PR bootstrap/41451
[official-gcc.git] / gcc / haifa-sched.c
blob7cbe1ecee511013dd74b0a3233c27e83a6609bf4
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
60 1. choose insn with the longest path to end of bb, ties
61 broken by
62 2. choose insn with least contribution to register pressure,
63 ties broken by
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
67 broken by
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using insn backward dependences
86 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
87 INSN_FORW_DEPS the purpose of forward list scheduling.
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
96 utilization.
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
101 of this case.
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
125 beginning of basic blocks and regions that have been scheduled. */
127 #include "config.h"
128 #include "system.h"
129 #include "coretypes.h"
130 #include "tm.h"
131 #include "toplev.h"
132 #include "rtl.h"
133 #include "tm_p.h"
134 #include "hard-reg-set.h"
135 #include "regs.h"
136 #include "function.h"
137 #include "flags.h"
138 #include "insn-config.h"
139 #include "insn-attr.h"
140 #include "except.h"
141 #include "toplev.h"
142 #include "recog.h"
143 #include "sched-int.h"
144 #include "target.h"
145 #include "output.h"
146 #include "params.h"
147 #include "vecprim.h"
148 #include "dbgcnt.h"
149 #include "cfgloop.h"
150 #include "ira.h"
152 #ifdef INSN_SCHEDULING
154 /* issue_rate is the number of insns that can be scheduled in the same
155 machine cycle. It can be defined in the config/mach/mach.h file,
156 otherwise we set it to 1. */
158 int issue_rate;
160 /* sched-verbose controls the amount of debugging output the
161 scheduler prints. It is controlled by -fsched-verbose=N:
162 N>0 and no -DSR : the output is directed to stderr.
163 N>=10 will direct the printouts to stderr (regardless of -dSR).
164 N=1: same as -dSR.
165 N=2: bb's probabilities, detailed ready list info, unit/insn info.
166 N=3: rtl at abort point, control-flow, regions info.
167 N=5: dependences info. */
169 static int sched_verbose_param = 0;
170 int sched_verbose = 0;
172 /* Debugging file. All printouts are sent to dump, which is always set,
173 either to stderr, or to the dump listing file (-dRS). */
174 FILE *sched_dump = 0;
176 /* fix_sched_param() is called from toplev.c upon detection
177 of the -fsched-verbose=N option. */
179 void
180 fix_sched_param (const char *param, const char *val)
182 if (!strcmp (param, "verbose"))
183 sched_verbose_param = atoi (val);
184 else
185 warning (0, "fix_sched_param: unknown param: %s", param);
188 /* This is a placeholder for the scheduler parameters common
189 to all schedulers. */
190 struct common_sched_info_def *common_sched_info;
192 #define INSN_TICK(INSN) (HID (INSN)->tick)
193 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
195 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
196 then it should be recalculated from scratch. */
197 #define INVALID_TICK (-(max_insn_queue_index + 1))
198 /* The minimal value of the INSN_TICK of an instruction. */
199 #define MIN_TICK (-max_insn_queue_index)
201 /* Issue points are used to distinguish between instructions in max_issue ().
202 For now, all instructions are equally good. */
203 #define ISSUE_POINTS(INSN) 1
205 /* List of important notes we must keep around. This is a pointer to the
206 last element in the list. */
207 rtx note_list;
209 static struct spec_info_def spec_info_var;
210 /* Description of the speculative part of the scheduling.
211 If NULL - no speculation. */
212 spec_info_t spec_info = NULL;
214 /* True, if recovery block was added during scheduling of current block.
215 Used to determine, if we need to fix INSN_TICKs. */
216 static bool haifa_recovery_bb_recently_added_p;
218 /* True, if recovery block was added during this scheduling pass.
219 Used to determine if we should have empty memory pools of dependencies
220 after finishing current region. */
221 bool haifa_recovery_bb_ever_added_p;
223 /* Counters of different types of speculative instructions. */
224 static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;
226 /* Array used in {unlink, restore}_bb_notes. */
227 static rtx *bb_header = 0;
229 /* Basic block after which recovery blocks will be created. */
230 static basic_block before_recovery;
232 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
233 created it. */
234 basic_block after_recovery;
236 /* FALSE if we add bb to another region, so we don't need to initialize it. */
237 bool adding_bb_to_current_region_p = true;
239 /* Queues, etc. */
241 /* An instruction is ready to be scheduled when all insns preceding it
242 have already been scheduled. It is important to ensure that all
243 insns which use its result will not be executed until its result
244 has been computed. An insn is maintained in one of four structures:
246 (P) the "Pending" set of insns which cannot be scheduled until
247 their dependencies have been satisfied.
248 (Q) the "Queued" set of insns that can be scheduled when sufficient
249 time has passed.
250 (R) the "Ready" list of unscheduled, uncommitted insns.
251 (S) the "Scheduled" list of insns.
253 Initially, all insns are either "Pending" or "Ready" depending on
254 whether their dependencies are satisfied.
256 Insns move from the "Ready" list to the "Scheduled" list as they
257 are committed to the schedule. As this occurs, the insns in the
258 "Pending" list have their dependencies satisfied and move to either
259 the "Ready" list or the "Queued" set depending on whether
260 sufficient time has passed to make them ready. As time passes,
261 insns move from the "Queued" set to the "Ready" list.
263 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
264 unscheduled insns, i.e., those that are ready, queued, and pending.
265 The "Queued" set (Q) is implemented by the variable `insn_queue'.
266 The "Ready" list (R) is implemented by the variables `ready' and
267 `n_ready'.
268 The "Scheduled" list (S) is the new insn chain built by this pass.
270 The transition (R->S) is implemented in the scheduling loop in
271 `schedule_block' when the best insn to schedule is chosen.
272 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
273 insns move from the ready list to the scheduled list.
274 The transition (Q->R) is implemented in 'queue_to_insn' as time
275 passes or stalls are introduced. */
277 /* Implement a circular buffer to delay instructions until sufficient
278 time has passed. For the new pipeline description interface,
279 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
280 than maximal time of instruction execution computed by genattr.c on
281 the base maximal time of functional unit reservations and getting a
282 result. This is the longest time an insn may be queued. */
284 static rtx *insn_queue;
285 static int q_ptr = 0;
286 static int q_size = 0;
287 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
288 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
290 #define QUEUE_SCHEDULED (-3)
291 #define QUEUE_NOWHERE (-2)
292 #define QUEUE_READY (-1)
293 /* QUEUE_SCHEDULED - INSN is scheduled.
294 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
295 queue or ready list.
296 QUEUE_READY - INSN is in ready list.
297 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
299 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
301 /* The following variable value refers for all current and future
302 reservations of the processor units. */
303 state_t curr_state;
305 /* The following variable value is size of memory representing all
306 current and future reservations of the processor units. */
307 size_t dfa_state_size;
309 /* The following array is used to find the best insn from ready when
310 the automaton pipeline interface is used. */
311 char *ready_try = NULL;
313 /* The ready list. */
314 struct ready_list ready = {NULL, 0, 0, 0, 0};
316 /* The pointer to the ready list (to be removed). */
317 static struct ready_list *readyp = &ready;
319 /* Scheduling clock. */
320 static int clock_var;
322 static int may_trap_exp (const_rtx, int);
324 /* Nonzero iff the address is comprised from at most 1 register. */
325 #define CONST_BASED_ADDRESS_P(x) \
326 (REG_P (x) \
327 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
328 || (GET_CODE (x) == LO_SUM)) \
329 && (CONSTANT_P (XEXP (x, 0)) \
330 || CONSTANT_P (XEXP (x, 1)))))
332 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
333 as found by analyzing insn's expression. */
336 static int haifa_luid_for_non_insn (rtx x);
338 /* Haifa version of sched_info hooks common to all headers. */
339 const struct common_sched_info_def haifa_common_sched_info =
341 NULL, /* fix_recovery_cfg */
342 NULL, /* add_block */
343 NULL, /* estimate_number_of_insns */
344 haifa_luid_for_non_insn, /* luid_for_non_insn */
345 SCHED_PASS_UNKNOWN /* sched_pass_id */
348 const struct sched_scan_info_def *sched_scan_info;
350 /* Mapping from instruction UID to its Logical UID. */
351 VEC (int, heap) *sched_luids = NULL;
353 /* Next LUID to assign to an instruction. */
354 int sched_max_luid = 1;
356 /* Haifa Instruction Data. */
357 VEC (haifa_insn_data_def, heap) *h_i_d = NULL;
359 void (* sched_init_only_bb) (basic_block, basic_block);
361 /* Split block function. Different schedulers might use different functions
362 to handle their internal data consistent. */
363 basic_block (* sched_split_block) (basic_block, rtx);
365 /* Create empty basic block after the specified block. */
366 basic_block (* sched_create_empty_bb) (basic_block);
368 static int
369 may_trap_exp (const_rtx x, int is_store)
371 enum rtx_code code;
373 if (x == 0)
374 return TRAP_FREE;
375 code = GET_CODE (x);
376 if (is_store)
378 if (code == MEM && may_trap_p (x))
379 return TRAP_RISKY;
380 else
381 return TRAP_FREE;
383 if (code == MEM)
385 /* The insn uses memory: a volatile load. */
386 if (MEM_VOLATILE_P (x))
387 return IRISKY;
388 /* An exception-free load. */
389 if (!may_trap_p (x))
390 return IFREE;
391 /* A load with 1 base register, to be further checked. */
392 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
393 return PFREE_CANDIDATE;
394 /* No info on the load, to be further checked. */
395 return PRISKY_CANDIDATE;
397 else
399 const char *fmt;
400 int i, insn_class = TRAP_FREE;
402 /* Neither store nor load, check if it may cause a trap. */
403 if (may_trap_p (x))
404 return TRAP_RISKY;
405 /* Recursive step: walk the insn... */
406 fmt = GET_RTX_FORMAT (code);
407 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
409 if (fmt[i] == 'e')
411 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
412 insn_class = WORST_CLASS (insn_class, tmp_class);
414 else if (fmt[i] == 'E')
416 int j;
417 for (j = 0; j < XVECLEN (x, i); j++)
419 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
420 insn_class = WORST_CLASS (insn_class, tmp_class);
421 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
422 break;
425 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
426 break;
428 return insn_class;
432 /* Classifies rtx X of an insn for the purpose of verifying that X can be
433 executed speculatively (and consequently the insn can be moved
434 speculatively), by examining X, returning:
435 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
436 TRAP_FREE: non-load insn.
437 IFREE: load from a globally safe location.
438 IRISKY: volatile load.
439 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
440 being either PFREE or PRISKY. */
442 static int
443 haifa_classify_rtx (const_rtx x)
445 int tmp_class = TRAP_FREE;
446 int insn_class = TRAP_FREE;
447 enum rtx_code code;
449 if (GET_CODE (x) == PARALLEL)
451 int i, len = XVECLEN (x, 0);
453 for (i = len - 1; i >= 0; i--)
455 tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
456 insn_class = WORST_CLASS (insn_class, tmp_class);
457 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
458 break;
461 else
463 code = GET_CODE (x);
464 switch (code)
466 case CLOBBER:
467 /* Test if it is a 'store'. */
468 tmp_class = may_trap_exp (XEXP (x, 0), 1);
469 break;
470 case SET:
471 /* Test if it is a store. */
472 tmp_class = may_trap_exp (SET_DEST (x), 1);
473 if (tmp_class == TRAP_RISKY)
474 break;
475 /* Test if it is a load. */
476 tmp_class =
477 WORST_CLASS (tmp_class,
478 may_trap_exp (SET_SRC (x), 0));
479 break;
480 case COND_EXEC:
481 tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
482 if (tmp_class == TRAP_RISKY)
483 break;
484 tmp_class = WORST_CLASS (tmp_class,
485 may_trap_exp (COND_EXEC_TEST (x), 0));
486 break;
487 case TRAP_IF:
488 tmp_class = TRAP_RISKY;
489 break;
490 default:;
492 insn_class = tmp_class;
495 return insn_class;
499 haifa_classify_insn (const_rtx insn)
501 return haifa_classify_rtx (PATTERN (insn));
504 /* Forward declarations. */
506 static int priority (rtx);
507 static int rank_for_schedule (const void *, const void *);
508 static void swap_sort (rtx *, int);
509 static void queue_insn (rtx, int);
510 static int schedule_insn (rtx);
511 static void adjust_priority (rtx);
512 static void advance_one_cycle (void);
513 static void extend_h_i_d (void);
516 /* Notes handling mechanism:
517 =========================
518 Generally, NOTES are saved before scheduling and restored after scheduling.
519 The scheduler distinguishes between two types of notes:
521 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
522 Before scheduling a region, a pointer to the note is added to the insn
523 that follows or precedes it. (This happens as part of the data dependence
524 computation). After scheduling an insn, the pointer contained in it is
525 used for regenerating the corresponding note (in reemit_notes).
527 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
528 these notes are put in a list (in rm_other_notes() and
529 unlink_other_notes ()). After scheduling the block, these notes are
530 inserted at the beginning of the block (in schedule_block()). */
532 static void ready_add (struct ready_list *, rtx, bool);
533 static rtx ready_remove_first (struct ready_list *);
535 static void queue_to_ready (struct ready_list *);
536 static int early_queue_to_ready (state_t, struct ready_list *);
538 static void debug_ready_list (struct ready_list *);
540 /* The following functions are used to implement multi-pass scheduling
541 on the first cycle. */
542 static rtx ready_remove (struct ready_list *, int);
543 static void ready_remove_insn (rtx);
545 static int choose_ready (struct ready_list *, rtx *);
547 static void fix_inter_tick (rtx, rtx);
548 static int fix_tick_ready (rtx);
549 static void change_queue_index (rtx, int);
551 /* The following functions are used to implement scheduling of data/control
552 speculative instructions. */
554 static void extend_h_i_d (void);
555 static void init_h_i_d (rtx);
556 static void generate_recovery_code (rtx);
557 static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
558 static void begin_speculative_block (rtx);
559 static void add_to_speculative_block (rtx);
560 static void init_before_recovery (basic_block *);
561 static void create_check_block_twin (rtx, bool);
562 static void fix_recovery_deps (basic_block);
563 static void haifa_change_pattern (rtx, rtx);
564 static void dump_new_block_header (int, basic_block, rtx, rtx);
565 static void restore_bb_notes (basic_block);
566 static void fix_jump_move (rtx);
567 static void move_block_after_check (rtx);
568 static void move_succs (VEC(edge,gc) **, basic_block);
569 static void sched_remove_insn (rtx);
570 static void clear_priorities (rtx, rtx_vec_t *);
571 static void calc_priorities (rtx_vec_t);
572 static void add_jump_dependencies (rtx, rtx);
573 #ifdef ENABLE_CHECKING
574 static int has_edge_p (VEC(edge,gc) *, int);
575 static void check_cfg (rtx, rtx);
576 #endif
578 #endif /* INSN_SCHEDULING */
580 /* Point to state used for the current scheduling pass. */
581 struct haifa_sched_info *current_sched_info;
583 #ifndef INSN_SCHEDULING
584 void
585 schedule_insns (void)
588 #else
590 /* Do register pressure sensitive insn scheduling if the flag is set
591 up. */
592 bool sched_pressure_p;
594 /* Map regno -> its cover class. The map defined only when
595 SCHED_PRESSURE_P is true. */
596 enum reg_class *sched_regno_cover_class;
598 /* The current register pressure. Only elements corresponding cover
599 classes are defined. */
600 static int curr_reg_pressure[N_REG_CLASSES];
602 /* Saved value of the previous array. */
603 static int saved_reg_pressure[N_REG_CLASSES];
605 /* Register living at given scheduling point. */
606 static bitmap curr_reg_live;
608 /* Saved value of the previous array. */
609 static bitmap saved_reg_live;
611 /* Registers mentioned in the current region. */
612 static bitmap region_ref_regs;
614 /* Initiate register pressure relative info for scheduling the current
615 region. Currently it is only clearing register mentioned in the
616 current region. */
617 void
618 sched_init_region_reg_pressure_info (void)
620 bitmap_clear (region_ref_regs);
623 /* Update current register pressure related info after birth (if
624 BIRTH_P) or death of register REGNO. */
625 static void
626 mark_regno_birth_or_death (int regno, bool birth_p)
628 enum reg_class cover_class;
630 cover_class = sched_regno_cover_class[regno];
631 if (regno >= FIRST_PSEUDO_REGISTER)
633 if (cover_class != NO_REGS)
635 if (birth_p)
637 bitmap_set_bit (curr_reg_live, regno);
638 curr_reg_pressure[cover_class]
639 += ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
641 else
643 bitmap_clear_bit (curr_reg_live, regno);
644 curr_reg_pressure[cover_class]
645 -= ira_reg_class_nregs[cover_class][PSEUDO_REGNO_MODE (regno)];
649 else if (cover_class != NO_REGS
650 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
652 if (birth_p)
654 bitmap_set_bit (curr_reg_live, regno);
655 curr_reg_pressure[cover_class]++;
657 else
659 bitmap_clear_bit (curr_reg_live, regno);
660 curr_reg_pressure[cover_class]--;
665 /* Initiate current register pressure related info from living
666 registers given by LIVE. */
667 static void
668 initiate_reg_pressure_info (bitmap live)
670 int i;
671 unsigned int j;
672 bitmap_iterator bi;
674 for (i = 0; i < ira_reg_class_cover_size; i++)
675 curr_reg_pressure[ira_reg_class_cover[i]] = 0;
676 bitmap_clear (curr_reg_live);
677 EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
678 if (current_nr_blocks == 1 || bitmap_bit_p (region_ref_regs, j))
679 mark_regno_birth_or_death (j, true);
682 /* Mark registers in X as mentioned in the current region. */
683 static void
684 setup_ref_regs (rtx x)
686 int i, j, regno;
687 const RTX_CODE code = GET_CODE (x);
688 const char *fmt;
690 if (REG_P (x))
692 regno = REGNO (x);
693 if (regno >= FIRST_PSEUDO_REGISTER)
694 bitmap_set_bit (region_ref_regs, REGNO (x));
695 else
696 for (i = hard_regno_nregs[regno][GET_MODE (x)] - 1; i >= 0; i--)
697 bitmap_set_bit (region_ref_regs, regno + i);
698 return;
700 fmt = GET_RTX_FORMAT (code);
701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
702 if (fmt[i] == 'e')
703 setup_ref_regs (XEXP (x, i));
704 else if (fmt[i] == 'E')
706 for (j = 0; j < XVECLEN (x, i); j++)
707 setup_ref_regs (XVECEXP (x, i, j));
711 /* Initiate current register pressure related info at the start of
712 basic block BB. */
713 static void
714 initiate_bb_reg_pressure_info (basic_block bb)
716 unsigned int i;
717 rtx insn;
719 if (current_nr_blocks > 1)
720 FOR_BB_INSNS (bb, insn)
721 if (INSN_P (insn))
722 setup_ref_regs (PATTERN (insn));
723 initiate_reg_pressure_info (df_get_live_in (bb));
724 #ifdef EH_RETURN_DATA_REGNO
725 if (bb_has_eh_pred (bb))
726 for (i = 0; ; ++i)
728 unsigned int regno = EH_RETURN_DATA_REGNO (i);
730 if (regno == INVALID_REGNUM)
731 break;
732 if (! bitmap_bit_p (df_get_live_in (bb), regno))
733 mark_regno_birth_or_death (regno, true);
735 #endif
738 /* Save current register pressure related info. */
739 static void
740 save_reg_pressure (void)
742 int i;
744 for (i = 0; i < ira_reg_class_cover_size; i++)
745 saved_reg_pressure[ira_reg_class_cover[i]]
746 = curr_reg_pressure[ira_reg_class_cover[i]];
747 bitmap_copy (saved_reg_live, curr_reg_live);
750 /* Restore saved register pressure related info. */
751 static void
752 restore_reg_pressure (void)
754 int i;
756 for (i = 0; i < ira_reg_class_cover_size; i++)
757 curr_reg_pressure[ira_reg_class_cover[i]]
758 = saved_reg_pressure[ira_reg_class_cover[i]];
759 bitmap_copy (curr_reg_live, saved_reg_live);
762 /* Return TRUE if the register is dying after its USE. */
763 static bool
764 dying_use_p (struct reg_use_data *use)
766 struct reg_use_data *next;
768 for (next = use->next_regno_use; next != use; next = next->next_regno_use)
769 if (QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
770 return false;
771 return true;
774 /* Print info about the current register pressure and its excess for
775 each cover class. */
776 static void
777 print_curr_reg_pressure (void)
779 int i;
780 enum reg_class cl;
782 fprintf (sched_dump, ";;\t");
783 for (i = 0; i < ira_reg_class_cover_size; i++)
785 cl = ira_reg_class_cover[i];
786 gcc_assert (curr_reg_pressure[cl] >= 0);
787 fprintf (sched_dump, " %s:%d(%d)", reg_class_names[cl],
788 curr_reg_pressure[cl],
789 curr_reg_pressure[cl] - ira_available_class_regs[cl]);
791 fprintf (sched_dump, "\n");
794 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
795 so that insns independent of the last scheduled insn will be preferred
796 over dependent instructions. */
798 static rtx last_scheduled_insn;
800 /* Cached cost of the instruction. Use below function to get cost of the
801 insn. -1 here means that the field is not initialized. */
802 #define INSN_COST(INSN) (HID (INSN)->cost)
804 /* Compute cost of executing INSN.
805 This is the number of cycles between instruction issue and
806 instruction results. */
808 insn_cost (rtx insn)
810 int cost;
812 if (sel_sched_p ())
814 if (recog_memoized (insn) < 0)
815 return 0;
817 cost = insn_default_latency (insn);
818 if (cost < 0)
819 cost = 0;
821 return cost;
824 cost = INSN_COST (insn);
826 if (cost < 0)
828 /* A USE insn, or something else we don't need to
829 understand. We can't pass these directly to
830 result_ready_cost or insn_default_latency because it will
831 trigger a fatal error for unrecognizable insns. */
832 if (recog_memoized (insn) < 0)
834 INSN_COST (insn) = 0;
835 return 0;
837 else
839 cost = insn_default_latency (insn);
840 if (cost < 0)
841 cost = 0;
843 INSN_COST (insn) = cost;
847 return cost;
850 /* Compute cost of dependence LINK.
851 This is the number of cycles between instruction issue and
852 instruction results.
853 ??? We also use this function to call recog_memoized on all insns. */
855 dep_cost_1 (dep_t link, dw_t dw)
857 rtx insn = DEP_PRO (link);
858 rtx used = DEP_CON (link);
859 int cost;
861 /* A USE insn should never require the value used to be computed.
862 This allows the computation of a function's result and parameter
863 values to overlap the return and call. We don't care about the
864 the dependence cost when only decreasing register pressure. */
865 if (recog_memoized (used) < 0)
867 cost = 0;
868 recog_memoized (insn);
870 else
872 enum reg_note dep_type = DEP_TYPE (link);
874 cost = insn_cost (insn);
876 if (INSN_CODE (insn) >= 0)
878 if (dep_type == REG_DEP_ANTI)
879 cost = 0;
880 else if (dep_type == REG_DEP_OUTPUT)
882 cost = (insn_default_latency (insn)
883 - insn_default_latency (used));
884 if (cost <= 0)
885 cost = 1;
887 else if (bypass_p (insn))
888 cost = insn_latency (insn, used);
892 if (targetm.sched.adjust_cost_2)
893 cost = targetm.sched.adjust_cost_2 (used, (int) dep_type, insn, cost,
894 dw);
895 else if (targetm.sched.adjust_cost != NULL)
897 /* This variable is used for backward compatibility with the
898 targets. */
899 rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);
901 /* Make it self-cycled, so that if some tries to walk over this
902 incomplete list he/she will be caught in an endless loop. */
903 XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;
905 /* Targets use only REG_NOTE_KIND of the link. */
906 PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));
908 cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
909 insn, cost);
911 free_INSN_LIST_node (dep_cost_rtx_link);
914 if (cost < 0)
915 cost = 0;
918 return cost;
921 /* Compute cost of dependence LINK.
922 This is the number of cycles between instruction issue and
923 instruction results. */
925 dep_cost (dep_t link)
927 return dep_cost_1 (link, 0);
930 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
931 INSN_PRIORITY explicitly. */
932 void
933 increase_insn_priority (rtx insn, int amount)
935 if (!sel_sched_p ())
937 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
938 if (INSN_PRIORITY_KNOWN (insn))
939 INSN_PRIORITY (insn) += amount;
941 else
943 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
944 Use EXPR_PRIORITY instead. */
945 sel_add_to_insn_priority (insn, amount);
949 /* Return 'true' if DEP should be included in priority calculations. */
950 static bool
951 contributes_to_priority_p (dep_t dep)
953 if (DEBUG_INSN_P (DEP_CON (dep))
954 || DEBUG_INSN_P (DEP_PRO (dep)))
955 return false;
957 /* Critical path is meaningful in block boundaries only. */
958 if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
959 DEP_PRO (dep)))
960 return false;
962 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
963 then speculative instructions will less likely be
964 scheduled. That is because the priority of
965 their producers will increase, and, thus, the
966 producers will more likely be scheduled, thus,
967 resolving the dependence. */
968 if (sched_deps_info->generate_spec_deps
969 && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
970 && (DEP_STATUS (dep) & SPECULATIVE))
971 return false;
973 return true;
976 /* Compute the number of nondebug forward deps of an insn. */
978 static int
979 dep_list_size (rtx insn)
981 sd_iterator_def sd_it;
982 dep_t dep;
983 int dbgcount = 0, nodbgcount = 0;
985 if (!MAY_HAVE_DEBUG_INSNS)
986 return sd_lists_size (insn, SD_LIST_FORW);
988 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
990 if (DEBUG_INSN_P (DEP_CON (dep)))
991 dbgcount++;
992 else if (!DEBUG_INSN_P (DEP_PRO (dep)))
993 nodbgcount++;
996 gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, SD_LIST_FORW));
998 return nodbgcount;
1001 /* Compute the priority number for INSN. */
1002 static int
1003 priority (rtx insn)
1005 if (! INSN_P (insn))
1006 return 0;
1008 /* We should not be interested in priority of an already scheduled insn. */
1009 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
1011 if (!INSN_PRIORITY_KNOWN (insn))
1013 int this_priority = -1;
1015 if (dep_list_size (insn) == 0)
1016 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1017 some forward deps but all of them are ignored by
1018 contributes_to_priority hook. At the moment we set priority of
1019 such insn to 0. */
1020 this_priority = insn_cost (insn);
1021 else
1023 rtx prev_first, twin;
1024 basic_block rec;
1026 /* For recovery check instructions we calculate priority slightly
1027 different than that of normal instructions. Instead of walking
1028 through INSN_FORW_DEPS (check) list, we walk through
1029 INSN_FORW_DEPS list of each instruction in the corresponding
1030 recovery block. */
1032 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1033 rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
1034 if (!rec || rec == EXIT_BLOCK_PTR)
1036 prev_first = PREV_INSN (insn);
1037 twin = insn;
1039 else
1041 prev_first = NEXT_INSN (BB_HEAD (rec));
1042 twin = PREV_INSN (BB_END (rec));
1047 sd_iterator_def sd_it;
1048 dep_t dep;
1050 FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
1052 rtx next;
1053 int next_priority;
1055 next = DEP_CON (dep);
1057 if (BLOCK_FOR_INSN (next) != rec)
1059 int cost;
1061 if (!contributes_to_priority_p (dep))
1062 continue;
1064 if (twin == insn)
1065 cost = dep_cost (dep);
1066 else
1068 struct _dep _dep1, *dep1 = &_dep1;
1070 init_dep (dep1, insn, next, REG_DEP_ANTI);
1072 cost = dep_cost (dep1);
1075 next_priority = cost + priority (next);
1077 if (next_priority > this_priority)
1078 this_priority = next_priority;
1082 twin = PREV_INSN (twin);
1084 while (twin != prev_first);
1087 if (this_priority < 0)
1089 gcc_assert (this_priority == -1);
1091 this_priority = insn_cost (insn);
1094 INSN_PRIORITY (insn) = this_priority;
1095 INSN_PRIORITY_STATUS (insn) = 1;
1098 return INSN_PRIORITY (insn);
1101 /* Macros and functions for keeping the priority queue sorted, and
1102 dealing with queuing and dequeuing of instructions. */
1104 #define SCHED_SORT(READY, N_READY) \
1105 do { if ((N_READY) == 2) \
1106 swap_sort (READY, N_READY); \
1107 else if ((N_READY) > 2) \
1108 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1109 while (0)
1111 /* Setup info about the current register pressure impact of scheduling
1112 INSN at the current scheduling point. */
1113 static void
1114 setup_insn_reg_pressure_info (rtx insn)
1116 int i, change, before, after, hard_regno;
1117 int excess_cost_change;
1118 enum machine_mode mode;
1119 enum reg_class cl;
1120 struct reg_pressure_data *pressure_info;
1121 int *max_reg_pressure;
1122 struct reg_use_data *use;
1123 static int death[N_REG_CLASSES];
1125 excess_cost_change = 0;
1126 for (i = 0; i < ira_reg_class_cover_size; i++)
1127 death[ira_reg_class_cover[i]] = 0;
1128 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1129 if (dying_use_p (use))
1131 cl = sched_regno_cover_class[use->regno];
1132 if (use->regno < FIRST_PSEUDO_REGISTER)
1133 death[cl]++;
1134 else
1135 death[cl] += ira_reg_class_nregs[cl][PSEUDO_REGNO_MODE (use->regno)];
1137 pressure_info = INSN_REG_PRESSURE (insn);
1138 max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
1139 gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
1140 for (i = 0; i < ira_reg_class_cover_size; i++)
1142 cl = ira_reg_class_cover[i];
1143 gcc_assert (curr_reg_pressure[cl] >= 0);
1144 change = (int) pressure_info[i].set_increase - death[cl];
1145 before = MAX (0, max_reg_pressure[i] - ira_available_class_regs[cl]);
1146 after = MAX (0, max_reg_pressure[i] + change
1147 - ira_available_class_regs[cl]);
1148 hard_regno = ira_class_hard_regs[cl][0];
1149 gcc_assert (hard_regno >= 0);
1150 mode = reg_raw_mode[hard_regno];
1151 excess_cost_change += ((after - before)
1152 * (ira_memory_move_cost[mode][cl][0]
1153 + ira_memory_move_cost[mode][cl][1]));
1155 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
1158 /* Returns a positive value if x is preferred; returns a negative value if
1159 y is preferred. Should never return 0, since that will make the sort
1160 unstable. */
1162 static int
1163 rank_for_schedule (const void *x, const void *y)
1165 rtx tmp = *(const rtx *) y;
1166 rtx tmp2 = *(const rtx *) x;
1167 rtx last;
1168 int tmp_class, tmp2_class;
1169 int val, priority_val, info_val;
1171 if (MAY_HAVE_DEBUG_INSNS)
1173 /* Schedule debug insns as early as possible. */
1174 if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
1175 return -1;
1176 else if (DEBUG_INSN_P (tmp2))
1177 return 1;
1180 /* The insn in a schedule group should be issued the first. */
1181 if (flag_sched_group_heuristic &&
1182 SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
1183 return SCHED_GROUP_P (tmp2) ? 1 : -1;
1185 /* Make sure that priority of TMP and TMP2 are initialized. */
1186 gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));
1188 if (sched_pressure_p)
1190 int diff;
1192 /* Prefer insn whose scheduling results in the smallest register
1193 pressure excess. */
1194 if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
1195 + (INSN_TICK (tmp) > clock_var
1196 ? INSN_TICK (tmp) - clock_var : 0)
1197 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
1198 - (INSN_TICK (tmp2) > clock_var
1199 ? INSN_TICK (tmp2) - clock_var : 0))) != 0)
1200 return diff;
1204 if (sched_pressure_p
1205 && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var))
1207 if (INSN_TICK (tmp) <= clock_var)
1208 return -1;
1209 else if (INSN_TICK (tmp2) <= clock_var)
1210 return 1;
1211 else
1212 return INSN_TICK (tmp) - INSN_TICK (tmp2);
1214 /* Prefer insn with higher priority. */
1215 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
1217 if (flag_sched_critical_path_heuristic && priority_val)
1218 return priority_val;
1220 /* Prefer speculative insn with greater dependencies weakness. */
1221 if (flag_sched_spec_insn_heuristic && spec_info)
1223 ds_t ds1, ds2;
1224 dw_t dw1, dw2;
1225 int dw;
1227 ds1 = TODO_SPEC (tmp) & SPECULATIVE;
1228 if (ds1)
1229 dw1 = ds_weak (ds1);
1230 else
1231 dw1 = NO_DEP_WEAK;
1233 ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
1234 if (ds2)
1235 dw2 = ds_weak (ds2);
1236 else
1237 dw2 = NO_DEP_WEAK;
1239 dw = dw2 - dw1;
1240 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
1241 return dw;
1244 info_val = (*current_sched_info->rank) (tmp, tmp2);
1245 if(flag_sched_rank_heuristic && info_val)
1246 return info_val;
1248 if (flag_sched_last_insn_heuristic)
1250 last = last_scheduled_insn;
1252 if (DEBUG_INSN_P (last) && last != current_sched_info->prev_head)
1254 last = PREV_INSN (last);
1255 while (!NONDEBUG_INSN_P (last)
1256 && last != current_sched_info->prev_head);
1259 /* Compare insns based on their relation to the last scheduled
1260 non-debug insn. */
1261 if (flag_sched_last_insn_heuristic && NONDEBUG_INSN_P (last))
1263 dep_t dep1;
1264 dep_t dep2;
1266 /* Classify the instructions into three classes:
1267 1) Data dependent on last schedule insn.
1268 2) Anti/Output dependent on last scheduled insn.
1269 3) Independent of last scheduled insn, or has latency of one.
1270 Choose the insn from the highest numbered class if different. */
1271 dep1 = sd_find_dep_between (last, tmp, true);
1273 if (dep1 == NULL || dep_cost (dep1) == 1)
1274 tmp_class = 3;
1275 else if (/* Data dependence. */
1276 DEP_TYPE (dep1) == REG_DEP_TRUE)
1277 tmp_class = 1;
1278 else
1279 tmp_class = 2;
1281 dep2 = sd_find_dep_between (last, tmp2, true);
1283 if (dep2 == NULL || dep_cost (dep2) == 1)
1284 tmp2_class = 3;
1285 else if (/* Data dependence. */
1286 DEP_TYPE (dep2) == REG_DEP_TRUE)
1287 tmp2_class = 1;
1288 else
1289 tmp2_class = 2;
1291 if ((val = tmp2_class - tmp_class))
1292 return val;
1295 /* Prefer the insn which has more later insns that depend on it.
1296 This gives the scheduler more freedom when scheduling later
1297 instructions at the expense of added register pressure. */
1299 val = (dep_list_size (tmp2) - dep_list_size (tmp));
1301 if (flag_sched_dep_count_heuristic && val != 0)
1302 return val;
1304 /* If insns are equally good, sort by INSN_LUID (original insn order),
1305 so that we make the sort stable. This minimizes instruction movement,
1306 thus minimizing sched's effect on debugging and cross-jumping. */
1307 return INSN_LUID (tmp) - INSN_LUID (tmp2);
1310 /* Resort the array A in which only element at index N may be out of order. */
1312 HAIFA_INLINE static void
1313 swap_sort (rtx *a, int n)
1315 rtx insn = a[n - 1];
1316 int i = n - 2;
1318 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
1320 a[i + 1] = a[i];
1321 i -= 1;
1323 a[i + 1] = insn;
1326 /* Add INSN to the insn queue so that it can be executed at least
1327 N_CYCLES after the currently executing insn. Preserve insns
1328 chain for debugging purposes. */
1330 HAIFA_INLINE static void
1331 queue_insn (rtx insn, int n_cycles)
1333 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
1334 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
1336 gcc_assert (n_cycles <= max_insn_queue_index);
1337 gcc_assert (!DEBUG_INSN_P (insn));
1339 insn_queue[next_q] = link;
1340 q_size += 1;
1342 if (sched_verbose >= 2)
1344 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
1345 (*current_sched_info->print_insn) (insn, 0));
1347 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
1350 QUEUE_INDEX (insn) = next_q;
1353 /* Remove INSN from queue. */
1354 static void
1355 queue_remove (rtx insn)
1357 gcc_assert (QUEUE_INDEX (insn) >= 0);
1358 remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
1359 q_size--;
1360 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
1363 /* Return a pointer to the bottom of the ready list, i.e. the insn
1364 with the lowest priority. */
1366 rtx *
1367 ready_lastpos (struct ready_list *ready)
1369 gcc_assert (ready->n_ready >= 1);
1370 return ready->vec + ready->first - ready->n_ready + 1;
1373 /* Add an element INSN to the ready list so that it ends up with the
1374 lowest/highest priority depending on FIRST_P. */
1376 HAIFA_INLINE static void
1377 ready_add (struct ready_list *ready, rtx insn, bool first_p)
1379 if (!first_p)
1381 if (ready->first == ready->n_ready)
1383 memmove (ready->vec + ready->veclen - ready->n_ready,
1384 ready_lastpos (ready),
1385 ready->n_ready * sizeof (rtx));
1386 ready->first = ready->veclen - 1;
1388 ready->vec[ready->first - ready->n_ready] = insn;
1390 else
1392 if (ready->first == ready->veclen - 1)
1394 if (ready->n_ready)
1395 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
1396 memmove (ready->vec + ready->veclen - ready->n_ready - 1,
1397 ready_lastpos (ready),
1398 ready->n_ready * sizeof (rtx));
1399 ready->first = ready->veclen - 2;
1401 ready->vec[++(ready->first)] = insn;
1404 ready->n_ready++;
1405 if (DEBUG_INSN_P (insn))
1406 ready->n_debug++;
1408 gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
1409 QUEUE_INDEX (insn) = QUEUE_READY;
1412 /* Remove the element with the highest priority from the ready list and
1413 return it. */
1415 HAIFA_INLINE static rtx
1416 ready_remove_first (struct ready_list *ready)
1418 rtx t;
1420 gcc_assert (ready->n_ready);
1421 t = ready->vec[ready->first--];
1422 ready->n_ready--;
1423 if (DEBUG_INSN_P (t))
1424 ready->n_debug--;
1425 /* If the queue becomes empty, reset it. */
1426 if (ready->n_ready == 0)
1427 ready->first = ready->veclen - 1;
1429 gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
1430 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1432 return t;
1435 /* The following code implements multi-pass scheduling for the first
1436 cycle. In other words, we will try to choose ready insn which
1437 permits to start maximum number of insns on the same cycle. */
1439 /* Return a pointer to the element INDEX from the ready. INDEX for
1440 insn with the highest priority is 0, and the lowest priority has
1441 N_READY - 1. */
1444 ready_element (struct ready_list *ready, int index)
1446 gcc_assert (ready->n_ready && index < ready->n_ready);
1448 return ready->vec[ready->first - index];
1451 /* Remove the element INDEX from the ready list and return it. INDEX
1452 for insn with the highest priority is 0, and the lowest priority
1453 has N_READY - 1. */
1455 HAIFA_INLINE static rtx
1456 ready_remove (struct ready_list *ready, int index)
1458 rtx t;
1459 int i;
1461 if (index == 0)
1462 return ready_remove_first (ready);
1463 gcc_assert (ready->n_ready && index < ready->n_ready);
1464 t = ready->vec[ready->first - index];
1465 ready->n_ready--;
1466 if (DEBUG_INSN_P (t))
1467 ready->n_debug--;
1468 for (i = index; i < ready->n_ready; i++)
1469 ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1470 QUEUE_INDEX (t) = QUEUE_NOWHERE;
1471 return t;
1474 /* Remove INSN from the ready list. */
1475 static void
1476 ready_remove_insn (rtx insn)
1478 int i;
1480 for (i = 0; i < readyp->n_ready; i++)
1481 if (ready_element (readyp, i) == insn)
1483 ready_remove (readyp, i);
1484 return;
1486 gcc_unreachable ();
1489 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1490 macro. */
1492 void
1493 ready_sort (struct ready_list *ready)
1495 int i;
1496 rtx *first = ready_lastpos (ready);
1498 if (sched_pressure_p)
1500 for (i = 0; i < ready->n_ready; i++)
1501 setup_insn_reg_pressure_info (first[i]);
1503 SCHED_SORT (first, ready->n_ready);
1506 /* PREV is an insn that is ready to execute. Adjust its priority if that
1507 will help shorten or lengthen register lifetimes as appropriate. Also
1508 provide a hook for the target to tweak itself. */
1510 HAIFA_INLINE static void
1511 adjust_priority (rtx prev)
1513 /* ??? There used to be code here to try and estimate how an insn
1514 affected register lifetimes, but it did it by looking at REG_DEAD
1515 notes, which we removed in schedule_region. Nor did it try to
1516 take into account register pressure or anything useful like that.
1518 Revisit when we have a machine model to work with and not before. */
1520 if (targetm.sched.adjust_priority)
1521 INSN_PRIORITY (prev) =
1522 targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
1525 /* Advance DFA state STATE on one cycle. */
1526 void
1527 advance_state (state_t state)
1529 if (targetm.sched.dfa_pre_advance_cycle)
1530 targetm.sched.dfa_pre_advance_cycle ();
1532 if (targetm.sched.dfa_pre_cycle_insn)
1533 state_transition (state,
1534 targetm.sched.dfa_pre_cycle_insn ());
1536 state_transition (state, NULL);
1538 if (targetm.sched.dfa_post_cycle_insn)
1539 state_transition (state,
1540 targetm.sched.dfa_post_cycle_insn ());
1542 if (targetm.sched.dfa_post_advance_cycle)
1543 targetm.sched.dfa_post_advance_cycle ();
1546 /* Advance time on one cycle. */
1547 HAIFA_INLINE static void
1548 advance_one_cycle (void)
1550 advance_state (curr_state);
1551 if (sched_verbose >= 6)
1552 fprintf (sched_dump, ";;\tAdvanced a state.\n");
1555 /* Clock at which the previous instruction was issued. */
1556 static int last_clock_var;
1558 /* Update register pressure after scheduling INSN. */
1559 static void
1560 update_register_pressure (rtx insn)
1562 struct reg_use_data *use;
1563 struct reg_set_data *set;
1565 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
1566 if (dying_use_p (use) && bitmap_bit_p (curr_reg_live, use->regno))
1567 mark_regno_birth_or_death (use->regno, false);
1568 for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
1569 mark_regno_birth_or_death (set->regno, true);
1572 /* Set up or update (if UPDATE_P) max register pressure (see its
1573 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
1574 after insn AFTER. */
1575 static void
1576 setup_insn_max_reg_pressure (rtx after, bool update_p)
1578 int i, p;
1579 bool eq_p;
1580 rtx insn;
1581 static int max_reg_pressure[N_REG_CLASSES];
1583 save_reg_pressure ();
1584 for (i = 0; i < ira_reg_class_cover_size; i++)
1585 max_reg_pressure[ira_reg_class_cover[i]]
1586 = curr_reg_pressure[ira_reg_class_cover[i]];
1587 for (insn = NEXT_INSN (after);
1588 insn != NULL_RTX && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
1589 insn = NEXT_INSN (insn))
1590 if (NONDEBUG_INSN_P (insn))
1592 eq_p = true;
1593 for (i = 0; i < ira_reg_class_cover_size; i++)
1595 p = max_reg_pressure[ira_reg_class_cover[i]];
1596 if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
1598 eq_p = false;
1599 INSN_MAX_REG_PRESSURE (insn)[i]
1600 = max_reg_pressure[ira_reg_class_cover[i]];
1603 if (update_p && eq_p)
1604 break;
1605 update_register_pressure (insn);
1606 for (i = 0; i < ira_reg_class_cover_size; i++)
1607 if (max_reg_pressure[ira_reg_class_cover[i]]
1608 < curr_reg_pressure[ira_reg_class_cover[i]])
1609 max_reg_pressure[ira_reg_class_cover[i]]
1610 = curr_reg_pressure[ira_reg_class_cover[i]];
1612 restore_reg_pressure ();
1615 /* Update the current register pressure after scheduling INSN. Update
1616 also max register pressure for unscheduled insns of the current
1617 BB. */
1618 static void
1619 update_reg_and_insn_max_reg_pressure (rtx insn)
1621 int i;
1622 int before[N_REG_CLASSES];
1624 for (i = 0; i < ira_reg_class_cover_size; i++)
1625 before[i] = curr_reg_pressure[ira_reg_class_cover[i]];
1626 update_register_pressure (insn);
1627 for (i = 0; i < ira_reg_class_cover_size; i++)
1628 if (curr_reg_pressure[ira_reg_class_cover[i]] != before[i])
1629 break;
1630 if (i < ira_reg_class_cover_size)
1631 setup_insn_max_reg_pressure (insn, true);
1634 /* Set up register pressure at the beginning of basic block BB whose
1635 insns starting after insn AFTER. Set up also max register pressure
1636 for all insns of the basic block. */
1637 void
1638 sched_setup_bb_reg_pressure_info (basic_block bb, rtx after)
1640 gcc_assert (sched_pressure_p);
1641 initiate_bb_reg_pressure_info (bb);
1642 setup_insn_max_reg_pressure (after, false);
1645 /* INSN is the "currently executing insn". Launch each insn which was
1646 waiting on INSN. READY is the ready list which contains the insns
1647 that are ready to fire. CLOCK is the current cycle. The function
1648 returns necessary cycle advance after issuing the insn (it is not
1649 zero for insns in a schedule group). */
1651 static int
1652 schedule_insn (rtx insn)
1654 sd_iterator_def sd_it;
1655 dep_t dep;
1656 int i;
1657 int advance = 0;
1659 if (sched_verbose >= 1)
1661 struct reg_pressure_data *pressure_info;
1662 char buf[2048];
1664 print_insn (buf, insn, 0);
1665 buf[40] = 0;
1666 fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);
1668 if (recog_memoized (insn) < 0)
1669 fprintf (sched_dump, "nothing");
1670 else
1671 print_reservation (sched_dump, insn);
1672 pressure_info = INSN_REG_PRESSURE (insn);
1673 if (pressure_info != NULL)
1675 fputc (':', sched_dump);
1676 for (i = 0; i < ira_reg_class_cover_size; i++)
1677 fprintf (sched_dump, "%s%+d(%d)",
1678 reg_class_names[ira_reg_class_cover[i]],
1679 pressure_info[i].set_increase, pressure_info[i].change);
1681 fputc ('\n', sched_dump);
1684 if (sched_pressure_p)
1685 update_reg_and_insn_max_reg_pressure (insn);
1687 /* Scheduling instruction should have all its dependencies resolved and
1688 should have been removed from the ready list. */
1689 gcc_assert (sd_lists_empty_p (insn, SD_LIST_BACK));
1691 /* Reset debug insns invalidated by moving this insn. */
1692 if (MAY_HAVE_DEBUG_INSNS && !DEBUG_INSN_P (insn))
1693 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1694 sd_iterator_cond (&sd_it, &dep);)
1696 rtx dbg = DEP_PRO (dep);
1698 gcc_assert (DEBUG_INSN_P (dbg));
1700 if (sched_verbose >= 6)
1701 fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
1702 INSN_UID (dbg));
1704 /* ??? Rather than resetting the debug insn, we might be able
1705 to emit a debug temp before the just-scheduled insn, but
1706 this would involve checking that the expression at the
1707 point of the debug insn is equivalent to the expression
1708 before the just-scheduled insn. They might not be: the
1709 expression in the debug insn may depend on other insns not
1710 yet scheduled that set MEMs, REGs or even other debug
1711 insns. It's not clear that attempting to preserve debug
1712 information in these cases is worth the effort, given how
1713 uncommon these resets are and the likelihood that the debug
1714 temps introduced won't survive the schedule change. */
1715 INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
1716 df_insn_rescan (dbg);
1718 /* We delete rather than resolve these deps, otherwise we
1719 crash in sched_free_deps(), because forward deps are
1720 expected to be released before backward deps. */
1721 sd_delete_dep (sd_it);
1724 gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
1725 QUEUE_INDEX (insn) = QUEUE_SCHEDULED;
1727 gcc_assert (INSN_TICK (insn) >= MIN_TICK);
1728 if (INSN_TICK (insn) > clock_var)
1729 /* INSN has been prematurely moved from the queue to the ready list.
1730 This is possible only if following flag is set. */
1731 gcc_assert (flag_sched_stalled_insns);
1733 /* ??? Probably, if INSN is scheduled prematurely, we should leave
1734 INSN_TICK untouched. This is a machine-dependent issue, actually. */
1735 INSN_TICK (insn) = clock_var;
1737 /* Update dependent instructions. */
1738 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
1739 sd_iterator_cond (&sd_it, &dep);)
1741 rtx next = DEP_CON (dep);
1743 /* Resolve the dependence between INSN and NEXT.
1744 sd_resolve_dep () moves current dep to another list thus
1745 advancing the iterator. */
1746 sd_resolve_dep (sd_it);
1748 /* Don't bother trying to mark next as ready if insn is a debug
1749 insn. If insn is the last hard dependency, it will have
1750 already been discounted. */
1751 if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
1752 continue;
1754 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
1756 int effective_cost;
1758 effective_cost = try_ready (next);
1760 if (effective_cost >= 0
1761 && SCHED_GROUP_P (next)
1762 && advance < effective_cost)
1763 advance = effective_cost;
1765 else
1766 /* Check always has only one forward dependence (to the first insn in
1767 the recovery block), therefore, this will be executed only once. */
1769 gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
1770 fix_recovery_deps (RECOVERY_BLOCK (insn));
1774 /* This is the place where scheduler doesn't *basically* need backward and
1775 forward dependencies for INSN anymore. Nevertheless they are used in
1776 heuristics in rank_for_schedule (), early_queue_to_ready () and in
1777 some targets (e.g. rs6000). Thus the earliest place where we *can*
1778 remove dependencies is after targetm.sched.md_finish () call in
1779 schedule_block (). But, on the other side, the safest place to remove
1780 dependencies is when we are finishing scheduling entire region. As we
1781 don't generate [many] dependencies during scheduling itself, we won't
1782 need memory until beginning of next region.
1783 Bottom line: Dependencies are removed for all insns in the end of
1784 scheduling the region. */
1786 /* Annotate the instruction with issue information -- TImode
1787 indicates that the instruction is expected not to be able
1788 to issue on the same cycle as the previous insn. A machine
1789 may use this information to decide how the instruction should
1790 be aligned. */
1791 if (issue_rate > 1
1792 && GET_CODE (PATTERN (insn)) != USE
1793 && GET_CODE (PATTERN (insn)) != CLOBBER
1794 && !DEBUG_INSN_P (insn))
1796 if (reload_completed)
1797 PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
1798 last_clock_var = clock_var;
1801 return advance;
1804 /* Functions for handling of notes. */
1806 /* Insert the INSN note at the end of the notes list. */
1807 static void
1808 add_to_note_list (rtx insn, rtx *note_list_end_p)
1810 PREV_INSN (insn) = *note_list_end_p;
1811 if (*note_list_end_p)
1812 NEXT_INSN (*note_list_end_p) = insn;
1813 *note_list_end_p = insn;
1816 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
1817 void
1818 concat_note_lists (rtx from_end, rtx *to_endp)
1820 rtx from_start;
1822 if (from_end == NULL)
1823 /* It's easy when have nothing to concat. */
1824 return;
1826 if (*to_endp == NULL)
1827 /* It's also easy when destination is empty. */
1829 *to_endp = from_end;
1830 return;
1833 from_start = from_end;
1834 /* A note list should be traversed via PREV_INSN. */
1835 while (PREV_INSN (from_start) != NULL)
1836 from_start = PREV_INSN (from_start);
1838 add_to_note_list (from_start, to_endp);
1839 *to_endp = from_end;
1842 /* Delete notes beginning with INSN and put them in the chain
1843 of notes ended by NOTE_LIST.
1844 Returns the insn following the notes. */
1845 static rtx
1846 unlink_other_notes (rtx insn, rtx tail)
1848 rtx prev = PREV_INSN (insn);
1850 while (insn != tail && NOTE_NOT_BB_P (insn))
1852 rtx next = NEXT_INSN (insn);
1853 basic_block bb = BLOCK_FOR_INSN (insn);
1855 /* Delete the note from its current position. */
1856 if (prev)
1857 NEXT_INSN (prev) = next;
1858 if (next)
1859 PREV_INSN (next) = prev;
1861 if (bb)
1863 /* Basic block can begin with either LABEL or
1864 NOTE_INSN_BASIC_BLOCK. */
1865 gcc_assert (BB_HEAD (bb) != insn);
1867 /* Check if we are removing last insn in the BB. */
1868 if (BB_END (bb) == insn)
1869 BB_END (bb) = prev;
1872 /* See sched_analyze to see how these are handled. */
1873 if (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
1874 && NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END)
1875 add_to_note_list (insn, &note_list);
1877 insn = next;
1880 if (insn == tail)
1882 gcc_assert (sel_sched_p ());
1883 return prev;
1886 return insn;
1889 /* Return the head and tail pointers of ebb starting at BEG and ending
1890 at END. */
1891 void
1892 get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
1894 rtx beg_head = BB_HEAD (beg);
1895 rtx beg_tail = BB_END (beg);
1896 rtx end_head = BB_HEAD (end);
1897 rtx end_tail = BB_END (end);
1899 /* Don't include any notes or labels at the beginning of the BEG
1900 basic block, or notes at the end of the END basic blocks. */
1902 if (LABEL_P (beg_head))
1903 beg_head = NEXT_INSN (beg_head);
1905 while (beg_head != beg_tail)
1906 if (NOTE_P (beg_head) || BOUNDARY_DEBUG_INSN_P (beg_head))
1907 beg_head = NEXT_INSN (beg_head);
1908 else
1909 break;
1911 *headp = beg_head;
1913 if (beg == end)
1914 end_head = beg_head;
1915 else if (LABEL_P (end_head))
1916 end_head = NEXT_INSN (end_head);
1918 while (end_head != end_tail)
1919 if (NOTE_P (end_tail) || BOUNDARY_DEBUG_INSN_P (end_tail))
1920 end_tail = PREV_INSN (end_tail);
1921 else
1922 break;
1924 *tailp = end_tail;
1927 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1930 no_real_insns_p (const_rtx head, const_rtx tail)
1932 while (head != NEXT_INSN (tail))
1934 if (!NOTE_P (head) && !LABEL_P (head)
1935 && !BOUNDARY_DEBUG_INSN_P (head))
1936 return 0;
1937 head = NEXT_INSN (head);
1939 return 1;
1942 /* Delete notes between HEAD and TAIL and put them in the chain
1943 of notes ended by NOTE_LIST. */
1944 static void
1945 rm_other_notes (rtx head, rtx tail)
1947 rtx next_tail;
1948 rtx insn;
1950 note_list = 0;
1951 if (head == tail && (! INSN_P (head)))
1952 return;
1954 next_tail = NEXT_INSN (tail);
1955 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1957 rtx prev;
1959 /* Farm out notes, and maybe save them in NOTE_LIST.
1960 This is needed to keep the debugger from
1961 getting completely deranged. */
1962 if (NOTE_NOT_BB_P (insn))
1964 prev = insn;
1965 insn = unlink_other_notes (insn, next_tail);
1967 gcc_assert ((sel_sched_p ()
1968 || prev != tail) && prev != head && insn != next_tail);
1973 /* Same as above, but also process REG_SAVE_NOTEs of HEAD. */
1974 void
1975 remove_notes (rtx head, rtx tail)
1977 /* rm_other_notes only removes notes which are _inside_ the
1978 block---that is, it won't remove notes before the first real insn
1979 or after the last real insn of the block. So if the first insn
1980 has a REG_SAVE_NOTE which would otherwise be emitted before the
1981 insn, it is redundant with the note before the start of the
1982 block, and so we have to take it out. */
1983 if (INSN_P (head))
1985 rtx note;
1987 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
1988 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
1989 remove_note (head, note);
1992 /* Remove remaining note insns from the block, save them in
1993 note_list. These notes are restored at the end of
1994 schedule_block (). */
1995 rm_other_notes (head, tail);
1998 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
1999 previously found among the insns. Insert them just before HEAD. */
2001 restore_other_notes (rtx head, basic_block head_bb)
2003 if (note_list != 0)
2005 rtx note_head = note_list;
2007 if (head)
2008 head_bb = BLOCK_FOR_INSN (head);
2009 else
2010 head = NEXT_INSN (bb_note (head_bb));
2012 while (PREV_INSN (note_head))
2014 set_block_for_insn (note_head, head_bb);
2015 note_head = PREV_INSN (note_head);
2017 /* In the above cycle we've missed this note. */
2018 set_block_for_insn (note_head, head_bb);
2020 PREV_INSN (note_head) = PREV_INSN (head);
2021 NEXT_INSN (PREV_INSN (head)) = note_head;
2022 PREV_INSN (head) = note_list;
2023 NEXT_INSN (note_list) = head;
2025 if (BLOCK_FOR_INSN (head) != head_bb)
2026 BB_END (head_bb) = note_list;
2028 head = note_head;
2031 return head;
2034 /* Move insns that became ready to fire from queue to ready list. */
2036 static void
2037 queue_to_ready (struct ready_list *ready)
2039 rtx insn;
2040 rtx link;
2041 rtx skip_insn;
2043 q_ptr = NEXT_Q (q_ptr);
2045 if (dbg_cnt (sched_insn) == false)
2047 /* If debug counter is activated do not requeue insn next after
2048 last_scheduled_insn. */
2049 skip_insn = next_nonnote_insn (last_scheduled_insn);
2050 while (skip_insn && DEBUG_INSN_P (skip_insn))
2051 skip_insn = next_nonnote_insn (skip_insn);
2053 else
2054 skip_insn = NULL_RTX;
2056 /* Add all pending insns that can be scheduled without stalls to the
2057 ready list. */
2058 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
2060 insn = XEXP (link, 0);
2061 q_size -= 1;
2063 if (sched_verbose >= 2)
2064 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
2065 (*current_sched_info->print_insn) (insn, 0));
2067 /* If the ready list is full, delay the insn for 1 cycle.
2068 See the comment in schedule_block for the rationale. */
2069 if (!reload_completed
2070 && ready->n_ready - ready->n_debug > MAX_SCHED_READY_INSNS
2071 && !SCHED_GROUP_P (insn)
2072 && insn != skip_insn)
2074 if (sched_verbose >= 2)
2075 fprintf (sched_dump, "requeued because ready full\n");
2076 queue_insn (insn, 1);
2078 else
2080 ready_add (ready, insn, false);
2081 if (sched_verbose >= 2)
2082 fprintf (sched_dump, "moving to ready without stalls\n");
2085 free_INSN_LIST_list (&insn_queue[q_ptr]);
2087 /* If there are no ready insns, stall until one is ready and add all
2088 of the pending insns at that point to the ready list. */
2089 if (ready->n_ready == 0)
2091 int stalls;
2093 for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
2095 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
2097 for (; link; link = XEXP (link, 1))
2099 insn = XEXP (link, 0);
2100 q_size -= 1;
2102 if (sched_verbose >= 2)
2103 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
2104 (*current_sched_info->print_insn) (insn, 0));
2106 ready_add (ready, insn, false);
2107 if (sched_verbose >= 2)
2108 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
2110 free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);
2112 advance_one_cycle ();
2114 break;
2117 advance_one_cycle ();
2120 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
2121 clock_var += stalls;
2125 /* Used by early_queue_to_ready. Determines whether it is "ok" to
2126 prematurely move INSN from the queue to the ready list. Currently,
2127 if a target defines the hook 'is_costly_dependence', this function
2128 uses the hook to check whether there exist any dependences which are
2129 considered costly by the target, between INSN and other insns that
2130 have already been scheduled. Dependences are checked up to Y cycles
2131 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
2132 controlling this value.
2133 (Other considerations could be taken into account instead (or in
2134 addition) depending on user flags and target hooks. */
2136 static bool
2137 ok_for_early_queue_removal (rtx insn)
2139 int n_cycles;
2140 rtx prev_insn = last_scheduled_insn;
2142 if (targetm.sched.is_costly_dependence)
2144 for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
2146 for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
2148 int cost;
2150 if (prev_insn == current_sched_info->prev_head)
2152 prev_insn = NULL;
2153 break;
2156 if (!NOTE_P (prev_insn))
2158 dep_t dep;
2160 dep = sd_find_dep_between (prev_insn, insn, true);
2162 if (dep != NULL)
2164 cost = dep_cost (dep);
2166 if (targetm.sched.is_costly_dependence (dep, cost,
2167 flag_sched_stalled_insns_dep - n_cycles))
2168 return false;
2172 if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
2173 break;
2176 if (!prev_insn)
2177 break;
2178 prev_insn = PREV_INSN (prev_insn);
2182 return true;
2186 /* Remove insns from the queue, before they become "ready" with respect
2187 to FU latency considerations. */
2189 static int
2190 early_queue_to_ready (state_t state, struct ready_list *ready)
2192 rtx insn;
2193 rtx link;
2194 rtx next_link;
2195 rtx prev_link;
2196 bool move_to_ready;
2197 int cost;
2198 state_t temp_state = alloca (dfa_state_size);
2199 int stalls;
2200 int insns_removed = 0;
2203 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
2204 function:
2206 X == 0: There is no limit on how many queued insns can be removed
2207 prematurely. (flag_sched_stalled_insns = -1).
2209 X >= 1: Only X queued insns can be removed prematurely in each
2210 invocation. (flag_sched_stalled_insns = X).
2212 Otherwise: Early queue removal is disabled.
2213 (flag_sched_stalled_insns = 0)
2216 if (! flag_sched_stalled_insns)
2217 return 0;
2219 for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
2221 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
2223 if (sched_verbose > 6)
2224 fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
2226 prev_link = 0;
2227 while (link)
2229 next_link = XEXP (link, 1);
2230 insn = XEXP (link, 0);
2231 if (insn && sched_verbose > 6)
2232 print_rtl_single (sched_dump, insn);
2234 memcpy (temp_state, state, dfa_state_size);
2235 if (recog_memoized (insn) < 0)
2236 /* non-negative to indicate that it's not ready
2237 to avoid infinite Q->R->Q->R... */
2238 cost = 0;
2239 else
2240 cost = state_transition (temp_state, insn);
2242 if (sched_verbose >= 6)
2243 fprintf (sched_dump, "transition cost = %d\n", cost);
2245 move_to_ready = false;
2246 if (cost < 0)
2248 move_to_ready = ok_for_early_queue_removal (insn);
2249 if (move_to_ready == true)
2251 /* move from Q to R */
2252 q_size -= 1;
2253 ready_add (ready, insn, false);
2255 if (prev_link)
2256 XEXP (prev_link, 1) = next_link;
2257 else
2258 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
2260 free_INSN_LIST_node (link);
2262 if (sched_verbose >= 2)
2263 fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
2264 (*current_sched_info->print_insn) (insn, 0));
2266 insns_removed++;
2267 if (insns_removed == flag_sched_stalled_insns)
2268 /* Remove no more than flag_sched_stalled_insns insns
2269 from Q at a time. */
2270 return insns_removed;
2274 if (move_to_ready == false)
2275 prev_link = link;
2277 link = next_link;
2278 } /* while link */
2279 } /* if link */
2281 } /* for stalls.. */
2283 return insns_removed;
2287 /* Print the ready list for debugging purposes. Callable from debugger. */
2289 static void
2290 debug_ready_list (struct ready_list *ready)
2292 rtx *p;
2293 int i;
2295 if (ready->n_ready == 0)
2297 fprintf (sched_dump, "\n");
2298 return;
2301 p = ready_lastpos (ready);
2302 for (i = 0; i < ready->n_ready; i++)
2304 fprintf (sched_dump, " %s:%d",
2305 (*current_sched_info->print_insn) (p[i], 0),
2306 INSN_LUID (p[i]));
2307 if (sched_pressure_p)
2308 fprintf (sched_dump, "(cost=%d",
2309 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
2310 if (INSN_TICK (p[i]) > clock_var)
2311 fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
2312 if (sched_pressure_p)
2313 fprintf (sched_dump, ")");
2315 fprintf (sched_dump, "\n");
2318 /* Search INSN for REG_SAVE_NOTE note pairs for
2319 NOTE_INSN_EHREGION_{BEG,END}; and convert them back into
2320 NOTEs. The REG_SAVE_NOTE note following first one is contains the
2321 saved value for NOTE_BLOCK_NUMBER which is useful for
2322 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. */
2323 void
2324 reemit_notes (rtx insn)
2326 rtx note, last = insn;
2328 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2330 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
2332 enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));
2334 last = emit_note_before (note_type, last);
2335 remove_note (insn, note);
2340 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
2341 static void
2342 move_insn (rtx insn, rtx last, rtx nt)
2344 if (PREV_INSN (insn) != last)
2346 basic_block bb;
2347 rtx note;
2348 int jump_p = 0;
2350 bb = BLOCK_FOR_INSN (insn);
2352 /* BB_HEAD is either LABEL or NOTE. */
2353 gcc_assert (BB_HEAD (bb) != insn);
2355 if (BB_END (bb) == insn)
2356 /* If this is last instruction in BB, move end marker one
2357 instruction up. */
2359 /* Jumps are always placed at the end of basic block. */
2360 jump_p = control_flow_insn_p (insn);
2362 gcc_assert (!jump_p
2363 || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
2364 && IS_SPECULATION_BRANCHY_CHECK_P (insn))
2365 || (common_sched_info->sched_pass_id
2366 == SCHED_EBB_PASS));
2368 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);
2370 BB_END (bb) = PREV_INSN (insn);
2373 gcc_assert (BB_END (bb) != last);
2375 if (jump_p)
2376 /* We move the block note along with jump. */
2378 gcc_assert (nt);
2380 note = NEXT_INSN (insn);
2381 while (NOTE_NOT_BB_P (note) && note != nt)
2382 note = NEXT_INSN (note);
2384 if (note != nt
2385 && (LABEL_P (note)
2386 || BARRIER_P (note)))
2387 note = NEXT_INSN (note);
2389 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
2391 else
2392 note = insn;
2394 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
2395 PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);
2397 NEXT_INSN (note) = NEXT_INSN (last);
2398 PREV_INSN (NEXT_INSN (last)) = note;
2400 NEXT_INSN (last) = insn;
2401 PREV_INSN (insn) = last;
2403 bb = BLOCK_FOR_INSN (last);
2405 if (jump_p)
2407 fix_jump_move (insn);
2409 if (BLOCK_FOR_INSN (insn) != bb)
2410 move_block_after_check (insn);
2412 gcc_assert (BB_END (bb) == last);
2415 df_insn_change_bb (insn, bb);
2417 /* Update BB_END, if needed. */
2418 if (BB_END (bb) == last)
2419 BB_END (bb) = insn;
2422 SCHED_GROUP_P (insn) = 0;
2425 /* Return true if scheduling INSN will finish current clock cycle. */
2426 static bool
2427 insn_finishes_cycle_p (rtx insn)
2429 if (SCHED_GROUP_P (insn))
2430 /* After issuing INSN, rest of the sched_group will be forced to issue
2431 in order. Don't make any plans for the rest of cycle. */
2432 return true;
2434 /* Finishing the block will, apparently, finish the cycle. */
2435 if (current_sched_info->insn_finishes_block_p
2436 && current_sched_info->insn_finishes_block_p (insn))
2437 return true;
2439 return false;
2442 /* The following structure describe an entry of the stack of choices. */
2443 struct choice_entry
2445 /* Ordinal number of the issued insn in the ready queue. */
2446 int index;
2447 /* The number of the rest insns whose issues we should try. */
2448 int rest;
2449 /* The number of issued essential insns. */
2450 int n;
2451 /* State after issuing the insn. */
2452 state_t state;
2455 /* The following array is used to implement a stack of choices used in
2456 function max_issue. */
2457 static struct choice_entry *choice_stack;
2459 /* The following variable value is number of essential insns issued on
2460 the current cycle. An insn is essential one if it changes the
2461 processors state. */
2462 int cycle_issued_insns;
2464 /* This holds the value of the target dfa_lookahead hook. */
2465 int dfa_lookahead;
2467 /* The following variable value is maximal number of tries of issuing
2468 insns for the first cycle multipass insn scheduling. We define
2469 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
2470 need this constraint if all real insns (with non-negative codes)
2471 had reservations because in this case the algorithm complexity is
2472 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
2473 might be incomplete and such insn might occur. For such
2474 descriptions, the complexity of algorithm (without the constraint)
2475 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
2476 static int max_lookahead_tries;
2478 /* The following value is value of hook
2479 `first_cycle_multipass_dfa_lookahead' at the last call of
2480 `max_issue'. */
2481 static int cached_first_cycle_multipass_dfa_lookahead = 0;
2483 /* The following value is value of `issue_rate' at the last call of
2484 `sched_init'. */
2485 static int cached_issue_rate = 0;
2487 /* The following function returns maximal (or close to maximal) number
2488 of insns which can be issued on the same cycle and one of which
2489 insns is insns with the best rank (the first insn in READY). To
2490 make this function tries different samples of ready insns. READY
2491 is current queue `ready'. Global array READY_TRY reflects what
2492 insns are already issued in this try. MAX_POINTS is the sum of points
2493 of all instructions in READY. The function stops immediately,
2494 if it reached the such a solution, that all instruction can be issued.
2495 INDEX will contain index of the best insn in READY. The following
2496 function is used only for first cycle multipass scheduling.
2498 PRIVILEGED_N >= 0
2500 This function expects recognized insns only. All USEs,
2501 CLOBBERs, etc must be filtered elsewhere. */
2503 max_issue (struct ready_list *ready, int privileged_n, state_t state,
2504 int *index)
2506 int n, i, all, n_ready, best, delay, tries_num, points = -1, max_points;
2507 int more_issue;
2508 struct choice_entry *top;
2509 rtx insn;
2511 n_ready = ready->n_ready;
2512 gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
2513 && privileged_n <= n_ready);
2515 /* Init MAX_LOOKAHEAD_TRIES. */
2516 if (cached_first_cycle_multipass_dfa_lookahead != dfa_lookahead)
2518 cached_first_cycle_multipass_dfa_lookahead = dfa_lookahead;
2519 max_lookahead_tries = 100;
2520 for (i = 0; i < issue_rate; i++)
2521 max_lookahead_tries *= dfa_lookahead;
2524 /* Init max_points. */
2525 max_points = 0;
2526 more_issue = issue_rate - cycle_issued_insns;
2528 /* ??? We used to assert here that we never issue more insns than issue_rate.
2529 However, some targets (e.g. MIPS/SB1) claim lower issue rate than can be
2530 achieved to get better performance. Until these targets are fixed to use
2531 scheduler hooks to manipulate insns priority instead, the assert should
2532 be disabled.
2534 gcc_assert (more_issue >= 0); */
2536 for (i = 0; i < n_ready; i++)
2537 if (!ready_try [i])
2539 if (more_issue-- > 0)
2540 max_points += ISSUE_POINTS (ready_element (ready, i));
2541 else
2542 break;
2545 /* The number of the issued insns in the best solution. */
2546 best = 0;
2548 top = choice_stack;
2550 /* Set initial state of the search. */
2551 memcpy (top->state, state, dfa_state_size);
2552 top->rest = dfa_lookahead;
2553 top->n = 0;
2555 /* Count the number of the insns to search among. */
2556 for (all = i = 0; i < n_ready; i++)
2557 if (!ready_try [i])
2558 all++;
2560 /* I is the index of the insn to try next. */
2561 i = 0;
2562 tries_num = 0;
2563 for (;;)
2565 if (/* If we've reached a dead end or searched enough of what we have
2566 been asked... */
2567 top->rest == 0
2568 /* Or have nothing else to try. */
2569 || i >= n_ready)
2571 /* ??? (... || i == n_ready). */
2572 gcc_assert (i <= n_ready);
2574 if (top == choice_stack)
2575 break;
2577 if (best < top - choice_stack)
2579 if (privileged_n)
2581 n = privileged_n;
2582 /* Try to find issued privileged insn. */
2583 while (n && !ready_try[--n]);
2586 if (/* If all insns are equally good... */
2587 privileged_n == 0
2588 /* Or a privileged insn will be issued. */
2589 || ready_try[n])
2590 /* Then we have a solution. */
2592 best = top - choice_stack;
2593 /* This is the index of the insn issued first in this
2594 solution. */
2595 *index = choice_stack [1].index;
2596 points = top->n;
2597 if (top->n == max_points || best == all)
2598 break;
2602 /* Set ready-list index to point to the last insn
2603 ('i++' below will advance it to the next insn). */
2604 i = top->index;
2606 /* Backtrack. */
2607 ready_try [i] = 0;
2608 top--;
2609 memcpy (state, top->state, dfa_state_size);
2611 else if (!ready_try [i])
2613 tries_num++;
2614 if (tries_num > max_lookahead_tries)
2615 break;
2616 insn = ready_element (ready, i);
2617 delay = state_transition (state, insn);
2618 if (delay < 0)
2620 if (state_dead_lock_p (state)
2621 || insn_finishes_cycle_p (insn))
2622 /* We won't issue any more instructions in the next
2623 choice_state. */
2624 top->rest = 0;
2625 else
2626 top->rest--;
2628 n = top->n;
2629 if (memcmp (top->state, state, dfa_state_size) != 0)
2630 n += ISSUE_POINTS (insn);
2632 /* Advance to the next choice_entry. */
2633 top++;
2634 /* Initialize it. */
2635 top->rest = dfa_lookahead;
2636 top->index = i;
2637 top->n = n;
2638 memcpy (top->state, state, dfa_state_size);
2640 ready_try [i] = 1;
2641 i = -1;
2645 /* Increase ready-list index. */
2646 i++;
2649 /* Restore the original state of the DFA. */
2650 memcpy (state, choice_stack->state, dfa_state_size);
2652 return best;
2655 /* The following function chooses insn from READY and modifies
2656 READY. The following function is used only for first
2657 cycle multipass scheduling.
2658 Return:
2659 -1 if cycle should be advanced,
2660 0 if INSN_PTR is set to point to the desirable insn,
2661 1 if choose_ready () should be restarted without advancing the cycle. */
2662 static int
2663 choose_ready (struct ready_list *ready, rtx *insn_ptr)
2665 int lookahead;
2667 if (dbg_cnt (sched_insn) == false)
2669 rtx insn;
2671 insn = next_nonnote_insn (last_scheduled_insn);
2673 if (QUEUE_INDEX (insn) == QUEUE_READY)
2674 /* INSN is in the ready_list. */
2676 ready_remove_insn (insn);
2677 *insn_ptr = insn;
2678 return 0;
2681 /* INSN is in the queue. Advance cycle to move it to the ready list. */
2682 return -1;
2685 lookahead = 0;
2687 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
2688 lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
2689 if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
2690 || DEBUG_INSN_P (ready_element (ready, 0)))
2692 *insn_ptr = ready_remove_first (ready);
2693 return 0;
2695 else
2697 /* Try to choose the better insn. */
2698 int index = 0, i, n;
2699 rtx insn;
2700 int try_data = 1, try_control = 1;
2701 ds_t ts;
2703 insn = ready_element (ready, 0);
2704 if (INSN_CODE (insn) < 0)
2706 *insn_ptr = ready_remove_first (ready);
2707 return 0;
2710 if (spec_info
2711 && spec_info->flags & (PREFER_NON_DATA_SPEC
2712 | PREFER_NON_CONTROL_SPEC))
2714 for (i = 0, n = ready->n_ready; i < n; i++)
2716 rtx x;
2717 ds_t s;
2719 x = ready_element (ready, i);
2720 s = TODO_SPEC (x);
2722 if (spec_info->flags & PREFER_NON_DATA_SPEC
2723 && !(s & DATA_SPEC))
2725 try_data = 0;
2726 if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
2727 || !try_control)
2728 break;
2731 if (spec_info->flags & PREFER_NON_CONTROL_SPEC
2732 && !(s & CONTROL_SPEC))
2734 try_control = 0;
2735 if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
2736 break;
2741 ts = TODO_SPEC (insn);
2742 if ((ts & SPECULATIVE)
2743 && (((!try_data && (ts & DATA_SPEC))
2744 || (!try_control && (ts & CONTROL_SPEC)))
2745 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
2746 && !targetm.sched
2747 .first_cycle_multipass_dfa_lookahead_guard_spec (insn))))
2748 /* Discard speculative instruction that stands first in the ready
2749 list. */
2751 change_queue_index (insn, 1);
2752 return 1;
2755 ready_try[0] = 0;
2757 for (i = 1; i < ready->n_ready; i++)
2759 insn = ready_element (ready, i);
2761 ready_try [i]
2762 = ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
2763 || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC)));
2766 /* Let the target filter the search space. */
2767 for (i = 1; i < ready->n_ready; i++)
2768 if (!ready_try[i])
2770 insn = ready_element (ready, i);
2772 #ifdef ENABLE_CHECKING
2773 /* If this insn is recognizable we should have already
2774 recognized it earlier.
2775 ??? Not very clear where this is supposed to be done.
2776 See dep_cost_1. */
2777 gcc_assert (INSN_CODE (insn) >= 0
2778 || recog_memoized (insn) < 0);
2779 #endif
2781 ready_try [i]
2782 = (/* INSN_CODE check can be omitted here as it is also done later
2783 in max_issue (). */
2784 INSN_CODE (insn) < 0
2785 || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2786 && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2787 (insn)));
2790 if (max_issue (ready, 1, curr_state, &index) == 0)
2792 *insn_ptr = ready_remove_first (ready);
2793 if (sched_verbose >= 4)
2794 fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
2795 (*current_sched_info->print_insn) (*insn_ptr, 0));
2796 return 0;
2798 else
2800 if (sched_verbose >= 4)
2801 fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
2802 (*current_sched_info->print_insn)
2803 (ready_element (ready, index), 0));
2805 *insn_ptr = ready_remove (ready, index);
2806 return 0;
2811 /* Use forward list scheduling to rearrange insns of block pointed to by
2812 TARGET_BB, possibly bringing insns from subsequent blocks in the same
2813 region. */
2815 void
2816 schedule_block (basic_block *target_bb)
2818 int i, first_cycle_insn_p;
2819 int can_issue_more;
2820 state_t temp_state = NULL; /* It is used for multipass scheduling. */
2821 int sort_p, advance, start_clock_var;
2823 /* Head/tail info for this block. */
2824 rtx prev_head = current_sched_info->prev_head;
2825 rtx next_tail = current_sched_info->next_tail;
2826 rtx head = NEXT_INSN (prev_head);
2827 rtx tail = PREV_INSN (next_tail);
2829 /* We used to have code to avoid getting parameters moved from hard
2830 argument registers into pseudos.
2832 However, it was removed when it proved to be of marginal benefit
2833 and caused problems because schedule_block and compute_forward_dependences
2834 had different notions of what the "head" insn was. */
2836 gcc_assert (head != tail || INSN_P (head));
2838 haifa_recovery_bb_recently_added_p = false;
2840 /* Debug info. */
2841 if (sched_verbose)
2842 dump_new_block_header (0, *target_bb, head, tail);
2844 state_reset (curr_state);
2846 /* Clear the ready list. */
2847 ready.first = ready.veclen - 1;
2848 ready.n_ready = 0;
2849 ready.n_debug = 0;
2851 /* It is used for first cycle multipass scheduling. */
2852 temp_state = alloca (dfa_state_size);
2854 if (targetm.sched.md_init)
2855 targetm.sched.md_init (sched_dump, sched_verbose, ready.veclen);
2857 /* We start inserting insns after PREV_HEAD. */
2858 last_scheduled_insn = prev_head;
2860 gcc_assert ((NOTE_P (last_scheduled_insn)
2861 || BOUNDARY_DEBUG_INSN_P (last_scheduled_insn))
2862 && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);
2864 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
2865 queue. */
2866 q_ptr = 0;
2867 q_size = 0;
2869 insn_queue = XALLOCAVEC (rtx, max_insn_queue_index + 1);
2870 memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));
2872 /* Start just before the beginning of time. */
2873 clock_var = -1;
2875 /* We need queue and ready lists and clock_var be initialized
2876 in try_ready () (which is called through init_ready_list ()). */
2877 (*current_sched_info->init_ready_list) ();
2879 /* The algorithm is O(n^2) in the number of ready insns at any given
2880 time in the worst case. Before reload we are more likely to have
2881 big lists so truncate them to a reasonable size. */
2882 if (!reload_completed
2883 && ready.n_ready - ready.n_debug > MAX_SCHED_READY_INSNS)
2885 ready_sort (&ready);
2887 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
2888 If there are debug insns, we know they're first. */
2889 for (i = MAX_SCHED_READY_INSNS + ready.n_debug; i < ready.n_ready; i++)
2890 if (!SCHED_GROUP_P (ready_element (&ready, i)))
2891 break;
2893 if (sched_verbose >= 2)
2895 fprintf (sched_dump,
2896 ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
2897 fprintf (sched_dump,
2898 ";;\t\t before reload => truncated to %d insns\n", i);
2901 /* Delay all insns past it for 1 cycle. If debug counter is
2902 activated make an exception for the insn right after
2903 last_scheduled_insn. */
2905 rtx skip_insn;
2907 if (dbg_cnt (sched_insn) == false)
2908 skip_insn = next_nonnote_insn (last_scheduled_insn);
2909 else
2910 skip_insn = NULL_RTX;
2912 while (i < ready.n_ready)
2914 rtx insn;
2916 insn = ready_remove (&ready, i);
2918 if (insn != skip_insn)
2919 queue_insn (insn, 1);
2924 /* Now we can restore basic block notes and maintain precise cfg. */
2925 restore_bb_notes (*target_bb);
2927 last_clock_var = -1;
2929 advance = 0;
2931 sort_p = TRUE;
2932 /* Loop until all the insns in BB are scheduled. */
2933 while ((*current_sched_info->schedule_more_p) ())
2937 start_clock_var = clock_var;
2939 clock_var++;
2941 advance_one_cycle ();
2943 /* Add to the ready list all pending insns that can be issued now.
2944 If there are no ready insns, increment clock until one
2945 is ready and add all pending insns at that point to the ready
2946 list. */
2947 queue_to_ready (&ready);
2949 gcc_assert (ready.n_ready);
2951 if (sched_verbose >= 2)
2953 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
2954 debug_ready_list (&ready);
2956 advance -= clock_var - start_clock_var;
2958 while (advance > 0);
2960 if (sort_p)
2962 /* Sort the ready list based on priority. */
2963 ready_sort (&ready);
2965 if (sched_verbose >= 2)
2967 fprintf (sched_dump, ";;\t\tReady list after ready_sort: ");
2968 debug_ready_list (&ready);
2972 /* We don't want md sched reorder to even see debug isns, so put
2973 them out right away. */
2974 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
2976 if (control_flow_insn_p (last_scheduled_insn))
2978 *target_bb = current_sched_info->advance_target_bb
2979 (*target_bb, 0);
2981 if (sched_verbose)
2983 rtx x;
2985 x = next_real_insn (last_scheduled_insn);
2986 gcc_assert (x);
2987 dump_new_block_header (1, *target_bb, x, tail);
2990 last_scheduled_insn = bb_note (*target_bb);
2993 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
2995 rtx insn = ready_remove_first (&ready);
2996 gcc_assert (DEBUG_INSN_P (insn));
2997 (*current_sched_info->begin_schedule_ready) (insn,
2998 last_scheduled_insn);
2999 move_insn (insn, last_scheduled_insn,
3000 current_sched_info->next_tail);
3001 last_scheduled_insn = insn;
3002 advance = schedule_insn (insn);
3003 gcc_assert (advance == 0);
3004 if (ready.n_ready > 0)
3005 ready_sort (&ready);
3008 if (!ready.n_ready)
3009 continue;
3012 /* Allow the target to reorder the list, typically for
3013 better instruction bundling. */
3014 if (sort_p && targetm.sched.reorder
3015 && (ready.n_ready == 0
3016 || !SCHED_GROUP_P (ready_element (&ready, 0))))
3017 can_issue_more =
3018 targetm.sched.reorder (sched_dump, sched_verbose,
3019 ready_lastpos (&ready),
3020 &ready.n_ready, clock_var);
3021 else
3022 can_issue_more = issue_rate;
3024 first_cycle_insn_p = 1;
3025 cycle_issued_insns = 0;
3026 for (;;)
3028 rtx insn;
3029 int cost;
3030 bool asm_p = false;
3032 if (sched_verbose >= 2)
3034 fprintf (sched_dump, ";;\tReady list (t = %3d): ",
3035 clock_var);
3036 debug_ready_list (&ready);
3037 if (sched_pressure_p)
3038 print_curr_reg_pressure ();
3041 if (ready.n_ready == 0
3042 && can_issue_more
3043 && reload_completed)
3045 /* Allow scheduling insns directly from the queue in case
3046 there's nothing better to do (ready list is empty) but
3047 there are still vacant dispatch slots in the current cycle. */
3048 if (sched_verbose >= 6)
3049 fprintf (sched_dump,";;\t\tSecond chance\n");
3050 memcpy (temp_state, curr_state, dfa_state_size);
3051 if (early_queue_to_ready (temp_state, &ready))
3052 ready_sort (&ready);
3055 if (ready.n_ready == 0
3056 || !can_issue_more
3057 || state_dead_lock_p (curr_state)
3058 || !(*current_sched_info->schedule_more_p) ())
3059 break;
3061 /* Select and remove the insn from the ready list. */
3062 if (sort_p)
3064 int res;
3066 insn = NULL_RTX;
3067 res = choose_ready (&ready, &insn);
3069 if (res < 0)
3070 /* Finish cycle. */
3071 break;
3072 if (res > 0)
3073 /* Restart choose_ready (). */
3074 continue;
3076 gcc_assert (insn != NULL_RTX);
3078 else
3079 insn = ready_remove_first (&ready);
3081 if (sched_pressure_p && INSN_TICK (insn) > clock_var)
3083 ready_add (&ready, insn, true);
3084 advance = 1;
3085 break;
3088 if (targetm.sched.dfa_new_cycle
3089 && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
3090 insn, last_clock_var,
3091 clock_var, &sort_p))
3092 /* SORT_P is used by the target to override sorting
3093 of the ready list. This is needed when the target
3094 has modified its internal structures expecting that
3095 the insn will be issued next. As we need the insn
3096 to have the highest priority (so it will be returned by
3097 the ready_remove_first call above), we invoke
3098 ready_add (&ready, insn, true).
3099 But, still, there is one issue: INSN can be later
3100 discarded by scheduler's front end through
3101 current_sched_info->can_schedule_ready_p, hence, won't
3102 be issued next. */
3104 ready_add (&ready, insn, true);
3105 break;
3108 sort_p = TRUE;
3109 memcpy (temp_state, curr_state, dfa_state_size);
3110 if (recog_memoized (insn) < 0)
3112 asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
3113 || asm_noperands (PATTERN (insn)) >= 0);
3114 if (!first_cycle_insn_p && asm_p)
3115 /* This is asm insn which is tried to be issued on the
3116 cycle not first. Issue it on the next cycle. */
3117 cost = 1;
3118 else
3119 /* A USE insn, or something else we don't need to
3120 understand. We can't pass these directly to
3121 state_transition because it will trigger a
3122 fatal error for unrecognizable insns. */
3123 cost = 0;
3125 else if (sched_pressure_p)
3126 cost = 0;
3127 else
3129 cost = state_transition (temp_state, insn);
3130 if (cost < 0)
3131 cost = 0;
3132 else if (cost == 0)
3133 cost = 1;
3136 if (cost >= 1)
3138 queue_insn (insn, cost);
3139 if (SCHED_GROUP_P (insn))
3141 advance = cost;
3142 break;
3145 continue;
3148 if (current_sched_info->can_schedule_ready_p
3149 && ! (*current_sched_info->can_schedule_ready_p) (insn))
3150 /* We normally get here only if we don't want to move
3151 insn from the split block. */
3153 TODO_SPEC (insn) = (TODO_SPEC (insn) & ~SPECULATIVE) | HARD_DEP;
3154 continue;
3157 /* DECISION is made. */
3159 if (TODO_SPEC (insn) & SPECULATIVE)
3160 generate_recovery_code (insn);
3162 if (control_flow_insn_p (last_scheduled_insn)
3163 /* This is used to switch basic blocks by request
3164 from scheduler front-end (actually, sched-ebb.c only).
3165 This is used to process blocks with single fallthru
3166 edge. If succeeding block has jump, it [jump] will try
3167 move at the end of current bb, thus corrupting CFG. */
3168 || current_sched_info->advance_target_bb (*target_bb, insn))
3170 *target_bb = current_sched_info->advance_target_bb
3171 (*target_bb, 0);
3173 if (sched_verbose)
3175 rtx x;
3177 x = next_real_insn (last_scheduled_insn);
3178 gcc_assert (x);
3179 dump_new_block_header (1, *target_bb, x, tail);
3182 last_scheduled_insn = bb_note (*target_bb);
3185 /* Update counters, etc in the scheduler's front end. */
3186 (*current_sched_info->begin_schedule_ready) (insn,
3187 last_scheduled_insn);
3189 move_insn (insn, last_scheduled_insn, current_sched_info->next_tail);
3190 reemit_notes (insn);
3191 last_scheduled_insn = insn;
3193 if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
3195 cycle_issued_insns++;
3196 memcpy (curr_state, temp_state, dfa_state_size);
3199 if (targetm.sched.variable_issue)
3200 can_issue_more =
3201 targetm.sched.variable_issue (sched_dump, sched_verbose,
3202 insn, can_issue_more);
3203 /* A naked CLOBBER or USE generates no instruction, so do
3204 not count them against the issue rate. */
3205 else if (GET_CODE (PATTERN (insn)) != USE
3206 && GET_CODE (PATTERN (insn)) != CLOBBER)
3207 can_issue_more--;
3208 advance = schedule_insn (insn);
3210 /* After issuing an asm insn we should start a new cycle. */
3211 if (advance == 0 && asm_p)
3212 advance = 1;
3213 if (advance != 0)
3214 break;
3216 first_cycle_insn_p = 0;
3218 /* Sort the ready list based on priority. This must be
3219 redone here, as schedule_insn may have readied additional
3220 insns that will not be sorted correctly. */
3221 if (ready.n_ready > 0)
3222 ready_sort (&ready);
3224 /* Quickly go through debug insns such that md sched
3225 reorder2 doesn't have to deal with debug insns. */
3226 if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
3227 && (*current_sched_info->schedule_more_p) ())
3229 if (control_flow_insn_p (last_scheduled_insn))
3231 *target_bb = current_sched_info->advance_target_bb
3232 (*target_bb, 0);
3234 if (sched_verbose)
3236 rtx x;
3238 x = next_real_insn (last_scheduled_insn);
3239 gcc_assert (x);
3240 dump_new_block_header (1, *target_bb, x, tail);
3243 last_scheduled_insn = bb_note (*target_bb);
3246 while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
3248 insn = ready_remove_first (&ready);
3249 gcc_assert (DEBUG_INSN_P (insn));
3250 (*current_sched_info->begin_schedule_ready)
3251 (insn, last_scheduled_insn);
3252 move_insn (insn, last_scheduled_insn,
3253 current_sched_info->next_tail);
3254 advance = schedule_insn (insn);
3255 last_scheduled_insn = insn;
3256 gcc_assert (advance == 0);
3257 if (ready.n_ready > 0)
3258 ready_sort (&ready);
3262 if (targetm.sched.reorder2
3263 && (ready.n_ready == 0
3264 || !SCHED_GROUP_P (ready_element (&ready, 0))))
3266 can_issue_more =
3267 targetm.sched.reorder2 (sched_dump, sched_verbose,
3268 ready.n_ready
3269 ? ready_lastpos (&ready) : NULL,
3270 &ready.n_ready, clock_var);
3275 /* Debug info. */
3276 if (sched_verbose)
3278 fprintf (sched_dump, ";;\tReady list (final): ");
3279 debug_ready_list (&ready);
3282 if (current_sched_info->queue_must_finish_empty)
3283 /* Sanity check -- queue must be empty now. Meaningless if region has
3284 multiple bbs. */
3285 gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
3286 else
3288 /* We must maintain QUEUE_INDEX between blocks in region. */
3289 for (i = ready.n_ready - 1; i >= 0; i--)
3291 rtx x;
3293 x = ready_element (&ready, i);
3294 QUEUE_INDEX (x) = QUEUE_NOWHERE;
3295 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
3298 if (q_size)
3299 for (i = 0; i <= max_insn_queue_index; i++)
3301 rtx link;
3302 for (link = insn_queue[i]; link; link = XEXP (link, 1))
3304 rtx x;
3306 x = XEXP (link, 0);
3307 QUEUE_INDEX (x) = QUEUE_NOWHERE;
3308 TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
3310 free_INSN_LIST_list (&insn_queue[i]);
3314 if (sched_verbose)
3315 fprintf (sched_dump, ";; total time = %d\n", clock_var);
3317 if (!current_sched_info->queue_must_finish_empty
3318 || haifa_recovery_bb_recently_added_p)
3320 /* INSN_TICK (minimum clock tick at which the insn becomes
3321 ready) may be not correct for the insn in the subsequent
3322 blocks of the region. We should use a correct value of
3323 `clock_var' or modify INSN_TICK. It is better to keep
3324 clock_var value equal to 0 at the start of a basic block.
3325 Therefore we modify INSN_TICK here. */
3326 fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
3329 if (targetm.sched.md_finish)
3331 targetm.sched.md_finish (sched_dump, sched_verbose);
3332 /* Target might have added some instructions to the scheduled block
3333 in its md_finish () hook. These new insns don't have any data
3334 initialized and to identify them we extend h_i_d so that they'll
3335 get zero luids. */
3336 sched_init_luids (NULL, NULL, NULL, NULL);
3339 if (sched_verbose)
3340 fprintf (sched_dump, ";; new head = %d\n;; new tail = %d\n\n",
3341 INSN_UID (head), INSN_UID (tail));
3343 /* Update head/tail boundaries. */
3344 head = NEXT_INSN (prev_head);
3345 tail = last_scheduled_insn;
3347 head = restore_other_notes (head, NULL);
3349 current_sched_info->head = head;
3350 current_sched_info->tail = tail;
3353 /* Set_priorities: compute priority of each insn in the block. */
3356 set_priorities (rtx head, rtx tail)
3358 rtx insn;
3359 int n_insn;
3360 int sched_max_insns_priority =
3361 current_sched_info->sched_max_insns_priority;
3362 rtx prev_head;
3364 if (head == tail && (! INSN_P (head) || BOUNDARY_DEBUG_INSN_P (head)))
3365 gcc_unreachable ();
3367 n_insn = 0;
3369 prev_head = PREV_INSN (head);
3370 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
3372 if (!INSN_P (insn))
3373 continue;
3375 n_insn++;
3376 (void) priority (insn);
3378 gcc_assert (INSN_PRIORITY_KNOWN (insn));
3380 sched_max_insns_priority = MAX (sched_max_insns_priority,
3381 INSN_PRIORITY (insn));
3384 current_sched_info->sched_max_insns_priority = sched_max_insns_priority;
3386 return n_insn;
3389 /* Set dump and sched_verbose for the desired debugging output. If no
3390 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
3391 For -fsched-verbose=N, N>=10, print everything to stderr. */
3392 void
3393 setup_sched_dump (void)
3395 sched_verbose = sched_verbose_param;
3396 if (sched_verbose_param == 0 && dump_file)
3397 sched_verbose = 1;
3398 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
3399 ? stderr : dump_file);
3402 /* Initialize some global state for the scheduler. This function works
3403 with the common data shared between all the schedulers. It is called
3404 from the scheduler specific initialization routine. */
3406 void
3407 sched_init (void)
3409 /* Disable speculative loads in their presence if cc0 defined. */
3410 #ifdef HAVE_cc0
3411 flag_schedule_speculative_load = 0;
3412 #endif
3414 sched_pressure_p = (flag_sched_pressure && ! reload_completed
3415 && common_sched_info->sched_pass_id == SCHED_RGN_PASS);
3416 if (sched_pressure_p)
3417 ira_setup_eliminable_regset ();
3419 /* Initialize SPEC_INFO. */
3420 if (targetm.sched.set_sched_flags)
3422 spec_info = &spec_info_var;
3423 targetm.sched.set_sched_flags (spec_info);
3425 if (spec_info->mask != 0)
3427 spec_info->data_weakness_cutoff =
3428 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
3429 spec_info->control_weakness_cutoff =
3430 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF)
3431 * REG_BR_PROB_BASE) / 100;
3433 else
3434 /* So we won't read anything accidentally. */
3435 spec_info = NULL;
3438 else
3439 /* So we won't read anything accidentally. */
3440 spec_info = 0;
3442 /* Initialize issue_rate. */
3443 if (targetm.sched.issue_rate)
3444 issue_rate = targetm.sched.issue_rate ();
3445 else
3446 issue_rate = 1;
3448 if (cached_issue_rate != issue_rate)
3450 cached_issue_rate = issue_rate;
3451 /* To invalidate max_lookahead_tries: */
3452 cached_first_cycle_multipass_dfa_lookahead = 0;
3455 if (targetm.sched.first_cycle_multipass_dfa_lookahead)
3456 dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
3457 else
3458 dfa_lookahead = 0;
3460 if (targetm.sched.init_dfa_pre_cycle_insn)
3461 targetm.sched.init_dfa_pre_cycle_insn ();
3463 if (targetm.sched.init_dfa_post_cycle_insn)
3464 targetm.sched.init_dfa_post_cycle_insn ();
3466 dfa_start ();
3467 dfa_state_size = state_size ();
3469 init_alias_analysis ();
3471 df_set_flags (DF_LR_RUN_DCE);
3472 df_note_add_problem ();
3474 /* More problems needed for interloop dep calculation in SMS. */
3475 if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
3477 df_rd_add_problem ();
3478 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
3481 df_analyze ();
3483 /* Do not run DCE after reload, as this can kill nops inserted
3484 by bundling. */
3485 if (reload_completed)
3486 df_clear_flags (DF_LR_RUN_DCE);
3488 regstat_compute_calls_crossed ();
3490 if (targetm.sched.md_init_global)
3491 targetm.sched.md_init_global (sched_dump, sched_verbose,
3492 get_max_uid () + 1);
3494 if (sched_pressure_p)
3496 int i, max_regno = max_reg_num ();
3498 ira_set_pseudo_classes (sched_verbose ? sched_dump : NULL);
3499 sched_regno_cover_class
3500 = (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
3501 for (i = 0; i < max_regno; i++)
3502 sched_regno_cover_class[i]
3503 = (i < FIRST_PSEUDO_REGISTER
3504 ? ira_class_translate[REGNO_REG_CLASS (i)]
3505 : reg_cover_class (i));
3506 curr_reg_live = BITMAP_ALLOC (NULL);
3507 saved_reg_live = BITMAP_ALLOC (NULL);
3508 region_ref_regs = BITMAP_ALLOC (NULL);
3511 curr_state = xmalloc (dfa_state_size);
3514 static void haifa_init_only_bb (basic_block, basic_block);
3516 /* Initialize data structures specific to the Haifa scheduler. */
3517 void
3518 haifa_sched_init (void)
3520 setup_sched_dump ();
3521 sched_init ();
3523 if (spec_info != NULL)
3525 sched_deps_info->use_deps_list = 1;
3526 sched_deps_info->generate_spec_deps = 1;
3529 /* Initialize luids, dependency caches, target and h_i_d for the
3530 whole function. */
3532 bb_vec_t bbs = VEC_alloc (basic_block, heap, n_basic_blocks);
3533 basic_block bb;
3535 sched_init_bbs ();
3537 FOR_EACH_BB (bb)
3538 VEC_quick_push (basic_block, bbs, bb);
3539 sched_init_luids (bbs, NULL, NULL, NULL);
3540 sched_deps_init (true);
3541 sched_extend_target ();
3542 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
3544 VEC_free (basic_block, heap, bbs);
3547 sched_init_only_bb = haifa_init_only_bb;
3548 sched_split_block = sched_split_block_1;
3549 sched_create_empty_bb = sched_create_empty_bb_1;
3550 haifa_recovery_bb_ever_added_p = false;
3552 #ifdef ENABLE_CHECKING
3553 /* This is used preferably for finding bugs in check_cfg () itself.
3554 We must call sched_bbs_init () before check_cfg () because check_cfg ()
3555 assumes that the last insn in the last bb has a non-null successor. */
3556 check_cfg (0, 0);
3557 #endif
3559 nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
3560 before_recovery = 0;
3561 after_recovery = 0;
3564 /* Finish work with the data specific to the Haifa scheduler. */
3565 void
3566 haifa_sched_finish (void)
3568 sched_create_empty_bb = NULL;
3569 sched_split_block = NULL;
3570 sched_init_only_bb = NULL;
3572 if (spec_info && spec_info->dump)
3574 char c = reload_completed ? 'a' : 'b';
3576 fprintf (spec_info->dump,
3577 ";; %s:\n", current_function_name ());
3579 fprintf (spec_info->dump,
3580 ";; Procedure %cr-begin-data-spec motions == %d\n",
3581 c, nr_begin_data);
3582 fprintf (spec_info->dump,
3583 ";; Procedure %cr-be-in-data-spec motions == %d\n",
3584 c, nr_be_in_data);
3585 fprintf (spec_info->dump,
3586 ";; Procedure %cr-begin-control-spec motions == %d\n",
3587 c, nr_begin_control);
3588 fprintf (spec_info->dump,
3589 ";; Procedure %cr-be-in-control-spec motions == %d\n",
3590 c, nr_be_in_control);
3593 /* Finalize h_i_d, dependency caches, and luids for the whole
3594 function. Target will be finalized in md_global_finish (). */
3595 sched_deps_finish ();
3596 sched_finish_luids ();
3597 current_sched_info = NULL;
3598 sched_finish ();
3601 /* Free global data used during insn scheduling. This function works with
3602 the common data shared between the schedulers. */
3604 void
3605 sched_finish (void)
3607 haifa_finish_h_i_d ();
3608 if (sched_pressure_p)
3610 free (sched_regno_cover_class);
3611 BITMAP_FREE (region_ref_regs);
3612 BITMAP_FREE (saved_reg_live);
3613 BITMAP_FREE (curr_reg_live);
3615 free (curr_state);
3617 if (targetm.sched.md_finish_global)
3618 targetm.sched.md_finish_global (sched_dump, sched_verbose);
3620 end_alias_analysis ();
3622 regstat_free_calls_crossed ();
3624 dfa_finish ();
3626 #ifdef ENABLE_CHECKING
3627 /* After reload ia64 backend clobbers CFG, so can't check anything. */
3628 if (!reload_completed)
3629 check_cfg (0, 0);
3630 #endif
3633 /* Fix INSN_TICKs of the instructions in the current block as well as
3634 INSN_TICKs of their dependents.
3635 HEAD and TAIL are the begin and the end of the current scheduled block. */
3636 static void
3637 fix_inter_tick (rtx head, rtx tail)
3639 /* Set of instructions with corrected INSN_TICK. */
3640 bitmap_head processed;
3641 /* ??? It is doubtful if we should assume that cycle advance happens on
3642 basic block boundaries. Basically insns that are unconditionally ready
3643 on the start of the block are more preferable then those which have
3644 a one cycle dependency over insn from the previous block. */
3645 int next_clock = clock_var + 1;
3647 bitmap_initialize (&processed, 0);
3649 /* Iterates over scheduled instructions and fix their INSN_TICKs and
3650 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
3651 across different blocks. */
3652 for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
3654 if (INSN_P (head))
3656 int tick;
3657 sd_iterator_def sd_it;
3658 dep_t dep;
3660 tick = INSN_TICK (head);
3661 gcc_assert (tick >= MIN_TICK);
3663 /* Fix INSN_TICK of instruction from just scheduled block. */
3664 if (!bitmap_bit_p (&processed, INSN_LUID (head)))
3666 bitmap_set_bit (&processed, INSN_LUID (head));
3667 tick -= next_clock;
3669 if (tick < MIN_TICK)
3670 tick = MIN_TICK;
3672 INSN_TICK (head) = tick;
3675 FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
3677 rtx next;
3679 next = DEP_CON (dep);
3680 tick = INSN_TICK (next);
3682 if (tick != INVALID_TICK
3683 /* If NEXT has its INSN_TICK calculated, fix it.
3684 If not - it will be properly calculated from
3685 scratch later in fix_tick_ready. */
3686 && !bitmap_bit_p (&processed, INSN_LUID (next)))
3688 bitmap_set_bit (&processed, INSN_LUID (next));
3689 tick -= next_clock;
3691 if (tick < MIN_TICK)
3692 tick = MIN_TICK;
3694 if (tick > INTER_TICK (next))
3695 INTER_TICK (next) = tick;
3696 else
3697 tick = INTER_TICK (next);
3699 INSN_TICK (next) = tick;
3704 bitmap_clear (&processed);
3707 static int haifa_speculate_insn (rtx, ds_t, rtx *);
3709 /* Check if NEXT is ready to be added to the ready or queue list.
3710 If "yes", add it to the proper list.
3711 Returns:
3712 -1 - is not ready yet,
3713 0 - added to the ready list,
3714 0 < N - queued for N cycles. */
3716 try_ready (rtx next)
3718 ds_t old_ts, *ts;
3720 ts = &TODO_SPEC (next);
3721 old_ts = *ts;
3723 gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP))
3724 && ((old_ts & HARD_DEP)
3725 || (old_ts & SPECULATIVE)));
3727 if (sd_lists_empty_p (next, SD_LIST_BACK))
3728 /* NEXT has all its dependencies resolved. */
3730 /* Remove HARD_DEP bit from NEXT's status. */
3731 *ts &= ~HARD_DEP;
3733 if (current_sched_info->flags & DO_SPECULATION)
3734 /* Remove all speculative bits from NEXT's status. */
3735 *ts &= ~SPECULATIVE;
3737 else
3739 /* One of the NEXT's dependencies has been resolved.
3740 Recalculate NEXT's status. */
3742 *ts &= ~SPECULATIVE & ~HARD_DEP;
3744 if (sd_lists_empty_p (next, SD_LIST_HARD_BACK))
3745 /* Now we've got NEXT with speculative deps only.
3746 1. Look at the deps to see what we have to do.
3747 2. Check if we can do 'todo'. */
3749 sd_iterator_def sd_it;
3750 dep_t dep;
3751 bool first_p = true;
3753 FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
3755 ds_t ds = DEP_STATUS (dep) & SPECULATIVE;
3757 if (DEBUG_INSN_P (DEP_PRO (dep))
3758 && !DEBUG_INSN_P (next))
3759 continue;
3761 if (first_p)
3763 first_p = false;
3765 *ts = ds;
3767 else
3768 *ts = ds_merge (*ts, ds);
3771 if (ds_weak (*ts) < spec_info->data_weakness_cutoff)
3772 /* Too few points. */
3773 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3775 else
3776 *ts |= HARD_DEP;
3779 if (*ts & HARD_DEP)
3780 gcc_assert (*ts == old_ts
3781 && QUEUE_INDEX (next) == QUEUE_NOWHERE);
3782 else if (current_sched_info->new_ready)
3783 *ts = current_sched_info->new_ready (next, *ts);
3785 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
3786 have its original pattern or changed (speculative) one. This is due
3787 to changing ebb in region scheduling.
3788 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
3789 has speculative pattern.
3791 We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
3792 control-speculative NEXT could have been discarded by sched-rgn.c
3793 (the same case as when discarded by can_schedule_ready_p ()). */
3795 if ((*ts & SPECULATIVE)
3796 /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
3797 need to change anything. */
3798 && *ts != old_ts)
3800 int res;
3801 rtx new_pat;
3803 gcc_assert ((*ts & SPECULATIVE) && !(*ts & ~SPECULATIVE));
3805 res = haifa_speculate_insn (next, *ts, &new_pat);
3807 switch (res)
3809 case -1:
3810 /* It would be nice to change DEP_STATUS of all dependences,
3811 which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
3812 so we won't reanalyze anything. */
3813 *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
3814 break;
3816 case 0:
3817 /* We follow the rule, that every speculative insn
3818 has non-null ORIG_PAT. */
3819 if (!ORIG_PAT (next))
3820 ORIG_PAT (next) = PATTERN (next);
3821 break;
3823 case 1:
3824 if (!ORIG_PAT (next))
3825 /* If we gonna to overwrite the original pattern of insn,
3826 save it. */
3827 ORIG_PAT (next) = PATTERN (next);
3829 haifa_change_pattern (next, new_pat);
3830 break;
3832 default:
3833 gcc_unreachable ();
3837 /* We need to restore pattern only if (*ts == 0), because otherwise it is
3838 either correct (*ts & SPECULATIVE),
3839 or we simply don't care (*ts & HARD_DEP). */
3841 gcc_assert (!ORIG_PAT (next)
3842 || !IS_SPECULATION_BRANCHY_CHECK_P (next));
3844 if (*ts & HARD_DEP)
3846 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
3847 control-speculative NEXT could have been discarded by sched-rgn.c
3848 (the same case as when discarded by can_schedule_ready_p ()). */
3849 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
3851 change_queue_index (next, QUEUE_NOWHERE);
3852 return -1;
3854 else if (!(*ts & BEGIN_SPEC) && ORIG_PAT (next) && !IS_SPECULATION_CHECK_P (next))
3855 /* We should change pattern of every previously speculative
3856 instruction - and we determine if NEXT was speculative by using
3857 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
3858 pat too, so skip them. */
3860 haifa_change_pattern (next, ORIG_PAT (next));
3861 ORIG_PAT (next) = 0;
3864 if (sched_verbose >= 2)
3866 int s = TODO_SPEC (next);
3868 fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
3869 (*current_sched_info->print_insn) (next, 0));
3871 if (spec_info && spec_info->dump)
3873 if (s & BEGIN_DATA)
3874 fprintf (spec_info->dump, "; data-spec;");
3875 if (s & BEGIN_CONTROL)
3876 fprintf (spec_info->dump, "; control-spec;");
3877 if (s & BE_IN_CONTROL)
3878 fprintf (spec_info->dump, "; in-control-spec;");
3881 fprintf (sched_dump, "\n");
3884 adjust_priority (next);
3886 return fix_tick_ready (next);
3889 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
3890 static int
3891 fix_tick_ready (rtx next)
3893 int tick, delay;
3895 if (!sd_lists_empty_p (next, SD_LIST_RES_BACK))
3897 int full_p;
3898 sd_iterator_def sd_it;
3899 dep_t dep;
3901 tick = INSN_TICK (next);
3902 /* if tick is not equal to INVALID_TICK, then update
3903 INSN_TICK of NEXT with the most recent resolved dependence
3904 cost. Otherwise, recalculate from scratch. */
3905 full_p = (tick == INVALID_TICK);
3907 FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
3909 rtx pro = DEP_PRO (dep);
3910 int tick1;
3912 gcc_assert (INSN_TICK (pro) >= MIN_TICK);
3914 tick1 = INSN_TICK (pro) + dep_cost (dep);
3915 if (tick1 > tick)
3916 tick = tick1;
3918 if (!full_p)
3919 break;
3922 else
3923 tick = -1;
3925 INSN_TICK (next) = tick;
3927 delay = tick - clock_var;
3928 if (delay <= 0 || sched_pressure_p)
3929 delay = QUEUE_READY;
3931 change_queue_index (next, delay);
3933 return delay;
3936 /* Move NEXT to the proper queue list with (DELAY >= 1),
3937 or add it to the ready list (DELAY == QUEUE_READY),
3938 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
3939 static void
3940 change_queue_index (rtx next, int delay)
3942 int i = QUEUE_INDEX (next);
3944 gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
3945 && delay != 0);
3946 gcc_assert (i != QUEUE_SCHEDULED);
3948 if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
3949 || (delay < 0 && delay == i))
3950 /* We have nothing to do. */
3951 return;
3953 /* Remove NEXT from wherever it is now. */
3954 if (i == QUEUE_READY)
3955 ready_remove_insn (next);
3956 else if (i >= 0)
3957 queue_remove (next);
3959 /* Add it to the proper place. */
3960 if (delay == QUEUE_READY)
3961 ready_add (readyp, next, false);
3962 else if (delay >= 1)
3963 queue_insn (next, delay);
3965 if (sched_verbose >= 2)
3967 fprintf (sched_dump, ";;\t\ttick updated: insn %s",
3968 (*current_sched_info->print_insn) (next, 0));
3970 if (delay == QUEUE_READY)
3971 fprintf (sched_dump, " into ready\n");
3972 else if (delay >= 1)
3973 fprintf (sched_dump, " into queue with cost=%d\n", delay);
3974 else
3975 fprintf (sched_dump, " removed from ready or queue lists\n");
3979 static int sched_ready_n_insns = -1;
3981 /* Initialize per region data structures. */
3982 void
3983 sched_extend_ready_list (int new_sched_ready_n_insns)
3985 int i;
3987 if (sched_ready_n_insns == -1)
3988 /* At the first call we need to initialize one more choice_stack
3989 entry. */
3991 i = 0;
3992 sched_ready_n_insns = 0;
3994 else
3995 i = sched_ready_n_insns + 1;
3997 ready.veclen = new_sched_ready_n_insns + issue_rate;
3998 ready.vec = XRESIZEVEC (rtx, ready.vec, ready.veclen);
4000 gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);
4002 ready_try = (char *) xrecalloc (ready_try, new_sched_ready_n_insns,
4003 sched_ready_n_insns, sizeof (*ready_try));
4005 /* We allocate +1 element to save initial state in the choice_stack[0]
4006 entry. */
4007 choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
4008 new_sched_ready_n_insns + 1);
4010 for (; i <= new_sched_ready_n_insns; i++)
4011 choice_stack[i].state = xmalloc (dfa_state_size);
4013 sched_ready_n_insns = new_sched_ready_n_insns;
4016 /* Free per region data structures. */
4017 void
4018 sched_finish_ready_list (void)
4020 int i;
4022 free (ready.vec);
4023 ready.vec = NULL;
4024 ready.veclen = 0;
4026 free (ready_try);
4027 ready_try = NULL;
4029 for (i = 0; i <= sched_ready_n_insns; i++)
4030 free (choice_stack [i].state);
4031 free (choice_stack);
4032 choice_stack = NULL;
4034 sched_ready_n_insns = -1;
4037 static int
4038 haifa_luid_for_non_insn (rtx x)
4040 gcc_assert (NOTE_P (x) || LABEL_P (x));
4042 return 0;
4045 /* Generates recovery code for INSN. */
4046 static void
4047 generate_recovery_code (rtx insn)
4049 if (TODO_SPEC (insn) & BEGIN_SPEC)
4050 begin_speculative_block (insn);
4052 /* Here we have insn with no dependencies to
4053 instructions other then CHECK_SPEC ones. */
4055 if (TODO_SPEC (insn) & BE_IN_SPEC)
4056 add_to_speculative_block (insn);
4059 /* Helper function.
4060 Tries to add speculative dependencies of type FS between instructions
4061 in deps_list L and TWIN. */
4062 static void
4063 process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
4065 sd_iterator_def sd_it;
4066 dep_t dep;
4068 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
4070 ds_t ds;
4071 rtx consumer;
4073 consumer = DEP_CON (dep);
4075 ds = DEP_STATUS (dep);
4077 if (/* If we want to create speculative dep. */
4079 /* And we can do that because this is a true dep. */
4080 && (ds & DEP_TYPES) == DEP_TRUE)
4082 gcc_assert (!(ds & BE_IN_SPEC));
4084 if (/* If this dep can be overcome with 'begin speculation'. */
4085 ds & BEGIN_SPEC)
4086 /* Then we have a choice: keep the dep 'begin speculative'
4087 or transform it into 'be in speculative'. */
4089 if (/* In try_ready we assert that if insn once became ready
4090 it can be removed from the ready (or queue) list only
4091 due to backend decision. Hence we can't let the
4092 probability of the speculative dep to decrease. */
4093 ds_weak (ds) <= ds_weak (fs))
4095 ds_t new_ds;
4097 new_ds = (ds & ~BEGIN_SPEC) | fs;
4099 if (/* consumer can 'be in speculative'. */
4100 sched_insn_is_legitimate_for_speculation_p (consumer,
4101 new_ds))
4102 /* Transform it to be in speculative. */
4103 ds = new_ds;
4106 else
4107 /* Mark the dep as 'be in speculative'. */
4108 ds |= fs;
4112 dep_def _new_dep, *new_dep = &_new_dep;
4114 init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
4115 sd_add_dep (new_dep, false);
4120 /* Generates recovery code for BEGIN speculative INSN. */
4121 static void
4122 begin_speculative_block (rtx insn)
4124 if (TODO_SPEC (insn) & BEGIN_DATA)
4125 nr_begin_data++;
4126 if (TODO_SPEC (insn) & BEGIN_CONTROL)
4127 nr_begin_control++;
4129 create_check_block_twin (insn, false);
4131 TODO_SPEC (insn) &= ~BEGIN_SPEC;
4134 static void haifa_init_insn (rtx);
4136 /* Generates recovery code for BE_IN speculative INSN. */
4137 static void
4138 add_to_speculative_block (rtx insn)
4140 ds_t ts;
4141 sd_iterator_def sd_it;
4142 dep_t dep;
4143 rtx twins = NULL;
4144 rtx_vec_t priorities_roots;
4146 ts = TODO_SPEC (insn);
4147 gcc_assert (!(ts & ~BE_IN_SPEC));
4149 if (ts & BE_IN_DATA)
4150 nr_be_in_data++;
4151 if (ts & BE_IN_CONTROL)
4152 nr_be_in_control++;
4154 TODO_SPEC (insn) &= ~BE_IN_SPEC;
4155 gcc_assert (!TODO_SPEC (insn));
4157 DONE_SPEC (insn) |= ts;
4159 /* First we convert all simple checks to branchy. */
4160 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4161 sd_iterator_cond (&sd_it, &dep);)
4163 rtx check = DEP_PRO (dep);
4165 if (IS_SPECULATION_SIMPLE_CHECK_P (check))
4167 create_check_block_twin (check, true);
4169 /* Restart search. */
4170 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4172 else
4173 /* Continue search. */
4174 sd_iterator_next (&sd_it);
4177 priorities_roots = NULL;
4178 clear_priorities (insn, &priorities_roots);
4180 while (1)
4182 rtx check, twin;
4183 basic_block rec;
4185 /* Get the first backward dependency of INSN. */
4186 sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4187 if (!sd_iterator_cond (&sd_it, &dep))
4188 /* INSN has no backward dependencies left. */
4189 break;
4191 gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
4192 && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
4193 && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
4195 check = DEP_PRO (dep);
4197 gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
4198 && QUEUE_INDEX (check) == QUEUE_NOWHERE);
4200 rec = BLOCK_FOR_INSN (check);
4202 twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
4203 haifa_init_insn (twin);
4205 sd_copy_back_deps (twin, insn, true);
4207 if (sched_verbose && spec_info->dump)
4208 /* INSN_BB (insn) isn't determined for twin insns yet.
4209 So we can't use current_sched_info->print_insn. */
4210 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
4211 INSN_UID (twin), rec->index);
4213 twins = alloc_INSN_LIST (twin, twins);
4215 /* Add dependences between TWIN and all appropriate
4216 instructions from REC. */
4217 FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
4219 rtx pro = DEP_PRO (dep);
4221 gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);
4223 /* INSN might have dependencies from the instructions from
4224 several recovery blocks. At this iteration we process those
4225 producers that reside in REC. */
4226 if (BLOCK_FOR_INSN (pro) == rec)
4228 dep_def _new_dep, *new_dep = &_new_dep;
4230 init_dep (new_dep, pro, twin, REG_DEP_TRUE);
4231 sd_add_dep (new_dep, false);
4235 process_insn_forw_deps_be_in_spec (insn, twin, ts);
4237 /* Remove all dependencies between INSN and insns in REC. */
4238 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4239 sd_iterator_cond (&sd_it, &dep);)
4241 rtx pro = DEP_PRO (dep);
4243 if (BLOCK_FOR_INSN (pro) == rec)
4244 sd_delete_dep (sd_it);
4245 else
4246 sd_iterator_next (&sd_it);
4250 /* We couldn't have added the dependencies between INSN and TWINS earlier
4251 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
4252 while (twins)
4254 rtx twin;
4256 twin = XEXP (twins, 0);
4259 dep_def _new_dep, *new_dep = &_new_dep;
4261 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
4262 sd_add_dep (new_dep, false);
4265 twin = XEXP (twins, 1);
4266 free_INSN_LIST_node (twins);
4267 twins = twin;
4270 calc_priorities (priorities_roots);
4271 VEC_free (rtx, heap, priorities_roots);
4274 /* Extends and fills with zeros (only the new part) array pointed to by P. */
4275 void *
4276 xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
4278 gcc_assert (new_nmemb >= old_nmemb);
4279 p = XRESIZEVAR (void, p, new_nmemb * size);
4280 memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
4281 return p;
4284 /* Helper function.
4285 Find fallthru edge from PRED. */
4286 edge
4287 find_fallthru_edge (basic_block pred)
4289 edge e;
4290 edge_iterator ei;
4291 basic_block succ;
4293 succ = pred->next_bb;
4294 gcc_assert (succ->prev_bb == pred);
4296 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
4298 FOR_EACH_EDGE (e, ei, pred->succs)
4299 if (e->flags & EDGE_FALLTHRU)
4301 gcc_assert (e->dest == succ);
4302 return e;
4305 else
4307 FOR_EACH_EDGE (e, ei, succ->preds)
4308 if (e->flags & EDGE_FALLTHRU)
4310 gcc_assert (e->src == pred);
4311 return e;
4315 return NULL;
4318 /* Extend per basic block data structures. */
4319 static void
4320 sched_extend_bb (void)
4322 rtx insn;
4324 /* The following is done to keep current_sched_info->next_tail non null. */
4325 insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
4326 if (NEXT_INSN (insn) == 0
4327 || (!NOTE_P (insn)
4328 && !LABEL_P (insn)
4329 /* Don't emit a NOTE if it would end up before a BARRIER. */
4330 && !BARRIER_P (NEXT_INSN (insn))))
4332 rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
4333 /* Make insn appear outside BB. */
4334 set_block_for_insn (note, NULL);
4335 BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
4339 /* Init per basic block data structures. */
4340 void
4341 sched_init_bbs (void)
4343 sched_extend_bb ();
4346 /* Initialize BEFORE_RECOVERY variable. */
4347 static void
4348 init_before_recovery (basic_block *before_recovery_ptr)
4350 basic_block last;
4351 edge e;
4353 last = EXIT_BLOCK_PTR->prev_bb;
4354 e = find_fallthru_edge (last);
4356 if (e)
4358 /* We create two basic blocks:
4359 1. Single instruction block is inserted right after E->SRC
4360 and has jump to
4361 2. Empty block right before EXIT_BLOCK.
4362 Between these two blocks recovery blocks will be emitted. */
4364 basic_block single, empty;
4365 rtx x, label;
4367 /* If the fallthrough edge to exit we've found is from the block we've
4368 created before, don't do anything more. */
4369 if (last == after_recovery)
4370 return;
4372 adding_bb_to_current_region_p = false;
4374 single = sched_create_empty_bb (last);
4375 empty = sched_create_empty_bb (single);
4377 /* Add new blocks to the root loop. */
4378 if (current_loops != NULL)
4380 add_bb_to_loop (single, VEC_index (loop_p, current_loops->larray, 0));
4381 add_bb_to_loop (empty, VEC_index (loop_p, current_loops->larray, 0));
4384 single->count = last->count;
4385 empty->count = last->count;
4386 single->frequency = last->frequency;
4387 empty->frequency = last->frequency;
4388 BB_COPY_PARTITION (single, last);
4389 BB_COPY_PARTITION (empty, last);
4391 redirect_edge_succ (e, single);
4392 make_single_succ_edge (single, empty, 0);
4393 make_single_succ_edge (empty, EXIT_BLOCK_PTR,
4394 EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);
4396 label = block_label (empty);
4397 x = emit_jump_insn_after (gen_jump (label), BB_END (single));
4398 JUMP_LABEL (x) = label;
4399 LABEL_NUSES (label)++;
4400 haifa_init_insn (x);
4402 emit_barrier_after (x);
4404 sched_init_only_bb (empty, NULL);
4405 sched_init_only_bb (single, NULL);
4406 sched_extend_bb ();
4408 adding_bb_to_current_region_p = true;
4409 before_recovery = single;
4410 after_recovery = empty;
4412 if (before_recovery_ptr)
4413 *before_recovery_ptr = before_recovery;
4415 if (sched_verbose >= 2 && spec_info->dump)
4416 fprintf (spec_info->dump,
4417 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
4418 last->index, single->index, empty->index);
4420 else
4421 before_recovery = last;
4424 /* Returns new recovery block. */
4425 basic_block
4426 sched_create_recovery_block (basic_block *before_recovery_ptr)
4428 rtx label;
4429 rtx barrier;
4430 basic_block rec;
4432 haifa_recovery_bb_recently_added_p = true;
4433 haifa_recovery_bb_ever_added_p = true;
4435 init_before_recovery (before_recovery_ptr);
4437 barrier = get_last_bb_insn (before_recovery);
4438 gcc_assert (BARRIER_P (barrier));
4440 label = emit_label_after (gen_label_rtx (), barrier);
4442 rec = create_basic_block (label, label, before_recovery);
4444 /* A recovery block always ends with an unconditional jump. */
4445 emit_barrier_after (BB_END (rec));
4447 if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
4448 BB_SET_PARTITION (rec, BB_COLD_PARTITION);
4450 if (sched_verbose && spec_info->dump)
4451 fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
4452 rec->index);
4454 return rec;
4457 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
4458 and emit necessary jumps. */
4459 void
4460 sched_create_recovery_edges (basic_block first_bb, basic_block rec,
4461 basic_block second_bb)
4463 rtx label;
4464 rtx jump;
4465 edge e;
4466 int edge_flags;
4468 /* This is fixing of incoming edge. */
4469 /* ??? Which other flags should be specified? */
4470 if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
4471 /* Partition type is the same, if it is "unpartitioned". */
4472 edge_flags = EDGE_CROSSING;
4473 else
4474 edge_flags = 0;
4476 e = make_edge (first_bb, rec, edge_flags);
4477 label = block_label (second_bb);
4478 jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
4479 JUMP_LABEL (jump) = label;
4480 LABEL_NUSES (label)++;
4482 if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
4483 /* Partition type is the same, if it is "unpartitioned". */
4485 /* Rewritten from cfgrtl.c. */
4486 if (flag_reorder_blocks_and_partition
4487 && targetm.have_named_sections)
4489 /* We don't need the same note for the check because
4490 any_condjump_p (check) == true. */
4491 add_reg_note (jump, REG_CROSSING_JUMP, NULL_RTX);
4493 edge_flags = EDGE_CROSSING;
4495 else
4496 edge_flags = 0;
4498 make_single_succ_edge (rec, second_bb, edge_flags);
4501 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
4502 INSN is a simple check, that should be converted to branchy one. */
4503 static void
4504 create_check_block_twin (rtx insn, bool mutate_p)
4506 basic_block rec;
4507 rtx label, check, twin;
4508 ds_t fs;
4509 sd_iterator_def sd_it;
4510 dep_t dep;
4511 dep_def _new_dep, *new_dep = &_new_dep;
4512 ds_t todo_spec;
4514 gcc_assert (ORIG_PAT (insn) != NULL_RTX);
4516 if (!mutate_p)
4517 todo_spec = TODO_SPEC (insn);
4518 else
4520 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
4521 && (TODO_SPEC (insn) & SPECULATIVE) == 0);
4523 todo_spec = CHECK_SPEC (insn);
4526 todo_spec &= SPECULATIVE;
4528 /* Create recovery block. */
4529 if (mutate_p || targetm.sched.needs_block_p (todo_spec))
4531 rec = sched_create_recovery_block (NULL);
4532 label = BB_HEAD (rec);
4534 else
4536 rec = EXIT_BLOCK_PTR;
4537 label = NULL_RTX;
4540 /* Emit CHECK. */
4541 check = targetm.sched.gen_spec_check (insn, label, todo_spec);
4543 if (rec != EXIT_BLOCK_PTR)
4545 /* To have mem_reg alive at the beginning of second_bb,
4546 we emit check BEFORE insn, so insn after splitting
4547 insn will be at the beginning of second_bb, which will
4548 provide us with the correct life information. */
4549 check = emit_jump_insn_before (check, insn);
4550 JUMP_LABEL (check) = label;
4551 LABEL_NUSES (label)++;
4553 else
4554 check = emit_insn_before (check, insn);
4556 /* Extend data structures. */
4557 haifa_init_insn (check);
4559 /* CHECK is being added to current region. Extend ready list. */
4560 gcc_assert (sched_ready_n_insns != -1);
4561 sched_extend_ready_list (sched_ready_n_insns + 1);
4563 if (current_sched_info->add_remove_insn)
4564 current_sched_info->add_remove_insn (insn, 0);
4566 RECOVERY_BLOCK (check) = rec;
4568 if (sched_verbose && spec_info->dump)
4569 fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
4570 (*current_sched_info->print_insn) (check, 0));
4572 gcc_assert (ORIG_PAT (insn));
4574 /* Initialize TWIN (twin is a duplicate of original instruction
4575 in the recovery block). */
4576 if (rec != EXIT_BLOCK_PTR)
4578 sd_iterator_def sd_it;
4579 dep_t dep;
4581 FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
4582 if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
4584 struct _dep _dep2, *dep2 = &_dep2;
4586 init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);
4588 sd_add_dep (dep2, true);
4591 twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
4592 haifa_init_insn (twin);
4594 if (sched_verbose && spec_info->dump)
4595 /* INSN_BB (insn) isn't determined for twin insns yet.
4596 So we can't use current_sched_info->print_insn. */
4597 fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
4598 INSN_UID (twin), rec->index);
4600 else
4602 ORIG_PAT (check) = ORIG_PAT (insn);
4603 HAS_INTERNAL_DEP (check) = 1;
4604 twin = check;
4605 /* ??? We probably should change all OUTPUT dependencies to
4606 (TRUE | OUTPUT). */
4609 /* Copy all resolved back dependencies of INSN to TWIN. This will
4610 provide correct value for INSN_TICK (TWIN). */
4611 sd_copy_back_deps (twin, insn, true);
4613 if (rec != EXIT_BLOCK_PTR)
4614 /* In case of branchy check, fix CFG. */
4616 basic_block first_bb, second_bb;
4617 rtx jump;
4619 first_bb = BLOCK_FOR_INSN (check);
4620 second_bb = sched_split_block (first_bb, check);
4622 sched_create_recovery_edges (first_bb, rec, second_bb);
4624 sched_init_only_bb (second_bb, first_bb);
4625 sched_init_only_bb (rec, EXIT_BLOCK_PTR);
4627 jump = BB_END (rec);
4628 haifa_init_insn (jump);
4631 /* Move backward dependences from INSN to CHECK and
4632 move forward dependences from INSN to TWIN. */
4634 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
4635 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
4637 rtx pro = DEP_PRO (dep);
4638 ds_t ds;
4640 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
4641 check --TRUE--> producer ??? or ANTI ???
4642 twin --TRUE--> producer
4643 twin --ANTI--> check
4645 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
4646 check --ANTI--> producer
4647 twin --ANTI--> producer
4648 twin --ANTI--> check
4650 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
4651 check ~~TRUE~~> producer
4652 twin ~~TRUE~~> producer
4653 twin --ANTI--> check */
4655 ds = DEP_STATUS (dep);
4657 if (ds & BEGIN_SPEC)
4659 gcc_assert (!mutate_p);
4660 ds &= ~BEGIN_SPEC;
4663 init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
4664 sd_add_dep (new_dep, false);
4666 if (rec != EXIT_BLOCK_PTR)
4668 DEP_CON (new_dep) = twin;
4669 sd_add_dep (new_dep, false);
4673 /* Second, remove backward dependencies of INSN. */
4674 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
4675 sd_iterator_cond (&sd_it, &dep);)
4677 if ((DEP_STATUS (dep) & BEGIN_SPEC)
4678 || mutate_p)
4679 /* We can delete this dep because we overcome it with
4680 BEGIN_SPECULATION. */
4681 sd_delete_dep (sd_it);
4682 else
4683 sd_iterator_next (&sd_it);
4686 /* Future Speculations. Determine what BE_IN speculations will be like. */
4687 fs = 0;
4689 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
4690 here. */
4692 gcc_assert (!DONE_SPEC (insn));
4694 if (!mutate_p)
4696 ds_t ts = TODO_SPEC (insn);
4698 DONE_SPEC (insn) = ts & BEGIN_SPEC;
4699 CHECK_SPEC (check) = ts & BEGIN_SPEC;
4701 /* Luckiness of future speculations solely depends upon initial
4702 BEGIN speculation. */
4703 if (ts & BEGIN_DATA)
4704 fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
4705 if (ts & BEGIN_CONTROL)
4706 fs = set_dep_weak (fs, BE_IN_CONTROL,
4707 get_dep_weak (ts, BEGIN_CONTROL));
4709 else
4710 CHECK_SPEC (check) = CHECK_SPEC (insn);
4712 /* Future speculations: call the helper. */
4713 process_insn_forw_deps_be_in_spec (insn, twin, fs);
4715 if (rec != EXIT_BLOCK_PTR)
4717 /* Which types of dependencies should we use here is,
4718 generally, machine-dependent question... But, for now,
4719 it is not. */
4721 if (!mutate_p)
4723 init_dep (new_dep, insn, check, REG_DEP_TRUE);
4724 sd_add_dep (new_dep, false);
4726 init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
4727 sd_add_dep (new_dep, false);
4729 else
4731 if (spec_info->dump)
4732 fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
4733 (*current_sched_info->print_insn) (insn, 0));
4735 /* Remove all dependencies of the INSN. */
4737 sd_it = sd_iterator_start (insn, (SD_LIST_FORW
4738 | SD_LIST_BACK
4739 | SD_LIST_RES_BACK));
4740 while (sd_iterator_cond (&sd_it, &dep))
4741 sd_delete_dep (sd_it);
4744 /* If former check (INSN) already was moved to the ready (or queue)
4745 list, add new check (CHECK) there too. */
4746 if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
4747 try_ready (check);
4749 /* Remove old check from instruction stream and free its
4750 data. */
4751 sched_remove_insn (insn);
4754 init_dep (new_dep, check, twin, REG_DEP_ANTI);
4755 sd_add_dep (new_dep, false);
4757 else
4759 init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
4760 sd_add_dep (new_dep, false);
4763 if (!mutate_p)
4764 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
4765 because it'll be done later in add_to_speculative_block. */
4767 rtx_vec_t priorities_roots = NULL;
4769 clear_priorities (twin, &priorities_roots);
4770 calc_priorities (priorities_roots);
4771 VEC_free (rtx, heap, priorities_roots);
4775 /* Removes dependency between instructions in the recovery block REC
4776 and usual region instructions. It keeps inner dependences so it
4777 won't be necessary to recompute them. */
4778 static void
4779 fix_recovery_deps (basic_block rec)
4781 rtx note, insn, jump, ready_list = 0;
4782 bitmap_head in_ready;
4783 rtx link;
4785 bitmap_initialize (&in_ready, 0);
4787 /* NOTE - a basic block note. */
4788 note = NEXT_INSN (BB_HEAD (rec));
4789 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4790 insn = BB_END (rec);
4791 gcc_assert (JUMP_P (insn));
4792 insn = PREV_INSN (insn);
4796 sd_iterator_def sd_it;
4797 dep_t dep;
4799 for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
4800 sd_iterator_cond (&sd_it, &dep);)
4802 rtx consumer = DEP_CON (dep);
4804 if (BLOCK_FOR_INSN (consumer) != rec)
4806 sd_delete_dep (sd_it);
4808 if (!bitmap_bit_p (&in_ready, INSN_LUID (consumer)))
4810 ready_list = alloc_INSN_LIST (consumer, ready_list);
4811 bitmap_set_bit (&in_ready, INSN_LUID (consumer));
4814 else
4816 gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);
4818 sd_iterator_next (&sd_it);
4822 insn = PREV_INSN (insn);
4824 while (insn != note);
4826 bitmap_clear (&in_ready);
4828 /* Try to add instructions to the ready or queue list. */
4829 for (link = ready_list; link; link = XEXP (link, 1))
4830 try_ready (XEXP (link, 0));
4831 free_INSN_LIST_list (&ready_list);
4833 /* Fixing jump's dependences. */
4834 insn = BB_HEAD (rec);
4835 jump = BB_END (rec);
4837 gcc_assert (LABEL_P (insn));
4838 insn = NEXT_INSN (insn);
4840 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
4841 add_jump_dependencies (insn, jump);
4844 /* Change pattern of INSN to NEW_PAT. */
4845 void
4846 sched_change_pattern (rtx insn, rtx new_pat)
4848 int t;
4850 t = validate_change (insn, &PATTERN (insn), new_pat, 0);
4851 gcc_assert (t);
4852 dfa_clear_single_insn_cache (insn);
4855 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
4856 instruction data. */
4857 static void
4858 haifa_change_pattern (rtx insn, rtx new_pat)
4860 sched_change_pattern (insn, new_pat);
4862 /* Invalidate INSN_COST, so it'll be recalculated. */
4863 INSN_COST (insn) = -1;
4864 /* Invalidate INSN_TICK, so it'll be recalculated. */
4865 INSN_TICK (insn) = INVALID_TICK;
4868 /* -1 - can't speculate,
4869 0 - for speculation with REQUEST mode it is OK to use
4870 current instruction pattern,
4871 1 - need to change pattern for *NEW_PAT to be speculative. */
4873 sched_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
4875 gcc_assert (current_sched_info->flags & DO_SPECULATION
4876 && (request & SPECULATIVE)
4877 && sched_insn_is_legitimate_for_speculation_p (insn, request));
4879 if ((request & spec_info->mask) != request)
4880 return -1;
4882 if (request & BE_IN_SPEC
4883 && !(request & BEGIN_SPEC))
4884 return 0;
4886 return targetm.sched.speculate_insn (insn, request, new_pat);
4889 static int
4890 haifa_speculate_insn (rtx insn, ds_t request, rtx *new_pat)
4892 gcc_assert (sched_deps_info->generate_spec_deps
4893 && !IS_SPECULATION_CHECK_P (insn));
4895 if (HAS_INTERNAL_DEP (insn)
4896 || SCHED_GROUP_P (insn))
4897 return -1;
4899 return sched_speculate_insn (insn, request, new_pat);
4902 /* Print some information about block BB, which starts with HEAD and
4903 ends with TAIL, before scheduling it.
4904 I is zero, if scheduler is about to start with the fresh ebb. */
4905 static void
4906 dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
4908 if (!i)
4909 fprintf (sched_dump,
4910 ";; ======================================================\n");
4911 else
4912 fprintf (sched_dump,
4913 ";; =====================ADVANCING TO=====================\n");
4914 fprintf (sched_dump,
4915 ";; -- basic block %d from %d to %d -- %s reload\n",
4916 bb->index, INSN_UID (head), INSN_UID (tail),
4917 (reload_completed ? "after" : "before"));
4918 fprintf (sched_dump,
4919 ";; ======================================================\n");
4920 fprintf (sched_dump, "\n");
4923 /* Unlink basic block notes and labels and saves them, so they
4924 can be easily restored. We unlink basic block notes in EBB to
4925 provide back-compatibility with the previous code, as target backends
4926 assume, that there'll be only instructions between
4927 current_sched_info->{head and tail}. We restore these notes as soon
4928 as we can.
4929 FIRST (LAST) is the first (last) basic block in the ebb.
4930 NB: In usual case (FIRST == LAST) nothing is really done. */
4931 void
4932 unlink_bb_notes (basic_block first, basic_block last)
4934 /* We DON'T unlink basic block notes of the first block in the ebb. */
4935 if (first == last)
4936 return;
4938 bb_header = XNEWVEC (rtx, last_basic_block);
4940 /* Make a sentinel. */
4941 if (last->next_bb != EXIT_BLOCK_PTR)
4942 bb_header[last->next_bb->index] = 0;
4944 first = first->next_bb;
4947 rtx prev, label, note, next;
4949 label = BB_HEAD (last);
4950 if (LABEL_P (label))
4951 note = NEXT_INSN (label);
4952 else
4953 note = label;
4954 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
4956 prev = PREV_INSN (label);
4957 next = NEXT_INSN (note);
4958 gcc_assert (prev && next);
4960 NEXT_INSN (prev) = next;
4961 PREV_INSN (next) = prev;
4963 bb_header[last->index] = label;
4965 if (last == first)
4966 break;
4968 last = last->prev_bb;
4970 while (1);
4973 /* Restore basic block notes.
4974 FIRST is the first basic block in the ebb. */
4975 static void
4976 restore_bb_notes (basic_block first)
4978 if (!bb_header)
4979 return;
4981 /* We DON'T unlink basic block notes of the first block in the ebb. */
4982 first = first->next_bb;
4983 /* Remember: FIRST is actually a second basic block in the ebb. */
4985 while (first != EXIT_BLOCK_PTR
4986 && bb_header[first->index])
4988 rtx prev, label, note, next;
4990 label = bb_header[first->index];
4991 prev = PREV_INSN (label);
4992 next = NEXT_INSN (prev);
4994 if (LABEL_P (label))
4995 note = NEXT_INSN (label);
4996 else
4997 note = label;
4998 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5000 bb_header[first->index] = 0;
5002 NEXT_INSN (prev) = label;
5003 NEXT_INSN (note) = next;
5004 PREV_INSN (next) = note;
5006 first = first->next_bb;
5009 free (bb_header);
5010 bb_header = 0;
5013 /* Helper function.
5014 Fix CFG after both in- and inter-block movement of
5015 control_flow_insn_p JUMP. */
5016 static void
5017 fix_jump_move (rtx jump)
5019 basic_block bb, jump_bb, jump_bb_next;
5021 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
5022 jump_bb = BLOCK_FOR_INSN (jump);
5023 jump_bb_next = jump_bb->next_bb;
5025 gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
5026 || IS_SPECULATION_BRANCHY_CHECK_P (jump));
5028 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
5029 /* if jump_bb_next is not empty. */
5030 BB_END (jump_bb) = BB_END (jump_bb_next);
5032 if (BB_END (bb) != PREV_INSN (jump))
5033 /* Then there are instruction after jump that should be placed
5034 to jump_bb_next. */
5035 BB_END (jump_bb_next) = BB_END (bb);
5036 else
5037 /* Otherwise jump_bb_next is empty. */
5038 BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));
5040 /* To make assertion in move_insn happy. */
5041 BB_END (bb) = PREV_INSN (jump);
5043 update_bb_for_insn (jump_bb_next);
5046 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
5047 static void
5048 move_block_after_check (rtx jump)
5050 basic_block bb, jump_bb, jump_bb_next;
5051 VEC(edge,gc) *t;
5053 bb = BLOCK_FOR_INSN (PREV_INSN (jump));
5054 jump_bb = BLOCK_FOR_INSN (jump);
5055 jump_bb_next = jump_bb->next_bb;
5057 update_bb_for_insn (jump_bb);
5059 gcc_assert (IS_SPECULATION_CHECK_P (jump)
5060 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));
5062 unlink_block (jump_bb_next);
5063 link_block (jump_bb_next, bb);
5065 t = bb->succs;
5066 bb->succs = 0;
5067 move_succs (&(jump_bb->succs), bb);
5068 move_succs (&(jump_bb_next->succs), jump_bb);
5069 move_succs (&t, jump_bb_next);
5071 df_mark_solutions_dirty ();
5073 common_sched_info->fix_recovery_cfg
5074 (bb->index, jump_bb->index, jump_bb_next->index);
5077 /* Helper function for move_block_after_check.
5078 This functions attaches edge vector pointed to by SUCCSP to
5079 block TO. */
5080 static void
5081 move_succs (VEC(edge,gc) **succsp, basic_block to)
5083 edge e;
5084 edge_iterator ei;
5086 gcc_assert (to->succs == 0);
5088 to->succs = *succsp;
5090 FOR_EACH_EDGE (e, ei, to->succs)
5091 e->src = to;
5093 *succsp = 0;
5096 /* Remove INSN from the instruction stream.
5097 INSN should have any dependencies. */
5098 static void
5099 sched_remove_insn (rtx insn)
5101 sd_finish_insn (insn);
5103 change_queue_index (insn, QUEUE_NOWHERE);
5104 current_sched_info->add_remove_insn (insn, 1);
5105 remove_insn (insn);
5108 /* Clear priorities of all instructions, that are forward dependent on INSN.
5109 Store in vector pointed to by ROOTS_PTR insns on which priority () should
5110 be invoked to initialize all cleared priorities. */
5111 static void
5112 clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
5114 sd_iterator_def sd_it;
5115 dep_t dep;
5116 bool insn_is_root_p = true;
5118 gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);
5120 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
5122 rtx pro = DEP_PRO (dep);
5124 if (INSN_PRIORITY_STATUS (pro) >= 0
5125 && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
5127 /* If DEP doesn't contribute to priority then INSN itself should
5128 be added to priority roots. */
5129 if (contributes_to_priority_p (dep))
5130 insn_is_root_p = false;
5132 INSN_PRIORITY_STATUS (pro) = -1;
5133 clear_priorities (pro, roots_ptr);
5137 if (insn_is_root_p)
5138 VEC_safe_push (rtx, heap, *roots_ptr, insn);
5141 /* Recompute priorities of instructions, whose priorities might have been
5142 changed. ROOTS is a vector of instructions whose priority computation will
5143 trigger initialization of all cleared priorities. */
5144 static void
5145 calc_priorities (rtx_vec_t roots)
5147 int i;
5148 rtx insn;
5150 for (i = 0; VEC_iterate (rtx, roots, i, insn); i++)
5151 priority (insn);
5155 /* Add dependences between JUMP and other instructions in the recovery
5156 block. INSN is the first insn the recovery block. */
5157 static void
5158 add_jump_dependencies (rtx insn, rtx jump)
5162 insn = NEXT_INSN (insn);
5163 if (insn == jump)
5164 break;
5166 if (dep_list_size (insn) == 0)
5168 dep_def _new_dep, *new_dep = &_new_dep;
5170 init_dep (new_dep, insn, jump, REG_DEP_ANTI);
5171 sd_add_dep (new_dep, false);
5174 while (1);
5176 gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
5179 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
5181 bb_note (basic_block bb)
5183 rtx note;
5185 note = BB_HEAD (bb);
5186 if (LABEL_P (note))
5187 note = NEXT_INSN (note);
5189 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
5190 return note;
5193 #ifdef ENABLE_CHECKING
5194 /* Helper function for check_cfg.
5195 Return nonzero, if edge vector pointed to by EL has edge with TYPE in
5196 its flags. */
5197 static int
5198 has_edge_p (VEC(edge,gc) *el, int type)
5200 edge e;
5201 edge_iterator ei;
5203 FOR_EACH_EDGE (e, ei, el)
5204 if (e->flags & type)
5205 return 1;
5206 return 0;
5209 /* Search back, starting at INSN, for an insn that is not a
5210 NOTE_INSN_VAR_LOCATION. Don't search beyond HEAD, and return it if
5211 no such insn can be found. */
5212 static inline rtx
5213 prev_non_location_insn (rtx insn, rtx head)
5215 while (insn != head && NOTE_P (insn)
5216 && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
5217 insn = PREV_INSN (insn);
5219 return insn;
5222 /* Check few properties of CFG between HEAD and TAIL.
5223 If HEAD (TAIL) is NULL check from the beginning (till the end) of the
5224 instruction stream. */
5225 static void
5226 check_cfg (rtx head, rtx tail)
5228 rtx next_tail;
5229 basic_block bb = 0;
5230 int not_first = 0, not_last;
5232 if (head == NULL)
5233 head = get_insns ();
5234 if (tail == NULL)
5235 tail = get_last_insn ();
5236 next_tail = NEXT_INSN (tail);
5240 not_last = head != tail;
5242 if (not_first)
5243 gcc_assert (NEXT_INSN (PREV_INSN (head)) == head);
5244 if (not_last)
5245 gcc_assert (PREV_INSN (NEXT_INSN (head)) == head);
5247 if (LABEL_P (head)
5248 || (NOTE_INSN_BASIC_BLOCK_P (head)
5249 && (!not_first
5250 || (not_first && !LABEL_P (PREV_INSN (head))))))
5252 gcc_assert (bb == 0);
5253 bb = BLOCK_FOR_INSN (head);
5254 if (bb != 0)
5255 gcc_assert (BB_HEAD (bb) == head);
5256 else
5257 /* This is the case of jump table. See inside_basic_block_p (). */
5258 gcc_assert (LABEL_P (head) && !inside_basic_block_p (head));
5261 if (bb == 0)
5263 gcc_assert (!inside_basic_block_p (head));
5264 head = NEXT_INSN (head);
5266 else
5268 gcc_assert (inside_basic_block_p (head)
5269 || NOTE_P (head));
5270 gcc_assert (BLOCK_FOR_INSN (head) == bb);
5272 if (LABEL_P (head))
5274 head = NEXT_INSN (head);
5275 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head));
5277 else
5279 if (control_flow_insn_p (head))
5281 gcc_assert (prev_non_location_insn (BB_END (bb), head)
5282 == head);
5284 if (any_uncondjump_p (head))
5285 gcc_assert (EDGE_COUNT (bb->succs) == 1
5286 && BARRIER_P (NEXT_INSN (head)));
5287 else if (any_condjump_p (head))
5288 gcc_assert (/* Usual case. */
5289 (EDGE_COUNT (bb->succs) > 1
5290 && !BARRIER_P (NEXT_INSN (head)))
5291 /* Or jump to the next instruction. */
5292 || (EDGE_COUNT (bb->succs) == 1
5293 && (BB_HEAD (EDGE_I (bb->succs, 0)->dest)
5294 == JUMP_LABEL (head))));
5296 if (BB_END (bb) == head)
5298 if (EDGE_COUNT (bb->succs) > 1)
5299 gcc_assert (control_flow_insn_p (prev_non_location_insn
5300 (head, BB_HEAD (bb)))
5301 || has_edge_p (bb->succs, EDGE_COMPLEX));
5302 bb = 0;
5305 head = NEXT_INSN (head);
5309 not_first = 1;
5311 while (head != next_tail);
5313 gcc_assert (bb == 0);
5316 #endif /* ENABLE_CHECKING */
5318 /* Extend per basic block data structures. */
5319 static void
5320 extend_bb (void)
5322 if (sched_scan_info->extend_bb)
5323 sched_scan_info->extend_bb ();
5326 /* Init data for BB. */
5327 static void
5328 init_bb (basic_block bb)
5330 if (sched_scan_info->init_bb)
5331 sched_scan_info->init_bb (bb);
5334 /* Extend per insn data structures. */
5335 static void
5336 extend_insn (void)
5338 if (sched_scan_info->extend_insn)
5339 sched_scan_info->extend_insn ();
5342 /* Init data structures for INSN. */
5343 static void
5344 init_insn (rtx insn)
5346 if (sched_scan_info->init_insn)
5347 sched_scan_info->init_insn (insn);
5350 /* Init all insns in BB. */
5351 static void
5352 init_insns_in_bb (basic_block bb)
5354 rtx insn;
5356 FOR_BB_INSNS (bb, insn)
5357 init_insn (insn);
5360 /* A driver function to add a set of basic blocks (BBS),
5361 a single basic block (BB), a set of insns (INSNS) or a single insn (INSN)
5362 to the scheduling region. */
5363 void
5364 sched_scan (const struct sched_scan_info_def *ssi,
5365 bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
5367 sched_scan_info = ssi;
5369 if (bbs != NULL || bb != NULL)
5371 extend_bb ();
5373 if (bbs != NULL)
5375 unsigned i;
5376 basic_block x;
5378 for (i = 0; VEC_iterate (basic_block, bbs, i, x); i++)
5379 init_bb (x);
5382 if (bb != NULL)
5383 init_bb (bb);
5386 extend_insn ();
5388 if (bbs != NULL)
5390 unsigned i;
5391 basic_block x;
5393 for (i = 0; VEC_iterate (basic_block, bbs, i, x); i++)
5394 init_insns_in_bb (x);
5397 if (bb != NULL)
5398 init_insns_in_bb (bb);
5400 if (insns != NULL)
5402 unsigned i;
5403 rtx x;
5405 for (i = 0; VEC_iterate (rtx, insns, i, x); i++)
5406 init_insn (x);
5409 if (insn != NULL)
5410 init_insn (insn);
5414 /* Extend data structures for logical insn UID. */
5415 static void
5416 luids_extend_insn (void)
5418 int new_luids_max_uid = get_max_uid () + 1;
5420 VEC_safe_grow_cleared (int, heap, sched_luids, new_luids_max_uid);
5423 /* Initialize LUID for INSN. */
5424 static void
5425 luids_init_insn (rtx insn)
5427 int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
5428 int luid;
5430 if (i >= 0)
5432 luid = sched_max_luid;
5433 sched_max_luid += i;
5435 else
5436 luid = -1;
5438 SET_INSN_LUID (insn, luid);
5441 /* Initialize luids for BBS, BB, INSNS and INSN.
5442 The hook common_sched_info->luid_for_non_insn () is used to determine
5443 if notes, labels, etc. need luids. */
5444 void
5445 sched_init_luids (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
5447 const struct sched_scan_info_def ssi =
5449 NULL, /* extend_bb */
5450 NULL, /* init_bb */
5451 luids_extend_insn, /* extend_insn */
5452 luids_init_insn /* init_insn */
5455 sched_scan (&ssi, bbs, bb, insns, insn);
5458 /* Free LUIDs. */
5459 void
5460 sched_finish_luids (void)
5462 VEC_free (int, heap, sched_luids);
5463 sched_max_luid = 1;
5466 /* Return logical uid of INSN. Helpful while debugging. */
5468 insn_luid (rtx insn)
5470 return INSN_LUID (insn);
5473 /* Extend per insn data in the target. */
5474 void
5475 sched_extend_target (void)
5477 if (targetm.sched.h_i_d_extended)
5478 targetm.sched.h_i_d_extended ();
5481 /* Extend global scheduler structures (those, that live across calls to
5482 schedule_block) to include information about just emitted INSN. */
5483 static void
5484 extend_h_i_d (void)
5486 int reserve = (get_max_uid () + 1
5487 - VEC_length (haifa_insn_data_def, h_i_d));
5488 if (reserve > 0
5489 && ! VEC_space (haifa_insn_data_def, h_i_d, reserve))
5491 VEC_safe_grow_cleared (haifa_insn_data_def, heap, h_i_d,
5492 3 * get_max_uid () / 2);
5493 sched_extend_target ();
5497 /* Initialize h_i_d entry of the INSN with default values.
5498 Values, that are not explicitly initialized here, hold zero. */
5499 static void
5500 init_h_i_d (rtx insn)
5502 if (INSN_LUID (insn) > 0)
5504 INSN_COST (insn) = -1;
5505 QUEUE_INDEX (insn) = QUEUE_NOWHERE;
5506 INSN_TICK (insn) = INVALID_TICK;
5507 INTER_TICK (insn) = INVALID_TICK;
5508 TODO_SPEC (insn) = HARD_DEP;
5512 /* Initialize haifa_insn_data for BBS, BB, INSNS and INSN. */
5513 void
5514 haifa_init_h_i_d (bb_vec_t bbs, basic_block bb, insn_vec_t insns, rtx insn)
5516 const struct sched_scan_info_def ssi =
5518 NULL, /* extend_bb */
5519 NULL, /* init_bb */
5520 extend_h_i_d, /* extend_insn */
5521 init_h_i_d /* init_insn */
5524 sched_scan (&ssi, bbs, bb, insns, insn);
5527 /* Finalize haifa_insn_data. */
5528 void
5529 haifa_finish_h_i_d (void)
5531 int i;
5532 haifa_insn_data_t data;
5533 struct reg_use_data *use, *next;
5535 for (i = 0; VEC_iterate (haifa_insn_data_def, h_i_d, i, data); i++)
5537 if (data->reg_pressure != NULL)
5538 free (data->reg_pressure);
5539 for (use = data->reg_use_list; use != NULL; use = next)
5541 next = use->next_insn_use;
5542 free (use);
5545 VEC_free (haifa_insn_data_def, heap, h_i_d);
5548 /* Init data for the new insn INSN. */
5549 static void
5550 haifa_init_insn (rtx insn)
5552 gcc_assert (insn != NULL);
5554 sched_init_luids (NULL, NULL, NULL, insn);
5555 sched_extend_target ();
5556 sched_deps_init (false);
5557 haifa_init_h_i_d (NULL, NULL, NULL, insn);
5559 if (adding_bb_to_current_region_p)
5561 sd_init_insn (insn);
5563 /* Extend dependency caches by one element. */
5564 extend_dependency_caches (1, false);
5568 /* Init data for the new basic block BB which comes after AFTER. */
5569 static void
5570 haifa_init_only_bb (basic_block bb, basic_block after)
5572 gcc_assert (bb != NULL);
5574 sched_init_bbs ();
5576 if (common_sched_info->add_block)
5577 /* This changes only data structures of the front-end. */
5578 common_sched_info->add_block (bb, after);
5581 /* A generic version of sched_split_block (). */
5582 basic_block
5583 sched_split_block_1 (basic_block first_bb, rtx after)
5585 edge e;
5587 e = split_block (first_bb, after);
5588 gcc_assert (e->src == first_bb);
5590 /* sched_split_block emits note if *check == BB_END. Probably it
5591 is better to rip that note off. */
5593 return e->dest;
5596 /* A generic version of sched_create_empty_bb (). */
5597 basic_block
5598 sched_create_empty_bb_1 (basic_block after)
5600 return create_empty_bb (after);
5603 /* Insert PAT as an INSN into the schedule and update the necessary data
5604 structures to account for it. */
5606 sched_emit_insn (rtx pat)
5608 rtx insn = emit_insn_after (pat, last_scheduled_insn);
5609 last_scheduled_insn = insn;
5610 haifa_init_insn (insn);
5611 return insn;
5614 #endif /* INSN_SCHEDULING */