re PR fortran/90166 (Compiler Fails at Assembler)
[official-gcc.git] / gcc / bitmap.h
blobed25c1ee5da0336050aca5240b11e15e5eaf1694
1 /* Functions to support general ended bitmaps.
2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_BITMAP_H
21 #define GCC_BITMAP_H
23 /* Implementation of sparse integer sets as a linked list or tree.
25 This sparse set representation is suitable for sparse sets with an
26 unknown (a priori) universe.
28 Sets are represented as double-linked lists of container nodes of
29 type "struct bitmap_element" or as a binary trees of the same
30 container nodes. Each container node consists of an index for the
31 first member that could be held in the container, a small array of
32 integers that represent the members in the container, and pointers
33 to the next and previous element in the linked list, or left and
34 right children in the tree. In linked-list form, the container
35 nodes in the list are sorted in ascending order, i.e. the head of
36 the list holds the element with the smallest member of the set.
37 In tree form, nodes to the left have a smaller container index.
39 For a given member I in the set:
40 - the element for I will have index is I / (bits per element)
41 - the position for I within element is I % (bits per element)
43 This representation is very space-efficient for large sparse sets, and
44 the size of the set can be changed dynamically without much overhead.
45 An important parameter is the number of bits per element. In this
46 implementation, there are 128 bits per element. This results in a
47 high storage overhead *per element*, but a small overall overhead if
48 the set is very sparse.
50 The storage requirements for linked-list sparse sets are O(E), with E->N
51 in the worst case (a sparse set with large distances between the values
52 of the set members).
54 This representation also works well for data flow problems where the size
55 of the set may grow dynamically, but care must be taken that the member_p,
56 add_member, and remove_member operations occur with a suitable access
57 pattern.
59 The linked-list set representation works well for problems involving very
60 sparse sets. The canonical example in GCC is, of course, the "set of
61 sets" for some CFG-based data flow problems (liveness analysis, dominance
62 frontiers, etc.).
64 For random-access sparse sets of unknown universe, the binary tree
65 representation is likely to be a more suitable choice. Theoretical
66 access times for the binary tree representation are better than those
67 for the linked-list, but in practice this is only true for truely
68 random access.
70 Often the most suitable representation during construction of the set
71 is not the best choice for the usage of the set. For such cases, the
72 "view" of the set can be changed from one representation to the other.
73 This is an O(E) operation:
75 * from list to tree view : bitmap_tree_view
76 * from tree to list view : bitmap_list_view
78 Traversing linked lists or trees can be cache-unfriendly. Performance
79 can be improved by keeping container nodes in the set grouped together
80 in memory, using a dedicated obstack for a set (or group of related
81 sets). Elements allocated on obstacks are released to a free-list and
82 taken off the free list. If multiple sets are allocated on the same
83 obstack, elements freed from one set may be re-used for one of the other
84 sets. This usually helps avoid cache misses.
86 A single free-list is used for all sets allocated in GGC space. This is
87 bad for persistent sets, so persistent sets should be allocated on an
88 obstack whenever possible.
90 For random-access sets with a known, relatively small universe size, the
91 SparseSet or simple bitmap representations may be more efficient than a
92 linked-list set.
95 LINKED LIST FORM
96 ================
98 In linked-list form, in-order iterations of the set can be executed
99 efficiently. The downside is that many random-access operations are
100 relatively slow, because the linked list has to be traversed to test
101 membership (i.e. member_p/ add_member/remove_member).
103 To improve the performance of this set representation, the last
104 accessed element and its index are cached. For membership tests on
105 members close to recently accessed members, the cached last element
106 improves membership test to a constant-time operation.
108 The following operations can always be performed in O(1) time in
109 list view:
111 * clear : bitmap_clear
112 * smallest_member : bitmap_first_set_bit
113 * choose_one : (not implemented, but could be
114 in constant time)
116 The following operations can be performed in O(E) time worst-case in
117 list view (with E the number of elements in the linked list), but in
118 O(1) time with a suitable access patterns:
120 * member_p : bitmap_bit_p
121 * add_member : bitmap_set_bit / bitmap_set_range
122 * remove_member : bitmap_clear_bit / bitmap_clear_range
124 The following operations can be performed in O(E) time in list view:
126 * cardinality : bitmap_count_bits
127 * largest_member : bitmap_last_set_bit (but this could
128 in constant time with a pointer to
129 the last element in the chain)
130 * set_size : bitmap_last_set_bit
132 In tree view the following operations can all be performed in O(log E)
133 amortized time with O(E) worst-case behavior.
135 * smallest_member
136 * largest_member
137 * set_size
138 * member_p
139 * add_member
140 * remove_member
142 Additionally, the linked-list sparse set representation supports
143 enumeration of the members in O(E) time:
145 * forall : EXECUTE_IF_SET_IN_BITMAP
146 * set_copy : bitmap_copy
147 * set_intersection : bitmap_intersect_p /
148 bitmap_and / bitmap_and_into /
149 EXECUTE_IF_AND_IN_BITMAP
150 * set_union : bitmap_ior / bitmap_ior_into
151 * set_difference : bitmap_intersect_compl_p /
152 bitmap_and_comp / bitmap_and_comp_into /
153 EXECUTE_IF_AND_COMPL_IN_BITMAP
154 * set_disjuction : bitmap_xor_comp / bitmap_xor_comp_into
155 * set_compare : bitmap_equal_p
157 Some operations on 3 sets that occur frequently in data flow problems
158 are also implemented:
160 * A | (B & C) : bitmap_ior_and_into
161 * A | (B & ~C) : bitmap_ior_and_compl /
162 bitmap_ior_and_compl_into
165 BINARY TREE FORM
166 ================
167 An alternate "view" of a bitmap is its binary tree representation.
168 For this representation, splay trees are used because they can be
169 implemented using the same data structures as the linked list, with
170 no overhead for meta-data (like color, or rank) on the tree nodes.
172 In binary tree form, random-access to the set is much more efficient
173 than for the linked-list representation. Downsides are the high cost
174 of clearing the set, and the relatively large number of operations
175 necessary to balance the tree. Also, iterating the set members is
176 not supported.
178 As for the linked-list representation, the last accessed element and
179 its index are cached, so that membership tests on the latest accessed
180 members is a constant-time operation. Other lookups take O(logE)
181 time amortized (but O(E) time worst-case).
183 The following operations can always be performed in O(1) time:
185 * choose_one : (not implemented, but could be
186 implemented in constant time)
188 The following operations can be performed in O(logE) time amortized
189 but O(E) time worst-case, but in O(1) time if the same element is
190 accessed.
192 * member_p : bitmap_bit_p
193 * add_member : bitmap_set_bit
194 * remove_member : bitmap_clear_bit
196 The following operations can be performed in O(logE) time amortized
197 but O(E) time worst-case:
199 * smallest_member : bitmap_first_set_bit
200 * largest_member : bitmap_last_set_bit
201 * set_size : bitmap_last_set_bit
203 The following operations can be performed in O(E) time:
205 * clear : bitmap_clear
207 The binary tree sparse set representation does *not* support any form
208 of enumeration, and does also *not* support logical operations on sets.
209 The binary tree representation is only supposed to be used for sets
210 on which many random-access membership tests will happen. */
212 #include "obstack.h"
214 /* Bitmap memory usage. */
215 struct bitmap_usage: public mem_usage
217 /* Default contructor. */
218 bitmap_usage (): m_nsearches (0), m_search_iter (0) {}
219 /* Constructor. */
220 bitmap_usage (size_t allocated, size_t times, size_t peak,
221 uint64_t nsearches, uint64_t search_iter)
222 : mem_usage (allocated, times, peak),
223 m_nsearches (nsearches), m_search_iter (search_iter) {}
225 /* Sum the usage with SECOND usage. */
226 bitmap_usage
227 operator+ (const bitmap_usage &second)
229 return bitmap_usage (m_allocated + second.m_allocated,
230 m_times + second.m_times,
231 m_peak + second.m_peak,
232 m_nsearches + second.m_nsearches,
233 m_search_iter + second.m_search_iter);
236 /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */
237 inline void
238 dump (mem_location *loc, mem_usage &total) const
240 char *location_string = loc->to_string ();
242 fprintf (stderr, "%-48s " PRsa (9) ":%5.1f%%"
243 PRsa (9) PRsa (9) ":%5.1f%%"
244 PRsa (11) PRsa (11) "%10s\n",
245 location_string, SIZE_AMOUNT (m_allocated),
246 get_percent (m_allocated, total.m_allocated),
247 SIZE_AMOUNT (m_peak), SIZE_AMOUNT (m_times),
248 get_percent (m_times, total.m_times),
249 SIZE_AMOUNT (m_nsearches), SIZE_AMOUNT (m_search_iter),
250 loc->m_ggc ? "ggc" : "heap");
252 free (location_string);
255 /* Dump header with NAME. */
256 static inline void
257 dump_header (const char *name)
259 fprintf (stderr, "%-48s %11s%16s%17s%12s%12s%10s\n", name, "Leak", "Peak",
260 "Times", "N searches", "Search iter", "Type");
263 /* Number search operations. */
264 uint64_t m_nsearches;
265 /* Number of search iterations. */
266 uint64_t m_search_iter;
269 /* Bitmap memory description. */
270 extern mem_alloc_description<bitmap_usage> bitmap_mem_desc;
272 /* Fundamental storage type for bitmap. */
274 typedef unsigned long BITMAP_WORD;
275 /* BITMAP_WORD_BITS needs to be unsigned, but cannot contain casts as
276 it is used in preprocessor directives -- hence the 1u. */
277 #define BITMAP_WORD_BITS (CHAR_BIT * SIZEOF_LONG * 1u)
279 /* Number of words to use for each element in the linked list. */
281 #ifndef BITMAP_ELEMENT_WORDS
282 #define BITMAP_ELEMENT_WORDS ((128 + BITMAP_WORD_BITS - 1) / BITMAP_WORD_BITS)
283 #endif
285 /* Number of bits in each actual element of a bitmap. */
287 #define BITMAP_ELEMENT_ALL_BITS (BITMAP_ELEMENT_WORDS * BITMAP_WORD_BITS)
289 /* Obstack for allocating bitmaps and elements from. */
290 struct bitmap_obstack {
291 struct bitmap_element *elements;
292 struct bitmap_head *heads;
293 struct obstack obstack;
296 /* Bitmap set element. We use a linked list to hold only the bits that
297 are set. This allows for use to grow the bitset dynamically without
298 having to realloc and copy a giant bit array.
300 The free list is implemented as a list of lists. There is one
301 outer list connected together by prev fields. Each element of that
302 outer is an inner list (that may consist only of the outer list
303 element) that are connected by the next fields. The prev pointer
304 is undefined for interior elements. This allows
305 bitmap_elt_clear_from to be implemented in unit time rather than
306 linear in the number of elements to be freed. */
308 struct GTY((chain_next ("%h.next"))) bitmap_element {
309 /* In list form, the next element in the linked list;
310 in tree form, the left child node in the tree. */
311 struct bitmap_element *next;
312 /* In list form, the previous element in the linked list;
313 in tree form, the right child node in the tree. */
314 struct bitmap_element *prev;
315 /* regno/BITMAP_ELEMENT_ALL_BITS. */
316 unsigned int indx;
317 /* Bits that are set, counting from INDX, inclusive */
318 BITMAP_WORD bits[BITMAP_ELEMENT_WORDS];
321 /* Head of bitmap linked list. The 'current' member points to something
322 already pointed to by the chain started by first, so GTY((skip)) it. */
324 struct GTY(()) bitmap_head {
325 static bitmap_obstack crashme;
326 /* Poison obstack to not make it not a valid initialized GC bitmap. */
327 CONSTEXPR bitmap_head()
328 : indx(0), tree_form(false), first(NULL), current(NULL),
329 obstack (&crashme)
331 /* Index of last element looked at. */
332 unsigned int indx;
333 /* False if the bitmap is in list form; true if the bitmap is in tree form.
334 Bitmap iterators only work on bitmaps in list form. */
335 bool tree_form;
336 /* In list form, the first element in the linked list;
337 in tree form, the root of the tree. */
338 bitmap_element *first;
339 /* Last element looked at. */
340 bitmap_element * GTY((skip(""))) current;
341 /* Obstack to allocate elements from. If NULL, then use GGC allocation. */
342 bitmap_obstack * GTY((skip(""))) obstack;
343 void dump ();
346 /* Global data */
347 extern bitmap_element bitmap_zero_bits; /* Zero bitmap element */
348 extern bitmap_obstack bitmap_default_obstack; /* Default bitmap obstack */
350 /* Change the view of the bitmap to list, or tree. */
351 void bitmap_list_view (bitmap);
352 void bitmap_tree_view (bitmap);
354 /* Clear a bitmap by freeing up the linked list. */
355 extern void bitmap_clear (bitmap);
357 /* Copy a bitmap to another bitmap. */
358 extern void bitmap_copy (bitmap, const_bitmap);
360 /* Move a bitmap to another bitmap. */
361 extern void bitmap_move (bitmap, bitmap);
363 /* True if two bitmaps are identical. */
364 extern bool bitmap_equal_p (const_bitmap, const_bitmap);
366 /* True if the bitmaps intersect (their AND is non-empty). */
367 extern bool bitmap_intersect_p (const_bitmap, const_bitmap);
369 /* True if the complement of the second intersects the first (their
370 AND_COMPL is non-empty). */
371 extern bool bitmap_intersect_compl_p (const_bitmap, const_bitmap);
373 /* True if MAP is an empty bitmap. */
374 inline bool bitmap_empty_p (const_bitmap map)
376 return !map->first;
379 /* True if the bitmap has only a single bit set. */
380 extern bool bitmap_single_bit_set_p (const_bitmap);
382 /* Count the number of bits set in the bitmap. */
383 extern unsigned long bitmap_count_bits (const_bitmap);
385 /* Count the number of unique bits set across the two bitmaps. */
386 extern unsigned long bitmap_count_unique_bits (const_bitmap, const_bitmap);
388 /* Boolean operations on bitmaps. The _into variants are two operand
389 versions that modify the first source operand. The other variants
390 are three operand versions that to not destroy the source bitmaps.
391 The operations supported are &, & ~, |, ^. */
392 extern void bitmap_and (bitmap, const_bitmap, const_bitmap);
393 extern bool bitmap_and_into (bitmap, const_bitmap);
394 extern bool bitmap_and_compl (bitmap, const_bitmap, const_bitmap);
395 extern bool bitmap_and_compl_into (bitmap, const_bitmap);
396 #define bitmap_compl_and(DST, A, B) bitmap_and_compl (DST, B, A)
397 extern void bitmap_compl_and_into (bitmap, const_bitmap);
398 extern void bitmap_clear_range (bitmap, unsigned int, unsigned int);
399 extern void bitmap_set_range (bitmap, unsigned int, unsigned int);
400 extern bool bitmap_ior (bitmap, const_bitmap, const_bitmap);
401 extern bool bitmap_ior_into (bitmap, const_bitmap);
402 extern void bitmap_xor (bitmap, const_bitmap, const_bitmap);
403 extern void bitmap_xor_into (bitmap, const_bitmap);
405 /* DST = A | (B & C). Return true if DST changes. */
406 extern bool bitmap_ior_and_into (bitmap DST, const_bitmap B, const_bitmap C);
407 /* DST = A | (B & ~C). Return true if DST changes. */
408 extern bool bitmap_ior_and_compl (bitmap DST, const_bitmap A,
409 const_bitmap B, const_bitmap C);
410 /* A |= (B & ~C). Return true if A changes. */
411 extern bool bitmap_ior_and_compl_into (bitmap A,
412 const_bitmap B, const_bitmap C);
414 /* Clear a single bit in a bitmap. Return true if the bit changed. */
415 extern bool bitmap_clear_bit (bitmap, int);
417 /* Set a single bit in a bitmap. Return true if the bit changed. */
418 extern bool bitmap_set_bit (bitmap, int);
420 /* Return true if a bit is set in a bitmap. */
421 extern int bitmap_bit_p (bitmap, int);
423 /* Debug functions to print a bitmap. */
424 extern void debug_bitmap (const_bitmap);
425 extern void debug_bitmap_file (FILE *, const_bitmap);
427 /* Print a bitmap. */
428 extern void bitmap_print (FILE *, const_bitmap, const char *, const char *);
430 /* Initialize and release a bitmap obstack. */
431 extern void bitmap_obstack_initialize (bitmap_obstack *);
432 extern void bitmap_obstack_release (bitmap_obstack *);
433 extern void bitmap_register (bitmap MEM_STAT_DECL);
434 extern void dump_bitmap_statistics (void);
436 /* Initialize a bitmap header. OBSTACK indicates the bitmap obstack
437 to allocate from, NULL for GC'd bitmap. */
439 static inline void
440 bitmap_initialize (bitmap head, bitmap_obstack *obstack CXX_MEM_STAT_INFO)
442 head->first = head->current = NULL;
443 head->indx = head->tree_form = 0;
444 head->obstack = obstack;
445 if (GATHER_STATISTICS)
446 bitmap_register (head PASS_MEM_STAT);
449 /* Release a bitmap (but not its head). This is suitable for pairing with
450 bitmap_initialize. */
452 static inline void
453 bitmap_release (bitmap head)
455 bitmap_clear (head);
456 /* Poison the obstack pointer so the obstack can be safely released.
457 Do not zero it as the bitmap then becomes initialized GC. */
458 head->obstack = &bitmap_head::crashme;
461 /* Allocate and free bitmaps from obstack, malloc and gc'd memory. */
462 extern bitmap bitmap_alloc (bitmap_obstack *obstack CXX_MEM_STAT_INFO);
463 #define BITMAP_ALLOC bitmap_alloc
464 extern bitmap bitmap_gc_alloc (ALONE_CXX_MEM_STAT_INFO);
465 #define BITMAP_GGC_ALLOC bitmap_gc_alloc
466 extern void bitmap_obstack_free (bitmap);
468 /* A few compatibility/functions macros for compatibility with sbitmaps */
469 inline void dump_bitmap (FILE *file, const_bitmap map)
471 bitmap_print (file, map, "", "\n");
473 extern void debug (const bitmap_head &ref);
474 extern void debug (const bitmap_head *ptr);
476 extern unsigned bitmap_first_set_bit (const_bitmap);
477 extern unsigned bitmap_last_set_bit (const_bitmap);
479 /* Compute bitmap hash (for purposes of hashing etc.) */
480 extern hashval_t bitmap_hash (const_bitmap);
482 /* Do any cleanup needed on a bitmap when it is no longer used. */
483 #define BITMAP_FREE(BITMAP) \
484 ((void) (bitmap_obstack_free ((bitmap) BITMAP), (BITMAP) = (bitmap) NULL))
486 /* Iterator for bitmaps. */
488 struct bitmap_iterator
490 /* Pointer to the current bitmap element. */
491 bitmap_element *elt1;
493 /* Pointer to 2nd bitmap element when two are involved. */
494 bitmap_element *elt2;
496 /* Word within the current element. */
497 unsigned word_no;
499 /* Contents of the actually processed word. When finding next bit
500 it is shifted right, so that the actual bit is always the least
501 significant bit of ACTUAL. */
502 BITMAP_WORD bits;
505 /* Initialize a single bitmap iterator. START_BIT is the first bit to
506 iterate from. */
508 static inline void
509 bmp_iter_set_init (bitmap_iterator *bi, const_bitmap map,
510 unsigned start_bit, unsigned *bit_no)
512 bi->elt1 = map->first;
513 bi->elt2 = NULL;
515 gcc_checking_assert (!map->tree_form);
517 /* Advance elt1 until it is not before the block containing start_bit. */
518 while (1)
520 if (!bi->elt1)
522 bi->elt1 = &bitmap_zero_bits;
523 break;
526 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
527 break;
528 bi->elt1 = bi->elt1->next;
531 /* We might have gone past the start bit, so reinitialize it. */
532 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
533 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
535 /* Initialize for what is now start_bit. */
536 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
537 bi->bits = bi->elt1->bits[bi->word_no];
538 bi->bits >>= start_bit % BITMAP_WORD_BITS;
540 /* If this word is zero, we must make sure we're not pointing at the
541 first bit, otherwise our incrementing to the next word boundary
542 will fail. It won't matter if this increment moves us into the
543 next word. */
544 start_bit += !bi->bits;
546 *bit_no = start_bit;
549 /* Initialize an iterator to iterate over the intersection of two
550 bitmaps. START_BIT is the bit to commence from. */
552 static inline void
553 bmp_iter_and_init (bitmap_iterator *bi, const_bitmap map1, const_bitmap map2,
554 unsigned start_bit, unsigned *bit_no)
556 bi->elt1 = map1->first;
557 bi->elt2 = map2->first;
559 gcc_checking_assert (!map1->tree_form && !map2->tree_form);
561 /* Advance elt1 until it is not before the block containing
562 start_bit. */
563 while (1)
565 if (!bi->elt1)
567 bi->elt2 = NULL;
568 break;
571 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
572 break;
573 bi->elt1 = bi->elt1->next;
576 /* Advance elt2 until it is not before elt1. */
577 while (1)
579 if (!bi->elt2)
581 bi->elt1 = bi->elt2 = &bitmap_zero_bits;
582 break;
585 if (bi->elt2->indx >= bi->elt1->indx)
586 break;
587 bi->elt2 = bi->elt2->next;
590 /* If we're at the same index, then we have some intersecting bits. */
591 if (bi->elt1->indx == bi->elt2->indx)
593 /* We might have advanced beyond the start_bit, so reinitialize
594 for that. */
595 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
596 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
598 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
599 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
600 bi->bits >>= start_bit % BITMAP_WORD_BITS;
602 else
604 /* Otherwise we must immediately advance elt1, so initialize for
605 that. */
606 bi->word_no = BITMAP_ELEMENT_WORDS - 1;
607 bi->bits = 0;
610 /* If this word is zero, we must make sure we're not pointing at the
611 first bit, otherwise our incrementing to the next word boundary
612 will fail. It won't matter if this increment moves us into the
613 next word. */
614 start_bit += !bi->bits;
616 *bit_no = start_bit;
619 /* Initialize an iterator to iterate over the bits in MAP1 & ~MAP2. */
621 static inline void
622 bmp_iter_and_compl_init (bitmap_iterator *bi,
623 const_bitmap map1, const_bitmap map2,
624 unsigned start_bit, unsigned *bit_no)
626 bi->elt1 = map1->first;
627 bi->elt2 = map2->first;
629 gcc_checking_assert (!map1->tree_form && !map2->tree_form);
631 /* Advance elt1 until it is not before the block containing start_bit. */
632 while (1)
634 if (!bi->elt1)
636 bi->elt1 = &bitmap_zero_bits;
637 break;
640 if (bi->elt1->indx >= start_bit / BITMAP_ELEMENT_ALL_BITS)
641 break;
642 bi->elt1 = bi->elt1->next;
645 /* Advance elt2 until it is not before elt1. */
646 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
647 bi->elt2 = bi->elt2->next;
649 /* We might have advanced beyond the start_bit, so reinitialize for
650 that. */
651 if (bi->elt1->indx != start_bit / BITMAP_ELEMENT_ALL_BITS)
652 start_bit = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
654 bi->word_no = start_bit / BITMAP_WORD_BITS % BITMAP_ELEMENT_WORDS;
655 bi->bits = bi->elt1->bits[bi->word_no];
656 if (bi->elt2 && bi->elt1->indx == bi->elt2->indx)
657 bi->bits &= ~bi->elt2->bits[bi->word_no];
658 bi->bits >>= start_bit % BITMAP_WORD_BITS;
660 /* If this word is zero, we must make sure we're not pointing at the
661 first bit, otherwise our incrementing to the next word boundary
662 will fail. It won't matter if this increment moves us into the
663 next word. */
664 start_bit += !bi->bits;
666 *bit_no = start_bit;
669 /* Advance to the next bit in BI. We don't advance to the next
670 nonzero bit yet. */
672 static inline void
673 bmp_iter_next (bitmap_iterator *bi, unsigned *bit_no)
675 bi->bits >>= 1;
676 *bit_no += 1;
679 /* Advance to first set bit in BI. */
681 static inline void
682 bmp_iter_next_bit (bitmap_iterator * bi, unsigned *bit_no)
684 #if (GCC_VERSION >= 3004)
686 unsigned int n = __builtin_ctzl (bi->bits);
687 gcc_assert (sizeof (unsigned long) == sizeof (BITMAP_WORD));
688 bi->bits >>= n;
689 *bit_no += n;
691 #else
692 while (!(bi->bits & 1))
694 bi->bits >>= 1;
695 *bit_no += 1;
697 #endif
700 /* Advance to the next nonzero bit of a single bitmap, we will have
701 already advanced past the just iterated bit. Return true if there
702 is a bit to iterate. */
704 static inline bool
705 bmp_iter_set (bitmap_iterator *bi, unsigned *bit_no)
707 /* If our current word is nonzero, it contains the bit we want. */
708 if (bi->bits)
710 next_bit:
711 bmp_iter_next_bit (bi, bit_no);
712 return true;
715 /* Round up to the word boundary. We might have just iterated past
716 the end of the last word, hence the -1. It is not possible for
717 bit_no to point at the beginning of the now last word. */
718 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
719 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
720 bi->word_no++;
722 while (1)
724 /* Find the next nonzero word in this elt. */
725 while (bi->word_no != BITMAP_ELEMENT_WORDS)
727 bi->bits = bi->elt1->bits[bi->word_no];
728 if (bi->bits)
729 goto next_bit;
730 *bit_no += BITMAP_WORD_BITS;
731 bi->word_no++;
734 /* Make sure we didn't remove the element while iterating. */
735 gcc_checking_assert (bi->elt1->indx != -1U);
737 /* Advance to the next element. */
738 bi->elt1 = bi->elt1->next;
739 if (!bi->elt1)
740 return false;
741 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
742 bi->word_no = 0;
746 /* Advance to the next nonzero bit of an intersecting pair of
747 bitmaps. We will have already advanced past the just iterated bit.
748 Return true if there is a bit to iterate. */
750 static inline bool
751 bmp_iter_and (bitmap_iterator *bi, unsigned *bit_no)
753 /* If our current word is nonzero, it contains the bit we want. */
754 if (bi->bits)
756 next_bit:
757 bmp_iter_next_bit (bi, bit_no);
758 return true;
761 /* Round up to the word boundary. We might have just iterated past
762 the end of the last word, hence the -1. It is not possible for
763 bit_no to point at the beginning of the now last word. */
764 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
765 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
766 bi->word_no++;
768 while (1)
770 /* Find the next nonzero word in this elt. */
771 while (bi->word_no != BITMAP_ELEMENT_WORDS)
773 bi->bits = bi->elt1->bits[bi->word_no] & bi->elt2->bits[bi->word_no];
774 if (bi->bits)
775 goto next_bit;
776 *bit_no += BITMAP_WORD_BITS;
777 bi->word_no++;
780 /* Advance to the next identical element. */
783 /* Make sure we didn't remove the element while iterating. */
784 gcc_checking_assert (bi->elt1->indx != -1U);
786 /* Advance elt1 while it is less than elt2. We always want
787 to advance one elt. */
790 bi->elt1 = bi->elt1->next;
791 if (!bi->elt1)
792 return false;
794 while (bi->elt1->indx < bi->elt2->indx);
796 /* Make sure we didn't remove the element while iterating. */
797 gcc_checking_assert (bi->elt2->indx != -1U);
799 /* Advance elt2 to be no less than elt1. This might not
800 advance. */
801 while (bi->elt2->indx < bi->elt1->indx)
803 bi->elt2 = bi->elt2->next;
804 if (!bi->elt2)
805 return false;
808 while (bi->elt1->indx != bi->elt2->indx);
810 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
811 bi->word_no = 0;
815 /* Advance to the next nonzero bit in the intersection of
816 complemented bitmaps. We will have already advanced past the just
817 iterated bit. */
819 static inline bool
820 bmp_iter_and_compl (bitmap_iterator *bi, unsigned *bit_no)
822 /* If our current word is nonzero, it contains the bit we want. */
823 if (bi->bits)
825 next_bit:
826 bmp_iter_next_bit (bi, bit_no);
827 return true;
830 /* Round up to the word boundary. We might have just iterated past
831 the end of the last word, hence the -1. It is not possible for
832 bit_no to point at the beginning of the now last word. */
833 *bit_no = ((*bit_no + BITMAP_WORD_BITS - 1)
834 / BITMAP_WORD_BITS * BITMAP_WORD_BITS);
835 bi->word_no++;
837 while (1)
839 /* Find the next nonzero word in this elt. */
840 while (bi->word_no != BITMAP_ELEMENT_WORDS)
842 bi->bits = bi->elt1->bits[bi->word_no];
843 if (bi->elt2 && bi->elt2->indx == bi->elt1->indx)
844 bi->bits &= ~bi->elt2->bits[bi->word_no];
845 if (bi->bits)
846 goto next_bit;
847 *bit_no += BITMAP_WORD_BITS;
848 bi->word_no++;
851 /* Make sure we didn't remove the element while iterating. */
852 gcc_checking_assert (bi->elt1->indx != -1U);
854 /* Advance to the next element of elt1. */
855 bi->elt1 = bi->elt1->next;
856 if (!bi->elt1)
857 return false;
859 /* Make sure we didn't remove the element while iterating. */
860 gcc_checking_assert (! bi->elt2 || bi->elt2->indx != -1U);
862 /* Advance elt2 until it is no less than elt1. */
863 while (bi->elt2 && bi->elt2->indx < bi->elt1->indx)
864 bi->elt2 = bi->elt2->next;
866 *bit_no = bi->elt1->indx * BITMAP_ELEMENT_ALL_BITS;
867 bi->word_no = 0;
871 /* If you are modifying a bitmap you are currently iterating over you
872 have to ensure to
873 - never remove the current bit;
874 - if you set or clear a bit before the current bit this operation
875 will not affect the set of bits you are visiting during the iteration;
876 - if you set or clear a bit after the current bit it is unspecified
877 whether that affects the set of bits you are visiting during the
878 iteration.
879 If you want to remove the current bit you can delay this to the next
880 iteration (and after the iteration in case the last iteration is
881 affected). */
883 /* Loop over all bits set in BITMAP, starting with MIN and setting
884 BITNUM to the bit number. ITER is a bitmap iterator. BITNUM
885 should be treated as a read-only variable as it contains loop
886 state. */
888 #ifndef EXECUTE_IF_SET_IN_BITMAP
889 /* See sbitmap.h for the other definition of EXECUTE_IF_SET_IN_BITMAP. */
890 #define EXECUTE_IF_SET_IN_BITMAP(BITMAP, MIN, BITNUM, ITER) \
891 for (bmp_iter_set_init (&(ITER), (BITMAP), (MIN), &(BITNUM)); \
892 bmp_iter_set (&(ITER), &(BITNUM)); \
893 bmp_iter_next (&(ITER), &(BITNUM)))
894 #endif
896 /* Loop over all the bits set in BITMAP1 & BITMAP2, starting with MIN
897 and setting BITNUM to the bit number. ITER is a bitmap iterator.
898 BITNUM should be treated as a read-only variable as it contains
899 loop state. */
901 #define EXECUTE_IF_AND_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
902 for (bmp_iter_and_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
903 &(BITNUM)); \
904 bmp_iter_and (&(ITER), &(BITNUM)); \
905 bmp_iter_next (&(ITER), &(BITNUM)))
907 /* Loop over all the bits set in BITMAP1 & ~BITMAP2, starting with MIN
908 and setting BITNUM to the bit number. ITER is a bitmap iterator.
909 BITNUM should be treated as a read-only variable as it contains
910 loop state. */
912 #define EXECUTE_IF_AND_COMPL_IN_BITMAP(BITMAP1, BITMAP2, MIN, BITNUM, ITER) \
913 for (bmp_iter_and_compl_init (&(ITER), (BITMAP1), (BITMAP2), (MIN), \
914 &(BITNUM)); \
915 bmp_iter_and_compl (&(ITER), &(BITNUM)); \
916 bmp_iter_next (&(ITER), &(BITNUM)))
918 /* A class that ties the lifetime of a bitmap to its scope. */
919 class auto_bitmap
921 public:
922 auto_bitmap () { bitmap_initialize (&m_bits, &bitmap_default_obstack); }
923 explicit auto_bitmap (bitmap_obstack *o) { bitmap_initialize (&m_bits, o); }
924 ~auto_bitmap () { bitmap_clear (&m_bits); }
925 // Allow calling bitmap functions on our bitmap.
926 operator bitmap () { return &m_bits; }
928 private:
929 // Prevent making a copy that references our bitmap.
930 auto_bitmap (const auto_bitmap &);
931 auto_bitmap &operator = (const auto_bitmap &);
932 #if __cplusplus >= 201103L
933 auto_bitmap (auto_bitmap &&);
934 auto_bitmap &operator = (auto_bitmap &&);
935 #endif
937 bitmap_head m_bits;
940 #endif /* GCC_BITMAP_H */