oops - fixed typo in previous delta
[official-gcc.git] / gcc / except.c
blob2b841680802b6f3f2f7317acdc05505e3e94e74f
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992-1999, 2000 Free Software Foundation, Inc.
3 Contributed by Mike Stump <mrs@cygnus.com>.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
26 be transferred to any arbitrary code associated with a function call
27 several levels up the stack.
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
48 approach, which is the default. -fno-sjlj-exceptions can be used to
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
74 In the current implementation, cleanups are handled by allocating an
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
92 __register_exceptions with the address of its local
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
100 __register_frame_info. On other targets, the information for each
101 translation unit is registered from the file generated by collect2.
102 __register_frame_info is defined in frame.c, and is responsible for
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
106 The function __throw is actually responsible for doing the
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
109 per-object-file basis for each source file compiled with
110 -fexceptions by the C++ frontend. Before __throw is invoked,
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
114 __throw attempts to find the appropriate exception handler for the
115 PC value stored in __eh_pc by calling __find_first_exception_table_match
116 (which is defined in libgcc2.c). If __find_first_exception_table_match
117 finds a relevant handler, __throw transfers control directly to it.
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
132 Internal implementation details:
134 To associate a user-defined handler with a block of statements, the
135 function expand_start_try_stmts is used to mark the start of the
136 block of statements with which the handler is to be associated
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
140 A call to expand_start_all_catch marks the end of the try block,
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
155 handler. expand_end_all_catch and expand_leftover_cleanups
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
163 to the topmost entry's label via expand_goto will resume normal
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
177 global variable to hold the value. (This will be changing in the
178 future.)
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
186 Internally-generated exception regions (cleanups) are marked by
187 calling expand_eh_region_start to mark the start of the region,
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
209 Cleanups can also be specified by using add_partial_entry (handler)
210 and end_protect_partials. add_partial_entry creates the start of
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
217 group of calls to add_partial_entry as the entries are queued
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
234 can be safely optimized away (along with its exception handlers)
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
247 Walking the stack:
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
253 Unwinding the stack:
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
282 should call __terminate.
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
303 On some platforms it is possible that neither __unwind_function
304 nor inlined unwinders are available. For these platforms it is not
305 possible to throw through a function call, and abort will be
306 invoked instead of performing the throw.
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
320 Future directions:
322 Currently __throw makes no differentiation between cleanups and
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
333 A two-pass scheme could then be used by __throw to iterate
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
343 __throw to be able to determine if a given user-defined
344 exception handler will actually be executed, given the type of
345 exception.
347 One scheme is to add additional information to exception_table_list
348 as to the types of exceptions accepted by each handler. __throw
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
352 There is currently no significant level of debugging support
353 available, other than to place a breakpoint on __throw. While
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
359 scheme by adding additional labels to __throw for appropriate
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
380 table, and no calls to __register_exceptions. __sjthrow is used
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
391 #include "config.h"
392 #include "defaults.h"
393 #include "eh-common.h"
394 #include "system.h"
395 #include "rtl.h"
396 #include "tree.h"
397 #include "flags.h"
398 #include "except.h"
399 #include "function.h"
400 #include "insn-flags.h"
401 #include "expr.h"
402 #include "insn-codes.h"
403 #include "regs.h"
404 #include "hard-reg-set.h"
405 #include "insn-config.h"
406 #include "recog.h"
407 #include "output.h"
408 #include "toplev.h"
409 #include "intl.h"
410 #include "obstack.h"
411 #include "ggc.h"
412 #include "tm_p.h"
414 /* One to use setjmp/longjmp method of generating code for exception
415 handling. */
417 int exceptions_via_longjmp = 2;
419 /* One to enable asynchronous exception support. */
421 int asynchronous_exceptions = 0;
423 /* One to protect cleanup actions with a handler that calls
424 __terminate, zero otherwise. */
426 int protect_cleanup_actions_with_terminate;
428 /* A list of labels used for exception handlers. Created by
429 find_exception_handler_labels for the optimization passes. */
431 rtx exception_handler_labels;
433 /* Keeps track of the label used as the context of a throw to rethrow an
434 exception to the outer exception region. */
436 struct label_node *outer_context_label_stack = NULL;
438 /* Pseudos used to hold exception return data in the interim between
439 __builtin_eh_return and the end of the function. */
441 static rtx eh_return_context;
442 static rtx eh_return_stack_adjust;
443 static rtx eh_return_handler;
445 /* This is used for targets which can call rethrow with an offset instead
446 of an address. This is subtracted from the rethrow label we are
447 interested in. */
449 static rtx first_rethrow_symbol = NULL_RTX;
450 static rtx final_rethrow = NULL_RTX;
451 static rtx last_rethrow_symbol = NULL_RTX;
454 /* Prototypes for local functions. */
456 static void push_eh_entry PARAMS ((struct eh_stack *));
457 static struct eh_entry * pop_eh_entry PARAMS ((struct eh_stack *));
458 static void enqueue_eh_entry PARAMS ((struct eh_queue *, struct eh_entry *));
459 static struct eh_entry * dequeue_eh_entry PARAMS ((struct eh_queue *));
460 static rtx call_get_eh_context PARAMS ((void));
461 static void start_dynamic_cleanup PARAMS ((tree, tree));
462 static void start_dynamic_handler PARAMS ((void));
463 static void expand_rethrow PARAMS ((rtx));
464 static void output_exception_table_entry PARAMS ((FILE *, int));
465 static int can_throw PARAMS ((rtx));
466 static rtx scan_region PARAMS ((rtx, int, int *));
467 static void eh_regs PARAMS ((rtx *, rtx *, rtx *, int));
468 static void set_insn_eh_region PARAMS ((rtx *, int));
469 #ifdef DONT_USE_BUILTIN_SETJMP
470 static void jumpif_rtx PARAMS ((rtx, rtx));
471 #endif
472 static void mark_eh_node PARAMS ((struct eh_node *));
473 static void mark_eh_stack PARAMS ((struct eh_stack *));
474 static void mark_eh_queue PARAMS ((struct eh_queue *));
475 static void mark_tree_label_node PARAMS ((struct label_node *));
476 static void mark_func_eh_entry PARAMS ((void *));
477 static rtx create_rethrow_ref PARAMS ((int));
478 static void push_entry PARAMS ((struct eh_stack *, struct eh_entry*));
479 static void receive_exception_label PARAMS ((rtx));
480 static int new_eh_region_entry PARAMS ((int, rtx));
481 static int find_func_region PARAMS ((int));
482 static int find_func_region_from_symbol PARAMS ((rtx));
483 static void clear_function_eh_region PARAMS ((void));
484 static void process_nestinfo PARAMS ((int, eh_nesting_info *, int *));
486 rtx expand_builtin_return_addr PARAMS ((enum built_in_function, int, rtx));
487 static void emit_cleanup_handler PARAMS ((struct eh_entry *));
488 static int eh_region_from_symbol PARAMS ((rtx));
491 /* Various support routines to manipulate the various data structures
492 used by the exception handling code. */
494 extern struct obstack permanent_obstack;
496 /* Generate a SYMBOL_REF for rethrow to use */
497 static rtx
498 create_rethrow_ref (region_num)
499 int region_num;
501 rtx def;
502 char *ptr;
503 char buf[60];
505 push_obstacks_nochange ();
506 end_temporary_allocation ();
508 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
509 ptr = ggc_alloc_string (buf, -1);
510 def = gen_rtx_SYMBOL_REF (Pmode, ptr);
511 SYMBOL_REF_NEED_ADJUST (def) = 1;
513 pop_obstacks ();
514 return def;
517 /* Push a label entry onto the given STACK. */
519 void
520 push_label_entry (stack, rlabel, tlabel)
521 struct label_node **stack;
522 rtx rlabel;
523 tree tlabel;
525 struct label_node *newnode
526 = (struct label_node *) xmalloc (sizeof (struct label_node));
528 if (rlabel)
529 newnode->u.rlabel = rlabel;
530 else
531 newnode->u.tlabel = tlabel;
532 newnode->chain = *stack;
533 *stack = newnode;
536 /* Pop a label entry from the given STACK. */
539 pop_label_entry (stack)
540 struct label_node **stack;
542 rtx label;
543 struct label_node *tempnode;
545 if (! *stack)
546 return NULL_RTX;
548 tempnode = *stack;
549 label = tempnode->u.rlabel;
550 *stack = (*stack)->chain;
551 free (tempnode);
553 return label;
556 /* Return the top element of the given STACK. */
558 tree
559 top_label_entry (stack)
560 struct label_node **stack;
562 if (! *stack)
563 return NULL_TREE;
565 return (*stack)->u.tlabel;
568 /* get an exception label. These must be on the permanent obstack */
571 gen_exception_label ()
573 rtx lab;
574 lab = gen_label_rtx ();
575 return lab;
578 /* Push a new eh_node entry onto STACK. */
580 static void
581 push_eh_entry (stack)
582 struct eh_stack *stack;
584 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
585 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
587 rtx rlab = gen_exception_label ();
588 entry->finalization = NULL_TREE;
589 entry->label_used = 0;
590 entry->exception_handler_label = rlab;
591 entry->false_label = NULL_RTX;
592 if (! flag_new_exceptions)
593 entry->outer_context = gen_label_rtx ();
594 else
595 entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
596 entry->rethrow_label = entry->outer_context;
597 entry->goto_entry_p = 0;
599 node->entry = entry;
600 node->chain = stack->top;
601 stack->top = node;
604 /* push an existing entry onto a stack. */
605 static void
606 push_entry (stack, entry)
607 struct eh_stack *stack;
608 struct eh_entry *entry;
610 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
611 node->entry = entry;
612 node->chain = stack->top;
613 stack->top = node;
616 /* Pop an entry from the given STACK. */
618 static struct eh_entry *
619 pop_eh_entry (stack)
620 struct eh_stack *stack;
622 struct eh_node *tempnode;
623 struct eh_entry *tempentry;
625 tempnode = stack->top;
626 tempentry = tempnode->entry;
627 stack->top = stack->top->chain;
628 free (tempnode);
630 return tempentry;
633 /* Enqueue an ENTRY onto the given QUEUE. */
635 static void
636 enqueue_eh_entry (queue, entry)
637 struct eh_queue *queue;
638 struct eh_entry *entry;
640 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
642 node->entry = entry;
643 node->chain = NULL;
645 if (queue->head == NULL)
646 queue->head = node;
647 else
648 queue->tail->chain = node;
649 queue->tail = node;
652 /* Dequeue an entry from the given QUEUE. */
654 static struct eh_entry *
655 dequeue_eh_entry (queue)
656 struct eh_queue *queue;
658 struct eh_node *tempnode;
659 struct eh_entry *tempentry;
661 if (queue->head == NULL)
662 return NULL;
664 tempnode = queue->head;
665 queue->head = queue->head->chain;
667 tempentry = tempnode->entry;
668 free (tempnode);
670 return tempentry;
673 static void
674 receive_exception_label (handler_label)
675 rtx handler_label;
677 emit_label (handler_label);
679 #ifdef HAVE_exception_receiver
680 if (! exceptions_via_longjmp)
681 if (HAVE_exception_receiver)
682 emit_insn (gen_exception_receiver ());
683 #endif
685 #ifdef HAVE_nonlocal_goto_receiver
686 if (! exceptions_via_longjmp)
687 if (HAVE_nonlocal_goto_receiver)
688 emit_insn (gen_nonlocal_goto_receiver ());
689 #endif
693 struct func_eh_entry
695 int range_number; /* EH region number from EH NOTE insn's. */
696 rtx rethrow_label; /* Label for rethrow. */
697 int rethrow_ref; /* Is rethrow referenced? */
698 struct handler_info *handlers;
702 /* table of function eh regions */
703 static struct func_eh_entry *function_eh_regions = NULL;
704 static int num_func_eh_entries = 0;
705 static int current_func_eh_entry = 0;
707 #define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
709 /* Add a new eh_entry for this function. The number returned is an
710 number which uniquely identifies this exception range. */
712 static int
713 new_eh_region_entry (note_eh_region, rethrow)
714 int note_eh_region;
715 rtx rethrow;
717 if (current_func_eh_entry == num_func_eh_entries)
719 if (num_func_eh_entries == 0)
721 function_eh_regions =
722 (struct func_eh_entry *) xmalloc (SIZE_FUNC_EH (50));
723 num_func_eh_entries = 50;
725 else
727 num_func_eh_entries = num_func_eh_entries * 3 / 2;
728 function_eh_regions = (struct func_eh_entry *)
729 xrealloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
732 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
733 if (rethrow == NULL_RTX)
734 function_eh_regions[current_func_eh_entry].rethrow_label =
735 create_rethrow_ref (note_eh_region);
736 else
737 function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
738 function_eh_regions[current_func_eh_entry].handlers = NULL;
740 return current_func_eh_entry++;
743 /* Add new handler information to an exception range. The first parameter
744 specifies the range number (returned from new_eh_entry()). The second
745 parameter specifies the handler. By default the handler is inserted at
746 the end of the list. A handler list may contain only ONE NULL_TREE
747 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
748 is always output as the LAST handler in the exception table for a region. */
750 void
751 add_new_handler (region, newhandler)
752 int region;
753 struct handler_info *newhandler;
755 struct handler_info *last;
757 /* If find_func_region returns -1, callers might attempt to pass us
758 this region number. If that happens, something has gone wrong;
759 -1 is never a valid region. */
760 if (region == -1)
761 abort ();
763 newhandler->next = NULL;
764 last = function_eh_regions[region].handlers;
765 if (last == NULL)
766 function_eh_regions[region].handlers = newhandler;
767 else
769 for ( ; ; last = last->next)
771 if (last->type_info == CATCH_ALL_TYPE)
772 pedwarn ("additional handler after ...");
773 if (last->next == NULL)
774 break;
776 last->next = newhandler;
780 /* Remove a handler label. The handler label is being deleted, so all
781 regions which reference this handler should have it removed from their
782 list of possible handlers. Any region which has the final handler
783 removed can be deleted. */
785 void remove_handler (removing_label)
786 rtx removing_label;
788 struct handler_info *handler, *last;
789 int x;
790 for (x = 0 ; x < current_func_eh_entry; ++x)
792 last = NULL;
793 handler = function_eh_regions[x].handlers;
794 for ( ; handler; last = handler, handler = handler->next)
795 if (handler->handler_label == removing_label)
797 if (last)
799 last->next = handler->next;
800 handler = last;
802 else
803 function_eh_regions[x].handlers = handler->next;
808 /* This function will return a malloc'd pointer to an array of
809 void pointer representing the runtime match values that
810 currently exist in all regions. */
812 int
813 find_all_handler_type_matches (array)
814 void ***array;
816 struct handler_info *handler, *last;
817 int x,y;
818 void *val;
819 void **ptr;
820 int max_ptr;
821 int n_ptr = 0;
823 *array = NULL;
825 if (!doing_eh (0) || ! flag_new_exceptions)
826 return 0;
828 max_ptr = 100;
829 ptr = (void **) xmalloc (max_ptr * sizeof (void *));
831 for (x = 0 ; x < current_func_eh_entry; x++)
833 last = NULL;
834 handler = function_eh_regions[x].handlers;
835 for ( ; handler; last = handler, handler = handler->next)
837 val = handler->type_info;
838 if (val != NULL && val != CATCH_ALL_TYPE)
840 /* See if this match value has already been found. */
841 for (y = 0; y < n_ptr; y++)
842 if (ptr[y] == val)
843 break;
845 /* If we break early, we already found this value. */
846 if (y < n_ptr)
847 continue;
849 /* Do we need to allocate more space? */
850 if (n_ptr >= max_ptr)
852 max_ptr += max_ptr / 2;
853 ptr = (void **) xrealloc (ptr, max_ptr * sizeof (void *));
855 ptr[n_ptr] = val;
856 n_ptr++;
861 if (n_ptr == 0)
863 free (ptr);
864 ptr = NULL;
866 *array = ptr;
867 return n_ptr;
870 /* Create a new handler structure initialized with the handler label and
871 typeinfo fields passed in. */
873 struct handler_info *
874 get_new_handler (handler, typeinfo)
875 rtx handler;
876 void *typeinfo;
878 struct handler_info* ptr;
879 ptr = (struct handler_info *) xmalloc (sizeof (struct handler_info));
880 ptr->handler_label = handler;
881 ptr->handler_number = CODE_LABEL_NUMBER (handler);
882 ptr->type_info = typeinfo;
883 ptr->next = NULL;
885 return ptr;
890 /* Find the index in function_eh_regions associated with a NOTE region. If
891 the region cannot be found, a -1 is returned. */
893 static int
894 find_func_region (insn_region)
895 int insn_region;
897 int x;
898 for (x = 0; x < current_func_eh_entry; x++)
899 if (function_eh_regions[x].range_number == insn_region)
900 return x;
902 return -1;
905 /* Get a pointer to the first handler in an exception region's list. */
907 struct handler_info *
908 get_first_handler (region)
909 int region;
911 int r = find_func_region (region);
912 if (r == -1)
913 abort ();
914 return function_eh_regions[r].handlers;
917 /* Clean out the function_eh_region table and free all memory */
919 static void
920 clear_function_eh_region ()
922 int x;
923 struct handler_info *ptr, *next;
924 for (x = 0; x < current_func_eh_entry; x++)
925 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
927 next = ptr->next;
928 free (ptr);
930 free (function_eh_regions);
931 num_func_eh_entries = 0;
932 current_func_eh_entry = 0;
935 /* Make a duplicate of an exception region by copying all the handlers
936 for an exception region. Return the new handler index. The final
937 parameter is a routine which maps old labels to new ones. */
939 int
940 duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
941 int old_note_eh_region, new_note_eh_region;
942 rtx (*map) PARAMS ((rtx));
944 struct handler_info *ptr, *new_ptr;
945 int new_region, region;
947 region = find_func_region (old_note_eh_region);
948 if (region == -1)
949 fatal ("Cannot duplicate non-existant exception region.");
951 /* duplicate_eh_handlers may have been called during a symbol remap. */
952 new_region = find_func_region (new_note_eh_region);
953 if (new_region != -1)
954 return (new_region);
956 new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);
958 ptr = function_eh_regions[region].handlers;
960 for ( ; ptr; ptr = ptr->next)
962 new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
963 add_new_handler (new_region, new_ptr);
966 return new_region;
970 /* Given a rethrow symbol, find the EH region number this is for. */
971 static int
972 eh_region_from_symbol (sym)
973 rtx sym;
975 int x;
976 if (sym == last_rethrow_symbol)
977 return 1;
978 for (x = 0; x < current_func_eh_entry; x++)
979 if (function_eh_regions[x].rethrow_label == sym)
980 return function_eh_regions[x].range_number;
981 return -1;
984 /* Like find_func_region, but using the rethrow symbol for the region
985 rather than the region number itself. */
986 static int
987 find_func_region_from_symbol (sym)
988 rtx sym;
990 return find_func_region (eh_region_from_symbol (sym));
993 /* When inlining/unrolling, we have to map the symbols passed to
994 __rethrow as well. This performs the remap. If a symbol isn't foiund,
995 the original one is returned. This is not an efficient routine,
996 so don't call it on everything!! */
997 rtx
998 rethrow_symbol_map (sym, map)
999 rtx sym;
1000 rtx (*map) PARAMS ((rtx));
1002 int x, y;
1003 for (x = 0; x < current_func_eh_entry; x++)
1004 if (function_eh_regions[x].rethrow_label == sym)
1006 /* We've found the original region, now lets determine which region
1007 this now maps to. */
1008 rtx l1 = function_eh_regions[x].handlers->handler_label;
1009 rtx l2 = map (l1);
1010 y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
1011 x = find_func_region (y); /* Get the new permanent region */
1012 if (x == -1) /* Hmm, Doesn't exist yet */
1014 x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
1015 /* Since we're mapping it, it must be used. */
1016 function_eh_regions[x].rethrow_ref = 1;
1018 return function_eh_regions[x].rethrow_label;
1020 return sym;
1023 int
1024 rethrow_used (region)
1025 int region;
1027 if (flag_new_exceptions)
1029 int ret = function_eh_regions[find_func_region (region)].rethrow_ref;
1030 return ret;
1032 return 0;
1036 /* Routine to see if exception handling is turned on.
1037 DO_WARN is non-zero if we want to inform the user that exception
1038 handling is turned off.
1040 This is used to ensure that -fexceptions has been specified if the
1041 compiler tries to use any exception-specific functions. */
1044 doing_eh (do_warn)
1045 int do_warn;
1047 if (! flag_exceptions)
1049 static int warned = 0;
1050 if (! warned && do_warn)
1052 error ("exception handling disabled, use -fexceptions to enable");
1053 warned = 1;
1055 return 0;
1057 return 1;
1060 /* Given a return address in ADDR, determine the address we should use
1061 to find the corresponding EH region. */
1064 eh_outer_context (addr)
1065 rtx addr;
1067 /* First mask out any unwanted bits. */
1068 #ifdef MASK_RETURN_ADDR
1069 expand_and (addr, MASK_RETURN_ADDR, addr);
1070 #endif
1072 /* Then adjust to find the real return address. */
1073 #if defined (RETURN_ADDR_OFFSET)
1074 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
1075 #endif
1077 return addr;
1080 /* Start a new exception region for a region of code that has a
1081 cleanup action and push the HANDLER for the region onto
1082 protect_list. All of the regions created with add_partial_entry
1083 will be ended when end_protect_partials is invoked. */
1085 void
1086 add_partial_entry (handler)
1087 tree handler;
1089 expand_eh_region_start ();
1091 /* Make sure the entry is on the correct obstack. */
1092 push_obstacks_nochange ();
1093 resume_temporary_allocation ();
1095 /* Because this is a cleanup action, we may have to protect the handler
1096 with __terminate. */
1097 handler = protect_with_terminate (handler);
1099 /* For backwards compatibility, we allow callers to omit calls to
1100 begin_protect_partials for the outermost region. So, we must
1101 explicitly do so here. */
1102 if (!protect_list)
1103 begin_protect_partials ();
1105 /* Add this entry to the front of the list. */
1106 TREE_VALUE (protect_list)
1107 = tree_cons (NULL_TREE, handler, TREE_VALUE (protect_list));
1108 pop_obstacks ();
1111 /* Emit code to get EH context to current function. */
1113 static rtx
1114 call_get_eh_context ()
1116 static tree fn;
1117 tree expr;
1119 if (fn == NULL_TREE)
1121 tree fntype;
1122 fn = get_identifier ("__get_eh_context");
1123 push_obstacks_nochange ();
1124 end_temporary_allocation ();
1125 fntype = build_pointer_type (build_pointer_type
1126 (build_pointer_type (void_type_node)));
1127 fntype = build_function_type (fntype, NULL_TREE);
1128 fn = build_decl (FUNCTION_DECL, fn, fntype);
1129 DECL_EXTERNAL (fn) = 1;
1130 TREE_PUBLIC (fn) = 1;
1131 DECL_ARTIFICIAL (fn) = 1;
1132 TREE_READONLY (fn) = 1;
1133 make_decl_rtl (fn, NULL_PTR, 1);
1134 assemble_external (fn);
1135 pop_obstacks ();
1137 ggc_add_tree_root (&fn, 1);
1140 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1141 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1142 expr, NULL_TREE, NULL_TREE);
1143 TREE_SIDE_EFFECTS (expr) = 1;
1145 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
1148 /* Get a reference to the EH context.
1149 We will only generate a register for the current function EH context here,
1150 and emit a USE insn to mark that this is a EH context register.
1152 Later, emit_eh_context will emit needed call to __get_eh_context
1153 in libgcc2, and copy the value to the register we have generated. */
1156 get_eh_context ()
1158 if (current_function_ehc == 0)
1160 rtx insn;
1162 current_function_ehc = gen_reg_rtx (Pmode);
1164 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1165 current_function_ehc);
1166 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1168 REG_NOTES (insn)
1169 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1170 REG_NOTES (insn));
1172 return current_function_ehc;
1175 /* Get a reference to the dynamic handler chain. It points to the
1176 pointer to the next element in the dynamic handler chain. It ends
1177 when there are no more elements in the dynamic handler chain, when
1178 the value is &top_elt from libgcc2.c. Immediately after the
1179 pointer, is an area suitable for setjmp/longjmp when
1180 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1181 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1182 isn't defined. */
1185 get_dynamic_handler_chain ()
1187 rtx ehc, dhc, result;
1189 ehc = get_eh_context ();
1191 /* This is the offset of dynamic_handler_chain in the eh_context struct
1192 declared in eh-common.h. If its location is change, change this offset */
1193 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
1195 result = copy_to_reg (dhc);
1197 /* We don't want a copy of the dcc, but rather, the single dcc. */
1198 return gen_rtx_MEM (Pmode, result);
1201 /* Get a reference to the dynamic cleanup chain. It points to the
1202 pointer to the next element in the dynamic cleanup chain.
1203 Immediately after the pointer, are two Pmode variables, one for a
1204 pointer to a function that performs the cleanup action, and the
1205 second, the argument to pass to that function. */
1208 get_dynamic_cleanup_chain ()
1210 rtx dhc, dcc, result;
1212 dhc = get_dynamic_handler_chain ();
1213 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
1215 result = copy_to_reg (dcc);
1217 /* We don't want a copy of the dcc, but rather, the single dcc. */
1218 return gen_rtx_MEM (Pmode, result);
1221 #ifdef DONT_USE_BUILTIN_SETJMP
1222 /* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1223 LABEL is an rtx of code CODE_LABEL, in this function. */
1225 static void
1226 jumpif_rtx (x, label)
1227 rtx x;
1228 rtx label;
1230 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1232 #endif
1234 /* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1235 We just need to create an element for the cleanup list, and push it
1236 into the chain.
1238 A dynamic cleanup is a cleanup action implied by the presence of an
1239 element on the EH runtime dynamic cleanup stack that is to be
1240 performed when an exception is thrown. The cleanup action is
1241 performed by __sjthrow when an exception is thrown. Only certain
1242 actions can be optimized into dynamic cleanup actions. For the
1243 restrictions on what actions can be performed using this routine,
1244 see expand_eh_region_start_tree. */
1246 static void
1247 start_dynamic_cleanup (func, arg)
1248 tree func;
1249 tree arg;
1251 rtx dcc;
1252 rtx new_func, new_arg;
1253 rtx x, buf;
1254 int size;
1256 /* We allocate enough room for a pointer to the function, and
1257 one argument. */
1258 size = 2;
1260 /* XXX, FIXME: The stack space allocated this way is too long lived,
1261 but there is no allocation routine that allocates at the level of
1262 the last binding contour. */
1263 buf = assign_stack_local (BLKmode,
1264 GET_MODE_SIZE (Pmode)*(size+1),
1267 buf = change_address (buf, Pmode, NULL_RTX);
1269 /* Store dcc into the first word of the newly allocated buffer. */
1271 dcc = get_dynamic_cleanup_chain ();
1272 emit_move_insn (buf, dcc);
1274 /* Store func and arg into the cleanup list element. */
1276 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1277 GET_MODE_SIZE (Pmode)));
1278 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1279 GET_MODE_SIZE (Pmode)*2));
1280 x = expand_expr (func, new_func, Pmode, 0);
1281 if (x != new_func)
1282 emit_move_insn (new_func, x);
1284 x = expand_expr (arg, new_arg, Pmode, 0);
1285 if (x != new_arg)
1286 emit_move_insn (new_arg, x);
1288 /* Update the cleanup chain. */
1290 x = force_operand (XEXP (buf, 0), dcc);
1291 if (x != dcc)
1292 emit_move_insn (dcc, x);
1295 /* Emit RTL to start a dynamic handler on the EH runtime dynamic
1296 handler stack. This should only be used by expand_eh_region_start
1297 or expand_eh_region_start_tree. */
1299 static void
1300 start_dynamic_handler ()
1302 rtx dhc, dcc;
1303 rtx x, arg, buf;
1304 int size;
1306 #ifndef DONT_USE_BUILTIN_SETJMP
1307 /* The number of Pmode words for the setjmp buffer, when using the
1308 builtin setjmp/longjmp, see expand_builtin, case BUILT_IN_LONGJMP. */
1309 /* We use 2 words here before calling expand_builtin_setjmp.
1310 expand_builtin_setjmp uses 2 words, and then calls emit_stack_save.
1311 emit_stack_save needs space of size STACK_SAVEAREA_MODE (SAVE_NONLOCAL).
1312 Subtract one, because the assign_stack_local call below adds 1. */
1313 size = (2 + 2 + (GET_MODE_SIZE (STACK_SAVEAREA_MODE (SAVE_NONLOCAL))
1314 / GET_MODE_SIZE (Pmode))
1315 - 1);
1316 #else
1317 #ifdef JMP_BUF_SIZE
1318 size = JMP_BUF_SIZE;
1319 #else
1320 /* Should be large enough for most systems, if it is not,
1321 JMP_BUF_SIZE should be defined with the proper value. It will
1322 also tend to be larger than necessary for most systems, a more
1323 optimal port will define JMP_BUF_SIZE. */
1324 size = FIRST_PSEUDO_REGISTER+2;
1325 #endif
1326 #endif
1327 /* XXX, FIXME: The stack space allocated this way is too long lived,
1328 but there is no allocation routine that allocates at the level of
1329 the last binding contour. */
1330 arg = assign_stack_local (BLKmode,
1331 GET_MODE_SIZE (Pmode)*(size+1),
1334 arg = change_address (arg, Pmode, NULL_RTX);
1336 /* Store dhc into the first word of the newly allocated buffer. */
1338 dhc = get_dynamic_handler_chain ();
1339 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1340 GET_MODE_SIZE (Pmode)));
1341 emit_move_insn (arg, dhc);
1343 /* Zero out the start of the cleanup chain. */
1344 emit_move_insn (dcc, const0_rtx);
1346 /* The jmpbuf starts two words into the area allocated. */
1347 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
1349 #ifdef DONT_USE_BUILTIN_SETJMP
1350 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1,
1351 TYPE_MODE (integer_type_node), 1,
1352 buf, Pmode);
1353 /* If we come back here for a catch, transfer control to the handler. */
1354 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
1355 #else
1357 /* A label to continue execution for the no exception case. */
1358 rtx noex = gen_label_rtx();
1359 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1360 ehstack.top->entry->exception_handler_label);
1361 emit_label (noex);
1363 #endif
1365 /* We are committed to this, so update the handler chain. */
1367 emit_move_insn (dhc, force_operand (XEXP (arg, 0), NULL_RTX));
1370 /* Start an exception handling region for the given cleanup action.
1371 All instructions emitted after this point are considered to be part
1372 of the region until expand_eh_region_end is invoked. CLEANUP is
1373 the cleanup action to perform. The return value is true if the
1374 exception region was optimized away. If that case,
1375 expand_eh_region_end does not need to be called for this cleanup,
1376 nor should it be.
1378 This routine notices one particular common case in C++ code
1379 generation, and optimizes it so as to not need the exception
1380 region. It works by creating a dynamic cleanup action, instead of
1381 a using an exception region. */
1384 expand_eh_region_start_tree (decl, cleanup)
1385 tree decl;
1386 tree cleanup;
1388 /* This is the old code. */
1389 if (! doing_eh (0))
1390 return 0;
1392 /* The optimization only applies to actions protected with
1393 terminate, and only applies if we are using the setjmp/longjmp
1394 codegen method. */
1395 if (exceptions_via_longjmp
1396 && protect_cleanup_actions_with_terminate)
1398 tree func, arg;
1399 tree args;
1401 /* Ignore any UNSAVE_EXPR. */
1402 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1403 cleanup = TREE_OPERAND (cleanup, 0);
1405 /* Further, it only applies if the action is a call, if there
1406 are 2 arguments, and if the second argument is 2. */
1408 if (TREE_CODE (cleanup) == CALL_EXPR
1409 && (args = TREE_OPERAND (cleanup, 1))
1410 && (func = TREE_OPERAND (cleanup, 0))
1411 && (arg = TREE_VALUE (args))
1412 && (args = TREE_CHAIN (args))
1414 /* is the second argument 2? */
1415 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1416 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1417 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1419 /* Make sure there are no other arguments. */
1420 && TREE_CHAIN (args) == NULL_TREE)
1422 /* Arrange for returns and gotos to pop the entry we make on the
1423 dynamic cleanup stack. */
1424 expand_dcc_cleanup (decl);
1425 start_dynamic_cleanup (func, arg);
1426 return 1;
1430 expand_eh_region_start_for_decl (decl);
1431 ehstack.top->entry->finalization = cleanup;
1433 return 0;
1436 /* Just like expand_eh_region_start, except if a cleanup action is
1437 entered on the cleanup chain, the TREE_PURPOSE of the element put
1438 on the chain is DECL. DECL should be the associated VAR_DECL, if
1439 any, otherwise it should be NULL_TREE. */
1441 void
1442 expand_eh_region_start_for_decl (decl)
1443 tree decl;
1445 rtx note;
1447 /* This is the old code. */
1448 if (! doing_eh (0))
1449 return;
1451 /* We need a new block to record the start and end of the
1452 dynamic handler chain. We also want to prevent jumping into
1453 a try block. */
1454 expand_start_bindings (2);
1456 /* But we don't need or want a new temporary level. */
1457 pop_temp_slots ();
1459 /* Mark this block as created by expand_eh_region_start. This
1460 is so that we can pop the block with expand_end_bindings
1461 automatically. */
1462 mark_block_as_eh_region ();
1464 if (exceptions_via_longjmp)
1466 /* Arrange for returns and gotos to pop the entry we make on the
1467 dynamic handler stack. */
1468 expand_dhc_cleanup (decl);
1471 push_eh_entry (&ehstack);
1472 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1473 NOTE_EH_HANDLER (note)
1474 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
1475 if (exceptions_via_longjmp)
1476 start_dynamic_handler ();
1479 /* Start an exception handling region. All instructions emitted after
1480 this point are considered to be part of the region until
1481 expand_eh_region_end is invoked. */
1483 void
1484 expand_eh_region_start ()
1486 expand_eh_region_start_for_decl (NULL_TREE);
1489 /* End an exception handling region. The information about the region
1490 is found on the top of ehstack.
1492 HANDLER is either the cleanup for the exception region, or if we're
1493 marking the end of a try block, HANDLER is integer_zero_node.
1495 HANDLER will be transformed to rtl when expand_leftover_cleanups
1496 is invoked. */
1498 void
1499 expand_eh_region_end (handler)
1500 tree handler;
1502 struct eh_entry *entry;
1503 struct eh_node *node;
1504 rtx note;
1505 int ret, r;
1507 if (! doing_eh (0))
1508 return;
1510 entry = pop_eh_entry (&ehstack);
1512 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1513 ret = NOTE_EH_HANDLER (note)
1514 = CODE_LABEL_NUMBER (entry->exception_handler_label);
1515 if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
1516 /* We share outer_context between regions; only emit it once. */
1517 && INSN_UID (entry->outer_context) == 0)
1519 rtx label;
1521 label = gen_label_rtx ();
1522 emit_jump (label);
1524 /* Emit a label marking the end of this exception region that
1525 is used for rethrowing into the outer context. */
1526 emit_label (entry->outer_context);
1527 expand_internal_throw ();
1529 emit_label (label);
1532 entry->finalization = handler;
1534 /* create region entry in final exception table */
1535 r = new_eh_region_entry (NOTE_EH_HANDLER (note), entry->rethrow_label);
1537 enqueue_eh_entry (ehqueue, entry);
1539 /* If we have already started ending the bindings, don't recurse. */
1540 if (is_eh_region ())
1542 /* Because we don't need or want a new temporary level and
1543 because we didn't create one in expand_eh_region_start,
1544 create a fake one now to avoid removing one in
1545 expand_end_bindings. */
1546 push_temp_slots ();
1548 mark_block_as_not_eh_region ();
1550 expand_end_bindings (NULL_TREE, 0, 0);
1553 /* Go through the goto handlers in the queue, emitting their
1554 handlers if we now have enough information to do so. */
1555 for (node = ehqueue->head; node; node = node->chain)
1556 if (node->entry->goto_entry_p
1557 && node->entry->outer_context == entry->rethrow_label)
1558 emit_cleanup_handler (node->entry);
1560 /* We can't emit handlers for goto entries until their scopes are
1561 complete because we don't know where they need to rethrow to,
1562 yet. */
1563 if (entry->finalization != integer_zero_node
1564 && (!entry->goto_entry_p
1565 || find_func_region_from_symbol (entry->outer_context) != -1))
1566 emit_cleanup_handler (entry);
1569 /* End the EH region for a goto fixup. We only need them in the region-based
1570 EH scheme. */
1572 void
1573 expand_fixup_region_start ()
1575 if (! doing_eh (0) || exceptions_via_longjmp)
1576 return;
1578 expand_eh_region_start ();
1579 /* Mark this entry as the entry for a goto. */
1580 ehstack.top->entry->goto_entry_p = 1;
1583 /* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1584 expanded; to avoid running it twice if it throws, we look through the
1585 ehqueue for a matching region and rethrow from its outer_context. */
1587 void
1588 expand_fixup_region_end (cleanup)
1589 tree cleanup;
1591 struct eh_node *node;
1592 int dont_issue;
1594 if (! doing_eh (0) || exceptions_via_longjmp)
1595 return;
1597 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1598 node = node->chain;
1599 if (node == 0)
1600 for (node = ehqueue->head; node && node->entry->finalization != cleanup; )
1601 node = node->chain;
1602 if (node == 0)
1603 abort ();
1605 /* If the outer context label has not been issued yet, we don't want
1606 to issue it as a part of this region, unless this is the
1607 correct region for the outer context. If we did, then the label for
1608 the outer context will be WITHIN the begin/end labels,
1609 and we could get an infinte loop when it tried to rethrow, or just
1610 generally incorrect execution following a throw. */
1612 if (flag_new_exceptions)
1613 dont_issue = 0;
1614 else
1615 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1616 && (ehstack.top->entry != node->entry));
1618 ehstack.top->entry->outer_context = node->entry->outer_context;
1620 /* Since we are rethrowing to the OUTER region, we know we don't need
1621 a jump around sequence for this region, so we'll pretend the outer
1622 context label has been issued by setting INSN_UID to 1, then clearing
1623 it again afterwards. */
1625 if (dont_issue)
1626 INSN_UID (node->entry->outer_context) = 1;
1628 /* Just rethrow. size_zero_node is just a NOP. */
1629 expand_eh_region_end (size_zero_node);
1631 if (dont_issue)
1632 INSN_UID (node->entry->outer_context) = 0;
1635 /* If we are using the setjmp/longjmp EH codegen method, we emit a
1636 call to __sjthrow.
1638 Otherwise, we emit a call to __throw and note that we threw
1639 something, so we know we need to generate the necessary code for
1640 __throw.
1642 Before invoking throw, the __eh_pc variable must have been set up
1643 to contain the PC being thrown from. This address is used by
1644 __throw to determine which exception region (if any) is
1645 responsible for handling the exception. */
1647 void
1648 emit_throw ()
1650 if (exceptions_via_longjmp)
1652 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1654 else
1656 #ifdef JUMP_TO_THROW
1657 emit_indirect_jump (throw_libfunc);
1658 #else
1659 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
1660 #endif
1662 emit_barrier ();
1665 /* Throw the current exception. If appropriate, this is done by jumping
1666 to the next handler. */
1668 void
1669 expand_internal_throw ()
1671 emit_throw ();
1674 /* Called from expand_exception_blocks and expand_end_catch_block to
1675 emit any pending handlers/cleanups queued from expand_eh_region_end. */
1677 void
1678 expand_leftover_cleanups ()
1680 struct eh_entry *entry;
1682 for (entry = dequeue_eh_entry (ehqueue);
1683 entry;
1684 entry = dequeue_eh_entry (ehqueue))
1686 /* A leftover try block. Shouldn't be one here. */
1687 if (entry->finalization == integer_zero_node)
1688 abort ();
1690 free (entry);
1694 /* Called at the start of a block of try statements. */
1695 void
1696 expand_start_try_stmts ()
1698 if (! doing_eh (1))
1699 return;
1701 expand_eh_region_start ();
1704 /* Called to begin a catch clause. The parameter is the object which
1705 will be passed to the runtime type check routine. */
1706 void
1707 start_catch_handler (rtime)
1708 tree rtime;
1710 rtx handler_label;
1711 int insn_region_num;
1712 int eh_region_entry;
1714 if (! doing_eh (1))
1715 return;
1717 handler_label = catchstack.top->entry->exception_handler_label;
1718 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1719 eh_region_entry = find_func_region (insn_region_num);
1721 /* If we've already issued this label, pick a new one */
1722 if (catchstack.top->entry->label_used)
1723 handler_label = gen_exception_label ();
1724 else
1725 catchstack.top->entry->label_used = 1;
1727 receive_exception_label (handler_label);
1729 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
1731 if (flag_new_exceptions && ! exceptions_via_longjmp)
1732 return;
1734 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1735 issue code to compare 'rtime' to the value in eh_info, via the
1736 matching function in eh_info. If its is false, we branch around
1737 the handler we are about to issue. */
1739 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1741 rtx call_rtx, rtime_address;
1743 if (catchstack.top->entry->false_label != NULL_RTX)
1745 error ("Never issued previous false_label");
1746 abort ();
1748 catchstack.top->entry->false_label = gen_exception_label ();
1750 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
1751 #ifdef POINTERS_EXTEND_UNSIGNED
1752 rtime_address = convert_memory_address (Pmode, rtime_address);
1753 #endif
1754 rtime_address = force_reg (Pmode, rtime_address);
1756 /* Now issue the call, and branch around handler if needed */
1757 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1758 0, TYPE_MODE (integer_type_node),
1759 1, rtime_address, Pmode);
1761 /* Did the function return true? */
1762 emit_cmp_and_jump_insns (call_rtx, const0_rtx, EQ, NULL_RTX,
1763 GET_MODE (call_rtx), 0, 0,
1764 catchstack.top->entry->false_label);
1768 /* Called to end a catch clause. If we aren't using the new exception
1769 model tabel mechanism, we need to issue the branch-around label
1770 for the end of the catch block. */
1772 void
1773 end_catch_handler ()
1775 if (! doing_eh (1))
1776 return;
1778 if (flag_new_exceptions && ! exceptions_via_longjmp)
1780 emit_barrier ();
1781 return;
1784 /* A NULL label implies the catch clause was a catch all or cleanup */
1785 if (catchstack.top->entry->false_label == NULL_RTX)
1786 return;
1788 emit_label (catchstack.top->entry->false_label);
1789 catchstack.top->entry->false_label = NULL_RTX;
1792 /* Save away the current ehqueue. */
1794 void
1795 push_ehqueue ()
1797 struct eh_queue *q;
1798 q = (struct eh_queue *) xcalloc (1, sizeof (struct eh_queue));
1799 q->next = ehqueue;
1800 ehqueue = q;
1803 /* Restore a previously pushed ehqueue. */
1805 void
1806 pop_ehqueue ()
1808 struct eh_queue *q;
1809 expand_leftover_cleanups ();
1810 q = ehqueue->next;
1811 free (ehqueue);
1812 ehqueue = q;
1815 /* Emit the handler specified by ENTRY. */
1817 static void
1818 emit_cleanup_handler (entry)
1819 struct eh_entry *entry;
1821 rtx prev;
1822 rtx handler_insns;
1824 /* Since the cleanup could itself contain try-catch blocks, we
1825 squirrel away the current queue and replace it when we are done
1826 with this function. */
1827 push_ehqueue ();
1829 /* Put these handler instructions in a sequence. */
1830 do_pending_stack_adjust ();
1831 start_sequence ();
1833 /* Emit the label for the cleanup handler for this region, and
1834 expand the code for the handler.
1836 Note that a catch region is handled as a side-effect here; for a
1837 try block, entry->finalization will contain integer_zero_node, so
1838 no code will be generated in the expand_expr call below. But, the
1839 label for the handler will still be emitted, so any code emitted
1840 after this point will end up being the handler. */
1842 receive_exception_label (entry->exception_handler_label);
1844 /* register a handler for this cleanup region */
1845 add_new_handler (find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1846 get_new_handler (entry->exception_handler_label, NULL));
1848 /* And now generate the insns for the cleanup handler. */
1849 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1851 prev = get_last_insn ();
1852 if (prev == NULL || GET_CODE (prev) != BARRIER)
1853 /* Code to throw out to outer context when we fall off end of the
1854 handler. We can't do this here for catch blocks, so it's done
1855 in expand_end_all_catch instead. */
1856 expand_rethrow (entry->outer_context);
1858 /* Finish this sequence. */
1859 do_pending_stack_adjust ();
1860 handler_insns = get_insns ();
1861 end_sequence ();
1863 /* And add it to the CATCH_CLAUSES. */
1864 push_to_sequence (catch_clauses);
1865 emit_insns (handler_insns);
1866 catch_clauses = get_insns ();
1867 end_sequence ();
1869 /* Now we've left the handler. */
1870 pop_ehqueue ();
1873 /* Generate RTL for the start of a group of catch clauses.
1875 It is responsible for starting a new instruction sequence for the
1876 instructions in the catch block, and expanding the handlers for the
1877 internally-generated exception regions nested within the try block
1878 corresponding to this catch block. */
1880 void
1881 expand_start_all_catch ()
1883 struct eh_entry *entry;
1884 tree label;
1885 rtx outer_context;
1887 if (! doing_eh (1))
1888 return;
1890 outer_context = ehstack.top->entry->outer_context;
1892 /* End the try block. */
1893 expand_eh_region_end (integer_zero_node);
1895 emit_line_note (input_filename, lineno);
1896 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1898 /* The label for the exception handling block that we will save.
1899 This is Lresume in the documentation. */
1900 expand_label (label);
1902 /* Push the label that points to where normal flow is resumed onto
1903 the top of the label stack. */
1904 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1906 /* Start a new sequence for all the catch blocks. We will add this
1907 to the global sequence catch_clauses when we have completed all
1908 the handlers in this handler-seq. */
1909 start_sequence ();
1911 /* Throw away entries in the queue that we won't need anymore. We
1912 need entries for regions that have ended but to which there might
1913 still be gotos pending. */
1914 for (entry = dequeue_eh_entry (ehqueue);
1915 entry->finalization != integer_zero_node;
1916 entry = dequeue_eh_entry (ehqueue))
1917 free (entry);
1919 /* At this point, all the cleanups are done, and the ehqueue now has
1920 the current exception region at its head. We dequeue it, and put it
1921 on the catch stack. */
1922 push_entry (&catchstack, entry);
1924 /* If we are not doing setjmp/longjmp EH, because we are reordered
1925 out of line, we arrange to rethrow in the outer context. We need to
1926 do this because we are not physically within the region, if any, that
1927 logically contains this catch block. */
1928 if (! exceptions_via_longjmp)
1930 expand_eh_region_start ();
1931 ehstack.top->entry->outer_context = outer_context;
1936 /* Finish up the catch block. At this point all the insns for the
1937 catch clauses have already been generated, so we only have to add
1938 them to the catch_clauses list. We also want to make sure that if
1939 we fall off the end of the catch clauses that we rethrow to the
1940 outer EH region. */
1942 void
1943 expand_end_all_catch ()
1945 rtx new_catch_clause;
1946 struct eh_entry *entry;
1948 if (! doing_eh (1))
1949 return;
1951 /* Dequeue the current catch clause region. */
1952 entry = pop_eh_entry (&catchstack);
1953 free (entry);
1955 if (! exceptions_via_longjmp)
1957 rtx outer_context = ehstack.top->entry->outer_context;
1959 /* Finish the rethrow region. size_zero_node is just a NOP. */
1960 expand_eh_region_end (size_zero_node);
1961 /* New exceptions handling models will never have a fall through
1962 of a catch clause */
1963 if (!flag_new_exceptions)
1964 expand_rethrow (outer_context);
1966 else
1967 expand_rethrow (NULL_RTX);
1969 /* Code to throw out to outer context, if we fall off end of catch
1970 handlers. This is rethrow (Lresume, same id, same obj) in the
1971 documentation. We use Lresume because we know that it will throw
1972 to the correct context.
1974 In other words, if the catch handler doesn't exit or return, we
1975 do a "throw" (using the address of Lresume as the point being
1976 thrown from) so that the outer EH region can then try to process
1977 the exception. */
1979 /* Now we have the complete catch sequence. */
1980 new_catch_clause = get_insns ();
1981 end_sequence ();
1983 /* This level of catch blocks is done, so set up the successful
1984 catch jump label for the next layer of catch blocks. */
1985 pop_label_entry (&caught_return_label_stack);
1986 pop_label_entry (&outer_context_label_stack);
1988 /* Add the new sequence of catches to the main one for this function. */
1989 push_to_sequence (catch_clauses);
1990 emit_insns (new_catch_clause);
1991 catch_clauses = get_insns ();
1992 end_sequence ();
1994 /* Here we fall through into the continuation code. */
1997 /* Rethrow from the outer context LABEL. */
1999 static void
2000 expand_rethrow (label)
2001 rtx label;
2003 if (exceptions_via_longjmp)
2004 emit_throw ();
2005 else
2006 if (flag_new_exceptions)
2008 rtx insn;
2009 int region;
2010 if (label == NULL_RTX)
2011 label = last_rethrow_symbol;
2012 emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
2013 region = find_func_region (eh_region_from_symbol (label));
2014 /* If the region is -1, it doesn't exist yet. We should be
2015 trying to rethrow there yet. */
2016 if (region == -1)
2017 abort ();
2018 function_eh_regions[region].rethrow_ref = 1;
2020 /* Search backwards for the actual call insn. */
2021 insn = get_last_insn ();
2022 while (GET_CODE (insn) != CALL_INSN)
2023 insn = PREV_INSN (insn);
2024 delete_insns_since (insn);
2026 /* Mark the label/symbol on the call. */
2027 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, label,
2028 REG_NOTES (insn));
2029 emit_barrier ();
2031 else
2032 emit_jump (label);
2035 /* Begin a region that will contain entries created with
2036 add_partial_entry. */
2038 void
2039 begin_protect_partials ()
2041 /* Put the entry on the function obstack. */
2042 push_obstacks_nochange ();
2043 resume_temporary_allocation ();
2045 /* Push room for a new list. */
2046 protect_list = tree_cons (NULL_TREE, NULL_TREE, protect_list);
2048 /* We're done with the function obstack now. */
2049 pop_obstacks ();
2052 /* End all the pending exception regions on protect_list. The handlers
2053 will be emitted when expand_leftover_cleanups is invoked. */
2055 void
2056 end_protect_partials ()
2058 tree t;
2060 /* For backwards compatibility, we allow callers to omit the call to
2061 begin_protect_partials for the outermost region. So,
2062 PROTECT_LIST may be NULL. */
2063 if (!protect_list)
2064 return;
2066 /* End all the exception regions. */
2067 for (t = TREE_VALUE (protect_list); t; t = TREE_CHAIN (t))
2068 expand_eh_region_end (TREE_VALUE (t));
2070 /* Pop the topmost entry. */
2071 protect_list = TREE_CHAIN (protect_list);
2075 /* Arrange for __terminate to be called if there is an unhandled throw
2076 from within E. */
2078 tree
2079 protect_with_terminate (e)
2080 tree e;
2082 /* We only need to do this when using setjmp/longjmp EH and the
2083 language requires it, as otherwise we protect all of the handlers
2084 at once, if we need to. */
2085 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
2087 tree handler, result;
2089 /* All cleanups must be on the function_obstack. */
2090 push_obstacks_nochange ();
2091 resume_temporary_allocation ();
2093 handler = make_node (RTL_EXPR);
2094 TREE_TYPE (handler) = void_type_node;
2095 RTL_EXPR_RTL (handler) = const0_rtx;
2096 TREE_SIDE_EFFECTS (handler) = 1;
2097 start_sequence_for_rtl_expr (handler);
2099 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
2100 emit_barrier ();
2102 RTL_EXPR_SEQUENCE (handler) = get_insns ();
2103 end_sequence ();
2105 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
2106 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2107 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2108 TREE_READONLY (result) = TREE_READONLY (e);
2110 pop_obstacks ();
2112 e = result;
2115 return e;
2118 /* The exception table that we build that is used for looking up and
2119 dispatching exceptions, the current number of entries, and its
2120 maximum size before we have to extend it.
2122 The number in eh_table is the code label number of the exception
2123 handler for the region. This is added by add_eh_table_entry and
2124 used by output_exception_table_entry. */
2126 static int *eh_table = NULL;
2127 static int eh_table_size = 0;
2128 static int eh_table_max_size = 0;
2130 /* Note the need for an exception table entry for region N. If we
2131 don't need to output an explicit exception table, avoid all of the
2132 extra work.
2134 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
2135 (Or NOTE_INSN_EH_REGION_END sometimes)
2136 N is the NOTE_EH_HANDLER of the note, which comes from the code
2137 label number of the exception handler for the region. */
2139 void
2140 add_eh_table_entry (n)
2141 int n;
2143 #ifndef OMIT_EH_TABLE
2144 if (eh_table_size >= eh_table_max_size)
2146 if (eh_table)
2148 eh_table_max_size += eh_table_max_size>>1;
2150 if (eh_table_max_size < 0)
2151 abort ();
2153 eh_table = (int *) xrealloc (eh_table,
2154 eh_table_max_size * sizeof (int));
2156 else
2158 eh_table_max_size = 252;
2159 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
2162 eh_table[eh_table_size++] = n;
2163 #endif
2166 /* Return a non-zero value if we need to output an exception table.
2168 On some platforms, we don't have to output a table explicitly.
2169 This routine doesn't mean we don't have one. */
2172 exception_table_p ()
2174 if (eh_table)
2175 return 1;
2177 return 0;
2180 /* Output the entry of the exception table corresponding to the
2181 exception region numbered N to file FILE.
2183 N is the code label number corresponding to the handler of the
2184 region. */
2186 static void
2187 output_exception_table_entry (file, n)
2188 FILE *file;
2189 int n;
2191 char buf[256];
2192 rtx sym;
2193 struct handler_info *handler = get_first_handler (n);
2194 int index = find_func_region (n);
2195 rtx rethrow;
2197 /* form and emit the rethrow label, if needed */
2198 rethrow = function_eh_regions[index].rethrow_label;
2199 if (rethrow != NULL_RTX && !flag_new_exceptions)
2200 rethrow = NULL_RTX;
2201 if (rethrow != NULL_RTX && handler == NULL)
2202 if (! function_eh_regions[index].rethrow_ref)
2203 rethrow = NULL_RTX;
2206 for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
2208 /* rethrow label should indicate the LAST entry for a region */
2209 if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
2211 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
2212 assemble_label(buf);
2213 rethrow = NULL_RTX;
2216 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
2217 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2218 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2220 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
2221 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2222 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2224 if (handler == NULL)
2225 assemble_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
2226 else
2228 ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
2229 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2230 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2233 if (flag_new_exceptions)
2235 if (handler == NULL || handler->type_info == NULL)
2236 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2237 else
2238 if (handler->type_info == CATCH_ALL_TYPE)
2239 assemble_integer (GEN_INT (CATCH_ALL_TYPE),
2240 POINTER_SIZE / BITS_PER_UNIT, 1);
2241 else
2242 output_constant ((tree)(handler->type_info),
2243 POINTER_SIZE / BITS_PER_UNIT);
2245 putc ('\n', file); /* blank line */
2246 /* We only output the first label under the old scheme */
2247 if (! flag_new_exceptions || handler == NULL)
2248 break;
2252 /* Output the exception table if we have and need one. */
2254 static short language_code = 0;
2255 static short version_code = 0;
2257 /* This routine will set the language code for exceptions. */
2258 void
2259 set_exception_lang_code (code)
2260 int code;
2262 language_code = code;
2265 /* This routine will set the language version code for exceptions. */
2266 void
2267 set_exception_version_code (code)
2268 int code;
2270 version_code = code;
2274 void
2275 output_exception_table ()
2277 int i;
2278 char buf[256];
2279 extern FILE *asm_out_file;
2281 if (! doing_eh (0) || ! eh_table)
2282 return;
2284 exception_section ();
2286 /* Beginning marker for table. */
2287 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
2288 assemble_label ("__EXCEPTION_TABLE__");
2290 if (flag_new_exceptions)
2292 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
2293 POINTER_SIZE / BITS_PER_UNIT, 1);
2294 assemble_integer (GEN_INT (language_code), 2 , 1);
2295 assemble_integer (GEN_INT (version_code), 2 , 1);
2297 /* Add enough padding to make sure table aligns on a pointer boundry. */
2298 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2299 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2301 if (i != 0)
2302 assemble_integer (const0_rtx, i , 1);
2304 /* Generate the label for offset calculations on rethrows */
2305 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
2306 assemble_label(buf);
2309 for (i = 0; i < eh_table_size; ++i)
2310 output_exception_table_entry (asm_out_file, eh_table[i]);
2312 free (eh_table);
2313 clear_function_eh_region ();
2315 /* Ending marker for table. */
2316 /* Generate the label for end of table. */
2317 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
2318 assemble_label(buf);
2319 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2321 /* for binary compatability, the old __throw checked the second
2322 position for a -1, so we should output at least 2 -1's */
2323 if (! flag_new_exceptions)
2324 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2326 putc ('\n', asm_out_file); /* blank line */
2329 /* Emit code to get EH context.
2331 We have to scan thru the code to find possible EH context registers.
2332 Inlined functions may use it too, and thus we'll have to be able
2333 to change them too.
2335 This is done only if using exceptions_via_longjmp. */
2337 void
2338 emit_eh_context ()
2340 rtx insn;
2341 rtx ehc = 0;
2343 if (! doing_eh (0))
2344 return;
2346 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2347 if (GET_CODE (insn) == INSN
2348 && GET_CODE (PATTERN (insn)) == USE)
2350 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2351 if (reg)
2353 rtx insns;
2355 start_sequence ();
2357 /* If this is the first use insn, emit the call here. This
2358 will always be at the top of our function, because if
2359 expand_inline_function notices a REG_EH_CONTEXT note, it
2360 adds a use insn to this function as well. */
2361 if (ehc == 0)
2362 ehc = call_get_eh_context ();
2364 emit_move_insn (XEXP (reg, 0), ehc);
2365 insns = get_insns ();
2366 end_sequence ();
2368 emit_insns_before (insns, insn);
2373 /* Scan the current insns and build a list of handler labels. The
2374 resulting list is placed in the global variable exception_handler_labels.
2376 It is called after the last exception handling region is added to
2377 the current function (when the rtl is almost all built for the
2378 current function) and before the jump optimization pass. */
2380 void
2381 find_exception_handler_labels ()
2383 rtx insn;
2385 exception_handler_labels = NULL_RTX;
2387 /* If we aren't doing exception handling, there isn't much to check. */
2388 if (! doing_eh (0))
2389 return;
2391 /* For each start of a region, add its label to the list. */
2393 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2395 struct handler_info* ptr;
2396 if (GET_CODE (insn) == NOTE
2397 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2399 ptr = get_first_handler (NOTE_EH_HANDLER (insn));
2400 for ( ; ptr; ptr = ptr->next)
2402 /* make sure label isn't in the list already */
2403 rtx x;
2404 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2405 if (XEXP (x, 0) == ptr->handler_label)
2406 break;
2407 if (! x)
2408 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2409 ptr->handler_label, exception_handler_labels);
2415 /* Return a value of 1 if the parameter label number is an exception handler
2416 label. Return 0 otherwise. */
2419 is_exception_handler_label (lab)
2420 int lab;
2422 rtx x;
2423 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2424 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2425 return 1;
2426 return 0;
2429 /* Perform sanity checking on the exception_handler_labels list.
2431 Can be called after find_exception_handler_labels is called to
2432 build the list of exception handlers for the current function and
2433 before we finish processing the current function. */
2435 void
2436 check_exception_handler_labels ()
2438 rtx insn, insn2;
2440 /* If we aren't doing exception handling, there isn't much to check. */
2441 if (! doing_eh (0))
2442 return;
2444 /* Make sure there is no more than 1 copy of a label */
2445 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
2447 int count = 0;
2448 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2449 if (XEXP (insn, 0) == XEXP (insn2, 0))
2450 count++;
2451 if (count != 1)
2452 warning ("Counted %d copies of EH region %d in list.\n", count,
2453 CODE_LABEL_NUMBER (insn));
2458 /* Mark the children of NODE for GC. */
2460 static void
2461 mark_eh_node (node)
2462 struct eh_node *node;
2464 while (node)
2466 if (node->entry)
2468 ggc_mark_rtx (node->entry->outer_context);
2469 ggc_mark_rtx (node->entry->exception_handler_label);
2470 ggc_mark_tree (node->entry->finalization);
2471 ggc_mark_rtx (node->entry->false_label);
2472 ggc_mark_rtx (node->entry->rethrow_label);
2474 node = node ->chain;
2478 /* Mark S for GC. */
2480 static void
2481 mark_eh_stack (s)
2482 struct eh_stack *s;
2484 if (s)
2485 mark_eh_node (s->top);
2488 /* Mark Q for GC. */
2490 static void
2491 mark_eh_queue (q)
2492 struct eh_queue *q;
2494 while (q)
2496 mark_eh_node (q->head);
2497 q = q->next;
2501 /* Mark NODE for GC. A label_node contains a union containing either
2502 a tree or an rtx. This label_node will contain a tree. */
2504 static void
2505 mark_tree_label_node (node)
2506 struct label_node *node;
2508 while (node)
2510 ggc_mark_tree (node->u.tlabel);
2511 node = node->chain;
2515 /* Mark EH for GC. */
2517 void
2518 mark_eh_status (eh)
2519 struct eh_status *eh;
2521 if (eh == 0)
2522 return;
2524 mark_eh_stack (&eh->x_ehstack);
2525 mark_eh_stack (&eh->x_catchstack);
2526 mark_eh_queue (eh->x_ehqueue);
2527 ggc_mark_rtx (eh->x_catch_clauses);
2529 lang_mark_false_label_stack (eh->x_false_label_stack);
2530 mark_tree_label_node (eh->x_caught_return_label_stack);
2532 ggc_mark_tree (eh->x_protect_list);
2533 ggc_mark_rtx (eh->ehc);
2534 ggc_mark_rtx (eh->x_eh_return_stub_label);
2537 /* Mark ARG (which is really a struct func_eh_entry**) for GC. */
2539 static void
2540 mark_func_eh_entry (arg)
2541 void *arg;
2543 struct func_eh_entry *fee;
2544 struct handler_info *h;
2545 int i;
2547 fee = *((struct func_eh_entry **) arg);
2549 for (i = 0; i < current_func_eh_entry; ++i)
2551 ggc_mark_rtx (fee->rethrow_label);
2552 for (h = fee->handlers; h; h = h->next)
2554 ggc_mark_rtx (h->handler_label);
2555 if (h->type_info != CATCH_ALL_TYPE)
2556 ggc_mark_tree ((tree) h->type_info);
2559 /* Skip to the next entry in the array. */
2560 ++fee;
2564 /* This group of functions initializes the exception handling data
2565 structures at the start of the compilation, initializes the data
2566 structures at the start of a function, and saves and restores the
2567 exception handling data structures for the start/end of a nested
2568 function. */
2570 /* Toplevel initialization for EH things. */
2572 void
2573 init_eh ()
2575 first_rethrow_symbol = create_rethrow_ref (0);
2576 final_rethrow = gen_exception_label ();
2577 last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
2579 ggc_add_rtx_root (&exception_handler_labels, 1);
2580 ggc_add_rtx_root (&eh_return_context, 1);
2581 ggc_add_rtx_root (&eh_return_stack_adjust, 1);
2582 ggc_add_rtx_root (&eh_return_handler, 1);
2583 ggc_add_rtx_root (&first_rethrow_symbol, 1);
2584 ggc_add_rtx_root (&final_rethrow, 1);
2585 ggc_add_rtx_root (&last_rethrow_symbol, 1);
2586 ggc_add_root (&function_eh_regions, 1, sizeof (function_eh_regions),
2587 mark_func_eh_entry);
2590 /* Initialize the per-function EH information. */
2592 void
2593 init_eh_for_function ()
2595 cfun->eh = (struct eh_status *) xcalloc (1, sizeof (struct eh_status));
2596 ehqueue = (struct eh_queue *) xcalloc (1, sizeof (struct eh_queue));
2597 eh_return_context = NULL_RTX;
2598 eh_return_stack_adjust = NULL_RTX;
2599 eh_return_handler = NULL_RTX;
2602 void
2603 free_eh_status (f)
2604 struct function *f;
2606 free (f->eh->x_ehqueue);
2607 free (f->eh);
2608 f->eh = NULL;
2611 /* This section is for the exception handling specific optimization
2612 pass. First are the internal routines, and then the main
2613 optimization pass. */
2615 /* Determine if the given INSN can throw an exception. */
2617 static int
2618 can_throw (insn)
2619 rtx insn;
2621 /* Calls can always potentially throw exceptions, unless they have
2622 a REG_EH_REGION note with a value of 0 or less. */
2623 if (GET_CODE (insn) == CALL_INSN)
2625 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2626 if (!note || XINT (XEXP (note, 0), 0) > 0)
2627 return 1;
2630 if (asynchronous_exceptions)
2632 /* If we wanted asynchronous exceptions, then everything but NOTEs
2633 and CODE_LABELs could throw. */
2634 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2635 return 1;
2638 return 0;
2641 /* Scan a exception region looking for the matching end and then
2642 remove it if possible. INSN is the start of the region, N is the
2643 region number, and DELETE_OUTER is to note if anything in this
2644 region can throw.
2646 Regions are removed if they cannot possibly catch an exception.
2647 This is determined by invoking can_throw on each insn within the
2648 region; if can_throw returns true for any of the instructions, the
2649 region can catch an exception, since there is an insn within the
2650 region that is capable of throwing an exception.
2652 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
2653 calls abort if it can't find one.
2655 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
2656 correspond to the region number, or if DELETE_OUTER is NULL. */
2658 static rtx
2659 scan_region (insn, n, delete_outer)
2660 rtx insn;
2661 int n;
2662 int *delete_outer;
2664 rtx start = insn;
2666 /* Assume we can delete the region. */
2667 int delete = 1;
2669 /* Can't delete something which is rethrown to. */
2670 if (rethrow_used (n))
2671 delete = 0;
2673 if (insn == NULL_RTX
2674 || GET_CODE (insn) != NOTE
2675 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2676 || NOTE_EH_HANDLER (insn) != n
2677 || delete_outer == NULL)
2678 abort ();
2680 insn = NEXT_INSN (insn);
2682 /* Look for the matching end. */
2683 while (! (GET_CODE (insn) == NOTE
2684 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2686 /* If anything can throw, we can't remove the region. */
2687 if (delete && can_throw (insn))
2689 delete = 0;
2692 /* Watch out for and handle nested regions. */
2693 if (GET_CODE (insn) == NOTE
2694 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2696 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &delete);
2699 insn = NEXT_INSN (insn);
2702 /* The _BEG/_END NOTEs must match and nest. */
2703 if (NOTE_EH_HANDLER (insn) != n)
2704 abort ();
2706 /* If anything in this exception region can throw, we can throw. */
2707 if (! delete)
2708 *delete_outer = 0;
2709 else
2711 /* Delete the start and end of the region. */
2712 delete_insn (start);
2713 delete_insn (insn);
2715 /* We no longer removed labels here, since flow will now remove any
2716 handler which cannot be called any more. */
2718 #if 0
2719 /* Only do this part if we have built the exception handler
2720 labels. */
2721 if (exception_handler_labels)
2723 rtx x, *prev = &exception_handler_labels;
2725 /* Find it in the list of handlers. */
2726 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2728 rtx label = XEXP (x, 0);
2729 if (CODE_LABEL_NUMBER (label) == n)
2731 /* If we are the last reference to the handler,
2732 delete it. */
2733 if (--LABEL_NUSES (label) == 0)
2734 delete_insn (label);
2736 if (optimize)
2738 /* Remove it from the list of exception handler
2739 labels, if we are optimizing. If we are not, then
2740 leave it in the list, as we are not really going to
2741 remove the region. */
2742 *prev = XEXP (x, 1);
2743 XEXP (x, 1) = 0;
2744 XEXP (x, 0) = 0;
2747 break;
2749 prev = &XEXP (x, 1);
2752 #endif
2754 return insn;
2757 /* Perform various interesting optimizations for exception handling
2758 code.
2760 We look for empty exception regions and make them go (away). The
2761 jump optimization code will remove the handler if nothing else uses
2762 it. */
2764 void
2765 exception_optimize ()
2767 rtx insn;
2768 int n;
2770 /* Remove empty regions. */
2771 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2773 if (GET_CODE (insn) == NOTE
2774 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2776 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
2777 insn, we will indirectly skip through all the insns
2778 inbetween. We are also guaranteed that the value of insn
2779 returned will be valid, as otherwise scan_region won't
2780 return. */
2781 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &n);
2786 /* This function determines whether any of the exception regions in the
2787 current function are targets of a rethrow or not, and set the
2788 reference flag according. */
2789 void
2790 update_rethrow_references ()
2792 rtx insn;
2793 int x, region;
2794 int *saw_region, *saw_rethrow;
2796 if (!flag_new_exceptions)
2797 return;
2799 saw_region = (int *) xcalloc (current_func_eh_entry, sizeof (int));
2800 saw_rethrow = (int *) xcalloc (current_func_eh_entry, sizeof (int));
2802 /* Determine what regions exist, and whether there are any rethrows
2803 to those regions or not. */
2804 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2805 if (GET_CODE (insn) == CALL_INSN)
2807 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
2808 if (note)
2810 region = eh_region_from_symbol (XEXP (note, 0));
2811 region = find_func_region (region);
2812 saw_rethrow[region] = 1;
2815 else
2816 if (GET_CODE (insn) == NOTE)
2818 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2820 region = find_func_region (NOTE_EH_HANDLER (insn));
2821 saw_region[region] = 1;
2825 /* For any regions we did see, set the referenced flag. */
2826 for (x = 0; x < current_func_eh_entry; x++)
2827 if (saw_region[x])
2828 function_eh_regions[x].rethrow_ref = saw_rethrow[x];
2830 /* Clean up. */
2831 free (saw_region);
2832 free (saw_rethrow);
2835 /* Various hooks for the DWARF 2 __throw routine. */
2837 /* Do any necessary initialization to access arbitrary stack frames.
2838 On the SPARC, this means flushing the register windows. */
2840 void
2841 expand_builtin_unwind_init ()
2843 /* Set this so all the registers get saved in our frame; we need to be
2844 able to copy the saved values for any registers from frames we unwind. */
2845 current_function_has_nonlocal_label = 1;
2847 #ifdef SETUP_FRAME_ADDRESSES
2848 SETUP_FRAME_ADDRESSES ();
2849 #endif
2852 /* Given a value extracted from the return address register or stack slot,
2853 return the actual address encoded in that value. */
2856 expand_builtin_extract_return_addr (addr_tree)
2857 tree addr_tree;
2859 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2860 return eh_outer_context (addr);
2863 /* Given an actual address in addr_tree, do any necessary encoding
2864 and return the value to be stored in the return address register or
2865 stack slot so the epilogue will return to that address. */
2868 expand_builtin_frob_return_addr (addr_tree)
2869 tree addr_tree;
2871 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2872 #ifdef RETURN_ADDR_OFFSET
2873 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2874 #endif
2875 return addr;
2878 /* Choose three registers for communication between the main body of
2879 __throw and the epilogue (or eh stub) and the exception handler.
2880 We must do this with hard registers because the epilogue itself
2881 will be generated after reload, at which point we may not reference
2882 pseudos at all.
2884 The first passes the exception context to the handler. For this
2885 we use the return value register for a void*.
2887 The second holds the stack pointer value to be restored. For
2888 this we use the static chain register if it exists and is different
2889 from the previous, otherwise some arbitrary call-clobbered register.
2891 The third holds the address of the handler itself. Here we use
2892 some arbitrary call-clobbered register. */
2894 static void
2895 eh_regs (pcontext, psp, pra, outgoing)
2896 rtx *pcontext, *psp, *pra;
2897 int outgoing ATTRIBUTE_UNUSED;
2899 rtx rcontext, rsp, rra;
2900 int i;
2902 #ifdef FUNCTION_OUTGOING_VALUE
2903 if (outgoing)
2904 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2905 current_function_decl);
2906 else
2907 #endif
2908 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
2909 current_function_decl);
2911 #ifdef STATIC_CHAIN_REGNUM
2912 if (outgoing)
2913 rsp = static_chain_incoming_rtx;
2914 else
2915 rsp = static_chain_rtx;
2916 if (REGNO (rsp) == REGNO (rcontext))
2917 #endif /* STATIC_CHAIN_REGNUM */
2918 rsp = NULL_RTX;
2920 if (rsp == NULL_RTX)
2922 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2923 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
2924 break;
2925 if (i == FIRST_PSEUDO_REGISTER)
2926 abort();
2928 rsp = gen_rtx_REG (Pmode, i);
2931 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2932 if (call_used_regs[i] && ! fixed_regs[i]
2933 && i != REGNO (rcontext) && i != REGNO (rsp))
2934 break;
2935 if (i == FIRST_PSEUDO_REGISTER)
2936 abort();
2938 rra = gen_rtx_REG (Pmode, i);
2940 *pcontext = rcontext;
2941 *psp = rsp;
2942 *pra = rra;
2945 /* Retrieve the register which contains the pointer to the eh_context
2946 structure set the __throw. */
2948 #if 0
2949 rtx
2950 get_reg_for_handler ()
2952 rtx reg1;
2953 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2954 current_function_decl);
2955 return reg1;
2957 #endif
2959 /* Set up the epilogue with the magic bits we'll need to return to the
2960 exception handler. */
2962 void
2963 expand_builtin_eh_return (context, stack, handler)
2964 tree context, stack, handler;
2966 if (eh_return_context)
2967 error("Duplicate call to __builtin_eh_return");
2969 eh_return_context
2970 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
2971 eh_return_stack_adjust
2972 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
2973 eh_return_handler
2974 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
2977 void
2978 expand_eh_return ()
2980 rtx reg1, reg2, reg3;
2981 rtx stub_start, after_stub;
2982 rtx ra, tmp;
2984 if (!eh_return_context)
2985 return;
2987 current_function_cannot_inline = N_("function uses __builtin_eh_return");
2989 eh_regs (&reg1, &reg2, &reg3, 1);
2990 #ifdef POINTERS_EXTEND_UNSIGNED
2991 eh_return_context = convert_memory_address (Pmode, eh_return_context);
2992 eh_return_stack_adjust =
2993 convert_memory_address (Pmode, eh_return_stack_adjust);
2994 eh_return_handler = convert_memory_address (Pmode, eh_return_handler);
2995 #endif
2996 emit_move_insn (reg1, eh_return_context);
2997 emit_move_insn (reg2, eh_return_stack_adjust);
2998 emit_move_insn (reg3, eh_return_handler);
3000 /* Talk directly to the target's epilogue code when possible. */
3002 #ifdef HAVE_eh_epilogue
3003 if (HAVE_eh_epilogue)
3005 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
3006 return;
3008 #endif
3010 /* Otherwise, use the same stub technique we had before. */
3012 eh_return_stub_label = stub_start = gen_label_rtx ();
3013 after_stub = gen_label_rtx ();
3015 /* Set the return address to the stub label. */
3017 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
3018 0, hard_frame_pointer_rtx);
3019 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
3020 abort();
3022 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
3023 #ifdef RETURN_ADDR_OFFSET
3024 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
3025 #endif
3026 tmp = force_operand (tmp, ra);
3027 if (tmp != ra)
3028 emit_move_insn (ra, tmp);
3030 /* Indicate that the registers are in fact used. */
3031 emit_insn (gen_rtx_USE (VOIDmode, reg1));
3032 emit_insn (gen_rtx_USE (VOIDmode, reg2));
3033 emit_insn (gen_rtx_USE (VOIDmode, reg3));
3034 if (GET_CODE (ra) == REG)
3035 emit_insn (gen_rtx_USE (VOIDmode, ra));
3037 /* Generate the stub. */
3039 emit_jump (after_stub);
3040 emit_label (stub_start);
3042 eh_regs (&reg1, &reg2, &reg3, 0);
3043 adjust_stack (reg2);
3044 emit_indirect_jump (reg3);
3046 emit_label (after_stub);
3050 /* This contains the code required to verify whether arbitrary instructions
3051 are in the same exception region. */
3053 static int *insn_eh_region = (int *)0;
3054 static int maximum_uid;
3056 static void
3057 set_insn_eh_region (first, region_num)
3058 rtx *first;
3059 int region_num;
3061 rtx insn;
3062 int rnum;
3064 for (insn = *first; insn; insn = NEXT_INSN (insn))
3066 if ((GET_CODE (insn) == NOTE)
3067 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
3069 rnum = NOTE_EH_HANDLER (insn);
3070 insn_eh_region[INSN_UID (insn)] = rnum;
3071 insn = NEXT_INSN (insn);
3072 set_insn_eh_region (&insn, rnum);
3073 /* Upon return, insn points to the EH_REGION_END of nested region */
3074 continue;
3076 insn_eh_region[INSN_UID (insn)] = region_num;
3077 if ((GET_CODE (insn) == NOTE) &&
3078 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
3079 break;
3081 *first = insn;
3084 /* Free the insn table, an make sure it cannot be used again. */
3086 void
3087 free_insn_eh_region ()
3089 if (!doing_eh (0))
3090 return;
3092 if (insn_eh_region)
3094 free (insn_eh_region);
3095 insn_eh_region = (int *)0;
3099 /* Initialize the table. max_uid must be calculated and handed into
3100 this routine. If it is unavailable, passing a value of 0 will
3101 cause this routine to calculate it as well. */
3103 void
3104 init_insn_eh_region (first, max_uid)
3105 rtx first;
3106 int max_uid;
3108 rtx insn;
3110 if (!doing_eh (0))
3111 return;
3113 if (insn_eh_region)
3114 free_insn_eh_region();
3116 if (max_uid == 0)
3117 for (insn = first; insn; insn = NEXT_INSN (insn))
3118 if (INSN_UID (insn) > max_uid) /* find largest UID */
3119 max_uid = INSN_UID (insn);
3121 maximum_uid = max_uid;
3122 insn_eh_region = (int *) xmalloc ((max_uid + 1) * sizeof (int));
3123 insn = first;
3124 set_insn_eh_region (&insn, 0);
3128 /* Check whether 2 instructions are within the same region. */
3130 int
3131 in_same_eh_region (insn1, insn2)
3132 rtx insn1, insn2;
3134 int ret, uid1, uid2;
3136 /* If no exceptions, instructions are always in same region. */
3137 if (!doing_eh (0))
3138 return 1;
3140 /* If the table isn't allocated, assume the worst. */
3141 if (!insn_eh_region)
3142 return 0;
3144 uid1 = INSN_UID (insn1);
3145 uid2 = INSN_UID (insn2);
3147 /* if instructions have been allocated beyond the end, either
3148 the table is out of date, or this is a late addition, or
3149 something... Assume the worst. */
3150 if (uid1 > maximum_uid || uid2 > maximum_uid)
3151 return 0;
3153 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
3154 return ret;
3158 /* This function will initialize the handler list for a specified block.
3159 It may recursively call itself if the outer block hasn't been processed
3160 yet. At some point in the future we can trim out handlers which we
3161 know cannot be called. (ie, if a block has an INT type handler,
3162 control will never be passed to an outer INT type handler). */
3163 static void
3164 process_nestinfo (block, info, nested_eh_region)
3165 int block;
3166 eh_nesting_info *info;
3167 int *nested_eh_region;
3169 handler_info *ptr, *last_ptr = NULL;
3170 int x, y, count = 0;
3171 int extra = 0;
3172 handler_info **extra_handlers = 0;
3173 int index = info->region_index[block];
3175 /* If we've already processed this block, simply return. */
3176 if (info->num_handlers[index] > 0)
3177 return;
3179 for (ptr = get_first_handler (block); ptr; last_ptr = ptr, ptr = ptr->next)
3180 count++;
3182 /* pick up any information from the next outer region. It will already
3183 contain a summary of itself and all outer regions to it. */
3185 if (nested_eh_region [block] != 0)
3187 int nested_index = info->region_index[nested_eh_region[block]];
3188 process_nestinfo (nested_eh_region[block], info, nested_eh_region);
3189 extra = info->num_handlers[nested_index];
3190 extra_handlers = info->handlers[nested_index];
3191 info->outer_index[index] = nested_index;
3194 /* If the last handler is either a CATCH_ALL or a cleanup, then we
3195 won't use the outer ones since we know control will not go past the
3196 catch-all or cleanup. */
3198 if (last_ptr != NULL && (last_ptr->type_info == NULL
3199 || last_ptr->type_info == CATCH_ALL_TYPE))
3200 extra = 0;
3202 info->num_handlers[index] = count + extra;
3203 info->handlers[index] = (handler_info **) xmalloc ((count + extra)
3204 * sizeof (handler_info **));
3206 /* First put all our handlers into the list. */
3207 ptr = get_first_handler (block);
3208 for (x = 0; x < count; x++)
3210 info->handlers[index][x] = ptr;
3211 ptr = ptr->next;
3214 /* Now add all the outer region handlers, if they aren't they same as
3215 one of the types in the current block. We won't worry about
3216 derived types yet, we'll just look for the exact type. */
3217 for (y =0, x = 0; x < extra ; x++)
3219 int i, ok;
3220 ok = 1;
3221 /* Check to see if we have a type duplication. */
3222 for (i = 0; i < count; i++)
3223 if (info->handlers[index][i]->type_info == extra_handlers[x]->type_info)
3225 ok = 0;
3226 /* Record one less handler. */
3227 (info->num_handlers[index])--;
3228 break;
3230 if (ok)
3232 info->handlers[index][y + count] = extra_handlers[x];
3233 y++;
3238 /* This function will allocate and initialize an eh_nesting_info structure.
3239 It returns a pointer to the completed data structure. If there are
3240 no exception regions, a NULL value is returned. */
3241 eh_nesting_info *
3242 init_eh_nesting_info ()
3244 int *nested_eh_region;
3245 int region_count = 0;
3246 rtx eh_note = NULL_RTX;
3247 eh_nesting_info *info;
3248 rtx insn;
3249 int x;
3251 info = (eh_nesting_info *) xmalloc (sizeof (eh_nesting_info));
3252 info->region_index = (int *) xcalloc ((max_label_num () + 1), sizeof (int));
3253 nested_eh_region = (int *) xcalloc (max_label_num () + 1, sizeof (int));
3255 /* Create the nested_eh_region list. If indexed with a block number, it
3256 returns the block number of the next outermost region, if any.
3257 We can count the number of regions and initialize the region_index
3258 vector at the same time. */
3259 for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
3261 if (GET_CODE (insn) == NOTE)
3263 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
3265 int block = NOTE_EH_HANDLER (insn);
3266 region_count++;
3267 info->region_index[block] = region_count;
3268 if (eh_note)
3269 nested_eh_region [block] =
3270 NOTE_EH_HANDLER (XEXP (eh_note, 0));
3271 else
3272 nested_eh_region [block] = 0;
3273 eh_note = gen_rtx_EXPR_LIST (VOIDmode, insn, eh_note);
3275 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
3276 eh_note = XEXP (eh_note, 1);
3280 /* If there are no regions, wrap it up now. */
3281 if (region_count == 0)
3283 free (info->region_index);
3284 free (info);
3285 free (nested_eh_region);
3286 return NULL;
3289 region_count++;
3290 info->handlers = (handler_info ***) xcalloc (region_count,
3291 sizeof (handler_info ***));
3292 info->num_handlers = (int *) xcalloc (region_count, sizeof (int));
3293 info->outer_index = (int *) xcalloc (region_count, sizeof (int));
3295 /* Now initialize the handler lists for all exception blocks. */
3296 for (x = 0; x <= max_label_num (); x++)
3298 if (info->region_index[x] != 0)
3299 process_nestinfo (x, info, nested_eh_region);
3301 info->region_count = region_count;
3303 /* Clean up. */
3304 free (nested_eh_region);
3306 return info;
3310 /* This function is used to retreive the vector of handlers which
3311 can be reached by a given insn in a given exception region.
3312 BLOCK is the exception block the insn is in.
3313 INFO is the eh_nesting_info structure.
3314 INSN is the (optional) insn within the block. If insn is not NULL_RTX,
3315 it may contain reg notes which modify its throwing behavior, and
3316 these will be obeyed. If NULL_RTX is passed, then we simply return the
3317 handlers for block.
3318 HANDLERS is the address of a pointer to a vector of handler_info pointers.
3319 Upon return, this will have the handlers which can be reached by block.
3320 This function returns the number of elements in the handlers vector. */
3321 int
3322 reachable_handlers (block, info, insn, handlers)
3323 int block;
3324 eh_nesting_info *info;
3325 rtx insn ;
3326 handler_info ***handlers;
3328 int index = 0;
3329 *handlers = NULL;
3331 if (info == NULL)
3332 return 0;
3333 if (block > 0)
3334 index = info->region_index[block];
3336 if (insn && GET_CODE (insn) == CALL_INSN)
3338 /* RETHROWs specify a region number from which we are going to rethrow.
3339 This means we wont pass control to handlers in the specified
3340 region, but rather any region OUTSIDE the specified region.
3341 We accomplish this by setting block to the outer_index of the
3342 specified region. */
3343 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
3344 if (note)
3346 index = eh_region_from_symbol (XEXP (note, 0));
3347 index = info->region_index[index];
3348 if (index)
3349 index = info->outer_index[index];
3351 else
3353 /* If there is no rethrow, we look for a REG_EH_REGION, and
3354 we'll throw from that block. A value of 0 or less
3355 indicates that this insn cannot throw. */
3356 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3357 if (note)
3359 int b = XINT (XEXP (note, 0), 0);
3360 if (b <= 0)
3361 index = 0;
3362 else
3363 index = info->region_index[b];
3367 /* If we reach this point, and index is 0, there is no throw. */
3368 if (index == 0)
3369 return 0;
3371 *handlers = info->handlers[index];
3372 return info->num_handlers[index];
3376 /* This function will free all memory associated with the eh_nesting info. */
3378 void
3379 free_eh_nesting_info (info)
3380 eh_nesting_info *info;
3382 int x;
3383 if (info != NULL)
3385 if (info->region_index)
3386 free (info->region_index);
3387 if (info->num_handlers)
3388 free (info->num_handlers);
3389 if (info->outer_index)
3390 free (info->outer_index);
3391 if (info->handlers)
3393 for (x = 0; x < info->region_count; x++)
3394 if (info->handlers[x])
3395 free (info->handlers[x]);
3396 free (info->handlers);
3398 free (info);