The apostrophe was there to signal that the s was coming
[official-gcc.git] / gcc / function.c
bloba8bd0f5b5fd999fc26337695969e315fe68c1d29
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
63 #ifndef LOCAL_ALIGNMENT
64 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
65 #endif
67 #ifndef STACK_ALIGNMENT_NEEDED
68 #define STACK_ALIGNMENT_NEEDED 1
69 #endif
71 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #endif
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86 /* Similar, but round to the next highest integer that meets the
87 alignment. */
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90 /* Nonzero if function being compiled doesn't contain any calls
91 (ignoring the prologue and epilogue). This is set prior to
92 local register allocation and is valid for the remaining
93 compiler passes. */
94 int current_function_is_leaf;
96 /* Nonzero if function being compiled doesn't modify the stack pointer
97 (ignoring the prologue and epilogue). This is only valid after
98 life_analysis has run. */
99 int current_function_sp_is_unchanging;
101 /* Nonzero if the function being compiled is a leaf function which only
102 uses leaf registers. This is valid after reload (specifically after
103 sched2) and is useful only if the port defines LEAF_REGISTERS. */
104 int current_function_uses_only_leaf_regs;
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.c:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
123 static GTY(()) varray_type prologue;
124 static GTY(()) varray_type epilogue;
126 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
127 in this function. */
128 static GTY(()) varray_type sibcall_epilogue;
130 /* In order to evaluate some expressions, such as function calls returning
131 structures in memory, we need to temporarily allocate stack locations.
132 We record each allocated temporary in the following structure.
134 Associated with each temporary slot is a nesting level. When we pop up
135 one level, all temporaries associated with the previous level are freed.
136 Normally, all temporaries are freed after the execution of the statement
137 in which they were created. However, if we are inside a ({...}) grouping,
138 the result may be in a temporary and hence must be preserved. If the
139 result could be in a temporary, we preserve it if we can determine which
140 one it is in. If we cannot determine which temporary may contain the
141 result, all temporaries are preserved. A temporary is preserved by
142 pretending it was allocated at the previous nesting level.
144 Automatic variables are also assigned temporary slots, at the nesting
145 level where they are defined. They are marked a "kept" so that
146 free_temp_slots will not free them. */
148 struct temp_slot GTY(())
150 /* Points to next temporary slot. */
151 struct temp_slot *next;
152 /* Points to previous temporary slot. */
153 struct temp_slot *prev;
155 /* The rtx to used to reference the slot. */
156 rtx slot;
157 /* The rtx used to represent the address if not the address of the
158 slot above. May be an EXPR_LIST if multiple addresses exist. */
159 rtx address;
160 /* The alignment (in bits) of the slot. */
161 unsigned int align;
162 /* The size, in units, of the slot. */
163 HOST_WIDE_INT size;
164 /* The type of the object in the slot, or zero if it doesn't correspond
165 to a type. We use this to determine whether a slot can be reused.
166 It can be reused if objects of the type of the new slot will always
167 conflict with objects of the type of the old slot. */
168 tree type;
169 /* Nonzero if this temporary is currently in use. */
170 char in_use;
171 /* Nonzero if this temporary has its address taken. */
172 char addr_taken;
173 /* Nesting level at which this slot is being used. */
174 int level;
175 /* Nonzero if this should survive a call to free_temp_slots. */
176 int keep;
177 /* The offset of the slot from the frame_pointer, including extra space
178 for alignment. This info is for combine_temp_slots. */
179 HOST_WIDE_INT base_offset;
180 /* The size of the slot, including extra space for alignment. This
181 info is for combine_temp_slots. */
182 HOST_WIDE_INT full_size;
185 /* Forward declarations. */
187 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
188 struct function *);
189 static struct temp_slot *find_temp_slot_from_address (rtx);
190 static void instantiate_decls (tree, int);
191 static void instantiate_decls_1 (tree, int);
192 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
193 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
194 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, varray_type *);
198 static void reorder_fix_fragments (tree);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
205 static int contains (rtx, varray_type);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block, rtx);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (tree);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void instantiate_virtual_regs_lossage (rtx);
216 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 /* Pointer to chain of `struct function' for containing functions. */
219 struct function *outer_function_chain;
221 /* Given a function decl for a containing function,
222 return the `struct function' for it. */
224 struct function *
225 find_function_data (tree decl)
227 struct function *p;
229 for (p = outer_function_chain; p; p = p->outer)
230 if (p->decl == decl)
231 return p;
233 gcc_unreachable ();
236 /* Save the current context for compilation of a nested function.
237 This is called from language-specific code. The caller should use
238 the enter_nested langhook to save any language-specific state,
239 since this function knows only about language-independent
240 variables. */
242 void
243 push_function_context_to (tree context)
245 struct function *p;
247 if (context)
249 if (context == current_function_decl)
250 cfun->contains_functions = 1;
251 else
253 struct function *containing = find_function_data (context);
254 containing->contains_functions = 1;
258 if (cfun == 0)
259 init_dummy_function_start ();
260 p = cfun;
262 p->outer = outer_function_chain;
263 outer_function_chain = p;
265 lang_hooks.function.enter_nested (p);
267 cfun = 0;
270 void
271 push_function_context (void)
273 push_function_context_to (current_function_decl);
276 /* Restore the last saved context, at the end of a nested function.
277 This function is called from language-specific code. */
279 void
280 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
282 struct function *p = outer_function_chain;
284 cfun = p;
285 outer_function_chain = p->outer;
287 current_function_decl = p->decl;
288 reg_renumber = 0;
290 lang_hooks.function.leave_nested (p);
292 /* Reset variables that have known state during rtx generation. */
293 virtuals_instantiated = 0;
294 generating_concat_p = 1;
297 void
298 pop_function_context (void)
300 pop_function_context_from (current_function_decl);
303 /* Clear out all parts of the state in F that can safely be discarded
304 after the function has been parsed, but not compiled, to let
305 garbage collection reclaim the memory. */
307 void
308 free_after_parsing (struct function *f)
310 /* f->expr->forced_labels is used by code generation. */
311 /* f->emit->regno_reg_rtx is used by code generation. */
312 /* f->varasm is used by code generation. */
313 /* f->eh->eh_return_stub_label is used by code generation. */
315 lang_hooks.function.final (f);
318 /* Clear out all parts of the state in F that can safely be discarded
319 after the function has been compiled, to let garbage collection
320 reclaim the memory. */
322 void
323 free_after_compilation (struct function *f)
325 f->eh = NULL;
326 f->expr = NULL;
327 f->emit = NULL;
328 f->varasm = NULL;
329 f->machine = NULL;
331 f->x_avail_temp_slots = NULL;
332 f->x_used_temp_slots = NULL;
333 f->arg_offset_rtx = NULL;
334 f->return_rtx = NULL;
335 f->internal_arg_pointer = NULL;
336 f->x_nonlocal_goto_handler_labels = NULL;
337 f->x_return_label = NULL;
338 f->x_naked_return_label = NULL;
339 f->x_stack_slot_list = NULL;
340 f->x_tail_recursion_reentry = NULL;
341 f->x_arg_pointer_save_area = NULL;
342 f->x_parm_birth_insn = NULL;
343 f->original_arg_vector = NULL;
344 f->original_decl_initial = NULL;
345 f->epilogue_delay_list = NULL;
348 /* Allocate fixed slots in the stack frame of the current function. */
350 /* Return size needed for stack frame based on slots so far allocated in
351 function F.
352 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
353 the caller may have to do that. */
355 HOST_WIDE_INT
356 get_func_frame_size (struct function *f)
358 #ifdef FRAME_GROWS_DOWNWARD
359 return -f->x_frame_offset;
360 #else
361 return f->x_frame_offset;
362 #endif
365 /* Return size needed for stack frame based on slots so far allocated.
366 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
367 the caller may have to do that. */
368 HOST_WIDE_INT
369 get_frame_size (void)
371 return get_func_frame_size (cfun);
374 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
375 with machine mode MODE.
377 ALIGN controls the amount of alignment for the address of the slot:
378 0 means according to MODE,
379 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
380 -2 means use BITS_PER_UNIT,
381 positive specifies alignment boundary in bits.
383 We do not round to stack_boundary here.
385 FUNCTION specifies the function to allocate in. */
387 static rtx
388 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
389 struct function *function)
391 rtx x, addr;
392 int bigend_correction = 0;
393 unsigned int alignment;
394 int frame_off, frame_alignment, frame_phase;
396 if (align == 0)
398 tree type;
400 if (mode == BLKmode)
401 alignment = BIGGEST_ALIGNMENT;
402 else
403 alignment = GET_MODE_ALIGNMENT (mode);
405 /* Allow the target to (possibly) increase the alignment of this
406 stack slot. */
407 type = lang_hooks.types.type_for_mode (mode, 0);
408 if (type)
409 alignment = LOCAL_ALIGNMENT (type, alignment);
411 alignment /= BITS_PER_UNIT;
413 else if (align == -1)
415 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
416 size = CEIL_ROUND (size, alignment);
418 else if (align == -2)
419 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
420 else
421 alignment = align / BITS_PER_UNIT;
423 #ifdef FRAME_GROWS_DOWNWARD
424 function->x_frame_offset -= size;
425 #endif
427 /* Ignore alignment we can't do with expected alignment of the boundary. */
428 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
429 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
431 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
432 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
434 /* Calculate how many bytes the start of local variables is off from
435 stack alignment. */
436 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
437 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
438 frame_phase = frame_off ? frame_alignment - frame_off : 0;
440 /* Round the frame offset to the specified alignment. The default is
441 to always honor requests to align the stack but a port may choose to
442 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
443 if (STACK_ALIGNMENT_NEEDED
444 || mode != BLKmode
445 || size != 0)
447 /* We must be careful here, since FRAME_OFFSET might be negative and
448 division with a negative dividend isn't as well defined as we might
449 like. So we instead assume that ALIGNMENT is a power of two and
450 use logical operations which are unambiguous. */
451 #ifdef FRAME_GROWS_DOWNWARD
452 function->x_frame_offset
453 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
454 (unsigned HOST_WIDE_INT) alignment)
455 + frame_phase);
456 #else
457 function->x_frame_offset
458 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
459 (unsigned HOST_WIDE_INT) alignment)
460 + frame_phase);
461 #endif
464 /* On a big-endian machine, if we are allocating more space than we will use,
465 use the least significant bytes of those that are allocated. */
466 if (BYTES_BIG_ENDIAN && mode != BLKmode)
467 bigend_correction = size - GET_MODE_SIZE (mode);
469 /* If we have already instantiated virtual registers, return the actual
470 address relative to the frame pointer. */
471 if (function == cfun && virtuals_instantiated)
472 addr = plus_constant (frame_pointer_rtx,
473 trunc_int_for_mode
474 (frame_offset + bigend_correction
475 + STARTING_FRAME_OFFSET, Pmode));
476 else
477 addr = plus_constant (virtual_stack_vars_rtx,
478 trunc_int_for_mode
479 (function->x_frame_offset + bigend_correction,
480 Pmode));
482 #ifndef FRAME_GROWS_DOWNWARD
483 function->x_frame_offset += size;
484 #endif
486 x = gen_rtx_MEM (mode, addr);
488 function->x_stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
491 return x;
494 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
495 current function. */
498 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
500 return assign_stack_local_1 (mode, size, align, cfun);
504 /* Removes temporary slot TEMP from LIST. */
506 static void
507 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
509 if (temp->next)
510 temp->next->prev = temp->prev;
511 if (temp->prev)
512 temp->prev->next = temp->next;
513 else
514 *list = temp->next;
516 temp->prev = temp->next = NULL;
519 /* Inserts temporary slot TEMP to LIST. */
521 static void
522 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
524 temp->next = *list;
525 if (*list)
526 (*list)->prev = temp;
527 temp->prev = NULL;
528 *list = temp;
531 /* Returns the list of used temp slots at LEVEL. */
533 static struct temp_slot **
534 temp_slots_at_level (int level)
537 if (!used_temp_slots)
538 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
540 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
541 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
543 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
546 /* Returns the maximal temporary slot level. */
548 static int
549 max_slot_level (void)
551 if (!used_temp_slots)
552 return -1;
554 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
557 /* Moves temporary slot TEMP to LEVEL. */
559 static void
560 move_slot_to_level (struct temp_slot *temp, int level)
562 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
563 insert_slot_to_list (temp, temp_slots_at_level (level));
564 temp->level = level;
567 /* Make temporary slot TEMP available. */
569 static void
570 make_slot_available (struct temp_slot *temp)
572 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
573 insert_slot_to_list (temp, &avail_temp_slots);
574 temp->in_use = 0;
575 temp->level = -1;
578 /* Allocate a temporary stack slot and record it for possible later
579 reuse.
581 MODE is the machine mode to be given to the returned rtx.
583 SIZE is the size in units of the space required. We do no rounding here
584 since assign_stack_local will do any required rounding.
586 KEEP is 1 if this slot is to be retained after a call to
587 free_temp_slots. Automatic variables for a block are allocated
588 with this flag. KEEP values of 2 or 3 were needed respectively
589 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
590 or for SAVE_EXPRs, but they are now unused and will abort.
592 TYPE is the type that will be used for the stack slot. */
595 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
596 tree type)
598 unsigned int align;
599 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
600 rtx slot;
602 /* If SIZE is -1 it means that somebody tried to allocate a temporary
603 of a variable size. */
604 gcc_assert (size != -1);
606 /* These are now unused. */
607 gcc_assert (keep <= 1);
609 if (mode == BLKmode)
610 align = BIGGEST_ALIGNMENT;
611 else
612 align = GET_MODE_ALIGNMENT (mode);
614 if (! type)
615 type = lang_hooks.types.type_for_mode (mode, 0);
617 if (type)
618 align = LOCAL_ALIGNMENT (type, align);
620 /* Try to find an available, already-allocated temporary of the proper
621 mode which meets the size and alignment requirements. Choose the
622 smallest one with the closest alignment. */
623 for (p = avail_temp_slots; p; p = p->next)
625 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
626 && objects_must_conflict_p (p->type, type)
627 && (best_p == 0 || best_p->size > p->size
628 || (best_p->size == p->size && best_p->align > p->align)))
630 if (p->align == align && p->size == size)
632 selected = p;
633 cut_slot_from_list (selected, &avail_temp_slots);
634 best_p = 0;
635 break;
637 best_p = p;
641 /* Make our best, if any, the one to use. */
642 if (best_p)
644 selected = best_p;
645 cut_slot_from_list (selected, &avail_temp_slots);
647 /* If there are enough aligned bytes left over, make them into a new
648 temp_slot so that the extra bytes don't get wasted. Do this only
649 for BLKmode slots, so that we can be sure of the alignment. */
650 if (GET_MODE (best_p->slot) == BLKmode)
652 int alignment = best_p->align / BITS_PER_UNIT;
653 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
655 if (best_p->size - rounded_size >= alignment)
657 p = ggc_alloc (sizeof (struct temp_slot));
658 p->in_use = p->addr_taken = 0;
659 p->size = best_p->size - rounded_size;
660 p->base_offset = best_p->base_offset + rounded_size;
661 p->full_size = best_p->full_size - rounded_size;
662 p->slot = gen_rtx_MEM (BLKmode,
663 plus_constant (XEXP (best_p->slot, 0),
664 rounded_size));
665 p->align = best_p->align;
666 p->address = 0;
667 p->type = best_p->type;
668 insert_slot_to_list (p, &avail_temp_slots);
670 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
671 stack_slot_list);
673 best_p->size = rounded_size;
674 best_p->full_size = rounded_size;
679 /* If we still didn't find one, make a new temporary. */
680 if (selected == 0)
682 HOST_WIDE_INT frame_offset_old = frame_offset;
684 p = ggc_alloc (sizeof (struct temp_slot));
686 /* We are passing an explicit alignment request to assign_stack_local.
687 One side effect of that is assign_stack_local will not round SIZE
688 to ensure the frame offset remains suitably aligned.
690 So for requests which depended on the rounding of SIZE, we go ahead
691 and round it now. We also make sure ALIGNMENT is at least
692 BIGGEST_ALIGNMENT. */
693 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
694 p->slot = assign_stack_local (mode,
695 (mode == BLKmode
696 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
697 : size),
698 align);
700 p->align = align;
702 /* The following slot size computation is necessary because we don't
703 know the actual size of the temporary slot until assign_stack_local
704 has performed all the frame alignment and size rounding for the
705 requested temporary. Note that extra space added for alignment
706 can be either above or below this stack slot depending on which
707 way the frame grows. We include the extra space if and only if it
708 is above this slot. */
709 #ifdef FRAME_GROWS_DOWNWARD
710 p->size = frame_offset_old - frame_offset;
711 #else
712 p->size = size;
713 #endif
715 /* Now define the fields used by combine_temp_slots. */
716 #ifdef FRAME_GROWS_DOWNWARD
717 p->base_offset = frame_offset;
718 p->full_size = frame_offset_old - frame_offset;
719 #else
720 p->base_offset = frame_offset_old;
721 p->full_size = frame_offset - frame_offset_old;
722 #endif
723 p->address = 0;
725 selected = p;
728 p = selected;
729 p->in_use = 1;
730 p->addr_taken = 0;
731 p->type = type;
732 p->level = temp_slot_level;
733 p->keep = keep;
735 pp = temp_slots_at_level (p->level);
736 insert_slot_to_list (p, pp);
738 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
739 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
740 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
742 /* If we know the alias set for the memory that will be used, use
743 it. If there's no TYPE, then we don't know anything about the
744 alias set for the memory. */
745 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
746 set_mem_align (slot, align);
748 /* If a type is specified, set the relevant flags. */
749 if (type != 0)
751 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
752 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
755 return slot;
758 /* Allocate a temporary stack slot and record it for possible later
759 reuse. First three arguments are same as in preceding function. */
762 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
764 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
767 /* Assign a temporary.
768 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
769 and so that should be used in error messages. In either case, we
770 allocate of the given type.
771 KEEP is as for assign_stack_temp.
772 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
773 it is 0 if a register is OK.
774 DONT_PROMOTE is 1 if we should not promote values in register
775 to wider modes. */
778 assign_temp (tree type_or_decl, int keep, int memory_required,
779 int dont_promote ATTRIBUTE_UNUSED)
781 tree type, decl;
782 enum machine_mode mode;
783 #ifdef PROMOTE_MODE
784 int unsignedp;
785 #endif
787 if (DECL_P (type_or_decl))
788 decl = type_or_decl, type = TREE_TYPE (decl);
789 else
790 decl = NULL, type = type_or_decl;
792 mode = TYPE_MODE (type);
793 #ifdef PROMOTE_MODE
794 unsignedp = TYPE_UNSIGNED (type);
795 #endif
797 if (mode == BLKmode || memory_required)
799 HOST_WIDE_INT size = int_size_in_bytes (type);
800 tree size_tree;
801 rtx tmp;
803 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
804 problems with allocating the stack space. */
805 if (size == 0)
806 size = 1;
808 /* Unfortunately, we don't yet know how to allocate variable-sized
809 temporaries. However, sometimes we have a fixed upper limit on
810 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
811 instead. This is the case for Chill variable-sized strings. */
812 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
813 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
814 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
815 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
817 /* If we still haven't been able to get a size, see if the language
818 can compute a maximum size. */
819 if (size == -1
820 && (size_tree = lang_hooks.types.max_size (type)) != 0
821 && host_integerp (size_tree, 1))
822 size = tree_low_cst (size_tree, 1);
824 /* The size of the temporary may be too large to fit into an integer. */
825 /* ??? Not sure this should happen except for user silliness, so limit
826 this to things that aren't compiler-generated temporaries. The
827 rest of the time we'll abort in assign_stack_temp_for_type. */
828 if (decl && size == -1
829 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
831 error ("%Jsize of variable %qD is too large", decl, decl);
832 size = 1;
835 tmp = assign_stack_temp_for_type (mode, size, keep, type);
836 return tmp;
839 #ifdef PROMOTE_MODE
840 if (! dont_promote)
841 mode = promote_mode (type, mode, &unsignedp, 0);
842 #endif
844 return gen_reg_rtx (mode);
847 /* Combine temporary stack slots which are adjacent on the stack.
849 This allows for better use of already allocated stack space. This is only
850 done for BLKmode slots because we can be sure that we won't have alignment
851 problems in this case. */
853 void
854 combine_temp_slots (void)
856 struct temp_slot *p, *q, *next, *next_q;
857 int num_slots;
859 /* We can't combine slots, because the information about which slot
860 is in which alias set will be lost. */
861 if (flag_strict_aliasing)
862 return;
864 /* If there are a lot of temp slots, don't do anything unless
865 high levels of optimization. */
866 if (! flag_expensive_optimizations)
867 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
868 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
869 return;
871 for (p = avail_temp_slots; p; p = next)
873 int delete_p = 0;
875 next = p->next;
877 if (GET_MODE (p->slot) != BLKmode)
878 continue;
880 for (q = p->next; q; q = next_q)
882 int delete_q = 0;
884 next_q = q->next;
886 if (GET_MODE (q->slot) != BLKmode)
887 continue;
889 if (p->base_offset + p->full_size == q->base_offset)
891 /* Q comes after P; combine Q into P. */
892 p->size += q->size;
893 p->full_size += q->full_size;
894 delete_q = 1;
896 else if (q->base_offset + q->full_size == p->base_offset)
898 /* P comes after Q; combine P into Q. */
899 q->size += p->size;
900 q->full_size += p->full_size;
901 delete_p = 1;
902 break;
904 if (delete_q)
905 cut_slot_from_list (q, &avail_temp_slots);
908 /* Either delete P or advance past it. */
909 if (delete_p)
910 cut_slot_from_list (p, &avail_temp_slots);
914 /* Find the temp slot corresponding to the object at address X. */
916 static struct temp_slot *
917 find_temp_slot_from_address (rtx x)
919 struct temp_slot *p;
920 rtx next;
921 int i;
923 for (i = max_slot_level (); i >= 0; i--)
924 for (p = *temp_slots_at_level (i); p; p = p->next)
926 if (XEXP (p->slot, 0) == x
927 || p->address == x
928 || (GET_CODE (x) == PLUS
929 && XEXP (x, 0) == virtual_stack_vars_rtx
930 && GET_CODE (XEXP (x, 1)) == CONST_INT
931 && INTVAL (XEXP (x, 1)) >= p->base_offset
932 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
933 return p;
935 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
936 for (next = p->address; next; next = XEXP (next, 1))
937 if (XEXP (next, 0) == x)
938 return p;
941 /* If we have a sum involving a register, see if it points to a temp
942 slot. */
943 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
944 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
945 return p;
946 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
947 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
948 return p;
950 return 0;
953 /* Indicate that NEW is an alternate way of referring to the temp slot
954 that previously was known by OLD. */
956 void
957 update_temp_slot_address (rtx old, rtx new)
959 struct temp_slot *p;
961 if (rtx_equal_p (old, new))
962 return;
964 p = find_temp_slot_from_address (old);
966 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
967 is a register, see if one operand of the PLUS is a temporary
968 location. If so, NEW points into it. Otherwise, if both OLD and
969 NEW are a PLUS and if there is a register in common between them.
970 If so, try a recursive call on those values. */
971 if (p == 0)
973 if (GET_CODE (old) != PLUS)
974 return;
976 if (REG_P (new))
978 update_temp_slot_address (XEXP (old, 0), new);
979 update_temp_slot_address (XEXP (old, 1), new);
980 return;
982 else if (GET_CODE (new) != PLUS)
983 return;
985 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
986 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
987 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
988 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
989 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
990 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
991 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
992 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
994 return;
997 /* Otherwise add an alias for the temp's address. */
998 else if (p->address == 0)
999 p->address = new;
1000 else
1002 if (GET_CODE (p->address) != EXPR_LIST)
1003 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1005 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1009 /* If X could be a reference to a temporary slot, mark the fact that its
1010 address was taken. */
1012 void
1013 mark_temp_addr_taken (rtx x)
1015 struct temp_slot *p;
1017 if (x == 0)
1018 return;
1020 /* If X is not in memory or is at a constant address, it cannot be in
1021 a temporary slot. */
1022 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1023 return;
1025 p = find_temp_slot_from_address (XEXP (x, 0));
1026 if (p != 0)
1027 p->addr_taken = 1;
1030 /* If X could be a reference to a temporary slot, mark that slot as
1031 belonging to the to one level higher than the current level. If X
1032 matched one of our slots, just mark that one. Otherwise, we can't
1033 easily predict which it is, so upgrade all of them. Kept slots
1034 need not be touched.
1036 This is called when an ({...}) construct occurs and a statement
1037 returns a value in memory. */
1039 void
1040 preserve_temp_slots (rtx x)
1042 struct temp_slot *p = 0, *next;
1044 /* If there is no result, we still might have some objects whose address
1045 were taken, so we need to make sure they stay around. */
1046 if (x == 0)
1048 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1050 next = p->next;
1052 if (p->addr_taken)
1053 move_slot_to_level (p, temp_slot_level - 1);
1056 return;
1059 /* If X is a register that is being used as a pointer, see if we have
1060 a temporary slot we know it points to. To be consistent with
1061 the code below, we really should preserve all non-kept slots
1062 if we can't find a match, but that seems to be much too costly. */
1063 if (REG_P (x) && REG_POINTER (x))
1064 p = find_temp_slot_from_address (x);
1066 /* If X is not in memory or is at a constant address, it cannot be in
1067 a temporary slot, but it can contain something whose address was
1068 taken. */
1069 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1071 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1073 next = p->next;
1075 if (p->addr_taken)
1076 move_slot_to_level (p, temp_slot_level - 1);
1079 return;
1082 /* First see if we can find a match. */
1083 if (p == 0)
1084 p = find_temp_slot_from_address (XEXP (x, 0));
1086 if (p != 0)
1088 /* Move everything at our level whose address was taken to our new
1089 level in case we used its address. */
1090 struct temp_slot *q;
1092 if (p->level == temp_slot_level)
1094 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1096 next = q->next;
1098 if (p != q && q->addr_taken)
1099 move_slot_to_level (q, temp_slot_level - 1);
1102 move_slot_to_level (p, temp_slot_level - 1);
1103 p->addr_taken = 0;
1105 return;
1108 /* Otherwise, preserve all non-kept slots at this level. */
1109 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1111 next = p->next;
1113 if (!p->keep)
1114 move_slot_to_level (p, temp_slot_level - 1);
1118 /* Free all temporaries used so far. This is normally called at the
1119 end of generating code for a statement. */
1121 void
1122 free_temp_slots (void)
1124 struct temp_slot *p, *next;
1126 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1128 next = p->next;
1130 if (!p->keep)
1131 make_slot_available (p);
1134 combine_temp_slots ();
1137 /* Push deeper into the nesting level for stack temporaries. */
1139 void
1140 push_temp_slots (void)
1142 temp_slot_level++;
1145 /* Pop a temporary nesting level. All slots in use in the current level
1146 are freed. */
1148 void
1149 pop_temp_slots (void)
1151 struct temp_slot *p, *next;
1153 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1155 next = p->next;
1156 make_slot_available (p);
1159 combine_temp_slots ();
1161 temp_slot_level--;
1164 /* Initialize temporary slots. */
1166 void
1167 init_temp_slots (void)
1169 /* We have not allocated any temporaries yet. */
1170 avail_temp_slots = 0;
1171 used_temp_slots = 0;
1172 temp_slot_level = 0;
1175 /* These routines are responsible for converting virtual register references
1176 to the actual hard register references once RTL generation is complete.
1178 The following four variables are used for communication between the
1179 routines. They contain the offsets of the virtual registers from their
1180 respective hard registers. */
1182 static int in_arg_offset;
1183 static int var_offset;
1184 static int dynamic_offset;
1185 static int out_arg_offset;
1186 static int cfa_offset;
1188 /* In most machines, the stack pointer register is equivalent to the bottom
1189 of the stack. */
1191 #ifndef STACK_POINTER_OFFSET
1192 #define STACK_POINTER_OFFSET 0
1193 #endif
1195 /* If not defined, pick an appropriate default for the offset of dynamically
1196 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1197 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1199 #ifndef STACK_DYNAMIC_OFFSET
1201 /* The bottom of the stack points to the actual arguments. If
1202 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1203 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1204 stack space for register parameters is not pushed by the caller, but
1205 rather part of the fixed stack areas and hence not included in
1206 `current_function_outgoing_args_size'. Nevertheless, we must allow
1207 for it when allocating stack dynamic objects. */
1209 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1210 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1211 ((ACCUMULATE_OUTGOING_ARGS \
1212 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1213 + (STACK_POINTER_OFFSET)) \
1215 #else
1216 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1217 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1218 + (STACK_POINTER_OFFSET))
1219 #endif
1220 #endif
1222 /* On most machines, the CFA coincides with the first incoming parm. */
1224 #ifndef ARG_POINTER_CFA_OFFSET
1225 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1226 #endif
1229 /* Pass through the INSNS of function FNDECL and convert virtual register
1230 references to hard register references. */
1232 void
1233 instantiate_virtual_regs (void)
1235 rtx insn;
1237 /* Compute the offsets to use for this function. */
1238 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1239 var_offset = STARTING_FRAME_OFFSET;
1240 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1241 out_arg_offset = STACK_POINTER_OFFSET;
1242 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1244 /* Scan all variables and parameters of this function. For each that is
1245 in memory, instantiate all virtual registers if the result is a valid
1246 address. If not, we do it later. That will handle most uses of virtual
1247 regs on many machines. */
1248 instantiate_decls (current_function_decl, 1);
1250 /* Initialize recognition, indicating that volatile is OK. */
1251 init_recog ();
1253 /* Scan through all the insns, instantiating every virtual register still
1254 present. */
1255 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1256 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1257 || GET_CODE (insn) == CALL_INSN)
1259 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1260 if (INSN_DELETED_P (insn))
1261 continue;
1262 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1263 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1264 if (GET_CODE (insn) == CALL_INSN)
1265 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1266 NULL_RTX, 0);
1268 /* Past this point all ASM statements should match. Verify that
1269 to avoid failures later in the compilation process. */
1270 if (asm_noperands (PATTERN (insn)) >= 0
1271 && ! check_asm_operands (PATTERN (insn)))
1272 instantiate_virtual_regs_lossage (insn);
1275 /* Now instantiate the remaining register equivalences for debugging info.
1276 These will not be valid addresses. */
1277 instantiate_decls (current_function_decl, 0);
1279 /* Indicate that, from now on, assign_stack_local should use
1280 frame_pointer_rtx. */
1281 virtuals_instantiated = 1;
1284 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1285 all virtual registers in their DECL_RTL's.
1287 If VALID_ONLY, do this only if the resulting address is still valid.
1288 Otherwise, always do it. */
1290 static void
1291 instantiate_decls (tree fndecl, int valid_only)
1293 tree decl;
1295 /* Process all parameters of the function. */
1296 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1298 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1299 HOST_WIDE_INT size_rtl;
1301 instantiate_decl (DECL_RTL (decl), size, valid_only);
1303 /* If the parameter was promoted, then the incoming RTL mode may be
1304 larger than the declared type size. We must use the larger of
1305 the two sizes. */
1306 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1307 size = MAX (size_rtl, size);
1308 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1311 /* Now process all variables defined in the function or its subblocks. */
1312 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1315 /* Subroutine of instantiate_decls: Process all decls in the given
1316 BLOCK node and all its subblocks. */
1318 static void
1319 instantiate_decls_1 (tree let, int valid_only)
1321 tree t;
1323 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1324 if (DECL_RTL_SET_P (t))
1325 instantiate_decl (DECL_RTL (t),
1326 int_size_in_bytes (TREE_TYPE (t)),
1327 valid_only);
1329 /* Process all subblocks. */
1330 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1331 instantiate_decls_1 (t, valid_only);
1334 /* Subroutine of the preceding procedures: Given RTL representing a
1335 decl and the size of the object, do any instantiation required.
1337 If VALID_ONLY is nonzero, it means that the RTL should only be
1338 changed if the new address is valid. */
1340 static void
1341 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1343 enum machine_mode mode;
1344 rtx addr;
1346 /* If this is not a MEM, no need to do anything. Similarly if the
1347 address is a constant or a register that is not a virtual register. */
1349 if (x == 0 || !MEM_P (x))
1350 return;
1352 addr = XEXP (x, 0);
1353 if (CONSTANT_P (addr)
1354 || (REG_P (addr)
1355 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1356 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1357 return;
1359 /* If we should only do this if the address is valid, copy the address.
1360 We need to do this so we can undo any changes that might make the
1361 address invalid. This copy is unfortunate, but probably can't be
1362 avoided. */
1364 if (valid_only)
1365 addr = copy_rtx (addr);
1367 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1369 if (valid_only && size >= 0)
1371 unsigned HOST_WIDE_INT decl_size = size;
1373 /* Now verify that the resulting address is valid for every integer or
1374 floating-point mode up to and including SIZE bytes long. We do this
1375 since the object might be accessed in any mode and frame addresses
1376 are shared. */
1378 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1379 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1380 mode = GET_MODE_WIDER_MODE (mode))
1381 if (! memory_address_p (mode, addr))
1382 return;
1384 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1385 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1386 mode = GET_MODE_WIDER_MODE (mode))
1387 if (! memory_address_p (mode, addr))
1388 return;
1391 /* Put back the address now that we have updated it and we either know
1392 it is valid or we don't care whether it is valid. */
1394 XEXP (x, 0) = addr;
1397 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1398 is a virtual register, return the equivalent hard register and set the
1399 offset indirectly through the pointer. Otherwise, return 0. */
1401 static rtx
1402 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1404 rtx new;
1405 HOST_WIDE_INT offset;
1407 if (x == virtual_incoming_args_rtx)
1408 new = arg_pointer_rtx, offset = in_arg_offset;
1409 else if (x == virtual_stack_vars_rtx)
1410 new = frame_pointer_rtx, offset = var_offset;
1411 else if (x == virtual_stack_dynamic_rtx)
1412 new = stack_pointer_rtx, offset = dynamic_offset;
1413 else if (x == virtual_outgoing_args_rtx)
1414 new = stack_pointer_rtx, offset = out_arg_offset;
1415 else if (x == virtual_cfa_rtx)
1416 new = arg_pointer_rtx, offset = cfa_offset;
1417 else
1418 return 0;
1420 *poffset = offset;
1421 return new;
1425 /* Called when instantiate_virtual_regs has failed to update the instruction.
1426 Usually this means that non-matching instruction has been emit, however for
1427 asm statements it may be the problem in the constraints. */
1428 static void
1429 instantiate_virtual_regs_lossage (rtx insn)
1431 gcc_assert (asm_noperands (PATTERN (insn)) >= 0);
1432 error_for_asm (insn, "impossible constraint in %<asm%>");
1433 delete_insn (insn);
1435 /* Given a pointer to a piece of rtx and an optional pointer to the
1436 containing object, instantiate any virtual registers present in it.
1438 If EXTRA_INSNS, we always do the replacement and generate
1439 any extra insns before OBJECT. If it zero, we do nothing if replacement
1440 is not valid.
1442 Return 1 if we either had nothing to do or if we were able to do the
1443 needed replacement. Return 0 otherwise; we only return zero if
1444 EXTRA_INSNS is zero.
1446 We first try some simple transformations to avoid the creation of extra
1447 pseudos. */
1449 static int
1450 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1452 rtx x;
1453 RTX_CODE code;
1454 rtx new = 0;
1455 HOST_WIDE_INT offset = 0;
1456 rtx temp;
1457 rtx seq;
1458 int i, j;
1459 const char *fmt;
1461 /* Re-start here to avoid recursion in common cases. */
1462 restart:
1464 x = *loc;
1465 if (x == 0)
1466 return 1;
1468 /* We may have detected and deleted invalid asm statements. */
1469 if (object && INSN_P (object) && INSN_DELETED_P (object))
1470 return 1;
1472 code = GET_CODE (x);
1474 /* Check for some special cases. */
1475 switch (code)
1477 case CONST_INT:
1478 case CONST_DOUBLE:
1479 case CONST_VECTOR:
1480 case CONST:
1481 case SYMBOL_REF:
1482 case CODE_LABEL:
1483 case PC:
1484 case CC0:
1485 case ASM_INPUT:
1486 case ADDR_VEC:
1487 case ADDR_DIFF_VEC:
1488 case RETURN:
1489 return 1;
1491 case SET:
1492 /* We are allowed to set the virtual registers. This means that
1493 the actual register should receive the source minus the
1494 appropriate offset. This is used, for example, in the handling
1495 of non-local gotos. */
1496 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1498 rtx src = SET_SRC (x);
1500 /* We are setting the register, not using it, so the relevant
1501 offset is the negative of the offset to use were we using
1502 the register. */
1503 offset = - offset;
1504 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1506 /* The only valid sources here are PLUS or REG. Just do
1507 the simplest possible thing to handle them. */
1508 if (!REG_P (src) && GET_CODE (src) != PLUS)
1510 instantiate_virtual_regs_lossage (object);
1511 return 1;
1514 start_sequence ();
1515 if (!REG_P (src))
1516 temp = force_operand (src, NULL_RTX);
1517 else
1518 temp = src;
1519 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1520 seq = get_insns ();
1521 end_sequence ();
1523 emit_insn_before (seq, object);
1524 SET_DEST (x) = new;
1526 if (! validate_change (object, &SET_SRC (x), temp, 0)
1527 || ! extra_insns)
1528 instantiate_virtual_regs_lossage (object);
1530 return 1;
1533 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1534 loc = &SET_SRC (x);
1535 goto restart;
1537 case PLUS:
1538 /* Handle special case of virtual register plus constant. */
1539 if (CONSTANT_P (XEXP (x, 1)))
1541 rtx old, new_offset;
1543 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1544 if (GET_CODE (XEXP (x, 0)) == PLUS)
1546 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1548 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1549 extra_insns);
1550 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1552 else
1554 loc = &XEXP (x, 0);
1555 goto restart;
1559 #ifdef POINTERS_EXTEND_UNSIGNED
1560 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1561 we can commute the PLUS and SUBREG because pointers into the
1562 frame are well-behaved. */
1563 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1564 && GET_CODE (XEXP (x, 1)) == CONST_INT
1565 && 0 != (new
1566 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1567 &offset))
1568 && validate_change (object, loc,
1569 plus_constant (gen_lowpart (ptr_mode,
1570 new),
1571 offset
1572 + INTVAL (XEXP (x, 1))),
1574 return 1;
1575 #endif
1576 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1578 /* We know the second operand is a constant. Unless the
1579 first operand is a REG (which has been already checked),
1580 it needs to be checked. */
1581 if (!REG_P (XEXP (x, 0)))
1583 loc = &XEXP (x, 0);
1584 goto restart;
1586 return 1;
1589 new_offset = plus_constant (XEXP (x, 1), offset);
1591 /* If the new constant is zero, try to replace the sum with just
1592 the register. */
1593 if (new_offset == const0_rtx
1594 && validate_change (object, loc, new, 0))
1595 return 1;
1597 /* Next try to replace the register and new offset.
1598 There are two changes to validate here and we can't assume that
1599 in the case of old offset equals new just changing the register
1600 will yield a valid insn. In the interests of a little efficiency,
1601 however, we only call validate change once (we don't queue up the
1602 changes and then call apply_change_group). */
1604 old = XEXP (x, 0);
1605 if (offset == 0
1606 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1607 : (XEXP (x, 0) = new,
1608 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1610 if (! extra_insns)
1612 XEXP (x, 0) = old;
1613 return 0;
1616 /* Otherwise copy the new constant into a register and replace
1617 constant with that register. */
1618 temp = gen_reg_rtx (Pmode);
1619 XEXP (x, 0) = new;
1620 if (validate_change (object, &XEXP (x, 1), temp, 0))
1621 emit_insn_before (gen_move_insn (temp, new_offset), object);
1622 else
1624 /* If that didn't work, replace this expression with a
1625 register containing the sum. */
1627 XEXP (x, 0) = old;
1628 new = gen_rtx_PLUS (Pmode, new, new_offset);
1630 start_sequence ();
1631 temp = force_operand (new, NULL_RTX);
1632 seq = get_insns ();
1633 end_sequence ();
1635 emit_insn_before (seq, object);
1636 if (! validate_change (object, loc, temp, 0)
1637 && ! validate_replace_rtx (x, temp, object))
1639 instantiate_virtual_regs_lossage (object);
1640 return 1;
1645 return 1;
1648 /* Fall through to generic two-operand expression case. */
1649 case EXPR_LIST:
1650 case CALL:
1651 case COMPARE:
1652 case MINUS:
1653 case MULT:
1654 case DIV: case UDIV:
1655 case MOD: case UMOD:
1656 case AND: case IOR: case XOR:
1657 case ROTATERT: case ROTATE:
1658 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1659 case NE: case EQ:
1660 case GE: case GT: case GEU: case GTU:
1661 case LE: case LT: case LEU: case LTU:
1662 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1663 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1664 loc = &XEXP (x, 0);
1665 goto restart;
1667 case MEM:
1668 /* Most cases of MEM that convert to valid addresses have already been
1669 handled by our scan of decls. The only special handling we
1670 need here is to make a copy of the rtx to ensure it isn't being
1671 shared if we have to change it to a pseudo.
1673 If the rtx is a simple reference to an address via a virtual register,
1674 it can potentially be shared. In such cases, first try to make it
1675 a valid address, which can also be shared. Otherwise, copy it and
1676 proceed normally.
1678 First check for common cases that need no processing. These are
1679 usually due to instantiation already being done on a previous instance
1680 of a shared rtx. */
1682 temp = XEXP (x, 0);
1683 if (CONSTANT_ADDRESS_P (temp)
1684 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1685 || temp == arg_pointer_rtx
1686 #endif
1687 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1688 || temp == hard_frame_pointer_rtx
1689 #endif
1690 || temp == frame_pointer_rtx)
1691 return 1;
1693 if (GET_CODE (temp) == PLUS
1694 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1695 && (XEXP (temp, 0) == frame_pointer_rtx
1696 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1697 || XEXP (temp, 0) == hard_frame_pointer_rtx
1698 #endif
1699 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1700 || XEXP (temp, 0) == arg_pointer_rtx
1701 #endif
1703 return 1;
1705 if (temp == virtual_stack_vars_rtx
1706 || temp == virtual_incoming_args_rtx
1707 || (GET_CODE (temp) == PLUS
1708 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1709 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1710 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1712 /* This MEM may be shared. If the substitution can be done without
1713 the need to generate new pseudos, we want to do it in place
1714 so all copies of the shared rtx benefit. The call below will
1715 only make substitutions if the resulting address is still
1716 valid.
1718 Note that we cannot pass X as the object in the recursive call
1719 since the insn being processed may not allow all valid
1720 addresses. However, if we were not passed on object, we can
1721 only modify X without copying it if X will have a valid
1722 address.
1724 ??? Also note that this can still lose if OBJECT is an insn that
1725 has less restrictions on an address that some other insn.
1726 In that case, we will modify the shared address. This case
1727 doesn't seem very likely, though. One case where this could
1728 happen is in the case of a USE or CLOBBER reference, but we
1729 take care of that below. */
1731 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1732 object ? object : x, 0))
1733 return 1;
1735 /* Otherwise make a copy and process that copy. We copy the entire
1736 RTL expression since it might be a PLUS which could also be
1737 shared. */
1738 *loc = x = copy_rtx (x);
1741 /* Fall through to generic unary operation case. */
1742 case PREFETCH:
1743 case SUBREG:
1744 case STRICT_LOW_PART:
1745 case NEG: case NOT:
1746 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1747 case SIGN_EXTEND: case ZERO_EXTEND:
1748 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1749 case FLOAT: case FIX:
1750 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1751 case ABS:
1752 case SQRT:
1753 case FFS:
1754 case CLZ: case CTZ:
1755 case POPCOUNT: case PARITY:
1756 /* These case either have just one operand or we know that we need not
1757 check the rest of the operands. */
1758 loc = &XEXP (x, 0);
1759 goto restart;
1761 case USE:
1762 case CLOBBER:
1763 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1764 go ahead and make the invalid one, but do it to a copy. For a REG,
1765 just make the recursive call, since there's no chance of a problem. */
1767 if ((MEM_P (XEXP (x, 0))
1768 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1770 || (REG_P (XEXP (x, 0))
1771 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1772 return 1;
1774 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1775 loc = &XEXP (x, 0);
1776 goto restart;
1778 case REG:
1779 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1780 in front of this insn and substitute the temporary. */
1781 if ((new = instantiate_new_reg (x, &offset)) != 0)
1783 temp = plus_constant (new, offset);
1784 if (!validate_change (object, loc, temp, 0))
1786 if (! extra_insns)
1787 return 0;
1789 start_sequence ();
1790 temp = force_operand (temp, NULL_RTX);
1791 seq = get_insns ();
1792 end_sequence ();
1794 emit_insn_before (seq, object);
1795 if (! validate_change (object, loc, temp, 0)
1796 && ! validate_replace_rtx (x, temp, object))
1797 instantiate_virtual_regs_lossage (object);
1801 return 1;
1803 default:
1804 break;
1807 /* Scan all subexpressions. */
1808 fmt = GET_RTX_FORMAT (code);
1809 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1810 if (*fmt == 'e')
1812 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1813 return 0;
1815 else if (*fmt == 'E')
1816 for (j = 0; j < XVECLEN (x, i); j++)
1817 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1818 extra_insns))
1819 return 0;
1821 return 1;
1824 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1825 This means a type for which function calls must pass an address to the
1826 function or get an address back from the function.
1827 EXP may be a type node or an expression (whose type is tested). */
1830 aggregate_value_p (tree exp, tree fntype)
1832 int i, regno, nregs;
1833 rtx reg;
1835 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1837 if (fntype)
1838 switch (TREE_CODE (fntype))
1840 case CALL_EXPR:
1841 fntype = get_callee_fndecl (fntype);
1842 fntype = fntype ? TREE_TYPE (fntype) : 0;
1843 break;
1844 case FUNCTION_DECL:
1845 fntype = TREE_TYPE (fntype);
1846 break;
1847 case FUNCTION_TYPE:
1848 case METHOD_TYPE:
1849 break;
1850 case IDENTIFIER_NODE:
1851 fntype = 0;
1852 break;
1853 default:
1854 /* We don't expect other rtl types here. */
1855 gcc_unreachable ();
1858 if (TREE_CODE (type) == VOID_TYPE)
1859 return 0;
1860 /* If the front end has decided that this needs to be passed by
1861 reference, do so. */
1862 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1863 && DECL_BY_REFERENCE (exp))
1864 return 1;
1865 if (targetm.calls.return_in_memory (type, fntype))
1866 return 1;
1867 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1868 and thus can't be returned in registers. */
1869 if (TREE_ADDRESSABLE (type))
1870 return 1;
1871 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1872 return 1;
1873 /* Make sure we have suitable call-clobbered regs to return
1874 the value in; if not, we must return it in memory. */
1875 reg = hard_function_value (type, 0, 0);
1877 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1878 it is OK. */
1879 if (!REG_P (reg))
1880 return 0;
1882 regno = REGNO (reg);
1883 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1884 for (i = 0; i < nregs; i++)
1885 if (! call_used_regs[regno + i])
1886 return 1;
1887 return 0;
1890 /* Return true if we should assign DECL a pseudo register; false if it
1891 should live on the local stack. */
1893 bool
1894 use_register_for_decl (tree decl)
1896 /* Honor volatile. */
1897 if (TREE_SIDE_EFFECTS (decl))
1898 return false;
1900 /* Honor addressability. */
1901 if (TREE_ADDRESSABLE (decl))
1902 return false;
1904 /* Only register-like things go in registers. */
1905 if (DECL_MODE (decl) == BLKmode)
1906 return false;
1908 /* If -ffloat-store specified, don't put explicit float variables
1909 into registers. */
1910 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1911 propagates values across these stores, and it probably shouldn't. */
1912 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1913 return false;
1915 /* Compiler-generated temporaries can always go in registers. */
1916 if (DECL_ARTIFICIAL (decl))
1917 return true;
1919 #ifdef NON_SAVING_SETJMP
1920 /* Protect variables not declared "register" from setjmp. */
1921 if (NON_SAVING_SETJMP
1922 && current_function_calls_setjmp
1923 && !DECL_REGISTER (decl))
1924 return false;
1925 #endif
1927 return (optimize || DECL_REGISTER (decl));
1930 /* Return true if TYPE should be passed by invisible reference. */
1932 bool
1933 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1934 tree type, bool named_arg)
1936 if (type)
1938 /* If this type contains non-trivial constructors, then it is
1939 forbidden for the middle-end to create any new copies. */
1940 if (TREE_ADDRESSABLE (type))
1941 return true;
1943 /* GCC post 3.4 passes *all* variable sized types by reference. */
1944 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1945 return true;
1948 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1951 /* Return true if TYPE, which is passed by reference, should be callee
1952 copied instead of caller copied. */
1954 bool
1955 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1956 tree type, bool named_arg)
1958 if (type && TREE_ADDRESSABLE (type))
1959 return false;
1960 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1963 /* Structures to communicate between the subroutines of assign_parms.
1964 The first holds data persistent across all parameters, the second
1965 is cleared out for each parameter. */
1967 struct assign_parm_data_all
1969 CUMULATIVE_ARGS args_so_far;
1970 struct args_size stack_args_size;
1971 tree function_result_decl;
1972 tree orig_fnargs;
1973 rtx conversion_insns;
1974 HOST_WIDE_INT pretend_args_size;
1975 HOST_WIDE_INT extra_pretend_bytes;
1976 int reg_parm_stack_space;
1979 struct assign_parm_data_one
1981 tree nominal_type;
1982 tree passed_type;
1983 rtx entry_parm;
1984 rtx stack_parm;
1985 enum machine_mode nominal_mode;
1986 enum machine_mode passed_mode;
1987 enum machine_mode promoted_mode;
1988 struct locate_and_pad_arg_data locate;
1989 int partial;
1990 BOOL_BITFIELD named_arg : 1;
1991 BOOL_BITFIELD last_named : 1;
1992 BOOL_BITFIELD passed_pointer : 1;
1993 BOOL_BITFIELD on_stack : 1;
1994 BOOL_BITFIELD loaded_in_reg : 1;
1997 /* A subroutine of assign_parms. Initialize ALL. */
1999 static void
2000 assign_parms_initialize_all (struct assign_parm_data_all *all)
2002 tree fntype;
2004 memset (all, 0, sizeof (*all));
2006 fntype = TREE_TYPE (current_function_decl);
2008 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2009 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2010 #else
2011 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2012 current_function_decl, -1);
2013 #endif
2015 #ifdef REG_PARM_STACK_SPACE
2016 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2017 #endif
2020 /* If ARGS contains entries with complex types, split the entry into two
2021 entries of the component type. Return a new list of substitutions are
2022 needed, else the old list. */
2024 static tree
2025 split_complex_args (tree args)
2027 tree p;
2029 /* Before allocating memory, check for the common case of no complex. */
2030 for (p = args; p; p = TREE_CHAIN (p))
2032 tree type = TREE_TYPE (p);
2033 if (TREE_CODE (type) == COMPLEX_TYPE
2034 && targetm.calls.split_complex_arg (type))
2035 goto found;
2037 return args;
2039 found:
2040 args = copy_list (args);
2042 for (p = args; p; p = TREE_CHAIN (p))
2044 tree type = TREE_TYPE (p);
2045 if (TREE_CODE (type) == COMPLEX_TYPE
2046 && targetm.calls.split_complex_arg (type))
2048 tree decl;
2049 tree subtype = TREE_TYPE (type);
2051 /* Rewrite the PARM_DECL's type with its component. */
2052 TREE_TYPE (p) = subtype;
2053 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2054 DECL_MODE (p) = VOIDmode;
2055 DECL_SIZE (p) = NULL;
2056 DECL_SIZE_UNIT (p) = NULL;
2057 layout_decl (p, 0);
2059 /* Build a second synthetic decl. */
2060 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2061 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2062 layout_decl (decl, 0);
2064 /* Splice it in; skip the new decl. */
2065 TREE_CHAIN (decl) = TREE_CHAIN (p);
2066 TREE_CHAIN (p) = decl;
2067 p = decl;
2071 return args;
2074 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2075 the hidden struct return argument, and (abi willing) complex args.
2076 Return the new parameter list. */
2078 static tree
2079 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2081 tree fndecl = current_function_decl;
2082 tree fntype = TREE_TYPE (fndecl);
2083 tree fnargs = DECL_ARGUMENTS (fndecl);
2085 /* If struct value address is treated as the first argument, make it so. */
2086 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2087 && ! current_function_returns_pcc_struct
2088 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2090 tree type = build_pointer_type (TREE_TYPE (fntype));
2091 tree decl;
2093 decl = build_decl (PARM_DECL, NULL_TREE, type);
2094 DECL_ARG_TYPE (decl) = type;
2095 DECL_ARTIFICIAL (decl) = 1;
2097 TREE_CHAIN (decl) = fnargs;
2098 fnargs = decl;
2099 all->function_result_decl = decl;
2102 all->orig_fnargs = fnargs;
2104 /* If the target wants to split complex arguments into scalars, do so. */
2105 if (targetm.calls.split_complex_arg)
2106 fnargs = split_complex_args (fnargs);
2108 return fnargs;
2111 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2112 data for the parameter. Incorporate ABI specifics such as pass-by-
2113 reference and type promotion. */
2115 static void
2116 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2117 struct assign_parm_data_one *data)
2119 tree nominal_type, passed_type;
2120 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2122 memset (data, 0, sizeof (*data));
2124 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2125 if (current_function_stdarg)
2127 tree tem;
2128 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2129 if (DECL_NAME (tem))
2130 break;
2131 if (tem == 0)
2132 data->last_named = true;
2135 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2136 most machines, if this is a varargs/stdarg function, then we treat
2137 the last named arg as if it were anonymous too. */
2138 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2139 data->named_arg = 1;
2140 else
2141 data->named_arg = !data->last_named;
2143 nominal_type = TREE_TYPE (parm);
2144 passed_type = DECL_ARG_TYPE (parm);
2146 /* Look out for errors propagating this far. Also, if the parameter's
2147 type is void then its value doesn't matter. */
2148 if (TREE_TYPE (parm) == error_mark_node
2149 /* This can happen after weird syntax errors
2150 or if an enum type is defined among the parms. */
2151 || TREE_CODE (parm) != PARM_DECL
2152 || passed_type == NULL
2153 || VOID_TYPE_P (nominal_type))
2155 nominal_type = passed_type = void_type_node;
2156 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2157 goto egress;
2160 /* Find mode of arg as it is passed, and mode of arg as it should be
2161 during execution of this function. */
2162 passed_mode = TYPE_MODE (passed_type);
2163 nominal_mode = TYPE_MODE (nominal_type);
2165 /* If the parm is to be passed as a transparent union, use the type of
2166 the first field for the tests below. We have already verified that
2167 the modes are the same. */
2168 if (DECL_TRANSPARENT_UNION (parm)
2169 || (TREE_CODE (passed_type) == UNION_TYPE
2170 && TYPE_TRANSPARENT_UNION (passed_type)))
2171 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2173 /* See if this arg was passed by invisible reference. */
2174 if (pass_by_reference (&all->args_so_far, passed_mode,
2175 passed_type, data->named_arg))
2177 passed_type = nominal_type = build_pointer_type (passed_type);
2178 data->passed_pointer = true;
2179 passed_mode = nominal_mode = Pmode;
2182 /* Find mode as it is passed by the ABI. */
2183 promoted_mode = passed_mode;
2184 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2186 int unsignedp = TYPE_UNSIGNED (passed_type);
2187 promoted_mode = promote_mode (passed_type, promoted_mode,
2188 &unsignedp, 1);
2191 egress:
2192 data->nominal_type = nominal_type;
2193 data->passed_type = passed_type;
2194 data->nominal_mode = nominal_mode;
2195 data->passed_mode = passed_mode;
2196 data->promoted_mode = promoted_mode;
2199 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2201 static void
2202 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2203 struct assign_parm_data_one *data, bool no_rtl)
2205 int varargs_pretend_bytes = 0;
2207 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2208 data->promoted_mode,
2209 data->passed_type,
2210 &varargs_pretend_bytes, no_rtl);
2212 /* If the back-end has requested extra stack space, record how much is
2213 needed. Do not change pretend_args_size otherwise since it may be
2214 nonzero from an earlier partial argument. */
2215 if (varargs_pretend_bytes > 0)
2216 all->pretend_args_size = varargs_pretend_bytes;
2219 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2220 the incoming location of the current parameter. */
2222 static void
2223 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2224 struct assign_parm_data_one *data)
2226 HOST_WIDE_INT pretend_bytes = 0;
2227 rtx entry_parm;
2228 bool in_regs;
2230 if (data->promoted_mode == VOIDmode)
2232 data->entry_parm = data->stack_parm = const0_rtx;
2233 return;
2236 #ifdef FUNCTION_INCOMING_ARG
2237 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2238 data->passed_type, data->named_arg);
2239 #else
2240 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2241 data->passed_type, data->named_arg);
2242 #endif
2244 if (entry_parm == 0)
2245 data->promoted_mode = data->passed_mode;
2247 /* Determine parm's home in the stack, in case it arrives in the stack
2248 or we should pretend it did. Compute the stack position and rtx where
2249 the argument arrives and its size.
2251 There is one complexity here: If this was a parameter that would
2252 have been passed in registers, but wasn't only because it is
2253 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2254 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2255 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2256 as it was the previous time. */
2257 in_regs = entry_parm != 0;
2258 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2259 in_regs = true;
2260 #endif
2261 if (!in_regs && !data->named_arg)
2263 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2265 rtx tem;
2266 #ifdef FUNCTION_INCOMING_ARG
2267 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2268 data->passed_type, true);
2269 #else
2270 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2271 data->passed_type, true);
2272 #endif
2273 in_regs = tem != NULL;
2277 /* If this parameter was passed both in registers and in the stack, use
2278 the copy on the stack. */
2279 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2280 data->passed_type))
2281 entry_parm = 0;
2283 if (entry_parm)
2285 int partial;
2287 partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
2288 data->promoted_mode,
2289 data->passed_type,
2290 data->named_arg);
2291 data->partial = partial;
2293 /* The caller might already have allocated stack space for the
2294 register parameters. */
2295 if (partial != 0 && all->reg_parm_stack_space == 0)
2297 /* Part of this argument is passed in registers and part
2298 is passed on the stack. Ask the prologue code to extend
2299 the stack part so that we can recreate the full value.
2301 PRETEND_BYTES is the size of the registers we need to store.
2302 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2303 stack space that the prologue should allocate.
2305 Internally, gcc assumes that the argument pointer is aligned
2306 to STACK_BOUNDARY bits. This is used both for alignment
2307 optimizations (see init_emit) and to locate arguments that are
2308 aligned to more than PARM_BOUNDARY bits. We must preserve this
2309 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2310 a stack boundary. */
2312 /* We assume at most one partial arg, and it must be the first
2313 argument on the stack. */
2314 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2316 pretend_bytes = partial * UNITS_PER_WORD;
2317 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2319 /* We want to align relative to the actual stack pointer, so
2320 don't include this in the stack size until later. */
2321 all->extra_pretend_bytes = all->pretend_args_size;
2325 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2326 entry_parm ? data->partial : 0, current_function_decl,
2327 &all->stack_args_size, &data->locate);
2329 /* Adjust offsets to include the pretend args. */
2330 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2331 data->locate.slot_offset.constant += pretend_bytes;
2332 data->locate.offset.constant += pretend_bytes;
2334 data->entry_parm = entry_parm;
2337 /* A subroutine of assign_parms. If there is actually space on the stack
2338 for this parm, count it in stack_args_size and return true. */
2340 static bool
2341 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2342 struct assign_parm_data_one *data)
2344 /* Trivially true if we've no incoming register. */
2345 if (data->entry_parm == NULL)
2347 /* Also true if we're partially in registers and partially not,
2348 since we've arranged to drop the entire argument on the stack. */
2349 else if (data->partial != 0)
2351 /* Also true if the target says that it's passed in both registers
2352 and on the stack. */
2353 else if (GET_CODE (data->entry_parm) == PARALLEL
2354 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2356 /* Also true if the target says that there's stack allocated for
2357 all register parameters. */
2358 else if (all->reg_parm_stack_space > 0)
2360 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2361 else
2362 return false;
2364 all->stack_args_size.constant += data->locate.size.constant;
2365 if (data->locate.size.var)
2366 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2368 return true;
2371 /* A subroutine of assign_parms. Given that this parameter is allocated
2372 stack space by the ABI, find it. */
2374 static void
2375 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2377 rtx offset_rtx, stack_parm;
2378 unsigned int align, boundary;
2380 /* If we're passing this arg using a reg, make its stack home the
2381 aligned stack slot. */
2382 if (data->entry_parm)
2383 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2384 else
2385 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2387 stack_parm = current_function_internal_arg_pointer;
2388 if (offset_rtx != const0_rtx)
2389 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2390 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2392 set_mem_attributes (stack_parm, parm, 1);
2394 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2395 align = 0;
2397 /* If we're padding upward, we know that the alignment of the slot
2398 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2399 intentionally forcing upward padding. Otherwise we have to come
2400 up with a guess at the alignment based on OFFSET_RTX. */
2401 if (data->locate.where_pad == upward || data->entry_parm)
2402 align = boundary;
2403 else if (GET_CODE (offset_rtx) == CONST_INT)
2405 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2406 align = align & -align;
2408 if (align > 0)
2409 set_mem_align (stack_parm, align);
2411 if (data->entry_parm)
2412 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2414 data->stack_parm = stack_parm;
2417 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2418 always valid and contiguous. */
2420 static void
2421 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2423 rtx entry_parm = data->entry_parm;
2424 rtx stack_parm = data->stack_parm;
2426 /* If this parm was passed part in regs and part in memory, pretend it
2427 arrived entirely in memory by pushing the register-part onto the stack.
2428 In the special case of a DImode or DFmode that is split, we could put
2429 it together in a pseudoreg directly, but for now that's not worth
2430 bothering with. */
2431 if (data->partial != 0)
2433 /* Handle calls that pass values in multiple non-contiguous
2434 locations. The Irix 6 ABI has examples of this. */
2435 if (GET_CODE (entry_parm) == PARALLEL)
2436 emit_group_store (validize_mem (stack_parm), entry_parm,
2437 data->passed_type,
2438 int_size_in_bytes (data->passed_type));
2439 else
2440 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2441 data->partial);
2443 entry_parm = stack_parm;
2446 /* If we didn't decide this parm came in a register, by default it came
2447 on the stack. */
2448 else if (entry_parm == NULL)
2449 entry_parm = stack_parm;
2451 /* When an argument is passed in multiple locations, we can't make use
2452 of this information, but we can save some copying if the whole argument
2453 is passed in a single register. */
2454 else if (GET_CODE (entry_parm) == PARALLEL
2455 && data->nominal_mode != BLKmode
2456 && data->passed_mode != BLKmode)
2458 size_t i, len = XVECLEN (entry_parm, 0);
2460 for (i = 0; i < len; i++)
2461 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2462 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2463 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2464 == data->passed_mode)
2465 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2467 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2468 break;
2472 data->entry_parm = entry_parm;
2475 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2476 always valid and properly aligned. */
2479 static void
2480 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2482 rtx stack_parm = data->stack_parm;
2484 /* If we can't trust the parm stack slot to be aligned enough for its
2485 ultimate type, don't use that slot after entry. We'll make another
2486 stack slot, if we need one. */
2487 if (STRICT_ALIGNMENT && stack_parm
2488 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2489 stack_parm = NULL;
2491 /* If parm was passed in memory, and we need to convert it on entry,
2492 don't store it back in that same slot. */
2493 else if (data->entry_parm == stack_parm
2494 && data->nominal_mode != BLKmode
2495 && data->nominal_mode != data->passed_mode)
2496 stack_parm = NULL;
2498 data->stack_parm = stack_parm;
2501 /* A subroutine of assign_parms. Return true if the current parameter
2502 should be stored as a BLKmode in the current frame. */
2504 static bool
2505 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2507 if (data->nominal_mode == BLKmode)
2508 return true;
2509 if (GET_CODE (data->entry_parm) == PARALLEL)
2510 return true;
2512 #ifdef BLOCK_REG_PADDING
2513 /* Only assign_parm_setup_block knows how to deal with register arguments
2514 that are padded at the least significant end. */
2515 if (REG_P (data->entry_parm)
2516 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2517 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2518 == (BYTES_BIG_ENDIAN ? upward : downward)))
2519 return true;
2520 #endif
2522 return false;
2525 /* A subroutine of assign_parms. Arrange for the parameter to be
2526 present and valid in DATA->STACK_RTL. */
2528 static void
2529 assign_parm_setup_block (tree parm, struct assign_parm_data_one *data)
2531 rtx entry_parm = data->entry_parm;
2532 rtx stack_parm = data->stack_parm;
2534 /* If we've a non-block object that's nevertheless passed in parts,
2535 reconstitute it in register operations rather than on the stack. */
2536 if (GET_CODE (entry_parm) == PARALLEL
2537 && data->nominal_mode != BLKmode
2538 && XVECLEN (entry_parm, 0) > 1
2539 && use_register_for_decl (parm))
2541 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2543 emit_group_store (parmreg, entry_parm, data->nominal_type,
2544 int_size_in_bytes (data->nominal_type));
2545 SET_DECL_RTL (parm, parmreg);
2546 return;
2549 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2550 calls that pass values in multiple non-contiguous locations. */
2551 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2553 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2554 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2555 rtx mem;
2557 /* Note that we will be storing an integral number of words.
2558 So we have to be careful to ensure that we allocate an
2559 integral number of words. We do this below in the
2560 assign_stack_local if space was not allocated in the argument
2561 list. If it was, this will not work if PARM_BOUNDARY is not
2562 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2563 if it becomes a problem. Exception is when BLKmode arrives
2564 with arguments not conforming to word_mode. */
2566 if (stack_parm == 0)
2568 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2569 data->stack_parm = stack_parm;
2570 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2571 set_mem_attributes (stack_parm, parm, 1);
2573 else if (GET_CODE (entry_parm) == PARALLEL)
2575 else
2576 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2578 mem = validize_mem (stack_parm);
2580 /* Handle values in multiple non-contiguous locations. */
2581 if (GET_CODE (entry_parm) == PARALLEL)
2582 emit_group_store (mem, entry_parm, data->passed_type, size);
2584 else if (size == 0)
2587 /* If SIZE is that of a mode no bigger than a word, just use
2588 that mode's store operation. */
2589 else if (size <= UNITS_PER_WORD)
2591 enum machine_mode mode
2592 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2594 if (mode != BLKmode
2595 #ifdef BLOCK_REG_PADDING
2596 && (size == UNITS_PER_WORD
2597 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2598 != (BYTES_BIG_ENDIAN ? upward : downward)))
2599 #endif
2602 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2603 emit_move_insn (change_address (mem, mode, 0), reg);
2606 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2607 machine must be aligned to the left before storing
2608 to memory. Note that the previous test doesn't
2609 handle all cases (e.g. SIZE == 3). */
2610 else if (size != UNITS_PER_WORD
2611 #ifdef BLOCK_REG_PADDING
2612 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2613 == downward)
2614 #else
2615 && BYTES_BIG_ENDIAN
2616 #endif
2619 rtx tem, x;
2620 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2621 rtx reg = gen_rtx_REG (word_mode, REGNO (data->entry_parm));
2623 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2624 build_int_cst (NULL_TREE, by),
2625 NULL_RTX, 1);
2626 tem = change_address (mem, word_mode, 0);
2627 emit_move_insn (tem, x);
2629 else
2630 move_block_from_reg (REGNO (data->entry_parm), mem,
2631 size_stored / UNITS_PER_WORD);
2633 else
2634 move_block_from_reg (REGNO (data->entry_parm), mem,
2635 size_stored / UNITS_PER_WORD);
2638 SET_DECL_RTL (parm, stack_parm);
2641 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2642 parameter. Get it there. Perform all ABI specified conversions. */
2644 static void
2645 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2646 struct assign_parm_data_one *data)
2648 rtx parmreg;
2649 enum machine_mode promoted_nominal_mode;
2650 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2651 bool did_conversion = false;
2653 /* Store the parm in a pseudoregister during the function, but we may
2654 need to do it in a wider mode. */
2656 promoted_nominal_mode
2657 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2659 parmreg = gen_reg_rtx (promoted_nominal_mode);
2661 if (!DECL_ARTIFICIAL (parm))
2662 mark_user_reg (parmreg);
2664 /* If this was an item that we received a pointer to,
2665 set DECL_RTL appropriately. */
2666 if (data->passed_pointer)
2668 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2669 set_mem_attributes (x, parm, 1);
2670 SET_DECL_RTL (parm, x);
2672 else
2673 SET_DECL_RTL (parm, parmreg);
2675 /* Copy the value into the register. */
2676 if (data->nominal_mode != data->passed_mode
2677 || promoted_nominal_mode != data->promoted_mode)
2679 int save_tree_used;
2681 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2682 mode, by the caller. We now have to convert it to
2683 NOMINAL_MODE, if different. However, PARMREG may be in
2684 a different mode than NOMINAL_MODE if it is being stored
2685 promoted.
2687 If ENTRY_PARM is a hard register, it might be in a register
2688 not valid for operating in its mode (e.g., an odd-numbered
2689 register for a DFmode). In that case, moves are the only
2690 thing valid, so we can't do a convert from there. This
2691 occurs when the calling sequence allow such misaligned
2692 usages.
2694 In addition, the conversion may involve a call, which could
2695 clobber parameters which haven't been copied to pseudo
2696 registers yet. Therefore, we must first copy the parm to
2697 a pseudo reg here, and save the conversion until after all
2698 parameters have been moved. */
2700 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2702 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2704 push_to_sequence (all->conversion_insns);
2705 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2707 if (GET_CODE (tempreg) == SUBREG
2708 && GET_MODE (tempreg) == data->nominal_mode
2709 && REG_P (SUBREG_REG (tempreg))
2710 && data->nominal_mode == data->passed_mode
2711 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2712 && GET_MODE_SIZE (GET_MODE (tempreg))
2713 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2715 /* The argument is already sign/zero extended, so note it
2716 into the subreg. */
2717 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2718 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2721 /* TREE_USED gets set erroneously during expand_assignment. */
2722 save_tree_used = TREE_USED (parm);
2723 expand_assignment (parm, make_tree (data->nominal_type, tempreg), 0);
2724 TREE_USED (parm) = save_tree_used;
2725 all->conversion_insns = get_insns ();
2726 end_sequence ();
2728 did_conversion = true;
2730 else
2731 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2733 /* If we were passed a pointer but the actual value can safely live
2734 in a register, put it in one. */
2735 if (data->passed_pointer
2736 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2737 /* If by-reference argument was promoted, demote it. */
2738 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2739 || use_register_for_decl (parm)))
2741 /* We can't use nominal_mode, because it will have been set to
2742 Pmode above. We must use the actual mode of the parm. */
2743 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2744 mark_user_reg (parmreg);
2746 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2748 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2749 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2751 push_to_sequence (all->conversion_insns);
2752 emit_move_insn (tempreg, DECL_RTL (parm));
2753 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2754 emit_move_insn (parmreg, tempreg);
2755 all->conversion_insns = get_insns();
2756 end_sequence ();
2758 did_conversion = true;
2760 else
2761 emit_move_insn (parmreg, DECL_RTL (parm));
2763 SET_DECL_RTL (parm, parmreg);
2765 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2766 now the parm. */
2767 data->stack_parm = NULL;
2770 /* If we are passed an arg by reference and it is our responsibility
2771 to make a copy, do it now.
2772 PASSED_TYPE and PASSED mode now refer to the pointer, not the
2773 original argument, so we must recreate them in the call to
2774 FUNCTION_ARG_CALLEE_COPIES. */
2775 /* ??? Later add code to handle the case that if the argument isn't
2776 modified, don't do the copy. */
2778 else if (data->passed_pointer)
2780 tree type = TREE_TYPE (data->passed_type);
2782 if (reference_callee_copied (&all->args_so_far, TYPE_MODE (type),
2783 type, data->named_arg))
2785 rtx copy;
2787 /* This sequence may involve a library call perhaps clobbering
2788 registers that haven't been copied to pseudos yet. */
2790 push_to_sequence (all->conversion_insns);
2792 if (!COMPLETE_TYPE_P (type)
2793 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2795 /* This is a variable sized object. */
2796 copy = allocate_dynamic_stack_space (expr_size (parm), NULL_RTX,
2797 TYPE_ALIGN (type));
2798 copy = gen_rtx_MEM (BLKmode, copy);
2800 else
2801 copy = assign_stack_temp (TYPE_MODE (type),
2802 int_size_in_bytes (type), 1);
2803 set_mem_attributes (copy, parm, 1);
2805 store_expr (parm, copy, 0);
2806 emit_move_insn (parmreg, XEXP (copy, 0));
2807 all->conversion_insns = get_insns ();
2808 end_sequence ();
2810 did_conversion = true;
2814 /* Mark the register as eliminable if we did no conversion and it was
2815 copied from memory at a fixed offset, and the arg pointer was not
2816 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2817 offset formed an invalid address, such memory-equivalences as we
2818 make here would screw up life analysis for it. */
2819 if (data->nominal_mode == data->passed_mode
2820 && !did_conversion
2821 && data->stack_parm != 0
2822 && MEM_P (data->stack_parm)
2823 && data->locate.offset.var == 0
2824 && reg_mentioned_p (virtual_incoming_args_rtx,
2825 XEXP (data->stack_parm, 0)))
2827 rtx linsn = get_last_insn ();
2828 rtx sinsn, set;
2830 /* Mark complex types separately. */
2831 if (GET_CODE (parmreg) == CONCAT)
2833 enum machine_mode submode
2834 = GET_MODE_INNER (GET_MODE (parmreg));
2835 int regnor = REGNO (gen_realpart (submode, parmreg));
2836 int regnoi = REGNO (gen_imagpart (submode, parmreg));
2837 rtx stackr = gen_realpart (submode, data->stack_parm);
2838 rtx stacki = gen_imagpart (submode, data->stack_parm);
2840 /* Scan backwards for the set of the real and
2841 imaginary parts. */
2842 for (sinsn = linsn; sinsn != 0;
2843 sinsn = prev_nonnote_insn (sinsn))
2845 set = single_set (sinsn);
2846 if (set == 0)
2847 continue;
2849 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2850 REG_NOTES (sinsn)
2851 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2852 REG_NOTES (sinsn));
2853 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2854 REG_NOTES (sinsn)
2855 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2856 REG_NOTES (sinsn));
2859 else if ((set = single_set (linsn)) != 0
2860 && SET_DEST (set) == parmreg)
2861 REG_NOTES (linsn)
2862 = gen_rtx_EXPR_LIST (REG_EQUIV,
2863 data->stack_parm, REG_NOTES (linsn));
2866 /* For pointer data type, suggest pointer register. */
2867 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2868 mark_reg_pointer (parmreg,
2869 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2872 /* A subroutine of assign_parms. Allocate stack space to hold the current
2873 parameter. Get it there. Perform all ABI specified conversions. */
2875 static void
2876 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2877 struct assign_parm_data_one *data)
2879 /* Value must be stored in the stack slot STACK_PARM during function
2880 execution. */
2882 if (data->promoted_mode != data->nominal_mode)
2884 /* Conversion is required. */
2885 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2887 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2889 push_to_sequence (all->conversion_insns);
2890 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2891 TYPE_UNSIGNED (TREE_TYPE (parm)));
2893 if (data->stack_parm)
2894 /* ??? This may need a big-endian conversion on sparc64. */
2895 data->stack_parm
2896 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2898 all->conversion_insns = get_insns ();
2899 end_sequence ();
2902 if (data->entry_parm != data->stack_parm)
2904 if (data->stack_parm == 0)
2906 data->stack_parm
2907 = assign_stack_local (GET_MODE (data->entry_parm),
2908 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2910 set_mem_attributes (data->stack_parm, parm, 1);
2913 if (data->promoted_mode != data->nominal_mode)
2915 push_to_sequence (all->conversion_insns);
2916 emit_move_insn (validize_mem (data->stack_parm),
2917 validize_mem (data->entry_parm));
2918 all->conversion_insns = get_insns ();
2919 end_sequence ();
2921 else
2922 emit_move_insn (validize_mem (data->stack_parm),
2923 validize_mem (data->entry_parm));
2926 SET_DECL_RTL (parm, data->stack_parm);
2929 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2930 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2932 static void
2933 assign_parms_unsplit_complex (tree orig_fnargs, tree fnargs)
2935 tree parm;
2937 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2939 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2940 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2942 rtx tmp, real, imag;
2943 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2945 real = DECL_RTL (fnargs);
2946 imag = DECL_RTL (TREE_CHAIN (fnargs));
2947 if (inner != GET_MODE (real))
2949 real = gen_lowpart_SUBREG (inner, real);
2950 imag = gen_lowpart_SUBREG (inner, imag);
2952 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2953 SET_DECL_RTL (parm, tmp);
2955 real = DECL_INCOMING_RTL (fnargs);
2956 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2957 if (inner != GET_MODE (real))
2959 real = gen_lowpart_SUBREG (inner, real);
2960 imag = gen_lowpart_SUBREG (inner, imag);
2962 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2963 set_decl_incoming_rtl (parm, tmp);
2964 fnargs = TREE_CHAIN (fnargs);
2966 else
2968 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2969 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2971 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2972 instead of the copy of decl, i.e. FNARGS. */
2973 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2974 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2977 fnargs = TREE_CHAIN (fnargs);
2981 /* Assign RTL expressions to the function's parameters. This may involve
2982 copying them into registers and using those registers as the DECL_RTL. */
2984 void
2985 assign_parms (tree fndecl)
2987 struct assign_parm_data_all all;
2988 tree fnargs, parm;
2989 rtx internal_arg_pointer;
2990 int varargs_setup = 0;
2992 /* If the reg that the virtual arg pointer will be translated into is
2993 not a fixed reg or is the stack pointer, make a copy of the virtual
2994 arg pointer, and address parms via the copy. The frame pointer is
2995 considered fixed even though it is not marked as such.
2997 The second time through, simply use ap to avoid generating rtx. */
2999 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3000 || ! (fixed_regs[ARG_POINTER_REGNUM]
3001 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3002 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3003 else
3004 internal_arg_pointer = virtual_incoming_args_rtx;
3005 current_function_internal_arg_pointer = internal_arg_pointer;
3007 assign_parms_initialize_all (&all);
3008 fnargs = assign_parms_augmented_arg_list (&all);
3010 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3012 struct assign_parm_data_one data;
3014 /* Extract the type of PARM; adjust it according to ABI. */
3015 assign_parm_find_data_types (&all, parm, &data);
3017 /* Early out for errors and void parameters. */
3018 if (data.passed_mode == VOIDmode)
3020 SET_DECL_RTL (parm, const0_rtx);
3021 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3022 continue;
3025 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3026 for the unnamed dummy argument following the last named argument.
3027 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3028 we only want to do this when we get to the actual last named
3029 argument, which will be the first time LAST_NAMED gets set. */
3030 if (data.last_named && !varargs_setup)
3032 varargs_setup = true;
3033 assign_parms_setup_varargs (&all, &data, false);
3036 /* Find out where the parameter arrives in this function. */
3037 assign_parm_find_entry_rtl (&all, &data);
3039 /* Find out where stack space for this parameter might be. */
3040 if (assign_parm_is_stack_parm (&all, &data))
3042 assign_parm_find_stack_rtl (parm, &data);
3043 assign_parm_adjust_entry_rtl (&data);
3046 /* Record permanently how this parm was passed. */
3047 set_decl_incoming_rtl (parm, data.entry_parm);
3049 /* Update info on where next arg arrives in registers. */
3050 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3051 data.passed_type, data.named_arg);
3053 assign_parm_adjust_stack_rtl (&data);
3055 if (assign_parm_setup_block_p (&data))
3056 assign_parm_setup_block (parm, &data);
3057 else if (data.passed_pointer || use_register_for_decl (parm))
3058 assign_parm_setup_reg (&all, parm, &data);
3059 else
3060 assign_parm_setup_stack (&all, parm, &data);
3063 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3064 assign_parms_unsplit_complex (all.orig_fnargs, fnargs);
3066 /* Output all parameter conversion instructions (possibly including calls)
3067 now that all parameters have been copied out of hard registers. */
3068 emit_insn (all.conversion_insns);
3070 /* If we are receiving a struct value address as the first argument, set up
3071 the RTL for the function result. As this might require code to convert
3072 the transmitted address to Pmode, we do this here to ensure that possible
3073 preliminary conversions of the address have been emitted already. */
3074 if (all.function_result_decl)
3076 tree result = DECL_RESULT (current_function_decl);
3077 rtx addr = DECL_RTL (all.function_result_decl);
3078 rtx x;
3080 if (DECL_BY_REFERENCE (result))
3081 x = addr;
3082 else
3084 addr = convert_memory_address (Pmode, addr);
3085 x = gen_rtx_MEM (DECL_MODE (result), addr);
3086 set_mem_attributes (x, result, 1);
3088 SET_DECL_RTL (result, x);
3091 /* We have aligned all the args, so add space for the pretend args. */
3092 current_function_pretend_args_size = all.pretend_args_size;
3093 all.stack_args_size.constant += all.extra_pretend_bytes;
3094 current_function_args_size = all.stack_args_size.constant;
3096 /* Adjust function incoming argument size for alignment and
3097 minimum length. */
3099 #ifdef REG_PARM_STACK_SPACE
3100 current_function_args_size = MAX (current_function_args_size,
3101 REG_PARM_STACK_SPACE (fndecl));
3102 #endif
3104 current_function_args_size
3105 = ((current_function_args_size + STACK_BYTES - 1)
3106 / STACK_BYTES) * STACK_BYTES;
3108 #ifdef ARGS_GROW_DOWNWARD
3109 current_function_arg_offset_rtx
3110 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3111 : expand_expr (size_diffop (all.stack_args_size.var,
3112 size_int (-all.stack_args_size.constant)),
3113 NULL_RTX, VOIDmode, 0));
3114 #else
3115 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3116 #endif
3118 /* See how many bytes, if any, of its args a function should try to pop
3119 on return. */
3121 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3122 current_function_args_size);
3124 /* For stdarg.h function, save info about
3125 regs and stack space used by the named args. */
3127 current_function_args_info = all.args_so_far;
3129 /* Set the rtx used for the function return value. Put this in its
3130 own variable so any optimizers that need this information don't have
3131 to include tree.h. Do this here so it gets done when an inlined
3132 function gets output. */
3134 current_function_return_rtx
3135 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3136 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3138 /* If scalar return value was computed in a pseudo-reg, or was a named
3139 return value that got dumped to the stack, copy that to the hard
3140 return register. */
3141 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3143 tree decl_result = DECL_RESULT (fndecl);
3144 rtx decl_rtl = DECL_RTL (decl_result);
3146 if (REG_P (decl_rtl)
3147 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3148 : DECL_REGISTER (decl_result))
3150 rtx real_decl_rtl;
3152 #ifdef FUNCTION_OUTGOING_VALUE
3153 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3154 fndecl);
3155 #else
3156 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3157 fndecl);
3158 #endif
3159 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3160 /* The delay slot scheduler assumes that current_function_return_rtx
3161 holds the hard register containing the return value, not a
3162 temporary pseudo. */
3163 current_function_return_rtx = real_decl_rtl;
3168 /* Indicate whether REGNO is an incoming argument to the current function
3169 that was promoted to a wider mode. If so, return the RTX for the
3170 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3171 that REGNO is promoted from and whether the promotion was signed or
3172 unsigned. */
3175 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3177 tree arg;
3179 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3180 arg = TREE_CHAIN (arg))
3181 if (REG_P (DECL_INCOMING_RTL (arg))
3182 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3183 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3185 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3186 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3188 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3189 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3190 && mode != DECL_MODE (arg))
3192 *pmode = DECL_MODE (arg);
3193 *punsignedp = unsignedp;
3194 return DECL_INCOMING_RTL (arg);
3198 return 0;
3202 /* Compute the size and offset from the start of the stacked arguments for a
3203 parm passed in mode PASSED_MODE and with type TYPE.
3205 INITIAL_OFFSET_PTR points to the current offset into the stacked
3206 arguments.
3208 The starting offset and size for this parm are returned in
3209 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3210 nonzero, the offset is that of stack slot, which is returned in
3211 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3212 padding required from the initial offset ptr to the stack slot.
3214 IN_REGS is nonzero if the argument will be passed in registers. It will
3215 never be set if REG_PARM_STACK_SPACE is not defined.
3217 FNDECL is the function in which the argument was defined.
3219 There are two types of rounding that are done. The first, controlled by
3220 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3221 list to be aligned to the specific boundary (in bits). This rounding
3222 affects the initial and starting offsets, but not the argument size.
3224 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3225 optionally rounds the size of the parm to PARM_BOUNDARY. The
3226 initial offset is not affected by this rounding, while the size always
3227 is and the starting offset may be. */
3229 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3230 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3231 callers pass in the total size of args so far as
3232 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3234 void
3235 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3236 int partial, tree fndecl ATTRIBUTE_UNUSED,
3237 struct args_size *initial_offset_ptr,
3238 struct locate_and_pad_arg_data *locate)
3240 tree sizetree;
3241 enum direction where_pad;
3242 int boundary;
3243 int reg_parm_stack_space = 0;
3244 int part_size_in_regs;
3246 #ifdef REG_PARM_STACK_SPACE
3247 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3249 /* If we have found a stack parm before we reach the end of the
3250 area reserved for registers, skip that area. */
3251 if (! in_regs)
3253 if (reg_parm_stack_space > 0)
3255 if (initial_offset_ptr->var)
3257 initial_offset_ptr->var
3258 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3259 ssize_int (reg_parm_stack_space));
3260 initial_offset_ptr->constant = 0;
3262 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3263 initial_offset_ptr->constant = reg_parm_stack_space;
3266 #endif /* REG_PARM_STACK_SPACE */
3268 part_size_in_regs = 0;
3269 if (reg_parm_stack_space == 0)
3270 part_size_in_regs = ((partial * UNITS_PER_WORD)
3271 / (PARM_BOUNDARY / BITS_PER_UNIT)
3272 * (PARM_BOUNDARY / BITS_PER_UNIT));
3274 sizetree
3275 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3276 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3277 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3278 locate->where_pad = where_pad;
3280 #ifdef ARGS_GROW_DOWNWARD
3281 locate->slot_offset.constant = -initial_offset_ptr->constant;
3282 if (initial_offset_ptr->var)
3283 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3284 initial_offset_ptr->var);
3287 tree s2 = sizetree;
3288 if (where_pad != none
3289 && (!host_integerp (sizetree, 1)
3290 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3291 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3292 SUB_PARM_SIZE (locate->slot_offset, s2);
3295 locate->slot_offset.constant += part_size_in_regs;
3297 if (!in_regs
3298 #ifdef REG_PARM_STACK_SPACE
3299 || REG_PARM_STACK_SPACE (fndecl) > 0
3300 #endif
3302 pad_to_arg_alignment (&locate->slot_offset, boundary,
3303 &locate->alignment_pad);
3305 locate->size.constant = (-initial_offset_ptr->constant
3306 - locate->slot_offset.constant);
3307 if (initial_offset_ptr->var)
3308 locate->size.var = size_binop (MINUS_EXPR,
3309 size_binop (MINUS_EXPR,
3310 ssize_int (0),
3311 initial_offset_ptr->var),
3312 locate->slot_offset.var);
3314 /* Pad_below needs the pre-rounded size to know how much to pad
3315 below. */
3316 locate->offset = locate->slot_offset;
3317 if (where_pad == downward)
3318 pad_below (&locate->offset, passed_mode, sizetree);
3320 #else /* !ARGS_GROW_DOWNWARD */
3321 if (!in_regs
3322 #ifdef REG_PARM_STACK_SPACE
3323 || REG_PARM_STACK_SPACE (fndecl) > 0
3324 #endif
3326 pad_to_arg_alignment (initial_offset_ptr, boundary,
3327 &locate->alignment_pad);
3328 locate->slot_offset = *initial_offset_ptr;
3330 #ifdef PUSH_ROUNDING
3331 if (passed_mode != BLKmode)
3332 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3333 #endif
3335 /* Pad_below needs the pre-rounded size to know how much to pad below
3336 so this must be done before rounding up. */
3337 locate->offset = locate->slot_offset;
3338 if (where_pad == downward)
3339 pad_below (&locate->offset, passed_mode, sizetree);
3341 if (where_pad != none
3342 && (!host_integerp (sizetree, 1)
3343 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3344 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3346 ADD_PARM_SIZE (locate->size, sizetree);
3348 locate->size.constant -= part_size_in_regs;
3349 #endif /* ARGS_GROW_DOWNWARD */
3352 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3353 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3355 static void
3356 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3357 struct args_size *alignment_pad)
3359 tree save_var = NULL_TREE;
3360 HOST_WIDE_INT save_constant = 0;
3361 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3362 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3364 #ifdef SPARC_STACK_BOUNDARY_HACK
3365 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3366 higher than the real alignment of %sp. However, when it does this,
3367 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3368 This is a temporary hack while the sparc port is fixed. */
3369 if (SPARC_STACK_BOUNDARY_HACK)
3370 sp_offset = 0;
3371 #endif
3373 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3375 save_var = offset_ptr->var;
3376 save_constant = offset_ptr->constant;
3379 alignment_pad->var = NULL_TREE;
3380 alignment_pad->constant = 0;
3382 if (boundary > BITS_PER_UNIT)
3384 if (offset_ptr->var)
3386 tree sp_offset_tree = ssize_int (sp_offset);
3387 tree offset = size_binop (PLUS_EXPR,
3388 ARGS_SIZE_TREE (*offset_ptr),
3389 sp_offset_tree);
3390 #ifdef ARGS_GROW_DOWNWARD
3391 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3392 #else
3393 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3394 #endif
3396 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3397 /* ARGS_SIZE_TREE includes constant term. */
3398 offset_ptr->constant = 0;
3399 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3400 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3401 save_var);
3403 else
3405 offset_ptr->constant = -sp_offset +
3406 #ifdef ARGS_GROW_DOWNWARD
3407 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3408 #else
3409 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3410 #endif
3411 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3412 alignment_pad->constant = offset_ptr->constant - save_constant;
3417 static void
3418 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3420 if (passed_mode != BLKmode)
3422 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3423 offset_ptr->constant
3424 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3425 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3426 - GET_MODE_SIZE (passed_mode));
3428 else
3430 if (TREE_CODE (sizetree) != INTEGER_CST
3431 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3433 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3434 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3435 /* Add it in. */
3436 ADD_PARM_SIZE (*offset_ptr, s2);
3437 SUB_PARM_SIZE (*offset_ptr, sizetree);
3442 /* Walk the tree of blocks describing the binding levels within a function
3443 and warn about variables the might be killed by setjmp or vfork.
3444 This is done after calling flow_analysis and before global_alloc
3445 clobbers the pseudo-regs to hard regs. */
3447 void
3448 setjmp_vars_warning (tree block)
3450 tree decl, sub;
3452 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3454 if (TREE_CODE (decl) == VAR_DECL
3455 && DECL_RTL_SET_P (decl)
3456 && REG_P (DECL_RTL (decl))
3457 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3458 warning ("%Jvariable %qD might be clobbered by %<longjmp%>"
3459 " or %<vfork%>",
3460 decl, decl);
3463 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3464 setjmp_vars_warning (sub);
3467 /* Do the appropriate part of setjmp_vars_warning
3468 but for arguments instead of local variables. */
3470 void
3471 setjmp_args_warning (void)
3473 tree decl;
3474 for (decl = DECL_ARGUMENTS (current_function_decl);
3475 decl; decl = TREE_CHAIN (decl))
3476 if (DECL_RTL (decl) != 0
3477 && REG_P (DECL_RTL (decl))
3478 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3479 warning ("%Jargument %qD might be clobbered by %<longjmp%> or %<vfork%>",
3480 decl, decl);
3484 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3485 and create duplicate blocks. */
3486 /* ??? Need an option to either create block fragments or to create
3487 abstract origin duplicates of a source block. It really depends
3488 on what optimization has been performed. */
3490 void
3491 reorder_blocks (void)
3493 tree block = DECL_INITIAL (current_function_decl);
3494 varray_type block_stack;
3496 if (block == NULL_TREE)
3497 return;
3499 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3501 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3502 clear_block_marks (block);
3504 /* Prune the old trees away, so that they don't get in the way. */
3505 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3506 BLOCK_CHAIN (block) = NULL_TREE;
3508 /* Recreate the block tree from the note nesting. */
3509 reorder_blocks_1 (get_insns (), block, &block_stack);
3510 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3512 /* Remove deleted blocks from the block fragment chains. */
3513 reorder_fix_fragments (block);
3516 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3518 void
3519 clear_block_marks (tree block)
3521 while (block)
3523 TREE_ASM_WRITTEN (block) = 0;
3524 clear_block_marks (BLOCK_SUBBLOCKS (block));
3525 block = BLOCK_CHAIN (block);
3529 static void
3530 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3532 rtx insn;
3534 for (insn = insns; insn; insn = NEXT_INSN (insn))
3536 if (NOTE_P (insn))
3538 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3540 tree block = NOTE_BLOCK (insn);
3542 /* If we have seen this block before, that means it now
3543 spans multiple address regions. Create a new fragment. */
3544 if (TREE_ASM_WRITTEN (block))
3546 tree new_block = copy_node (block);
3547 tree origin;
3549 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3550 ? BLOCK_FRAGMENT_ORIGIN (block)
3551 : block);
3552 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3553 BLOCK_FRAGMENT_CHAIN (new_block)
3554 = BLOCK_FRAGMENT_CHAIN (origin);
3555 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3557 NOTE_BLOCK (insn) = new_block;
3558 block = new_block;
3561 BLOCK_SUBBLOCKS (block) = 0;
3562 TREE_ASM_WRITTEN (block) = 1;
3563 /* When there's only one block for the entire function,
3564 current_block == block and we mustn't do this, it
3565 will cause infinite recursion. */
3566 if (block != current_block)
3568 BLOCK_SUPERCONTEXT (block) = current_block;
3569 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3570 BLOCK_SUBBLOCKS (current_block) = block;
3571 current_block = block;
3573 VARRAY_PUSH_TREE (*p_block_stack, block);
3575 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3577 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3578 VARRAY_POP (*p_block_stack);
3579 BLOCK_SUBBLOCKS (current_block)
3580 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3581 current_block = BLOCK_SUPERCONTEXT (current_block);
3587 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3588 appears in the block tree, select one of the fragments to become
3589 the new origin block. */
3591 static void
3592 reorder_fix_fragments (tree block)
3594 while (block)
3596 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3597 tree new_origin = NULL_TREE;
3599 if (dup_origin)
3601 if (! TREE_ASM_WRITTEN (dup_origin))
3603 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3605 /* Find the first of the remaining fragments. There must
3606 be at least one -- the current block. */
3607 while (! TREE_ASM_WRITTEN (new_origin))
3608 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3609 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3612 else if (! dup_origin)
3613 new_origin = block;
3615 /* Re-root the rest of the fragments to the new origin. In the
3616 case that DUP_ORIGIN was null, that means BLOCK was the origin
3617 of a chain of fragments and we want to remove those fragments
3618 that didn't make it to the output. */
3619 if (new_origin)
3621 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3622 tree chain = *pp;
3624 while (chain)
3626 if (TREE_ASM_WRITTEN (chain))
3628 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3629 *pp = chain;
3630 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3632 chain = BLOCK_FRAGMENT_CHAIN (chain);
3634 *pp = NULL_TREE;
3637 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3638 block = BLOCK_CHAIN (block);
3642 /* Reverse the order of elements in the chain T of blocks,
3643 and return the new head of the chain (old last element). */
3645 tree
3646 blocks_nreverse (tree t)
3648 tree prev = 0, decl, next;
3649 for (decl = t; decl; decl = next)
3651 next = BLOCK_CHAIN (decl);
3652 BLOCK_CHAIN (decl) = prev;
3653 prev = decl;
3655 return prev;
3658 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3659 non-NULL, list them all into VECTOR, in a depth-first preorder
3660 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3661 blocks. */
3663 static int
3664 all_blocks (tree block, tree *vector)
3666 int n_blocks = 0;
3668 while (block)
3670 TREE_ASM_WRITTEN (block) = 0;
3672 /* Record this block. */
3673 if (vector)
3674 vector[n_blocks] = block;
3676 ++n_blocks;
3678 /* Record the subblocks, and their subblocks... */
3679 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3680 vector ? vector + n_blocks : 0);
3681 block = BLOCK_CHAIN (block);
3684 return n_blocks;
3687 /* Return a vector containing all the blocks rooted at BLOCK. The
3688 number of elements in the vector is stored in N_BLOCKS_P. The
3689 vector is dynamically allocated; it is the caller's responsibility
3690 to call `free' on the pointer returned. */
3692 static tree *
3693 get_block_vector (tree block, int *n_blocks_p)
3695 tree *block_vector;
3697 *n_blocks_p = all_blocks (block, NULL);
3698 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3699 all_blocks (block, block_vector);
3701 return block_vector;
3704 static GTY(()) int next_block_index = 2;
3706 /* Set BLOCK_NUMBER for all the blocks in FN. */
3708 void
3709 number_blocks (tree fn)
3711 int i;
3712 int n_blocks;
3713 tree *block_vector;
3715 /* For SDB and XCOFF debugging output, we start numbering the blocks
3716 from 1 within each function, rather than keeping a running
3717 count. */
3718 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3719 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3720 next_block_index = 1;
3721 #endif
3723 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3725 /* The top-level BLOCK isn't numbered at all. */
3726 for (i = 1; i < n_blocks; ++i)
3727 /* We number the blocks from two. */
3728 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3730 free (block_vector);
3732 return;
3735 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3737 tree
3738 debug_find_var_in_block_tree (tree var, tree block)
3740 tree t;
3742 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3743 if (t == var)
3744 return block;
3746 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3748 tree ret = debug_find_var_in_block_tree (var, t);
3749 if (ret)
3750 return ret;
3753 return NULL_TREE;
3756 /* Allocate a function structure for FNDECL and set its contents
3757 to the defaults. */
3759 void
3760 allocate_struct_function (tree fndecl)
3762 tree result;
3763 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3765 cfun = ggc_alloc_cleared (sizeof (struct function));
3767 cfun->stack_alignment_needed = STACK_BOUNDARY;
3768 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3770 current_function_funcdef_no = funcdef_no++;
3772 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3774 init_eh_for_function ();
3776 lang_hooks.function.init (cfun);
3777 if (init_machine_status)
3778 cfun->machine = (*init_machine_status) ();
3780 if (fndecl == NULL)
3781 return;
3783 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3784 cfun->decl = fndecl;
3786 result = DECL_RESULT (fndecl);
3787 if (aggregate_value_p (result, fndecl))
3789 #ifdef PCC_STATIC_STRUCT_RETURN
3790 current_function_returns_pcc_struct = 1;
3791 #endif
3792 current_function_returns_struct = 1;
3795 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3797 current_function_stdarg
3798 = (fntype
3799 && TYPE_ARG_TYPES (fntype) != 0
3800 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3801 != void_type_node));
3804 /* Reset cfun, and other non-struct-function variables to defaults as
3805 appropriate for emitting rtl at the start of a function. */
3807 static void
3808 prepare_function_start (tree fndecl)
3810 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3811 cfun = DECL_STRUCT_FUNCTION (fndecl);
3812 else
3813 allocate_struct_function (fndecl);
3814 init_emit ();
3815 init_varasm_status (cfun);
3816 init_expr ();
3818 cse_not_expected = ! optimize;
3820 /* Caller save not needed yet. */
3821 caller_save_needed = 0;
3823 /* We haven't done register allocation yet. */
3824 reg_renumber = 0;
3826 /* Indicate that we have not instantiated virtual registers yet. */
3827 virtuals_instantiated = 0;
3829 /* Indicate that we want CONCATs now. */
3830 generating_concat_p = 1;
3832 /* Indicate we have no need of a frame pointer yet. */
3833 frame_pointer_needed = 0;
3836 /* Initialize the rtl expansion mechanism so that we can do simple things
3837 like generate sequences. This is used to provide a context during global
3838 initialization of some passes. */
3839 void
3840 init_dummy_function_start (void)
3842 prepare_function_start (NULL);
3845 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3846 and initialize static variables for generating RTL for the statements
3847 of the function. */
3849 void
3850 init_function_start (tree subr)
3852 prepare_function_start (subr);
3854 /* Prevent ever trying to delete the first instruction of a
3855 function. Also tell final how to output a linenum before the
3856 function prologue. Note linenums could be missing, e.g. when
3857 compiling a Java .class file. */
3858 if (! DECL_IS_BUILTIN (subr))
3859 emit_line_note (DECL_SOURCE_LOCATION (subr));
3861 /* Make sure first insn is a note even if we don't want linenums.
3862 This makes sure the first insn will never be deleted.
3863 Also, final expects a note to appear there. */
3864 emit_note (NOTE_INSN_DELETED);
3866 /* Warn if this value is an aggregate type,
3867 regardless of which calling convention we are using for it. */
3868 if (warn_aggregate_return
3869 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3870 warning ("function returns an aggregate");
3873 /* Make sure all values used by the optimization passes have sane
3874 defaults. */
3875 void
3876 init_function_for_compilation (void)
3878 reg_renumber = 0;
3880 /* No prologue/epilogue insns yet. */
3881 VARRAY_GROW (prologue, 0);
3882 VARRAY_GROW (epilogue, 0);
3883 VARRAY_GROW (sibcall_epilogue, 0);
3886 /* Expand a call to __main at the beginning of a possible main function. */
3888 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
3889 #undef HAS_INIT_SECTION
3890 #define HAS_INIT_SECTION
3891 #endif
3893 void
3894 expand_main_function (void)
3896 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3897 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3899 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3900 rtx tmp, seq;
3902 start_sequence ();
3903 /* Forcibly align the stack. */
3904 #ifdef STACK_GROWS_DOWNWARD
3905 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3906 stack_pointer_rtx, 1, OPTAB_WIDEN);
3907 #else
3908 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3909 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3910 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3911 stack_pointer_rtx, 1, OPTAB_WIDEN);
3912 #endif
3913 if (tmp != stack_pointer_rtx)
3914 emit_move_insn (stack_pointer_rtx, tmp);
3916 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3917 tmp = force_reg (Pmode, const0_rtx);
3918 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3919 seq = get_insns ();
3920 end_sequence ();
3922 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3923 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3924 break;
3925 if (tmp)
3926 emit_insn_before (seq, tmp);
3927 else
3928 emit_insn (seq);
3930 #endif
3932 #ifndef HAS_INIT_SECTION
3933 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3934 #endif
3937 /* The PENDING_SIZES represent the sizes of variable-sized types.
3938 Create RTL for the various sizes now (using temporary variables),
3939 so that we can refer to the sizes from the RTL we are generating
3940 for the current function. The PENDING_SIZES are a TREE_LIST. The
3941 TREE_VALUE of each node is a SAVE_EXPR. */
3943 void
3944 expand_pending_sizes (tree pending_sizes)
3946 tree tem;
3948 /* Evaluate now the sizes of any types declared among the arguments. */
3949 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
3950 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
3953 /* Start the RTL for a new function, and set variables used for
3954 emitting RTL.
3955 SUBR is the FUNCTION_DECL node.
3956 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
3957 the function's parameters, which must be run at any return statement. */
3959 void
3960 expand_function_start (tree subr)
3962 /* Make sure volatile mem refs aren't considered
3963 valid operands of arithmetic insns. */
3964 init_recog_no_volatile ();
3966 current_function_profile
3967 = (profile_flag
3968 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
3970 current_function_limit_stack
3971 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
3973 /* Make the label for return statements to jump to. Do not special
3974 case machines with special return instructions -- they will be
3975 handled later during jump, ifcvt, or epilogue creation. */
3976 return_label = gen_label_rtx ();
3978 /* Initialize rtx used to return the value. */
3979 /* Do this before assign_parms so that we copy the struct value address
3980 before any library calls that assign parms might generate. */
3982 /* Decide whether to return the value in memory or in a register. */
3983 if (aggregate_value_p (DECL_RESULT (subr), subr))
3985 /* Returning something that won't go in a register. */
3986 rtx value_address = 0;
3988 #ifdef PCC_STATIC_STRUCT_RETURN
3989 if (current_function_returns_pcc_struct)
3991 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
3992 value_address = assemble_static_space (size);
3994 else
3995 #endif
3997 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
3998 /* Expect to be passed the address of a place to store the value.
3999 If it is passed as an argument, assign_parms will take care of
4000 it. */
4001 if (sv)
4003 value_address = gen_reg_rtx (Pmode);
4004 emit_move_insn (value_address, sv);
4007 if (value_address)
4009 rtx x = value_address;
4010 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4012 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4013 set_mem_attributes (x, DECL_RESULT (subr), 1);
4015 SET_DECL_RTL (DECL_RESULT (subr), x);
4018 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4019 /* If return mode is void, this decl rtl should not be used. */
4020 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4021 else
4023 /* Compute the return values into a pseudo reg, which we will copy
4024 into the true return register after the cleanups are done. */
4026 /* In order to figure out what mode to use for the pseudo, we
4027 figure out what the mode of the eventual return register will
4028 actually be, and use that. */
4029 rtx hard_reg
4030 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
4031 subr, 1);
4033 /* Structures that are returned in registers are not aggregate_value_p,
4034 so we may see a PARALLEL or a REG. */
4035 if (REG_P (hard_reg))
4036 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
4037 else
4039 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4040 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4043 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4044 result to the real return register(s). */
4045 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4048 /* Initialize rtx for parameters and local variables.
4049 In some cases this requires emitting insns. */
4050 assign_parms (subr);
4052 /* If function gets a static chain arg, store it. */
4053 if (cfun->static_chain_decl)
4055 tree parm = cfun->static_chain_decl;
4056 rtx local = gen_reg_rtx (Pmode);
4058 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4059 SET_DECL_RTL (parm, local);
4060 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4062 emit_move_insn (local, static_chain_incoming_rtx);
4065 /* If the function receives a non-local goto, then store the
4066 bits we need to restore the frame pointer. */
4067 if (cfun->nonlocal_goto_save_area)
4069 tree t_save;
4070 rtx r_save;
4072 /* ??? We need to do this save early. Unfortunately here is
4073 before the frame variable gets declared. Help out... */
4074 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4076 t_save = build4 (ARRAY_REF, ptr_type_node,
4077 cfun->nonlocal_goto_save_area,
4078 integer_zero_node, NULL_TREE, NULL_TREE);
4079 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4080 r_save = convert_memory_address (Pmode, r_save);
4082 emit_move_insn (r_save, virtual_stack_vars_rtx);
4083 update_nonlocal_goto_save_area ();
4086 /* The following was moved from init_function_start.
4087 The move is supposed to make sdb output more accurate. */
4088 /* Indicate the beginning of the function body,
4089 as opposed to parm setup. */
4090 emit_note (NOTE_INSN_FUNCTION_BEG);
4092 if (!NOTE_P (get_last_insn ()))
4093 emit_note (NOTE_INSN_DELETED);
4094 parm_birth_insn = get_last_insn ();
4096 if (current_function_profile)
4098 #ifdef PROFILE_HOOK
4099 PROFILE_HOOK (current_function_funcdef_no);
4100 #endif
4103 /* After the display initializations is where the tail-recursion label
4104 should go, if we end up needing one. Ensure we have a NOTE here
4105 since some things (like trampolines) get placed before this. */
4106 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4108 /* Evaluate now the sizes of any types declared among the arguments. */
4109 expand_pending_sizes (nreverse (get_pending_sizes ()));
4111 /* Make sure there is a line number after the function entry setup code. */
4112 force_next_line_note ();
4115 /* Undo the effects of init_dummy_function_start. */
4116 void
4117 expand_dummy_function_end (void)
4119 /* End any sequences that failed to be closed due to syntax errors. */
4120 while (in_sequence_p ())
4121 end_sequence ();
4123 /* Outside function body, can't compute type's actual size
4124 until next function's body starts. */
4126 free_after_parsing (cfun);
4127 free_after_compilation (cfun);
4128 cfun = 0;
4131 /* Call DOIT for each hard register used as a return value from
4132 the current function. */
4134 void
4135 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4137 rtx outgoing = current_function_return_rtx;
4139 if (! outgoing)
4140 return;
4142 if (REG_P (outgoing))
4143 (*doit) (outgoing, arg);
4144 else if (GET_CODE (outgoing) == PARALLEL)
4146 int i;
4148 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4150 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4152 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4153 (*doit) (x, arg);
4158 static void
4159 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4161 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4164 void
4165 clobber_return_register (void)
4167 diddle_return_value (do_clobber_return_reg, NULL);
4169 /* In case we do use pseudo to return value, clobber it too. */
4170 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4172 tree decl_result = DECL_RESULT (current_function_decl);
4173 rtx decl_rtl = DECL_RTL (decl_result);
4174 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4176 do_clobber_return_reg (decl_rtl, NULL);
4181 static void
4182 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4184 emit_insn (gen_rtx_USE (VOIDmode, reg));
4187 void
4188 use_return_register (void)
4190 diddle_return_value (do_use_return_reg, NULL);
4193 /* Possibly warn about unused parameters. */
4194 void
4195 do_warn_unused_parameter (tree fn)
4197 tree decl;
4199 for (decl = DECL_ARGUMENTS (fn);
4200 decl; decl = TREE_CHAIN (decl))
4201 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4202 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4203 warning ("%Junused parameter %qD", decl, decl);
4206 static GTY(()) rtx initial_trampoline;
4208 /* Generate RTL for the end of the current function. */
4210 void
4211 expand_function_end (void)
4213 rtx clobber_after;
4215 /* If arg_pointer_save_area was referenced only from a nested
4216 function, we will not have initialized it yet. Do that now. */
4217 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4218 get_arg_pointer_save_area (cfun);
4220 /* If we are doing stack checking and this function makes calls,
4221 do a stack probe at the start of the function to ensure we have enough
4222 space for another stack frame. */
4223 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4225 rtx insn, seq;
4227 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4228 if (CALL_P (insn))
4230 start_sequence ();
4231 probe_stack_range (STACK_CHECK_PROTECT,
4232 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4233 seq = get_insns ();
4234 end_sequence ();
4235 emit_insn_before (seq, tail_recursion_reentry);
4236 break;
4240 /* Possibly warn about unused parameters.
4241 When frontend does unit-at-a-time, the warning is already
4242 issued at finalization time. */
4243 if (warn_unused_parameter
4244 && !lang_hooks.callgraph.expand_function)
4245 do_warn_unused_parameter (current_function_decl);
4247 /* End any sequences that failed to be closed due to syntax errors. */
4248 while (in_sequence_p ())
4249 end_sequence ();
4251 clear_pending_stack_adjust ();
4252 do_pending_stack_adjust ();
4254 /* @@@ This is a kludge. We want to ensure that instructions that
4255 may trap are not moved into the epilogue by scheduling, because
4256 we don't always emit unwind information for the epilogue.
4257 However, not all machine descriptions define a blockage insn, so
4258 emit an ASM_INPUT to act as one. */
4259 if (flag_non_call_exceptions)
4260 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4262 /* Mark the end of the function body.
4263 If control reaches this insn, the function can drop through
4264 without returning a value. */
4265 emit_note (NOTE_INSN_FUNCTION_END);
4267 /* Must mark the last line number note in the function, so that the test
4268 coverage code can avoid counting the last line twice. This just tells
4269 the code to ignore the immediately following line note, since there
4270 already exists a copy of this note somewhere above. This line number
4271 note is still needed for debugging though, so we can't delete it. */
4272 if (flag_test_coverage)
4273 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4275 /* Output a linenumber for the end of the function.
4276 SDB depends on this. */
4277 force_next_line_note ();
4278 emit_line_note (input_location);
4280 /* Before the return label (if any), clobber the return
4281 registers so that they are not propagated live to the rest of
4282 the function. This can only happen with functions that drop
4283 through; if there had been a return statement, there would
4284 have either been a return rtx, or a jump to the return label.
4286 We delay actual code generation after the current_function_value_rtx
4287 is computed. */
4288 clobber_after = get_last_insn ();
4290 /* Output the label for the actual return from the function,
4291 if one is expected. This happens either because a function epilogue
4292 is used instead of a return instruction, or because a return was done
4293 with a goto in order to run local cleanups, or because of pcc-style
4294 structure returning. */
4295 if (return_label)
4296 emit_label (return_label);
4298 /* Let except.c know where it should emit the call to unregister
4299 the function context for sjlj exceptions. */
4300 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4301 sjlj_emit_function_exit_after (get_last_insn ());
4303 /* If we had calls to alloca, and this machine needs
4304 an accurate stack pointer to exit the function,
4305 insert some code to save and restore the stack pointer. */
4306 if (! EXIT_IGNORE_STACK
4307 && current_function_calls_alloca)
4309 rtx tem = 0;
4311 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4312 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4315 /* If scalar return value was computed in a pseudo-reg, or was a named
4316 return value that got dumped to the stack, copy that to the hard
4317 return register. */
4318 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4320 tree decl_result = DECL_RESULT (current_function_decl);
4321 rtx decl_rtl = DECL_RTL (decl_result);
4323 if (REG_P (decl_rtl)
4324 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4325 : DECL_REGISTER (decl_result))
4327 rtx real_decl_rtl = current_function_return_rtx;
4329 /* This should be set in assign_parms. */
4330 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4332 /* If this is a BLKmode structure being returned in registers,
4333 then use the mode computed in expand_return. Note that if
4334 decl_rtl is memory, then its mode may have been changed,
4335 but that current_function_return_rtx has not. */
4336 if (GET_MODE (real_decl_rtl) == BLKmode)
4337 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4339 /* If a named return value dumped decl_return to memory, then
4340 we may need to re-do the PROMOTE_MODE signed/unsigned
4341 extension. */
4342 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4344 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4346 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4347 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4348 &unsignedp, 1);
4350 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4352 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4354 /* If expand_function_start has created a PARALLEL for decl_rtl,
4355 move the result to the real return registers. Otherwise, do
4356 a group load from decl_rtl for a named return. */
4357 if (GET_CODE (decl_rtl) == PARALLEL)
4358 emit_group_move (real_decl_rtl, decl_rtl);
4359 else
4360 emit_group_load (real_decl_rtl, decl_rtl,
4361 TREE_TYPE (decl_result),
4362 int_size_in_bytes (TREE_TYPE (decl_result)));
4364 else
4365 emit_move_insn (real_decl_rtl, decl_rtl);
4369 /* If returning a structure, arrange to return the address of the value
4370 in a place where debuggers expect to find it.
4372 If returning a structure PCC style,
4373 the caller also depends on this value.
4374 And current_function_returns_pcc_struct is not necessarily set. */
4375 if (current_function_returns_struct
4376 || current_function_returns_pcc_struct)
4378 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4379 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4380 rtx outgoing;
4382 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4383 type = TREE_TYPE (type);
4384 else
4385 value_address = XEXP (value_address, 0);
4387 #ifdef FUNCTION_OUTGOING_VALUE
4388 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4389 current_function_decl);
4390 #else
4391 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4392 current_function_decl);
4393 #endif
4395 /* Mark this as a function return value so integrate will delete the
4396 assignment and USE below when inlining this function. */
4397 REG_FUNCTION_VALUE_P (outgoing) = 1;
4399 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4400 value_address = convert_memory_address (GET_MODE (outgoing),
4401 value_address);
4403 emit_move_insn (outgoing, value_address);
4405 /* Show return register used to hold result (in this case the address
4406 of the result. */
4407 current_function_return_rtx = outgoing;
4410 /* If this is an implementation of throw, do what's necessary to
4411 communicate between __builtin_eh_return and the epilogue. */
4412 expand_eh_return ();
4414 /* Emit the actual code to clobber return register. */
4416 rtx seq;
4418 start_sequence ();
4419 clobber_return_register ();
4420 expand_naked_return ();
4421 seq = get_insns ();
4422 end_sequence ();
4424 emit_insn_after (seq, clobber_after);
4427 /* Output the label for the naked return from the function. */
4428 emit_label (naked_return_label);
4430 /* ??? This should no longer be necessary since stupid is no longer with
4431 us, but there are some parts of the compiler (eg reload_combine, and
4432 sh mach_dep_reorg) that still try and compute their own lifetime info
4433 instead of using the general framework. */
4434 use_return_register ();
4438 get_arg_pointer_save_area (struct function *f)
4440 rtx ret = f->x_arg_pointer_save_area;
4442 if (! ret)
4444 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4445 f->x_arg_pointer_save_area = ret;
4448 if (f == cfun && ! f->arg_pointer_save_area_init)
4450 rtx seq;
4452 /* Save the arg pointer at the beginning of the function. The
4453 generated stack slot may not be a valid memory address, so we
4454 have to check it and fix it if necessary. */
4455 start_sequence ();
4456 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4457 seq = get_insns ();
4458 end_sequence ();
4460 push_topmost_sequence ();
4461 emit_insn_after (seq, get_insns ());
4462 pop_topmost_sequence ();
4465 return ret;
4468 /* Extend a vector that records the INSN_UIDs of INSNS
4469 (a list of one or more insns). */
4471 static void
4472 record_insns (rtx insns, varray_type *vecp)
4474 int i, len;
4475 rtx tmp;
4477 tmp = insns;
4478 len = 0;
4479 while (tmp != NULL_RTX)
4481 len++;
4482 tmp = NEXT_INSN (tmp);
4485 i = VARRAY_SIZE (*vecp);
4486 VARRAY_GROW (*vecp, i + len);
4487 tmp = insns;
4488 while (tmp != NULL_RTX)
4490 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4491 i++;
4492 tmp = NEXT_INSN (tmp);
4496 /* Set the locator of the insn chain starting at INSN to LOC. */
4497 static void
4498 set_insn_locators (rtx insn, int loc)
4500 while (insn != NULL_RTX)
4502 if (INSN_P (insn))
4503 INSN_LOCATOR (insn) = loc;
4504 insn = NEXT_INSN (insn);
4508 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4509 be running after reorg, SEQUENCE rtl is possible. */
4511 static int
4512 contains (rtx insn, varray_type vec)
4514 int i, j;
4516 if (NONJUMP_INSN_P (insn)
4517 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4519 int count = 0;
4520 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4521 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4522 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4523 count++;
4524 return count;
4526 else
4528 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4529 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4530 return 1;
4532 return 0;
4536 prologue_epilogue_contains (rtx insn)
4538 if (contains (insn, prologue))
4539 return 1;
4540 if (contains (insn, epilogue))
4541 return 1;
4542 return 0;
4546 sibcall_epilogue_contains (rtx insn)
4548 if (sibcall_epilogue)
4549 return contains (insn, sibcall_epilogue);
4550 return 0;
4553 #ifdef HAVE_return
4554 /* Insert gen_return at the end of block BB. This also means updating
4555 block_for_insn appropriately. */
4557 static void
4558 emit_return_into_block (basic_block bb, rtx line_note)
4560 emit_jump_insn_after (gen_return (), BB_END (bb));
4561 if (line_note)
4562 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4564 #endif /* HAVE_return */
4566 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4568 /* These functions convert the epilogue into a variant that does not modify the
4569 stack pointer. This is used in cases where a function returns an object
4570 whose size is not known until it is computed. The called function leaves the
4571 object on the stack, leaves the stack depressed, and returns a pointer to
4572 the object.
4574 What we need to do is track all modifications and references to the stack
4575 pointer, deleting the modifications and changing the references to point to
4576 the location the stack pointer would have pointed to had the modifications
4577 taken place.
4579 These functions need to be portable so we need to make as few assumptions
4580 about the epilogue as we can. However, the epilogue basically contains
4581 three things: instructions to reset the stack pointer, instructions to
4582 reload registers, possibly including the frame pointer, and an
4583 instruction to return to the caller.
4585 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4586 We also make no attempt to validate the insns we make since if they are
4587 invalid, we probably can't do anything valid. The intent is that these
4588 routines get "smarter" as more and more machines start to use them and
4589 they try operating on different epilogues.
4591 We use the following structure to track what the part of the epilogue that
4592 we've already processed has done. We keep two copies of the SP equivalence,
4593 one for use during the insn we are processing and one for use in the next
4594 insn. The difference is because one part of a PARALLEL may adjust SP
4595 and the other may use it. */
4597 struct epi_info
4599 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4600 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4601 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4602 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4603 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4604 should be set to once we no longer need
4605 its value. */
4606 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4607 for registers. */
4610 static void handle_epilogue_set (rtx, struct epi_info *);
4611 static void update_epilogue_consts (rtx, rtx, void *);
4612 static void emit_equiv_load (struct epi_info *);
4614 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4615 no modifications to the stack pointer. Return the new list of insns. */
4617 static rtx
4618 keep_stack_depressed (rtx insns)
4620 int j;
4621 struct epi_info info;
4622 rtx insn, next;
4624 /* If the epilogue is just a single instruction, it must be OK as is. */
4625 if (NEXT_INSN (insns) == NULL_RTX)
4626 return insns;
4628 /* Otherwise, start a sequence, initialize the information we have, and
4629 process all the insns we were given. */
4630 start_sequence ();
4632 info.sp_equiv_reg = stack_pointer_rtx;
4633 info.sp_offset = 0;
4634 info.equiv_reg_src = 0;
4636 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4637 info.const_equiv[j] = 0;
4639 insn = insns;
4640 next = NULL_RTX;
4641 while (insn != NULL_RTX)
4643 next = NEXT_INSN (insn);
4645 if (!INSN_P (insn))
4647 add_insn (insn);
4648 insn = next;
4649 continue;
4652 /* If this insn references the register that SP is equivalent to and
4653 we have a pending load to that register, we must force out the load
4654 first and then indicate we no longer know what SP's equivalent is. */
4655 if (info.equiv_reg_src != 0
4656 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4658 emit_equiv_load (&info);
4659 info.sp_equiv_reg = 0;
4662 info.new_sp_equiv_reg = info.sp_equiv_reg;
4663 info.new_sp_offset = info.sp_offset;
4665 /* If this is a (RETURN) and the return address is on the stack,
4666 update the address and change to an indirect jump. */
4667 if (GET_CODE (PATTERN (insn)) == RETURN
4668 || (GET_CODE (PATTERN (insn)) == PARALLEL
4669 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4671 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4672 rtx base = 0;
4673 HOST_WIDE_INT offset = 0;
4674 rtx jump_insn, jump_set;
4676 /* If the return address is in a register, we can emit the insn
4677 unchanged. Otherwise, it must be a MEM and we see what the
4678 base register and offset are. In any case, we have to emit any
4679 pending load to the equivalent reg of SP, if any. */
4680 if (REG_P (retaddr))
4682 emit_equiv_load (&info);
4683 add_insn (insn);
4684 insn = next;
4685 continue;
4687 else
4689 rtx ret_ptr;
4690 gcc_assert (MEM_P (retaddr));
4692 ret_ptr = XEXP (retaddr, 0);
4694 if (REG_P (ret_ptr))
4696 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4697 offset = 0;
4699 else
4701 gcc_assert (GET_CODE (ret_ptr) == PLUS
4702 && REG_P (XEXP (ret_ptr, 0))
4703 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4704 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4705 offset = INTVAL (XEXP (ret_ptr, 1));
4709 /* If the base of the location containing the return pointer
4710 is SP, we must update it with the replacement address. Otherwise,
4711 just build the necessary MEM. */
4712 retaddr = plus_constant (base, offset);
4713 if (base == stack_pointer_rtx)
4714 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4715 plus_constant (info.sp_equiv_reg,
4716 info.sp_offset));
4718 retaddr = gen_rtx_MEM (Pmode, retaddr);
4720 /* If there is a pending load to the equivalent register for SP
4721 and we reference that register, we must load our address into
4722 a scratch register and then do that load. */
4723 if (info.equiv_reg_src
4724 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4726 unsigned int regno;
4727 rtx reg;
4729 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4730 if (HARD_REGNO_MODE_OK (regno, Pmode)
4731 && !fixed_regs[regno]
4732 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4733 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4734 regno)
4735 && !refers_to_regno_p (regno,
4736 regno + hard_regno_nregs[regno]
4737 [Pmode],
4738 info.equiv_reg_src, NULL)
4739 && info.const_equiv[regno] == 0)
4740 break;
4742 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4744 reg = gen_rtx_REG (Pmode, regno);
4745 emit_move_insn (reg, retaddr);
4746 retaddr = reg;
4749 emit_equiv_load (&info);
4750 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4752 /* Show the SET in the above insn is a RETURN. */
4753 jump_set = single_set (jump_insn);
4754 gcc_assert (jump_set);
4755 SET_IS_RETURN_P (jump_set) = 1;
4758 /* If SP is not mentioned in the pattern and its equivalent register, if
4759 any, is not modified, just emit it. Otherwise, if neither is set,
4760 replace the reference to SP and emit the insn. If none of those are
4761 true, handle each SET individually. */
4762 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4763 && (info.sp_equiv_reg == stack_pointer_rtx
4764 || !reg_set_p (info.sp_equiv_reg, insn)))
4765 add_insn (insn);
4766 else if (! reg_set_p (stack_pointer_rtx, insn)
4767 && (info.sp_equiv_reg == stack_pointer_rtx
4768 || !reg_set_p (info.sp_equiv_reg, insn)))
4770 int changed;
4772 changed = validate_replace_rtx (stack_pointer_rtx,
4773 plus_constant (info.sp_equiv_reg,
4774 info.sp_offset),
4775 insn);
4776 gcc_assert (changed);
4778 add_insn (insn);
4780 else if (GET_CODE (PATTERN (insn)) == SET)
4781 handle_epilogue_set (PATTERN (insn), &info);
4782 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4784 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4785 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4786 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4788 else
4789 add_insn (insn);
4791 info.sp_equiv_reg = info.new_sp_equiv_reg;
4792 info.sp_offset = info.new_sp_offset;
4794 /* Now update any constants this insn sets. */
4795 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4796 insn = next;
4799 insns = get_insns ();
4800 end_sequence ();
4801 return insns;
4804 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4805 structure that contains information about what we've seen so far. We
4806 process this SET by either updating that data or by emitting one or
4807 more insns. */
4809 static void
4810 handle_epilogue_set (rtx set, struct epi_info *p)
4812 /* First handle the case where we are setting SP. Record what it is being
4813 set from. If unknown, abort. */
4814 if (reg_set_p (stack_pointer_rtx, set))
4816 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
4818 if (GET_CODE (SET_SRC (set)) == PLUS)
4820 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4821 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4822 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4823 else
4825 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
4826 && (REGNO (XEXP (SET_SRC (set), 1))
4827 < FIRST_PSEUDO_REGISTER)
4828 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4829 p->new_sp_offset
4830 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4833 else
4834 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4836 /* If we are adjusting SP, we adjust from the old data. */
4837 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4839 p->new_sp_equiv_reg = p->sp_equiv_reg;
4840 p->new_sp_offset += p->sp_offset;
4843 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
4845 return;
4848 /* Next handle the case where we are setting SP's equivalent register.
4849 If we already have a value to set it to, abort. We could update, but
4850 there seems little point in handling that case. Note that we have
4851 to allow for the case where we are setting the register set in
4852 the previous part of a PARALLEL inside a single insn. But use the
4853 old offset for any updates within this insn. We must allow for the case
4854 where the register is being set in a different (usually wider) mode than
4855 Pmode). */
4856 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4858 gcc_assert (!p->equiv_reg_src
4859 && REG_P (p->new_sp_equiv_reg)
4860 && REG_P (SET_DEST (set))
4861 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
4862 <= BITS_PER_WORD)
4863 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
4864 p->equiv_reg_src
4865 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4866 plus_constant (p->sp_equiv_reg,
4867 p->sp_offset));
4870 /* Otherwise, replace any references to SP in the insn to its new value
4871 and emit the insn. */
4872 else
4874 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4875 plus_constant (p->sp_equiv_reg,
4876 p->sp_offset));
4877 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4878 plus_constant (p->sp_equiv_reg,
4879 p->sp_offset));
4880 emit_insn (set);
4884 /* Update the tracking information for registers set to constants. */
4886 static void
4887 update_epilogue_consts (rtx dest, rtx x, void *data)
4889 struct epi_info *p = (struct epi_info *) data;
4890 rtx new;
4892 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4893 return;
4895 /* If we are either clobbering a register or doing a partial set,
4896 show we don't know the value. */
4897 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4898 p->const_equiv[REGNO (dest)] = 0;
4900 /* If we are setting it to a constant, record that constant. */
4901 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4902 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4904 /* If this is a binary operation between a register we have been tracking
4905 and a constant, see if we can compute a new constant value. */
4906 else if (ARITHMETIC_P (SET_SRC (x))
4907 && REG_P (XEXP (SET_SRC (x), 0))
4908 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4909 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4910 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4911 && 0 != (new = simplify_binary_operation
4912 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4913 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4914 XEXP (SET_SRC (x), 1)))
4915 && GET_CODE (new) == CONST_INT)
4916 p->const_equiv[REGNO (dest)] = new;
4918 /* Otherwise, we can't do anything with this value. */
4919 else
4920 p->const_equiv[REGNO (dest)] = 0;
4923 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4925 static void
4926 emit_equiv_load (struct epi_info *p)
4928 if (p->equiv_reg_src != 0)
4930 rtx dest = p->sp_equiv_reg;
4932 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
4933 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
4934 REGNO (p->sp_equiv_reg));
4936 emit_move_insn (dest, p->equiv_reg_src);
4937 p->equiv_reg_src = 0;
4940 #endif
4942 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4943 this into place with notes indicating where the prologue ends and where
4944 the epilogue begins. Update the basic block information when possible. */
4946 void
4947 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
4949 int inserted = 0;
4950 edge e;
4951 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4952 rtx seq;
4953 #endif
4954 #ifdef HAVE_prologue
4955 rtx prologue_end = NULL_RTX;
4956 #endif
4957 #if defined (HAVE_epilogue) || defined(HAVE_return)
4958 rtx epilogue_end = NULL_RTX;
4959 #endif
4960 edge_iterator ei;
4962 #ifdef HAVE_prologue
4963 if (HAVE_prologue)
4965 start_sequence ();
4966 seq = gen_prologue ();
4967 emit_insn (seq);
4969 /* Retain a map of the prologue insns. */
4970 record_insns (seq, &prologue);
4971 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
4973 seq = get_insns ();
4974 end_sequence ();
4975 set_insn_locators (seq, prologue_locator);
4977 /* Can't deal with multiple successors of the entry block
4978 at the moment. Function should always have at least one
4979 entry point. */
4980 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1);
4982 insert_insn_on_edge (seq, EDGE_SUCC (ENTRY_BLOCK_PTR, 0));
4983 inserted = 1;
4985 #endif
4987 /* If the exit block has no non-fake predecessors, we don't need
4988 an epilogue. */
4989 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
4990 if ((e->flags & EDGE_FAKE) == 0)
4991 break;
4992 if (e == NULL)
4993 goto epilogue_done;
4995 #ifdef HAVE_return
4996 if (optimize && HAVE_return)
4998 /* If we're allowed to generate a simple return instruction,
4999 then by definition we don't need a full epilogue. Examine
5000 the block that falls through to EXIT. If it does not
5001 contain any code, examine its predecessors and try to
5002 emit (conditional) return instructions. */
5004 basic_block last;
5005 rtx label;
5007 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5008 if (e->flags & EDGE_FALLTHRU)
5009 break;
5010 if (e == NULL)
5011 goto epilogue_done;
5012 last = e->src;
5014 /* Verify that there are no active instructions in the last block. */
5015 label = BB_END (last);
5016 while (label && !LABEL_P (label))
5018 if (active_insn_p (label))
5019 break;
5020 label = PREV_INSN (label);
5023 if (BB_HEAD (last) == label && LABEL_P (label))
5025 edge_iterator ei2;
5026 rtx epilogue_line_note = NULL_RTX;
5028 /* Locate the line number associated with the closing brace,
5029 if we can find one. */
5030 for (seq = get_last_insn ();
5031 seq && ! active_insn_p (seq);
5032 seq = PREV_INSN (seq))
5033 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5035 epilogue_line_note = seq;
5036 break;
5039 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5041 basic_block bb = e->src;
5042 rtx jump;
5044 if (bb == ENTRY_BLOCK_PTR)
5046 ei_next (&ei2);
5047 continue;
5050 jump = BB_END (bb);
5051 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5053 ei_next (&ei2);
5054 continue;
5057 /* If we have an unconditional jump, we can replace that
5058 with a simple return instruction. */
5059 if (simplejump_p (jump))
5061 emit_return_into_block (bb, epilogue_line_note);
5062 delete_insn (jump);
5065 /* If we have a conditional jump, we can try to replace
5066 that with a conditional return instruction. */
5067 else if (condjump_p (jump))
5069 if (! redirect_jump (jump, 0, 0))
5071 ei_next (&ei2);
5072 continue;
5075 /* If this block has only one successor, it both jumps
5076 and falls through to the fallthru block, so we can't
5077 delete the edge. */
5078 if (EDGE_COUNT (bb->succs) == 1)
5080 ei_next (&ei2);
5081 continue;
5084 else
5086 ei_next (&ei2);
5087 continue;
5090 /* Fix up the CFG for the successful change we just made. */
5091 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5094 /* Emit a return insn for the exit fallthru block. Whether
5095 this is still reachable will be determined later. */
5097 emit_barrier_after (BB_END (last));
5098 emit_return_into_block (last, epilogue_line_note);
5099 epilogue_end = BB_END (last);
5100 EDGE_SUCC (last, 0)->flags &= ~EDGE_FALLTHRU;
5101 goto epilogue_done;
5104 #endif
5105 /* Find the edge that falls through to EXIT. Other edges may exist
5106 due to RETURN instructions, but those don't need epilogues.
5107 There really shouldn't be a mixture -- either all should have
5108 been converted or none, however... */
5110 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5111 if (e->flags & EDGE_FALLTHRU)
5112 break;
5113 if (e == NULL)
5114 goto epilogue_done;
5116 #ifdef HAVE_epilogue
5117 if (HAVE_epilogue)
5119 start_sequence ();
5120 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5122 seq = gen_epilogue ();
5124 #ifdef INCOMING_RETURN_ADDR_RTX
5125 /* If this function returns with the stack depressed and we can support
5126 it, massage the epilogue to actually do that. */
5127 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5128 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5129 seq = keep_stack_depressed (seq);
5130 #endif
5132 emit_jump_insn (seq);
5134 /* Retain a map of the epilogue insns. */
5135 record_insns (seq, &epilogue);
5136 set_insn_locators (seq, epilogue_locator);
5138 seq = get_insns ();
5139 end_sequence ();
5141 insert_insn_on_edge (seq, e);
5142 inserted = 1;
5144 else
5145 #endif
5147 basic_block cur_bb;
5149 if (! next_active_insn (BB_END (e->src)))
5150 goto epilogue_done;
5151 /* We have a fall-through edge to the exit block, the source is not
5152 at the end of the function, and there will be an assembler epilogue
5153 at the end of the function.
5154 We can't use force_nonfallthru here, because that would try to
5155 use return. Inserting a jump 'by hand' is extremely messy, so
5156 we take advantage of cfg_layout_finalize using
5157 fixup_fallthru_exit_predecessor. */
5158 cfg_layout_initialize (0);
5159 FOR_EACH_BB (cur_bb)
5160 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5161 cur_bb->rbi->next = cur_bb->next_bb;
5162 cfg_layout_finalize ();
5164 epilogue_done:
5166 if (inserted)
5167 commit_edge_insertions ();
5169 #ifdef HAVE_sibcall_epilogue
5170 /* Emit sibling epilogues before any sibling call sites. */
5171 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5173 basic_block bb = e->src;
5174 rtx insn = BB_END (bb);
5175 rtx i;
5176 rtx newinsn;
5178 if (!CALL_P (insn)
5179 || ! SIBLING_CALL_P (insn))
5181 ei_next (&ei);
5182 continue;
5185 start_sequence ();
5186 emit_insn (gen_sibcall_epilogue ());
5187 seq = get_insns ();
5188 end_sequence ();
5190 /* Retain a map of the epilogue insns. Used in life analysis to
5191 avoid getting rid of sibcall epilogue insns. Do this before we
5192 actually emit the sequence. */
5193 record_insns (seq, &sibcall_epilogue);
5194 set_insn_locators (seq, epilogue_locator);
5196 i = PREV_INSN (insn);
5197 newinsn = emit_insn_before (seq, insn);
5198 ei_next (&ei);
5200 #endif
5202 #ifdef HAVE_prologue
5203 /* This is probably all useless now that we use locators. */
5204 if (prologue_end)
5206 rtx insn, prev;
5208 /* GDB handles `break f' by setting a breakpoint on the first
5209 line note after the prologue. Which means (1) that if
5210 there are line number notes before where we inserted the
5211 prologue we should move them, and (2) we should generate a
5212 note before the end of the first basic block, if there isn't
5213 one already there.
5215 ??? This behavior is completely broken when dealing with
5216 multiple entry functions. We simply place the note always
5217 into first basic block and let alternate entry points
5218 to be missed.
5221 for (insn = prologue_end; insn; insn = prev)
5223 prev = PREV_INSN (insn);
5224 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5226 /* Note that we cannot reorder the first insn in the
5227 chain, since rest_of_compilation relies on that
5228 remaining constant. */
5229 if (prev == NULL)
5230 break;
5231 reorder_insns (insn, insn, prologue_end);
5235 /* Find the last line number note in the first block. */
5236 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5237 insn != prologue_end && insn;
5238 insn = PREV_INSN (insn))
5239 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5240 break;
5242 /* If we didn't find one, make a copy of the first line number
5243 we run across. */
5244 if (! insn)
5246 for (insn = next_active_insn (prologue_end);
5247 insn;
5248 insn = PREV_INSN (insn))
5249 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5251 emit_note_copy_after (insn, prologue_end);
5252 break;
5256 #endif
5257 #ifdef HAVE_epilogue
5258 if (epilogue_end)
5260 rtx insn, next;
5262 /* Similarly, move any line notes that appear after the epilogue.
5263 There is no need, however, to be quite so anal about the existence
5264 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5265 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5266 info generation. */
5267 for (insn = epilogue_end; insn; insn = next)
5269 next = NEXT_INSN (insn);
5270 if (NOTE_P (insn)
5271 && (NOTE_LINE_NUMBER (insn) > 0
5272 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5273 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5274 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5277 #endif
5280 /* Reposition the prologue-end and epilogue-begin notes after instruction
5281 scheduling and delayed branch scheduling. */
5283 void
5284 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5286 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5287 rtx insn, last, note;
5288 int len;
5290 if ((len = VARRAY_SIZE (prologue)) > 0)
5292 last = 0, note = 0;
5294 /* Scan from the beginning until we reach the last prologue insn.
5295 We apparently can't depend on basic_block_{head,end} after
5296 reorg has run. */
5297 for (insn = f; insn; insn = NEXT_INSN (insn))
5299 if (NOTE_P (insn))
5301 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5302 note = insn;
5304 else if (contains (insn, prologue))
5306 last = insn;
5307 if (--len == 0)
5308 break;
5312 if (last)
5314 /* Find the prologue-end note if we haven't already, and
5315 move it to just after the last prologue insn. */
5316 if (note == 0)
5318 for (note = last; (note = NEXT_INSN (note));)
5319 if (NOTE_P (note)
5320 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5321 break;
5324 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5325 if (LABEL_P (last))
5326 last = NEXT_INSN (last);
5327 reorder_insns (note, note, last);
5331 if ((len = VARRAY_SIZE (epilogue)) > 0)
5333 last = 0, note = 0;
5335 /* Scan from the end until we reach the first epilogue insn.
5336 We apparently can't depend on basic_block_{head,end} after
5337 reorg has run. */
5338 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5340 if (NOTE_P (insn))
5342 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5343 note = insn;
5345 else if (contains (insn, epilogue))
5347 last = insn;
5348 if (--len == 0)
5349 break;
5353 if (last)
5355 /* Find the epilogue-begin note if we haven't already, and
5356 move it to just before the first epilogue insn. */
5357 if (note == 0)
5359 for (note = insn; (note = PREV_INSN (note));)
5360 if (NOTE_P (note)
5361 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5362 break;
5365 if (PREV_INSN (last) != note)
5366 reorder_insns (note, note, PREV_INSN (last));
5369 #endif /* HAVE_prologue or HAVE_epilogue */
5372 /* Called once, at initialization, to initialize function.c. */
5374 void
5375 init_function_once (void)
5377 VARRAY_INT_INIT (prologue, 0, "prologue");
5378 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5379 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5382 /* Resets insn_block_boundaries array. */
5384 void
5385 reset_block_changes (void)
5387 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5388 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5391 /* Record the boundary for BLOCK. */
5392 void
5393 record_block_change (tree block)
5395 int i, n;
5396 tree last_block;
5398 if (!block)
5399 return;
5401 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5402 VARRAY_POP (cfun->ib_boundaries_block);
5403 n = get_max_uid ();
5404 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5405 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5407 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5410 /* Finishes record of boundaries. */
5411 void finalize_block_changes (void)
5413 record_block_change (DECL_INITIAL (current_function_decl));
5416 /* For INSN return the BLOCK it belongs to. */
5417 void
5418 check_block_change (rtx insn, tree *block)
5420 unsigned uid = INSN_UID (insn);
5422 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5423 return;
5425 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5428 /* Releases the ib_boundaries_block records. */
5429 void
5430 free_block_changes (void)
5432 cfun->ib_boundaries_block = NULL;
5435 /* Returns the name of the current function. */
5436 const char *
5437 current_function_name (void)
5439 return lang_hooks.decl_printable_name (cfun->decl, 2);
5442 #include "gt-function.h"