1 /* Control flow functions for trees.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
24 #include "hash-table.h"
28 #include "basic-block.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h"
39 #include "tree-ssa-propagate.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
42 #include "tree-inline.h"
45 /* This file contains functions for building the Control Flow Graph (CFG)
46 for a function tree. */
48 /* Local declarations. */
50 /* Initial capacity for the basic block array. */
51 static const int initial_cfg_capacity
= 20;
53 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
54 which use a particular edge. The CASE_LABEL_EXPRs are chained together
55 via their CASE_CHAIN field, which we clear after we're done with the
56 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
58 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
59 update the case vector in response to edge redirections.
61 Right now this table is set up and torn down at key points in the
62 compilation process. It would be nice if we could make the table
63 more persistent. The key is getting notification of changes to
64 the CFG (particularly edge removal, creation and redirection). */
66 static struct pointer_map_t
*edge_to_cases
;
68 /* If we record edge_to_cases, this bitmap will hold indexes
69 of basic blocks that end in a GIMPLE_SWITCH which we touched
70 due to edge manipulations. */
72 static bitmap touched_switch_bbs
;
77 long num_merged_labels
;
80 static struct cfg_stats_d cfg_stats
;
82 /* Nonzero if we found a computed goto while building basic blocks. */
83 static bool found_computed_goto
;
85 /* Hash table to store last discriminator assigned for each locus. */
86 struct locus_discrim_map
92 /* Hashtable helpers. */
94 struct locus_discrim_hasher
: typed_free_remove
<locus_discrim_map
>
96 typedef locus_discrim_map value_type
;
97 typedef locus_discrim_map compare_type
;
98 static inline hashval_t
hash (const value_type
*);
99 static inline bool equal (const value_type
*, const compare_type
*);
102 /* Trivial hash function for a location_t. ITEM is a pointer to
103 a hash table entry that maps a location_t to a discriminator. */
106 locus_discrim_hasher::hash (const value_type
*item
)
108 return LOCATION_LINE (item
->locus
);
111 /* Equality function for the locus-to-discriminator map. A and B
112 point to the two hash table entries to compare. */
115 locus_discrim_hasher::equal (const value_type
*a
, const compare_type
*b
)
117 return LOCATION_LINE (a
->locus
) == LOCATION_LINE (b
->locus
);
120 static hash_table
<locus_discrim_hasher
> discriminator_per_locus
;
122 /* Basic blocks and flowgraphs. */
123 static void make_blocks (gimple_seq
);
124 static void factor_computed_gotos (void);
127 static void make_edges (void);
128 static void assign_discriminators (void);
129 static void make_cond_expr_edges (basic_block
);
130 static void make_gimple_switch_edges (basic_block
);
131 static void make_goto_expr_edges (basic_block
);
132 static void make_gimple_asm_edges (basic_block
);
133 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
134 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
135 static unsigned int split_critical_edges (void);
137 /* Various helpers. */
138 static inline bool stmt_starts_bb_p (gimple
, gimple
);
139 static int gimple_verify_flow_info (void);
140 static void gimple_make_forwarder_block (edge
);
141 static gimple
first_non_label_stmt (basic_block
);
142 static bool verify_gimple_transaction (gimple
);
144 /* Flowgraph optimization and cleanup. */
145 static void gimple_merge_blocks (basic_block
, basic_block
);
146 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
147 static void remove_bb (basic_block
);
148 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
149 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
150 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
151 static tree
find_case_label_for_value (gimple
, tree
);
154 init_empty_tree_cfg_for_function (struct function
*fn
)
156 /* Initialize the basic block array. */
158 profile_status_for_function (fn
) = PROFILE_ABSENT
;
159 n_basic_blocks_for_function (fn
) = NUM_FIXED_BLOCKS
;
160 last_basic_block_for_function (fn
) = NUM_FIXED_BLOCKS
;
161 vec_alloc (basic_block_info_for_function (fn
), initial_cfg_capacity
);
162 vec_safe_grow_cleared (basic_block_info_for_function (fn
),
163 initial_cfg_capacity
);
165 /* Build a mapping of labels to their associated blocks. */
166 vec_alloc (label_to_block_map_for_function (fn
), initial_cfg_capacity
);
167 vec_safe_grow_cleared (label_to_block_map_for_function (fn
),
168 initial_cfg_capacity
);
170 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, ENTRY_BLOCK
,
171 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
));
172 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, EXIT_BLOCK
,
173 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
));
175 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
)->next_bb
176 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn
);
177 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
)->prev_bb
178 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
);
182 init_empty_tree_cfg (void)
184 init_empty_tree_cfg_for_function (cfun
);
187 /*---------------------------------------------------------------------------
189 ---------------------------------------------------------------------------*/
191 /* Entry point to the CFG builder for trees. SEQ is the sequence of
192 statements to be added to the flowgraph. */
195 build_gimple_cfg (gimple_seq seq
)
197 /* Register specific gimple functions. */
198 gimple_register_cfg_hooks ();
200 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
202 init_empty_tree_cfg ();
204 found_computed_goto
= 0;
207 /* Computed gotos are hell to deal with, especially if there are
208 lots of them with a large number of destinations. So we factor
209 them to a common computed goto location before we build the
210 edge list. After we convert back to normal form, we will un-factor
211 the computed gotos since factoring introduces an unwanted jump. */
212 if (found_computed_goto
)
213 factor_computed_gotos ();
215 /* Make sure there is always at least one block, even if it's empty. */
216 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
217 create_empty_bb (ENTRY_BLOCK_PTR
);
219 /* Adjust the size of the array. */
220 if (basic_block_info
->length () < (size_t) n_basic_blocks
)
221 vec_safe_grow_cleared (basic_block_info
, n_basic_blocks
);
223 /* To speed up statement iterator walks, we first purge dead labels. */
224 cleanup_dead_labels ();
226 /* Group case nodes to reduce the number of edges.
227 We do this after cleaning up dead labels because otherwise we miss
228 a lot of obvious case merging opportunities. */
229 group_case_labels ();
231 /* Create the edges of the flowgraph. */
232 discriminator_per_locus
.create (13);
234 assign_discriminators ();
235 cleanup_dead_labels ();
236 discriminator_per_locus
.dispose ();
240 execute_build_cfg (void)
242 gimple_seq body
= gimple_body (current_function_decl
);
244 build_gimple_cfg (body
);
245 gimple_set_body (current_function_decl
, NULL
);
246 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
248 fprintf (dump_file
, "Scope blocks:\n");
249 dump_scope_blocks (dump_file
, dump_flags
);
252 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
256 struct gimple_opt_pass pass_build_cfg
=
261 OPTGROUP_NONE
, /* optinfo_flags */
263 execute_build_cfg
, /* execute */
266 0, /* static_pass_number */
267 TV_TREE_CFG
, /* tv_id */
268 PROP_gimple_leh
, /* properties_required */
269 PROP_cfg
| PROP_loops
, /* properties_provided */
270 0, /* properties_destroyed */
271 0, /* todo_flags_start */
272 TODO_verify_stmts
/* todo_flags_finish */
277 /* Return true if T is a computed goto. */
280 computed_goto_p (gimple t
)
282 return (gimple_code (t
) == GIMPLE_GOTO
283 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
287 /* Search the CFG for any computed gotos. If found, factor them to a
288 common computed goto site. Also record the location of that site so
289 that we can un-factor the gotos after we have converted back to
293 factor_computed_gotos (void)
296 tree factored_label_decl
= NULL
;
298 gimple factored_computed_goto_label
= NULL
;
299 gimple factored_computed_goto
= NULL
;
301 /* We know there are one or more computed gotos in this function.
302 Examine the last statement in each basic block to see if the block
303 ends with a computed goto. */
307 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
313 last
= gsi_stmt (gsi
);
315 /* Ignore the computed goto we create when we factor the original
317 if (last
== factored_computed_goto
)
320 /* If the last statement is a computed goto, factor it. */
321 if (computed_goto_p (last
))
325 /* The first time we find a computed goto we need to create
326 the factored goto block and the variable each original
327 computed goto will use for their goto destination. */
328 if (!factored_computed_goto
)
330 basic_block new_bb
= create_empty_bb (bb
);
331 gimple_stmt_iterator new_gsi
= gsi_start_bb (new_bb
);
333 /* Create the destination of the factored goto. Each original
334 computed goto will put its desired destination into this
335 variable and jump to the label we create immediately
337 var
= create_tmp_var (ptr_type_node
, "gotovar");
339 /* Build a label for the new block which will contain the
340 factored computed goto. */
341 factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION
);
342 factored_computed_goto_label
343 = gimple_build_label (factored_label_decl
);
344 gsi_insert_after (&new_gsi
, factored_computed_goto_label
,
347 /* Build our new computed goto. */
348 factored_computed_goto
= gimple_build_goto (var
);
349 gsi_insert_after (&new_gsi
, factored_computed_goto
, GSI_NEW_STMT
);
352 /* Copy the original computed goto's destination into VAR. */
353 assignment
= gimple_build_assign (var
, gimple_goto_dest (last
));
354 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
356 /* And re-vector the computed goto to the new destination. */
357 gimple_goto_set_dest (last
, factored_label_decl
);
363 /* Build a flowgraph for the sequence of stmts SEQ. */
366 make_blocks (gimple_seq seq
)
368 gimple_stmt_iterator i
= gsi_start (seq
);
370 bool start_new_block
= true;
371 bool first_stmt_of_seq
= true;
372 basic_block bb
= ENTRY_BLOCK_PTR
;
374 while (!gsi_end_p (i
))
381 /* If the statement starts a new basic block or if we have determined
382 in a previous pass that we need to create a new block for STMT, do
384 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
386 if (!first_stmt_of_seq
)
387 gsi_split_seq_before (&i
, &seq
);
388 bb
= create_basic_block (seq
, NULL
, bb
);
389 start_new_block
= false;
392 /* Now add STMT to BB and create the subgraphs for special statement
394 gimple_set_bb (stmt
, bb
);
396 if (computed_goto_p (stmt
))
397 found_computed_goto
= true;
399 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
401 if (stmt_ends_bb_p (stmt
))
403 /* If the stmt can make abnormal goto use a new temporary
404 for the assignment to the LHS. This makes sure the old value
405 of the LHS is available on the abnormal edge. Otherwise
406 we will end up with overlapping life-ranges for abnormal
408 if (gimple_has_lhs (stmt
)
409 && stmt_can_make_abnormal_goto (stmt
)
410 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
412 tree lhs
= gimple_get_lhs (stmt
);
413 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
414 gimple s
= gimple_build_assign (lhs
, tmp
);
415 gimple_set_location (s
, gimple_location (stmt
));
416 gimple_set_block (s
, gimple_block (stmt
));
417 gimple_set_lhs (stmt
, tmp
);
418 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
419 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
420 DECL_GIMPLE_REG_P (tmp
) = 1;
421 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
423 start_new_block
= true;
427 first_stmt_of_seq
= false;
432 /* Create and return a new empty basic block after bb AFTER. */
435 create_bb (void *h
, void *e
, basic_block after
)
441 /* Create and initialize a new basic block. Since alloc_block uses
442 GC allocation that clears memory to allocate a basic block, we do
443 not have to clear the newly allocated basic block here. */
446 bb
->index
= last_basic_block
;
448 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
450 /* Add the new block to the linked list of blocks. */
451 link_block (bb
, after
);
453 /* Grow the basic block array if needed. */
454 if ((size_t) last_basic_block
== basic_block_info
->length ())
456 size_t new_size
= last_basic_block
+ (last_basic_block
+ 3) / 4;
457 vec_safe_grow_cleared (basic_block_info
, new_size
);
460 /* Add the newly created block to the array. */
461 SET_BASIC_BLOCK (last_basic_block
, bb
);
470 /*---------------------------------------------------------------------------
472 ---------------------------------------------------------------------------*/
474 /* Fold COND_EXPR_COND of each COND_EXPR. */
477 fold_cond_expr_cond (void)
483 gimple stmt
= last_stmt (bb
);
485 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
487 location_t loc
= gimple_location (stmt
);
491 fold_defer_overflow_warnings ();
492 cond
= fold_binary_loc (loc
, gimple_cond_code (stmt
), boolean_type_node
,
493 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
496 zerop
= integer_zerop (cond
);
497 onep
= integer_onep (cond
);
500 zerop
= onep
= false;
502 fold_undefer_overflow_warnings (zerop
|| onep
,
504 WARN_STRICT_OVERFLOW_CONDITIONAL
);
506 gimple_cond_make_false (stmt
);
508 gimple_cond_make_true (stmt
);
513 /* Join all the blocks in the flowgraph. */
519 struct omp_region
*cur_region
= NULL
;
521 /* Create an edge from entry to the first block with executable
523 make_edge (ENTRY_BLOCK_PTR
, BASIC_BLOCK (NUM_FIXED_BLOCKS
), EDGE_FALLTHRU
);
525 /* Traverse the basic block array placing edges. */
528 gimple last
= last_stmt (bb
);
533 enum gimple_code code
= gimple_code (last
);
537 make_goto_expr_edges (bb
);
541 make_edge (bb
, EXIT_BLOCK_PTR
, 0);
545 make_cond_expr_edges (bb
);
549 make_gimple_switch_edges (bb
);
553 make_eh_edges (last
);
556 case GIMPLE_EH_DISPATCH
:
557 fallthru
= make_eh_dispatch_edges (last
);
561 /* If this function receives a nonlocal goto, then we need to
562 make edges from this call site to all the nonlocal goto
564 if (stmt_can_make_abnormal_goto (last
))
565 make_abnormal_goto_edges (bb
, true);
567 /* If this statement has reachable exception handlers, then
568 create abnormal edges to them. */
569 make_eh_edges (last
);
571 /* BUILTIN_RETURN is really a return statement. */
572 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
573 make_edge (bb
, EXIT_BLOCK_PTR
, 0), fallthru
= false;
574 /* Some calls are known not to return. */
576 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
580 /* A GIMPLE_ASSIGN may throw internally and thus be considered
582 if (is_ctrl_altering_stmt (last
))
583 make_eh_edges (last
);
588 make_gimple_asm_edges (bb
);
592 case GIMPLE_OMP_PARALLEL
:
593 case GIMPLE_OMP_TASK
:
595 case GIMPLE_OMP_SINGLE
:
596 case GIMPLE_OMP_MASTER
:
597 case GIMPLE_OMP_ORDERED
:
598 case GIMPLE_OMP_CRITICAL
:
599 case GIMPLE_OMP_SECTION
:
600 cur_region
= new_omp_region (bb
, code
, cur_region
);
604 case GIMPLE_OMP_SECTIONS
:
605 cur_region
= new_omp_region (bb
, code
, cur_region
);
609 case GIMPLE_OMP_SECTIONS_SWITCH
:
613 case GIMPLE_OMP_ATOMIC_LOAD
:
614 case GIMPLE_OMP_ATOMIC_STORE
:
618 case GIMPLE_OMP_RETURN
:
619 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
620 somewhere other than the next block. This will be
622 cur_region
->exit
= bb
;
623 fallthru
= cur_region
->type
!= GIMPLE_OMP_SECTION
;
624 cur_region
= cur_region
->outer
;
627 case GIMPLE_OMP_CONTINUE
:
628 cur_region
->cont
= bb
;
629 switch (cur_region
->type
)
632 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
633 succs edges as abnormal to prevent splitting
635 single_succ_edge (cur_region
->entry
)->flags
|= EDGE_ABNORMAL
;
636 /* Make the loopback edge. */
637 make_edge (bb
, single_succ (cur_region
->entry
),
640 /* Create an edge from GIMPLE_OMP_FOR to exit, which
641 corresponds to the case that the body of the loop
642 is not executed at all. */
643 make_edge (cur_region
->entry
, bb
->next_bb
, EDGE_ABNORMAL
);
644 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
| EDGE_ABNORMAL
);
648 case GIMPLE_OMP_SECTIONS
:
649 /* Wire up the edges into and out of the nested sections. */
651 basic_block switch_bb
= single_succ (cur_region
->entry
);
653 struct omp_region
*i
;
654 for (i
= cur_region
->inner
; i
; i
= i
->next
)
656 gcc_assert (i
->type
== GIMPLE_OMP_SECTION
);
657 make_edge (switch_bb
, i
->entry
, 0);
658 make_edge (i
->exit
, bb
, EDGE_FALLTHRU
);
661 /* Make the loopback edge to the block with
662 GIMPLE_OMP_SECTIONS_SWITCH. */
663 make_edge (bb
, switch_bb
, 0);
665 /* Make the edge from the switch to exit. */
666 make_edge (switch_bb
, bb
->next_bb
, 0);
676 case GIMPLE_TRANSACTION
:
678 tree abort_label
= gimple_transaction_label (last
);
680 make_edge (bb
, label_to_block (abort_label
), EDGE_TM_ABORT
);
686 gcc_assert (!stmt_ends_bb_p (last
));
694 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
700 /* Fold COND_EXPR_COND of each COND_EXPR. */
701 fold_cond_expr_cond ();
704 /* Find the next available discriminator value for LOCUS. The
705 discriminator distinguishes among several basic blocks that
706 share a common locus, allowing for more accurate sample-based
710 next_discriminator_for_locus (location_t locus
)
712 struct locus_discrim_map item
;
713 struct locus_discrim_map
**slot
;
716 item
.discriminator
= 0;
717 slot
= discriminator_per_locus
.find_slot_with_hash (
718 &item
, LOCATION_LINE (locus
), INSERT
);
720 if (*slot
== HTAB_EMPTY_ENTRY
)
722 *slot
= XNEW (struct locus_discrim_map
);
724 (*slot
)->locus
= locus
;
725 (*slot
)->discriminator
= 0;
727 (*slot
)->discriminator
++;
728 return (*slot
)->discriminator
;
731 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
734 same_line_p (location_t locus1
, location_t locus2
)
736 expanded_location from
, to
;
738 if (locus1
== locus2
)
741 from
= expand_location (locus1
);
742 to
= expand_location (locus2
);
744 if (from
.line
!= to
.line
)
746 if (from
.file
== to
.file
)
748 return (from
.file
!= NULL
750 && filename_cmp (from
.file
, to
.file
) == 0);
753 /* Assign discriminators to each basic block. */
756 assign_discriminators (void)
764 gimple last
= last_stmt (bb
);
765 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
767 if (locus
== UNKNOWN_LOCATION
)
770 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
772 gimple first
= first_non_label_stmt (e
->dest
);
773 gimple last
= last_stmt (e
->dest
);
774 if ((first
&& same_line_p (locus
, gimple_location (first
)))
775 || (last
&& same_line_p (locus
, gimple_location (last
))))
777 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
778 bb
->discriminator
= next_discriminator_for_locus (locus
);
780 e
->dest
->discriminator
= next_discriminator_for_locus (locus
);
786 /* Create the edges for a GIMPLE_COND starting at block BB. */
789 make_cond_expr_edges (basic_block bb
)
791 gimple entry
= last_stmt (bb
);
792 gimple then_stmt
, else_stmt
;
793 basic_block then_bb
, else_bb
;
794 tree then_label
, else_label
;
798 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
800 /* Entry basic blocks for each component. */
801 then_label
= gimple_cond_true_label (entry
);
802 else_label
= gimple_cond_false_label (entry
);
803 then_bb
= label_to_block (then_label
);
804 else_bb
= label_to_block (else_label
);
805 then_stmt
= first_stmt (then_bb
);
806 else_stmt
= first_stmt (else_bb
);
808 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
809 e
->goto_locus
= gimple_location (then_stmt
);
810 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
812 e
->goto_locus
= gimple_location (else_stmt
);
814 /* We do not need the labels anymore. */
815 gimple_cond_set_true_label (entry
, NULL_TREE
);
816 gimple_cond_set_false_label (entry
, NULL_TREE
);
820 /* Called for each element in the hash table (P) as we delete the
821 edge to cases hash table.
823 Clear all the TREE_CHAINs to prevent problems with copying of
824 SWITCH_EXPRs and structure sharing rules, then free the hash table
828 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
829 void *data ATTRIBUTE_UNUSED
)
833 for (t
= (tree
) *value
; t
; t
= next
)
835 next
= CASE_CHAIN (t
);
836 CASE_CHAIN (t
) = NULL
;
843 /* Start recording information mapping edges to case labels. */
846 start_recording_case_labels (void)
848 gcc_assert (edge_to_cases
== NULL
);
849 edge_to_cases
= pointer_map_create ();
850 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
853 /* Return nonzero if we are recording information for case labels. */
856 recording_case_labels_p (void)
858 return (edge_to_cases
!= NULL
);
861 /* Stop recording information mapping edges to case labels and
862 remove any information we have recorded. */
864 end_recording_case_labels (void)
868 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
869 pointer_map_destroy (edge_to_cases
);
870 edge_to_cases
= NULL
;
871 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
873 basic_block bb
= BASIC_BLOCK (i
);
876 gimple stmt
= last_stmt (bb
);
877 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
878 group_case_labels_stmt (stmt
);
881 BITMAP_FREE (touched_switch_bbs
);
884 /* If we are inside a {start,end}_recording_cases block, then return
885 a chain of CASE_LABEL_EXPRs from T which reference E.
887 Otherwise return NULL. */
890 get_cases_for_edge (edge e
, gimple t
)
895 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
896 chains available. Return NULL so the caller can detect this case. */
897 if (!recording_case_labels_p ())
900 slot
= pointer_map_contains (edge_to_cases
, e
);
904 /* If we did not find E in the hash table, then this must be the first
905 time we have been queried for information about E & T. Add all the
906 elements from T to the hash table then perform the query again. */
908 n
= gimple_switch_num_labels (t
);
909 for (i
= 0; i
< n
; i
++)
911 tree elt
= gimple_switch_label (t
, i
);
912 tree lab
= CASE_LABEL (elt
);
913 basic_block label_bb
= label_to_block (lab
);
914 edge this_edge
= find_edge (e
->src
, label_bb
);
916 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
918 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
919 CASE_CHAIN (elt
) = (tree
) *slot
;
923 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
926 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
929 make_gimple_switch_edges (basic_block bb
)
931 gimple entry
= last_stmt (bb
);
934 n
= gimple_switch_num_labels (entry
);
936 for (i
= 0; i
< n
; ++i
)
938 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
939 basic_block label_bb
= label_to_block (lab
);
940 make_edge (bb
, label_bb
, 0);
945 /* Return the basic block holding label DEST. */
948 label_to_block_fn (struct function
*ifun
, tree dest
)
950 int uid
= LABEL_DECL_UID (dest
);
952 /* We would die hard when faced by an undefined label. Emit a label to
953 the very first basic block. This will hopefully make even the dataflow
954 and undefined variable warnings quite right. */
955 if (seen_error () && uid
< 0)
957 gimple_stmt_iterator gsi
= gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS
));
960 stmt
= gimple_build_label (dest
);
961 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
962 uid
= LABEL_DECL_UID (dest
);
964 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
966 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
969 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
970 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
973 make_abnormal_goto_edges (basic_block bb
, bool for_call
)
975 basic_block target_bb
;
976 gimple_stmt_iterator gsi
;
978 FOR_EACH_BB (target_bb
)
980 for (gsi
= gsi_start_bb (target_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
982 gimple label_stmt
= gsi_stmt (gsi
);
985 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
988 target
= gimple_label_label (label_stmt
);
990 /* Make an edge to every label block that has been marked as a
991 potential target for a computed goto or a non-local goto. */
992 if ((FORCED_LABEL (target
) && !for_call
)
993 || (DECL_NONLOCAL (target
) && for_call
))
995 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
999 if (!gsi_end_p (gsi
))
1001 /* Make an edge to every setjmp-like call. */
1002 gimple call_stmt
= gsi_stmt (gsi
);
1003 if (is_gimple_call (call_stmt
)
1004 && (gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
))
1005 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
1010 /* Create edges for a goto statement at block BB. */
1013 make_goto_expr_edges (basic_block bb
)
1015 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1016 gimple goto_t
= gsi_stmt (last
);
1018 /* A simple GOTO creates normal edges. */
1019 if (simple_goto_p (goto_t
))
1021 tree dest
= gimple_goto_dest (goto_t
);
1022 basic_block label_bb
= label_to_block (dest
);
1023 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1024 e
->goto_locus
= gimple_location (goto_t
);
1025 gsi_remove (&last
, true);
1029 /* A computed GOTO creates abnormal edges. */
1030 make_abnormal_goto_edges (bb
, false);
1033 /* Create edges for an asm statement with labels at block BB. */
1036 make_gimple_asm_edges (basic_block bb
)
1038 gimple stmt
= last_stmt (bb
);
1039 int i
, n
= gimple_asm_nlabels (stmt
);
1041 for (i
= 0; i
< n
; ++i
)
1043 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1044 basic_block label_bb
= label_to_block (label
);
1045 make_edge (bb
, label_bb
, 0);
1049 /*---------------------------------------------------------------------------
1051 ---------------------------------------------------------------------------*/
1053 /* Cleanup useless labels in basic blocks. This is something we wish
1054 to do early because it allows us to group case labels before creating
1055 the edges for the CFG, and it speeds up block statement iterators in
1056 all passes later on.
1057 We rerun this pass after CFG is created, to get rid of the labels that
1058 are no longer referenced. After then we do not run it any more, since
1059 (almost) no new labels should be created. */
1061 /* A map from basic block index to the leading label of that block. */
1062 static struct label_record
1067 /* True if the label is referenced from somewhere. */
1071 /* Given LABEL return the first label in the same basic block. */
1074 main_block_label (tree label
)
1076 basic_block bb
= label_to_block (label
);
1077 tree main_label
= label_for_bb
[bb
->index
].label
;
1079 /* label_to_block possibly inserted undefined label into the chain. */
1082 label_for_bb
[bb
->index
].label
= label
;
1086 label_for_bb
[bb
->index
].used
= true;
1090 /* Clean up redundant labels within the exception tree. */
1093 cleanup_dead_labels_eh (void)
1100 if (cfun
->eh
== NULL
)
1103 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1104 if (lp
&& lp
->post_landing_pad
)
1106 lab
= main_block_label (lp
->post_landing_pad
);
1107 if (lab
!= lp
->post_landing_pad
)
1109 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1110 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1114 FOR_ALL_EH_REGION (r
)
1118 case ERT_MUST_NOT_THROW
:
1124 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1128 c
->label
= main_block_label (lab
);
1133 case ERT_ALLOWED_EXCEPTIONS
:
1134 lab
= r
->u
.allowed
.label
;
1136 r
->u
.allowed
.label
= main_block_label (lab
);
1142 /* Cleanup redundant labels. This is a three-step process:
1143 1) Find the leading label for each block.
1144 2) Redirect all references to labels to the leading labels.
1145 3) Cleanup all useless labels. */
1148 cleanup_dead_labels (void)
1151 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block
);
1153 /* Find a suitable label for each block. We use the first user-defined
1154 label if there is one, or otherwise just the first label we see. */
1157 gimple_stmt_iterator i
;
1159 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1162 gimple stmt
= gsi_stmt (i
);
1164 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1167 label
= gimple_label_label (stmt
);
1169 /* If we have not yet seen a label for the current block,
1170 remember this one and see if there are more labels. */
1171 if (!label_for_bb
[bb
->index
].label
)
1173 label_for_bb
[bb
->index
].label
= label
;
1177 /* If we did see a label for the current block already, but it
1178 is an artificially created label, replace it if the current
1179 label is a user defined label. */
1180 if (!DECL_ARTIFICIAL (label
)
1181 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1183 label_for_bb
[bb
->index
].label
= label
;
1189 /* Now redirect all jumps/branches to the selected label.
1190 First do so for each block ending in a control statement. */
1193 gimple stmt
= last_stmt (bb
);
1194 tree label
, new_label
;
1199 switch (gimple_code (stmt
))
1202 label
= gimple_cond_true_label (stmt
);
1205 new_label
= main_block_label (label
);
1206 if (new_label
!= label
)
1207 gimple_cond_set_true_label (stmt
, new_label
);
1210 label
= gimple_cond_false_label (stmt
);
1213 new_label
= main_block_label (label
);
1214 if (new_label
!= label
)
1215 gimple_cond_set_false_label (stmt
, new_label
);
1221 size_t i
, n
= gimple_switch_num_labels (stmt
);
1223 /* Replace all destination labels. */
1224 for (i
= 0; i
< n
; ++i
)
1226 tree case_label
= gimple_switch_label (stmt
, i
);
1227 label
= CASE_LABEL (case_label
);
1228 new_label
= main_block_label (label
);
1229 if (new_label
!= label
)
1230 CASE_LABEL (case_label
) = new_label
;
1237 int i
, n
= gimple_asm_nlabels (stmt
);
1239 for (i
= 0; i
< n
; ++i
)
1241 tree cons
= gimple_asm_label_op (stmt
, i
);
1242 tree label
= main_block_label (TREE_VALUE (cons
));
1243 TREE_VALUE (cons
) = label
;
1248 /* We have to handle gotos until they're removed, and we don't
1249 remove them until after we've created the CFG edges. */
1251 if (!computed_goto_p (stmt
))
1253 label
= gimple_goto_dest (stmt
);
1254 new_label
= main_block_label (label
);
1255 if (new_label
!= label
)
1256 gimple_goto_set_dest (stmt
, new_label
);
1260 case GIMPLE_TRANSACTION
:
1262 tree label
= gimple_transaction_label (stmt
);
1265 tree new_label
= main_block_label (label
);
1266 if (new_label
!= label
)
1267 gimple_transaction_set_label (stmt
, new_label
);
1277 /* Do the same for the exception region tree labels. */
1278 cleanup_dead_labels_eh ();
1280 /* Finally, purge dead labels. All user-defined labels and labels that
1281 can be the target of non-local gotos and labels which have their
1282 address taken are preserved. */
1285 gimple_stmt_iterator i
;
1286 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1288 if (!label_for_this_bb
)
1291 /* If the main label of the block is unused, we may still remove it. */
1292 if (!label_for_bb
[bb
->index
].used
)
1293 label_for_this_bb
= NULL
;
1295 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1298 gimple stmt
= gsi_stmt (i
);
1300 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1303 label
= gimple_label_label (stmt
);
1305 if (label
== label_for_this_bb
1306 || !DECL_ARTIFICIAL (label
)
1307 || DECL_NONLOCAL (label
)
1308 || FORCED_LABEL (label
))
1311 gsi_remove (&i
, true);
1315 free (label_for_bb
);
1318 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1319 the ones jumping to the same label.
1320 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1323 group_case_labels_stmt (gimple stmt
)
1325 int old_size
= gimple_switch_num_labels (stmt
);
1326 int i
, j
, new_size
= old_size
;
1327 basic_block default_bb
= NULL
;
1329 default_bb
= label_to_block (CASE_LABEL (gimple_switch_default_label (stmt
)));
1331 /* Look for possible opportunities to merge cases. */
1333 while (i
< old_size
)
1335 tree base_case
, base_high
;
1336 basic_block base_bb
;
1338 base_case
= gimple_switch_label (stmt
, i
);
1340 gcc_assert (base_case
);
1341 base_bb
= label_to_block (CASE_LABEL (base_case
));
1343 /* Discard cases that have the same destination as the
1345 if (base_bb
== default_bb
)
1347 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1353 base_high
= CASE_HIGH (base_case
)
1354 ? CASE_HIGH (base_case
)
1355 : CASE_LOW (base_case
);
1358 /* Try to merge case labels. Break out when we reach the end
1359 of the label vector or when we cannot merge the next case
1360 label with the current one. */
1361 while (i
< old_size
)
1363 tree merge_case
= gimple_switch_label (stmt
, i
);
1364 basic_block merge_bb
= label_to_block (CASE_LABEL (merge_case
));
1365 double_int bhp1
= tree_to_double_int (base_high
) + double_int_one
;
1367 /* Merge the cases if they jump to the same place,
1368 and their ranges are consecutive. */
1369 if (merge_bb
== base_bb
1370 && tree_to_double_int (CASE_LOW (merge_case
)) == bhp1
)
1372 base_high
= CASE_HIGH (merge_case
) ?
1373 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1374 CASE_HIGH (base_case
) = base_high
;
1375 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1384 /* Compress the case labels in the label vector, and adjust the
1385 length of the vector. */
1386 for (i
= 0, j
= 0; i
< new_size
; i
++)
1388 while (! gimple_switch_label (stmt
, j
))
1390 gimple_switch_set_label (stmt
, i
,
1391 gimple_switch_label (stmt
, j
++));
1394 gcc_assert (new_size
<= old_size
);
1395 gimple_switch_set_num_labels (stmt
, new_size
);
1398 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1399 and scan the sorted vector of cases. Combine the ones jumping to the
1403 group_case_labels (void)
1409 gimple stmt
= last_stmt (bb
);
1410 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1411 group_case_labels_stmt (stmt
);
1415 /* Checks whether we can merge block B into block A. */
1418 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1421 gimple_stmt_iterator gsi
;
1423 if (!single_succ_p (a
))
1426 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1429 if (single_succ (a
) != b
)
1432 if (!single_pred_p (b
))
1435 if (b
== EXIT_BLOCK_PTR
)
1438 /* If A ends by a statement causing exceptions or something similar, we
1439 cannot merge the blocks. */
1440 stmt
= last_stmt (a
);
1441 if (stmt
&& stmt_ends_bb_p (stmt
))
1444 /* Do not allow a block with only a non-local label to be merged. */
1446 && gimple_code (stmt
) == GIMPLE_LABEL
1447 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1450 /* Examine the labels at the beginning of B. */
1451 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1454 stmt
= gsi_stmt (gsi
);
1455 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1457 lab
= gimple_label_label (stmt
);
1459 /* Do not remove user forced labels or for -O0 any user labels. */
1460 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1464 /* Protect the loop latches. */
1465 if (current_loops
&& b
->loop_father
->latch
== b
)
1468 /* It must be possible to eliminate all phi nodes in B. If ssa form
1469 is not up-to-date and a name-mapping is registered, we cannot eliminate
1470 any phis. Symbols marked for renaming are never a problem though. */
1471 for (gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1473 gimple phi
= gsi_stmt (gsi
);
1474 /* Technically only new names matter. */
1475 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1479 /* When not optimizing, don't merge if we'd lose goto_locus. */
1481 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1483 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1484 gimple_stmt_iterator prev
, next
;
1485 prev
= gsi_last_nondebug_bb (a
);
1486 next
= gsi_after_labels (b
);
1487 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1488 gsi_next_nondebug (&next
);
1489 if ((gsi_end_p (prev
)
1490 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1491 && (gsi_end_p (next
)
1492 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1499 /* Return true if the var whose chain of uses starts at PTR has no
1502 has_zero_uses_1 (const ssa_use_operand_t
*head
)
1504 const ssa_use_operand_t
*ptr
;
1506 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1507 if (!is_gimple_debug (USE_STMT (ptr
)))
1513 /* Return true if the var whose chain of uses starts at PTR has a
1514 single nondebug use. Set USE_P and STMT to that single nondebug
1515 use, if so, or to NULL otherwise. */
1517 single_imm_use_1 (const ssa_use_operand_t
*head
,
1518 use_operand_p
*use_p
, gimple
*stmt
)
1520 ssa_use_operand_t
*ptr
, *single_use
= 0;
1522 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1523 if (!is_gimple_debug (USE_STMT (ptr
)))
1534 *use_p
= single_use
;
1537 *stmt
= single_use
? single_use
->loc
.stmt
: NULL
;
1539 return !!single_use
;
1542 /* Replaces all uses of NAME by VAL. */
1545 replace_uses_by (tree name
, tree val
)
1547 imm_use_iterator imm_iter
;
1552 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1554 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1556 replace_exp (use
, val
);
1558 if (gimple_code (stmt
) == GIMPLE_PHI
)
1560 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1561 if (e
->flags
& EDGE_ABNORMAL
)
1563 /* This can only occur for virtual operands, since
1564 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1565 would prevent replacement. */
1566 gcc_checking_assert (virtual_operand_p (name
));
1567 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1572 if (gimple_code (stmt
) != GIMPLE_PHI
)
1574 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1575 gimple orig_stmt
= stmt
;
1578 /* Mark the block if we changed the last stmt in it. */
1579 if (cfgcleanup_altered_bbs
1580 && stmt_ends_bb_p (stmt
))
1581 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1583 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1584 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1585 only change sth from non-invariant to invariant, and only
1586 when propagating constants. */
1587 if (is_gimple_min_invariant (val
))
1588 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1590 tree op
= gimple_op (stmt
, i
);
1591 /* Operands may be empty here. For example, the labels
1592 of a GIMPLE_COND are nulled out following the creation
1593 of the corresponding CFG edges. */
1594 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1595 recompute_tree_invariant_for_addr_expr (op
);
1598 if (fold_stmt (&gsi
))
1599 stmt
= gsi_stmt (gsi
);
1601 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
1602 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
1608 gcc_checking_assert (has_zero_uses (name
));
1610 /* Also update the trees stored in loop structures. */
1616 FOR_EACH_LOOP (li
, loop
, 0)
1618 substitute_in_loop_info (loop
, name
, val
);
1623 /* Merge block B into block A. */
1626 gimple_merge_blocks (basic_block a
, basic_block b
)
1628 gimple_stmt_iterator last
, gsi
, psi
;
1631 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1633 /* Remove all single-valued PHI nodes from block B of the form
1634 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1635 gsi
= gsi_last_bb (a
);
1636 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
1638 gimple phi
= gsi_stmt (psi
);
1639 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1641 bool may_replace_uses
= (virtual_operand_p (def
)
1642 || may_propagate_copy (def
, use
));
1644 /* In case we maintain loop closed ssa form, do not propagate arguments
1645 of loop exit phi nodes. */
1647 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1648 && !virtual_operand_p (def
)
1649 && TREE_CODE (use
) == SSA_NAME
1650 && a
->loop_father
!= b
->loop_father
)
1651 may_replace_uses
= false;
1653 if (!may_replace_uses
)
1655 gcc_assert (!virtual_operand_p (def
));
1657 /* Note that just emitting the copies is fine -- there is no problem
1658 with ordering of phi nodes. This is because A is the single
1659 predecessor of B, therefore results of the phi nodes cannot
1660 appear as arguments of the phi nodes. */
1661 copy
= gimple_build_assign (def
, use
);
1662 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1663 remove_phi_node (&psi
, false);
1667 /* If we deal with a PHI for virtual operands, we can simply
1668 propagate these without fussing with folding or updating
1670 if (virtual_operand_p (def
))
1672 imm_use_iterator iter
;
1673 use_operand_p use_p
;
1676 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1677 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1678 SET_USE (use_p
, use
);
1680 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
1681 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
1684 replace_uses_by (def
, use
);
1686 remove_phi_node (&psi
, true);
1690 /* Ensure that B follows A. */
1691 move_block_after (b
, a
);
1693 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1694 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1696 /* Remove labels from B and set gimple_bb to A for other statements. */
1697 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1699 gimple stmt
= gsi_stmt (gsi
);
1700 if (gimple_code (stmt
) == GIMPLE_LABEL
)
1702 tree label
= gimple_label_label (stmt
);
1705 gsi_remove (&gsi
, false);
1707 /* Now that we can thread computed gotos, we might have
1708 a situation where we have a forced label in block B
1709 However, the label at the start of block B might still be
1710 used in other ways (think about the runtime checking for
1711 Fortran assigned gotos). So we can not just delete the
1712 label. Instead we move the label to the start of block A. */
1713 if (FORCED_LABEL (label
))
1715 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1716 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
1718 /* Other user labels keep around in a form of a debug stmt. */
1719 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_STMTS
)
1721 gimple dbg
= gimple_build_debug_bind (label
,
1724 gimple_debug_bind_reset_value (dbg
);
1725 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
1728 lp_nr
= EH_LANDING_PAD_NR (label
);
1731 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
1732 lp
->post_landing_pad
= NULL
;
1737 gimple_set_bb (stmt
, a
);
1742 /* Merge the sequences. */
1743 last
= gsi_last_bb (a
);
1744 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1745 set_bb_seq (b
, NULL
);
1747 if (cfgcleanup_altered_bbs
)
1748 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1752 /* Return the one of two successors of BB that is not reachable by a
1753 complex edge, if there is one. Else, return BB. We use
1754 this in optimizations that use post-dominators for their heuristics,
1755 to catch the cases in C++ where function calls are involved. */
1758 single_noncomplex_succ (basic_block bb
)
1761 if (EDGE_COUNT (bb
->succs
) != 2)
1764 e0
= EDGE_SUCC (bb
, 0);
1765 e1
= EDGE_SUCC (bb
, 1);
1766 if (e0
->flags
& EDGE_COMPLEX
)
1768 if (e1
->flags
& EDGE_COMPLEX
)
1774 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1777 notice_special_calls (gimple call
)
1779 int flags
= gimple_call_flags (call
);
1781 if (flags
& ECF_MAY_BE_ALLOCA
)
1782 cfun
->calls_alloca
= true;
1783 if (flags
& ECF_RETURNS_TWICE
)
1784 cfun
->calls_setjmp
= true;
1788 /* Clear flags set by notice_special_calls. Used by dead code removal
1789 to update the flags. */
1792 clear_special_calls (void)
1794 cfun
->calls_alloca
= false;
1795 cfun
->calls_setjmp
= false;
1798 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1801 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
1803 /* Since this block is no longer reachable, we can just delete all
1804 of its PHI nodes. */
1805 remove_phi_nodes (bb
);
1807 /* Remove edges to BB's successors. */
1808 while (EDGE_COUNT (bb
->succs
) > 0)
1809 remove_edge (EDGE_SUCC (bb
, 0));
1813 /* Remove statements of basic block BB. */
1816 remove_bb (basic_block bb
)
1818 gimple_stmt_iterator i
;
1822 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
1823 if (dump_flags
& TDF_DETAILS
)
1825 dump_bb (dump_file
, bb
, 0, dump_flags
);
1826 fprintf (dump_file
, "\n");
1832 struct loop
*loop
= bb
->loop_father
;
1834 /* If a loop gets removed, clean up the information associated
1836 if (loop
->latch
== bb
1837 || loop
->header
== bb
)
1838 free_numbers_of_iterations_estimates_loop (loop
);
1841 /* Remove all the instructions in the block. */
1842 if (bb_seq (bb
) != NULL
)
1844 /* Walk backwards so as to get a chance to substitute all
1845 released DEFs into debug stmts. See
1846 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1848 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
1850 gimple stmt
= gsi_stmt (i
);
1851 if (gimple_code (stmt
) == GIMPLE_LABEL
1852 && (FORCED_LABEL (gimple_label_label (stmt
))
1853 || DECL_NONLOCAL (gimple_label_label (stmt
))))
1856 gimple_stmt_iterator new_gsi
;
1858 /* A non-reachable non-local label may still be referenced.
1859 But it no longer needs to carry the extra semantics of
1861 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
1863 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
1864 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
1867 new_bb
= bb
->prev_bb
;
1868 new_gsi
= gsi_start_bb (new_bb
);
1869 gsi_remove (&i
, false);
1870 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
1874 /* Release SSA definitions if we are in SSA. Note that we
1875 may be called when not in SSA. For example,
1876 final_cleanup calls this function via
1877 cleanup_tree_cfg. */
1878 if (gimple_in_ssa_p (cfun
))
1879 release_defs (stmt
);
1881 gsi_remove (&i
, true);
1885 i
= gsi_last_bb (bb
);
1891 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
1892 bb
->il
.gimple
.seq
= NULL
;
1893 bb
->il
.gimple
.phi_nodes
= NULL
;
1897 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1898 predicate VAL, return the edge that will be taken out of the block.
1899 If VAL does not match a unique edge, NULL is returned. */
1902 find_taken_edge (basic_block bb
, tree val
)
1906 stmt
= last_stmt (bb
);
1909 gcc_assert (is_ctrl_stmt (stmt
));
1914 if (!is_gimple_min_invariant (val
))
1917 if (gimple_code (stmt
) == GIMPLE_COND
)
1918 return find_taken_edge_cond_expr (bb
, val
);
1920 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1921 return find_taken_edge_switch_expr (bb
, val
);
1923 if (computed_goto_p (stmt
))
1925 /* Only optimize if the argument is a label, if the argument is
1926 not a label then we can not construct a proper CFG.
1928 It may be the case that we only need to allow the LABEL_REF to
1929 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1930 appear inside a LABEL_EXPR just to be safe. */
1931 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
1932 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
1933 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
1940 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1941 statement, determine which of the outgoing edges will be taken out of the
1942 block. Return NULL if either edge may be taken. */
1945 find_taken_edge_computed_goto (basic_block bb
, tree val
)
1950 dest
= label_to_block (val
);
1953 e
= find_edge (bb
, dest
);
1954 gcc_assert (e
!= NULL
);
1960 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1961 statement, determine which of the two edges will be taken out of the
1962 block. Return NULL if either edge may be taken. */
1965 find_taken_edge_cond_expr (basic_block bb
, tree val
)
1967 edge true_edge
, false_edge
;
1969 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1971 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
1972 return (integer_zerop (val
) ? false_edge
: true_edge
);
1975 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1976 statement, determine which edge will be taken out of the block. Return
1977 NULL if any edge may be taken. */
1980 find_taken_edge_switch_expr (basic_block bb
, tree val
)
1982 basic_block dest_bb
;
1987 switch_stmt
= last_stmt (bb
);
1988 taken_case
= find_case_label_for_value (switch_stmt
, val
);
1989 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
1991 e
= find_edge (bb
, dest_bb
);
1997 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1998 We can make optimal use here of the fact that the case labels are
1999 sorted: We can do a binary search for a case matching VAL. */
2002 find_case_label_for_value (gimple switch_stmt
, tree val
)
2004 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2005 tree default_case
= gimple_switch_default_label (switch_stmt
);
2007 for (low
= 0, high
= n
; high
- low
> 1; )
2009 size_t i
= (high
+ low
) / 2;
2010 tree t
= gimple_switch_label (switch_stmt
, i
);
2013 /* Cache the result of comparing CASE_LOW and val. */
2014 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2021 if (CASE_HIGH (t
) == NULL
)
2023 /* A singe-valued case label. */
2029 /* A case range. We can only handle integer ranges. */
2030 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2035 return default_case
;
2039 /* Dump a basic block on stderr. */
2042 gimple_debug_bb (basic_block bb
)
2044 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2048 /* Dump basic block with index N on stderr. */
2051 gimple_debug_bb_n (int n
)
2053 gimple_debug_bb (BASIC_BLOCK (n
));
2054 return BASIC_BLOCK (n
);
2058 /* Dump the CFG on stderr.
2060 FLAGS are the same used by the tree dumping functions
2061 (see TDF_* in dumpfile.h). */
2064 gimple_debug_cfg (int flags
)
2066 gimple_dump_cfg (stderr
, flags
);
2070 /* Dump the program showing basic block boundaries on the given FILE.
2072 FLAGS are the same used by the tree dumping functions (see TDF_* in
2076 gimple_dump_cfg (FILE *file
, int flags
)
2078 if (flags
& TDF_DETAILS
)
2080 dump_function_header (file
, current_function_decl
, flags
);
2081 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2082 n_basic_blocks
, n_edges
, last_basic_block
);
2084 brief_dump_cfg (file
, flags
| TDF_COMMENT
);
2085 fprintf (file
, "\n");
2088 if (flags
& TDF_STATS
)
2089 dump_cfg_stats (file
);
2091 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2095 /* Dump CFG statistics on FILE. */
2098 dump_cfg_stats (FILE *file
)
2100 static long max_num_merged_labels
= 0;
2101 unsigned long size
, total
= 0;
2104 const char * const fmt_str
= "%-30s%-13s%12s\n";
2105 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2106 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2107 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2108 const char *funcname
= current_function_name ();
2110 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2112 fprintf (file
, "---------------------------------------------------------\n");
2113 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2114 fprintf (file
, fmt_str
, "", " instances ", "used ");
2115 fprintf (file
, "---------------------------------------------------------\n");
2117 size
= n_basic_blocks
* sizeof (struct basic_block_def
);
2119 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks
,
2120 SCALE (size
), LABEL (size
));
2124 num_edges
+= EDGE_COUNT (bb
->succs
);
2125 size
= num_edges
* sizeof (struct edge_def
);
2127 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2129 fprintf (file
, "---------------------------------------------------------\n");
2130 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2132 fprintf (file
, "---------------------------------------------------------\n");
2133 fprintf (file
, "\n");
2135 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2136 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2138 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2139 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2141 fprintf (file
, "\n");
2145 /* Dump CFG statistics on stderr. Keep extern so that it's always
2146 linked in the final executable. */
2149 debug_cfg_stats (void)
2151 dump_cfg_stats (stderr
);
2154 /*---------------------------------------------------------------------------
2155 Miscellaneous helpers
2156 ---------------------------------------------------------------------------*/
2158 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2159 flow. Transfers of control flow associated with EH are excluded. */
2162 call_can_make_abnormal_goto (gimple t
)
2164 /* If the function has no non-local labels, then a call cannot make an
2165 abnormal transfer of control. */
2166 if (!cfun
->has_nonlocal_label
2167 && !cfun
->calls_setjmp
)
2170 /* Likewise if the call has no side effects. */
2171 if (!gimple_has_side_effects (t
))
2174 /* Likewise if the called function is leaf. */
2175 if (gimple_call_flags (t
) & ECF_LEAF
)
2182 /* Return true if T can make an abnormal transfer of control flow.
2183 Transfers of control flow associated with EH are excluded. */
2186 stmt_can_make_abnormal_goto (gimple t
)
2188 if (computed_goto_p (t
))
2190 if (is_gimple_call (t
))
2191 return call_can_make_abnormal_goto (t
);
2196 /* Return true if T represents a stmt that always transfers control. */
2199 is_ctrl_stmt (gimple t
)
2201 switch (gimple_code (t
))
2215 /* Return true if T is a statement that may alter the flow of control
2216 (e.g., a call to a non-returning function). */
2219 is_ctrl_altering_stmt (gimple t
)
2223 switch (gimple_code (t
))
2227 int flags
= gimple_call_flags (t
);
2229 /* A call alters control flow if it can make an abnormal goto. */
2230 if (call_can_make_abnormal_goto (t
))
2233 /* A call also alters control flow if it does not return. */
2234 if (flags
& ECF_NORETURN
)
2237 /* TM ending statements have backedges out of the transaction.
2238 Return true so we split the basic block containing them.
2239 Note that the TM_BUILTIN test is merely an optimization. */
2240 if ((flags
& ECF_TM_BUILTIN
)
2241 && is_tm_ending_fndecl (gimple_call_fndecl (t
)))
2244 /* BUILT_IN_RETURN call is same as return statement. */
2245 if (gimple_call_builtin_p (t
, BUILT_IN_RETURN
))
2250 case GIMPLE_EH_DISPATCH
:
2251 /* EH_DISPATCH branches to the individual catch handlers at
2252 this level of a try or allowed-exceptions region. It can
2253 fallthru to the next statement as well. */
2257 if (gimple_asm_nlabels (t
) > 0)
2262 /* OpenMP directives alter control flow. */
2265 case GIMPLE_TRANSACTION
:
2266 /* A transaction start alters control flow. */
2273 /* If a statement can throw, it alters control flow. */
2274 return stmt_can_throw_internal (t
);
2278 /* Return true if T is a simple local goto. */
2281 simple_goto_p (gimple t
)
2283 return (gimple_code (t
) == GIMPLE_GOTO
2284 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2288 /* Return true if STMT should start a new basic block. PREV_STMT is
2289 the statement preceding STMT. It is used when STMT is a label or a
2290 case label. Labels should only start a new basic block if their
2291 previous statement wasn't a label. Otherwise, sequence of labels
2292 would generate unnecessary basic blocks that only contain a single
2296 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2301 /* Labels start a new basic block only if the preceding statement
2302 wasn't a label of the same type. This prevents the creation of
2303 consecutive blocks that have nothing but a single label. */
2304 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2306 /* Nonlocal and computed GOTO targets always start a new block. */
2307 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2308 || FORCED_LABEL (gimple_label_label (stmt
)))
2311 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2313 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2316 cfg_stats
.num_merged_labels
++;
2322 else if (gimple_code (stmt
) == GIMPLE_CALL
2323 && gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2324 /* setjmp acts similar to a nonlocal GOTO target and thus should
2325 start a new block. */
2332 /* Return true if T should end a basic block. */
2335 stmt_ends_bb_p (gimple t
)
2337 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2340 /* Remove block annotations and other data structures. */
2343 delete_tree_cfg_annotations (void)
2345 vec_free (label_to_block_map
);
2349 /* Return the first statement in basic block BB. */
2352 first_stmt (basic_block bb
)
2354 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2357 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2365 /* Return the first non-label statement in basic block BB. */
2368 first_non_label_stmt (basic_block bb
)
2370 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2371 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2373 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2376 /* Return the last statement in basic block BB. */
2379 last_stmt (basic_block bb
)
2381 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2384 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2392 /* Return the last statement of an otherwise empty block. Return NULL
2393 if the block is totally empty, or if it contains more than one
2397 last_and_only_stmt (basic_block bb
)
2399 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2405 last
= gsi_stmt (i
);
2406 gsi_prev_nondebug (&i
);
2410 /* Empty statements should no longer appear in the instruction stream.
2411 Everything that might have appeared before should be deleted by
2412 remove_useless_stmts, and the optimizers should just gsi_remove
2413 instead of smashing with build_empty_stmt.
2415 Thus the only thing that should appear here in a block containing
2416 one executable statement is a label. */
2417 prev
= gsi_stmt (i
);
2418 if (gimple_code (prev
) == GIMPLE_LABEL
)
2424 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2427 reinstall_phi_args (edge new_edge
, edge old_edge
)
2429 edge_var_map_vector
*v
;
2432 gimple_stmt_iterator phis
;
2434 v
= redirect_edge_var_map_vector (old_edge
);
2438 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2439 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2440 i
++, gsi_next (&phis
))
2442 gimple phi
= gsi_stmt (phis
);
2443 tree result
= redirect_edge_var_map_result (vm
);
2444 tree arg
= redirect_edge_var_map_def (vm
);
2446 gcc_assert (result
== gimple_phi_result (phi
));
2448 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2451 redirect_edge_var_map_clear (old_edge
);
2454 /* Returns the basic block after which the new basic block created
2455 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2456 near its "logical" location. This is of most help to humans looking
2457 at debugging dumps. */
2460 split_edge_bb_loc (edge edge_in
)
2462 basic_block dest
= edge_in
->dest
;
2463 basic_block dest_prev
= dest
->prev_bb
;
2467 edge e
= find_edge (dest_prev
, dest
);
2468 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2469 return edge_in
->src
;
2474 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2475 Abort on abnormal edges. */
2478 gimple_split_edge (edge edge_in
)
2480 basic_block new_bb
, after_bb
, dest
;
2483 /* Abnormal edges cannot be split. */
2484 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2486 dest
= edge_in
->dest
;
2488 after_bb
= split_edge_bb_loc (edge_in
);
2490 new_bb
= create_empty_bb (after_bb
);
2491 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2492 new_bb
->count
= edge_in
->count
;
2493 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2494 new_edge
->probability
= REG_BR_PROB_BASE
;
2495 new_edge
->count
= edge_in
->count
;
2497 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2498 gcc_assert (e
== edge_in
);
2499 reinstall_phi_args (new_edge
, e
);
2505 /* Verify properties of the address expression T with base object BASE. */
2508 verify_address (tree t
, tree base
)
2511 bool old_side_effects
;
2513 bool new_side_effects
;
2515 old_constant
= TREE_CONSTANT (t
);
2516 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2518 recompute_tree_invariant_for_addr_expr (t
);
2519 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2520 new_constant
= TREE_CONSTANT (t
);
2522 if (old_constant
!= new_constant
)
2524 error ("constant not recomputed when ADDR_EXPR changed");
2527 if (old_side_effects
!= new_side_effects
)
2529 error ("side effects not recomputed when ADDR_EXPR changed");
2533 if (!(TREE_CODE (base
) == VAR_DECL
2534 || TREE_CODE (base
) == PARM_DECL
2535 || TREE_CODE (base
) == RESULT_DECL
))
2538 if (DECL_GIMPLE_REG_P (base
))
2540 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2547 /* Callback for walk_tree, check that all elements with address taken are
2548 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2549 inside a PHI node. */
2552 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2559 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2560 #define CHECK_OP(N, MSG) \
2561 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2562 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2564 switch (TREE_CODE (t
))
2567 if (SSA_NAME_IN_FREE_LIST (t
))
2569 error ("SSA name in freelist but still referenced");
2575 error ("INDIRECT_REF in gimple IL");
2579 x
= TREE_OPERAND (t
, 0);
2580 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2581 || !is_gimple_mem_ref_addr (x
))
2583 error ("invalid first operand of MEM_REF");
2586 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2587 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2589 error ("invalid offset operand of MEM_REF");
2590 return TREE_OPERAND (t
, 1);
2592 if (TREE_CODE (x
) == ADDR_EXPR
2593 && (x
= verify_address (x
, TREE_OPERAND (x
, 0))))
2599 x
= fold (ASSERT_EXPR_COND (t
));
2600 if (x
== boolean_false_node
)
2602 error ("ASSERT_EXPR with an always-false condition");
2608 error ("MODIFY_EXPR not expected while having tuples");
2615 gcc_assert (is_gimple_address (t
));
2617 /* Skip any references (they will be checked when we recurse down the
2618 tree) and ensure that any variable used as a prefix is marked
2620 for (x
= TREE_OPERAND (t
, 0);
2621 handled_component_p (x
);
2622 x
= TREE_OPERAND (x
, 0))
2625 if ((tem
= verify_address (t
, x
)))
2628 if (!(TREE_CODE (x
) == VAR_DECL
2629 || TREE_CODE (x
) == PARM_DECL
2630 || TREE_CODE (x
) == RESULT_DECL
))
2633 if (!TREE_ADDRESSABLE (x
))
2635 error ("address taken, but ADDRESSABLE bit not set");
2643 x
= COND_EXPR_COND (t
);
2644 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2646 error ("non-integral used in condition");
2649 if (!is_gimple_condexpr (x
))
2651 error ("invalid conditional operand");
2656 case NON_LVALUE_EXPR
:
2657 case TRUTH_NOT_EXPR
:
2661 case FIX_TRUNC_EXPR
:
2666 CHECK_OP (0, "invalid operand to unary operator");
2672 if (!is_gimple_reg_type (TREE_TYPE (t
)))
2674 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2678 if (TREE_CODE (t
) == BIT_FIELD_REF
)
2680 if (!host_integerp (TREE_OPERAND (t
, 1), 1)
2681 || !host_integerp (TREE_OPERAND (t
, 2), 1))
2683 error ("invalid position or size operand to BIT_FIELD_REF");
2686 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2687 && (TYPE_PRECISION (TREE_TYPE (t
))
2688 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2690 error ("integral result type precision does not match "
2691 "field size of BIT_FIELD_REF");
2694 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2695 && TYPE_MODE (TREE_TYPE (t
)) != BLKmode
2696 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2697 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2699 error ("mode precision of non-integral result does not "
2700 "match field size of BIT_FIELD_REF");
2704 t
= TREE_OPERAND (t
, 0);
2709 case ARRAY_RANGE_REF
:
2710 case VIEW_CONVERT_EXPR
:
2711 /* We have a nest of references. Verify that each of the operands
2712 that determine where to reference is either a constant or a variable,
2713 verify that the base is valid, and then show we've already checked
2715 while (handled_component_p (t
))
2717 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2718 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2719 else if (TREE_CODE (t
) == ARRAY_REF
2720 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2722 CHECK_OP (1, "invalid array index");
2723 if (TREE_OPERAND (t
, 2))
2724 CHECK_OP (2, "invalid array lower bound");
2725 if (TREE_OPERAND (t
, 3))
2726 CHECK_OP (3, "invalid array stride");
2728 else if (TREE_CODE (t
) == BIT_FIELD_REF
2729 || TREE_CODE (t
) == REALPART_EXPR
2730 || TREE_CODE (t
) == IMAGPART_EXPR
)
2732 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2737 t
= TREE_OPERAND (t
, 0);
2740 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
2742 error ("invalid reference prefix");
2749 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2750 POINTER_PLUS_EXPR. */
2751 if (POINTER_TYPE_P (TREE_TYPE (t
)))
2753 error ("invalid operand to plus/minus, type is a pointer");
2756 CHECK_OP (0, "invalid operand to binary operator");
2757 CHECK_OP (1, "invalid operand to binary operator");
2760 case POINTER_PLUS_EXPR
:
2761 /* Check to make sure the first operand is a pointer or reference type. */
2762 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
2764 error ("invalid operand to pointer plus, first operand is not a pointer");
2767 /* Check to make sure the second operand is a ptrofftype. */
2768 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t
, 1))))
2770 error ("invalid operand to pointer plus, second operand is not an "
2771 "integer type of appropriate width");
2781 case UNORDERED_EXPR
:
2790 case TRUNC_DIV_EXPR
:
2792 case FLOOR_DIV_EXPR
:
2793 case ROUND_DIV_EXPR
:
2794 case TRUNC_MOD_EXPR
:
2796 case FLOOR_MOD_EXPR
:
2797 case ROUND_MOD_EXPR
:
2799 case EXACT_DIV_EXPR
:
2809 CHECK_OP (0, "invalid operand to binary operator");
2810 CHECK_OP (1, "invalid operand to binary operator");
2814 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2818 case CASE_LABEL_EXPR
:
2821 error ("invalid CASE_CHAIN");
2835 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2836 Returns true if there is an error, otherwise false. */
2839 verify_types_in_gimple_min_lval (tree expr
)
2843 if (is_gimple_id (expr
))
2846 if (TREE_CODE (expr
) != TARGET_MEM_REF
2847 && TREE_CODE (expr
) != MEM_REF
)
2849 error ("invalid expression for min lvalue");
2853 /* TARGET_MEM_REFs are strange beasts. */
2854 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2857 op
= TREE_OPERAND (expr
, 0);
2858 if (!is_gimple_val (op
))
2860 error ("invalid operand in indirect reference");
2861 debug_generic_stmt (op
);
2864 /* Memory references now generally can involve a value conversion. */
2869 /* Verify if EXPR is a valid GIMPLE reference expression. If
2870 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2871 if there is an error, otherwise false. */
2874 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
2876 while (handled_component_p (expr
))
2878 tree op
= TREE_OPERAND (expr
, 0);
2880 if (TREE_CODE (expr
) == ARRAY_REF
2881 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
2883 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
2884 || (TREE_OPERAND (expr
, 2)
2885 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
2886 || (TREE_OPERAND (expr
, 3)
2887 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
2889 error ("invalid operands to array reference");
2890 debug_generic_stmt (expr
);
2895 /* Verify if the reference array element types are compatible. */
2896 if (TREE_CODE (expr
) == ARRAY_REF
2897 && !useless_type_conversion_p (TREE_TYPE (expr
),
2898 TREE_TYPE (TREE_TYPE (op
))))
2900 error ("type mismatch in array reference");
2901 debug_generic_stmt (TREE_TYPE (expr
));
2902 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2905 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
2906 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
2907 TREE_TYPE (TREE_TYPE (op
))))
2909 error ("type mismatch in array range reference");
2910 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
2911 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2915 if ((TREE_CODE (expr
) == REALPART_EXPR
2916 || TREE_CODE (expr
) == IMAGPART_EXPR
)
2917 && !useless_type_conversion_p (TREE_TYPE (expr
),
2918 TREE_TYPE (TREE_TYPE (op
))))
2920 error ("type mismatch in real/imagpart reference");
2921 debug_generic_stmt (TREE_TYPE (expr
));
2922 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2926 if (TREE_CODE (expr
) == COMPONENT_REF
2927 && !useless_type_conversion_p (TREE_TYPE (expr
),
2928 TREE_TYPE (TREE_OPERAND (expr
, 1))))
2930 error ("type mismatch in component reference");
2931 debug_generic_stmt (TREE_TYPE (expr
));
2932 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
2936 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
2938 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2939 that their operand is not an SSA name or an invariant when
2940 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2941 bug). Otherwise there is nothing to verify, gross mismatches at
2942 most invoke undefined behavior. */
2944 && (TREE_CODE (op
) == SSA_NAME
2945 || is_gimple_min_invariant (op
)))
2947 error ("conversion of an SSA_NAME on the left hand side");
2948 debug_generic_stmt (expr
);
2951 else if (TREE_CODE (op
) == SSA_NAME
2952 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
2954 error ("conversion of register to a different size");
2955 debug_generic_stmt (expr
);
2958 else if (!handled_component_p (op
))
2965 if (TREE_CODE (expr
) == MEM_REF
)
2967 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
2969 error ("invalid address operand in MEM_REF");
2970 debug_generic_stmt (expr
);
2973 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
2974 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
2976 error ("invalid offset operand in MEM_REF");
2977 debug_generic_stmt (expr
);
2981 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2983 if (!TMR_BASE (expr
)
2984 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
2986 error ("invalid address operand in TARGET_MEM_REF");
2989 if (!TMR_OFFSET (expr
)
2990 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
2991 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
2993 error ("invalid offset operand in TARGET_MEM_REF");
2994 debug_generic_stmt (expr
);
2999 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3000 && verify_types_in_gimple_min_lval (expr
));
3003 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3004 list of pointer-to types that is trivially convertible to DEST. */
3007 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3011 if (!TYPE_POINTER_TO (src_obj
))
3014 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3015 if (useless_type_conversion_p (dest
, src
))
3021 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3022 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3025 valid_fixed_convert_types_p (tree type1
, tree type2
)
3027 return (FIXED_POINT_TYPE_P (type1
)
3028 && (INTEGRAL_TYPE_P (type2
)
3029 || SCALAR_FLOAT_TYPE_P (type2
)
3030 || FIXED_POINT_TYPE_P (type2
)));
3033 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3034 is a problem, otherwise false. */
3037 verify_gimple_call (gimple stmt
)
3039 tree fn
= gimple_call_fn (stmt
);
3040 tree fntype
, fndecl
;
3043 if (gimple_call_internal_p (stmt
))
3047 error ("gimple call has two targets");
3048 debug_generic_stmt (fn
);
3056 error ("gimple call has no target");
3061 if (fn
&& !is_gimple_call_addr (fn
))
3063 error ("invalid function in gimple call");
3064 debug_generic_stmt (fn
);
3069 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3070 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3071 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3073 error ("non-function in gimple call");
3077 fndecl
= gimple_call_fndecl (stmt
);
3079 && TREE_CODE (fndecl
) == FUNCTION_DECL
3080 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3081 && !DECL_PURE_P (fndecl
)
3082 && !TREE_READONLY (fndecl
))
3084 error ("invalid pure const state for function");
3088 if (gimple_call_lhs (stmt
)
3089 && (!is_gimple_lvalue (gimple_call_lhs (stmt
))
3090 || verify_types_in_gimple_reference (gimple_call_lhs (stmt
), true)))
3092 error ("invalid LHS in gimple call");
3096 if (gimple_call_lhs (stmt
) && gimple_call_noreturn_p (stmt
))
3098 error ("LHS in noreturn call");
3102 fntype
= gimple_call_fntype (stmt
);
3104 && gimple_call_lhs (stmt
)
3105 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3107 /* ??? At least C++ misses conversions at assignments from
3108 void * call results.
3109 ??? Java is completely off. Especially with functions
3110 returning java.lang.Object.
3111 For now simply allow arbitrary pointer type conversions. */
3112 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3113 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3115 error ("invalid conversion in gimple call");
3116 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3117 debug_generic_stmt (TREE_TYPE (fntype
));
3121 if (gimple_call_chain (stmt
)
3122 && !is_gimple_val (gimple_call_chain (stmt
)))
3124 error ("invalid static chain in gimple call");
3125 debug_generic_stmt (gimple_call_chain (stmt
));
3129 /* If there is a static chain argument, this should not be an indirect
3130 call, and the decl should have DECL_STATIC_CHAIN set. */
3131 if (gimple_call_chain (stmt
))
3133 if (!gimple_call_fndecl (stmt
))
3135 error ("static chain in indirect gimple call");
3138 fn
= TREE_OPERAND (fn
, 0);
3140 if (!DECL_STATIC_CHAIN (fn
))
3142 error ("static chain with function that doesn%'t use one");
3147 /* ??? The C frontend passes unpromoted arguments in case it
3148 didn't see a function declaration before the call. So for now
3149 leave the call arguments mostly unverified. Once we gimplify
3150 unit-at-a-time we have a chance to fix this. */
3152 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3154 tree arg
= gimple_call_arg (stmt
, i
);
3155 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3156 && !is_gimple_val (arg
))
3157 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3158 && !is_gimple_lvalue (arg
)))
3160 error ("invalid argument to gimple call");
3161 debug_generic_expr (arg
);
3169 /* Verifies the gimple comparison with the result type TYPE and
3170 the operands OP0 and OP1. */
3173 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3175 tree op0_type
= TREE_TYPE (op0
);
3176 tree op1_type
= TREE_TYPE (op1
);
3178 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3180 error ("invalid operands in gimple comparison");
3184 /* For comparisons we do not have the operations type as the
3185 effective type the comparison is carried out in. Instead
3186 we require that either the first operand is trivially
3187 convertible into the second, or the other way around.
3188 Because we special-case pointers to void we allow
3189 comparisons of pointers with the same mode as well. */
3190 if (!useless_type_conversion_p (op0_type
, op1_type
)
3191 && !useless_type_conversion_p (op1_type
, op0_type
)
3192 && (!POINTER_TYPE_P (op0_type
)
3193 || !POINTER_TYPE_P (op1_type
)
3194 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3196 error ("mismatching comparison operand types");
3197 debug_generic_expr (op0_type
);
3198 debug_generic_expr (op1_type
);
3202 /* The resulting type of a comparison may be an effective boolean type. */
3203 if (INTEGRAL_TYPE_P (type
)
3204 && (TREE_CODE (type
) == BOOLEAN_TYPE
3205 || TYPE_PRECISION (type
) == 1))
3207 if (TREE_CODE (op0_type
) == VECTOR_TYPE
3208 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3210 error ("vector comparison returning a boolean");
3211 debug_generic_expr (op0_type
);
3212 debug_generic_expr (op1_type
);
3216 /* Or an integer vector type with the same size and element count
3217 as the comparison operand types. */
3218 else if (TREE_CODE (type
) == VECTOR_TYPE
3219 && TREE_CODE (TREE_TYPE (type
)) == INTEGER_TYPE
)
3221 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3222 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3224 error ("non-vector operands in vector comparison");
3225 debug_generic_expr (op0_type
);
3226 debug_generic_expr (op1_type
);
3230 if (TYPE_VECTOR_SUBPARTS (type
) != TYPE_VECTOR_SUBPARTS (op0_type
)
3231 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type
)))
3232 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type
))))
3233 /* The result of a vector comparison is of signed
3235 || TYPE_UNSIGNED (TREE_TYPE (type
)))
3237 error ("invalid vector comparison resulting type");
3238 debug_generic_expr (type
);
3244 error ("bogus comparison result type");
3245 debug_generic_expr (type
);
3252 /* Verify a gimple assignment statement STMT with an unary rhs.
3253 Returns true if anything is wrong. */
3256 verify_gimple_assign_unary (gimple stmt
)
3258 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3259 tree lhs
= gimple_assign_lhs (stmt
);
3260 tree lhs_type
= TREE_TYPE (lhs
);
3261 tree rhs1
= gimple_assign_rhs1 (stmt
);
3262 tree rhs1_type
= TREE_TYPE (rhs1
);
3264 if (!is_gimple_reg (lhs
))
3266 error ("non-register as LHS of unary operation");
3270 if (!is_gimple_val (rhs1
))
3272 error ("invalid operand in unary operation");
3276 /* First handle conversions. */
3281 /* Allow conversions from pointer type to integral type only if
3282 there is no sign or zero extension involved.
3283 For targets were the precision of ptrofftype doesn't match that
3284 of pointers we need to allow arbitrary conversions to ptrofftype. */
3285 if ((POINTER_TYPE_P (lhs_type
)
3286 && INTEGRAL_TYPE_P (rhs1_type
))
3287 || (POINTER_TYPE_P (rhs1_type
)
3288 && INTEGRAL_TYPE_P (lhs_type
)
3289 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3290 || ptrofftype_p (sizetype
))))
3293 /* Allow conversion from integral to offset type and vice versa. */
3294 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3295 && INTEGRAL_TYPE_P (rhs1_type
))
3296 || (INTEGRAL_TYPE_P (lhs_type
)
3297 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3300 /* Otherwise assert we are converting between types of the
3302 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3304 error ("invalid types in nop conversion");
3305 debug_generic_expr (lhs_type
);
3306 debug_generic_expr (rhs1_type
);
3313 case ADDR_SPACE_CONVERT_EXPR
:
3315 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3316 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3317 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3319 error ("invalid types in address space conversion");
3320 debug_generic_expr (lhs_type
);
3321 debug_generic_expr (rhs1_type
);
3328 case FIXED_CONVERT_EXPR
:
3330 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3331 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3333 error ("invalid types in fixed-point conversion");
3334 debug_generic_expr (lhs_type
);
3335 debug_generic_expr (rhs1_type
);
3344 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3345 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3346 || !VECTOR_FLOAT_TYPE_P(lhs_type
)))
3348 error ("invalid types in conversion to floating point");
3349 debug_generic_expr (lhs_type
);
3350 debug_generic_expr (rhs1_type
);
3357 case FIX_TRUNC_EXPR
:
3359 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3360 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3361 || !VECTOR_FLOAT_TYPE_P(rhs1_type
)))
3363 error ("invalid types in conversion to integer");
3364 debug_generic_expr (lhs_type
);
3365 debug_generic_expr (rhs1_type
);
3372 case VEC_UNPACK_HI_EXPR
:
3373 case VEC_UNPACK_LO_EXPR
:
3374 case REDUC_MAX_EXPR
:
3375 case REDUC_MIN_EXPR
:
3376 case REDUC_PLUS_EXPR
:
3377 case VEC_UNPACK_FLOAT_HI_EXPR
:
3378 case VEC_UNPACK_FLOAT_LO_EXPR
:
3386 case NON_LVALUE_EXPR
:
3394 /* For the remaining codes assert there is no conversion involved. */
3395 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3397 error ("non-trivial conversion in unary operation");
3398 debug_generic_expr (lhs_type
);
3399 debug_generic_expr (rhs1_type
);
3406 /* Verify a gimple assignment statement STMT with a binary rhs.
3407 Returns true if anything is wrong. */
3410 verify_gimple_assign_binary (gimple stmt
)
3412 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3413 tree lhs
= gimple_assign_lhs (stmt
);
3414 tree lhs_type
= TREE_TYPE (lhs
);
3415 tree rhs1
= gimple_assign_rhs1 (stmt
);
3416 tree rhs1_type
= TREE_TYPE (rhs1
);
3417 tree rhs2
= gimple_assign_rhs2 (stmt
);
3418 tree rhs2_type
= TREE_TYPE (rhs2
);
3420 if (!is_gimple_reg (lhs
))
3422 error ("non-register as LHS of binary operation");
3426 if (!is_gimple_val (rhs1
)
3427 || !is_gimple_val (rhs2
))
3429 error ("invalid operands in binary operation");
3433 /* First handle operations that involve different types. */
3438 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3439 || !(INTEGRAL_TYPE_P (rhs1_type
)
3440 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3441 || !(INTEGRAL_TYPE_P (rhs2_type
)
3442 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3444 error ("type mismatch in complex expression");
3445 debug_generic_expr (lhs_type
);
3446 debug_generic_expr (rhs1_type
);
3447 debug_generic_expr (rhs2_type
);
3459 /* Shifts and rotates are ok on integral types, fixed point
3460 types and integer vector types. */
3461 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3462 && !FIXED_POINT_TYPE_P (rhs1_type
)
3463 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3464 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3465 || (!INTEGRAL_TYPE_P (rhs2_type
)
3466 /* Vector shifts of vectors are also ok. */
3467 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3468 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3469 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3470 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3471 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3473 error ("type mismatch in shift expression");
3474 debug_generic_expr (lhs_type
);
3475 debug_generic_expr (rhs1_type
);
3476 debug_generic_expr (rhs2_type
);
3483 case VEC_LSHIFT_EXPR
:
3484 case VEC_RSHIFT_EXPR
:
3486 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3487 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3488 || POINTER_TYPE_P (TREE_TYPE (rhs1_type
))
3489 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
))
3490 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3491 || (!INTEGRAL_TYPE_P (rhs2_type
)
3492 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3493 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3494 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3496 error ("type mismatch in vector shift expression");
3497 debug_generic_expr (lhs_type
);
3498 debug_generic_expr (rhs1_type
);
3499 debug_generic_expr (rhs2_type
);
3502 /* For shifting a vector of non-integral components we
3503 only allow shifting by a constant multiple of the element size. */
3504 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3505 && (TREE_CODE (rhs2
) != INTEGER_CST
3506 || !div_if_zero_remainder (EXACT_DIV_EXPR
, rhs2
,
3507 TYPE_SIZE (TREE_TYPE (rhs1_type
)))))
3509 error ("non-element sized vector shift of floating point vector");
3516 case WIDEN_LSHIFT_EXPR
:
3518 if (!INTEGRAL_TYPE_P (lhs_type
)
3519 || !INTEGRAL_TYPE_P (rhs1_type
)
3520 || TREE_CODE (rhs2
) != INTEGER_CST
3521 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3523 error ("type mismatch in widening vector shift expression");
3524 debug_generic_expr (lhs_type
);
3525 debug_generic_expr (rhs1_type
);
3526 debug_generic_expr (rhs2_type
);
3533 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3534 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3536 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3537 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3538 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3539 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3540 || TREE_CODE (rhs2
) != INTEGER_CST
3541 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3542 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3544 error ("type mismatch in widening vector shift expression");
3545 debug_generic_expr (lhs_type
);
3546 debug_generic_expr (rhs1_type
);
3547 debug_generic_expr (rhs2_type
);
3557 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3558 ??? This just makes the checker happy and may not be what is
3560 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
3561 && POINTER_TYPE_P (TREE_TYPE (lhs_type
)))
3563 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3564 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3566 error ("invalid non-vector operands to vector valued plus");
3569 lhs_type
= TREE_TYPE (lhs_type
);
3570 rhs1_type
= TREE_TYPE (rhs1_type
);
3571 rhs2_type
= TREE_TYPE (rhs2_type
);
3572 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3573 the pointer to 2nd place. */
3574 if (POINTER_TYPE_P (rhs2_type
))
3576 tree tem
= rhs1_type
;
3577 rhs1_type
= rhs2_type
;
3580 goto do_pointer_plus_expr_check
;
3582 if (POINTER_TYPE_P (lhs_type
)
3583 || POINTER_TYPE_P (rhs1_type
)
3584 || POINTER_TYPE_P (rhs2_type
))
3586 error ("invalid (pointer) operands to plus/minus");
3590 /* Continue with generic binary expression handling. */
3594 case POINTER_PLUS_EXPR
:
3596 do_pointer_plus_expr_check
:
3597 if (!POINTER_TYPE_P (rhs1_type
)
3598 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3599 || !ptrofftype_p (rhs2_type
))
3601 error ("type mismatch in pointer plus expression");
3602 debug_generic_stmt (lhs_type
);
3603 debug_generic_stmt (rhs1_type
);
3604 debug_generic_stmt (rhs2_type
);
3611 case TRUTH_ANDIF_EXPR
:
3612 case TRUTH_ORIF_EXPR
:
3613 case TRUTH_AND_EXPR
:
3615 case TRUTH_XOR_EXPR
:
3625 case UNORDERED_EXPR
:
3633 /* Comparisons are also binary, but the result type is not
3634 connected to the operand types. */
3635 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3637 case WIDEN_MULT_EXPR
:
3638 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3640 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3641 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3643 case WIDEN_SUM_EXPR
:
3644 case VEC_WIDEN_MULT_HI_EXPR
:
3645 case VEC_WIDEN_MULT_LO_EXPR
:
3646 case VEC_WIDEN_MULT_EVEN_EXPR
:
3647 case VEC_WIDEN_MULT_ODD_EXPR
:
3648 case VEC_PACK_TRUNC_EXPR
:
3649 case VEC_PACK_SAT_EXPR
:
3650 case VEC_PACK_FIX_TRUNC_EXPR
:
3655 case MULT_HIGHPART_EXPR
:
3656 case TRUNC_DIV_EXPR
:
3658 case FLOOR_DIV_EXPR
:
3659 case ROUND_DIV_EXPR
:
3660 case TRUNC_MOD_EXPR
:
3662 case FLOOR_MOD_EXPR
:
3663 case ROUND_MOD_EXPR
:
3665 case EXACT_DIV_EXPR
:
3671 /* Continue with generic binary expression handling. */
3678 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3679 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3681 error ("type mismatch in binary expression");
3682 debug_generic_stmt (lhs_type
);
3683 debug_generic_stmt (rhs1_type
);
3684 debug_generic_stmt (rhs2_type
);
3691 /* Verify a gimple assignment statement STMT with a ternary rhs.
3692 Returns true if anything is wrong. */
3695 verify_gimple_assign_ternary (gimple stmt
)
3697 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3698 tree lhs
= gimple_assign_lhs (stmt
);
3699 tree lhs_type
= TREE_TYPE (lhs
);
3700 tree rhs1
= gimple_assign_rhs1 (stmt
);
3701 tree rhs1_type
= TREE_TYPE (rhs1
);
3702 tree rhs2
= gimple_assign_rhs2 (stmt
);
3703 tree rhs2_type
= TREE_TYPE (rhs2
);
3704 tree rhs3
= gimple_assign_rhs3 (stmt
);
3705 tree rhs3_type
= TREE_TYPE (rhs3
);
3707 if (!is_gimple_reg (lhs
))
3709 error ("non-register as LHS of ternary operation");
3713 if (((rhs_code
== VEC_COND_EXPR
|| rhs_code
== COND_EXPR
)
3714 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
3715 || !is_gimple_val (rhs2
)
3716 || !is_gimple_val (rhs3
))
3718 error ("invalid operands in ternary operation");
3722 /* First handle operations that involve different types. */
3725 case WIDEN_MULT_PLUS_EXPR
:
3726 case WIDEN_MULT_MINUS_EXPR
:
3727 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3728 && !FIXED_POINT_TYPE_P (rhs1_type
))
3729 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
3730 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
3731 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
3732 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
3734 error ("type mismatch in widening multiply-accumulate expression");
3735 debug_generic_expr (lhs_type
);
3736 debug_generic_expr (rhs1_type
);
3737 debug_generic_expr (rhs2_type
);
3738 debug_generic_expr (rhs3_type
);
3744 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3745 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3746 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3748 error ("type mismatch in fused multiply-add expression");
3749 debug_generic_expr (lhs_type
);
3750 debug_generic_expr (rhs1_type
);
3751 debug_generic_expr (rhs2_type
);
3752 debug_generic_expr (rhs3_type
);
3759 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
3760 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3762 error ("type mismatch in conditional expression");
3763 debug_generic_expr (lhs_type
);
3764 debug_generic_expr (rhs2_type
);
3765 debug_generic_expr (rhs3_type
);
3771 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3772 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3774 error ("type mismatch in vector permute expression");
3775 debug_generic_expr (lhs_type
);
3776 debug_generic_expr (rhs1_type
);
3777 debug_generic_expr (rhs2_type
);
3778 debug_generic_expr (rhs3_type
);
3782 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3783 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
3784 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
3786 error ("vector types expected in vector permute expression");
3787 debug_generic_expr (lhs_type
);
3788 debug_generic_expr (rhs1_type
);
3789 debug_generic_expr (rhs2_type
);
3790 debug_generic_expr (rhs3_type
);
3794 if (TYPE_VECTOR_SUBPARTS (rhs1_type
) != TYPE_VECTOR_SUBPARTS (rhs2_type
)
3795 || TYPE_VECTOR_SUBPARTS (rhs2_type
)
3796 != TYPE_VECTOR_SUBPARTS (rhs3_type
)
3797 || TYPE_VECTOR_SUBPARTS (rhs3_type
)
3798 != TYPE_VECTOR_SUBPARTS (lhs_type
))
3800 error ("vectors with different element number found "
3801 "in vector permute expression");
3802 debug_generic_expr (lhs_type
);
3803 debug_generic_expr (rhs1_type
);
3804 debug_generic_expr (rhs2_type
);
3805 debug_generic_expr (rhs3_type
);
3809 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
3810 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type
)))
3811 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
))))
3813 error ("invalid mask type in vector permute expression");
3814 debug_generic_expr (lhs_type
);
3815 debug_generic_expr (rhs1_type
);
3816 debug_generic_expr (rhs2_type
);
3817 debug_generic_expr (rhs3_type
);
3824 case REALIGN_LOAD_EXPR
:
3834 /* Verify a gimple assignment statement STMT with a single rhs.
3835 Returns true if anything is wrong. */
3838 verify_gimple_assign_single (gimple stmt
)
3840 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3841 tree lhs
= gimple_assign_lhs (stmt
);
3842 tree lhs_type
= TREE_TYPE (lhs
);
3843 tree rhs1
= gimple_assign_rhs1 (stmt
);
3844 tree rhs1_type
= TREE_TYPE (rhs1
);
3847 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3849 error ("non-trivial conversion at assignment");
3850 debug_generic_expr (lhs_type
);
3851 debug_generic_expr (rhs1_type
);
3855 if (gimple_clobber_p (stmt
)
3856 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
3858 error ("non-decl/MEM_REF LHS in clobber statement");
3859 debug_generic_expr (lhs
);
3863 if (handled_component_p (lhs
))
3864 res
|= verify_types_in_gimple_reference (lhs
, true);
3866 /* Special codes we cannot handle via their class. */
3871 tree op
= TREE_OPERAND (rhs1
, 0);
3872 if (!is_gimple_addressable (op
))
3874 error ("invalid operand in unary expression");
3878 /* Technically there is no longer a need for matching types, but
3879 gimple hygiene asks for this check. In LTO we can end up
3880 combining incompatible units and thus end up with addresses
3881 of globals that change their type to a common one. */
3883 && !types_compatible_p (TREE_TYPE (op
),
3884 TREE_TYPE (TREE_TYPE (rhs1
)))
3885 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
3888 error ("type mismatch in address expression");
3889 debug_generic_stmt (TREE_TYPE (rhs1
));
3890 debug_generic_stmt (TREE_TYPE (op
));
3894 return verify_types_in_gimple_reference (op
, true);
3899 error ("INDIRECT_REF in gimple IL");
3905 case ARRAY_RANGE_REF
:
3906 case VIEW_CONVERT_EXPR
:
3909 case TARGET_MEM_REF
:
3911 if (!is_gimple_reg (lhs
)
3912 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3914 error ("invalid rhs for gimple memory store");
3915 debug_generic_stmt (lhs
);
3916 debug_generic_stmt (rhs1
);
3919 return res
|| verify_types_in_gimple_reference (rhs1
, false);
3931 /* tcc_declaration */
3936 if (!is_gimple_reg (lhs
)
3937 && !is_gimple_reg (rhs1
)
3938 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3940 error ("invalid rhs for gimple memory store");
3941 debug_generic_stmt (lhs
);
3942 debug_generic_stmt (rhs1
);
3948 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
3951 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
3953 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
3955 /* For vector CONSTRUCTORs we require that either it is empty
3956 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3957 (then the element count must be correct to cover the whole
3958 outer vector and index must be NULL on all elements, or it is
3959 a CONSTRUCTOR of scalar elements, where we as an exception allow
3960 smaller number of elements (assuming zero filling) and
3961 consecutive indexes as compared to NULL indexes (such
3962 CONSTRUCTORs can appear in the IL from FEs). */
3963 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
3965 if (elt_t
== NULL_TREE
)
3967 elt_t
= TREE_TYPE (elt_v
);
3968 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
3970 tree elt_t
= TREE_TYPE (elt_v
);
3971 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
3974 error ("incorrect type of vector CONSTRUCTOR"
3976 debug_generic_stmt (rhs1
);
3979 else if (CONSTRUCTOR_NELTS (rhs1
)
3980 * TYPE_VECTOR_SUBPARTS (elt_t
)
3981 != TYPE_VECTOR_SUBPARTS (rhs1_type
))
3983 error ("incorrect number of vector CONSTRUCTOR"
3985 debug_generic_stmt (rhs1
);
3989 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
3992 error ("incorrect type of vector CONSTRUCTOR elements");
3993 debug_generic_stmt (rhs1
);
3996 else if (CONSTRUCTOR_NELTS (rhs1
)
3997 > TYPE_VECTOR_SUBPARTS (rhs1_type
))
3999 error ("incorrect number of vector CONSTRUCTOR elements");
4000 debug_generic_stmt (rhs1
);
4004 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4006 error ("incorrect type of vector CONSTRUCTOR elements");
4007 debug_generic_stmt (rhs1
);
4010 if (elt_i
!= NULL_TREE
4011 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4012 || TREE_CODE (elt_i
) != INTEGER_CST
4013 || compare_tree_int (elt_i
, i
) != 0))
4015 error ("vector CONSTRUCTOR with non-NULL element index");
4016 debug_generic_stmt (rhs1
);
4024 case WITH_SIZE_EXPR
:
4034 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4035 is a problem, otherwise false. */
4038 verify_gimple_assign (gimple stmt
)
4040 switch (gimple_assign_rhs_class (stmt
))
4042 case GIMPLE_SINGLE_RHS
:
4043 return verify_gimple_assign_single (stmt
);
4045 case GIMPLE_UNARY_RHS
:
4046 return verify_gimple_assign_unary (stmt
);
4048 case GIMPLE_BINARY_RHS
:
4049 return verify_gimple_assign_binary (stmt
);
4051 case GIMPLE_TERNARY_RHS
:
4052 return verify_gimple_assign_ternary (stmt
);
4059 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4060 is a problem, otherwise false. */
4063 verify_gimple_return (gimple stmt
)
4065 tree op
= gimple_return_retval (stmt
);
4066 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4068 /* We cannot test for present return values as we do not fix up missing
4069 return values from the original source. */
4073 if (!is_gimple_val (op
)
4074 && TREE_CODE (op
) != RESULT_DECL
)
4076 error ("invalid operand in return statement");
4077 debug_generic_stmt (op
);
4081 if ((TREE_CODE (op
) == RESULT_DECL
4082 && DECL_BY_REFERENCE (op
))
4083 || (TREE_CODE (op
) == SSA_NAME
4084 && SSA_NAME_VAR (op
)
4085 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4086 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4087 op
= TREE_TYPE (op
);
4089 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4091 error ("invalid conversion in return statement");
4092 debug_generic_stmt (restype
);
4093 debug_generic_stmt (TREE_TYPE (op
));
4101 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4102 is a problem, otherwise false. */
4105 verify_gimple_goto (gimple stmt
)
4107 tree dest
= gimple_goto_dest (stmt
);
4109 /* ??? We have two canonical forms of direct goto destinations, a
4110 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4111 if (TREE_CODE (dest
) != LABEL_DECL
4112 && (!is_gimple_val (dest
)
4113 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4115 error ("goto destination is neither a label nor a pointer");
4122 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4123 is a problem, otherwise false. */
4126 verify_gimple_switch (gimple stmt
)
4129 tree elt
, prev_upper_bound
= NULL_TREE
;
4130 tree index_type
, elt_type
= NULL_TREE
;
4132 if (!is_gimple_val (gimple_switch_index (stmt
)))
4134 error ("invalid operand to switch statement");
4135 debug_generic_stmt (gimple_switch_index (stmt
));
4139 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4140 if (! INTEGRAL_TYPE_P (index_type
))
4142 error ("non-integral type switch statement");
4143 debug_generic_expr (index_type
);
4147 elt
= gimple_switch_label (stmt
, 0);
4148 if (CASE_LOW (elt
) != NULL_TREE
|| CASE_HIGH (elt
) != NULL_TREE
)
4150 error ("invalid default case label in switch statement");
4151 debug_generic_expr (elt
);
4155 n
= gimple_switch_num_labels (stmt
);
4156 for (i
= 1; i
< n
; i
++)
4158 elt
= gimple_switch_label (stmt
, i
);
4160 if (! CASE_LOW (elt
))
4162 error ("invalid case label in switch statement");
4163 debug_generic_expr (elt
);
4167 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4169 error ("invalid case range in switch statement");
4170 debug_generic_expr (elt
);
4176 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4177 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4179 error ("type mismatch for case label in switch statement");
4180 debug_generic_expr (elt
);
4186 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4187 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4189 error ("type precision mismatch in switch statement");
4194 if (prev_upper_bound
)
4196 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4198 error ("case labels not sorted in switch statement");
4203 prev_upper_bound
= CASE_HIGH (elt
);
4204 if (! prev_upper_bound
)
4205 prev_upper_bound
= CASE_LOW (elt
);
4211 /* Verify a gimple debug statement STMT.
4212 Returns true if anything is wrong. */
4215 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED
)
4217 /* There isn't much that could be wrong in a gimple debug stmt. A
4218 gimple debug bind stmt, for example, maps a tree, that's usually
4219 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4220 component or member of an aggregate type, to another tree, that
4221 can be an arbitrary expression. These stmts expand into debug
4222 insns, and are converted to debug notes by var-tracking.c. */
4226 /* Verify a gimple label statement STMT.
4227 Returns true if anything is wrong. */
4230 verify_gimple_label (gimple stmt
)
4232 tree decl
= gimple_label_label (stmt
);
4236 if (TREE_CODE (decl
) != LABEL_DECL
)
4239 uid
= LABEL_DECL_UID (decl
);
4241 && (uid
== -1 || (*label_to_block_map
)[uid
] != gimple_bb (stmt
)))
4243 error ("incorrect entry in label_to_block_map");
4247 uid
= EH_LANDING_PAD_NR (decl
);
4250 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4251 if (decl
!= lp
->post_landing_pad
)
4253 error ("incorrect setting of landing pad number");
4261 /* Verify the GIMPLE statement STMT. Returns true if there is an
4262 error, otherwise false. */
4265 verify_gimple_stmt (gimple stmt
)
4267 switch (gimple_code (stmt
))
4270 return verify_gimple_assign (stmt
);
4273 return verify_gimple_label (stmt
);
4276 return verify_gimple_call (stmt
);
4279 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4281 error ("invalid comparison code in gimple cond");
4284 if (!(!gimple_cond_true_label (stmt
)
4285 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4286 || !(!gimple_cond_false_label (stmt
)
4287 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4289 error ("invalid labels in gimple cond");
4293 return verify_gimple_comparison (boolean_type_node
,
4294 gimple_cond_lhs (stmt
),
4295 gimple_cond_rhs (stmt
));
4298 return verify_gimple_goto (stmt
);
4301 return verify_gimple_switch (stmt
);
4304 return verify_gimple_return (stmt
);
4309 case GIMPLE_TRANSACTION
:
4310 return verify_gimple_transaction (stmt
);
4312 /* Tuples that do not have tree operands. */
4314 case GIMPLE_PREDICT
:
4316 case GIMPLE_EH_DISPATCH
:
4317 case GIMPLE_EH_MUST_NOT_THROW
:
4321 /* OpenMP directives are validated by the FE and never operated
4322 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4323 non-gimple expressions when the main index variable has had
4324 its address taken. This does not affect the loop itself
4325 because the header of an GIMPLE_OMP_FOR is merely used to determine
4326 how to setup the parallel iteration. */
4330 return verify_gimple_debug (stmt
);
4337 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4338 and false otherwise. */
4341 verify_gimple_phi (gimple phi
)
4345 tree phi_result
= gimple_phi_result (phi
);
4350 error ("invalid PHI result");
4354 virtual_p
= virtual_operand_p (phi_result
);
4355 if (TREE_CODE (phi_result
) != SSA_NAME
4357 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4359 error ("invalid PHI result");
4363 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4365 tree t
= gimple_phi_arg_def (phi
, i
);
4369 error ("missing PHI def");
4373 /* Addressable variables do have SSA_NAMEs but they
4374 are not considered gimple values. */
4375 else if ((TREE_CODE (t
) == SSA_NAME
4376 && virtual_p
!= virtual_operand_p (t
))
4378 && (TREE_CODE (t
) != SSA_NAME
4379 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4381 && !is_gimple_val (t
)))
4383 error ("invalid PHI argument");
4384 debug_generic_expr (t
);
4387 #ifdef ENABLE_TYPES_CHECKING
4388 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4390 error ("incompatible types in PHI argument %u", i
);
4391 debug_generic_stmt (TREE_TYPE (phi_result
));
4392 debug_generic_stmt (TREE_TYPE (t
));
4401 /* Verify the GIMPLE statements inside the sequence STMTS. */
4404 verify_gimple_in_seq_2 (gimple_seq stmts
)
4406 gimple_stmt_iterator ittr
;
4409 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4411 gimple stmt
= gsi_stmt (ittr
);
4413 switch (gimple_code (stmt
))
4416 err
|= verify_gimple_in_seq_2 (gimple_bind_body (stmt
));
4420 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4421 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4424 case GIMPLE_EH_FILTER
:
4425 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4428 case GIMPLE_EH_ELSE
:
4429 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt
));
4430 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt
));
4434 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (stmt
));
4437 case GIMPLE_TRANSACTION
:
4438 err
|= verify_gimple_transaction (stmt
);
4443 bool err2
= verify_gimple_stmt (stmt
);
4445 debug_gimple_stmt (stmt
);
4454 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4455 is a problem, otherwise false. */
4458 verify_gimple_transaction (gimple stmt
)
4460 tree lab
= gimple_transaction_label (stmt
);
4461 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
4463 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
4467 /* Verify the GIMPLE statements inside the statement list STMTS. */
4470 verify_gimple_in_seq (gimple_seq stmts
)
4472 timevar_push (TV_TREE_STMT_VERIFY
);
4473 if (verify_gimple_in_seq_2 (stmts
))
4474 internal_error ("verify_gimple failed");
4475 timevar_pop (TV_TREE_STMT_VERIFY
);
4478 /* Return true when the T can be shared. */
4481 tree_node_can_be_shared (tree t
)
4483 if (IS_TYPE_OR_DECL_P (t
)
4484 || is_gimple_min_invariant (t
)
4485 || TREE_CODE (t
) == SSA_NAME
4486 || t
== error_mark_node
4487 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4490 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4499 /* Called via walk_tree. Verify tree sharing. */
4502 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
4504 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4506 if (tree_node_can_be_shared (*tp
))
4508 *walk_subtrees
= false;
4512 if (pointer_set_insert (visited
, *tp
))
4518 /* Called via walk_gimple_stmt. Verify tree sharing. */
4521 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4523 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4524 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
4527 static bool eh_error_found
;
4529 verify_eh_throw_stmt_node (void **slot
, void *data
)
4531 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4532 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4534 if (!pointer_set_contains (visited
, node
->stmt
))
4536 error ("dead STMT in EH table");
4537 debug_gimple_stmt (node
->stmt
);
4538 eh_error_found
= true;
4543 /* Verify if the location LOCs block is in BLOCKS. */
4546 verify_location (pointer_set_t
*blocks
, location_t loc
)
4548 tree block
= LOCATION_BLOCK (loc
);
4549 if (block
!= NULL_TREE
4550 && !pointer_set_contains (blocks
, block
))
4552 error ("location references block not in block tree");
4555 if (block
!= NULL_TREE
)
4556 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
4560 /* Called via walk_tree. Verify that expressions have no blocks. */
4563 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
4567 *walk_subtrees
= false;
4571 location_t loc
= EXPR_LOCATION (*tp
);
4572 if (LOCATION_BLOCK (loc
) != NULL
)
4578 /* Called via walk_tree. Verify locations of expressions. */
4581 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
4583 struct pointer_set_t
*blocks
= (struct pointer_set_t
*) data
;
4585 if (TREE_CODE (*tp
) == VAR_DECL
4586 && DECL_HAS_DEBUG_EXPR_P (*tp
))
4588 tree t
= DECL_DEBUG_EXPR (*tp
);
4589 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
4593 if ((TREE_CODE (*tp
) == VAR_DECL
4594 || TREE_CODE (*tp
) == PARM_DECL
4595 || TREE_CODE (*tp
) == RESULT_DECL
)
4596 && DECL_HAS_VALUE_EXPR_P (*tp
))
4598 tree t
= DECL_VALUE_EXPR (*tp
);
4599 tree addr
= walk_tree (&t
, verify_expr_no_block
, NULL
, NULL
);
4606 *walk_subtrees
= false;
4610 location_t loc
= EXPR_LOCATION (*tp
);
4611 if (verify_location (blocks
, loc
))
4617 /* Called via walk_gimple_op. Verify locations of expressions. */
4620 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
4622 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4623 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
4626 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4629 collect_subblocks (pointer_set_t
*blocks
, tree block
)
4632 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
4634 pointer_set_insert (blocks
, t
);
4635 collect_subblocks (blocks
, t
);
4639 /* Verify the GIMPLE statements in the CFG of FN. */
4642 verify_gimple_in_cfg (struct function
*fn
)
4646 struct pointer_set_t
*visited
, *visited_stmts
, *blocks
;
4648 timevar_push (TV_TREE_STMT_VERIFY
);
4649 visited
= pointer_set_create ();
4650 visited_stmts
= pointer_set_create ();
4652 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4653 blocks
= pointer_set_create ();
4654 if (DECL_INITIAL (fn
->decl
))
4656 pointer_set_insert (blocks
, DECL_INITIAL (fn
->decl
));
4657 collect_subblocks (blocks
, DECL_INITIAL (fn
->decl
));
4660 FOR_EACH_BB_FN (bb
, fn
)
4662 gimple_stmt_iterator gsi
;
4664 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4666 gimple phi
= gsi_stmt (gsi
);
4670 pointer_set_insert (visited_stmts
, phi
);
4672 if (gimple_bb (phi
) != bb
)
4674 error ("gimple_bb (phi) is set to a wrong basic block");
4678 err2
|= verify_gimple_phi (phi
);
4680 /* Only PHI arguments have locations. */
4681 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
4683 error ("PHI node with location");
4687 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4689 tree arg
= gimple_phi_arg_def (phi
, i
);
4690 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
4694 error ("incorrect sharing of tree nodes");
4695 debug_generic_expr (addr
);
4698 location_t loc
= gimple_phi_arg_location (phi
, i
);
4699 if (virtual_operand_p (gimple_phi_result (phi
))
4700 && loc
!= UNKNOWN_LOCATION
)
4702 error ("virtual PHI with argument locations");
4705 addr
= walk_tree (&arg
, verify_expr_location_1
, blocks
, NULL
);
4708 debug_generic_expr (addr
);
4711 err2
|= verify_location (blocks
, loc
);
4715 debug_gimple_stmt (phi
);
4719 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4721 gimple stmt
= gsi_stmt (gsi
);
4723 struct walk_stmt_info wi
;
4727 pointer_set_insert (visited_stmts
, stmt
);
4729 if (gimple_bb (stmt
) != bb
)
4731 error ("gimple_bb (stmt) is set to a wrong basic block");
4735 err2
|= verify_gimple_stmt (stmt
);
4736 err2
|= verify_location (blocks
, gimple_location (stmt
));
4738 memset (&wi
, 0, sizeof (wi
));
4739 wi
.info
= (void *) visited
;
4740 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
4743 error ("incorrect sharing of tree nodes");
4744 debug_generic_expr (addr
);
4748 memset (&wi
, 0, sizeof (wi
));
4749 wi
.info
= (void *) blocks
;
4750 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
4753 debug_generic_expr (addr
);
4757 /* ??? Instead of not checking these stmts at all the walker
4758 should know its context via wi. */
4759 if (!is_gimple_debug (stmt
)
4760 && !is_gimple_omp (stmt
))
4762 memset (&wi
, 0, sizeof (wi
));
4763 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
4766 debug_generic_expr (addr
);
4767 inform (gimple_location (stmt
), "in statement");
4772 /* If the statement is marked as part of an EH region, then it is
4773 expected that the statement could throw. Verify that when we
4774 have optimizations that simplify statements such that we prove
4775 that they cannot throw, that we update other data structures
4777 lp_nr
= lookup_stmt_eh_lp (stmt
);
4780 if (!stmt_could_throw_p (stmt
))
4782 error ("statement marked for throw, but doesn%'t");
4786 && !gsi_one_before_end_p (gsi
)
4787 && stmt_can_throw_internal (stmt
))
4789 error ("statement marked for throw in middle of block");
4795 debug_gimple_stmt (stmt
);
4800 eh_error_found
= false;
4801 if (get_eh_throw_stmt_table (cfun
))
4802 htab_traverse (get_eh_throw_stmt_table (cfun
),
4803 verify_eh_throw_stmt_node
,
4806 if (err
|| eh_error_found
)
4807 internal_error ("verify_gimple failed");
4809 pointer_set_destroy (visited
);
4810 pointer_set_destroy (visited_stmts
);
4811 pointer_set_destroy (blocks
);
4812 verify_histograms ();
4813 timevar_pop (TV_TREE_STMT_VERIFY
);
4817 /* Verifies that the flow information is OK. */
4820 gimple_verify_flow_info (void)
4824 gimple_stmt_iterator gsi
;
4829 if (ENTRY_BLOCK_PTR
->il
.gimple
.seq
|| ENTRY_BLOCK_PTR
->il
.gimple
.phi_nodes
)
4831 error ("ENTRY_BLOCK has IL associated with it");
4835 if (EXIT_BLOCK_PTR
->il
.gimple
.seq
|| EXIT_BLOCK_PTR
->il
.gimple
.phi_nodes
)
4837 error ("EXIT_BLOCK has IL associated with it");
4841 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
4842 if (e
->flags
& EDGE_FALLTHRU
)
4844 error ("fallthru to exit from bb %d", e
->src
->index
);
4850 bool found_ctrl_stmt
= false;
4854 /* Skip labels on the start of basic block. */
4855 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4858 gimple prev_stmt
= stmt
;
4860 stmt
= gsi_stmt (gsi
);
4862 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4865 label
= gimple_label_label (stmt
);
4866 if (prev_stmt
&& DECL_NONLOCAL (label
))
4868 error ("nonlocal label ");
4869 print_generic_expr (stderr
, label
, 0);
4870 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4875 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
4877 error ("EH landing pad label ");
4878 print_generic_expr (stderr
, label
, 0);
4879 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4884 if (label_to_block (label
) != bb
)
4887 print_generic_expr (stderr
, label
, 0);
4888 fprintf (stderr
, " to block does not match in bb %d",
4893 if (decl_function_context (label
) != current_function_decl
)
4896 print_generic_expr (stderr
, label
, 0);
4897 fprintf (stderr
, " has incorrect context in bb %d",
4903 /* Verify that body of basic block BB is free of control flow. */
4904 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
4906 gimple stmt
= gsi_stmt (gsi
);
4908 if (found_ctrl_stmt
)
4910 error ("control flow in the middle of basic block %d",
4915 if (stmt_ends_bb_p (stmt
))
4916 found_ctrl_stmt
= true;
4918 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4921 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
4922 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
4927 gsi
= gsi_last_bb (bb
);
4928 if (gsi_end_p (gsi
))
4931 stmt
= gsi_stmt (gsi
);
4933 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4936 err
|= verify_eh_edges (stmt
);
4938 if (is_ctrl_stmt (stmt
))
4940 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4941 if (e
->flags
& EDGE_FALLTHRU
)
4943 error ("fallthru edge after a control statement in bb %d",
4949 if (gimple_code (stmt
) != GIMPLE_COND
)
4951 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4952 after anything else but if statement. */
4953 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4954 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
4956 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4962 switch (gimple_code (stmt
))
4969 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
4973 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
4974 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
4975 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4976 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4977 || EDGE_COUNT (bb
->succs
) >= 3)
4979 error ("wrong outgoing edge flags at end of bb %d",
4987 if (simple_goto_p (stmt
))
4989 error ("explicit goto at end of bb %d", bb
->index
);
4994 /* FIXME. We should double check that the labels in the
4995 destination blocks have their address taken. */
4996 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4997 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
4998 | EDGE_FALSE_VALUE
))
4999 || !(e
->flags
& EDGE_ABNORMAL
))
5001 error ("wrong outgoing edge flags at end of bb %d",
5009 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5011 /* ... fallthru ... */
5013 if (!single_succ_p (bb
)
5014 || (single_succ_edge (bb
)->flags
5015 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5016 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5018 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5021 if (single_succ (bb
) != EXIT_BLOCK_PTR
)
5023 error ("return edge does not point to exit in bb %d",
5035 n
= gimple_switch_num_labels (stmt
);
5037 /* Mark all the destination basic blocks. */
5038 for (i
= 0; i
< n
; ++i
)
5040 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
5041 basic_block label_bb
= label_to_block (lab
);
5042 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5043 label_bb
->aux
= (void *)1;
5046 /* Verify that the case labels are sorted. */
5047 prev
= gimple_switch_label (stmt
, 0);
5048 for (i
= 1; i
< n
; ++i
)
5050 tree c
= gimple_switch_label (stmt
, i
);
5053 error ("found default case not at the start of "
5059 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5061 error ("case labels not sorted: ");
5062 print_generic_expr (stderr
, prev
, 0);
5063 fprintf (stderr
," is greater than ");
5064 print_generic_expr (stderr
, c
, 0);
5065 fprintf (stderr
," but comes before it.\n");
5070 /* VRP will remove the default case if it can prove it will
5071 never be executed. So do not verify there always exists
5072 a default case here. */
5074 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5078 error ("extra outgoing edge %d->%d",
5079 bb
->index
, e
->dest
->index
);
5083 e
->dest
->aux
= (void *)2;
5084 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5085 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5087 error ("wrong outgoing edge flags at end of bb %d",
5093 /* Check that we have all of them. */
5094 for (i
= 0; i
< n
; ++i
)
5096 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
5097 basic_block label_bb
= label_to_block (lab
);
5099 if (label_bb
->aux
!= (void *)2)
5101 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5106 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5107 e
->dest
->aux
= (void *)0;
5111 case GIMPLE_EH_DISPATCH
:
5112 err
|= verify_eh_dispatch_edge (stmt
);
5120 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5121 verify_dominators (CDI_DOMINATORS
);
5127 /* Updates phi nodes after creating a forwarder block joined
5128 by edge FALLTHRU. */
5131 gimple_make_forwarder_block (edge fallthru
)
5135 basic_block dummy
, bb
;
5137 gimple_stmt_iterator gsi
;
5139 dummy
= fallthru
->src
;
5140 bb
= fallthru
->dest
;
5142 if (single_pred_p (bb
))
5145 /* If we redirected a branch we must create new PHI nodes at the
5147 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5149 gimple phi
, new_phi
;
5151 phi
= gsi_stmt (gsi
);
5152 var
= gimple_phi_result (phi
);
5153 new_phi
= create_phi_node (var
, bb
);
5154 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5155 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5159 /* Add the arguments we have stored on edges. */
5160 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5165 flush_pending_stmts (e
);
5170 /* Return a non-special label in the head of basic block BLOCK.
5171 Create one if it doesn't exist. */
5174 gimple_block_label (basic_block bb
)
5176 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5181 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5183 stmt
= gsi_stmt (i
);
5184 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5186 label
= gimple_label_label (stmt
);
5187 if (!DECL_NONLOCAL (label
))
5190 gsi_move_before (&i
, &s
);
5195 label
= create_artificial_label (UNKNOWN_LOCATION
);
5196 stmt
= gimple_build_label (label
);
5197 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5202 /* Attempt to perform edge redirection by replacing a possibly complex
5203 jump instruction by a goto or by removing the jump completely.
5204 This can apply only if all edges now point to the same block. The
5205 parameters and return values are equivalent to
5206 redirect_edge_and_branch. */
5209 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5211 basic_block src
= e
->src
;
5212 gimple_stmt_iterator i
;
5215 /* We can replace or remove a complex jump only when we have exactly
5217 if (EDGE_COUNT (src
->succs
) != 2
5218 /* Verify that all targets will be TARGET. Specifically, the
5219 edge that is not E must also go to TARGET. */
5220 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5223 i
= gsi_last_bb (src
);
5227 stmt
= gsi_stmt (i
);
5229 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5231 gsi_remove (&i
, true);
5232 e
= ssa_redirect_edge (e
, target
);
5233 e
->flags
= EDGE_FALLTHRU
;
5241 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5242 edge representing the redirected branch. */
5245 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5247 basic_block bb
= e
->src
;
5248 gimple_stmt_iterator gsi
;
5252 if (e
->flags
& EDGE_ABNORMAL
)
5255 if (e
->dest
== dest
)
5258 if (e
->flags
& EDGE_EH
)
5259 return redirect_eh_edge (e
, dest
);
5261 if (e
->src
!= ENTRY_BLOCK_PTR
)
5263 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5268 gsi
= gsi_last_bb (bb
);
5269 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5271 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5274 /* For COND_EXPR, we only need to redirect the edge. */
5278 /* No non-abnormal edges should lead from a non-simple goto, and
5279 simple ones should be represented implicitly. */
5284 tree label
= gimple_block_label (dest
);
5285 tree cases
= get_cases_for_edge (e
, stmt
);
5287 /* If we have a list of cases associated with E, then use it
5288 as it's a lot faster than walking the entire case vector. */
5291 edge e2
= find_edge (e
->src
, dest
);
5298 CASE_LABEL (cases
) = label
;
5299 cases
= CASE_CHAIN (cases
);
5302 /* If there was already an edge in the CFG, then we need
5303 to move all the cases associated with E to E2. */
5306 tree cases2
= get_cases_for_edge (e2
, stmt
);
5308 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5309 CASE_CHAIN (cases2
) = first
;
5311 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5315 size_t i
, n
= gimple_switch_num_labels (stmt
);
5317 for (i
= 0; i
< n
; i
++)
5319 tree elt
= gimple_switch_label (stmt
, i
);
5320 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
5321 CASE_LABEL (elt
) = label
;
5329 int i
, n
= gimple_asm_nlabels (stmt
);
5332 for (i
= 0; i
< n
; ++i
)
5334 tree cons
= gimple_asm_label_op (stmt
, i
);
5335 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
5338 label
= gimple_block_label (dest
);
5339 TREE_VALUE (cons
) = label
;
5343 /* If we didn't find any label matching the former edge in the
5344 asm labels, we must be redirecting the fallthrough
5346 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
5351 gsi_remove (&gsi
, true);
5352 e
->flags
|= EDGE_FALLTHRU
;
5355 case GIMPLE_OMP_RETURN
:
5356 case GIMPLE_OMP_CONTINUE
:
5357 case GIMPLE_OMP_SECTIONS_SWITCH
:
5358 case GIMPLE_OMP_FOR
:
5359 /* The edges from OMP constructs can be simply redirected. */
5362 case GIMPLE_EH_DISPATCH
:
5363 if (!(e
->flags
& EDGE_FALLTHRU
))
5364 redirect_eh_dispatch_edge (stmt
, e
, dest
);
5367 case GIMPLE_TRANSACTION
:
5368 /* The ABORT edge has a stored label associated with it, otherwise
5369 the edges are simply redirectable. */
5371 gimple_transaction_set_label (stmt
, gimple_block_label (dest
));
5375 /* Otherwise it must be a fallthru edge, and we don't need to
5376 do anything besides redirecting it. */
5377 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
5381 /* Update/insert PHI nodes as necessary. */
5383 /* Now update the edges in the CFG. */
5384 e
= ssa_redirect_edge (e
, dest
);
5389 /* Returns true if it is possible to remove edge E by redirecting
5390 it to the destination of the other edge from E->src. */
5393 gimple_can_remove_branch_p (const_edge e
)
5395 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
5401 /* Simple wrapper, as we can always redirect fallthru edges. */
5404 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
5406 e
= gimple_redirect_edge_and_branch (e
, dest
);
5413 /* Splits basic block BB after statement STMT (but at least after the
5414 labels). If STMT is NULL, BB is split just after the labels. */
5417 gimple_split_block (basic_block bb
, void *stmt
)
5419 gimple_stmt_iterator gsi
;
5420 gimple_stmt_iterator gsi_tgt
;
5427 new_bb
= create_empty_bb (bb
);
5429 /* Redirect the outgoing edges. */
5430 new_bb
->succs
= bb
->succs
;
5432 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5435 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
5438 /* Move everything from GSI to the new basic block. */
5439 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5441 act
= gsi_stmt (gsi
);
5442 if (gimple_code (act
) == GIMPLE_LABEL
)
5455 if (gsi_end_p (gsi
))
5458 /* Split the statement list - avoid re-creating new containers as this
5459 brings ugly quadratic memory consumption in the inliner.
5460 (We are still quadratic since we need to update stmt BB pointers,
5462 gsi_split_seq_before (&gsi
, &list
);
5463 set_bb_seq (new_bb
, list
);
5464 for (gsi_tgt
= gsi_start (list
);
5465 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5466 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5472 /* Moves basic block BB after block AFTER. */
5475 gimple_move_block_after (basic_block bb
, basic_block after
)
5477 if (bb
->prev_bb
== after
)
5481 link_block (bb
, after
);
5487 /* Return TRUE if block BB has no executable statements, otherwise return
5491 gimple_empty_block_p (basic_block bb
)
5493 /* BB must have no executable statements. */
5494 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
5497 if (gsi_end_p (gsi
))
5499 if (is_gimple_debug (gsi_stmt (gsi
)))
5500 gsi_next_nondebug (&gsi
);
5501 return gsi_end_p (gsi
);
5505 /* Split a basic block if it ends with a conditional branch and if the
5506 other part of the block is not empty. */
5509 gimple_split_block_before_cond_jump (basic_block bb
)
5511 gimple last
, split_point
;
5512 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
5513 if (gsi_end_p (gsi
))
5515 last
= gsi_stmt (gsi
);
5516 if (gimple_code (last
) != GIMPLE_COND
5517 && gimple_code (last
) != GIMPLE_SWITCH
)
5519 gsi_prev_nondebug (&gsi
);
5520 split_point
= gsi_stmt (gsi
);
5521 return split_block (bb
, split_point
)->dest
;
5525 /* Return true if basic_block can be duplicated. */
5528 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5533 /* Create a duplicate of the basic block BB. NOTE: This does not
5534 preserve SSA form. */
5537 gimple_duplicate_bb (basic_block bb
)
5540 gimple_stmt_iterator gsi
, gsi_tgt
;
5541 gimple_seq phis
= phi_nodes (bb
);
5542 gimple phi
, stmt
, copy
;
5544 new_bb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
5546 /* Copy the PHI nodes. We ignore PHI node arguments here because
5547 the incoming edges have not been setup yet. */
5548 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5550 phi
= gsi_stmt (gsi
);
5551 copy
= create_phi_node (NULL_TREE
, new_bb
);
5552 create_new_def_for (gimple_phi_result (phi
), copy
,
5553 gimple_phi_result_ptr (copy
));
5556 gsi_tgt
= gsi_start_bb (new_bb
);
5557 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5559 def_operand_p def_p
;
5560 ssa_op_iter op_iter
;
5563 stmt
= gsi_stmt (gsi
);
5564 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5567 /* Don't duplicate label debug stmts. */
5568 if (gimple_debug_bind_p (stmt
)
5569 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
5573 /* Create a new copy of STMT and duplicate STMT's virtual
5575 copy
= gimple_copy (stmt
);
5576 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5578 maybe_duplicate_eh_stmt (copy
, stmt
);
5579 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5581 /* When copying around a stmt writing into a local non-user
5582 aggregate, make sure it won't share stack slot with other
5584 lhs
= gimple_get_lhs (stmt
);
5585 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
5587 tree base
= get_base_address (lhs
);
5589 && (TREE_CODE (base
) == VAR_DECL
5590 || TREE_CODE (base
) == RESULT_DECL
)
5591 && DECL_IGNORED_P (base
)
5592 && !TREE_STATIC (base
)
5593 && !DECL_EXTERNAL (base
)
5594 && (TREE_CODE (base
) != VAR_DECL
5595 || !DECL_HAS_VALUE_EXPR_P (base
)))
5596 DECL_NONSHAREABLE (base
) = 1;
5599 /* Create new names for all the definitions created by COPY and
5600 add replacement mappings for each new name. */
5601 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5602 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5608 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5611 add_phi_args_after_copy_edge (edge e_copy
)
5613 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5616 gimple phi
, phi_copy
;
5618 gimple_stmt_iterator psi
, psi_copy
;
5620 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5623 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5625 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5626 dest
= get_bb_original (e_copy
->dest
);
5628 dest
= e_copy
->dest
;
5630 e
= find_edge (bb
, dest
);
5633 /* During loop unrolling the target of the latch edge is copied.
5634 In this case we are not looking for edge to dest, but to
5635 duplicated block whose original was dest. */
5636 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5638 if ((e
->dest
->flags
& BB_DUPLICATED
)
5639 && get_bb_original (e
->dest
) == dest
)
5643 gcc_assert (e
!= NULL
);
5646 for (psi
= gsi_start_phis (e
->dest
),
5647 psi_copy
= gsi_start_phis (e_copy
->dest
);
5649 gsi_next (&psi
), gsi_next (&psi_copy
))
5651 phi
= gsi_stmt (psi
);
5652 phi_copy
= gsi_stmt (psi_copy
);
5653 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5654 add_phi_arg (phi_copy
, def
, e_copy
,
5655 gimple_phi_arg_location_from_edge (phi
, e
));
5660 /* Basic block BB_COPY was created by code duplication. Add phi node
5661 arguments for edges going out of BB_COPY. The blocks that were
5662 duplicated have BB_DUPLICATED set. */
5665 add_phi_args_after_copy_bb (basic_block bb_copy
)
5670 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5672 add_phi_args_after_copy_edge (e_copy
);
5676 /* Blocks in REGION_COPY array of length N_REGION were created by
5677 duplication of basic blocks. Add phi node arguments for edges
5678 going from these blocks. If E_COPY is not NULL, also add
5679 phi node arguments for its destination.*/
5682 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5687 for (i
= 0; i
< n_region
; i
++)
5688 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5690 for (i
= 0; i
< n_region
; i
++)
5691 add_phi_args_after_copy_bb (region_copy
[i
]);
5693 add_phi_args_after_copy_edge (e_copy
);
5695 for (i
= 0; i
< n_region
; i
++)
5696 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5699 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5700 important exit edge EXIT. By important we mean that no SSA name defined
5701 inside region is live over the other exit edges of the region. All entry
5702 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5703 to the duplicate of the region. Dominance and loop information is
5704 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5705 UPDATE_DOMINANCE is false then we assume that the caller will update the
5706 dominance information after calling this function. The new basic
5707 blocks are stored to REGION_COPY in the same order as they had in REGION,
5708 provided that REGION_COPY is not NULL.
5709 The function returns false if it is unable to copy the region,
5713 gimple_duplicate_sese_region (edge entry
, edge exit
,
5714 basic_block
*region
, unsigned n_region
,
5715 basic_block
*region_copy
,
5716 bool update_dominance
)
5719 bool free_region_copy
= false, copying_header
= false;
5720 struct loop
*loop
= entry
->dest
->loop_father
;
5722 vec
<basic_block
> doms
;
5724 int total_freq
= 0, entry_freq
= 0;
5725 gcov_type total_count
= 0, entry_count
= 0;
5727 if (!can_copy_bbs_p (region
, n_region
))
5730 /* Some sanity checking. Note that we do not check for all possible
5731 missuses of the functions. I.e. if you ask to copy something weird,
5732 it will work, but the state of structures probably will not be
5734 for (i
= 0; i
< n_region
; i
++)
5736 /* We do not handle subloops, i.e. all the blocks must belong to the
5738 if (region
[i
]->loop_father
!= loop
)
5741 if (region
[i
] != entry
->dest
5742 && region
[i
] == loop
->header
)
5746 set_loop_copy (loop
, loop
);
5748 /* In case the function is used for loop header copying (which is the primary
5749 use), ensure that EXIT and its copy will be new latch and entry edges. */
5750 if (loop
->header
== entry
->dest
)
5752 copying_header
= true;
5753 set_loop_copy (loop
, loop_outer (loop
));
5755 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5758 for (i
= 0; i
< n_region
; i
++)
5759 if (region
[i
] != exit
->src
5760 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5766 region_copy
= XNEWVEC (basic_block
, n_region
);
5767 free_region_copy
= true;
5770 initialize_original_copy_tables ();
5772 /* Record blocks outside the region that are dominated by something
5774 if (update_dominance
)
5777 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5780 if (entry
->dest
->count
)
5782 total_count
= entry
->dest
->count
;
5783 entry_count
= entry
->count
;
5784 /* Fix up corner cases, to avoid division by zero or creation of negative
5786 if (entry_count
> total_count
)
5787 entry_count
= total_count
;
5791 total_freq
= entry
->dest
->frequency
;
5792 entry_freq
= EDGE_FREQUENCY (entry
);
5793 /* Fix up corner cases, to avoid division by zero or creation of negative
5795 if (total_freq
== 0)
5797 else if (entry_freq
> total_freq
)
5798 entry_freq
= total_freq
;
5801 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5802 split_edge_bb_loc (entry
), update_dominance
);
5805 scale_bbs_frequencies_gcov_type (region
, n_region
,
5806 total_count
- entry_count
,
5808 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5813 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5815 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5820 loop
->header
= exit
->dest
;
5821 loop
->latch
= exit
->src
;
5824 /* Redirect the entry and add the phi node arguments. */
5825 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5826 gcc_assert (redirected
!= NULL
);
5827 flush_pending_stmts (entry
);
5829 /* Concerning updating of dominators: We must recount dominators
5830 for entry block and its copy. Anything that is outside of the
5831 region, but was dominated by something inside needs recounting as
5833 if (update_dominance
)
5835 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5836 doms
.safe_push (get_bb_original (entry
->dest
));
5837 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5841 /* Add the other PHI node arguments. */
5842 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5844 if (free_region_copy
)
5847 free_original_copy_tables ();
5851 /* Checks if BB is part of the region defined by N_REGION BBS. */
5853 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
5857 for (n
= 0; n
< n_region
; n
++)
5865 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5866 are stored to REGION_COPY in the same order in that they appear
5867 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5868 the region, EXIT an exit from it. The condition guarding EXIT
5869 is moved to ENTRY. Returns true if duplication succeeds, false
5895 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
5896 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
5897 basic_block
*region_copy ATTRIBUTE_UNUSED
)
5900 bool free_region_copy
= false;
5901 struct loop
*loop
= exit
->dest
->loop_father
;
5902 struct loop
*orig_loop
= entry
->dest
->loop_father
;
5903 basic_block switch_bb
, entry_bb
, nentry_bb
;
5904 vec
<basic_block
> doms
;
5905 int total_freq
= 0, exit_freq
= 0;
5906 gcov_type total_count
= 0, exit_count
= 0;
5907 edge exits
[2], nexits
[2], e
;
5908 gimple_stmt_iterator gsi
;
5911 basic_block exit_bb
;
5912 gimple_stmt_iterator psi
;
5915 struct loop
*target
, *aloop
, *cloop
;
5917 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
5919 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
5921 if (!can_copy_bbs_p (region
, n_region
))
5924 initialize_original_copy_tables ();
5925 set_loop_copy (orig_loop
, loop
);
5928 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
5930 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
5932 cloop
= duplicate_loop (aloop
, target
);
5933 duplicate_subloops (aloop
, cloop
);
5939 region_copy
= XNEWVEC (basic_block
, n_region
);
5940 free_region_copy
= true;
5943 gcc_assert (!need_ssa_update_p (cfun
));
5945 /* Record blocks outside the region that are dominated by something
5947 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5949 if (exit
->src
->count
)
5951 total_count
= exit
->src
->count
;
5952 exit_count
= exit
->count
;
5953 /* Fix up corner cases, to avoid division by zero or creation of negative
5955 if (exit_count
> total_count
)
5956 exit_count
= total_count
;
5960 total_freq
= exit
->src
->frequency
;
5961 exit_freq
= EDGE_FREQUENCY (exit
);
5962 /* Fix up corner cases, to avoid division by zero or creation of negative
5964 if (total_freq
== 0)
5966 if (exit_freq
> total_freq
)
5967 exit_freq
= total_freq
;
5970 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
5971 split_edge_bb_loc (exit
), true);
5974 scale_bbs_frequencies_gcov_type (region
, n_region
,
5975 total_count
- exit_count
,
5977 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
5982 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
5984 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
5987 /* Create the switch block, and put the exit condition to it. */
5988 entry_bb
= entry
->dest
;
5989 nentry_bb
= get_bb_copy (entry_bb
);
5990 if (!last_stmt (entry
->src
)
5991 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
5992 switch_bb
= entry
->src
;
5994 switch_bb
= split_edge (entry
);
5995 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
5997 gsi
= gsi_last_bb (switch_bb
);
5998 cond_stmt
= last_stmt (exit
->src
);
5999 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6000 cond_stmt
= gimple_copy (cond_stmt
);
6002 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6004 sorig
= single_succ_edge (switch_bb
);
6005 sorig
->flags
= exits
[1]->flags
;
6006 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6008 /* Register the new edge from SWITCH_BB in loop exit lists. */
6009 rescan_loop_exit (snew
, true, false);
6011 /* Add the PHI node arguments. */
6012 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6014 /* Get rid of now superfluous conditions and associated edges (and phi node
6016 exit_bb
= exit
->dest
;
6018 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6019 PENDING_STMT (e
) = NULL
;
6021 /* The latch of ORIG_LOOP was copied, and so was the backedge
6022 to the original header. We redirect this backedge to EXIT_BB. */
6023 for (i
= 0; i
< n_region
; i
++)
6024 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6026 gcc_assert (single_succ_edge (region_copy
[i
]));
6027 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6028 PENDING_STMT (e
) = NULL
;
6029 for (psi
= gsi_start_phis (exit_bb
);
6033 phi
= gsi_stmt (psi
);
6034 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6035 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6038 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6039 PENDING_STMT (e
) = NULL
;
6041 /* Anything that is outside of the region, but was dominated by something
6042 inside needs to update dominance info. */
6043 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6045 /* Update the SSA web. */
6046 update_ssa (TODO_update_ssa
);
6048 if (free_region_copy
)
6051 free_original_copy_tables ();
6055 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6056 adding blocks when the dominator traversal reaches EXIT. This
6057 function silently assumes that ENTRY strictly dominates EXIT. */
6060 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6061 vec
<basic_block
> *bbs_p
)
6065 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6067 son
= next_dom_son (CDI_DOMINATORS
, son
))
6069 bbs_p
->safe_push (son
);
6071 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6075 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6076 The duplicates are recorded in VARS_MAP. */
6079 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
6082 tree t
= *tp
, new_t
;
6083 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6086 if (DECL_CONTEXT (t
) == to_context
)
6089 loc
= pointer_map_contains (vars_map
, t
);
6093 loc
= pointer_map_insert (vars_map
, t
);
6097 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6098 add_local_decl (f
, new_t
);
6102 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6103 new_t
= copy_node (t
);
6105 DECL_CONTEXT (new_t
) = to_context
;
6110 new_t
= (tree
) *loc
;
6116 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6117 VARS_MAP maps old ssa names and var_decls to the new ones. */
6120 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
6126 gcc_assert (!virtual_operand_p (name
));
6128 loc
= pointer_map_contains (vars_map
, name
);
6132 tree decl
= SSA_NAME_VAR (name
);
6135 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6136 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6137 decl
, SSA_NAME_DEF_STMT (name
));
6138 if (SSA_NAME_IS_DEFAULT_DEF (name
))
6139 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context
),
6143 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6144 name
, SSA_NAME_DEF_STMT (name
));
6146 loc
= pointer_map_insert (vars_map
, name
);
6150 new_name
= (tree
) *loc
;
6161 struct pointer_map_t
*vars_map
;
6162 htab_t new_label_map
;
6163 struct pointer_map_t
*eh_map
;
6167 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6168 contained in *TP if it has been ORIG_BLOCK previously and change the
6169 DECL_CONTEXT of every local variable referenced in *TP. */
6172 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6174 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6175 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6180 tree block
= TREE_BLOCK (t
);
6181 if (block
== p
->orig_block
6182 || (p
->orig_block
== NULL_TREE
6183 && block
!= NULL_TREE
))
6184 TREE_SET_BLOCK (t
, p
->new_block
);
6185 #ifdef ENABLE_CHECKING
6186 else if (block
!= NULL_TREE
)
6188 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6189 block
= BLOCK_SUPERCONTEXT (block
);
6190 gcc_assert (block
== p
->orig_block
);
6194 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6196 if (TREE_CODE (t
) == SSA_NAME
)
6197 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6198 else if (TREE_CODE (t
) == LABEL_DECL
)
6200 if (p
->new_label_map
)
6202 struct tree_map in
, *out
;
6204 out
= (struct tree_map
*)
6205 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6210 DECL_CONTEXT (t
) = p
->to_context
;
6212 else if (p
->remap_decls_p
)
6214 /* Replace T with its duplicate. T should no longer appear in the
6215 parent function, so this looks wasteful; however, it may appear
6216 in referenced_vars, and more importantly, as virtual operands of
6217 statements, and in alias lists of other variables. It would be
6218 quite difficult to expunge it from all those places. ??? It might
6219 suffice to do this for addressable variables. */
6220 if ((TREE_CODE (t
) == VAR_DECL
6221 && !is_global_var (t
))
6222 || TREE_CODE (t
) == CONST_DECL
)
6223 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6227 else if (TYPE_P (t
))
6233 /* Helper for move_stmt_r. Given an EH region number for the source
6234 function, map that to the duplicate EH regio number in the dest. */
6237 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6239 eh_region old_r
, new_r
;
6242 old_r
= get_eh_region_from_number (old_nr
);
6243 slot
= pointer_map_contains (p
->eh_map
, old_r
);
6244 new_r
= (eh_region
) *slot
;
6246 return new_r
->index
;
6249 /* Similar, but operate on INTEGER_CSTs. */
6252 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6256 old_nr
= tree_low_cst (old_t_nr
, 0);
6257 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6259 return build_int_cst (integer_type_node
, new_nr
);
6262 /* Like move_stmt_op, but for gimple statements.
6264 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6265 contained in the current statement in *GSI_P and change the
6266 DECL_CONTEXT of every local variable referenced in the current
6270 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6271 struct walk_stmt_info
*wi
)
6273 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6274 gimple stmt
= gsi_stmt (*gsi_p
);
6275 tree block
= gimple_block (stmt
);
6277 if (block
== p
->orig_block
6278 || (p
->orig_block
== NULL_TREE
6279 && block
!= NULL_TREE
))
6280 gimple_set_block (stmt
, p
->new_block
);
6282 switch (gimple_code (stmt
))
6285 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6287 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6288 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
6289 switch (DECL_FUNCTION_CODE (fndecl
))
6291 case BUILT_IN_EH_COPY_VALUES
:
6292 r
= gimple_call_arg (stmt
, 1);
6293 r
= move_stmt_eh_region_tree_nr (r
, p
);
6294 gimple_call_set_arg (stmt
, 1, r
);
6297 case BUILT_IN_EH_POINTER
:
6298 case BUILT_IN_EH_FILTER
:
6299 r
= gimple_call_arg (stmt
, 0);
6300 r
= move_stmt_eh_region_tree_nr (r
, p
);
6301 gimple_call_set_arg (stmt
, 0, r
);
6312 int r
= gimple_resx_region (stmt
);
6313 r
= move_stmt_eh_region_nr (r
, p
);
6314 gimple_resx_set_region (stmt
, r
);
6318 case GIMPLE_EH_DISPATCH
:
6320 int r
= gimple_eh_dispatch_region (stmt
);
6321 r
= move_stmt_eh_region_nr (r
, p
);
6322 gimple_eh_dispatch_set_region (stmt
, r
);
6326 case GIMPLE_OMP_RETURN
:
6327 case GIMPLE_OMP_CONTINUE
:
6330 if (is_gimple_omp (stmt
))
6332 /* Do not remap variables inside OMP directives. Variables
6333 referenced in clauses and directive header belong to the
6334 parent function and should not be moved into the child
6336 bool save_remap_decls_p
= p
->remap_decls_p
;
6337 p
->remap_decls_p
= false;
6338 *handled_ops_p
= true;
6340 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
6343 p
->remap_decls_p
= save_remap_decls_p
;
6351 /* Move basic block BB from function CFUN to function DEST_FN. The
6352 block is moved out of the original linked list and placed after
6353 block AFTER in the new list. Also, the block is removed from the
6354 original array of blocks and placed in DEST_FN's array of blocks.
6355 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6356 updated to reflect the moved edges.
6358 The local variables are remapped to new instances, VARS_MAP is used
6359 to record the mapping. */
6362 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
6363 basic_block after
, bool update_edge_count_p
,
6364 struct move_stmt_d
*d
)
6366 struct control_flow_graph
*cfg
;
6369 gimple_stmt_iterator si
;
6370 unsigned old_len
, new_len
;
6372 /* Remove BB from dominance structures. */
6373 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
6375 /* Move BB from its current loop to the copy in the new function. */
6378 struct loop
*new_loop
= (struct loop
*)bb
->loop_father
->aux
;
6380 bb
->loop_father
= new_loop
;
6383 /* Link BB to the new linked list. */
6384 move_block_after (bb
, after
);
6386 /* Update the edge count in the corresponding flowgraphs. */
6387 if (update_edge_count_p
)
6388 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6390 cfun
->cfg
->x_n_edges
--;
6391 dest_cfun
->cfg
->x_n_edges
++;
6394 /* Remove BB from the original basic block array. */
6395 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
6396 cfun
->cfg
->x_n_basic_blocks
--;
6398 /* Grow DEST_CFUN's basic block array if needed. */
6399 cfg
= dest_cfun
->cfg
;
6400 cfg
->x_n_basic_blocks
++;
6401 if (bb
->index
>= cfg
->x_last_basic_block
)
6402 cfg
->x_last_basic_block
= bb
->index
+ 1;
6404 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
6405 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
6407 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
6408 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
6411 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
6413 /* Remap the variables in phi nodes. */
6414 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
6416 gimple phi
= gsi_stmt (si
);
6418 tree op
= PHI_RESULT (phi
);
6422 if (virtual_operand_p (op
))
6424 /* Remove the phi nodes for virtual operands (alias analysis will be
6425 run for the new function, anyway). */
6426 remove_phi_node (&si
, true);
6430 SET_PHI_RESULT (phi
,
6431 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6432 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
6434 op
= USE_FROM_PTR (use
);
6435 if (TREE_CODE (op
) == SSA_NAME
)
6436 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
6439 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
6441 location_t locus
= gimple_phi_arg_location (phi
, i
);
6442 tree block
= LOCATION_BLOCK (locus
);
6444 if (locus
== UNKNOWN_LOCATION
)
6446 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
6448 if (d
->new_block
== NULL_TREE
)
6449 locus
= LOCATION_LOCUS (locus
);
6451 locus
= COMBINE_LOCATION_DATA (line_table
, locus
, d
->new_block
);
6452 gimple_phi_arg_set_location (phi
, i
, locus
);
6459 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6461 gimple stmt
= gsi_stmt (si
);
6462 struct walk_stmt_info wi
;
6464 memset (&wi
, 0, sizeof (wi
));
6466 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
6468 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6470 tree label
= gimple_label_label (stmt
);
6471 int uid
= LABEL_DECL_UID (label
);
6473 gcc_assert (uid
> -1);
6475 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
6476 if (old_len
<= (unsigned) uid
)
6478 new_len
= 3 * uid
/ 2 + 1;
6479 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
6482 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
6483 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
6485 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
6487 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
6488 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
6491 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
6492 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
6494 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
6495 gimple_remove_stmt_histograms (cfun
, stmt
);
6497 /* We cannot leave any operands allocated from the operand caches of
6498 the current function. */
6499 free_stmt_operands (stmt
);
6500 push_cfun (dest_cfun
);
6505 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6506 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
6508 tree block
= LOCATION_BLOCK (e
->goto_locus
);
6509 if (d
->orig_block
== NULL_TREE
6510 || block
== d
->orig_block
)
6511 e
->goto_locus
= d
->new_block
?
6512 COMBINE_LOCATION_DATA (line_table
, e
->goto_locus
, d
->new_block
) :
6513 LOCATION_LOCUS (e
->goto_locus
);
6517 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6518 the outermost EH region. Use REGION as the incoming base EH region. */
6521 find_outermost_region_in_block (struct function
*src_cfun
,
6522 basic_block bb
, eh_region region
)
6524 gimple_stmt_iterator si
;
6526 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6528 gimple stmt
= gsi_stmt (si
);
6529 eh_region stmt_region
;
6532 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
6533 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
6537 region
= stmt_region
;
6538 else if (stmt_region
!= region
)
6540 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6541 gcc_assert (region
!= NULL
);
6550 new_label_mapper (tree decl
, void *data
)
6552 htab_t hash
= (htab_t
) data
;
6556 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6558 m
= XNEW (struct tree_map
);
6559 m
->hash
= DECL_UID (decl
);
6560 m
->base
.from
= decl
;
6561 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6562 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6563 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6564 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6566 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6567 gcc_assert (*slot
== NULL
);
6574 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6578 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
6583 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
6586 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6588 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6591 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6593 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
6594 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6596 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
6601 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6602 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6605 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6609 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
6612 /* Discard it from the old loop array. */
6613 (*get_loops (fn1
))[loop
->num
] = NULL
;
6615 /* Place it in the new loop array, assigning it a new number. */
6616 loop
->num
= number_of_loops (fn2
);
6617 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
6619 /* Recurse to children. */
6620 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
6621 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
6624 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6625 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6626 single basic block in the original CFG and the new basic block is
6627 returned. DEST_CFUN must not have a CFG yet.
6629 Note that the region need not be a pure SESE region. Blocks inside
6630 the region may contain calls to abort/exit. The only restriction
6631 is that ENTRY_BB should be the only entry point and it must
6634 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6635 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6636 to the new function.
6638 All local variables referenced in the region are assumed to be in
6639 the corresponding BLOCK_VARS and unexpanded variable lists
6640 associated with DEST_CFUN. */
6643 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
6644 basic_block exit_bb
, tree orig_block
)
6646 vec
<basic_block
> bbs
, dom_bbs
;
6647 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
6648 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
6649 struct function
*saved_cfun
= cfun
;
6650 int *entry_flag
, *exit_flag
;
6651 unsigned *entry_prob
, *exit_prob
;
6652 unsigned i
, num_entry_edges
, num_exit_edges
;
6655 htab_t new_label_map
;
6656 struct pointer_map_t
*vars_map
, *eh_map
;
6657 struct loop
*loop
= entry_bb
->loop_father
;
6658 struct move_stmt_d d
;
6660 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6662 gcc_assert (entry_bb
!= exit_bb
6664 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
6666 /* Collect all the blocks in the region. Manually add ENTRY_BB
6667 because it won't be added by dfs_enumerate_from. */
6669 bbs
.safe_push (entry_bb
);
6670 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
6672 /* The blocks that used to be dominated by something in BBS will now be
6673 dominated by the new block. */
6674 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
6678 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6679 the predecessor edges to ENTRY_BB and the successor edges to
6680 EXIT_BB so that we can re-attach them to the new basic block that
6681 will replace the region. */
6682 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
6683 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
6684 entry_flag
= XNEWVEC (int, num_entry_edges
);
6685 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
6687 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
6689 entry_prob
[i
] = e
->probability
;
6690 entry_flag
[i
] = e
->flags
;
6691 entry_pred
[i
++] = e
->src
;
6697 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
6698 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
6699 exit_flag
= XNEWVEC (int, num_exit_edges
);
6700 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
6702 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
6704 exit_prob
[i
] = e
->probability
;
6705 exit_flag
[i
] = e
->flags
;
6706 exit_succ
[i
++] = e
->dest
;
6718 /* Switch context to the child function to initialize DEST_FN's CFG. */
6719 gcc_assert (dest_cfun
->cfg
== NULL
);
6720 push_cfun (dest_cfun
);
6722 init_empty_tree_cfg ();
6724 /* Initialize EH information for the new function. */
6726 new_label_map
= NULL
;
6729 eh_region region
= NULL
;
6731 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6732 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
6734 init_eh_for_function ();
6737 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
6738 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
6739 new_label_mapper
, new_label_map
);
6743 /* Initialize an empty loop tree. */
6744 struct loops
*loops
= ggc_alloc_cleared_loops ();
6745 init_loops_structure (dest_cfun
, loops
, 1);
6746 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
6747 set_loops_for_fn (dest_cfun
, loops
);
6749 /* Move the outlined loop tree part. */
6750 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6752 if (bb
->loop_father
->header
== bb
6753 && loop_outer (bb
->loop_father
) == loop
)
6755 struct loop
*loop
= bb
->loop_father
;
6756 flow_loop_tree_node_remove (bb
->loop_father
);
6757 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), loop
);
6758 fixup_loop_arrays_after_move (saved_cfun
, cfun
, loop
);
6761 /* Remove loop exits from the outlined region. */
6762 if (loops_for_fn (saved_cfun
)->exits
)
6763 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6765 void **slot
= htab_find_slot_with_hash
6766 (loops_for_fn (saved_cfun
)->exits
, e
,
6767 htab_hash_pointer (e
), NO_INSERT
);
6769 htab_clear_slot (loops_for_fn (saved_cfun
)->exits
, slot
);
6774 /* Adjust the number of blocks in the tree root of the outlined part. */
6775 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
6777 /* Setup a mapping to be used by move_block_to_fn. */
6778 loop
->aux
= current_loops
->tree_root
;
6782 /* Move blocks from BBS into DEST_CFUN. */
6783 gcc_assert (bbs
.length () >= 2);
6784 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
6785 vars_map
= pointer_map_create ();
6787 memset (&d
, 0, sizeof (d
));
6788 d
.orig_block
= orig_block
;
6789 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6790 d
.from_context
= cfun
->decl
;
6791 d
.to_context
= dest_cfun
->decl
;
6792 d
.vars_map
= vars_map
;
6793 d
.new_label_map
= new_label_map
;
6795 d
.remap_decls_p
= true;
6797 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
6799 /* No need to update edge counts on the last block. It has
6800 already been updated earlier when we detached the region from
6801 the original CFG. */
6802 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
6807 /* Loop sizes are no longer correct, fix them up. */
6808 loop
->num_nodes
-= bbs
.length ();
6809 for (struct loop
*outer
= loop_outer (loop
);
6810 outer
; outer
= loop_outer (outer
))
6811 outer
->num_nodes
-= bbs
.length ();
6813 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6817 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6819 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6820 = BLOCK_SUBBLOCKS (orig_block
);
6821 for (block
= BLOCK_SUBBLOCKS (orig_block
);
6822 block
; block
= BLOCK_CHAIN (block
))
6823 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
6824 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
6827 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
6828 vars_map
, dest_cfun
->decl
);
6831 htab_delete (new_label_map
);
6833 pointer_map_destroy (eh_map
);
6834 pointer_map_destroy (vars_map
);
6836 /* Rewire the entry and exit blocks. The successor to the entry
6837 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6838 the child function. Similarly, the predecessor of DEST_FN's
6839 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6840 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6841 various CFG manipulation function get to the right CFG.
6843 FIXME, this is silly. The CFG ought to become a parameter to
6845 push_cfun (dest_cfun
);
6846 make_edge (ENTRY_BLOCK_PTR
, entry_bb
, EDGE_FALLTHRU
);
6848 make_edge (exit_bb
, EXIT_BLOCK_PTR
, 0);
6851 /* Back in the original function, the SESE region has disappeared,
6852 create a new basic block in its place. */
6853 bb
= create_empty_bb (entry_pred
[0]);
6855 add_bb_to_loop (bb
, loop
);
6856 for (i
= 0; i
< num_entry_edges
; i
++)
6858 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
6859 e
->probability
= entry_prob
[i
];
6862 for (i
= 0; i
< num_exit_edges
; i
++)
6864 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
6865 e
->probability
= exit_prob
[i
];
6868 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
6869 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
6870 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
6888 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6892 dump_function_to_file (tree fndecl
, FILE *file
, int flags
)
6894 tree arg
, var
, old_current_fndecl
= current_function_decl
;
6895 struct function
*dsf
;
6896 bool ignore_topmost_bind
= false, any_var
= false;
6899 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
6900 && decl_is_tm_clone (fndecl
));
6901 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
6903 current_function_decl
= fndecl
;
6904 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
6906 arg
= DECL_ARGUMENTS (fndecl
);
6909 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
6910 fprintf (file
, " ");
6911 print_generic_expr (file
, arg
, dump_flags
);
6912 if (flags
& TDF_VERBOSE
)
6913 print_node (file
, "", arg
, 4);
6914 if (DECL_CHAIN (arg
))
6915 fprintf (file
, ", ");
6916 arg
= DECL_CHAIN (arg
);
6918 fprintf (file
, ")\n");
6920 if (flags
& TDF_VERBOSE
)
6921 print_node (file
, "", fndecl
, 2);
6923 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
6924 if (dsf
&& (flags
& TDF_EH
))
6925 dump_eh_tree (file
, dsf
);
6927 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
6929 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
6930 current_function_decl
= old_current_fndecl
;
6934 /* When GIMPLE is lowered, the variables are no longer available in
6935 BIND_EXPRs, so display them separately. */
6936 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
6939 ignore_topmost_bind
= true;
6941 fprintf (file
, "{\n");
6942 if (!vec_safe_is_empty (fun
->local_decls
))
6943 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
6945 print_generic_decl (file
, var
, flags
);
6946 if (flags
& TDF_VERBOSE
)
6947 print_node (file
, "", var
, 4);
6948 fprintf (file
, "\n");
6952 if (gimple_in_ssa_p (cfun
))
6953 for (ix
= 1; ix
< num_ssa_names
; ++ix
)
6955 tree name
= ssa_name (ix
);
6956 if (name
&& !SSA_NAME_VAR (name
))
6958 fprintf (file
, " ");
6959 print_generic_expr (file
, TREE_TYPE (name
), flags
);
6960 fprintf (file
, " ");
6961 print_generic_expr (file
, name
, flags
);
6962 fprintf (file
, ";\n");
6969 if (fun
&& fun
->decl
== fndecl
6971 && basic_block_info_for_function (fun
))
6973 /* If the CFG has been built, emit a CFG-based dump. */
6974 if (!ignore_topmost_bind
)
6975 fprintf (file
, "{\n");
6977 if (any_var
&& n_basic_blocks_for_function (fun
))
6978 fprintf (file
, "\n");
6980 FOR_EACH_BB_FN (bb
, fun
)
6981 dump_bb (file
, bb
, 2, flags
| TDF_COMMENT
);
6983 fprintf (file
, "}\n");
6985 else if (DECL_SAVED_TREE (fndecl
) == NULL
)
6987 /* The function is now in GIMPLE form but the CFG has not been
6988 built yet. Emit the single sequence of GIMPLE statements
6989 that make up its body. */
6990 gimple_seq body
= gimple_body (fndecl
);
6992 if (gimple_seq_first_stmt (body
)
6993 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
6994 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
6995 print_gimple_seq (file
, body
, 0, flags
);
6998 if (!ignore_topmost_bind
)
6999 fprintf (file
, "{\n");
7002 fprintf (file
, "\n");
7004 print_gimple_seq (file
, body
, 2, flags
);
7005 fprintf (file
, "}\n");
7012 /* Make a tree based dump. */
7013 chain
= DECL_SAVED_TREE (fndecl
);
7014 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
7016 if (ignore_topmost_bind
)
7018 chain
= BIND_EXPR_BODY (chain
);
7026 if (!ignore_topmost_bind
)
7027 fprintf (file
, "{\n");
7032 fprintf (file
, "\n");
7034 print_generic_stmt_indented (file
, chain
, flags
, indent
);
7035 if (ignore_topmost_bind
)
7036 fprintf (file
, "}\n");
7039 if (flags
& TDF_ENUMERATE_LOCALS
)
7040 dump_enumerated_decls (file
, flags
);
7041 fprintf (file
, "\n\n");
7043 current_function_decl
= old_current_fndecl
;
7046 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7049 debug_function (tree fn
, int flags
)
7051 dump_function_to_file (fn
, stderr
, flags
);
7055 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7058 print_pred_bbs (FILE *file
, basic_block bb
)
7063 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
7064 fprintf (file
, "bb_%d ", e
->src
->index
);
7068 /* Print on FILE the indexes for the successors of basic_block BB. */
7071 print_succ_bbs (FILE *file
, basic_block bb
)
7076 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7077 fprintf (file
, "bb_%d ", e
->dest
->index
);
7080 /* Print to FILE the basic block BB following the VERBOSITY level. */
7083 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
7085 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
7086 memset ((void *) s_indent
, ' ', (size_t) indent
);
7087 s_indent
[indent
] = '\0';
7089 /* Print basic_block's header. */
7092 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
7093 print_pred_bbs (file
, bb
);
7094 fprintf (file
, "}, succs = {");
7095 print_succ_bbs (file
, bb
);
7096 fprintf (file
, "})\n");
7099 /* Print basic_block's body. */
7102 fprintf (file
, "%s {\n", s_indent
);
7103 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
7104 fprintf (file
, "%s }\n", s_indent
);
7108 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
7110 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7111 VERBOSITY level this outputs the contents of the loop, or just its
7115 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
7123 s_indent
= (char *) alloca ((size_t) indent
+ 1);
7124 memset ((void *) s_indent
, ' ', (size_t) indent
);
7125 s_indent
[indent
] = '\0';
7127 /* Print loop's header. */
7128 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
7130 fprintf (file
, "header = %d", loop
->header
->index
);
7133 fprintf (file
, "deleted)\n");
7137 fprintf (file
, ", latch = %d", loop
->latch
->index
);
7139 fprintf (file
, ", multiple latches");
7140 fprintf (file
, ", niter = ");
7141 print_generic_expr (file
, loop
->nb_iterations
, 0);
7143 if (loop
->any_upper_bound
)
7145 fprintf (file
, ", upper_bound = ");
7146 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
7149 if (loop
->any_estimate
)
7151 fprintf (file
, ", estimate = ");
7152 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
7154 fprintf (file
, ")\n");
7156 /* Print loop's body. */
7159 fprintf (file
, "%s{\n", s_indent
);
7161 if (bb
->loop_father
== loop
)
7162 print_loops_bb (file
, bb
, indent
, verbosity
);
7164 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
7165 fprintf (file
, "%s}\n", s_indent
);
7169 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7170 spaces. Following VERBOSITY level this outputs the contents of the
7171 loop, or just its structure. */
7174 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
,
7180 print_loop (file
, loop
, indent
, verbosity
);
7181 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
7184 /* Follow a CFG edge from the entry point of the program, and on entry
7185 of a loop, pretty print the loop structure on FILE. */
7188 print_loops (FILE *file
, int verbosity
)
7192 bb
= ENTRY_BLOCK_PTR
;
7193 if (bb
&& bb
->loop_father
)
7194 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
7200 debug (struct loop
&ref
)
7202 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
7206 debug (struct loop
*ptr
)
7211 fprintf (stderr
, "<nil>\n");
7214 /* Dump a loop verbosely. */
7217 debug_verbose (struct loop
&ref
)
7219 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
7223 debug_verbose (struct loop
*ptr
)
7228 fprintf (stderr
, "<nil>\n");
7232 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7235 debug_loops (int verbosity
)
7237 print_loops (stderr
, verbosity
);
7240 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7243 debug_loop (struct loop
*loop
, int verbosity
)
7245 print_loop (stderr
, loop
, 0, verbosity
);
7248 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7252 debug_loop_num (unsigned num
, int verbosity
)
7254 debug_loop (get_loop (cfun
, num
), verbosity
);
7257 /* Return true if BB ends with a call, possibly followed by some
7258 instructions that must stay with the call. Return false,
7262 gimple_block_ends_with_call_p (basic_block bb
)
7264 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
7265 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
7269 /* Return true if BB ends with a conditional branch. Return false,
7273 gimple_block_ends_with_condjump_p (const_basic_block bb
)
7275 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
7276 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
7280 /* Return true if we need to add fake edge to exit at statement T.
7281 Helper function for gimple_flow_call_edges_add. */
7284 need_fake_edge_p (gimple t
)
7286 tree fndecl
= NULL_TREE
;
7289 /* NORETURN and LONGJMP calls already have an edge to exit.
7290 CONST and PURE calls do not need one.
7291 We don't currently check for CONST and PURE here, although
7292 it would be a good idea, because those attributes are
7293 figured out from the RTL in mark_constant_function, and
7294 the counter incrementation code from -fprofile-arcs
7295 leads to different results from -fbranch-probabilities. */
7296 if (is_gimple_call (t
))
7298 fndecl
= gimple_call_fndecl (t
);
7299 call_flags
= gimple_call_flags (t
);
7302 if (is_gimple_call (t
)
7304 && DECL_BUILT_IN (fndecl
)
7305 && (call_flags
& ECF_NOTHROW
)
7306 && !(call_flags
& ECF_RETURNS_TWICE
)
7307 /* fork() doesn't really return twice, but the effect of
7308 wrapping it in __gcov_fork() which calls __gcov_flush()
7309 and clears the counters before forking has the same
7310 effect as returning twice. Force a fake edge. */
7311 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
7312 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
7315 if (is_gimple_call (t
))
7321 if (!(call_flags
& ECF_NORETURN
))
7325 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7326 if ((e
->flags
& EDGE_FAKE
) == 0)
7330 if (gimple_code (t
) == GIMPLE_ASM
7331 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
7338 /* Add fake edges to the function exit for any non constant and non
7339 noreturn calls (or noreturn calls with EH/abnormal edges),
7340 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7341 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7344 The goal is to expose cases in which entering a basic block does
7345 not imply that all subsequent instructions must be executed. */
7348 gimple_flow_call_edges_add (sbitmap blocks
)
7351 int blocks_split
= 0;
7352 int last_bb
= last_basic_block
;
7353 bool check_last_block
= false;
7355 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
7359 check_last_block
= true;
7361 check_last_block
= bitmap_bit_p (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
7363 /* In the last basic block, before epilogue generation, there will be
7364 a fallthru edge to EXIT. Special care is required if the last insn
7365 of the last basic block is a call because make_edge folds duplicate
7366 edges, which would result in the fallthru edge also being marked
7367 fake, which would result in the fallthru edge being removed by
7368 remove_fake_edges, which would result in an invalid CFG.
7370 Moreover, we can't elide the outgoing fake edge, since the block
7371 profiler needs to take this into account in order to solve the minimal
7372 spanning tree in the case that the call doesn't return.
7374 Handle this by adding a dummy instruction in a new last basic block. */
7375 if (check_last_block
)
7377 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
7378 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
7381 if (!gsi_end_p (gsi
))
7384 if (t
&& need_fake_edge_p (t
))
7388 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
7391 gsi_insert_on_edge (e
, gimple_build_nop ());
7392 gsi_commit_edge_inserts ();
7397 /* Now add fake edges to the function exit for any non constant
7398 calls since there is no way that we can determine if they will
7400 for (i
= 0; i
< last_bb
; i
++)
7402 basic_block bb
= BASIC_BLOCK (i
);
7403 gimple_stmt_iterator gsi
;
7404 gimple stmt
, last_stmt
;
7409 if (blocks
&& !bitmap_bit_p (blocks
, i
))
7412 gsi
= gsi_last_nondebug_bb (bb
);
7413 if (!gsi_end_p (gsi
))
7415 last_stmt
= gsi_stmt (gsi
);
7418 stmt
= gsi_stmt (gsi
);
7419 if (need_fake_edge_p (stmt
))
7423 /* The handling above of the final block before the
7424 epilogue should be enough to verify that there is
7425 no edge to the exit block in CFG already.
7426 Calling make_edge in such case would cause us to
7427 mark that edge as fake and remove it later. */
7428 #ifdef ENABLE_CHECKING
7429 if (stmt
== last_stmt
)
7431 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
7432 gcc_assert (e
== NULL
);
7436 /* Note that the following may create a new basic block
7437 and renumber the existing basic blocks. */
7438 if (stmt
!= last_stmt
)
7440 e
= split_block (bb
, stmt
);
7444 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
7448 while (!gsi_end_p (gsi
));
7453 verify_flow_info ();
7455 return blocks_split
;
7458 /* Removes edge E and all the blocks dominated by it, and updates dominance
7459 information. The IL in E->src needs to be updated separately.
7460 If dominance info is not available, only the edge E is removed.*/
7463 remove_edge_and_dominated_blocks (edge e
)
7465 vec
<basic_block
> bbs_to_remove
= vNULL
;
7466 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
7470 bool none_removed
= false;
7472 basic_block bb
, dbb
;
7475 if (!dom_info_available_p (CDI_DOMINATORS
))
7481 /* No updating is needed for edges to exit. */
7482 if (e
->dest
== EXIT_BLOCK_PTR
)
7484 if (cfgcleanup_altered_bbs
)
7485 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7490 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7491 that is not dominated by E->dest, then this set is empty. Otherwise,
7492 all the basic blocks dominated by E->dest are removed.
7494 Also, to DF_IDOM we store the immediate dominators of the blocks in
7495 the dominance frontier of E (i.e., of the successors of the
7496 removed blocks, if there are any, and of E->dest otherwise). */
7497 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
7502 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
7504 none_removed
= true;
7509 df
= BITMAP_ALLOC (NULL
);
7510 df_idom
= BITMAP_ALLOC (NULL
);
7513 bitmap_set_bit (df_idom
,
7514 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
7517 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
7518 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
7520 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
7522 if (f
->dest
!= EXIT_BLOCK_PTR
)
7523 bitmap_set_bit (df
, f
->dest
->index
);
7526 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
7527 bitmap_clear_bit (df
, bb
->index
);
7529 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
7531 bb
= BASIC_BLOCK (i
);
7532 bitmap_set_bit (df_idom
,
7533 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
7537 if (cfgcleanup_altered_bbs
)
7539 /* Record the set of the altered basic blocks. */
7540 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
7541 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
7544 /* Remove E and the cancelled blocks. */
7549 /* Walk backwards so as to get a chance to substitute all
7550 released DEFs into debug stmts. See
7551 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7553 for (i
= bbs_to_remove
.length (); i
-- > 0; )
7554 delete_basic_block (bbs_to_remove
[i
]);
7557 /* Update the dominance information. The immediate dominator may change only
7558 for blocks whose immediate dominator belongs to DF_IDOM:
7560 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7561 removal. Let Z the arbitrary block such that idom(Z) = Y and
7562 Z dominates X after the removal. Before removal, there exists a path P
7563 from Y to X that avoids Z. Let F be the last edge on P that is
7564 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7565 dominates W, and because of P, Z does not dominate W), and W belongs to
7566 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7567 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
7569 bb
= BASIC_BLOCK (i
);
7570 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
7572 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
7573 bbs_to_fix_dom
.safe_push (dbb
);
7576 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
7579 BITMAP_FREE (df_idom
);
7580 bbs_to_remove
.release ();
7581 bbs_to_fix_dom
.release ();
7584 /* Purge dead EH edges from basic block BB. */
7587 gimple_purge_dead_eh_edges (basic_block bb
)
7589 bool changed
= false;
7592 gimple stmt
= last_stmt (bb
);
7594 if (stmt
&& stmt_can_throw_internal (stmt
))
7597 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7599 if (e
->flags
& EDGE_EH
)
7601 remove_edge_and_dominated_blocks (e
);
7611 /* Purge dead EH edges from basic block listed in BLOCKS. */
7614 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
7616 bool changed
= false;
7620 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7622 basic_block bb
= BASIC_BLOCK (i
);
7624 /* Earlier gimple_purge_dead_eh_edges could have removed
7625 this basic block already. */
7626 gcc_assert (bb
|| changed
);
7628 changed
|= gimple_purge_dead_eh_edges (bb
);
7634 /* Purge dead abnormal call edges from basic block BB. */
7637 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
7639 bool changed
= false;
7642 gimple stmt
= last_stmt (bb
);
7644 if (!cfun
->has_nonlocal_label
7645 && !cfun
->calls_setjmp
)
7648 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
7651 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7653 if (e
->flags
& EDGE_ABNORMAL
)
7655 if (e
->flags
& EDGE_FALLTHRU
)
7656 e
->flags
&= ~EDGE_ABNORMAL
;
7658 remove_edge_and_dominated_blocks (e
);
7668 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7671 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
7673 bool changed
= false;
7677 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7679 basic_block bb
= BASIC_BLOCK (i
);
7681 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7682 this basic block already. */
7683 gcc_assert (bb
|| changed
);
7685 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
7691 /* This function is called whenever a new edge is created or
7695 gimple_execute_on_growing_pred (edge e
)
7697 basic_block bb
= e
->dest
;
7699 if (!gimple_seq_empty_p (phi_nodes (bb
)))
7700 reserve_phi_args_for_new_edge (bb
);
7703 /* This function is called immediately before edge E is removed from
7704 the edge vector E->dest->preds. */
7707 gimple_execute_on_shrinking_pred (edge e
)
7709 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
7710 remove_phi_args (e
);
7713 /*---------------------------------------------------------------------------
7714 Helper functions for Loop versioning
7715 ---------------------------------------------------------------------------*/
7717 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7718 of 'first'. Both of them are dominated by 'new_head' basic block. When
7719 'new_head' was created by 'second's incoming edge it received phi arguments
7720 on the edge by split_edge(). Later, additional edge 'e' was created to
7721 connect 'new_head' and 'first'. Now this routine adds phi args on this
7722 additional edge 'e' that new_head to second edge received as part of edge
7726 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
7727 basic_block new_head
, edge e
)
7730 gimple_stmt_iterator psi1
, psi2
;
7732 edge e2
= find_edge (new_head
, second
);
7734 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7735 edge, we should always have an edge from NEW_HEAD to SECOND. */
7736 gcc_assert (e2
!= NULL
);
7738 /* Browse all 'second' basic block phi nodes and add phi args to
7739 edge 'e' for 'first' head. PHI args are always in correct order. */
7741 for (psi2
= gsi_start_phis (second
),
7742 psi1
= gsi_start_phis (first
);
7743 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
7744 gsi_next (&psi2
), gsi_next (&psi1
))
7746 phi1
= gsi_stmt (psi1
);
7747 phi2
= gsi_stmt (psi2
);
7748 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
7749 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
7754 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7755 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7756 the destination of the ELSE part. */
7759 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
7760 basic_block second_head ATTRIBUTE_UNUSED
,
7761 basic_block cond_bb
, void *cond_e
)
7763 gimple_stmt_iterator gsi
;
7764 gimple new_cond_expr
;
7765 tree cond_expr
= (tree
) cond_e
;
7768 /* Build new conditional expr */
7769 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
7770 NULL_TREE
, NULL_TREE
);
7772 /* Add new cond in cond_bb. */
7773 gsi
= gsi_last_bb (cond_bb
);
7774 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
7776 /* Adjust edges appropriately to connect new head with first head
7777 as well as second head. */
7778 e0
= single_succ_edge (cond_bb
);
7779 e0
->flags
&= ~EDGE_FALLTHRU
;
7780 e0
->flags
|= EDGE_FALSE_VALUE
;
7784 /* Do book-keeping of basic block BB for the profile consistency checker.
7785 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7786 then do post-pass accounting. Store the counting in RECORD. */
7788 gimple_account_profile_record (basic_block bb
, int after_pass
,
7789 struct profile_record
*record
)
7791 gimple_stmt_iterator i
;
7792 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
7794 record
->size
[after_pass
]
7795 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
7796 if (profile_status
== PROFILE_READ
)
7797 record
->time
[after_pass
]
7798 += estimate_num_insns (gsi_stmt (i
),
7799 &eni_time_weights
) * bb
->count
;
7800 else if (profile_status
== PROFILE_GUESSED
)
7801 record
->time
[after_pass
]
7802 += estimate_num_insns (gsi_stmt (i
),
7803 &eni_time_weights
) * bb
->frequency
;
7807 struct cfg_hooks gimple_cfg_hooks
= {
7809 gimple_verify_flow_info
,
7810 gimple_dump_bb
, /* dump_bb */
7811 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
7812 create_bb
, /* create_basic_block */
7813 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
7814 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
7815 gimple_can_remove_branch_p
, /* can_remove_branch_p */
7816 remove_bb
, /* delete_basic_block */
7817 gimple_split_block
, /* split_block */
7818 gimple_move_block_after
, /* move_block_after */
7819 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
7820 gimple_merge_blocks
, /* merge_blocks */
7821 gimple_predict_edge
, /* predict_edge */
7822 gimple_predicted_by_p
, /* predicted_by_p */
7823 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
7824 gimple_duplicate_bb
, /* duplicate_block */
7825 gimple_split_edge
, /* split_edge */
7826 gimple_make_forwarder_block
, /* make_forward_block */
7827 NULL
, /* tidy_fallthru_edge */
7828 NULL
, /* force_nonfallthru */
7829 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
7830 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
7831 gimple_flow_call_edges_add
, /* flow_call_edges_add */
7832 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
7833 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
7834 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
7835 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
7836 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
7837 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
7838 flush_pending_stmts
, /* flush_pending_stmts */
7839 gimple_empty_block_p
, /* block_empty_p */
7840 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
7841 gimple_account_profile_record
,
7845 /* Split all critical edges. */
7848 split_critical_edges (void)
7854 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7855 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7856 mappings around the calls to split_edge. */
7857 start_recording_case_labels ();
7860 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7862 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
7864 /* PRE inserts statements to edges and expects that
7865 since split_critical_edges was done beforehand, committing edge
7866 insertions will not split more edges. In addition to critical
7867 edges we must split edges that have multiple successors and
7868 end by control flow statements, such as RESX.
7869 Go ahead and split them too. This matches the logic in
7870 gimple_find_edge_insert_loc. */
7871 else if ((!single_pred_p (e
->dest
)
7872 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
7873 || e
->dest
== EXIT_BLOCK_PTR
)
7874 && e
->src
!= ENTRY_BLOCK_PTR
7875 && !(e
->flags
& EDGE_ABNORMAL
))
7877 gimple_stmt_iterator gsi
;
7879 gsi
= gsi_last_bb (e
->src
);
7880 if (!gsi_end_p (gsi
)
7881 && stmt_ends_bb_p (gsi_stmt (gsi
))
7882 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
7883 && !gimple_call_builtin_p (gsi_stmt (gsi
),
7889 end_recording_case_labels ();
7893 struct gimple_opt_pass pass_split_crit_edges
=
7897 "crited", /* name */
7898 OPTGROUP_NONE
, /* optinfo_flags */
7900 split_critical_edges
, /* execute */
7903 0, /* static_pass_number */
7904 TV_TREE_SPLIT_EDGES
, /* tv_id */
7905 PROP_cfg
, /* properties required */
7906 PROP_no_crit_edges
, /* properties_provided */
7907 0, /* properties_destroyed */
7908 0, /* todo_flags_start */
7909 TODO_verify_flow
/* todo_flags_finish */
7914 /* Build a ternary operation and gimplify it. Emit code before GSI.
7915 Return the gimple_val holding the result. */
7918 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7919 tree type
, tree a
, tree b
, tree c
)
7922 location_t loc
= gimple_location (gsi_stmt (*gsi
));
7924 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
7927 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7931 /* Build a binary operation and gimplify it. Emit code before GSI.
7932 Return the gimple_val holding the result. */
7935 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7936 tree type
, tree a
, tree b
)
7940 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
7943 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7947 /* Build a unary operation and gimplify it. Emit code before GSI.
7948 Return the gimple_val holding the result. */
7951 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
7956 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
7959 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7965 /* Emit return warnings. */
7968 execute_warn_function_return (void)
7970 source_location location
;
7975 if (!targetm
.warn_func_return (cfun
->decl
))
7978 /* If we have a path to EXIT, then we do return. */
7979 if (TREE_THIS_VOLATILE (cfun
->decl
)
7980 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0)
7982 location
= UNKNOWN_LOCATION
;
7983 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7985 last
= last_stmt (e
->src
);
7986 if ((gimple_code (last
) == GIMPLE_RETURN
7987 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
7988 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
7991 if (location
== UNKNOWN_LOCATION
)
7992 location
= cfun
->function_end_locus
;
7993 warning_at (location
, 0, "%<noreturn%> function does return");
7996 /* If we see "return;" in some basic block, then we do reach the end
7997 without returning a value. */
7998 else if (warn_return_type
7999 && !TREE_NO_WARNING (cfun
->decl
)
8000 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0
8001 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
8003 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
8005 gimple last
= last_stmt (e
->src
);
8006 if (gimple_code (last
) == GIMPLE_RETURN
8007 && gimple_return_retval (last
) == NULL
8008 && !gimple_no_warning_p (last
))
8010 location
= gimple_location (last
);
8011 if (location
== UNKNOWN_LOCATION
)
8012 location
= cfun
->function_end_locus
;
8013 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
8014 TREE_NO_WARNING (cfun
->decl
) = 1;
8023 /* Given a basic block B which ends with a conditional and has
8024 precisely two successors, determine which of the edges is taken if
8025 the conditional is true and which is taken if the conditional is
8026 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8029 extract_true_false_edges_from_block (basic_block b
,
8033 edge e
= EDGE_SUCC (b
, 0);
8035 if (e
->flags
& EDGE_TRUE_VALUE
)
8038 *false_edge
= EDGE_SUCC (b
, 1);
8043 *true_edge
= EDGE_SUCC (b
, 1);
8047 struct gimple_opt_pass pass_warn_function_return
=
8051 "*warn_function_return", /* name */
8052 OPTGROUP_NONE
, /* optinfo_flags */
8054 execute_warn_function_return
, /* execute */
8057 0, /* static_pass_number */
8058 TV_NONE
, /* tv_id */
8059 PROP_cfg
, /* properties_required */
8060 0, /* properties_provided */
8061 0, /* properties_destroyed */
8062 0, /* todo_flags_start */
8063 0 /* todo_flags_finish */
8067 /* Emit noreturn warnings. */
8070 execute_warn_function_noreturn (void)
8072 if (!TREE_THIS_VOLATILE (current_function_decl
)
8073 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) == 0)
8074 warn_function_noreturn (current_function_decl
);
8079 gate_warn_function_noreturn (void)
8081 return warn_suggest_attribute_noreturn
;
8084 struct gimple_opt_pass pass_warn_function_noreturn
=
8088 "*warn_function_noreturn", /* name */
8089 OPTGROUP_NONE
, /* optinfo_flags */
8090 gate_warn_function_noreturn
, /* gate */
8091 execute_warn_function_noreturn
, /* execute */
8094 0, /* static_pass_number */
8095 TV_NONE
, /* tv_id */
8096 PROP_cfg
, /* properties_required */
8097 0, /* properties_provided */
8098 0, /* properties_destroyed */
8099 0, /* todo_flags_start */
8100 0 /* todo_flags_finish */
8105 /* Walk a gimplified function and warn for functions whose return value is
8106 ignored and attribute((warn_unused_result)) is set. This is done before
8107 inlining, so we don't have to worry about that. */
8110 do_warn_unused_result (gimple_seq seq
)
8113 gimple_stmt_iterator i
;
8115 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
8117 gimple g
= gsi_stmt (i
);
8119 switch (gimple_code (g
))
8122 do_warn_unused_result (gimple_bind_body (g
));
8125 do_warn_unused_result (gimple_try_eval (g
));
8126 do_warn_unused_result (gimple_try_cleanup (g
));
8129 do_warn_unused_result (gimple_catch_handler (g
));
8131 case GIMPLE_EH_FILTER
:
8132 do_warn_unused_result (gimple_eh_filter_failure (g
));
8136 if (gimple_call_lhs (g
))
8138 if (gimple_call_internal_p (g
))
8141 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8142 LHS. All calls whose value is ignored should be
8143 represented like this. Look for the attribute. */
8144 fdecl
= gimple_call_fndecl (g
);
8145 ftype
= gimple_call_fntype (g
);
8147 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
8149 location_t loc
= gimple_location (g
);
8152 warning_at (loc
, OPT_Wunused_result
,
8153 "ignoring return value of %qD, "
8154 "declared with attribute warn_unused_result",
8157 warning_at (loc
, OPT_Wunused_result
,
8158 "ignoring return value of function "
8159 "declared with attribute warn_unused_result");
8164 /* Not a container, not a call, or a call whose value is used. */
8171 run_warn_unused_result (void)
8173 do_warn_unused_result (gimple_body (current_function_decl
));
8178 gate_warn_unused_result (void)
8180 return flag_warn_unused_result
;
8183 struct gimple_opt_pass pass_warn_unused_result
=
8187 "*warn_unused_result", /* name */
8188 OPTGROUP_NONE
, /* optinfo_flags */
8189 gate_warn_unused_result
, /* gate */
8190 run_warn_unused_result
, /* execute */
8193 0, /* static_pass_number */
8194 TV_NONE
, /* tv_id */
8195 PROP_gimple_any
, /* properties_required */
8196 0, /* properties_provided */
8197 0, /* properties_destroyed */
8198 0, /* todo_flags_start */
8199 0, /* todo_flags_finish */
8204 /* Garbage collection support for edge_def. */
8206 extern void gt_ggc_mx (tree
&);
8207 extern void gt_ggc_mx (gimple
&);
8208 extern void gt_ggc_mx (rtx
&);
8209 extern void gt_ggc_mx (basic_block
&);
8212 gt_ggc_mx (edge_def
*e
)
8214 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8216 gt_ggc_mx (e
->dest
);
8217 if (current_ir_type () == IR_GIMPLE
)
8218 gt_ggc_mx (e
->insns
.g
);
8220 gt_ggc_mx (e
->insns
.r
);
8224 /* PCH support for edge_def. */
8226 extern void gt_pch_nx (tree
&);
8227 extern void gt_pch_nx (gimple
&);
8228 extern void gt_pch_nx (rtx
&);
8229 extern void gt_pch_nx (basic_block
&);
8232 gt_pch_nx (edge_def
*e
)
8234 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8236 gt_pch_nx (e
->dest
);
8237 if (current_ir_type () == IR_GIMPLE
)
8238 gt_pch_nx (e
->insns
.g
);
8240 gt_pch_nx (e
->insns
.r
);
8245 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
8247 tree block
= LOCATION_BLOCK (e
->goto_locus
);
8248 op (&(e
->src
), cookie
);
8249 op (&(e
->dest
), cookie
);
8250 if (current_ir_type () == IR_GIMPLE
)
8251 op (&(e
->insns
.g
), cookie
);
8253 op (&(e
->insns
.r
), cookie
);
8254 op (&(block
), cookie
);