sem_ch9.adb (Collect_Interfaces): Initialize Direct_Primitive_Operations for a tagged...
[official-gcc.git] / gcc / ada / sem_disp.adb
blobdfb01226019b015196b2056d421e22ed399017a2
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ D I S P --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Elists; use Elists;
29 with Einfo; use Einfo;
30 with Exp_Disp; use Exp_Disp;
31 with Exp_Util; use Exp_Util;
32 with Exp_Ch7; use Exp_Ch7;
33 with Exp_Tss; use Exp_Tss;
34 with Errout; use Errout;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Nlists; use Nlists;
38 with Nmake; use Nmake;
39 with Opt; use Opt;
40 with Output; use Output;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Sem; use Sem;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch3; use Sem_Ch3;
46 with Sem_Ch6; use Sem_Ch6;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Eval; use Sem_Eval;
49 with Sem_Type; use Sem_Type;
50 with Sem_Util; use Sem_Util;
51 with Snames; use Snames;
52 with Sinfo; use Sinfo;
53 with Targparm; use Targparm;
54 with Tbuild; use Tbuild;
55 with Uintp; use Uintp;
57 package body Sem_Disp is
59 -----------------------
60 -- Local Subprograms --
61 -----------------------
63 procedure Add_Dispatching_Operation
64 (Tagged_Type : Entity_Id;
65 New_Op : Entity_Id);
66 -- Add New_Op in the list of primitive operations of Tagged_Type
68 function Check_Controlling_Type
69 (T : Entity_Id;
70 Subp : Entity_Id) return Entity_Id;
71 -- T is the tagged type of a formal parameter or the result of Subp.
72 -- If the subprogram has a controlling parameter or result that matches
73 -- the type, then returns the tagged type of that parameter or result
74 -- (returning the designated tagged type in the case of an access
75 -- parameter); otherwise returns empty.
77 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id;
78 -- [Ada 2012:AI-0125] Find an inherited hidden primitive of the dispatching
79 -- type of S that has the same name of S, a type-conformant profile, an
80 -- original corresponding operation O that is a primitive of a visible
81 -- ancestor of the dispatching type of S and O is visible at the point of
82 -- of declaration of S. If the entity is found the Alias of S is set to the
83 -- original corresponding operation S and its Overridden_Operation is set
84 -- to the found entity; otherwise return Empty.
86 -- This routine does not search for non-hidden primitives since they are
87 -- covered by the normal Ada 2005 rules.
89 function Is_Inherited_Public_Operation (Op : Entity_Id) return Boolean;
90 -- Check whether a primitive operation is inherited from an operation
91 -- declared in the visible part of its package.
93 -------------------------------
94 -- Add_Dispatching_Operation --
95 -------------------------------
97 procedure Add_Dispatching_Operation
98 (Tagged_Type : Entity_Id;
99 New_Op : Entity_Id)
101 List : constant Elist_Id := Primitive_Operations (Tagged_Type);
103 begin
104 -- The dispatching operation may already be on the list, if it is the
105 -- wrapper for an inherited function of a null extension (see Exp_Ch3
106 -- for the construction of function wrappers). The list of primitive
107 -- operations must not contain duplicates.
109 Append_Unique_Elmt (New_Op, List);
110 end Add_Dispatching_Operation;
112 ---------------------------
113 -- Covers_Some_Interface --
114 ---------------------------
116 function Covers_Some_Interface (Prim : Entity_Id) return Boolean is
117 Tagged_Type : constant Entity_Id := Find_Dispatching_Type (Prim);
118 Elmt : Elmt_Id;
119 E : Entity_Id;
121 begin
122 pragma Assert (Is_Dispatching_Operation (Prim));
124 -- Although this is a dispatching primitive we must check if its
125 -- dispatching type is available because it may be the primitive
126 -- of a private type not defined as tagged in its partial view.
128 if Present (Tagged_Type) and then Has_Interfaces (Tagged_Type) then
130 -- If the tagged type is frozen then the internal entities associated
131 -- with interfaces are available in the list of primitives of the
132 -- tagged type and can be used to speed up this search.
134 if Is_Frozen (Tagged_Type) then
135 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
136 while Present (Elmt) loop
137 E := Node (Elmt);
139 if Present (Interface_Alias (E))
140 and then Alias (E) = Prim
141 then
142 return True;
143 end if;
145 Next_Elmt (Elmt);
146 end loop;
148 -- Otherwise we must collect all the interface primitives and check
149 -- if the Prim will override some interface primitive.
151 else
152 declare
153 Ifaces_List : Elist_Id;
154 Iface_Elmt : Elmt_Id;
155 Iface : Entity_Id;
156 Iface_Prim : Entity_Id;
158 begin
159 Collect_Interfaces (Tagged_Type, Ifaces_List);
160 Iface_Elmt := First_Elmt (Ifaces_List);
161 while Present (Iface_Elmt) loop
162 Iface := Node (Iface_Elmt);
164 Elmt := First_Elmt (Primitive_Operations (Iface));
165 while Present (Elmt) loop
166 Iface_Prim := Node (Elmt);
168 if Chars (Iface) = Chars (Prim)
169 and then Is_Interface_Conformant
170 (Tagged_Type, Iface_Prim, Prim)
171 then
172 return True;
173 end if;
175 Next_Elmt (Elmt);
176 end loop;
178 Next_Elmt (Iface_Elmt);
179 end loop;
180 end;
181 end if;
182 end if;
184 return False;
185 end Covers_Some_Interface;
187 -------------------------------
188 -- Check_Controlling_Formals --
189 -------------------------------
191 procedure Check_Controlling_Formals
192 (Typ : Entity_Id;
193 Subp : Entity_Id)
195 Formal : Entity_Id;
196 Ctrl_Type : Entity_Id;
198 begin
199 Formal := First_Formal (Subp);
200 while Present (Formal) loop
201 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
203 if Present (Ctrl_Type) then
205 -- When controlling type is concurrent and declared within a
206 -- generic or inside an instance use corresponding record type.
208 if Is_Concurrent_Type (Ctrl_Type)
209 and then Present (Corresponding_Record_Type (Ctrl_Type))
210 then
211 Ctrl_Type := Corresponding_Record_Type (Ctrl_Type);
212 end if;
214 if Ctrl_Type = Typ then
215 Set_Is_Controlling_Formal (Formal);
217 -- Ada 2005 (AI-231): Anonymous access types that are used in
218 -- controlling parameters exclude null because it is necessary
219 -- to read the tag to dispatch, and null has no tag.
221 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
222 Set_Can_Never_Be_Null (Etype (Formal));
223 Set_Is_Known_Non_Null (Etype (Formal));
224 end if;
226 -- Check that the parameter's nominal subtype statically
227 -- matches the first subtype.
229 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
230 if not Subtypes_Statically_Match
231 (Typ, Designated_Type (Etype (Formal)))
232 then
233 Error_Msg_N
234 ("parameter subtype does not match controlling type",
235 Formal);
236 end if;
238 elsif not Subtypes_Statically_Match (Typ, Etype (Formal)) then
239 Error_Msg_N
240 ("parameter subtype does not match controlling type",
241 Formal);
242 end if;
244 if Present (Default_Value (Formal)) then
246 -- In Ada 2005, access parameters can have defaults
248 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type
249 and then Ada_Version < Ada_2005
250 then
251 Error_Msg_N
252 ("default not allowed for controlling access parameter",
253 Default_Value (Formal));
255 elsif not Is_Tag_Indeterminate (Default_Value (Formal)) then
256 Error_Msg_N
257 ("default expression must be a tag indeterminate" &
258 " function call", Default_Value (Formal));
259 end if;
260 end if;
262 elsif Comes_From_Source (Subp) then
263 Error_Msg_N
264 ("operation can be dispatching in only one type", Subp);
265 end if;
266 end if;
268 Next_Formal (Formal);
269 end loop;
271 if Ekind_In (Subp, E_Function, E_Generic_Function) then
272 Ctrl_Type := Check_Controlling_Type (Etype (Subp), Subp);
274 if Present (Ctrl_Type) then
275 if Ctrl_Type = Typ then
276 Set_Has_Controlling_Result (Subp);
278 -- Check that result subtype statically matches first subtype
279 -- (Ada 2005): Subp may have a controlling access result.
281 if Subtypes_Statically_Match (Typ, Etype (Subp))
282 or else (Ekind (Etype (Subp)) = E_Anonymous_Access_Type
283 and then
284 Subtypes_Statically_Match
285 (Typ, Designated_Type (Etype (Subp))))
286 then
287 null;
289 else
290 Error_Msg_N
291 ("result subtype does not match controlling type", Subp);
292 end if;
294 elsif Comes_From_Source (Subp) then
295 Error_Msg_N
296 ("operation can be dispatching in only one type", Subp);
297 end if;
298 end if;
299 end if;
300 end Check_Controlling_Formals;
302 ----------------------------
303 -- Check_Controlling_Type --
304 ----------------------------
306 function Check_Controlling_Type
307 (T : Entity_Id;
308 Subp : Entity_Id) return Entity_Id
310 Tagged_Type : Entity_Id := Empty;
312 begin
313 if Is_Tagged_Type (T) then
314 if Is_First_Subtype (T) then
315 Tagged_Type := T;
316 else
317 Tagged_Type := Base_Type (T);
318 end if;
320 elsif Ekind (T) = E_Anonymous_Access_Type
321 and then Is_Tagged_Type (Designated_Type (T))
322 then
323 if Ekind (Designated_Type (T)) /= E_Incomplete_Type then
324 if Is_First_Subtype (Designated_Type (T)) then
325 Tagged_Type := Designated_Type (T);
326 else
327 Tagged_Type := Base_Type (Designated_Type (T));
328 end if;
330 -- Ada 2005: an incomplete type can be tagged. An operation with an
331 -- access parameter of the type is dispatching.
333 elsif Scope (Designated_Type (T)) = Current_Scope then
334 Tagged_Type := Designated_Type (T);
336 -- Ada 2005 (AI-50217)
338 elsif From_Limited_With (Designated_Type (T))
339 and then Has_Non_Limited_View (Designated_Type (T))
340 and then Scope (Designated_Type (T)) = Scope (Subp)
341 then
342 if Is_First_Subtype (Non_Limited_View (Designated_Type (T))) then
343 Tagged_Type := Non_Limited_View (Designated_Type (T));
344 else
345 Tagged_Type := Base_Type (Non_Limited_View
346 (Designated_Type (T)));
347 end if;
348 end if;
349 end if;
351 if No (Tagged_Type) or else Is_Class_Wide_Type (Tagged_Type) then
352 return Empty;
354 -- The dispatching type and the primitive operation must be defined in
355 -- the same scope, except in the case of internal operations and formal
356 -- abstract subprograms.
358 elsif ((Scope (Subp) = Scope (Tagged_Type) or else Is_Internal (Subp))
359 and then (not Is_Generic_Type (Tagged_Type)
360 or else not Comes_From_Source (Subp)))
361 or else
362 (Is_Formal_Subprogram (Subp) and then Is_Abstract_Subprogram (Subp))
363 or else
364 (Nkind (Parent (Parent (Subp))) = N_Subprogram_Renaming_Declaration
365 and then
366 Present (Corresponding_Formal_Spec (Parent (Parent (Subp))))
367 and then
368 Is_Abstract_Subprogram (Subp))
369 then
370 return Tagged_Type;
372 else
373 return Empty;
374 end if;
375 end Check_Controlling_Type;
377 ----------------------------
378 -- Check_Dispatching_Call --
379 ----------------------------
381 procedure Check_Dispatching_Call (N : Node_Id) is
382 Loc : constant Source_Ptr := Sloc (N);
383 Actual : Node_Id;
384 Formal : Entity_Id;
385 Control : Node_Id := Empty;
386 Func : Entity_Id;
387 Subp_Entity : Entity_Id;
388 Indeterm_Ancestor_Call : Boolean := False;
389 Indeterm_Ctrl_Type : Entity_Id;
391 Static_Tag : Node_Id := Empty;
392 -- If a controlling formal has a statically tagged actual, the tag of
393 -- this actual is to be used for any tag-indeterminate actual.
395 procedure Check_Direct_Call;
396 -- In the case when the controlling actual is a class-wide type whose
397 -- root type's completion is a task or protected type, the call is in
398 -- fact direct. This routine detects the above case and modifies the
399 -- call accordingly.
401 procedure Check_Dispatching_Context;
402 -- If the call is tag-indeterminate and the entity being called is
403 -- abstract, verify that the context is a call that will eventually
404 -- provide a tag for dispatching, or has provided one already.
406 -----------------------
407 -- Check_Direct_Call --
408 -----------------------
410 procedure Check_Direct_Call is
411 Typ : Entity_Id := Etype (Control);
413 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean;
414 -- Determine whether an entity denotes a user-defined equality
416 ------------------------------
417 -- Is_User_Defined_Equality --
418 ------------------------------
420 function Is_User_Defined_Equality (Id : Entity_Id) return Boolean is
421 begin
422 return
423 Ekind (Id) = E_Function
424 and then Chars (Id) = Name_Op_Eq
425 and then Comes_From_Source (Id)
427 -- Internally generated equalities have a full type declaration
428 -- as their parent.
430 and then Nkind (Parent (Id)) = N_Function_Specification;
431 end Is_User_Defined_Equality;
433 -- Start of processing for Check_Direct_Call
435 begin
436 -- Predefined primitives do not receive wrappers since they are built
437 -- from scratch for the corresponding record of synchronized types.
438 -- Equality is in general predefined, but is excluded from the check
439 -- when it is user-defined.
441 if Is_Predefined_Dispatching_Operation (Subp_Entity)
442 and then not Is_User_Defined_Equality (Subp_Entity)
443 then
444 return;
445 end if;
447 if Is_Class_Wide_Type (Typ) then
448 Typ := Root_Type (Typ);
449 end if;
451 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
452 Typ := Full_View (Typ);
453 end if;
455 if Is_Concurrent_Type (Typ)
456 and then
457 Present (Corresponding_Record_Type (Typ))
458 then
459 Typ := Corresponding_Record_Type (Typ);
461 -- The concurrent record's list of primitives should contain a
462 -- wrapper for the entity of the call, retrieve it.
464 declare
465 Prim : Entity_Id;
466 Prim_Elmt : Elmt_Id;
467 Wrapper_Found : Boolean := False;
469 begin
470 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
471 while Present (Prim_Elmt) loop
472 Prim := Node (Prim_Elmt);
474 if Is_Primitive_Wrapper (Prim)
475 and then Wrapped_Entity (Prim) = Subp_Entity
476 then
477 Wrapper_Found := True;
478 exit;
479 end if;
481 Next_Elmt (Prim_Elmt);
482 end loop;
484 -- A primitive declared between two views should have a
485 -- corresponding wrapper.
487 pragma Assert (Wrapper_Found);
489 -- Modify the call by setting the proper entity
491 Set_Entity (Name (N), Prim);
492 end;
493 end if;
494 end Check_Direct_Call;
496 -------------------------------
497 -- Check_Dispatching_Context --
498 -------------------------------
500 procedure Check_Dispatching_Context is
501 Subp : constant Entity_Id := Entity (Name (N));
502 Typ : constant Entity_Id := Etype (Subp);
503 Par : Node_Id;
505 procedure Abstract_Context_Error;
506 -- Error for abstract call dispatching on result is not dispatching
508 ----------------------------
509 -- Abstract_Context_Error --
510 ----------------------------
512 procedure Abstract_Context_Error is
513 begin
514 if Ekind (Subp) = E_Function then
515 Error_Msg_N
516 ("call to abstract function must be dispatching", N);
518 -- This error can occur for a procedure in the case of a call to
519 -- an abstract formal procedure with a statically tagged operand.
521 else
522 Error_Msg_N
523 ("call to abstract procedure must be dispatching",
525 end if;
526 end Abstract_Context_Error;
528 -- Start of processing for Check_Dispatching_Context
530 begin
531 if Is_Abstract_Subprogram (Subp)
532 and then No (Controlling_Argument (N))
533 then
534 if Present (Alias (Subp))
535 and then not Is_Abstract_Subprogram (Alias (Subp))
536 and then No (DTC_Entity (Subp))
537 then
538 -- Private overriding of inherited abstract operation, call is
539 -- legal.
541 Set_Entity (Name (N), Alias (Subp));
542 return;
544 -- An obscure special case: a null procedure may have a class-
545 -- wide pre/postcondition that includes a call to an abstract
546 -- subp. Calls within the expression may not have been rewritten
547 -- as dispatching calls yet, because the null body appears in
548 -- the current declarative part. The expression will be properly
549 -- rewritten/reanalyzed when the postcondition procedure is built.
551 -- Similarly, if this is a pre/postcondition for an abstract
552 -- subprogram, it may call another abstract function which is
553 -- a primitive of an abstract type. The call is non-dispatching
554 -- but will be legal in overridings of the operation.
556 elsif In_Spec_Expression
557 and then Is_Subprogram (Current_Scope)
558 and then
559 ((Nkind (Parent (Current_Scope)) = N_Procedure_Specification
560 and then Null_Present (Parent (Current_Scope)))
561 or else Is_Abstract_Subprogram (Current_Scope))
562 then
563 null;
565 elsif Ekind (Current_Scope) = E_Function
566 and then Nkind (Unit_Declaration_Node (Current_Scope)) =
567 N_Generic_Subprogram_Declaration
568 then
569 null;
571 else
572 -- We need to determine whether the context of the call
573 -- provides a tag to make the call dispatching. This requires
574 -- the call to be the actual in an enclosing call, and that
575 -- actual must be controlling. If the call is an operand of
576 -- equality, the other operand must not ve abstract.
578 if not Is_Tagged_Type (Typ)
579 and then not
580 (Ekind (Typ) = E_Anonymous_Access_Type
581 and then Is_Tagged_Type (Designated_Type (Typ)))
582 then
583 Abstract_Context_Error;
584 return;
585 end if;
587 Par := Parent (N);
589 if Nkind (Par) = N_Parameter_Association then
590 Par := Parent (Par);
591 end if;
593 while Present (Par) loop
594 if Nkind_In (Par, N_Function_Call,
595 N_Procedure_Call_Statement)
596 and then Is_Entity_Name (Name (Par))
597 then
598 declare
599 A : Node_Id;
600 F : Entity_Id;
602 begin
603 -- Find formal for which call is the actual.
605 F := First_Formal (Entity (Name (Par)));
606 A := First_Actual (Par);
607 while Present (F) loop
608 if Is_Controlling_Formal (F)
609 and then (N = A or else Parent (N) = A)
610 then
611 return;
612 end if;
614 Next_Formal (F);
615 Next_Actual (A);
616 end loop;
618 Error_Msg_N
619 ("call to abstract function must be dispatching", N);
620 return;
621 end;
623 -- For equalitiy operators, one of the operands must be
624 -- statically or dynamically tagged.
626 elsif Nkind_In (Par, N_Op_Eq, N_Op_Ne) then
627 if N = Right_Opnd (Par)
628 and then Is_Tag_Indeterminate (Left_Opnd (Par))
629 then
630 Abstract_Context_Error;
632 elsif N = Left_Opnd (Par)
633 and then Is_Tag_Indeterminate (Right_Opnd (Par))
634 then
635 Abstract_Context_Error;
636 end if;
638 return;
640 elsif Nkind (Par) = N_Assignment_Statement then
641 return;
643 elsif Nkind (Par) = N_Qualified_Expression
644 or else Nkind (Par) = N_Unchecked_Type_Conversion
645 then
646 Par := Parent (Par);
648 else
649 Abstract_Context_Error;
650 return;
651 end if;
652 end loop;
653 end if;
654 end if;
655 end Check_Dispatching_Context;
657 -- Start of processing for Check_Dispatching_Call
659 begin
660 -- Find a controlling argument, if any
662 if Present (Parameter_Associations (N)) then
663 Subp_Entity := Entity (Name (N));
665 Actual := First_Actual (N);
666 Formal := First_Formal (Subp_Entity);
667 while Present (Actual) loop
668 Control := Find_Controlling_Arg (Actual);
669 exit when Present (Control);
671 -- Check for the case where the actual is a tag-indeterminate call
672 -- whose result type is different than the tagged type associated
673 -- with the containing call, but is an ancestor of the type.
675 if Is_Controlling_Formal (Formal)
676 and then Is_Tag_Indeterminate (Actual)
677 and then Base_Type (Etype (Actual)) /= Base_Type (Etype (Formal))
678 and then Is_Ancestor (Etype (Actual), Etype (Formal))
679 then
680 Indeterm_Ancestor_Call := True;
681 Indeterm_Ctrl_Type := Etype (Formal);
683 -- If the formal is controlling but the actual is not, the type
684 -- of the actual is statically known, and may be used as the
685 -- controlling tag for some other tag-indeterminate actual.
687 elsif Is_Controlling_Formal (Formal)
688 and then Is_Entity_Name (Actual)
689 and then Is_Tagged_Type (Etype (Actual))
690 then
691 Static_Tag := Actual;
692 end if;
694 Next_Actual (Actual);
695 Next_Formal (Formal);
696 end loop;
698 -- If the call doesn't have a controlling actual but does have an
699 -- indeterminate actual that requires dispatching treatment, then an
700 -- object is needed that will serve as the controlling argument for
701 -- a dispatching call on the indeterminate actual. This can only
702 -- occur in the unusual situation of a default actual given by
703 -- a tag-indeterminate call and where the type of the call is an
704 -- ancestor of the type associated with a containing call to an
705 -- inherited operation (see AI-239).
707 -- Rather than create an object of the tagged type, which would
708 -- be problematic for various reasons (default initialization,
709 -- discriminants), the tag of the containing call's associated
710 -- tagged type is directly used to control the dispatching.
712 if No (Control)
713 and then Indeterm_Ancestor_Call
714 and then No (Static_Tag)
715 then
716 Control :=
717 Make_Attribute_Reference (Loc,
718 Prefix => New_Occurrence_Of (Indeterm_Ctrl_Type, Loc),
719 Attribute_Name => Name_Tag);
721 Analyze (Control);
722 end if;
724 if Present (Control) then
726 -- Verify that no controlling arguments are statically tagged
728 if Debug_Flag_E then
729 Write_Str ("Found Dispatching call");
730 Write_Int (Int (N));
731 Write_Eol;
732 end if;
734 Actual := First_Actual (N);
735 while Present (Actual) loop
736 if Actual /= Control then
738 if not Is_Controlling_Actual (Actual) then
739 null; -- Can be anything
741 elsif Is_Dynamically_Tagged (Actual) then
742 null; -- Valid parameter
744 elsif Is_Tag_Indeterminate (Actual) then
746 -- The tag is inherited from the enclosing call (the node
747 -- we are currently analyzing). Explicitly expand the
748 -- actual, since the previous call to Expand (from
749 -- Resolve_Call) had no way of knowing about the
750 -- required dispatching.
752 Propagate_Tag (Control, Actual);
754 else
755 Error_Msg_N
756 ("controlling argument is not dynamically tagged",
757 Actual);
758 return;
759 end if;
760 end if;
762 Next_Actual (Actual);
763 end loop;
765 -- Mark call as a dispatching call
767 Set_Controlling_Argument (N, Control);
768 Check_Restriction (No_Dispatching_Calls, N);
770 -- The dispatching call may need to be converted into a direct
771 -- call in certain cases.
773 Check_Direct_Call;
775 -- If there is a statically tagged actual and a tag-indeterminate
776 -- call to a function of the ancestor (such as that provided by a
777 -- default), then treat this as a dispatching call and propagate
778 -- the tag to the tag-indeterminate call(s).
780 elsif Present (Static_Tag) and then Indeterm_Ancestor_Call then
781 Control :=
782 Make_Attribute_Reference (Loc,
783 Prefix =>
784 New_Occurrence_Of (Etype (Static_Tag), Loc),
785 Attribute_Name => Name_Tag);
787 Analyze (Control);
789 Actual := First_Actual (N);
790 Formal := First_Formal (Subp_Entity);
791 while Present (Actual) loop
792 if Is_Tag_Indeterminate (Actual)
793 and then Is_Controlling_Formal (Formal)
794 then
795 Propagate_Tag (Control, Actual);
796 end if;
798 Next_Actual (Actual);
799 Next_Formal (Formal);
800 end loop;
802 Check_Dispatching_Context;
804 else
805 -- The call is not dispatching, so check that there aren't any
806 -- tag-indeterminate abstract calls left.
808 Actual := First_Actual (N);
809 while Present (Actual) loop
810 if Is_Tag_Indeterminate (Actual) then
812 -- Function call case
814 if Nkind (Original_Node (Actual)) = N_Function_Call then
815 Func := Entity (Name (Original_Node (Actual)));
817 -- If the actual is an attribute then it can't be abstract
818 -- (the only current case of a tag-indeterminate attribute
819 -- is the stream Input attribute).
821 elsif
822 Nkind (Original_Node (Actual)) = N_Attribute_Reference
823 then
824 Func := Empty;
826 -- Only other possibility is a qualified expression whose
827 -- constituent expression is itself a call.
829 else
830 Func :=
831 Entity (Name
832 (Original_Node
833 (Expression (Original_Node (Actual)))));
834 end if;
836 if Present (Func) and then Is_Abstract_Subprogram (Func) then
837 Error_Msg_N
838 ("call to abstract function must be dispatching", N);
839 end if;
840 end if;
842 Next_Actual (Actual);
843 end loop;
845 Check_Dispatching_Context;
846 end if;
848 else
849 -- If dispatching on result, the enclosing call, if any, will
850 -- determine the controlling argument. Otherwise this is the
851 -- primitive operation of the root type.
853 Check_Dispatching_Context;
854 end if;
855 end Check_Dispatching_Call;
857 ---------------------------------
858 -- Check_Dispatching_Operation --
859 ---------------------------------
861 procedure Check_Dispatching_Operation (Subp, Old_Subp : Entity_Id) is
862 Tagged_Type : Entity_Id;
863 Has_Dispatching_Parent : Boolean := False;
864 Body_Is_Last_Primitive : Boolean := False;
865 Ovr_Subp : Entity_Id := Empty;
867 begin
868 if not Ekind_In (Subp, E_Procedure, E_Function) then
869 return;
870 end if;
872 Set_Is_Dispatching_Operation (Subp, False);
873 Tagged_Type := Find_Dispatching_Type (Subp);
875 -- Ada 2005 (AI-345): Use the corresponding record (if available).
876 -- Required because primitives of concurrent types are attached
877 -- to the corresponding record (not to the concurrent type).
879 if Ada_Version >= Ada_2005
880 and then Present (Tagged_Type)
881 and then Is_Concurrent_Type (Tagged_Type)
882 and then Present (Corresponding_Record_Type (Tagged_Type))
883 then
884 Tagged_Type := Corresponding_Record_Type (Tagged_Type);
885 end if;
887 -- (AI-345): The task body procedure is not a primitive of the tagged
888 -- type
890 if Present (Tagged_Type)
891 and then Is_Concurrent_Record_Type (Tagged_Type)
892 and then Present (Corresponding_Concurrent_Type (Tagged_Type))
893 and then Is_Task_Type (Corresponding_Concurrent_Type (Tagged_Type))
894 and then Subp = Get_Task_Body_Procedure
895 (Corresponding_Concurrent_Type (Tagged_Type))
896 then
897 return;
898 end if;
900 -- If Subp is derived from a dispatching operation then it should
901 -- always be treated as dispatching. In this case various checks
902 -- below will be bypassed. Makes sure that late declarations for
903 -- inherited private subprograms are treated as dispatching, even
904 -- if the associated tagged type is already frozen.
906 Has_Dispatching_Parent :=
907 Present (Alias (Subp))
908 and then Is_Dispatching_Operation (Alias (Subp));
910 if No (Tagged_Type) then
912 -- Ada 2005 (AI-251): Check that Subp is not a primitive associated
913 -- with an abstract interface type unless the interface acts as a
914 -- parent type in a derivation. If the interface type is a formal
915 -- type then the operation is not primitive and therefore legal.
917 declare
918 E : Entity_Id;
919 Typ : Entity_Id;
921 begin
922 E := First_Entity (Subp);
923 while Present (E) loop
925 -- For an access parameter, check designated type
927 if Ekind (Etype (E)) = E_Anonymous_Access_Type then
928 Typ := Designated_Type (Etype (E));
929 else
930 Typ := Etype (E);
931 end if;
933 if Comes_From_Source (Subp)
934 and then Is_Interface (Typ)
935 and then not Is_Class_Wide_Type (Typ)
936 and then not Is_Derived_Type (Typ)
937 and then not Is_Generic_Type (Typ)
938 and then not In_Instance
939 then
940 Error_Msg_N ("??declaration of& is too late!", Subp);
941 Error_Msg_NE -- CODEFIX??
942 ("\??spec should appear immediately after declaration "
943 & "of & !", Subp, Typ);
944 exit;
945 end if;
947 Next_Entity (E);
948 end loop;
950 -- In case of functions check also the result type
952 if Ekind (Subp) = E_Function then
953 if Is_Access_Type (Etype (Subp)) then
954 Typ := Designated_Type (Etype (Subp));
955 else
956 Typ := Etype (Subp);
957 end if;
959 -- The following should be better commented, especially since
960 -- we just added several new conditions here ???
962 if Comes_From_Source (Subp)
963 and then Is_Interface (Typ)
964 and then not Is_Class_Wide_Type (Typ)
965 and then not Is_Derived_Type (Typ)
966 and then not Is_Generic_Type (Typ)
967 and then not In_Instance
968 then
969 Error_Msg_N ("??declaration of& is too late!", Subp);
970 Error_Msg_NE
971 ("\??spec should appear immediately after declaration "
972 & "of & !", Subp, Typ);
973 end if;
974 end if;
975 end;
977 return;
979 -- The subprograms build internally after the freezing point (such as
980 -- init procs, interface thunks, type support subprograms, and Offset
981 -- to top functions for accessing interface components in variable
982 -- size tagged types) are not primitives.
984 elsif Is_Frozen (Tagged_Type)
985 and then not Comes_From_Source (Subp)
986 and then not Has_Dispatching_Parent
987 then
988 -- Complete decoration of internally built subprograms that override
989 -- a dispatching primitive. These entities correspond with the
990 -- following cases:
992 -- 1. Ada 2005 (AI-391): Wrapper functions built by the expander
993 -- to override functions of nonabstract null extensions. These
994 -- primitives were added to the list of primitives of the tagged
995 -- type by Make_Controlling_Function_Wrappers. However, attribute
996 -- Is_Dispatching_Operation must be set to true.
998 -- 2. Ada 2005 (AI-251): Wrapper procedures of null interface
999 -- primitives.
1001 -- 3. Subprograms associated with stream attributes (built by
1002 -- New_Stream_Subprogram)
1004 if Present (Old_Subp)
1005 and then Present (Overridden_Operation (Subp))
1006 and then Is_Dispatching_Operation (Old_Subp)
1007 then
1008 pragma Assert
1009 ((Ekind (Subp) = E_Function
1010 and then Is_Dispatching_Operation (Old_Subp)
1011 and then Is_Null_Extension (Base_Type (Etype (Subp))))
1012 or else
1013 (Ekind (Subp) = E_Procedure
1014 and then Is_Dispatching_Operation (Old_Subp)
1015 and then Present (Alias (Old_Subp))
1016 and then Is_Null_Interface_Primitive
1017 (Ultimate_Alias (Old_Subp)))
1018 or else Get_TSS_Name (Subp) = TSS_Stream_Read
1019 or else Get_TSS_Name (Subp) = TSS_Stream_Write);
1021 Check_Controlling_Formals (Tagged_Type, Subp);
1022 Override_Dispatching_Operation (Tagged_Type, Old_Subp, Subp);
1023 Set_Is_Dispatching_Operation (Subp);
1024 end if;
1026 return;
1028 -- The operation may be a child unit, whose scope is the defining
1029 -- package, but which is not a primitive operation of the type.
1031 elsif Is_Child_Unit (Subp) then
1032 return;
1034 -- If the subprogram is not defined in a package spec, the only case
1035 -- where it can be a dispatching op is when it overrides an operation
1036 -- before the freezing point of the type.
1038 elsif ((not Is_Package_Or_Generic_Package (Scope (Subp)))
1039 or else In_Package_Body (Scope (Subp)))
1040 and then not Has_Dispatching_Parent
1041 then
1042 if not Comes_From_Source (Subp)
1043 or else (Present (Old_Subp) and then not Is_Frozen (Tagged_Type))
1044 then
1045 null;
1047 -- If the type is already frozen, the overriding is not allowed
1048 -- except when Old_Subp is not a dispatching operation (which can
1049 -- occur when Old_Subp was inherited by an untagged type). However,
1050 -- a body with no previous spec freezes the type *after* its
1051 -- declaration, and therefore is a legal overriding (unless the type
1052 -- has already been frozen). Only the first such body is legal.
1054 elsif Present (Old_Subp)
1055 and then Is_Dispatching_Operation (Old_Subp)
1056 then
1057 if Comes_From_Source (Subp)
1058 and then
1059 (Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Body
1060 or else Nkind (Unit_Declaration_Node (Subp)) in N_Body_Stub)
1061 then
1062 declare
1063 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1064 Decl_Item : Node_Id;
1066 begin
1067 -- ??? The checks here for whether the type has been frozen
1068 -- prior to the new body are not complete. It's not simple
1069 -- to check frozenness at this point since the body has
1070 -- already caused the type to be prematurely frozen in
1071 -- Analyze_Declarations, but we're forced to recheck this
1072 -- here because of the odd rule interpretation that allows
1073 -- the overriding if the type wasn't frozen prior to the
1074 -- body. The freezing action should probably be delayed
1075 -- until after the spec is seen, but that's a tricky
1076 -- change to the delicate freezing code.
1078 -- Look at each declaration following the type up until the
1079 -- new subprogram body. If any of the declarations is a body
1080 -- then the type has been frozen already so the overriding
1081 -- primitive is illegal.
1083 Decl_Item := Next (Parent (Tagged_Type));
1084 while Present (Decl_Item)
1085 and then (Decl_Item /= Subp_Body)
1086 loop
1087 if Comes_From_Source (Decl_Item)
1088 and then (Nkind (Decl_Item) in N_Proper_Body
1089 or else Nkind (Decl_Item) in N_Body_Stub)
1090 then
1091 Error_Msg_N ("overriding of& is too late!", Subp);
1092 Error_Msg_N
1093 ("\spec should appear immediately after the type!",
1094 Subp);
1095 exit;
1096 end if;
1098 Next (Decl_Item);
1099 end loop;
1101 -- If the subprogram doesn't follow in the list of
1102 -- declarations including the type then the type has
1103 -- definitely been frozen already and the body is illegal.
1105 if No (Decl_Item) then
1106 Error_Msg_N ("overriding of& is too late!", Subp);
1107 Error_Msg_N
1108 ("\spec should appear immediately after the type!",
1109 Subp);
1111 elsif Is_Frozen (Subp) then
1113 -- The subprogram body declares a primitive operation.
1114 -- If the subprogram is already frozen, we must update
1115 -- its dispatching information explicitly here. The
1116 -- information is taken from the overridden subprogram.
1117 -- We must also generate a cross-reference entry because
1118 -- references to other primitives were already created
1119 -- when type was frozen.
1121 Body_Is_Last_Primitive := True;
1123 if Present (DTC_Entity (Old_Subp)) then
1124 Set_DTC_Entity (Subp, DTC_Entity (Old_Subp));
1125 Set_DT_Position_Value (Subp, DT_Position (Old_Subp));
1127 if not Restriction_Active (No_Dispatching_Calls) then
1128 if Building_Static_DT (Tagged_Type) then
1130 -- If the static dispatch table has not been
1131 -- built then there is nothing else to do now;
1132 -- otherwise we notify that we cannot build the
1133 -- static dispatch table.
1135 if Has_Dispatch_Table (Tagged_Type) then
1136 Error_Msg_N
1137 ("overriding of& is too late for building "
1138 & " static dispatch tables!", Subp);
1139 Error_Msg_N
1140 ("\spec should appear immediately after "
1141 & "the type!", Subp);
1142 end if;
1144 -- No code required to register primitives in VM
1145 -- targets
1147 elsif VM_Target /= No_VM then
1148 null;
1150 else
1151 Insert_Actions_After (Subp_Body,
1152 Register_Primitive (Sloc (Subp_Body),
1153 Prim => Subp));
1154 end if;
1156 -- Indicate that this is an overriding operation,
1157 -- and replace the overridden entry in the list of
1158 -- primitive operations, which is used for xref
1159 -- generation subsequently.
1161 Generate_Reference (Tagged_Type, Subp, 'P', False);
1162 Override_Dispatching_Operation
1163 (Tagged_Type, Old_Subp, Subp);
1164 end if;
1165 end if;
1166 end if;
1167 end;
1169 else
1170 Error_Msg_N ("overriding of& is too late!", Subp);
1171 Error_Msg_N
1172 ("\subprogram spec should appear immediately after the type!",
1173 Subp);
1174 end if;
1176 -- If the type is not frozen yet and we are not in the overriding
1177 -- case it looks suspiciously like an attempt to define a primitive
1178 -- operation, which requires the declaration to be in a package spec
1179 -- (3.2.3(6)). Only report cases where the type and subprogram are
1180 -- in the same declaration list (by checking the enclosing parent
1181 -- declarations), to avoid spurious warnings on subprograms in
1182 -- instance bodies when the type is declared in the instance spec
1183 -- but hasn't been frozen by the instance body.
1185 elsif not Is_Frozen (Tagged_Type)
1186 and then In_Same_List (Parent (Tagged_Type), Parent (Parent (Subp)))
1187 then
1188 Error_Msg_N
1189 ("??not dispatching (must be defined in a package spec)", Subp);
1190 return;
1192 -- When the type is frozen, it is legitimate to define a new
1193 -- non-primitive operation.
1195 else
1196 return;
1197 end if;
1199 -- Now, we are sure that the scope is a package spec. If the subprogram
1200 -- is declared after the freezing point of the type that's an error
1202 elsif Is_Frozen (Tagged_Type) and then not Has_Dispatching_Parent then
1203 Error_Msg_N ("this primitive operation is declared too late", Subp);
1204 Error_Msg_NE
1205 ("??no primitive operations for& after this line",
1206 Freeze_Node (Tagged_Type),
1207 Tagged_Type);
1208 return;
1209 end if;
1211 Check_Controlling_Formals (Tagged_Type, Subp);
1213 Ovr_Subp := Old_Subp;
1215 -- [Ada 2012:AI-0125]: Search for inherited hidden primitive that may be
1216 -- overridden by Subp. This only applies to source subprograms, and
1217 -- their declaration must carry an explicit overriding indicator.
1219 if No (Ovr_Subp)
1220 and then Ada_Version >= Ada_2012
1221 and then Comes_From_Source (Subp)
1222 and then
1223 Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
1224 then
1225 Ovr_Subp := Find_Hidden_Overridden_Primitive (Subp);
1227 -- Verify that the proper overriding indicator has been supplied.
1229 if Present (Ovr_Subp)
1230 and then
1231 not Must_Override (Specification (Unit_Declaration_Node (Subp)))
1232 then
1233 Error_Msg_NE ("missing overriding indicator for&", Subp, Subp);
1234 end if;
1235 end if;
1237 -- Now it should be a correct primitive operation, put it in the list
1239 if Present (Ovr_Subp) then
1241 -- If the type has interfaces we complete this check after we set
1242 -- attribute Is_Dispatching_Operation.
1244 Check_Subtype_Conformant (Subp, Ovr_Subp);
1246 -- A primitive operation with the name of a primitive controlled
1247 -- operation does not override a non-visible overriding controlled
1248 -- operation, i.e. one declared in a private part when the full
1249 -- view of a type is controlled. Conversely, it will override a
1250 -- visible operation that may be declared in a partial view when
1251 -- the full view is controlled.
1253 if Nam_In (Chars (Subp), Name_Initialize, Name_Adjust, Name_Finalize)
1254 and then Is_Controlled (Tagged_Type)
1255 and then not Is_Visibly_Controlled (Tagged_Type)
1256 and then not Is_Inherited_Public_Operation (Ovr_Subp)
1257 then
1258 Set_Overridden_Operation (Subp, Empty);
1260 -- If the subprogram specification carries an overriding
1261 -- indicator, no need for the warning: it is either redundant,
1262 -- or else an error will be reported.
1264 if Nkind (Parent (Subp)) = N_Procedure_Specification
1265 and then
1266 (Must_Override (Parent (Subp))
1267 or else Must_Not_Override (Parent (Subp)))
1268 then
1269 null;
1271 -- Here we need the warning
1273 else
1274 Error_Msg_NE
1275 ("operation does not override inherited&??", Subp, Subp);
1276 end if;
1278 else
1279 Override_Dispatching_Operation (Tagged_Type, Ovr_Subp, Subp);
1281 -- Ada 2005 (AI-251): In case of late overriding of a primitive
1282 -- that covers abstract interface subprograms we must register it
1283 -- in all the secondary dispatch tables associated with abstract
1284 -- interfaces. We do this now only if not building static tables,
1285 -- nor when the expander is inactive (we avoid trying to register
1286 -- primitives in semantics-only mode, since the type may not have
1287 -- an associated dispatch table). Otherwise the patch code is
1288 -- emitted after those tables are built, to prevent access before
1289 -- elaboration in gigi.
1291 if Body_Is_Last_Primitive and then Expander_Active then
1292 declare
1293 Subp_Body : constant Node_Id := Unit_Declaration_Node (Subp);
1294 Elmt : Elmt_Id;
1295 Prim : Node_Id;
1297 begin
1298 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
1299 while Present (Elmt) loop
1300 Prim := Node (Elmt);
1302 -- No code required to register primitives in VM targets
1304 if Present (Alias (Prim))
1305 and then Present (Interface_Alias (Prim))
1306 and then Alias (Prim) = Subp
1307 and then not Building_Static_DT (Tagged_Type)
1308 and then VM_Target = No_VM
1309 then
1310 Insert_Actions_After (Subp_Body,
1311 Register_Primitive (Sloc (Subp_Body), Prim => Prim));
1312 end if;
1314 Next_Elmt (Elmt);
1315 end loop;
1317 -- Redisplay the contents of the updated dispatch table
1319 if Debug_Flag_ZZ then
1320 Write_Str ("Late overriding: ");
1321 Write_DT (Tagged_Type);
1322 end if;
1323 end;
1324 end if;
1325 end if;
1327 -- If the tagged type is a concurrent type then we must be compiling
1328 -- with no code generation (we are either compiling a generic unit or
1329 -- compiling under -gnatc mode) because we have previously tested that
1330 -- no serious errors has been reported. In this case we do not add the
1331 -- primitive to the list of primitives of Tagged_Type but we leave the
1332 -- primitive decorated as a dispatching operation to be able to analyze
1333 -- and report errors associated with the Object.Operation notation.
1335 elsif Is_Concurrent_Type (Tagged_Type) then
1336 pragma Assert (not Expander_Active);
1338 -- Attach operation to list of primitives of the synchronized
1339 -- type itself, for ASIS use.
1341 Append_Elmt (Subp, Direct_Primitive_Operations (Tagged_Type));
1342 null;
1344 -- If no old subprogram, then we add this as a dispatching operation,
1345 -- but we avoid doing this if an error was posted, to prevent annoying
1346 -- cascaded errors.
1348 elsif not Error_Posted (Subp) then
1349 Add_Dispatching_Operation (Tagged_Type, Subp);
1350 end if;
1352 Set_Is_Dispatching_Operation (Subp, True);
1354 -- Ada 2005 (AI-251): If the type implements interfaces we must check
1355 -- subtype conformance against all the interfaces covered by this
1356 -- primitive.
1358 if Present (Ovr_Subp)
1359 and then Has_Interfaces (Tagged_Type)
1360 then
1361 declare
1362 Ifaces_List : Elist_Id;
1363 Iface_Elmt : Elmt_Id;
1364 Iface_Prim_Elmt : Elmt_Id;
1365 Iface_Prim : Entity_Id;
1366 Ret_Typ : Entity_Id;
1368 begin
1369 Collect_Interfaces (Tagged_Type, Ifaces_List);
1371 Iface_Elmt := First_Elmt (Ifaces_List);
1372 while Present (Iface_Elmt) loop
1373 if not Is_Ancestor (Node (Iface_Elmt), Tagged_Type) then
1374 Iface_Prim_Elmt :=
1375 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
1376 while Present (Iface_Prim_Elmt) loop
1377 Iface_Prim := Node (Iface_Prim_Elmt);
1379 if Is_Interface_Conformant
1380 (Tagged_Type, Iface_Prim, Subp)
1381 then
1382 -- Handle procedures, functions whose return type
1383 -- matches, or functions not returning interfaces
1385 if Ekind (Subp) = E_Procedure
1386 or else Etype (Iface_Prim) = Etype (Subp)
1387 or else not Is_Interface (Etype (Iface_Prim))
1388 then
1389 Check_Subtype_Conformant
1390 (New_Id => Subp,
1391 Old_Id => Iface_Prim,
1392 Err_Loc => Subp,
1393 Skip_Controlling_Formals => True);
1395 -- Handle functions returning interfaces
1397 elsif Implements_Interface
1398 (Etype (Subp), Etype (Iface_Prim))
1399 then
1400 -- Temporarily force both entities to return the
1401 -- same type. Required because Subtype_Conformant
1402 -- does not handle this case.
1404 Ret_Typ := Etype (Iface_Prim);
1405 Set_Etype (Iface_Prim, Etype (Subp));
1407 Check_Subtype_Conformant
1408 (New_Id => Subp,
1409 Old_Id => Iface_Prim,
1410 Err_Loc => Subp,
1411 Skip_Controlling_Formals => True);
1413 Set_Etype (Iface_Prim, Ret_Typ);
1414 end if;
1415 end if;
1417 Next_Elmt (Iface_Prim_Elmt);
1418 end loop;
1419 end if;
1421 Next_Elmt (Iface_Elmt);
1422 end loop;
1423 end;
1424 end if;
1426 if not Body_Is_Last_Primitive then
1427 Set_DT_Position_Value (Subp, No_Uint);
1429 elsif Has_Controlled_Component (Tagged_Type)
1430 and then Nam_In (Chars (Subp), Name_Initialize,
1431 Name_Adjust,
1432 Name_Finalize,
1433 Name_Finalize_Address)
1434 then
1435 declare
1436 F_Node : constant Node_Id := Freeze_Node (Tagged_Type);
1437 Decl : Node_Id;
1438 Old_P : Entity_Id;
1439 Old_Bod : Node_Id;
1440 Old_Spec : Entity_Id;
1442 C_Names : constant array (1 .. 4) of Name_Id :=
1443 (Name_Initialize,
1444 Name_Adjust,
1445 Name_Finalize,
1446 Name_Finalize_Address);
1448 D_Names : constant array (1 .. 4) of TSS_Name_Type :=
1449 (TSS_Deep_Initialize,
1450 TSS_Deep_Adjust,
1451 TSS_Deep_Finalize,
1452 TSS_Finalize_Address);
1454 begin
1455 -- Remove previous controlled function which was constructed and
1456 -- analyzed when the type was frozen. This requires removing the
1457 -- body of the redefined primitive, as well as its specification
1458 -- if needed (there is no spec created for Deep_Initialize, see
1459 -- exp_ch3.adb). We must also dismantle the exception information
1460 -- that may have been generated for it when front end zero-cost
1461 -- tables are enabled.
1463 for J in D_Names'Range loop
1464 Old_P := TSS (Tagged_Type, D_Names (J));
1466 if Present (Old_P)
1467 and then Chars (Subp) = C_Names (J)
1468 then
1469 Old_Bod := Unit_Declaration_Node (Old_P);
1470 Remove (Old_Bod);
1471 Set_Is_Eliminated (Old_P);
1472 Set_Scope (Old_P, Scope (Current_Scope));
1474 if Nkind (Old_Bod) = N_Subprogram_Body
1475 and then Present (Corresponding_Spec (Old_Bod))
1476 then
1477 Old_Spec := Corresponding_Spec (Old_Bod);
1478 Set_Has_Completion (Old_Spec, False);
1479 end if;
1480 end if;
1481 end loop;
1483 Build_Late_Proc (Tagged_Type, Chars (Subp));
1485 -- The new operation is added to the actions of the freeze node
1486 -- for the type, but this node has already been analyzed, so we
1487 -- must retrieve and analyze explicitly the new body.
1489 if Present (F_Node)
1490 and then Present (Actions (F_Node))
1491 then
1492 Decl := Last (Actions (F_Node));
1493 Analyze (Decl);
1494 end if;
1495 end;
1496 end if;
1497 end Check_Dispatching_Operation;
1499 ------------------------------------------
1500 -- Check_Operation_From_Incomplete_Type --
1501 ------------------------------------------
1503 procedure Check_Operation_From_Incomplete_Type
1504 (Subp : Entity_Id;
1505 Typ : Entity_Id)
1507 Full : constant Entity_Id := Full_View (Typ);
1508 Parent_Typ : constant Entity_Id := Etype (Full);
1509 Old_Prim : constant Elist_Id := Primitive_Operations (Parent_Typ);
1510 New_Prim : constant Elist_Id := Primitive_Operations (Full);
1511 Op1, Op2 : Elmt_Id;
1512 Prev : Elmt_Id := No_Elmt;
1514 function Derives_From (Parent_Subp : Entity_Id) return Boolean;
1515 -- Check that Subp has profile of an operation derived from Parent_Subp.
1516 -- Subp must have a parameter or result type that is Typ or an access
1517 -- parameter or access result type that designates Typ.
1519 ------------------
1520 -- Derives_From --
1521 ------------------
1523 function Derives_From (Parent_Subp : Entity_Id) return Boolean is
1524 F1, F2 : Entity_Id;
1526 begin
1527 if Chars (Parent_Subp) /= Chars (Subp) then
1528 return False;
1529 end if;
1531 -- Check that the type of controlling formals is derived from the
1532 -- parent subprogram's controlling formal type (or designated type
1533 -- if the formal type is an anonymous access type).
1535 F1 := First_Formal (Parent_Subp);
1536 F2 := First_Formal (Subp);
1537 while Present (F1) and then Present (F2) loop
1538 if Ekind (Etype (F1)) = E_Anonymous_Access_Type then
1539 if Ekind (Etype (F2)) /= E_Anonymous_Access_Type then
1540 return False;
1541 elsif Designated_Type (Etype (F1)) = Parent_Typ
1542 and then Designated_Type (Etype (F2)) /= Full
1543 then
1544 return False;
1545 end if;
1547 elsif Ekind (Etype (F2)) = E_Anonymous_Access_Type then
1548 return False;
1550 elsif Etype (F1) = Parent_Typ and then Etype (F2) /= Full then
1551 return False;
1552 end if;
1554 Next_Formal (F1);
1555 Next_Formal (F2);
1556 end loop;
1558 -- Check that a controlling result type is derived from the parent
1559 -- subprogram's result type (or designated type if the result type
1560 -- is an anonymous access type).
1562 if Ekind (Parent_Subp) = E_Function then
1563 if Ekind (Subp) /= E_Function then
1564 return False;
1566 elsif Ekind (Etype (Parent_Subp)) = E_Anonymous_Access_Type then
1567 if Ekind (Etype (Subp)) /= E_Anonymous_Access_Type then
1568 return False;
1570 elsif Designated_Type (Etype (Parent_Subp)) = Parent_Typ
1571 and then Designated_Type (Etype (Subp)) /= Full
1572 then
1573 return False;
1574 end if;
1576 elsif Ekind (Etype (Subp)) = E_Anonymous_Access_Type then
1577 return False;
1579 elsif Etype (Parent_Subp) = Parent_Typ
1580 and then Etype (Subp) /= Full
1581 then
1582 return False;
1583 end if;
1585 elsif Ekind (Subp) = E_Function then
1586 return False;
1587 end if;
1589 return No (F1) and then No (F2);
1590 end Derives_From;
1592 -- Start of processing for Check_Operation_From_Incomplete_Type
1594 begin
1595 -- The operation may override an inherited one, or may be a new one
1596 -- altogether. The inherited operation will have been hidden by the
1597 -- current one at the point of the type derivation, so it does not
1598 -- appear in the list of primitive operations of the type. We have to
1599 -- find the proper place of insertion in the list of primitive opera-
1600 -- tions by iterating over the list for the parent type.
1602 Op1 := First_Elmt (Old_Prim);
1603 Op2 := First_Elmt (New_Prim);
1604 while Present (Op1) and then Present (Op2) loop
1605 if Derives_From (Node (Op1)) then
1606 if No (Prev) then
1608 -- Avoid adding it to the list of primitives if already there
1610 if Node (Op2) /= Subp then
1611 Prepend_Elmt (Subp, New_Prim);
1612 end if;
1614 else
1615 Insert_Elmt_After (Subp, Prev);
1616 end if;
1618 return;
1619 end if;
1621 Prev := Op2;
1622 Next_Elmt (Op1);
1623 Next_Elmt (Op2);
1624 end loop;
1626 -- Operation is a new primitive
1628 Append_Elmt (Subp, New_Prim);
1629 end Check_Operation_From_Incomplete_Type;
1631 ---------------------------------------
1632 -- Check_Operation_From_Private_View --
1633 ---------------------------------------
1635 procedure Check_Operation_From_Private_View (Subp, Old_Subp : Entity_Id) is
1636 Tagged_Type : Entity_Id;
1638 begin
1639 if Is_Dispatching_Operation (Alias (Subp)) then
1640 Set_Scope (Subp, Current_Scope);
1641 Tagged_Type := Find_Dispatching_Type (Subp);
1643 -- Add Old_Subp to primitive operations if not already present
1645 if Present (Tagged_Type) and then Is_Tagged_Type (Tagged_Type) then
1646 Append_Unique_Elmt (Old_Subp, Primitive_Operations (Tagged_Type));
1648 -- If Old_Subp isn't already marked as dispatching then this is
1649 -- the case of an operation of an untagged private type fulfilled
1650 -- by a tagged type that overrides an inherited dispatching
1651 -- operation, so we set the necessary dispatching attributes here.
1653 if not Is_Dispatching_Operation (Old_Subp) then
1655 -- If the untagged type has no discriminants, and the full
1656 -- view is constrained, there will be a spurious mismatch of
1657 -- subtypes on the controlling arguments, because the tagged
1658 -- type is the internal base type introduced in the derivation.
1659 -- Use the original type to verify conformance, rather than the
1660 -- base type.
1662 if not Comes_From_Source (Tagged_Type)
1663 and then Has_Discriminants (Tagged_Type)
1664 then
1665 declare
1666 Formal : Entity_Id;
1668 begin
1669 Formal := First_Formal (Old_Subp);
1670 while Present (Formal) loop
1671 if Tagged_Type = Base_Type (Etype (Formal)) then
1672 Tagged_Type := Etype (Formal);
1673 end if;
1675 Next_Formal (Formal);
1676 end loop;
1677 end;
1679 if Tagged_Type = Base_Type (Etype (Old_Subp)) then
1680 Tagged_Type := Etype (Old_Subp);
1681 end if;
1682 end if;
1684 Check_Controlling_Formals (Tagged_Type, Old_Subp);
1685 Set_Is_Dispatching_Operation (Old_Subp, True);
1686 Set_DT_Position_Value (Old_Subp, No_Uint);
1687 end if;
1689 -- If the old subprogram is an explicit renaming of some other
1690 -- entity, it is not overridden by the inherited subprogram.
1691 -- Otherwise, update its alias and other attributes.
1693 if Present (Alias (Old_Subp))
1694 and then Nkind (Unit_Declaration_Node (Old_Subp)) /=
1695 N_Subprogram_Renaming_Declaration
1696 then
1697 Set_Alias (Old_Subp, Alias (Subp));
1699 -- The derived subprogram should inherit the abstractness of
1700 -- the parent subprogram (except in the case of a function
1701 -- returning the type). This sets the abstractness properly
1702 -- for cases where a private extension may have inherited an
1703 -- abstract operation, but the full type is derived from a
1704 -- descendant type and inherits a nonabstract version.
1706 if Etype (Subp) /= Tagged_Type then
1707 Set_Is_Abstract_Subprogram
1708 (Old_Subp, Is_Abstract_Subprogram (Alias (Subp)));
1709 end if;
1710 end if;
1711 end if;
1712 end if;
1713 end Check_Operation_From_Private_View;
1715 --------------------------
1716 -- Find_Controlling_Arg --
1717 --------------------------
1719 function Find_Controlling_Arg (N : Node_Id) return Node_Id is
1720 Orig_Node : constant Node_Id := Original_Node (N);
1721 Typ : Entity_Id;
1723 begin
1724 if Nkind (Orig_Node) = N_Qualified_Expression then
1725 return Find_Controlling_Arg (Expression (Orig_Node));
1726 end if;
1728 -- Dispatching on result case. If expansion is disabled, the node still
1729 -- has the structure of a function call. However, if the function name
1730 -- is an operator and the call was given in infix form, the original
1731 -- node has no controlling result and we must examine the current node.
1733 if Nkind (N) = N_Function_Call
1734 and then Present (Controlling_Argument (N))
1735 and then Has_Controlling_Result (Entity (Name (N)))
1736 then
1737 return Controlling_Argument (N);
1739 -- If expansion is enabled, the call may have been transformed into
1740 -- an indirect call, and we need to recover the original node.
1742 elsif Nkind (Orig_Node) = N_Function_Call
1743 and then Present (Controlling_Argument (Orig_Node))
1744 and then Has_Controlling_Result (Entity (Name (Orig_Node)))
1745 then
1746 return Controlling_Argument (Orig_Node);
1748 -- Type conversions are dynamically tagged if the target type, or its
1749 -- designated type, are classwide. An interface conversion expands into
1750 -- a dereference, so test must be performed on the original node.
1752 elsif Nkind (Orig_Node) = N_Type_Conversion
1753 and then Nkind (N) = N_Explicit_Dereference
1754 and then Is_Controlling_Actual (N)
1755 then
1756 declare
1757 Target_Type : constant Entity_Id :=
1758 Entity (Subtype_Mark (Orig_Node));
1760 begin
1761 if Is_Class_Wide_Type (Target_Type) then
1762 return N;
1764 elsif Is_Access_Type (Target_Type)
1765 and then Is_Class_Wide_Type (Designated_Type (Target_Type))
1766 then
1767 return N;
1769 else
1770 return Empty;
1771 end if;
1772 end;
1774 -- Normal case
1776 elsif Is_Controlling_Actual (N)
1777 or else
1778 (Nkind (Parent (N)) = N_Qualified_Expression
1779 and then Is_Controlling_Actual (Parent (N)))
1780 then
1781 Typ := Etype (N);
1783 if Is_Access_Type (Typ) then
1785 -- In the case of an Access attribute, use the type of the prefix,
1786 -- since in the case of an actual for an access parameter, the
1787 -- attribute's type may be of a specific designated type, even
1788 -- though the prefix type is class-wide.
1790 if Nkind (N) = N_Attribute_Reference then
1791 Typ := Etype (Prefix (N));
1793 -- An allocator is dispatching if the type of qualified expression
1794 -- is class_wide, in which case this is the controlling type.
1796 elsif Nkind (Orig_Node) = N_Allocator
1797 and then Nkind (Expression (Orig_Node)) = N_Qualified_Expression
1798 then
1799 Typ := Etype (Expression (Orig_Node));
1800 else
1801 Typ := Designated_Type (Typ);
1802 end if;
1803 end if;
1805 if Is_Class_Wide_Type (Typ)
1806 or else
1807 (Nkind (Parent (N)) = N_Qualified_Expression
1808 and then Is_Access_Type (Etype (N))
1809 and then Is_Class_Wide_Type (Designated_Type (Etype (N))))
1810 then
1811 return N;
1812 end if;
1813 end if;
1815 return Empty;
1816 end Find_Controlling_Arg;
1818 ---------------------------
1819 -- Find_Dispatching_Type --
1820 ---------------------------
1822 function Find_Dispatching_Type (Subp : Entity_Id) return Entity_Id is
1823 A_Formal : Entity_Id;
1824 Formal : Entity_Id;
1825 Ctrl_Type : Entity_Id;
1827 begin
1828 if Ekind_In (Subp, E_Function, E_Procedure)
1829 and then Present (DTC_Entity (Subp))
1830 then
1831 return Scope (DTC_Entity (Subp));
1833 -- For subprograms internally generated by derivations of tagged types
1834 -- use the alias subprogram as a reference to locate the dispatching
1835 -- type of Subp.
1837 elsif not Comes_From_Source (Subp)
1838 and then Present (Alias (Subp))
1839 and then Is_Dispatching_Operation (Alias (Subp))
1840 then
1841 if Ekind (Alias (Subp)) = E_Function
1842 and then Has_Controlling_Result (Alias (Subp))
1843 then
1844 return Check_Controlling_Type (Etype (Subp), Subp);
1846 else
1847 Formal := First_Formal (Subp);
1848 A_Formal := First_Formal (Alias (Subp));
1849 while Present (A_Formal) loop
1850 if Is_Controlling_Formal (A_Formal) then
1851 return Check_Controlling_Type (Etype (Formal), Subp);
1852 end if;
1854 Next_Formal (Formal);
1855 Next_Formal (A_Formal);
1856 end loop;
1858 pragma Assert (False);
1859 return Empty;
1860 end if;
1862 -- General case
1864 else
1865 Formal := First_Formal (Subp);
1866 while Present (Formal) loop
1867 Ctrl_Type := Check_Controlling_Type (Etype (Formal), Subp);
1869 if Present (Ctrl_Type) then
1870 return Ctrl_Type;
1871 end if;
1873 Next_Formal (Formal);
1874 end loop;
1876 -- The subprogram may also be dispatching on result
1878 if Present (Etype (Subp)) then
1879 return Check_Controlling_Type (Etype (Subp), Subp);
1880 end if;
1881 end if;
1883 pragma Assert (not Is_Dispatching_Operation (Subp));
1884 return Empty;
1885 end Find_Dispatching_Type;
1887 --------------------------------------
1888 -- Find_Hidden_Overridden_Primitive --
1889 --------------------------------------
1891 function Find_Hidden_Overridden_Primitive (S : Entity_Id) return Entity_Id
1893 Tag_Typ : constant Entity_Id := Find_Dispatching_Type (S);
1894 Elmt : Elmt_Id;
1895 Orig_Prim : Entity_Id;
1896 Prim : Entity_Id;
1897 Vis_List : Elist_Id;
1899 begin
1900 -- This Ada 2012 rule applies only for type extensions or private
1901 -- extensions, where the parent type is not in a parent unit, and
1902 -- where an operation is never declared but still inherited.
1904 if No (Tag_Typ)
1905 or else not Is_Record_Type (Tag_Typ)
1906 or else Etype (Tag_Typ) = Tag_Typ
1907 or else In_Open_Scopes (Scope (Etype (Tag_Typ)))
1908 then
1909 return Empty;
1910 end if;
1912 -- Collect the list of visible ancestor of the tagged type
1914 Vis_List := Visible_Ancestors (Tag_Typ);
1916 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
1917 while Present (Elmt) loop
1918 Prim := Node (Elmt);
1920 -- Find an inherited hidden dispatching primitive with the name of S
1921 -- and a type-conformant profile.
1923 if Present (Alias (Prim))
1924 and then Is_Hidden (Alias (Prim))
1925 and then Find_Dispatching_Type (Alias (Prim)) /= Tag_Typ
1926 and then Primitive_Names_Match (S, Prim)
1927 and then Type_Conformant (S, Prim)
1928 then
1929 declare
1930 Vis_Ancestor : Elmt_Id;
1931 Elmt : Elmt_Id;
1933 begin
1934 -- The original corresponding operation of Prim must be an
1935 -- operation of a visible ancestor of the dispatching type S,
1936 -- and the original corresponding operation of S2 must be
1937 -- visible.
1939 Orig_Prim := Original_Corresponding_Operation (Prim);
1941 if Orig_Prim /= Prim
1942 and then Is_Immediately_Visible (Orig_Prim)
1943 then
1944 Vis_Ancestor := First_Elmt (Vis_List);
1945 while Present (Vis_Ancestor) loop
1946 Elmt :=
1947 First_Elmt (Primitive_Operations (Node (Vis_Ancestor)));
1948 while Present (Elmt) loop
1949 if Node (Elmt) = Orig_Prim then
1950 Set_Overridden_Operation (S, Prim);
1951 Set_Alias (Prim, Orig_Prim);
1952 return Prim;
1953 end if;
1955 Next_Elmt (Elmt);
1956 end loop;
1958 Next_Elmt (Vis_Ancestor);
1959 end loop;
1960 end if;
1961 end;
1962 end if;
1964 Next_Elmt (Elmt);
1965 end loop;
1967 return Empty;
1968 end Find_Hidden_Overridden_Primitive;
1970 ---------------------------------------
1971 -- Find_Primitive_Covering_Interface --
1972 ---------------------------------------
1974 function Find_Primitive_Covering_Interface
1975 (Tagged_Type : Entity_Id;
1976 Iface_Prim : Entity_Id) return Entity_Id
1978 E : Entity_Id;
1979 El : Elmt_Id;
1981 begin
1982 pragma Assert (Is_Interface (Find_Dispatching_Type (Iface_Prim))
1983 or else (Present (Alias (Iface_Prim))
1984 and then
1985 Is_Interface
1986 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
1988 -- Search in the homonym chain. Done to speed up locating visible
1989 -- entities and required to catch primitives associated with the partial
1990 -- view of private types when processing the corresponding full view.
1992 E := Current_Entity (Iface_Prim);
1993 while Present (E) loop
1994 if Is_Subprogram (E)
1995 and then Is_Dispatching_Operation (E)
1996 and then Is_Interface_Conformant (Tagged_Type, Iface_Prim, E)
1997 then
1998 return E;
1999 end if;
2001 E := Homonym (E);
2002 end loop;
2004 -- Search in the list of primitives of the type. Required to locate
2005 -- the covering primitive if the covering primitive is not visible
2006 -- (for example, non-visible inherited primitive of private type).
2008 El := First_Elmt (Primitive_Operations (Tagged_Type));
2009 while Present (El) loop
2010 E := Node (El);
2012 -- Keep separate the management of internal entities that link
2013 -- primitives with interface primitives from tagged type primitives.
2015 if No (Interface_Alias (E)) then
2016 if Present (Alias (E)) then
2018 -- This interface primitive has not been covered yet
2020 if Alias (E) = Iface_Prim then
2021 return E;
2023 -- The covering primitive was inherited
2025 elsif Overridden_Operation (Ultimate_Alias (E))
2026 = Iface_Prim
2027 then
2028 return E;
2029 end if;
2030 end if;
2032 -- Check if E covers the interface primitive (includes case in
2033 -- which E is an inherited private primitive).
2035 if Is_Interface_Conformant (Tagged_Type, Iface_Prim, E) then
2036 return E;
2037 end if;
2039 -- Use the internal entity that links the interface primitive with
2040 -- the covering primitive to locate the entity.
2042 elsif Interface_Alias (E) = Iface_Prim then
2043 return Alias (E);
2044 end if;
2046 Next_Elmt (El);
2047 end loop;
2049 -- Not found
2051 return Empty;
2052 end Find_Primitive_Covering_Interface;
2054 ---------------------------
2055 -- Inherited_Subprograms --
2056 ---------------------------
2058 function Inherited_Subprograms
2059 (S : Entity_Id;
2060 No_Interfaces : Boolean := False;
2061 Interfaces_Only : Boolean := False) return Subprogram_List
2063 Result : Subprogram_List (1 .. 6000);
2064 -- 6000 here is intended to be infinity. We could use an expandable
2065 -- table, but it would be awfully heavy, and there is no way that we
2066 -- could reasonably exceed this value.
2068 N : Int := 0;
2069 -- Number of entries in Result
2071 Parent_Op : Entity_Id;
2072 -- Traverses the Overridden_Operation chain
2074 procedure Store_IS (E : Entity_Id);
2075 -- Stores E in Result if not already stored
2077 --------------
2078 -- Store_IS --
2079 --------------
2081 procedure Store_IS (E : Entity_Id) is
2082 begin
2083 for J in 1 .. N loop
2084 if E = Result (J) then
2085 return;
2086 end if;
2087 end loop;
2089 N := N + 1;
2090 Result (N) := E;
2091 end Store_IS;
2093 -- Start of processing for Inherited_Subprograms
2095 begin
2096 pragma Assert (not (No_Interfaces and Interfaces_Only));
2098 if Present (S) and then Is_Dispatching_Operation (S) then
2100 -- Deal with direct inheritance
2102 if not Interfaces_Only then
2103 Parent_Op := S;
2104 loop
2105 Parent_Op := Overridden_Operation (Parent_Op);
2106 exit when No (Parent_Op)
2107 or else
2108 (No_Interfaces
2109 and then
2110 Is_Interface (Find_Dispatching_Type (Parent_Op)));
2112 if Is_Subprogram_Or_Generic_Subprogram (Parent_Op) then
2113 Store_IS (Parent_Op);
2114 end if;
2115 end loop;
2116 end if;
2118 -- Now deal with interfaces
2120 if not No_Interfaces then
2121 declare
2122 Tag_Typ : Entity_Id;
2123 Prim : Entity_Id;
2124 Elmt : Elmt_Id;
2126 begin
2127 Tag_Typ := Find_Dispatching_Type (S);
2129 if Is_Concurrent_Type (Tag_Typ) then
2130 Tag_Typ := Corresponding_Record_Type (Tag_Typ);
2131 end if;
2133 -- Search primitive operations of dispatching type
2135 if Present (Tag_Typ)
2136 and then Present (Primitive_Operations (Tag_Typ))
2137 then
2138 Elmt := First_Elmt (Primitive_Operations (Tag_Typ));
2139 while Present (Elmt) loop
2140 Prim := Node (Elmt);
2142 -- The following test eliminates some odd cases in which
2143 -- Ekind (Prim) is Void, to be investigated further ???
2145 if not Is_Subprogram_Or_Generic_Subprogram (Prim) then
2146 null;
2148 -- For [generic] subprogram, look at interface alias
2150 elsif Present (Interface_Alias (Prim))
2151 and then Alias (Prim) = S
2152 then
2153 -- We have found a primitive covered by S
2155 Store_IS (Interface_Alias (Prim));
2156 end if;
2158 Next_Elmt (Elmt);
2159 end loop;
2160 end if;
2161 end;
2162 end if;
2163 end if;
2165 return Result (1 .. N);
2166 end Inherited_Subprograms;
2168 ---------------------------
2169 -- Is_Dynamically_Tagged --
2170 ---------------------------
2172 function Is_Dynamically_Tagged (N : Node_Id) return Boolean is
2173 begin
2174 if Nkind (N) = N_Error then
2175 return False;
2177 elsif Present (Find_Controlling_Arg (N)) then
2178 return True;
2180 -- Special cases: entities, and calls that dispatch on result
2182 elsif Is_Entity_Name (N) then
2183 return Is_Class_Wide_Type (Etype (N));
2185 elsif Nkind (N) = N_Function_Call
2186 and then Is_Class_Wide_Type (Etype (N))
2187 then
2188 return True;
2190 -- Otherwise check whether call has controlling argument
2192 else
2193 return False;
2194 end if;
2195 end Is_Dynamically_Tagged;
2197 ---------------------------------
2198 -- Is_Null_Interface_Primitive --
2199 ---------------------------------
2201 function Is_Null_Interface_Primitive (E : Entity_Id) return Boolean is
2202 begin
2203 return Comes_From_Source (E)
2204 and then Is_Dispatching_Operation (E)
2205 and then Ekind (E) = E_Procedure
2206 and then Null_Present (Parent (E))
2207 and then Is_Interface (Find_Dispatching_Type (E));
2208 end Is_Null_Interface_Primitive;
2210 -----------------------------------
2211 -- Is_Inherited_Public_Operation --
2212 -----------------------------------
2214 function Is_Inherited_Public_Operation (Op : Entity_Id) return Boolean is
2215 Prim : constant Entity_Id := Alias (Op);
2216 Scop : constant Entity_Id := Scope (Prim);
2217 Pack_Decl : Node_Id;
2219 begin
2220 if Comes_From_Source (Prim) and then Ekind (Scop) = E_Package then
2221 Pack_Decl := Unit_Declaration_Node (Scop);
2222 return Nkind (Pack_Decl) = N_Package_Declaration
2223 and then List_Containing (Unit_Declaration_Node (Prim)) =
2224 Visible_Declarations (Specification (Pack_Decl));
2226 else
2227 return False;
2228 end if;
2229 end Is_Inherited_Public_Operation;
2231 --------------------------
2232 -- Is_Tag_Indeterminate --
2233 --------------------------
2235 function Is_Tag_Indeterminate (N : Node_Id) return Boolean is
2236 Nam : Entity_Id;
2237 Actual : Node_Id;
2238 Orig_Node : constant Node_Id := Original_Node (N);
2240 begin
2241 if Nkind (Orig_Node) = N_Function_Call
2242 and then Is_Entity_Name (Name (Orig_Node))
2243 then
2244 Nam := Entity (Name (Orig_Node));
2246 if not Has_Controlling_Result (Nam) then
2247 return False;
2249 -- The function may have a controlling result, but if the return type
2250 -- is not visibly tagged, then this is not tag-indeterminate.
2252 elsif Is_Access_Type (Etype (Nam))
2253 and then not Is_Tagged_Type (Designated_Type (Etype (Nam)))
2254 then
2255 return False;
2257 -- An explicit dereference means that the call has already been
2258 -- expanded and there is no tag to propagate.
2260 elsif Nkind (N) = N_Explicit_Dereference then
2261 return False;
2263 -- If there are no actuals, the call is tag-indeterminate
2265 elsif No (Parameter_Associations (Orig_Node)) then
2266 return True;
2268 else
2269 Actual := First_Actual (Orig_Node);
2270 while Present (Actual) loop
2271 if Is_Controlling_Actual (Actual)
2272 and then not Is_Tag_Indeterminate (Actual)
2273 then
2274 -- One operand is dispatching
2276 return False;
2277 end if;
2279 Next_Actual (Actual);
2280 end loop;
2282 return True;
2283 end if;
2285 elsif Nkind (Orig_Node) = N_Qualified_Expression then
2286 return Is_Tag_Indeterminate (Expression (Orig_Node));
2288 -- Case of a call to the Input attribute (possibly rewritten), which is
2289 -- always tag-indeterminate except when its prefix is a Class attribute.
2291 elsif Nkind (Orig_Node) = N_Attribute_Reference
2292 and then
2293 Get_Attribute_Id (Attribute_Name (Orig_Node)) = Attribute_Input
2294 and then Nkind (Prefix (Orig_Node)) /= N_Attribute_Reference
2295 then
2296 return True;
2298 -- In Ada 2005, a function that returns an anonymous access type can be
2299 -- dispatching, and the dereference of a call to such a function can
2300 -- also be tag-indeterminate if the call itself is.
2302 elsif Nkind (Orig_Node) = N_Explicit_Dereference
2303 and then Ada_Version >= Ada_2005
2304 then
2305 return Is_Tag_Indeterminate (Prefix (Orig_Node));
2307 else
2308 return False;
2309 end if;
2310 end Is_Tag_Indeterminate;
2312 ------------------------------------
2313 -- Override_Dispatching_Operation --
2314 ------------------------------------
2316 procedure Override_Dispatching_Operation
2317 (Tagged_Type : Entity_Id;
2318 Prev_Op : Entity_Id;
2319 New_Op : Entity_Id;
2320 Is_Wrapper : Boolean := False)
2322 Elmt : Elmt_Id;
2323 Prim : Node_Id;
2325 begin
2326 -- Diagnose failure to match No_Return in parent (Ada-2005, AI-414, but
2327 -- we do it unconditionally in Ada 95 now, since this is our pragma).
2329 if No_Return (Prev_Op) and then not No_Return (New_Op) then
2330 Error_Msg_N ("procedure & must have No_Return pragma", New_Op);
2331 Error_Msg_N ("\since overridden procedure has No_Return", New_Op);
2332 end if;
2334 -- If there is no previous operation to override, the type declaration
2335 -- was malformed, and an error must have been emitted already.
2337 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2338 while Present (Elmt) and then Node (Elmt) /= Prev_Op loop
2339 Next_Elmt (Elmt);
2340 end loop;
2342 if No (Elmt) then
2343 return;
2344 end if;
2346 -- The location of entities that come from source in the list of
2347 -- primitives of the tagged type must follow their order of occurrence
2348 -- in the sources to fulfill the C++ ABI. If the overridden entity is a
2349 -- primitive of an interface that is not implemented by the parents of
2350 -- this tagged type (that is, it is an alias of an interface primitive
2351 -- generated by Derive_Interface_Progenitors), then we must append the
2352 -- new entity at the end of the list of primitives.
2354 if Present (Alias (Prev_Op))
2355 and then Etype (Tagged_Type) /= Tagged_Type
2356 and then Is_Interface (Find_Dispatching_Type (Alias (Prev_Op)))
2357 and then not Is_Ancestor (Find_Dispatching_Type (Alias (Prev_Op)),
2358 Tagged_Type, Use_Full_View => True)
2359 and then not Implements_Interface
2360 (Etype (Tagged_Type),
2361 Find_Dispatching_Type (Alias (Prev_Op)))
2362 then
2363 Remove_Elmt (Primitive_Operations (Tagged_Type), Elmt);
2364 Append_Elmt (New_Op, Primitive_Operations (Tagged_Type));
2366 -- The new primitive replaces the overridden entity. Required to ensure
2367 -- that overriding primitive is assigned the same dispatch table slot.
2369 else
2370 Replace_Elmt (Elmt, New_Op);
2371 end if;
2373 if Ada_Version >= Ada_2005 and then Has_Interfaces (Tagged_Type) then
2375 -- Ada 2005 (AI-251): Update the attribute alias of all the aliased
2376 -- entities of the overridden primitive to reference New_Op, and
2377 -- also propagate the proper value of Is_Abstract_Subprogram. Verify
2378 -- that the new operation is subtype conformant with the interface
2379 -- operations that it implements (for operations inherited from the
2380 -- parent itself, this check is made when building the derived type).
2382 -- Note: This code is executed with internally generated wrappers of
2383 -- functions with controlling result and late overridings.
2385 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
2386 while Present (Elmt) loop
2387 Prim := Node (Elmt);
2389 if Prim = New_Op then
2390 null;
2392 -- Note: The check on Is_Subprogram protects the frontend against
2393 -- reading attributes in entities that are not yet fully decorated
2395 elsif Is_Subprogram (Prim)
2396 and then Present (Interface_Alias (Prim))
2397 and then Alias (Prim) = Prev_Op
2398 then
2399 Set_Alias (Prim, New_Op);
2401 -- No further decoration needed yet for internally generated
2402 -- wrappers of controlling functions since (at this stage)
2403 -- they are not yet decorated.
2405 if not Is_Wrapper then
2406 Check_Subtype_Conformant (New_Op, Prim);
2408 Set_Is_Abstract_Subprogram (Prim,
2409 Is_Abstract_Subprogram (New_Op));
2411 -- Ensure that this entity will be expanded to fill the
2412 -- corresponding entry in its dispatch table.
2414 if not Is_Abstract_Subprogram (Prim) then
2415 Set_Has_Delayed_Freeze (Prim);
2416 end if;
2417 end if;
2418 end if;
2420 Next_Elmt (Elmt);
2421 end loop;
2422 end if;
2424 if (not Is_Package_Or_Generic_Package (Current_Scope))
2425 or else not In_Private_Part (Current_Scope)
2426 then
2427 -- Not a private primitive
2429 null;
2431 else pragma Assert (Is_Inherited_Operation (Prev_Op));
2433 -- Make the overriding operation into an alias of the implicit one.
2434 -- In this fashion a call from outside ends up calling the new body
2435 -- even if non-dispatching, and a call from inside calls the over-
2436 -- riding operation because it hides the implicit one. To indicate
2437 -- that the body of Prev_Op is never called, set its dispatch table
2438 -- entity to Empty. If the overridden operation has a dispatching
2439 -- result, so does the overriding one.
2441 Set_Alias (Prev_Op, New_Op);
2442 Set_DTC_Entity (Prev_Op, Empty);
2443 Set_Has_Controlling_Result (New_Op, Has_Controlling_Result (Prev_Op));
2444 return;
2445 end if;
2446 end Override_Dispatching_Operation;
2448 -------------------
2449 -- Propagate_Tag --
2450 -------------------
2452 procedure Propagate_Tag (Control : Node_Id; Actual : Node_Id) is
2453 Call_Node : Node_Id;
2454 Arg : Node_Id;
2456 begin
2457 if Nkind (Actual) = N_Function_Call then
2458 Call_Node := Actual;
2460 elsif Nkind (Actual) = N_Identifier
2461 and then Nkind (Original_Node (Actual)) = N_Function_Call
2462 then
2463 -- Call rewritten as object declaration when stack-checking is
2464 -- enabled. Propagate tag to expression in declaration, which is
2465 -- original call.
2467 Call_Node := Expression (Parent (Entity (Actual)));
2469 -- Ada 2005: If this is a dereference of a call to a function with a
2470 -- dispatching access-result, the tag is propagated when the dereference
2471 -- itself is expanded (see exp_ch6.adb) and there is nothing else to do.
2473 elsif Nkind (Actual) = N_Explicit_Dereference
2474 and then Nkind (Original_Node (Prefix (Actual))) = N_Function_Call
2475 then
2476 return;
2478 -- When expansion is suppressed, an unexpanded call to 'Input can occur,
2479 -- and in that case we can simply return.
2481 elsif Nkind (Actual) = N_Attribute_Reference then
2482 pragma Assert (Attribute_Name (Actual) = Name_Input);
2484 return;
2486 -- Only other possibilities are parenthesized or qualified expression,
2487 -- or an expander-generated unchecked conversion of a function call to
2488 -- a stream Input attribute.
2490 else
2491 Call_Node := Expression (Actual);
2492 end if;
2494 -- No action needed if the call has been already expanded
2496 if Is_Expanded_Dispatching_Call (Call_Node) then
2497 return;
2498 end if;
2500 -- Do not set the Controlling_Argument if already set. This happens in
2501 -- the special case of _Input (see Exp_Attr, case Input).
2503 if No (Controlling_Argument (Call_Node)) then
2504 Set_Controlling_Argument (Call_Node, Control);
2505 end if;
2507 Arg := First_Actual (Call_Node);
2508 while Present (Arg) loop
2509 if Is_Tag_Indeterminate (Arg) then
2510 Propagate_Tag (Control, Arg);
2511 end if;
2513 Next_Actual (Arg);
2514 end loop;
2516 -- Expansion of dispatching calls is suppressed when VM_Target, because
2517 -- the VM back-ends directly handle the generation of dispatching calls
2518 -- and would have to undo any expansion to an indirect call.
2520 if Tagged_Type_Expansion then
2521 declare
2522 Call_Typ : constant Entity_Id := Etype (Call_Node);
2524 begin
2525 Expand_Dispatching_Call (Call_Node);
2527 -- If the controlling argument is an interface type and the type
2528 -- of Call_Node differs then we must add an implicit conversion to
2529 -- force displacement of the pointer to the object to reference
2530 -- the secondary dispatch table of the interface.
2532 if Is_Interface (Etype (Control))
2533 and then Etype (Control) /= Call_Typ
2534 then
2535 -- Cannot use Convert_To because the previous call to
2536 -- Expand_Dispatching_Call leaves decorated the Call_Node
2537 -- with the type of Control.
2539 Rewrite (Call_Node,
2540 Make_Type_Conversion (Sloc (Call_Node),
2541 Subtype_Mark =>
2542 New_Occurrence_Of (Etype (Control), Sloc (Call_Node)),
2543 Expression => Relocate_Node (Call_Node)));
2544 Set_Etype (Call_Node, Etype (Control));
2545 Set_Analyzed (Call_Node);
2547 Expand_Interface_Conversion (Call_Node);
2548 end if;
2549 end;
2551 -- Expansion of a dispatching call results in an indirect call, which in
2552 -- turn causes current values to be killed (see Resolve_Call), so on VM
2553 -- targets we do the call here to ensure consistent warnings between VM
2554 -- and non-VM targets.
2556 else
2557 Kill_Current_Values;
2558 end if;
2559 end Propagate_Tag;
2561 end Sem_Disp;