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
4272 poly_uint64 offset, machine_mode ymode)
4274 struct subreg_info info;
4275 unsigned int yregno;
4277 /* Give the backend a chance to disallow the mode change. */
4278 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
4279 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
4280 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode))
4281 return -1;
4283 /* We shouldn't simplify stack-related registers. */
4284 if ((!reload_completed || frame_pointer_needed)
4285 && xregno == FRAME_POINTER_REGNUM)
4286 return -1;
4288 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4289 && xregno == ARG_POINTER_REGNUM)
4290 return -1;
4292 if (xregno == STACK_POINTER_REGNUM
4293 /* We should convert hard stack register in LRA if it is
4294 possible. */
4295 && ! lra_in_progress)
4296 return -1;
4298 /* Try to get the register offset. */
4299 subreg_get_info (xregno, xmode, offset, ymode, &info);
4300 if (!info.representable_p)
4301 return -1;
4303 /* Make sure that the offsetted register value is in range. */
4304 yregno = xregno + info.offset;
4305 if (!HARD_REGISTER_NUM_P (yregno))
4306 return -1;
4308 /* See whether (reg:YMODE YREGNO) is valid.
4310 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
4311 This is a kludge to work around how complex FP arguments are passed
4312 on IA-64 and should be fixed. See PR target/49226. */
4313 if (!targetm.hard_regno_mode_ok (yregno, ymode)
4314 && targetm.hard_regno_mode_ok (xregno, xmode))
4315 return -1;
4317 return (int) yregno;
4320 /* Return the final regno that a subreg expression refers to. */
4321 unsigned int
4322 subreg_regno (const_rtx x)
4324 unsigned int ret;
4325 rtx subreg = SUBREG_REG (x);
4326 int regno = REGNO (subreg);
4328 ret = regno + subreg_regno_offset (regno,
4329 GET_MODE (subreg),
4330 SUBREG_BYTE (x),
4331 GET_MODE (x));
4332 return ret;
4336 /* Return the number of registers that a subreg expression refers
4337 to. */
4338 unsigned int
4339 subreg_nregs (const_rtx x)
4341 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
4344 /* Return the number of registers that a subreg REG with REGNO
4345 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
4346 changed so that the regno can be passed in. */
4348 unsigned int
4349 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4351 struct subreg_info info;
4352 rtx subreg = SUBREG_REG (x);
4354 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4355 &info);
4356 return info.nregs;
4359 struct parms_set_data
4361 int nregs;
4362 HARD_REG_SET regs;
4365 /* Helper function for noticing stores to parameter registers. */
4366 static void
4367 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4369 struct parms_set_data *const d = (struct parms_set_data *) data;
4370 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4371 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4373 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4374 d->nregs--;
4378 /* Look backward for first parameter to be loaded.
4379 Note that loads of all parameters will not necessarily be
4380 found if CSE has eliminated some of them (e.g., an argument
4381 to the outer function is passed down as a parameter).
4382 Do not skip BOUNDARY. */
4383 rtx_insn *
4384 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4386 struct parms_set_data parm;
4387 rtx p;
4388 rtx_insn *before, *first_set;
4390 /* Since different machines initialize their parameter registers
4391 in different orders, assume nothing. Collect the set of all
4392 parameter registers. */
4393 CLEAR_HARD_REG_SET (parm.regs);
4394 parm.nregs = 0;
4395 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4396 if (GET_CODE (XEXP (p, 0)) == USE
4397 && REG_P (XEXP (XEXP (p, 0), 0))
4398 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4400 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4402 /* We only care about registers which can hold function
4403 arguments. */
4404 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4405 continue;
4407 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4408 parm.nregs++;
4410 before = call_insn;
4411 first_set = call_insn;
4413 /* Search backward for the first set of a register in this set. */
4414 while (parm.nregs && before != boundary)
4416 before = PREV_INSN (before);
4418 /* It is possible that some loads got CSEed from one call to
4419 another. Stop in that case. */
4420 if (CALL_P (before))
4421 break;
4423 /* Our caller needs either ensure that we will find all sets
4424 (in case code has not been optimized yet), or take care
4425 for possible labels in a way by setting boundary to preceding
4426 CODE_LABEL. */
4427 if (LABEL_P (before))
4429 gcc_assert (before == boundary);
4430 break;
4433 if (INSN_P (before))
4435 int nregs_old = parm.nregs;
4436 note_stores (before, parms_set, &parm);
4437 /* If we found something that did not set a parameter reg,
4438 we're done. Do not keep going, as that might result
4439 in hoisting an insn before the setting of a pseudo
4440 that is used by the hoisted insn. */
4441 if (nregs_old != parm.nregs)
4442 first_set = before;
4443 else
4444 break;
4447 return first_set;
4450 /* Return true if we should avoid inserting code between INSN and preceding
4451 call instruction. */
4453 bool
4454 keep_with_call_p (const rtx_insn *insn)
4456 rtx set;
4458 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4460 if (REG_P (SET_DEST (set))
4461 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4462 && fixed_regs[REGNO (SET_DEST (set))]
4463 && general_operand (SET_SRC (set), VOIDmode))
4464 return true;
4465 if (REG_P (SET_SRC (set))
4466 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4467 && REG_P (SET_DEST (set))
4468 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4469 return true;
4470 /* There may be a stack pop just after the call and before the store
4471 of the return register. Search for the actual store when deciding
4472 if we can break or not. */
4473 if (SET_DEST (set) == stack_pointer_rtx)
4475 /* This CONST_CAST is okay because next_nonnote_insn just
4476 returns its argument and we assign it to a const_rtx
4477 variable. */
4478 const rtx_insn *i2
4479 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4480 if (i2 && keep_with_call_p (i2))
4481 return true;
4484 return false;
4487 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4488 to non-complex jumps. That is, direct unconditional, conditional,
4489 and tablejumps, but not computed jumps or returns. It also does
4490 not apply to the fallthru case of a conditional jump. */
4492 bool
4493 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4495 rtx tmp = JUMP_LABEL (jump_insn);
4496 rtx_jump_table_data *table;
4498 if (label == tmp)
4499 return true;
4501 if (tablejump_p (jump_insn, NULL, &table))
4503 rtvec vec = table->get_labels ();
4504 int i, veclen = GET_NUM_ELEM (vec);
4506 for (i = 0; i < veclen; ++i)
4507 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4508 return true;
4511 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4512 return true;
4514 return false;
4518 /* Return an estimate of the cost of computing rtx X.
4519 One use is in cse, to decide which expression to keep in the hash table.
4520 Another is in rtl generation, to pick the cheapest way to multiply.
4521 Other uses like the latter are expected in the future.
4523 X appears as operand OPNO in an expression with code OUTER_CODE.
4524 SPEED specifies whether costs optimized for speed or size should
4525 be returned. */
4528 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4529 int opno, bool speed)
4531 int i, j;
4532 enum rtx_code code;
4533 const char *fmt;
4534 int total;
4535 int factor;
4536 unsigned mode_size;
4538 if (x == 0)
4539 return 0;
4541 if (GET_CODE (x) == SET)
4542 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4543 the mode for the factor. */
4544 mode = GET_MODE (SET_DEST (x));
4545 else if (GET_MODE (x) != VOIDmode)
4546 mode = GET_MODE (x);
4548 mode_size = estimated_poly_value (GET_MODE_SIZE (mode));
4550 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4551 many insns, taking N times as long. */
4552 factor = mode_size > UNITS_PER_WORD ? mode_size / UNITS_PER_WORD : 1;
4554 /* Compute the default costs of certain things.
4555 Note that targetm.rtx_costs can override the defaults. */
4557 code = GET_CODE (x);
4558 switch (code)
4560 case MULT:
4561 /* Multiplication has time-complexity O(N*N), where N is the
4562 number of units (translated from digits) when using
4563 schoolbook long multiplication. */
4564 total = factor * factor * COSTS_N_INSNS (5);
4565 break;
4566 case DIV:
4567 case UDIV:
4568 case MOD:
4569 case UMOD:
4570 /* Similarly, complexity for schoolbook long division. */
4571 total = factor * factor * COSTS_N_INSNS (7);
4572 break;
4573 case USE:
4574 /* Used in combine.c as a marker. */
4575 total = 0;
4576 break;
4577 default:
4578 total = factor * COSTS_N_INSNS (1);
4581 switch (code)
4583 case REG:
4584 return 0;
4586 case SUBREG:
4587 total = 0;
4588 /* If we can't tie these modes, make this expensive. The larger
4589 the mode, the more expensive it is. */
4590 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4591 return COSTS_N_INSNS (2 + factor);
4592 break;
4594 case TRUNCATE:
4595 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4597 total = 0;
4598 break;
4600 /* FALLTHRU */
4601 default:
4602 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4603 return total;
4604 break;
4607 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4608 which is already in total. */
4610 fmt = GET_RTX_FORMAT (code);
4611 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4612 if (fmt[i] == 'e')
4613 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4614 else if (fmt[i] == 'E')
4615 for (j = 0; j < XVECLEN (x, i); j++)
4616 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4618 return total;
4621 /* Fill in the structure C with information about both speed and size rtx
4622 costs for X, which is operand OPNO in an expression with code OUTER. */
4624 void
4625 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4626 struct full_rtx_costs *c)
4628 c->speed = rtx_cost (x, mode, outer, opno, true);
4629 c->size = rtx_cost (x, mode, outer, opno, false);
4633 /* Return cost of address expression X.
4634 Expect that X is properly formed address reference.
4636 SPEED parameter specify whether costs optimized for speed or size should
4637 be returned. */
4640 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4642 /* We may be asked for cost of various unusual addresses, such as operands
4643 of push instruction. It is not worthwhile to complicate writing
4644 of the target hook by such cases. */
4646 if (!memory_address_addr_space_p (mode, x, as))
4647 return 1000;
4649 return targetm.address_cost (x, mode, as, speed);
4652 /* If the target doesn't override, compute the cost as with arithmetic. */
4655 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4657 return rtx_cost (x, Pmode, MEM, 0, speed);
4661 unsigned HOST_WIDE_INT
4662 nonzero_bits (const_rtx x, machine_mode mode)
4664 if (mode == VOIDmode)
4665 mode = GET_MODE (x);
4666 scalar_int_mode int_mode;
4667 if (!is_a <scalar_int_mode> (mode, &int_mode))
4668 return GET_MODE_MASK (mode);
4669 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4672 unsigned int
4673 num_sign_bit_copies (const_rtx x, machine_mode mode)
4675 if (mode == VOIDmode)
4676 mode = GET_MODE (x);
4677 scalar_int_mode int_mode;
4678 if (!is_a <scalar_int_mode> (mode, &int_mode))
4679 return 1;
4680 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4683 /* Return true if nonzero_bits1 might recurse into both operands
4684 of X. */
4686 static inline bool
4687 nonzero_bits_binary_arith_p (const_rtx x)
4689 if (!ARITHMETIC_P (x))
4690 return false;
4691 switch (GET_CODE (x))
4693 case AND:
4694 case XOR:
4695 case IOR:
4696 case UMIN:
4697 case UMAX:
4698 case SMIN:
4699 case SMAX:
4700 case PLUS:
4701 case MINUS:
4702 case MULT:
4703 case DIV:
4704 case UDIV:
4705 case MOD:
4706 case UMOD:
4707 return true;
4708 default:
4709 return false;
4713 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4714 It avoids exponential behavior in nonzero_bits1 when X has
4715 identical subexpressions on the first or the second level. */
4717 static unsigned HOST_WIDE_INT
4718 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4719 machine_mode known_mode,
4720 unsigned HOST_WIDE_INT known_ret)
4722 if (x == known_x && mode == known_mode)
4723 return known_ret;
4725 /* Try to find identical subexpressions. If found call
4726 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4727 precomputed value for the subexpression as KNOWN_RET. */
4729 if (nonzero_bits_binary_arith_p (x))
4731 rtx x0 = XEXP (x, 0);
4732 rtx x1 = XEXP (x, 1);
4734 /* Check the first level. */
4735 if (x0 == x1)
4736 return nonzero_bits1 (x, mode, x0, mode,
4737 cached_nonzero_bits (x0, mode, known_x,
4738 known_mode, known_ret));
4740 /* Check the second level. */
4741 if (nonzero_bits_binary_arith_p (x0)
4742 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4743 return nonzero_bits1 (x, mode, x1, mode,
4744 cached_nonzero_bits (x1, mode, known_x,
4745 known_mode, known_ret));
4747 if (nonzero_bits_binary_arith_p (x1)
4748 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4749 return nonzero_bits1 (x, mode, x0, mode,
4750 cached_nonzero_bits (x0, mode, known_x,
4751 known_mode, known_ret));
4754 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4757 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4758 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4759 is less useful. We can't allow both, because that results in exponential
4760 run time recursion. There is a nullstone testcase that triggered
4761 this. This macro avoids accidental uses of num_sign_bit_copies. */
4762 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4764 /* Given an expression, X, compute which bits in X can be nonzero.
4765 We don't care about bits outside of those defined in MODE.
4767 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4768 an arithmetic operation, we can do better. */
4770 static unsigned HOST_WIDE_INT
4771 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4772 machine_mode known_mode,
4773 unsigned HOST_WIDE_INT known_ret)
4775 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4776 unsigned HOST_WIDE_INT inner_nz;
4777 enum rtx_code code = GET_CODE (x);
4778 machine_mode inner_mode;
4779 unsigned int inner_width;
4780 scalar_int_mode xmode;
4782 unsigned int mode_width = GET_MODE_PRECISION (mode);
4784 if (CONST_INT_P (x))
4786 if (SHORT_IMMEDIATES_SIGN_EXTEND
4787 && INTVAL (x) > 0
4788 && mode_width < BITS_PER_WORD
4789 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4790 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4792 return UINTVAL (x);
4795 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4796 return nonzero;
4797 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4799 /* If X is wider than MODE, use its mode instead. */
4800 if (xmode_width > mode_width)
4802 mode = xmode;
4803 nonzero = GET_MODE_MASK (mode);
4804 mode_width = xmode_width;
4807 if (mode_width > HOST_BITS_PER_WIDE_INT)
4808 /* Our only callers in this case look for single bit values. So
4809 just return the mode mask. Those tests will then be false. */
4810 return nonzero;
4812 /* If MODE is wider than X, but both are a single word for both the host
4813 and target machines, we can compute this from which bits of the object
4814 might be nonzero in its own mode, taking into account the fact that, on
4815 CISC machines, accessing an object in a wider mode generally causes the
4816 high-order bits to become undefined, so they are not known to be zero.
4817 We extend this reasoning to RISC machines for operations that might not
4818 operate on the full registers. */
4819 if (mode_width > xmode_width
4820 && xmode_width <= BITS_PER_WORD
4821 && xmode_width <= HOST_BITS_PER_WIDE_INT
4822 && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
4824 nonzero &= cached_nonzero_bits (x, xmode,
4825 known_x, known_mode, known_ret);
4826 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4827 return nonzero;
4830 /* Please keep nonzero_bits_binary_arith_p above in sync with
4831 the code in the switch below. */
4832 switch (code)
4834 case REG:
4835 #if defined(POINTERS_EXTEND_UNSIGNED)
4836 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4837 all the bits above ptr_mode are known to be zero. */
4838 /* As we do not know which address space the pointer is referring to,
4839 we can do this only if the target does not support different pointer
4840 or address modes depending on the address space. */
4841 if (target_default_pointer_address_modes_p ()
4842 && POINTERS_EXTEND_UNSIGNED
4843 && xmode == Pmode
4844 && REG_POINTER (x)
4845 && !targetm.have_ptr_extend ())
4846 nonzero &= GET_MODE_MASK (ptr_mode);
4847 #endif
4849 /* Include declared information about alignment of pointers. */
4850 /* ??? We don't properly preserve REG_POINTER changes across
4851 pointer-to-integer casts, so we can't trust it except for
4852 things that we know must be pointers. See execute/960116-1.c. */
4853 if ((x == stack_pointer_rtx
4854 || x == frame_pointer_rtx
4855 || x == arg_pointer_rtx)
4856 && REGNO_POINTER_ALIGN (REGNO (x)))
4858 unsigned HOST_WIDE_INT alignment
4859 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4861 #ifdef PUSH_ROUNDING
4862 /* If PUSH_ROUNDING is defined, it is possible for the
4863 stack to be momentarily aligned only to that amount,
4864 so we pick the least alignment. */
4865 if (x == stack_pointer_rtx && PUSH_ARGS)
4867 poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4868 alignment = MIN (known_alignment (rounded_1), alignment);
4870 #endif
4872 nonzero &= ~(alignment - 1);
4876 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4877 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4878 &nonzero_for_hook);
4880 if (new_rtx)
4881 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4882 known_mode, known_ret);
4884 return nonzero_for_hook;
4887 case MEM:
4888 /* In many, if not most, RISC machines, reading a byte from memory
4889 zeros the rest of the register. Noticing that fact saves a lot
4890 of extra zero-extends. */
4891 if (load_extend_op (xmode) == ZERO_EXTEND)
4892 nonzero &= GET_MODE_MASK (xmode);
4893 break;
4895 case EQ: case NE:
4896 case UNEQ: case LTGT:
4897 case GT: case GTU: case UNGT:
4898 case LT: case LTU: case UNLT:
4899 case GE: case GEU: case UNGE:
4900 case LE: case LEU: case UNLE:
4901 case UNORDERED: case ORDERED:
4902 /* If this produces an integer result, we know which bits are set.
4903 Code here used to clear bits outside the mode of X, but that is
4904 now done above. */
4905 /* Mind that MODE is the mode the caller wants to look at this
4906 operation in, and not the actual operation mode. We can wind
4907 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4908 that describes the results of a vector compare. */
4909 if (GET_MODE_CLASS (xmode) == MODE_INT
4910 && mode_width <= HOST_BITS_PER_WIDE_INT)
4911 nonzero = STORE_FLAG_VALUE;
4912 break;
4914 case NEG:
4915 #if 0
4916 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4917 and num_sign_bit_copies. */
4918 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4919 nonzero = 1;
4920 #endif
4922 if (xmode_width < mode_width)
4923 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4924 break;
4926 case ABS:
4927 #if 0
4928 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4929 and num_sign_bit_copies. */
4930 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4931 nonzero = 1;
4932 #endif
4933 break;
4935 case TRUNCATE:
4936 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4937 known_x, known_mode, known_ret)
4938 & GET_MODE_MASK (mode));
4939 break;
4941 case ZERO_EXTEND:
4942 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4943 known_x, known_mode, known_ret);
4944 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4945 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4946 break;
4948 case SIGN_EXTEND:
4949 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4950 Otherwise, show all the bits in the outer mode but not the inner
4951 may be nonzero. */
4952 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4953 known_x, known_mode, known_ret);
4954 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4956 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4957 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4958 inner_nz |= (GET_MODE_MASK (mode)
4959 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4962 nonzero &= inner_nz;
4963 break;
4965 case AND:
4966 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4967 known_x, known_mode, known_ret)
4968 & cached_nonzero_bits (XEXP (x, 1), mode,
4969 known_x, known_mode, known_ret);
4970 break;
4972 case XOR: case IOR:
4973 case UMIN: case UMAX: case SMIN: case SMAX:
4975 unsigned HOST_WIDE_INT nonzero0
4976 = cached_nonzero_bits (XEXP (x, 0), mode,
4977 known_x, known_mode, known_ret);
4979 /* Don't call nonzero_bits for the second time if it cannot change
4980 anything. */
4981 if ((nonzero & nonzero0) != nonzero)
4982 nonzero &= nonzero0
4983 | cached_nonzero_bits (XEXP (x, 1), mode,
4984 known_x, known_mode, known_ret);
4986 break;
4988 case PLUS: case MINUS:
4989 case MULT:
4990 case DIV: case UDIV:
4991 case MOD: case UMOD:
4992 /* We can apply the rules of arithmetic to compute the number of
4993 high- and low-order zero bits of these operations. We start by
4994 computing the width (position of the highest-order nonzero bit)
4995 and the number of low-order zero bits for each value. */
4997 unsigned HOST_WIDE_INT nz0
4998 = cached_nonzero_bits (XEXP (x, 0), mode,
4999 known_x, known_mode, known_ret);
5000 unsigned HOST_WIDE_INT nz1
5001 = cached_nonzero_bits (XEXP (x, 1), mode,
5002 known_x, known_mode, known_ret);
5003 int sign_index = xmode_width - 1;
5004 int width0 = floor_log2 (nz0) + 1;
5005 int width1 = floor_log2 (nz1) + 1;
5006 int low0 = ctz_or_zero (nz0);
5007 int low1 = ctz_or_zero (nz1);
5008 unsigned HOST_WIDE_INT op0_maybe_minusp
5009 = nz0 & (HOST_WIDE_INT_1U << sign_index);
5010 unsigned HOST_WIDE_INT op1_maybe_minusp
5011 = nz1 & (HOST_WIDE_INT_1U << sign_index);
5012 unsigned int result_width = mode_width;
5013 int result_low = 0;
5015 switch (code)
5017 case PLUS:
5018 result_width = MAX (width0, width1) + 1;
5019 result_low = MIN (low0, low1);
5020 break;
5021 case MINUS:
5022 result_low = MIN (low0, low1);
5023 break;
5024 case MULT:
5025 result_width = width0 + width1;
5026 result_low = low0 + low1;
5027 break;
5028 case DIV:
5029 if (width1 == 0)
5030 break;
5031 if (!op0_maybe_minusp && !op1_maybe_minusp)
5032 result_width = width0;
5033 break;
5034 case UDIV:
5035 if (width1 == 0)
5036 break;
5037 result_width = width0;
5038 break;
5039 case MOD:
5040 if (width1 == 0)
5041 break;
5042 if (!op0_maybe_minusp && !op1_maybe_minusp)
5043 result_width = MIN (width0, width1);
5044 result_low = MIN (low0, low1);
5045 break;
5046 case UMOD:
5047 if (width1 == 0)
5048 break;
5049 result_width = MIN (width0, width1);
5050 result_low = MIN (low0, low1);
5051 break;
5052 default:
5053 gcc_unreachable ();
5056 /* Note that mode_width <= HOST_BITS_PER_WIDE_INT, see above. */
5057 if (result_width < mode_width)
5058 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
5060 if (result_low > 0)
5062 if (result_low < HOST_BITS_PER_WIDE_INT)
5063 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
5064 else
5065 nonzero = 0;
5068 break;
5070 case ZERO_EXTRACT:
5071 if (CONST_INT_P (XEXP (x, 1))
5072 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
5073 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
5074 break;
5076 case SUBREG:
5077 /* If this is a SUBREG formed for a promoted variable that has
5078 been zero-extended, we know that at least the high-order bits
5079 are zero, though others might be too. */
5080 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
5081 nonzero = GET_MODE_MASK (xmode)
5082 & cached_nonzero_bits (SUBREG_REG (x), xmode,
5083 known_x, known_mode, known_ret);
5085 /* If the inner mode is a single word for both the host and target
5086 machines, we can compute this from which bits of the inner
5087 object might be nonzero. */
5088 inner_mode = GET_MODE (SUBREG_REG (x));
5089 if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
5090 && inner_width <= BITS_PER_WORD
5091 && inner_width <= HOST_BITS_PER_WIDE_INT)
5093 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
5094 known_x, known_mode, known_ret);
5096 /* On a typical CISC machine, accessing an object in a wider mode
5097 causes the high-order bits to become undefined. So they are
5098 not known to be zero.
5100 On a typical RISC machine, we only have to worry about the way
5101 loads are extended. Otherwise, if we get a reload for the inner
5102 part, it may be loaded from the stack, and then we may lose all
5103 the zero bits that existed before the store to the stack. */
5104 rtx_code extend_op;
5105 if ((!WORD_REGISTER_OPERATIONS
5106 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
5107 ? val_signbit_known_set_p (inner_mode, nonzero)
5108 : extend_op != ZERO_EXTEND)
5109 || !MEM_P (SUBREG_REG (x)))
5110 && xmode_width > inner_width)
5111 nonzero
5112 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
5114 break;
5116 case ASHIFT:
5117 case ASHIFTRT:
5118 case LSHIFTRT:
5119 case ROTATE:
5120 case ROTATERT:
5121 /* The nonzero bits are in two classes: any bits within MODE
5122 that aren't in xmode are always significant. The rest of the
5123 nonzero bits are those that are significant in the operand of
5124 the shift when shifted the appropriate number of bits. This
5125 shows that high-order bits are cleared by the right shift and
5126 low-order bits by left shifts. */
5127 if (CONST_INT_P (XEXP (x, 1))
5128 && INTVAL (XEXP (x, 1)) >= 0
5129 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
5130 && INTVAL (XEXP (x, 1)) < xmode_width)
5132 int count = INTVAL (XEXP (x, 1));
5133 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
5134 unsigned HOST_WIDE_INT op_nonzero
5135 = cached_nonzero_bits (XEXP (x, 0), mode,
5136 known_x, known_mode, known_ret);
5137 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
5138 unsigned HOST_WIDE_INT outer = 0;
5140 if (mode_width > xmode_width)
5141 outer = (op_nonzero & nonzero & ~mode_mask);
5143 switch (code)
5145 case ASHIFT:
5146 inner <<= count;
5147 break;
5149 case LSHIFTRT:
5150 inner >>= count;
5151 break;
5153 case ASHIFTRT:
5154 inner >>= count;
5156 /* If the sign bit may have been nonzero before the shift, we
5157 need to mark all the places it could have been copied to
5158 by the shift as possibly nonzero. */
5159 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
5160 inner |= (((HOST_WIDE_INT_1U << count) - 1)
5161 << (xmode_width - count));
5162 break;
5164 case ROTATE:
5165 inner = (inner << (count % xmode_width)
5166 | (inner >> (xmode_width - (count % xmode_width))))
5167 & mode_mask;
5168 break;
5170 case ROTATERT:
5171 inner = (inner >> (count % xmode_width)
5172 | (inner << (xmode_width - (count % xmode_width))))
5173 & mode_mask;
5174 break;
5176 default:
5177 gcc_unreachable ();
5180 nonzero &= (outer | inner);
5182 break;
5184 case FFS:
5185 case POPCOUNT:
5186 /* This is at most the number of bits in the mode. */
5187 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
5188 break;
5190 case CLZ:
5191 /* If CLZ has a known value at zero, then the nonzero bits are
5192 that value, plus the number of bits in the mode minus one. */
5193 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
5194 nonzero
5195 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
5196 else
5197 nonzero = -1;
5198 break;
5200 case CTZ:
5201 /* If CTZ has a known value at zero, then the nonzero bits are
5202 that value, plus the number of bits in the mode minus one. */
5203 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
5204 nonzero
5205 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
5206 else
5207 nonzero = -1;
5208 break;
5210 case CLRSB:
5211 /* This is at most the number of bits in the mode minus 1. */
5212 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
5213 break;
5215 case PARITY:
5216 nonzero = 1;
5217 break;
5219 case IF_THEN_ELSE:
5221 unsigned HOST_WIDE_INT nonzero_true
5222 = cached_nonzero_bits (XEXP (x, 1), mode,
5223 known_x, known_mode, known_ret);
5225 /* Don't call nonzero_bits for the second time if it cannot change
5226 anything. */
5227 if ((nonzero & nonzero_true) != nonzero)
5228 nonzero &= nonzero_true
5229 | cached_nonzero_bits (XEXP (x, 2), mode,
5230 known_x, known_mode, known_ret);
5232 break;
5234 default:
5235 break;
5238 return nonzero;
5241 /* See the macro definition above. */
5242 #undef cached_num_sign_bit_copies
5245 /* Return true if num_sign_bit_copies1 might recurse into both operands
5246 of X. */
5248 static inline bool
5249 num_sign_bit_copies_binary_arith_p (const_rtx x)
5251 if (!ARITHMETIC_P (x))
5252 return false;
5253 switch (GET_CODE (x))
5255 case IOR:
5256 case AND:
5257 case XOR:
5258 case SMIN:
5259 case SMAX:
5260 case UMIN:
5261 case UMAX:
5262 case PLUS:
5263 case MINUS:
5264 case MULT:
5265 return true;
5266 default:
5267 return false;
5271 /* The function cached_num_sign_bit_copies is a wrapper around
5272 num_sign_bit_copies1. It avoids exponential behavior in
5273 num_sign_bit_copies1 when X has identical subexpressions on the
5274 first or the second level. */
5276 static unsigned int
5277 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
5278 const_rtx known_x, machine_mode known_mode,
5279 unsigned int known_ret)
5281 if (x == known_x && mode == known_mode)
5282 return known_ret;
5284 /* Try to find identical subexpressions. If found call
5285 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
5286 the precomputed value for the subexpression as KNOWN_RET. */
5288 if (num_sign_bit_copies_binary_arith_p (x))
5290 rtx x0 = XEXP (x, 0);
5291 rtx x1 = XEXP (x, 1);
5293 /* Check the first level. */
5294 if (x0 == x1)
5295 return
5296 num_sign_bit_copies1 (x, mode, x0, mode,
5297 cached_num_sign_bit_copies (x0, mode, known_x,
5298 known_mode,
5299 known_ret));
5301 /* Check the second level. */
5302 if (num_sign_bit_copies_binary_arith_p (x0)
5303 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
5304 return
5305 num_sign_bit_copies1 (x, mode, x1, mode,
5306 cached_num_sign_bit_copies (x1, mode, known_x,
5307 known_mode,
5308 known_ret));
5310 if (num_sign_bit_copies_binary_arith_p (x1)
5311 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
5312 return
5313 num_sign_bit_copies1 (x, mode, x0, mode,
5314 cached_num_sign_bit_copies (x0, mode, known_x,
5315 known_mode,
5316 known_ret));
5319 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
5322 /* Return the number of bits at the high-order end of X that are known to
5323 be equal to the sign bit. X will be used in mode MODE. The returned
5324 value will always be between 1 and the number of bits in MODE. */
5326 static unsigned int
5327 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
5328 machine_mode known_mode,
5329 unsigned int known_ret)
5331 enum rtx_code code = GET_CODE (x);
5332 unsigned int bitwidth = GET_MODE_PRECISION (mode);
5333 int num0, num1, result;
5334 unsigned HOST_WIDE_INT nonzero;
5336 if (CONST_INT_P (x))
5338 /* If the constant is negative, take its 1's complement and remask.
5339 Then see how many zero bits we have. */
5340 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
5341 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5342 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5343 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5345 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5348 scalar_int_mode xmode, inner_mode;
5349 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5350 return 1;
5352 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5354 /* For a smaller mode, just ignore the high bits. */
5355 if (bitwidth < xmode_width)
5357 num0 = cached_num_sign_bit_copies (x, xmode,
5358 known_x, known_mode, known_ret);
5359 return MAX (1, num0 - (int) (xmode_width - bitwidth));
5362 if (bitwidth > xmode_width)
5364 /* If this machine does not do all register operations on the entire
5365 register and MODE is wider than the mode of X, we can say nothing
5366 at all about the high-order bits. We extend this reasoning to RISC
5367 machines for operations that might not operate on full registers. */
5368 if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
5369 return 1;
5371 /* Likewise on machines that do, if the mode of the object is smaller
5372 than a word and loads of that size don't sign extend, we can say
5373 nothing about the high order bits. */
5374 if (xmode_width < BITS_PER_WORD
5375 && load_extend_op (xmode) != SIGN_EXTEND)
5376 return 1;
5379 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5380 the code in the switch below. */
5381 switch (code)
5383 case REG:
5385 #if defined(POINTERS_EXTEND_UNSIGNED)
5386 /* If pointers extend signed and this is a pointer in Pmode, say that
5387 all the bits above ptr_mode are known to be sign bit copies. */
5388 /* As we do not know which address space the pointer is referring to,
5389 we can do this only if the target does not support different pointer
5390 or address modes depending on the address space. */
5391 if (target_default_pointer_address_modes_p ()
5392 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5393 && mode == Pmode && REG_POINTER (x)
5394 && !targetm.have_ptr_extend ())
5395 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5396 #endif
5399 unsigned int copies_for_hook = 1, copies = 1;
5400 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5401 &copies_for_hook);
5403 if (new_rtx)
5404 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5405 known_mode, known_ret);
5407 if (copies > 1 || copies_for_hook > 1)
5408 return MAX (copies, copies_for_hook);
5410 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5412 break;
5414 case MEM:
5415 /* Some RISC machines sign-extend all loads of smaller than a word. */
5416 if (load_extend_op (xmode) == SIGN_EXTEND)
5417 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5418 break;
5420 case SUBREG:
5421 /* If this is a SUBREG for a promoted object that is sign-extended
5422 and we are looking at it in a wider mode, we know that at least the
5423 high-order bits are known to be sign bit copies. */
5425 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5427 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5428 known_x, known_mode, known_ret);
5429 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5432 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5434 /* For a smaller object, just ignore the high bits. */
5435 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5437 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5438 known_x, known_mode,
5439 known_ret);
5440 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5441 - bitwidth));
5444 /* For paradoxical SUBREGs on machines where all register operations
5445 affect the entire register, just look inside. Note that we are
5446 passing MODE to the recursive call, so the number of sign bit
5447 copies will remain relative to that mode, not the inner mode.
5449 This works only if loads sign extend. Otherwise, if we get a
5450 reload for the inner part, it may be loaded from the stack, and
5451 then we lose all sign bit copies that existed before the store
5452 to the stack. */
5453 if (WORD_REGISTER_OPERATIONS
5454 && load_extend_op (inner_mode) == SIGN_EXTEND
5455 && paradoxical_subreg_p (x)
5456 && MEM_P (SUBREG_REG (x)))
5457 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5458 known_x, known_mode, known_ret);
5460 break;
5462 case SIGN_EXTRACT:
5463 if (CONST_INT_P (XEXP (x, 1)))
5464 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5465 break;
5467 case SIGN_EXTEND:
5468 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5469 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5470 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5471 known_x, known_mode, known_ret));
5472 break;
5474 case TRUNCATE:
5475 /* For a smaller object, just ignore the high bits. */
5476 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5477 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5478 known_x, known_mode, known_ret);
5479 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5480 - bitwidth)));
5482 case NOT:
5483 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5484 known_x, known_mode, known_ret);
5486 case ROTATE: case ROTATERT:
5487 /* If we are rotating left by a number of bits less than the number
5488 of sign bit copies, we can just subtract that amount from the
5489 number. */
5490 if (CONST_INT_P (XEXP (x, 1))
5491 && INTVAL (XEXP (x, 1)) >= 0
5492 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5494 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5495 known_x, known_mode, known_ret);
5496 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5497 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5499 break;
5501 case NEG:
5502 /* In general, this subtracts one sign bit copy. But if the value
5503 is known to be positive, the number of sign bit copies is the
5504 same as that of the input. Finally, if the input has just one bit
5505 that might be nonzero, all the bits are copies of the sign bit. */
5506 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5507 known_x, known_mode, known_ret);
5508 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5509 return num0 > 1 ? num0 - 1 : 1;
5511 nonzero = nonzero_bits (XEXP (x, 0), mode);
5512 if (nonzero == 1)
5513 return bitwidth;
5515 if (num0 > 1
5516 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5517 num0--;
5519 return num0;
5521 case IOR: case AND: case XOR:
5522 case SMIN: case SMAX: case UMIN: case UMAX:
5523 /* Logical operations will preserve the number of sign-bit copies.
5524 MIN and MAX operations always return one of the operands. */
5525 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5526 known_x, known_mode, known_ret);
5527 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5528 known_x, known_mode, known_ret);
5530 /* If num1 is clearing some of the top bits then regardless of
5531 the other term, we are guaranteed to have at least that many
5532 high-order zero bits. */
5533 if (code == AND
5534 && num1 > 1
5535 && bitwidth <= HOST_BITS_PER_WIDE_INT
5536 && CONST_INT_P (XEXP (x, 1))
5537 && (UINTVAL (XEXP (x, 1))
5538 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5539 return num1;
5541 /* Similarly for IOR when setting high-order bits. */
5542 if (code == IOR
5543 && num1 > 1
5544 && bitwidth <= HOST_BITS_PER_WIDE_INT
5545 && CONST_INT_P (XEXP (x, 1))
5546 && (UINTVAL (XEXP (x, 1))
5547 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5548 return num1;
5550 return MIN (num0, num1);
5552 case PLUS: case MINUS:
5553 /* For addition and subtraction, we can have a 1-bit carry. However,
5554 if we are subtracting 1 from a positive number, there will not
5555 be such a carry. Furthermore, if the positive number is known to
5556 be 0 or 1, we know the result is either -1 or 0. */
5558 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5559 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5561 nonzero = nonzero_bits (XEXP (x, 0), mode);
5562 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5563 return (nonzero == 1 || nonzero == 0 ? bitwidth
5564 : bitwidth - floor_log2 (nonzero) - 1);
5567 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5568 known_x, known_mode, known_ret);
5569 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5570 known_x, known_mode, known_ret);
5571 result = MAX (1, MIN (num0, num1) - 1);
5573 return result;
5575 case MULT:
5576 /* The number of bits of the product is the sum of the number of
5577 bits of both terms. However, unless one of the terms if known
5578 to be positive, we must allow for an additional bit since negating
5579 a negative number can remove one sign bit copy. */
5581 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5582 known_x, known_mode, known_ret);
5583 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5584 known_x, known_mode, known_ret);
5586 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5587 if (result > 0
5588 && (bitwidth > HOST_BITS_PER_WIDE_INT
5589 || (((nonzero_bits (XEXP (x, 0), mode)
5590 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5591 && ((nonzero_bits (XEXP (x, 1), mode)
5592 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5593 != 0))))
5594 result--;
5596 return MAX (1, result);
5598 case UDIV:
5599 /* The result must be <= the first operand. If the first operand
5600 has the high bit set, we know nothing about the number of sign
5601 bit copies. */
5602 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5603 return 1;
5604 else if ((nonzero_bits (XEXP (x, 0), mode)
5605 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5606 return 1;
5607 else
5608 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5609 known_x, known_mode, known_ret);
5611 case UMOD:
5612 /* The result must be <= the second operand. If the second operand
5613 has (or just might have) the high bit set, we know nothing about
5614 the number of sign bit copies. */
5615 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5616 return 1;
5617 else if ((nonzero_bits (XEXP (x, 1), mode)
5618 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5619 return 1;
5620 else
5621 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5622 known_x, known_mode, known_ret);
5624 case DIV:
5625 /* Similar to unsigned division, except that we have to worry about
5626 the case where the divisor is negative, in which case we have
5627 to add 1. */
5628 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5629 known_x, known_mode, known_ret);
5630 if (result > 1
5631 && (bitwidth > HOST_BITS_PER_WIDE_INT
5632 || (nonzero_bits (XEXP (x, 1), mode)
5633 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5634 result--;
5636 return result;
5638 case MOD:
5639 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5640 known_x, known_mode, known_ret);
5641 if (result > 1
5642 && (bitwidth > HOST_BITS_PER_WIDE_INT
5643 || (nonzero_bits (XEXP (x, 1), mode)
5644 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5645 result--;
5647 return result;
5649 case ASHIFTRT:
5650 /* Shifts by a constant add to the number of bits equal to the
5651 sign bit. */
5652 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5653 known_x, known_mode, known_ret);
5654 if (CONST_INT_P (XEXP (x, 1))
5655 && INTVAL (XEXP (x, 1)) > 0
5656 && INTVAL (XEXP (x, 1)) < xmode_width)
5657 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5659 return num0;
5661 case ASHIFT:
5662 /* Left shifts destroy copies. */
5663 if (!CONST_INT_P (XEXP (x, 1))
5664 || INTVAL (XEXP (x, 1)) < 0
5665 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5666 || INTVAL (XEXP (x, 1)) >= xmode_width)
5667 return 1;
5669 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5670 known_x, known_mode, known_ret);
5671 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5673 case IF_THEN_ELSE:
5674 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5675 known_x, known_mode, known_ret);
5676 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5677 known_x, known_mode, known_ret);
5678 return MIN (num0, num1);
5680 case EQ: case NE: case GE: case GT: case LE: case LT:
5681 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5682 case GEU: case GTU: case LEU: case LTU:
5683 case UNORDERED: case ORDERED:
5684 /* If the constant is negative, take its 1's complement and remask.
5685 Then see how many zero bits we have. */
5686 nonzero = STORE_FLAG_VALUE;
5687 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5688 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5689 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5691 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5693 default:
5694 break;
5697 /* If we haven't been able to figure it out by one of the above rules,
5698 see if some of the high-order bits are known to be zero. If so,
5699 count those bits and return one less than that amount. If we can't
5700 safely compute the mask for this mode, always return BITWIDTH. */
5702 bitwidth = GET_MODE_PRECISION (mode);
5703 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5704 return 1;
5706 nonzero = nonzero_bits (x, mode);
5707 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5708 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5711 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5712 zero indicates an instruction pattern without a known cost. */
5715 pattern_cost (rtx pat, bool speed)
5717 int i, cost;
5718 rtx set;
5720 /* Extract the single set rtx from the instruction pattern. We
5721 can't use single_set since we only have the pattern. We also
5722 consider PARALLELs of a normal set and a single comparison. In
5723 that case we use the cost of the non-comparison SET operation,
5724 which is most-likely to be the real cost of this operation. */
5725 if (GET_CODE (pat) == SET)
5726 set = pat;
5727 else if (GET_CODE (pat) == PARALLEL)
5729 set = NULL_RTX;
5730 rtx comparison = NULL_RTX;
5732 for (i = 0; i < XVECLEN (pat, 0); i++)
5734 rtx x = XVECEXP (pat, 0, i);
5735 if (GET_CODE (x) == SET)
5737 if (GET_CODE (SET_SRC (x)) == COMPARE)
5739 if (comparison)
5740 return 0;
5741 comparison = x;
5743 else
5745 if (set)
5746 return 0;
5747 set = x;
5752 if (!set && comparison)
5753 set = comparison;
5755 if (!set)
5756 return 0;
5758 else
5759 return 0;
5761 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5762 return cost > 0 ? cost : COSTS_N_INSNS (1);
5765 /* Calculate the cost of a single instruction. A return value of zero
5766 indicates an instruction pattern without a known cost. */
5769 insn_cost (rtx_insn *insn, bool speed)
5771 if (targetm.insn_cost)
5772 return targetm.insn_cost (insn, speed);
5774 return pattern_cost (PATTERN (insn), speed);
5777 /* Returns estimate on cost of computing SEQ. */
5779 unsigned
5780 seq_cost (const rtx_insn *seq, bool speed)
5782 unsigned cost = 0;
5783 rtx set;
5785 for (; seq; seq = NEXT_INSN (seq))
5787 set = single_set (seq);
5788 if (set)
5789 cost += set_rtx_cost (set, speed);
5790 else if (NONDEBUG_INSN_P (seq))
5792 int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5793 if (this_cost > 0)
5794 cost += this_cost;
5795 else
5796 cost++;
5800 return cost;
5803 /* Given an insn INSN and condition COND, return the condition in a
5804 canonical form to simplify testing by callers. Specifically:
5806 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5807 (2) Both operands will be machine operands; (cc0) will have been replaced.
5808 (3) If an operand is a constant, it will be the second operand.
5809 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5810 for GE, GEU, and LEU.
5812 If the condition cannot be understood, or is an inequality floating-point
5813 comparison which needs to be reversed, 0 will be returned.
5815 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5817 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5818 insn used in locating the condition was found. If a replacement test
5819 of the condition is desired, it should be placed in front of that
5820 insn and we will be sure that the inputs are still valid.
5822 If WANT_REG is nonzero, we wish the condition to be relative to that
5823 register, if possible. Therefore, do not canonicalize the condition
5824 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5825 to be a compare to a CC mode register.
5827 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5828 and at INSN. */
5831 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5832 rtx_insn **earliest,
5833 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5835 enum rtx_code code;
5836 rtx_insn *prev = insn;
5837 const_rtx set;
5838 rtx tem;
5839 rtx op0, op1;
5840 int reverse_code = 0;
5841 machine_mode mode;
5842 basic_block bb = BLOCK_FOR_INSN (insn);
5844 code = GET_CODE (cond);
5845 mode = GET_MODE (cond);
5846 op0 = XEXP (cond, 0);
5847 op1 = XEXP (cond, 1);
5849 if (reverse)
5850 code = reversed_comparison_code (cond, insn);
5851 if (code == UNKNOWN)
5852 return 0;
5854 if (earliest)
5855 *earliest = insn;
5857 /* If we are comparing a register with zero, see if the register is set
5858 in the previous insn to a COMPARE or a comparison operation. Perform
5859 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5860 in cse.c */
5862 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5863 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5864 && op1 == CONST0_RTX (GET_MODE (op0))
5865 && op0 != want_reg)
5867 /* Set nonzero when we find something of interest. */
5868 rtx x = 0;
5870 /* If comparison with cc0, import actual comparison from compare
5871 insn. */
5872 if (op0 == cc0_rtx)
5874 if ((prev = prev_nonnote_insn (prev)) == 0
5875 || !NONJUMP_INSN_P (prev)
5876 || (set = single_set (prev)) == 0
5877 || SET_DEST (set) != cc0_rtx)
5878 return 0;
5880 op0 = SET_SRC (set);
5881 op1 = CONST0_RTX (GET_MODE (op0));
5882 if (earliest)
5883 *earliest = prev;
5886 /* If this is a COMPARE, pick up the two things being compared. */
5887 if (GET_CODE (op0) == COMPARE)
5889 op1 = XEXP (op0, 1);
5890 op0 = XEXP (op0, 0);
5891 continue;
5893 else if (!REG_P (op0))
5894 break;
5896 /* Go back to the previous insn. Stop if it is not an INSN. We also
5897 stop if it isn't a single set or if it has a REG_INC note because
5898 we don't want to bother dealing with it. */
5900 prev = prev_nonnote_nondebug_insn (prev);
5902 if (prev == 0
5903 || !NONJUMP_INSN_P (prev)
5904 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5905 /* In cfglayout mode, there do not have to be labels at the
5906 beginning of a block, or jumps at the end, so the previous
5907 conditions would not stop us when we reach bb boundary. */
5908 || BLOCK_FOR_INSN (prev) != bb)
5909 break;
5911 set = set_of (op0, prev);
5913 if (set
5914 && (GET_CODE (set) != SET
5915 || !rtx_equal_p (SET_DEST (set), op0)))
5916 break;
5918 /* If this is setting OP0, get what it sets it to if it looks
5919 relevant. */
5920 if (set)
5922 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5923 #ifdef FLOAT_STORE_FLAG_VALUE
5924 REAL_VALUE_TYPE fsfv;
5925 #endif
5927 /* ??? We may not combine comparisons done in a CCmode with
5928 comparisons not done in a CCmode. This is to aid targets
5929 like Alpha that have an IEEE compliant EQ instruction, and
5930 a non-IEEE compliant BEQ instruction. The use of CCmode is
5931 actually artificial, simply to prevent the combination, but
5932 should not affect other platforms.
5934 However, we must allow VOIDmode comparisons to match either
5935 CCmode or non-CCmode comparison, because some ports have
5936 modeless comparisons inside branch patterns.
5938 ??? This mode check should perhaps look more like the mode check
5939 in simplify_comparison in combine. */
5940 if (((GET_MODE_CLASS (mode) == MODE_CC)
5941 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5942 && mode != VOIDmode
5943 && inner_mode != VOIDmode)
5944 break;
5945 if (GET_CODE (SET_SRC (set)) == COMPARE
5946 || (((code == NE
5947 || (code == LT
5948 && val_signbit_known_set_p (inner_mode,
5949 STORE_FLAG_VALUE))
5950 #ifdef FLOAT_STORE_FLAG_VALUE
5951 || (code == LT
5952 && SCALAR_FLOAT_MODE_P (inner_mode)
5953 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5954 REAL_VALUE_NEGATIVE (fsfv)))
5955 #endif
5957 && COMPARISON_P (SET_SRC (set))))
5958 x = SET_SRC (set);
5959 else if (((code == EQ
5960 || (code == GE
5961 && val_signbit_known_set_p (inner_mode,
5962 STORE_FLAG_VALUE))
5963 #ifdef FLOAT_STORE_FLAG_VALUE
5964 || (code == GE
5965 && SCALAR_FLOAT_MODE_P (inner_mode)
5966 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5967 REAL_VALUE_NEGATIVE (fsfv)))
5968 #endif
5970 && COMPARISON_P (SET_SRC (set)))
5972 reverse_code = 1;
5973 x = SET_SRC (set);
5975 else if ((code == EQ || code == NE)
5976 && GET_CODE (SET_SRC (set)) == XOR)
5977 /* Handle sequences like:
5979 (set op0 (xor X Y))
5980 ...(eq|ne op0 (const_int 0))...
5982 in which case:
5984 (eq op0 (const_int 0)) reduces to (eq X Y)
5985 (ne op0 (const_int 0)) reduces to (ne X Y)
5987 This is the form used by MIPS16, for example. */
5988 x = SET_SRC (set);
5989 else
5990 break;
5993 else if (reg_set_p (op0, prev))
5994 /* If this sets OP0, but not directly, we have to give up. */
5995 break;
5997 if (x)
5999 /* If the caller is expecting the condition to be valid at INSN,
6000 make sure X doesn't change before INSN. */
6001 if (valid_at_insn_p)
6002 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
6003 break;
6004 if (COMPARISON_P (x))
6005 code = GET_CODE (x);
6006 if (reverse_code)
6008 code = reversed_comparison_code (x, prev);
6009 if (code == UNKNOWN)
6010 return 0;
6011 reverse_code = 0;
6014 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
6015 if (earliest)
6016 *earliest = prev;
6020 /* If constant is first, put it last. */
6021 if (CONSTANT_P (op0))
6022 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
6024 /* If OP0 is the result of a comparison, we weren't able to find what
6025 was really being compared, so fail. */
6026 if (!allow_cc_mode
6027 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6028 return 0;
6030 /* Canonicalize any ordered comparison with integers involving equality
6031 if we can do computations in the relevant mode and we do not
6032 overflow. */
6034 scalar_int_mode op0_mode;
6035 if (CONST_INT_P (op1)
6036 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
6037 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
6039 HOST_WIDE_INT const_val = INTVAL (op1);
6040 unsigned HOST_WIDE_INT uconst_val = const_val;
6041 unsigned HOST_WIDE_INT max_val
6042 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
6044 switch (code)
6046 case LE:
6047 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
6048 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
6049 break;
6051 /* When cross-compiling, const_val might be sign-extended from
6052 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
6053 case GE:
6054 if ((const_val & max_val)
6055 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
6056 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
6057 break;
6059 case LEU:
6060 if (uconst_val < max_val)
6061 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
6062 break;
6064 case GEU:
6065 if (uconst_val != 0)
6066 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
6067 break;
6069 default:
6070 break;
6074 /* Never return CC0; return zero instead. */
6075 if (CC0_P (op0))
6076 return 0;
6078 /* We promised to return a comparison. */
6079 rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
6080 if (COMPARISON_P (ret))
6081 return ret;
6082 return 0;
6085 /* Given a jump insn JUMP, return the condition that will cause it to branch
6086 to its JUMP_LABEL. If the condition cannot be understood, or is an
6087 inequality floating-point comparison which needs to be reversed, 0 will
6088 be returned.
6090 If EARLIEST is nonzero, it is a pointer to a place where the earliest
6091 insn used in locating the condition was found. If a replacement test
6092 of the condition is desired, it should be placed in front of that
6093 insn and we will be sure that the inputs are still valid. If EARLIEST
6094 is null, the returned condition will be valid at INSN.
6096 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
6097 compare CC mode register.
6099 VALID_AT_INSN_P is the same as for canonicalize_condition. */
6102 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
6103 int valid_at_insn_p)
6105 rtx cond;
6106 int reverse;
6107 rtx set;
6109 /* If this is not a standard conditional jump, we can't parse it. */
6110 if (!JUMP_P (jump)
6111 || ! any_condjump_p (jump))
6112 return 0;
6113 set = pc_set (jump);
6115 cond = XEXP (SET_SRC (set), 0);
6117 /* If this branches to JUMP_LABEL when the condition is false, reverse
6118 the condition. */
6119 reverse
6120 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
6121 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
6123 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
6124 allow_cc_mode, valid_at_insn_p);
6127 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
6128 TARGET_MODE_REP_EXTENDED.
6130 Note that we assume that the property of
6131 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
6132 narrower than mode B. I.e., if A is a mode narrower than B then in
6133 order to be able to operate on it in mode B, mode A needs to
6134 satisfy the requirements set by the representation of mode B. */
6136 static void
6137 init_num_sign_bit_copies_in_rep (void)
6139 opt_scalar_int_mode in_mode_iter;
6140 scalar_int_mode mode;
6142 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
6143 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
6145 scalar_int_mode in_mode = in_mode_iter.require ();
6146 scalar_int_mode i;
6148 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
6149 extends to the next widest mode. */
6150 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
6151 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
6153 /* We are in in_mode. Count how many bits outside of mode
6154 have to be copies of the sign-bit. */
6155 FOR_EACH_MODE (i, mode, in_mode)
6157 /* This must always exist (for the last iteration it will be
6158 IN_MODE). */
6159 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
6161 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
6162 /* We can only check sign-bit copies starting from the
6163 top-bit. In order to be able to check the bits we
6164 have already seen we pretend that subsequent bits
6165 have to be sign-bit copies too. */
6166 || num_sign_bit_copies_in_rep [in_mode][mode])
6167 num_sign_bit_copies_in_rep [in_mode][mode]
6168 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
6173 /* Suppose that truncation from the machine mode of X to MODE is not a
6174 no-op. See if there is anything special about X so that we can
6175 assume it already contains a truncated value of MODE. */
6177 bool
6178 truncated_to_mode (machine_mode mode, const_rtx x)
6180 /* This register has already been used in MODE without explicit
6181 truncation. */
6182 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
6183 return true;
6185 /* See if we already satisfy the requirements of MODE. If yes we
6186 can just switch to MODE. */
6187 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
6188 && (num_sign_bit_copies (x, GET_MODE (x))
6189 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
6190 return true;
6192 return false;
6195 /* Return true if RTX code CODE has a single sequence of zero or more
6196 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
6197 entry in that case. */
6199 static bool
6200 setup_reg_subrtx_bounds (unsigned int code)
6202 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
6203 unsigned int i = 0;
6204 for (; format[i] != 'e'; ++i)
6206 if (!format[i])
6207 /* No subrtxes. Leave start and count as 0. */
6208 return true;
6209 if (format[i] == 'E' || format[i] == 'V')
6210 return false;
6213 /* Record the sequence of 'e's. */
6214 rtx_all_subrtx_bounds[code].start = i;
6216 ++i;
6217 while (format[i] == 'e');
6218 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
6219 /* rtl-iter.h relies on this. */
6220 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
6222 for (; format[i]; ++i)
6223 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
6224 return false;
6226 return true;
6229 /* Initialize rtx_all_subrtx_bounds. */
6230 void
6231 init_rtlanal (void)
6233 int i;
6234 for (i = 0; i < NUM_RTX_CODE; i++)
6236 if (!setup_reg_subrtx_bounds (i))
6237 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
6238 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
6239 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
6242 init_num_sign_bit_copies_in_rep ();
6245 /* Check whether this is a constant pool constant. */
6246 bool
6247 constant_pool_constant_p (rtx x)
6249 x = avoid_constant_pool_reference (x);
6250 return CONST_DOUBLE_P (x);
6253 /* If M is a bitmask that selects a field of low-order bits within an item but
6254 not the entire word, return the length of the field. Return -1 otherwise.
6255 M is used in machine mode MODE. */
6258 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
6260 if (mode != VOIDmode)
6262 if (!HWI_COMPUTABLE_MODE_P (mode))
6263 return -1;
6264 m &= GET_MODE_MASK (mode);
6267 return exact_log2 (m + 1);
6270 /* Return the mode of MEM's address. */
6272 scalar_int_mode
6273 get_address_mode (rtx mem)
6275 machine_mode mode;
6277 gcc_assert (MEM_P (mem));
6278 mode = GET_MODE (XEXP (mem, 0));
6279 if (mode != VOIDmode)
6280 return as_a <scalar_int_mode> (mode);
6281 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
6284 /* Split up a CONST_DOUBLE or integer constant rtx
6285 into two rtx's for single words,
6286 storing in *FIRST the word that comes first in memory in the target
6287 and in *SECOND the other.
6289 TODO: This function needs to be rewritten to work on any size
6290 integer. */
6292 void
6293 split_double (rtx value, rtx *first, rtx *second)
6295 if (CONST_INT_P (value))
6297 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
6299 /* In this case the CONST_INT holds both target words.
6300 Extract the bits from it into two word-sized pieces.
6301 Sign extend each half to HOST_WIDE_INT. */
6302 unsigned HOST_WIDE_INT low, high;
6303 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
6304 unsigned bits_per_word = BITS_PER_WORD;
6306 /* Set sign_bit to the most significant bit of a word. */
6307 sign_bit = 1;
6308 sign_bit <<= bits_per_word - 1;
6310 /* Set mask so that all bits of the word are set. We could
6311 have used 1 << BITS_PER_WORD instead of basing the
6312 calculation on sign_bit. However, on machines where
6313 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
6314 compiler warning, even though the code would never be
6315 executed. */
6316 mask = sign_bit << 1;
6317 mask--;
6319 /* Set sign_extend as any remaining bits. */
6320 sign_extend = ~mask;
6322 /* Pick the lower word and sign-extend it. */
6323 low = INTVAL (value);
6324 low &= mask;
6325 if (low & sign_bit)
6326 low |= sign_extend;
6328 /* Pick the higher word, shifted to the least significant
6329 bits, and sign-extend it. */
6330 high = INTVAL (value);
6331 high >>= bits_per_word - 1;
6332 high >>= 1;
6333 high &= mask;
6334 if (high & sign_bit)
6335 high |= sign_extend;
6337 /* Store the words in the target machine order. */
6338 if (WORDS_BIG_ENDIAN)
6340 *first = GEN_INT (high);
6341 *second = GEN_INT (low);
6343 else
6345 *first = GEN_INT (low);
6346 *second = GEN_INT (high);
6349 else
6351 /* The rule for using CONST_INT for a wider mode
6352 is that we regard the value as signed.
6353 So sign-extend it. */
6354 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6355 if (WORDS_BIG_ENDIAN)
6357 *first = high;
6358 *second = value;
6360 else
6362 *first = value;
6363 *second = high;
6367 else if (GET_CODE (value) == CONST_WIDE_INT)
6369 /* All of this is scary code and needs to be converted to
6370 properly work with any size integer. */
6371 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6372 if (WORDS_BIG_ENDIAN)
6374 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6375 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6377 else
6379 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6380 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6383 else if (!CONST_DOUBLE_P (value))
6385 if (WORDS_BIG_ENDIAN)
6387 *first = const0_rtx;
6388 *second = value;
6390 else
6392 *first = value;
6393 *second = const0_rtx;
6396 else if (GET_MODE (value) == VOIDmode
6397 /* This is the old way we did CONST_DOUBLE integers. */
6398 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6400 /* In an integer, the words are defined as most and least significant.
6401 So order them by the target's convention. */
6402 if (WORDS_BIG_ENDIAN)
6404 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6405 *second = GEN_INT (CONST_DOUBLE_LOW (value));
6407 else
6409 *first = GEN_INT (CONST_DOUBLE_LOW (value));
6410 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6413 else
6415 long l[2];
6417 /* Note, this converts the REAL_VALUE_TYPE to the target's
6418 format, splits up the floating point double and outputs
6419 exactly 32 bits of it into each of l[0] and l[1] --
6420 not necessarily BITS_PER_WORD bits. */
6421 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6423 /* If 32 bits is an entire word for the target, but not for the host,
6424 then sign-extend on the host so that the number will look the same
6425 way on the host that it would on the target. See for instance
6426 simplify_unary_operation. The #if is needed to avoid compiler
6427 warnings. */
6429 #if HOST_BITS_PER_LONG > 32
6430 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6432 if (l[0] & ((long) 1 << 31))
6433 l[0] |= ((unsigned long) (-1) << 32);
6434 if (l[1] & ((long) 1 << 31))
6435 l[1] |= ((unsigned long) (-1) << 32);
6437 #endif
6439 *first = GEN_INT (l[0]);
6440 *second = GEN_INT (l[1]);
6444 /* Return true if X is a sign_extract or zero_extract from the least
6445 significant bit. */
6447 static bool
6448 lsb_bitfield_op_p (rtx x)
6450 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6452 machine_mode mode = GET_MODE (XEXP (x, 0));
6453 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6454 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6455 poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6457 return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6459 return false;
6462 /* Strip outer address "mutations" from LOC and return a pointer to the
6463 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6464 stripped expression there.
6466 "Mutations" either convert between modes or apply some kind of
6467 extension, truncation or alignment. */
6469 rtx *
6470 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6472 for (;;)
6474 enum rtx_code code = GET_CODE (*loc);
6475 if (GET_RTX_CLASS (code) == RTX_UNARY)
6476 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6477 used to convert between pointer sizes. */
6478 loc = &XEXP (*loc, 0);
6479 else if (lsb_bitfield_op_p (*loc))
6480 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6481 acts as a combined truncation and extension. */
6482 loc = &XEXP (*loc, 0);
6483 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6484 /* (and ... (const_int -X)) is used to align to X bytes. */
6485 loc = &XEXP (*loc, 0);
6486 else if (code == SUBREG
6487 && !OBJECT_P (SUBREG_REG (*loc))
6488 && subreg_lowpart_p (*loc))
6489 /* (subreg (operator ...) ...) inside and is used for mode
6490 conversion too. */
6491 loc = &SUBREG_REG (*loc);
6492 else
6493 return loc;
6494 if (outer_code)
6495 *outer_code = code;
6499 /* Return true if CODE applies some kind of scale. The scaled value is
6500 is the first operand and the scale is the second. */
6502 static bool
6503 binary_scale_code_p (enum rtx_code code)
6505 return (code == MULT
6506 || code == ASHIFT
6507 /* Needed by ARM targets. */
6508 || code == ASHIFTRT
6509 || code == LSHIFTRT
6510 || code == ROTATE
6511 || code == ROTATERT);
6514 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6515 (see address_info). Return null otherwise. */
6517 static rtx *
6518 get_base_term (rtx *inner)
6520 if (GET_CODE (*inner) == LO_SUM)
6521 inner = strip_address_mutations (&XEXP (*inner, 0));
6522 if (REG_P (*inner)
6523 || MEM_P (*inner)
6524 || GET_CODE (*inner) == SUBREG
6525 || GET_CODE (*inner) == SCRATCH)
6526 return inner;
6527 return 0;
6530 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6531 (see address_info). Return null otherwise. */
6533 static rtx *
6534 get_index_term (rtx *inner)
6536 /* At present, only constant scales are allowed. */
6537 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6538 inner = strip_address_mutations (&XEXP (*inner, 0));
6539 if (REG_P (*inner)
6540 || MEM_P (*inner)
6541 || GET_CODE (*inner) == SUBREG
6542 || GET_CODE (*inner) == SCRATCH)
6543 return inner;
6544 return 0;
6547 /* Set the segment part of address INFO to LOC, given that INNER is the
6548 unmutated value. */
6550 static void
6551 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6553 gcc_assert (!info->segment);
6554 info->segment = loc;
6555 info->segment_term = inner;
6558 /* Set the base part of address INFO to LOC, given that INNER is the
6559 unmutated value. */
6561 static void
6562 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6564 gcc_assert (!info->base);
6565 info->base = loc;
6566 info->base_term = inner;
6569 /* Set the index part of address INFO to LOC, given that INNER is the
6570 unmutated value. */
6572 static void
6573 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6575 gcc_assert (!info->index);
6576 info->index = loc;
6577 info->index_term = inner;
6580 /* Set the displacement part of address INFO to LOC, given that INNER
6581 is the constant term. */
6583 static void
6584 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6586 gcc_assert (!info->disp);
6587 info->disp = loc;
6588 info->disp_term = inner;
6591 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6592 rest of INFO accordingly. */
6594 static void
6595 decompose_incdec_address (struct address_info *info)
6597 info->autoinc_p = true;
6599 rtx *base = &XEXP (*info->inner, 0);
6600 set_address_base (info, base, base);
6601 gcc_checking_assert (info->base == info->base_term);
6603 /* These addresses are only valid when the size of the addressed
6604 value is known. */
6605 gcc_checking_assert (info->mode != VOIDmode);
6608 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6609 of INFO accordingly. */
6611 static void
6612 decompose_automod_address (struct address_info *info)
6614 info->autoinc_p = true;
6616 rtx *base = &XEXP (*info->inner, 0);
6617 set_address_base (info, base, base);
6618 gcc_checking_assert (info->base == info->base_term);
6620 rtx plus = XEXP (*info->inner, 1);
6621 gcc_assert (GET_CODE (plus) == PLUS);
6623 info->base_term2 = &XEXP (plus, 0);
6624 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6626 rtx *step = &XEXP (plus, 1);
6627 rtx *inner_step = strip_address_mutations (step);
6628 if (CONSTANT_P (*inner_step))
6629 set_address_disp (info, step, inner_step);
6630 else
6631 set_address_index (info, step, inner_step);
6634 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6635 values in [PTR, END). Return a pointer to the end of the used array. */
6637 static rtx **
6638 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6640 rtx x = *loc;
6641 if (GET_CODE (x) == PLUS)
6643 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6644 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6646 else
6648 gcc_assert (ptr != end);
6649 *ptr++ = loc;
6651 return ptr;
6654 /* Evaluate the likelihood of X being a base or index value, returning
6655 positive if it is likely to be a base, negative if it is likely to be
6656 an index, and 0 if we can't tell. Make the magnitude of the return
6657 value reflect the amount of confidence we have in the answer.
6659 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6661 static int
6662 baseness (rtx x, machine_mode mode, addr_space_t as,
6663 enum rtx_code outer_code, enum rtx_code index_code)
6665 /* Believe *_POINTER unless the address shape requires otherwise. */
6666 if (REG_P (x) && REG_POINTER (x))
6667 return 2;
6668 if (MEM_P (x) && MEM_POINTER (x))
6669 return 2;
6671 if (REG_P (x) && HARD_REGISTER_P (x))
6673 /* X is a hard register. If it only fits one of the base
6674 or index classes, choose that interpretation. */
6675 int regno = REGNO (x);
6676 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6677 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6678 if (base_p != index_p)
6679 return base_p ? 1 : -1;
6681 return 0;
6684 /* INFO->INNER describes a normal, non-automodified address.
6685 Fill in the rest of INFO accordingly. */
6687 static void
6688 decompose_normal_address (struct address_info *info)
6690 /* Treat the address as the sum of up to four values. */
6691 rtx *ops[4];
6692 size_t n_ops = extract_plus_operands (info->inner, ops,
6693 ops + ARRAY_SIZE (ops)) - ops;
6695 /* If there is more than one component, any base component is in a PLUS. */
6696 if (n_ops > 1)
6697 info->base_outer_code = PLUS;
6699 /* Try to classify each sum operand now. Leave those that could be
6700 either a base or an index in OPS. */
6701 rtx *inner_ops[4];
6702 size_t out = 0;
6703 for (size_t in = 0; in < n_ops; ++in)
6705 rtx *loc = ops[in];
6706 rtx *inner = strip_address_mutations (loc);
6707 if (CONSTANT_P (*inner))
6708 set_address_disp (info, loc, inner);
6709 else if (GET_CODE (*inner) == UNSPEC)
6710 set_address_segment (info, loc, inner);
6711 else
6713 /* The only other possibilities are a base or an index. */
6714 rtx *base_term = get_base_term (inner);
6715 rtx *index_term = get_index_term (inner);
6716 gcc_assert (base_term || index_term);
6717 if (!base_term)
6718 set_address_index (info, loc, index_term);
6719 else if (!index_term)
6720 set_address_base (info, loc, base_term);
6721 else
6723 gcc_assert (base_term == index_term);
6724 ops[out] = loc;
6725 inner_ops[out] = base_term;
6726 ++out;
6731 /* Classify the remaining OPS members as bases and indexes. */
6732 if (out == 1)
6734 /* If we haven't seen a base or an index yet, assume that this is
6735 the base. If we were confident that another term was the base
6736 or index, treat the remaining operand as the other kind. */
6737 if (!info->base)
6738 set_address_base (info, ops[0], inner_ops[0]);
6739 else
6740 set_address_index (info, ops[0], inner_ops[0]);
6742 else if (out == 2)
6744 /* In the event of a tie, assume the base comes first. */
6745 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6746 GET_CODE (*ops[1]))
6747 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6748 GET_CODE (*ops[0])))
6750 set_address_base (info, ops[0], inner_ops[0]);
6751 set_address_index (info, ops[1], inner_ops[1]);
6753 else
6755 set_address_base (info, ops[1], inner_ops[1]);
6756 set_address_index (info, ops[0], inner_ops[0]);
6759 else
6760 gcc_assert (out == 0);
6763 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6764 or VOIDmode if not known. AS is the address space associated with LOC.
6765 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6767 void
6768 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6769 addr_space_t as, enum rtx_code outer_code)
6771 memset (info, 0, sizeof (*info));
6772 info->mode = mode;
6773 info->as = as;
6774 info->addr_outer_code = outer_code;
6775 info->outer = loc;
6776 info->inner = strip_address_mutations (loc, &outer_code);
6777 info->base_outer_code = outer_code;
6778 switch (GET_CODE (*info->inner))
6780 case PRE_DEC:
6781 case PRE_INC:
6782 case POST_DEC:
6783 case POST_INC:
6784 decompose_incdec_address (info);
6785 break;
6787 case PRE_MODIFY:
6788 case POST_MODIFY:
6789 decompose_automod_address (info);
6790 break;
6792 default:
6793 decompose_normal_address (info);
6794 break;
6798 /* Describe address operand LOC in INFO. */
6800 void
6801 decompose_lea_address (struct address_info *info, rtx *loc)
6803 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6806 /* Describe the address of MEM X in INFO. */
6808 void
6809 decompose_mem_address (struct address_info *info, rtx x)
6811 gcc_assert (MEM_P (x));
6812 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6813 MEM_ADDR_SPACE (x), MEM);
6816 /* Update INFO after a change to the address it describes. */
6818 void
6819 update_address (struct address_info *info)
6821 decompose_address (info, info->outer, info->mode, info->as,
6822 info->addr_outer_code);
6825 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6826 more complicated than that. */
6828 HOST_WIDE_INT
6829 get_index_scale (const struct address_info *info)
6831 rtx index = *info->index;
6832 if (GET_CODE (index) == MULT
6833 && CONST_INT_P (XEXP (index, 1))
6834 && info->index_term == &XEXP (index, 0))
6835 return INTVAL (XEXP (index, 1));
6837 if (GET_CODE (index) == ASHIFT
6838 && CONST_INT_P (XEXP (index, 1))
6839 && info->index_term == &XEXP (index, 0))
6840 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6842 if (info->index == info->index_term)
6843 return 1;
6845 return 0;
6848 /* Return the "index code" of INFO, in the form required by
6849 ok_for_base_p_1. */
6851 enum rtx_code
6852 get_index_code (const struct address_info *info)
6854 if (info->index)
6855 return GET_CODE (*info->index);
6857 if (info->disp)
6858 return GET_CODE (*info->disp);
6860 return SCRATCH;
6863 /* Return true if RTL X contains a SYMBOL_REF. */
6865 bool
6866 contains_symbol_ref_p (const_rtx x)
6868 subrtx_iterator::array_type array;
6869 FOR_EACH_SUBRTX (iter, array, x, ALL)
6870 if (SYMBOL_REF_P (*iter))
6871 return true;
6873 return false;
6876 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6878 bool
6879 contains_symbolic_reference_p (const_rtx x)
6881 subrtx_iterator::array_type array;
6882 FOR_EACH_SUBRTX (iter, array, x, ALL)
6883 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6884 return true;
6886 return false;
6889 /* Return true if RTL X contains a constant pool address. */
6891 bool
6892 contains_constant_pool_address_p (const_rtx x)
6894 subrtx_iterator::array_type array;
6895 FOR_EACH_SUBRTX (iter, array, x, ALL)
6896 if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
6897 return true;
6899 return false;
6903 /* Return true if X contains a thread-local symbol. */
6905 bool
6906 tls_referenced_p (const_rtx x)
6908 if (!targetm.have_tls)
6909 return false;
6911 subrtx_iterator::array_type array;
6912 FOR_EACH_SUBRTX (iter, array, x, ALL)
6913 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6914 return true;
6915 return false;
6918 /* Process recursively X of INSN and add REG_INC notes if necessary. */
6919 void
6920 add_auto_inc_notes (rtx_insn *insn, rtx x)
6922 enum rtx_code code = GET_CODE (x);
6923 const char *fmt;
6924 int i, j;
6926 if (code == MEM && auto_inc_p (XEXP (x, 0)))
6928 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
6929 return;
6932 /* Scan all X sub-expressions. */
6933 fmt = GET_RTX_FORMAT (code);
6934 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6936 if (fmt[i] == 'e')
6937 add_auto_inc_notes (insn, XEXP (x, i));
6938 else if (fmt[i] == 'E')
6939 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6940 add_auto_inc_notes (insn, XVECEXP (x, i, j));
6944 /* Return true if X is register asm. */
6946 bool
6947 register_asm_p (const_rtx x)
6949 return (REG_P (x)
6950 && REG_EXPR (x) != NULL_TREE
6951 && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (x))
6952 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (x))
6953 && DECL_REGISTER (REG_EXPR (x)));