1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
28 #include "double-int.h"
35 #include "fold-const.h"
36 #include "stringpool.h"
37 #include "stor-layout.h"
42 #include "hard-reg-set.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
48 #include "statistics.h"
50 #include "fixed-value.h"
57 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
59 #include "insn-codes.h"
64 #include "typeclass.h"
66 #include "langhooks.h"
69 #include "tree-iterator.h"
71 #include "dominance.h"
73 #include "basic-block.h"
74 #include "tree-ssa-alias.h"
75 #include "internal-fn.h"
76 #include "gimple-expr.h"
79 #include "gimple-ssa.h"
81 #include "plugin-api.h"
84 #include "tree-ssanames.h"
86 #include "common/common-target.h"
89 #include "diagnostic.h"
90 #include "tree-ssa-live.h"
91 #include "tree-outof-ssa.h"
92 #include "target-globals.h"
94 #include "tree-ssa-address.h"
95 #include "cfgexpand.h"
97 #include "tree-chkp.h"
102 /* If this is nonzero, we do not bother generating VOLATILE
103 around volatile memory references, and we are willing to
104 output indirect addresses. If cse is to follow, we reject
105 indirect addresses so a useful potential cse is generated;
106 if it is used only once, instruction combination will produce
107 the same indirect address eventually. */
108 int cse_not_expected
;
110 /* This structure is used by move_by_pieces to describe the move to
112 struct move_by_pieces_d
121 int explicit_inc_from
;
122 unsigned HOST_WIDE_INT len
;
123 HOST_WIDE_INT offset
;
127 /* This structure is used by store_by_pieces to describe the clear to
130 struct store_by_pieces_d
136 unsigned HOST_WIDE_INT len
;
137 HOST_WIDE_INT offset
;
138 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
);
143 static void move_by_pieces_1 (insn_gen_fn
, machine_mode
,
144 struct move_by_pieces_d
*);
145 static bool block_move_libcall_safe_for_call_parm (void);
146 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
,
147 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
148 unsigned HOST_WIDE_INT
);
149 static tree
emit_block_move_libcall_fn (int);
150 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
151 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, machine_mode
);
152 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
153 static void store_by_pieces_1 (struct store_by_pieces_d
*, unsigned int);
154 static void store_by_pieces_2 (insn_gen_fn
, machine_mode
,
155 struct store_by_pieces_d
*);
156 static tree
clear_storage_libcall_fn (int);
157 static rtx_insn
*compress_float_constant (rtx
, rtx
);
158 static rtx
get_subtarget (rtx
);
159 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
160 HOST_WIDE_INT
, machine_mode
,
161 tree
, int, alias_set_type
);
162 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
163 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
,
164 unsigned HOST_WIDE_INT
, unsigned HOST_WIDE_INT
,
165 machine_mode
, tree
, alias_set_type
, bool);
167 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
169 static int is_aligning_offset (const_tree
, const_tree
);
170 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
171 static rtx
do_store_flag (sepops
, rtx
, machine_mode
);
173 static void emit_single_push_insn (machine_mode
, rtx
, tree
);
175 static void do_tablejump (rtx
, machine_mode
, rtx
, rtx
, rtx
, int);
176 static rtx
const_vector_from_tree (tree
);
177 static tree
tree_expr_size (const_tree
);
178 static HOST_WIDE_INT
int_expr_size (tree
);
181 /* This is run to set up which modes can be used
182 directly in memory and to initialize the block move optab. It is run
183 at the beginning of compilation and when the target is reinitialized. */
186 init_expr_target (void)
194 /* Try indexing by frame ptr and try by stack ptr.
195 It is known that on the Convex the stack ptr isn't a valid index.
196 With luck, one or the other is valid on any machine. */
197 mem
= gen_rtx_MEM (word_mode
, stack_pointer_rtx
);
198 mem1
= gen_rtx_MEM (word_mode
, frame_pointer_rtx
);
200 /* A scratch register we can modify in-place below to avoid
201 useless RTL allocations. */
202 reg
= gen_rtx_REG (word_mode
, FIRST_PSEUDO_REGISTER
);
204 insn
= rtx_alloc (INSN
);
205 pat
= gen_rtx_SET (NULL_RTX
, NULL_RTX
);
206 PATTERN (insn
) = pat
;
208 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
209 mode
= (machine_mode
) ((int) mode
+ 1))
213 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
214 PUT_MODE (mem
, mode
);
215 PUT_MODE (mem1
, mode
);
217 /* See if there is some register that can be used in this mode and
218 directly loaded or stored from memory. */
220 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
221 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
222 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
225 if (! HARD_REGNO_MODE_OK (regno
, mode
))
228 set_mode_and_regno (reg
, mode
, regno
);
231 SET_DEST (pat
) = reg
;
232 if (recog (pat
, insn
, &num_clobbers
) >= 0)
233 direct_load
[(int) mode
] = 1;
235 SET_SRC (pat
) = mem1
;
236 SET_DEST (pat
) = reg
;
237 if (recog (pat
, insn
, &num_clobbers
) >= 0)
238 direct_load
[(int) mode
] = 1;
241 SET_DEST (pat
) = mem
;
242 if (recog (pat
, insn
, &num_clobbers
) >= 0)
243 direct_store
[(int) mode
] = 1;
246 SET_DEST (pat
) = mem1
;
247 if (recog (pat
, insn
, &num_clobbers
) >= 0)
248 direct_store
[(int) mode
] = 1;
252 mem
= gen_rtx_MEM (VOIDmode
, gen_raw_REG (Pmode
, FIRST_PSEUDO_REGISTER
));
254 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
255 mode
= GET_MODE_WIDER_MODE (mode
))
257 machine_mode srcmode
;
258 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
259 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
263 ic
= can_extend_p (mode
, srcmode
, 0);
264 if (ic
== CODE_FOR_nothing
)
267 PUT_MODE (mem
, srcmode
);
269 if (insn_operand_matches (ic
, 1, mem
))
270 float_extend_from_mem
[mode
][srcmode
] = true;
275 /* This is run at the start of compiling a function. */
280 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
283 /* Copy data from FROM to TO, where the machine modes are not the same.
284 Both modes may be integer, or both may be floating, or both may be
286 UNSIGNEDP should be nonzero if FROM is an unsigned type.
287 This causes zero-extension instead of sign-extension. */
290 convert_move (rtx to
, rtx from
, int unsignedp
)
292 machine_mode to_mode
= GET_MODE (to
);
293 machine_mode from_mode
= GET_MODE (from
);
294 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
295 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
299 /* rtx code for making an equivalent value. */
300 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
301 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
304 gcc_assert (to_real
== from_real
);
305 gcc_assert (to_mode
!= BLKmode
);
306 gcc_assert (from_mode
!= BLKmode
);
308 /* If the source and destination are already the same, then there's
313 /* If FROM is a SUBREG that indicates that we have already done at least
314 the required extension, strip it. We don't handle such SUBREGs as
317 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
318 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from
)))
319 >= GET_MODE_PRECISION (to_mode
))
320 && SUBREG_CHECK_PROMOTED_SIGN (from
, unsignedp
))
321 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
323 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
325 if (to_mode
== from_mode
326 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
328 emit_move_insn (to
, from
);
332 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
334 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
336 if (VECTOR_MODE_P (to_mode
))
337 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
339 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
341 emit_move_insn (to
, from
);
345 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
347 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
348 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
358 gcc_assert ((GET_MODE_PRECISION (from_mode
)
359 != GET_MODE_PRECISION (to_mode
))
360 || (DECIMAL_FLOAT_MODE_P (from_mode
)
361 != DECIMAL_FLOAT_MODE_P (to_mode
)));
363 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
364 /* Conversion between decimal float and binary float, same size. */
365 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
366 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
371 /* Try converting directly if the insn is supported. */
373 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
374 if (code
!= CODE_FOR_nothing
)
376 emit_unop_insn (code
, to
, from
,
377 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
381 /* Otherwise use a libcall. */
382 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
384 /* Is this conversion implemented yet? */
385 gcc_assert (libcall
);
388 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
390 insns
= get_insns ();
392 emit_libcall_block (insns
, to
, value
,
393 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
395 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
399 /* Handle pointer conversion. */ /* SPEE 900220. */
400 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
404 if (GET_MODE_PRECISION (from_mode
) > GET_MODE_PRECISION (to_mode
))
411 if (convert_optab_handler (ctab
, to_mode
, from_mode
)
414 emit_unop_insn (convert_optab_handler (ctab
, to_mode
, from_mode
),
420 /* Targets are expected to provide conversion insns between PxImode and
421 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
422 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
424 machine_mode full_mode
425 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
427 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)
428 != CODE_FOR_nothing
);
430 if (full_mode
!= from_mode
)
431 from
= convert_to_mode (full_mode
, from
, unsignedp
);
432 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
),
436 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
439 machine_mode full_mode
440 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
441 convert_optab ctab
= unsignedp
? zext_optab
: sext_optab
;
442 enum insn_code icode
;
444 icode
= convert_optab_handler (ctab
, full_mode
, from_mode
);
445 gcc_assert (icode
!= CODE_FOR_nothing
);
447 if (to_mode
== full_mode
)
449 emit_unop_insn (icode
, to
, from
, UNKNOWN
);
453 new_from
= gen_reg_rtx (full_mode
);
454 emit_unop_insn (icode
, new_from
, from
, UNKNOWN
);
456 /* else proceed to integer conversions below. */
457 from_mode
= full_mode
;
461 /* Make sure both are fixed-point modes or both are not. */
462 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
463 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
464 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
466 /* If we widen from_mode to to_mode and they are in the same class,
467 we won't saturate the result.
468 Otherwise, always saturate the result to play safe. */
469 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
470 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
471 expand_fixed_convert (to
, from
, 0, 0);
473 expand_fixed_convert (to
, from
, 0, 1);
477 /* Now both modes are integers. */
479 /* Handle expanding beyond a word. */
480 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
)
481 && GET_MODE_PRECISION (to_mode
) > BITS_PER_WORD
)
488 machine_mode lowpart_mode
;
489 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
491 /* Try converting directly if the insn is supported. */
492 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
495 /* If FROM is a SUBREG, put it into a register. Do this
496 so that we always generate the same set of insns for
497 better cse'ing; if an intermediate assignment occurred,
498 we won't be doing the operation directly on the SUBREG. */
499 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
500 from
= force_reg (from_mode
, from
);
501 emit_unop_insn (code
, to
, from
, equiv_code
);
504 /* Next, try converting via full word. */
505 else if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
506 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
507 != CODE_FOR_nothing
))
509 rtx word_to
= gen_reg_rtx (word_mode
);
512 if (reg_overlap_mentioned_p (to
, from
))
513 from
= force_reg (from_mode
, from
);
516 convert_move (word_to
, from
, unsignedp
);
517 emit_unop_insn (code
, to
, word_to
, equiv_code
);
521 /* No special multiword conversion insn; do it by hand. */
524 /* Since we will turn this into a no conflict block, we must ensure the
525 the source does not overlap the target so force it into an isolated
526 register when maybe so. Likewise for any MEM input, since the
527 conversion sequence might require several references to it and we
528 must ensure we're getting the same value every time. */
530 if (MEM_P (from
) || reg_overlap_mentioned_p (to
, from
))
531 from
= force_reg (from_mode
, from
);
533 /* Get a copy of FROM widened to a word, if necessary. */
534 if (GET_MODE_PRECISION (from_mode
) < BITS_PER_WORD
)
535 lowpart_mode
= word_mode
;
537 lowpart_mode
= from_mode
;
539 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
541 lowpart
= gen_lowpart (lowpart_mode
, to
);
542 emit_move_insn (lowpart
, lowfrom
);
544 /* Compute the value to put in each remaining word. */
546 fill_value
= const0_rtx
;
548 fill_value
= emit_store_flag_force (gen_reg_rtx (word_mode
),
549 LT
, lowfrom
, const0_rtx
,
550 lowpart_mode
, 0, -1);
552 /* Fill the remaining words. */
553 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
555 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
556 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
558 gcc_assert (subword
);
560 if (fill_value
!= subword
)
561 emit_move_insn (subword
, fill_value
);
564 insns
= get_insns ();
571 /* Truncating multi-word to a word or less. */
572 if (GET_MODE_PRECISION (from_mode
) > BITS_PER_WORD
573 && GET_MODE_PRECISION (to_mode
) <= BITS_PER_WORD
)
576 && ! MEM_VOLATILE_P (from
)
577 && direct_load
[(int) to_mode
]
578 && ! mode_dependent_address_p (XEXP (from
, 0),
579 MEM_ADDR_SPACE (from
)))
581 || GET_CODE (from
) == SUBREG
))
582 from
= force_reg (from_mode
, from
);
583 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
587 /* Now follow all the conversions between integers
588 no more than a word long. */
590 /* For truncation, usually we can just refer to FROM in a narrower mode. */
591 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
592 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, from_mode
))
595 && ! MEM_VOLATILE_P (from
)
596 && direct_load
[(int) to_mode
]
597 && ! mode_dependent_address_p (XEXP (from
, 0),
598 MEM_ADDR_SPACE (from
)))
600 || GET_CODE (from
) == SUBREG
))
601 from
= force_reg (from_mode
, from
);
602 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
603 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
604 from
= copy_to_reg (from
);
605 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
609 /* Handle extension. */
610 if (GET_MODE_PRECISION (to_mode
) > GET_MODE_PRECISION (from_mode
))
612 /* Convert directly if that works. */
613 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
616 emit_unop_insn (code
, to
, from
, equiv_code
);
621 machine_mode intermediate
;
625 /* Search for a mode to convert via. */
626 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
627 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
628 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
630 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
631 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode
, intermediate
)))
632 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
633 != CODE_FOR_nothing
))
635 convert_move (to
, convert_to_mode (intermediate
, from
,
636 unsignedp
), unsignedp
);
640 /* No suitable intermediate mode.
641 Generate what we need with shifts. */
642 shift_amount
= (GET_MODE_PRECISION (to_mode
)
643 - GET_MODE_PRECISION (from_mode
));
644 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
645 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
647 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
650 emit_move_insn (to
, tmp
);
655 /* Support special truncate insns for certain modes. */
656 if (convert_optab_handler (trunc_optab
, to_mode
,
657 from_mode
) != CODE_FOR_nothing
)
659 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
),
664 /* Handle truncation of volatile memrefs, and so on;
665 the things that couldn't be truncated directly,
666 and for which there was no special instruction.
668 ??? Code above formerly short-circuited this, for most integer
669 mode pairs, with a force_reg in from_mode followed by a recursive
670 call to this routine. Appears always to have been wrong. */
671 if (GET_MODE_PRECISION (to_mode
) < GET_MODE_PRECISION (from_mode
))
673 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
674 emit_move_insn (to
, temp
);
678 /* Mode combination is not recognized. */
682 /* Return an rtx for a value that would result
683 from converting X to mode MODE.
684 Both X and MODE may be floating, or both integer.
685 UNSIGNEDP is nonzero if X is an unsigned value.
686 This can be done by referring to a part of X in place
687 or by copying to a new temporary with conversion. */
690 convert_to_mode (machine_mode mode
, rtx x
, int unsignedp
)
692 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
695 /* Return an rtx for a value that would result
696 from converting X from mode OLDMODE to mode MODE.
697 Both modes may be floating, or both integer.
698 UNSIGNEDP is nonzero if X is an unsigned value.
700 This can be done by referring to a part of X in place
701 or by copying to a new temporary with conversion.
703 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
706 convert_modes (machine_mode mode
, machine_mode oldmode
, rtx x
, int unsignedp
)
710 /* If FROM is a SUBREG that indicates that we have already done at least
711 the required extension, strip it. */
713 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
714 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
715 && SUBREG_CHECK_PROMOTED_SIGN (x
, unsignedp
))
716 x
= gen_lowpart (mode
, SUBREG_REG (x
));
718 if (GET_MODE (x
) != VOIDmode
)
719 oldmode
= GET_MODE (x
);
724 if (CONST_SCALAR_INT_P (x
) && GET_MODE_CLASS (mode
) == MODE_INT
)
726 /* If the caller did not tell us the old mode, then there is not
727 much to do with respect to canonicalization. We have to
728 assume that all the bits are significant. */
729 if (GET_MODE_CLASS (oldmode
) != MODE_INT
)
730 oldmode
= MAX_MODE_INT
;
731 wide_int w
= wide_int::from (std::make_pair (x
, oldmode
),
732 GET_MODE_PRECISION (mode
),
733 unsignedp
? UNSIGNED
: SIGNED
);
734 return immed_wide_int_const (w
, mode
);
737 /* We can do this with a gen_lowpart if both desired and current modes
738 are integer, and this is either a constant integer, a register, or a
740 if (GET_MODE_CLASS (mode
) == MODE_INT
741 && GET_MODE_CLASS (oldmode
) == MODE_INT
742 && GET_MODE_PRECISION (mode
) <= GET_MODE_PRECISION (oldmode
)
743 && ((MEM_P (x
) && !MEM_VOLATILE_P (x
) && direct_load
[(int) mode
])
745 && (!HARD_REGISTER_P (x
)
746 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
747 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
)))))
749 return gen_lowpart (mode
, x
);
751 /* Converting from integer constant into mode is always equivalent to an
753 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
755 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
756 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
759 temp
= gen_reg_rtx (mode
);
760 convert_move (temp
, x
, unsignedp
);
764 /* Return the largest alignment we can use for doing a move (or store)
765 of MAX_PIECES. ALIGN is the largest alignment we could use. */
768 alignment_for_piecewise_move (unsigned int max_pieces
, unsigned int align
)
772 tmode
= mode_for_size (max_pieces
* BITS_PER_UNIT
, MODE_INT
, 1);
773 if (align
>= GET_MODE_ALIGNMENT (tmode
))
774 align
= GET_MODE_ALIGNMENT (tmode
);
777 machine_mode tmode
, xmode
;
779 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
781 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
782 if (GET_MODE_SIZE (tmode
) > max_pieces
783 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
786 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
792 /* Return the widest integer mode no wider than SIZE. If no such mode
793 can be found, return VOIDmode. */
796 widest_int_mode_for_size (unsigned int size
)
798 machine_mode tmode
, mode
= VOIDmode
;
800 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
801 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
802 if (GET_MODE_SIZE (tmode
) < size
)
808 /* Determine whether the LEN bytes can be moved by using several move
809 instructions. Return nonzero if a call to move_by_pieces should
813 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
816 return targetm
.use_by_pieces_infrastructure_p (len
, align
, MOVE_BY_PIECES
,
817 optimize_insn_for_speed_p ());
820 /* Generate several move instructions to copy LEN bytes from block FROM to
821 block TO. (These are MEM rtx's with BLKmode).
823 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
824 used to push FROM to the stack.
826 ALIGN is maximum stack alignment we can assume.
828 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
829 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
833 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
834 unsigned int align
, int endp
)
836 struct move_by_pieces_d data
;
837 machine_mode to_addr_mode
;
838 machine_mode from_addr_mode
= get_address_mode (from
);
839 rtx to_addr
, from_addr
= XEXP (from
, 0);
840 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
841 enum insn_code icode
;
843 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
846 data
.from_addr
= from_addr
;
849 to_addr_mode
= get_address_mode (to
);
850 to_addr
= XEXP (to
, 0);
853 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
854 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
856 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
860 to_addr_mode
= VOIDmode
;
864 if (STACK_GROWS_DOWNWARD
)
869 data
.to_addr
= to_addr
;
872 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
873 || GET_CODE (from_addr
) == POST_INC
874 || GET_CODE (from_addr
) == POST_DEC
);
876 data
.explicit_inc_from
= 0;
877 data
.explicit_inc_to
= 0;
878 if (data
.reverse
) data
.offset
= len
;
881 /* If copying requires more than two move insns,
882 copy addresses to registers (to make displacements shorter)
883 and use post-increment if available. */
884 if (!(data
.autinc_from
&& data
.autinc_to
)
885 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
887 /* Find the mode of the largest move...
888 MODE might not be used depending on the definitions of the
889 USE_* macros below. */
890 machine_mode mode ATTRIBUTE_UNUSED
891 = widest_int_mode_for_size (max_size
);
893 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
895 data
.from_addr
= copy_to_mode_reg (from_addr_mode
,
896 plus_constant (from_addr_mode
,
898 data
.autinc_from
= 1;
899 data
.explicit_inc_from
= -1;
901 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
903 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
904 data
.autinc_from
= 1;
905 data
.explicit_inc_from
= 1;
907 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
908 data
.from_addr
= copy_to_mode_reg (from_addr_mode
, from_addr
);
909 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
911 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
912 plus_constant (to_addr_mode
,
915 data
.explicit_inc_to
= -1;
917 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
919 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
921 data
.explicit_inc_to
= 1;
923 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
924 data
.to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
927 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
929 /* First move what we can in the largest integer mode, then go to
930 successively smaller modes. */
932 while (max_size
> 1 && data
.len
> 0)
934 machine_mode mode
= widest_int_mode_for_size (max_size
);
936 if (mode
== VOIDmode
)
939 icode
= optab_handler (mov_optab
, mode
);
940 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
941 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
943 max_size
= GET_MODE_SIZE (mode
);
946 /* The code above should have handled everything. */
947 gcc_assert (!data
.len
);
953 gcc_assert (!data
.reverse
);
958 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
959 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
961 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
962 plus_constant (to_addr_mode
,
966 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
973 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
981 /* Return number of insns required to move L bytes by pieces.
982 ALIGN (in bits) is maximum alignment we can assume. */
984 unsigned HOST_WIDE_INT
985 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
986 unsigned int max_size
)
988 unsigned HOST_WIDE_INT n_insns
= 0;
990 align
= alignment_for_piecewise_move (MOVE_MAX_PIECES
, align
);
992 while (max_size
> 1 && l
> 0)
995 enum insn_code icode
;
997 mode
= widest_int_mode_for_size (max_size
);
999 if (mode
== VOIDmode
)
1002 icode
= optab_handler (mov_optab
, mode
);
1003 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1004 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1006 max_size
= GET_MODE_SIZE (mode
);
1013 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1014 with move instructions for mode MODE. GENFUN is the gen_... function
1015 to make a move insn for that mode. DATA has all the other info. */
1018 move_by_pieces_1 (insn_gen_fn genfun
, machine_mode mode
,
1019 struct move_by_pieces_d
*data
)
1021 unsigned int size
= GET_MODE_SIZE (mode
);
1022 rtx to1
= NULL_RTX
, from1
;
1024 while (data
->len
>= size
)
1027 data
->offset
-= size
;
1031 if (data
->autinc_to
)
1032 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1035 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1038 if (data
->autinc_from
)
1039 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1042 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1044 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1045 emit_insn (gen_add2_insn (data
->to_addr
,
1046 gen_int_mode (-(HOST_WIDE_INT
) size
,
1047 GET_MODE (data
->to_addr
))));
1048 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1049 emit_insn (gen_add2_insn (data
->from_addr
,
1050 gen_int_mode (-(HOST_WIDE_INT
) size
,
1051 GET_MODE (data
->from_addr
))));
1054 emit_insn ((*genfun
) (to1
, from1
));
1057 #ifdef PUSH_ROUNDING
1058 emit_single_push_insn (mode
, from1
, NULL
);
1064 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1065 emit_insn (gen_add2_insn (data
->to_addr
,
1067 GET_MODE (data
->to_addr
))));
1068 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1069 emit_insn (gen_add2_insn (data
->from_addr
,
1071 GET_MODE (data
->from_addr
))));
1073 if (! data
->reverse
)
1074 data
->offset
+= size
;
1080 /* Emit code to move a block Y to a block X. This may be done with
1081 string-move instructions, with multiple scalar move instructions,
1082 or with a library call.
1084 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1085 SIZE is an rtx that says how long they are.
1086 ALIGN is the maximum alignment we can assume they have.
1087 METHOD describes what kind of copy this is, and what mechanisms may be used.
1088 MIN_SIZE is the minimal size of block to move
1089 MAX_SIZE is the maximal size of block to move, if it can not be represented
1090 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1092 Return the address of the new block, if memcpy is called and returns it,
1096 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1097 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1098 unsigned HOST_WIDE_INT min_size
,
1099 unsigned HOST_WIDE_INT max_size
,
1100 unsigned HOST_WIDE_INT probable_max_size
)
1107 if (CONST_INT_P (size
)
1108 && INTVAL (size
) == 0)
1113 case BLOCK_OP_NORMAL
:
1114 case BLOCK_OP_TAILCALL
:
1115 may_use_call
= true;
1118 case BLOCK_OP_CALL_PARM
:
1119 may_use_call
= block_move_libcall_safe_for_call_parm ();
1121 /* Make inhibit_defer_pop nonzero around the library call
1122 to force it to pop the arguments right away. */
1126 case BLOCK_OP_NO_LIBCALL
:
1127 may_use_call
= false;
1134 gcc_assert (MEM_P (x
) && MEM_P (y
));
1135 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1136 gcc_assert (align
>= BITS_PER_UNIT
);
1138 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1139 block copy is more efficient for other large modes, e.g. DCmode. */
1140 x
= adjust_address (x
, BLKmode
, 0);
1141 y
= adjust_address (y
, BLKmode
, 0);
1143 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1144 can be incorrect is coming from __builtin_memcpy. */
1145 if (CONST_INT_P (size
))
1147 x
= shallow_copy_rtx (x
);
1148 y
= shallow_copy_rtx (y
);
1149 set_mem_size (x
, INTVAL (size
));
1150 set_mem_size (y
, INTVAL (size
));
1153 if (CONST_INT_P (size
) && can_move_by_pieces (INTVAL (size
), align
))
1154 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1155 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1156 expected_align
, expected_size
,
1157 min_size
, max_size
, probable_max_size
))
1159 else if (may_use_call
1160 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x
))
1161 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y
)))
1163 /* Since x and y are passed to a libcall, mark the corresponding
1164 tree EXPR as addressable. */
1165 tree y_expr
= MEM_EXPR (y
);
1166 tree x_expr
= MEM_EXPR (x
);
1168 mark_addressable (y_expr
);
1170 mark_addressable (x_expr
);
1171 retval
= emit_block_move_via_libcall (x
, y
, size
,
1172 method
== BLOCK_OP_TAILCALL
);
1176 emit_block_move_via_loop (x
, y
, size
, align
);
1178 if (method
== BLOCK_OP_CALL_PARM
)
1185 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1187 unsigned HOST_WIDE_INT max
, min
= 0;
1188 if (GET_CODE (size
) == CONST_INT
)
1189 min
= max
= UINTVAL (size
);
1191 max
= GET_MODE_MASK (GET_MODE (size
));
1192 return emit_block_move_hints (x
, y
, size
, method
, 0, -1,
1196 /* A subroutine of emit_block_move. Returns true if calling the
1197 block move libcall will not clobber any parameters which may have
1198 already been placed on the stack. */
1201 block_move_libcall_safe_for_call_parm (void)
1203 #if defined (REG_PARM_STACK_SPACE)
1207 /* If arguments are pushed on the stack, then they're safe. */
1211 /* If registers go on the stack anyway, any argument is sure to clobber
1212 an outgoing argument. */
1213 #if defined (REG_PARM_STACK_SPACE)
1214 fn
= emit_block_move_libcall_fn (false);
1215 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1216 depend on its argument. */
1218 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1219 && REG_PARM_STACK_SPACE (fn
) != 0)
1223 /* If any argument goes in memory, then it might clobber an outgoing
1226 CUMULATIVE_ARGS args_so_far_v
;
1227 cumulative_args_t args_so_far
;
1230 fn
= emit_block_move_libcall_fn (false);
1231 INIT_CUMULATIVE_ARGS (args_so_far_v
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1232 args_so_far
= pack_cumulative_args (&args_so_far_v
);
1234 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1235 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1237 machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1238 rtx tmp
= targetm
.calls
.function_arg (args_so_far
, mode
,
1240 if (!tmp
|| !REG_P (tmp
))
1242 if (targetm
.calls
.arg_partial_bytes (args_so_far
, mode
, NULL
, 1))
1244 targetm
.calls
.function_arg_advance (args_so_far
, mode
,
1251 /* A subroutine of emit_block_move. Expand a movmem pattern;
1252 return true if successful. */
1255 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1256 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
1257 unsigned HOST_WIDE_INT min_size
,
1258 unsigned HOST_WIDE_INT max_size
,
1259 unsigned HOST_WIDE_INT probable_max_size
)
1261 int save_volatile_ok
= volatile_ok
;
1264 if (expected_align
< align
)
1265 expected_align
= align
;
1266 if (expected_size
!= -1)
1268 if ((unsigned HOST_WIDE_INT
)expected_size
> probable_max_size
)
1269 expected_size
= probable_max_size
;
1270 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
1271 expected_size
= min_size
;
1274 /* Since this is a move insn, we don't care about volatility. */
1277 /* Try the most limited insn first, because there's no point
1278 including more than one in the machine description unless
1279 the more limited one has some advantage. */
1281 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1282 mode
= GET_MODE_WIDER_MODE (mode
))
1284 enum insn_code code
= direct_optab_handler (movmem_optab
, mode
);
1286 if (code
!= CODE_FOR_nothing
1287 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1288 here because if SIZE is less than the mode mask, as it is
1289 returned by the macro, it will definitely be less than the
1290 actual mode mask. Since SIZE is within the Pmode address
1291 space, we limit MODE to Pmode. */
1292 && ((CONST_INT_P (size
)
1293 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1294 <= (GET_MODE_MASK (mode
) >> 1)))
1295 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
1296 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
1298 struct expand_operand ops
[9];
1301 /* ??? When called via emit_block_move_for_call, it'd be
1302 nice if there were some way to inform the backend, so
1303 that it doesn't fail the expansion because it thinks
1304 emitting the libcall would be more efficient. */
1305 nops
= insn_data
[(int) code
].n_generator_args
;
1306 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
1308 create_fixed_operand (&ops
[0], x
);
1309 create_fixed_operand (&ops
[1], y
);
1310 /* The check above guarantees that this size conversion is valid. */
1311 create_convert_operand_to (&ops
[2], size
, mode
, true);
1312 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
1315 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
1316 create_integer_operand (&ops
[5], expected_size
);
1320 create_integer_operand (&ops
[6], min_size
);
1321 /* If we can not represent the maximal size,
1322 make parameter NULL. */
1323 if ((HOST_WIDE_INT
) max_size
!= -1)
1324 create_integer_operand (&ops
[7], max_size
);
1326 create_fixed_operand (&ops
[7], NULL
);
1330 /* If we can not represent the maximal size,
1331 make parameter NULL. */
1332 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
1333 create_integer_operand (&ops
[8], probable_max_size
);
1335 create_fixed_operand (&ops
[8], NULL
);
1337 if (maybe_expand_insn (code
, nops
, ops
))
1339 volatile_ok
= save_volatile_ok
;
1345 volatile_ok
= save_volatile_ok
;
1349 /* A subroutine of emit_block_move. Expand a call to memcpy.
1350 Return the return value from memcpy, 0 otherwise. */
1353 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1355 rtx dst_addr
, src_addr
;
1356 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1357 machine_mode size_mode
;
1360 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1361 pseudos. We can then place those new pseudos into a VAR_DECL and
1364 dst_addr
= copy_addr_to_reg (XEXP (dst
, 0));
1365 src_addr
= copy_addr_to_reg (XEXP (src
, 0));
1367 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1368 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1370 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1371 src_tree
= make_tree (ptr_type_node
, src_addr
);
1373 size_mode
= TYPE_MODE (sizetype
);
1375 size
= convert_to_mode (size_mode
, size
, 1);
1376 size
= copy_to_mode_reg (size_mode
, size
);
1378 /* It is incorrect to use the libcall calling conventions to call
1379 memcpy in this context. This could be a user call to memcpy and
1380 the user may wish to examine the return value from memcpy. For
1381 targets where libcalls and normal calls have different conventions
1382 for returning pointers, we could end up generating incorrect code. */
1384 size_tree
= make_tree (sizetype
, size
);
1386 fn
= emit_block_move_libcall_fn (true);
1387 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1388 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1390 retval
= expand_normal (call_expr
);
1395 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1396 for the function we use for block copies. */
1398 static GTY(()) tree block_move_fn
;
1401 init_block_move_fn (const char *asmspec
)
1405 tree args
, fn
, attrs
, attr_args
;
1407 fn
= get_identifier ("memcpy");
1408 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1409 const_ptr_type_node
, sizetype
,
1412 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
1413 DECL_EXTERNAL (fn
) = 1;
1414 TREE_PUBLIC (fn
) = 1;
1415 DECL_ARTIFICIAL (fn
) = 1;
1416 TREE_NOTHROW (fn
) = 1;
1417 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1418 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1420 attr_args
= build_tree_list (NULL_TREE
, build_string (1, "1"));
1421 attrs
= tree_cons (get_identifier ("fn spec"), attr_args
, NULL
);
1423 decl_attributes (&fn
, attrs
, ATTR_FLAG_BUILT_IN
);
1429 set_user_assembler_name (block_move_fn
, asmspec
);
1433 emit_block_move_libcall_fn (int for_call
)
1435 static bool emitted_extern
;
1438 init_block_move_fn (NULL
);
1440 if (for_call
&& !emitted_extern
)
1442 emitted_extern
= true;
1443 make_decl_rtl (block_move_fn
);
1446 return block_move_fn
;
1449 /* A subroutine of emit_block_move. Copy the data via an explicit
1450 loop. This is used only when libcalls are forbidden. */
1451 /* ??? It'd be nice to copy in hunks larger than QImode. */
1454 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1455 unsigned int align ATTRIBUTE_UNUSED
)
1457 rtx_code_label
*cmp_label
, *top_label
;
1458 rtx iter
, x_addr
, y_addr
, tmp
;
1459 machine_mode x_addr_mode
= get_address_mode (x
);
1460 machine_mode y_addr_mode
= get_address_mode (y
);
1461 machine_mode iter_mode
;
1463 iter_mode
= GET_MODE (size
);
1464 if (iter_mode
== VOIDmode
)
1465 iter_mode
= word_mode
;
1467 top_label
= gen_label_rtx ();
1468 cmp_label
= gen_label_rtx ();
1469 iter
= gen_reg_rtx (iter_mode
);
1471 emit_move_insn (iter
, const0_rtx
);
1473 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1474 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1475 do_pending_stack_adjust ();
1477 emit_jump (cmp_label
);
1478 emit_label (top_label
);
1480 tmp
= convert_modes (x_addr_mode
, iter_mode
, iter
, true);
1481 x_addr
= simplify_gen_binary (PLUS
, x_addr_mode
, x_addr
, tmp
);
1483 if (x_addr_mode
!= y_addr_mode
)
1484 tmp
= convert_modes (y_addr_mode
, iter_mode
, iter
, true);
1485 y_addr
= simplify_gen_binary (PLUS
, y_addr_mode
, y_addr
, tmp
);
1487 x
= change_address (x
, QImode
, x_addr
);
1488 y
= change_address (y
, QImode
, y_addr
);
1490 emit_move_insn (x
, y
);
1492 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1493 true, OPTAB_LIB_WIDEN
);
1495 emit_move_insn (iter
, tmp
);
1497 emit_label (cmp_label
);
1499 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1500 true, top_label
, REG_BR_PROB_BASE
* 90 / 100);
1503 /* Copy all or part of a value X into registers starting at REGNO.
1504 The number of registers to be filled is NREGS. */
1507 move_block_to_reg (int regno
, rtx x
, int nregs
, machine_mode mode
)
1510 #ifdef HAVE_load_multiple
1518 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
1519 x
= validize_mem (force_const_mem (mode
, x
));
1521 /* See if the machine can do this with a load multiple insn. */
1522 #ifdef HAVE_load_multiple
1523 if (HAVE_load_multiple
)
1525 last
= get_last_insn ();
1526 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1534 delete_insns_since (last
);
1538 for (i
= 0; i
< nregs
; i
++)
1539 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1540 operand_subword_force (x
, i
, mode
));
1543 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1544 The number of registers to be filled is NREGS. */
1547 move_block_from_reg (int regno
, rtx x
, int nregs
)
1554 /* See if the machine can do this with a store multiple insn. */
1555 #ifdef HAVE_store_multiple
1556 if (HAVE_store_multiple
)
1558 rtx_insn
*last
= get_last_insn ();
1559 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1567 delete_insns_since (last
);
1571 for (i
= 0; i
< nregs
; i
++)
1573 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1577 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1581 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1582 ORIG, where ORIG is a non-consecutive group of registers represented by
1583 a PARALLEL. The clone is identical to the original except in that the
1584 original set of registers is replaced by a new set of pseudo registers.
1585 The new set has the same modes as the original set. */
1588 gen_group_rtx (rtx orig
)
1593 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1595 length
= XVECLEN (orig
, 0);
1596 tmps
= XALLOCAVEC (rtx
, length
);
1598 /* Skip a NULL entry in first slot. */
1599 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1604 for (; i
< length
; i
++)
1606 machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1607 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1609 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1612 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1615 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1616 except that values are placed in TMPS[i], and must later be moved
1617 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1620 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1624 machine_mode m
= GET_MODE (orig_src
);
1626 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1629 && !SCALAR_INT_MODE_P (m
)
1630 && !MEM_P (orig_src
)
1631 && GET_CODE (orig_src
) != CONCAT
)
1633 machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1634 if (imode
== BLKmode
)
1635 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
);
1637 src
= gen_reg_rtx (imode
);
1638 if (imode
!= BLKmode
)
1639 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1640 emit_move_insn (src
, orig_src
);
1641 /* ...and back again. */
1642 if (imode
!= BLKmode
)
1643 src
= gen_lowpart (imode
, src
);
1644 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1648 /* Check for a NULL entry, used to indicate that the parameter goes
1649 both on the stack and in registers. */
1650 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1655 /* Process the pieces. */
1656 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1658 machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1659 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1660 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1663 /* Handle trailing fragments that run over the size of the struct. */
1664 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1666 /* Arrange to shift the fragment to where it belongs.
1667 extract_bit_field loads to the lsb of the reg. */
1669 #ifdef BLOCK_REG_PADDING
1670 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1671 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1676 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1677 bytelen
= ssize
- bytepos
;
1678 gcc_assert (bytelen
> 0);
1681 /* If we won't be loading directly from memory, protect the real source
1682 from strange tricks we might play; but make sure that the source can
1683 be loaded directly into the destination. */
1685 if (!MEM_P (orig_src
)
1686 && (!CONSTANT_P (orig_src
)
1687 || (GET_MODE (orig_src
) != mode
1688 && GET_MODE (orig_src
) != VOIDmode
)))
1690 if (GET_MODE (orig_src
) == VOIDmode
)
1691 src
= gen_reg_rtx (mode
);
1693 src
= gen_reg_rtx (GET_MODE (orig_src
));
1695 emit_move_insn (src
, orig_src
);
1698 /* Optimize the access just a bit. */
1700 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1701 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1702 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1703 && bytelen
== GET_MODE_SIZE (mode
))
1705 tmps
[i
] = gen_reg_rtx (mode
);
1706 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1708 else if (COMPLEX_MODE_P (mode
)
1709 && GET_MODE (src
) == mode
1710 && bytelen
== GET_MODE_SIZE (mode
))
1711 /* Let emit_move_complex do the bulk of the work. */
1713 else if (GET_CODE (src
) == CONCAT
)
1715 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1716 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1718 if ((bytepos
== 0 && bytelen
== slen0
)
1719 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1721 /* The following assumes that the concatenated objects all
1722 have the same size. In this case, a simple calculation
1723 can be used to determine the object and the bit field
1725 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1726 if (! CONSTANT_P (tmps
[i
])
1727 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1728 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1729 (bytepos
% slen0
) * BITS_PER_UNIT
,
1730 1, NULL_RTX
, mode
, mode
);
1736 gcc_assert (!bytepos
);
1737 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1738 emit_move_insn (mem
, src
);
1739 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1740 0, 1, NULL_RTX
, mode
, mode
);
1743 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1744 SIMD register, which is currently broken. While we get GCC
1745 to emit proper RTL for these cases, let's dump to memory. */
1746 else if (VECTOR_MODE_P (GET_MODE (dst
))
1749 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1752 mem
= assign_stack_temp (GET_MODE (src
), slen
);
1753 emit_move_insn (mem
, src
);
1754 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1756 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1757 && XVECLEN (dst
, 0) > 1)
1758 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE (dst
), bytepos
);
1759 else if (CONSTANT_P (src
))
1761 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1769 /* TODO: const_wide_int can have sizes other than this... */
1770 gcc_assert (2 * len
== ssize
);
1771 split_double (src
, &first
, &second
);
1778 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1781 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1782 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1786 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1791 /* Emit code to move a block SRC of type TYPE to a block DST,
1792 where DST is non-consecutive registers represented by a PARALLEL.
1793 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1797 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1802 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1803 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1805 /* Copy the extracted pieces into the proper (probable) hard regs. */
1806 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1808 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1811 emit_move_insn (d
, tmps
[i
]);
1815 /* Similar, but load SRC into new pseudos in a format that looks like
1816 PARALLEL. This can later be fed to emit_group_move to get things
1817 in the right place. */
1820 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1825 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1826 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1828 /* Convert the vector to look just like the original PARALLEL, except
1829 with the computed values. */
1830 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1832 rtx e
= XVECEXP (parallel
, 0, i
);
1833 rtx d
= XEXP (e
, 0);
1837 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1838 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1840 RTVEC_ELT (vec
, i
) = e
;
1843 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1846 /* Emit code to move a block SRC to block DST, where SRC and DST are
1847 non-consecutive groups of registers, each represented by a PARALLEL. */
1850 emit_group_move (rtx dst
, rtx src
)
1854 gcc_assert (GET_CODE (src
) == PARALLEL
1855 && GET_CODE (dst
) == PARALLEL
1856 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1858 /* Skip first entry if NULL. */
1859 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1860 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1861 XEXP (XVECEXP (src
, 0, i
), 0));
1864 /* Move a group of registers represented by a PARALLEL into pseudos. */
1867 emit_group_move_into_temps (rtx src
)
1869 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1872 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1874 rtx e
= XVECEXP (src
, 0, i
);
1875 rtx d
= XEXP (e
, 0);
1878 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1879 RTVEC_ELT (vec
, i
) = e
;
1882 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1885 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1886 where SRC is non-consecutive registers represented by a PARALLEL.
1887 SSIZE represents the total size of block ORIG_DST, or -1 if not
1891 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1894 int start
, finish
, i
;
1895 machine_mode m
= GET_MODE (orig_dst
);
1897 gcc_assert (GET_CODE (src
) == PARALLEL
);
1899 if (!SCALAR_INT_MODE_P (m
)
1900 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1902 machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1903 if (imode
== BLKmode
)
1904 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
);
1906 dst
= gen_reg_rtx (imode
);
1907 emit_group_store (dst
, src
, type
, ssize
);
1908 if (imode
!= BLKmode
)
1909 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1910 emit_move_insn (orig_dst
, dst
);
1914 /* Check for a NULL entry, used to indicate that the parameter goes
1915 both on the stack and in registers. */
1916 if (XEXP (XVECEXP (src
, 0, 0), 0))
1920 finish
= XVECLEN (src
, 0);
1922 tmps
= XALLOCAVEC (rtx
, finish
);
1924 /* Copy the (probable) hard regs into pseudos. */
1925 for (i
= start
; i
< finish
; i
++)
1927 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1928 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1930 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1931 emit_move_insn (tmps
[i
], reg
);
1937 /* If we won't be storing directly into memory, protect the real destination
1938 from strange tricks we might play. */
1940 if (GET_CODE (dst
) == PARALLEL
)
1944 /* We can get a PARALLEL dst if there is a conditional expression in
1945 a return statement. In that case, the dst and src are the same,
1946 so no action is necessary. */
1947 if (rtx_equal_p (dst
, src
))
1950 /* It is unclear if we can ever reach here, but we may as well handle
1951 it. Allocate a temporary, and split this into a store/load to/from
1953 temp
= assign_stack_temp (GET_MODE (dst
), ssize
);
1954 emit_group_store (temp
, src
, type
, ssize
);
1955 emit_group_load (dst
, temp
, type
, ssize
);
1958 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1960 machine_mode outer
= GET_MODE (dst
);
1962 HOST_WIDE_INT bytepos
;
1966 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1967 dst
= gen_reg_rtx (outer
);
1969 /* Make life a bit easier for combine. */
1970 /* If the first element of the vector is the low part
1971 of the destination mode, use a paradoxical subreg to
1972 initialize the destination. */
1975 inner
= GET_MODE (tmps
[start
]);
1976 bytepos
= subreg_lowpart_offset (inner
, outer
);
1977 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
1979 temp
= simplify_gen_subreg (outer
, tmps
[start
],
1983 emit_move_insn (dst
, temp
);
1990 /* If the first element wasn't the low part, try the last. */
1992 && start
< finish
- 1)
1994 inner
= GET_MODE (tmps
[finish
- 1]);
1995 bytepos
= subreg_lowpart_offset (inner
, outer
);
1996 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
1998 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
2002 emit_move_insn (dst
, temp
);
2009 /* Otherwise, simply initialize the result to zero. */
2011 emit_move_insn (dst
, CONST0_RTX (outer
));
2014 /* Process the pieces. */
2015 for (i
= start
; i
< finish
; i
++)
2017 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2018 machine_mode mode
= GET_MODE (tmps
[i
]);
2019 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2020 unsigned int adj_bytelen
;
2023 /* Handle trailing fragments that run over the size of the struct. */
2024 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2025 adj_bytelen
= ssize
- bytepos
;
2027 adj_bytelen
= bytelen
;
2029 if (GET_CODE (dst
) == CONCAT
)
2031 if (bytepos
+ adj_bytelen
2032 <= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2033 dest
= XEXP (dst
, 0);
2034 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2036 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2037 dest
= XEXP (dst
, 1);
2041 machine_mode dest_mode
= GET_MODE (dest
);
2042 machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2044 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2046 if (GET_MODE_ALIGNMENT (dest_mode
)
2047 >= GET_MODE_ALIGNMENT (tmp_mode
))
2049 dest
= assign_stack_temp (dest_mode
,
2050 GET_MODE_SIZE (dest_mode
));
2051 emit_move_insn (adjust_address (dest
,
2059 dest
= assign_stack_temp (tmp_mode
,
2060 GET_MODE_SIZE (tmp_mode
));
2061 emit_move_insn (dest
, tmps
[i
]);
2062 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2068 /* Handle trailing fragments that run over the size of the struct. */
2069 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2071 /* store_bit_field always takes its value from the lsb.
2072 Move the fragment to the lsb if it's not already there. */
2074 #ifdef BLOCK_REG_PADDING
2075 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2076 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2082 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2083 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2087 /* Make sure not to write past the end of the struct. */
2088 store_bit_field (dest
,
2089 adj_bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2090 bytepos
* BITS_PER_UNIT
, ssize
* BITS_PER_UNIT
- 1,
2094 /* Optimize the access just a bit. */
2095 else if (MEM_P (dest
)
2096 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2097 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2098 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2099 && bytelen
== GET_MODE_SIZE (mode
))
2100 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2103 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2104 0, 0, mode
, tmps
[i
]);
2107 /* Copy from the pseudo into the (probable) hard reg. */
2108 if (orig_dst
!= dst
)
2109 emit_move_insn (orig_dst
, dst
);
2112 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2113 of the value stored in X. */
2116 maybe_emit_group_store (rtx x
, tree type
)
2118 machine_mode mode
= TYPE_MODE (type
);
2119 gcc_checking_assert (GET_MODE (x
) == VOIDmode
|| GET_MODE (x
) == mode
);
2120 if (GET_CODE (x
) == PARALLEL
)
2122 rtx result
= gen_reg_rtx (mode
);
2123 emit_group_store (result
, x
, type
, int_size_in_bytes (type
));
2129 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2131 This is used on targets that return BLKmode values in registers. */
2134 copy_blkmode_from_reg (rtx target
, rtx srcreg
, tree type
)
2136 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2137 rtx src
= NULL
, dst
= NULL
;
2138 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2139 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2140 machine_mode mode
= GET_MODE (srcreg
);
2141 machine_mode tmode
= GET_MODE (target
);
2142 machine_mode copy_mode
;
2144 /* BLKmode registers created in the back-end shouldn't have survived. */
2145 gcc_assert (mode
!= BLKmode
);
2147 /* If the structure doesn't take up a whole number of words, see whether
2148 SRCREG is padded on the left or on the right. If it's on the left,
2149 set PADDING_CORRECTION to the number of bits to skip.
2151 In most ABIs, the structure will be returned at the least end of
2152 the register, which translates to right padding on little-endian
2153 targets and left padding on big-endian targets. The opposite
2154 holds if the structure is returned at the most significant
2155 end of the register. */
2156 if (bytes
% UNITS_PER_WORD
!= 0
2157 && (targetm
.calls
.return_in_msb (type
)
2159 : BYTES_BIG_ENDIAN
))
2161 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2163 /* We can use a single move if we have an exact mode for the size. */
2164 else if (MEM_P (target
)
2165 && (!SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
))
2166 || MEM_ALIGN (target
) >= GET_MODE_ALIGNMENT (mode
))
2167 && bytes
== GET_MODE_SIZE (mode
))
2169 emit_move_insn (adjust_address (target
, mode
, 0), srcreg
);
2173 /* And if we additionally have the same mode for a register. */
2174 else if (REG_P (target
)
2175 && GET_MODE (target
) == mode
2176 && bytes
== GET_MODE_SIZE (mode
))
2178 emit_move_insn (target
, srcreg
);
2182 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2183 into a new pseudo which is a full word. */
2184 if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
2186 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2190 /* Copy the structure BITSIZE bits at a time. If the target lives in
2191 memory, take care of not reading/writing past its end by selecting
2192 a copy mode suited to BITSIZE. This should always be possible given
2195 If the target lives in register, make sure not to select a copy mode
2196 larger than the mode of the register.
2198 We could probably emit more efficient code for machines which do not use
2199 strict alignment, but it doesn't seem worth the effort at the current
2202 copy_mode
= word_mode
;
2205 machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2206 if (mem_mode
!= BLKmode
)
2207 copy_mode
= mem_mode
;
2209 else if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2212 for (bitpos
= 0, xbitpos
= padding_correction
;
2213 bitpos
< bytes
* BITS_PER_UNIT
;
2214 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2216 /* We need a new source operand each time xbitpos is on a
2217 word boundary and when xbitpos == padding_correction
2218 (the first time through). */
2219 if (xbitpos
% BITS_PER_WORD
== 0 || xbitpos
== padding_correction
)
2220 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
, mode
);
2222 /* We need a new destination operand each time bitpos is on
2224 if (REG_P (target
) && GET_MODE_BITSIZE (tmode
) < BITS_PER_WORD
)
2226 else if (bitpos
% BITS_PER_WORD
== 0)
2227 dst
= operand_subword (target
, bitpos
/ BITS_PER_WORD
, 1, tmode
);
2229 /* Use xbitpos for the source extraction (right justified) and
2230 bitpos for the destination store (left justified). */
2231 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, 0, 0, copy_mode
,
2232 extract_bit_field (src
, bitsize
,
2233 xbitpos
% BITS_PER_WORD
, 1,
2234 NULL_RTX
, copy_mode
, copy_mode
));
2238 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2239 register if it contains any data, otherwise return null.
2241 This is used on targets that return BLKmode values in registers. */
2244 copy_blkmode_to_reg (machine_mode mode
, tree src
)
2247 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0, bytes
;
2248 unsigned int bitsize
;
2249 rtx
*dst_words
, dst
, x
, src_word
= NULL_RTX
, dst_word
= NULL_RTX
;
2250 machine_mode dst_mode
;
2252 gcc_assert (TYPE_MODE (TREE_TYPE (src
)) == BLKmode
);
2254 x
= expand_normal (src
);
2256 bytes
= int_size_in_bytes (TREE_TYPE (src
));
2260 /* If the structure doesn't take up a whole number of words, see
2261 whether the register value should be padded on the left or on
2262 the right. Set PADDING_CORRECTION to the number of padding
2263 bits needed on the left side.
2265 In most ABIs, the structure will be returned at the least end of
2266 the register, which translates to right padding on little-endian
2267 targets and left padding on big-endian targets. The opposite
2268 holds if the structure is returned at the most significant
2269 end of the register. */
2270 if (bytes
% UNITS_PER_WORD
!= 0
2271 && (targetm
.calls
.return_in_msb (TREE_TYPE (src
))
2273 : BYTES_BIG_ENDIAN
))
2274 padding_correction
= (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
)
2277 n_regs
= (bytes
+ UNITS_PER_WORD
- 1) / UNITS_PER_WORD
;
2278 dst_words
= XALLOCAVEC (rtx
, n_regs
);
2279 bitsize
= MIN (TYPE_ALIGN (TREE_TYPE (src
)), BITS_PER_WORD
);
2281 /* Copy the structure BITSIZE bits at a time. */
2282 for (bitpos
= 0, xbitpos
= padding_correction
;
2283 bitpos
< bytes
* BITS_PER_UNIT
;
2284 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2286 /* We need a new destination pseudo each time xbitpos is
2287 on a word boundary and when xbitpos == padding_correction
2288 (the first time through). */
2289 if (xbitpos
% BITS_PER_WORD
== 0
2290 || xbitpos
== padding_correction
)
2292 /* Generate an appropriate register. */
2293 dst_word
= gen_reg_rtx (word_mode
);
2294 dst_words
[xbitpos
/ BITS_PER_WORD
] = dst_word
;
2296 /* Clear the destination before we move anything into it. */
2297 emit_move_insn (dst_word
, CONST0_RTX (word_mode
));
2300 /* We need a new source operand each time bitpos is on a word
2302 if (bitpos
% BITS_PER_WORD
== 0)
2303 src_word
= operand_subword_force (x
, bitpos
/ BITS_PER_WORD
, BLKmode
);
2305 /* Use bitpos for the source extraction (left justified) and
2306 xbitpos for the destination store (right justified). */
2307 store_bit_field (dst_word
, bitsize
, xbitpos
% BITS_PER_WORD
,
2309 extract_bit_field (src_word
, bitsize
,
2310 bitpos
% BITS_PER_WORD
, 1,
2311 NULL_RTX
, word_mode
, word_mode
));
2314 if (mode
== BLKmode
)
2316 /* Find the smallest integer mode large enough to hold the
2317 entire structure. */
2318 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2320 mode
= GET_MODE_WIDER_MODE (mode
))
2321 /* Have we found a large enough mode? */
2322 if (GET_MODE_SIZE (mode
) >= bytes
)
2325 /* A suitable mode should have been found. */
2326 gcc_assert (mode
!= VOIDmode
);
2329 if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (word_mode
))
2330 dst_mode
= word_mode
;
2333 dst
= gen_reg_rtx (dst_mode
);
2335 for (i
= 0; i
< n_regs
; i
++)
2336 emit_move_insn (operand_subword (dst
, i
, 0, dst_mode
), dst_words
[i
]);
2338 if (mode
!= dst_mode
)
2339 dst
= gen_lowpart (mode
, dst
);
2344 /* Add a USE expression for REG to the (possibly empty) list pointed
2345 to by CALL_FUSAGE. REG must denote a hard register. */
2348 use_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2350 gcc_assert (REG_P (reg
));
2352 if (!HARD_REGISTER_P (reg
))
2356 = gen_rtx_EXPR_LIST (mode
, gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2359 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2360 to by CALL_FUSAGE. REG must denote a hard register. */
2363 clobber_reg_mode (rtx
*call_fusage
, rtx reg
, machine_mode mode
)
2365 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2368 = gen_rtx_EXPR_LIST (mode
, gen_rtx_CLOBBER (VOIDmode
, reg
), *call_fusage
);
2371 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2372 starting at REGNO. All of these registers must be hard registers. */
2375 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2379 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2381 for (i
= 0; i
< nregs
; i
++)
2382 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2385 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2386 PARALLEL REGS. This is for calls that pass values in multiple
2387 non-contiguous locations. The Irix 6 ABI has examples of this. */
2390 use_group_regs (rtx
*call_fusage
, rtx regs
)
2394 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2396 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2398 /* A NULL entry means the parameter goes both on the stack and in
2399 registers. This can also be a MEM for targets that pass values
2400 partially on the stack and partially in registers. */
2401 if (reg
!= 0 && REG_P (reg
))
2402 use_reg (call_fusage
, reg
);
2406 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2407 assigment and the code of the expresion on the RHS is CODE. Return
2411 get_def_for_expr (tree name
, enum tree_code code
)
2415 if (TREE_CODE (name
) != SSA_NAME
)
2418 def_stmt
= get_gimple_for_ssa_name (name
);
2420 || gimple_assign_rhs_code (def_stmt
) != code
)
2426 #ifdef HAVE_conditional_move
2427 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2428 assigment and the class of the expresion on the RHS is CLASS. Return
2432 get_def_for_expr_class (tree name
, enum tree_code_class tclass
)
2436 if (TREE_CODE (name
) != SSA_NAME
)
2439 def_stmt
= get_gimple_for_ssa_name (name
);
2441 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt
)) != tclass
)
2449 /* Determine whether the LEN bytes generated by CONSTFUN can be
2450 stored to memory using several move instructions. CONSTFUNDATA is
2451 a pointer which will be passed as argument in every CONSTFUN call.
2452 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2453 a memset operation and false if it's a copy of a constant string.
2454 Return nonzero if a call to store_by_pieces should succeed. */
2457 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2458 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
),
2459 void *constfundata
, unsigned int align
, bool memsetp
)
2461 unsigned HOST_WIDE_INT l
;
2462 unsigned int max_size
;
2463 HOST_WIDE_INT offset
= 0;
2465 enum insn_code icode
;
2467 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2468 rtx cst ATTRIBUTE_UNUSED
;
2473 if (!targetm
.use_by_pieces_infrastructure_p (len
, align
,
2477 optimize_insn_for_speed_p ()))
2480 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2482 /* We would first store what we can in the largest integer mode, then go to
2483 successively smaller modes. */
2486 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2490 max_size
= STORE_MAX_PIECES
+ 1;
2491 while (max_size
> 1 && l
> 0)
2493 mode
= widest_int_mode_for_size (max_size
);
2495 if (mode
== VOIDmode
)
2498 icode
= optab_handler (mov_optab
, mode
);
2499 if (icode
!= CODE_FOR_nothing
2500 && align
>= GET_MODE_ALIGNMENT (mode
))
2502 unsigned int size
= GET_MODE_SIZE (mode
);
2509 cst
= (*constfun
) (constfundata
, offset
, mode
);
2510 if (!targetm
.legitimate_constant_p (mode
, cst
))
2520 max_size
= GET_MODE_SIZE (mode
);
2523 /* The code above should have handled everything. */
2530 /* Generate several move instructions to store LEN bytes generated by
2531 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2532 pointer which will be passed as argument in every CONSTFUN call.
2533 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2534 a memset operation and false if it's a copy of a constant string.
2535 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2536 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2540 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2541 rtx (*constfun
) (void *, HOST_WIDE_INT
, machine_mode
),
2542 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2544 machine_mode to_addr_mode
= get_address_mode (to
);
2545 struct store_by_pieces_d data
;
2549 gcc_assert (endp
!= 2);
2553 gcc_assert (targetm
.use_by_pieces_infrastructure_p
2558 optimize_insn_for_speed_p ()));
2560 data
.constfun
= constfun
;
2561 data
.constfundata
= constfundata
;
2564 store_by_pieces_1 (&data
, align
);
2569 gcc_assert (!data
.reverse
);
2574 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2575 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2577 data
.to_addr
= copy_to_mode_reg (to_addr_mode
,
2578 plus_constant (to_addr_mode
,
2582 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2589 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2597 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2598 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2601 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2603 struct store_by_pieces_d data
;
2608 data
.constfun
= clear_by_pieces_1
;
2609 data
.constfundata
= NULL
;
2612 store_by_pieces_1 (&data
, align
);
2615 /* Callback routine for clear_by_pieces.
2616 Return const0_rtx unconditionally. */
2619 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2620 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2621 machine_mode mode ATTRIBUTE_UNUSED
)
2626 /* Subroutine of clear_by_pieces and store_by_pieces.
2627 Generate several move instructions to store LEN bytes of block TO. (A MEM
2628 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2631 store_by_pieces_1 (struct store_by_pieces_d
*data ATTRIBUTE_UNUSED
,
2632 unsigned int align ATTRIBUTE_UNUSED
)
2634 machine_mode to_addr_mode
= get_address_mode (data
->to
);
2635 rtx to_addr
= XEXP (data
->to
, 0);
2636 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2637 enum insn_code icode
;
2640 data
->to_addr
= to_addr
;
2642 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2643 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2645 data
->explicit_inc_to
= 0;
2647 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2649 data
->offset
= data
->len
;
2651 /* If storing requires more than two move insns,
2652 copy addresses to registers (to make displacements shorter)
2653 and use post-increment if available. */
2654 if (!data
->autinc_to
2655 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2657 /* Determine the main mode we'll be using.
2658 MODE might not be used depending on the definitions of the
2659 USE_* macros below. */
2660 machine_mode mode ATTRIBUTE_UNUSED
2661 = widest_int_mode_for_size (max_size
);
2663 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2665 data
->to_addr
= copy_to_mode_reg (to_addr_mode
,
2666 plus_constant (to_addr_mode
,
2669 data
->autinc_to
= 1;
2670 data
->explicit_inc_to
= -1;
2673 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2674 && ! data
->autinc_to
)
2676 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2677 data
->autinc_to
= 1;
2678 data
->explicit_inc_to
= 1;
2681 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2682 data
->to_addr
= copy_to_mode_reg (to_addr_mode
, to_addr
);
2685 align
= alignment_for_piecewise_move (STORE_MAX_PIECES
, align
);
2687 /* First store what we can in the largest integer mode, then go to
2688 successively smaller modes. */
2690 while (max_size
> 1 && data
->len
> 0)
2692 machine_mode mode
= widest_int_mode_for_size (max_size
);
2694 if (mode
== VOIDmode
)
2697 icode
= optab_handler (mov_optab
, mode
);
2698 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2699 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2701 max_size
= GET_MODE_SIZE (mode
);
2704 /* The code above should have handled everything. */
2705 gcc_assert (!data
->len
);
2708 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2709 with move instructions for mode MODE. GENFUN is the gen_... function
2710 to make a move insn for that mode. DATA has all the other info. */
2713 store_by_pieces_2 (insn_gen_fn genfun
, machine_mode mode
,
2714 struct store_by_pieces_d
*data
)
2716 unsigned int size
= GET_MODE_SIZE (mode
);
2719 while (data
->len
>= size
)
2722 data
->offset
-= size
;
2724 if (data
->autinc_to
)
2725 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2728 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2730 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2731 emit_insn (gen_add2_insn (data
->to_addr
,
2732 gen_int_mode (-(HOST_WIDE_INT
) size
,
2733 GET_MODE (data
->to_addr
))));
2735 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2736 emit_insn ((*genfun
) (to1
, cst
));
2738 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2739 emit_insn (gen_add2_insn (data
->to_addr
,
2741 GET_MODE (data
->to_addr
))));
2743 if (! data
->reverse
)
2744 data
->offset
+= size
;
2750 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2751 its length in bytes. */
2754 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2755 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2756 unsigned HOST_WIDE_INT min_size
,
2757 unsigned HOST_WIDE_INT max_size
,
2758 unsigned HOST_WIDE_INT probable_max_size
)
2760 machine_mode mode
= GET_MODE (object
);
2763 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2765 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2766 just move a zero. Otherwise, do this a piece at a time. */
2768 && CONST_INT_P (size
)
2769 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2771 rtx zero
= CONST0_RTX (mode
);
2774 emit_move_insn (object
, zero
);
2778 if (COMPLEX_MODE_P (mode
))
2780 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2783 write_complex_part (object
, zero
, 0);
2784 write_complex_part (object
, zero
, 1);
2790 if (size
== const0_rtx
)
2793 align
= MEM_ALIGN (object
);
2795 if (CONST_INT_P (size
)
2796 && targetm
.use_by_pieces_infrastructure_p (INTVAL (size
), align
,
2798 optimize_insn_for_speed_p ()))
2799 clear_by_pieces (object
, INTVAL (size
), align
);
2800 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2801 expected_align
, expected_size
,
2802 min_size
, max_size
, probable_max_size
))
2804 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object
)))
2805 return set_storage_via_libcall (object
, size
, const0_rtx
,
2806 method
== BLOCK_OP_TAILCALL
);
2814 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2816 unsigned HOST_WIDE_INT max
, min
= 0;
2817 if (GET_CODE (size
) == CONST_INT
)
2818 min
= max
= UINTVAL (size
);
2820 max
= GET_MODE_MASK (GET_MODE (size
));
2821 return clear_storage_hints (object
, size
, method
, 0, -1, min
, max
, max
);
2825 /* A subroutine of clear_storage. Expand a call to memset.
2826 Return the return value of memset, 0 otherwise. */
2829 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2831 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2832 machine_mode size_mode
;
2835 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2836 place those into new pseudos into a VAR_DECL and use them later. */
2838 object
= copy_addr_to_reg (XEXP (object
, 0));
2840 size_mode
= TYPE_MODE (sizetype
);
2841 size
= convert_to_mode (size_mode
, size
, 1);
2842 size
= copy_to_mode_reg (size_mode
, size
);
2844 /* It is incorrect to use the libcall calling conventions to call
2845 memset in this context. This could be a user call to memset and
2846 the user may wish to examine the return value from memset. For
2847 targets where libcalls and normal calls have different conventions
2848 for returning pointers, we could end up generating incorrect code. */
2850 object_tree
= make_tree (ptr_type_node
, object
);
2851 if (!CONST_INT_P (val
))
2852 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2853 size_tree
= make_tree (sizetype
, size
);
2854 val_tree
= make_tree (integer_type_node
, val
);
2856 fn
= clear_storage_libcall_fn (true);
2857 call_expr
= build_call_expr (fn
, 3, object_tree
, val_tree
, size_tree
);
2858 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2860 retval
= expand_normal (call_expr
);
2865 /* A subroutine of set_storage_via_libcall. Create the tree node
2866 for the function we use for block clears. */
2868 tree block_clear_fn
;
2871 init_block_clear_fn (const char *asmspec
)
2873 if (!block_clear_fn
)
2877 fn
= get_identifier ("memset");
2878 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2879 integer_type_node
, sizetype
,
2882 fn
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
, fn
, args
);
2883 DECL_EXTERNAL (fn
) = 1;
2884 TREE_PUBLIC (fn
) = 1;
2885 DECL_ARTIFICIAL (fn
) = 1;
2886 TREE_NOTHROW (fn
) = 1;
2887 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2888 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2890 block_clear_fn
= fn
;
2894 set_user_assembler_name (block_clear_fn
, asmspec
);
2898 clear_storage_libcall_fn (int for_call
)
2900 static bool emitted_extern
;
2902 if (!block_clear_fn
)
2903 init_block_clear_fn (NULL
);
2905 if (for_call
&& !emitted_extern
)
2907 emitted_extern
= true;
2908 make_decl_rtl (block_clear_fn
);
2911 return block_clear_fn
;
2914 /* Expand a setmem pattern; return true if successful. */
2917 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2918 unsigned int expected_align
, HOST_WIDE_INT expected_size
,
2919 unsigned HOST_WIDE_INT min_size
,
2920 unsigned HOST_WIDE_INT max_size
,
2921 unsigned HOST_WIDE_INT probable_max_size
)
2923 /* Try the most limited insn first, because there's no point
2924 including more than one in the machine description unless
2925 the more limited one has some advantage. */
2929 if (expected_align
< align
)
2930 expected_align
= align
;
2931 if (expected_size
!= -1)
2933 if ((unsigned HOST_WIDE_INT
)expected_size
> max_size
)
2934 expected_size
= max_size
;
2935 if ((unsigned HOST_WIDE_INT
)expected_size
< min_size
)
2936 expected_size
= min_size
;
2939 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2940 mode
= GET_MODE_WIDER_MODE (mode
))
2942 enum insn_code code
= direct_optab_handler (setmem_optab
, mode
);
2944 if (code
!= CODE_FOR_nothing
2945 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2946 here because if SIZE is less than the mode mask, as it is
2947 returned by the macro, it will definitely be less than the
2948 actual mode mask. Since SIZE is within the Pmode address
2949 space, we limit MODE to Pmode. */
2950 && ((CONST_INT_P (size
)
2951 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2952 <= (GET_MODE_MASK (mode
) >> 1)))
2953 || max_size
<= (GET_MODE_MASK (mode
) >> 1)
2954 || GET_MODE_BITSIZE (mode
) >= GET_MODE_BITSIZE (Pmode
)))
2956 struct expand_operand ops
[9];
2959 nops
= insn_data
[(int) code
].n_generator_args
;
2960 gcc_assert (nops
== 4 || nops
== 6 || nops
== 8 || nops
== 9);
2962 create_fixed_operand (&ops
[0], object
);
2963 /* The check above guarantees that this size conversion is valid. */
2964 create_convert_operand_to (&ops
[1], size
, mode
, true);
2965 create_convert_operand_from (&ops
[2], val
, byte_mode
, true);
2966 create_integer_operand (&ops
[3], align
/ BITS_PER_UNIT
);
2969 create_integer_operand (&ops
[4], expected_align
/ BITS_PER_UNIT
);
2970 create_integer_operand (&ops
[5], expected_size
);
2974 create_integer_operand (&ops
[6], min_size
);
2975 /* If we can not represent the maximal size,
2976 make parameter NULL. */
2977 if ((HOST_WIDE_INT
) max_size
!= -1)
2978 create_integer_operand (&ops
[7], max_size
);
2980 create_fixed_operand (&ops
[7], NULL
);
2984 /* If we can not represent the maximal size,
2985 make parameter NULL. */
2986 if ((HOST_WIDE_INT
) probable_max_size
!= -1)
2987 create_integer_operand (&ops
[8], probable_max_size
);
2989 create_fixed_operand (&ops
[8], NULL
);
2991 if (maybe_expand_insn (code
, nops
, ops
))
3000 /* Write to one of the components of the complex value CPLX. Write VAL to
3001 the real part if IMAG_P is false, and the imaginary part if its true. */
3004 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
3010 if (GET_CODE (cplx
) == CONCAT
)
3012 emit_move_insn (XEXP (cplx
, imag_p
), val
);
3016 cmode
= GET_MODE (cplx
);
3017 imode
= GET_MODE_INNER (cmode
);
3018 ibitsize
= GET_MODE_BITSIZE (imode
);
3020 /* For MEMs simplify_gen_subreg may generate an invalid new address
3021 because, e.g., the original address is considered mode-dependent
3022 by the target, which restricts simplify_subreg from invoking
3023 adjust_address_nv. Instead of preparing fallback support for an
3024 invalid address, we call adjust_address_nv directly. */
3027 emit_move_insn (adjust_address_nv (cplx
, imode
,
3028 imag_p
? GET_MODE_SIZE (imode
) : 0),
3033 /* If the sub-object is at least word sized, then we know that subregging
3034 will work. This special case is important, since store_bit_field
3035 wants to operate on integer modes, and there's rarely an OImode to
3036 correspond to TCmode. */
3037 if (ibitsize
>= BITS_PER_WORD
3038 /* For hard regs we have exact predicates. Assume we can split
3039 the original object if it spans an even number of hard regs.
3040 This special case is important for SCmode on 64-bit platforms
3041 where the natural size of floating-point regs is 32-bit. */
3043 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3044 && REG_NREGS (cplx
) % 2 == 0))
3046 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
3047 imag_p
? GET_MODE_SIZE (imode
) : 0);
3050 emit_move_insn (part
, val
);
3054 /* simplify_gen_subreg may fail for sub-word MEMs. */
3055 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3058 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, 0, 0, imode
, val
);
3061 /* Extract one of the components of the complex value CPLX. Extract the
3062 real part if IMAG_P is false, and the imaginary part if it's true. */
3065 read_complex_part (rtx cplx
, bool imag_p
)
3067 machine_mode cmode
, imode
;
3070 if (GET_CODE (cplx
) == CONCAT
)
3071 return XEXP (cplx
, imag_p
);
3073 cmode
= GET_MODE (cplx
);
3074 imode
= GET_MODE_INNER (cmode
);
3075 ibitsize
= GET_MODE_BITSIZE (imode
);
3077 /* Special case reads from complex constants that got spilled to memory. */
3078 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
3080 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
3081 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
3083 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
3084 if (CONSTANT_CLASS_P (part
))
3085 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
3089 /* For MEMs simplify_gen_subreg may generate an invalid new address
3090 because, e.g., the original address is considered mode-dependent
3091 by the target, which restricts simplify_subreg from invoking
3092 adjust_address_nv. Instead of preparing fallback support for an
3093 invalid address, we call adjust_address_nv directly. */
3095 return adjust_address_nv (cplx
, imode
,
3096 imag_p
? GET_MODE_SIZE (imode
) : 0);
3098 /* If the sub-object is at least word sized, then we know that subregging
3099 will work. This special case is important, since extract_bit_field
3100 wants to operate on integer modes, and there's rarely an OImode to
3101 correspond to TCmode. */
3102 if (ibitsize
>= BITS_PER_WORD
3103 /* For hard regs we have exact predicates. Assume we can split
3104 the original object if it spans an even number of hard regs.
3105 This special case is important for SCmode on 64-bit platforms
3106 where the natural size of floating-point regs is 32-bit. */
3108 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
3109 && REG_NREGS (cplx
) % 2 == 0))
3111 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
3112 imag_p
? GET_MODE_SIZE (imode
) : 0);
3116 /* simplify_gen_subreg may fail for sub-word MEMs. */
3117 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
3120 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
3121 true, NULL_RTX
, imode
, imode
);
3124 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3125 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3126 represented in NEW_MODE. If FORCE is true, this will never happen, as
3127 we'll force-create a SUBREG if needed. */
3130 emit_move_change_mode (machine_mode new_mode
,
3131 machine_mode old_mode
, rtx x
, bool force
)
3135 if (push_operand (x
, GET_MODE (x
)))
3137 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
3138 MEM_COPY_ATTRIBUTES (ret
, x
);
3142 /* We don't have to worry about changing the address since the
3143 size in bytes is supposed to be the same. */
3144 if (reload_in_progress
)
3146 /* Copy the MEM to change the mode and move any
3147 substitutions from the old MEM to the new one. */
3148 ret
= adjust_address_nv (x
, new_mode
, 0);
3149 copy_replacements (x
, ret
);
3152 ret
= adjust_address (x
, new_mode
, 0);
3156 /* Note that we do want simplify_subreg's behavior of validating
3157 that the new mode is ok for a hard register. If we were to use
3158 simplify_gen_subreg, we would create the subreg, but would
3159 probably run into the target not being able to implement it. */
3160 /* Except, of course, when FORCE is true, when this is exactly what
3161 we want. Which is needed for CCmodes on some targets. */
3163 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
3165 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
3171 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3172 an integer mode of the same size as MODE. Returns the instruction
3173 emitted, or NULL if such a move could not be generated. */
3176 emit_move_via_integer (machine_mode mode
, rtx x
, rtx y
, bool force
)
3179 enum insn_code code
;
3181 /* There must exist a mode of the exact size we require. */
3182 imode
= int_mode_for_mode (mode
);
3183 if (imode
== BLKmode
)
3186 /* The target must support moves in this mode. */
3187 code
= optab_handler (mov_optab
, imode
);
3188 if (code
== CODE_FOR_nothing
)
3191 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3194 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3197 return emit_insn (GEN_FCN (code
) (x
, y
));
3200 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3201 Return an equivalent MEM that does not use an auto-increment. */
3204 emit_move_resolve_push (machine_mode mode
, rtx x
)
3206 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3207 HOST_WIDE_INT adjust
;
3210 adjust
= GET_MODE_SIZE (mode
);
3211 #ifdef PUSH_ROUNDING
3212 adjust
= PUSH_ROUNDING (adjust
);
3214 if (code
== PRE_DEC
|| code
== POST_DEC
)
3216 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3218 rtx expr
= XEXP (XEXP (x
, 0), 1);
3221 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3222 gcc_assert (CONST_INT_P (XEXP (expr
, 1)));
3223 val
= INTVAL (XEXP (expr
, 1));
3224 if (GET_CODE (expr
) == MINUS
)
3226 gcc_assert (adjust
== val
|| adjust
== -val
);
3230 /* Do not use anti_adjust_stack, since we don't want to update
3231 stack_pointer_delta. */
3232 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3233 gen_int_mode (adjust
, Pmode
), stack_pointer_rtx
,
3234 0, OPTAB_LIB_WIDEN
);
3235 if (temp
!= stack_pointer_rtx
)
3236 emit_move_insn (stack_pointer_rtx
, temp
);
3243 temp
= stack_pointer_rtx
;
3248 temp
= plus_constant (Pmode
, stack_pointer_rtx
, -adjust
);
3254 return replace_equiv_address (x
, temp
);
3257 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3258 X is known to satisfy push_operand, and MODE is known to be complex.
3259 Returns the last instruction emitted. */
3262 emit_move_complex_push (machine_mode mode
, rtx x
, rtx y
)
3264 machine_mode submode
= GET_MODE_INNER (mode
);
3267 #ifdef PUSH_ROUNDING
3268 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3270 /* In case we output to the stack, but the size is smaller than the
3271 machine can push exactly, we need to use move instructions. */
3272 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3274 x
= emit_move_resolve_push (mode
, x
);
3275 return emit_move_insn (x
, y
);
3279 /* Note that the real part always precedes the imag part in memory
3280 regardless of machine's endianness. */
3281 switch (GET_CODE (XEXP (x
, 0)))
3295 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3296 read_complex_part (y
, imag_first
));
3297 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3298 read_complex_part (y
, !imag_first
));
3301 /* A subroutine of emit_move_complex. Perform the move from Y to X
3302 via two moves of the parts. Returns the last instruction emitted. */
3305 emit_move_complex_parts (rtx x
, rtx y
)
3307 /* Show the output dies here. This is necessary for SUBREGs
3308 of pseudos since we cannot track their lifetimes correctly;
3309 hard regs shouldn't appear here except as return values. */
3310 if (!reload_completed
&& !reload_in_progress
3311 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3314 write_complex_part (x
, read_complex_part (y
, false), false);
3315 write_complex_part (x
, read_complex_part (y
, true), true);
3317 return get_last_insn ();
3320 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3321 MODE is known to be complex. Returns the last instruction emitted. */
3324 emit_move_complex (machine_mode mode
, rtx x
, rtx y
)
3328 /* Need to take special care for pushes, to maintain proper ordering
3329 of the data, and possibly extra padding. */
3330 if (push_operand (x
, mode
))
3331 return emit_move_complex_push (mode
, x
, y
);
3333 /* See if we can coerce the target into moving both values at once, except
3334 for floating point where we favor moving as parts if this is easy. */
3335 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3336 && optab_handler (mov_optab
, GET_MODE_INNER (mode
)) != CODE_FOR_nothing
3338 && HARD_REGISTER_P (x
)
3339 && REG_NREGS (x
) == 1)
3341 && HARD_REGISTER_P (y
)
3342 && REG_NREGS (y
) == 1))
3344 /* Not possible if the values are inherently not adjacent. */
3345 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3347 /* Is possible if both are registers (or subregs of registers). */
3348 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3350 /* If one of the operands is a memory, and alignment constraints
3351 are friendly enough, we may be able to do combined memory operations.
3352 We do not attempt this if Y is a constant because that combination is
3353 usually better with the by-parts thing below. */
3354 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3355 && (!STRICT_ALIGNMENT
3356 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3365 /* For memory to memory moves, optimal behavior can be had with the
3366 existing block move logic. */
3367 if (MEM_P (x
) && MEM_P (y
))
3369 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3370 BLOCK_OP_NO_LIBCALL
);
3371 return get_last_insn ();
3374 ret
= emit_move_via_integer (mode
, x
, y
, true);
3379 return emit_move_complex_parts (x
, y
);
3382 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3383 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3386 emit_move_ccmode (machine_mode mode
, rtx x
, rtx y
)
3390 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3393 enum insn_code code
= optab_handler (mov_optab
, CCmode
);
3394 if (code
!= CODE_FOR_nothing
)
3396 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3397 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3398 return emit_insn (GEN_FCN (code
) (x
, y
));
3402 /* Otherwise, find the MODE_INT mode of the same width. */
3403 ret
= emit_move_via_integer (mode
, x
, y
, false);
3404 gcc_assert (ret
!= NULL
);
3408 /* Return true if word I of OP lies entirely in the
3409 undefined bits of a paradoxical subreg. */
3412 undefined_operand_subword_p (const_rtx op
, int i
)
3414 machine_mode innermode
, innermostmode
;
3416 if (GET_CODE (op
) != SUBREG
)
3418 innermode
= GET_MODE (op
);
3419 innermostmode
= GET_MODE (SUBREG_REG (op
));
3420 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3421 /* The SUBREG_BYTE represents offset, as if the value were stored in
3422 memory, except for a paradoxical subreg where we define
3423 SUBREG_BYTE to be 0; undo this exception as in
3425 if (SUBREG_BYTE (op
) == 0
3426 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3428 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3429 if (WORDS_BIG_ENDIAN
)
3430 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3431 if (BYTES_BIG_ENDIAN
)
3432 offset
+= difference
% UNITS_PER_WORD
;
3434 if (offset
>= GET_MODE_SIZE (innermostmode
)
3435 || offset
<= -GET_MODE_SIZE (word_mode
))
3440 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3441 MODE is any multi-word or full-word mode that lacks a move_insn
3442 pattern. Note that you will get better code if you define such
3443 patterns, even if they must turn into multiple assembler instructions. */
3446 emit_move_multi_word (machine_mode mode
, rtx x
, rtx y
)
3448 rtx_insn
*last_insn
= 0;
3454 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3456 /* If X is a push on the stack, do the push now and replace
3457 X with a reference to the stack pointer. */
3458 if (push_operand (x
, mode
))
3459 x
= emit_move_resolve_push (mode
, x
);
3461 /* If we are in reload, see if either operand is a MEM whose address
3462 is scheduled for replacement. */
3463 if (reload_in_progress
&& MEM_P (x
)
3464 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3465 x
= replace_equiv_address_nv (x
, inner
);
3466 if (reload_in_progress
&& MEM_P (y
)
3467 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3468 y
= replace_equiv_address_nv (y
, inner
);
3472 need_clobber
= false;
3474 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3477 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3480 /* Do not generate code for a move if it would come entirely
3481 from the undefined bits of a paradoxical subreg. */
3482 if (undefined_operand_subword_p (y
, i
))
3485 ypart
= operand_subword (y
, i
, 1, mode
);
3487 /* If we can't get a part of Y, put Y into memory if it is a
3488 constant. Otherwise, force it into a register. Then we must
3489 be able to get a part of Y. */
3490 if (ypart
== 0 && CONSTANT_P (y
))
3492 y
= use_anchored_address (force_const_mem (mode
, y
));
3493 ypart
= operand_subword (y
, i
, 1, mode
);
3495 else if (ypart
== 0)
3496 ypart
= operand_subword_force (y
, i
, mode
);
3498 gcc_assert (xpart
&& ypart
);
3500 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3502 last_insn
= emit_move_insn (xpart
, ypart
);
3508 /* Show the output dies here. This is necessary for SUBREGs
3509 of pseudos since we cannot track their lifetimes correctly;
3510 hard regs shouldn't appear here except as return values.
3511 We never want to emit such a clobber after reload. */
3513 && ! (reload_in_progress
|| reload_completed
)
3514 && need_clobber
!= 0)
3522 /* Low level part of emit_move_insn.
3523 Called just like emit_move_insn, but assumes X and Y
3524 are basically valid. */
3527 emit_move_insn_1 (rtx x
, rtx y
)
3529 machine_mode mode
= GET_MODE (x
);
3530 enum insn_code code
;
3532 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3534 code
= optab_handler (mov_optab
, mode
);
3535 if (code
!= CODE_FOR_nothing
)
3536 return emit_insn (GEN_FCN (code
) (x
, y
));
3538 /* Expand complex moves by moving real part and imag part. */
3539 if (COMPLEX_MODE_P (mode
))
3540 return emit_move_complex (mode
, x
, y
);
3542 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3543 || ALL_FIXED_POINT_MODE_P (mode
))
3545 rtx_insn
*result
= emit_move_via_integer (mode
, x
, y
, true);
3547 /* If we can't find an integer mode, use multi words. */
3551 return emit_move_multi_word (mode
, x
, y
);
3554 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3555 return emit_move_ccmode (mode
, x
, y
);
3557 /* Try using a move pattern for the corresponding integer mode. This is
3558 only safe when simplify_subreg can convert MODE constants into integer
3559 constants. At present, it can only do this reliably if the value
3560 fits within a HOST_WIDE_INT. */
3561 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3563 rtx_insn
*ret
= emit_move_via_integer (mode
, x
, y
, lra_in_progress
);
3567 if (! lra_in_progress
|| recog (PATTERN (ret
), ret
, 0) >= 0)
3572 return emit_move_multi_word (mode
, x
, y
);
3575 /* Generate code to copy Y into X.
3576 Both Y and X must have the same mode, except that
3577 Y can be a constant with VOIDmode.
3578 This mode cannot be BLKmode; use emit_block_move for that.
3580 Return the last instruction emitted. */
3583 emit_move_insn (rtx x
, rtx y
)
3585 machine_mode mode
= GET_MODE (x
);
3586 rtx y_cst
= NULL_RTX
;
3587 rtx_insn
*last_insn
;
3590 gcc_assert (mode
!= BLKmode
3591 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3596 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3597 && (last_insn
= compress_float_constant (x
, y
)))
3602 if (!targetm
.legitimate_constant_p (mode
, y
))
3604 y
= force_const_mem (mode
, y
);
3606 /* If the target's cannot_force_const_mem prevented the spill,
3607 assume that the target's move expanders will also take care
3608 of the non-legitimate constant. */
3612 y
= use_anchored_address (y
);
3616 /* If X or Y are memory references, verify that their addresses are valid
3619 && (! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
3621 && ! push_operand (x
, GET_MODE (x
))))
3622 x
= validize_mem (x
);
3625 && ! memory_address_addr_space_p (GET_MODE (y
), XEXP (y
, 0),
3626 MEM_ADDR_SPACE (y
)))
3627 y
= validize_mem (y
);
3629 gcc_assert (mode
!= BLKmode
);
3631 last_insn
= emit_move_insn_1 (x
, y
);
3633 if (y_cst
&& REG_P (x
)
3634 && (set
= single_set (last_insn
)) != NULL_RTX
3635 && SET_DEST (set
) == x
3636 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3637 set_unique_reg_note (last_insn
, REG_EQUAL
, copy_rtx (y_cst
));
3642 /* Generate the body of an instruction to copy Y into X.
3643 It may be a list of insns, if one insn isn't enough. */
3646 gen_move_insn (rtx x
, rtx y
)
3651 emit_move_insn_1 (x
, y
);
3657 /* Same as above, but return rtx (used as a callback, which must have
3658 prototype compatible with other functions returning rtx). */
3661 gen_move_insn_uncast (rtx x
, rtx y
)
3663 return gen_move_insn (x
, y
);
3666 /* If Y is representable exactly in a narrower mode, and the target can
3667 perform the extension directly from constant or memory, then emit the
3668 move as an extension. */
3671 compress_float_constant (rtx x
, rtx y
)
3673 machine_mode dstmode
= GET_MODE (x
);
3674 machine_mode orig_srcmode
= GET_MODE (y
);
3675 machine_mode srcmode
;
3677 int oldcost
, newcost
;
3678 bool speed
= optimize_insn_for_speed_p ();
3680 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3682 if (targetm
.legitimate_constant_p (dstmode
, y
))
3683 oldcost
= set_src_cost (y
, speed
);
3685 oldcost
= set_src_cost (force_const_mem (dstmode
, y
), speed
);
3687 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3688 srcmode
!= orig_srcmode
;
3689 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3693 rtx_insn
*last_insn
;
3695 /* Skip if the target can't extend this way. */
3696 ic
= can_extend_p (dstmode
, srcmode
, 0);
3697 if (ic
== CODE_FOR_nothing
)
3700 /* Skip if the narrowed value isn't exact. */
3701 if (! exact_real_truncate (srcmode
, &r
))
3704 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3706 if (targetm
.legitimate_constant_p (srcmode
, trunc_y
))
3708 /* Skip if the target needs extra instructions to perform
3710 if (!insn_operand_matches (ic
, 1, trunc_y
))
3712 /* This is valid, but may not be cheaper than the original. */
3713 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3715 if (oldcost
< newcost
)
3718 else if (float_extend_from_mem
[dstmode
][srcmode
])
3720 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3721 /* This is valid, but may not be cheaper than the original. */
3722 newcost
= set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
),
3724 if (oldcost
< newcost
)
3726 trunc_y
= validize_mem (trunc_y
);
3731 /* For CSE's benefit, force the compressed constant pool entry
3732 into a new pseudo. This constant may be used in different modes,
3733 and if not, combine will put things back together for us. */
3734 trunc_y
= force_reg (srcmode
, trunc_y
);
3736 /* If x is a hard register, perform the extension into a pseudo,
3737 so that e.g. stack realignment code is aware of it. */
3739 if (REG_P (x
) && HARD_REGISTER_P (x
))
3740 target
= gen_reg_rtx (dstmode
);
3742 emit_unop_insn (ic
, target
, trunc_y
, UNKNOWN
);
3743 last_insn
= get_last_insn ();
3746 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3749 return emit_move_insn (x
, target
);
3756 /* Pushing data onto the stack. */
3758 /* Push a block of length SIZE (perhaps variable)
3759 and return an rtx to address the beginning of the block.
3760 The value may be virtual_outgoing_args_rtx.
3762 EXTRA is the number of bytes of padding to push in addition to SIZE.
3763 BELOW nonzero means this padding comes at low addresses;
3764 otherwise, the padding comes at high addresses. */
3767 push_block (rtx size
, int extra
, int below
)
3771 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3772 if (CONSTANT_P (size
))
3773 anti_adjust_stack (plus_constant (Pmode
, size
, extra
));
3774 else if (REG_P (size
) && extra
== 0)
3775 anti_adjust_stack (size
);
3778 temp
= copy_to_mode_reg (Pmode
, size
);
3780 temp
= expand_binop (Pmode
, add_optab
, temp
,
3781 gen_int_mode (extra
, Pmode
),
3782 temp
, 0, OPTAB_LIB_WIDEN
);
3783 anti_adjust_stack (temp
);
3786 if (STACK_GROWS_DOWNWARD
)
3788 temp
= virtual_outgoing_args_rtx
;
3789 if (extra
!= 0 && below
)
3790 temp
= plus_constant (Pmode
, temp
, extra
);
3794 if (CONST_INT_P (size
))
3795 temp
= plus_constant (Pmode
, virtual_outgoing_args_rtx
,
3796 -INTVAL (size
) - (below
? 0 : extra
));
3797 else if (extra
!= 0 && !below
)
3798 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3799 negate_rtx (Pmode
, plus_constant (Pmode
, size
,
3802 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3803 negate_rtx (Pmode
, size
));
3806 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3809 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3812 mem_autoinc_base (rtx mem
)
3816 rtx addr
= XEXP (mem
, 0);
3817 if (GET_RTX_CLASS (GET_CODE (addr
)) == RTX_AUTOINC
)
3818 return XEXP (addr
, 0);
3823 /* A utility routine used here, in reload, and in try_split. The insns
3824 after PREV up to and including LAST are known to adjust the stack,
3825 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3826 placing notes as appropriate. PREV may be NULL, indicating the
3827 entire insn sequence prior to LAST should be scanned.
3829 The set of allowed stack pointer modifications is small:
3830 (1) One or more auto-inc style memory references (aka pushes),
3831 (2) One or more addition/subtraction with the SP as destination,
3832 (3) A single move insn with the SP as destination,
3833 (4) A call_pop insn,
3834 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3836 Insns in the sequence that do not modify the SP are ignored,
3837 except for noreturn calls.
3839 The return value is the amount of adjustment that can be trivially
3840 verified, via immediate operand or auto-inc. If the adjustment
3841 cannot be trivially extracted, the return value is INT_MIN. */
3844 find_args_size_adjust (rtx_insn
*insn
)
3849 pat
= PATTERN (insn
);
3852 /* Look for a call_pop pattern. */
3855 /* We have to allow non-call_pop patterns for the case
3856 of emit_single_push_insn of a TLS address. */
3857 if (GET_CODE (pat
) != PARALLEL
)
3860 /* All call_pop have a stack pointer adjust in the parallel.
3861 The call itself is always first, and the stack adjust is
3862 usually last, so search from the end. */
3863 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; --i
)
3865 set
= XVECEXP (pat
, 0, i
);
3866 if (GET_CODE (set
) != SET
)
3868 dest
= SET_DEST (set
);
3869 if (dest
== stack_pointer_rtx
)
3872 /* We'd better have found the stack pointer adjust. */
3875 /* Fall through to process the extracted SET and DEST
3876 as if it was a standalone insn. */
3878 else if (GET_CODE (pat
) == SET
)
3880 else if ((set
= single_set (insn
)) != NULL
)
3882 else if (GET_CODE (pat
) == PARALLEL
)
3884 /* ??? Some older ports use a parallel with a stack adjust
3885 and a store for a PUSH_ROUNDING pattern, rather than a
3886 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3887 /* ??? See h8300 and m68k, pushqi1. */
3888 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; --i
)
3890 set
= XVECEXP (pat
, 0, i
);
3891 if (GET_CODE (set
) != SET
)
3893 dest
= SET_DEST (set
);
3894 if (dest
== stack_pointer_rtx
)
3897 /* We do not expect an auto-inc of the sp in the parallel. */
3898 gcc_checking_assert (mem_autoinc_base (dest
) != stack_pointer_rtx
);
3899 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3900 != stack_pointer_rtx
);
3908 dest
= SET_DEST (set
);
3910 /* Look for direct modifications of the stack pointer. */
3911 if (REG_P (dest
) && REGNO (dest
) == STACK_POINTER_REGNUM
)
3913 /* Look for a trivial adjustment, otherwise assume nothing. */
3914 /* Note that the SPU restore_stack_block pattern refers to
3915 the stack pointer in V4SImode. Consider that non-trivial. */
3916 if (SCALAR_INT_MODE_P (GET_MODE (dest
))
3917 && GET_CODE (SET_SRC (set
)) == PLUS
3918 && XEXP (SET_SRC (set
), 0) == stack_pointer_rtx
3919 && CONST_INT_P (XEXP (SET_SRC (set
), 1)))
3920 return INTVAL (XEXP (SET_SRC (set
), 1));
3921 /* ??? Reload can generate no-op moves, which will be cleaned
3922 up later. Recognize it and continue searching. */
3923 else if (rtx_equal_p (dest
, SET_SRC (set
)))
3926 return HOST_WIDE_INT_MIN
;
3932 /* Otherwise only think about autoinc patterns. */
3933 if (mem_autoinc_base (dest
) == stack_pointer_rtx
)
3936 gcc_checking_assert (mem_autoinc_base (SET_SRC (set
))
3937 != stack_pointer_rtx
);
3939 else if (mem_autoinc_base (SET_SRC (set
)) == stack_pointer_rtx
)
3940 mem
= SET_SRC (set
);
3944 addr
= XEXP (mem
, 0);
3945 switch (GET_CODE (addr
))
3949 return GET_MODE_SIZE (GET_MODE (mem
));
3952 return -GET_MODE_SIZE (GET_MODE (mem
));
3955 addr
= XEXP (addr
, 1);
3956 gcc_assert (GET_CODE (addr
) == PLUS
);
3957 gcc_assert (XEXP (addr
, 0) == stack_pointer_rtx
);
3958 gcc_assert (CONST_INT_P (XEXP (addr
, 1)));
3959 return INTVAL (XEXP (addr
, 1));
3967 fixup_args_size_notes (rtx_insn
*prev
, rtx_insn
*last
, int end_args_size
)
3969 int args_size
= end_args_size
;
3970 bool saw_unknown
= false;
3973 for (insn
= last
; insn
!= prev
; insn
= PREV_INSN (insn
))
3975 HOST_WIDE_INT this_delta
;
3977 if (!NONDEBUG_INSN_P (insn
))
3980 this_delta
= find_args_size_adjust (insn
);
3981 if (this_delta
== 0)
3984 || ACCUMULATE_OUTGOING_ARGS
3985 || find_reg_note (insn
, REG_NORETURN
, NULL_RTX
) == NULL_RTX
)
3989 gcc_assert (!saw_unknown
);
3990 if (this_delta
== HOST_WIDE_INT_MIN
)
3993 add_reg_note (insn
, REG_ARGS_SIZE
, GEN_INT (args_size
));
3994 if (STACK_GROWS_DOWNWARD
)
3995 this_delta
= -(unsigned HOST_WIDE_INT
) this_delta
;
3997 args_size
-= this_delta
;
4000 return saw_unknown
? INT_MIN
: args_size
;
4003 #ifdef PUSH_ROUNDING
4004 /* Emit single push insn. */
4007 emit_single_push_insn_1 (machine_mode mode
, rtx x
, tree type
)
4010 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4012 enum insn_code icode
;
4014 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
4015 /* If there is push pattern, use it. Otherwise try old way of throwing
4016 MEM representing push operation to move expander. */
4017 icode
= optab_handler (push_optab
, mode
);
4018 if (icode
!= CODE_FOR_nothing
)
4020 struct expand_operand ops
[1];
4022 create_input_operand (&ops
[0], x
, mode
);
4023 if (maybe_expand_insn (icode
, 1, ops
))
4026 if (GET_MODE_SIZE (mode
) == rounded_size
)
4027 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
4028 /* If we are to pad downward, adjust the stack pointer first and
4029 then store X into the stack location using an offset. This is
4030 because emit_move_insn does not know how to pad; it does not have
4032 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
4034 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
4035 HOST_WIDE_INT offset
;
4037 emit_move_insn (stack_pointer_rtx
,
4038 expand_binop (Pmode
,
4039 STACK_GROWS_DOWNWARD
? sub_optab
4042 gen_int_mode (rounded_size
, Pmode
),
4043 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
4045 offset
= (HOST_WIDE_INT
) padding_size
;
4046 if (STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_DEC
)
4047 /* We have already decremented the stack pointer, so get the
4049 offset
+= (HOST_WIDE_INT
) rounded_size
;
4051 if (!STACK_GROWS_DOWNWARD
&& STACK_PUSH_CODE
== POST_INC
)
4052 /* We have already incremented the stack pointer, so get the
4054 offset
-= (HOST_WIDE_INT
) rounded_size
;
4056 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4057 gen_int_mode (offset
, Pmode
));
4061 if (STACK_GROWS_DOWNWARD
)
4062 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4063 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4064 gen_int_mode (-(HOST_WIDE_INT
) rounded_size
,
4067 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4068 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
4069 gen_int_mode (rounded_size
, Pmode
));
4071 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
4074 dest
= gen_rtx_MEM (mode
, dest_addr
);
4078 set_mem_attributes (dest
, type
, 1);
4080 if (cfun
->tail_call_marked
)
4081 /* Function incoming arguments may overlap with sibling call
4082 outgoing arguments and we cannot allow reordering of reads
4083 from function arguments with stores to outgoing arguments
4084 of sibling calls. */
4085 set_mem_alias_set (dest
, 0);
4087 emit_move_insn (dest
, x
);
4090 /* Emit and annotate a single push insn. */
4093 emit_single_push_insn (machine_mode mode
, rtx x
, tree type
)
4095 int delta
, old_delta
= stack_pointer_delta
;
4096 rtx_insn
*prev
= get_last_insn ();
4099 emit_single_push_insn_1 (mode
, x
, type
);
4101 last
= get_last_insn ();
4103 /* Notice the common case where we emitted exactly one insn. */
4104 if (PREV_INSN (last
) == prev
)
4106 add_reg_note (last
, REG_ARGS_SIZE
, GEN_INT (stack_pointer_delta
));
4110 delta
= fixup_args_size_notes (prev
, last
, stack_pointer_delta
);
4111 gcc_assert (delta
== INT_MIN
|| delta
== old_delta
);
4115 /* Generate code to push X onto the stack, assuming it has mode MODE and
4117 MODE is redundant except when X is a CONST_INT (since they don't
4119 SIZE is an rtx for the size of data to be copied (in bytes),
4120 needed only if X is BLKmode.
4122 ALIGN (in bits) is maximum alignment we can assume.
4124 If PARTIAL and REG are both nonzero, then copy that many of the first
4125 bytes of X into registers starting with REG, and push the rest of X.
4126 The amount of space pushed is decreased by PARTIAL bytes.
4127 REG must be a hard register in this case.
4128 If REG is zero but PARTIAL is not, take any all others actions for an
4129 argument partially in registers, but do not actually load any
4132 EXTRA is the amount in bytes of extra space to leave next to this arg.
4133 This is ignored if an argument block has already been allocated.
4135 On a machine that lacks real push insns, ARGS_ADDR is the address of
4136 the bottom of the argument block for this call. We use indexing off there
4137 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4138 argument block has not been preallocated.
4140 ARGS_SO_FAR is the size of args previously pushed for this call.
4142 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4143 for arguments passed in registers. If nonzero, it will be the number
4144 of bytes required. */
4147 emit_push_insn (rtx x
, machine_mode mode
, tree type
, rtx size
,
4148 unsigned int align
, int partial
, rtx reg
, int extra
,
4149 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
4153 enum direction stack_direction
= STACK_GROWS_DOWNWARD
? downward
: upward
;
4155 /* Decide where to pad the argument: `downward' for below,
4156 `upward' for above, or `none' for don't pad it.
4157 Default is below for small data on big-endian machines; else above. */
4158 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
4160 /* Invert direction if stack is post-decrement.
4162 if (STACK_PUSH_CODE
== POST_DEC
)
4163 if (where_pad
!= none
)
4164 where_pad
= (where_pad
== downward
? upward
: downward
);
4169 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
4171 /* Copy a block into the stack, entirely or partially. */
4178 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4179 used
= partial
- offset
;
4181 if (mode
!= BLKmode
)
4183 /* A value is to be stored in an insufficiently aligned
4184 stack slot; copy via a suitably aligned slot if
4186 size
= GEN_INT (GET_MODE_SIZE (mode
));
4187 if (!MEM_P (xinner
))
4189 temp
= assign_temp (type
, 1, 1);
4190 emit_move_insn (temp
, xinner
);
4197 /* USED is now the # of bytes we need not copy to the stack
4198 because registers will take care of them. */
4201 xinner
= adjust_address (xinner
, BLKmode
, used
);
4203 /* If the partial register-part of the arg counts in its stack size,
4204 skip the part of stack space corresponding to the registers.
4205 Otherwise, start copying to the beginning of the stack space,
4206 by setting SKIP to 0. */
4207 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
4209 #ifdef PUSH_ROUNDING
4210 /* Do it with several push insns if that doesn't take lots of insns
4211 and if there is no difficulty with push insns that skip bytes
4212 on the stack for alignment purposes. */
4215 && CONST_INT_P (size
)
4217 && MEM_ALIGN (xinner
) >= align
4218 && can_move_by_pieces ((unsigned) INTVAL (size
) - used
, align
)
4219 /* Here we avoid the case of a structure whose weak alignment
4220 forces many pushes of a small amount of data,
4221 and such small pushes do rounding that causes trouble. */
4222 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
4223 || align
>= BIGGEST_ALIGNMENT
4224 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
4225 == (align
/ BITS_PER_UNIT
)))
4226 && (HOST_WIDE_INT
) PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
4228 /* Push padding now if padding above and stack grows down,
4229 or if padding below and stack grows up.
4230 But if space already allocated, this has already been done. */
4231 if (extra
&& args_addr
== 0
4232 && where_pad
!= none
&& where_pad
!= stack_direction
)
4233 anti_adjust_stack (GEN_INT (extra
));
4235 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
4238 #endif /* PUSH_ROUNDING */
4242 /* Otherwise make space on the stack and copy the data
4243 to the address of that space. */
4245 /* Deduct words put into registers from the size we must copy. */
4248 if (CONST_INT_P (size
))
4249 size
= GEN_INT (INTVAL (size
) - used
);
4251 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
4252 gen_int_mode (used
, GET_MODE (size
)),
4253 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
4256 /* Get the address of the stack space.
4257 In this case, we do not deal with EXTRA separately.
4258 A single stack adjust will do. */
4261 temp
= push_block (size
, extra
, where_pad
== downward
);
4264 else if (CONST_INT_P (args_so_far
))
4265 temp
= memory_address (BLKmode
,
4266 plus_constant (Pmode
, args_addr
,
4267 skip
+ INTVAL (args_so_far
)));
4269 temp
= memory_address (BLKmode
,
4270 plus_constant (Pmode
,
4271 gen_rtx_PLUS (Pmode
,
4276 if (!ACCUMULATE_OUTGOING_ARGS
)
4278 /* If the source is referenced relative to the stack pointer,
4279 copy it to another register to stabilize it. We do not need
4280 to do this if we know that we won't be changing sp. */
4282 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
4283 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
4284 temp
= copy_to_reg (temp
);
4287 target
= gen_rtx_MEM (BLKmode
, temp
);
4289 /* We do *not* set_mem_attributes here, because incoming arguments
4290 may overlap with sibling call outgoing arguments and we cannot
4291 allow reordering of reads from function arguments with stores
4292 to outgoing arguments of sibling calls. We do, however, want
4293 to record the alignment of the stack slot. */
4294 /* ALIGN may well be better aligned than TYPE, e.g. due to
4295 PARM_BOUNDARY. Assume the caller isn't lying. */
4296 set_mem_align (target
, align
);
4298 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
4301 else if (partial
> 0)
4303 /* Scalar partly in registers. */
4305 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
4308 /* # bytes of start of argument
4309 that we must make space for but need not store. */
4310 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
4311 int args_offset
= INTVAL (args_so_far
);
4314 /* Push padding now if padding above and stack grows down,
4315 or if padding below and stack grows up.
4316 But if space already allocated, this has already been done. */
4317 if (extra
&& args_addr
== 0
4318 && where_pad
!= none
&& where_pad
!= stack_direction
)
4319 anti_adjust_stack (GEN_INT (extra
));
4321 /* If we make space by pushing it, we might as well push
4322 the real data. Otherwise, we can leave OFFSET nonzero
4323 and leave the space uninitialized. */
4327 /* Now NOT_STACK gets the number of words that we don't need to
4328 allocate on the stack. Convert OFFSET to words too. */
4329 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
4330 offset
/= UNITS_PER_WORD
;
4332 /* If the partial register-part of the arg counts in its stack size,
4333 skip the part of stack space corresponding to the registers.
4334 Otherwise, start copying to the beginning of the stack space,
4335 by setting SKIP to 0. */
4336 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
4338 if (CONSTANT_P (x
) && !targetm
.legitimate_constant_p (mode
, x
))
4339 x
= validize_mem (force_const_mem (mode
, x
));
4341 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4342 SUBREGs of such registers are not allowed. */
4343 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
4344 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
4345 x
= copy_to_reg (x
);
4347 /* Loop over all the words allocated on the stack for this arg. */
4348 /* We can do it by words, because any scalar bigger than a word
4349 has a size a multiple of a word. */
4350 for (i
= size
- 1; i
>= not_stack
; i
--)
4351 if (i
>= not_stack
+ offset
)
4352 emit_push_insn (operand_subword_force (x
, i
, mode
),
4353 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
4355 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
4357 reg_parm_stack_space
, alignment_pad
);
4364 /* Push padding now if padding above and stack grows down,
4365 or if padding below and stack grows up.
4366 But if space already allocated, this has already been done. */
4367 if (extra
&& args_addr
== 0
4368 && where_pad
!= none
&& where_pad
!= stack_direction
)
4369 anti_adjust_stack (GEN_INT (extra
));
4371 #ifdef PUSH_ROUNDING
4372 if (args_addr
== 0 && PUSH_ARGS
)
4373 emit_single_push_insn (mode
, x
, type
);
4377 if (CONST_INT_P (args_so_far
))
4379 = memory_address (mode
,
4380 plus_constant (Pmode
, args_addr
,
4381 INTVAL (args_so_far
)));
4383 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
4385 dest
= gen_rtx_MEM (mode
, addr
);
4387 /* We do *not* set_mem_attributes here, because incoming arguments
4388 may overlap with sibling call outgoing arguments and we cannot
4389 allow reordering of reads from function arguments with stores
4390 to outgoing arguments of sibling calls. We do, however, want
4391 to record the alignment of the stack slot. */
4392 /* ALIGN may well be better aligned than TYPE, e.g. due to
4393 PARM_BOUNDARY. Assume the caller isn't lying. */
4394 set_mem_align (dest
, align
);
4396 emit_move_insn (dest
, x
);
4400 /* If part should go in registers, copy that part
4401 into the appropriate registers. Do this now, at the end,
4402 since mem-to-mem copies above may do function calls. */
4403 if (partial
> 0 && reg
!= 0)
4405 /* Handle calls that pass values in multiple non-contiguous locations.
4406 The Irix 6 ABI has examples of this. */
4407 if (GET_CODE (reg
) == PARALLEL
)
4408 emit_group_load (reg
, x
, type
, -1);
4411 gcc_assert (partial
% UNITS_PER_WORD
== 0);
4412 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
4416 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
4417 anti_adjust_stack (GEN_INT (extra
));
4419 if (alignment_pad
&& args_addr
== 0)
4420 anti_adjust_stack (alignment_pad
);
4423 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4427 get_subtarget (rtx x
)
4431 /* Only registers can be subtargets. */
4433 /* Don't use hard regs to avoid extending their life. */
4434 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4438 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4439 FIELD is a bitfield. Returns true if the optimization was successful,
4440 and there's nothing else to do. */
4443 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4444 unsigned HOST_WIDE_INT bitpos
,
4445 unsigned HOST_WIDE_INT bitregion_start
,
4446 unsigned HOST_WIDE_INT bitregion_end
,
4447 machine_mode mode1
, rtx str_rtx
,
4450 machine_mode str_mode
= GET_MODE (str_rtx
);
4451 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4456 enum tree_code code
;
4458 if (mode1
!= VOIDmode
4459 || bitsize
>= BITS_PER_WORD
4460 || str_bitsize
> BITS_PER_WORD
4461 || TREE_SIDE_EFFECTS (to
)
4462 || TREE_THIS_VOLATILE (to
))
4466 if (TREE_CODE (src
) != SSA_NAME
)
4468 if (TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4471 srcstmt
= get_gimple_for_ssa_name (src
);
4473 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt
)) != tcc_binary
)
4476 code
= gimple_assign_rhs_code (srcstmt
);
4478 op0
= gimple_assign_rhs1 (srcstmt
);
4480 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4481 to find its initialization. Hopefully the initialization will
4482 be from a bitfield load. */
4483 if (TREE_CODE (op0
) == SSA_NAME
)
4485 gimple op0stmt
= get_gimple_for_ssa_name (op0
);
4487 /* We want to eventually have OP0 be the same as TO, which
4488 should be a bitfield. */
4490 || !is_gimple_assign (op0stmt
)
4491 || gimple_assign_rhs_code (op0stmt
) != TREE_CODE (to
))
4493 op0
= gimple_assign_rhs1 (op0stmt
);
4496 op1
= gimple_assign_rhs2 (srcstmt
);
4498 if (!operand_equal_p (to
, op0
, 0))
4501 if (MEM_P (str_rtx
))
4503 unsigned HOST_WIDE_INT offset1
;
4505 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4506 str_mode
= word_mode
;
4507 str_mode
= get_best_mode (bitsize
, bitpos
,
4508 bitregion_start
, bitregion_end
,
4509 MEM_ALIGN (str_rtx
), str_mode
, 0);
4510 if (str_mode
== VOIDmode
)
4512 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4515 bitpos
%= str_bitsize
;
4516 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4517 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4519 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4522 /* If the bit field covers the whole REG/MEM, store_field
4523 will likely generate better code. */
4524 if (bitsize
>= str_bitsize
)
4527 /* We can't handle fields split across multiple entities. */
4528 if (bitpos
+ bitsize
> str_bitsize
)
4531 if (BYTES_BIG_ENDIAN
)
4532 bitpos
= str_bitsize
- bitpos
- bitsize
;
4538 /* For now, just optimize the case of the topmost bitfield
4539 where we don't need to do any masking and also
4540 1 bit bitfields where xor can be used.
4541 We might win by one instruction for the other bitfields
4542 too if insv/extv instructions aren't used, so that
4543 can be added later. */
4544 if (bitpos
+ bitsize
!= str_bitsize
4545 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4548 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4549 value
= convert_modes (str_mode
,
4550 TYPE_MODE (TREE_TYPE (op1
)), value
,
4551 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4553 /* We may be accessing data outside the field, which means
4554 we can alias adjacent data. */
4555 if (MEM_P (str_rtx
))
4557 str_rtx
= shallow_copy_rtx (str_rtx
);
4558 set_mem_alias_set (str_rtx
, 0);
4559 set_mem_expr (str_rtx
, 0);
4562 binop
= code
== PLUS_EXPR
? add_optab
: sub_optab
;
4563 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4565 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4568 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4569 result
= expand_binop (str_mode
, binop
, str_rtx
,
4570 value
, str_rtx
, 1, OPTAB_WIDEN
);
4571 if (result
!= str_rtx
)
4572 emit_move_insn (str_rtx
, result
);
4577 if (TREE_CODE (op1
) != INTEGER_CST
)
4579 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4580 value
= convert_modes (str_mode
,
4581 TYPE_MODE (TREE_TYPE (op1
)), value
,
4582 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4584 /* We may be accessing data outside the field, which means
4585 we can alias adjacent data. */
4586 if (MEM_P (str_rtx
))
4588 str_rtx
= shallow_copy_rtx (str_rtx
);
4589 set_mem_alias_set (str_rtx
, 0);
4590 set_mem_expr (str_rtx
, 0);
4593 binop
= code
== BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4594 if (bitpos
+ bitsize
!= str_bitsize
)
4596 rtx mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << bitsize
) - 1,
4598 value
= expand_and (str_mode
, value
, mask
, NULL_RTX
);
4600 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
, bitpos
, NULL_RTX
, 1);
4601 result
= expand_binop (str_mode
, binop
, str_rtx
,
4602 value
, str_rtx
, 1, OPTAB_WIDEN
);
4603 if (result
!= str_rtx
)
4604 emit_move_insn (str_rtx
, result
);
4614 /* In the C++ memory model, consecutive bit fields in a structure are
4615 considered one memory location.
4617 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4618 returns the bit range of consecutive bits in which this COMPONENT_REF
4619 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4620 and *OFFSET may be adjusted in the process.
4622 If the access does not need to be restricted, 0 is returned in both
4623 *BITSTART and *BITEND. */
4626 get_bit_range (unsigned HOST_WIDE_INT
*bitstart
,
4627 unsigned HOST_WIDE_INT
*bitend
,
4629 HOST_WIDE_INT
*bitpos
,
4632 HOST_WIDE_INT bitoffset
;
4635 gcc_assert (TREE_CODE (exp
) == COMPONENT_REF
);
4637 field
= TREE_OPERAND (exp
, 1);
4638 repr
= DECL_BIT_FIELD_REPRESENTATIVE (field
);
4639 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4640 need to limit the range we can access. */
4643 *bitstart
= *bitend
= 0;
4647 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4648 part of a larger bit field, then the representative does not serve any
4649 useful purpose. This can occur in Ada. */
4650 if (handled_component_p (TREE_OPERAND (exp
, 0)))
4653 HOST_WIDE_INT rbitsize
, rbitpos
;
4657 get_inner_reference (TREE_OPERAND (exp
, 0), &rbitsize
, &rbitpos
,
4658 &roffset
, &rmode
, &unsignedp
, &volatilep
, false);
4659 if ((rbitpos
% BITS_PER_UNIT
) != 0)
4661 *bitstart
= *bitend
= 0;
4666 /* Compute the adjustment to bitpos from the offset of the field
4667 relative to the representative. DECL_FIELD_OFFSET of field and
4668 repr are the same by construction if they are not constants,
4669 see finish_bitfield_layout. */
4670 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
))
4671 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
)))
4672 bitoffset
= (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
4673 - tree_to_uhwi (DECL_FIELD_OFFSET (repr
))) * BITS_PER_UNIT
;
4676 bitoffset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
4677 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
4679 /* If the adjustment is larger than bitpos, we would have a negative bit
4680 position for the lower bound and this may wreak havoc later. Adjust
4681 offset and bitpos to make the lower bound non-negative in that case. */
4682 if (bitoffset
> *bitpos
)
4684 HOST_WIDE_INT adjust
= bitoffset
- *bitpos
;
4685 gcc_assert ((adjust
% BITS_PER_UNIT
) == 0);
4688 if (*offset
== NULL_TREE
)
4689 *offset
= size_int (-adjust
/ BITS_PER_UNIT
);
4692 = size_binop (MINUS_EXPR
, *offset
, size_int (adjust
/ BITS_PER_UNIT
));
4696 *bitstart
= *bitpos
- bitoffset
;
4698 *bitend
= *bitstart
+ tree_to_uhwi (DECL_SIZE (repr
)) - 1;
4701 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4702 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4703 DECL_RTL was not set yet, return NORTL. */
4706 addr_expr_of_non_mem_decl_p_1 (tree addr
, bool nortl
)
4708 if (TREE_CODE (addr
) != ADDR_EXPR
)
4711 tree base
= TREE_OPERAND (addr
, 0);
4714 || TREE_ADDRESSABLE (base
)
4715 || DECL_MODE (base
) == BLKmode
)
4718 if (!DECL_RTL_SET_P (base
))
4721 return (!MEM_P (DECL_RTL (base
)));
4724 /* Returns true if the MEM_REF REF refers to an object that does not
4725 reside in memory and has non-BLKmode. */
4728 mem_ref_refers_to_non_mem_p (tree ref
)
4730 tree base
= TREE_OPERAND (ref
, 0);
4731 return addr_expr_of_non_mem_decl_p_1 (base
, false);
4734 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4735 is true, try generating a nontemporal store. */
4738 expand_assignment (tree to
, tree from
, bool nontemporal
)
4744 enum insn_code icode
;
4746 /* Don't crash if the lhs of the assignment was erroneous. */
4747 if (TREE_CODE (to
) == ERROR_MARK
)
4749 expand_normal (from
);
4753 /* Optimize away no-op moves without side-effects. */
4754 if (operand_equal_p (to
, from
, 0))
4757 /* Handle misaligned stores. */
4758 mode
= TYPE_MODE (TREE_TYPE (to
));
4759 if ((TREE_CODE (to
) == MEM_REF
4760 || TREE_CODE (to
) == TARGET_MEM_REF
)
4762 && !mem_ref_refers_to_non_mem_p (to
)
4763 && ((align
= get_object_alignment (to
))
4764 < GET_MODE_ALIGNMENT (mode
))
4765 && (((icode
= optab_handler (movmisalign_optab
, mode
))
4766 != CODE_FOR_nothing
)
4767 || SLOW_UNALIGNED_ACCESS (mode
, align
)))
4771 reg
= expand_expr (from
, NULL_RTX
, VOIDmode
, EXPAND_NORMAL
);
4772 reg
= force_not_mem (reg
);
4773 mem
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4775 if (icode
!= CODE_FOR_nothing
)
4777 struct expand_operand ops
[2];
4779 create_fixed_operand (&ops
[0], mem
);
4780 create_input_operand (&ops
[1], reg
, mode
);
4781 /* The movmisalign<mode> pattern cannot fail, else the assignment
4782 would silently be omitted. */
4783 expand_insn (icode
, 2, ops
);
4786 store_bit_field (mem
, GET_MODE_BITSIZE (mode
), 0, 0, 0, mode
, reg
);
4790 /* Assignment of a structure component needs special treatment
4791 if the structure component's rtx is not simply a MEM.
4792 Assignment of an array element at a constant index, and assignment of
4793 an array element in an unaligned packed structure field, has the same
4794 problem. Same for (partially) storing into a non-memory object. */
4795 if (handled_component_p (to
)
4796 || (TREE_CODE (to
) == MEM_REF
4797 && mem_ref_refers_to_non_mem_p (to
))
4798 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4801 HOST_WIDE_INT bitsize
, bitpos
;
4802 unsigned HOST_WIDE_INT bitregion_start
= 0;
4803 unsigned HOST_WIDE_INT bitregion_end
= 0;
4810 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4811 &unsignedp
, &volatilep
, true);
4813 /* Make sure bitpos is not negative, it can wreak havoc later. */
4816 gcc_assert (offset
== NULL_TREE
);
4817 offset
= size_int (bitpos
>> (BITS_PER_UNIT
== 8
4818 ? 3 : exact_log2 (BITS_PER_UNIT
)));
4819 bitpos
&= BITS_PER_UNIT
- 1;
4822 if (TREE_CODE (to
) == COMPONENT_REF
4823 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to
, 1)))
4824 get_bit_range (&bitregion_start
, &bitregion_end
, to
, &bitpos
, &offset
);
4825 /* The C++ memory model naturally applies to byte-aligned fields.
4826 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4827 BITSIZE are not byte-aligned, there is no need to limit the range
4828 we can access. This can occur with packed structures in Ada. */
4829 else if (bitsize
> 0
4830 && bitsize
% BITS_PER_UNIT
== 0
4831 && bitpos
% BITS_PER_UNIT
== 0)
4833 bitregion_start
= bitpos
;
4834 bitregion_end
= bitpos
+ bitsize
- 1;
4837 to_rtx
= expand_expr (tem
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4839 /* If the field has a mode, we want to access it in the
4840 field's mode, not the computed mode.
4841 If a MEM has VOIDmode (external with incomplete type),
4842 use BLKmode for it instead. */
4845 if (mode1
!= VOIDmode
)
4846 to_rtx
= adjust_address (to_rtx
, mode1
, 0);
4847 else if (GET_MODE (to_rtx
) == VOIDmode
)
4848 to_rtx
= adjust_address (to_rtx
, BLKmode
, 0);
4853 machine_mode address_mode
;
4856 if (!MEM_P (to_rtx
))
4858 /* We can get constant negative offsets into arrays with broken
4859 user code. Translate this to a trap instead of ICEing. */
4860 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4861 expand_builtin_trap ();
4862 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4865 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4866 address_mode
= get_address_mode (to_rtx
);
4867 if (GET_MODE (offset_rtx
) != address_mode
)
4869 /* We cannot be sure that the RTL in offset_rtx is valid outside
4870 of a memory address context, so force it into a register
4871 before attempting to convert it to the desired mode. */
4872 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
4873 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
4876 /* If we have an expression in OFFSET_RTX and a non-zero
4877 byte offset in BITPOS, adding the byte offset before the
4878 OFFSET_RTX results in better intermediate code, which makes
4879 later rtl optimization passes perform better.
4881 We prefer intermediate code like this:
4883 r124:DI=r123:DI+0x18
4888 r124:DI=r123:DI+0x10
4889 [r124:DI+0x8]=r121:DI
4891 This is only done for aligned data values, as these can
4892 be expected to result in single move instructions. */
4893 if (mode1
!= VOIDmode
4896 && (bitpos
% bitsize
) == 0
4897 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4898 && MEM_ALIGN (to_rtx
) >= GET_MODE_ALIGNMENT (mode1
))
4900 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4901 bitregion_start
= 0;
4902 if (bitregion_end
>= (unsigned HOST_WIDE_INT
) bitpos
)
4903 bitregion_end
-= bitpos
;
4907 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4908 highest_pow2_factor_for_target (to
,
4912 /* No action is needed if the target is not a memory and the field
4913 lies completely outside that target. This can occur if the source
4914 code contains an out-of-bounds access to a small array. */
4916 && GET_MODE (to_rtx
) != BLKmode
4917 && (unsigned HOST_WIDE_INT
) bitpos
4918 >= GET_MODE_PRECISION (GET_MODE (to_rtx
)))
4920 expand_normal (from
);
4923 /* Handle expand_expr of a complex value returning a CONCAT. */
4924 else if (GET_CODE (to_rtx
) == CONCAT
)
4926 unsigned short mode_bitsize
= GET_MODE_BITSIZE (GET_MODE (to_rtx
));
4927 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from
)))
4929 && bitsize
== mode_bitsize
)
4930 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4931 else if (bitsize
== mode_bitsize
/ 2
4932 && (bitpos
== 0 || bitpos
== mode_bitsize
/ 2))
4933 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4935 else if (bitpos
+ bitsize
<= mode_bitsize
/ 2)
4936 result
= store_field (XEXP (to_rtx
, 0), bitsize
, bitpos
,
4937 bitregion_start
, bitregion_end
,
4939 get_alias_set (to
), nontemporal
);
4940 else if (bitpos
>= mode_bitsize
/ 2)
4941 result
= store_field (XEXP (to_rtx
, 1), bitsize
,
4942 bitpos
- mode_bitsize
/ 2,
4943 bitregion_start
, bitregion_end
,
4945 get_alias_set (to
), nontemporal
);
4946 else if (bitpos
== 0 && bitsize
== mode_bitsize
)
4949 result
= expand_normal (from
);
4950 from_rtx
= simplify_gen_subreg (GET_MODE (to_rtx
), result
,
4951 TYPE_MODE (TREE_TYPE (from
)), 0);
4952 emit_move_insn (XEXP (to_rtx
, 0),
4953 read_complex_part (from_rtx
, false));
4954 emit_move_insn (XEXP (to_rtx
, 1),
4955 read_complex_part (from_rtx
, true));
4959 rtx temp
= assign_stack_temp (GET_MODE (to_rtx
),
4960 GET_MODE_SIZE (GET_MODE (to_rtx
)));
4961 write_complex_part (temp
, XEXP (to_rtx
, 0), false);
4962 write_complex_part (temp
, XEXP (to_rtx
, 1), true);
4963 result
= store_field (temp
, bitsize
, bitpos
,
4964 bitregion_start
, bitregion_end
,
4966 get_alias_set (to
), nontemporal
);
4967 emit_move_insn (XEXP (to_rtx
, 0), read_complex_part (temp
, false));
4968 emit_move_insn (XEXP (to_rtx
, 1), read_complex_part (temp
, true));
4975 /* If the field is at offset zero, we could have been given the
4976 DECL_RTX of the parent struct. Don't munge it. */
4977 to_rtx
= shallow_copy_rtx (to_rtx
);
4978 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4980 MEM_VOLATILE_P (to_rtx
) = 1;
4983 if (optimize_bitfield_assignment_op (bitsize
, bitpos
,
4984 bitregion_start
, bitregion_end
,
4989 result
= store_field (to_rtx
, bitsize
, bitpos
,
4990 bitregion_start
, bitregion_end
,
4992 get_alias_set (to
), nontemporal
);
4996 preserve_temp_slots (result
);
5001 /* If the rhs is a function call and its value is not an aggregate,
5002 call the function before we start to compute the lhs.
5003 This is needed for correct code for cases such as
5004 val = setjmp (buf) on machines where reference to val
5005 requires loading up part of an address in a separate insn.
5007 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5008 since it might be a promoted variable where the zero- or sign- extension
5009 needs to be done. Handling this in the normal way is safe because no
5010 computation is done before the call. The same is true for SSA names. */
5011 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
5012 && COMPLETE_TYPE_P (TREE_TYPE (from
))
5013 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
5014 && ! (((TREE_CODE (to
) == VAR_DECL
5015 || TREE_CODE (to
) == PARM_DECL
5016 || TREE_CODE (to
) == RESULT_DECL
)
5017 && REG_P (DECL_RTL (to
)))
5018 || TREE_CODE (to
) == SSA_NAME
))
5024 value
= expand_normal (from
);
5026 /* Split value and bounds to store them separately. */
5027 chkp_split_slot (value
, &value
, &bounds
);
5030 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5032 /* Handle calls that return values in multiple non-contiguous locations.
5033 The Irix 6 ABI has examples of this. */
5034 if (GET_CODE (to_rtx
) == PARALLEL
)
5036 if (GET_CODE (value
) == PARALLEL
)
5037 emit_group_move (to_rtx
, value
);
5039 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
5040 int_size_in_bytes (TREE_TYPE (from
)));
5042 else if (GET_CODE (value
) == PARALLEL
)
5043 emit_group_store (to_rtx
, value
, TREE_TYPE (from
),
5044 int_size_in_bytes (TREE_TYPE (from
)));
5045 else if (GET_MODE (to_rtx
) == BLKmode
)
5047 /* Handle calls that return BLKmode values in registers. */
5049 copy_blkmode_from_reg (to_rtx
, value
, TREE_TYPE (from
));
5051 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
5055 if (POINTER_TYPE_P (TREE_TYPE (to
)))
5056 value
= convert_memory_address_addr_space
5057 (GET_MODE (to_rtx
), value
,
5058 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to
))));
5060 emit_move_insn (to_rtx
, value
);
5063 /* Store bounds if required. */
5065 && (BOUNDED_P (to
) || chkp_type_has_pointer (TREE_TYPE (to
))))
5067 gcc_assert (MEM_P (to_rtx
));
5068 chkp_emit_bounds_store (bounds
, value
, to_rtx
);
5071 preserve_temp_slots (to_rtx
);
5076 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5077 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
5079 /* Don't move directly into a return register. */
5080 if (TREE_CODE (to
) == RESULT_DECL
5081 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
5087 /* If the source is itself a return value, it still is in a pseudo at
5088 this point so we can move it back to the return register directly. */
5090 && TYPE_MODE (TREE_TYPE (from
)) == BLKmode
5091 && TREE_CODE (from
) != CALL_EXPR
)
5092 temp
= copy_blkmode_to_reg (GET_MODE (to_rtx
), from
);
5094 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
5096 /* Handle calls that return values in multiple non-contiguous locations.
5097 The Irix 6 ABI has examples of this. */
5098 if (GET_CODE (to_rtx
) == PARALLEL
)
5100 if (GET_CODE (temp
) == PARALLEL
)
5101 emit_group_move (to_rtx
, temp
);
5103 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
5104 int_size_in_bytes (TREE_TYPE (from
)));
5107 emit_move_insn (to_rtx
, temp
);
5109 preserve_temp_slots (to_rtx
);
5114 /* In case we are returning the contents of an object which overlaps
5115 the place the value is being stored, use a safe function when copying
5116 a value through a pointer into a structure value return block. */
5117 if (TREE_CODE (to
) == RESULT_DECL
5118 && TREE_CODE (from
) == INDIRECT_REF
5119 && ADDR_SPACE_GENERIC_P
5120 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from
, 0)))))
5121 && refs_may_alias_p (to
, from
)
5122 && cfun
->returns_struct
5123 && !cfun
->returns_pcc_struct
)
5128 size
= expr_size (from
);
5129 from_rtx
= expand_normal (from
);
5131 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
5132 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
5133 XEXP (from_rtx
, 0), Pmode
,
5134 convert_to_mode (TYPE_MODE (sizetype
),
5135 size
, TYPE_UNSIGNED (sizetype
)),
5136 TYPE_MODE (sizetype
));
5138 preserve_temp_slots (to_rtx
);
5143 /* Compute FROM and store the value in the rtx we got. */
5146 result
= store_expr_with_bounds (from
, to_rtx
, 0, nontemporal
, to
);
5147 preserve_temp_slots (result
);
5152 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5153 succeeded, false otherwise. */
5156 emit_storent_insn (rtx to
, rtx from
)
5158 struct expand_operand ops
[2];
5159 machine_mode mode
= GET_MODE (to
);
5160 enum insn_code code
= optab_handler (storent_optab
, mode
);
5162 if (code
== CODE_FOR_nothing
)
5165 create_fixed_operand (&ops
[0], to
);
5166 create_input_operand (&ops
[1], from
, mode
);
5167 return maybe_expand_insn (code
, 2, ops
);
5170 /* Generate code for computing expression EXP,
5171 and storing the value into TARGET.
5173 If the mode is BLKmode then we may return TARGET itself.
5174 It turns out that in BLKmode it doesn't cause a problem.
5175 because C has no operators that could combine two different
5176 assignments into the same BLKmode object with different values
5177 with no sequence point. Will other languages need this to
5180 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5181 stack, and block moves may need to be treated specially.
5183 If NONTEMPORAL is true, try using a nontemporal store instruction.
5185 If BTARGET is not NULL then computed bounds of EXP are
5186 associated with BTARGET. */
5189 store_expr_with_bounds (tree exp
, rtx target
, int call_param_p
,
5190 bool nontemporal
, tree btarget
)
5193 rtx alt_rtl
= NULL_RTX
;
5194 location_t loc
= curr_insn_location ();
5196 if (VOID_TYPE_P (TREE_TYPE (exp
)))
5198 /* C++ can generate ?: expressions with a throw expression in one
5199 branch and an rvalue in the other. Here, we resolve attempts to
5200 store the throw expression's nonexistent result. */
5201 gcc_assert (!call_param_p
);
5202 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5205 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
5207 /* Perform first part of compound expression, then assign from second
5209 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
5210 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5211 return store_expr_with_bounds (TREE_OPERAND (exp
, 1), target
,
5212 call_param_p
, nontemporal
, btarget
);
5214 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
5216 /* For conditional expression, get safe form of the target. Then
5217 test the condition, doing the appropriate assignment on either
5218 side. This avoids the creation of unnecessary temporaries.
5219 For non-BLKmode, it is more efficient not to do this. */
5221 rtx_code_label
*lab1
= gen_label_rtx (), *lab2
= gen_label_rtx ();
5223 do_pending_stack_adjust ();
5225 jumpifnot (TREE_OPERAND (exp
, 0), lab1
, -1);
5226 store_expr_with_bounds (TREE_OPERAND (exp
, 1), target
, call_param_p
,
5227 nontemporal
, btarget
);
5228 emit_jump_insn (gen_jump (lab2
));
5231 store_expr_with_bounds (TREE_OPERAND (exp
, 2), target
, call_param_p
,
5232 nontemporal
, btarget
);
5238 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
5239 /* If this is a scalar in a register that is stored in a wider mode
5240 than the declared mode, compute the result into its declared mode
5241 and then convert to the wider mode. Our value is the computed
5244 rtx inner_target
= 0;
5246 /* We can do the conversion inside EXP, which will often result
5247 in some optimizations. Do the conversion in two steps: first
5248 change the signedness, if needed, then the extend. But don't
5249 do this if the type of EXP is a subtype of something else
5250 since then the conversion might involve more than just
5251 converting modes. */
5252 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5253 && TREE_TYPE (TREE_TYPE (exp
)) == 0
5254 && GET_MODE_PRECISION (GET_MODE (target
))
5255 == TYPE_PRECISION (TREE_TYPE (exp
)))
5257 if (!SUBREG_CHECK_PROMOTED_SIGN (target
,
5258 TYPE_UNSIGNED (TREE_TYPE (exp
))))
5260 /* Some types, e.g. Fortran's logical*4, won't have a signed
5261 version, so use the mode instead. */
5263 = (signed_or_unsigned_type_for
5264 (SUBREG_PROMOTED_SIGN (target
), TREE_TYPE (exp
)));
5266 ntype
= lang_hooks
.types
.type_for_mode
5267 (TYPE_MODE (TREE_TYPE (exp
)),
5268 SUBREG_PROMOTED_SIGN (target
));
5270 exp
= fold_convert_loc (loc
, ntype
, exp
);
5273 exp
= fold_convert_loc (loc
, lang_hooks
.types
.type_for_mode
5274 (GET_MODE (SUBREG_REG (target
)),
5275 SUBREG_PROMOTED_SIGN (target
)),
5278 inner_target
= SUBREG_REG (target
);
5281 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
5282 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
5284 /* Handle bounds returned by call. */
5285 if (TREE_CODE (exp
) == CALL_EXPR
)
5288 chkp_split_slot (temp
, &temp
, &bounds
);
5289 if (bounds
&& btarget
)
5291 gcc_assert (TREE_CODE (btarget
) == SSA_NAME
);
5292 rtx tmp
= targetm
.calls
.load_returned_bounds (bounds
);
5293 chkp_set_rtl_bounds (btarget
, tmp
);
5297 /* If TEMP is a VOIDmode constant, use convert_modes to make
5298 sure that we properly convert it. */
5299 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
5301 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5302 temp
, SUBREG_PROMOTED_SIGN (target
));
5303 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
5304 GET_MODE (target
), temp
,
5305 SUBREG_PROMOTED_SIGN (target
));
5308 convert_move (SUBREG_REG (target
), temp
,
5309 SUBREG_PROMOTED_SIGN (target
));
5313 else if ((TREE_CODE (exp
) == STRING_CST
5314 || (TREE_CODE (exp
) == MEM_REF
5315 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
5316 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
5318 && integer_zerop (TREE_OPERAND (exp
, 1))))
5319 && !nontemporal
&& !call_param_p
5322 /* Optimize initialization of an array with a STRING_CST. */
5323 HOST_WIDE_INT exp_len
, str_copy_len
;
5325 tree str
= TREE_CODE (exp
) == STRING_CST
5326 ? exp
: TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
5328 exp_len
= int_expr_size (exp
);
5332 if (TREE_STRING_LENGTH (str
) <= 0)
5335 str_copy_len
= strlen (TREE_STRING_POINTER (str
));
5336 if (str_copy_len
< TREE_STRING_LENGTH (str
) - 1)
5339 str_copy_len
= TREE_STRING_LENGTH (str
);
5340 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0
5341 && TREE_STRING_POINTER (str
)[TREE_STRING_LENGTH (str
) - 1] == '\0')
5343 str_copy_len
+= STORE_MAX_PIECES
- 1;
5344 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
5346 str_copy_len
= MIN (str_copy_len
, exp_len
);
5347 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
5348 CONST_CAST (char *, TREE_STRING_POINTER (str
)),
5349 MEM_ALIGN (target
), false))
5354 dest_mem
= store_by_pieces (dest_mem
,
5355 str_copy_len
, builtin_strncpy_read_str
,
5357 TREE_STRING_POINTER (str
)),
5358 MEM_ALIGN (target
), false,
5359 exp_len
> str_copy_len
? 1 : 0);
5360 if (exp_len
> str_copy_len
)
5361 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
5362 GEN_INT (exp_len
- str_copy_len
),
5371 /* If we want to use a nontemporal store, force the value to
5373 tmp_target
= nontemporal
? NULL_RTX
: target
;
5374 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
5376 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
5379 /* Handle bounds returned by call. */
5380 if (TREE_CODE (exp
) == CALL_EXPR
)
5383 chkp_split_slot (temp
, &temp
, &bounds
);
5384 if (bounds
&& btarget
)
5386 gcc_assert (TREE_CODE (btarget
) == SSA_NAME
);
5387 rtx tmp
= targetm
.calls
.load_returned_bounds (bounds
);
5388 chkp_set_rtl_bounds (btarget
, tmp
);
5393 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5394 the same as that of TARGET, adjust the constant. This is needed, for
5395 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5396 only a word-sized value. */
5397 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
5398 && TREE_CODE (exp
) != ERROR_MARK
5399 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
5400 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
5401 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5403 /* If value was not generated in the target, store it there.
5404 Convert the value to TARGET's type first if necessary and emit the
5405 pending incrementations that have been queued when expanding EXP.
5406 Note that we cannot emit the whole queue blindly because this will
5407 effectively disable the POST_INC optimization later.
5409 If TEMP and TARGET compare equal according to rtx_equal_p, but
5410 one or both of them are volatile memory refs, we have to distinguish
5412 - expand_expr has used TARGET. In this case, we must not generate
5413 another copy. This can be detected by TARGET being equal according
5415 - expand_expr has not used TARGET - that means that the source just
5416 happens to have the same RTX form. Since temp will have been created
5417 by expand_expr, it will compare unequal according to == .
5418 We must generate a copy in this case, to reach the correct number
5419 of volatile memory references. */
5421 if ((! rtx_equal_p (temp
, target
)
5422 || (temp
!= target
&& (side_effects_p (temp
)
5423 || side_effects_p (target
))))
5424 && TREE_CODE (exp
) != ERROR_MARK
5425 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5426 but TARGET is not valid memory reference, TEMP will differ
5427 from TARGET although it is really the same location. */
5429 && rtx_equal_p (alt_rtl
, target
)
5430 && !side_effects_p (alt_rtl
)
5431 && !side_effects_p (target
))
5432 /* If there's nothing to copy, don't bother. Don't call
5433 expr_size unless necessary, because some front-ends (C++)
5434 expr_size-hook must not be given objects that are not
5435 supposed to be bit-copied or bit-initialized. */
5436 && expr_size (exp
) != const0_rtx
)
5438 if (GET_MODE (temp
) != GET_MODE (target
) && GET_MODE (temp
) != VOIDmode
)
5440 if (GET_MODE (target
) == BLKmode
)
5442 /* Handle calls that return BLKmode values in registers. */
5443 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
5444 copy_blkmode_from_reg (target
, temp
, TREE_TYPE (exp
));
5446 store_bit_field (target
,
5447 INTVAL (expr_size (exp
)) * BITS_PER_UNIT
,
5448 0, 0, 0, GET_MODE (temp
), temp
);
5451 convert_move (target
, temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
5454 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
5456 /* Handle copying a string constant into an array. The string
5457 constant may be shorter than the array. So copy just the string's
5458 actual length, and clear the rest. First get the size of the data
5459 type of the string, which is actually the size of the target. */
5460 rtx size
= expr_size (exp
);
5462 if (CONST_INT_P (size
)
5463 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
5464 emit_block_move (target
, temp
, size
,
5466 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5469 machine_mode pointer_mode
5470 = targetm
.addr_space
.pointer_mode (MEM_ADDR_SPACE (target
));
5471 machine_mode address_mode
= get_address_mode (target
);
5473 /* Compute the size of the data to copy from the string. */
5475 = size_binop_loc (loc
, MIN_EXPR
,
5476 make_tree (sizetype
, size
),
5477 size_int (TREE_STRING_LENGTH (exp
)));
5479 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
5481 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
5482 rtx_code_label
*label
= 0;
5484 /* Copy that much. */
5485 copy_size_rtx
= convert_to_mode (pointer_mode
, copy_size_rtx
,
5486 TYPE_UNSIGNED (sizetype
));
5487 emit_block_move (target
, temp
, copy_size_rtx
,
5489 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5491 /* Figure out how much is left in TARGET that we have to clear.
5492 Do all calculations in pointer_mode. */
5493 if (CONST_INT_P (copy_size_rtx
))
5495 size
= plus_constant (address_mode
, size
,
5496 -INTVAL (copy_size_rtx
));
5497 target
= adjust_address (target
, BLKmode
,
5498 INTVAL (copy_size_rtx
));
5502 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
5503 copy_size_rtx
, NULL_RTX
, 0,
5506 if (GET_MODE (copy_size_rtx
) != address_mode
)
5507 copy_size_rtx
= convert_to_mode (address_mode
,
5509 TYPE_UNSIGNED (sizetype
));
5511 target
= offset_address (target
, copy_size_rtx
,
5512 highest_pow2_factor (copy_size
));
5513 label
= gen_label_rtx ();
5514 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
5515 GET_MODE (size
), 0, label
);
5518 if (size
!= const0_rtx
)
5519 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
5525 /* Handle calls that return values in multiple non-contiguous locations.
5526 The Irix 6 ABI has examples of this. */
5527 else if (GET_CODE (target
) == PARALLEL
)
5529 if (GET_CODE (temp
) == PARALLEL
)
5530 emit_group_move (target
, temp
);
5532 emit_group_load (target
, temp
, TREE_TYPE (exp
),
5533 int_size_in_bytes (TREE_TYPE (exp
)));
5535 else if (GET_CODE (temp
) == PARALLEL
)
5536 emit_group_store (target
, temp
, TREE_TYPE (exp
),
5537 int_size_in_bytes (TREE_TYPE (exp
)));
5538 else if (GET_MODE (temp
) == BLKmode
)
5539 emit_block_move (target
, temp
, expr_size (exp
),
5541 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
5542 /* If we emit a nontemporal store, there is nothing else to do. */
5543 else if (nontemporal
&& emit_storent_insn (target
, temp
))
5547 temp
= force_operand (temp
, target
);
5549 emit_move_insn (target
, temp
);
5556 /* Same as store_expr_with_bounds but ignoring bounds of EXP. */
5558 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
5560 return store_expr_with_bounds (exp
, target
, call_param_p
, nontemporal
, NULL
);
5563 /* Return true if field F of structure TYPE is a flexible array. */
5566 flexible_array_member_p (const_tree f
, const_tree type
)
5571 return (DECL_CHAIN (f
) == NULL
5572 && TREE_CODE (tf
) == ARRAY_TYPE
5574 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
5575 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
5576 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
5577 && int_size_in_bytes (type
) >= 0);
5580 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5581 must have in order for it to completely initialize a value of type TYPE.
5582 Return -1 if the number isn't known.
5584 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5586 static HOST_WIDE_INT
5587 count_type_elements (const_tree type
, bool for_ctor_p
)
5589 switch (TREE_CODE (type
))
5595 nelts
= array_type_nelts (type
);
5596 if (nelts
&& tree_fits_uhwi_p (nelts
))
5598 unsigned HOST_WIDE_INT n
;
5600 n
= tree_to_uhwi (nelts
) + 1;
5601 if (n
== 0 || for_ctor_p
)
5604 return n
* count_type_elements (TREE_TYPE (type
), false);
5606 return for_ctor_p
? -1 : 1;
5611 unsigned HOST_WIDE_INT n
;
5615 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5616 if (TREE_CODE (f
) == FIELD_DECL
)
5619 n
+= count_type_elements (TREE_TYPE (f
), false);
5620 else if (!flexible_array_member_p (f
, type
))
5621 /* Don't count flexible arrays, which are not supposed
5622 to be initialized. */
5630 case QUAL_UNION_TYPE
:
5635 gcc_assert (!for_ctor_p
);
5636 /* Estimate the number of scalars in each field and pick the
5637 maximum. Other estimates would do instead; the idea is simply
5638 to make sure that the estimate is not sensitive to the ordering
5641 for (f
= TYPE_FIELDS (type
); f
; f
= DECL_CHAIN (f
))
5642 if (TREE_CODE (f
) == FIELD_DECL
)
5644 m
= count_type_elements (TREE_TYPE (f
), false);
5645 /* If the field doesn't span the whole union, add an extra
5646 scalar for the rest. */
5647 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f
)),
5648 TYPE_SIZE (type
)) != 1)
5660 return TYPE_VECTOR_SUBPARTS (type
);
5664 case FIXED_POINT_TYPE
:
5669 case REFERENCE_TYPE
:
5685 /* Helper for categorize_ctor_elements. Identical interface. */
5688 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5689 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5691 unsigned HOST_WIDE_INT idx
;
5692 HOST_WIDE_INT nz_elts
, init_elts
, num_fields
;
5693 tree value
, purpose
, elt_type
;
5695 /* Whether CTOR is a valid constant initializer, in accordance with what
5696 initializer_constant_valid_p does. If inferred from the constructor
5697 elements, true until proven otherwise. */
5698 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
5699 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
5704 elt_type
= NULL_TREE
;
5706 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
5708 HOST_WIDE_INT mult
= 1;
5710 if (purpose
&& TREE_CODE (purpose
) == RANGE_EXPR
)
5712 tree lo_index
= TREE_OPERAND (purpose
, 0);
5713 tree hi_index
= TREE_OPERAND (purpose
, 1);
5715 if (tree_fits_uhwi_p (lo_index
) && tree_fits_uhwi_p (hi_index
))
5716 mult
= (tree_to_uhwi (hi_index
)
5717 - tree_to_uhwi (lo_index
) + 1);
5720 elt_type
= TREE_TYPE (value
);
5722 switch (TREE_CODE (value
))
5726 HOST_WIDE_INT nz
= 0, ic
= 0;
5728 bool const_elt_p
= categorize_ctor_elements_1 (value
, &nz
, &ic
,
5731 nz_elts
+= mult
* nz
;
5732 init_elts
+= mult
* ic
;
5734 if (const_from_elts_p
&& const_p
)
5735 const_p
= const_elt_p
;
5742 if (!initializer_zerop (value
))
5748 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
5749 init_elts
+= mult
* TREE_STRING_LENGTH (value
);
5753 if (!initializer_zerop (TREE_REALPART (value
)))
5755 if (!initializer_zerop (TREE_IMAGPART (value
)))
5763 for (i
= 0; i
< VECTOR_CST_NELTS (value
); ++i
)
5765 tree v
= VECTOR_CST_ELT (value
, i
);
5766 if (!initializer_zerop (v
))
5775 HOST_WIDE_INT tc
= count_type_elements (elt_type
, false);
5776 nz_elts
+= mult
* tc
;
5777 init_elts
+= mult
* tc
;
5779 if (const_from_elts_p
&& const_p
)
5780 const_p
= initializer_constant_valid_p (value
, elt_type
)
5787 if (*p_complete
&& !complete_ctor_at_level_p (TREE_TYPE (ctor
),
5788 num_fields
, elt_type
))
5789 *p_complete
= false;
5791 *p_nz_elts
+= nz_elts
;
5792 *p_init_elts
+= init_elts
;
5797 /* Examine CTOR to discover:
5798 * how many scalar fields are set to nonzero values,
5799 and place it in *P_NZ_ELTS;
5800 * how many scalar fields in total are in CTOR,
5801 and place it in *P_ELT_COUNT.
5802 * whether the constructor is complete -- in the sense that every
5803 meaningful byte is explicitly given a value --
5804 and place it in *P_COMPLETE.
5806 Return whether or not CTOR is a valid static constant initializer, the same
5807 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5810 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
5811 HOST_WIDE_INT
*p_init_elts
, bool *p_complete
)
5817 return categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_init_elts
, p_complete
);
5820 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5821 of which had type LAST_TYPE. Each element was itself a complete
5822 initializer, in the sense that every meaningful byte was explicitly
5823 given a value. Return true if the same is true for the constructor
5827 complete_ctor_at_level_p (const_tree type
, HOST_WIDE_INT num_elts
,
5828 const_tree last_type
)
5830 if (TREE_CODE (type
) == UNION_TYPE
5831 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5836 gcc_assert (num_elts
== 1 && last_type
);
5838 /* ??? We could look at each element of the union, and find the
5839 largest element. Which would avoid comparing the size of the
5840 initialized element against any tail padding in the union.
5841 Doesn't seem worth the effort... */
5842 return simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (last_type
)) == 1;
5845 return count_type_elements (type
, true) == num_elts
;
5848 /* Return 1 if EXP contains mostly (3/4) zeros. */
5851 mostly_zeros_p (const_tree exp
)
5853 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5855 HOST_WIDE_INT nz_elts
, init_elts
;
5858 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5859 return !complete_p
|| nz_elts
< init_elts
/ 4;
5862 return initializer_zerop (exp
);
5865 /* Return 1 if EXP contains all zeros. */
5868 all_zeros_p (const_tree exp
)
5870 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5872 HOST_WIDE_INT nz_elts
, init_elts
;
5875 categorize_ctor_elements (exp
, &nz_elts
, &init_elts
, &complete_p
);
5876 return nz_elts
== 0;
5879 return initializer_zerop (exp
);
5882 /* Helper function for store_constructor.
5883 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5884 CLEARED is as for store_constructor.
5885 ALIAS_SET is the alias set to use for any stores.
5887 This provides a recursive shortcut back to store_constructor when it isn't
5888 necessary to go through store_field. This is so that we can pass through
5889 the cleared field to let store_constructor know that we may not have to
5890 clear a substructure if the outer structure has already been cleared. */
5893 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5894 HOST_WIDE_INT bitpos
, machine_mode mode
,
5895 tree exp
, int cleared
, alias_set_type alias_set
)
5897 if (TREE_CODE (exp
) == CONSTRUCTOR
5898 /* We can only call store_constructor recursively if the size and
5899 bit position are on a byte boundary. */
5900 && bitpos
% BITS_PER_UNIT
== 0
5901 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5902 /* If we have a nonzero bitpos for a register target, then we just
5903 let store_field do the bitfield handling. This is unlikely to
5904 generate unnecessary clear instructions anyways. */
5905 && (bitpos
== 0 || MEM_P (target
)))
5909 = adjust_address (target
,
5910 GET_MODE (target
) == BLKmode
5912 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5913 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5916 /* Update the alias set, if required. */
5917 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5918 && MEM_ALIAS_SET (target
) != 0)
5920 target
= copy_rtx (target
);
5921 set_mem_alias_set (target
, alias_set
);
5924 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5927 store_field (target
, bitsize
, bitpos
, 0, 0, mode
, exp
, alias_set
, false);
5931 /* Returns the number of FIELD_DECLs in TYPE. */
5934 fields_length (const_tree type
)
5936 tree t
= TYPE_FIELDS (type
);
5939 for (; t
; t
= DECL_CHAIN (t
))
5940 if (TREE_CODE (t
) == FIELD_DECL
)
5947 /* Store the value of constructor EXP into the rtx TARGET.
5948 TARGET is either a REG or a MEM; we know it cannot conflict, since
5949 safe_from_p has been called.
5950 CLEARED is true if TARGET is known to have been zero'd.
5951 SIZE is the number of bytes of TARGET we are allowed to modify: this
5952 may not be the same as the size of EXP if we are assigning to a field
5953 which has been packed to exclude padding bits. */
5956 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5958 tree type
= TREE_TYPE (exp
);
5959 #ifdef WORD_REGISTER_OPERATIONS
5960 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5963 switch (TREE_CODE (type
))
5967 case QUAL_UNION_TYPE
:
5969 unsigned HOST_WIDE_INT idx
;
5972 /* If size is zero or the target is already cleared, do nothing. */
5973 if (size
== 0 || cleared
)
5975 /* We either clear the aggregate or indicate the value is dead. */
5976 else if ((TREE_CODE (type
) == UNION_TYPE
5977 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5978 && ! CONSTRUCTOR_ELTS (exp
))
5979 /* If the constructor is empty, clear the union. */
5981 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5985 /* If we are building a static constructor into a register,
5986 set the initial value as zero so we can fold the value into
5987 a constant. But if more than one register is involved,
5988 this probably loses. */
5989 else if (REG_P (target
) && TREE_STATIC (exp
)
5990 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5992 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5996 /* If the constructor has fewer fields than the structure or
5997 if we are initializing the structure to mostly zeros, clear
5998 the whole structure first. Don't do this if TARGET is a
5999 register whose mode size isn't equal to SIZE since
6000 clear_storage can't handle this case. */
6002 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp
))
6003 != fields_length (type
))
6004 || mostly_zeros_p (exp
))
6006 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
6009 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6013 if (REG_P (target
) && !cleared
)
6014 emit_clobber (target
);
6016 /* Store each element of the constructor into the
6017 corresponding field of TARGET. */
6018 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
6021 HOST_WIDE_INT bitsize
;
6022 HOST_WIDE_INT bitpos
= 0;
6024 rtx to_rtx
= target
;
6026 /* Just ignore missing fields. We cleared the whole
6027 structure, above, if any fields are missing. */
6031 if (cleared
&& initializer_zerop (value
))
6034 if (tree_fits_uhwi_p (DECL_SIZE (field
)))
6035 bitsize
= tree_to_uhwi (DECL_SIZE (field
));
6039 mode
= DECL_MODE (field
);
6040 if (DECL_BIT_FIELD (field
))
6043 offset
= DECL_FIELD_OFFSET (field
);
6044 if (tree_fits_shwi_p (offset
)
6045 && tree_fits_shwi_p (bit_position (field
)))
6047 bitpos
= int_bit_position (field
);
6051 bitpos
= tree_to_shwi (DECL_FIELD_BIT_OFFSET (field
));
6055 machine_mode address_mode
;
6059 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
6060 make_tree (TREE_TYPE (exp
),
6063 offset_rtx
= expand_normal (offset
);
6064 gcc_assert (MEM_P (to_rtx
));
6066 address_mode
= get_address_mode (to_rtx
);
6067 if (GET_MODE (offset_rtx
) != address_mode
)
6068 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
6070 to_rtx
= offset_address (to_rtx
, offset_rtx
,
6071 highest_pow2_factor (offset
));
6074 #ifdef WORD_REGISTER_OPERATIONS
6075 /* If this initializes a field that is smaller than a
6076 word, at the start of a word, try to widen it to a full
6077 word. This special case allows us to output C++ member
6078 function initializations in a form that the optimizers
6081 && bitsize
< BITS_PER_WORD
6082 && bitpos
% BITS_PER_WORD
== 0
6083 && GET_MODE_CLASS (mode
) == MODE_INT
6084 && TREE_CODE (value
) == INTEGER_CST
6086 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
6088 tree type
= TREE_TYPE (value
);
6090 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
6092 type
= lang_hooks
.types
.type_for_mode
6093 (word_mode
, TYPE_UNSIGNED (type
));
6094 value
= fold_convert (type
, value
);
6097 if (BYTES_BIG_ENDIAN
)
6099 = fold_build2 (LSHIFT_EXPR
, type
, value
,
6100 build_int_cst (type
,
6101 BITS_PER_WORD
- bitsize
));
6102 bitsize
= BITS_PER_WORD
;
6107 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
6108 && DECL_NONADDRESSABLE_P (field
))
6110 to_rtx
= copy_rtx (to_rtx
);
6111 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
6114 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
6116 get_alias_set (TREE_TYPE (field
)));
6123 unsigned HOST_WIDE_INT i
;
6126 tree elttype
= TREE_TYPE (type
);
6128 HOST_WIDE_INT minelt
= 0;
6129 HOST_WIDE_INT maxelt
= 0;
6131 domain
= TYPE_DOMAIN (type
);
6132 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
6133 && TYPE_MAX_VALUE (domain
)
6134 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain
))
6135 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain
)));
6137 /* If we have constant bounds for the range of the type, get them. */
6140 minelt
= tree_to_shwi (TYPE_MIN_VALUE (domain
));
6141 maxelt
= tree_to_shwi (TYPE_MAX_VALUE (domain
));
6144 /* If the constructor has fewer elements than the array, clear
6145 the whole array first. Similarly if this is static
6146 constructor of a non-BLKmode object. */
6149 else if (REG_P (target
) && TREE_STATIC (exp
))
6153 unsigned HOST_WIDE_INT idx
;
6155 HOST_WIDE_INT count
= 0, zero_count
= 0;
6156 need_to_clear
= ! const_bounds_p
;
6158 /* This loop is a more accurate version of the loop in
6159 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6160 is also needed to check for missing elements. */
6161 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
6163 HOST_WIDE_INT this_node_count
;
6168 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6170 tree lo_index
= TREE_OPERAND (index
, 0);
6171 tree hi_index
= TREE_OPERAND (index
, 1);
6173 if (! tree_fits_uhwi_p (lo_index
)
6174 || ! tree_fits_uhwi_p (hi_index
))
6180 this_node_count
= (tree_to_uhwi (hi_index
)
6181 - tree_to_uhwi (lo_index
) + 1);
6184 this_node_count
= 1;
6186 count
+= this_node_count
;
6187 if (mostly_zeros_p (value
))
6188 zero_count
+= this_node_count
;
6191 /* Clear the entire array first if there are any missing
6192 elements, or if the incidence of zero elements is >=
6195 && (count
< maxelt
- minelt
+ 1
6196 || 4 * zero_count
>= 3 * count
))
6200 if (need_to_clear
&& size
> 0)
6203 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6205 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6209 if (!cleared
&& REG_P (target
))
6210 /* Inform later passes that the old value is dead. */
6211 emit_clobber (target
);
6213 /* Store each element of the constructor into the
6214 corresponding element of TARGET, determined by counting the
6216 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
6219 HOST_WIDE_INT bitsize
;
6220 HOST_WIDE_INT bitpos
;
6221 rtx xtarget
= target
;
6223 if (cleared
&& initializer_zerop (value
))
6226 mode
= TYPE_MODE (elttype
);
6227 if (mode
== BLKmode
)
6228 bitsize
= (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6229 ? tree_to_uhwi (TYPE_SIZE (elttype
))
6232 bitsize
= GET_MODE_BITSIZE (mode
);
6234 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
6236 tree lo_index
= TREE_OPERAND (index
, 0);
6237 tree hi_index
= TREE_OPERAND (index
, 1);
6238 rtx index_r
, pos_rtx
;
6239 HOST_WIDE_INT lo
, hi
, count
;
6242 /* If the range is constant and "small", unroll the loop. */
6244 && tree_fits_shwi_p (lo_index
)
6245 && tree_fits_shwi_p (hi_index
)
6246 && (lo
= tree_to_shwi (lo_index
),
6247 hi
= tree_to_shwi (hi_index
),
6248 count
= hi
- lo
+ 1,
6251 || (tree_fits_uhwi_p (TYPE_SIZE (elttype
))
6252 && (tree_to_uhwi (TYPE_SIZE (elttype
)) * count
6255 lo
-= minelt
; hi
-= minelt
;
6256 for (; lo
<= hi
; lo
++)
6258 bitpos
= lo
* tree_to_shwi (TYPE_SIZE (elttype
));
6261 && !MEM_KEEP_ALIAS_SET_P (target
)
6262 && TREE_CODE (type
) == ARRAY_TYPE
6263 && TYPE_NONALIASED_COMPONENT (type
))
6265 target
= copy_rtx (target
);
6266 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6269 store_constructor_field
6270 (target
, bitsize
, bitpos
, mode
, value
, cleared
,
6271 get_alias_set (elttype
));
6276 rtx_code_label
*loop_start
= gen_label_rtx ();
6277 rtx_code_label
*loop_end
= gen_label_rtx ();
6280 expand_normal (hi_index
);
6282 index
= build_decl (EXPR_LOCATION (exp
),
6283 VAR_DECL
, NULL_TREE
, domain
);
6284 index_r
= gen_reg_rtx (promote_decl_mode (index
, NULL
));
6285 SET_DECL_RTL (index
, index_r
);
6286 store_expr (lo_index
, index_r
, 0, false);
6288 /* Build the head of the loop. */
6289 do_pending_stack_adjust ();
6290 emit_label (loop_start
);
6292 /* Assign value to element index. */
6294 fold_convert (ssizetype
,
6295 fold_build2 (MINUS_EXPR
,
6298 TYPE_MIN_VALUE (domain
)));
6301 size_binop (MULT_EXPR
, position
,
6302 fold_convert (ssizetype
,
6303 TYPE_SIZE_UNIT (elttype
)));
6305 pos_rtx
= expand_normal (position
);
6306 xtarget
= offset_address (target
, pos_rtx
,
6307 highest_pow2_factor (position
));
6308 xtarget
= adjust_address (xtarget
, mode
, 0);
6309 if (TREE_CODE (value
) == CONSTRUCTOR
)
6310 store_constructor (value
, xtarget
, cleared
,
6311 bitsize
/ BITS_PER_UNIT
);
6313 store_expr (value
, xtarget
, 0, false);
6315 /* Generate a conditional jump to exit the loop. */
6316 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
6318 jumpif (exit_cond
, loop_end
, -1);
6320 /* Update the loop counter, and jump to the head of
6322 expand_assignment (index
,
6323 build2 (PLUS_EXPR
, TREE_TYPE (index
),
6324 index
, integer_one_node
),
6327 emit_jump (loop_start
);
6329 /* Build the end of the loop. */
6330 emit_label (loop_end
);
6333 else if ((index
!= 0 && ! tree_fits_shwi_p (index
))
6334 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype
)))
6339 index
= ssize_int (1);
6342 index
= fold_convert (ssizetype
,
6343 fold_build2 (MINUS_EXPR
,
6346 TYPE_MIN_VALUE (domain
)));
6349 size_binop (MULT_EXPR
, index
,
6350 fold_convert (ssizetype
,
6351 TYPE_SIZE_UNIT (elttype
)));
6352 xtarget
= offset_address (target
,
6353 expand_normal (position
),
6354 highest_pow2_factor (position
));
6355 xtarget
= adjust_address (xtarget
, mode
, 0);
6356 store_expr (value
, xtarget
, 0, false);
6361 bitpos
= ((tree_to_shwi (index
) - minelt
)
6362 * tree_to_uhwi (TYPE_SIZE (elttype
)));
6364 bitpos
= (i
* tree_to_uhwi (TYPE_SIZE (elttype
)));
6366 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
6367 && TREE_CODE (type
) == ARRAY_TYPE
6368 && TYPE_NONALIASED_COMPONENT (type
))
6370 target
= copy_rtx (target
);
6371 MEM_KEEP_ALIAS_SET_P (target
) = 1;
6373 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
6374 cleared
, get_alias_set (elttype
));
6382 unsigned HOST_WIDE_INT idx
;
6383 constructor_elt
*ce
;
6386 int icode
= CODE_FOR_nothing
;
6387 tree elttype
= TREE_TYPE (type
);
6388 int elt_size
= tree_to_uhwi (TYPE_SIZE (elttype
));
6389 machine_mode eltmode
= TYPE_MODE (elttype
);
6390 HOST_WIDE_INT bitsize
;
6391 HOST_WIDE_INT bitpos
;
6392 rtvec vector
= NULL
;
6394 alias_set_type alias
;
6396 gcc_assert (eltmode
!= BLKmode
);
6398 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
6399 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
6401 machine_mode mode
= GET_MODE (target
);
6403 icode
= (int) optab_handler (vec_init_optab
, mode
);
6404 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6405 if (icode
!= CODE_FOR_nothing
)
6409 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6410 if (TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
)
6412 icode
= CODE_FOR_nothing
;
6416 if (icode
!= CODE_FOR_nothing
)
6420 vector
= rtvec_alloc (n_elts
);
6421 for (i
= 0; i
< n_elts
; i
++)
6422 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
6426 /* If the constructor has fewer elements than the vector,
6427 clear the whole array first. Similarly if this is static
6428 constructor of a non-BLKmode object. */
6431 else if (REG_P (target
) && TREE_STATIC (exp
))
6435 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
6438 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
6440 int n_elts_here
= tree_to_uhwi
6441 (int_const_binop (TRUNC_DIV_EXPR
,
6442 TYPE_SIZE (TREE_TYPE (value
)),
6443 TYPE_SIZE (elttype
)));
6445 count
+= n_elts_here
;
6446 if (mostly_zeros_p (value
))
6447 zero_count
+= n_elts_here
;
6450 /* Clear the entire vector first if there are any missing elements,
6451 or if the incidence of zero elements is >= 75%. */
6452 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
6455 if (need_to_clear
&& size
> 0 && !vector
)
6458 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6460 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
6464 /* Inform later passes that the old value is dead. */
6465 if (!cleared
&& !vector
&& REG_P (target
))
6466 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
6469 alias
= MEM_ALIAS_SET (target
);
6471 alias
= get_alias_set (elttype
);
6473 /* Store each element of the constructor into the corresponding
6474 element of TARGET, determined by counting the elements. */
6475 for (idx
= 0, i
= 0;
6476 vec_safe_iterate (CONSTRUCTOR_ELTS (exp
), idx
, &ce
);
6477 idx
++, i
+= bitsize
/ elt_size
)
6479 HOST_WIDE_INT eltpos
;
6480 tree value
= ce
->value
;
6482 bitsize
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value
)));
6483 if (cleared
&& initializer_zerop (value
))
6487 eltpos
= tree_to_uhwi (ce
->index
);
6493 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6495 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
6496 RTVEC_ELT (vector
, eltpos
)
6497 = expand_normal (value
);
6501 machine_mode value_mode
=
6502 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
6503 ? TYPE_MODE (TREE_TYPE (value
))
6505 bitpos
= eltpos
* elt_size
;
6506 store_constructor_field (target
, bitsize
, bitpos
, value_mode
,
6507 value
, cleared
, alias
);
6512 emit_insn (GEN_FCN (icode
)
6514 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
6523 /* Store the value of EXP (an expression tree)
6524 into a subfield of TARGET which has mode MODE and occupies
6525 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6526 If MODE is VOIDmode, it means that we are storing into a bit-field.
6528 BITREGION_START is bitpos of the first bitfield in this region.
6529 BITREGION_END is the bitpos of the ending bitfield in this region.
6530 These two fields are 0, if the C++ memory model does not apply,
6531 or we are not interested in keeping track of bitfield regions.
6533 Always return const0_rtx unless we have something particular to
6536 ALIAS_SET is the alias set for the destination. This value will
6537 (in general) be different from that for TARGET, since TARGET is a
6538 reference to the containing structure.
6540 If NONTEMPORAL is true, try generating a nontemporal store. */
6543 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
6544 unsigned HOST_WIDE_INT bitregion_start
,
6545 unsigned HOST_WIDE_INT bitregion_end
,
6546 machine_mode mode
, tree exp
,
6547 alias_set_type alias_set
, bool nontemporal
)
6549 if (TREE_CODE (exp
) == ERROR_MARK
)
6552 /* If we have nothing to store, do nothing unless the expression has
6555 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
6557 if (GET_CODE (target
) == CONCAT
)
6559 /* We're storing into a struct containing a single __complex. */
6561 gcc_assert (!bitpos
);
6562 return store_expr (exp
, target
, 0, nontemporal
);
6565 /* If the structure is in a register or if the component
6566 is a bit field, we cannot use addressing to access it.
6567 Use bit-field techniques or SUBREG to store in it. */
6569 if (mode
== VOIDmode
6570 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
6571 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
6572 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
6574 || GET_CODE (target
) == SUBREG
6575 /* If the field isn't aligned enough to store as an ordinary memref,
6576 store it as a bit field. */
6578 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
6579 || bitpos
% GET_MODE_ALIGNMENT (mode
))
6580 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
6581 || (bitpos
% BITS_PER_UNIT
!= 0)))
6582 || (bitsize
>= 0 && mode
!= BLKmode
6583 && GET_MODE_BITSIZE (mode
) > bitsize
)
6584 /* If the RHS and field are a constant size and the size of the
6585 RHS isn't the same size as the bitfield, we must use bitfield
6588 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
6589 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0)
6590 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6591 decl we must use bitfield operations. */
6593 && TREE_CODE (exp
) == MEM_REF
6594 && TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
6595 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0))
6596 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp
, 0),0 ))
6597 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)) != BLKmode
))
6602 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6603 implies a mask operation. If the precision is the same size as
6604 the field we're storing into, that mask is redundant. This is
6605 particularly common with bit field assignments generated by the
6607 nop_def
= get_def_for_expr (exp
, NOP_EXPR
);
6610 tree type
= TREE_TYPE (exp
);
6611 if (INTEGRAL_TYPE_P (type
)
6612 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
6613 && bitsize
== TYPE_PRECISION (type
))
6615 tree op
= gimple_assign_rhs1 (nop_def
);
6616 type
= TREE_TYPE (op
);
6617 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
6622 temp
= expand_normal (exp
);
6624 /* If BITSIZE is narrower than the size of the type of EXP
6625 we will be narrowing TEMP. Normally, what's wanted are the
6626 low-order bits. However, if EXP's type is a record and this is
6627 big-endian machine, we want the upper BITSIZE bits. */
6628 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
6629 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
6630 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
6631 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
6632 GET_MODE_BITSIZE (GET_MODE (temp
)) - bitsize
,
6635 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6636 if (mode
!= VOIDmode
&& mode
!= BLKmode
6637 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
6638 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
6640 /* If TEMP is not a PARALLEL (see below) and its mode and that of TARGET
6641 are both BLKmode, both must be in memory and BITPOS must be aligned
6642 on a byte boundary. If so, we simply do a block copy. Likewise for
6643 a BLKmode-like TARGET. */
6644 if (GET_CODE (temp
) != PARALLEL
6645 && GET_MODE (temp
) == BLKmode
6646 && (GET_MODE (target
) == BLKmode
6648 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
6649 && (bitpos
% BITS_PER_UNIT
) == 0
6650 && (bitsize
% BITS_PER_UNIT
) == 0)))
6652 gcc_assert (MEM_P (target
) && MEM_P (temp
)
6653 && (bitpos
% BITS_PER_UNIT
) == 0);
6655 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
6656 emit_block_move (target
, temp
,
6657 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
6664 /* Handle calls that return values in multiple non-contiguous locations.
6665 The Irix 6 ABI has examples of this. */
6666 if (GET_CODE (temp
) == PARALLEL
)
6668 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6670 if (mode
== BLKmode
|| mode
== VOIDmode
)
6671 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6672 temp_target
= gen_reg_rtx (mode
);
6673 emit_group_store (temp_target
, temp
, TREE_TYPE (exp
), size
);
6676 else if (mode
== BLKmode
)
6678 /* Handle calls that return BLKmode values in registers. */
6679 if (REG_P (temp
) && TREE_CODE (exp
) == CALL_EXPR
)
6681 rtx temp_target
= gen_reg_rtx (GET_MODE (temp
));
6682 copy_blkmode_from_reg (temp_target
, temp
, TREE_TYPE (exp
));
6687 HOST_WIDE_INT size
= int_size_in_bytes (TREE_TYPE (exp
));
6689 mode
= smallest_mode_for_size (size
* BITS_PER_UNIT
, MODE_INT
);
6690 temp_target
= gen_reg_rtx (mode
);
6692 = extract_bit_field (temp
, size
* BITS_PER_UNIT
, 0, 1,
6693 temp_target
, mode
, mode
);
6698 /* Store the value in the bitfield. */
6699 store_bit_field (target
, bitsize
, bitpos
,
6700 bitregion_start
, bitregion_end
,
6707 /* Now build a reference to just the desired component. */
6708 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
6710 if (to_rtx
== target
)
6711 to_rtx
= copy_rtx (to_rtx
);
6713 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
6714 set_mem_alias_set (to_rtx
, alias_set
);
6716 return store_expr (exp
, to_rtx
, 0, nontemporal
);
6720 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6721 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6722 codes and find the ultimate containing object, which we return.
6724 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6725 bit position, and *PUNSIGNEDP to the signedness of the field.
6726 If the position of the field is variable, we store a tree
6727 giving the variable offset (in units) in *POFFSET.
6728 This offset is in addition to the bit position.
6729 If the position is not variable, we store 0 in *POFFSET.
6731 If any of the extraction expressions is volatile,
6732 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6734 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6735 Otherwise, it is a mode that can be used to access the field.
6737 If the field describes a variable-sized object, *PMODE is set to
6738 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6739 this case, but the address of the object can be found.
6741 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6742 look through nodes that serve as markers of a greater alignment than
6743 the one that can be deduced from the expression. These nodes make it
6744 possible for front-ends to prevent temporaries from being created by
6745 the middle-end on alignment considerations. For that purpose, the
6746 normal operating mode at high-level is to always pass FALSE so that
6747 the ultimate containing object is really returned; moreover, the
6748 associated predicate handled_component_p will always return TRUE
6749 on these nodes, thus indicating that they are essentially handled
6750 by get_inner_reference. TRUE should only be passed when the caller
6751 is scanning the expression in order to build another representation
6752 and specifically knows how to handle these nodes; as such, this is
6753 the normal operating mode in the RTL expanders. */
6756 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
6757 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
6758 machine_mode
*pmode
, int *punsignedp
,
6759 int *pvolatilep
, bool keep_aligning
)
6762 machine_mode mode
= VOIDmode
;
6763 bool blkmode_bitfield
= false;
6764 tree offset
= size_zero_node
;
6765 offset_int bit_offset
= 0;
6767 /* First get the mode, signedness, and size. We do this from just the
6768 outermost expression. */
6770 if (TREE_CODE (exp
) == COMPONENT_REF
)
6772 tree field
= TREE_OPERAND (exp
, 1);
6773 size_tree
= DECL_SIZE (field
);
6774 if (flag_strict_volatile_bitfields
> 0
6775 && TREE_THIS_VOLATILE (exp
)
6776 && DECL_BIT_FIELD_TYPE (field
)
6777 && DECL_MODE (field
) != BLKmode
)
6778 /* Volatile bitfields should be accessed in the mode of the
6779 field's type, not the mode computed based on the bit
6781 mode
= TYPE_MODE (DECL_BIT_FIELD_TYPE (field
));
6782 else if (!DECL_BIT_FIELD (field
))
6783 mode
= DECL_MODE (field
);
6784 else if (DECL_MODE (field
) == BLKmode
)
6785 blkmode_bitfield
= true;
6787 *punsignedp
= DECL_UNSIGNED (field
);
6789 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
6791 size_tree
= TREE_OPERAND (exp
, 1);
6792 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
6793 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
6795 /* For vector types, with the correct size of access, use the mode of
6797 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
6798 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6799 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
6800 mode
= TYPE_MODE (TREE_TYPE (exp
));
6804 mode
= TYPE_MODE (TREE_TYPE (exp
));
6805 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
6807 if (mode
== BLKmode
)
6808 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
6810 *pbitsize
= GET_MODE_BITSIZE (mode
);
6815 if (! tree_fits_uhwi_p (size_tree
))
6816 mode
= BLKmode
, *pbitsize
= -1;
6818 *pbitsize
= tree_to_uhwi (size_tree
);
6821 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6822 and find the ultimate containing object. */
6825 switch (TREE_CODE (exp
))
6828 bit_offset
+= wi::to_offset (TREE_OPERAND (exp
, 2));
6833 tree field
= TREE_OPERAND (exp
, 1);
6834 tree this_offset
= component_ref_field_offset (exp
);
6836 /* If this field hasn't been filled in yet, don't go past it.
6837 This should only happen when folding expressions made during
6838 type construction. */
6839 if (this_offset
== 0)
6842 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
6843 bit_offset
+= wi::to_offset (DECL_FIELD_BIT_OFFSET (field
));
6845 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6850 case ARRAY_RANGE_REF
:
6852 tree index
= TREE_OPERAND (exp
, 1);
6853 tree low_bound
= array_ref_low_bound (exp
);
6854 tree unit_size
= array_ref_element_size (exp
);
6856 /* We assume all arrays have sizes that are a multiple of a byte.
6857 First subtract the lower bound, if any, in the type of the
6858 index, then convert to sizetype and multiply by the size of
6859 the array element. */
6860 if (! integer_zerop (low_bound
))
6861 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6864 offset
= size_binop (PLUS_EXPR
, offset
,
6865 size_binop (MULT_EXPR
,
6866 fold_convert (sizetype
, index
),
6875 bit_offset
+= *pbitsize
;
6878 case VIEW_CONVERT_EXPR
:
6879 if (keep_aligning
&& STRICT_ALIGNMENT
6880 && (TYPE_ALIGN (TREE_TYPE (exp
))
6881 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6882 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6883 < BIGGEST_ALIGNMENT
)
6884 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6885 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6890 /* Hand back the decl for MEM[&decl, off]. */
6891 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == ADDR_EXPR
)
6893 tree off
= TREE_OPERAND (exp
, 1);
6894 if (!integer_zerop (off
))
6896 offset_int boff
, coff
= mem_ref_offset (exp
);
6897 boff
= wi::lshift (coff
, LOG2_BITS_PER_UNIT
);
6900 exp
= TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
6908 /* If any reference in the chain is volatile, the effect is volatile. */
6909 if (TREE_THIS_VOLATILE (exp
))
6912 exp
= TREE_OPERAND (exp
, 0);
6916 /* If OFFSET is constant, see if we can return the whole thing as a
6917 constant bit position. Make sure to handle overflow during
6919 if (TREE_CODE (offset
) == INTEGER_CST
)
6921 offset_int tem
= wi::sext (wi::to_offset (offset
),
6922 TYPE_PRECISION (sizetype
));
6923 tem
= wi::lshift (tem
, LOG2_BITS_PER_UNIT
);
6925 if (wi::fits_shwi_p (tem
))
6927 *pbitpos
= tem
.to_shwi ();
6928 *poffset
= offset
= NULL_TREE
;
6932 /* Otherwise, split it up. */
6935 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6936 if (wi::neg_p (bit_offset
) || !wi::fits_shwi_p (bit_offset
))
6938 offset_int mask
= wi::mask
<offset_int
> (LOG2_BITS_PER_UNIT
, false);
6939 offset_int tem
= bit_offset
.and_not (mask
);
6940 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6941 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6943 tem
= wi::arshift (tem
, LOG2_BITS_PER_UNIT
);
6944 offset
= size_binop (PLUS_EXPR
, offset
,
6945 wide_int_to_tree (sizetype
, tem
));
6948 *pbitpos
= bit_offset
.to_shwi ();
6952 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6953 if (mode
== VOIDmode
6955 && (*pbitpos
% BITS_PER_UNIT
) == 0
6956 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6964 /* Return a tree of sizetype representing the size, in bytes, of the element
6965 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6968 array_ref_element_size (tree exp
)
6970 tree aligned_size
= TREE_OPERAND (exp
, 3);
6971 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6972 location_t loc
= EXPR_LOCATION (exp
);
6974 /* If a size was specified in the ARRAY_REF, it's the size measured
6975 in alignment units of the element type. So multiply by that value. */
6978 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6979 sizetype from another type of the same width and signedness. */
6980 if (TREE_TYPE (aligned_size
) != sizetype
)
6981 aligned_size
= fold_convert_loc (loc
, sizetype
, aligned_size
);
6982 return size_binop_loc (loc
, MULT_EXPR
, aligned_size
,
6983 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6986 /* Otherwise, take the size from that of the element type. Substitute
6987 any PLACEHOLDER_EXPR that we have. */
6989 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6992 /* Return a tree representing the lower bound of the array mentioned in
6993 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6996 array_ref_low_bound (tree exp
)
6998 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
7000 /* If a lower bound is specified in EXP, use it. */
7001 if (TREE_OPERAND (exp
, 2))
7002 return TREE_OPERAND (exp
, 2);
7004 /* Otherwise, if there is a domain type and it has a lower bound, use it,
7005 substituting for a PLACEHOLDER_EXPR as needed. */
7006 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
7007 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
7009 /* Otherwise, return a zero of the appropriate type. */
7010 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
7013 /* Returns true if REF is an array reference to an array at the end of
7014 a structure. If this is the case, the array may be allocated larger
7015 than its upper bound implies. */
7018 array_at_struct_end_p (tree ref
)
7020 if (TREE_CODE (ref
) != ARRAY_REF
7021 && TREE_CODE (ref
) != ARRAY_RANGE_REF
)
7024 while (handled_component_p (ref
))
7026 /* If the reference chain contains a component reference to a
7027 non-union type and there follows another field the reference
7028 is not at the end of a structure. */
7029 if (TREE_CODE (ref
) == COMPONENT_REF
7030 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref
, 0))) == RECORD_TYPE
)
7032 tree nextf
= DECL_CHAIN (TREE_OPERAND (ref
, 1));
7033 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
7034 nextf
= DECL_CHAIN (nextf
);
7039 ref
= TREE_OPERAND (ref
, 0);
7042 /* If the reference is based on a declared entity, the size of the array
7043 is constrained by its given domain. */
7050 /* Return a tree representing the upper bound of the array mentioned in
7051 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
7054 array_ref_up_bound (tree exp
)
7056 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
7058 /* If there is a domain type and it has an upper bound, use it, substituting
7059 for a PLACEHOLDER_EXPR as needed. */
7060 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
7061 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
7063 /* Otherwise fail. */
7067 /* Return a tree representing the offset, in bytes, of the field referenced
7068 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7071 component_ref_field_offset (tree exp
)
7073 tree aligned_offset
= TREE_OPERAND (exp
, 2);
7074 tree field
= TREE_OPERAND (exp
, 1);
7075 location_t loc
= EXPR_LOCATION (exp
);
7077 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7078 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7082 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7083 sizetype from another type of the same width and signedness. */
7084 if (TREE_TYPE (aligned_offset
) != sizetype
)
7085 aligned_offset
= fold_convert_loc (loc
, sizetype
, aligned_offset
);
7086 return size_binop_loc (loc
, MULT_EXPR
, aligned_offset
,
7087 size_int (DECL_OFFSET_ALIGN (field
)
7091 /* Otherwise, take the offset from that of the field. Substitute
7092 any PLACEHOLDER_EXPR that we have. */
7094 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
7097 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7099 static unsigned HOST_WIDE_INT
7100 target_align (const_tree target
)
7102 /* We might have a chain of nested references with intermediate misaligning
7103 bitfields components, so need to recurse to find out. */
7105 unsigned HOST_WIDE_INT this_align
, outer_align
;
7107 switch (TREE_CODE (target
))
7113 this_align
= DECL_ALIGN (TREE_OPERAND (target
, 1));
7114 outer_align
= target_align (TREE_OPERAND (target
, 0));
7115 return MIN (this_align
, outer_align
);
7118 case ARRAY_RANGE_REF
:
7119 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7120 outer_align
= target_align (TREE_OPERAND (target
, 0));
7121 return MIN (this_align
, outer_align
);
7124 case NON_LVALUE_EXPR
:
7125 case VIEW_CONVERT_EXPR
:
7126 this_align
= TYPE_ALIGN (TREE_TYPE (target
));
7127 outer_align
= target_align (TREE_OPERAND (target
, 0));
7128 return MAX (this_align
, outer_align
);
7131 return TYPE_ALIGN (TREE_TYPE (target
));
7136 /* Given an rtx VALUE that may contain additions and multiplications, return
7137 an equivalent value that just refers to a register, memory, or constant.
7138 This is done by generating instructions to perform the arithmetic and
7139 returning a pseudo-register containing the value.
7141 The returned value may be a REG, SUBREG, MEM or constant. */
7144 force_operand (rtx value
, rtx target
)
7147 /* Use subtarget as the target for operand 0 of a binary operation. */
7148 rtx subtarget
= get_subtarget (target
);
7149 enum rtx_code code
= GET_CODE (value
);
7151 /* Check for subreg applied to an expression produced by loop optimizer. */
7153 && !REG_P (SUBREG_REG (value
))
7154 && !MEM_P (SUBREG_REG (value
)))
7157 = simplify_gen_subreg (GET_MODE (value
),
7158 force_reg (GET_MODE (SUBREG_REG (value
)),
7159 force_operand (SUBREG_REG (value
),
7161 GET_MODE (SUBREG_REG (value
)),
7162 SUBREG_BYTE (value
));
7163 code
= GET_CODE (value
);
7166 /* Check for a PIC address load. */
7167 if ((code
== PLUS
|| code
== MINUS
)
7168 && XEXP (value
, 0) == pic_offset_table_rtx
7169 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
7170 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
7171 || GET_CODE (XEXP (value
, 1)) == CONST
))
7174 subtarget
= gen_reg_rtx (GET_MODE (value
));
7175 emit_move_insn (subtarget
, value
);
7179 if (ARITHMETIC_P (value
))
7181 op2
= XEXP (value
, 1);
7182 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
7184 if (code
== MINUS
&& CONST_INT_P (op2
))
7187 op2
= negate_rtx (GET_MODE (value
), op2
);
7190 /* Check for an addition with OP2 a constant integer and our first
7191 operand a PLUS of a virtual register and something else. In that
7192 case, we want to emit the sum of the virtual register and the
7193 constant first and then add the other value. This allows virtual
7194 register instantiation to simply modify the constant rather than
7195 creating another one around this addition. */
7196 if (code
== PLUS
&& CONST_INT_P (op2
)
7197 && GET_CODE (XEXP (value
, 0)) == PLUS
7198 && REG_P (XEXP (XEXP (value
, 0), 0))
7199 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7200 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
7202 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
7203 XEXP (XEXP (value
, 0), 0), op2
,
7204 subtarget
, 0, OPTAB_LIB_WIDEN
);
7205 return expand_simple_binop (GET_MODE (value
), code
, temp
,
7206 force_operand (XEXP (XEXP (value
,
7208 target
, 0, OPTAB_LIB_WIDEN
);
7211 op1
= force_operand (XEXP (value
, 0), subtarget
);
7212 op2
= force_operand (op2
, NULL_RTX
);
7216 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
7218 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
7219 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7220 target
, 1, OPTAB_LIB_WIDEN
);
7222 return expand_divmod (0,
7223 FLOAT_MODE_P (GET_MODE (value
))
7224 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
7225 GET_MODE (value
), op1
, op2
, target
, 0);
7227 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7230 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
7233 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
7236 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7237 target
, 0, OPTAB_LIB_WIDEN
);
7239 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
7240 target
, 1, OPTAB_LIB_WIDEN
);
7243 if (UNARY_P (value
))
7246 target
= gen_reg_rtx (GET_MODE (value
));
7247 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
7254 case FLOAT_TRUNCATE
:
7255 convert_move (target
, op1
, code
== ZERO_EXTEND
);
7260 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
7264 case UNSIGNED_FLOAT
:
7265 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
7269 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
7273 #ifdef INSN_SCHEDULING
7274 /* On machines that have insn scheduling, we want all memory reference to be
7275 explicit, so we need to deal with such paradoxical SUBREGs. */
7276 if (paradoxical_subreg_p (value
) && MEM_P (SUBREG_REG (value
)))
7278 = simplify_gen_subreg (GET_MODE (value
),
7279 force_reg (GET_MODE (SUBREG_REG (value
)),
7280 force_operand (SUBREG_REG (value
),
7282 GET_MODE (SUBREG_REG (value
)),
7283 SUBREG_BYTE (value
));
7289 /* Subroutine of expand_expr: return nonzero iff there is no way that
7290 EXP can reference X, which is being modified. TOP_P is nonzero if this
7291 call is going to be used to determine whether we need a temporary
7292 for EXP, as opposed to a recursive call to this function.
7294 It is always safe for this routine to return zero since it merely
7295 searches for optimization opportunities. */
7298 safe_from_p (const_rtx x
, tree exp
, int top_p
)
7304 /* If EXP has varying size, we MUST use a target since we currently
7305 have no way of allocating temporaries of variable size
7306 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7307 So we assume here that something at a higher level has prevented a
7308 clash. This is somewhat bogus, but the best we can do. Only
7309 do this when X is BLKmode and when we are at the top level. */
7310 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
7311 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
7312 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
7313 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
7314 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
7316 && GET_MODE (x
) == BLKmode
)
7317 /* If X is in the outgoing argument area, it is always safe. */
7319 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
7320 || (GET_CODE (XEXP (x
, 0)) == PLUS
7321 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
7324 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7325 find the underlying pseudo. */
7326 if (GET_CODE (x
) == SUBREG
)
7329 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7333 /* Now look at our tree code and possibly recurse. */
7334 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
7336 case tcc_declaration
:
7337 exp_rtl
= DECL_RTL_IF_SET (exp
);
7343 case tcc_exceptional
:
7344 if (TREE_CODE (exp
) == TREE_LIST
)
7348 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
7350 exp
= TREE_CHAIN (exp
);
7353 if (TREE_CODE (exp
) != TREE_LIST
)
7354 return safe_from_p (x
, exp
, 0);
7357 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
7359 constructor_elt
*ce
;
7360 unsigned HOST_WIDE_INT idx
;
7362 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp
), idx
, ce
)
7363 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
7364 || !safe_from_p (x
, ce
->value
, 0))
7368 else if (TREE_CODE (exp
) == ERROR_MARK
)
7369 return 1; /* An already-visited SAVE_EXPR? */
7374 /* The only case we look at here is the DECL_INITIAL inside a
7376 return (TREE_CODE (exp
) != DECL_EXPR
7377 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
7378 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
7379 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
7382 case tcc_comparison
:
7383 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
7388 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7390 case tcc_expression
:
7393 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7394 the expression. If it is set, we conflict iff we are that rtx or
7395 both are in memory. Otherwise, we check all operands of the
7396 expression recursively. */
7398 switch (TREE_CODE (exp
))
7401 /* If the operand is static or we are static, we can't conflict.
7402 Likewise if we don't conflict with the operand at all. */
7403 if (staticp (TREE_OPERAND (exp
, 0))
7404 || TREE_STATIC (exp
)
7405 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
7408 /* Otherwise, the only way this can conflict is if we are taking
7409 the address of a DECL a that address if part of X, which is
7411 exp
= TREE_OPERAND (exp
, 0);
7414 if (!DECL_RTL_SET_P (exp
)
7415 || !MEM_P (DECL_RTL (exp
)))
7418 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
7424 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
7425 get_alias_set (exp
)))
7430 /* Assume that the call will clobber all hard registers and
7432 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
7437 case WITH_CLEANUP_EXPR
:
7438 case CLEANUP_POINT_EXPR
:
7439 /* Lowered by gimplify.c. */
7443 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
7449 /* If we have an rtx, we do not need to scan our operands. */
7453 nops
= TREE_OPERAND_LENGTH (exp
);
7454 for (i
= 0; i
< nops
; i
++)
7455 if (TREE_OPERAND (exp
, i
) != 0
7456 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
7462 /* Should never get a type here. */
7466 /* If we have an rtl, find any enclosed object. Then see if we conflict
7470 if (GET_CODE (exp_rtl
) == SUBREG
)
7472 exp_rtl
= SUBREG_REG (exp_rtl
);
7474 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
7478 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7479 are memory and they conflict. */
7480 return ! (rtx_equal_p (x
, exp_rtl
)
7481 || (MEM_P (x
) && MEM_P (exp_rtl
)
7482 && true_dependence (exp_rtl
, VOIDmode
, x
)));
7485 /* If we reach here, it is safe. */
7490 /* Return the highest power of two that EXP is known to be a multiple of.
7491 This is used in updating alignment of MEMs in array references. */
7493 unsigned HOST_WIDE_INT
7494 highest_pow2_factor (const_tree exp
)
7496 unsigned HOST_WIDE_INT ret
;
7497 int trailing_zeros
= tree_ctz (exp
);
7498 if (trailing_zeros
>= HOST_BITS_PER_WIDE_INT
)
7499 return BIGGEST_ALIGNMENT
;
7500 ret
= (unsigned HOST_WIDE_INT
) 1 << trailing_zeros
;
7501 if (ret
> BIGGEST_ALIGNMENT
)
7502 return BIGGEST_ALIGNMENT
;
7506 /* Similar, except that the alignment requirements of TARGET are
7507 taken into account. Assume it is at least as aligned as its
7508 type, unless it is a COMPONENT_REF in which case the layout of
7509 the structure gives the alignment. */
7511 static unsigned HOST_WIDE_INT
7512 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
7514 unsigned HOST_WIDE_INT talign
= target_align (target
) / BITS_PER_UNIT
;
7515 unsigned HOST_WIDE_INT factor
= highest_pow2_factor (exp
);
7517 return MAX (factor
, talign
);
7520 #ifdef HAVE_conditional_move
7521 /* Convert the tree comparison code TCODE to the rtl one where the
7522 signedness is UNSIGNEDP. */
7524 static enum rtx_code
7525 convert_tree_comp_to_rtx (enum tree_code tcode
, int unsignedp
)
7537 code
= unsignedp
? LTU
: LT
;
7540 code
= unsignedp
? LEU
: LE
;
7543 code
= unsignedp
? GTU
: GT
;
7546 code
= unsignedp
? GEU
: GE
;
7548 case UNORDERED_EXPR
:
7580 /* Subroutine of expand_expr. Expand the two operands of a binary
7581 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7582 The value may be stored in TARGET if TARGET is nonzero. The
7583 MODIFIER argument is as documented by expand_expr. */
7586 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
7587 enum expand_modifier modifier
)
7589 if (! safe_from_p (target
, exp1
, 1))
7591 if (operand_equal_p (exp0
, exp1
, 0))
7593 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7594 *op1
= copy_rtx (*op0
);
7598 /* If we need to preserve evaluation order, copy exp0 into its own
7599 temporary variable so that it can't be clobbered by exp1. */
7600 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
7601 exp0
= save_expr (exp0
);
7602 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
7603 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
7608 /* Return a MEM that contains constant EXP. DEFER is as for
7609 output_constant_def and MODIFIER is as for expand_expr. */
7612 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
7616 mem
= output_constant_def (exp
, defer
);
7617 if (modifier
!= EXPAND_INITIALIZER
)
7618 mem
= use_anchored_address (mem
);
7622 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7623 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7626 expand_expr_addr_expr_1 (tree exp
, rtx target
, machine_mode tmode
,
7627 enum expand_modifier modifier
, addr_space_t as
)
7629 rtx result
, subtarget
;
7631 HOST_WIDE_INT bitsize
, bitpos
;
7632 int volatilep
, unsignedp
;
7635 /* If we are taking the address of a constant and are at the top level,
7636 we have to use output_constant_def since we can't call force_const_mem
7638 /* ??? This should be considered a front-end bug. We should not be
7639 generating ADDR_EXPR of something that isn't an LVALUE. The only
7640 exception here is STRING_CST. */
7641 if (CONSTANT_CLASS_P (exp
))
7643 result
= XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
7644 if (modifier
< EXPAND_SUM
)
7645 result
= force_operand (result
, target
);
7649 /* Everything must be something allowed by is_gimple_addressable. */
7650 switch (TREE_CODE (exp
))
7653 /* This case will happen via recursion for &a->b. */
7654 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
7658 tree tem
= TREE_OPERAND (exp
, 0);
7659 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
7660 tem
= fold_build_pointer_plus (tem
, TREE_OPERAND (exp
, 1));
7661 return expand_expr (tem
, target
, tmode
, modifier
);
7665 /* Expand the initializer like constants above. */
7666 result
= XEXP (expand_expr_constant (DECL_INITIAL (exp
),
7668 if (modifier
< EXPAND_SUM
)
7669 result
= force_operand (result
, target
);
7673 /* The real part of the complex number is always first, therefore
7674 the address is the same as the address of the parent object. */
7677 inner
= TREE_OPERAND (exp
, 0);
7681 /* The imaginary part of the complex number is always second.
7682 The expression is therefore always offset by the size of the
7685 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
7686 inner
= TREE_OPERAND (exp
, 0);
7689 case COMPOUND_LITERAL_EXPR
:
7690 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
7691 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
7692 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
7693 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
7694 the initializers aren't gimplified. */
7695 if (COMPOUND_LITERAL_EXPR_DECL (exp
)
7696 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp
)))
7697 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp
),
7698 target
, tmode
, modifier
, as
);
7701 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7702 expand_expr, as that can have various side effects; LABEL_DECLs for
7703 example, may not have their DECL_RTL set yet. Expand the rtl of
7704 CONSTRUCTORs too, which should yield a memory reference for the
7705 constructor's contents. Assume language specific tree nodes can
7706 be expanded in some interesting way. */
7707 gcc_assert (TREE_CODE (exp
) < LAST_AND_UNUSED_TREE_CODE
);
7709 || TREE_CODE (exp
) == CONSTRUCTOR
7710 || TREE_CODE (exp
) == COMPOUND_LITERAL_EXPR
)
7712 result
= expand_expr (exp
, target
, tmode
,
7713 modifier
== EXPAND_INITIALIZER
7714 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
7716 /* If the DECL isn't in memory, then the DECL wasn't properly
7717 marked TREE_ADDRESSABLE, which will be either a front-end
7718 or a tree optimizer bug. */
7720 if (TREE_ADDRESSABLE (exp
)
7722 && ! targetm
.calls
.allocate_stack_slots_for_args ())
7724 error ("local frame unavailable (naked function?)");
7728 gcc_assert (MEM_P (result
));
7729 result
= XEXP (result
, 0);
7731 /* ??? Is this needed anymore? */
7733 TREE_USED (exp
) = 1;
7735 if (modifier
!= EXPAND_INITIALIZER
7736 && modifier
!= EXPAND_CONST_ADDRESS
7737 && modifier
!= EXPAND_SUM
)
7738 result
= force_operand (result
, target
);
7742 /* Pass FALSE as the last argument to get_inner_reference although
7743 we are expanding to RTL. The rationale is that we know how to
7744 handle "aligning nodes" here: we can just bypass them because
7745 they won't change the final object whose address will be returned
7746 (they actually exist only for that purpose). */
7747 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7748 &mode1
, &unsignedp
, &volatilep
, false);
7752 /* We must have made progress. */
7753 gcc_assert (inner
!= exp
);
7755 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
7756 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7757 inner alignment, force the inner to be sufficiently aligned. */
7758 if (CONSTANT_CLASS_P (inner
)
7759 && TYPE_ALIGN (TREE_TYPE (inner
)) < TYPE_ALIGN (TREE_TYPE (exp
)))
7761 inner
= copy_node (inner
);
7762 TREE_TYPE (inner
) = copy_node (TREE_TYPE (inner
));
7763 TYPE_ALIGN (TREE_TYPE (inner
)) = TYPE_ALIGN (TREE_TYPE (exp
));
7764 TYPE_USER_ALIGN (TREE_TYPE (inner
)) = 1;
7766 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
, as
);
7772 if (modifier
!= EXPAND_NORMAL
)
7773 result
= force_operand (result
, NULL
);
7774 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
7775 modifier
== EXPAND_INITIALIZER
7776 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
7778 /* expand_expr is allowed to return an object in a mode other
7779 than TMODE. If it did, we need to convert. */
7780 if (GET_MODE (tmp
) != VOIDmode
&& tmode
!= GET_MODE (tmp
))
7781 tmp
= convert_modes (tmode
, GET_MODE (tmp
),
7782 tmp
, TYPE_UNSIGNED (TREE_TYPE (offset
)));
7783 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7784 tmp
= convert_memory_address_addr_space (tmode
, tmp
, as
);
7786 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7787 result
= simplify_gen_binary (PLUS
, tmode
, result
, tmp
);
7790 subtarget
= bitpos
? NULL_RTX
: target
;
7791 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
7792 1, OPTAB_LIB_WIDEN
);
7798 /* Someone beforehand should have rejected taking the address
7799 of such an object. */
7800 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
7802 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7803 result
= plus_constant (tmode
, result
, bitpos
/ BITS_PER_UNIT
);
7804 if (modifier
< EXPAND_SUM
)
7805 result
= force_operand (result
, target
);
7811 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7812 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7815 expand_expr_addr_expr (tree exp
, rtx target
, machine_mode tmode
,
7816 enum expand_modifier modifier
)
7818 addr_space_t as
= ADDR_SPACE_GENERIC
;
7819 machine_mode address_mode
= Pmode
;
7820 machine_mode pointer_mode
= ptr_mode
;
7824 /* Target mode of VOIDmode says "whatever's natural". */
7825 if (tmode
== VOIDmode
)
7826 tmode
= TYPE_MODE (TREE_TYPE (exp
));
7828 if (POINTER_TYPE_P (TREE_TYPE (exp
)))
7830 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp
)));
7831 address_mode
= targetm
.addr_space
.address_mode (as
);
7832 pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
7835 /* We can get called with some Weird Things if the user does silliness
7836 like "(short) &a". In that case, convert_memory_address won't do
7837 the right thing, so ignore the given target mode. */
7838 if (tmode
!= address_mode
&& tmode
!= pointer_mode
)
7839 tmode
= address_mode
;
7841 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
7842 tmode
, modifier
, as
);
7844 /* Despite expand_expr claims concerning ignoring TMODE when not
7845 strictly convenient, stuff breaks if we don't honor it. Note
7846 that combined with the above, we only do this for pointer modes. */
7847 rmode
= GET_MODE (result
);
7848 if (rmode
== VOIDmode
)
7851 result
= convert_memory_address_addr_space (tmode
, result
, as
);
7856 /* Generate code for computing CONSTRUCTOR EXP.
7857 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7858 is TRUE, instead of creating a temporary variable in memory
7859 NULL is returned and the caller needs to handle it differently. */
7862 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
7863 bool avoid_temp_mem
)
7865 tree type
= TREE_TYPE (exp
);
7866 machine_mode mode
= TYPE_MODE (type
);
7868 /* Try to avoid creating a temporary at all. This is possible
7869 if all of the initializer is zero.
7870 FIXME: try to handle all [0..255] initializers we can handle
7872 if (TREE_STATIC (exp
)
7873 && !TREE_ADDRESSABLE (exp
)
7874 && target
!= 0 && mode
== BLKmode
7875 && all_zeros_p (exp
))
7877 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
7881 /* All elts simple constants => refer to a constant in memory. But
7882 if this is a non-BLKmode mode, let it store a field at a time
7883 since that should make a CONST_INT, CONST_WIDE_INT or
7884 CONST_DOUBLE when we fold. Likewise, if we have a target we can
7885 use, it is best to store directly into the target unless the type
7886 is large enough that memcpy will be used. If we are making an
7887 initializer and all operands are constant, put it in memory as
7890 FIXME: Avoid trying to fill vector constructors piece-meal.
7891 Output them with output_constant_def below unless we're sure
7892 they're zeros. This should go away when vector initializers
7893 are treated like VECTOR_CST instead of arrays. */
7894 if ((TREE_STATIC (exp
)
7895 && ((mode
== BLKmode
7896 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
7897 || TREE_ADDRESSABLE (exp
)
7898 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type
))
7899 && (! can_move_by_pieces
7900 (tree_to_uhwi (TYPE_SIZE_UNIT (type
)),
7902 && ! mostly_zeros_p (exp
))))
7903 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
7904 && TREE_CONSTANT (exp
)))
7911 constructor
= expand_expr_constant (exp
, 1, modifier
);
7913 if (modifier
!= EXPAND_CONST_ADDRESS
7914 && modifier
!= EXPAND_INITIALIZER
7915 && modifier
!= EXPAND_SUM
)
7916 constructor
= validize_mem (constructor
);
7921 /* Handle calls that pass values in multiple non-contiguous
7922 locations. The Irix 6 ABI has examples of this. */
7923 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
7924 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
7929 target
= assign_temp (type
, TREE_ADDRESSABLE (exp
), 1);
7932 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7937 /* expand_expr: generate code for computing expression EXP.
7938 An rtx for the computed value is returned. The value is never null.
7939 In the case of a void EXP, const0_rtx is returned.
7941 The value may be stored in TARGET if TARGET is nonzero.
7942 TARGET is just a suggestion; callers must assume that
7943 the rtx returned may not be the same as TARGET.
7945 If TARGET is CONST0_RTX, it means that the value will be ignored.
7947 If TMODE is not VOIDmode, it suggests generating the
7948 result in mode TMODE. But this is done only when convenient.
7949 Otherwise, TMODE is ignored and the value generated in its natural mode.
7950 TMODE is just a suggestion; callers must assume that
7951 the rtx returned may not have mode TMODE.
7953 Note that TARGET may have neither TMODE nor MODE. In that case, it
7954 probably will not be used.
7956 If MODIFIER is EXPAND_SUM then when EXP is an addition
7957 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7958 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7959 products as above, or REG or MEM, or constant.
7960 Ordinarily in such cases we would output mul or add instructions
7961 and then return a pseudo reg containing the sum.
7963 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7964 it also marks a label as absolutely required (it can't be dead).
7965 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7966 This is used for outputting expressions used in initializers.
7968 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7969 with a constant address even if that address is not normally legitimate.
7970 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7972 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7973 a call parameter. Such targets require special care as we haven't yet
7974 marked TARGET so that it's safe from being trashed by libcalls. We
7975 don't want to use TARGET for anything but the final result;
7976 Intermediate values must go elsewhere. Additionally, calls to
7977 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7979 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7980 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7981 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7982 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7985 If INNER_REFERENCE_P is true, we are expanding an inner reference.
7986 In this case, we don't adjust a returned MEM rtx that wouldn't be
7987 sufficiently aligned for its mode; instead, it's up to the caller
7988 to deal with it afterwards. This is used to make sure that unaligned
7989 base objects for which out-of-bounds accesses are supported, for
7990 example record types with trailing arrays, aren't realigned behind
7991 the back of the caller.
7992 The normal operating mode is to pass FALSE for this parameter. */
7995 expand_expr_real (tree exp
, rtx target
, machine_mode tmode
,
7996 enum expand_modifier modifier
, rtx
*alt_rtl
,
7997 bool inner_reference_p
)
8001 /* Handle ERROR_MARK before anybody tries to access its type. */
8002 if (TREE_CODE (exp
) == ERROR_MARK
8003 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
8005 ret
= CONST0_RTX (tmode
);
8006 return ret
? ret
: const0_rtx
;
8009 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
,
8014 /* Try to expand the conditional expression which is represented by
8015 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
8016 return the rtl reg which repsents the result. Otherwise return
8020 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED
,
8021 tree treeop1 ATTRIBUTE_UNUSED
,
8022 tree treeop2 ATTRIBUTE_UNUSED
)
8024 #ifdef HAVE_conditional_move
8026 rtx op00
, op01
, op1
, op2
;
8027 enum rtx_code comparison_code
;
8028 machine_mode comparison_mode
;
8031 tree type
= TREE_TYPE (treeop1
);
8032 int unsignedp
= TYPE_UNSIGNED (type
);
8033 machine_mode mode
= TYPE_MODE (type
);
8034 machine_mode orig_mode
= mode
;
8036 /* If we cannot do a conditional move on the mode, try doing it
8037 with the promoted mode. */
8038 if (!can_conditionally_move_p (mode
))
8040 mode
= promote_mode (type
, mode
, &unsignedp
);
8041 if (!can_conditionally_move_p (mode
))
8043 temp
= assign_temp (type
, 0, 0); /* Use promoted mode for temp. */
8046 temp
= assign_temp (type
, 0, 1);
8049 expand_operands (treeop1
, treeop2
,
8050 temp
, &op1
, &op2
, EXPAND_NORMAL
);
8052 if (TREE_CODE (treeop0
) == SSA_NAME
8053 && (srcstmt
= get_def_for_expr_class (treeop0
, tcc_comparison
)))
8055 tree type
= TREE_TYPE (gimple_assign_rhs1 (srcstmt
));
8056 enum tree_code cmpcode
= gimple_assign_rhs_code (srcstmt
);
8057 op00
= expand_normal (gimple_assign_rhs1 (srcstmt
));
8058 op01
= expand_normal (gimple_assign_rhs2 (srcstmt
));
8059 comparison_mode
= TYPE_MODE (type
);
8060 unsignedp
= TYPE_UNSIGNED (type
);
8061 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8063 else if (COMPARISON_CLASS_P (treeop0
))
8065 tree type
= TREE_TYPE (TREE_OPERAND (treeop0
, 0));
8066 enum tree_code cmpcode
= TREE_CODE (treeop0
);
8067 op00
= expand_normal (TREE_OPERAND (treeop0
, 0));
8068 op01
= expand_normal (TREE_OPERAND (treeop0
, 1));
8069 unsignedp
= TYPE_UNSIGNED (type
);
8070 comparison_mode
= TYPE_MODE (type
);
8071 comparison_code
= convert_tree_comp_to_rtx (cmpcode
, unsignedp
);
8075 op00
= expand_normal (treeop0
);
8077 comparison_code
= NE
;
8078 comparison_mode
= GET_MODE (op00
);
8079 if (comparison_mode
== VOIDmode
)
8080 comparison_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
8083 if (GET_MODE (op1
) != mode
)
8084 op1
= gen_lowpart (mode
, op1
);
8086 if (GET_MODE (op2
) != mode
)
8087 op2
= gen_lowpart (mode
, op2
);
8089 /* Try to emit the conditional move. */
8090 insn
= emit_conditional_move (temp
, comparison_code
,
8091 op00
, op01
, comparison_mode
,
8095 /* If we could do the conditional move, emit the sequence,
8099 rtx_insn
*seq
= get_insns ();
8102 return convert_modes (orig_mode
, mode
, temp
, 0);
8105 /* Otherwise discard the sequence and fall back to code with
8113 expand_expr_real_2 (sepops ops
, rtx target
, machine_mode tmode
,
8114 enum expand_modifier modifier
)
8116 rtx op0
, op1
, op2
, temp
;
8117 rtx_code_label
*lab
;
8121 enum tree_code code
= ops
->code
;
8123 rtx subtarget
, original_target
;
8125 bool reduce_bit_field
;
8126 location_t loc
= ops
->location
;
8127 tree treeop0
, treeop1
, treeop2
;
8128 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8129 ? reduce_to_bit_field_precision ((expr), \
8135 mode
= TYPE_MODE (type
);
8136 unsignedp
= TYPE_UNSIGNED (type
);
8142 /* We should be called only on simple (binary or unary) expressions,
8143 exactly those that are valid in gimple expressions that aren't
8144 GIMPLE_SINGLE_RHS (or invalid). */
8145 gcc_assert (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
8146 || get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
8147 || get_gimple_rhs_class (code
) == GIMPLE_TERNARY_RHS
);
8149 ignore
= (target
== const0_rtx
8150 || ((CONVERT_EXPR_CODE_P (code
)
8151 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
8152 && TREE_CODE (type
) == VOID_TYPE
));
8154 /* We should be called only if we need the result. */
8155 gcc_assert (!ignore
);
8157 /* An operation in what may be a bit-field type needs the
8158 result to be reduced to the precision of the bit-field type,
8159 which is narrower than that of the type's mode. */
8160 reduce_bit_field
= (INTEGRAL_TYPE_P (type
)
8161 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
8163 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
8166 /* Use subtarget as the target for operand 0 of a binary operation. */
8167 subtarget
= get_subtarget (target
);
8168 original_target
= target
;
8172 case NON_LVALUE_EXPR
:
8175 if (treeop0
== error_mark_node
)
8178 if (TREE_CODE (type
) == UNION_TYPE
)
8180 tree valtype
= TREE_TYPE (treeop0
);
8182 /* If both input and output are BLKmode, this conversion isn't doing
8183 anything except possibly changing memory attribute. */
8184 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8186 rtx result
= expand_expr (treeop0
, target
, tmode
,
8189 result
= copy_rtx (result
);
8190 set_mem_attributes (result
, type
, 0);
8196 if (TYPE_MODE (type
) != BLKmode
)
8197 target
= gen_reg_rtx (TYPE_MODE (type
));
8199 target
= assign_temp (type
, 1, 1);
8203 /* Store data into beginning of memory target. */
8204 store_expr (treeop0
,
8205 adjust_address (target
, TYPE_MODE (valtype
), 0),
8206 modifier
== EXPAND_STACK_PARM
,
8211 gcc_assert (REG_P (target
));
8213 /* Store this field into a union of the proper type. */
8214 store_field (target
,
8215 MIN ((int_size_in_bytes (TREE_TYPE
8218 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8219 0, 0, 0, TYPE_MODE (valtype
), treeop0
, 0, false);
8222 /* Return the entire union. */
8226 if (mode
== TYPE_MODE (TREE_TYPE (treeop0
)))
8228 op0
= expand_expr (treeop0
, target
, VOIDmode
,
8231 /* If the signedness of the conversion differs and OP0 is
8232 a promoted SUBREG, clear that indication since we now
8233 have to do the proper extension. */
8234 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)) != unsignedp
8235 && GET_CODE (op0
) == SUBREG
)
8236 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8238 return REDUCE_BIT_FIELD (op0
);
8241 op0
= expand_expr (treeop0
, NULL_RTX
, mode
,
8242 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8243 if (GET_MODE (op0
) == mode
)
8246 /* If OP0 is a constant, just convert it into the proper mode. */
8247 else if (CONSTANT_P (op0
))
8249 tree inner_type
= TREE_TYPE (treeop0
);
8250 machine_mode inner_mode
= GET_MODE (op0
);
8252 if (inner_mode
== VOIDmode
)
8253 inner_mode
= TYPE_MODE (inner_type
);
8255 if (modifier
== EXPAND_INITIALIZER
)
8256 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8257 subreg_lowpart_offset (mode
,
8260 op0
= convert_modes (mode
, inner_mode
, op0
,
8261 TYPE_UNSIGNED (inner_type
));
8264 else if (modifier
== EXPAND_INITIALIZER
)
8265 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8267 else if (target
== 0)
8268 op0
= convert_to_mode (mode
, op0
,
8269 TYPE_UNSIGNED (TREE_TYPE
8273 convert_move (target
, op0
,
8274 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8278 return REDUCE_BIT_FIELD (op0
);
8280 case ADDR_SPACE_CONVERT_EXPR
:
8282 tree treeop0_type
= TREE_TYPE (treeop0
);
8284 addr_space_t as_from
;
8286 gcc_assert (POINTER_TYPE_P (type
));
8287 gcc_assert (POINTER_TYPE_P (treeop0_type
));
8289 as_to
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
8290 as_from
= TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type
));
8292 /* Conversions between pointers to the same address space should
8293 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8294 gcc_assert (as_to
!= as_from
);
8296 /* Ask target code to handle conversion between pointers
8297 to overlapping address spaces. */
8298 if (targetm
.addr_space
.subset_p (as_to
, as_from
)
8299 || targetm
.addr_space
.subset_p (as_from
, as_to
))
8301 op0
= expand_expr (treeop0
, NULL_RTX
, VOIDmode
, modifier
);
8302 op0
= targetm
.addr_space
.convert (op0
, treeop0_type
, type
);
8307 /* For disjoint address spaces, converting anything but
8308 a null pointer invokes undefined behaviour. We simply
8309 always return a null pointer here. */
8310 return CONST0_RTX (mode
);
8313 case POINTER_PLUS_EXPR
:
8314 /* Even though the sizetype mode and the pointer's mode can be different
8315 expand is able to handle this correctly and get the correct result out
8316 of the PLUS_EXPR code. */
8317 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8318 if sizetype precision is smaller than pointer precision. */
8319 if (TYPE_PRECISION (sizetype
) < TYPE_PRECISION (type
))
8320 treeop1
= fold_convert_loc (loc
, type
,
8321 fold_convert_loc (loc
, ssizetype
,
8323 /* If sizetype precision is larger than pointer precision, truncate the
8324 offset to have matching modes. */
8325 else if (TYPE_PRECISION (sizetype
) > TYPE_PRECISION (type
))
8326 treeop1
= fold_convert_loc (loc
, type
, treeop1
);
8329 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8330 something else, make sure we add the register to the constant and
8331 then to the other thing. This case can occur during strength
8332 reduction and doing it this way will produce better code if the
8333 frame pointer or argument pointer is eliminated.
8335 fold-const.c will ensure that the constant is always in the inner
8336 PLUS_EXPR, so the only case we need to do anything about is if
8337 sp, ap, or fp is our second argument, in which case we must swap
8338 the innermost first argument and our second argument. */
8340 if (TREE_CODE (treeop0
) == PLUS_EXPR
8341 && TREE_CODE (TREE_OPERAND (treeop0
, 1)) == INTEGER_CST
8342 && TREE_CODE (treeop1
) == VAR_DECL
8343 && (DECL_RTL (treeop1
) == frame_pointer_rtx
8344 || DECL_RTL (treeop1
) == stack_pointer_rtx
8345 || DECL_RTL (treeop1
) == arg_pointer_rtx
))
8350 /* If the result is to be ptr_mode and we are adding an integer to
8351 something, we might be forming a constant. So try to use
8352 plus_constant. If it produces a sum and we can't accept it,
8353 use force_operand. This allows P = &ARR[const] to generate
8354 efficient code on machines where a SYMBOL_REF is not a valid
8357 If this is an EXPAND_SUM call, always return the sum. */
8358 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8359 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8361 if (modifier
== EXPAND_STACK_PARM
)
8363 if (TREE_CODE (treeop0
) == INTEGER_CST
8364 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8365 && TREE_CONSTANT (treeop1
))
8369 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop1
));
8371 op1
= expand_expr (treeop1
, subtarget
, VOIDmode
,
8373 /* Use wi::shwi to ensure that the constant is
8374 truncated according to the mode of OP1, then sign extended
8375 to a HOST_WIDE_INT. Using the constant directly can result
8376 in non-canonical RTL in a 64x32 cross compile. */
8377 wc
= TREE_INT_CST_LOW (treeop0
);
8379 immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8380 op1
= plus_constant (mode
, op1
, INTVAL (constant_part
));
8381 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8382 op1
= force_operand (op1
, target
);
8383 return REDUCE_BIT_FIELD (op1
);
8386 else if (TREE_CODE (treeop1
) == INTEGER_CST
8387 && GET_MODE_PRECISION (mode
) <= HOST_BITS_PER_WIDE_INT
8388 && TREE_CONSTANT (treeop0
))
8392 machine_mode wmode
= TYPE_MODE (TREE_TYPE (treeop0
));
8394 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8395 (modifier
== EXPAND_INITIALIZER
8396 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8397 if (! CONSTANT_P (op0
))
8399 op1
= expand_expr (treeop1
, NULL_RTX
,
8400 VOIDmode
, modifier
);
8401 /* Return a PLUS if modifier says it's OK. */
8402 if (modifier
== EXPAND_SUM
8403 || modifier
== EXPAND_INITIALIZER
)
8404 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8407 /* Use wi::shwi to ensure that the constant is
8408 truncated according to the mode of OP1, then sign extended
8409 to a HOST_WIDE_INT. Using the constant directly can result
8410 in non-canonical RTL in a 64x32 cross compile. */
8411 wc
= TREE_INT_CST_LOW (treeop1
);
8413 = immed_wide_int_const (wi::shwi (wc
, wmode
), wmode
);
8414 op0
= plus_constant (mode
, op0
, INTVAL (constant_part
));
8415 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8416 op0
= force_operand (op0
, target
);
8417 return REDUCE_BIT_FIELD (op0
);
8421 /* Use TER to expand pointer addition of a negated value
8422 as pointer subtraction. */
8423 if ((POINTER_TYPE_P (TREE_TYPE (treeop0
))
8424 || (TREE_CODE (TREE_TYPE (treeop0
)) == VECTOR_TYPE
8425 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0
)))))
8426 && TREE_CODE (treeop1
) == SSA_NAME
8427 && TYPE_MODE (TREE_TYPE (treeop0
))
8428 == TYPE_MODE (TREE_TYPE (treeop1
)))
8430 gimple def
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8433 treeop1
= gimple_assign_rhs1 (def
);
8439 /* No sense saving up arithmetic to be done
8440 if it's all in the wrong mode to form part of an address.
8441 And force_operand won't know whether to sign-extend or
8443 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8444 || mode
!= ptr_mode
)
8446 expand_operands (treeop0
, treeop1
,
8447 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8448 if (op0
== const0_rtx
)
8450 if (op1
== const0_rtx
)
8455 expand_operands (treeop0
, treeop1
,
8456 subtarget
, &op0
, &op1
, modifier
);
8457 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8461 /* For initializers, we are allowed to return a MINUS of two
8462 symbolic constants. Here we handle all cases when both operands
8464 /* Handle difference of two symbolic constants,
8465 for the sake of an initializer. */
8466 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8467 && really_constant_p (treeop0
)
8468 && really_constant_p (treeop1
))
8470 expand_operands (treeop0
, treeop1
,
8471 NULL_RTX
, &op0
, &op1
, modifier
);
8473 /* If the last operand is a CONST_INT, use plus_constant of
8474 the negated constant. Else make the MINUS. */
8475 if (CONST_INT_P (op1
))
8476 return REDUCE_BIT_FIELD (plus_constant (mode
, op0
,
8479 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8482 /* No sense saving up arithmetic to be done
8483 if it's all in the wrong mode to form part of an address.
8484 And force_operand won't know whether to sign-extend or
8486 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8487 || mode
!= ptr_mode
)
8490 expand_operands (treeop0
, treeop1
,
8491 subtarget
, &op0
, &op1
, modifier
);
8493 /* Convert A - const to A + (-const). */
8494 if (CONST_INT_P (op1
))
8496 op1
= negate_rtx (mode
, op1
);
8497 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8502 case WIDEN_MULT_PLUS_EXPR
:
8503 case WIDEN_MULT_MINUS_EXPR
:
8504 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8505 op2
= expand_normal (treeop2
);
8506 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
8510 case WIDEN_MULT_EXPR
:
8511 /* If first operand is constant, swap them.
8512 Thus the following special case checks need only
8513 check the second operand. */
8514 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8521 /* First, check if we have a multiplication of one signed and one
8522 unsigned operand. */
8523 if (TREE_CODE (treeop1
) != INTEGER_CST
8524 && (TYPE_UNSIGNED (TREE_TYPE (treeop0
))
8525 != TYPE_UNSIGNED (TREE_TYPE (treeop1
))))
8527 machine_mode innermode
= TYPE_MODE (TREE_TYPE (treeop0
));
8528 this_optab
= usmul_widen_optab
;
8529 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8530 != CODE_FOR_nothing
)
8532 if (TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8533 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8536 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op1
, &op0
,
8538 /* op0 and op1 might still be constant, despite the above
8539 != INTEGER_CST check. Handle it. */
8540 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8542 op0
= convert_modes (innermode
, mode
, op0
, true);
8543 op1
= convert_modes (innermode
, mode
, op1
, false);
8544 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8545 target
, unsignedp
));
8550 /* Check for a multiplication with matching signedness. */
8551 else if ((TREE_CODE (treeop1
) == INTEGER_CST
8552 && int_fits_type_p (treeop1
, TREE_TYPE (treeop0
)))
8553 || (TYPE_UNSIGNED (TREE_TYPE (treeop1
))
8554 == TYPE_UNSIGNED (TREE_TYPE (treeop0
))))
8556 tree op0type
= TREE_TYPE (treeop0
);
8557 machine_mode innermode
= TYPE_MODE (op0type
);
8558 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8559 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8560 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8562 if (TREE_CODE (treeop0
) != INTEGER_CST
)
8564 if (find_widening_optab_handler (this_optab
, mode
, innermode
, 0)
8565 != CODE_FOR_nothing
)
8567 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
,
8569 /* op0 and op1 might still be constant, despite the above
8570 != INTEGER_CST check. Handle it. */
8571 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8574 op0
= convert_modes (innermode
, mode
, op0
, zextend_p
);
8576 = convert_modes (innermode
, mode
, op1
,
8577 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8578 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
,
8582 temp
= expand_widening_mult (mode
, op0
, op1
, target
,
8583 unsignedp
, this_optab
);
8584 return REDUCE_BIT_FIELD (temp
);
8586 if (find_widening_optab_handler (other_optab
, mode
, innermode
, 0)
8588 && innermode
== word_mode
)
8591 op0
= expand_normal (treeop0
);
8592 if (TREE_CODE (treeop1
) == INTEGER_CST
)
8593 op1
= convert_modes (innermode
, mode
,
8594 expand_normal (treeop1
),
8595 TYPE_UNSIGNED (TREE_TYPE (treeop1
)));
8597 op1
= expand_normal (treeop1
);
8598 /* op0 and op1 might still be constant, despite the above
8599 != INTEGER_CST check. Handle it. */
8600 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
8601 goto widen_mult_const
;
8602 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8603 unsignedp
, OPTAB_LIB_WIDEN
);
8604 hipart
= gen_highpart (innermode
, temp
);
8605 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8609 emit_move_insn (hipart
, htem
);
8610 return REDUCE_BIT_FIELD (temp
);
8614 treeop0
= fold_build1 (CONVERT_EXPR
, type
, treeop0
);
8615 treeop1
= fold_build1 (CONVERT_EXPR
, type
, treeop1
);
8616 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8617 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8621 optab opt
= fma_optab
;
8624 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8626 if (optab_handler (fma_optab
, mode
) == CODE_FOR_nothing
)
8628 tree fn
= mathfn_built_in (TREE_TYPE (treeop0
), BUILT_IN_FMA
);
8631 gcc_assert (fn
!= NULL_TREE
);
8632 call_expr
= build_call_expr (fn
, 3, treeop0
, treeop1
, treeop2
);
8633 return expand_builtin (call_expr
, target
, subtarget
, mode
, false);
8636 def0
= get_def_for_expr (treeop0
, NEGATE_EXPR
);
8637 /* The multiplication is commutative - look at its 2nd operand
8638 if the first isn't fed by a negate. */
8641 def0
= get_def_for_expr (treeop1
, NEGATE_EXPR
);
8642 /* Swap operands if the 2nd operand is fed by a negate. */
8650 def2
= get_def_for_expr (treeop2
, NEGATE_EXPR
);
8655 && optab_handler (fnms_optab
, mode
) != CODE_FOR_nothing
)
8658 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8659 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8662 && optab_handler (fnma_optab
, mode
) != CODE_FOR_nothing
)
8665 op0
= expand_normal (gimple_assign_rhs1 (def0
));
8668 && optab_handler (fms_optab
, mode
) != CODE_FOR_nothing
)
8671 op2
= expand_normal (gimple_assign_rhs1 (def2
));
8675 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
, EXPAND_NORMAL
);
8677 op2
= expand_normal (treeop2
);
8678 op1
= expand_normal (treeop1
);
8680 return expand_ternary_op (TYPE_MODE (type
), opt
,
8681 op0
, op1
, op2
, target
, 0);
8685 /* If this is a fixed-point operation, then we cannot use the code
8686 below because "expand_mult" doesn't support sat/no-sat fixed-point
8688 if (ALL_FIXED_POINT_MODE_P (mode
))
8691 /* If first operand is constant, swap them.
8692 Thus the following special case checks need only
8693 check the second operand. */
8694 if (TREE_CODE (treeop0
) == INTEGER_CST
)
8701 /* Attempt to return something suitable for generating an
8702 indexed address, for machines that support that. */
8704 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8705 && tree_fits_shwi_p (treeop1
))
8707 tree exp1
= treeop1
;
8709 op0
= expand_expr (treeop0
, subtarget
, VOIDmode
,
8713 op0
= force_operand (op0
, NULL_RTX
);
8715 op0
= copy_to_mode_reg (mode
, op0
);
8717 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8718 gen_int_mode (tree_to_shwi (exp1
),
8719 TYPE_MODE (TREE_TYPE (exp1
)))));
8722 if (modifier
== EXPAND_STACK_PARM
)
8725 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8726 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8728 case TRUNC_DIV_EXPR
:
8729 case FLOOR_DIV_EXPR
:
8731 case ROUND_DIV_EXPR
:
8732 case EXACT_DIV_EXPR
:
8733 /* If this is a fixed-point operation, then we cannot use the code
8734 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8736 if (ALL_FIXED_POINT_MODE_P (mode
))
8739 if (modifier
== EXPAND_STACK_PARM
)
8741 /* Possible optimization: compute the dividend with EXPAND_SUM
8742 then if the divisor is constant can optimize the case
8743 where some terms of the dividend have coeffs divisible by it. */
8744 expand_operands (treeop0
, treeop1
,
8745 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8746 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8751 case MULT_HIGHPART_EXPR
:
8752 expand_operands (treeop0
, treeop1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8753 temp
= expand_mult_highpart (mode
, op0
, op1
, target
, unsignedp
);
8757 case TRUNC_MOD_EXPR
:
8758 case FLOOR_MOD_EXPR
:
8760 case ROUND_MOD_EXPR
:
8761 if (modifier
== EXPAND_STACK_PARM
)
8763 expand_operands (treeop0
, treeop1
,
8764 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
8765 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8767 case FIXED_CONVERT_EXPR
:
8768 op0
= expand_normal (treeop0
);
8769 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8770 target
= gen_reg_rtx (mode
);
8772 if ((TREE_CODE (TREE_TYPE (treeop0
)) == INTEGER_TYPE
8773 && TYPE_UNSIGNED (TREE_TYPE (treeop0
)))
8774 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8775 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8777 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8780 case FIX_TRUNC_EXPR
:
8781 op0
= expand_normal (treeop0
);
8782 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8783 target
= gen_reg_rtx (mode
);
8784 expand_fix (target
, op0
, unsignedp
);
8788 op0
= expand_normal (treeop0
);
8789 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8790 target
= gen_reg_rtx (mode
);
8791 /* expand_float can't figure out what to do if FROM has VOIDmode.
8792 So give it the correct mode. With -O, cse will optimize this. */
8793 if (GET_MODE (op0
) == VOIDmode
)
8794 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0
)),
8796 expand_float (target
, op0
,
8797 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
8801 op0
= expand_expr (treeop0
, subtarget
,
8802 VOIDmode
, EXPAND_NORMAL
);
8803 if (modifier
== EXPAND_STACK_PARM
)
8805 temp
= expand_unop (mode
,
8806 optab_for_tree_code (NEGATE_EXPR
, type
,
8810 return REDUCE_BIT_FIELD (temp
);
8813 op0
= expand_expr (treeop0
, subtarget
,
8814 VOIDmode
, EXPAND_NORMAL
);
8815 if (modifier
== EXPAND_STACK_PARM
)
8818 /* ABS_EXPR is not valid for complex arguments. */
8819 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8820 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8822 /* Unsigned abs is simply the operand. Testing here means we don't
8823 risk generating incorrect code below. */
8824 if (TYPE_UNSIGNED (type
))
8827 return expand_abs (mode
, op0
, target
, unsignedp
,
8828 safe_from_p (target
, treeop0
, 1));
8832 target
= original_target
;
8834 || modifier
== EXPAND_STACK_PARM
8835 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8836 || GET_MODE (target
) != mode
8838 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8839 target
= gen_reg_rtx (mode
);
8840 expand_operands (treeop0
, treeop1
,
8841 target
, &op0
, &op1
, EXPAND_NORMAL
);
8843 /* First try to do it with a special MIN or MAX instruction.
8844 If that does not win, use a conditional jump to select the proper
8846 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8847 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8852 /* At this point, a MEM target is no longer useful; we will get better
8855 if (! REG_P (target
))
8856 target
= gen_reg_rtx (mode
);
8858 /* If op1 was placed in target, swap op0 and op1. */
8859 if (target
!= op0
&& target
== op1
)
8860 std::swap (op0
, op1
);
8862 /* We generate better code and avoid problems with op1 mentioning
8863 target by forcing op1 into a pseudo if it isn't a constant. */
8864 if (! CONSTANT_P (op1
))
8865 op1
= force_reg (mode
, op1
);
8868 enum rtx_code comparison_code
;
8871 if (code
== MAX_EXPR
)
8872 comparison_code
= unsignedp
? GEU
: GE
;
8874 comparison_code
= unsignedp
? LEU
: LE
;
8876 /* Canonicalize to comparisons against 0. */
8877 if (op1
== const1_rtx
)
8879 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8880 or (a != 0 ? a : 1) for unsigned.
8881 For MIN we are safe converting (a <= 1 ? a : 1)
8882 into (a <= 0 ? a : 1) */
8883 cmpop1
= const0_rtx
;
8884 if (code
== MAX_EXPR
)
8885 comparison_code
= unsignedp
? NE
: GT
;
8887 if (op1
== constm1_rtx
&& !unsignedp
)
8889 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8890 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8891 cmpop1
= const0_rtx
;
8892 if (code
== MIN_EXPR
)
8893 comparison_code
= LT
;
8895 #ifdef HAVE_conditional_move
8896 /* Use a conditional move if possible. */
8897 if (can_conditionally_move_p (mode
))
8903 /* Try to emit the conditional move. */
8904 insn
= emit_conditional_move (target
, comparison_code
,
8909 /* If we could do the conditional move, emit the sequence,
8913 rtx_insn
*seq
= get_insns ();
8919 /* Otherwise discard the sequence and fall back to code with
8925 emit_move_insn (target
, op0
);
8927 lab
= gen_label_rtx ();
8928 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8929 unsignedp
, mode
, NULL_RTX
, NULL
, lab
,
8932 emit_move_insn (target
, op1
);
8937 op0
= expand_expr (treeop0
, subtarget
,
8938 VOIDmode
, EXPAND_NORMAL
);
8939 if (modifier
== EXPAND_STACK_PARM
)
8941 /* In case we have to reduce the result to bitfield precision
8942 for unsigned bitfield expand this as XOR with a proper constant
8944 if (reduce_bit_field
&& TYPE_UNSIGNED (type
))
8946 wide_int mask
= wi::mask (TYPE_PRECISION (type
),
8947 false, GET_MODE_PRECISION (mode
));
8949 temp
= expand_binop (mode
, xor_optab
, op0
,
8950 immed_wide_int_const (mask
, mode
),
8951 target
, 1, OPTAB_LIB_WIDEN
);
8954 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8958 /* ??? Can optimize bitwise operations with one arg constant.
8959 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8960 and (a bitwise1 b) bitwise2 b (etc)
8961 but that is probably not worth while. */
8970 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8971 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8972 == TYPE_PRECISION (type
)));
8977 /* If this is a fixed-point operation, then we cannot use the code
8978 below because "expand_shift" doesn't support sat/no-sat fixed-point
8980 if (ALL_FIXED_POINT_MODE_P (mode
))
8983 if (! safe_from_p (subtarget
, treeop1
, 1))
8985 if (modifier
== EXPAND_STACK_PARM
)
8987 op0
= expand_expr (treeop0
, subtarget
,
8988 VOIDmode
, EXPAND_NORMAL
);
8989 temp
= expand_variable_shift (code
, mode
, op0
, treeop1
, target
,
8991 if (code
== LSHIFT_EXPR
)
8992 temp
= REDUCE_BIT_FIELD (temp
);
8995 /* Could determine the answer when only additive constants differ. Also,
8996 the addition of one can be handled by changing the condition. */
9003 case UNORDERED_EXPR
:
9012 temp
= do_store_flag (ops
,
9013 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
9014 tmode
!= VOIDmode
? tmode
: mode
);
9018 /* Use a compare and a jump for BLKmode comparisons, or for function
9019 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9022 || modifier
== EXPAND_STACK_PARM
9023 || ! safe_from_p (target
, treeop0
, 1)
9024 || ! safe_from_p (target
, treeop1
, 1)
9025 /* Make sure we don't have a hard reg (such as function's return
9026 value) live across basic blocks, if not optimizing. */
9027 || (!optimize
&& REG_P (target
)
9028 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
9029 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
9031 emit_move_insn (target
, const0_rtx
);
9033 rtx_code_label
*lab1
= gen_label_rtx ();
9034 jumpifnot_1 (code
, treeop0
, treeop1
, lab1
, -1);
9036 if (TYPE_PRECISION (type
) == 1 && !TYPE_UNSIGNED (type
))
9037 emit_move_insn (target
, constm1_rtx
);
9039 emit_move_insn (target
, const1_rtx
);
9045 /* Get the rtx code of the operands. */
9046 op0
= expand_normal (treeop0
);
9047 op1
= expand_normal (treeop1
);
9050 target
= gen_reg_rtx (TYPE_MODE (type
));
9052 /* If target overlaps with op1, then either we need to force
9053 op1 into a pseudo (if target also overlaps with op0),
9054 or write the complex parts in reverse order. */
9055 switch (GET_CODE (target
))
9058 if (reg_overlap_mentioned_p (XEXP (target
, 0), op1
))
9060 if (reg_overlap_mentioned_p (XEXP (target
, 1), op0
))
9062 complex_expr_force_op1
:
9063 temp
= gen_reg_rtx (GET_MODE_INNER (GET_MODE (target
)));
9064 emit_move_insn (temp
, op1
);
9068 complex_expr_swap_order
:
9069 /* Move the imaginary (op1) and real (op0) parts to their
9071 write_complex_part (target
, op1
, true);
9072 write_complex_part (target
, op0
, false);
9078 temp
= adjust_address_nv (target
,
9079 GET_MODE_INNER (GET_MODE (target
)), 0);
9080 if (reg_overlap_mentioned_p (temp
, op1
))
9082 machine_mode imode
= GET_MODE_INNER (GET_MODE (target
));
9083 temp
= adjust_address_nv (target
, imode
,
9084 GET_MODE_SIZE (imode
));
9085 if (reg_overlap_mentioned_p (temp
, op0
))
9086 goto complex_expr_force_op1
;
9087 goto complex_expr_swap_order
;
9091 if (reg_overlap_mentioned_p (target
, op1
))
9093 if (reg_overlap_mentioned_p (target
, op0
))
9094 goto complex_expr_force_op1
;
9095 goto complex_expr_swap_order
;
9100 /* Move the real (op0) and imaginary (op1) parts to their location. */
9101 write_complex_part (target
, op0
, false);
9102 write_complex_part (target
, op1
, true);
9106 case WIDEN_SUM_EXPR
:
9108 tree oprnd0
= treeop0
;
9109 tree oprnd1
= treeop1
;
9111 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9112 target
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, op1
,
9117 case REDUC_MAX_EXPR
:
9118 case REDUC_MIN_EXPR
:
9119 case REDUC_PLUS_EXPR
:
9121 op0
= expand_normal (treeop0
);
9122 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9123 machine_mode vec_mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9125 if (optab_handler (this_optab
, vec_mode
) != CODE_FOR_nothing
)
9127 struct expand_operand ops
[2];
9128 enum insn_code icode
= optab_handler (this_optab
, vec_mode
);
9130 create_output_operand (&ops
[0], target
, mode
);
9131 create_input_operand (&ops
[1], op0
, vec_mode
);
9132 if (maybe_expand_insn (icode
, 2, ops
))
9134 target
= ops
[0].value
;
9135 if (GET_MODE (target
) != mode
)
9136 return gen_lowpart (tmode
, target
);
9140 /* Fall back to optab with vector result, and then extract scalar. */
9141 this_optab
= scalar_reduc_to_vector (this_optab
, type
);
9142 temp
= expand_unop (vec_mode
, this_optab
, op0
, NULL_RTX
, unsignedp
);
9144 /* The tree code produces a scalar result, but (somewhat by convention)
9145 the optab produces a vector with the result in element 0 if
9146 little-endian, or element N-1 if big-endian. So pull the scalar
9147 result out of that element. */
9148 int index
= BYTES_BIG_ENDIAN
? GET_MODE_NUNITS (vec_mode
) - 1 : 0;
9149 int bitsize
= GET_MODE_BITSIZE (GET_MODE_INNER (vec_mode
));
9150 temp
= extract_bit_field (temp
, bitsize
, bitsize
* index
, unsignedp
,
9151 target
, mode
, mode
);
9156 case VEC_UNPACK_HI_EXPR
:
9157 case VEC_UNPACK_LO_EXPR
:
9159 op0
= expand_normal (treeop0
);
9160 temp
= expand_widen_pattern_expr (ops
, op0
, NULL_RTX
, NULL_RTX
,
9166 case VEC_UNPACK_FLOAT_HI_EXPR
:
9167 case VEC_UNPACK_FLOAT_LO_EXPR
:
9169 op0
= expand_normal (treeop0
);
9170 /* The signedness is determined from input operand. */
9171 temp
= expand_widen_pattern_expr
9172 (ops
, op0
, NULL_RTX
, NULL_RTX
,
9173 target
, TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
9179 case VEC_WIDEN_MULT_HI_EXPR
:
9180 case VEC_WIDEN_MULT_LO_EXPR
:
9181 case VEC_WIDEN_MULT_EVEN_EXPR
:
9182 case VEC_WIDEN_MULT_ODD_EXPR
:
9183 case VEC_WIDEN_LSHIFT_HI_EXPR
:
9184 case VEC_WIDEN_LSHIFT_LO_EXPR
:
9185 expand_operands (treeop0
, treeop1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9186 target
= expand_widen_pattern_expr (ops
, op0
, op1
, NULL_RTX
,
9188 gcc_assert (target
);
9191 case VEC_PACK_TRUNC_EXPR
:
9192 case VEC_PACK_SAT_EXPR
:
9193 case VEC_PACK_FIX_TRUNC_EXPR
:
9194 mode
= TYPE_MODE (TREE_TYPE (treeop0
));
9198 expand_operands (treeop0
, treeop1
, target
, &op0
, &op1
, EXPAND_NORMAL
);
9199 op2
= expand_normal (treeop2
);
9201 /* Careful here: if the target doesn't support integral vector modes,
9202 a constant selection vector could wind up smooshed into a normal
9203 integral constant. */
9204 if (CONSTANT_P (op2
) && GET_CODE (op2
) != CONST_VECTOR
)
9206 tree sel_type
= TREE_TYPE (treeop2
);
9208 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type
)),
9209 TYPE_VECTOR_SUBPARTS (sel_type
));
9210 gcc_assert (GET_MODE_CLASS (vmode
) == MODE_VECTOR_INT
);
9211 op2
= simplify_subreg (vmode
, op2
, TYPE_MODE (sel_type
), 0);
9212 gcc_assert (op2
&& GET_CODE (op2
) == CONST_VECTOR
);
9215 gcc_assert (GET_MODE_CLASS (GET_MODE (op2
)) == MODE_VECTOR_INT
);
9217 temp
= expand_vec_perm (mode
, op0
, op1
, op2
, target
);
9223 tree oprnd0
= treeop0
;
9224 tree oprnd1
= treeop1
;
9225 tree oprnd2
= treeop2
;
9228 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9229 op2
= expand_normal (oprnd2
);
9230 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9237 tree oprnd0
= treeop0
;
9238 tree oprnd1
= treeop1
;
9239 tree oprnd2
= treeop2
;
9242 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9243 op2
= expand_normal (oprnd2
);
9244 target
= expand_widen_pattern_expr (ops
, op0
, op1
, op2
,
9249 case REALIGN_LOAD_EXPR
:
9251 tree oprnd0
= treeop0
;
9252 tree oprnd1
= treeop1
;
9253 tree oprnd2
= treeop2
;
9256 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9257 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9258 op2
= expand_normal (oprnd2
);
9259 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9267 /* A COND_EXPR with its type being VOID_TYPE represents a
9268 conditional jump and is handled in
9269 expand_gimple_cond_expr. */
9270 gcc_assert (!VOID_TYPE_P (type
));
9272 /* Note that COND_EXPRs whose type is a structure or union
9273 are required to be constructed to contain assignments of
9274 a temporary variable, so that we can evaluate them here
9275 for side effect only. If type is void, we must do likewise. */
9277 gcc_assert (!TREE_ADDRESSABLE (type
)
9279 && TREE_TYPE (treeop1
) != void_type_node
9280 && TREE_TYPE (treeop2
) != void_type_node
);
9282 temp
= expand_cond_expr_using_cmove (treeop0
, treeop1
, treeop2
);
9286 /* If we are not to produce a result, we have no target. Otherwise,
9287 if a target was specified use it; it will not be used as an
9288 intermediate target unless it is safe. If no target, use a
9291 if (modifier
!= EXPAND_STACK_PARM
9293 && safe_from_p (original_target
, treeop0
, 1)
9294 && GET_MODE (original_target
) == mode
9295 && !MEM_P (original_target
))
9296 temp
= original_target
;
9298 temp
= assign_temp (type
, 0, 1);
9300 do_pending_stack_adjust ();
9302 rtx_code_label
*lab0
= gen_label_rtx ();
9303 rtx_code_label
*lab1
= gen_label_rtx ();
9304 jumpifnot (treeop0
, lab0
, -1);
9305 store_expr (treeop1
, temp
,
9306 modifier
== EXPAND_STACK_PARM
,
9309 emit_jump_insn (gen_jump (lab1
));
9312 store_expr (treeop2
, temp
,
9313 modifier
== EXPAND_STACK_PARM
,
9322 target
= expand_vec_cond_expr (type
, treeop0
, treeop1
, treeop2
, target
);
9329 /* Here to do an ordinary binary operator. */
9331 expand_operands (treeop0
, treeop1
,
9332 subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
9334 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9336 if (modifier
== EXPAND_STACK_PARM
)
9338 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9339 unsignedp
, OPTAB_LIB_WIDEN
);
9341 /* Bitwise operations do not need bitfield reduction as we expect their
9342 operands being properly truncated. */
9343 if (code
== BIT_XOR_EXPR
9344 || code
== BIT_AND_EXPR
9345 || code
== BIT_IOR_EXPR
)
9347 return REDUCE_BIT_FIELD (temp
);
9349 #undef REDUCE_BIT_FIELD
9352 /* Return TRUE if expression STMT is suitable for replacement.
9353 Never consider memory loads as replaceable, because those don't ever lead
9354 into constant expressions. */
9357 stmt_is_replaceable_p (gimple stmt
)
9359 if (ssa_is_replaceable_p (stmt
))
9361 /* Don't move around loads. */
9362 if (!gimple_assign_single_p (stmt
)
9363 || is_gimple_val (gimple_assign_rhs1 (stmt
)))
9370 expand_expr_real_1 (tree exp
, rtx target
, machine_mode tmode
,
9371 enum expand_modifier modifier
, rtx
*alt_rtl
,
9372 bool inner_reference_p
)
9374 rtx op0
, op1
, temp
, decl_rtl
;
9378 enum tree_code code
= TREE_CODE (exp
);
9379 rtx subtarget
, original_target
;
9382 bool reduce_bit_field
;
9383 location_t loc
= EXPR_LOCATION (exp
);
9384 struct separate_ops ops
;
9385 tree treeop0
, treeop1
, treeop2
;
9386 tree ssa_name
= NULL_TREE
;
9389 type
= TREE_TYPE (exp
);
9390 mode
= TYPE_MODE (type
);
9391 unsignedp
= TYPE_UNSIGNED (type
);
9393 treeop0
= treeop1
= treeop2
= NULL_TREE
;
9394 if (!VL_EXP_CLASS_P (exp
))
9395 switch (TREE_CODE_LENGTH (code
))
9398 case 3: treeop2
= TREE_OPERAND (exp
, 2);
9399 case 2: treeop1
= TREE_OPERAND (exp
, 1);
9400 case 1: treeop0
= TREE_OPERAND (exp
, 0);
9410 ignore
= (target
== const0_rtx
9411 || ((CONVERT_EXPR_CODE_P (code
)
9412 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
9413 && TREE_CODE (type
) == VOID_TYPE
));
9415 /* An operation in what may be a bit-field type needs the
9416 result to be reduced to the precision of the bit-field type,
9417 which is narrower than that of the type's mode. */
9418 reduce_bit_field
= (!ignore
9419 && INTEGRAL_TYPE_P (type
)
9420 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
9422 /* If we are going to ignore this result, we need only do something
9423 if there is a side-effect somewhere in the expression. If there
9424 is, short-circuit the most common cases here. Note that we must
9425 not call expand_expr with anything but const0_rtx in case this
9426 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9430 if (! TREE_SIDE_EFFECTS (exp
))
9433 /* Ensure we reference a volatile object even if value is ignored, but
9434 don't do this if all we are doing is taking its address. */
9435 if (TREE_THIS_VOLATILE (exp
)
9436 && TREE_CODE (exp
) != FUNCTION_DECL
9437 && mode
!= VOIDmode
&& mode
!= BLKmode
9438 && modifier
!= EXPAND_CONST_ADDRESS
)
9440 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
9446 if (TREE_CODE_CLASS (code
) == tcc_unary
9447 || code
== BIT_FIELD_REF
9448 || code
== COMPONENT_REF
9449 || code
== INDIRECT_REF
)
9450 return expand_expr (treeop0
, const0_rtx
, VOIDmode
,
9453 else if (TREE_CODE_CLASS (code
) == tcc_binary
9454 || TREE_CODE_CLASS (code
) == tcc_comparison
9455 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
9457 expand_expr (treeop0
, const0_rtx
, VOIDmode
, modifier
);
9458 expand_expr (treeop1
, const0_rtx
, VOIDmode
, modifier
);
9465 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
9468 /* Use subtarget as the target for operand 0 of a binary operation. */
9469 subtarget
= get_subtarget (target
);
9470 original_target
= target
;
9476 tree function
= decl_function_context (exp
);
9478 temp
= label_rtx (exp
);
9479 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
9481 if (function
!= current_function_decl
9483 LABEL_REF_NONLOCAL_P (temp
) = 1;
9485 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
9490 /* ??? ivopts calls expander, without any preparation from
9491 out-of-ssa. So fake instructions as if this was an access to the
9492 base variable. This unnecessarily allocates a pseudo, see how we can
9493 reuse it, if partition base vars have it set already. */
9494 if (!currently_expanding_to_rtl
)
9496 tree var
= SSA_NAME_VAR (exp
);
9497 if (var
&& DECL_RTL_SET_P (var
))
9498 return DECL_RTL (var
);
9499 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp
)),
9500 LAST_VIRTUAL_REGISTER
+ 1);
9503 g
= get_gimple_for_ssa_name (exp
);
9504 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9506 && modifier
== EXPAND_INITIALIZER
9507 && !SSA_NAME_IS_DEFAULT_DEF (exp
)
9508 && (optimize
|| DECL_IGNORED_P (SSA_NAME_VAR (exp
)))
9509 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp
)))
9510 g
= SSA_NAME_DEF_STMT (exp
);
9514 ops
.code
= gimple_assign_rhs_code (g
);
9515 switch (get_gimple_rhs_class (ops
.code
))
9517 case GIMPLE_TERNARY_RHS
:
9518 ops
.op2
= gimple_assign_rhs3 (g
);
9520 case GIMPLE_BINARY_RHS
:
9521 ops
.op1
= gimple_assign_rhs2 (g
);
9523 /* Try to expand conditonal compare. */
9524 if (targetm
.gen_ccmp_first
)
9526 gcc_checking_assert (targetm
.gen_ccmp_next
!= NULL
);
9527 r
= expand_ccmp_expr (g
);
9532 case GIMPLE_UNARY_RHS
:
9533 ops
.op0
= gimple_assign_rhs1 (g
);
9534 ops
.type
= TREE_TYPE (gimple_assign_lhs (g
));
9535 ops
.location
= gimple_location (g
);
9536 r
= expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
9538 case GIMPLE_SINGLE_RHS
:
9540 location_t saved_loc
= curr_insn_location ();
9541 set_curr_insn_location (gimple_location (g
));
9542 r
= expand_expr_real (gimple_assign_rhs1 (g
), target
,
9543 tmode
, modifier
, NULL
, inner_reference_p
);
9544 set_curr_insn_location (saved_loc
);
9550 if (REG_P (r
) && !REG_EXPR (r
))
9551 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp
), r
);
9556 decl_rtl
= get_rtx_for_ssa_name (ssa_name
);
9557 exp
= SSA_NAME_VAR (ssa_name
);
9558 goto expand_decl_rtl
;
9562 /* If a static var's type was incomplete when the decl was written,
9563 but the type is complete now, lay out the decl now. */
9564 if (DECL_SIZE (exp
) == 0
9565 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
9566 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
9567 layout_decl (exp
, 0);
9569 /* ... fall through ... */
9573 decl_rtl
= DECL_RTL (exp
);
9575 gcc_assert (decl_rtl
);
9576 decl_rtl
= copy_rtx (decl_rtl
);
9577 /* Record writes to register variables. */
9578 if (modifier
== EXPAND_WRITE
9580 && HARD_REGISTER_P (decl_rtl
))
9581 add_to_hard_reg_set (&crtl
->asm_clobbers
,
9582 GET_MODE (decl_rtl
), REGNO (decl_rtl
));
9584 /* Ensure variable marked as used even if it doesn't go through
9585 a parser. If it hasn't be used yet, write out an external
9587 TREE_USED (exp
) = 1;
9589 /* Show we haven't gotten RTL for this yet. */
9592 /* Variables inherited from containing functions should have
9593 been lowered by this point. */
9594 context
= decl_function_context (exp
);
9595 gcc_assert (SCOPE_FILE_SCOPE_P (context
)
9596 || context
== current_function_decl
9597 || TREE_STATIC (exp
)
9598 || DECL_EXTERNAL (exp
)
9599 /* ??? C++ creates functions that are not TREE_STATIC. */
9600 || TREE_CODE (exp
) == FUNCTION_DECL
);
9602 /* This is the case of an array whose size is to be determined
9603 from its initializer, while the initializer is still being parsed.
9604 ??? We aren't parsing while expanding anymore. */
9606 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
9607 temp
= validize_mem (decl_rtl
);
9609 /* If DECL_RTL is memory, we are in the normal case and the
9610 address is not valid, get the address into a register. */
9612 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
9615 *alt_rtl
= decl_rtl
;
9616 decl_rtl
= use_anchored_address (decl_rtl
);
9617 if (modifier
!= EXPAND_CONST_ADDRESS
9618 && modifier
!= EXPAND_SUM
9619 && !memory_address_addr_space_p (DECL_MODE (exp
),
9621 MEM_ADDR_SPACE (decl_rtl
)))
9622 temp
= replace_equiv_address (decl_rtl
,
9623 copy_rtx (XEXP (decl_rtl
, 0)));
9626 /* If we got something, return it. But first, set the alignment
9627 if the address is a register. */
9630 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
9631 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
9636 /* If the mode of DECL_RTL does not match that of the decl,
9637 there are two cases: we are dealing with a BLKmode value
9638 that is returned in a register, or we are dealing with
9639 a promoted value. In the latter case, return a SUBREG
9640 of the wanted mode, but mark it so that we know that it
9641 was already extended. */
9642 if (REG_P (decl_rtl
)
9643 && DECL_MODE (exp
) != BLKmode
9644 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
9648 /* Get the signedness to be used for this variable. Ensure we get
9649 the same mode we got when the variable was declared. */
9650 if (code
== SSA_NAME
9651 && (g
= SSA_NAME_DEF_STMT (ssa_name
))
9652 && gimple_code (g
) == GIMPLE_CALL
9653 && !gimple_call_internal_p (g
))
9654 pmode
= promote_function_mode (type
, mode
, &unsignedp
,
9655 gimple_call_fntype (g
),
9658 pmode
= promote_decl_mode (exp
, &unsignedp
);
9659 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
9661 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
9662 SUBREG_PROMOTED_VAR_P (temp
) = 1;
9663 SUBREG_PROMOTED_SET (temp
, unsignedp
);
9670 /* Given that TYPE_PRECISION (type) is not always equal to
9671 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
9672 the former to the latter according to the signedness of the
9674 temp
= immed_wide_int_const (wide_int::from
9676 GET_MODE_PRECISION (TYPE_MODE (type
)),
9683 tree tmp
= NULL_TREE
;
9684 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
9685 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
9686 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
9687 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
9688 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
9689 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
9690 return const_vector_from_tree (exp
);
9691 if (GET_MODE_CLASS (mode
) == MODE_INT
)
9693 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
9695 tmp
= fold_unary_loc (loc
, VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
9699 vec
<constructor_elt
, va_gc
> *v
;
9701 vec_alloc (v
, VECTOR_CST_NELTS (exp
));
9702 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
9703 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, VECTOR_CST_ELT (exp
, i
));
9704 tmp
= build_constructor (type
, v
);
9706 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
9711 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
9714 /* If optimized, generate immediate CONST_DOUBLE
9715 which will be turned into memory by reload if necessary.
9717 We used to force a register so that loop.c could see it. But
9718 this does not allow gen_* patterns to perform optimizations with
9719 the constants. It also produces two insns in cases like "x = 1.0;".
9720 On most machines, floating-point constants are not permitted in
9721 many insns, so we'd end up copying it to a register in any case.
9723 Now, we do the copying in expand_binop, if appropriate. */
9724 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
9725 TYPE_MODE (TREE_TYPE (exp
)));
9728 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
9729 TYPE_MODE (TREE_TYPE (exp
)));
9732 /* Handle evaluating a complex constant in a CONCAT target. */
9733 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
9735 machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
9738 rtarg
= XEXP (original_target
, 0);
9739 itarg
= XEXP (original_target
, 1);
9741 /* Move the real and imaginary parts separately. */
9742 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
9743 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
9746 emit_move_insn (rtarg
, op0
);
9748 emit_move_insn (itarg
, op1
);
9750 return original_target
;
9753 /* ... fall through ... */
9756 temp
= expand_expr_constant (exp
, 1, modifier
);
9758 /* temp contains a constant address.
9759 On RISC machines where a constant address isn't valid,
9760 make some insns to get that address into a register. */
9761 if (modifier
!= EXPAND_CONST_ADDRESS
9762 && modifier
!= EXPAND_INITIALIZER
9763 && modifier
!= EXPAND_SUM
9764 && ! memory_address_addr_space_p (mode
, XEXP (temp
, 0),
9765 MEM_ADDR_SPACE (temp
)))
9766 return replace_equiv_address (temp
,
9767 copy_rtx (XEXP (temp
, 0)));
9773 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
,
9776 if (!SAVE_EXPR_RESOLVED_P (exp
))
9778 /* We can indeed still hit this case, typically via builtin
9779 expanders calling save_expr immediately before expanding
9780 something. Assume this means that we only have to deal
9781 with non-BLKmode values. */
9782 gcc_assert (GET_MODE (ret
) != BLKmode
);
9784 val
= build_decl (curr_insn_location (),
9785 VAR_DECL
, NULL
, TREE_TYPE (exp
));
9786 DECL_ARTIFICIAL (val
) = 1;
9787 DECL_IGNORED_P (val
) = 1;
9789 TREE_OPERAND (exp
, 0) = treeop0
;
9790 SAVE_EXPR_RESOLVED_P (exp
) = 1;
9792 if (!CONSTANT_P (ret
))
9793 ret
= copy_to_reg (ret
);
9794 SET_DECL_RTL (val
, ret
);
9802 /* If we don't need the result, just ensure we evaluate any
9806 unsigned HOST_WIDE_INT idx
;
9809 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
9810 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
9815 return expand_constructor (exp
, target
, modifier
, false);
9817 case TARGET_MEM_REF
:
9820 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9821 enum insn_code icode
;
9824 op0
= addr_for_mem_ref (exp
, as
, true);
9825 op0
= memory_address_addr_space (mode
, op0
, as
);
9826 temp
= gen_rtx_MEM (mode
, op0
);
9827 set_mem_attributes (temp
, exp
, 0);
9828 set_mem_addr_space (temp
, as
);
9829 align
= get_object_alignment (exp
);
9830 if (modifier
!= EXPAND_WRITE
9831 && modifier
!= EXPAND_MEMORY
9833 && align
< GET_MODE_ALIGNMENT (mode
)
9834 /* If the target does not have special handling for unaligned
9835 loads of mode then it can use regular moves for them. */
9836 && ((icode
= optab_handler (movmisalign_optab
, mode
))
9837 != CODE_FOR_nothing
))
9839 struct expand_operand ops
[2];
9841 /* We've already validated the memory, and we're creating a
9842 new pseudo destination. The predicates really can't fail,
9843 nor can the generator. */
9844 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9845 create_fixed_operand (&ops
[1], temp
);
9846 expand_insn (icode
, 2, ops
);
9847 temp
= ops
[0].value
;
9855 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9856 machine_mode address_mode
;
9857 tree base
= TREE_OPERAND (exp
, 0);
9859 enum insn_code icode
;
9861 /* Handle expansion of non-aliased memory with non-BLKmode. That
9862 might end up in a register. */
9863 if (mem_ref_refers_to_non_mem_p (exp
))
9865 HOST_WIDE_INT offset
= mem_ref_offset (exp
).to_short_addr ();
9866 base
= TREE_OPERAND (base
, 0);
9868 && tree_fits_uhwi_p (TYPE_SIZE (type
))
9869 && (GET_MODE_BITSIZE (DECL_MODE (base
))
9870 == tree_to_uhwi (TYPE_SIZE (type
))))
9871 return expand_expr (build1 (VIEW_CONVERT_EXPR
, type
, base
),
9872 target
, tmode
, modifier
);
9873 if (TYPE_MODE (type
) == BLKmode
)
9875 temp
= assign_stack_temp (DECL_MODE (base
),
9876 GET_MODE_SIZE (DECL_MODE (base
)));
9877 store_expr (base
, temp
, 0, false);
9878 temp
= adjust_address (temp
, BLKmode
, offset
);
9879 set_mem_size (temp
, int_size_in_bytes (type
));
9882 exp
= build3 (BIT_FIELD_REF
, type
, base
, TYPE_SIZE (type
),
9883 bitsize_int (offset
* BITS_PER_UNIT
));
9884 return expand_expr (exp
, target
, tmode
, modifier
);
9886 address_mode
= targetm
.addr_space
.address_mode (as
);
9887 base
= TREE_OPERAND (exp
, 0);
9888 if ((def_stmt
= get_def_for_expr (base
, BIT_AND_EXPR
)))
9890 tree mask
= gimple_assign_rhs2 (def_stmt
);
9891 base
= build2 (BIT_AND_EXPR
, TREE_TYPE (base
),
9892 gimple_assign_rhs1 (def_stmt
), mask
);
9893 TREE_OPERAND (exp
, 0) = base
;
9895 align
= get_object_alignment (exp
);
9896 op0
= expand_expr (base
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
9897 op0
= memory_address_addr_space (mode
, op0
, as
);
9898 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
9900 rtx off
= immed_wide_int_const (mem_ref_offset (exp
), address_mode
);
9901 op0
= simplify_gen_binary (PLUS
, address_mode
, op0
, off
);
9902 op0
= memory_address_addr_space (mode
, op0
, as
);
9904 temp
= gen_rtx_MEM (mode
, op0
);
9905 set_mem_attributes (temp
, exp
, 0);
9906 set_mem_addr_space (temp
, as
);
9907 if (TREE_THIS_VOLATILE (exp
))
9908 MEM_VOLATILE_P (temp
) = 1;
9909 if (modifier
!= EXPAND_WRITE
9910 && modifier
!= EXPAND_MEMORY
9911 && !inner_reference_p
9913 && align
< GET_MODE_ALIGNMENT (mode
))
9915 if ((icode
= optab_handler (movmisalign_optab
, mode
))
9916 != CODE_FOR_nothing
)
9918 struct expand_operand ops
[2];
9920 /* We've already validated the memory, and we're creating a
9921 new pseudo destination. The predicates really can't fail,
9922 nor can the generator. */
9923 create_output_operand (&ops
[0], NULL_RTX
, mode
);
9924 create_fixed_operand (&ops
[1], temp
);
9925 expand_insn (icode
, 2, ops
);
9926 temp
= ops
[0].value
;
9928 else if (SLOW_UNALIGNED_ACCESS (mode
, align
))
9929 temp
= extract_bit_field (temp
, GET_MODE_BITSIZE (mode
),
9930 0, TYPE_UNSIGNED (TREE_TYPE (exp
)),
9931 (modifier
== EXPAND_STACK_PARM
9932 ? NULL_RTX
: target
),
9941 tree array
= treeop0
;
9942 tree index
= treeop1
;
9945 /* Fold an expression like: "foo"[2].
9946 This is not done in fold so it won't happen inside &.
9947 Don't fold if this is for wide characters since it's too
9948 difficult to do correctly and this is a very rare case. */
9950 if (modifier
!= EXPAND_CONST_ADDRESS
9951 && modifier
!= EXPAND_INITIALIZER
9952 && modifier
!= EXPAND_MEMORY
)
9954 tree t
= fold_read_from_constant_string (exp
);
9957 return expand_expr (t
, target
, tmode
, modifier
);
9960 /* If this is a constant index into a constant array,
9961 just get the value from the array. Handle both the cases when
9962 we have an explicit constructor and when our operand is a variable
9963 that was declared const. */
9965 if (modifier
!= EXPAND_CONST_ADDRESS
9966 && modifier
!= EXPAND_INITIALIZER
9967 && modifier
!= EXPAND_MEMORY
9968 && TREE_CODE (array
) == CONSTRUCTOR
9969 && ! TREE_SIDE_EFFECTS (array
)
9970 && TREE_CODE (index
) == INTEGER_CST
)
9972 unsigned HOST_WIDE_INT ix
;
9975 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
9977 if (tree_int_cst_equal (field
, index
))
9979 if (!TREE_SIDE_EFFECTS (value
))
9980 return expand_expr (fold (value
), target
, tmode
, modifier
);
9985 else if (optimize
>= 1
9986 && modifier
!= EXPAND_CONST_ADDRESS
9987 && modifier
!= EXPAND_INITIALIZER
9988 && modifier
!= EXPAND_MEMORY
9989 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
9990 && TREE_CODE (index
) == INTEGER_CST
9991 && (TREE_CODE (array
) == VAR_DECL
9992 || TREE_CODE (array
) == CONST_DECL
)
9993 && (init
= ctor_for_folding (array
)) != error_mark_node
)
9995 if (init
== NULL_TREE
)
9997 tree value
= build_zero_cst (type
);
9998 if (TREE_CODE (value
) == CONSTRUCTOR
)
10000 /* If VALUE is a CONSTRUCTOR, this optimization is only
10001 useful if this doesn't store the CONSTRUCTOR into
10002 memory. If it does, it is more efficient to just
10003 load the data from the array directly. */
10004 rtx ret
= expand_constructor (value
, target
,
10006 if (ret
== NULL_RTX
)
10011 return expand_expr (value
, target
, tmode
, modifier
);
10013 else if (TREE_CODE (init
) == CONSTRUCTOR
)
10015 unsigned HOST_WIDE_INT ix
;
10018 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
10020 if (tree_int_cst_equal (field
, index
))
10022 if (TREE_SIDE_EFFECTS (value
))
10025 if (TREE_CODE (value
) == CONSTRUCTOR
)
10027 /* If VALUE is a CONSTRUCTOR, this
10028 optimization is only useful if
10029 this doesn't store the CONSTRUCTOR
10030 into memory. If it does, it is more
10031 efficient to just load the data from
10032 the array directly. */
10033 rtx ret
= expand_constructor (value
, target
,
10035 if (ret
== NULL_RTX
)
10040 expand_expr (fold (value
), target
, tmode
, modifier
);
10043 else if (TREE_CODE (init
) == STRING_CST
)
10045 tree low_bound
= array_ref_low_bound (exp
);
10046 tree index1
= fold_convert_loc (loc
, sizetype
, treeop1
);
10048 /* Optimize the special case of a zero lower bound.
10050 We convert the lower bound to sizetype to avoid problems
10051 with constant folding. E.g. suppose the lower bound is
10052 1 and its mode is QI. Without the conversion
10053 (ARRAY + (INDEX - (unsigned char)1))
10055 (ARRAY + (-(unsigned char)1) + INDEX)
10057 (ARRAY + 255 + INDEX). Oops! */
10058 if (!integer_zerop (low_bound
))
10059 index1
= size_diffop_loc (loc
, index1
,
10060 fold_convert_loc (loc
, sizetype
,
10063 if (compare_tree_int (index1
, TREE_STRING_LENGTH (init
)) < 0)
10065 tree type
= TREE_TYPE (TREE_TYPE (init
));
10066 machine_mode mode
= TYPE_MODE (type
);
10068 if (GET_MODE_CLASS (mode
) == MODE_INT
10069 && GET_MODE_SIZE (mode
) == 1)
10070 return gen_int_mode (TREE_STRING_POINTER (init
)
10071 [TREE_INT_CST_LOW (index1
)],
10077 goto normal_inner_ref
;
10079 case COMPONENT_REF
:
10080 /* If the operand is a CONSTRUCTOR, we can just extract the
10081 appropriate field if it is present. */
10082 if (TREE_CODE (treeop0
) == CONSTRUCTOR
)
10084 unsigned HOST_WIDE_INT idx
;
10087 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0
),
10089 if (field
== treeop1
10090 /* We can normally use the value of the field in the
10091 CONSTRUCTOR. However, if this is a bitfield in
10092 an integral mode that we can fit in a HOST_WIDE_INT,
10093 we must mask only the number of bits in the bitfield,
10094 since this is done implicitly by the constructor. If
10095 the bitfield does not meet either of those conditions,
10096 we can't do this optimization. */
10097 && (! DECL_BIT_FIELD (field
)
10098 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
10099 && (GET_MODE_PRECISION (DECL_MODE (field
))
10100 <= HOST_BITS_PER_WIDE_INT
))))
10102 if (DECL_BIT_FIELD (field
)
10103 && modifier
== EXPAND_STACK_PARM
)
10105 op0
= expand_expr (value
, target
, tmode
, modifier
);
10106 if (DECL_BIT_FIELD (field
))
10108 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
10109 machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
10111 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
10113 op1
= gen_int_mode (((HOST_WIDE_INT
) 1 << bitsize
) - 1,
10115 op0
= expand_and (imode
, op0
, op1
, target
);
10119 int count
= GET_MODE_PRECISION (imode
) - bitsize
;
10121 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
10123 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
10131 goto normal_inner_ref
;
10133 case BIT_FIELD_REF
:
10134 case ARRAY_RANGE_REF
:
10137 machine_mode mode1
, mode2
;
10138 HOST_WIDE_INT bitsize
, bitpos
;
10140 int volatilep
= 0, must_force_mem
;
10141 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
10142 &mode1
, &unsignedp
, &volatilep
, true);
10143 rtx orig_op0
, memloc
;
10144 bool clear_mem_expr
= false;
10146 /* If we got back the original object, something is wrong. Perhaps
10147 we are evaluating an expression too early. In any event, don't
10148 infinitely recurse. */
10149 gcc_assert (tem
!= exp
);
10151 /* If TEM's type is a union of variable size, pass TARGET to the inner
10152 computation, since it will need a temporary and TARGET is known
10153 to have to do. This occurs in unchecked conversion in Ada. */
10155 = expand_expr_real (tem
,
10156 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10157 && COMPLETE_TYPE_P (TREE_TYPE (tem
))
10158 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10160 && modifier
!= EXPAND_STACK_PARM
10161 ? target
: NULL_RTX
),
10163 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10166 /* If the field has a mode, we want to access it in the
10167 field's mode, not the computed mode.
10168 If a MEM has VOIDmode (external with incomplete type),
10169 use BLKmode for it instead. */
10172 if (mode1
!= VOIDmode
)
10173 op0
= adjust_address (op0
, mode1
, 0);
10174 else if (GET_MODE (op0
) == VOIDmode
)
10175 op0
= adjust_address (op0
, BLKmode
, 0);
10179 = CONSTANT_P (op0
) ? TYPE_MODE (TREE_TYPE (tem
)) : GET_MODE (op0
);
10181 /* If we have either an offset, a BLKmode result, or a reference
10182 outside the underlying object, we must force it to memory.
10183 Such a case can occur in Ada if we have unchecked conversion
10184 of an expression from a scalar type to an aggregate type or
10185 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10186 passed a partially uninitialized object or a view-conversion
10187 to a larger size. */
10188 must_force_mem
= (offset
10189 || mode1
== BLKmode
10190 || bitpos
+ bitsize
> GET_MODE_BITSIZE (mode2
));
10192 /* Handle CONCAT first. */
10193 if (GET_CODE (op0
) == CONCAT
&& !must_force_mem
)
10196 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
10199 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10202 op0
= XEXP (op0
, 0);
10203 mode2
= GET_MODE (op0
);
10205 else if (bitpos
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 0)))
10206 && bitsize
== GET_MODE_BITSIZE (GET_MODE (XEXP (op0
, 1)))
10210 op0
= XEXP (op0
, 1);
10212 mode2
= GET_MODE (op0
);
10215 /* Otherwise force into memory. */
10216 must_force_mem
= 1;
10219 /* If this is a constant, put it in a register if it is a legitimate
10220 constant and we don't need a memory reference. */
10221 if (CONSTANT_P (op0
)
10222 && mode2
!= BLKmode
10223 && targetm
.legitimate_constant_p (mode2
, op0
)
10224 && !must_force_mem
)
10225 op0
= force_reg (mode2
, op0
);
10227 /* Otherwise, if this is a constant, try to force it to the constant
10228 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10229 is a legitimate constant. */
10230 else if (CONSTANT_P (op0
) && (memloc
= force_const_mem (mode2
, op0
)))
10231 op0
= validize_mem (memloc
);
10233 /* Otherwise, if this is a constant or the object is not in memory
10234 and need be, put it there. */
10235 else if (CONSTANT_P (op0
) || (!MEM_P (op0
) && must_force_mem
))
10237 memloc
= assign_temp (TREE_TYPE (tem
), 1, 1);
10238 emit_move_insn (memloc
, op0
);
10240 clear_mem_expr
= true;
10245 machine_mode address_mode
;
10246 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
10249 gcc_assert (MEM_P (op0
));
10251 address_mode
= get_address_mode (op0
);
10252 if (GET_MODE (offset_rtx
) != address_mode
)
10254 /* We cannot be sure that the RTL in offset_rtx is valid outside
10255 of a memory address context, so force it into a register
10256 before attempting to convert it to the desired mode. */
10257 offset_rtx
= force_operand (offset_rtx
, NULL_RTX
);
10258 offset_rtx
= convert_to_mode (address_mode
, offset_rtx
, 0);
10261 /* See the comment in expand_assignment for the rationale. */
10262 if (mode1
!= VOIDmode
10265 && (bitpos
% bitsize
) == 0
10266 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
10267 && MEM_ALIGN (op0
) >= GET_MODE_ALIGNMENT (mode1
))
10269 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10273 op0
= offset_address (op0
, offset_rtx
,
10274 highest_pow2_factor (offset
));
10277 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10278 record its alignment as BIGGEST_ALIGNMENT. */
10279 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
10280 && is_aligning_offset (offset
, tem
))
10281 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
10283 /* Don't forget about volatility even if this is a bitfield. */
10284 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
10286 if (op0
== orig_op0
)
10287 op0
= copy_rtx (op0
);
10289 MEM_VOLATILE_P (op0
) = 1;
10292 /* In cases where an aligned union has an unaligned object
10293 as a field, we might be extracting a BLKmode value from
10294 an integer-mode (e.g., SImode) object. Handle this case
10295 by doing the extract into an object as wide as the field
10296 (which we know to be the width of a basic mode), then
10297 storing into memory, and changing the mode to BLKmode. */
10298 if (mode1
== VOIDmode
10299 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
10300 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
10301 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
10302 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
10303 && modifier
!= EXPAND_CONST_ADDRESS
10304 && modifier
!= EXPAND_INITIALIZER
10305 && modifier
!= EXPAND_MEMORY
)
10306 /* If the bitfield is volatile and the bitsize
10307 is narrower than the access size of the bitfield,
10308 we need to extract bitfields from the access. */
10309 || (volatilep
&& TREE_CODE (exp
) == COMPONENT_REF
10310 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp
, 1))
10311 && mode1
!= BLKmode
10312 && bitsize
< GET_MODE_SIZE (mode1
) * BITS_PER_UNIT
)
10313 /* If the field isn't aligned enough to fetch as a memref,
10314 fetch it as a bit field. */
10315 || (mode1
!= BLKmode
10316 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
10317 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
10319 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
10320 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
10321 && modifier
!= EXPAND_MEMORY
10322 && ((modifier
== EXPAND_CONST_ADDRESS
10323 || modifier
== EXPAND_INITIALIZER
)
10325 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
10326 || (bitpos
% BITS_PER_UNIT
!= 0)))
10327 /* If the type and the field are a constant size and the
10328 size of the type isn't the same size as the bitfield,
10329 we must use bitfield operations. */
10331 && TYPE_SIZE (TREE_TYPE (exp
))
10332 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
10333 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
10336 machine_mode ext_mode
= mode
;
10338 if (ext_mode
== BLKmode
10339 && ! (target
!= 0 && MEM_P (op0
)
10341 && bitpos
% BITS_PER_UNIT
== 0))
10342 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
10344 if (ext_mode
== BLKmode
)
10347 target
= assign_temp (type
, 1, 1);
10349 /* ??? Unlike the similar test a few lines below, this one is
10350 very likely obsolete. */
10354 /* In this case, BITPOS must start at a byte boundary and
10355 TARGET, if specified, must be a MEM. */
10356 gcc_assert (MEM_P (op0
)
10357 && (!target
|| MEM_P (target
))
10358 && !(bitpos
% BITS_PER_UNIT
));
10360 emit_block_move (target
,
10361 adjust_address (op0
, VOIDmode
,
10362 bitpos
/ BITS_PER_UNIT
),
10363 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
10365 (modifier
== EXPAND_STACK_PARM
10366 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10371 /* If we have nothing to extract, the result will be 0 for targets
10372 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10373 return 0 for the sake of consistency, as reading a zero-sized
10374 bitfield is valid in Ada and the value is fully specified. */
10378 op0
= validize_mem (op0
);
10380 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
10381 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10383 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
10384 (modifier
== EXPAND_STACK_PARM
10385 ? NULL_RTX
: target
),
10386 ext_mode
, ext_mode
);
10388 /* If the result is a record type and BITSIZE is narrower than
10389 the mode of OP0, an integral mode, and this is a big endian
10390 machine, we must put the field into the high-order bits. */
10391 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
10392 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
10393 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
10394 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
10395 GET_MODE_BITSIZE (GET_MODE (op0
))
10396 - bitsize
, op0
, 1);
10398 /* If the result type is BLKmode, store the data into a temporary
10399 of the appropriate type, but with the mode corresponding to the
10400 mode for the data we have (op0's mode). */
10401 if (mode
== BLKmode
)
10404 = assign_stack_temp_for_type (ext_mode
,
10405 GET_MODE_BITSIZE (ext_mode
),
10407 emit_move_insn (new_rtx
, op0
);
10408 op0
= copy_rtx (new_rtx
);
10409 PUT_MODE (op0
, BLKmode
);
10415 /* If the result is BLKmode, use that to access the object
10417 if (mode
== BLKmode
)
10420 /* Get a reference to just this component. */
10421 if (modifier
== EXPAND_CONST_ADDRESS
10422 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
10423 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10425 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
10427 if (op0
== orig_op0
)
10428 op0
= copy_rtx (op0
);
10430 set_mem_attributes (op0
, exp
, 0);
10432 if (REG_P (XEXP (op0
, 0)))
10433 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10435 /* If op0 is a temporary because the original expressions was forced
10436 to memory, clear MEM_EXPR so that the original expression cannot
10437 be marked as addressable through MEM_EXPR of the temporary. */
10438 if (clear_mem_expr
)
10439 set_mem_expr (op0
, NULL_TREE
);
10441 MEM_VOLATILE_P (op0
) |= volatilep
;
10442 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
10443 || modifier
== EXPAND_CONST_ADDRESS
10444 || modifier
== EXPAND_INITIALIZER
)
10448 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
10450 convert_move (target
, op0
, unsignedp
);
10455 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
10458 /* All valid uses of __builtin_va_arg_pack () are removed during
10460 if (CALL_EXPR_VA_ARG_PACK (exp
))
10461 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
10463 tree fndecl
= get_callee_fndecl (exp
), attr
;
10466 && (attr
= lookup_attribute ("error",
10467 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10468 error ("%Kcall to %qs declared with attribute error: %s",
10469 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10470 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10472 && (attr
= lookup_attribute ("warning",
10473 DECL_ATTRIBUTES (fndecl
))) != NULL
)
10474 warning_at (tree_nonartificial_location (exp
),
10475 0, "%Kcall to %qs declared with attribute warning: %s",
10476 exp
, identifier_to_locale (lang_hooks
.decl_printable_name (fndecl
, 1)),
10477 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
10479 /* Check for a built-in function. */
10480 if (fndecl
&& DECL_BUILT_IN (fndecl
))
10482 gcc_assert (DECL_BUILT_IN_CLASS (fndecl
) != BUILT_IN_FRONTEND
);
10483 if (CALL_WITH_BOUNDS_P (exp
))
10484 return expand_builtin_with_bounds (exp
, target
, subtarget
,
10487 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
10490 return expand_call (exp
, target
, ignore
);
10492 case VIEW_CONVERT_EXPR
:
10495 /* If we are converting to BLKmode, try to avoid an intermediate
10496 temporary by fetching an inner memory reference. */
10497 if (mode
== BLKmode
10498 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
10499 && TYPE_MODE (TREE_TYPE (treeop0
)) != BLKmode
10500 && handled_component_p (treeop0
))
10502 machine_mode mode1
;
10503 HOST_WIDE_INT bitsize
, bitpos
;
10508 = get_inner_reference (treeop0
, &bitsize
, &bitpos
,
10509 &offset
, &mode1
, &unsignedp
, &volatilep
,
10513 /* ??? We should work harder and deal with non-zero offsets. */
10515 && (bitpos
% BITS_PER_UNIT
) == 0
10517 && compare_tree_int (TYPE_SIZE (type
), bitsize
) == 0)
10519 /* See the normal_inner_ref case for the rationale. */
10521 = expand_expr_real (tem
,
10522 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
10523 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
10525 && modifier
!= EXPAND_STACK_PARM
10526 ? target
: NULL_RTX
),
10528 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
,
10531 if (MEM_P (orig_op0
))
10535 /* Get a reference to just this component. */
10536 if (modifier
== EXPAND_CONST_ADDRESS
10537 || modifier
== EXPAND_SUM
10538 || modifier
== EXPAND_INITIALIZER
)
10539 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10541 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
10543 if (op0
== orig_op0
)
10544 op0
= copy_rtx (op0
);
10546 set_mem_attributes (op0
, treeop0
, 0);
10547 if (REG_P (XEXP (op0
, 0)))
10548 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
10550 MEM_VOLATILE_P (op0
) |= volatilep
;
10556 op0
= expand_expr_real (treeop0
, NULL_RTX
, VOIDmode
, modifier
,
10557 NULL
, inner_reference_p
);
10559 /* If the input and output modes are both the same, we are done. */
10560 if (mode
== GET_MODE (op0
))
10562 /* If neither mode is BLKmode, and both modes are the same size
10563 then we can use gen_lowpart. */
10564 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
10565 && (GET_MODE_PRECISION (mode
)
10566 == GET_MODE_PRECISION (GET_MODE (op0
)))
10567 && !COMPLEX_MODE_P (GET_MODE (op0
)))
10569 if (GET_CODE (op0
) == SUBREG
)
10570 op0
= force_reg (GET_MODE (op0
), op0
);
10571 temp
= gen_lowpart_common (mode
, op0
);
10576 if (!REG_P (op0
) && !MEM_P (op0
))
10577 op0
= force_reg (GET_MODE (op0
), op0
);
10578 op0
= gen_lowpart (mode
, op0
);
10581 /* If both types are integral, convert from one mode to the other. */
10582 else if (INTEGRAL_TYPE_P (type
) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0
)))
10583 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
10584 TYPE_UNSIGNED (TREE_TYPE (treeop0
)));
10585 /* If the output type is a bit-field type, do an extraction. */
10586 else if (reduce_bit_field
)
10587 return extract_bit_field (op0
, TYPE_PRECISION (type
), 0,
10588 TYPE_UNSIGNED (type
), NULL_RTX
,
10590 /* As a last resort, spill op0 to memory, and reload it in a
10592 else if (!MEM_P (op0
))
10594 /* If the operand is not a MEM, force it into memory. Since we
10595 are going to be changing the mode of the MEM, don't call
10596 force_const_mem for constants because we don't allow pool
10597 constants to change mode. */
10598 tree inner_type
= TREE_TYPE (treeop0
);
10600 gcc_assert (!TREE_ADDRESSABLE (exp
));
10602 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
10604 = assign_stack_temp_for_type
10605 (TYPE_MODE (inner_type
),
10606 GET_MODE_SIZE (TYPE_MODE (inner_type
)), inner_type
);
10608 emit_move_insn (target
, op0
);
10612 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10613 output type is such that the operand is known to be aligned, indicate
10614 that it is. Otherwise, we need only be concerned about alignment for
10615 non-BLKmode results. */
10618 enum insn_code icode
;
10620 if (TYPE_ALIGN_OK (type
))
10622 /* ??? Copying the MEM without substantially changing it might
10623 run afoul of the code handling volatile memory references in
10624 store_expr, which assumes that TARGET is returned unmodified
10625 if it has been used. */
10626 op0
= copy_rtx (op0
);
10627 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
10629 else if (modifier
!= EXPAND_WRITE
10630 && modifier
!= EXPAND_MEMORY
10631 && !inner_reference_p
10633 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
10635 /* If the target does have special handling for unaligned
10636 loads of mode then use them. */
10637 if ((icode
= optab_handler (movmisalign_optab
, mode
))
10638 != CODE_FOR_nothing
)
10642 op0
= adjust_address (op0
, mode
, 0);
10643 /* We've already validated the memory, and we're creating a
10644 new pseudo destination. The predicates really can't
10646 reg
= gen_reg_rtx (mode
);
10648 /* Nor can the insn generator. */
10649 insn
= GEN_FCN (icode
) (reg
, op0
);
10653 else if (STRICT_ALIGNMENT
)
10655 tree inner_type
= TREE_TYPE (treeop0
);
10656 HOST_WIDE_INT temp_size
10657 = MAX (int_size_in_bytes (inner_type
),
10658 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
10660 = assign_stack_temp_for_type (mode
, temp_size
, type
);
10661 rtx new_with_op0_mode
10662 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
10664 gcc_assert (!TREE_ADDRESSABLE (exp
));
10666 if (GET_MODE (op0
) == BLKmode
)
10667 emit_block_move (new_with_op0_mode
, op0
,
10668 GEN_INT (GET_MODE_SIZE (mode
)),
10669 (modifier
== EXPAND_STACK_PARM
10670 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
10672 emit_move_insn (new_with_op0_mode
, op0
);
10678 op0
= adjust_address (op0
, mode
, 0);
10685 tree lhs
= treeop0
;
10686 tree rhs
= treeop1
;
10687 gcc_assert (ignore
);
10689 /* Check for |= or &= of a bitfield of size one into another bitfield
10690 of size 1. In this case, (unless we need the result of the
10691 assignment) we can do this more efficiently with a
10692 test followed by an assignment, if necessary.
10694 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10695 things change so we do, this code should be enhanced to
10697 if (TREE_CODE (lhs
) == COMPONENT_REF
10698 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
10699 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
10700 && TREE_OPERAND (rhs
, 0) == lhs
10701 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
10702 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
10703 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
10705 rtx_code_label
*label
= gen_label_rtx ();
10706 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
10707 do_jump (TREE_OPERAND (rhs
, 1),
10709 value
? 0 : label
, -1);
10710 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
10712 do_pending_stack_adjust ();
10713 emit_label (label
);
10717 expand_assignment (lhs
, rhs
, false);
10722 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
10724 case REALPART_EXPR
:
10725 op0
= expand_normal (treeop0
);
10726 return read_complex_part (op0
, false);
10728 case IMAGPART_EXPR
:
10729 op0
= expand_normal (treeop0
);
10730 return read_complex_part (op0
, true);
10737 /* Expanded in cfgexpand.c. */
10738 gcc_unreachable ();
10740 case TRY_CATCH_EXPR
:
10742 case EH_FILTER_EXPR
:
10743 case TRY_FINALLY_EXPR
:
10744 /* Lowered by tree-eh.c. */
10745 gcc_unreachable ();
10747 case WITH_CLEANUP_EXPR
:
10748 case CLEANUP_POINT_EXPR
:
10750 case CASE_LABEL_EXPR
:
10755 case COMPOUND_EXPR
:
10756 case PREINCREMENT_EXPR
:
10757 case PREDECREMENT_EXPR
:
10758 case POSTINCREMENT_EXPR
:
10759 case POSTDECREMENT_EXPR
:
10762 case COMPOUND_LITERAL_EXPR
:
10763 /* Lowered by gimplify.c. */
10764 gcc_unreachable ();
10767 /* Function descriptors are not valid except for as
10768 initialization constants, and should not be expanded. */
10769 gcc_unreachable ();
10771 case WITH_SIZE_EXPR
:
10772 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10773 have pulled out the size to use in whatever context it needed. */
10774 return expand_expr_real (treeop0
, original_target
, tmode
,
10775 modifier
, alt_rtl
, inner_reference_p
);
10778 return expand_expr_real_2 (&ops
, target
, tmode
, modifier
);
10782 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10783 signedness of TYPE), possibly returning the result in TARGET. */
10785 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
10787 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
10788 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
10790 /* For constant values, reduce using build_int_cst_type. */
10791 if (CONST_INT_P (exp
))
10793 HOST_WIDE_INT value
= INTVAL (exp
);
10794 tree t
= build_int_cst_type (type
, value
);
10795 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
10797 else if (TYPE_UNSIGNED (type
))
10799 machine_mode mode
= GET_MODE (exp
);
10800 rtx mask
= immed_wide_int_const
10801 (wi::mask (prec
, false, GET_MODE_PRECISION (mode
)), mode
);
10802 return expand_and (mode
, exp
, mask
, target
);
10806 int count
= GET_MODE_PRECISION (GET_MODE (exp
)) - prec
;
10807 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
),
10808 exp
, count
, target
, 0);
10809 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
),
10810 exp
, count
, target
, 0);
10814 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10815 when applied to the address of EXP produces an address known to be
10816 aligned more than BIGGEST_ALIGNMENT. */
10819 is_aligning_offset (const_tree offset
, const_tree exp
)
10821 /* Strip off any conversions. */
10822 while (CONVERT_EXPR_P (offset
))
10823 offset
= TREE_OPERAND (offset
, 0);
10825 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10826 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10827 if (TREE_CODE (offset
) != BIT_AND_EXPR
10828 || !tree_fits_uhwi_p (TREE_OPERAND (offset
, 1))
10829 || compare_tree_int (TREE_OPERAND (offset
, 1),
10830 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
10831 || exact_log2 (tree_to_uhwi (TREE_OPERAND (offset
, 1)) + 1) < 0)
10834 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10835 It must be NEGATE_EXPR. Then strip any more conversions. */
10836 offset
= TREE_OPERAND (offset
, 0);
10837 while (CONVERT_EXPR_P (offset
))
10838 offset
= TREE_OPERAND (offset
, 0);
10840 if (TREE_CODE (offset
) != NEGATE_EXPR
)
10843 offset
= TREE_OPERAND (offset
, 0);
10844 while (CONVERT_EXPR_P (offset
))
10845 offset
= TREE_OPERAND (offset
, 0);
10847 /* This must now be the address of EXP. */
10848 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
10851 /* Return the tree node if an ARG corresponds to a string constant or zero
10852 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10853 in bytes within the string that ARG is accessing. The type of the
10854 offset will be `sizetype'. */
10857 string_constant (tree arg
, tree
*ptr_offset
)
10859 tree array
, offset
, lower_bound
;
10862 if (TREE_CODE (arg
) == ADDR_EXPR
)
10864 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
10866 *ptr_offset
= size_zero_node
;
10867 return TREE_OPERAND (arg
, 0);
10869 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
10871 array
= TREE_OPERAND (arg
, 0);
10872 offset
= size_zero_node
;
10874 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
10876 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10877 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10878 if (TREE_CODE (array
) != STRING_CST
10879 && TREE_CODE (array
) != VAR_DECL
)
10882 /* Check if the array has a nonzero lower bound. */
10883 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
10884 if (!integer_zerop (lower_bound
))
10886 /* If the offset and base aren't both constants, return 0. */
10887 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
10889 if (TREE_CODE (offset
) != INTEGER_CST
)
10891 /* Adjust offset by the lower bound. */
10892 offset
= size_diffop (fold_convert (sizetype
, offset
),
10893 fold_convert (sizetype
, lower_bound
));
10896 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == MEM_REF
)
10898 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
10899 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
10900 if (TREE_CODE (array
) != ADDR_EXPR
)
10902 array
= TREE_OPERAND (array
, 0);
10903 if (TREE_CODE (array
) != STRING_CST
10904 && TREE_CODE (array
) != VAR_DECL
)
10910 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
10912 tree arg0
= TREE_OPERAND (arg
, 0);
10913 tree arg1
= TREE_OPERAND (arg
, 1);
10918 if (TREE_CODE (arg0
) == ADDR_EXPR
10919 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
10920 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
10922 array
= TREE_OPERAND (arg0
, 0);
10925 else if (TREE_CODE (arg1
) == ADDR_EXPR
10926 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
10927 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
10929 array
= TREE_OPERAND (arg1
, 0);
10938 if (TREE_CODE (array
) == STRING_CST
)
10940 *ptr_offset
= fold_convert (sizetype
, offset
);
10943 else if (TREE_CODE (array
) == VAR_DECL
10944 || TREE_CODE (array
) == CONST_DECL
)
10947 tree init
= ctor_for_folding (array
);
10949 /* Variables initialized to string literals can be handled too. */
10950 if (init
== error_mark_node
10952 || TREE_CODE (init
) != STRING_CST
)
10955 /* Avoid const char foo[4] = "abcde"; */
10956 if (DECL_SIZE_UNIT (array
) == NULL_TREE
10957 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
10958 || (length
= TREE_STRING_LENGTH (init
)) <= 0
10959 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
10962 /* If variable is bigger than the string literal, OFFSET must be constant
10963 and inside of the bounds of the string literal. */
10964 offset
= fold_convert (sizetype
, offset
);
10965 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
10966 && (! tree_fits_uhwi_p (offset
)
10967 || compare_tree_int (offset
, length
) >= 0))
10970 *ptr_offset
= offset
;
10977 /* Generate code to calculate OPS, and exploded expression
10978 using a store-flag instruction and return an rtx for the result.
10979 OPS reflects a comparison.
10981 If TARGET is nonzero, store the result there if convenient.
10983 Return zero if there is no suitable set-flag instruction
10984 available on this machine.
10986 Once expand_expr has been called on the arguments of the comparison,
10987 we are committed to doing the store flag, since it is not safe to
10988 re-evaluate the expression. We emit the store-flag insn by calling
10989 emit_store_flag, but only expand the arguments if we have a reason
10990 to believe that emit_store_flag will be successful. If we think that
10991 it will, but it isn't, we have to simulate the store-flag with a
10992 set/jump/set sequence. */
10995 do_store_flag (sepops ops
, rtx target
, machine_mode mode
)
10997 enum rtx_code code
;
10998 tree arg0
, arg1
, type
;
11000 machine_mode operand_mode
;
11003 rtx subtarget
= target
;
11004 location_t loc
= ops
->location
;
11009 /* Don't crash if the comparison was erroneous. */
11010 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
11013 type
= TREE_TYPE (arg0
);
11014 operand_mode
= TYPE_MODE (type
);
11015 unsignedp
= TYPE_UNSIGNED (type
);
11017 /* We won't bother with BLKmode store-flag operations because it would mean
11018 passing a lot of information to emit_store_flag. */
11019 if (operand_mode
== BLKmode
)
11022 /* We won't bother with store-flag operations involving function pointers
11023 when function pointers must be canonicalized before comparisons. */
11024 #ifdef HAVE_canonicalize_funcptr_for_compare
11025 if (HAVE_canonicalize_funcptr_for_compare
11026 && ((TREE_CODE (TREE_TYPE (arg0
)) == POINTER_TYPE
11027 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0
)))
11029 || (TREE_CODE (TREE_TYPE (arg1
)) == POINTER_TYPE
11030 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1
)))
11031 == FUNCTION_TYPE
))))
11038 /* For vector typed comparisons emit code to generate the desired
11039 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
11040 expander for this. */
11041 if (TREE_CODE (ops
->type
) == VECTOR_TYPE
)
11043 tree ifexp
= build2 (ops
->code
, ops
->type
, arg0
, arg1
);
11044 tree if_true
= constant_boolean_node (true, ops
->type
);
11045 tree if_false
= constant_boolean_node (false, ops
->type
);
11046 return expand_vec_cond_expr (ops
->type
, ifexp
, if_true
, if_false
, target
);
11049 /* Get the rtx comparison code to use. We know that EXP is a comparison
11050 operation of some type. Some comparisons against 1 and -1 can be
11051 converted to comparisons with zero. Do so here so that the tests
11052 below will be aware that we have a comparison with zero. These
11053 tests will not catch constants in the first operand, but constants
11054 are rarely passed as the first operand. */
11065 if (integer_onep (arg1
))
11066 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
11068 code
= unsignedp
? LTU
: LT
;
11071 if (! unsignedp
&& integer_all_onesp (arg1
))
11072 arg1
= integer_zero_node
, code
= LT
;
11074 code
= unsignedp
? LEU
: LE
;
11077 if (! unsignedp
&& integer_all_onesp (arg1
))
11078 arg1
= integer_zero_node
, code
= GE
;
11080 code
= unsignedp
? GTU
: GT
;
11083 if (integer_onep (arg1
))
11084 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
11086 code
= unsignedp
? GEU
: GE
;
11089 case UNORDERED_EXPR
:
11115 gcc_unreachable ();
11118 /* Put a constant second. */
11119 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
11120 || TREE_CODE (arg0
) == FIXED_CST
)
11122 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
11123 code
= swap_condition (code
);
11126 /* If this is an equality or inequality test of a single bit, we can
11127 do this by shifting the bit being tested to the low-order bit and
11128 masking the result with the constant 1. If the condition was EQ,
11129 we xor it with 1. This does not require an scc insn and is faster
11130 than an scc insn even if we have it.
11132 The code to make this transformation was moved into fold_single_bit_test,
11133 so we just call into the folder and expand its result. */
11135 if ((code
== NE
|| code
== EQ
)
11136 && integer_zerop (arg1
)
11137 && (TYPE_PRECISION (ops
->type
) != 1 || TYPE_UNSIGNED (ops
->type
)))
11139 gimple srcstmt
= get_def_for_expr (arg0
, BIT_AND_EXPR
);
11141 && integer_pow2p (gimple_assign_rhs2 (srcstmt
)))
11143 enum tree_code tcode
= code
== NE
? NE_EXPR
: EQ_EXPR
;
11144 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
11145 tree temp
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg1
),
11146 gimple_assign_rhs1 (srcstmt
),
11147 gimple_assign_rhs2 (srcstmt
));
11148 temp
= fold_single_bit_test (loc
, tcode
, temp
, arg1
, type
);
11150 return expand_expr (temp
, target
, VOIDmode
, EXPAND_NORMAL
);
11154 if (! get_subtarget (target
)
11155 || GET_MODE (subtarget
) != operand_mode
)
11158 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, EXPAND_NORMAL
);
11161 target
= gen_reg_rtx (mode
);
11163 /* Try a cstore if possible. */
11164 return emit_store_flag_force (target
, code
, op0
, op1
,
11165 operand_mode
, unsignedp
,
11166 (TYPE_PRECISION (ops
->type
) == 1
11167 && !TYPE_UNSIGNED (ops
->type
)) ? -1 : 1);
11171 /* Stubs in case we haven't got a casesi insn. */
11172 #ifndef HAVE_casesi
11173 # define HAVE_casesi 0
11174 # define gen_casesi(a, b, c, d, e) (0)
11175 # define CODE_FOR_casesi CODE_FOR_nothing
11178 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11179 0 otherwise (i.e. if there is no casesi instruction).
11181 DEFAULT_PROBABILITY is the probability of jumping to the default
11184 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
11185 rtx table_label
, rtx default_label
, rtx fallback_label
,
11186 int default_probability
)
11188 struct expand_operand ops
[5];
11189 machine_mode index_mode
= SImode
;
11190 rtx op1
, op2
, index
;
11195 /* Convert the index to SImode. */
11196 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
11198 machine_mode omode
= TYPE_MODE (index_type
);
11199 rtx rangertx
= expand_normal (range
);
11201 /* We must handle the endpoints in the original mode. */
11202 index_expr
= build2 (MINUS_EXPR
, index_type
,
11203 index_expr
, minval
);
11204 minval
= integer_zero_node
;
11205 index
= expand_normal (index_expr
);
11207 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
11208 omode
, 1, default_label
,
11209 default_probability
);
11210 /* Now we can safely truncate. */
11211 index
= convert_to_mode (index_mode
, index
, 0);
11215 if (TYPE_MODE (index_type
) != index_mode
)
11217 index_type
= lang_hooks
.types
.type_for_mode (index_mode
, 0);
11218 index_expr
= fold_convert (index_type
, index_expr
);
11221 index
= expand_normal (index_expr
);
11224 do_pending_stack_adjust ();
11226 op1
= expand_normal (minval
);
11227 op2
= expand_normal (range
);
11229 create_input_operand (&ops
[0], index
, index_mode
);
11230 create_convert_operand_from_type (&ops
[1], op1
, TREE_TYPE (minval
));
11231 create_convert_operand_from_type (&ops
[2], op2
, TREE_TYPE (range
));
11232 create_fixed_operand (&ops
[3], table_label
);
11233 create_fixed_operand (&ops
[4], (default_label
11235 : fallback_label
));
11236 expand_jump_insn (CODE_FOR_casesi
, 5, ops
);
11240 /* Attempt to generate a tablejump instruction; same concept. */
11241 #ifndef HAVE_tablejump
11242 #define HAVE_tablejump 0
11243 #define gen_tablejump(x, y) (0)
11246 /* Subroutine of the next function.
11248 INDEX is the value being switched on, with the lowest value
11249 in the table already subtracted.
11250 MODE is its expected mode (needed if INDEX is constant).
11251 RANGE is the length of the jump table.
11252 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11254 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11255 index value is out of range.
11256 DEFAULT_PROBABILITY is the probability of jumping to
11257 the default label. */
11260 do_tablejump (rtx index
, machine_mode mode
, rtx range
, rtx table_label
,
11261 rtx default_label
, int default_probability
)
11265 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
11266 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
11268 /* Do an unsigned comparison (in the proper mode) between the index
11269 expression and the value which represents the length of the range.
11270 Since we just finished subtracting the lower bound of the range
11271 from the index expression, this comparison allows us to simultaneously
11272 check that the original index expression value is both greater than
11273 or equal to the minimum value of the range and less than or equal to
11274 the maximum value of the range. */
11277 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
11278 default_label
, default_probability
);
11281 /* If index is in range, it must fit in Pmode.
11282 Convert to Pmode so we can index with it. */
11284 index
= convert_to_mode (Pmode
, index
, 1);
11286 /* Don't let a MEM slip through, because then INDEX that comes
11287 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11288 and break_out_memory_refs will go to work on it and mess it up. */
11289 #ifdef PIC_CASE_VECTOR_ADDRESS
11290 if (flag_pic
&& !REG_P (index
))
11291 index
= copy_to_mode_reg (Pmode
, index
);
11294 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11295 GET_MODE_SIZE, because this indicates how large insns are. The other
11296 uses should all be Pmode, because they are addresses. This code
11297 could fail if addresses and insns are not the same size. */
11298 index
= simplify_gen_binary (MULT
, Pmode
, index
,
11299 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE
),
11301 index
= simplify_gen_binary (PLUS
, Pmode
, index
,
11302 gen_rtx_LABEL_REF (Pmode
, table_label
));
11304 #ifdef PIC_CASE_VECTOR_ADDRESS
11306 index
= PIC_CASE_VECTOR_ADDRESS (index
);
11309 index
= memory_address (CASE_VECTOR_MODE
, index
);
11310 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
11311 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
11312 convert_move (temp
, vector
, 0);
11314 emit_jump_insn (gen_tablejump (temp
, table_label
));
11316 /* If we are generating PIC code or if the table is PC-relative, the
11317 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11318 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
11323 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
11324 rtx table_label
, rtx default_label
, int default_probability
)
11328 if (! HAVE_tablejump
)
11331 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
11332 fold_convert (index_type
, index_expr
),
11333 fold_convert (index_type
, minval
));
11334 index
= expand_normal (index_expr
);
11335 do_pending_stack_adjust ();
11337 do_tablejump (index
, TYPE_MODE (index_type
),
11338 convert_modes (TYPE_MODE (index_type
),
11339 TYPE_MODE (TREE_TYPE (range
)),
11340 expand_normal (range
),
11341 TYPE_UNSIGNED (TREE_TYPE (range
))),
11342 table_label
, default_label
, default_probability
);
11346 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11348 const_vector_from_tree (tree exp
)
11354 machine_mode inner
, mode
;
11356 mode
= TYPE_MODE (TREE_TYPE (exp
));
11358 if (initializer_zerop (exp
))
11359 return CONST0_RTX (mode
);
11361 units
= GET_MODE_NUNITS (mode
);
11362 inner
= GET_MODE_INNER (mode
);
11364 v
= rtvec_alloc (units
);
11366 for (i
= 0; i
< VECTOR_CST_NELTS (exp
); ++i
)
11368 elt
= VECTOR_CST_ELT (exp
, i
);
11370 if (TREE_CODE (elt
) == REAL_CST
)
11371 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
11373 else if (TREE_CODE (elt
) == FIXED_CST
)
11374 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
11377 RTVEC_ELT (v
, i
) = immed_wide_int_const (elt
, inner
);
11380 return gen_rtx_CONST_VECTOR (mode
, v
);
11383 /* Build a decl for a personality function given a language prefix. */
11386 build_personality_function (const char *lang
)
11388 const char *unwind_and_version
;
11392 switch (targetm_common
.except_unwind_info (&global_options
))
11397 unwind_and_version
= "_sj0";
11401 unwind_and_version
= "_v0";
11404 unwind_and_version
= "_seh0";
11407 gcc_unreachable ();
11410 name
= ACONCAT (("__", lang
, "_personality", unwind_and_version
, NULL
));
11412 type
= build_function_type_list (integer_type_node
, integer_type_node
,
11413 long_long_unsigned_type_node
,
11414 ptr_type_node
, ptr_type_node
, NULL_TREE
);
11415 decl
= build_decl (UNKNOWN_LOCATION
, FUNCTION_DECL
,
11416 get_identifier (name
), type
);
11417 DECL_ARTIFICIAL (decl
) = 1;
11418 DECL_EXTERNAL (decl
) = 1;
11419 TREE_PUBLIC (decl
) = 1;
11421 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11422 are the flags assigned by targetm.encode_section_info. */
11423 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl
), 0), NULL
);
11428 /* Extracts the personality function of DECL and returns the corresponding
11432 get_personality_function (tree decl
)
11434 tree personality
= DECL_FUNCTION_PERSONALITY (decl
);
11435 enum eh_personality_kind pk
;
11437 pk
= function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl
));
11438 if (pk
== eh_personality_none
)
11442 && pk
== eh_personality_any
)
11443 personality
= lang_hooks
.eh_personality ();
11445 if (pk
== eh_personality_lang
)
11446 gcc_assert (personality
!= NULL_TREE
);
11448 return XEXP (DECL_RTL (personality
), 0);
11451 /* Returns a tree for the size of EXP in bytes. */
11454 tree_expr_size (const_tree exp
)
11457 && DECL_SIZE_UNIT (exp
) != 0)
11458 return DECL_SIZE_UNIT (exp
);
11460 return size_in_bytes (TREE_TYPE (exp
));
11463 /* Return an rtx for the size in bytes of the value of EXP. */
11466 expr_size (tree exp
)
11470 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
11471 size
= TREE_OPERAND (exp
, 1);
11474 size
= tree_expr_size (exp
);
11476 gcc_assert (size
== SUBSTITUTE_PLACEHOLDER_IN_EXPR (size
, exp
));
11479 return expand_expr (size
, NULL_RTX
, TYPE_MODE (sizetype
), EXPAND_NORMAL
);
11482 /* Return a wide integer for the size in bytes of the value of EXP, or -1
11483 if the size can vary or is larger than an integer. */
11485 static HOST_WIDE_INT
11486 int_expr_size (tree exp
)
11490 if (TREE_CODE (exp
) == WITH_SIZE_EXPR
)
11491 size
= TREE_OPERAND (exp
, 1);
11494 size
= tree_expr_size (exp
);
11498 if (size
== 0 || !tree_fits_shwi_p (size
))
11501 return tree_to_shwi (size
);
11504 #include "gt-expr.h"