1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 88, 92-98, 1999, 2000 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - reg_n_refs is not adjusted in the rare case when a register is
57 no longer required in a computation
58 - there are extremely rare cases (see distribute_regnotes) when a
60 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
61 removed because there is no way to know which register it was
64 To simplify substitution, we combine only when the earlier insn(s)
65 consist of only a single assignment. To simplify updating afterward,
66 we never combine when a subroutine call appears in the middle.
68 Since we do not represent assignments to CC0 explicitly except when that
69 is all an insn does, there is no LOG_LINKS entry in an insn that uses
70 the condition code for the insn that set the condition code.
71 Fortunately, these two insns must be consecutive.
72 Therefore, every JUMP_INSN is taken to have an implicit logical link
73 to the preceding insn. This is not quite right, since non-jumps can
74 also use the condition code; but in practice such insns would not
83 #include "hard-reg-set.h"
84 #include "basic-block.h"
85 #include "insn-config.h"
87 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
89 #include "insn-flags.h"
90 #include "insn-codes.h"
91 #include "insn-attr.h"
96 /* It is not safe to use ordinary gen_lowpart in combine.
97 Use gen_lowpart_for_combine instead. See comments there. */
98 #define gen_lowpart dont_use_gen_lowpart_you_dummy
100 /* Number of attempts to combine instructions in this function. */
102 static int combine_attempts
;
104 /* Number of attempts that got as far as substitution in this function. */
106 static int combine_merges
;
108 /* Number of instructions combined with added SETs in this function. */
110 static int combine_extras
;
112 /* Number of instructions combined in this function. */
114 static int combine_successes
;
116 /* Totals over entire compilation. */
118 static int total_attempts
, total_merges
, total_extras
, total_successes
;
120 /* Define a default value for REVERSIBLE_CC_MODE.
121 We can never assume that a condition code mode is safe to reverse unless
122 the md tells us so. */
123 #ifndef REVERSIBLE_CC_MODE
124 #define REVERSIBLE_CC_MODE(MODE) 0
127 /* Vector mapping INSN_UIDs to cuids.
128 The cuids are like uids but increase monotonically always.
129 Combine always uses cuids so that it can compare them.
130 But actually renumbering the uids, which we used to do,
131 proves to be a bad idea because it makes it hard to compare
132 the dumps produced by earlier passes with those from later passes. */
134 static int *uid_cuid
;
135 static int max_uid_cuid
;
137 /* Get the cuid of an insn. */
139 #define INSN_CUID(INSN) \
140 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
142 /* Maximum register number, which is the size of the tables below. */
144 static int combine_max_regno
;
146 /* Record last point of death of (hard or pseudo) register n. */
148 static rtx
*reg_last_death
;
150 /* Record last point of modification of (hard or pseudo) register n. */
152 static rtx
*reg_last_set
;
154 /* Record the cuid of the last insn that invalidated memory
155 (anything that writes memory, and subroutine calls, but not pushes). */
157 static int mem_last_set
;
159 /* Record the cuid of the last CALL_INSN
160 so we can tell whether a potential combination crosses any calls. */
162 static int last_call_cuid
;
164 /* When `subst' is called, this is the insn that is being modified
165 (by combining in a previous insn). The PATTERN of this insn
166 is still the old pattern partially modified and it should not be
167 looked at, but this may be used to examine the successors of the insn
168 to judge whether a simplification is valid. */
170 static rtx subst_insn
;
172 /* This is an insn that belongs before subst_insn, but is not currently
173 on the insn chain. */
175 static rtx subst_prev_insn
;
177 /* This is the lowest CUID that `subst' is currently dealing with.
178 get_last_value will not return a value if the register was set at or
179 after this CUID. If not for this mechanism, we could get confused if
180 I2 or I1 in try_combine were an insn that used the old value of a register
181 to obtain a new value. In that case, we might erroneously get the
182 new value of the register when we wanted the old one. */
184 static int subst_low_cuid
;
186 /* This contains any hard registers that are used in newpat; reg_dead_at_p
187 must consider all these registers to be always live. */
189 static HARD_REG_SET newpat_used_regs
;
191 /* This is an insn to which a LOG_LINKS entry has been added. If this
192 insn is the earlier than I2 or I3, combine should rescan starting at
195 static rtx added_links_insn
;
197 /* Basic block number of the block in which we are performing combines. */
198 static int this_basic_block
;
200 /* A bitmap indicating which blocks had registers go dead at entry.
201 After combine, we'll need to re-do global life analysis with
202 those blocks as starting points. */
203 static sbitmap refresh_blocks
;
204 static int need_refresh
;
206 /* The next group of arrays allows the recording of the last value assigned
207 to (hard or pseudo) register n. We use this information to see if a
208 operation being processed is redundant given a prior operation performed
209 on the register. For example, an `and' with a constant is redundant if
210 all the zero bits are already known to be turned off.
212 We use an approach similar to that used by cse, but change it in the
215 (1) We do not want to reinitialize at each label.
216 (2) It is useful, but not critical, to know the actual value assigned
217 to a register. Often just its form is helpful.
219 Therefore, we maintain the following arrays:
221 reg_last_set_value the last value assigned
222 reg_last_set_label records the value of label_tick when the
223 register was assigned
224 reg_last_set_table_tick records the value of label_tick when a
225 value using the register is assigned
226 reg_last_set_invalid set to non-zero when it is not valid
227 to use the value of this register in some
230 To understand the usage of these tables, it is important to understand
231 the distinction between the value in reg_last_set_value being valid
232 and the register being validly contained in some other expression in the
235 Entry I in reg_last_set_value is valid if it is non-zero, and either
236 reg_n_sets[i] is 1 or reg_last_set_label[i] == label_tick.
238 Register I may validly appear in any expression returned for the value
239 of another register if reg_n_sets[i] is 1. It may also appear in the
240 value for register J if reg_last_set_label[i] < reg_last_set_label[j] or
241 reg_last_set_invalid[j] is zero.
243 If an expression is found in the table containing a register which may
244 not validly appear in an expression, the register is replaced by
245 something that won't match, (clobber (const_int 0)).
247 reg_last_set_invalid[i] is set non-zero when register I is being assigned
248 to and reg_last_set_table_tick[i] == label_tick. */
250 /* Record last value assigned to (hard or pseudo) register n. */
252 static rtx
*reg_last_set_value
;
254 /* Record the value of label_tick when the value for register n is placed in
255 reg_last_set_value[n]. */
257 static int *reg_last_set_label
;
259 /* Record the value of label_tick when an expression involving register n
260 is placed in reg_last_set_value. */
262 static int *reg_last_set_table_tick
;
264 /* Set non-zero if references to register n in expressions should not be
267 static char *reg_last_set_invalid
;
269 /* Incremented for each label. */
271 static int label_tick
;
273 /* Some registers that are set more than once and used in more than one
274 basic block are nevertheless always set in similar ways. For example,
275 a QImode register may be loaded from memory in two places on a machine
276 where byte loads zero extend.
278 We record in the following array what we know about the nonzero
279 bits of a register, specifically which bits are known to be zero.
281 If an entry is zero, it means that we don't know anything special. */
283 static unsigned HOST_WIDE_INT
*reg_nonzero_bits
;
285 /* Mode used to compute significance in reg_nonzero_bits. It is the largest
286 integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
288 static enum machine_mode nonzero_bits_mode
;
290 /* Nonzero if we know that a register has some leading bits that are always
291 equal to the sign bit. */
293 static char *reg_sign_bit_copies
;
295 /* Nonzero when reg_nonzero_bits and reg_sign_bit_copies can be safely used.
296 It is zero while computing them and after combine has completed. This
297 former test prevents propagating values based on previously set values,
298 which can be incorrect if a variable is modified in a loop. */
300 static int nonzero_sign_valid
;
302 /* These arrays are maintained in parallel with reg_last_set_value
303 and are used to store the mode in which the register was last set,
304 the bits that were known to be zero when it was last set, and the
305 number of sign bits copies it was known to have when it was last set. */
307 static enum machine_mode
*reg_last_set_mode
;
308 static unsigned HOST_WIDE_INT
*reg_last_set_nonzero_bits
;
309 static char *reg_last_set_sign_bit_copies
;
311 /* Record one modification to rtl structure
312 to be undone by storing old_contents into *where.
313 is_int is 1 if the contents are an int. */
319 union {rtx r
; int i
;} old_contents
;
320 union {rtx
*r
; int *i
;} where
;
323 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
324 num_undo says how many are currently recorded.
326 storage is nonzero if we must undo the allocation of new storage.
327 The value of storage is what to pass to obfree.
329 other_insn is nonzero if we have modified some other insn in the process
330 of working on subst_insn. It must be verified too.
332 previous_undos is the value of undobuf.undos when we started processing
333 this substitution. This will prevent gen_rtx_combine from re-used a piece
334 from the previous expression. Doing so can produce circular rtl
342 struct undo
*previous_undos
;
346 static struct undobuf undobuf
;
348 /* Number of times the pseudo being substituted for
349 was found and replaced. */
351 static int n_occurrences
;
353 static void do_SUBST
PARAMS ((rtx
*, rtx
));
354 static void do_SUBST_INT
PARAMS ((int *, int));
355 static void init_reg_last_arrays
PARAMS ((void));
356 static void setup_incoming_promotions
PARAMS ((void));
357 static void set_nonzero_bits_and_sign_copies
PARAMS ((rtx
, rtx
, void *));
358 static int can_combine_p
PARAMS ((rtx
, rtx
, rtx
, rtx
, rtx
*, rtx
*));
359 static int sets_function_arg_p
PARAMS ((rtx
));
360 static int combinable_i3pat
PARAMS ((rtx
, rtx
*, rtx
, rtx
, int, rtx
*));
361 static int contains_muldiv
PARAMS ((rtx
));
362 static rtx try_combine
PARAMS ((rtx
, rtx
, rtx
));
363 static void undo_all
PARAMS ((void));
364 static void undo_commit
PARAMS ((void));
365 static rtx
*find_split_point
PARAMS ((rtx
*, rtx
));
366 static rtx subst
PARAMS ((rtx
, rtx
, rtx
, int, int));
367 static rtx combine_simplify_rtx
PARAMS ((rtx
, enum machine_mode
, int, int));
368 static rtx simplify_if_then_else
PARAMS ((rtx
));
369 static rtx simplify_set
PARAMS ((rtx
));
370 static rtx simplify_logical
PARAMS ((rtx
, int));
371 static rtx expand_compound_operation
PARAMS ((rtx
));
372 static rtx expand_field_assignment
PARAMS ((rtx
));
373 static rtx make_extraction
PARAMS ((enum machine_mode
, rtx
, int, rtx
, int,
375 static rtx extract_left_shift
PARAMS ((rtx
, int));
376 static rtx make_compound_operation
PARAMS ((rtx
, enum rtx_code
));
377 static int get_pos_from_mask
PARAMS ((unsigned HOST_WIDE_INT
, int *));
378 static rtx force_to_mode
PARAMS ((rtx
, enum machine_mode
,
379 unsigned HOST_WIDE_INT
, rtx
, int));
380 static rtx if_then_else_cond
PARAMS ((rtx
, rtx
*, rtx
*));
381 static rtx known_cond
PARAMS ((rtx
, enum rtx_code
, rtx
, rtx
));
382 static int rtx_equal_for_field_assignment_p
PARAMS ((rtx
, rtx
));
383 static rtx make_field_assignment
PARAMS ((rtx
));
384 static rtx apply_distributive_law
PARAMS ((rtx
));
385 static rtx simplify_and_const_int
PARAMS ((rtx
, enum machine_mode
, rtx
,
386 unsigned HOST_WIDE_INT
));
387 static unsigned HOST_WIDE_INT nonzero_bits
PARAMS ((rtx
, enum machine_mode
));
388 static int num_sign_bit_copies
PARAMS ((rtx
, enum machine_mode
));
389 static int merge_outer_ops
PARAMS ((enum rtx_code
*, HOST_WIDE_INT
*,
390 enum rtx_code
, HOST_WIDE_INT
,
391 enum machine_mode
, int *));
392 static rtx simplify_shift_const
PARAMS ((rtx
, enum rtx_code
, enum machine_mode
,
394 static int recog_for_combine
PARAMS ((rtx
*, rtx
, rtx
*));
395 static rtx gen_lowpart_for_combine
PARAMS ((enum machine_mode
, rtx
));
396 static rtx gen_rtx_combine
PARAMS ((enum rtx_code code
, enum machine_mode mode
,
398 static rtx gen_binary
PARAMS ((enum rtx_code
, enum machine_mode
,
400 static rtx gen_unary
PARAMS ((enum rtx_code
, enum machine_mode
,
401 enum machine_mode
, rtx
));
402 static enum rtx_code simplify_comparison
PARAMS ((enum rtx_code
, rtx
*, rtx
*));
403 static int reversible_comparison_p
PARAMS ((rtx
));
404 static void update_table_tick
PARAMS ((rtx
));
405 static void record_value_for_reg
PARAMS ((rtx
, rtx
, rtx
));
406 static void check_promoted_subreg
PARAMS ((rtx
, rtx
));
407 static void record_dead_and_set_regs_1
PARAMS ((rtx
, rtx
, void *));
408 static void record_dead_and_set_regs
PARAMS ((rtx
));
409 static int get_last_value_validate
PARAMS ((rtx
*, rtx
, int, int));
410 static rtx get_last_value
PARAMS ((rtx
));
411 static int use_crosses_set_p
PARAMS ((rtx
, int));
412 static void reg_dead_at_p_1
PARAMS ((rtx
, rtx
, void *));
413 static int reg_dead_at_p
PARAMS ((rtx
, rtx
));
414 static void move_deaths
PARAMS ((rtx
, rtx
, int, rtx
, rtx
*));
415 static int reg_bitfield_target_p
PARAMS ((rtx
, rtx
));
416 static void distribute_notes
PARAMS ((rtx
, rtx
, rtx
, rtx
, rtx
, rtx
));
417 static void distribute_links
PARAMS ((rtx
));
418 static void mark_used_regs_combine
PARAMS ((rtx
));
419 static int insn_cuid
PARAMS ((rtx
));
420 static void record_promoted_value
PARAMS ((rtx
, rtx
));
422 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
423 insn. The substitution can be undone by undo_all. If INTO is already
424 set to NEWVAL, do not record this change. Because computing NEWVAL might
425 also call SUBST, we have to compute it before we put anything into
429 do_SUBST(into
, newval
)
435 if (oldval
== newval
)
439 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
441 buf
= (struct undo
*) xmalloc (sizeof (struct undo
));
445 buf
->old_contents
.r
= oldval
;
448 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
451 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
453 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
454 for the value of a HOST_WIDE_INT value (including CONST_INT) is
458 do_SUBST_INT(into
, newval
)
464 if (oldval
== newval
)
468 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
470 buf
= (struct undo
*) xmalloc (sizeof (struct undo
));
474 buf
->old_contents
.i
= oldval
;
477 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
480 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
482 /* Main entry point for combiner. F is the first insn of the function.
483 NREGS is the first unused pseudo-reg number. */
486 combine_instructions (f
, nregs
)
490 register rtx insn
, next
;
495 register rtx links
, nextlinks
;
497 combine_attempts
= 0;
500 combine_successes
= 0;
502 combine_max_regno
= nregs
;
504 reg_nonzero_bits
= ((unsigned HOST_WIDE_INT
*)
505 xcalloc (nregs
, sizeof (unsigned HOST_WIDE_INT
)));
506 reg_sign_bit_copies
= (char *) xcalloc (nregs
, sizeof (char));
508 reg_last_death
= (rtx
*) xmalloc (nregs
* sizeof (rtx
));
509 reg_last_set
= (rtx
*) xmalloc (nregs
* sizeof (rtx
));
510 reg_last_set_value
= (rtx
*) xmalloc (nregs
* sizeof (rtx
));
511 reg_last_set_table_tick
= (int *) xmalloc (nregs
* sizeof (int));
512 reg_last_set_label
= (int *) xmalloc (nregs
* sizeof (int));
513 reg_last_set_invalid
= (char *) xmalloc (nregs
* sizeof (char));
515 = (enum machine_mode
*) xmalloc (nregs
* sizeof (enum machine_mode
));
516 reg_last_set_nonzero_bits
517 = (unsigned HOST_WIDE_INT
*) xmalloc (nregs
* sizeof (HOST_WIDE_INT
));
518 reg_last_set_sign_bit_copies
519 = (char *) xmalloc (nregs
* sizeof (char));
521 init_reg_last_arrays ();
523 init_recog_no_volatile ();
525 /* Compute maximum uid value so uid_cuid can be allocated. */
527 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
528 if (INSN_UID (insn
) > i
)
531 uid_cuid
= (int *) xmalloc ((i
+ 1) * sizeof (int));
534 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
536 /* Don't use reg_nonzero_bits when computing it. This can cause problems
537 when, for example, we have j <<= 1 in a loop. */
539 nonzero_sign_valid
= 0;
541 /* Compute the mapping from uids to cuids.
542 Cuids are numbers assigned to insns, like uids,
543 except that cuids increase monotonically through the code.
545 Scan all SETs and see if we can deduce anything about what
546 bits are known to be zero for some registers and how many copies
547 of the sign bit are known to exist for those registers.
549 Also set any known values so that we can use it while searching
550 for what bits are known to be set. */
554 /* We need to initialize it here, because record_dead_and_set_regs may call
556 subst_prev_insn
= NULL_RTX
;
558 setup_incoming_promotions ();
560 refresh_blocks
= sbitmap_alloc (n_basic_blocks
);
561 sbitmap_zero (refresh_blocks
);
564 for (insn
= f
, i
= 0; insn
; insn
= NEXT_INSN (insn
))
566 uid_cuid
[INSN_UID (insn
)] = ++i
;
570 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
572 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
574 record_dead_and_set_regs (insn
);
577 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
578 if (REG_NOTE_KIND (links
) == REG_INC
)
579 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
584 if (GET_CODE (insn
) == CODE_LABEL
)
588 nonzero_sign_valid
= 1;
590 /* Now scan all the insns in forward order. */
592 this_basic_block
= -1;
596 init_reg_last_arrays ();
597 setup_incoming_promotions ();
599 for (insn
= f
; insn
; insn
= next
? next
: NEXT_INSN (insn
))
603 /* If INSN starts a new basic block, update our basic block number. */
604 if (this_basic_block
+ 1 < n_basic_blocks
605 && BLOCK_HEAD (this_basic_block
+ 1) == insn
)
608 if (GET_CODE (insn
) == CODE_LABEL
)
611 else if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i')
613 /* See if we know about function return values before this
614 insn based upon SUBREG flags. */
615 check_promoted_subreg (insn
, PATTERN (insn
));
617 /* Try this insn with each insn it links back to. */
619 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
620 if ((next
= try_combine (insn
, XEXP (links
, 0), NULL_RTX
)) != 0)
623 /* Try each sequence of three linked insns ending with this one. */
625 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
626 for (nextlinks
= LOG_LINKS (XEXP (links
, 0)); nextlinks
;
627 nextlinks
= XEXP (nextlinks
, 1))
628 if ((next
= try_combine (insn
, XEXP (links
, 0),
629 XEXP (nextlinks
, 0))) != 0)
633 /* Try to combine a jump insn that uses CC0
634 with a preceding insn that sets CC0, and maybe with its
635 logical predecessor as well.
636 This is how we make decrement-and-branch insns.
637 We need this special code because data flow connections
638 via CC0 do not get entered in LOG_LINKS. */
640 if (GET_CODE (insn
) == JUMP_INSN
641 && (prev
= prev_nonnote_insn (insn
)) != 0
642 && GET_CODE (prev
) == INSN
643 && sets_cc0_p (PATTERN (prev
)))
645 if ((next
= try_combine (insn
, prev
, NULL_RTX
)) != 0)
648 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
649 nextlinks
= XEXP (nextlinks
, 1))
650 if ((next
= try_combine (insn
, prev
,
651 XEXP (nextlinks
, 0))) != 0)
655 /* Do the same for an insn that explicitly references CC0. */
656 if (GET_CODE (insn
) == INSN
657 && (prev
= prev_nonnote_insn (insn
)) != 0
658 && GET_CODE (prev
) == INSN
659 && sets_cc0_p (PATTERN (prev
))
660 && GET_CODE (PATTERN (insn
)) == SET
661 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
663 if ((next
= try_combine (insn
, prev
, NULL_RTX
)) != 0)
666 for (nextlinks
= LOG_LINKS (prev
); nextlinks
;
667 nextlinks
= XEXP (nextlinks
, 1))
668 if ((next
= try_combine (insn
, prev
,
669 XEXP (nextlinks
, 0))) != 0)
673 /* Finally, see if any of the insns that this insn links to
674 explicitly references CC0. If so, try this insn, that insn,
675 and its predecessor if it sets CC0. */
676 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
677 if (GET_CODE (XEXP (links
, 0)) == INSN
678 && GET_CODE (PATTERN (XEXP (links
, 0))) == SET
679 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (XEXP (links
, 0))))
680 && (prev
= prev_nonnote_insn (XEXP (links
, 0))) != 0
681 && GET_CODE (prev
) == INSN
682 && sets_cc0_p (PATTERN (prev
))
683 && (next
= try_combine (insn
, XEXP (links
, 0), prev
)) != 0)
687 /* Try combining an insn with two different insns whose results it
689 for (links
= LOG_LINKS (insn
); links
; links
= XEXP (links
, 1))
690 for (nextlinks
= XEXP (links
, 1); nextlinks
;
691 nextlinks
= XEXP (nextlinks
, 1))
692 if ((next
= try_combine (insn
, XEXP (links
, 0),
693 XEXP (nextlinks
, 0))) != 0)
696 if (GET_CODE (insn
) != NOTE
)
697 record_dead_and_set_regs (insn
);
706 compute_bb_for_insn (get_max_uid ());
707 update_life_info (refresh_blocks
, UPDATE_LIFE_GLOBAL_RM_NOTES
,
712 sbitmap_free (refresh_blocks
);
713 free (reg_nonzero_bits
);
714 free (reg_sign_bit_copies
);
715 free (reg_last_death
);
717 free (reg_last_set_value
);
718 free (reg_last_set_table_tick
);
719 free (reg_last_set_label
);
720 free (reg_last_set_invalid
);
721 free (reg_last_set_mode
);
722 free (reg_last_set_nonzero_bits
);
723 free (reg_last_set_sign_bit_copies
);
727 struct undo
*undo
, *next
;
728 for (undo
= undobuf
.frees
; undo
; undo
= next
)
736 total_attempts
+= combine_attempts
;
737 total_merges
+= combine_merges
;
738 total_extras
+= combine_extras
;
739 total_successes
+= combine_successes
;
741 nonzero_sign_valid
= 0;
743 /* Make recognizer allow volatile MEMs again. */
747 /* Wipe the reg_last_xxx arrays in preparation for another pass. */
750 init_reg_last_arrays ()
752 int nregs
= combine_max_regno
;
754 bzero ((char *) reg_last_death
, nregs
* sizeof (rtx
));
755 bzero ((char *) reg_last_set
, nregs
* sizeof (rtx
));
756 bzero ((char *) reg_last_set_value
, nregs
* sizeof (rtx
));
757 bzero ((char *) reg_last_set_table_tick
, nregs
* sizeof (int));
758 bzero ((char *) reg_last_set_label
, nregs
* sizeof (int));
759 bzero (reg_last_set_invalid
, nregs
* sizeof (char));
760 bzero ((char *) reg_last_set_mode
, nregs
* sizeof (enum machine_mode
));
761 bzero ((char *) reg_last_set_nonzero_bits
, nregs
* sizeof (HOST_WIDE_INT
));
762 bzero (reg_last_set_sign_bit_copies
, nregs
* sizeof (char));
765 /* Set up any promoted values for incoming argument registers. */
768 setup_incoming_promotions ()
770 #ifdef PROMOTE_FUNCTION_ARGS
773 enum machine_mode mode
;
775 rtx first
= get_insns ();
777 #ifndef OUTGOING_REGNO
778 #define OUTGOING_REGNO(N) N
780 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
781 /* Check whether this register can hold an incoming pointer
782 argument. FUNCTION_ARG_REGNO_P tests outgoing register
783 numbers, so translate if necessary due to register windows. */
784 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno
))
785 && (reg
= promoted_input_arg (regno
, &mode
, &unsignedp
)) != 0)
788 (reg
, first
, gen_rtx_fmt_e ((unsignedp
? ZERO_EXTEND
791 gen_rtx_CLOBBER (mode
, const0_rtx
)));
796 /* Called via note_stores. If X is a pseudo that is narrower than
797 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
799 If we are setting only a portion of X and we can't figure out what
800 portion, assume all bits will be used since we don't know what will
803 Similarly, set how many bits of X are known to be copies of the sign bit
804 at all locations in the function. This is the smallest number implied
808 set_nonzero_bits_and_sign_copies (x
, set
, data
)
811 void *data ATTRIBUTE_UNUSED
;
815 if (GET_CODE (x
) == REG
816 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
817 /* If this register is undefined at the start of the file, we can't
818 say what its contents were. */
819 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
, REGNO (x
))
820 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
822 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
824 reg_nonzero_bits
[REGNO (x
)] = GET_MODE_MASK (GET_MODE (x
));
825 reg_sign_bit_copies
[REGNO (x
)] = 1;
829 /* If this is a complex assignment, see if we can convert it into a
830 simple assignment. */
831 set
= expand_field_assignment (set
);
833 /* If this is a simple assignment, or we have a paradoxical SUBREG,
834 set what we know about X. */
836 if (SET_DEST (set
) == x
837 || (GET_CODE (SET_DEST (set
)) == SUBREG
838 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set
)))
839 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set
)))))
840 && SUBREG_REG (SET_DEST (set
)) == x
))
842 rtx src
= SET_SRC (set
);
844 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
845 /* If X is narrower than a word and SRC is a non-negative
846 constant that would appear negative in the mode of X,
847 sign-extend it for use in reg_nonzero_bits because some
848 machines (maybe most) will actually do the sign-extension
849 and this is the conservative approach.
851 ??? For 2.5, try to tighten up the MD files in this regard
852 instead of this kludge. */
854 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
855 && GET_CODE (src
) == CONST_INT
857 && 0 != (INTVAL (src
)
859 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
860 src
= GEN_INT (INTVAL (src
)
861 | ((HOST_WIDE_INT
) (-1)
862 << GET_MODE_BITSIZE (GET_MODE (x
))));
865 reg_nonzero_bits
[REGNO (x
)]
866 |= nonzero_bits (src
, nonzero_bits_mode
);
867 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
868 if (reg_sign_bit_copies
[REGNO (x
)] == 0
869 || reg_sign_bit_copies
[REGNO (x
)] > num
)
870 reg_sign_bit_copies
[REGNO (x
)] = num
;
874 reg_nonzero_bits
[REGNO (x
)] = GET_MODE_MASK (GET_MODE (x
));
875 reg_sign_bit_copies
[REGNO (x
)] = 1;
880 /* See if INSN can be combined into I3. PRED and SUCC are optionally
881 insns that were previously combined into I3 or that will be combined
882 into the merger of INSN and I3.
884 Return 0 if the combination is not allowed for any reason.
886 If the combination is allowed, *PDEST will be set to the single
887 destination of INSN and *PSRC to the single source, and this function
891 can_combine_p (insn
, i3
, pred
, succ
, pdest
, psrc
)
894 rtx pred ATTRIBUTE_UNUSED
;
899 rtx set
= 0, src
, dest
;
904 int all_adjacent
= (succ
? (next_active_insn (insn
) == succ
905 && next_active_insn (succ
) == i3
)
906 : next_active_insn (insn
) == i3
);
908 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
909 or a PARALLEL consisting of such a SET and CLOBBERs.
911 If INSN has CLOBBER parallel parts, ignore them for our processing.
912 By definition, these happen during the execution of the insn. When it
913 is merged with another insn, all bets are off. If they are, in fact,
914 needed and aren't also supplied in I3, they may be added by
915 recog_for_combine. Otherwise, it won't match.
917 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
920 Get the source and destination of INSN. If more than one, can't
923 if (GET_CODE (PATTERN (insn
)) == SET
)
924 set
= PATTERN (insn
);
925 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
926 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
928 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
930 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
932 switch (GET_CODE (elt
))
934 /* This is important to combine floating point insns
937 /* Combining an isolated USE doesn't make sense.
938 We depend here on combinable_i3_pat to reject them. */
939 /* The code below this loop only verifies that the inputs of
940 the SET in INSN do not change. We call reg_set_between_p
941 to verify that the REG in the USE does not change betweeen
943 If the USE in INSN was for a pseudo register, the matching
944 insn pattern will likely match any register; combining this
945 with any other USE would only be safe if we knew that the
946 used registers have identical values, or if there was
947 something to tell them apart, e.g. different modes. For
948 now, we forgo such compilcated tests and simply disallow
949 combining of USES of pseudo registers with any other USE. */
950 if (GET_CODE (XEXP (elt
, 0)) == REG
951 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
953 rtx i3pat
= PATTERN (i3
);
954 int i
= XVECLEN (i3pat
, 0) - 1;
955 int regno
= REGNO (XEXP (elt
, 0));
958 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
959 if (GET_CODE (i3elt
) == USE
960 && GET_CODE (XEXP (i3elt
, 0)) == REG
961 && (REGNO (XEXP (i3elt
, 0)) == regno
962 ? reg_set_between_p (XEXP (elt
, 0),
963 PREV_INSN (insn
), i3
)
964 : regno
>= FIRST_PSEUDO_REGISTER
))
971 /* We can ignore CLOBBERs. */
976 /* Ignore SETs whose result isn't used but not those that
977 have side-effects. */
978 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
979 && ! side_effects_p (elt
))
982 /* If we have already found a SET, this is a second one and
983 so we cannot combine with this insn. */
991 /* Anything else means we can't combine. */
997 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
998 so don't do anything with it. */
999 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1008 set
= expand_field_assignment (set
);
1009 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1011 /* Don't eliminate a store in the stack pointer. */
1012 if (dest
== stack_pointer_rtx
1013 /* If we couldn't eliminate a field assignment, we can't combine. */
1014 || GET_CODE (dest
) == ZERO_EXTRACT
|| GET_CODE (dest
) == STRICT_LOW_PART
1015 /* Don't combine with an insn that sets a register to itself if it has
1016 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1017 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1018 /* Can't merge a function call. */
1019 || GET_CODE (src
) == CALL
1020 /* Don't eliminate a function call argument. */
1021 || (GET_CODE (i3
) == CALL_INSN
1022 && (find_reg_fusage (i3
, USE
, dest
)
1023 || (GET_CODE (dest
) == REG
1024 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1025 && global_regs
[REGNO (dest
)])))
1026 /* Don't substitute into an incremented register. */
1027 || FIND_REG_INC_NOTE (i3
, dest
)
1028 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1030 /* Don't combine the end of a libcall into anything. */
1031 /* ??? This gives worse code, and appears to be unnecessary, since no
1032 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1033 use REG_RETVAL notes for noconflict blocks, but other code here
1034 makes sure that those insns don't disappear. */
1035 || find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)
1037 /* Make sure that DEST is not used after SUCC but before I3. */
1038 || (succ
&& ! all_adjacent
1039 && reg_used_between_p (dest
, succ
, i3
))
1040 /* Make sure that the value that is to be substituted for the register
1041 does not use any registers whose values alter in between. However,
1042 If the insns are adjacent, a use can't cross a set even though we
1043 think it might (this can happen for a sequence of insns each setting
1044 the same destination; reg_last_set of that register might point to
1045 a NOTE). If INSN has a REG_EQUIV note, the register is always
1046 equivalent to the memory so the substitution is valid even if there
1047 are intervening stores. Also, don't move a volatile asm or
1048 UNSPEC_VOLATILE across any other insns. */
1050 && (((GET_CODE (src
) != MEM
1051 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1052 && use_crosses_set_p (src
, INSN_CUID (insn
)))
1053 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1054 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1055 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1056 better register allocation by not doing the combine. */
1057 || find_reg_note (i3
, REG_NO_CONFLICT
, dest
)
1058 || (succ
&& find_reg_note (succ
, REG_NO_CONFLICT
, dest
))
1059 /* Don't combine across a CALL_INSN, because that would possibly
1060 change whether the life span of some REGs crosses calls or not,
1061 and it is a pain to update that information.
1062 Exception: if source is a constant, moving it later can't hurt.
1063 Accept that special case, because it helps -fforce-addr a lot. */
1064 || (INSN_CUID (insn
) < last_call_cuid
&& ! CONSTANT_P (src
)))
1067 /* DEST must either be a REG or CC0. */
1068 if (GET_CODE (dest
) == REG
)
1070 /* If register alignment is being enforced for multi-word items in all
1071 cases except for parameters, it is possible to have a register copy
1072 insn referencing a hard register that is not allowed to contain the
1073 mode being copied and which would not be valid as an operand of most
1074 insns. Eliminate this problem by not combining with such an insn.
1076 Also, on some machines we don't want to extend the life of a hard
1079 This is the same test done in can_combine except that we don't test
1080 if SRC is a CALL operation to permit a hard register with
1081 SMALL_REGISTER_CLASSES, and that we have to take all_adjacent
1084 if (GET_CODE (src
) == REG
1085 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1086 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
1087 /* Don't extend the life of a hard register unless it is
1088 user variable (if we have few registers) or it can't
1089 fit into the desired register (meaning something special
1091 Also avoid substituting a return register into I3, because
1092 reload can't handle a conflict with constraints of other
1094 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1095 && (! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
))
1096 || (SMALL_REGISTER_CLASSES
1097 && ((! all_adjacent
&& ! REG_USERVAR_P (src
))
1098 || (FUNCTION_VALUE_REGNO_P (REGNO (src
))
1099 && ! REG_USERVAR_P (src
))))))))
1102 else if (GET_CODE (dest
) != CC0
)
1105 /* Don't substitute for a register intended as a clobberable operand.
1106 Similarly, don't substitute an expression containing a register that
1107 will be clobbered in I3. */
1108 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1109 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1110 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
1111 && (reg_overlap_mentioned_p (XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0),
1113 || rtx_equal_p (XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0), dest
)))
1116 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1117 or not), reject, unless nothing volatile comes between it and I3 */
1119 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1121 /* Make sure succ doesn't contain a volatile reference. */
1122 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1125 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1126 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i'
1127 && p
!= succ
&& volatile_refs_p (PATTERN (p
)))
1131 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1132 to be an explicit register variable, and was chosen for a reason. */
1134 if (GET_CODE (src
) == ASM_OPERANDS
1135 && GET_CODE (dest
) == REG
&& REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
1138 /* If there are any volatile insns between INSN and I3, reject, because
1139 they might affect machine state. */
1141 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1142 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i'
1143 && p
!= succ
&& volatile_insn_p (PATTERN (p
)))
1146 /* If INSN or I2 contains an autoincrement or autodecrement,
1147 make sure that register is not used between there and I3,
1148 and not already used in I3 either.
1149 Also insist that I3 not be a jump; if it were one
1150 and the incremented register were spilled, we would lose. */
1153 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1154 if (REG_NOTE_KIND (link
) == REG_INC
1155 && (GET_CODE (i3
) == JUMP_INSN
1156 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
1157 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
1162 /* Don't combine an insn that follows a CC0-setting insn.
1163 An insn that uses CC0 must not be separated from the one that sets it.
1164 We do, however, allow I2 to follow a CC0-setting insn if that insn
1165 is passed as I1; in that case it will be deleted also.
1166 We also allow combining in this case if all the insns are adjacent
1167 because that would leave the two CC0 insns adjacent as well.
1168 It would be more logical to test whether CC0 occurs inside I1 or I2,
1169 but that would be much slower, and this ought to be equivalent. */
1171 p
= prev_nonnote_insn (insn
);
1172 if (p
&& p
!= pred
&& GET_CODE (p
) == INSN
&& sets_cc0_p (PATTERN (p
))
1177 /* If we get here, we have passed all the tests and the combination is
1186 /* Check if PAT is an insn - or a part of it - used to set up an
1187 argument for a function in a hard register. */
1190 sets_function_arg_p (pat
)
1196 switch (GET_CODE (pat
))
1199 return sets_function_arg_p (PATTERN (pat
));
1202 for (i
= XVECLEN (pat
, 0); --i
>= 0;)
1203 if (sets_function_arg_p (XVECEXP (pat
, 0, i
)))
1209 inner_dest
= SET_DEST (pat
);
1210 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
1211 || GET_CODE (inner_dest
) == SUBREG
1212 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
1213 inner_dest
= XEXP (inner_dest
, 0);
1215 return (GET_CODE (inner_dest
) == REG
1216 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
1217 && FUNCTION_ARG_REGNO_P (REGNO (inner_dest
)));
1226 /* LOC is the location within I3 that contains its pattern or the component
1227 of a PARALLEL of the pattern. We validate that it is valid for combining.
1229 One problem is if I3 modifies its output, as opposed to replacing it
1230 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1231 so would produce an insn that is not equivalent to the original insns.
1235 (set (reg:DI 101) (reg:DI 100))
1236 (set (subreg:SI (reg:DI 101) 0) <foo>)
1238 This is NOT equivalent to:
1240 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1241 (set (reg:DI 101) (reg:DI 100))])
1243 Not only does this modify 100 (in which case it might still be valid
1244 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1246 We can also run into a problem if I2 sets a register that I1
1247 uses and I1 gets directly substituted into I3 (not via I2). In that
1248 case, we would be getting the wrong value of I2DEST into I3, so we
1249 must reject the combination. This case occurs when I2 and I1 both
1250 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1251 If I1_NOT_IN_SRC is non-zero, it means that finding I1 in the source
1252 of a SET must prevent combination from occurring.
1254 On machines where SMALL_REGISTER_CLASSES is non-zero, we don't combine
1255 if the destination of a SET is a hard register that isn't a user
1258 Before doing the above check, we first try to expand a field assignment
1259 into a set of logical operations.
1261 If PI3_DEST_KILLED is non-zero, it is a pointer to a location in which
1262 we place a register that is both set and used within I3. If more than one
1263 such register is detected, we fail.
1265 Return 1 if the combination is valid, zero otherwise. */
1268 combinable_i3pat (i3
, loc
, i2dest
, i1dest
, i1_not_in_src
, pi3dest_killed
)
1274 rtx
*pi3dest_killed
;
1278 if (GET_CODE (x
) == SET
)
1280 rtx set
= expand_field_assignment (x
);
1281 rtx dest
= SET_DEST (set
);
1282 rtx src
= SET_SRC (set
);
1283 rtx inner_dest
= dest
;
1286 rtx inner_src
= src
;
1291 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
1292 || GET_CODE (inner_dest
) == SUBREG
1293 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
1294 inner_dest
= XEXP (inner_dest
, 0);
1296 /* We probably don't need this any more now that LIMIT_RELOAD_CLASS
1299 while (GET_CODE (inner_src
) == STRICT_LOW_PART
1300 || GET_CODE (inner_src
) == SUBREG
1301 || GET_CODE (inner_src
) == ZERO_EXTRACT
)
1302 inner_src
= XEXP (inner_src
, 0);
1304 /* If it is better that two different modes keep two different pseudos,
1305 avoid combining them. This avoids producing the following pattern
1307 (set (subreg:SI (reg/v:QI 21) 0)
1308 (lshiftrt:SI (reg/v:SI 20)
1310 If that were made, reload could not handle the pair of
1311 reg 20/21, since it would try to get any GENERAL_REGS
1312 but some of them don't handle QImode. */
1314 if (rtx_equal_p (inner_src
, i2dest
)
1315 && GET_CODE (inner_dest
) == REG
1316 && ! MODES_TIEABLE_P (GET_MODE (i2dest
), GET_MODE (inner_dest
)))
1320 /* Check for the case where I3 modifies its output, as
1322 if ((inner_dest
!= dest
1323 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
1324 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))))
1326 /* This is the same test done in can_combine_p except that we
1327 allow a hard register with SMALL_REGISTER_CLASSES if SRC is a
1328 CALL operation. Moreover, we can't test all_adjacent; we don't
1329 have to, since this instruction will stay in place, thus we are
1330 not considering increasing the lifetime of INNER_DEST.
1332 Also, if this insn sets a function argument, combining it with
1333 something that might need a spill could clobber a previous
1334 function argument; the all_adjacent test in can_combine_p also
1335 checks this; here, we do a more specific test for this case. */
1337 || (GET_CODE (inner_dest
) == REG
1338 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
1339 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
1340 GET_MODE (inner_dest
))
1341 || (SMALL_REGISTER_CLASSES
&& GET_CODE (src
) != CALL
1342 && ! REG_USERVAR_P (inner_dest
)
1343 && (FUNCTION_VALUE_REGNO_P (REGNO (inner_dest
))
1344 || (FUNCTION_ARG_REGNO_P (REGNO (inner_dest
))
1346 && sets_function_arg_p (prev_nonnote_insn (i3
)))))))
1347 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
)))
1350 /* If DEST is used in I3, it is being killed in this insn,
1351 so record that for later.
1352 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1353 STACK_POINTER_REGNUM, since these are always considered to be
1354 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1355 if (pi3dest_killed
&& GET_CODE (dest
) == REG
1356 && reg_referenced_p (dest
, PATTERN (i3
))
1357 && REGNO (dest
) != FRAME_POINTER_REGNUM
1358 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1359 && REGNO (dest
) != HARD_FRAME_POINTER_REGNUM
1361 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1362 && (REGNO (dest
) != ARG_POINTER_REGNUM
1363 || ! fixed_regs
[REGNO (dest
)])
1365 && REGNO (dest
) != STACK_POINTER_REGNUM
)
1367 if (*pi3dest_killed
)
1370 *pi3dest_killed
= dest
;
1374 else if (GET_CODE (x
) == PARALLEL
)
1378 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
1379 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
,
1380 i1_not_in_src
, pi3dest_killed
))
1387 /* Return 1 if X is an arithmetic expression that contains a multiplication
1388 and division. We don't count multiplications by powers of two here. */
1394 switch (GET_CODE (x
))
1396 case MOD
: case DIV
: case UMOD
: case UDIV
:
1400 return ! (GET_CODE (XEXP (x
, 1)) == CONST_INT
1401 && exact_log2 (INTVAL (XEXP (x
, 1))) >= 0);
1403 switch (GET_RTX_CLASS (GET_CODE (x
)))
1405 case 'c': case '<': case '2':
1406 return contains_muldiv (XEXP (x
, 0))
1407 || contains_muldiv (XEXP (x
, 1));
1410 return contains_muldiv (XEXP (x
, 0));
1418 /* Try to combine the insns I1 and I2 into I3.
1419 Here I1 and I2 appear earlier than I3.
1420 I1 can be zero; then we combine just I2 into I3.
1422 It we are combining three insns and the resulting insn is not recognized,
1423 try splitting it into two insns. If that happens, I2 and I3 are retained
1424 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1427 Return 0 if the combination does not work. Then nothing is changed.
1428 If we did the combination, return the insn at which combine should
1432 try_combine (i3
, i2
, i1
)
1433 register rtx i3
, i2
, i1
;
1435 /* New patterns for I3 and I3, respectively. */
1436 rtx newpat
, newi2pat
= 0;
1437 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1438 int added_sets_1
, added_sets_2
;
1439 /* Total number of SETs to put into I3. */
1441 /* Nonzero is I2's body now appears in I3. */
1443 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1444 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
1445 /* Contains I3 if the destination of I3 is used in its source, which means
1446 that the old life of I3 is being killed. If that usage is placed into
1447 I2 and not in I3, a REG_DEAD note must be made. */
1448 rtx i3dest_killed
= 0;
1449 /* SET_DEST and SET_SRC of I2 and I1. */
1450 rtx i2dest
, i2src
, i1dest
= 0, i1src
= 0;
1451 /* PATTERN (I2), or a copy of it in certain cases. */
1453 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1454 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
1455 int i1_feeds_i3
= 0;
1456 /* Notes that must be added to REG_NOTES in I3 and I2. */
1457 rtx new_i3_notes
, new_i2_notes
;
1458 /* Notes that we substituted I3 into I2 instead of the normal case. */
1459 int i3_subst_into_i2
= 0;
1460 /* Notes that I1, I2 or I3 is a MULT operation. */
1468 /* If any of I1, I2, and I3 isn't really an insn, we can't do anything.
1469 This can occur when flow deletes an insn that it has merged into an
1470 auto-increment address. We also can't do anything if I3 has a
1471 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1474 if (GET_RTX_CLASS (GET_CODE (i3
)) != 'i'
1475 || GET_RTX_CLASS (GET_CODE (i2
)) != 'i'
1476 || (i1
&& GET_RTX_CLASS (GET_CODE (i1
)) != 'i')
1478 /* ??? This gives worse code, and appears to be unnecessary, since no
1479 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1480 || find_reg_note (i3
, REG_LIBCALL
, NULL_RTX
)
1486 undobuf
.other_insn
= 0;
1488 /* Save the current high-water-mark so we can free storage if we didn't
1489 accept this combination. */
1490 undobuf
.storage
= (char *) oballoc (0);
1492 /* Reset the hard register usage information. */
1493 CLEAR_HARD_REG_SET (newpat_used_regs
);
1495 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1496 code below, set I1 to be the earlier of the two insns. */
1497 if (i1
&& INSN_CUID (i1
) > INSN_CUID (i2
))
1498 temp
= i1
, i1
= i2
, i2
= temp
;
1500 added_links_insn
= 0;
1502 /* First check for one important special-case that the code below will
1503 not handle. Namely, the case where I1 is zero, I2 has multiple sets,
1504 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1505 we may be able to replace that destination with the destination of I3.
1506 This occurs in the common code where we compute both a quotient and
1507 remainder into a structure, in which case we want to do the computation
1508 directly into the structure to avoid register-register copies.
1510 We make very conservative checks below and only try to handle the
1511 most common cases of this. For example, we only handle the case
1512 where I2 and I3 are adjacent to avoid making difficult register
1515 if (i1
== 0 && GET_CODE (i3
) == INSN
&& GET_CODE (PATTERN (i3
)) == SET
1516 && GET_CODE (SET_SRC (PATTERN (i3
))) == REG
1517 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
1518 && (! SMALL_REGISTER_CLASSES
1519 || (GET_CODE (SET_DEST (PATTERN (i3
))) != REG
1520 || REGNO (SET_DEST (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
1521 || REG_USERVAR_P (SET_DEST (PATTERN (i3
)))))
1522 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
1523 && GET_CODE (PATTERN (i2
)) == PARALLEL
1524 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
1525 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1526 below would need to check what is inside (and reg_overlap_mentioned_p
1527 doesn't support those codes anyway). Don't allow those destinations;
1528 the resulting insn isn't likely to be recognized anyway. */
1529 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
1530 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
1531 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
1532 SET_DEST (PATTERN (i3
)))
1533 && next_real_insn (i2
) == i3
)
1535 rtx p2
= PATTERN (i2
);
1537 /* Make sure that the destination of I3,
1538 which we are going to substitute into one output of I2,
1539 is not used within another output of I2. We must avoid making this:
1540 (parallel [(set (mem (reg 69)) ...)
1541 (set (reg 69) ...)])
1542 which is not well-defined as to order of actions.
1543 (Besides, reload can't handle output reloads for this.)
1545 The problem can also happen if the dest of I3 is a memory ref,
1546 if another dest in I2 is an indirect memory ref. */
1547 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1548 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1549 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1550 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
1551 SET_DEST (XVECEXP (p2
, 0, i
))))
1554 if (i
== XVECLEN (p2
, 0))
1555 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
1556 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
1557 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
1558 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
1563 subst_low_cuid
= INSN_CUID (i2
);
1565 added_sets_2
= added_sets_1
= 0;
1566 i2dest
= SET_SRC (PATTERN (i3
));
1568 /* Replace the dest in I2 with our dest and make the resulting
1569 insn the new pattern for I3. Then skip to where we
1570 validate the pattern. Everything was set up above. */
1571 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)),
1572 SET_DEST (PATTERN (i3
)));
1575 i3_subst_into_i2
= 1;
1576 goto validate_replacement
;
1580 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1581 one of those words to another constant, merge them by making a new
1584 && (temp
= single_set (i2
)) != 0
1585 && (GET_CODE (SET_SRC (temp
)) == CONST_INT
1586 || GET_CODE (SET_SRC (temp
)) == CONST_DOUBLE
)
1587 && GET_CODE (SET_DEST (temp
)) == REG
1588 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp
))) == MODE_INT
1589 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp
))) == 2 * UNITS_PER_WORD
1590 && GET_CODE (PATTERN (i3
)) == SET
1591 && GET_CODE (SET_DEST (PATTERN (i3
))) == SUBREG
1592 && SUBREG_REG (SET_DEST (PATTERN (i3
))) == SET_DEST (temp
)
1593 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3
)))) == MODE_INT
1594 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3
)))) == UNITS_PER_WORD
1595 && GET_CODE (SET_SRC (PATTERN (i3
))) == CONST_INT
)
1597 HOST_WIDE_INT lo
, hi
;
1599 if (GET_CODE (SET_SRC (temp
)) == CONST_INT
)
1600 lo
= INTVAL (SET_SRC (temp
)), hi
= lo
< 0 ? -1 : 0;
1603 lo
= CONST_DOUBLE_LOW (SET_SRC (temp
));
1604 hi
= CONST_DOUBLE_HIGH (SET_SRC (temp
));
1607 if (subreg_lowpart_p (SET_DEST (PATTERN (i3
))))
1608 lo
= INTVAL (SET_SRC (PATTERN (i3
)));
1610 hi
= INTVAL (SET_SRC (PATTERN (i3
)));
1614 subst_low_cuid
= INSN_CUID (i2
);
1615 added_sets_2
= added_sets_1
= 0;
1616 i2dest
= SET_DEST (temp
);
1618 SUBST (SET_SRC (temp
),
1619 immed_double_const (lo
, hi
, GET_MODE (SET_DEST (temp
))));
1621 newpat
= PATTERN (i2
);
1622 i3_subst_into_i2
= 1;
1623 goto validate_replacement
;
1627 /* If we have no I1 and I2 looks like:
1628 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1630 make up a dummy I1 that is
1633 (set (reg:CC X) (compare:CC Y (const_int 0)))
1635 (We can ignore any trailing CLOBBERs.)
1637 This undoes a previous combination and allows us to match a branch-and-
1640 if (i1
== 0 && GET_CODE (PATTERN (i2
)) == PARALLEL
1641 && XVECLEN (PATTERN (i2
), 0) >= 2
1642 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 0)) == SET
1643 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
1645 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
1646 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
1647 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 1)) == SET
1648 && GET_CODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1))) == REG
1649 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
1650 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1))))
1652 for (i
= XVECLEN (PATTERN (i2
), 0) - 1; i
>= 2; i
--)
1653 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != CLOBBER
)
1658 /* We make I1 with the same INSN_UID as I2. This gives it
1659 the same INSN_CUID for value tracking. Our fake I1 will
1660 never appear in the insn stream so giving it the same INSN_UID
1661 as I2 will not cause a problem. */
1663 subst_prev_insn
= i1
1664 = gen_rtx_INSN (VOIDmode
, INSN_UID (i2
), NULL_RTX
, i2
,
1665 XVECEXP (PATTERN (i2
), 0, 1), -1, NULL_RTX
,
1668 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
1669 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
1670 SET_DEST (PATTERN (i1
)));
1675 /* Verify that I2 and I1 are valid for combining. */
1676 if (! can_combine_p (i2
, i3
, i1
, NULL_RTX
, &i2dest
, &i2src
)
1677 || (i1
&& ! can_combine_p (i1
, i3
, NULL_RTX
, i2
, &i1dest
, &i1src
)))
1683 /* Record whether I2DEST is used in I2SRC and similarly for the other
1684 cases. Knowing this will help in register status updating below. */
1685 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
1686 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
1687 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
1689 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1691 i1_feeds_i3
= i1
&& ! reg_overlap_mentioned_p (i1dest
, i2src
);
1693 /* Ensure that I3's pattern can be the destination of combines. */
1694 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
,
1695 i1
&& i2dest_in_i1src
&& i1_feeds_i3
,
1702 /* See if any of the insns is a MULT operation. Unless one is, we will
1703 reject a combination that is, since it must be slower. Be conservative
1705 if (GET_CODE (i2src
) == MULT
1706 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
1707 || (GET_CODE (PATTERN (i3
)) == SET
1708 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
1711 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1712 We used to do this EXCEPT in one case: I3 has a post-inc in an
1713 output operand. However, that exception can give rise to insns like
1715 which is a famous insn on the PDP-11 where the value of r3 used as the
1716 source was model-dependent. Avoid this sort of thing. */
1719 if (!(GET_CODE (PATTERN (i3
)) == SET
1720 && GET_CODE (SET_SRC (PATTERN (i3
))) == REG
1721 && GET_CODE (SET_DEST (PATTERN (i3
))) == MEM
1722 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
1723 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
1724 /* It's not the exception. */
1727 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
1728 if (REG_NOTE_KIND (link
) == REG_INC
1729 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
1731 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
1738 /* See if the SETs in I1 or I2 need to be kept around in the merged
1739 instruction: whenever the value set there is still needed past I3.
1740 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1742 For the SET in I1, we have two cases: If I1 and I2 independently
1743 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1744 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1745 in I1 needs to be kept around unless I1DEST dies or is set in either
1746 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1747 I1DEST. If so, we know I1 feeds into I2. */
1749 added_sets_2
= ! dead_or_set_p (i3
, i2dest
);
1752 = i1
&& ! (i1_feeds_i3
? dead_or_set_p (i3
, i1dest
)
1753 : (dead_or_set_p (i3
, i1dest
) || dead_or_set_p (i2
, i1dest
)));
1755 /* If the set in I2 needs to be kept around, we must make a copy of
1756 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1757 PATTERN (I2), we are only substituting for the original I1DEST, not into
1758 an already-substituted copy. This also prevents making self-referential
1759 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1762 i2pat
= (GET_CODE (PATTERN (i2
)) == PARALLEL
1763 ? gen_rtx_SET (VOIDmode
, i2dest
, i2src
)
1767 i2pat
= copy_rtx (i2pat
);
1771 /* Substitute in the latest insn for the regs set by the earlier ones. */
1773 maxreg
= max_reg_num ();
1777 /* It is possible that the source of I2 or I1 may be performing an
1778 unneeded operation, such as a ZERO_EXTEND of something that is known
1779 to have the high part zero. Handle that case by letting subst look at
1780 the innermost one of them.
1782 Another way to do this would be to have a function that tries to
1783 simplify a single insn instead of merging two or more insns. We don't
1784 do this because of the potential of infinite loops and because
1785 of the potential extra memory required. However, doing it the way
1786 we are is a bit of a kludge and doesn't catch all cases.
1788 But only do this if -fexpensive-optimizations since it slows things down
1789 and doesn't usually win. */
1791 if (flag_expensive_optimizations
)
1793 /* Pass pc_rtx so no substitutions are done, just simplifications.
1794 The cases that we are interested in here do not involve the few
1795 cases were is_replaced is checked. */
1798 subst_low_cuid
= INSN_CUID (i1
);
1799 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0);
1803 subst_low_cuid
= INSN_CUID (i2
);
1804 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0);
1807 undobuf
.previous_undos
= undobuf
.undos
;
1811 /* Many machines that don't use CC0 have insns that can both perform an
1812 arithmetic operation and set the condition code. These operations will
1813 be represented as a PARALLEL with the first element of the vector
1814 being a COMPARE of an arithmetic operation with the constant zero.
1815 The second element of the vector will set some pseudo to the result
1816 of the same arithmetic operation. If we simplify the COMPARE, we won't
1817 match such a pattern and so will generate an extra insn. Here we test
1818 for this case, where both the comparison and the operation result are
1819 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1820 I2SRC. Later we will make the PARALLEL that contains I2. */
1822 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
1823 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
1824 && XEXP (SET_SRC (PATTERN (i3
)), 1) == const0_rtx
1825 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
1827 #ifdef EXTRA_CC_MODES
1829 enum machine_mode compare_mode
;
1832 newpat
= PATTERN (i3
);
1833 SUBST (XEXP (SET_SRC (newpat
), 0), i2src
);
1837 #ifdef EXTRA_CC_MODES
1838 /* See if a COMPARE with the operand we substituted in should be done
1839 with the mode that is currently being used. If not, do the same
1840 processing we do in `subst' for a SET; namely, if the destination
1841 is used only once, try to replace it with a register of the proper
1842 mode and also replace the COMPARE. */
1843 if (undobuf
.other_insn
== 0
1844 && (cc_use
= find_single_use (SET_DEST (newpat
), i3
,
1845 &undobuf
.other_insn
))
1846 && ((compare_mode
= SELECT_CC_MODE (GET_CODE (*cc_use
),
1848 != GET_MODE (SET_DEST (newpat
))))
1850 int regno
= REGNO (SET_DEST (newpat
));
1851 rtx new_dest
= gen_rtx_REG (compare_mode
, regno
);
1853 if (regno
< FIRST_PSEUDO_REGISTER
1854 || (REG_N_SETS (regno
) == 1 && ! added_sets_2
1855 && ! REG_USERVAR_P (SET_DEST (newpat
))))
1857 if (regno
>= FIRST_PSEUDO_REGISTER
)
1858 SUBST (regno_reg_rtx
[regno
], new_dest
);
1860 SUBST (SET_DEST (newpat
), new_dest
);
1861 SUBST (XEXP (*cc_use
, 0), new_dest
);
1862 SUBST (SET_SRC (newpat
),
1863 gen_rtx_combine (COMPARE
, compare_mode
,
1864 i2src
, const0_rtx
));
1867 undobuf
.other_insn
= 0;
1874 n_occurrences
= 0; /* `subst' counts here */
1876 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
1877 need to make a unique copy of I2SRC each time we substitute it
1878 to avoid self-referential rtl. */
1880 subst_low_cuid
= INSN_CUID (i2
);
1881 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0,
1882 ! i1_feeds_i3
&& i1dest_in_i1src
);
1883 undobuf
.previous_undos
= undobuf
.undos
;
1885 /* Record whether i2's body now appears within i3's body. */
1886 i2_is_used
= n_occurrences
;
1889 /* If we already got a failure, don't try to do more. Otherwise,
1890 try to substitute in I1 if we have it. */
1892 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
1894 /* Before we can do this substitution, we must redo the test done
1895 above (see detailed comments there) that ensures that I1DEST
1896 isn't mentioned in any SETs in NEWPAT that are field assignments. */
1898 if (! combinable_i3pat (NULL_RTX
, &newpat
, i1dest
, NULL_RTX
,
1906 subst_low_cuid
= INSN_CUID (i1
);
1907 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0);
1908 undobuf
.previous_undos
= undobuf
.undos
;
1911 /* Fail if an autoincrement side-effect has been duplicated. Be careful
1912 to count all the ways that I2SRC and I1SRC can be used. */
1913 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
1914 && i2_is_used
+ added_sets_2
> 1)
1915 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
1916 && (n_occurrences
+ added_sets_1
+ (added_sets_2
&& ! i1_feeds_i3
)
1918 /* Fail if we tried to make a new register (we used to abort, but there's
1919 really no reason to). */
1920 || max_reg_num () != maxreg
1921 /* Fail if we couldn't do something and have a CLOBBER. */
1922 || GET_CODE (newpat
) == CLOBBER
1923 /* Fail if this new pattern is a MULT and we didn't have one before
1924 at the outer level. */
1925 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
1932 /* If the actions of the earlier insns must be kept
1933 in addition to substituting them into the latest one,
1934 we must make a new PARALLEL for the latest insn
1935 to hold additional the SETs. */
1937 if (added_sets_1
|| added_sets_2
)
1941 if (GET_CODE (newpat
) == PARALLEL
)
1943 rtvec old
= XVEC (newpat
, 0);
1944 total_sets
= XVECLEN (newpat
, 0) + added_sets_1
+ added_sets_2
;
1945 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
1946 bcopy ((char *) &old
->elem
[0], (char *) XVEC (newpat
, 0)->elem
,
1947 sizeof (old
->elem
[0]) * old
->num_elem
);
1952 total_sets
= 1 + added_sets_1
+ added_sets_2
;
1953 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
1954 XVECEXP (newpat
, 0, 0) = old
;
1958 XVECEXP (newpat
, 0, --total_sets
)
1959 = (GET_CODE (PATTERN (i1
)) == PARALLEL
1960 ? gen_rtx_SET (VOIDmode
, i1dest
, i1src
) : PATTERN (i1
));
1964 /* If there is no I1, use I2's body as is. We used to also not do
1965 the subst call below if I2 was substituted into I3,
1966 but that could lose a simplification. */
1968 XVECEXP (newpat
, 0, --total_sets
) = i2pat
;
1970 /* See comment where i2pat is assigned. */
1971 XVECEXP (newpat
, 0, --total_sets
)
1972 = subst (i2pat
, i1dest
, i1src
, 0, 0);
1976 /* We come here when we are replacing a destination in I2 with the
1977 destination of I3. */
1978 validate_replacement
:
1980 /* Note which hard regs this insn has as inputs. */
1981 mark_used_regs_combine (newpat
);
1983 /* Is the result of combination a valid instruction? */
1984 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
1986 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
1987 the second SET's destination is a register that is unused. In that case,
1988 we just need the first SET. This can occur when simplifying a divmod
1989 insn. We *must* test for this case here because the code below that
1990 splits two independent SETs doesn't handle this case correctly when it
1991 updates the register status. Also check the case where the first
1992 SET's destination is unused. That would not cause incorrect code, but
1993 does cause an unneeded insn to remain. */
1995 if (insn_code_number
< 0 && GET_CODE (newpat
) == PARALLEL
1996 && XVECLEN (newpat
, 0) == 2
1997 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
1998 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
1999 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == REG
2000 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (XVECEXP (newpat
, 0, 1)))
2001 && ! side_effects_p (SET_SRC (XVECEXP (newpat
, 0, 1)))
2002 && asm_noperands (newpat
) < 0)
2004 newpat
= XVECEXP (newpat
, 0, 0);
2005 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2008 else if (insn_code_number
< 0 && GET_CODE (newpat
) == PARALLEL
2009 && XVECLEN (newpat
, 0) == 2
2010 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2011 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2012 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) == REG
2013 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (XVECEXP (newpat
, 0, 0)))
2014 && ! side_effects_p (SET_SRC (XVECEXP (newpat
, 0, 0)))
2015 && asm_noperands (newpat
) < 0)
2017 newpat
= XVECEXP (newpat
, 0, 1);
2018 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2021 /* If we were combining three insns and the result is a simple SET
2022 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2023 insns. There are two ways to do this. It can be split using a
2024 machine-specific method (like when you have an addition of a large
2025 constant) or by combine in the function find_split_point. */
2027 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
2028 && asm_noperands (newpat
) < 0)
2030 rtx m_split
, *split
;
2031 rtx ni2dest
= i2dest
;
2033 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2034 use I2DEST as a scratch register will help. In the latter case,
2035 convert I2DEST to the mode of the source of NEWPAT if we can. */
2037 m_split
= split_insns (newpat
, i3
);
2039 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2040 inputs of NEWPAT. */
2042 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2043 possible to try that as a scratch reg. This would require adding
2044 more code to make it work though. */
2046 if (m_split
== 0 && ! reg_overlap_mentioned_p (ni2dest
, newpat
))
2048 /* If I2DEST is a hard register or the only use of a pseudo,
2049 we can change its mode. */
2050 if (GET_MODE (SET_DEST (newpat
)) != GET_MODE (i2dest
)
2051 && GET_MODE (SET_DEST (newpat
)) != VOIDmode
2052 && GET_CODE (i2dest
) == REG
2053 && (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
2054 || (REG_N_SETS (REGNO (i2dest
)) == 1 && ! added_sets_2
2055 && ! REG_USERVAR_P (i2dest
))))
2056 ni2dest
= gen_rtx_REG (GET_MODE (SET_DEST (newpat
)),
2059 m_split
= split_insns (gen_rtx_PARALLEL
2061 gen_rtvec (2, newpat
,
2062 gen_rtx_CLOBBER (VOIDmode
,
2067 if (m_split
&& GET_CODE (m_split
) == SEQUENCE
2068 && XVECLEN (m_split
, 0) == 2
2069 && (next_real_insn (i2
) == i3
2070 || ! use_crosses_set_p (PATTERN (XVECEXP (m_split
, 0, 0)),
2074 rtx newi3pat
= PATTERN (XVECEXP (m_split
, 0, 1));
2075 newi2pat
= PATTERN (XVECEXP (m_split
, 0, 0));
2077 i3set
= single_set (XVECEXP (m_split
, 0, 1));
2078 i2set
= single_set (XVECEXP (m_split
, 0, 0));
2080 /* In case we changed the mode of I2DEST, replace it in the
2081 pseudo-register table here. We can't do it above in case this
2082 code doesn't get executed and we do a split the other way. */
2084 if (REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
2085 SUBST (regno_reg_rtx
[REGNO (i2dest
)], ni2dest
);
2087 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2089 /* If I2 or I3 has multiple SETs, we won't know how to track
2090 register status, so don't use these insns. If I2's destination
2091 is used between I2 and I3, we also can't use these insns. */
2093 if (i2_code_number
>= 0 && i2set
&& i3set
2094 && (next_real_insn (i2
) == i3
2095 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
2096 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
2098 if (insn_code_number
>= 0)
2101 /* It is possible that both insns now set the destination of I3.
2102 If so, we must show an extra use of it. */
2104 if (insn_code_number
>= 0)
2106 rtx new_i3_dest
= SET_DEST (i3set
);
2107 rtx new_i2_dest
= SET_DEST (i2set
);
2109 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
2110 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
2111 || GET_CODE (new_i3_dest
) == SUBREG
)
2112 new_i3_dest
= XEXP (new_i3_dest
, 0);
2114 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
2115 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
2116 || GET_CODE (new_i2_dest
) == SUBREG
)
2117 new_i2_dest
= XEXP (new_i2_dest
, 0);
2119 if (GET_CODE (new_i3_dest
) == REG
2120 && GET_CODE (new_i2_dest
) == REG
2121 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
))
2122 REG_N_SETS (REGNO (new_i2_dest
))++;
2126 /* If we can split it and use I2DEST, go ahead and see if that
2127 helps things be recognized. Verify that none of the registers
2128 are set between I2 and I3. */
2129 if (insn_code_number
< 0 && (split
= find_split_point (&newpat
, i3
)) != 0
2131 && GET_CODE (i2dest
) == REG
2133 /* We need I2DEST in the proper mode. If it is a hard register
2134 or the only use of a pseudo, we can change its mode. */
2135 && (GET_MODE (*split
) == GET_MODE (i2dest
)
2136 || GET_MODE (*split
) == VOIDmode
2137 || REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
2138 || (REG_N_SETS (REGNO (i2dest
)) == 1 && ! added_sets_2
2139 && ! REG_USERVAR_P (i2dest
)))
2140 && (next_real_insn (i2
) == i3
2141 || ! use_crosses_set_p (*split
, INSN_CUID (i2
)))
2142 /* We can't overwrite I2DEST if its value is still used by
2144 && ! reg_referenced_p (i2dest
, newpat
))
2146 rtx newdest
= i2dest
;
2147 enum rtx_code split_code
= GET_CODE (*split
);
2148 enum machine_mode split_mode
= GET_MODE (*split
);
2150 /* Get NEWDEST as a register in the proper mode. We have already
2151 validated that we can do this. */
2152 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
2154 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
2156 if (REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
2157 SUBST (regno_reg_rtx
[REGNO (i2dest
)], newdest
);
2160 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2161 an ASHIFT. This can occur if it was inside a PLUS and hence
2162 appeared to be a memory address. This is a kludge. */
2163 if (split_code
== MULT
2164 && GET_CODE (XEXP (*split
, 1)) == CONST_INT
2165 && (i
= exact_log2 (INTVAL (XEXP (*split
, 1)))) >= 0)
2167 SUBST (*split
, gen_rtx_combine (ASHIFT
, split_mode
,
2168 XEXP (*split
, 0), GEN_INT (i
)));
2169 /* Update split_code because we may not have a multiply
2171 split_code
= GET_CODE (*split
);
2174 #ifdef INSN_SCHEDULING
2175 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2176 be written as a ZERO_EXTEND. */
2177 if (split_code
== SUBREG
&& GET_CODE (SUBREG_REG (*split
)) == MEM
)
2178 SUBST (*split
, gen_rtx_combine (ZERO_EXTEND
, split_mode
,
2182 newi2pat
= gen_rtx_combine (SET
, VOIDmode
, newdest
, *split
);
2183 SUBST (*split
, newdest
);
2184 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2186 /* If the split point was a MULT and we didn't have one before,
2187 don't use one now. */
2188 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
2189 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2193 /* Check for a case where we loaded from memory in a narrow mode and
2194 then sign extended it, but we need both registers. In that case,
2195 we have a PARALLEL with both loads from the same memory location.
2196 We can split this into a load from memory followed by a register-register
2197 copy. This saves at least one insn, more if register allocation can
2200 We cannot do this if the destination of the second assignment is
2201 a register that we have already assumed is zero-extended. Similarly
2202 for a SUBREG of such a register. */
2204 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2205 && GET_CODE (newpat
) == PARALLEL
2206 && XVECLEN (newpat
, 0) == 2
2207 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2208 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
2209 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2210 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2211 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
2212 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2214 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2215 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2216 && ! (temp
= SET_DEST (XVECEXP (newpat
, 0, 1)),
2217 (GET_CODE (temp
) == REG
2218 && reg_nonzero_bits
[REGNO (temp
)] != 0
2219 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2220 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2221 && (reg_nonzero_bits
[REGNO (temp
)]
2222 != GET_MODE_MASK (word_mode
))))
2223 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
2224 && (temp
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
2225 (GET_CODE (temp
) == REG
2226 && reg_nonzero_bits
[REGNO (temp
)] != 0
2227 && GET_MODE_BITSIZE (GET_MODE (temp
)) < BITS_PER_WORD
2228 && GET_MODE_BITSIZE (GET_MODE (temp
)) < HOST_BITS_PER_INT
2229 && (reg_nonzero_bits
[REGNO (temp
)]
2230 != GET_MODE_MASK (word_mode
)))))
2231 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2232 SET_SRC (XVECEXP (newpat
, 0, 1)))
2233 && ! find_reg_note (i3
, REG_UNUSED
,
2234 SET_DEST (XVECEXP (newpat
, 0, 0))))
2238 newi2pat
= XVECEXP (newpat
, 0, 0);
2239 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
2240 newpat
= XVECEXP (newpat
, 0, 1);
2241 SUBST (SET_SRC (newpat
),
2242 gen_lowpart_for_combine (GET_MODE (SET_SRC (newpat
)), ni2dest
));
2243 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2245 if (i2_code_number
>= 0)
2246 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2248 if (insn_code_number
>= 0)
2253 /* If we will be able to accept this, we have made a change to the
2254 destination of I3. This can invalidate a LOG_LINKS pointing
2255 to I3. No other part of combine.c makes such a transformation.
2257 The new I3 will have a destination that was previously the
2258 destination of I1 or I2 and which was used in i2 or I3. Call
2259 distribute_links to make a LOG_LINK from the next use of
2260 that destination. */
2262 PATTERN (i3
) = newpat
;
2263 distribute_links (gen_rtx_INSN_LIST (VOIDmode
, i3
, NULL_RTX
));
2265 /* I3 now uses what used to be its destination and which is
2266 now I2's destination. That means we need a LOG_LINK from
2267 I3 to I2. But we used to have one, so we still will.
2269 However, some later insn might be using I2's dest and have
2270 a LOG_LINK pointing at I3. We must remove this link.
2271 The simplest way to remove the link is to point it at I1,
2272 which we know will be a NOTE. */
2274 for (insn
= NEXT_INSN (i3
);
2275 insn
&& (this_basic_block
== n_basic_blocks
- 1
2276 || insn
!= BLOCK_HEAD (this_basic_block
+ 1));
2277 insn
= NEXT_INSN (insn
))
2279 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
2280 && reg_referenced_p (ni2dest
, PATTERN (insn
)))
2282 for (link
= LOG_LINKS (insn
); link
;
2283 link
= XEXP (link
, 1))
2284 if (XEXP (link
, 0) == i3
)
2285 XEXP (link
, 0) = i1
;
2293 /* Similarly, check for a case where we have a PARALLEL of two independent
2294 SETs but we started with three insns. In this case, we can do the sets
2295 as two separate insns. This case occurs when some SET allows two
2296 other insns to combine, but the destination of that SET is still live. */
2298 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
2299 && GET_CODE (newpat
) == PARALLEL
2300 && XVECLEN (newpat
, 0) == 2
2301 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
2302 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
2303 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
2304 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
2305 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
2306 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
2307 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
2309 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2310 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != USE
2311 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != USE
2312 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
2313 XVECEXP (newpat
, 0, 0))
2314 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
2315 XVECEXP (newpat
, 0, 1))
2316 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
2317 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
2319 /* Normally, it doesn't matter which of the two is done first,
2320 but it does if one references cc0. In that case, it has to
2323 if (reg_referenced_p (cc0_rtx
, XVECEXP (newpat
, 0, 0)))
2325 newi2pat
= XVECEXP (newpat
, 0, 0);
2326 newpat
= XVECEXP (newpat
, 0, 1);
2331 newi2pat
= XVECEXP (newpat
, 0, 1);
2332 newpat
= XVECEXP (newpat
, 0, 0);
2335 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
2337 if (i2_code_number
>= 0)
2338 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
2341 /* If it still isn't recognized, fail and change things back the way they
2343 if ((insn_code_number
< 0
2344 /* Is the result a reasonable ASM_OPERANDS? */
2345 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
2351 /* If we had to change another insn, make sure it is valid also. */
2352 if (undobuf
.other_insn
)
2354 rtx other_pat
= PATTERN (undobuf
.other_insn
);
2355 rtx new_other_notes
;
2358 CLEAR_HARD_REG_SET (newpat_used_regs
);
2360 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
2363 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
2369 PATTERN (undobuf
.other_insn
) = other_pat
;
2371 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2372 are still valid. Then add any non-duplicate notes added by
2373 recog_for_combine. */
2374 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
2376 next
= XEXP (note
, 1);
2378 if (REG_NOTE_KIND (note
) == REG_UNUSED
2379 && ! reg_set_p (XEXP (note
, 0), PATTERN (undobuf
.other_insn
)))
2381 if (GET_CODE (XEXP (note
, 0)) == REG
)
2382 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
2384 remove_note (undobuf
.other_insn
, note
);
2388 for (note
= new_other_notes
; note
; note
= XEXP (note
, 1))
2389 if (GET_CODE (XEXP (note
, 0)) == REG
)
2390 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
2392 distribute_notes (new_other_notes
, undobuf
.other_insn
,
2393 undobuf
.other_insn
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2396 /* If I2 is the setter CC0 and I3 is the user CC0 then check whether
2397 they are adjacent to each other or not. */
2399 rtx p
= prev_nonnote_insn (i3
);
2400 if (p
&& p
!= i2
&& GET_CODE (p
) == INSN
&& newi2pat
&& sets_cc0_p (newi2pat
))
2408 /* We now know that we can do this combination. Merge the insns and
2409 update the status of registers and LOG_LINKS. */
2412 rtx i3notes
, i2notes
, i1notes
= 0;
2413 rtx i3links
, i2links
, i1links
= 0;
2416 /* Compute which registers we expect to eliminate. newi2pat may be setting
2417 either i3dest or i2dest, so we must check it. Also, i1dest may be the
2418 same as i3dest, in which case newi2pat may be setting i1dest. */
2419 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
2420 || i2dest_in_i2src
|| i2dest_in_i1src
2422 rtx elim_i1
= (i1
== 0 || i1dest_in_i1src
2423 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
2426 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2428 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
2429 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
2431 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
2433 /* Ensure that we do not have something that should not be shared but
2434 occurs multiple times in the new insns. Check this by first
2435 resetting all the `used' flags and then copying anything is shared. */
2437 reset_used_flags (i3notes
);
2438 reset_used_flags (i2notes
);
2439 reset_used_flags (i1notes
);
2440 reset_used_flags (newpat
);
2441 reset_used_flags (newi2pat
);
2442 if (undobuf
.other_insn
)
2443 reset_used_flags (PATTERN (undobuf
.other_insn
));
2445 i3notes
= copy_rtx_if_shared (i3notes
);
2446 i2notes
= copy_rtx_if_shared (i2notes
);
2447 i1notes
= copy_rtx_if_shared (i1notes
);
2448 newpat
= copy_rtx_if_shared (newpat
);
2449 newi2pat
= copy_rtx_if_shared (newi2pat
);
2450 if (undobuf
.other_insn
)
2451 reset_used_flags (PATTERN (undobuf
.other_insn
));
2453 INSN_CODE (i3
) = insn_code_number
;
2454 PATTERN (i3
) = newpat
;
2455 if (undobuf
.other_insn
)
2456 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
2458 /* We had one special case above where I2 had more than one set and
2459 we replaced a destination of one of those sets with the destination
2460 of I3. In that case, we have to update LOG_LINKS of insns later
2461 in this basic block. Note that this (expensive) case is rare.
2463 Also, in this case, we must pretend that all REG_NOTEs for I2
2464 actually came from I3, so that REG_UNUSED notes from I2 will be
2465 properly handled. */
2467 if (i3_subst_into_i2
)
2469 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
2471 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
2472 if (GET_CODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))) == REG
2473 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
2474 && ! find_reg_note (i2
, REG_UNUSED
,
2475 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
2476 for (temp
= NEXT_INSN (i2
);
2477 temp
&& (this_basic_block
== n_basic_blocks
- 1
2478 || BLOCK_HEAD (this_basic_block
) != temp
);
2479 temp
= NEXT_INSN (temp
))
2480 if (temp
!= i3
&& GET_RTX_CLASS (GET_CODE (temp
)) == 'i')
2481 for (link
= LOG_LINKS (temp
); link
; link
= XEXP (link
, 1))
2482 if (XEXP (link
, 0) == i2
)
2483 XEXP (link
, 0) = i3
;
2489 while (XEXP (link
, 1))
2490 link
= XEXP (link
, 1);
2491 XEXP (link
, 1) = i2notes
;
2505 INSN_CODE (i2
) = i2_code_number
;
2506 PATTERN (i2
) = newi2pat
;
2510 PUT_CODE (i2
, NOTE
);
2511 NOTE_LINE_NUMBER (i2
) = NOTE_INSN_DELETED
;
2512 NOTE_SOURCE_FILE (i2
) = 0;
2519 PUT_CODE (i1
, NOTE
);
2520 NOTE_LINE_NUMBER (i1
) = NOTE_INSN_DELETED
;
2521 NOTE_SOURCE_FILE (i1
) = 0;
2524 /* Get death notes for everything that is now used in either I3 or
2525 I2 and used to die in a previous insn. If we built two new
2526 patterns, move from I1 to I2 then I2 to I3 so that we get the
2527 proper movement on registers that I2 modifies. */
2531 move_deaths (newi2pat
, NULL_RTX
, INSN_CUID (i1
), i2
, &midnotes
);
2532 move_deaths (newpat
, newi2pat
, INSN_CUID (i1
), i3
, &midnotes
);
2535 move_deaths (newpat
, NULL_RTX
, i1
? INSN_CUID (i1
) : INSN_CUID (i2
),
2538 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2540 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL_RTX
,
2543 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL_RTX
,
2546 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL_RTX
,
2549 distribute_notes (midnotes
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
2552 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2553 know these are REG_UNUSED and want them to go to the desired insn,
2554 so we always pass it as i3. We have not counted the notes in
2555 reg_n_deaths yet, so we need to do so now. */
2557 if (newi2pat
&& new_i2_notes
)
2559 for (temp
= new_i2_notes
; temp
; temp
= XEXP (temp
, 1))
2560 if (GET_CODE (XEXP (temp
, 0)) == REG
)
2561 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
2563 distribute_notes (new_i2_notes
, i2
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2568 for (temp
= new_i3_notes
; temp
; temp
= XEXP (temp
, 1))
2569 if (GET_CODE (XEXP (temp
, 0)) == REG
)
2570 REG_N_DEATHS (REGNO (XEXP (temp
, 0)))++;
2572 distribute_notes (new_i3_notes
, i3
, i3
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2575 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2576 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2577 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2578 in that case, it might delete I2. Similarly for I2 and I1.
2579 Show an additional death due to the REG_DEAD note we make here. If
2580 we discard it in distribute_notes, we will decrement it again. */
2584 if (GET_CODE (i3dest_killed
) == REG
)
2585 REG_N_DEATHS (REGNO (i3dest_killed
))++;
2587 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
2588 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
2590 NULL_RTX
, i2
, NULL_RTX
, elim_i2
, elim_i1
);
2592 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i3dest_killed
,
2594 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
2598 if (i2dest_in_i2src
)
2600 if (GET_CODE (i2dest
) == REG
)
2601 REG_N_DEATHS (REGNO (i2dest
))++;
2603 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
2604 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
2605 NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2607 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i2dest
, NULL_RTX
),
2608 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
2609 NULL_RTX
, NULL_RTX
);
2612 if (i1dest_in_i1src
)
2614 if (GET_CODE (i1dest
) == REG
)
2615 REG_N_DEATHS (REGNO (i1dest
))++;
2617 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
2618 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
2619 NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
);
2621 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD
, i1dest
, NULL_RTX
),
2622 NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
2623 NULL_RTX
, NULL_RTX
);
2626 distribute_links (i3links
);
2627 distribute_links (i2links
);
2628 distribute_links (i1links
);
2630 if (GET_CODE (i2dest
) == REG
)
2633 rtx i2_insn
= 0, i2_val
= 0, set
;
2635 /* The insn that used to set this register doesn't exist, and
2636 this life of the register may not exist either. See if one of
2637 I3's links points to an insn that sets I2DEST. If it does,
2638 that is now the last known value for I2DEST. If we don't update
2639 this and I2 set the register to a value that depended on its old
2640 contents, we will get confused. If this insn is used, thing
2641 will be set correctly in combine_instructions. */
2643 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
2644 if ((set
= single_set (XEXP (link
, 0))) != 0
2645 && rtx_equal_p (i2dest
, SET_DEST (set
)))
2646 i2_insn
= XEXP (link
, 0), i2_val
= SET_SRC (set
);
2648 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
2650 /* If the reg formerly set in I2 died only once and that was in I3,
2651 zero its use count so it won't make `reload' do any work. */
2653 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
2654 && ! i2dest_in_i2src
)
2656 regno
= REGNO (i2dest
);
2657 REG_N_SETS (regno
)--;
2661 if (i1
&& GET_CODE (i1dest
) == REG
)
2664 rtx i1_insn
= 0, i1_val
= 0, set
;
2666 for (link
= LOG_LINKS (i3
); link
; link
= XEXP (link
, 1))
2667 if ((set
= single_set (XEXP (link
, 0))) != 0
2668 && rtx_equal_p (i1dest
, SET_DEST (set
)))
2669 i1_insn
= XEXP (link
, 0), i1_val
= SET_SRC (set
);
2671 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
2673 regno
= REGNO (i1dest
);
2674 if (! added_sets_1
&& ! i1dest_in_i1src
)
2676 REG_N_SETS (regno
)--;
2680 /* Update reg_nonzero_bits et al for any changes that may have been made
2683 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
2685 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
2687 /* If I3 is now an unconditional jump, ensure that it has a
2688 BARRIER following it since it may have initially been a
2689 conditional jump. It may also be the last nonnote insn. */
2691 if ((GET_CODE (newpat
) == RETURN
|| simplejump_p (i3
))
2692 && ((temp
= next_nonnote_insn (i3
)) == NULL_RTX
2693 || GET_CODE (temp
) != BARRIER
))
2694 emit_barrier_after (i3
);
2697 combine_successes
++;
2700 /* Clear this here, so that subsequent get_last_value calls are not
2702 subst_prev_insn
= NULL_RTX
;
2704 if (added_links_insn
2705 && (newi2pat
== 0 || INSN_CUID (added_links_insn
) < INSN_CUID (i2
))
2706 && INSN_CUID (added_links_insn
) < INSN_CUID (i3
))
2707 return added_links_insn
;
2709 return newi2pat
? i2
: i3
;
2712 /* Undo all the modifications recorded in undobuf. */
2717 struct undo
*undo
, *next
;
2719 for (undo
= undobuf
.undos
; undo
; undo
= next
)
2723 *undo
->where
.i
= undo
->old_contents
.i
;
2725 *undo
->where
.r
= undo
->old_contents
.r
;
2727 undo
->next
= undobuf
.frees
;
2728 undobuf
.frees
= undo
;
2731 obfree (undobuf
.storage
);
2732 undobuf
.undos
= undobuf
.previous_undos
= 0;
2734 /* Clear this here, so that subsequent get_last_value calls are not
2736 subst_prev_insn
= NULL_RTX
;
2739 /* We've committed to accepting the changes we made. Move all
2740 of the undos to the free list. */
2745 struct undo
*undo
, *next
;
2747 for (undo
= undobuf
.undos
; undo
; undo
= next
)
2750 undo
->next
= undobuf
.frees
;
2751 undobuf
.frees
= undo
;
2753 undobuf
.undos
= undobuf
.previous_undos
= 0;
2757 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
2758 where we have an arithmetic expression and return that point. LOC will
2761 try_combine will call this function to see if an insn can be split into
2765 find_split_point (loc
, insn
)
2770 enum rtx_code code
= GET_CODE (x
);
2772 int len
= 0, pos
= 0, unsignedp
= 0;
2773 rtx inner
= NULL_RTX
;
2775 /* First special-case some codes. */
2779 #ifdef INSN_SCHEDULING
2780 /* If we are making a paradoxical SUBREG invalid, it becomes a split
2782 if (GET_CODE (SUBREG_REG (x
)) == MEM
)
2785 return find_split_point (&SUBREG_REG (x
), insn
);
2789 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
2790 using LO_SUM and HIGH. */
2791 if (GET_CODE (XEXP (x
, 0)) == CONST
2792 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2795 gen_rtx_combine (LO_SUM
, Pmode
,
2796 gen_rtx_combine (HIGH
, Pmode
, XEXP (x
, 0)),
2798 return &XEXP (XEXP (x
, 0), 0);
2802 /* If we have a PLUS whose second operand is a constant and the
2803 address is not valid, perhaps will can split it up using
2804 the machine-specific way to split large constants. We use
2805 the first pseudo-reg (one of the virtual regs) as a placeholder;
2806 it will not remain in the result. */
2807 if (GET_CODE (XEXP (x
, 0)) == PLUS
2808 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
2809 && ! memory_address_p (GET_MODE (x
), XEXP (x
, 0)))
2811 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
2812 rtx seq
= split_insns (gen_rtx_SET (VOIDmode
, reg
, XEXP (x
, 0)),
2815 /* This should have produced two insns, each of which sets our
2816 placeholder. If the source of the second is a valid address,
2817 we can make put both sources together and make a split point
2820 if (seq
&& XVECLEN (seq
, 0) == 2
2821 && GET_CODE (XVECEXP (seq
, 0, 0)) == INSN
2822 && GET_CODE (PATTERN (XVECEXP (seq
, 0, 0))) == SET
2823 && SET_DEST (PATTERN (XVECEXP (seq
, 0, 0))) == reg
2824 && ! reg_mentioned_p (reg
,
2825 SET_SRC (PATTERN (XVECEXP (seq
, 0, 0))))
2826 && GET_CODE (XVECEXP (seq
, 0, 1)) == INSN
2827 && GET_CODE (PATTERN (XVECEXP (seq
, 0, 1))) == SET
2828 && SET_DEST (PATTERN (XVECEXP (seq
, 0, 1))) == reg
2829 && memory_address_p (GET_MODE (x
),
2830 SET_SRC (PATTERN (XVECEXP (seq
, 0, 1)))))
2832 rtx src1
= SET_SRC (PATTERN (XVECEXP (seq
, 0, 0)));
2833 rtx src2
= SET_SRC (PATTERN (XVECEXP (seq
, 0, 1)));
2835 /* Replace the placeholder in SRC2 with SRC1. If we can
2836 find where in SRC2 it was placed, that can become our
2837 split point and we can replace this address with SRC2.
2838 Just try two obvious places. */
2840 src2
= replace_rtx (src2
, reg
, src1
);
2842 if (XEXP (src2
, 0) == src1
)
2843 split
= &XEXP (src2
, 0);
2844 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
2845 && XEXP (XEXP (src2
, 0), 0) == src1
)
2846 split
= &XEXP (XEXP (src2
, 0), 0);
2850 SUBST (XEXP (x
, 0), src2
);
2855 /* If that didn't work, perhaps the first operand is complex and
2856 needs to be computed separately, so make a split point there.
2857 This will occur on machines that just support REG + CONST
2858 and have a constant moved through some previous computation. */
2860 else if (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x
, 0), 0))) != 'o'
2861 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
2862 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (XEXP (x
, 0), 0))))
2864 return &XEXP (XEXP (x
, 0), 0);
2870 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
2871 ZERO_EXTRACT, the most likely reason why this doesn't match is that
2872 we need to put the operand into a register. So split at that
2875 if (SET_DEST (x
) == cc0_rtx
2876 && GET_CODE (SET_SRC (x
)) != COMPARE
2877 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
2878 && GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) != 'o'
2879 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
2880 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (SET_SRC (x
)))) == 'o'))
2881 return &SET_SRC (x
);
2884 /* See if we can split SET_SRC as it stands. */
2885 split
= find_split_point (&SET_SRC (x
), insn
);
2886 if (split
&& split
!= &SET_SRC (x
))
2889 /* See if we can split SET_DEST as it stands. */
2890 split
= find_split_point (&SET_DEST (x
), insn
);
2891 if (split
&& split
!= &SET_DEST (x
))
2894 /* See if this is a bitfield assignment with everything constant. If
2895 so, this is an IOR of an AND, so split it into that. */
2896 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
2897 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)))
2898 <= HOST_BITS_PER_WIDE_INT
)
2899 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
2900 && GET_CODE (XEXP (SET_DEST (x
), 2)) == CONST_INT
2901 && GET_CODE (SET_SRC (x
)) == CONST_INT
2902 && ((INTVAL (XEXP (SET_DEST (x
), 1))
2903 + INTVAL (XEXP (SET_DEST (x
), 2)))
2904 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0))))
2905 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
2907 int pos
= INTVAL (XEXP (SET_DEST (x
), 2));
2908 int len
= INTVAL (XEXP (SET_DEST (x
), 1));
2909 int src
= INTVAL (SET_SRC (x
));
2910 rtx dest
= XEXP (SET_DEST (x
), 0);
2911 enum machine_mode mode
= GET_MODE (dest
);
2912 unsigned HOST_WIDE_INT mask
= ((HOST_WIDE_INT
) 1 << len
) - 1;
2914 if (BITS_BIG_ENDIAN
)
2915 pos
= GET_MODE_BITSIZE (mode
) - len
- pos
;
2917 if ((unsigned HOST_WIDE_INT
) src
== mask
)
2919 gen_binary (IOR
, mode
, dest
, GEN_INT (src
<< pos
)));
2922 gen_binary (IOR
, mode
,
2923 gen_binary (AND
, mode
, dest
,
2924 GEN_INT (~ (mask
<< pos
)
2925 & GET_MODE_MASK (mode
))),
2926 GEN_INT (src
<< pos
)));
2928 SUBST (SET_DEST (x
), dest
);
2930 split
= find_split_point (&SET_SRC (x
), insn
);
2931 if (split
&& split
!= &SET_SRC (x
))
2935 /* Otherwise, see if this is an operation that we can split into two.
2936 If so, try to split that. */
2937 code
= GET_CODE (SET_SRC (x
));
2942 /* If we are AND'ing with a large constant that is only a single
2943 bit and the result is only being used in a context where we
2944 need to know if it is zero or non-zero, replace it with a bit
2945 extraction. This will avoid the large constant, which might
2946 have taken more than one insn to make. If the constant were
2947 not a valid argument to the AND but took only one insn to make,
2948 this is no worse, but if it took more than one insn, it will
2951 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
2952 && GET_CODE (XEXP (SET_SRC (x
), 0)) == REG
2953 && (pos
= exact_log2 (INTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
2954 && GET_CODE (SET_DEST (x
)) == REG
2955 && (split
= find_single_use (SET_DEST (x
), insn
, NULL_PTR
)) != 0
2956 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
2957 && XEXP (*split
, 0) == SET_DEST (x
)
2958 && XEXP (*split
, 1) == const0_rtx
)
2960 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
2961 XEXP (SET_SRC (x
), 0),
2962 pos
, NULL_RTX
, 1, 1, 0, 0);
2963 if (extraction
!= 0)
2965 SUBST (SET_SRC (x
), extraction
);
2966 return find_split_point (loc
, insn
);
2972 /* if STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
2973 is known to be on, this can be converted into a NEG of a shift. */
2974 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
2975 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
2976 && 1 <= (pos
= exact_log2
2977 (nonzero_bits (XEXP (SET_SRC (x
), 0),
2978 GET_MODE (XEXP (SET_SRC (x
), 0))))))
2980 enum machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
2983 gen_rtx_combine (NEG
, mode
,
2984 gen_rtx_combine (LSHIFTRT
, mode
,
2985 XEXP (SET_SRC (x
), 0),
2988 split
= find_split_point (&SET_SRC (x
), insn
);
2989 if (split
&& split
!= &SET_SRC (x
))
2995 inner
= XEXP (SET_SRC (x
), 0);
2997 /* We can't optimize if either mode is a partial integer
2998 mode as we don't know how many bits are significant
3000 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
3001 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
3005 len
= GET_MODE_BITSIZE (GET_MODE (inner
));
3011 if (GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3012 && GET_CODE (XEXP (SET_SRC (x
), 2)) == CONST_INT
)
3014 inner
= XEXP (SET_SRC (x
), 0);
3015 len
= INTVAL (XEXP (SET_SRC (x
), 1));
3016 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
3018 if (BITS_BIG_ENDIAN
)
3019 pos
= GET_MODE_BITSIZE (GET_MODE (inner
)) - len
- pos
;
3020 unsignedp
= (code
== ZERO_EXTRACT
);
3028 if (len
&& pos
>= 0 && pos
+ len
<= GET_MODE_BITSIZE (GET_MODE (inner
)))
3030 enum machine_mode mode
= GET_MODE (SET_SRC (x
));
3032 /* For unsigned, we have a choice of a shift followed by an
3033 AND or two shifts. Use two shifts for field sizes where the
3034 constant might be too large. We assume here that we can
3035 always at least get 8-bit constants in an AND insn, which is
3036 true for every current RISC. */
3038 if (unsignedp
&& len
<= 8)
3043 gen_rtx_combine (LSHIFTRT
, mode
,
3044 gen_lowpart_for_combine (mode
, inner
),
3046 GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1)));
3048 split
= find_split_point (&SET_SRC (x
), insn
);
3049 if (split
&& split
!= &SET_SRC (x
))
3056 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
3057 gen_rtx_combine (ASHIFT
, mode
,
3058 gen_lowpart_for_combine (mode
, inner
),
3059 GEN_INT (GET_MODE_BITSIZE (mode
)
3061 GEN_INT (GET_MODE_BITSIZE (mode
) - len
)));
3063 split
= find_split_point (&SET_SRC (x
), insn
);
3064 if (split
&& split
!= &SET_SRC (x
))
3069 /* See if this is a simple operation with a constant as the second
3070 operand. It might be that this constant is out of range and hence
3071 could be used as a split point. */
3072 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '2'
3073 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == 'c'
3074 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '<')
3075 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
3076 && (GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (x
), 0))) == 'o'
3077 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
3078 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (SET_SRC (x
), 0))))
3080 return &XEXP (SET_SRC (x
), 1);
3082 /* Finally, see if this is a simple operation with its first operand
3083 not in a register. The operation might require this operand in a
3084 register, so return it as a split point. We can always do this
3085 because if the first operand were another operation, we would have
3086 already found it as a split point. */
3087 if ((GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '2'
3088 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == 'c'
3089 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '<'
3090 || GET_RTX_CLASS (GET_CODE (SET_SRC (x
))) == '1')
3091 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
3092 return &XEXP (SET_SRC (x
), 0);
3098 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3099 it is better to write this as (not (ior A B)) so we can split it.
3100 Similarly for IOR. */
3101 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
3104 gen_rtx_combine (NOT
, GET_MODE (x
),
3105 gen_rtx_combine (code
== IOR
? AND
: IOR
,
3107 XEXP (XEXP (x
, 0), 0),
3108 XEXP (XEXP (x
, 1), 0))));
3109 return find_split_point (loc
, insn
);
3112 /* Many RISC machines have a large set of logical insns. If the
3113 second operand is a NOT, put it first so we will try to split the
3114 other operand first. */
3115 if (GET_CODE (XEXP (x
, 1)) == NOT
)
3117 rtx tem
= XEXP (x
, 0);
3118 SUBST (XEXP (x
, 0), XEXP (x
, 1));
3119 SUBST (XEXP (x
, 1), tem
);
3127 /* Otherwise, select our actions depending on our rtx class. */
3128 switch (GET_RTX_CLASS (code
))
3130 case 'b': /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3132 split
= find_split_point (&XEXP (x
, 2), insn
);
3135 /* ... fall through ... */
3139 split
= find_split_point (&XEXP (x
, 1), insn
);
3142 /* ... fall through ... */
3144 /* Some machines have (and (shift ...) ...) insns. If X is not
3145 an AND, but XEXP (X, 0) is, use it as our split point. */
3146 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
3147 return &XEXP (x
, 0);
3149 split
= find_split_point (&XEXP (x
, 0), insn
);
3155 /* Otherwise, we don't have a split point. */
3159 /* Throughout X, replace FROM with TO, and return the result.
3160 The result is TO if X is FROM;
3161 otherwise the result is X, but its contents may have been modified.
3162 If they were modified, a record was made in undobuf so that
3163 undo_all will (among other things) return X to its original state.
3165 If the number of changes necessary is too much to record to undo,
3166 the excess changes are not made, so the result is invalid.
3167 The changes already made can still be undone.
3168 undobuf.num_undo is incremented for such changes, so by testing that
3169 the caller can tell whether the result is valid.
3171 `n_occurrences' is incremented each time FROM is replaced.
3173 IN_DEST is non-zero if we are processing the SET_DEST of a SET.
3175 UNIQUE_COPY is non-zero if each substitution must be unique. We do this
3176 by copying if `n_occurrences' is non-zero. */
3179 subst (x
, from
, to
, in_dest
, unique_copy
)
3180 register rtx x
, from
, to
;
3184 register enum rtx_code code
= GET_CODE (x
);
3185 enum machine_mode op0_mode
= VOIDmode
;
3186 register const char *fmt
;
3187 register int len
, i
;
3190 /* Two expressions are equal if they are identical copies of a shared
3191 RTX or if they are both registers with the same register number
3194 #define COMBINE_RTX_EQUAL_P(X,Y) \
3196 || (GET_CODE (X) == REG && GET_CODE (Y) == REG \
3197 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3199 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
3202 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
3205 /* If X and FROM are the same register but different modes, they will
3206 not have been seen as equal above. However, flow.c will make a
3207 LOG_LINKS entry for that case. If we do nothing, we will try to
3208 rerecognize our original insn and, when it succeeds, we will
3209 delete the feeding insn, which is incorrect.
3211 So force this insn not to match in this (rare) case. */
3212 if (! in_dest
&& code
== REG
&& GET_CODE (from
) == REG
3213 && REGNO (x
) == REGNO (from
))
3214 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
3216 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3217 of which may contain things that can be combined. */
3218 if (code
!= MEM
&& code
!= LO_SUM
&& GET_RTX_CLASS (code
) == 'o')
3221 /* It is possible to have a subexpression appear twice in the insn.
3222 Suppose that FROM is a register that appears within TO.
3223 Then, after that subexpression has been scanned once by `subst',
3224 the second time it is scanned, TO may be found. If we were
3225 to scan TO here, we would find FROM within it and create a
3226 self-referent rtl structure which is completely wrong. */
3227 if (COMBINE_RTX_EQUAL_P (x
, to
))
3230 /* Parallel asm_operands need special attention because all of the
3231 inputs are shared across the arms. Furthermore, unsharing the
3232 rtl results in recognition failures. Failure to handle this case
3233 specially can result in circular rtl.
3235 Solve this by doing a normal pass across the first entry of the
3236 parallel, and only processing the SET_DESTs of the subsequent
3239 if (code
== PARALLEL
3240 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
3241 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
3243 new = subst (XVECEXP (x
, 0, 0), from
, to
, 0, unique_copy
);
3245 /* If this substitution failed, this whole thing fails. */
3246 if (GET_CODE (new) == CLOBBER
3247 && XEXP (new, 0) == const0_rtx
)
3250 SUBST (XVECEXP (x
, 0, 0), new);
3252 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
3254 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
3256 if (GET_CODE (dest
) != REG
3257 && GET_CODE (dest
) != CC0
3258 && GET_CODE (dest
) != PC
)
3260 new = subst (dest
, from
, to
, 0, unique_copy
);
3262 /* If this substitution failed, this whole thing fails. */
3263 if (GET_CODE (new) == CLOBBER
3264 && XEXP (new, 0) == const0_rtx
)
3267 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new);
3273 len
= GET_RTX_LENGTH (code
);
3274 fmt
= GET_RTX_FORMAT (code
);
3276 /* We don't need to process a SET_DEST that is a register, CC0,
3277 or PC, so set up to skip this common case. All other cases
3278 where we want to suppress replacing something inside a
3279 SET_SRC are handled via the IN_DEST operand. */
3281 && (GET_CODE (SET_DEST (x
)) == REG
3282 || GET_CODE (SET_DEST (x
)) == CC0
3283 || GET_CODE (SET_DEST (x
)) == PC
))
3286 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3289 op0_mode
= GET_MODE (XEXP (x
, 0));
3291 for (i
= 0; i
< len
; i
++)
3296 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3298 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
3300 new = (unique_copy
&& n_occurrences
3301 ? copy_rtx (to
) : to
);
3306 new = subst (XVECEXP (x
, i
, j
), from
, to
, 0,
3309 /* If this substitution failed, this whole thing
3311 if (GET_CODE (new) == CLOBBER
3312 && XEXP (new, 0) == const0_rtx
)
3316 SUBST (XVECEXP (x
, i
, j
), new);
3319 else if (fmt
[i
] == 'e')
3321 if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
3323 /* In general, don't install a subreg involving two
3324 modes not tieable. It can worsen register
3325 allocation, and can even make invalid reload
3326 insns, since the reg inside may need to be copied
3327 from in the outside mode, and that may be invalid
3328 if it is an fp reg copied in integer mode.
3330 We allow two exceptions to this: It is valid if
3331 it is inside another SUBREG and the mode of that
3332 SUBREG and the mode of the inside of TO is
3333 tieable and it is valid if X is a SET that copies
3336 if (GET_CODE (to
) == SUBREG
3337 && ! MODES_TIEABLE_P (GET_MODE (to
),
3338 GET_MODE (SUBREG_REG (to
)))
3339 && ! (code
== SUBREG
3340 && MODES_TIEABLE_P (GET_MODE (x
),
3341 GET_MODE (SUBREG_REG (to
))))
3343 && ! (code
== SET
&& i
== 1 && XEXP (x
, 0) == cc0_rtx
)
3346 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
3348 new = (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
3352 /* If we are in a SET_DEST, suppress most cases unless we
3353 have gone inside a MEM, in which case we want to
3354 simplify the address. We assume here that things that
3355 are actually part of the destination have their inner
3356 parts in the first expression. This is true for SUBREG,
3357 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3358 things aside from REG and MEM that should appear in a
3360 new = subst (XEXP (x
, i
), from
, to
,
3362 && (code
== SUBREG
|| code
== STRICT_LOW_PART
3363 || code
== ZERO_EXTRACT
))
3365 && i
== 0), unique_copy
);
3367 /* If we found that we will have to reject this combination,
3368 indicate that by returning the CLOBBER ourselves, rather than
3369 an expression containing it. This will speed things up as
3370 well as prevent accidents where two CLOBBERs are considered
3371 to be equal, thus producing an incorrect simplification. */
3373 if (GET_CODE (new) == CLOBBER
&& XEXP (new, 0) == const0_rtx
)
3376 SUBST (XEXP (x
, i
), new);
3381 /* Try to simplify X. If the simplification changed the code, it is likely
3382 that further simplification will help, so loop, but limit the number
3383 of repetitions that will be performed. */
3385 for (i
= 0; i
< 4; i
++)
3387 /* If X is sufficiently simple, don't bother trying to do anything
3389 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
3390 x
= combine_simplify_rtx (x
, op0_mode
, i
== 3, in_dest
);
3392 if (GET_CODE (x
) == code
)
3395 code
= GET_CODE (x
);
3397 /* We no longer know the original mode of operand 0 since we
3398 have changed the form of X) */
3399 op0_mode
= VOIDmode
;
3405 /* Simplify X, a piece of RTL. We just operate on the expression at the
3406 outer level; call `subst' to simplify recursively. Return the new
3409 OP0_MODE is the original mode of XEXP (x, 0); LAST is nonzero if this
3410 will be the iteration even if an expression with a code different from
3411 X is returned; IN_DEST is nonzero if we are inside a SET_DEST. */
3414 combine_simplify_rtx (x
, op0_mode
, last
, in_dest
)
3416 enum machine_mode op0_mode
;
3420 enum rtx_code code
= GET_CODE (x
);
3421 enum machine_mode mode
= GET_MODE (x
);
3425 /* If this is a commutative operation, put a constant last and a complex
3426 expression first. We don't need to do this for comparisons here. */
3427 if (GET_RTX_CLASS (code
) == 'c'
3428 && ((CONSTANT_P (XEXP (x
, 0)) && GET_CODE (XEXP (x
, 1)) != CONST_INT
)
3429 || (GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == 'o'
3430 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 1))) != 'o')
3431 || (GET_CODE (XEXP (x
, 0)) == SUBREG
3432 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0)))) == 'o'
3433 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 1))) != 'o')))
3436 SUBST (XEXP (x
, 0), XEXP (x
, 1));
3437 SUBST (XEXP (x
, 1), temp
);
3440 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3441 sign extension of a PLUS with a constant, reverse the order of the sign
3442 extension and the addition. Note that this not the same as the original
3443 code, but overflow is undefined for signed values. Also note that the
3444 PLUS will have been partially moved "inside" the sign-extension, so that
3445 the first operand of X will really look like:
3446 (ashiftrt (plus (ashift A C4) C5) C4).
3448 (plus (ashiftrt (ashift A C4) C2) C4)
3449 and replace the first operand of X with that expression. Later parts
3450 of this function may simplify the expression further.
3452 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3453 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3454 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3456 We do this to simplify address expressions. */
3458 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
)
3459 && GET_CODE (XEXP (x
, 0)) == ASHIFTRT
3460 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
3461 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == ASHIFT
3462 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 1)) == CONST_INT
3463 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3464 && XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 1) == XEXP (XEXP (x
, 0), 1)
3465 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == CONST_INT
3466 && (temp
= simplify_binary_operation (ASHIFTRT
, mode
,
3467 XEXP (XEXP (XEXP (x
, 0), 0), 1),
3468 XEXP (XEXP (x
, 0), 1))) != 0)
3471 = simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
3472 XEXP (XEXP (XEXP (XEXP (x
, 0), 0), 0), 0),
3473 INTVAL (XEXP (XEXP (x
, 0), 1)));
3475 new = simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
, new,
3476 INTVAL (XEXP (XEXP (x
, 0), 1)));
3478 SUBST (XEXP (x
, 0), gen_binary (PLUS
, mode
, new, temp
));
3481 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3482 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3483 things. Check for cases where both arms are testing the same
3486 Don't do anything if all operands are very simple. */
3488 if (((GET_RTX_CLASS (code
) == '2' || GET_RTX_CLASS (code
) == 'c'
3489 || GET_RTX_CLASS (code
) == '<')
3490 && ((GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) != 'o'
3491 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
3492 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0))))
3494 || (GET_RTX_CLASS (GET_CODE (XEXP (x
, 1))) != 'o'
3495 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
3496 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 1))))
3498 || (GET_RTX_CLASS (code
) == '1'
3499 && ((GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) != 'o'
3500 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
3501 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0))))
3504 rtx cond
, true, false;
3506 cond
= if_then_else_cond (x
, &true, &false);
3508 /* If everything is a comparison, what we have is highly unlikely
3509 to be simpler, so don't use it. */
3510 && ! (GET_RTX_CLASS (code
) == '<'
3511 && (GET_RTX_CLASS (GET_CODE (true)) == '<'
3512 || GET_RTX_CLASS (GET_CODE (false)) == '<')))
3514 rtx cop1
= const0_rtx
;
3515 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
3517 if (cond_code
== NE
&& GET_RTX_CLASS (GET_CODE (cond
)) == '<')
3520 /* Simplify the alternative arms; this may collapse the true and
3521 false arms to store-flag values. */
3522 true = subst (true, pc_rtx
, pc_rtx
, 0, 0);
3523 false = subst (false, pc_rtx
, pc_rtx
, 0, 0);
3525 /* Restarting if we generate a store-flag expression will cause
3526 us to loop. Just drop through in this case. */
3528 /* If the result values are STORE_FLAG_VALUE and zero, we can
3529 just make the comparison operation. */
3530 if (true == const_true_rtx
&& false == const0_rtx
)
3531 x
= gen_binary (cond_code
, mode
, cond
, cop1
);
3532 else if (true == const0_rtx
&& false == const_true_rtx
)
3533 x
= gen_binary (reverse_condition (cond_code
), mode
, cond
, cop1
);
3535 /* Likewise, we can make the negate of a comparison operation
3536 if the result values are - STORE_FLAG_VALUE and zero. */
3537 else if (GET_CODE (true) == CONST_INT
3538 && INTVAL (true) == - STORE_FLAG_VALUE
3539 && false == const0_rtx
)
3540 x
= gen_unary (NEG
, mode
, mode
,
3541 gen_binary (cond_code
, mode
, cond
, cop1
));
3542 else if (GET_CODE (false) == CONST_INT
3543 && INTVAL (false) == - STORE_FLAG_VALUE
3544 && true == const0_rtx
)
3545 x
= gen_unary (NEG
, mode
, mode
,
3546 gen_binary (reverse_condition (cond_code
),
3549 return gen_rtx_IF_THEN_ELSE (mode
,
3550 gen_binary (cond_code
, VOIDmode
,
3554 code
= GET_CODE (x
);
3555 op0_mode
= VOIDmode
;
3559 /* Try to fold this expression in case we have constants that weren't
3562 switch (GET_RTX_CLASS (code
))
3565 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
3568 temp
= simplify_relational_operation (code
, op0_mode
,
3569 XEXP (x
, 0), XEXP (x
, 1));
3570 #ifdef FLOAT_STORE_FLAG_VALUE
3571 if (temp
!= 0 && GET_MODE_CLASS (mode
) == MODE_FLOAT
)
3573 if (temp
== const0_rtx
)
3574 temp
= CONST0_RTX (mode
);
3576 temp
= immed_real_const_1 (FLOAT_STORE_FLAG_VALUE (mode
), mode
);
3582 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
3586 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
3587 XEXP (x
, 1), XEXP (x
, 2));
3592 x
= temp
, code
= GET_CODE (temp
);
3594 /* First see if we can apply the inverse distributive law. */
3595 if (code
== PLUS
|| code
== MINUS
3596 || code
== AND
|| code
== IOR
|| code
== XOR
)
3598 x
= apply_distributive_law (x
);
3599 code
= GET_CODE (x
);
3602 /* If CODE is an associative operation not otherwise handled, see if we
3603 can associate some operands. This can win if they are constants or
3604 if they are logically related (i.e. (a & b) & a. */
3605 if ((code
== PLUS
|| code
== MINUS
3606 || code
== MULT
|| code
== AND
|| code
== IOR
|| code
== XOR
3607 || code
== DIV
|| code
== UDIV
3608 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
3609 && INTEGRAL_MODE_P (mode
))
3611 if (GET_CODE (XEXP (x
, 0)) == code
)
3613 rtx other
= XEXP (XEXP (x
, 0), 0);
3614 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
3615 rtx inner_op1
= XEXP (x
, 1);
3618 /* Make sure we pass the constant operand if any as the second
3619 one if this is a commutative operation. */
3620 if (CONSTANT_P (inner_op0
) && GET_RTX_CLASS (code
) == 'c')
3622 rtx tem
= inner_op0
;
3623 inner_op0
= inner_op1
;
3626 inner
= simplify_binary_operation (code
== MINUS
? PLUS
3627 : code
== DIV
? MULT
3628 : code
== UDIV
? MULT
3630 mode
, inner_op0
, inner_op1
);
3632 /* For commutative operations, try the other pair if that one
3634 if (inner
== 0 && GET_RTX_CLASS (code
) == 'c')
3636 other
= XEXP (XEXP (x
, 0), 1);
3637 inner
= simplify_binary_operation (code
, mode
,
3638 XEXP (XEXP (x
, 0), 0),
3643 return gen_binary (code
, mode
, other
, inner
);
3647 /* A little bit of algebraic simplification here. */
3651 /* Ensure that our address has any ASHIFTs converted to MULT in case
3652 address-recognizing predicates are called later. */
3653 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
3654 SUBST (XEXP (x
, 0), temp
);
3658 /* (subreg:A (mem:B X) N) becomes a modified MEM unless the SUBREG
3659 is paradoxical. If we can't do that safely, then it becomes
3660 something nonsensical so that this combination won't take place. */
3662 if (GET_CODE (SUBREG_REG (x
)) == MEM
3663 && (GET_MODE_SIZE (mode
)
3664 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
3666 rtx inner
= SUBREG_REG (x
);
3667 int endian_offset
= 0;
3668 /* Don't change the mode of the MEM
3669 if that would change the meaning of the address. */
3670 if (MEM_VOLATILE_P (SUBREG_REG (x
))
3671 || mode_dependent_address_p (XEXP (inner
, 0)))
3672 return gen_rtx_CLOBBER (mode
, const0_rtx
);
3674 if (BYTES_BIG_ENDIAN
)
3676 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
3677 endian_offset
+= UNITS_PER_WORD
- GET_MODE_SIZE (mode
);
3678 if (GET_MODE_SIZE (GET_MODE (inner
)) < UNITS_PER_WORD
)
3679 endian_offset
-= (UNITS_PER_WORD
3680 - GET_MODE_SIZE (GET_MODE (inner
)));
3682 /* Note if the plus_constant doesn't make a valid address
3683 then this combination won't be accepted. */
3684 x
= gen_rtx_MEM (mode
,
3685 plus_constant (XEXP (inner
, 0),
3686 (SUBREG_WORD (x
) * UNITS_PER_WORD
3688 RTX_UNCHANGING_P (x
) = RTX_UNCHANGING_P (inner
);
3689 MEM_COPY_ATTRIBUTES (x
, inner
);
3693 /* If we are in a SET_DEST, these other cases can't apply. */
3697 /* Changing mode twice with SUBREG => just change it once,
3698 or not at all if changing back to starting mode. */
3699 if (GET_CODE (SUBREG_REG (x
)) == SUBREG
)
3701 if (mode
== GET_MODE (SUBREG_REG (SUBREG_REG (x
)))
3702 && SUBREG_WORD (x
) == 0 && SUBREG_WORD (SUBREG_REG (x
)) == 0)
3703 return SUBREG_REG (SUBREG_REG (x
));
3705 SUBST_INT (SUBREG_WORD (x
),
3706 SUBREG_WORD (x
) + SUBREG_WORD (SUBREG_REG (x
)));
3707 SUBST (SUBREG_REG (x
), SUBREG_REG (SUBREG_REG (x
)));
3710 /* SUBREG of a hard register => just change the register number
3711 and/or mode. If the hard register is not valid in that mode,
3712 suppress this combination. If the hard register is the stack,
3713 frame, or argument pointer, leave this as a SUBREG. */
3715 if (GET_CODE (SUBREG_REG (x
)) == REG
3716 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
3717 && REGNO (SUBREG_REG (x
)) != FRAME_POINTER_REGNUM
3718 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3719 && REGNO (SUBREG_REG (x
)) != HARD_FRAME_POINTER_REGNUM
3721 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3722 && REGNO (SUBREG_REG (x
)) != ARG_POINTER_REGNUM
3724 && REGNO (SUBREG_REG (x
)) != STACK_POINTER_REGNUM
)
3726 if (HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
),
3728 return gen_rtx_REG (mode
,
3729 REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
));
3731 return gen_rtx_CLOBBER (mode
, const0_rtx
);
3734 /* For a constant, try to pick up the part we want. Handle a full
3735 word and low-order part. Only do this if we are narrowing
3736 the constant; if it is being widened, we have no idea what
3737 the extra bits will have been set to. */
3739 if (CONSTANT_P (SUBREG_REG (x
)) && op0_mode
!= VOIDmode
3740 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
3741 && GET_MODE_SIZE (op0_mode
) > UNITS_PER_WORD
3742 && GET_MODE_CLASS (mode
) == MODE_INT
)
3744 temp
= operand_subword (SUBREG_REG (x
), SUBREG_WORD (x
),
3750 /* If we want a subreg of a constant, at offset 0,
3751 take the low bits. On a little-endian machine, that's
3752 always valid. On a big-endian machine, it's valid
3753 only if the constant's mode fits in one word. Note that we
3754 cannot use subreg_lowpart_p since SUBREG_REG may be VOIDmode. */
3755 if (CONSTANT_P (SUBREG_REG (x
))
3756 && ((GET_MODE_SIZE (op0_mode
) <= UNITS_PER_WORD
3757 || ! WORDS_BIG_ENDIAN
)
3758 ? SUBREG_WORD (x
) == 0
3760 == ((GET_MODE_SIZE (op0_mode
)
3761 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
))
3763 && GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (op0_mode
)
3764 && (! WORDS_BIG_ENDIAN
3765 || GET_MODE_BITSIZE (op0_mode
) <= BITS_PER_WORD
))
3766 return gen_lowpart_for_combine (mode
, SUBREG_REG (x
));
3768 /* A paradoxical SUBREG of a VOIDmode constant is the same constant,
3769 since we are saying that the high bits don't matter. */
3770 if (CONSTANT_P (SUBREG_REG (x
)) && GET_MODE (SUBREG_REG (x
)) == VOIDmode
3771 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (op0_mode
))
3773 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) > UNITS_PER_WORD
3774 && (WORDS_BIG_ENDIAN
|| SUBREG_WORD (x
) != 0))
3775 return operand_subword (SUBREG_REG (x
), SUBREG_WORD (x
), 0, mode
);
3776 return SUBREG_REG (x
);
3779 /* Note that we cannot do any narrowing for non-constants since
3780 we might have been counting on using the fact that some bits were
3781 zero. We now do this in the SET. */
3786 /* (not (plus X -1)) can become (neg X). */
3787 if (GET_CODE (XEXP (x
, 0)) == PLUS
3788 && XEXP (XEXP (x
, 0), 1) == constm1_rtx
)
3789 return gen_rtx_combine (NEG
, mode
, XEXP (XEXP (x
, 0), 0));
3791 /* Similarly, (not (neg X)) is (plus X -1). */
3792 if (GET_CODE (XEXP (x
, 0)) == NEG
)
3793 return gen_rtx_combine (PLUS
, mode
, XEXP (XEXP (x
, 0), 0),
3796 /* (not (xor X C)) for C constant is (xor X D) with D = ~ C. */
3797 if (GET_CODE (XEXP (x
, 0)) == XOR
3798 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3799 && (temp
= simplify_unary_operation (NOT
, mode
,
3800 XEXP (XEXP (x
, 0), 1),
3802 return gen_binary (XOR
, mode
, XEXP (XEXP (x
, 0), 0), temp
);
3804 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for operands
3805 other than 1, but that is not valid. We could do a similar
3806 simplification for (not (lshiftrt C X)) where C is just the sign bit,
3807 but this doesn't seem common enough to bother with. */
3808 if (GET_CODE (XEXP (x
, 0)) == ASHIFT
3809 && XEXP (XEXP (x
, 0), 0) == const1_rtx
)
3810 return gen_rtx_ROTATE (mode
, gen_unary (NOT
, mode
, mode
, const1_rtx
),
3811 XEXP (XEXP (x
, 0), 1));
3813 if (GET_CODE (XEXP (x
, 0)) == SUBREG
3814 && subreg_lowpart_p (XEXP (x
, 0))
3815 && (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0)))
3816 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x
, 0)))))
3817 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == ASHIFT
3818 && XEXP (SUBREG_REG (XEXP (x
, 0)), 0) == const1_rtx
)
3820 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (XEXP (x
, 0)));
3822 x
= gen_rtx_ROTATE (inner_mode
,
3823 gen_unary (NOT
, inner_mode
, inner_mode
,
3825 XEXP (SUBREG_REG (XEXP (x
, 0)), 1));
3826 return gen_lowpart_for_combine (mode
, x
);
3829 /* If STORE_FLAG_VALUE is -1, (not (comparison foo bar)) can be done by
3830 reversing the comparison code if valid. */
3831 if (STORE_FLAG_VALUE
== -1
3832 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == '<'
3833 && reversible_comparison_p (XEXP (x
, 0)))
3834 return gen_rtx_combine (reverse_condition (GET_CODE (XEXP (x
, 0))),
3835 mode
, XEXP (XEXP (x
, 0), 0),
3836 XEXP (XEXP (x
, 0), 1));
3838 /* (ashiftrt foo C) where C is the number of bits in FOO minus 1
3839 is (lt foo (const_int 0)) if STORE_FLAG_VALUE is -1, so we can
3840 perform the above simplification. */
3842 if (STORE_FLAG_VALUE
== -1
3843 && GET_CODE (XEXP (x
, 0)) == ASHIFTRT
3844 && XEXP (x
, 1) == const1_rtx
3845 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
3846 && INTVAL (XEXP (XEXP (x
, 0), 1)) == GET_MODE_BITSIZE (mode
) - 1)
3847 return gen_rtx_combine (GE
, mode
, XEXP (XEXP (x
, 0), 0), const0_rtx
);
3849 /* Apply De Morgan's laws to reduce number of patterns for machines
3850 with negating logical insns (and-not, nand, etc.). If result has
3851 only one NOT, put it first, since that is how the patterns are
3854 if (GET_CODE (XEXP (x
, 0)) == IOR
|| GET_CODE (XEXP (x
, 0)) == AND
)
3856 rtx in1
= XEXP (XEXP (x
, 0), 0), in2
= XEXP (XEXP (x
, 0), 1);
3858 if (GET_CODE (in1
) == NOT
)
3859 in1
= XEXP (in1
, 0);
3861 in1
= gen_rtx_combine (NOT
, GET_MODE (in1
), in1
);
3863 if (GET_CODE (in2
) == NOT
)
3864 in2
= XEXP (in2
, 0);
3865 else if (GET_CODE (in2
) == CONST_INT
3866 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3867 in2
= GEN_INT (GET_MODE_MASK (mode
) & ~ INTVAL (in2
));
3869 in2
= gen_rtx_combine (NOT
, GET_MODE (in2
), in2
);
3871 if (GET_CODE (in2
) == NOT
)
3874 in2
= in1
; in1
= tem
;
3877 return gen_rtx_combine (GET_CODE (XEXP (x
, 0)) == IOR
? AND
: IOR
,
3883 /* (neg (plus X 1)) can become (not X). */
3884 if (GET_CODE (XEXP (x
, 0)) == PLUS
3885 && XEXP (XEXP (x
, 0), 1) == const1_rtx
)
3886 return gen_rtx_combine (NOT
, mode
, XEXP (XEXP (x
, 0), 0));
3888 /* Similarly, (neg (not X)) is (plus X 1). */
3889 if (GET_CODE (XEXP (x
, 0)) == NOT
)
3890 return plus_constant (XEXP (XEXP (x
, 0), 0), 1);
3892 /* (neg (minus X Y)) can become (minus Y X). */
3893 if (GET_CODE (XEXP (x
, 0)) == MINUS
3894 && (! FLOAT_MODE_P (mode
)
3895 /* x-y != -(y-x) with IEEE floating point. */
3896 || TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
3898 return gen_binary (MINUS
, mode
, XEXP (XEXP (x
, 0), 1),
3899 XEXP (XEXP (x
, 0), 0));
3901 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
3902 if (GET_CODE (XEXP (x
, 0)) == XOR
&& XEXP (XEXP (x
, 0), 1) == const1_rtx
3903 && nonzero_bits (XEXP (XEXP (x
, 0), 0), mode
) == 1)
3904 return gen_binary (PLUS
, mode
, XEXP (XEXP (x
, 0), 0), constm1_rtx
);
3906 /* NEG commutes with ASHIFT since it is multiplication. Only do this
3907 if we can then eliminate the NEG (e.g.,
3908 if the operand is a constant). */
3910 if (GET_CODE (XEXP (x
, 0)) == ASHIFT
)
3912 temp
= simplify_unary_operation (NEG
, mode
,
3913 XEXP (XEXP (x
, 0), 0), mode
);
3916 SUBST (XEXP (XEXP (x
, 0), 0), temp
);
3921 temp
= expand_compound_operation (XEXP (x
, 0));
3923 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
3924 replaced by (lshiftrt X C). This will convert
3925 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
3927 if (GET_CODE (temp
) == ASHIFTRT
3928 && GET_CODE (XEXP (temp
, 1)) == CONST_INT
3929 && INTVAL (XEXP (temp
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
3930 return simplify_shift_const (temp
, LSHIFTRT
, mode
, XEXP (temp
, 0),
3931 INTVAL (XEXP (temp
, 1)));
3933 /* If X has only a single bit that might be nonzero, say, bit I, convert
3934 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
3935 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
3936 (sign_extract X 1 Y). But only do this if TEMP isn't a register
3937 or a SUBREG of one since we'd be making the expression more
3938 complex if it was just a register. */
3940 if (GET_CODE (temp
) != REG
3941 && ! (GET_CODE (temp
) == SUBREG
3942 && GET_CODE (SUBREG_REG (temp
)) == REG
)
3943 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
3945 rtx temp1
= simplify_shift_const
3946 (NULL_RTX
, ASHIFTRT
, mode
,
3947 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
3948 GET_MODE_BITSIZE (mode
) - 1 - i
),
3949 GET_MODE_BITSIZE (mode
) - 1 - i
);
3951 /* If all we did was surround TEMP with the two shifts, we
3952 haven't improved anything, so don't use it. Otherwise,
3953 we are better off with TEMP1. */
3954 if (GET_CODE (temp1
) != ASHIFTRT
3955 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
3956 || XEXP (XEXP (temp1
, 0), 0) != temp
)
3962 /* We can't handle truncation to a partial integer mode here
3963 because we don't know the real bitsize of the partial
3965 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
3968 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
3969 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
3970 GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))))
3972 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
3973 GET_MODE_MASK (mode
), NULL_RTX
, 0));
3975 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
3976 if ((GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
3977 || GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
)
3978 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
)
3979 return XEXP (XEXP (x
, 0), 0);
3981 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
3982 (OP:SI foo:SI) if OP is NEG or ABS. */
3983 if ((GET_CODE (XEXP (x
, 0)) == ABS
3984 || GET_CODE (XEXP (x
, 0)) == NEG
)
3985 && (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SIGN_EXTEND
3986 || GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
)
3987 && GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == mode
)
3988 return gen_unary (GET_CODE (XEXP (x
, 0)), mode
, mode
,
3989 XEXP (XEXP (XEXP (x
, 0), 0), 0));
3991 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
3993 if (GET_CODE (XEXP (x
, 0)) == SUBREG
3994 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == TRUNCATE
3995 && subreg_lowpart_p (XEXP (x
, 0)))
3996 return SUBREG_REG (XEXP (x
, 0));
3998 /* If we know that the value is already truncated, we can
3999 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4000 is nonzero for the corresponding modes. But don't do this
4001 for an (LSHIFTRT (MULT ...)) since this will cause problems
4002 with the umulXi3_highpart patterns. */
4003 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
4004 GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))))
4005 && num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
4006 >= GET_MODE_BITSIZE (mode
) + 1
4007 && ! (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
4008 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == MULT
))
4009 return gen_lowpart_for_combine (mode
, XEXP (x
, 0));
4011 /* A truncate of a comparison can be replaced with a subreg if
4012 STORE_FLAG_VALUE permits. This is like the previous test,
4013 but it works even if the comparison is done in a mode larger
4014 than HOST_BITS_PER_WIDE_INT. */
4015 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4016 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == '<'
4017 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
&~ GET_MODE_MASK (mode
)) == 0)
4018 return gen_lowpart_for_combine (mode
, XEXP (x
, 0));
4020 /* Similarly, a truncate of a register whose value is a
4021 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4023 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4024 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
&~ GET_MODE_MASK (mode
)) == 0
4025 && (temp
= get_last_value (XEXP (x
, 0)))
4026 && GET_RTX_CLASS (GET_CODE (temp
)) == '<')
4027 return gen_lowpart_for_combine (mode
, XEXP (x
, 0));
4031 case FLOAT_TRUNCATE
:
4032 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4033 if (GET_CODE (XEXP (x
, 0)) == FLOAT_EXTEND
4034 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
)
4035 return XEXP (XEXP (x
, 0), 0);
4037 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4038 (OP:SF foo:SF) if OP is NEG or ABS. */
4039 if ((GET_CODE (XEXP (x
, 0)) == ABS
4040 || GET_CODE (XEXP (x
, 0)) == NEG
)
4041 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == FLOAT_EXTEND
4042 && GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == mode
)
4043 return gen_unary (GET_CODE (XEXP (x
, 0)), mode
, mode
,
4044 XEXP (XEXP (XEXP (x
, 0), 0), 0));
4046 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4047 is (float_truncate:SF x). */
4048 if (GET_CODE (XEXP (x
, 0)) == SUBREG
4049 && subreg_lowpart_p (XEXP (x
, 0))
4050 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == FLOAT_TRUNCATE
)
4051 return SUBREG_REG (XEXP (x
, 0));
4056 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4057 using cc0, in which case we want to leave it as a COMPARE
4058 so we can distinguish it from a register-register-copy. */
4059 if (XEXP (x
, 1) == const0_rtx
)
4062 /* In IEEE floating point, x-0 is not the same as x. */
4063 if ((TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
4064 || ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0)))
4066 && XEXP (x
, 1) == CONST0_RTX (GET_MODE (XEXP (x
, 0))))
4072 /* (const (const X)) can become (const X). Do it this way rather than
4073 returning the inner CONST since CONST can be shared with a
4075 if (GET_CODE (XEXP (x
, 0)) == CONST
)
4076 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4081 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4082 can add in an offset. find_split_point will split this address up
4083 again if it doesn't match. */
4084 if (GET_CODE (XEXP (x
, 0)) == HIGH
4085 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
4091 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4092 outermost. That's because that's the way indexed addresses are
4093 supposed to appear. This code used to check many more cases, but
4094 they are now checked elsewhere. */
4095 if (GET_CODE (XEXP (x
, 0)) == PLUS
4096 && CONSTANT_ADDRESS_P (XEXP (XEXP (x
, 0), 1)))
4097 return gen_binary (PLUS
, mode
,
4098 gen_binary (PLUS
, mode
, XEXP (XEXP (x
, 0), 0),
4100 XEXP (XEXP (x
, 0), 1));
4102 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4103 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4104 bit-field and can be replaced by either a sign_extend or a
4105 sign_extract. The `and' may be a zero_extend and the two
4106 <c>, -<c> constants may be reversed. */
4107 if (GET_CODE (XEXP (x
, 0)) == XOR
4108 && GET_CODE (XEXP (x
, 1)) == CONST_INT
4109 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
4110 && INTVAL (XEXP (x
, 1)) == - INTVAL (XEXP (XEXP (x
, 0), 1))
4111 && ((i
= exact_log2 (INTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
4112 || (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
4113 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4114 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
4115 && GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == CONST_INT
4116 && (INTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
4117 == ((HOST_WIDE_INT
) 1 << (i
+ 1)) - 1))
4118 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
4119 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
4121 return simplify_shift_const
4122 (NULL_RTX
, ASHIFTRT
, mode
,
4123 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4124 XEXP (XEXP (XEXP (x
, 0), 0), 0),
4125 GET_MODE_BITSIZE (mode
) - (i
+ 1)),
4126 GET_MODE_BITSIZE (mode
) - (i
+ 1));
4128 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4129 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4130 is 1. This produces better code than the alternative immediately
4132 if (GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == '<'
4133 && reversible_comparison_p (XEXP (x
, 0))
4134 && ((STORE_FLAG_VALUE
== -1 && XEXP (x
, 1) == const1_rtx
)
4135 || (STORE_FLAG_VALUE
== 1 && XEXP (x
, 1) == constm1_rtx
)))
4137 gen_unary (NEG
, mode
, mode
,
4138 gen_binary (reverse_condition (GET_CODE (XEXP (x
, 0))),
4139 mode
, XEXP (XEXP (x
, 0), 0),
4140 XEXP (XEXP (x
, 0), 1)));
4142 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4143 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4144 the bitsize of the mode - 1. This allows simplification of
4145 "a = (b & 8) == 0;" */
4146 if (XEXP (x
, 1) == constm1_rtx
4147 && GET_CODE (XEXP (x
, 0)) != REG
4148 && ! (GET_CODE (XEXP (x
,0)) == SUBREG
4149 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == REG
)
4150 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
4151 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
4152 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4153 gen_rtx_combine (XOR
, mode
,
4154 XEXP (x
, 0), const1_rtx
),
4155 GET_MODE_BITSIZE (mode
) - 1),
4156 GET_MODE_BITSIZE (mode
) - 1);
4158 /* If we are adding two things that have no bits in common, convert
4159 the addition into an IOR. This will often be further simplified,
4160 for example in cases like ((a & 1) + (a & 2)), which can
4163 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4164 && (nonzero_bits (XEXP (x
, 0), mode
)
4165 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
4166 return gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
4170 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4171 by reversing the comparison code if valid. */
4172 if (STORE_FLAG_VALUE
== 1
4173 && XEXP (x
, 0) == const1_rtx
4174 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 1))) == '<'
4175 && reversible_comparison_p (XEXP (x
, 1)))
4176 return gen_binary (reverse_condition (GET_CODE (XEXP (x
, 1))),
4177 mode
, XEXP (XEXP (x
, 1), 0),
4178 XEXP (XEXP (x
, 1), 1));
4180 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4181 (and <foo> (const_int pow2-1)) */
4182 if (GET_CODE (XEXP (x
, 1)) == AND
4183 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
4184 && exact_log2 (- INTVAL (XEXP (XEXP (x
, 1), 1))) >= 0
4185 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
4186 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
4187 - INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
4189 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4191 if (GET_CODE (XEXP (x
, 1)) == PLUS
&& INTEGRAL_MODE_P (mode
))
4192 return gen_binary (MINUS
, mode
,
4193 gen_binary (MINUS
, mode
, XEXP (x
, 0),
4194 XEXP (XEXP (x
, 1), 0)),
4195 XEXP (XEXP (x
, 1), 1));
4199 /* If we have (mult (plus A B) C), apply the distributive law and then
4200 the inverse distributive law to see if things simplify. This
4201 occurs mostly in addresses, often when unrolling loops. */
4203 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
4205 x
= apply_distributive_law
4206 (gen_binary (PLUS
, mode
,
4207 gen_binary (MULT
, mode
,
4208 XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)),
4209 gen_binary (MULT
, mode
,
4210 XEXP (XEXP (x
, 0), 1),
4211 copy_rtx (XEXP (x
, 1)))));
4213 if (GET_CODE (x
) != MULT
)
4219 /* If this is a divide by a power of two, treat it as a shift if
4220 its first operand is a shift. */
4221 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
4222 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0
4223 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
4224 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
4225 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
4226 || GET_CODE (XEXP (x
, 0)) == ROTATE
4227 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
4228 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
4232 case GT
: case GTU
: case GE
: case GEU
:
4233 case LT
: case LTU
: case LE
: case LEU
:
4234 /* If the first operand is a condition code, we can't do anything
4236 if (GET_CODE (XEXP (x
, 0)) == COMPARE
4237 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
4239 && XEXP (x
, 0) != cc0_rtx
4243 rtx op0
= XEXP (x
, 0);
4244 rtx op1
= XEXP (x
, 1);
4245 enum rtx_code new_code
;
4247 if (GET_CODE (op0
) == COMPARE
)
4248 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4250 /* Simplify our comparison, if possible. */
4251 new_code
= simplify_comparison (code
, &op0
, &op1
);
4253 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4254 if only the low-order bit is possibly nonzero in X (such as when
4255 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4256 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4257 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4260 Remove any ZERO_EXTRACT we made when thinking this was a
4261 comparison. It may now be simpler to use, e.g., an AND. If a
4262 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4263 the call to make_compound_operation in the SET case. */
4265 if (STORE_FLAG_VALUE
== 1
4266 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4267 && op1
== const0_rtx
&& nonzero_bits (op0
, mode
) == 1)
4268 return gen_lowpart_for_combine (mode
,
4269 expand_compound_operation (op0
));
4271 else if (STORE_FLAG_VALUE
== 1
4272 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4273 && op1
== const0_rtx
4274 && (num_sign_bit_copies (op0
, mode
)
4275 == GET_MODE_BITSIZE (mode
)))
4277 op0
= expand_compound_operation (op0
);
4278 return gen_unary (NEG
, mode
, mode
,
4279 gen_lowpart_for_combine (mode
, op0
));
4282 else if (STORE_FLAG_VALUE
== 1
4283 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4284 && op1
== const0_rtx
4285 && nonzero_bits (op0
, mode
) == 1)
4287 op0
= expand_compound_operation (op0
);
4288 return gen_binary (XOR
, mode
,
4289 gen_lowpart_for_combine (mode
, op0
),
4293 else if (STORE_FLAG_VALUE
== 1
4294 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4295 && op1
== const0_rtx
4296 && (num_sign_bit_copies (op0
, mode
)
4297 == GET_MODE_BITSIZE (mode
)))
4299 op0
= expand_compound_operation (op0
);
4300 return plus_constant (gen_lowpart_for_combine (mode
, op0
), 1);
4303 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4305 if (STORE_FLAG_VALUE
== -1
4306 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4307 && op1
== const0_rtx
4308 && (num_sign_bit_copies (op0
, mode
)
4309 == GET_MODE_BITSIZE (mode
)))
4310 return gen_lowpart_for_combine (mode
,
4311 expand_compound_operation (op0
));
4313 else if (STORE_FLAG_VALUE
== -1
4314 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4315 && op1
== const0_rtx
4316 && nonzero_bits (op0
, mode
) == 1)
4318 op0
= expand_compound_operation (op0
);
4319 return gen_unary (NEG
, mode
, mode
,
4320 gen_lowpart_for_combine (mode
, op0
));
4323 else if (STORE_FLAG_VALUE
== -1
4324 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4325 && op1
== const0_rtx
4326 && (num_sign_bit_copies (op0
, mode
)
4327 == GET_MODE_BITSIZE (mode
)))
4329 op0
= expand_compound_operation (op0
);
4330 return gen_unary (NOT
, mode
, mode
,
4331 gen_lowpart_for_combine (mode
, op0
));
4334 /* If X is 0/1, (eq X 0) is X-1. */
4335 else if (STORE_FLAG_VALUE
== -1
4336 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
4337 && op1
== const0_rtx
4338 && nonzero_bits (op0
, mode
) == 1)
4340 op0
= expand_compound_operation (op0
);
4341 return plus_constant (gen_lowpart_for_combine (mode
, op0
), -1);
4344 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4345 one bit that might be nonzero, we can convert (ne x 0) to
4346 (ashift x c) where C puts the bit in the sign bit. Remove any
4347 AND with STORE_FLAG_VALUE when we are done, since we are only
4348 going to test the sign bit. */
4349 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
4350 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4351 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
4352 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE(mode
)-1))
4353 && op1
== const0_rtx
4354 && mode
== GET_MODE (op0
)
4355 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
4357 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4358 expand_compound_operation (op0
),
4359 GET_MODE_BITSIZE (mode
) - 1 - i
);
4360 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
4366 /* If the code changed, return a whole new comparison. */
4367 if (new_code
!= code
)
4368 return gen_rtx_combine (new_code
, mode
, op0
, op1
);
4370 /* Otherwise, keep this operation, but maybe change its operands.
4371 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4372 SUBST (XEXP (x
, 0), op0
);
4373 SUBST (XEXP (x
, 1), op1
);
4378 return simplify_if_then_else (x
);
4384 /* If we are processing SET_DEST, we are done. */
4388 return expand_compound_operation (x
);
4391 return simplify_set (x
);
4396 return simplify_logical (x
, last
);
4399 /* (abs (neg <foo>)) -> (abs <foo>) */
4400 if (GET_CODE (XEXP (x
, 0)) == NEG
)
4401 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4403 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4405 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
4408 /* If operand is something known to be positive, ignore the ABS. */
4409 if (GET_CODE (XEXP (x
, 0)) == FFS
|| GET_CODE (XEXP (x
, 0)) == ABS
4410 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
4411 <= HOST_BITS_PER_WIDE_INT
)
4412 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
4413 & ((HOST_WIDE_INT
) 1
4414 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1)))
4419 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4420 if (num_sign_bit_copies (XEXP (x
, 0), mode
) == GET_MODE_BITSIZE (mode
))
4421 return gen_rtx_combine (NEG
, mode
, XEXP (x
, 0));
4426 /* (ffs (*_extend <X>)) = (ffs <X>) */
4427 if (GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
4428 || GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
)
4429 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4433 /* (float (sign_extend <X>)) = (float <X>). */
4434 if (GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
4435 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
4443 /* If this is a shift by a constant amount, simplify it. */
4444 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
4445 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
4446 INTVAL (XEXP (x
, 1)));
4448 #ifdef SHIFT_COUNT_TRUNCATED
4449 else if (SHIFT_COUNT_TRUNCATED
&& GET_CODE (XEXP (x
, 1)) != REG
)
4451 force_to_mode (XEXP (x
, 1), GET_MODE (x
),
4453 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
4467 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4470 simplify_if_then_else (x
)
4473 enum machine_mode mode
= GET_MODE (x
);
4474 rtx cond
= XEXP (x
, 0);
4475 rtx
true = XEXP (x
, 1);
4476 rtx
false = XEXP (x
, 2);
4477 enum rtx_code true_code
= GET_CODE (cond
);
4478 int comparison_p
= GET_RTX_CLASS (true_code
) == '<';
4482 /* Simplify storing of the truth value. */
4483 if (comparison_p
&& true == const_true_rtx
&& false == const0_rtx
)
4484 return gen_binary (true_code
, mode
, XEXP (cond
, 0), XEXP (cond
, 1));
4486 /* Also when the truth value has to be reversed. */
4487 if (comparison_p
&& reversible_comparison_p (cond
)
4488 && true == const0_rtx
&& false == const_true_rtx
)
4489 return gen_binary (reverse_condition (true_code
),
4490 mode
, XEXP (cond
, 0), XEXP (cond
, 1));
4492 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4493 in it is being compared against certain values. Get the true and false
4494 comparisons and see if that says anything about the value of each arm. */
4496 if (comparison_p
&& reversible_comparison_p (cond
)
4497 && GET_CODE (XEXP (cond
, 0)) == REG
)
4500 rtx from
= XEXP (cond
, 0);
4501 enum rtx_code false_code
= reverse_condition (true_code
);
4502 rtx true_val
= XEXP (cond
, 1);
4503 rtx false_val
= true_val
;
4506 /* If FALSE_CODE is EQ, swap the codes and arms. */
4508 if (false_code
== EQ
)
4510 swapped
= 1, true_code
= EQ
, false_code
= NE
;
4511 temp
= true, true = false, false = temp
;
4514 /* If we are comparing against zero and the expression being tested has
4515 only a single bit that might be nonzero, that is its value when it is
4516 not equal to zero. Similarly if it is known to be -1 or 0. */
4518 if (true_code
== EQ
&& true_val
== const0_rtx
4519 && exact_log2 (nzb
= nonzero_bits (from
, GET_MODE (from
))) >= 0)
4520 false_code
= EQ
, false_val
= GEN_INT (nzb
);
4521 else if (true_code
== EQ
&& true_val
== const0_rtx
4522 && (num_sign_bit_copies (from
, GET_MODE (from
))
4523 == GET_MODE_BITSIZE (GET_MODE (from
))))
4524 false_code
= EQ
, false_val
= constm1_rtx
;
4526 /* Now simplify an arm if we know the value of the register in the
4527 branch and it is used in the arm. Be careful due to the potential
4528 of locally-shared RTL. */
4530 if (reg_mentioned_p (from
, true))
4531 true = subst (known_cond (copy_rtx (true), true_code
, from
, true_val
),
4532 pc_rtx
, pc_rtx
, 0, 0);
4533 if (reg_mentioned_p (from
, false))
4534 false = subst (known_cond (copy_rtx (false), false_code
,
4536 pc_rtx
, pc_rtx
, 0, 0);
4538 SUBST (XEXP (x
, 1), swapped
? false : true);
4539 SUBST (XEXP (x
, 2), swapped
? true : false);
4541 true = XEXP (x
, 1), false = XEXP (x
, 2), true_code
= GET_CODE (cond
);
4544 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4545 reversed, do so to avoid needing two sets of patterns for
4546 subtract-and-branch insns. Similarly if we have a constant in the true
4547 arm, the false arm is the same as the first operand of the comparison, or
4548 the false arm is more complicated than the true arm. */
4550 if (comparison_p
&& reversible_comparison_p (cond
)
4552 || (CONSTANT_P (true)
4553 && GET_CODE (false) != CONST_INT
&& false != pc_rtx
)
4554 || true == const0_rtx
4555 || (GET_RTX_CLASS (GET_CODE (true)) == 'o'
4556 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4557 || (GET_CODE (true) == SUBREG
4558 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (true))) == 'o'
4559 && GET_RTX_CLASS (GET_CODE (false)) != 'o')
4560 || reg_mentioned_p (true, false)
4561 || rtx_equal_p (false, XEXP (cond
, 0))))
4563 true_code
= reverse_condition (true_code
);
4565 gen_binary (true_code
, GET_MODE (cond
), XEXP (cond
, 0),
4568 SUBST (XEXP (x
, 1), false);
4569 SUBST (XEXP (x
, 2), true);
4571 temp
= true, true = false, false = temp
, cond
= XEXP (x
, 0);
4573 /* It is possible that the conditional has been simplified out. */
4574 true_code
= GET_CODE (cond
);
4575 comparison_p
= GET_RTX_CLASS (true_code
) == '<';
4578 /* If the two arms are identical, we don't need the comparison. */
4580 if (rtx_equal_p (true, false) && ! side_effects_p (cond
))
4583 /* Convert a == b ? b : a to "a". */
4584 if (true_code
== EQ
&& ! side_effects_p (cond
)
4585 && rtx_equal_p (XEXP (cond
, 0), false)
4586 && rtx_equal_p (XEXP (cond
, 1), true))
4588 else if (true_code
== NE
&& ! side_effects_p (cond
)
4589 && rtx_equal_p (XEXP (cond
, 0), true)
4590 && rtx_equal_p (XEXP (cond
, 1), false))
4593 /* Look for cases where we have (abs x) or (neg (abs X)). */
4595 if (GET_MODE_CLASS (mode
) == MODE_INT
4596 && GET_CODE (false) == NEG
4597 && rtx_equal_p (true, XEXP (false, 0))
4599 && rtx_equal_p (true, XEXP (cond
, 0))
4600 && ! side_effects_p (true))
4605 return gen_unary (ABS
, mode
, mode
, true);
4608 return gen_unary (NEG
, mode
, mode
, gen_unary (ABS
, mode
, mode
, true));
4613 /* Look for MIN or MAX. */
4615 if ((! FLOAT_MODE_P (mode
) || flag_fast_math
)
4617 && rtx_equal_p (XEXP (cond
, 0), true)
4618 && rtx_equal_p (XEXP (cond
, 1), false)
4619 && ! side_effects_p (cond
))
4624 return gen_binary (SMAX
, mode
, true, false);
4627 return gen_binary (SMIN
, mode
, true, false);
4630 return gen_binary (UMAX
, mode
, true, false);
4633 return gen_binary (UMIN
, mode
, true, false);
4638 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4639 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4640 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4641 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4642 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4643 neither 1 or -1, but it isn't worth checking for. */
4645 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
4646 && comparison_p
&& mode
!= VOIDmode
&& ! side_effects_p (x
))
4648 rtx t
= make_compound_operation (true, SET
);
4649 rtx f
= make_compound_operation (false, SET
);
4650 rtx cond_op0
= XEXP (cond
, 0);
4651 rtx cond_op1
= XEXP (cond
, 1);
4652 enum rtx_code op
= NIL
, extend_op
= NIL
;
4653 enum machine_mode m
= mode
;
4654 rtx z
= 0, c1
= NULL_RTX
;
4656 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
4657 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
4658 || GET_CODE (t
) == ASHIFT
4659 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
4660 && rtx_equal_p (XEXP (t
, 0), f
))
4661 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
4663 /* If an identity-zero op is commutative, check whether there
4664 would be a match if we swapped the operands. */
4665 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
4666 || GET_CODE (t
) == XOR
)
4667 && rtx_equal_p (XEXP (t
, 1), f
))
4668 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
4669 else if (GET_CODE (t
) == SIGN_EXTEND
4670 && (GET_CODE (XEXP (t
, 0)) == PLUS
4671 || GET_CODE (XEXP (t
, 0)) == MINUS
4672 || GET_CODE (XEXP (t
, 0)) == IOR
4673 || GET_CODE (XEXP (t
, 0)) == XOR
4674 || GET_CODE (XEXP (t
, 0)) == ASHIFT
4675 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
4676 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
4677 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
4678 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
4679 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
4680 && (num_sign_bit_copies (f
, GET_MODE (f
))
4681 > (GET_MODE_BITSIZE (mode
)
4682 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
4684 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4685 extend_op
= SIGN_EXTEND
;
4686 m
= GET_MODE (XEXP (t
, 0));
4688 else if (GET_CODE (t
) == SIGN_EXTEND
4689 && (GET_CODE (XEXP (t
, 0)) == PLUS
4690 || GET_CODE (XEXP (t
, 0)) == IOR
4691 || GET_CODE (XEXP (t
, 0)) == XOR
)
4692 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
4693 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
4694 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
4695 && (num_sign_bit_copies (f
, GET_MODE (f
))
4696 > (GET_MODE_BITSIZE (mode
)
4697 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
4699 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4700 extend_op
= SIGN_EXTEND
;
4701 m
= GET_MODE (XEXP (t
, 0));
4703 else if (GET_CODE (t
) == ZERO_EXTEND
4704 && (GET_CODE (XEXP (t
, 0)) == PLUS
4705 || GET_CODE (XEXP (t
, 0)) == MINUS
4706 || GET_CODE (XEXP (t
, 0)) == IOR
4707 || GET_CODE (XEXP (t
, 0)) == XOR
4708 || GET_CODE (XEXP (t
, 0)) == ASHIFT
4709 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
4710 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
4711 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
4712 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4713 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
4714 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
4715 && ((nonzero_bits (f
, GET_MODE (f
))
4716 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
4719 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4720 extend_op
= ZERO_EXTEND
;
4721 m
= GET_MODE (XEXP (t
, 0));
4723 else if (GET_CODE (t
) == ZERO_EXTEND
4724 && (GET_CODE (XEXP (t
, 0)) == PLUS
4725 || GET_CODE (XEXP (t
, 0)) == IOR
4726 || GET_CODE (XEXP (t
, 0)) == XOR
)
4727 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
4728 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
4729 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
4730 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
4731 && ((nonzero_bits (f
, GET_MODE (f
))
4732 & ~ GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
4735 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
4736 extend_op
= ZERO_EXTEND
;
4737 m
= GET_MODE (XEXP (t
, 0));
4742 temp
= subst (gen_binary (true_code
, m
, cond_op0
, cond_op1
),
4743 pc_rtx
, pc_rtx
, 0, 0);
4744 temp
= gen_binary (MULT
, m
, temp
,
4745 gen_binary (MULT
, m
, c1
, const_true_rtx
));
4746 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0);
4747 temp
= gen_binary (op
, m
, gen_lowpart_for_combine (m
, z
), temp
);
4749 if (extend_op
!= NIL
)
4750 temp
= gen_unary (extend_op
, mode
, m
, temp
);
4756 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
4757 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
4758 negation of a single bit, we can convert this operation to a shift. We
4759 can actually do this more generally, but it doesn't seem worth it. */
4761 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
4762 && false == const0_rtx
&& GET_CODE (true) == CONST_INT
4763 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
4764 && (i
= exact_log2 (INTVAL (true))) >= 0)
4765 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
4766 == GET_MODE_BITSIZE (mode
))
4767 && (i
= exact_log2 (- INTVAL (true))) >= 0)))
4769 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
4770 gen_lowpart_for_combine (mode
, XEXP (cond
, 0)), i
);
4775 /* Simplify X, a SET expression. Return the new expression. */
4781 rtx src
= SET_SRC (x
);
4782 rtx dest
= SET_DEST (x
);
4783 enum machine_mode mode
4784 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
4788 /* (set (pc) (return)) gets written as (return). */
4789 if (GET_CODE (dest
) == PC
&& GET_CODE (src
) == RETURN
)
4792 /* Now that we know for sure which bits of SRC we are using, see if we can
4793 simplify the expression for the object knowing that we only need the
4796 if (GET_MODE_CLASS (mode
) == MODE_INT
)
4798 src
= force_to_mode (src
, mode
, GET_MODE_MASK (mode
), NULL_RTX
, 0);
4799 SUBST (SET_SRC (x
), src
);
4802 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
4803 the comparison result and try to simplify it unless we already have used
4804 undobuf.other_insn. */
4805 if ((GET_CODE (src
) == COMPARE
4810 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
4811 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
4812 && GET_RTX_CLASS (GET_CODE (*cc_use
)) == '<'
4813 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
4815 enum rtx_code old_code
= GET_CODE (*cc_use
);
4816 enum rtx_code new_code
;
4818 int other_changed
= 0;
4819 enum machine_mode compare_mode
= GET_MODE (dest
);
4821 if (GET_CODE (src
) == COMPARE
)
4822 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
4824 op0
= src
, op1
= const0_rtx
;
4826 /* Simplify our comparison, if possible. */
4827 new_code
= simplify_comparison (old_code
, &op0
, &op1
);
4829 #ifdef EXTRA_CC_MODES
4830 /* If this machine has CC modes other than CCmode, check to see if we
4831 need to use a different CC mode here. */
4832 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
4833 #endif /* EXTRA_CC_MODES */
4835 #if !defined (HAVE_cc0) && defined (EXTRA_CC_MODES)
4836 /* If the mode changed, we have to change SET_DEST, the mode in the
4837 compare, and the mode in the place SET_DEST is used. If SET_DEST is
4838 a hard register, just build new versions with the proper mode. If it
4839 is a pseudo, we lose unless it is only time we set the pseudo, in
4840 which case we can safely change its mode. */
4841 if (compare_mode
!= GET_MODE (dest
))
4843 int regno
= REGNO (dest
);
4844 rtx new_dest
= gen_rtx_REG (compare_mode
, regno
);
4846 if (regno
< FIRST_PSEUDO_REGISTER
4847 || (REG_N_SETS (regno
) == 1 && ! REG_USERVAR_P (dest
)))
4849 if (regno
>= FIRST_PSEUDO_REGISTER
)
4850 SUBST (regno_reg_rtx
[regno
], new_dest
);
4852 SUBST (SET_DEST (x
), new_dest
);
4853 SUBST (XEXP (*cc_use
, 0), new_dest
);
4861 /* If the code changed, we have to build a new comparison in
4862 undobuf.other_insn. */
4863 if (new_code
!= old_code
)
4865 unsigned HOST_WIDE_INT mask
;
4867 SUBST (*cc_use
, gen_rtx_combine (new_code
, GET_MODE (*cc_use
),
4870 /* If the only change we made was to change an EQ into an NE or
4871 vice versa, OP0 has only one bit that might be nonzero, and OP1
4872 is zero, check if changing the user of the condition code will
4873 produce a valid insn. If it won't, we can keep the original code
4874 in that insn by surrounding our operation with an XOR. */
4876 if (((old_code
== NE
&& new_code
== EQ
)
4877 || (old_code
== EQ
&& new_code
== NE
))
4878 && ! other_changed
&& op1
== const0_rtx
4879 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
4880 && exact_log2 (mask
= nonzero_bits (op0
, GET_MODE (op0
))) >= 0)
4882 rtx pat
= PATTERN (other_insn
), note
= 0;
4884 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
4885 && ! check_asm_operands (pat
)))
4887 PUT_CODE (*cc_use
, old_code
);
4890 op0
= gen_binary (XOR
, GET_MODE (op0
), op0
, GEN_INT (mask
));
4898 undobuf
.other_insn
= other_insn
;
4901 /* If we are now comparing against zero, change our source if
4902 needed. If we do not use cc0, we always have a COMPARE. */
4903 if (op1
== const0_rtx
&& dest
== cc0_rtx
)
4905 SUBST (SET_SRC (x
), op0
);
4911 /* Otherwise, if we didn't previously have a COMPARE in the
4912 correct mode, we need one. */
4913 if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
)
4916 gen_rtx_combine (COMPARE
, compare_mode
, op0
, op1
));
4921 /* Otherwise, update the COMPARE if needed. */
4922 SUBST (XEXP (src
, 0), op0
);
4923 SUBST (XEXP (src
, 1), op1
);
4928 /* Get SET_SRC in a form where we have placed back any
4929 compound expressions. Then do the checks below. */
4930 src
= make_compound_operation (src
, SET
);
4931 SUBST (SET_SRC (x
), src
);
4934 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
4935 and X being a REG or (subreg (reg)), we may be able to convert this to
4936 (set (subreg:m2 x) (op)).
4938 We can always do this if M1 is narrower than M2 because that means that
4939 we only care about the low bits of the result.
4941 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
4942 perform a narrower operation than requested since the high-order bits will
4943 be undefined. On machine where it is defined, this transformation is safe
4944 as long as M1 and M2 have the same number of words. */
4946 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
4947 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (src
))) != 'o'
4948 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
4950 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
4951 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
4952 #ifndef WORD_REGISTER_OPERATIONS
4953 && (GET_MODE_SIZE (GET_MODE (src
))
4954 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
4956 #ifdef CLASS_CANNOT_CHANGE_SIZE
4957 && ! (GET_CODE (dest
) == REG
&& REGNO (dest
) < FIRST_PSEUDO_REGISTER
4958 && (TEST_HARD_REG_BIT
4959 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_SIZE
],
4961 && (GET_MODE_SIZE (GET_MODE (src
))
4962 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))))
4964 && (GET_CODE (dest
) == REG
4965 || (GET_CODE (dest
) == SUBREG
4966 && GET_CODE (SUBREG_REG (dest
)) == REG
)))
4968 SUBST (SET_DEST (x
),
4969 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (src
)),
4971 SUBST (SET_SRC (x
), SUBREG_REG (src
));
4973 src
= SET_SRC (x
), dest
= SET_DEST (x
);
4976 #ifdef LOAD_EXTEND_OP
4977 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
4978 would require a paradoxical subreg. Replace the subreg with a
4979 zero_extend to avoid the reload that would otherwise be required. */
4981 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
4982 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))) != NIL
4983 && SUBREG_WORD (src
) == 0
4984 && (GET_MODE_SIZE (GET_MODE (src
))
4985 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
4986 && GET_CODE (SUBREG_REG (src
)) == MEM
)
4989 gen_rtx_combine (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))),
4990 GET_MODE (src
), XEXP (src
, 0)));
4996 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
4997 are comparing an item known to be 0 or -1 against 0, use a logical
4998 operation instead. Check for one of the arms being an IOR of the other
4999 arm with some value. We compute three terms to be IOR'ed together. In
5000 practice, at most two will be nonzero. Then we do the IOR's. */
5002 if (GET_CODE (dest
) != PC
5003 && GET_CODE (src
) == IF_THEN_ELSE
5004 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
5005 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
5006 && XEXP (XEXP (src
, 0), 1) == const0_rtx
5007 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
5008 #ifdef HAVE_conditional_move
5009 && ! can_conditionally_move_p (GET_MODE (src
))
5011 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
5012 GET_MODE (XEXP (XEXP (src
, 0), 0)))
5013 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src
, 0), 0))))
5014 && ! side_effects_p (src
))
5016 rtx
true = (GET_CODE (XEXP (src
, 0)) == NE
5017 ? XEXP (src
, 1) : XEXP (src
, 2));
5018 rtx
false = (GET_CODE (XEXP (src
, 0)) == NE
5019 ? XEXP (src
, 2) : XEXP (src
, 1));
5020 rtx term1
= const0_rtx
, term2
, term3
;
5022 if (GET_CODE (true) == IOR
&& rtx_equal_p (XEXP (true, 0), false))
5023 term1
= false, true = XEXP (true, 1), false = const0_rtx
;
5024 else if (GET_CODE (true) == IOR
5025 && rtx_equal_p (XEXP (true, 1), false))
5026 term1
= false, true = XEXP (true, 0), false = const0_rtx
;
5027 else if (GET_CODE (false) == IOR
5028 && rtx_equal_p (XEXP (false, 0), true))
5029 term1
= true, false = XEXP (false, 1), true = const0_rtx
;
5030 else if (GET_CODE (false) == IOR
5031 && rtx_equal_p (XEXP (false, 1), true))
5032 term1
= true, false = XEXP (false, 0), true = const0_rtx
;
5034 term2
= gen_binary (AND
, GET_MODE (src
), XEXP (XEXP (src
, 0), 0), true);
5035 term3
= gen_binary (AND
, GET_MODE (src
),
5036 gen_unary (NOT
, GET_MODE (src
), GET_MODE (src
),
5037 XEXP (XEXP (src
, 0), 0)),
5041 gen_binary (IOR
, GET_MODE (src
),
5042 gen_binary (IOR
, GET_MODE (src
), term1
, term2
),
5048 #ifdef HAVE_conditional_arithmetic
5049 /* If we have conditional arithmetic and the operand of a SET is
5050 a conditional expression, replace this with an IF_THEN_ELSE.
5051 We can either have a conditional expression or a MULT of that expression
5053 if ((GET_RTX_CLASS (GET_CODE (src
)) == '1'
5054 || GET_RTX_CLASS (GET_CODE (src
)) == '2'
5055 || GET_RTX_CLASS (GET_CODE (src
)) == 'c')
5056 && (GET_RTX_CLASS (GET_CODE (XEXP (src
, 0))) == '<'
5057 || (GET_CODE (XEXP (src
, 0)) == MULT
5058 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (src
, 0), 0))) == '<'
5059 && GET_CODE (XEXP (XEXP (src
, 0), 1)) == CONST_INT
)))
5061 rtx cond
= XEXP (src
, 0);
5062 rtx true_val
= const1_rtx
;
5063 rtx false_arm
, true_arm
;
5065 if (GET_CODE (cond
) == MULT
)
5067 true_val
= XEXP (cond
, 1);
5068 cond
= XEXP (cond
, 0);
5071 if (GET_RTX_CLASS (GET_CODE (src
)) == '1')
5073 true_arm
= gen_unary (GET_CODE (src
), GET_MODE (src
),
5074 GET_MODE (XEXP (src
, 0)), true_val
);
5075 false_arm
= gen_unary (GET_CODE (src
), GET_MODE (src
),
5076 GET_MODE (XEXP (src
, 0)), const0_rtx
);
5080 true_arm
= gen_binary (GET_CODE (src
), GET_MODE (src
),
5081 true_val
, XEXP (src
, 1));
5082 false_arm
= gen_binary (GET_CODE (src
), GET_MODE (src
),
5083 const0_rtx
, XEXP (src
, 1));
5086 /* Canonicalize if true_arm is the simpler one. */
5087 if (GET_RTX_CLASS (GET_CODE (true_arm
)) == 'o'
5088 && GET_RTX_CLASS (GET_CODE (false_arm
)) != 'o'
5089 && reversible_comparison_p (cond
))
5091 rtx temp
= true_arm
;
5093 true_arm
= false_arm
;
5096 cond
= gen_rtx_combine (reverse_condition (GET_CODE (cond
)),
5097 GET_MODE (cond
), XEXP (cond
, 0),
5101 src
= gen_rtx_combine (IF_THEN_ELSE
, GET_MODE (src
),
5102 gen_rtx_combine (GET_CODE (cond
), VOIDmode
,
5105 true_arm
, false_arm
);
5106 SUBST (SET_SRC (x
), src
);
5110 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5111 whole thing fail. */
5112 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
5114 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
5117 /* Convert this into a field assignment operation, if possible. */
5118 return make_field_assignment (x
);
5121 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5122 result. LAST is nonzero if this is the last retry. */
5125 simplify_logical (x
, last
)
5129 enum machine_mode mode
= GET_MODE (x
);
5130 rtx op0
= XEXP (x
, 0);
5131 rtx op1
= XEXP (x
, 1);
5133 switch (GET_CODE (x
))
5136 /* Convert (A ^ B) & A to A & (~ B) since the latter is often a single
5137 insn (and may simplify more). */
5138 if (GET_CODE (op0
) == XOR
5139 && rtx_equal_p (XEXP (op0
, 0), op1
)
5140 && ! side_effects_p (op1
))
5141 x
= gen_binary (AND
, mode
,
5142 gen_unary (NOT
, mode
, mode
, XEXP (op0
, 1)), op1
);
5144 if (GET_CODE (op0
) == XOR
5145 && rtx_equal_p (XEXP (op0
, 1), op1
)
5146 && ! side_effects_p (op1
))
5147 x
= gen_binary (AND
, mode
,
5148 gen_unary (NOT
, mode
, mode
, XEXP (op0
, 0)), op1
);
5150 /* Similarly for (~ (A ^ B)) & A. */
5151 if (GET_CODE (op0
) == NOT
5152 && GET_CODE (XEXP (op0
, 0)) == XOR
5153 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), op1
)
5154 && ! side_effects_p (op1
))
5155 x
= gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 1), op1
);
5157 if (GET_CODE (op0
) == NOT
5158 && GET_CODE (XEXP (op0
, 0)) == XOR
5159 && rtx_equal_p (XEXP (XEXP (op0
, 0), 1), op1
)
5160 && ! side_effects_p (op1
))
5161 x
= gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 0), op1
);
5163 /* We can call simplify_and_const_int only if we don't lose
5164 any (sign) bits when converting INTVAL (op1) to
5165 "unsigned HOST_WIDE_INT". */
5166 if (GET_CODE (op1
) == CONST_INT
5167 && (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5168 || INTVAL (op1
) > 0))
5170 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
5172 /* If we have (ior (and (X C1) C2)) and the next restart would be
5173 the last, simplify this by making C1 as small as possible
5176 && GET_CODE (x
) == IOR
&& GET_CODE (op0
) == AND
5177 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5178 && GET_CODE (op1
) == CONST_INT
)
5179 return gen_binary (IOR
, mode
,
5180 gen_binary (AND
, mode
, XEXP (op0
, 0),
5181 GEN_INT (INTVAL (XEXP (op0
, 1))
5182 & ~ INTVAL (op1
))), op1
);
5184 if (GET_CODE (x
) != AND
)
5187 if (GET_RTX_CLASS (GET_CODE (x
)) == 'c'
5188 || GET_RTX_CLASS (GET_CODE (x
)) == '2')
5189 op0
= XEXP (x
, 0), op1
= XEXP (x
, 1);
5192 /* Convert (A | B) & A to A. */
5193 if (GET_CODE (op0
) == IOR
5194 && (rtx_equal_p (XEXP (op0
, 0), op1
)
5195 || rtx_equal_p (XEXP (op0
, 1), op1
))
5196 && ! side_effects_p (XEXP (op0
, 0))
5197 && ! side_effects_p (XEXP (op0
, 1)))
5200 /* In the following group of tests (and those in case IOR below),
5201 we start with some combination of logical operations and apply
5202 the distributive law followed by the inverse distributive law.
5203 Most of the time, this results in no change. However, if some of
5204 the operands are the same or inverses of each other, simplifications
5207 For example, (and (ior A B) (not B)) can occur as the result of
5208 expanding a bit field assignment. When we apply the distributive
5209 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5210 which then simplifies to (and (A (not B))).
5212 If we have (and (ior A B) C), apply the distributive law and then
5213 the inverse distributive law to see if things simplify. */
5215 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
5217 x
= apply_distributive_law
5218 (gen_binary (GET_CODE (op0
), mode
,
5219 gen_binary (AND
, mode
, XEXP (op0
, 0), op1
),
5220 gen_binary (AND
, mode
, XEXP (op0
, 1),
5222 if (GET_CODE (x
) != AND
)
5226 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
5227 return apply_distributive_law
5228 (gen_binary (GET_CODE (op1
), mode
,
5229 gen_binary (AND
, mode
, XEXP (op1
, 0), op0
),
5230 gen_binary (AND
, mode
, XEXP (op1
, 1),
5233 /* Similarly, taking advantage of the fact that
5234 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5236 if (GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == XOR
)
5237 return apply_distributive_law
5238 (gen_binary (XOR
, mode
,
5239 gen_binary (IOR
, mode
, XEXP (op0
, 0), XEXP (op1
, 0)),
5240 gen_binary (IOR
, mode
, copy_rtx (XEXP (op0
, 0)),
5243 else if (GET_CODE (op1
) == NOT
&& GET_CODE (op0
) == XOR
)
5244 return apply_distributive_law
5245 (gen_binary (XOR
, mode
,
5246 gen_binary (IOR
, mode
, XEXP (op1
, 0), XEXP (op0
, 0)),
5247 gen_binary (IOR
, mode
, copy_rtx (XEXP (op1
, 0)), XEXP (op0
, 1))));
5251 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5252 if (GET_CODE (op1
) == CONST_INT
5253 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5254 && (nonzero_bits (op0
, mode
) & ~ INTVAL (op1
)) == 0)
5257 /* Convert (A & B) | A to A. */
5258 if (GET_CODE (op0
) == AND
5259 && (rtx_equal_p (XEXP (op0
, 0), op1
)
5260 || rtx_equal_p (XEXP (op0
, 1), op1
))
5261 && ! side_effects_p (XEXP (op0
, 0))
5262 && ! side_effects_p (XEXP (op0
, 1)))
5265 /* If we have (ior (and A B) C), apply the distributive law and then
5266 the inverse distributive law to see if things simplify. */
5268 if (GET_CODE (op0
) == AND
)
5270 x
= apply_distributive_law
5271 (gen_binary (AND
, mode
,
5272 gen_binary (IOR
, mode
, XEXP (op0
, 0), op1
),
5273 gen_binary (IOR
, mode
, XEXP (op0
, 1),
5276 if (GET_CODE (x
) != IOR
)
5280 if (GET_CODE (op1
) == AND
)
5282 x
= apply_distributive_law
5283 (gen_binary (AND
, mode
,
5284 gen_binary (IOR
, mode
, XEXP (op1
, 0), op0
),
5285 gen_binary (IOR
, mode
, XEXP (op1
, 1),
5288 if (GET_CODE (x
) != IOR
)
5292 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5293 mode size to (rotate A CX). */
5295 if (((GET_CODE (op0
) == ASHIFT
&& GET_CODE (op1
) == LSHIFTRT
)
5296 || (GET_CODE (op1
) == ASHIFT
&& GET_CODE (op0
) == LSHIFTRT
))
5297 && rtx_equal_p (XEXP (op0
, 0), XEXP (op1
, 0))
5298 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5299 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
5300 && (INTVAL (XEXP (op0
, 1)) + INTVAL (XEXP (op1
, 1))
5301 == GET_MODE_BITSIZE (mode
)))
5302 return gen_rtx_ROTATE (mode
, XEXP (op0
, 0),
5303 (GET_CODE (op0
) == ASHIFT
5304 ? XEXP (op0
, 1) : XEXP (op1
, 1)));
5306 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5307 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5308 does not affect any of the bits in OP1, it can really be done
5309 as a PLUS and we can associate. We do this by seeing if OP1
5310 can be safely shifted left C bits. */
5311 if (GET_CODE (op1
) == CONST_INT
&& GET_CODE (op0
) == ASHIFTRT
5312 && GET_CODE (XEXP (op0
, 0)) == PLUS
5313 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
5314 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5315 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
)
5317 int count
= INTVAL (XEXP (op0
, 1));
5318 HOST_WIDE_INT mask
= INTVAL (op1
) << count
;
5320 if (mask
>> count
== INTVAL (op1
)
5321 && (mask
& nonzero_bits (XEXP (op0
, 0), mode
)) == 0)
5323 SUBST (XEXP (XEXP (op0
, 0), 1),
5324 GEN_INT (INTVAL (XEXP (XEXP (op0
, 0), 1)) | mask
));
5331 /* If we are XORing two things that have no bits in common,
5332 convert them into an IOR. This helps to detect rotation encoded
5333 using those methods and possibly other simplifications. */
5335 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5336 && (nonzero_bits (op0
, mode
)
5337 & nonzero_bits (op1
, mode
)) == 0)
5338 return (gen_binary (IOR
, mode
, op0
, op1
));
5340 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5341 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5344 int num_negated
= 0;
5346 if (GET_CODE (op0
) == NOT
)
5347 num_negated
++, op0
= XEXP (op0
, 0);
5348 if (GET_CODE (op1
) == NOT
)
5349 num_negated
++, op1
= XEXP (op1
, 0);
5351 if (num_negated
== 2)
5353 SUBST (XEXP (x
, 0), op0
);
5354 SUBST (XEXP (x
, 1), op1
);
5356 else if (num_negated
== 1)
5357 return gen_unary (NOT
, mode
, mode
, gen_binary (XOR
, mode
, op0
, op1
));
5360 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5361 correspond to a machine insn or result in further simplifications
5362 if B is a constant. */
5364 if (GET_CODE (op0
) == AND
5365 && rtx_equal_p (XEXP (op0
, 1), op1
)
5366 && ! side_effects_p (op1
))
5367 return gen_binary (AND
, mode
,
5368 gen_unary (NOT
, mode
, mode
, XEXP (op0
, 0)),
5371 else if (GET_CODE (op0
) == AND
5372 && rtx_equal_p (XEXP (op0
, 0), op1
)
5373 && ! side_effects_p (op1
))
5374 return gen_binary (AND
, mode
,
5375 gen_unary (NOT
, mode
, mode
, XEXP (op0
, 1)),
5378 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5379 comparison if STORE_FLAG_VALUE is 1. */
5380 if (STORE_FLAG_VALUE
== 1
5381 && op1
== const1_rtx
5382 && GET_RTX_CLASS (GET_CODE (op0
)) == '<'
5383 && reversible_comparison_p (op0
))
5384 return gen_rtx_combine (reverse_condition (GET_CODE (op0
)),
5385 mode
, XEXP (op0
, 0), XEXP (op0
, 1));
5387 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5388 is (lt foo (const_int 0)), so we can perform the above
5389 simplification if STORE_FLAG_VALUE is 1. */
5391 if (STORE_FLAG_VALUE
== 1
5392 && op1
== const1_rtx
5393 && GET_CODE (op0
) == LSHIFTRT
5394 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
5395 && INTVAL (XEXP (op0
, 1)) == GET_MODE_BITSIZE (mode
) - 1)
5396 return gen_rtx_combine (GE
, mode
, XEXP (op0
, 0), const0_rtx
);
5398 /* (xor (comparison foo bar) (const_int sign-bit))
5399 when STORE_FLAG_VALUE is the sign bit. */
5400 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5401 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5402 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1))
5403 && op1
== const_true_rtx
5404 && GET_RTX_CLASS (GET_CODE (op0
)) == '<'
5405 && reversible_comparison_p (op0
))
5406 return gen_rtx_combine (reverse_condition (GET_CODE (op0
)),
5407 mode
, XEXP (op0
, 0), XEXP (op0
, 1));
5418 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5419 operations" because they can be replaced with two more basic operations.
5420 ZERO_EXTEND is also considered "compound" because it can be replaced with
5421 an AND operation, which is simpler, though only one operation.
5423 The function expand_compound_operation is called with an rtx expression
5424 and will convert it to the appropriate shifts and AND operations,
5425 simplifying at each stage.
5427 The function make_compound_operation is called to convert an expression
5428 consisting of shifts and ANDs into the equivalent compound expression.
5429 It is the inverse of this function, loosely speaking. */
5432 expand_compound_operation (x
)
5440 switch (GET_CODE (x
))
5445 /* We can't necessarily use a const_int for a multiword mode;
5446 it depends on implicitly extending the value.
5447 Since we don't know the right way to extend it,
5448 we can't tell whether the implicit way is right.
5450 Even for a mode that is no wider than a const_int,
5451 we can't win, because we need to sign extend one of its bits through
5452 the rest of it, and we don't know which bit. */
5453 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
5456 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5457 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5458 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5459 reloaded. If not for that, MEM's would very rarely be safe.
5461 Reject MODEs bigger than a word, because we might not be able
5462 to reference a two-register group starting with an arbitrary register
5463 (and currently gen_lowpart might crash for a SUBREG). */
5465 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
5468 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)));
5469 /* If the inner object has VOIDmode (the only way this can happen
5470 is if it is a ASM_OPERANDS), we can't do anything since we don't
5471 know how much masking to do. */
5480 /* If the operand is a CLOBBER, just return it. */
5481 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
5484 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
5485 || GET_CODE (XEXP (x
, 2)) != CONST_INT
5486 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
5489 len
= INTVAL (XEXP (x
, 1));
5490 pos
= INTVAL (XEXP (x
, 2));
5492 /* If this goes outside the object being extracted, replace the object
5493 with a (use (mem ...)) construct that only combine understands
5494 and is used only for this purpose. */
5495 if (len
+ pos
> GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))))
5496 SUBST (XEXP (x
, 0), gen_rtx_USE (GET_MODE (x
), XEXP (x
, 0)));
5498 if (BITS_BIG_ENDIAN
)
5499 pos
= GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - len
- pos
;
5506 /* Convert sign extension to zero extension, if we know that the high
5507 bit is not set, as this is easier to optimize. It will be converted
5508 back to cheaper alternative in make_extraction. */
5509 if (GET_CODE (x
) == SIGN_EXTEND
5510 && (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5511 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
5512 & ~ (((unsigned HOST_WIDE_INT
)
5513 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
5517 rtx temp
= gen_rtx_ZERO_EXTEND (GET_MODE (x
), XEXP (x
, 0));
5518 return expand_compound_operation (temp
);
5521 /* We can optimize some special cases of ZERO_EXTEND. */
5522 if (GET_CODE (x
) == ZERO_EXTEND
)
5524 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5525 know that the last value didn't have any inappropriate bits
5527 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5528 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5529 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5530 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
5531 & ~ GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5532 return XEXP (XEXP (x
, 0), 0);
5534 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5535 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5536 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5537 && subreg_lowpart_p (XEXP (x
, 0))
5538 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
5539 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
5540 & ~ GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5541 return SUBREG_REG (XEXP (x
, 0));
5543 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5544 is a comparison and STORE_FLAG_VALUE permits. This is like
5545 the first case, but it works even when GET_MODE (x) is larger
5546 than HOST_WIDE_INT. */
5547 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
5548 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
5549 && GET_RTX_CLASS (GET_CODE (XEXP (XEXP (x
, 0), 0))) == '<'
5550 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5551 <= HOST_BITS_PER_WIDE_INT
)
5552 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5553 & ~ GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5554 return XEXP (XEXP (x
, 0), 0);
5556 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5557 if (GET_CODE (XEXP (x
, 0)) == SUBREG
5558 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
5559 && subreg_lowpart_p (XEXP (x
, 0))
5560 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (XEXP (x
, 0)))) == '<'
5561 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
5562 <= HOST_BITS_PER_WIDE_INT
)
5563 && ((HOST_WIDE_INT
) STORE_FLAG_VALUE
5564 & ~ GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
5565 return SUBREG_REG (XEXP (x
, 0));
5569 /* If we reach here, we want to return a pair of shifts. The inner
5570 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5571 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5572 logical depending on the value of UNSIGNEDP.
5574 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5575 converted into an AND of a shift.
5577 We must check for the case where the left shift would have a negative
5578 count. This can happen in a case like (x >> 31) & 255 on machines
5579 that can't shift by a constant. On those machines, we would first
5580 combine the shift with the AND to produce a variable-position
5581 extraction. Then the constant of 31 would be substituted in to produce
5582 a such a position. */
5584 modewidth
= GET_MODE_BITSIZE (GET_MODE (x
));
5585 if (modewidth
>= pos
- len
)
5586 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
5588 simplify_shift_const (NULL_RTX
, ASHIFT
,
5591 modewidth
- pos
- len
),
5594 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
5595 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
5596 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
5599 ((HOST_WIDE_INT
) 1 << len
) - 1);
5601 /* Any other cases we can't handle. */
5605 /* If we couldn't do this for some reason, return the original
5607 if (GET_CODE (tem
) == CLOBBER
)
5613 /* X is a SET which contains an assignment of one object into
5614 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5615 or certain SUBREGS). If possible, convert it into a series of
5618 We half-heartedly support variable positions, but do not at all
5619 support variable lengths. */
5622 expand_field_assignment (x
)
5626 rtx pos
; /* Always counts from low bit. */
5629 enum machine_mode compute_mode
;
5631 /* Loop until we find something we can't simplify. */
5634 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
5635 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
5637 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
5638 len
= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x
), 0)));
5639 pos
= GEN_INT (BITS_PER_WORD
* SUBREG_WORD (XEXP (SET_DEST (x
), 0)));
5641 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
5642 && GET_CODE (XEXP (SET_DEST (x
), 1)) == CONST_INT
)
5644 inner
= XEXP (SET_DEST (x
), 0);
5645 len
= INTVAL (XEXP (SET_DEST (x
), 1));
5646 pos
= XEXP (SET_DEST (x
), 2);
5648 /* If the position is constant and spans the width of INNER,
5649 surround INNER with a USE to indicate this. */
5650 if (GET_CODE (pos
) == CONST_INT
5651 && INTVAL (pos
) + len
> GET_MODE_BITSIZE (GET_MODE (inner
)))
5652 inner
= gen_rtx_USE (GET_MODE (SET_DEST (x
)), inner
);
5654 if (BITS_BIG_ENDIAN
)
5656 if (GET_CODE (pos
) == CONST_INT
)
5657 pos
= GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner
)) - len
5659 else if (GET_CODE (pos
) == MINUS
5660 && GET_CODE (XEXP (pos
, 1)) == CONST_INT
5661 && (INTVAL (XEXP (pos
, 1))
5662 == GET_MODE_BITSIZE (GET_MODE (inner
)) - len
))
5663 /* If position is ADJUST - X, new position is X. */
5664 pos
= XEXP (pos
, 0);
5666 pos
= gen_binary (MINUS
, GET_MODE (pos
),
5667 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner
))
5673 /* A SUBREG between two modes that occupy the same numbers of words
5674 can be done by moving the SUBREG to the source. */
5675 else if (GET_CODE (SET_DEST (x
)) == SUBREG
5676 /* We need SUBREGs to compute nonzero_bits properly. */
5677 && nonzero_sign_valid
5678 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
5679 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
5680 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
5681 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
5683 x
= gen_rtx_SET (VOIDmode
, SUBREG_REG (SET_DEST (x
)),
5684 gen_lowpart_for_combine
5685 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
5692 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
5693 inner
= SUBREG_REG (inner
);
5695 compute_mode
= GET_MODE (inner
);
5697 /* Don't attempt bitwise arithmetic on non-integral modes. */
5698 if (! INTEGRAL_MODE_P (compute_mode
))
5700 enum machine_mode imode
;
5702 /* Something is probably seriously wrong if this matches. */
5703 if (! FLOAT_MODE_P (compute_mode
))
5706 /* Try to find an integral mode to pun with. */
5707 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
5708 if (imode
== BLKmode
)
5711 compute_mode
= imode
;
5712 inner
= gen_lowpart_for_combine (imode
, inner
);
5715 /* Compute a mask of LEN bits, if we can do this on the host machine. */
5716 if (len
< HOST_BITS_PER_WIDE_INT
)
5717 mask
= GEN_INT (((HOST_WIDE_INT
) 1 << len
) - 1);
5721 /* Now compute the equivalent expression. Make a copy of INNER
5722 for the SET_DEST in case it is a MEM into which we will substitute;
5723 we don't want shared RTL in that case. */
5725 (VOIDmode
, copy_rtx (inner
),
5726 gen_binary (IOR
, compute_mode
,
5727 gen_binary (AND
, compute_mode
,
5728 gen_unary (NOT
, compute_mode
,
5734 gen_binary (ASHIFT
, compute_mode
,
5735 gen_binary (AND
, compute_mode
,
5736 gen_lowpart_for_combine
5737 (compute_mode
, SET_SRC (x
)),
5745 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
5746 it is an RTX that represents a variable starting position; otherwise,
5747 POS is the (constant) starting bit position (counted from the LSB).
5749 INNER may be a USE. This will occur when we started with a bitfield
5750 that went outside the boundary of the object in memory, which is
5751 allowed on most machines. To isolate this case, we produce a USE
5752 whose mode is wide enough and surround the MEM with it. The only
5753 code that understands the USE is this routine. If it is not removed,
5754 it will cause the resulting insn not to match.
5756 UNSIGNEDP is non-zero for an unsigned reference and zero for a
5759 IN_DEST is non-zero if this is a reference in the destination of a
5760 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If non-zero,
5761 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
5764 IN_COMPARE is non-zero if we are in a COMPARE. This means that a
5765 ZERO_EXTRACT should be built even for bits starting at bit 0.
5767 MODE is the desired mode of the result (if IN_DEST == 0).
5769 The result is an RTX for the extraction or NULL_RTX if the target
5773 make_extraction (mode
, inner
, pos
, pos_rtx
, len
,
5774 unsignedp
, in_dest
, in_compare
)
5775 enum machine_mode mode
;
5781 int in_dest
, in_compare
;
5783 /* This mode describes the size of the storage area
5784 to fetch the overall value from. Within that, we
5785 ignore the POS lowest bits, etc. */
5786 enum machine_mode is_mode
= GET_MODE (inner
);
5787 enum machine_mode inner_mode
;
5788 enum machine_mode wanted_inner_mode
= byte_mode
;
5789 enum machine_mode wanted_inner_reg_mode
= word_mode
;
5790 enum machine_mode pos_mode
= word_mode
;
5791 enum machine_mode extraction_mode
= word_mode
;
5792 enum machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
5795 rtx orig_pos_rtx
= pos_rtx
;
5798 /* Get some information about INNER and get the innermost object. */
5799 if (GET_CODE (inner
) == USE
)
5800 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
5801 /* We don't need to adjust the position because we set up the USE
5802 to pretend that it was a full-word object. */
5803 spans_byte
= 1, inner
= XEXP (inner
, 0);
5804 else if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
5806 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
5807 consider just the QI as the memory to extract from.
5808 The subreg adds or removes high bits; its mode is
5809 irrelevant to the meaning of this extraction,
5810 since POS and LEN count from the lsb. */
5811 if (GET_CODE (SUBREG_REG (inner
)) == MEM
)
5812 is_mode
= GET_MODE (SUBREG_REG (inner
));
5813 inner
= SUBREG_REG (inner
);
5816 inner_mode
= GET_MODE (inner
);
5818 if (pos_rtx
&& GET_CODE (pos_rtx
) == CONST_INT
)
5819 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
5821 /* See if this can be done without an extraction. We never can if the
5822 width of the field is not the same as that of some integer mode. For
5823 registers, we can only avoid the extraction if the position is at the
5824 low-order bit and this is either not in the destination or we have the
5825 appropriate STRICT_LOW_PART operation available.
5827 For MEM, we can avoid an extract if the field starts on an appropriate
5828 boundary and we can change the mode of the memory reference. However,
5829 we cannot directly access the MEM if we have a USE and the underlying
5830 MEM is not TMODE. This combination means that MEM was being used in a
5831 context where bits outside its mode were being referenced; that is only
5832 valid in bit-field insns. */
5834 if (tmode
!= BLKmode
5835 && ! (spans_byte
&& inner_mode
!= tmode
)
5836 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
5837 && GET_CODE (inner
) != MEM
5839 || (GET_CODE (inner
) == REG
5840 && (movstrict_optab
->handlers
[(int) tmode
].insn_code
5841 != CODE_FOR_nothing
))))
5842 || (GET_CODE (inner
) == MEM
&& pos_rtx
== 0
5844 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
5845 : BITS_PER_UNIT
)) == 0
5846 /* We can't do this if we are widening INNER_MODE (it
5847 may not be aligned, for one thing). */
5848 && GET_MODE_BITSIZE (inner_mode
) >= GET_MODE_BITSIZE (tmode
)
5849 && (inner_mode
== tmode
5850 || (! mode_dependent_address_p (XEXP (inner
, 0))
5851 && ! MEM_VOLATILE_P (inner
))))))
5853 /* If INNER is a MEM, make a new MEM that encompasses just the desired
5854 field. If the original and current mode are the same, we need not
5855 adjust the offset. Otherwise, we do if bytes big endian.
5857 If INNER is not a MEM, get a piece consisting of just the field
5858 of interest (in this case POS % BITS_PER_WORD must be 0). */
5860 if (GET_CODE (inner
) == MEM
)
5863 /* POS counts from lsb, but make OFFSET count in memory order. */
5864 if (BYTES_BIG_ENDIAN
)
5865 offset
= (GET_MODE_BITSIZE (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
5867 offset
= pos
/ BITS_PER_UNIT
;
5869 new = gen_rtx_MEM (tmode
, plus_constant (XEXP (inner
, 0), offset
));
5870 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (inner
);
5871 MEM_COPY_ATTRIBUTES (new, inner
);
5873 else if (GET_CODE (inner
) == REG
)
5875 /* We can't call gen_lowpart_for_combine here since we always want
5876 a SUBREG and it would sometimes return a new hard register. */
5877 if (tmode
!= inner_mode
)
5878 new = gen_rtx_SUBREG (tmode
, inner
,
5880 && (GET_MODE_SIZE (inner_mode
)
5882 ? (((GET_MODE_SIZE (inner_mode
)
5883 - GET_MODE_SIZE (tmode
))
5885 - pos
/ BITS_PER_WORD
)
5886 : pos
/ BITS_PER_WORD
));
5891 new = force_to_mode (inner
, tmode
,
5892 len
>= HOST_BITS_PER_WIDE_INT
5893 ? GET_MODE_MASK (tmode
)
5894 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
5897 /* If this extraction is going into the destination of a SET,
5898 make a STRICT_LOW_PART unless we made a MEM. */
5901 return (GET_CODE (new) == MEM
? new
5902 : (GET_CODE (new) != SUBREG
5903 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
5904 : gen_rtx_combine (STRICT_LOW_PART
, VOIDmode
, new)));
5909 /* If we know that no extraneous bits are set, and that the high
5910 bit is not set, convert the extraction to the cheaper of
5911 sign and zero extension, that are equivalent in these cases. */
5912 if (flag_expensive_optimizations
5913 && (GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
5914 && ((nonzero_bits (new, tmode
)
5915 & ~ (((unsigned HOST_WIDE_INT
)
5916 GET_MODE_MASK (tmode
))
5920 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new);
5921 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new);
5923 /* Prefer ZERO_EXTENSION, since it gives more information to
5925 if (rtx_cost (temp
, SET
) < rtx_cost (temp1
, SET
))
5930 /* Otherwise, sign- or zero-extend unless we already are in the
5933 return (gen_rtx_combine (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
5937 /* Unless this is a COMPARE or we have a funny memory reference,
5938 don't do anything with zero-extending field extracts starting at
5939 the low-order bit since they are simple AND operations. */
5940 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
5941 && ! in_compare
&& ! spans_byte
&& unsignedp
)
5944 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
5945 we would be spanning bytes or if the position is not a constant and the
5946 length is not 1. In all other cases, we would only be going outside
5947 our object in cases when an original shift would have been
5949 if (! spans_byte
&& GET_CODE (inner
) == MEM
5950 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_BITSIZE (is_mode
))
5951 || (pos_rtx
!= 0 && len
!= 1)))
5954 /* Get the mode to use should INNER not be a MEM, the mode for the position,
5955 and the mode for the result. */
5959 wanted_inner_reg_mode
5960 = insn_data
[(int) CODE_FOR_insv
].operand
[0].mode
;
5961 if (wanted_inner_reg_mode
== VOIDmode
)
5962 wanted_inner_reg_mode
= word_mode
;
5964 pos_mode
= insn_data
[(int) CODE_FOR_insv
].operand
[2].mode
;
5965 if (pos_mode
== VOIDmode
)
5966 pos_mode
= word_mode
;
5968 extraction_mode
= insn_data
[(int) CODE_FOR_insv
].operand
[3].mode
;
5969 if (extraction_mode
== VOIDmode
)
5970 extraction_mode
= word_mode
;
5975 if (! in_dest
&& unsignedp
)
5977 wanted_inner_reg_mode
5978 = insn_data
[(int) CODE_FOR_extzv
].operand
[1].mode
;
5979 if (wanted_inner_reg_mode
== VOIDmode
)
5980 wanted_inner_reg_mode
= word_mode
;
5982 pos_mode
= insn_data
[(int) CODE_FOR_extzv
].operand
[3].mode
;
5983 if (pos_mode
== VOIDmode
)
5984 pos_mode
= word_mode
;
5986 extraction_mode
= insn_data
[(int) CODE_FOR_extzv
].operand
[0].mode
;
5987 if (extraction_mode
== VOIDmode
)
5988 extraction_mode
= word_mode
;
5993 if (! in_dest
&& ! unsignedp
)
5995 wanted_inner_reg_mode
5996 = insn_data
[(int) CODE_FOR_extv
].operand
[1].mode
;
5997 if (wanted_inner_reg_mode
== VOIDmode
)
5998 wanted_inner_reg_mode
= word_mode
;
6000 pos_mode
= insn_data
[(int) CODE_FOR_extv
].operand
[3].mode
;
6001 if (pos_mode
== VOIDmode
)
6002 pos_mode
= word_mode
;
6004 extraction_mode
= insn_data
[(int) CODE_FOR_extv
].operand
[0].mode
;
6005 if (extraction_mode
== VOIDmode
)
6006 extraction_mode
= word_mode
;
6010 /* Never narrow an object, since that might not be safe. */
6012 if (mode
!= VOIDmode
6013 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
6014 extraction_mode
= mode
;
6016 if (pos_rtx
&& GET_MODE (pos_rtx
) != VOIDmode
6017 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6018 pos_mode
= GET_MODE (pos_rtx
);
6020 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6021 if we have to change the mode of memory and cannot, the desired mode is
6023 if (GET_CODE (inner
) != MEM
)
6024 wanted_inner_mode
= wanted_inner_reg_mode
;
6025 else if (inner_mode
!= wanted_inner_mode
6026 && (mode_dependent_address_p (XEXP (inner
, 0))
6027 || MEM_VOLATILE_P (inner
)))
6028 wanted_inner_mode
= extraction_mode
;
6032 if (BITS_BIG_ENDIAN
)
6034 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6035 BITS_BIG_ENDIAN style. If position is constant, compute new
6036 position. Otherwise, build subtraction.
6037 Note that POS is relative to the mode of the original argument.
6038 If it's a MEM we need to recompute POS relative to that.
6039 However, if we're extracting from (or inserting into) a register,
6040 we want to recompute POS relative to wanted_inner_mode. */
6041 int width
= (GET_CODE (inner
) == MEM
6042 ? GET_MODE_BITSIZE (is_mode
)
6043 : GET_MODE_BITSIZE (wanted_inner_mode
));
6046 pos
= width
- len
- pos
;
6049 = gen_rtx_combine (MINUS
, GET_MODE (pos_rtx
),
6050 GEN_INT (width
- len
), pos_rtx
);
6051 /* POS may be less than 0 now, but we check for that below.
6052 Note that it can only be less than 0 if GET_CODE (inner) != MEM. */
6055 /* If INNER has a wider mode, make it smaller. If this is a constant
6056 extract, try to adjust the byte to point to the byte containing
6058 if (wanted_inner_mode
!= VOIDmode
6059 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
6060 && ((GET_CODE (inner
) == MEM
6061 && (inner_mode
== wanted_inner_mode
6062 || (! mode_dependent_address_p (XEXP (inner
, 0))
6063 && ! MEM_VOLATILE_P (inner
))))))
6067 /* The computations below will be correct if the machine is big
6068 endian in both bits and bytes or little endian in bits and bytes.
6069 If it is mixed, we must adjust. */
6071 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6072 adjust OFFSET to compensate. */
6073 if (BYTES_BIG_ENDIAN
6075 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
6076 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
6078 /* If this is a constant position, we can move to the desired byte. */
6081 offset
+= pos
/ BITS_PER_UNIT
;
6082 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
6085 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
6087 && is_mode
!= wanted_inner_mode
)
6088 offset
= (GET_MODE_SIZE (is_mode
)
6089 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
6091 if (offset
!= 0 || inner_mode
!= wanted_inner_mode
)
6093 rtx newmem
= gen_rtx_MEM (wanted_inner_mode
,
6094 plus_constant (XEXP (inner
, 0), offset
));
6095 RTX_UNCHANGING_P (newmem
) = RTX_UNCHANGING_P (inner
);
6096 MEM_COPY_ATTRIBUTES (newmem
, inner
);
6101 /* If INNER is not memory, we can always get it into the proper mode. If we
6102 are changing its mode, POS must be a constant and smaller than the size
6104 else if (GET_CODE (inner
) != MEM
)
6106 if (GET_MODE (inner
) != wanted_inner_mode
6108 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
6111 inner
= force_to_mode (inner
, wanted_inner_mode
,
6113 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
6114 ? GET_MODE_MASK (wanted_inner_mode
)
6115 : ((((unsigned HOST_WIDE_INT
) 1 << len
) - 1)
6120 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6121 have to zero extend. Otherwise, we can just use a SUBREG. */
6123 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6125 rtx temp
= gen_rtx_combine (ZERO_EXTEND
, pos_mode
, pos_rtx
);
6127 /* If we know that no extraneous bits are set, and that the high
6128 bit is not set, convert extraction to cheaper one - eighter
6129 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6131 if (flag_expensive_optimizations
6132 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx
)) <= HOST_BITS_PER_WIDE_INT
6133 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
6134 & ~ (((unsigned HOST_WIDE_INT
)
6135 GET_MODE_MASK (GET_MODE (pos_rtx
)))
6139 rtx temp1
= gen_rtx_SIGN_EXTEND (pos_mode
, pos_rtx
);
6141 /* Preffer ZERO_EXTENSION, since it gives more information to
6143 if (rtx_cost (temp1
, SET
) < rtx_cost (temp
, SET
))
6148 else if (pos_rtx
!= 0
6149 && GET_MODE_SIZE (pos_mode
) < GET_MODE_SIZE (GET_MODE (pos_rtx
)))
6150 pos_rtx
= gen_lowpart_for_combine (pos_mode
, pos_rtx
);
6152 /* Make POS_RTX unless we already have it and it is correct. If we don't
6153 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6155 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
6156 pos_rtx
= orig_pos_rtx
;
6158 else if (pos_rtx
== 0)
6159 pos_rtx
= GEN_INT (pos
);
6161 /* Make the required operation. See if we can use existing rtx. */
6162 new = gen_rtx_combine (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
6163 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
6165 new = gen_lowpart_for_combine (mode
, new);
6170 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6171 with any other operations in X. Return X without that shift if so. */
6174 extract_left_shift (x
, count
)
6178 enum rtx_code code
= GET_CODE (x
);
6179 enum machine_mode mode
= GET_MODE (x
);
6185 /* This is the shift itself. If it is wide enough, we will return
6186 either the value being shifted if the shift count is equal to
6187 COUNT or a shift for the difference. */
6188 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6189 && INTVAL (XEXP (x
, 1)) >= count
)
6190 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
6191 INTVAL (XEXP (x
, 1)) - count
);
6195 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6196 return gen_unary (code
, mode
, mode
, tem
);
6200 case PLUS
: case IOR
: case XOR
: case AND
:
6201 /* If we can safely shift this constant and we find the inner shift,
6202 make a new operation. */
6203 if (GET_CODE (XEXP (x
,1)) == CONST_INT
6204 && (INTVAL (XEXP (x
, 1)) & ((((HOST_WIDE_INT
) 1 << count
)) - 1)) == 0
6205 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
6206 return gen_binary (code
, mode
, tem
,
6207 GEN_INT (INTVAL (XEXP (x
, 1)) >> count
));
6218 /* Look at the expression rooted at X. Look for expressions
6219 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6220 Form these expressions.
6222 Return the new rtx, usually just X.
6224 Also, for machines like the Vax that don't have logical shift insns,
6225 try to convert logical to arithmetic shift operations in cases where
6226 they are equivalent. This undoes the canonicalizations to logical
6227 shifts done elsewhere.
6229 We try, as much as possible, to re-use rtl expressions to save memory.
6231 IN_CODE says what kind of expression we are processing. Normally, it is
6232 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6233 being kludges), it is MEM. When processing the arguments of a comparison
6234 or a COMPARE against zero, it is COMPARE. */
6237 make_compound_operation (x
, in_code
)
6239 enum rtx_code in_code
;
6241 enum rtx_code code
= GET_CODE (x
);
6242 enum machine_mode mode
= GET_MODE (x
);
6243 int mode_width
= GET_MODE_BITSIZE (mode
);
6245 enum rtx_code next_code
;
6251 /* Select the code to be used in recursive calls. Once we are inside an
6252 address, we stay there. If we have a comparison, set to COMPARE,
6253 but once inside, go back to our default of SET. */
6255 next_code
= (code
== MEM
|| code
== PLUS
|| code
== MINUS
? MEM
6256 : ((code
== COMPARE
|| GET_RTX_CLASS (code
) == '<')
6257 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
6258 : in_code
== COMPARE
? SET
: in_code
);
6260 /* Process depending on the code of this operation. If NEW is set
6261 non-zero, it will be returned. */
6266 /* Convert shifts by constants into multiplications if inside
6268 if (in_code
== MEM
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6269 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
6270 && INTVAL (XEXP (x
, 1)) >= 0)
6272 new = make_compound_operation (XEXP (x
, 0), next_code
);
6273 new = gen_rtx_combine (MULT
, mode
, new,
6274 GEN_INT ((HOST_WIDE_INT
) 1
6275 << INTVAL (XEXP (x
, 1))));
6280 /* If the second operand is not a constant, we can't do anything
6282 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
)
6285 /* If the constant is a power of two minus one and the first operand
6286 is a logical right shift, make an extraction. */
6287 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6288 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6290 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6291 new = make_extraction (mode
, new, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
6292 0, in_code
== COMPARE
);
6295 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6296 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
6297 && subreg_lowpart_p (XEXP (x
, 0))
6298 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
6299 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6301 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x
, 0)), 0),
6303 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x
, 0))), new, 0,
6304 XEXP (SUBREG_REG (XEXP (x
, 0)), 1), i
, 1,
6305 0, in_code
== COMPARE
);
6307 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6308 else if ((GET_CODE (XEXP (x
, 0)) == XOR
6309 || GET_CODE (XEXP (x
, 0)) == IOR
)
6310 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
6311 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
6312 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6314 /* Apply the distributive law, and then try to make extractions. */
6315 new = gen_rtx_combine (GET_CODE (XEXP (x
, 0)), mode
,
6316 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
6318 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
6320 new = make_compound_operation (new, in_code
);
6323 /* If we are have (and (rotate X C) M) and C is larger than the number
6324 of bits in M, this is an extraction. */
6326 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
6327 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6328 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0
6329 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
6331 new = make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
6332 new = make_extraction (mode
, new,
6333 (GET_MODE_BITSIZE (mode
)
6334 - INTVAL (XEXP (XEXP (x
, 0), 1))),
6335 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6338 /* On machines without logical shifts, if the operand of the AND is
6339 a logical shift and our mask turns off all the propagated sign
6340 bits, we can replace the logical shift with an arithmetic shift. */
6341 else if (ashr_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
6342 && (lshr_optab
->handlers
[(int) mode
].insn_code
6343 == CODE_FOR_nothing
)
6344 && GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6345 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6346 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
6347 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
6348 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
6350 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
6352 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
6353 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
6355 gen_rtx_combine (ASHIFTRT
, mode
,
6356 make_compound_operation (XEXP (XEXP (x
, 0), 0),
6358 XEXP (XEXP (x
, 0), 1)));
6361 /* If the constant is one less than a power of two, this might be
6362 representable by an extraction even if no shift is present.
6363 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6364 we are in a COMPARE. */
6365 else if ((i
= exact_log2 (INTVAL (XEXP (x
, 1)) + 1)) >= 0)
6366 new = make_extraction (mode
,
6367 make_compound_operation (XEXP (x
, 0),
6369 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
6371 /* If we are in a comparison and this is an AND with a power of two,
6372 convert this into the appropriate bit extract. */
6373 else if (in_code
== COMPARE
6374 && (i
= exact_log2 (INTVAL (XEXP (x
, 1)))) >= 0)
6375 new = make_extraction (mode
,
6376 make_compound_operation (XEXP (x
, 0),
6378 i
, NULL_RTX
, 1, 1, 0, 1);
6383 /* If the sign bit is known to be zero, replace this with an
6384 arithmetic shift. */
6385 if (ashr_optab
->handlers
[(int) mode
].insn_code
== CODE_FOR_nothing
6386 && lshr_optab
->handlers
[(int) mode
].insn_code
!= CODE_FOR_nothing
6387 && mode_width
<= HOST_BITS_PER_WIDE_INT
6388 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
6390 new = gen_rtx_combine (ASHIFTRT
, mode
,
6391 make_compound_operation (XEXP (x
, 0),
6397 /* ... fall through ... */
6403 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6404 this is a SIGN_EXTRACT. */
6405 if (GET_CODE (rhs
) == CONST_INT
6406 && GET_CODE (lhs
) == ASHIFT
6407 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
6408 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1)))
6410 new = make_compound_operation (XEXP (lhs
, 0), next_code
);
6411 new = make_extraction (mode
, new,
6412 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
6413 NULL_RTX
, mode_width
- INTVAL (rhs
),
6414 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6417 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6418 If so, try to merge the shifts into a SIGN_EXTEND. We could
6419 also do this for some cases of SIGN_EXTRACT, but it doesn't
6420 seem worth the effort; the case checked for occurs on Alpha. */
6422 if (GET_RTX_CLASS (GET_CODE (lhs
)) != 'o'
6423 && ! (GET_CODE (lhs
) == SUBREG
6424 && (GET_RTX_CLASS (GET_CODE (SUBREG_REG (lhs
))) == 'o'))
6425 && GET_CODE (rhs
) == CONST_INT
6426 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
6427 && (new = extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
6428 new = make_extraction (mode
, make_compound_operation (new, next_code
),
6429 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
6430 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
6435 /* Call ourselves recursively on the inner expression. If we are
6436 narrowing the object and it has a different RTL code from
6437 what it originally did, do this SUBREG as a force_to_mode. */
6439 tem
= make_compound_operation (SUBREG_REG (x
), in_code
);
6440 if (GET_CODE (tem
) != GET_CODE (SUBREG_REG (x
))
6441 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (tem
))
6442 && subreg_lowpart_p (x
))
6444 rtx newer
= force_to_mode (tem
, mode
,
6445 GET_MODE_MASK (mode
), NULL_RTX
, 0);
6447 /* If we have something other than a SUBREG, we might have
6448 done an expansion, so rerun outselves. */
6449 if (GET_CODE (newer
) != SUBREG
)
6450 newer
= make_compound_operation (newer
, in_code
);
6455 /* If this is a paradoxical subreg, and the new code is a sign or
6456 zero extension, omit the subreg and widen the extension. If it
6457 is a regular subreg, we can still get rid of the subreg by not
6458 widening so much, or in fact removing the extension entirely. */
6459 if ((GET_CODE (tem
) == SIGN_EXTEND
6460 || GET_CODE (tem
) == ZERO_EXTEND
)
6461 && subreg_lowpart_p (x
))
6463 if (GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (tem
))
6464 || (GET_MODE_SIZE (mode
) >
6465 GET_MODE_SIZE (GET_MODE (XEXP (tem
, 0)))))
6466 tem
= gen_rtx_combine (GET_CODE (tem
), mode
, XEXP (tem
, 0));
6468 tem
= gen_lowpart_for_combine (mode
, XEXP (tem
, 0));
6479 x
= gen_lowpart_for_combine (mode
, new);
6480 code
= GET_CODE (x
);
6483 /* Now recursively process each operand of this operation. */
6484 fmt
= GET_RTX_FORMAT (code
);
6485 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
6488 new = make_compound_operation (XEXP (x
, i
), next_code
);
6489 SUBST (XEXP (x
, i
), new);
6495 /* Given M see if it is a value that would select a field of bits
6496 within an item, but not the entire word. Return -1 if not.
6497 Otherwise, return the starting position of the field, where 0 is the
6500 *PLEN is set to the length of the field. */
6503 get_pos_from_mask (m
, plen
)
6504 unsigned HOST_WIDE_INT m
;
6507 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6508 int pos
= exact_log2 (m
& - m
);
6513 /* Now shift off the low-order zero bits and see if we have a power of
6515 *plen
= exact_log2 ((m
>> pos
) + 1);
6523 /* See if X can be simplified knowing that we will only refer to it in
6524 MODE and will only refer to those bits that are nonzero in MASK.
6525 If other bits are being computed or if masking operations are done
6526 that select a superset of the bits in MASK, they can sometimes be
6529 Return a possibly simplified expression, but always convert X to
6530 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6532 Also, if REG is non-zero and X is a register equal in value to REG,
6535 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6536 are all off in X. This is used when X will be complemented, by either
6537 NOT, NEG, or XOR. */
6540 force_to_mode (x
, mode
, mask
, reg
, just_select
)
6542 enum machine_mode mode
;
6543 unsigned HOST_WIDE_INT mask
;
6547 enum rtx_code code
= GET_CODE (x
);
6548 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
6549 enum machine_mode op_mode
;
6550 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
6553 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6554 code below will do the wrong thing since the mode of such an
6555 expression is VOIDmode.
6557 Also do nothing if X is a CLOBBER; this can happen if X was
6558 the return value from a call to gen_lowpart_for_combine. */
6559 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
6562 /* We want to perform the operation is its present mode unless we know
6563 that the operation is valid in MODE, in which case we do the operation
6565 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
6566 && code_to_optab
[(int) code
] != 0
6567 && (code_to_optab
[(int) code
]->handlers
[(int) mode
].insn_code
6568 != CODE_FOR_nothing
))
6569 ? mode
: GET_MODE (x
));
6571 /* It is not valid to do a right-shift in a narrower mode
6572 than the one it came in with. */
6573 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
6574 && GET_MODE_BITSIZE (mode
) < GET_MODE_BITSIZE (GET_MODE (x
)))
6575 op_mode
= GET_MODE (x
);
6577 /* Truncate MASK to fit OP_MODE. */
6579 mask
&= GET_MODE_MASK (op_mode
);
6581 /* When we have an arithmetic operation, or a shift whose count we
6582 do not know, we need to assume that all bit the up to the highest-order
6583 bit in MASK will be needed. This is how we form such a mask. */
6585 fuller_mask
= (GET_MODE_BITSIZE (op_mode
) >= HOST_BITS_PER_WIDE_INT
6586 ? GET_MODE_MASK (op_mode
)
6587 : (((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mask
) + 1))
6590 fuller_mask
= ~ (HOST_WIDE_INT
) 0;
6592 /* Determine what bits of X are guaranteed to be (non)zero. */
6593 nonzero
= nonzero_bits (x
, mode
);
6595 /* If none of the bits in X are needed, return a zero. */
6596 if (! just_select
&& (nonzero
& mask
) == 0)
6599 /* If X is a CONST_INT, return a new one. Do this here since the
6600 test below will fail. */
6601 if (GET_CODE (x
) == CONST_INT
)
6603 HOST_WIDE_INT cval
= INTVAL (x
) & mask
;
6604 int width
= GET_MODE_BITSIZE (mode
);
6606 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6607 number, sign extend it. */
6608 if (width
> 0 && width
< HOST_BITS_PER_WIDE_INT
6609 && (cval
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6610 cval
|= (HOST_WIDE_INT
) -1 << width
;
6612 return GEN_INT (cval
);
6615 /* If X is narrower than MODE and we want all the bits in X's mode, just
6616 get X in the proper mode. */
6617 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
6618 && (GET_MODE_MASK (GET_MODE (x
)) & ~ mask
) == 0)
6619 return gen_lowpart_for_combine (mode
, x
);
6621 /* If we aren't changing the mode, X is not a SUBREG, and all zero bits in
6622 MASK are already known to be zero in X, we need not do anything. */
6623 if (GET_MODE (x
) == mode
&& code
!= SUBREG
&& (~ mask
& nonzero
) == 0)
6629 /* If X is a (clobber (const_int)), return it since we know we are
6630 generating something that won't match. */
6634 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6635 spanned the boundary of the MEM. If we are now masking so it is
6636 within that boundary, we don't need the USE any more. */
6637 if (! BITS_BIG_ENDIAN
6638 && (mask
& ~ GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6639 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
6646 x
= expand_compound_operation (x
);
6647 if (GET_CODE (x
) != code
)
6648 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6652 if (reg
!= 0 && (rtx_equal_p (get_last_value (reg
), x
)
6653 || rtx_equal_p (reg
, get_last_value (x
))))
6658 if (subreg_lowpart_p (x
)
6659 /* We can ignore the effect of this SUBREG if it narrows the mode or
6660 if the constant masks to zero all the bits the mode doesn't
6662 && ((GET_MODE_SIZE (GET_MODE (x
))
6663 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
6665 & GET_MODE_MASK (GET_MODE (x
))
6666 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
6667 return force_to_mode (SUBREG_REG (x
), mode
, mask
, reg
, next_select
);
6671 /* If this is an AND with a constant, convert it into an AND
6672 whose constant is the AND of that constant with MASK. If it
6673 remains an AND of MASK, delete it since it is redundant. */
6675 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
6677 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
6678 mask
& INTVAL (XEXP (x
, 1)));
6680 /* If X is still an AND, see if it is an AND with a mask that
6681 is just some low-order bits. If so, and it is MASK, we don't
6684 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6685 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (x
, 1)) == mask
)
6688 /* If it remains an AND, try making another AND with the bits
6689 in the mode mask that aren't in MASK turned on. If the
6690 constant in the AND is wide enough, this might make a
6691 cheaper constant. */
6693 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
6694 && GET_MODE_MASK (GET_MODE (x
)) != mask
6695 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
)
6697 HOST_WIDE_INT cval
= (INTVAL (XEXP (x
, 1))
6698 | (GET_MODE_MASK (GET_MODE (x
)) & ~ mask
));
6699 int width
= GET_MODE_BITSIZE (GET_MODE (x
));
6702 /* If MODE is narrower that HOST_WIDE_INT and CVAL is a negative
6703 number, sign extend it. */
6704 if (width
> 0 && width
< HOST_BITS_PER_WIDE_INT
6705 && (cval
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6706 cval
|= (HOST_WIDE_INT
) -1 << width
;
6708 y
= gen_binary (AND
, GET_MODE (x
), XEXP (x
, 0), GEN_INT (cval
));
6709 if (rtx_cost (y
, SET
) < rtx_cost (x
, SET
))
6719 /* In (and (plus FOO C1) M), if M is a mask that just turns off
6720 low-order bits (as in an alignment operation) and FOO is already
6721 aligned to that boundary, mask C1 to that boundary as well.
6722 This may eliminate that PLUS and, later, the AND. */
6725 int width
= GET_MODE_BITSIZE (mode
);
6726 unsigned HOST_WIDE_INT smask
= mask
;
6728 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
6729 number, sign extend it. */
6731 if (width
< HOST_BITS_PER_WIDE_INT
6732 && (smask
& ((HOST_WIDE_INT
) 1 << (width
- 1))) != 0)
6733 smask
|= (HOST_WIDE_INT
) -1 << width
;
6735 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6736 && exact_log2 (- smask
) >= 0)
6740 && (XEXP (x
, 0) == stack_pointer_rtx
6741 || XEXP (x
, 0) == frame_pointer_rtx
))
6743 int sp_alignment
= STACK_BOUNDARY
/ BITS_PER_UNIT
;
6744 unsigned HOST_WIDE_INT sp_mask
= GET_MODE_MASK (mode
);
6746 sp_mask
&= ~ (sp_alignment
- 1);
6747 if ((sp_mask
& ~ smask
) == 0
6748 && ((INTVAL (XEXP (x
, 1)) - STACK_BIAS
) & ~ smask
) != 0)
6749 return force_to_mode (plus_constant (XEXP (x
, 0),
6750 ((INTVAL (XEXP (x
, 1)) -
6751 STACK_BIAS
) & smask
)
6753 mode
, smask
, reg
, next_select
);
6756 if ((nonzero_bits (XEXP (x
, 0), mode
) & ~ smask
) == 0
6757 && (INTVAL (XEXP (x
, 1)) & ~ smask
) != 0)
6758 return force_to_mode (plus_constant (XEXP (x
, 0),
6759 (INTVAL (XEXP (x
, 1))
6761 mode
, smask
, reg
, next_select
);
6765 /* ... fall through ... */
6769 /* For PLUS, MINUS and MULT, we need any bits less significant than the
6770 most significant bit in MASK since carries from those bits will
6771 affect the bits we are interested in. */
6777 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
6778 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
6779 operation which may be a bitfield extraction. Ensure that the
6780 constant we form is not wider than the mode of X. */
6782 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6783 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6784 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
6785 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
6786 && GET_CODE (XEXP (x
, 1)) == CONST_INT
6787 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
6788 + floor_log2 (INTVAL (XEXP (x
, 1))))
6789 < GET_MODE_BITSIZE (GET_MODE (x
)))
6790 && (INTVAL (XEXP (x
, 1))
6791 & ~ nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
6793 temp
= GEN_INT ((INTVAL (XEXP (x
, 1)) & mask
)
6794 << INTVAL (XEXP (XEXP (x
, 0), 1)));
6795 temp
= gen_binary (GET_CODE (x
), GET_MODE (x
),
6796 XEXP (XEXP (x
, 0), 0), temp
);
6797 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
6798 XEXP (XEXP (x
, 0), 1));
6799 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6803 /* For most binary operations, just propagate into the operation and
6804 change the mode if we have an operation of that mode. */
6806 op0
= gen_lowpart_for_combine (op_mode
,
6807 force_to_mode (XEXP (x
, 0), mode
, mask
,
6809 op1
= gen_lowpart_for_combine (op_mode
,
6810 force_to_mode (XEXP (x
, 1), mode
, mask
,
6813 /* If OP1 is a CONST_INT and X is an IOR or XOR, clear bits outside
6814 MASK since OP1 might have been sign-extended but we never want
6815 to turn on extra bits, since combine might have previously relied
6816 on them being off. */
6817 if (GET_CODE (op1
) == CONST_INT
&& (code
== IOR
|| code
== XOR
)
6818 && (INTVAL (op1
) & mask
) != 0)
6819 op1
= GEN_INT (INTVAL (op1
) & mask
);
6821 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
6822 x
= gen_binary (code
, op_mode
, op0
, op1
);
6826 /* For left shifts, do the same, but just for the first operand.
6827 However, we cannot do anything with shifts where we cannot
6828 guarantee that the counts are smaller than the size of the mode
6829 because such a count will have a different meaning in a
6832 if (! (GET_CODE (XEXP (x
, 1)) == CONST_INT
6833 && INTVAL (XEXP (x
, 1)) >= 0
6834 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (mode
))
6835 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
6836 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
6837 < (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
))))
6840 /* If the shift count is a constant and we can do arithmetic in
6841 the mode of the shift, refine which bits we need. Otherwise, use the
6842 conservative form of the mask. */
6843 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6844 && INTVAL (XEXP (x
, 1)) >= 0
6845 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (op_mode
)
6846 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
6847 mask
>>= INTVAL (XEXP (x
, 1));
6851 op0
= gen_lowpart_for_combine (op_mode
,
6852 force_to_mode (XEXP (x
, 0), op_mode
,
6853 mask
, reg
, next_select
));
6855 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
6856 x
= gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
6860 /* Here we can only do something if the shift count is a constant,
6861 this shift constant is valid for the host, and we can do arithmetic
6864 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6865 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
6866 && GET_MODE_BITSIZE (op_mode
) <= HOST_BITS_PER_WIDE_INT
)
6868 rtx inner
= XEXP (x
, 0);
6869 unsigned HOST_WIDE_INT inner_mask
;
6871 /* Select the mask of the bits we need for the shift operand. */
6872 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
6874 /* We can only change the mode of the shift if we can do arithmetic
6875 in the mode of the shift and INNER_MASK is no wider than the
6876 width of OP_MODE. */
6877 if (GET_MODE_BITSIZE (op_mode
) > HOST_BITS_PER_WIDE_INT
6878 || (inner_mask
& ~ GET_MODE_MASK (op_mode
)) != 0)
6879 op_mode
= GET_MODE (x
);
6881 inner
= force_to_mode (inner
, op_mode
, inner_mask
, reg
, next_select
);
6883 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
6884 x
= gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
6887 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
6888 shift and AND produces only copies of the sign bit (C2 is one less
6889 than a power of two), we can do this with just a shift. */
6891 if (GET_CODE (x
) == LSHIFTRT
6892 && GET_CODE (XEXP (x
, 1)) == CONST_INT
6893 && ((INTVAL (XEXP (x
, 1))
6894 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
6895 >= GET_MODE_BITSIZE (GET_MODE (x
)))
6896 && exact_log2 (mask
+ 1) >= 0
6897 && (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
6898 >= exact_log2 (mask
+ 1)))
6899 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
6900 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x
))
6901 - exact_log2 (mask
+ 1)));
6906 /* If we are just looking for the sign bit, we don't need this shift at
6907 all, even if it has a variable count. */
6908 if (GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
6909 && (mask
== ((unsigned HOST_WIDE_INT
) 1
6910 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
6911 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
6913 /* If this is a shift by a constant, get a mask that contains those bits
6914 that are not copies of the sign bit. We then have two cases: If
6915 MASK only includes those bits, this can be a logical shift, which may
6916 allow simplifications. If MASK is a single-bit field not within
6917 those bits, we are requesting a copy of the sign bit and hence can
6918 shift the sign bit to the appropriate location. */
6920 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0
6921 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
6925 /* If the considered data is wider then HOST_WIDE_INT, we can't
6926 represent a mask for all its bits in a single scalar.
6927 But we only care about the lower bits, so calculate these. */
6929 if (GET_MODE_BITSIZE (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
6931 nonzero
= ~ (HOST_WIDE_INT
) 0;
6933 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
6934 is the number of bits a full-width mask would have set.
6935 We need only shift if these are fewer than nonzero can
6936 hold. If not, we must keep all bits set in nonzero. */
6938 if (GET_MODE_BITSIZE (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
6939 < HOST_BITS_PER_WIDE_INT
)
6940 nonzero
>>= INTVAL (XEXP (x
, 1))
6941 + HOST_BITS_PER_WIDE_INT
6942 - GET_MODE_BITSIZE (GET_MODE (x
)) ;
6946 nonzero
= GET_MODE_MASK (GET_MODE (x
));
6947 nonzero
>>= INTVAL (XEXP (x
, 1));
6950 if ((mask
& ~ nonzero
) == 0
6951 || (i
= exact_log2 (mask
)) >= 0)
6953 x
= simplify_shift_const
6954 (x
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
6955 i
< 0 ? INTVAL (XEXP (x
, 1))
6956 : GET_MODE_BITSIZE (GET_MODE (x
)) - 1 - i
);
6958 if (GET_CODE (x
) != ASHIFTRT
)
6959 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
6963 /* If MASK is 1, convert this to a LSHIFTRT. This can be done
6964 even if the shift count isn't a constant. */
6966 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1));
6970 /* If this is a zero- or sign-extension operation that just affects bits
6971 we don't care about, remove it. Be sure the call above returned
6972 something that is still a shift. */
6974 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
6975 && GET_CODE (XEXP (x
, 1)) == CONST_INT
6976 && INTVAL (XEXP (x
, 1)) >= 0
6977 && (INTVAL (XEXP (x
, 1))
6978 <= GET_MODE_BITSIZE (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
6979 && GET_CODE (XEXP (x
, 0)) == ASHIFT
6980 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6981 && INTVAL (XEXP (XEXP (x
, 0), 1)) == INTVAL (XEXP (x
, 1)))
6982 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
6989 /* If the shift count is constant and we can do computations
6990 in the mode of X, compute where the bits we care about are.
6991 Otherwise, we can't do anything. Don't change the mode of
6992 the shift or propagate MODE into the shift, though. */
6993 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
6994 && INTVAL (XEXP (x
, 1)) >= 0)
6996 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
6997 GET_MODE (x
), GEN_INT (mask
),
6999 if (temp
&& GET_CODE(temp
) == CONST_INT
)
7001 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
7002 INTVAL (temp
), reg
, next_select
));
7007 /* If we just want the low-order bit, the NEG isn't needed since it
7008 won't change the low-order bit. */
7010 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, just_select
);
7012 /* We need any bits less significant than the most significant bit in
7013 MASK since carries from those bits will affect the bits we are
7019 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7020 same as the XOR case above. Ensure that the constant we form is not
7021 wider than the mode of X. */
7023 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7024 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
7025 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7026 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
7027 < GET_MODE_BITSIZE (GET_MODE (x
)))
7028 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
7030 temp
= GEN_INT (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)));
7031 temp
= gen_binary (XOR
, GET_MODE (x
), XEXP (XEXP (x
, 0), 0), temp
);
7032 x
= gen_binary (LSHIFTRT
, GET_MODE (x
), temp
, XEXP (XEXP (x
, 0), 1));
7034 return force_to_mode (x
, mode
, mask
, reg
, next_select
);
7037 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7038 use the full mask inside the NOT. */
7042 op0
= gen_lowpart_for_combine (op_mode
,
7043 force_to_mode (XEXP (x
, 0), mode
, mask
,
7045 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
7046 x
= gen_unary (code
, op_mode
, op_mode
, op0
);
7050 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7051 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7052 which is equal to STORE_FLAG_VALUE. */
7053 if ((mask
& ~ STORE_FLAG_VALUE
) == 0 && XEXP (x
, 1) == const0_rtx
7054 && exact_log2 (nonzero_bits (XEXP (x
, 0), mode
)) >= 0
7055 && nonzero_bits (XEXP (x
, 0), mode
) == STORE_FLAG_VALUE
)
7056 return force_to_mode (XEXP (x
, 0), mode
, mask
, reg
, next_select
);
7061 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7062 written in a narrower mode. We play it safe and do not do so. */
7065 gen_lowpart_for_combine (GET_MODE (x
),
7066 force_to_mode (XEXP (x
, 1), mode
,
7067 mask
, reg
, next_select
)));
7069 gen_lowpart_for_combine (GET_MODE (x
),
7070 force_to_mode (XEXP (x
, 2), mode
,
7071 mask
, reg
,next_select
)));
7078 /* Ensure we return a value of the proper mode. */
7079 return gen_lowpart_for_combine (mode
, x
);
7082 /* Return nonzero if X is an expression that has one of two values depending on
7083 whether some other value is zero or nonzero. In that case, we return the
7084 value that is being tested, *PTRUE is set to the value if the rtx being
7085 returned has a nonzero value, and *PFALSE is set to the other alternative.
7087 If we return zero, we set *PTRUE and *PFALSE to X. */
7090 if_then_else_cond (x
, ptrue
, pfalse
)
7092 rtx
*ptrue
, *pfalse
;
7094 enum machine_mode mode
= GET_MODE (x
);
7095 enum rtx_code code
= GET_CODE (x
);
7096 int size
= GET_MODE_BITSIZE (mode
);
7097 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
7098 unsigned HOST_WIDE_INT nz
;
7100 /* If we are comparing a value against zero, we are done. */
7101 if ((code
== NE
|| code
== EQ
)
7102 && GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) == 0)
7104 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
7105 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
7109 /* If this is a unary operation whose operand has one of two values, apply
7110 our opcode to compute those values. */
7111 else if (GET_RTX_CLASS (code
) == '1'
7112 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
7114 *ptrue
= gen_unary (code
, mode
, GET_MODE (XEXP (x
, 0)), true0
);
7115 *pfalse
= gen_unary (code
, mode
, GET_MODE (XEXP (x
, 0)), false0
);
7119 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7120 make can't possibly match and would suppress other optimizations. */
7121 else if (code
== COMPARE
)
7124 /* If this is a binary operation, see if either side has only one of two
7125 values. If either one does or if both do and they are conditional on
7126 the same value, compute the new true and false values. */
7127 else if (GET_RTX_CLASS (code
) == 'c' || GET_RTX_CLASS (code
) == '2'
7128 || GET_RTX_CLASS (code
) == '<')
7130 cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
);
7131 cond1
= if_then_else_cond (XEXP (x
, 1), &true1
, &false1
);
7133 if ((cond0
!= 0 || cond1
!= 0)
7134 && ! (cond0
!= 0 && cond1
!= 0 && ! rtx_equal_p (cond0
, cond1
)))
7136 /* If if_then_else_cond returned zero, then true/false are the
7137 same rtl. We must copy one of them to prevent invalid rtl
7140 true0
= copy_rtx (true0
);
7141 else if (cond1
== 0)
7142 true1
= copy_rtx (true1
);
7144 *ptrue
= gen_binary (code
, mode
, true0
, true1
);
7145 *pfalse
= gen_binary (code
, mode
, false0
, false1
);
7146 return cond0
? cond0
: cond1
;
7149 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7150 operands is zero when the other is non-zero, and vice-versa,
7151 and STORE_FLAG_VALUE is 1 or -1. */
7153 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7154 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
7156 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7158 rtx op0
= XEXP (XEXP (x
, 0), 1);
7159 rtx op1
= XEXP (XEXP (x
, 1), 1);
7161 cond0
= XEXP (XEXP (x
, 0), 0);
7162 cond1
= XEXP (XEXP (x
, 1), 0);
7164 if (GET_RTX_CLASS (GET_CODE (cond0
)) == '<'
7165 && GET_RTX_CLASS (GET_CODE (cond1
)) == '<'
7166 && reversible_comparison_p (cond1
)
7167 && ((GET_CODE (cond0
) == reverse_condition (GET_CODE (cond1
))
7168 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7169 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7170 || ((swap_condition (GET_CODE (cond0
))
7171 == reverse_condition (GET_CODE (cond1
)))
7172 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7173 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7174 && ! side_effects_p (x
))
7176 *ptrue
= gen_binary (MULT
, mode
, op0
, const_true_rtx
);
7177 *pfalse
= gen_binary (MULT
, mode
,
7179 ? gen_unary (NEG
, mode
, mode
, op1
) : op1
),
7185 /* Similarly for MULT, AND and UMIN, execpt that for these the result
7187 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
7188 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
7189 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
7191 cond0
= XEXP (XEXP (x
, 0), 0);
7192 cond1
= XEXP (XEXP (x
, 1), 0);
7194 if (GET_RTX_CLASS (GET_CODE (cond0
)) == '<'
7195 && GET_RTX_CLASS (GET_CODE (cond1
)) == '<'
7196 && reversible_comparison_p (cond1
)
7197 && ((GET_CODE (cond0
) == reverse_condition (GET_CODE (cond1
))
7198 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
7199 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
7200 || ((swap_condition (GET_CODE (cond0
))
7201 == reverse_condition (GET_CODE (cond1
)))
7202 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
7203 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
7204 && ! side_effects_p (x
))
7206 *ptrue
= *pfalse
= const0_rtx
;
7212 else if (code
== IF_THEN_ELSE
)
7214 /* If we have IF_THEN_ELSE already, extract the condition and
7215 canonicalize it if it is NE or EQ. */
7216 cond0
= XEXP (x
, 0);
7217 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
7218 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
7219 return XEXP (cond0
, 0);
7220 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
7222 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
7223 return XEXP (cond0
, 0);
7229 /* If X is a normal SUBREG with both inner and outer modes integral,
7230 we can narrow both the true and false values of the inner expression,
7231 if there is a condition. */
7232 else if (code
== SUBREG
&& GET_MODE_CLASS (mode
) == MODE_INT
7233 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_INT
7234 && GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))
7235 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
7238 if ((GET_CODE (SUBREG_REG (x
)) == REG
7239 || GET_CODE (SUBREG_REG (x
)) == MEM
7240 || CONSTANT_P (SUBREG_REG (x
)))
7241 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) > UNITS_PER_WORD
7242 && (WORDS_BIG_ENDIAN
|| SUBREG_WORD (x
) != 0))
7244 true0
= operand_subword (true0
, SUBREG_WORD (x
), 0, mode
);
7245 false0
= operand_subword (false0
, SUBREG_WORD (x
), 0, mode
);
7247 *ptrue
= force_to_mode (true0
, mode
, GET_MODE_MASK (mode
), NULL_RTX
, 0);
7249 = force_to_mode (false0
, mode
, GET_MODE_MASK (mode
), NULL_RTX
, 0);
7254 /* If X is a constant, this isn't special and will cause confusions
7255 if we treat it as such. Likewise if it is equivalent to a constant. */
7256 else if (CONSTANT_P (x
)
7257 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
7260 /* If X is known to be either 0 or -1, those are the true and
7261 false values when testing X. */
7262 else if (num_sign_bit_copies (x
, mode
) == size
)
7264 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
7268 /* Likewise for 0 or a single bit. */
7269 else if (exact_log2 (nz
= nonzero_bits (x
, mode
)) >= 0)
7271 *ptrue
= GEN_INT (nz
), *pfalse
= const0_rtx
;
7275 /* Otherwise fail; show no condition with true and false values the same. */
7276 *ptrue
= *pfalse
= x
;
7280 /* Return the value of expression X given the fact that condition COND
7281 is known to be true when applied to REG as its first operand and VAL
7282 as its second. X is known to not be shared and so can be modified in
7285 We only handle the simplest cases, and specifically those cases that
7286 arise with IF_THEN_ELSE expressions. */
7289 known_cond (x
, cond
, reg
, val
)
7294 enum rtx_code code
= GET_CODE (x
);
7299 if (side_effects_p (x
))
7302 if (cond
== EQ
&& rtx_equal_p (x
, reg
))
7305 /* If X is (abs REG) and we know something about REG's relationship
7306 with zero, we may be able to simplify this. */
7308 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
7311 case GE
: case GT
: case EQ
:
7314 return gen_unary (NEG
, GET_MODE (XEXP (x
, 0)), GET_MODE (XEXP (x
, 0)),
7320 /* The only other cases we handle are MIN, MAX, and comparisons if the
7321 operands are the same as REG and VAL. */
7323 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == 'c')
7325 if (rtx_equal_p (XEXP (x
, 0), val
))
7326 cond
= swap_condition (cond
), temp
= val
, val
= reg
, reg
= temp
;
7328 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
7330 if (GET_RTX_CLASS (code
) == '<')
7332 if (comparison_dominates_p (cond
, code
))
7333 return const_true_rtx
;
7335 code
= reverse_condition (code
);
7337 && comparison_dominates_p (cond
, code
))
7342 else if (code
== SMAX
|| code
== SMIN
7343 || code
== UMIN
|| code
== UMAX
)
7345 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
7347 if (code
== SMAX
|| code
== UMAX
)
7348 cond
= reverse_condition (cond
);
7353 return unsignedp
? x
: XEXP (x
, 1);
7355 return unsignedp
? x
: XEXP (x
, 0);
7357 return unsignedp
? XEXP (x
, 1) : x
;
7359 return unsignedp
? XEXP (x
, 0) : x
;
7367 fmt
= GET_RTX_FORMAT (code
);
7368 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7371 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
7372 else if (fmt
[i
] == 'E')
7373 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
7374 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
7381 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7382 assignment as a field assignment. */
7385 rtx_equal_for_field_assignment_p (x
, y
)
7389 if (x
== y
|| rtx_equal_p (x
, y
))
7392 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
7395 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7396 Note that all SUBREGs of MEM are paradoxical; otherwise they
7397 would have been rewritten. */
7398 if (GET_CODE (x
) == MEM
&& GET_CODE (y
) == SUBREG
7399 && GET_CODE (SUBREG_REG (y
)) == MEM
7400 && rtx_equal_p (SUBREG_REG (y
),
7401 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (y
)), x
)))
7404 if (GET_CODE (y
) == MEM
&& GET_CODE (x
) == SUBREG
7405 && GET_CODE (SUBREG_REG (x
)) == MEM
7406 && rtx_equal_p (SUBREG_REG (x
),
7407 gen_lowpart_for_combine (GET_MODE (SUBREG_REG (x
)), y
)))
7410 /* We used to see if get_last_value of X and Y were the same but that's
7411 not correct. In one direction, we'll cause the assignment to have
7412 the wrong destination and in the case, we'll import a register into this
7413 insn that might have already have been dead. So fail if none of the
7414 above cases are true. */
7418 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7419 Return that assignment if so.
7421 We only handle the most common cases. */
7424 make_field_assignment (x
)
7427 rtx dest
= SET_DEST (x
);
7428 rtx src
= SET_SRC (x
);
7434 enum machine_mode mode
;
7436 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7437 a clear of a one-bit field. We will have changed it to
7438 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7441 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
7442 && GET_CODE (XEXP (XEXP (src
, 0), 0)) == CONST_INT
7443 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
7444 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7446 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7449 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7453 else if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
7454 && subreg_lowpart_p (XEXP (src
, 0))
7455 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
7456 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
7457 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
7458 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
7459 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7461 assign
= make_extraction (VOIDmode
, dest
, 0,
7462 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
7465 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
7469 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7471 else if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
7472 && XEXP (XEXP (src
, 0), 0) == const1_rtx
7473 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
7475 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
7478 return gen_rtx_SET (VOIDmode
, assign
, const1_rtx
);
7482 /* The other case we handle is assignments into a constant-position
7483 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7484 a mask that has all one bits except for a group of zero bits and
7485 OTHER is known to have zeros where C1 has ones, this is such an
7486 assignment. Compute the position and length from C1. Shift OTHER
7487 to the appropriate position, force it to the required mode, and
7488 make the extraction. Check for the AND in both operands. */
7490 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
7493 rhs
= expand_compound_operation (XEXP (src
, 0));
7494 lhs
= expand_compound_operation (XEXP (src
, 1));
7496 if (GET_CODE (rhs
) == AND
7497 && GET_CODE (XEXP (rhs
, 1)) == CONST_INT
7498 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
7499 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
7500 else if (GET_CODE (lhs
) == AND
7501 && GET_CODE (XEXP (lhs
, 1)) == CONST_INT
7502 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
7503 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
7507 pos
= get_pos_from_mask ((~ c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
7508 if (pos
< 0 || pos
+ len
> GET_MODE_BITSIZE (GET_MODE (dest
))
7509 || GET_MODE_BITSIZE (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
7510 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
7513 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
7517 /* The mode to use for the source is the mode of the assignment, or of
7518 what is inside a possible STRICT_LOW_PART. */
7519 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
7520 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
7522 /* Shift OTHER right POS places and make it the source, restricting it
7523 to the proper length and mode. */
7525 src
= force_to_mode (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
7526 GET_MODE (src
), other
, pos
),
7528 GET_MODE_BITSIZE (mode
) >= HOST_BITS_PER_WIDE_INT
7529 ? GET_MODE_MASK (mode
)
7530 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7533 return gen_rtx_combine (SET
, VOIDmode
, assign
, src
);
7536 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7540 apply_distributive_law (x
)
7543 enum rtx_code code
= GET_CODE (x
);
7544 rtx lhs
, rhs
, other
;
7546 enum rtx_code inner_code
;
7548 /* Distributivity is not true for floating point.
7549 It can change the value. So don't do it.
7550 -- rms and moshier@world.std.com. */
7551 if (FLOAT_MODE_P (GET_MODE (x
)))
7554 /* The outer operation can only be one of the following: */
7555 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
7556 && code
!= PLUS
&& code
!= MINUS
)
7559 lhs
= XEXP (x
, 0), rhs
= XEXP (x
, 1);
7561 /* If either operand is a primitive we can't do anything, so get out
7563 if (GET_RTX_CLASS (GET_CODE (lhs
)) == 'o'
7564 || GET_RTX_CLASS (GET_CODE (rhs
)) == 'o')
7567 lhs
= expand_compound_operation (lhs
);
7568 rhs
= expand_compound_operation (rhs
);
7569 inner_code
= GET_CODE (lhs
);
7570 if (inner_code
!= GET_CODE (rhs
))
7573 /* See if the inner and outer operations distribute. */
7580 /* These all distribute except over PLUS. */
7581 if (code
== PLUS
|| code
== MINUS
)
7586 if (code
!= PLUS
&& code
!= MINUS
)
7591 /* This is also a multiply, so it distributes over everything. */
7595 /* Non-paradoxical SUBREGs distributes over all operations, provided
7596 the inner modes and word numbers are the same, this is an extraction
7597 of a low-order part, we don't convert an fp operation to int or
7598 vice versa, and we would not be converting a single-word
7599 operation into a multi-word operation. The latter test is not
7600 required, but it prevents generating unneeded multi-word operations.
7601 Some of the previous tests are redundant given the latter test, but
7602 are retained because they are required for correctness.
7604 We produce the result slightly differently in this case. */
7606 if (GET_MODE (SUBREG_REG (lhs
)) != GET_MODE (SUBREG_REG (rhs
))
7607 || SUBREG_WORD (lhs
) != SUBREG_WORD (rhs
)
7608 || ! subreg_lowpart_p (lhs
)
7609 || (GET_MODE_CLASS (GET_MODE (lhs
))
7610 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs
))))
7611 || (GET_MODE_SIZE (GET_MODE (lhs
))
7612 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))))
7613 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs
))) > UNITS_PER_WORD
)
7616 tem
= gen_binary (code
, GET_MODE (SUBREG_REG (lhs
)),
7617 SUBREG_REG (lhs
), SUBREG_REG (rhs
));
7618 return gen_lowpart_for_combine (GET_MODE (x
), tem
);
7624 /* Set LHS and RHS to the inner operands (A and B in the example
7625 above) and set OTHER to the common operand (C in the example).
7626 These is only one way to do this unless the inner operation is
7628 if (GET_RTX_CLASS (inner_code
) == 'c'
7629 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
7630 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
7631 else if (GET_RTX_CLASS (inner_code
) == 'c'
7632 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
7633 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
7634 else if (GET_RTX_CLASS (inner_code
) == 'c'
7635 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
7636 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
7637 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
7638 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
7642 /* Form the new inner operation, seeing if it simplifies first. */
7643 tem
= gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
7645 /* There is one exception to the general way of distributing:
7646 (a ^ b) | (a ^ c) -> (~a) & (b ^ c) */
7647 if (code
== XOR
&& inner_code
== IOR
)
7650 other
= gen_unary (NOT
, GET_MODE (x
), GET_MODE (x
), other
);
7653 /* We may be able to continuing distributing the result, so call
7654 ourselves recursively on the inner operation before forming the
7655 outer operation, which we return. */
7656 return gen_binary (inner_code
, GET_MODE (x
),
7657 apply_distributive_law (tem
), other
);
7660 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
7663 Return an equivalent form, if different from X. Otherwise, return X. If
7664 X is zero, we are to always construct the equivalent form. */
7667 simplify_and_const_int (x
, mode
, varop
, constop
)
7669 enum machine_mode mode
;
7671 unsigned HOST_WIDE_INT constop
;
7673 unsigned HOST_WIDE_INT nonzero
;
7676 /* Simplify VAROP knowing that we will be only looking at some of the
7678 varop
= force_to_mode (varop
, mode
, constop
, NULL_RTX
, 0);
7680 /* If VAROP is a CLOBBER, we will fail so return it; if it is a
7681 CONST_INT, we are done. */
7682 if (GET_CODE (varop
) == CLOBBER
|| GET_CODE (varop
) == CONST_INT
)
7685 /* See what bits may be nonzero in VAROP. Unlike the general case of
7686 a call to nonzero_bits, here we don't care about bits outside
7689 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
7690 nonzero
= trunc_int_for_mode (nonzero
, mode
);
7692 /* Turn off all bits in the constant that are known to already be zero.
7693 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
7694 which is tested below. */
7698 /* If we don't have any bits left, return zero. */
7702 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
7703 a power of two, we can replace this with a ASHIFT. */
7704 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
7705 && (i
= exact_log2 (constop
)) >= 0)
7706 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
7708 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
7709 or XOR, then try to apply the distributive law. This may eliminate
7710 operations if either branch can be simplified because of the AND.
7711 It may also make some cases more complex, but those cases probably
7712 won't match a pattern either with or without this. */
7714 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
7716 gen_lowpart_for_combine
7718 apply_distributive_law
7719 (gen_binary (GET_CODE (varop
), GET_MODE (varop
),
7720 simplify_and_const_int (NULL_RTX
, GET_MODE (varop
),
7721 XEXP (varop
, 0), constop
),
7722 simplify_and_const_int (NULL_RTX
, GET_MODE (varop
),
7723 XEXP (varop
, 1), constop
))));
7725 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
7726 if we already had one (just check for the simplest cases). */
7727 if (x
&& GET_CODE (XEXP (x
, 0)) == SUBREG
7728 && GET_MODE (XEXP (x
, 0)) == mode
7729 && SUBREG_REG (XEXP (x
, 0)) == varop
)
7730 varop
= XEXP (x
, 0);
7732 varop
= gen_lowpart_for_combine (mode
, varop
);
7734 /* If we can't make the SUBREG, try to return what we were given. */
7735 if (GET_CODE (varop
) == CLOBBER
)
7736 return x
? x
: varop
;
7738 /* If we are only masking insignificant bits, return VAROP. */
7739 if (constop
== nonzero
)
7742 /* Otherwise, return an AND. See how much, if any, of X we can use. */
7743 else if (x
== 0 || GET_CODE (x
) != AND
|| GET_MODE (x
) != mode
)
7744 x
= gen_binary (AND
, mode
, varop
, GEN_INT (constop
));
7748 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
7749 || (unsigned HOST_WIDE_INT
) INTVAL (XEXP (x
, 1)) != constop
)
7750 SUBST (XEXP (x
, 1), GEN_INT (constop
));
7752 SUBST (XEXP (x
, 0), varop
);
7758 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
7759 We don't let nonzero_bits recur into num_sign_bit_copies, because that
7760 is less useful. We can't allow both, because that results in exponential
7761 run time recursion. There is a nullstone testcase that triggered
7762 this. This macro avoids accidental uses of num_sign_bit_copies. */
7763 #define num_sign_bit_copies()
7765 /* Given an expression, X, compute which bits in X can be non-zero.
7766 We don't care about bits outside of those defined in MODE.
7768 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
7769 a shift, AND, or zero_extract, we can do better. */
7771 static unsigned HOST_WIDE_INT
7772 nonzero_bits (x
, mode
)
7774 enum machine_mode mode
;
7776 unsigned HOST_WIDE_INT nonzero
= GET_MODE_MASK (mode
);
7777 unsigned HOST_WIDE_INT inner_nz
;
7779 int mode_width
= GET_MODE_BITSIZE (mode
);
7782 /* For floating-point values, assume all bits are needed. */
7783 if (FLOAT_MODE_P (GET_MODE (x
)) || FLOAT_MODE_P (mode
))
7786 /* If X is wider than MODE, use its mode instead. */
7787 if (GET_MODE_BITSIZE (GET_MODE (x
)) > mode_width
)
7789 mode
= GET_MODE (x
);
7790 nonzero
= GET_MODE_MASK (mode
);
7791 mode_width
= GET_MODE_BITSIZE (mode
);
7794 if (mode_width
> HOST_BITS_PER_WIDE_INT
)
7795 /* Our only callers in this case look for single bit values. So
7796 just return the mode mask. Those tests will then be false. */
7799 #ifndef WORD_REGISTER_OPERATIONS
7800 /* If MODE is wider than X, but both are a single word for both the host
7801 and target machines, we can compute this from which bits of the
7802 object might be nonzero in its own mode, taking into account the fact
7803 that on many CISC machines, accessing an object in a wider mode
7804 causes the high-order bits to become undefined. So they are
7805 not known to be zero. */
7807 if (GET_MODE (x
) != VOIDmode
&& GET_MODE (x
) != mode
7808 && GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
7809 && GET_MODE_BITSIZE (GET_MODE (x
)) <= HOST_BITS_PER_WIDE_INT
7810 && GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (GET_MODE (x
)))
7812 nonzero
&= nonzero_bits (x
, GET_MODE (x
));
7813 nonzero
|= GET_MODE_MASK (mode
) & ~ GET_MODE_MASK (GET_MODE (x
));
7818 code
= GET_CODE (x
);
7822 #ifdef POINTERS_EXTEND_UNSIGNED
7823 /* If pointers extend unsigned and this is a pointer in Pmode, say that
7824 all the bits above ptr_mode are known to be zero. */
7825 if (POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
7826 && REGNO_POINTER_FLAG (REGNO (x
)))
7827 nonzero
&= GET_MODE_MASK (ptr_mode
);
7830 #ifdef STACK_BOUNDARY
7831 /* If this is the stack pointer, we may know something about its
7832 alignment. If PUSH_ROUNDING is defined, it is possible for the
7833 stack to be momentarily aligned only to that amount, so we pick
7834 the least alignment. */
7836 /* We can't check for arg_pointer_rtx here, because it is not
7837 guaranteed to have as much alignment as the stack pointer.
7838 In particular, in the Irix6 n64 ABI, the stack has 128 bit
7839 alignment but the argument pointer has only 64 bit alignment. */
7841 if ((x
== frame_pointer_rtx
7842 || x
== stack_pointer_rtx
7843 || x
== hard_frame_pointer_rtx
7844 || (REGNO (x
) >= FIRST_VIRTUAL_REGISTER
7845 && REGNO (x
) <= LAST_VIRTUAL_REGISTER
))
7851 int sp_alignment
= STACK_BOUNDARY
/ BITS_PER_UNIT
;
7853 #ifdef PUSH_ROUNDING
7854 if (REGNO (x
) == STACK_POINTER_REGNUM
)
7855 sp_alignment
= MIN (PUSH_ROUNDING (1), sp_alignment
);
7858 /* We must return here, otherwise we may get a worse result from
7859 one of the choices below. There is nothing useful below as
7860 far as the stack pointer is concerned. */
7861 return nonzero
&= ~ (sp_alignment
- 1);
7865 /* If X is a register whose nonzero bits value is current, use it.
7866 Otherwise, if X is a register whose value we can find, use that
7867 value. Otherwise, use the previously-computed global nonzero bits
7868 for this register. */
7870 if (reg_last_set_value
[REGNO (x
)] != 0
7871 && reg_last_set_mode
[REGNO (x
)] == mode
7872 && (reg_last_set_label
[REGNO (x
)] == label_tick
7873 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
7874 && REG_N_SETS (REGNO (x
)) == 1
7875 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
,
7877 && INSN_CUID (reg_last_set
[REGNO (x
)]) < subst_low_cuid
)
7878 return reg_last_set_nonzero_bits
[REGNO (x
)];
7880 tem
= get_last_value (x
);
7884 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7885 /* If X is narrower than MODE and TEM is a non-negative
7886 constant that would appear negative in the mode of X,
7887 sign-extend it for use in reg_nonzero_bits because some
7888 machines (maybe most) will actually do the sign-extension
7889 and this is the conservative approach.
7891 ??? For 2.5, try to tighten up the MD files in this regard
7892 instead of this kludge. */
7894 if (GET_MODE_BITSIZE (GET_MODE (x
)) < mode_width
7895 && GET_CODE (tem
) == CONST_INT
7897 && 0 != (INTVAL (tem
)
7898 & ((HOST_WIDE_INT
) 1
7899 << (GET_MODE_BITSIZE (GET_MODE (x
)) - 1))))
7900 tem
= GEN_INT (INTVAL (tem
)
7901 | ((HOST_WIDE_INT
) (-1)
7902 << GET_MODE_BITSIZE (GET_MODE (x
))));
7904 return nonzero_bits (tem
, mode
);
7906 else if (nonzero_sign_valid
&& reg_nonzero_bits
[REGNO (x
)])
7907 return reg_nonzero_bits
[REGNO (x
)] & nonzero
;
7912 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
7913 /* If X is negative in MODE, sign-extend the value. */
7914 if (INTVAL (x
) > 0 && mode_width
< BITS_PER_WORD
7915 && 0 != (INTVAL (x
) & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))))
7916 return (INTVAL (x
) | ((HOST_WIDE_INT
) (-1) << mode_width
));
7922 #ifdef LOAD_EXTEND_OP
7923 /* In many, if not most, RISC machines, reading a byte from memory
7924 zeros the rest of the register. Noticing that fact saves a lot
7925 of extra zero-extends. */
7926 if (LOAD_EXTEND_OP (GET_MODE (x
)) == ZERO_EXTEND
)
7927 nonzero
&= GET_MODE_MASK (GET_MODE (x
));
7937 /* If this produces an integer result, we know which bits are set.
7938 Code here used to clear bits outside the mode of X, but that is
7941 if (GET_MODE_CLASS (mode
) == MODE_INT
7942 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
7943 nonzero
= STORE_FLAG_VALUE
;
7948 /* Disabled to avoid exponential mutual recursion between nonzero_bits
7949 and num_sign_bit_copies. */
7950 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
7951 == GET_MODE_BITSIZE (GET_MODE (x
)))
7955 if (GET_MODE_SIZE (GET_MODE (x
)) < mode_width
)
7956 nonzero
|= (GET_MODE_MASK (mode
) & ~ GET_MODE_MASK (GET_MODE (x
)));
7961 /* Disabled to avoid exponential mutual recursion between nonzero_bits
7962 and num_sign_bit_copies. */
7963 if (num_sign_bit_copies (XEXP (x
, 0), GET_MODE (x
))
7964 == GET_MODE_BITSIZE (GET_MODE (x
)))
7970 nonzero
&= (nonzero_bits (XEXP (x
, 0), mode
) & GET_MODE_MASK (mode
));
7974 nonzero
&= nonzero_bits (XEXP (x
, 0), mode
);
7975 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
7976 nonzero
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
7980 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
7981 Otherwise, show all the bits in the outer mode but not the inner
7983 inner_nz
= nonzero_bits (XEXP (x
, 0), mode
);
7984 if (GET_MODE (XEXP (x
, 0)) != VOIDmode
)
7986 inner_nz
&= GET_MODE_MASK (GET_MODE (XEXP (x
, 0)));
7988 & (((HOST_WIDE_INT
) 1
7989 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0))) - 1))))
7990 inner_nz
|= (GET_MODE_MASK (mode
)
7991 & ~ GET_MODE_MASK (GET_MODE (XEXP (x
, 0))));
7994 nonzero
&= inner_nz
;
7998 nonzero
&= (nonzero_bits (XEXP (x
, 0), mode
)
7999 & nonzero_bits (XEXP (x
, 1), mode
));
8003 case UMIN
: case UMAX
: case SMIN
: case SMAX
:
8004 nonzero
&= (nonzero_bits (XEXP (x
, 0), mode
)
8005 | nonzero_bits (XEXP (x
, 1), mode
));
8008 case PLUS
: case MINUS
:
8010 case DIV
: case UDIV
:
8011 case MOD
: case UMOD
:
8012 /* We can apply the rules of arithmetic to compute the number of
8013 high- and low-order zero bits of these operations. We start by
8014 computing the width (position of the highest-order non-zero bit)
8015 and the number of low-order zero bits for each value. */
8017 unsigned HOST_WIDE_INT nz0
= nonzero_bits (XEXP (x
, 0), mode
);
8018 unsigned HOST_WIDE_INT nz1
= nonzero_bits (XEXP (x
, 1), mode
);
8019 int width0
= floor_log2 (nz0
) + 1;
8020 int width1
= floor_log2 (nz1
) + 1;
8021 int low0
= floor_log2 (nz0
& -nz0
);
8022 int low1
= floor_log2 (nz1
& -nz1
);
8023 HOST_WIDE_INT op0_maybe_minusp
8024 = (nz0
& ((HOST_WIDE_INT
) 1 << (mode_width
- 1)));
8025 HOST_WIDE_INT op1_maybe_minusp
8026 = (nz1
& ((HOST_WIDE_INT
) 1 << (mode_width
- 1)));
8027 int result_width
= mode_width
;
8035 && (XEXP (x
, 0) == stack_pointer_rtx
8036 || XEXP (x
, 0) == frame_pointer_rtx
)
8037 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
8039 int sp_alignment
= STACK_BOUNDARY
/ BITS_PER_UNIT
;
8041 nz0
= (GET_MODE_MASK (mode
) & ~ (sp_alignment
- 1));
8042 nz1
= INTVAL (XEXP (x
, 1)) - STACK_BIAS
;
8043 width0
= floor_log2 (nz0
) + 1;
8044 width1
= floor_log2 (nz1
) + 1;
8045 low0
= floor_log2 (nz0
& -nz0
);
8046 low1
= floor_log2 (nz1
& -nz1
);
8049 result_width
= MAX (width0
, width1
) + 1;
8050 result_low
= MIN (low0
, low1
);
8053 result_low
= MIN (low0
, low1
);
8056 result_width
= width0
+ width1
;
8057 result_low
= low0
+ low1
;
8060 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
8061 result_width
= width0
;
8064 result_width
= width0
;
8067 if (! op0_maybe_minusp
&& ! op1_maybe_minusp
)
8068 result_width
= MIN (width0
, width1
);
8069 result_low
= MIN (low0
, low1
);
8072 result_width
= MIN (width0
, width1
);
8073 result_low
= MIN (low0
, low1
);
8079 if (result_width
< mode_width
)
8080 nonzero
&= ((HOST_WIDE_INT
) 1 << result_width
) - 1;
8083 nonzero
&= ~ (((HOST_WIDE_INT
) 1 << result_low
) - 1);
8088 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8089 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8090 nonzero
&= ((HOST_WIDE_INT
) 1 << INTVAL (XEXP (x
, 1))) - 1;
8094 /* If this is a SUBREG formed for a promoted variable that has
8095 been zero-extended, we know that at least the high-order bits
8096 are zero, though others might be too. */
8098 if (SUBREG_PROMOTED_VAR_P (x
) && SUBREG_PROMOTED_UNSIGNED_P (x
))
8099 nonzero
= (GET_MODE_MASK (GET_MODE (x
))
8100 & nonzero_bits (SUBREG_REG (x
), GET_MODE (x
)));
8102 /* If the inner mode is a single word for both the host and target
8103 machines, we can compute this from which bits of the inner
8104 object might be nonzero. */
8105 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) <= BITS_PER_WORD
8106 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
8107 <= HOST_BITS_PER_WIDE_INT
))
8109 nonzero
&= nonzero_bits (SUBREG_REG (x
), mode
);
8111 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
8112 /* If this is a typical RISC machine, we only have to worry
8113 about the way loads are extended. */
8114 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
8116 & (((unsigned HOST_WIDE_INT
) 1
8117 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))) - 1))))
8119 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) != ZERO_EXTEND
)
8122 /* On many CISC machines, accessing an object in a wider mode
8123 causes the high-order bits to become undefined. So they are
8124 not known to be zero. */
8125 if (GET_MODE_SIZE (GET_MODE (x
))
8126 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8127 nonzero
|= (GET_MODE_MASK (GET_MODE (x
))
8128 & ~ GET_MODE_MASK (GET_MODE (SUBREG_REG (x
))));
8137 /* The nonzero bits are in two classes: any bits within MODE
8138 that aren't in GET_MODE (x) are always significant. The rest of the
8139 nonzero bits are those that are significant in the operand of
8140 the shift when shifted the appropriate number of bits. This
8141 shows that high-order bits are cleared by the right shift and
8142 low-order bits by left shifts. */
8143 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8144 && INTVAL (XEXP (x
, 1)) >= 0
8145 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8147 enum machine_mode inner_mode
= GET_MODE (x
);
8148 int width
= GET_MODE_BITSIZE (inner_mode
);
8149 int count
= INTVAL (XEXP (x
, 1));
8150 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (inner_mode
);
8151 unsigned HOST_WIDE_INT op_nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
8152 unsigned HOST_WIDE_INT inner
= op_nonzero
& mode_mask
;
8153 unsigned HOST_WIDE_INT outer
= 0;
8155 if (mode_width
> width
)
8156 outer
= (op_nonzero
& nonzero
& ~ mode_mask
);
8158 if (code
== LSHIFTRT
)
8160 else if (code
== ASHIFTRT
)
8164 /* If the sign bit may have been nonzero before the shift, we
8165 need to mark all the places it could have been copied to
8166 by the shift as possibly nonzero. */
8167 if (inner
& ((HOST_WIDE_INT
) 1 << (width
- 1 - count
)))
8168 inner
|= (((HOST_WIDE_INT
) 1 << count
) - 1) << (width
- count
);
8170 else if (code
== ASHIFT
)
8173 inner
= ((inner
<< (count
% width
)
8174 | (inner
>> (width
- (count
% width
)))) & mode_mask
);
8176 nonzero
&= (outer
| inner
);
8181 /* This is at most the number of bits in the mode. */
8182 nonzero
= ((HOST_WIDE_INT
) 1 << (floor_log2 (mode_width
) + 1)) - 1;
8186 nonzero
&= (nonzero_bits (XEXP (x
, 1), mode
)
8187 | nonzero_bits (XEXP (x
, 2), mode
));
8197 /* See the macro definition above. */
8198 #undef num_sign_bit_copies
8200 /* Return the number of bits at the high-order end of X that are known to
8201 be equal to the sign bit. X will be used in mode MODE; if MODE is
8202 VOIDmode, X will be used in its own mode. The returned value will always
8203 be between 1 and the number of bits in MODE. */
8206 num_sign_bit_copies (x
, mode
)
8208 enum machine_mode mode
;
8210 enum rtx_code code
= GET_CODE (x
);
8212 int num0
, num1
, result
;
8213 unsigned HOST_WIDE_INT nonzero
;
8216 /* If we weren't given a mode, use the mode of X. If the mode is still
8217 VOIDmode, we don't know anything. Likewise if one of the modes is
8220 if (mode
== VOIDmode
)
8221 mode
= GET_MODE (x
);
8223 if (mode
== VOIDmode
|| FLOAT_MODE_P (mode
) || FLOAT_MODE_P (GET_MODE (x
)))
8226 bitwidth
= GET_MODE_BITSIZE (mode
);
8228 /* For a smaller object, just ignore the high bits. */
8229 if (bitwidth
< GET_MODE_BITSIZE (GET_MODE (x
)))
8230 return MAX (1, (num_sign_bit_copies (x
, GET_MODE (x
))
8231 - (GET_MODE_BITSIZE (GET_MODE (x
)) - bitwidth
)));
8233 if (GET_MODE (x
) != VOIDmode
&& bitwidth
> GET_MODE_BITSIZE (GET_MODE (x
)))
8235 #ifndef WORD_REGISTER_OPERATIONS
8236 /* If this machine does not do all register operations on the entire
8237 register and MODE is wider than the mode of X, we can say nothing
8238 at all about the high-order bits. */
8241 /* Likewise on machines that do, if the mode of the object is smaller
8242 than a word and loads of that size don't sign extend, we can say
8243 nothing about the high order bits. */
8244 if (GET_MODE_BITSIZE (GET_MODE (x
)) < BITS_PER_WORD
8245 #ifdef LOAD_EXTEND_OP
8246 && LOAD_EXTEND_OP (GET_MODE (x
)) != SIGN_EXTEND
8257 #ifdef POINTERS_EXTEND_UNSIGNED
8258 /* If pointers extend signed and this is a pointer in Pmode, say that
8259 all the bits above ptr_mode are known to be sign bit copies. */
8260 if (! POINTERS_EXTEND_UNSIGNED
&& GET_MODE (x
) == Pmode
&& mode
== Pmode
8261 && REGNO_POINTER_FLAG (REGNO (x
)))
8262 return GET_MODE_BITSIZE (Pmode
) - GET_MODE_BITSIZE (ptr_mode
) + 1;
8265 if (reg_last_set_value
[REGNO (x
)] != 0
8266 && reg_last_set_mode
[REGNO (x
)] == mode
8267 && (reg_last_set_label
[REGNO (x
)] == label_tick
8268 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
8269 && REG_N_SETS (REGNO (x
)) == 1
8270 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
,
8272 && INSN_CUID (reg_last_set
[REGNO (x
)]) < subst_low_cuid
)
8273 return reg_last_set_sign_bit_copies
[REGNO (x
)];
8275 tem
= get_last_value (x
);
8277 return num_sign_bit_copies (tem
, mode
);
8279 if (nonzero_sign_valid
&& reg_sign_bit_copies
[REGNO (x
)] != 0)
8280 return reg_sign_bit_copies
[REGNO (x
)];
8284 #ifdef LOAD_EXTEND_OP
8285 /* Some RISC machines sign-extend all loads of smaller than a word. */
8286 if (LOAD_EXTEND_OP (GET_MODE (x
)) == SIGN_EXTEND
)
8287 return MAX (1, bitwidth
- GET_MODE_BITSIZE (GET_MODE (x
)) + 1);
8292 /* If the constant is negative, take its 1's complement and remask.
8293 Then see how many zero bits we have. */
8294 nonzero
= INTVAL (x
) & GET_MODE_MASK (mode
);
8295 if (bitwidth
<= HOST_BITS_PER_WIDE_INT
8296 && (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8297 nonzero
= (~ nonzero
) & GET_MODE_MASK (mode
);
8299 return (nonzero
== 0 ? bitwidth
: bitwidth
- floor_log2 (nonzero
) - 1);
8302 /* If this is a SUBREG for a promoted object that is sign-extended
8303 and we are looking at it in a wider mode, we know that at least the
8304 high-order bits are known to be sign bit copies. */
8306 if (SUBREG_PROMOTED_VAR_P (x
) && ! SUBREG_PROMOTED_UNSIGNED_P (x
))
8307 return MAX (bitwidth
- GET_MODE_BITSIZE (GET_MODE (x
)) + 1,
8308 num_sign_bit_copies (SUBREG_REG (x
), mode
));
8310 /* For a smaller object, just ignore the high bits. */
8311 if (bitwidth
<= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
))))
8313 num0
= num_sign_bit_copies (SUBREG_REG (x
), VOIDmode
);
8314 return MAX (1, (num0
8315 - (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
8319 #ifdef WORD_REGISTER_OPERATIONS
8320 #ifdef LOAD_EXTEND_OP
8321 /* For paradoxical SUBREGs on machines where all register operations
8322 affect the entire register, just look inside. Note that we are
8323 passing MODE to the recursive call, so the number of sign bit copies
8324 will remain relative to that mode, not the inner mode. */
8326 /* This works only if loads sign extend. Otherwise, if we get a
8327 reload for the inner part, it may be loaded from the stack, and
8328 then we lose all sign bit copies that existed before the store
8331 if ((GET_MODE_SIZE (GET_MODE (x
))
8332 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8333 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x
))) == SIGN_EXTEND
)
8334 return num_sign_bit_copies (SUBREG_REG (x
), mode
);
8340 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
8341 return MAX (1, bitwidth
- INTVAL (XEXP (x
, 1)));
8345 return (bitwidth
- GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
8346 + num_sign_bit_copies (XEXP (x
, 0), VOIDmode
));
8349 /* For a smaller object, just ignore the high bits. */
8350 num0
= num_sign_bit_copies (XEXP (x
, 0), VOIDmode
);
8351 return MAX (1, (num0
- (GET_MODE_BITSIZE (GET_MODE (XEXP (x
, 0)))
8355 return num_sign_bit_copies (XEXP (x
, 0), mode
);
8357 case ROTATE
: case ROTATERT
:
8358 /* If we are rotating left by a number of bits less than the number
8359 of sign bit copies, we can just subtract that amount from the
8361 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8362 && INTVAL (XEXP (x
, 1)) >= 0 && INTVAL (XEXP (x
, 1)) < bitwidth
)
8364 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8365 return MAX (1, num0
- (code
== ROTATE
? INTVAL (XEXP (x
, 1))
8366 : bitwidth
- INTVAL (XEXP (x
, 1))));
8371 /* In general, this subtracts one sign bit copy. But if the value
8372 is known to be positive, the number of sign bit copies is the
8373 same as that of the input. Finally, if the input has just one bit
8374 that might be nonzero, all the bits are copies of the sign bit. */
8375 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8376 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
8377 return num0
> 1 ? num0
- 1 : 1;
8379 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
8384 && (((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
))
8389 case IOR
: case AND
: case XOR
:
8390 case SMIN
: case SMAX
: case UMIN
: case UMAX
:
8391 /* Logical operations will preserve the number of sign-bit copies.
8392 MIN and MAX operations always return one of the operands. */
8393 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8394 num1
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8395 return MIN (num0
, num1
);
8397 case PLUS
: case MINUS
:
8398 /* For addition and subtraction, we can have a 1-bit carry. However,
8399 if we are subtracting 1 from a positive number, there will not
8400 be such a carry. Furthermore, if the positive number is known to
8401 be 0 or 1, we know the result is either -1 or 0. */
8403 if (code
== PLUS
&& XEXP (x
, 1) == constm1_rtx
8404 && bitwidth
<= HOST_BITS_PER_WIDE_INT
)
8406 nonzero
= nonzero_bits (XEXP (x
, 0), mode
);
8407 if ((((HOST_WIDE_INT
) 1 << (bitwidth
- 1)) & nonzero
) == 0)
8408 return (nonzero
== 1 || nonzero
== 0 ? bitwidth
8409 : bitwidth
- floor_log2 (nonzero
) - 1);
8412 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8413 num1
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8414 return MAX (1, MIN (num0
, num1
) - 1);
8417 /* The number of bits of the product is the sum of the number of
8418 bits of both terms. However, unless one of the terms if known
8419 to be positive, we must allow for an additional bit since negating
8420 a negative number can remove one sign bit copy. */
8422 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8423 num1
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8425 result
= bitwidth
- (bitwidth
- num0
) - (bitwidth
- num1
);
8427 && (bitwidth
> HOST_BITS_PER_WIDE_INT
8428 || (((nonzero_bits (XEXP (x
, 0), mode
)
8429 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8430 && ((nonzero_bits (XEXP (x
, 1), mode
)
8431 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))))
8434 return MAX (1, result
);
8437 /* The result must be <= the first operand. If the first operand
8438 has the high bit set, we know nothing about the number of sign
8440 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
8442 else if ((nonzero_bits (XEXP (x
, 0), mode
)
8443 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0)
8446 return num_sign_bit_copies (XEXP (x
, 0), mode
);
8449 /* The result must be <= the scond operand. */
8450 return num_sign_bit_copies (XEXP (x
, 1), mode
);
8453 /* Similar to unsigned division, except that we have to worry about
8454 the case where the divisor is negative, in which case we have
8456 result
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8458 && (bitwidth
> HOST_BITS_PER_WIDE_INT
8459 || (nonzero_bits (XEXP (x
, 1), mode
)
8460 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
8466 result
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8468 && (bitwidth
> HOST_BITS_PER_WIDE_INT
8469 || (nonzero_bits (XEXP (x
, 1), mode
)
8470 & ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))) != 0))
8476 /* Shifts by a constant add to the number of bits equal to the
8478 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8479 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
8480 && INTVAL (XEXP (x
, 1)) > 0)
8481 num0
= MIN (bitwidth
, num0
+ INTVAL (XEXP (x
, 1)));
8486 /* Left shifts destroy copies. */
8487 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
8488 || INTVAL (XEXP (x
, 1)) < 0
8489 || INTVAL (XEXP (x
, 1)) >= bitwidth
)
8492 num0
= num_sign_bit_copies (XEXP (x
, 0), mode
);
8493 return MAX (1, num0
- INTVAL (XEXP (x
, 1)));
8496 num0
= num_sign_bit_copies (XEXP (x
, 1), mode
);
8497 num1
= num_sign_bit_copies (XEXP (x
, 2), mode
);
8498 return MIN (num0
, num1
);
8500 case EQ
: case NE
: case GE
: case GT
: case LE
: case LT
:
8501 case GEU
: case GTU
: case LEU
: case LTU
:
8502 if (STORE_FLAG_VALUE
== -1)
8510 /* If we haven't been able to figure it out by one of the above rules,
8511 see if some of the high-order bits are known to be zero. If so,
8512 count those bits and return one less than that amount. If we can't
8513 safely compute the mask for this mode, always return BITWIDTH. */
8515 if (bitwidth
> HOST_BITS_PER_WIDE_INT
)
8518 nonzero
= nonzero_bits (x
, mode
);
8519 return (nonzero
& ((HOST_WIDE_INT
) 1 << (bitwidth
- 1))
8520 ? 1 : bitwidth
- floor_log2 (nonzero
) - 1);
8523 /* Return the number of "extended" bits there are in X, when interpreted
8524 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8525 unsigned quantities, this is the number of high-order zero bits.
8526 For signed quantities, this is the number of copies of the sign bit
8527 minus 1. In both case, this function returns the number of "spare"
8528 bits. For example, if two quantities for which this function returns
8529 at least 1 are added, the addition is known not to overflow.
8531 This function will always return 0 unless called during combine, which
8532 implies that it must be called from a define_split. */
8535 extended_count (x
, mode
, unsignedp
)
8537 enum machine_mode mode
;
8540 if (nonzero_sign_valid
== 0)
8544 ? (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8545 && (GET_MODE_BITSIZE (mode
) - 1
8546 - floor_log2 (nonzero_bits (x
, mode
))))
8547 : num_sign_bit_copies (x
, mode
) - 1);
8550 /* This function is called from `simplify_shift_const' to merge two
8551 outer operations. Specifically, we have already found that we need
8552 to perform operation *POP0 with constant *PCONST0 at the outermost
8553 position. We would now like to also perform OP1 with constant CONST1
8554 (with *POP0 being done last).
8556 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8557 the resulting operation. *PCOMP_P is set to 1 if we would need to
8558 complement the innermost operand, otherwise it is unchanged.
8560 MODE is the mode in which the operation will be done. No bits outside
8561 the width of this mode matter. It is assumed that the width of this mode
8562 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8564 If *POP0 or OP1 are NIL, it means no operation is required. Only NEG, PLUS,
8565 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8566 result is simply *PCONST0.
8568 If the resulting operation cannot be expressed as one operation, we
8569 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8572 merge_outer_ops (pop0
, pconst0
, op1
, const1
, mode
, pcomp_p
)
8573 enum rtx_code
*pop0
;
8574 HOST_WIDE_INT
*pconst0
;
8576 HOST_WIDE_INT const1
;
8577 enum machine_mode mode
;
8580 enum rtx_code op0
= *pop0
;
8581 HOST_WIDE_INT const0
= *pconst0
;
8583 const0
&= GET_MODE_MASK (mode
);
8584 const1
&= GET_MODE_MASK (mode
);
8586 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8590 /* If OP0 or OP1 is NIL, this is easy. Similarly if they are the same or
8593 if (op1
== NIL
|| op0
== SET
)
8596 else if (op0
== NIL
)
8597 op0
= op1
, const0
= const1
;
8599 else if (op0
== op1
)
8623 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8624 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
8627 /* If the two constants aren't the same, we can't do anything. The
8628 remaining six cases can all be done. */
8629 else if (const0
!= const1
)
8637 /* (a & b) | b == b */
8639 else /* op1 == XOR */
8640 /* (a ^ b) | b == a | b */
8646 /* (a & b) ^ b == (~a) & b */
8647 op0
= AND
, *pcomp_p
= 1;
8648 else /* op1 == IOR */
8649 /* (a | b) ^ b == a & ~b */
8650 op0
= AND
, *pconst0
= ~ const0
;
8655 /* (a | b) & b == b */
8657 else /* op1 == XOR */
8658 /* (a ^ b) & b) == (~a) & b */
8665 /* Check for NO-OP cases. */
8666 const0
&= GET_MODE_MASK (mode
);
8668 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
8670 else if (const0
== 0 && op0
== AND
)
8672 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
8676 /* ??? Slightly redundant with the above mask, but not entirely.
8677 Moving this above means we'd have to sign-extend the mode mask
8678 for the final test. */
8679 const0
= trunc_int_for_mode (const0
, mode
);
8687 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8688 The result of the shift is RESULT_MODE. X, if non-zero, is an expression
8689 that we started with.
8691 The shift is normally computed in the widest mode we find in VAROP, as
8692 long as it isn't a different number of words than RESULT_MODE. Exceptions
8693 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8696 simplify_shift_const (x
, code
, result_mode
, varop
, count
)
8699 enum machine_mode result_mode
;
8703 enum rtx_code orig_code
= code
;
8704 int orig_count
= count
;
8705 enum machine_mode mode
= result_mode
;
8706 enum machine_mode shift_mode
, tmode
;
8708 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
8709 /* We form (outer_op (code varop count) (outer_const)). */
8710 enum rtx_code outer_op
= NIL
;
8711 HOST_WIDE_INT outer_const
= 0;
8713 int complement_p
= 0;
8716 /* If we were given an invalid count, don't do anything except exactly
8717 what was requested. */
8719 if (count
< 0 || count
> GET_MODE_BITSIZE (mode
))
8724 return gen_rtx_fmt_ee (code
, mode
, varop
, GEN_INT (count
));
8727 /* Unless one of the branches of the `if' in this loop does a `continue',
8728 we will `break' the loop after the `if'. */
8732 /* If we have an operand of (clobber (const_int 0)), just return that
8734 if (GET_CODE (varop
) == CLOBBER
)
8737 /* If we discovered we had to complement VAROP, leave. Making a NOT
8738 here would cause an infinite loop. */
8742 /* Convert ROTATERT to ROTATE. */
8743 if (code
== ROTATERT
)
8744 code
= ROTATE
, count
= GET_MODE_BITSIZE (result_mode
) - count
;
8746 /* We need to determine what mode we will do the shift in. If the
8747 shift is a right shift or a ROTATE, we must always do it in the mode
8748 it was originally done in. Otherwise, we can do it in MODE, the
8749 widest mode encountered. */
8751 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
8752 ? result_mode
: mode
);
8754 /* Handle cases where the count is greater than the size of the mode
8755 minus 1. For ASHIFT, use the size minus one as the count (this can
8756 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8757 take the count modulo the size. For other shifts, the result is
8760 Since these shifts are being produced by the compiler by combining
8761 multiple operations, each of which are defined, we know what the
8762 result is supposed to be. */
8764 if (count
> GET_MODE_BITSIZE (shift_mode
) - 1)
8766 if (code
== ASHIFTRT
)
8767 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
8768 else if (code
== ROTATE
|| code
== ROTATERT
)
8769 count
%= GET_MODE_BITSIZE (shift_mode
);
8772 /* We can't simply return zero because there may be an
8780 /* Negative counts are invalid and should not have been made (a
8781 programmer-specified negative count should have been handled
8786 /* An arithmetic right shift of a quantity known to be -1 or 0
8788 if (code
== ASHIFTRT
8789 && (num_sign_bit_copies (varop
, shift_mode
)
8790 == GET_MODE_BITSIZE (shift_mode
)))
8796 /* If we are doing an arithmetic right shift and discarding all but
8797 the sign bit copies, this is equivalent to doing a shift by the
8798 bitsize minus one. Convert it into that shift because it will often
8799 allow other simplifications. */
8801 if (code
== ASHIFTRT
8802 && (count
+ num_sign_bit_copies (varop
, shift_mode
)
8803 >= GET_MODE_BITSIZE (shift_mode
)))
8804 count
= GET_MODE_BITSIZE (shift_mode
) - 1;
8806 /* We simplify the tests below and elsewhere by converting
8807 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8808 `make_compound_operation' will convert it to a ASHIFTRT for
8809 those machines (such as Vax) that don't have a LSHIFTRT. */
8810 if (GET_MODE_BITSIZE (shift_mode
) <= HOST_BITS_PER_WIDE_INT
8812 && ((nonzero_bits (varop
, shift_mode
)
8813 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (shift_mode
) - 1)))
8817 switch (GET_CODE (varop
))
8823 new = expand_compound_operation (varop
);
8832 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8833 minus the width of a smaller mode, we can do this with a
8834 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8835 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
8836 && ! mode_dependent_address_p (XEXP (varop
, 0))
8837 && ! MEM_VOLATILE_P (varop
)
8838 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
8839 MODE_INT
, 1)) != BLKmode
)
8841 if (BYTES_BIG_ENDIAN
)
8842 new = gen_rtx_MEM (tmode
, XEXP (varop
, 0));
8844 new = gen_rtx_MEM (tmode
,
8845 plus_constant (XEXP (varop
, 0),
8846 count
/ BITS_PER_UNIT
));
8847 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (varop
);
8848 MEM_COPY_ATTRIBUTES (new, varop
);
8849 varop
= gen_rtx_combine (code
== ASHIFTRT
? SIGN_EXTEND
8850 : ZERO_EXTEND
, mode
, new);
8857 /* Similar to the case above, except that we can only do this if
8858 the resulting mode is the same as that of the underlying
8859 MEM and adjust the address depending on the *bits* endianness
8860 because of the way that bit-field extract insns are defined. */
8861 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
8862 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
8863 MODE_INT
, 1)) != BLKmode
8864 && tmode
== GET_MODE (XEXP (varop
, 0)))
8866 if (BITS_BIG_ENDIAN
)
8867 new = XEXP (varop
, 0);
8870 new = copy_rtx (XEXP (varop
, 0));
8871 SUBST (XEXP (new, 0),
8872 plus_constant (XEXP (new, 0),
8873 count
/ BITS_PER_UNIT
));
8876 varop
= gen_rtx_combine (code
== ASHIFTRT
? SIGN_EXTEND
8877 : ZERO_EXTEND
, mode
, new);
8884 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8885 the same number of words as what we've seen so far. Then store
8886 the widest mode in MODE. */
8887 if (subreg_lowpart_p (varop
)
8888 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
8889 > GET_MODE_SIZE (GET_MODE (varop
)))
8890 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
8891 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
8894 varop
= SUBREG_REG (varop
);
8895 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
8896 mode
= GET_MODE (varop
);
8902 /* Some machines use MULT instead of ASHIFT because MULT
8903 is cheaper. But it is still better on those machines to
8904 merge two shifts into one. */
8905 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8906 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
8908 varop
= gen_binary (ASHIFT
, GET_MODE (varop
), XEXP (varop
, 0),
8909 GEN_INT (exact_log2 (INTVAL (XEXP (varop
, 1)))));
8915 /* Similar, for when divides are cheaper. */
8916 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8917 && exact_log2 (INTVAL (XEXP (varop
, 1))) >= 0)
8919 varop
= gen_binary (LSHIFTRT
, GET_MODE (varop
), XEXP (varop
, 0),
8920 GEN_INT (exact_log2 (INTVAL (XEXP (varop
, 1)))));
8926 /* If we are extracting just the sign bit of an arithmetic right
8927 shift, that shift is not needed. */
8928 if (code
== LSHIFTRT
&& count
== GET_MODE_BITSIZE (result_mode
) - 1)
8930 varop
= XEXP (varop
, 0);
8934 /* ... fall through ... */
8939 /* Here we have two nested shifts. The result is usually the
8940 AND of a new shift with a mask. We compute the result below. */
8941 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
8942 && INTVAL (XEXP (varop
, 1)) >= 0
8943 && INTVAL (XEXP (varop
, 1)) < GET_MODE_BITSIZE (GET_MODE (varop
))
8944 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
8945 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
8947 enum rtx_code first_code
= GET_CODE (varop
);
8948 int first_count
= INTVAL (XEXP (varop
, 1));
8949 unsigned HOST_WIDE_INT mask
;
8952 /* We have one common special case. We can't do any merging if
8953 the inner code is an ASHIFTRT of a smaller mode. However, if
8954 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8955 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8956 we can convert it to
8957 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8958 This simplifies certain SIGN_EXTEND operations. */
8959 if (code
== ASHIFT
&& first_code
== ASHIFTRT
8960 && (GET_MODE_BITSIZE (result_mode
)
8961 - GET_MODE_BITSIZE (GET_MODE (varop
))) == count
)
8963 /* C3 has the low-order C1 bits zero. */
8965 mask
= (GET_MODE_MASK (mode
)
8966 & ~ (((HOST_WIDE_INT
) 1 << first_count
) - 1));
8968 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
8969 XEXP (varop
, 0), mask
);
8970 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
8972 count
= first_count
;
8977 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8978 than C1 high-order bits equal to the sign bit, we can convert
8979 this to either an ASHIFT or a ASHIFTRT depending on the
8982 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8984 if (code
== ASHIFTRT
&& first_code
== ASHIFT
8985 && GET_MODE (varop
) == shift_mode
8986 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
8989 count
-= first_count
;
8991 count
= - count
, code
= ASHIFT
;
8992 varop
= XEXP (varop
, 0);
8996 /* There are some cases we can't do. If CODE is ASHIFTRT,
8997 we can only do this if FIRST_CODE is also ASHIFTRT.
8999 We can't do the case when CODE is ROTATE and FIRST_CODE is
9002 If the mode of this shift is not the mode of the outer shift,
9003 we can't do this if either shift is a right shift or ROTATE.
9005 Finally, we can't do any of these if the mode is too wide
9006 unless the codes are the same.
9008 Handle the case where the shift codes are the same
9011 if (code
== first_code
)
9013 if (GET_MODE (varop
) != result_mode
9014 && (code
== ASHIFTRT
|| code
== LSHIFTRT
9018 count
+= first_count
;
9019 varop
= XEXP (varop
, 0);
9023 if (code
== ASHIFTRT
9024 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
9025 || GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
9026 || (GET_MODE (varop
) != result_mode
9027 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
9028 || first_code
== ROTATE
9029 || code
== ROTATE
)))
9032 /* To compute the mask to apply after the shift, shift the
9033 nonzero bits of the inner shift the same way the
9034 outer shift will. */
9036 mask_rtx
= GEN_INT (nonzero_bits (varop
, GET_MODE (varop
)));
9039 = simplify_binary_operation (code
, result_mode
, mask_rtx
,
9042 /* Give up if we can't compute an outer operation to use. */
9044 || GET_CODE (mask_rtx
) != CONST_INT
9045 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
9047 result_mode
, &complement_p
))
9050 /* If the shifts are in the same direction, we add the
9051 counts. Otherwise, we subtract them. */
9052 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9053 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
9054 count
+= first_count
;
9056 count
-= first_count
;
9058 /* If COUNT is positive, the new shift is usually CODE,
9059 except for the two exceptions below, in which case it is
9060 FIRST_CODE. If the count is negative, FIRST_CODE should
9063 && ((first_code
== ROTATE
&& code
== ASHIFT
)
9064 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
9067 code
= first_code
, count
= - count
;
9069 varop
= XEXP (varop
, 0);
9073 /* If we have (A << B << C) for any shift, we can convert this to
9074 (A << C << B). This wins if A is a constant. Only try this if
9075 B is not a constant. */
9077 else if (GET_CODE (varop
) == code
9078 && GET_CODE (XEXP (varop
, 1)) != CONST_INT
9080 = simplify_binary_operation (code
, mode
,
9084 varop
= gen_rtx_combine (code
, mode
, new, XEXP (varop
, 1));
9091 /* Make this fit the case below. */
9092 varop
= gen_rtx_combine (XOR
, mode
, XEXP (varop
, 0),
9093 GEN_INT (GET_MODE_MASK (mode
)));
9099 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9100 with C the size of VAROP - 1 and the shift is logical if
9101 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9102 we have an (le X 0) operation. If we have an arithmetic shift
9103 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9104 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9106 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
9107 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
9108 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9109 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
9110 && count
== GET_MODE_BITSIZE (GET_MODE (varop
)) - 1
9111 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
9114 varop
= gen_rtx_combine (LE
, GET_MODE (varop
), XEXP (varop
, 1),
9117 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
9118 varop
= gen_rtx_combine (NEG
, GET_MODE (varop
), varop
);
9123 /* If we have (shift (logical)), move the logical to the outside
9124 to allow it to possibly combine with another logical and the
9125 shift to combine with another shift. This also canonicalizes to
9126 what a ZERO_EXTRACT looks like. Also, some machines have
9127 (and (shift)) insns. */
9129 if (GET_CODE (XEXP (varop
, 1)) == CONST_INT
9130 && (new = simplify_binary_operation (code
, result_mode
,
9132 GEN_INT (count
))) != 0
9133 && GET_CODE(new) == CONST_INT
9134 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
9135 INTVAL (new), result_mode
, &complement_p
))
9137 varop
= XEXP (varop
, 0);
9141 /* If we can't do that, try to simplify the shift in each arm of the
9142 logical expression, make a new logical expression, and apply
9143 the inverse distributive law. */
9145 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
9146 XEXP (varop
, 0), count
);
9147 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
9148 XEXP (varop
, 1), count
);
9150 varop
= gen_binary (GET_CODE (varop
), shift_mode
, lhs
, rhs
);
9151 varop
= apply_distributive_law (varop
);
9158 /* convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9159 says that the sign bit can be tested, FOO has mode MODE, C is
9160 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9161 that may be nonzero. */
9162 if (code
== LSHIFTRT
9163 && XEXP (varop
, 1) == const0_rtx
9164 && GET_MODE (XEXP (varop
, 0)) == result_mode
9165 && count
== GET_MODE_BITSIZE (result_mode
) - 1
9166 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9167 && ((STORE_FLAG_VALUE
9168 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (result_mode
) - 1))))
9169 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
9170 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9171 (HOST_WIDE_INT
) 1, result_mode
,
9174 varop
= XEXP (varop
, 0);
9181 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9182 than the number of bits in the mode is equivalent to A. */
9183 if (code
== LSHIFTRT
&& count
== GET_MODE_BITSIZE (result_mode
) - 1
9184 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
9186 varop
= XEXP (varop
, 0);
9191 /* NEG commutes with ASHIFT since it is multiplication. Move the
9192 NEG outside to allow shifts to combine. */
9194 && merge_outer_ops (&outer_op
, &outer_const
, NEG
,
9195 (HOST_WIDE_INT
) 0, result_mode
,
9198 varop
= XEXP (varop
, 0);
9204 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9205 is one less than the number of bits in the mode is
9206 equivalent to (xor A 1). */
9207 if (code
== LSHIFTRT
&& count
== GET_MODE_BITSIZE (result_mode
) - 1
9208 && XEXP (varop
, 1) == constm1_rtx
9209 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
9210 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
9211 (HOST_WIDE_INT
) 1, result_mode
,
9215 varop
= XEXP (varop
, 0);
9219 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9220 that might be nonzero in BAR are those being shifted out and those
9221 bits are known zero in FOO, we can replace the PLUS with FOO.
9222 Similarly in the other operand order. This code occurs when
9223 we are computing the size of a variable-size array. */
9225 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9226 && count
< HOST_BITS_PER_WIDE_INT
9227 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
9228 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
9229 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
9231 varop
= XEXP (varop
, 0);
9234 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9235 && count
< HOST_BITS_PER_WIDE_INT
9236 && GET_MODE_BITSIZE (result_mode
) <= HOST_BITS_PER_WIDE_INT
9237 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9239 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
9240 & nonzero_bits (XEXP (varop
, 1),
9243 varop
= XEXP (varop
, 1);
9247 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9249 && GET_CODE (XEXP (varop
, 1)) == CONST_INT
9250 && (new = simplify_binary_operation (ASHIFT
, result_mode
,
9252 GEN_INT (count
))) != 0
9253 && GET_CODE(new) == CONST_INT
9254 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
9255 INTVAL (new), result_mode
, &complement_p
))
9257 varop
= XEXP (varop
, 0);
9263 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9264 with C the size of VAROP - 1 and the shift is logical if
9265 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9266 we have a (gt X 0) operation. If the shift is arithmetic with
9267 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9268 we have a (neg (gt X 0)) operation. */
9270 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9271 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
9272 && count
== GET_MODE_BITSIZE (GET_MODE (varop
)) - 1
9273 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
9274 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9275 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
9276 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
9279 varop
= gen_rtx_combine (GT
, GET_MODE (varop
), XEXP (varop
, 1),
9282 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
9283 varop
= gen_rtx_combine (NEG
, GET_MODE (varop
), varop
);
9290 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9291 if the truncate does not affect the value. */
9292 if (code
== LSHIFTRT
9293 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
9294 && GET_CODE (XEXP (XEXP (varop
, 0), 1)) == CONST_INT
9295 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
9296 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop
, 0)))
9297 - GET_MODE_BITSIZE (GET_MODE (varop
)))))
9299 rtx varop_inner
= XEXP (varop
, 0);
9301 varop_inner
= gen_rtx_combine (LSHIFTRT
,
9302 GET_MODE (varop_inner
),
9303 XEXP (varop_inner
, 0),
9304 GEN_INT (count
+ INTVAL (XEXP (varop_inner
, 1))));
9305 varop
= gen_rtx_combine (TRUNCATE
, GET_MODE (varop
),
9319 /* We need to determine what mode to do the shift in. If the shift is
9320 a right shift or ROTATE, we must always do it in the mode it was
9321 originally done in. Otherwise, we can do it in MODE, the widest mode
9322 encountered. The code we care about is that of the shift that will
9323 actually be done, not the shift that was originally requested. */
9325 = (code
== ASHIFTRT
|| code
== LSHIFTRT
|| code
== ROTATE
9326 ? result_mode
: mode
);
9328 /* We have now finished analyzing the shift. The result should be
9329 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9330 OUTER_OP is non-NIL, it is an operation that needs to be applied
9331 to the result of the shift. OUTER_CONST is the relevant constant,
9332 but we must turn off all bits turned off in the shift.
9334 If we were passed a value for X, see if we can use any pieces of
9335 it. If not, make new rtx. */
9337 if (x
&& GET_RTX_CLASS (GET_CODE (x
)) == '2'
9338 && GET_CODE (XEXP (x
, 1)) == CONST_INT
9339 && INTVAL (XEXP (x
, 1)) == count
)
9340 const_rtx
= XEXP (x
, 1);
9342 const_rtx
= GEN_INT (count
);
9344 if (x
&& GET_CODE (XEXP (x
, 0)) == SUBREG
9345 && GET_MODE (XEXP (x
, 0)) == shift_mode
9346 && SUBREG_REG (XEXP (x
, 0)) == varop
)
9347 varop
= XEXP (x
, 0);
9348 else if (GET_MODE (varop
) != shift_mode
)
9349 varop
= gen_lowpart_for_combine (shift_mode
, varop
);
9351 /* If we can't make the SUBREG, try to return what we were given. */
9352 if (GET_CODE (varop
) == CLOBBER
)
9353 return x
? x
: varop
;
9355 new = simplify_binary_operation (code
, shift_mode
, varop
, const_rtx
);
9360 if (x
== 0 || GET_CODE (x
) != code
|| GET_MODE (x
) != shift_mode
)
9361 x
= gen_rtx_combine (code
, shift_mode
, varop
, const_rtx
);
9363 SUBST (XEXP (x
, 0), varop
);
9364 SUBST (XEXP (x
, 1), const_rtx
);
9367 /* If we have an outer operation and we just made a shift, it is
9368 possible that we could have simplified the shift were it not
9369 for the outer operation. So try to do the simplification
9372 if (outer_op
!= NIL
&& GET_CODE (x
) == code
9373 && GET_CODE (XEXP (x
, 1)) == CONST_INT
)
9374 x
= simplify_shift_const (x
, code
, shift_mode
, XEXP (x
, 0),
9375 INTVAL (XEXP (x
, 1)));
9377 /* If we were doing a LSHIFTRT in a wider mode than it was originally,
9378 turn off all the bits that the shift would have turned off. */
9379 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
9380 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
9381 GET_MODE_MASK (result_mode
) >> orig_count
);
9383 /* Do the remainder of the processing in RESULT_MODE. */
9384 x
= gen_lowpart_for_combine (result_mode
, x
);
9386 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9389 x
= gen_unary (NOT
, result_mode
, result_mode
, x
);
9391 if (outer_op
!= NIL
)
9393 if (GET_MODE_BITSIZE (result_mode
) < HOST_BITS_PER_WIDE_INT
)
9394 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
9396 if (outer_op
== AND
)
9397 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
9398 else if (outer_op
== SET
)
9399 /* This means that we have determined that the result is
9400 equivalent to a constant. This should be rare. */
9401 x
= GEN_INT (outer_const
);
9402 else if (GET_RTX_CLASS (outer_op
) == '1')
9403 x
= gen_unary (outer_op
, result_mode
, result_mode
, x
);
9405 x
= gen_binary (outer_op
, result_mode
, x
, GEN_INT (outer_const
));
9411 /* Like recog, but we receive the address of a pointer to a new pattern.
9412 We try to match the rtx that the pointer points to.
9413 If that fails, we may try to modify or replace the pattern,
9414 storing the replacement into the same pointer object.
9416 Modifications include deletion or addition of CLOBBERs.
9418 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9419 the CLOBBERs are placed.
9421 The value is the final insn code from the pattern ultimately matched,
9425 recog_for_combine (pnewpat
, insn
, pnotes
)
9430 register rtx pat
= *pnewpat
;
9431 int insn_code_number
;
9432 int num_clobbers_to_add
= 0;
9436 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9437 we use to indicate that something didn't match. If we find such a
9438 thing, force rejection. */
9439 if (GET_CODE (pat
) == PARALLEL
)
9440 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
9441 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
9442 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
9445 /* Is the result of combination a valid instruction? */
9446 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
9448 /* If it isn't, there is the possibility that we previously had an insn
9449 that clobbered some register as a side effect, but the combined
9450 insn doesn't need to do that. So try once more without the clobbers
9451 unless this represents an ASM insn. */
9453 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
9454 && GET_CODE (pat
) == PARALLEL
)
9458 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
9459 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
9462 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
9466 SUBST_INT (XVECLEN (pat
, 0), pos
);
9469 pat
= XVECEXP (pat
, 0, 0);
9471 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
9474 /* If we had any clobbers to add, make a new pattern than contains
9475 them. Then check to make sure that all of them are dead. */
9476 if (num_clobbers_to_add
)
9478 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
9479 gen_rtvec (GET_CODE (pat
) == PARALLEL
9481 + num_clobbers_to_add
)
9482 : num_clobbers_to_add
+ 1));
9484 if (GET_CODE (pat
) == PARALLEL
)
9485 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
9486 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
9488 XVECEXP (newpat
, 0, 0) = pat
;
9490 add_clobbers (newpat
, insn_code_number
);
9492 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
9493 i
< XVECLEN (newpat
, 0); i
++)
9495 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) == REG
9496 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
9498 notes
= gen_rtx_EXPR_LIST (REG_UNUSED
,
9499 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
9507 return insn_code_number
;
9510 /* Like gen_lowpart but for use by combine. In combine it is not possible
9511 to create any new pseudoregs. However, it is safe to create
9512 invalid memory addresses, because combine will try to recognize
9513 them and all they will do is make the combine attempt fail.
9515 If for some reason this cannot do its job, an rtx
9516 (clobber (const_int 0)) is returned.
9517 An insn containing that will not be recognized. */
9522 gen_lowpart_for_combine (mode
, x
)
9523 enum machine_mode mode
;
9528 if (GET_MODE (x
) == mode
)
9531 /* We can only support MODE being wider than a word if X is a
9532 constant integer or has a mode the same size. */
9534 if (GET_MODE_SIZE (mode
) > UNITS_PER_WORD
9535 && ! ((GET_MODE (x
) == VOIDmode
9536 && (GET_CODE (x
) == CONST_INT
9537 || GET_CODE (x
) == CONST_DOUBLE
))
9538 || GET_MODE_SIZE (GET_MODE (x
)) == GET_MODE_SIZE (mode
)))
9539 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
9541 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9542 won't know what to do. So we will strip off the SUBREG here and
9543 process normally. */
9544 if (GET_CODE (x
) == SUBREG
&& GET_CODE (SUBREG_REG (x
)) == MEM
)
9547 if (GET_MODE (x
) == mode
)
9551 result
= gen_lowpart_common (mode
, x
);
9553 && GET_CODE (result
) == SUBREG
9554 && GET_CODE (SUBREG_REG (result
)) == REG
9555 && REGNO (SUBREG_REG (result
)) >= FIRST_PSEUDO_REGISTER
9556 && (GET_MODE_SIZE (GET_MODE (result
))
9557 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (result
)))))
9558 REG_CHANGES_SIZE (REGNO (SUBREG_REG (result
))) = 1;
9563 if (GET_CODE (x
) == MEM
)
9565 register int offset
= 0;
9568 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9570 if (MEM_VOLATILE_P (x
) || mode_dependent_address_p (XEXP (x
, 0)))
9571 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
9573 /* If we want to refer to something bigger than the original memref,
9574 generate a perverse subreg instead. That will force a reload
9575 of the original memref X. */
9576 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
))
9577 return gen_rtx_SUBREG (mode
, x
, 0);
9579 if (WORDS_BIG_ENDIAN
)
9580 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
9581 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
9583 if (BYTES_BIG_ENDIAN
)
9585 /* Adjust the address so that the address-after-the-data is
9587 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
9588 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
9590 new = gen_rtx_MEM (mode
, plus_constant (XEXP (x
, 0), offset
));
9591 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x
);
9592 MEM_COPY_ATTRIBUTES (new, x
);
9596 /* If X is a comparison operator, rewrite it in a new mode. This
9597 probably won't match, but may allow further simplifications. */
9598 else if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
9599 return gen_rtx_combine (GET_CODE (x
), mode
, XEXP (x
, 0), XEXP (x
, 1));
9601 /* If we couldn't simplify X any other way, just enclose it in a
9602 SUBREG. Normally, this SUBREG won't match, but some patterns may
9603 include an explicit SUBREG or we may simplify it further in combine. */
9608 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
)
9609 word
= ((GET_MODE_SIZE (GET_MODE (x
))
9610 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
))
9612 return gen_rtx_SUBREG (mode
, x
, word
);
9616 /* Make an rtx expression. This is a subset of gen_rtx and only supports
9617 expressions of 1, 2, or 3 operands, each of which are rtx expressions.
9619 If the identical expression was previously in the insn (in the undobuf),
9620 it will be returned. Only if it is not found will a new expression
9625 gen_rtx_combine
VPARAMS ((enum rtx_code code
, enum machine_mode mode
, ...))
9627 #ifndef ANSI_PROTOTYPES
9629 enum machine_mode mode
;
9641 #ifndef ANSI_PROTOTYPES
9642 code
= va_arg (p
, enum rtx_code
);
9643 mode
= va_arg (p
, enum machine_mode
);
9646 n_args
= GET_RTX_LENGTH (code
);
9647 fmt
= GET_RTX_FORMAT (code
);
9649 if (n_args
== 0 || n_args
> 3)
9652 /* Get each arg and verify that it is supposed to be an expression. */
9653 for (j
= 0; j
< n_args
; j
++)
9658 args
[j
] = va_arg (p
, rtx
);
9663 /* See if this is in undobuf. Be sure we don't use objects that came
9664 from another insn; this could produce circular rtl structures. */
9666 for (undo
= undobuf
.undos
; undo
!= undobuf
.previous_undos
; undo
= undo
->next
)
9668 && GET_CODE (undo
->old_contents
.r
) == code
9669 && GET_MODE (undo
->old_contents
.r
) == mode
)
9671 for (j
= 0; j
< n_args
; j
++)
9672 if (XEXP (undo
->old_contents
.r
, j
) != args
[j
])
9676 return undo
->old_contents
.r
;
9679 /* Otherwise make a new rtx. We know we have 1, 2, or 3 args.
9680 Use rtx_alloc instead of gen_rtx because it's faster on RISC. */
9681 rt
= rtx_alloc (code
);
9682 PUT_MODE (rt
, mode
);
9683 XEXP (rt
, 0) = args
[0];
9686 XEXP (rt
, 1) = args
[1];
9688 XEXP (rt
, 2) = args
[2];
9693 /* These routines make binary and unary operations by first seeing if they
9694 fold; if not, a new expression is allocated. */
9697 gen_binary (code
, mode
, op0
, op1
)
9699 enum machine_mode mode
;
9705 if (GET_RTX_CLASS (code
) == 'c'
9706 && (GET_CODE (op0
) == CONST_INT
9707 || (CONSTANT_P (op0
) && GET_CODE (op1
) != CONST_INT
)))
9708 tem
= op0
, op0
= op1
, op1
= tem
;
9710 if (GET_RTX_CLASS (code
) == '<')
9712 enum machine_mode op_mode
= GET_MODE (op0
);
9714 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9715 just (REL_OP X Y). */
9716 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
9718 op1
= XEXP (op0
, 1);
9719 op0
= XEXP (op0
, 0);
9720 op_mode
= GET_MODE (op0
);
9723 if (op_mode
== VOIDmode
)
9724 op_mode
= GET_MODE (op1
);
9725 result
= simplify_relational_operation (code
, op_mode
, op0
, op1
);
9728 result
= simplify_binary_operation (code
, mode
, op0
, op1
);
9733 /* Put complex operands first and constants second. */
9734 if (GET_RTX_CLASS (code
) == 'c'
9735 && ((CONSTANT_P (op0
) && GET_CODE (op1
) != CONST_INT
)
9736 || (GET_RTX_CLASS (GET_CODE (op0
)) == 'o'
9737 && GET_RTX_CLASS (GET_CODE (op1
)) != 'o')
9738 || (GET_CODE (op0
) == SUBREG
9739 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0
))) == 'o'
9740 && GET_RTX_CLASS (GET_CODE (op1
)) != 'o')))
9741 return gen_rtx_combine (code
, mode
, op1
, op0
);
9743 /* If we are turning off bits already known off in OP0, we need not do
9745 else if (code
== AND
&& GET_CODE (op1
) == CONST_INT
9746 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
9747 && (nonzero_bits (op0
, mode
) & ~ INTVAL (op1
)) == 0)
9750 return gen_rtx_combine (code
, mode
, op0
, op1
);
9754 gen_unary (code
, mode
, op0_mode
, op0
)
9756 enum machine_mode mode
, op0_mode
;
9759 rtx result
= simplify_unary_operation (code
, mode
, op0
, op0_mode
);
9764 return gen_rtx_combine (code
, mode
, op0
);
9767 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9768 comparison code that will be tested.
9770 The result is a possibly different comparison code to use. *POP0 and
9771 *POP1 may be updated.
9773 It is possible that we might detect that a comparison is either always
9774 true or always false. However, we do not perform general constant
9775 folding in combine, so this knowledge isn't useful. Such tautologies
9776 should have been detected earlier. Hence we ignore all such cases. */
9778 static enum rtx_code
9779 simplify_comparison (code
, pop0
, pop1
)
9788 enum machine_mode mode
, tmode
;
9790 /* Try a few ways of applying the same transformation to both operands. */
9793 #ifndef WORD_REGISTER_OPERATIONS
9794 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9795 so check specially. */
9796 if (code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
9797 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
9798 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
9799 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
9800 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
9801 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
9802 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
9803 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
9804 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9805 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
9806 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
9807 && GET_CODE (XEXP (XEXP (op1
, 0), 1)) == CONST_INT
9808 && INTVAL (XEXP (op0
, 1)) == INTVAL (XEXP (op1
, 1))
9809 && INTVAL (XEXP (op0
, 1)) == INTVAL (XEXP (XEXP (op0
, 0), 1))
9810 && INTVAL (XEXP (op0
, 1)) == INTVAL (XEXP (XEXP (op1
, 0), 1))
9811 && (INTVAL (XEXP (op0
, 1))
9812 == (GET_MODE_BITSIZE (GET_MODE (op0
))
9814 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
9816 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
9817 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
9821 /* If both operands are the same constant shift, see if we can ignore the
9822 shift. We can if the shift is a rotate or if the bits shifted out of
9823 this shift are known to be zero for both inputs and if the type of
9824 comparison is compatible with the shift. */
9825 if (GET_CODE (op0
) == GET_CODE (op1
)
9826 && GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
9827 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
9828 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
9829 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
9830 || (GET_CODE (op0
) == ASHIFTRT
9831 && (code
!= GTU
&& code
!= LTU
9832 && code
!= GEU
&& code
!= GEU
)))
9833 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9834 && INTVAL (XEXP (op0
, 1)) >= 0
9835 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
9836 && XEXP (op0
, 1) == XEXP (op1
, 1))
9838 enum machine_mode mode
= GET_MODE (op0
);
9839 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
9840 int shift_count
= INTVAL (XEXP (op0
, 1));
9842 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
9843 mask
&= (mask
>> shift_count
) << shift_count
;
9844 else if (GET_CODE (op0
) == ASHIFT
)
9845 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
9847 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~ mask
) == 0
9848 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~ mask
) == 0)
9849 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
9854 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9855 SUBREGs are of the same mode, and, in both cases, the AND would
9856 be redundant if the comparison was done in the narrower mode,
9857 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9858 and the operand's possibly nonzero bits are 0xffffff01; in that case
9859 if we only care about QImode, we don't need the AND). This case
9860 occurs if the output mode of an scc insn is not SImode and
9861 STORE_FLAG_VALUE == 1 (e.g., the 386).
9863 Similarly, check for a case where the AND's are ZERO_EXTEND
9864 operations from some narrower mode even though a SUBREG is not
9867 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
9868 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
9869 && GET_CODE (XEXP (op1
, 1)) == CONST_INT
)
9871 rtx inner_op0
= XEXP (op0
, 0);
9872 rtx inner_op1
= XEXP (op1
, 0);
9873 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
9874 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
9877 if (GET_CODE (inner_op0
) == SUBREG
&& GET_CODE (inner_op1
) == SUBREG
9878 && (GET_MODE_SIZE (GET_MODE (inner_op0
))
9879 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0
))))
9880 && (GET_MODE (SUBREG_REG (inner_op0
))
9881 == GET_MODE (SUBREG_REG (inner_op1
)))
9882 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0
)))
9883 <= HOST_BITS_PER_WIDE_INT
)
9884 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
9885 GET_MODE (SUBREG_REG (inner_op0
)))))
9886 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
9887 GET_MODE (SUBREG_REG (inner_op1
))))))
9889 op0
= SUBREG_REG (inner_op0
);
9890 op1
= SUBREG_REG (inner_op1
);
9892 /* The resulting comparison is always unsigned since we masked
9893 off the original sign bit. */
9894 code
= unsigned_condition (code
);
9900 for (tmode
= GET_CLASS_NARROWEST_MODE
9901 (GET_MODE_CLASS (GET_MODE (op0
)));
9902 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
9903 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
9905 op0
= gen_lowpart_for_combine (tmode
, inner_op0
);
9906 op1
= gen_lowpart_for_combine (tmode
, inner_op1
);
9907 code
= unsigned_condition (code
);
9916 /* If both operands are NOT, we can strip off the outer operation
9917 and adjust the comparison code for swapped operands; similarly for
9918 NEG, except that this must be an equality comparison. */
9919 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
9920 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
9921 && (code
== EQ
|| code
== NE
)))
9922 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
9928 /* If the first operand is a constant, swap the operands and adjust the
9929 comparison code appropriately, but don't do this if the second operand
9930 is already a constant integer. */
9931 if (CONSTANT_P (op0
) && GET_CODE (op1
) != CONST_INT
)
9933 tem
= op0
, op0
= op1
, op1
= tem
;
9934 code
= swap_condition (code
);
9937 /* We now enter a loop during which we will try to simplify the comparison.
9938 For the most part, we only are concerned with comparisons with zero,
9939 but some things may really be comparisons with zero but not start
9940 out looking that way. */
9942 while (GET_CODE (op1
) == CONST_INT
)
9944 enum machine_mode mode
= GET_MODE (op0
);
9945 int mode_width
= GET_MODE_BITSIZE (mode
);
9946 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
9947 int equality_comparison_p
;
9948 int sign_bit_comparison_p
;
9949 int unsigned_comparison_p
;
9950 HOST_WIDE_INT const_op
;
9952 /* We only want to handle integral modes. This catches VOIDmode,
9953 CCmode, and the floating-point modes. An exception is that we
9954 can handle VOIDmode if OP0 is a COMPARE or a comparison
9957 if (GET_MODE_CLASS (mode
) != MODE_INT
9958 && ! (mode
== VOIDmode
9959 && (GET_CODE (op0
) == COMPARE
9960 || GET_RTX_CLASS (GET_CODE (op0
)) == '<')))
9963 /* Get the constant we are comparing against and turn off all bits
9964 not on in our mode. */
9965 const_op
= INTVAL (op1
);
9966 if (mode_width
<= HOST_BITS_PER_WIDE_INT
)
9969 /* If we are comparing against a constant power of two and the value
9970 being compared can only have that single bit nonzero (e.g., it was
9971 `and'ed with that bit), we can replace this with a comparison
9974 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
9975 || code
== LT
|| code
== LTU
)
9976 && mode_width
<= HOST_BITS_PER_WIDE_INT
9977 && exact_log2 (const_op
) >= 0
9978 && nonzero_bits (op0
, mode
) == (unsigned HOST_WIDE_INT
) const_op
)
9980 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
9981 op1
= const0_rtx
, const_op
= 0;
9984 /* Similarly, if we are comparing a value known to be either -1 or
9985 0 with -1, change it to the opposite comparison against zero. */
9988 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
9989 || code
== GEU
|| code
== LTU
)
9990 && num_sign_bit_copies (op0
, mode
) == mode_width
)
9992 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
9993 op1
= const0_rtx
, const_op
= 0;
9996 /* Do some canonicalizations based on the comparison code. We prefer
9997 comparisons against zero and then prefer equality comparisons.
9998 If we can reduce the size of a constant, we will do that too. */
10003 /* < C is equivalent to <= (C - 1) */
10007 op1
= GEN_INT (const_op
);
10009 /* ... fall through to LE case below. */
10015 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10019 op1
= GEN_INT (const_op
);
10023 /* If we are doing a <= 0 comparison on a value known to have
10024 a zero sign bit, we can replace this with == 0. */
10025 else if (const_op
== 0
10026 && mode_width
<= HOST_BITS_PER_WIDE_INT
10027 && (nonzero_bits (op0
, mode
)
10028 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
10033 /* >= C is equivalent to > (C - 1). */
10037 op1
= GEN_INT (const_op
);
10039 /* ... fall through to GT below. */
10045 /* > C is equivalent to >= (C + 1); we do this for C < 0*/
10049 op1
= GEN_INT (const_op
);
10053 /* If we are doing a > 0 comparison on a value known to have
10054 a zero sign bit, we can replace this with != 0. */
10055 else if (const_op
== 0
10056 && mode_width
<= HOST_BITS_PER_WIDE_INT
10057 && (nonzero_bits (op0
, mode
)
10058 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)
10063 /* < C is equivalent to <= (C - 1). */
10067 op1
= GEN_INT (const_op
);
10069 /* ... fall through ... */
10072 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10073 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10074 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10076 const_op
= 0, op1
= const0_rtx
;
10084 /* unsigned <= 0 is equivalent to == 0 */
10088 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10089 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10090 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
10092 const_op
= 0, op1
= const0_rtx
;
10098 /* >= C is equivalent to < (C - 1). */
10102 op1
= GEN_INT (const_op
);
10104 /* ... fall through ... */
10107 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10108 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10109 && (const_op
== (HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10111 const_op
= 0, op1
= const0_rtx
;
10119 /* unsigned > 0 is equivalent to != 0 */
10123 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10124 else if ((mode_width
<= HOST_BITS_PER_WIDE_INT
)
10125 && (const_op
== ((HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1))
10127 const_op
= 0, op1
= const0_rtx
;
10136 /* Compute some predicates to simplify code below. */
10138 equality_comparison_p
= (code
== EQ
|| code
== NE
);
10139 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
10140 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
10143 /* If this is a sign bit comparison and we can do arithmetic in
10144 MODE, say that we will only be needing the sign bit of OP0. */
10145 if (sign_bit_comparison_p
10146 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10147 op0
= force_to_mode (op0
, mode
,
10149 << (GET_MODE_BITSIZE (mode
) - 1)),
10152 /* Now try cases based on the opcode of OP0. If none of the cases
10153 does a "continue", we exit this loop immediately after the
10156 switch (GET_CODE (op0
))
10159 /* If we are extracting a single bit from a variable position in
10160 a constant that has only a single bit set and are comparing it
10161 with zero, we can convert this into an equality comparison
10162 between the position and the location of the single bit. */
10164 if (GET_CODE (XEXP (op0
, 0)) == CONST_INT
10165 && XEXP (op0
, 1) == const1_rtx
10166 && equality_comparison_p
&& const_op
== 0
10167 && (i
= exact_log2 (INTVAL (XEXP (op0
, 0)))) >= 0)
10169 if (BITS_BIG_ENDIAN
)
10172 mode
= insn_data
[(int) CODE_FOR_extzv
].operand
[1].mode
;
10173 if (mode
== VOIDmode
)
10175 i
= (GET_MODE_BITSIZE (mode
) - 1 - i
);
10177 i
= BITS_PER_WORD
- 1 - i
;
10181 op0
= XEXP (op0
, 2);
10185 /* Result is nonzero iff shift count is equal to I. */
10186 code
= reverse_condition (code
);
10190 /* ... fall through ... */
10193 tem
= expand_compound_operation (op0
);
10202 /* If testing for equality, we can take the NOT of the constant. */
10203 if (equality_comparison_p
10204 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
10206 op0
= XEXP (op0
, 0);
10211 /* If just looking at the sign bit, reverse the sense of the
10213 if (sign_bit_comparison_p
)
10215 op0
= XEXP (op0
, 0);
10216 code
= (code
== GE
? LT
: GE
);
10222 /* If testing for equality, we can take the NEG of the constant. */
10223 if (equality_comparison_p
10224 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
10226 op0
= XEXP (op0
, 0);
10231 /* The remaining cases only apply to comparisons with zero. */
10235 /* When X is ABS or is known positive,
10236 (neg X) is < 0 if and only if X != 0. */
10238 if (sign_bit_comparison_p
10239 && (GET_CODE (XEXP (op0
, 0)) == ABS
10240 || (mode_width
<= HOST_BITS_PER_WIDE_INT
10241 && (nonzero_bits (XEXP (op0
, 0), mode
)
10242 & ((HOST_WIDE_INT
) 1 << (mode_width
- 1))) == 0)))
10244 op0
= XEXP (op0
, 0);
10245 code
= (code
== LT
? NE
: EQ
);
10249 /* If we have NEG of something whose two high-order bits are the
10250 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10251 if (num_sign_bit_copies (op0
, mode
) >= 2)
10253 op0
= XEXP (op0
, 0);
10254 code
= swap_condition (code
);
10260 /* If we are testing equality and our count is a constant, we
10261 can perform the inverse operation on our RHS. */
10262 if (equality_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
10263 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
10264 op1
, XEXP (op0
, 1))) != 0)
10266 op0
= XEXP (op0
, 0);
10271 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10272 a particular bit. Convert it to an AND of a constant of that
10273 bit. This will be converted into a ZERO_EXTRACT. */
10274 if (const_op
== 0 && sign_bit_comparison_p
10275 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10276 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
10278 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10281 - INTVAL (XEXP (op0
, 1)))));
10282 code
= (code
== LT
? NE
: EQ
);
10286 /* ... fall through ... */
10289 /* ABS is ignorable inside an equality comparison with zero. */
10290 if (const_op
== 0 && equality_comparison_p
)
10292 op0
= XEXP (op0
, 0);
10299 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10300 to (compare FOO CONST) if CONST fits in FOO's mode and we
10301 are either testing inequality or have an unsigned comparison
10302 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10303 if (! unsigned_comparison_p
10304 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10305 <= HOST_BITS_PER_WIDE_INT
)
10306 && ((unsigned HOST_WIDE_INT
) const_op
10307 < (((unsigned HOST_WIDE_INT
) 1
10308 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0))) - 1)))))
10310 op0
= XEXP (op0
, 0);
10316 /* Check for the case where we are comparing A - C1 with C2,
10317 both constants are smaller than 1/2 the maximum positive
10318 value in MODE, and the comparison is equality or unsigned.
10319 In that case, if A is either zero-extended to MODE or has
10320 sufficient sign bits so that the high-order bit in MODE
10321 is a copy of the sign in the inner mode, we can prove that it is
10322 safe to do the operation in the wider mode. This simplifies
10323 many range checks. */
10325 if (mode_width
<= HOST_BITS_PER_WIDE_INT
10326 && subreg_lowpart_p (op0
)
10327 && GET_CODE (SUBREG_REG (op0
)) == PLUS
10328 && GET_CODE (XEXP (SUBREG_REG (op0
), 1)) == CONST_INT
10329 && INTVAL (XEXP (SUBREG_REG (op0
), 1)) < 0
10330 && (- INTVAL (XEXP (SUBREG_REG (op0
), 1))
10331 < (HOST_WIDE_INT
)(GET_MODE_MASK (mode
) / 2))
10332 && (unsigned HOST_WIDE_INT
) const_op
< GET_MODE_MASK (mode
) / 2
10333 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0
), 0),
10334 GET_MODE (SUBREG_REG (op0
)))
10335 & ~ GET_MODE_MASK (mode
))
10336 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0
), 0),
10337 GET_MODE (SUBREG_REG (op0
)))
10338 > (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
10339 - GET_MODE_BITSIZE (mode
)))))
10341 op0
= SUBREG_REG (op0
);
10345 /* If the inner mode is narrower and we are extracting the low part,
10346 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10347 if (subreg_lowpart_p (op0
)
10348 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
10349 /* Fall through */ ;
10353 /* ... fall through ... */
10356 if ((unsigned_comparison_p
|| equality_comparison_p
)
10357 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10358 <= HOST_BITS_PER_WIDE_INT
)
10359 && ((unsigned HOST_WIDE_INT
) const_op
10360 < GET_MODE_MASK (GET_MODE (XEXP (op0
, 0)))))
10362 op0
= XEXP (op0
, 0);
10368 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10369 this for equality comparisons due to pathological cases involving
10371 if (equality_comparison_p
10372 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10373 op1
, XEXP (op0
, 1))))
10375 op0
= XEXP (op0
, 0);
10380 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10381 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
10382 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
10384 op0
= XEXP (XEXP (op0
, 0), 0);
10385 code
= (code
== LT
? EQ
: NE
);
10391 /* (op (minus A B) 0) -> (op A B) */
10392 if (op1
== const0_rtx
)
10394 op1
= XEXP (op0
, 1);
10395 op0
= XEXP (op0
, 0);
10399 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10400 (eq B (minus A C)), whichever simplifies. We can only do
10401 this for equality comparisons due to pathological cases involving
10403 if (equality_comparison_p
10404 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
10405 XEXP (op0
, 1), op1
)))
10407 op0
= XEXP (op0
, 0);
10412 if (equality_comparison_p
10413 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
10414 XEXP (op0
, 0), op1
)))
10416 op0
= XEXP (op0
, 1);
10421 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10422 of bits in X minus 1, is one iff X > 0. */
10423 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
10424 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10425 && INTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
10426 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10428 op0
= XEXP (op0
, 1);
10429 code
= (code
== GE
? LE
: GT
);
10435 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10436 if C is zero or B is a constant. */
10437 if (equality_comparison_p
10438 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
10439 XEXP (op0
, 1), op1
)))
10441 op0
= XEXP (op0
, 0);
10448 case LT
: case LTU
: case LE
: case LEU
:
10449 case GT
: case GTU
: case GE
: case GEU
:
10450 /* We can't do anything if OP0 is a condition code value, rather
10451 than an actual data value. */
10454 || XEXP (op0
, 0) == cc0_rtx
10456 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
10459 /* Get the two operands being compared. */
10460 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
10461 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
10463 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
10465 /* Check for the cases where we simply want the result of the
10466 earlier test or the opposite of that result. */
10468 || (code
== EQ
&& reversible_comparison_p (op0
))
10469 || (GET_MODE_BITSIZE (GET_MODE (op0
)) <= HOST_BITS_PER_WIDE_INT
10470 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10471 && (STORE_FLAG_VALUE
10472 & (((HOST_WIDE_INT
) 1
10473 << (GET_MODE_BITSIZE (GET_MODE (op0
)) - 1))))
10475 || (code
== GE
&& reversible_comparison_p (op0
)))))
10477 code
= (code
== LT
|| code
== NE
10478 ? GET_CODE (op0
) : reverse_condition (GET_CODE (op0
)));
10479 op0
= tem
, op1
= tem1
;
10485 /* The sign bit of (ior (plus X (const_int -1)) X) is non-zero
10487 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
10488 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
10489 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
10491 op0
= XEXP (op0
, 1);
10492 code
= (code
== GE
? GT
: LE
);
10498 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10499 will be converted to a ZERO_EXTRACT later. */
10500 if (const_op
== 0 && equality_comparison_p
10501 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10502 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
10504 op0
= simplify_and_const_int
10505 (op0
, mode
, gen_rtx_combine (LSHIFTRT
, mode
,
10507 XEXP (XEXP (op0
, 0), 1)),
10508 (HOST_WIDE_INT
) 1);
10512 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10513 zero and X is a comparison and C1 and C2 describe only bits set
10514 in STORE_FLAG_VALUE, we can compare with X. */
10515 if (const_op
== 0 && equality_comparison_p
10516 && mode_width
<= HOST_BITS_PER_WIDE_INT
10517 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10518 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
10519 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10520 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
10521 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
10523 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10524 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
10525 if ((~ STORE_FLAG_VALUE
& mask
) == 0
10526 && (GET_RTX_CLASS (GET_CODE (XEXP (XEXP (op0
, 0), 0))) == '<'
10527 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
10528 && GET_RTX_CLASS (GET_CODE (tem
)) == '<')))
10530 op0
= XEXP (XEXP (op0
, 0), 0);
10535 /* If we are doing an equality comparison of an AND of a bit equal
10536 to the sign bit, replace this with a LT or GE comparison of
10537 the underlying value. */
10538 if (equality_comparison_p
10540 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10541 && mode_width
<= HOST_BITS_PER_WIDE_INT
10542 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
10543 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10545 op0
= XEXP (op0
, 0);
10546 code
= (code
== EQ
? GE
: LT
);
10550 /* If this AND operation is really a ZERO_EXTEND from a narrower
10551 mode, the constant fits within that mode, and this is either an
10552 equality or unsigned comparison, try to do this comparison in
10553 the narrower mode. */
10554 if ((equality_comparison_p
|| unsigned_comparison_p
)
10555 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10556 && (i
= exact_log2 ((INTVAL (XEXP (op0
, 1))
10557 & GET_MODE_MASK (mode
))
10559 && const_op
>> i
== 0
10560 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
)
10562 op0
= gen_lowpart_for_combine (tmode
, XEXP (op0
, 0));
10566 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1 fits
10567 in both M1 and M2 and the SUBREG is either paradoxical or
10568 represents the low part, permute the SUBREG and the AND and
10570 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
10572 #ifdef WORD_REGISTER_OPERATIONS
10574 > (GET_MODE_BITSIZE
10575 (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))))
10576 && mode_width
<= BITS_PER_WORD
)
10579 <= (GET_MODE_BITSIZE
10580 (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))))
10581 && subreg_lowpart_p (XEXP (op0
, 0))))
10582 #ifndef WORD_REGISTER_OPERATIONS
10583 /* It is unsafe to commute the AND into the SUBREG if the SUBREG
10584 is paradoxical and WORD_REGISTER_OPERATIONS is not defined.
10585 As originally written the upper bits have a defined value
10586 due to the AND operation. However, if we commute the AND
10587 inside the SUBREG then they no longer have defined values
10588 and the meaning of the code has been changed. */
10589 && (GET_MODE_SIZE (GET_MODE (XEXP (op0
, 0)))
10590 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (op0
, 0)))))
10592 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10593 && mode_width
<= HOST_BITS_PER_WIDE_INT
10594 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))
10595 <= HOST_BITS_PER_WIDE_INT
)
10596 && (INTVAL (XEXP (op0
, 1)) & ~ mask
) == 0
10597 && 0 == (~ GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))
10598 & INTVAL (XEXP (op0
, 1)))
10599 && (unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1)) != mask
10600 && ((unsigned HOST_WIDE_INT
) INTVAL (XEXP (op0
, 1))
10601 != GET_MODE_MASK (GET_MODE (SUBREG_REG (XEXP (op0
, 0))))))
10605 = gen_lowpart_for_combine
10607 gen_binary (AND
, GET_MODE (SUBREG_REG (XEXP (op0
, 0))),
10608 SUBREG_REG (XEXP (op0
, 0)), XEXP (op0
, 1)));
10615 /* If we have (compare (ashift FOO N) (const_int C)) and
10616 the high order N bits of FOO (N+1 if an inequality comparison)
10617 are known to be zero, we can do this by comparing FOO with C
10618 shifted right N bits so long as the low-order N bits of C are
10620 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
10621 && INTVAL (XEXP (op0
, 1)) >= 0
10622 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
10623 < HOST_BITS_PER_WIDE_INT
)
10625 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0)
10626 && mode_width
<= HOST_BITS_PER_WIDE_INT
10627 && (nonzero_bits (XEXP (op0
, 0), mode
)
10628 & ~ (mask
>> (INTVAL (XEXP (op0
, 1))
10629 + ! equality_comparison_p
))) == 0)
10631 /* We must perform a logical shift, not an arithmetic one,
10632 as we want the top N bits of C to be zero. */
10633 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
10635 temp
>>= INTVAL (XEXP (op0
, 1));
10636 op1
= GEN_INT (trunc_int_for_mode (temp
, mode
));
10637 op0
= XEXP (op0
, 0);
10641 /* If we are doing a sign bit comparison, it means we are testing
10642 a particular bit. Convert it to the appropriate AND. */
10643 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 1)) == CONST_INT
10644 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
10646 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10649 - INTVAL (XEXP (op0
, 1)))));
10650 code
= (code
== LT
? NE
: EQ
);
10654 /* If this an equality comparison with zero and we are shifting
10655 the low bit to the sign bit, we can convert this to an AND of the
10657 if (const_op
== 0 && equality_comparison_p
10658 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10659 && INTVAL (XEXP (op0
, 1)) == mode_width
- 1)
10661 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
10662 (HOST_WIDE_INT
) 1);
10668 /* If this is an equality comparison with zero, we can do this
10669 as a logical shift, which might be much simpler. */
10670 if (equality_comparison_p
&& const_op
== 0
10671 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
)
10673 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
10675 INTVAL (XEXP (op0
, 1)));
10679 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10680 do the comparison in a narrower mode. */
10681 if (! unsigned_comparison_p
10682 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10683 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
10684 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
10685 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
10686 MODE_INT
, 1)) != BLKmode
10687 && ((unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (tmode
)
10688 || ((unsigned HOST_WIDE_INT
) - const_op
10689 <= GET_MODE_MASK (tmode
))))
10691 op0
= gen_lowpart_for_combine (tmode
, XEXP (XEXP (op0
, 0), 0));
10695 /* Likewise if OP0 is a PLUS of a sign extension with a
10696 constant, which is usually represented with the PLUS
10697 between the shifts. */
10698 if (! unsigned_comparison_p
10699 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10700 && GET_CODE (XEXP (op0
, 0)) == PLUS
10701 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == CONST_INT
10702 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
10703 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
10704 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
10705 MODE_INT
, 1)) != BLKmode
10706 && ((unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (tmode
)
10707 || ((unsigned HOST_WIDE_INT
) - const_op
10708 <= GET_MODE_MASK (tmode
))))
10710 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
10711 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
10712 rtx new_const
= gen_binary (ASHIFTRT
, GET_MODE (op0
), add_const
,
10715 op0
= gen_binary (PLUS
, tmode
,
10716 gen_lowpart_for_combine (tmode
, inner
),
10721 /* ... fall through ... */
10723 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10724 the low order N bits of FOO are known to be zero, we can do this
10725 by comparing FOO with C shifted left N bits so long as no
10726 overflow occurs. */
10727 if (GET_CODE (XEXP (op0
, 1)) == CONST_INT
10728 && INTVAL (XEXP (op0
, 1)) >= 0
10729 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
10730 && mode_width
<= HOST_BITS_PER_WIDE_INT
10731 && (nonzero_bits (XEXP (op0
, 0), mode
)
10732 & (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1)) == 0
10734 || (floor_log2 (const_op
) + INTVAL (XEXP (op0
, 1))
10737 const_op
<<= INTVAL (XEXP (op0
, 1));
10738 op1
= GEN_INT (const_op
);
10739 op0
= XEXP (op0
, 0);
10743 /* If we are using this shift to extract just the sign bit, we
10744 can replace this with an LT or GE comparison. */
10746 && (equality_comparison_p
|| sign_bit_comparison_p
)
10747 && GET_CODE (XEXP (op0
, 1)) == CONST_INT
10748 && INTVAL (XEXP (op0
, 1)) == mode_width
- 1)
10750 op0
= XEXP (op0
, 0);
10751 code
= (code
== NE
|| code
== GT
? LT
: GE
);
10763 /* Now make any compound operations involved in this comparison. Then,
10764 check for an outmost SUBREG on OP0 that is not doing anything or is
10765 paradoxical. The latter case can only occur when it is known that the
10766 "extra" bits will be zero. Therefore, it is safe to remove the SUBREG.
10767 We can never remove a SUBREG for a non-equality comparison because the
10768 sign bit is in a different place in the underlying object. */
10770 op0
= make_compound_operation (op0
, op1
== const0_rtx
? COMPARE
: SET
);
10771 op1
= make_compound_operation (op1
, SET
);
10773 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
10774 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10775 && (code
== NE
|| code
== EQ
)
10776 && ((GET_MODE_SIZE (GET_MODE (op0
))
10777 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
))))))
10779 op0
= SUBREG_REG (op0
);
10780 op1
= gen_lowpart_for_combine (GET_MODE (op0
), op1
);
10783 else if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
10784 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10785 && (code
== NE
|| code
== EQ
)
10786 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
10787 <= HOST_BITS_PER_WIDE_INT
)
10788 && (nonzero_bits (SUBREG_REG (op0
), GET_MODE (SUBREG_REG (op0
)))
10789 & ~ GET_MODE_MASK (GET_MODE (op0
))) == 0
10790 && (tem
= gen_lowpart_for_combine (GET_MODE (SUBREG_REG (op0
)),
10792 (nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
10793 & ~ GET_MODE_MASK (GET_MODE (op0
))) == 0))
10794 op0
= SUBREG_REG (op0
), op1
= tem
;
10796 /* We now do the opposite procedure: Some machines don't have compare
10797 insns in all modes. If OP0's mode is an integer mode smaller than a
10798 word and we can't do a compare in that mode, see if there is a larger
10799 mode for which we can do the compare. There are a number of cases in
10800 which we can use the wider mode. */
10802 mode
= GET_MODE (op0
);
10803 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
10804 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
10805 && cmp_optab
->handlers
[(int) mode
].insn_code
== CODE_FOR_nothing
)
10806 for (tmode
= GET_MODE_WIDER_MODE (mode
);
10808 && GET_MODE_BITSIZE (tmode
) <= HOST_BITS_PER_WIDE_INT
);
10809 tmode
= GET_MODE_WIDER_MODE (tmode
))
10810 if (cmp_optab
->handlers
[(int) tmode
].insn_code
!= CODE_FOR_nothing
)
10812 /* If the only nonzero bits in OP0 and OP1 are those in the
10813 narrower mode and this is an equality or unsigned comparison,
10814 we can use the wider mode. Similarly for sign-extended
10815 values, in which case it is true for all comparisons. */
10816 if (((code
== EQ
|| code
== NE
10817 || code
== GEU
|| code
== GTU
|| code
== LEU
|| code
== LTU
)
10818 && (nonzero_bits (op0
, tmode
) & ~ GET_MODE_MASK (mode
)) == 0
10819 && (nonzero_bits (op1
, tmode
) & ~ GET_MODE_MASK (mode
)) == 0)
10820 || ((num_sign_bit_copies (op0
, tmode
)
10821 > GET_MODE_BITSIZE (tmode
) - GET_MODE_BITSIZE (mode
))
10822 && (num_sign_bit_copies (op1
, tmode
)
10823 > GET_MODE_BITSIZE (tmode
) - GET_MODE_BITSIZE (mode
))))
10825 /* If OP0 is an AND and we don't have an AND in MODE either,
10826 make a new AND in the proper mode. */
10827 if (GET_CODE (op0
) == AND
10828 && (add_optab
->handlers
[(int) mode
].insn_code
10829 == CODE_FOR_nothing
))
10830 op0
= gen_binary (AND
, tmode
,
10831 gen_lowpart_for_combine (tmode
,
10833 gen_lowpart_for_combine (tmode
,
10836 op0
= gen_lowpart_for_combine (tmode
, op0
);
10837 op1
= gen_lowpart_for_combine (tmode
, op1
);
10841 /* If this is a test for negative, we can make an explicit
10842 test of the sign bit. */
10844 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
10845 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
10847 op0
= gen_binary (AND
, tmode
,
10848 gen_lowpart_for_combine (tmode
, op0
),
10849 GEN_INT ((HOST_WIDE_INT
) 1
10850 << (GET_MODE_BITSIZE (mode
) - 1)));
10851 code
= (code
== LT
) ? NE
: EQ
;
10856 #ifdef CANONICALIZE_COMPARISON
10857 /* If this machine only supports a subset of valid comparisons, see if we
10858 can convert an unsupported one into a supported one. */
10859 CANONICALIZE_COMPARISON (code
, op0
, op1
);
10868 /* Return 1 if we know that X, a comparison operation, is not operating
10869 on a floating-point value or is EQ or NE, meaning that we can safely
10873 reversible_comparison_p (x
)
10876 if (TARGET_FLOAT_FORMAT
!= IEEE_FLOAT_FORMAT
10878 || GET_CODE (x
) == NE
|| GET_CODE (x
) == EQ
10879 || GET_CODE (x
) == UNORDERED
|| GET_CODE (x
) == ORDERED
)
10882 switch (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))))
10885 case MODE_PARTIAL_INT
:
10886 case MODE_COMPLEX_INT
:
10890 /* If the mode of the condition codes tells us that this is safe,
10891 we need look no further. */
10892 if (REVERSIBLE_CC_MODE (GET_MODE (XEXP (x
, 0))))
10895 /* Otherwise try and find where the condition codes were last set and
10897 x
= get_last_value (XEXP (x
, 0));
10898 return (x
&& GET_CODE (x
) == COMPARE
10899 && ! FLOAT_MODE_P (GET_MODE (XEXP (x
, 0))));
10906 /* Utility function for following routine. Called when X is part of a value
10907 being stored into reg_last_set_value. Sets reg_last_set_table_tick
10908 for each register mentioned. Similar to mention_regs in cse.c */
10911 update_table_tick (x
)
10914 register enum rtx_code code
= GET_CODE (x
);
10915 register const char *fmt
= GET_RTX_FORMAT (code
);
10920 int regno
= REGNO (x
);
10921 int endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
10922 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
10924 for (i
= regno
; i
< endregno
; i
++)
10925 reg_last_set_table_tick
[i
] = label_tick
;
10930 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
10931 /* Note that we can't have an "E" in values stored; see
10932 get_last_value_validate. */
10934 update_table_tick (XEXP (x
, i
));
10937 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10938 are saying that the register is clobbered and we no longer know its
10939 value. If INSN is zero, don't update reg_last_set; this is only permitted
10940 with VALUE also zero and is used to invalidate the register. */
10943 record_value_for_reg (reg
, insn
, value
)
10948 int regno
= REGNO (reg
);
10949 int endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
10950 ? HARD_REGNO_NREGS (regno
, GET_MODE (reg
)) : 1);
10953 /* If VALUE contains REG and we have a previous value for REG, substitute
10954 the previous value. */
10955 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
10959 /* Set things up so get_last_value is allowed to see anything set up to
10961 subst_low_cuid
= INSN_CUID (insn
);
10962 tem
= get_last_value (reg
);
10964 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10965 it isn't going to be useful and will take a lot of time to process,
10966 so just use the CLOBBER. */
10970 if ((GET_RTX_CLASS (GET_CODE (tem
)) == '2'
10971 || GET_RTX_CLASS (GET_CODE (tem
)) == 'c')
10972 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
10973 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
10974 tem
= XEXP (tem
, 0);
10976 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
10980 /* For each register modified, show we don't know its value, that
10981 we don't know about its bitwise content, that its value has been
10982 updated, and that we don't know the location of the death of the
10984 for (i
= regno
; i
< endregno
; i
++)
10987 reg_last_set
[i
] = insn
;
10988 reg_last_set_value
[i
] = 0;
10989 reg_last_set_mode
[i
] = 0;
10990 reg_last_set_nonzero_bits
[i
] = 0;
10991 reg_last_set_sign_bit_copies
[i
] = 0;
10992 reg_last_death
[i
] = 0;
10995 /* Mark registers that are being referenced in this value. */
10997 update_table_tick (value
);
10999 /* Now update the status of each register being set.
11000 If someone is using this register in this block, set this register
11001 to invalid since we will get confused between the two lives in this
11002 basic block. This makes using this register always invalid. In cse, we
11003 scan the table to invalidate all entries using this register, but this
11004 is too much work for us. */
11006 for (i
= regno
; i
< endregno
; i
++)
11008 reg_last_set_label
[i
] = label_tick
;
11009 if (value
&& reg_last_set_table_tick
[i
] == label_tick
)
11010 reg_last_set_invalid
[i
] = 1;
11012 reg_last_set_invalid
[i
] = 0;
11015 /* The value being assigned might refer to X (like in "x++;"). In that
11016 case, we must replace it with (clobber (const_int 0)) to prevent
11018 if (value
&& ! get_last_value_validate (&value
, insn
,
11019 reg_last_set_label
[regno
], 0))
11021 value
= copy_rtx (value
);
11022 if (! get_last_value_validate (&value
, insn
,
11023 reg_last_set_label
[regno
], 1))
11027 /* For the main register being modified, update the value, the mode, the
11028 nonzero bits, and the number of sign bit copies. */
11030 reg_last_set_value
[regno
] = value
;
11034 subst_low_cuid
= INSN_CUID (insn
);
11035 reg_last_set_mode
[regno
] = GET_MODE (reg
);
11036 reg_last_set_nonzero_bits
[regno
] = nonzero_bits (value
, GET_MODE (reg
));
11037 reg_last_set_sign_bit_copies
[regno
]
11038 = num_sign_bit_copies (value
, GET_MODE (reg
));
11042 /* Called via note_stores from record_dead_and_set_regs to handle one
11043 SET or CLOBBER in an insn. DATA is the instruction in which the
11044 set is occurring. */
11047 record_dead_and_set_regs_1 (dest
, setter
, data
)
11051 rtx record_dead_insn
= (rtx
) data
;
11053 if (GET_CODE (dest
) == SUBREG
)
11054 dest
= SUBREG_REG (dest
);
11056 if (GET_CODE (dest
) == REG
)
11058 /* If we are setting the whole register, we know its value. Otherwise
11059 show that we don't know the value. We can handle SUBREG in
11061 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
11062 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
11063 else if (GET_CODE (setter
) == SET
11064 && GET_CODE (SET_DEST (setter
)) == SUBREG
11065 && SUBREG_REG (SET_DEST (setter
)) == dest
11066 && GET_MODE_BITSIZE (GET_MODE (dest
)) <= BITS_PER_WORD
11067 && subreg_lowpart_p (SET_DEST (setter
)))
11068 record_value_for_reg (dest
, record_dead_insn
,
11069 gen_lowpart_for_combine (GET_MODE (dest
),
11070 SET_SRC (setter
)));
11072 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
11074 else if (GET_CODE (dest
) == MEM
11075 /* Ignore pushes, they clobber nothing. */
11076 && ! push_operand (dest
, GET_MODE (dest
)))
11077 mem_last_set
= INSN_CUID (record_dead_insn
);
11080 /* Update the records of when each REG was most recently set or killed
11081 for the things done by INSN. This is the last thing done in processing
11082 INSN in the combiner loop.
11084 We update reg_last_set, reg_last_set_value, reg_last_set_mode,
11085 reg_last_set_nonzero_bits, reg_last_set_sign_bit_copies, reg_last_death,
11086 and also the similar information mem_last_set (which insn most recently
11087 modified memory) and last_call_cuid (which insn was the most recent
11088 subroutine call). */
11091 record_dead_and_set_regs (insn
)
11097 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
11099 if (REG_NOTE_KIND (link
) == REG_DEAD
11100 && GET_CODE (XEXP (link
, 0)) == REG
)
11102 int regno
= REGNO (XEXP (link
, 0));
11104 = regno
+ (regno
< FIRST_PSEUDO_REGISTER
11105 ? HARD_REGNO_NREGS (regno
, GET_MODE (XEXP (link
, 0)))
11108 for (i
= regno
; i
< endregno
; i
++)
11109 reg_last_death
[i
] = insn
;
11111 else if (REG_NOTE_KIND (link
) == REG_INC
)
11112 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
11115 if (GET_CODE (insn
) == CALL_INSN
)
11117 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
11118 if (call_used_regs
[i
])
11120 reg_last_set_value
[i
] = 0;
11121 reg_last_set_mode
[i
] = 0;
11122 reg_last_set_nonzero_bits
[i
] = 0;
11123 reg_last_set_sign_bit_copies
[i
] = 0;
11124 reg_last_death
[i
] = 0;
11127 last_call_cuid
= mem_last_set
= INSN_CUID (insn
);
11130 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
11133 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11134 register present in the SUBREG, so for each such SUBREG go back and
11135 adjust nonzero and sign bit information of the registers that are
11136 known to have some zero/sign bits set.
11138 This is needed because when combine blows the SUBREGs away, the
11139 information on zero/sign bits is lost and further combines can be
11140 missed because of that. */
11143 record_promoted_value (insn
, subreg
)
11148 int regno
= REGNO (SUBREG_REG (subreg
));
11149 enum machine_mode mode
= GET_MODE (subreg
);
11151 if (GET_MODE_BITSIZE (mode
) >= HOST_BITS_PER_WIDE_INT
)
11154 for (links
= LOG_LINKS (insn
); links
; )
11156 insn
= XEXP (links
, 0);
11157 set
= single_set (insn
);
11159 if (! set
|| GET_CODE (SET_DEST (set
)) != REG
11160 || REGNO (SET_DEST (set
)) != regno
11161 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
11163 links
= XEXP (links
, 1);
11167 if (reg_last_set
[regno
] == insn
)
11169 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
))
11170 reg_last_set_nonzero_bits
[regno
] &= GET_MODE_MASK (mode
);
11173 if (GET_CODE (SET_SRC (set
)) == REG
)
11175 regno
= REGNO (SET_SRC (set
));
11176 links
= LOG_LINKS (insn
);
11183 /* Scan X for promoted SUBREGs. For each one found,
11184 note what it implies to the registers used in it. */
11187 check_promoted_subreg (insn
, x
)
11191 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
11192 && GET_CODE (SUBREG_REG (x
)) == REG
)
11193 record_promoted_value (insn
, x
);
11196 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
11199 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
11200 switch (format
[i
])
11203 check_promoted_subreg (insn
, XEXP (x
, i
));
11207 if (XVEC (x
, i
) != 0)
11208 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11209 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
11215 /* Utility routine for the following function. Verify that all the registers
11216 mentioned in *LOC are valid when *LOC was part of a value set when
11217 label_tick == TICK. Return 0 if some are not.
11219 If REPLACE is non-zero, replace the invalid reference with
11220 (clobber (const_int 0)) and return 1. This replacement is useful because
11221 we often can get useful information about the form of a value (e.g., if
11222 it was produced by a shift that always produces -1 or 0) even though
11223 we don't know exactly what registers it was produced from. */
11226 get_last_value_validate (loc
, insn
, tick
, replace
)
11233 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
11234 int len
= GET_RTX_LENGTH (GET_CODE (x
));
11237 if (GET_CODE (x
) == REG
)
11239 int regno
= REGNO (x
);
11240 int endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11241 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
11244 for (j
= regno
; j
< endregno
; j
++)
11245 if (reg_last_set_invalid
[j
]
11246 /* If this is a pseudo-register that was only set once and not
11247 live at the beginning of the function, it is always valid. */
11248 || (! (regno
>= FIRST_PSEUDO_REGISTER
11249 && REG_N_SETS (regno
) == 1
11250 && ! REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
, regno
))
11251 && reg_last_set_label
[j
] > tick
))
11254 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11260 /* If this is a memory reference, make sure that there were
11261 no stores after it that might have clobbered the value. We don't
11262 have alias info, so we assume any store invalidates it. */
11263 else if (GET_CODE (x
) == MEM
&& ! RTX_UNCHANGING_P (x
)
11264 && INSN_CUID (insn
) <= mem_last_set
)
11267 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
11271 for (i
= 0; i
< len
; i
++)
11273 && get_last_value_validate (&XEXP (x
, i
), insn
, tick
, replace
) == 0)
11274 /* Don't bother with these. They shouldn't occur anyway. */
11278 /* If we haven't found a reason for it to be invalid, it is valid. */
11282 /* Get the last value assigned to X, if known. Some registers
11283 in the value may be replaced with (clobber (const_int 0)) if their value
11284 is known longer known reliably. */
11293 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11294 then convert it to the desired mode. If this is a paradoxical SUBREG,
11295 we cannot predict what values the "extra" bits might have. */
11296 if (GET_CODE (x
) == SUBREG
11297 && subreg_lowpart_p (x
)
11298 && (GET_MODE_SIZE (GET_MODE (x
))
11299 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
11300 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
11301 return gen_lowpart_for_combine (GET_MODE (x
), value
);
11303 if (GET_CODE (x
) != REG
)
11307 value
= reg_last_set_value
[regno
];
11309 /* If we don't have a value, or if it isn't for this basic block and
11310 it's either a hard register, set more than once, or it's a live
11311 at the beginning of the function, return 0.
11313 Because if it's not live at the beginnning of the function then the reg
11314 is always set before being used (is never used without being set).
11315 And, if it's set only once, and it's always set before use, then all
11316 uses must have the same last value, even if it's not from this basic
11320 || (reg_last_set_label
[regno
] != label_tick
11321 && (regno
< FIRST_PSEUDO_REGISTER
11322 || REG_N_SETS (regno
) != 1
11323 || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
, regno
))))
11326 /* If the value was set in a later insn than the ones we are processing,
11327 we can't use it even if the register was only set once. */
11328 if (INSN_CUID (reg_last_set
[regno
]) >= subst_low_cuid
)
11331 /* If the value has all its registers valid, return it. */
11332 if (get_last_value_validate (&value
, reg_last_set
[regno
],
11333 reg_last_set_label
[regno
], 0))
11336 /* Otherwise, make a copy and replace any invalid register with
11337 (clobber (const_int 0)). If that fails for some reason, return 0. */
11339 value
= copy_rtx (value
);
11340 if (get_last_value_validate (&value
, reg_last_set
[regno
],
11341 reg_last_set_label
[regno
], 1))
11347 /* Return nonzero if expression X refers to a REG or to memory
11348 that is set in an instruction more recent than FROM_CUID. */
11351 use_crosses_set_p (x
, from_cuid
)
11355 register const char *fmt
;
11357 register enum rtx_code code
= GET_CODE (x
);
11361 register int regno
= REGNO (x
);
11362 int endreg
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11363 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
11365 #ifdef PUSH_ROUNDING
11366 /* Don't allow uses of the stack pointer to be moved,
11367 because we don't know whether the move crosses a push insn. */
11368 if (regno
== STACK_POINTER_REGNUM
)
11371 for (;regno
< endreg
; regno
++)
11372 if (reg_last_set
[regno
]
11373 && INSN_CUID (reg_last_set
[regno
]) > from_cuid
)
11378 if (code
== MEM
&& mem_last_set
> from_cuid
)
11381 fmt
= GET_RTX_FORMAT (code
);
11383 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11388 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
11389 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_cuid
))
11392 else if (fmt
[i
] == 'e'
11393 && use_crosses_set_p (XEXP (x
, i
), from_cuid
))
11399 /* Define three variables used for communication between the following
11402 static int reg_dead_regno
, reg_dead_endregno
;
11403 static int reg_dead_flag
;
11405 /* Function called via note_stores from reg_dead_at_p.
11407 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11408 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11411 reg_dead_at_p_1 (dest
, x
, data
)
11414 void *data ATTRIBUTE_UNUSED
;
11416 int regno
, endregno
;
11418 if (GET_CODE (dest
) != REG
)
11421 regno
= REGNO (dest
);
11422 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
11423 ? HARD_REGNO_NREGS (regno
, GET_MODE (dest
)) : 1);
11425 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
11426 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
11429 /* Return non-zero if REG is known to be dead at INSN.
11431 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11432 referencing REG, it is dead. If we hit a SET referencing REG, it is
11433 live. Otherwise, see if it is live or dead at the start of the basic
11434 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11435 must be assumed to be always live. */
11438 reg_dead_at_p (reg
, insn
)
11444 /* Set variables for reg_dead_at_p_1. */
11445 reg_dead_regno
= REGNO (reg
);
11446 reg_dead_endregno
= reg_dead_regno
+ (reg_dead_regno
< FIRST_PSEUDO_REGISTER
11447 ? HARD_REGNO_NREGS (reg_dead_regno
,
11453 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. */
11454 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
11456 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
11457 if (TEST_HARD_REG_BIT (newpat_used_regs
, i
))
11461 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11462 beginning of function. */
11463 for (; insn
&& GET_CODE (insn
) != CODE_LABEL
&& GET_CODE (insn
) != BARRIER
;
11464 insn
= prev_nonnote_insn (insn
))
11466 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
11468 return reg_dead_flag
== 1 ? 1 : 0;
11470 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
11474 /* Get the basic block number that we were in. */
11479 for (block
= 0; block
< n_basic_blocks
; block
++)
11480 if (insn
== BLOCK_HEAD (block
))
11483 if (block
== n_basic_blocks
)
11487 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
11488 if (REGNO_REG_SET_P (BASIC_BLOCK (block
)->global_live_at_start
, i
))
11494 /* Note hard registers in X that are used. This code is similar to
11495 that in flow.c, but much simpler since we don't care about pseudos. */
11498 mark_used_regs_combine (x
)
11501 register RTX_CODE code
= GET_CODE (x
);
11502 register int regno
;
11514 case ADDR_DIFF_VEC
:
11517 /* CC0 must die in the insn after it is set, so we don't need to take
11518 special note of it here. */
11524 /* If we are clobbering a MEM, mark any hard registers inside the
11525 address as used. */
11526 if (GET_CODE (XEXP (x
, 0)) == MEM
)
11527 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
11532 /* A hard reg in a wide mode may really be multiple registers.
11533 If so, mark all of them just like the first. */
11534 if (regno
< FIRST_PSEUDO_REGISTER
)
11536 /* None of this applies to the stack, frame or arg pointers */
11537 if (regno
== STACK_POINTER_REGNUM
11538 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11539 || regno
== HARD_FRAME_POINTER_REGNUM
11541 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11542 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
11544 || regno
== FRAME_POINTER_REGNUM
)
11547 i
= HARD_REGNO_NREGS (regno
, GET_MODE (x
));
11549 SET_HARD_REG_BIT (newpat_used_regs
, regno
+ i
);
11555 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11557 register rtx testreg
= SET_DEST (x
);
11559 while (GET_CODE (testreg
) == SUBREG
11560 || GET_CODE (testreg
) == ZERO_EXTRACT
11561 || GET_CODE (testreg
) == SIGN_EXTRACT
11562 || GET_CODE (testreg
) == STRICT_LOW_PART
)
11563 testreg
= XEXP (testreg
, 0);
11565 if (GET_CODE (testreg
) == MEM
)
11566 mark_used_regs_combine (XEXP (testreg
, 0));
11568 mark_used_regs_combine (SET_SRC (x
));
11576 /* Recursively scan the operands of this expression. */
11579 register const char *fmt
= GET_RTX_FORMAT (code
);
11581 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
11584 mark_used_regs_combine (XEXP (x
, i
));
11585 else if (fmt
[i
] == 'E')
11589 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
11590 mark_used_regs_combine (XVECEXP (x
, i
, j
));
11597 /* Remove register number REGNO from the dead registers list of INSN.
11599 Return the note used to record the death, if there was one. */
11602 remove_death (regno
, insn
)
11606 register rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
11610 REG_N_DEATHS (regno
)--;
11611 remove_note (insn
, note
);
11617 /* For each register (hardware or pseudo) used within expression X, if its
11618 death is in an instruction with cuid between FROM_CUID (inclusive) and
11619 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11620 list headed by PNOTES.
11622 That said, don't move registers killed by maybe_kill_insn.
11624 This is done when X is being merged by combination into TO_INSN. These
11625 notes will then be distributed as needed. */
11628 move_deaths (x
, maybe_kill_insn
, from_cuid
, to_insn
, pnotes
)
11630 rtx maybe_kill_insn
;
11635 register const char *fmt
;
11636 register int len
, i
;
11637 register enum rtx_code code
= GET_CODE (x
);
11641 register int regno
= REGNO (x
);
11642 register rtx where_dead
= reg_last_death
[regno
];
11643 register rtx before_dead
, after_dead
;
11645 /* Don't move the register if it gets killed in between from and to */
11646 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
11647 && !reg_referenced_p (x
, maybe_kill_insn
))
11650 /* WHERE_DEAD could be a USE insn made by combine, so first we
11651 make sure that we have insns with valid INSN_CUID values. */
11652 before_dead
= where_dead
;
11653 while (before_dead
&& INSN_UID (before_dead
) > max_uid_cuid
)
11654 before_dead
= PREV_INSN (before_dead
);
11655 after_dead
= where_dead
;
11656 while (after_dead
&& INSN_UID (after_dead
) > max_uid_cuid
)
11657 after_dead
= NEXT_INSN (after_dead
);
11659 if (before_dead
&& after_dead
11660 && INSN_CUID (before_dead
) >= from_cuid
11661 && (INSN_CUID (after_dead
) < INSN_CUID (to_insn
)
11662 || (where_dead
!= after_dead
11663 && INSN_CUID (after_dead
) == INSN_CUID (to_insn
))))
11665 rtx note
= remove_death (regno
, where_dead
);
11667 /* It is possible for the call above to return 0. This can occur
11668 when reg_last_death points to I2 or I1 that we combined with.
11669 In that case make a new note.
11671 We must also check for the case where X is a hard register
11672 and NOTE is a death note for a range of hard registers
11673 including X. In that case, we must put REG_DEAD notes for
11674 the remaining registers in place of NOTE. */
11676 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
11677 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
11678 > GET_MODE_SIZE (GET_MODE (x
))))
11680 int deadregno
= REGNO (XEXP (note
, 0));
11682 = (deadregno
+ HARD_REGNO_NREGS (deadregno
,
11683 GET_MODE (XEXP (note
, 0))));
11684 int ourend
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
11687 for (i
= deadregno
; i
< deadend
; i
++)
11688 if (i
< regno
|| i
>= ourend
)
11689 REG_NOTES (where_dead
)
11690 = gen_rtx_EXPR_LIST (REG_DEAD
,
11691 gen_rtx_REG (reg_raw_mode
[i
], i
),
11692 REG_NOTES (where_dead
));
11694 /* If we didn't find any note, or if we found a REG_DEAD note that
11695 covers only part of the given reg, and we have a multi-reg hard
11696 register, then to be safe we must check for REG_DEAD notes
11697 for each register other than the first. They could have
11698 their own REG_DEAD notes lying around. */
11699 else if ((note
== 0
11701 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
11702 < GET_MODE_SIZE (GET_MODE (x
)))))
11703 && regno
< FIRST_PSEUDO_REGISTER
11704 && HARD_REGNO_NREGS (regno
, GET_MODE (x
)) > 1)
11706 int ourend
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
11711 offset
= HARD_REGNO_NREGS (regno
, GET_MODE (XEXP (note
, 0)));
11715 for (i
= regno
+ offset
; i
< ourend
; i
++)
11716 move_deaths (gen_rtx_REG (reg_raw_mode
[i
], i
),
11717 maybe_kill_insn
, from_cuid
, to_insn
, &oldnotes
);
11720 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
11722 XEXP (note
, 1) = *pnotes
;
11726 *pnotes
= gen_rtx_EXPR_LIST (REG_DEAD
, x
, *pnotes
);
11728 REG_N_DEATHS (regno
)++;
11734 else if (GET_CODE (x
) == SET
)
11736 rtx dest
= SET_DEST (x
);
11738 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11740 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11741 that accesses one word of a multi-word item, some
11742 piece of everything register in the expression is used by
11743 this insn, so remove any old death. */
11745 if (GET_CODE (dest
) == ZERO_EXTRACT
11746 || GET_CODE (dest
) == STRICT_LOW_PART
11747 || (GET_CODE (dest
) == SUBREG
11748 && (((GET_MODE_SIZE (GET_MODE (dest
))
11749 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
11750 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
11751 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
11753 move_deaths (dest
, maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11757 /* If this is some other SUBREG, we know it replaces the entire
11758 value, so use that as the destination. */
11759 if (GET_CODE (dest
) == SUBREG
)
11760 dest
= SUBREG_REG (dest
);
11762 /* If this is a MEM, adjust deaths of anything used in the address.
11763 For a REG (the only other possibility), the entire value is
11764 being replaced so the old value is not used in this insn. */
11766 if (GET_CODE (dest
) == MEM
)
11767 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_cuid
,
11772 else if (GET_CODE (x
) == CLOBBER
)
11775 len
= GET_RTX_LENGTH (code
);
11776 fmt
= GET_RTX_FORMAT (code
);
11778 for (i
= 0; i
< len
; i
++)
11783 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
11784 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_cuid
,
11787 else if (fmt
[i
] == 'e')
11788 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_cuid
, to_insn
, pnotes
);
11792 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11793 pattern of an insn. X must be a REG. */
11796 reg_bitfield_target_p (x
, body
)
11802 if (GET_CODE (body
) == SET
)
11804 rtx dest
= SET_DEST (body
);
11806 int regno
, tregno
, endregno
, endtregno
;
11808 if (GET_CODE (dest
) == ZERO_EXTRACT
)
11809 target
= XEXP (dest
, 0);
11810 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
11811 target
= SUBREG_REG (XEXP (dest
, 0));
11815 if (GET_CODE (target
) == SUBREG
)
11816 target
= SUBREG_REG (target
);
11818 if (GET_CODE (target
) != REG
)
11821 tregno
= REGNO (target
), regno
= REGNO (x
);
11822 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
11823 return target
== x
;
11825 endtregno
= tregno
+ HARD_REGNO_NREGS (tregno
, GET_MODE (target
));
11826 endregno
= regno
+ HARD_REGNO_NREGS (regno
, GET_MODE (x
));
11828 return endregno
> tregno
&& regno
< endtregno
;
11831 else if (GET_CODE (body
) == PARALLEL
)
11832 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
11833 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
11839 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11840 as appropriate. I3 and I2 are the insns resulting from the combination
11841 insns including FROM (I2 may be zero).
11843 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
11844 not need REG_DEAD notes because they are being substituted for. This
11845 saves searching in the most common cases.
11847 Each note in the list is either ignored or placed on some insns, depending
11848 on the type of note. */
11851 distribute_notes (notes
, from_insn
, i3
, i2
, elim_i2
, elim_i1
)
11855 rtx elim_i2
, elim_i1
;
11857 rtx note
, next_note
;
11860 for (note
= notes
; note
; note
= next_note
)
11862 rtx place
= 0, place2
= 0;
11864 /* If this NOTE references a pseudo register, ensure it references
11865 the latest copy of that register. */
11866 if (XEXP (note
, 0) && GET_CODE (XEXP (note
, 0)) == REG
11867 && REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
)
11868 XEXP (note
, 0) = regno_reg_rtx
[REGNO (XEXP (note
, 0))];
11870 next_note
= XEXP (note
, 1);
11871 switch (REG_NOTE_KIND (note
))
11874 case REG_EXEC_COUNT
:
11875 /* Doesn't matter much where we put this, as long as it's somewhere.
11876 It is preferable to keep these notes on branches, which is most
11877 likely to be i3. */
11881 case REG_EH_REGION
:
11882 case REG_EH_RETHROW
:
11883 /* These notes must remain with the call. It should not be
11884 possible for both I2 and I3 to be a call. */
11885 if (GET_CODE (i3
) == CALL_INSN
)
11887 else if (i2
&& GET_CODE (i2
) == CALL_INSN
)
11894 /* Any clobbers for i3 may still exist, and so we must process
11895 REG_UNUSED notes from that insn.
11897 Any clobbers from i2 or i1 can only exist if they were added by
11898 recog_for_combine. In that case, recog_for_combine created the
11899 necessary REG_UNUSED notes. Trying to keep any original
11900 REG_UNUSED notes from these insns can cause incorrect output
11901 if it is for the same register as the original i3 dest.
11902 In that case, we will notice that the register is set in i3,
11903 and then add a REG_UNUSED note for the destination of i3, which
11904 is wrong. However, it is possible to have REG_UNUSED notes from
11905 i2 or i1 for register which were both used and clobbered, so
11906 we keep notes from i2 or i1 if they will turn into REG_DEAD
11909 /* If this register is set or clobbered in I3, put the note there
11910 unless there is one already. */
11911 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
11913 if (from_insn
!= i3
)
11916 if (! (GET_CODE (XEXP (note
, 0)) == REG
11917 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
11918 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
11921 /* Otherwise, if this register is used by I3, then this register
11922 now dies here, so we must put a REG_DEAD note here unless there
11924 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
11925 && ! (GET_CODE (XEXP (note
, 0)) == REG
11926 ? find_regno_note (i3
, REG_DEAD
, REGNO (XEXP (note
, 0)))
11927 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
11929 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
11938 /* These notes say something about results of an insn. We can
11939 only support them if they used to be on I3 in which case they
11940 remain on I3. Otherwise they are ignored.
11942 If the note refers to an expression that is not a constant, we
11943 must also ignore the note since we cannot tell whether the
11944 equivalence is still true. It might be possible to do
11945 slightly better than this (we only have a problem if I2DEST
11946 or I1DEST is present in the expression), but it doesn't
11947 seem worth the trouble. */
11949 if (from_insn
== i3
11950 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
11955 case REG_NO_CONFLICT
:
11956 /* These notes say something about how a register is used. They must
11957 be present on any use of the register in I2 or I3. */
11958 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
11961 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
11971 /* This can show up in several ways -- either directly in the
11972 pattern, or hidden off in the constant pool with (or without?)
11973 a REG_EQUAL note. */
11974 /* ??? Ignore the without-reg_equal-note problem for now. */
11975 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
11976 || ((tem
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
11977 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
11978 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0)))
11982 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
11983 || ((tem
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
11984 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
11985 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0))))
11995 /* It is too much trouble to try to see if this note is still
11996 correct in all situations. It is better to simply delete it. */
12000 /* If the insn previously containing this note still exists,
12001 put it back where it was. Otherwise move it to the previous
12002 insn. Adjust the corresponding REG_LIBCALL note. */
12003 if (GET_CODE (from_insn
) != NOTE
)
12007 tem
= find_reg_note (XEXP (note
, 0), REG_LIBCALL
, NULL_RTX
);
12008 place
= prev_real_insn (from_insn
);
12010 XEXP (tem
, 0) = place
;
12015 /* This is handled similarly to REG_RETVAL. */
12016 if (GET_CODE (from_insn
) != NOTE
)
12020 tem
= find_reg_note (XEXP (note
, 0), REG_RETVAL
, NULL_RTX
);
12021 place
= next_real_insn (from_insn
);
12023 XEXP (tem
, 0) = place
;
12028 /* If the register is used as an input in I3, it dies there.
12029 Similarly for I2, if it is non-zero and adjacent to I3.
12031 If the register is not used as an input in either I3 or I2
12032 and it is not one of the registers we were supposed to eliminate,
12033 there are two possibilities. We might have a non-adjacent I2
12034 or we might have somehow eliminated an additional register
12035 from a computation. For example, we might have had A & B where
12036 we discover that B will always be zero. In this case we will
12037 eliminate the reference to A.
12039 In both cases, we must search to see if we can find a previous
12040 use of A and put the death note there. */
12043 && GET_CODE (from_insn
) == CALL_INSN
12044 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
12046 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
12048 else if (i2
!= 0 && next_nonnote_insn (i2
) == i3
12049 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12052 if (XEXP (note
, 0) == elim_i2
|| XEXP (note
, 0) == elim_i1
)
12057 basic_block bb
= BASIC_BLOCK (this_basic_block
);
12059 for (tem
= PREV_INSN (i3
); place
== 0; tem
= PREV_INSN (tem
))
12061 if (GET_RTX_CLASS (GET_CODE (tem
)) != 'i')
12063 if (tem
== bb
->head
)
12068 /* If the register is being set at TEM, see if that is all
12069 TEM is doing. If so, delete TEM. Otherwise, make this
12070 into a REG_UNUSED note instead. */
12071 if (reg_set_p (XEXP (note
, 0), PATTERN (tem
)))
12073 rtx set
= single_set (tem
);
12074 rtx inner_dest
= 0;
12076 rtx cc0_setter
= NULL_RTX
;
12080 for (inner_dest
= SET_DEST (set
);
12081 GET_CODE (inner_dest
) == STRICT_LOW_PART
12082 || GET_CODE (inner_dest
) == SUBREG
12083 || GET_CODE (inner_dest
) == ZERO_EXTRACT
;
12084 inner_dest
= XEXP (inner_dest
, 0))
12087 /* Verify that it was the set, and not a clobber that
12088 modified the register.
12090 CC0 targets must be careful to maintain setter/user
12091 pairs. If we cannot delete the setter due to side
12092 effects, mark the user with an UNUSED note instead
12095 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
12096 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
12098 && (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
12099 || ((cc0_setter
= prev_cc0_setter (tem
)) != NULL
12100 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))
12104 /* Move the notes and links of TEM elsewhere.
12105 This might delete other dead insns recursively.
12106 First set the pattern to something that won't use
12109 PATTERN (tem
) = pc_rtx
;
12111 distribute_notes (REG_NOTES (tem
), tem
, tem
,
12112 NULL_RTX
, NULL_RTX
, NULL_RTX
);
12113 distribute_links (LOG_LINKS (tem
));
12115 PUT_CODE (tem
, NOTE
);
12116 NOTE_LINE_NUMBER (tem
) = NOTE_INSN_DELETED
;
12117 NOTE_SOURCE_FILE (tem
) = 0;
12120 /* Delete the setter too. */
12123 PATTERN (cc0_setter
) = pc_rtx
;
12125 distribute_notes (REG_NOTES (cc0_setter
),
12126 cc0_setter
, cc0_setter
,
12127 NULL_RTX
, NULL_RTX
, NULL_RTX
);
12128 distribute_links (LOG_LINKS (cc0_setter
));
12130 PUT_CODE (cc0_setter
, NOTE
);
12131 NOTE_LINE_NUMBER (cc0_setter
)
12132 = NOTE_INSN_DELETED
;
12133 NOTE_SOURCE_FILE (cc0_setter
) = 0;
12137 /* If the register is both set and used here, put the
12138 REG_DEAD note here, but place a REG_UNUSED note
12139 here too unless there already is one. */
12140 else if (reg_referenced_p (XEXP (note
, 0),
12145 if (! find_regno_note (tem
, REG_UNUSED
,
12146 REGNO (XEXP (note
, 0))))
12148 = gen_rtx_EXPR_LIST (REG_UNUSED
, XEXP (note
, 0),
12153 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
12155 /* If there isn't already a REG_UNUSED note, put one
12157 if (! find_regno_note (tem
, REG_UNUSED
,
12158 REGNO (XEXP (note
, 0))))
12163 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem
))
12164 || (GET_CODE (tem
) == CALL_INSN
12165 && find_reg_fusage (tem
, USE
, XEXP (note
, 0))))
12169 /* If we are doing a 3->2 combination, and we have a
12170 register which formerly died in i3 and was not used
12171 by i2, which now no longer dies in i3 and is used in
12172 i2 but does not die in i2, and place is between i2
12173 and i3, then we may need to move a link from place to
12175 if (i2
&& INSN_UID (place
) <= max_uid_cuid
12176 && INSN_CUID (place
) > INSN_CUID (i2
)
12177 && from_insn
&& INSN_CUID (from_insn
) > INSN_CUID (i2
)
12178 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
12180 rtx links
= LOG_LINKS (place
);
12181 LOG_LINKS (place
) = 0;
12182 distribute_links (links
);
12187 if (tem
== bb
->head
)
12191 /* We haven't found an insn for the death note and it
12192 is still a REG_DEAD note, but we have hit the beginning
12193 of the block. If the existing life info says the reg
12194 was dead, there's nothing left to do. Otherwise, we'll
12195 need to do a global life update after combine. */
12196 if (REG_NOTE_KIND (note
) == REG_DEAD
&& place
== 0)
12198 int regno
= REGNO (XEXP (note
, 0));
12199 if (REGNO_REG_SET_P (bb
->global_live_at_start
, regno
))
12201 SET_BIT (refresh_blocks
, this_basic_block
);
12207 /* If the register is set or already dead at PLACE, we needn't do
12208 anything with this note if it is still a REG_DEAD note.
12209 We can here if it is set at all, not if is it totally replace,
12210 which is what `dead_or_set_p' checks, so also check for it being
12213 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
12215 int regno
= REGNO (XEXP (note
, 0));
12217 if (dead_or_set_p (place
, XEXP (note
, 0))
12218 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
12220 /* Unless the register previously died in PLACE, clear
12221 reg_last_death. [I no longer understand why this is
12223 if (reg_last_death
[regno
] != place
)
12224 reg_last_death
[regno
] = 0;
12228 reg_last_death
[regno
] = place
;
12230 /* If this is a death note for a hard reg that is occupying
12231 multiple registers, ensure that we are still using all
12232 parts of the object. If we find a piece of the object
12233 that is unused, we must add a USE for that piece before
12234 PLACE and put the appropriate REG_DEAD note on it.
12236 An alternative would be to put a REG_UNUSED for the pieces
12237 on the insn that set the register, but that can't be done if
12238 it is not in the same block. It is simpler, though less
12239 efficient, to add the USE insns. */
12241 if (place
&& regno
< FIRST_PSEUDO_REGISTER
12242 && HARD_REGNO_NREGS (regno
, GET_MODE (XEXP (note
, 0))) > 1)
12245 = regno
+ HARD_REGNO_NREGS (regno
,
12246 GET_MODE (XEXP (note
, 0)));
12250 for (i
= regno
; i
< endregno
; i
++)
12251 if (! refers_to_regno_p (i
, i
+ 1, PATTERN (place
), 0)
12252 && ! find_regno_fusage (place
, USE
, i
))
12254 rtx piece
= gen_rtx_REG (reg_raw_mode
[i
], i
);
12257 /* See if we already placed a USE note for this
12258 register in front of PLACE. */
12260 GET_CODE (PREV_INSN (p
)) == INSN
12261 && GET_CODE (PATTERN (PREV_INSN (p
))) == USE
;
12263 if (rtx_equal_p (piece
,
12264 XEXP (PATTERN (PREV_INSN (p
)), 0)))
12273 = emit_insn_before (gen_rtx_USE (VOIDmode
,
12276 REG_NOTES (use_insn
)
12277 = gen_rtx_EXPR_LIST (REG_DEAD
, piece
,
12278 REG_NOTES (use_insn
));
12284 /* Check for the case where the register dying partially
12285 overlaps the register set by this insn. */
12287 for (i
= regno
; i
< endregno
; i
++)
12288 if (dead_or_set_regno_p (place
, i
))
12296 /* Put only REG_DEAD notes for pieces that are
12297 still used and that are not already dead or set. */
12299 for (i
= regno
; i
< endregno
; i
++)
12301 rtx piece
= gen_rtx_REG (reg_raw_mode
[i
], i
);
12303 if ((reg_referenced_p (piece
, PATTERN (place
))
12304 || (GET_CODE (place
) == CALL_INSN
12305 && find_reg_fusage (place
, USE
, piece
)))
12306 && ! dead_or_set_p (place
, piece
)
12307 && ! reg_bitfield_target_p (piece
,
12310 = gen_rtx_EXPR_LIST (REG_DEAD
, piece
,
12311 REG_NOTES (place
));
12321 /* Any other notes should not be present at this point in the
12328 XEXP (note
, 1) = REG_NOTES (place
);
12329 REG_NOTES (place
) = note
;
12331 else if ((REG_NOTE_KIND (note
) == REG_DEAD
12332 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12333 && GET_CODE (XEXP (note
, 0)) == REG
)
12334 REG_N_DEATHS (REGNO (XEXP (note
, 0)))--;
12338 if ((REG_NOTE_KIND (note
) == REG_DEAD
12339 || REG_NOTE_KIND (note
) == REG_UNUSED
)
12340 && GET_CODE (XEXP (note
, 0)) == REG
)
12341 REG_N_DEATHS (REGNO (XEXP (note
, 0)))++;
12343 REG_NOTES (place2
) = gen_rtx_fmt_ee (GET_CODE (note
),
12344 REG_NOTE_KIND (note
),
12346 REG_NOTES (place2
));
12351 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12352 I3, I2, and I1 to new locations. This is also called in one case to
12353 add a link pointing at I3 when I3's destination is changed. */
12356 distribute_links (links
)
12359 rtx link
, next_link
;
12361 for (link
= links
; link
; link
= next_link
)
12367 next_link
= XEXP (link
, 1);
12369 /* If the insn that this link points to is a NOTE or isn't a single
12370 set, ignore it. In the latter case, it isn't clear what we
12371 can do other than ignore the link, since we can't tell which
12372 register it was for. Such links wouldn't be used by combine
12375 It is not possible for the destination of the target of the link to
12376 have been changed by combine. The only potential of this is if we
12377 replace I3, I2, and I1 by I3 and I2. But in that case the
12378 destination of I2 also remains unchanged. */
12380 if (GET_CODE (XEXP (link
, 0)) == NOTE
12381 || (set
= single_set (XEXP (link
, 0))) == 0)
12384 reg
= SET_DEST (set
);
12385 while (GET_CODE (reg
) == SUBREG
|| GET_CODE (reg
) == ZERO_EXTRACT
12386 || GET_CODE (reg
) == SIGN_EXTRACT
12387 || GET_CODE (reg
) == STRICT_LOW_PART
)
12388 reg
= XEXP (reg
, 0);
12390 /* A LOG_LINK is defined as being placed on the first insn that uses
12391 a register and points to the insn that sets the register. Start
12392 searching at the next insn after the target of the link and stop
12393 when we reach a set of the register or the end of the basic block.
12395 Note that this correctly handles the link that used to point from
12396 I3 to I2. Also note that not much searching is typically done here
12397 since most links don't point very far away. */
12399 for (insn
= NEXT_INSN (XEXP (link
, 0));
12400 (insn
&& (this_basic_block
== n_basic_blocks
- 1
12401 || BLOCK_HEAD (this_basic_block
+ 1) != insn
));
12402 insn
= NEXT_INSN (insn
))
12403 if (GET_RTX_CLASS (GET_CODE (insn
)) == 'i'
12404 && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
12406 if (reg_referenced_p (reg
, PATTERN (insn
)))
12410 else if (GET_CODE (insn
) == CALL_INSN
12411 && find_reg_fusage (insn
, USE
, reg
))
12417 /* If we found a place to put the link, place it there unless there
12418 is already a link to the same insn as LINK at that point. */
12424 for (link2
= LOG_LINKS (place
); link2
; link2
= XEXP (link2
, 1))
12425 if (XEXP (link2
, 0) == XEXP (link
, 0))
12430 XEXP (link
, 1) = LOG_LINKS (place
);
12431 LOG_LINKS (place
) = link
;
12433 /* Set added_links_insn to the earliest insn we added a
12435 if (added_links_insn
== 0
12436 || INSN_CUID (added_links_insn
) > INSN_CUID (place
))
12437 added_links_insn
= place
;
12443 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12449 while (insn
!= 0 && INSN_UID (insn
) > max_uid_cuid
12450 && GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == USE
)
12451 insn
= NEXT_INSN (insn
);
12453 if (INSN_UID (insn
) > max_uid_cuid
)
12456 return INSN_CUID (insn
);
12460 dump_combine_stats (file
)
12465 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12466 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
12470 dump_combine_total_stats (file
)
12475 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12476 total_attempts
, total_merges
, total_extras
, total_successes
);