* c-semantics.c (genrtl_while_stmt, genrtl_do_stmt_1)
[official-gcc.git] / gcc / global.c
blobde765b36731e24a0d4a59c52b21e01f17f0b58d2
1 /* Allocate registers for pseudo-registers that span basic blocks.
2 Copyright (C) 1987, 1988, 1991, 1994, 1996, 1997, 1998,
3 1999, 2000, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
28 #include "machmode.h"
29 #include "hard-reg-set.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "basic-block.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "reload.h"
38 #include "output.h"
39 #include "toplev.h"
41 /* This pass of the compiler performs global register allocation.
42 It assigns hard register numbers to all the pseudo registers
43 that were not handled in local_alloc. Assignments are recorded
44 in the vector reg_renumber, not by changing the rtl code.
45 (Such changes are made by final). The entry point is
46 the function global_alloc.
48 After allocation is complete, the reload pass is run as a subroutine
49 of this pass, so that when a pseudo reg loses its hard reg due to
50 spilling it is possible to make a second attempt to find a hard
51 reg for it. The reload pass is independent in other respects
52 and it is run even when stupid register allocation is in use.
54 1. Assign allocation-numbers (allocnos) to the pseudo-registers
55 still needing allocations and to the pseudo-registers currently
56 allocated by local-alloc which may be spilled by reload.
57 Set up tables reg_allocno and allocno_reg to map
58 reg numbers to allocnos and vice versa.
59 max_allocno gets the number of allocnos in use.
61 2. Allocate a max_allocno by max_allocno conflict bit matrix and clear it.
62 Allocate a max_allocno by FIRST_PSEUDO_REGISTER conflict matrix
63 for conflicts between allocnos and explicit hard register use
64 (which includes use of pseudo-registers allocated by local_alloc).
66 3. For each basic block
67 walk forward through the block, recording which
68 pseudo-registers and which hardware registers are live.
69 Build the conflict matrix between the pseudo-registers
70 and another of pseudo-registers versus hardware registers.
71 Also record the preferred hardware registers
72 for each pseudo-register.
74 4. Sort a table of the allocnos into order of
75 desirability of the variables.
77 5. Allocate the variables in that order; each if possible into
78 a preferred register, else into another register. */
80 /* Number of pseudo-registers which are candidates for allocation. */
82 static int max_allocno;
84 /* Indexed by (pseudo) reg number, gives the allocno, or -1
85 for pseudo registers which are not to be allocated. */
87 static int *reg_allocno;
89 struct allocno
91 int reg;
92 /* Gives the number of consecutive hard registers needed by that
93 pseudo reg. */
94 int size;
96 /* Number of calls crossed by each allocno. */
97 int calls_crossed;
99 /* Number of refs to each allocno. */
100 int n_refs;
102 /* Frequency of uses of each allocno. */
103 int freq;
105 /* Guess at live length of each allocno.
106 This is actually the max of the live lengths of the regs. */
107 int live_length;
109 /* Set of hard regs conflicting with allocno N. */
111 HARD_REG_SET hard_reg_conflicts;
113 /* Set of hard regs preferred by allocno N.
114 This is used to make allocnos go into regs that are copied to or from them,
115 when possible, to reduce register shuffling. */
117 HARD_REG_SET hard_reg_preferences;
119 /* Similar, but just counts register preferences made in simple copy
120 operations, rather than arithmetic. These are given priority because
121 we can always eliminate an insn by using these, but using a register
122 in the above list won't always eliminate an insn. */
124 HARD_REG_SET hard_reg_copy_preferences;
126 /* Similar to hard_reg_preferences, but includes bits for subsequent
127 registers when an allocno is multi-word. The above variable is used for
128 allocation while this is used to build reg_someone_prefers, below. */
130 HARD_REG_SET hard_reg_full_preferences;
132 /* Set of hard registers that some later allocno has a preference for. */
134 HARD_REG_SET regs_someone_prefers;
136 #ifdef STACK_REGS
137 /* Set to true if allocno can't be allocated in the stack register. */
138 bool no_stack_reg;
139 #endif
142 static struct allocno *allocno;
144 /* A vector of the integers from 0 to max_allocno-1,
145 sorted in the order of first-to-be-allocated first. */
147 static int *allocno_order;
149 /* Indexed by (pseudo) reg number, gives the number of another
150 lower-numbered pseudo reg which can share a hard reg with this pseudo
151 *even if the two pseudos would otherwise appear to conflict*. */
153 static int *reg_may_share;
155 /* Define the number of bits in each element of `conflicts' and what
156 type that element has. We use the largest integer format on the
157 host machine. */
159 #define INT_BITS HOST_BITS_PER_WIDE_INT
160 #define INT_TYPE HOST_WIDE_INT
162 /* max_allocno by max_allocno array of bits,
163 recording whether two allocno's conflict (can't go in the same
164 hardware register).
166 `conflicts' is symmetric after the call to mirror_conflicts. */
168 static INT_TYPE *conflicts;
170 /* Number of ints require to hold max_allocno bits.
171 This is the length of a row in `conflicts'. */
173 static int allocno_row_words;
175 /* Two macros to test or store 1 in an element of `conflicts'. */
177 #define CONFLICTP(I, J) \
178 (conflicts[(I) * allocno_row_words + (unsigned) (J) / INT_BITS] \
179 & ((INT_TYPE) 1 << ((unsigned) (J) % INT_BITS)))
181 /* For any allocno set in ALLOCNO_SET, set ALLOCNO to that allocno,
182 and execute CODE. */
183 #define EXECUTE_IF_SET_IN_ALLOCNO_SET(ALLOCNO_SET, ALLOCNO, CODE) \
184 do { \
185 int i_; \
186 int allocno_; \
187 INT_TYPE *p_ = (ALLOCNO_SET); \
189 for (i_ = allocno_row_words - 1, allocno_ = 0; i_ >= 0; \
190 i_--, allocno_ += INT_BITS) \
192 unsigned INT_TYPE word_ = (unsigned INT_TYPE) *p_++; \
194 for ((ALLOCNO) = allocno_; word_; word_ >>= 1, (ALLOCNO)++) \
196 if (word_ & 1) \
197 {CODE;} \
200 } while (0)
202 /* This doesn't work for non-GNU C due to the way CODE is macro expanded. */
203 #if 0
204 /* For any allocno that conflicts with IN_ALLOCNO, set OUT_ALLOCNO to
205 the conflicting allocno, and execute CODE. This macro assumes that
206 mirror_conflicts has been run. */
207 #define EXECUTE_IF_CONFLICT(IN_ALLOCNO, OUT_ALLOCNO, CODE)\
208 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + (IN_ALLOCNO) * allocno_row_words,\
209 OUT_ALLOCNO, (CODE))
210 #endif
212 /* Set of hard regs currently live (during scan of all insns). */
214 static HARD_REG_SET hard_regs_live;
216 /* Set of registers that global-alloc isn't supposed to use. */
218 static HARD_REG_SET no_global_alloc_regs;
220 /* Set of registers used so far. */
222 static HARD_REG_SET regs_used_so_far;
224 /* Number of refs to each hard reg, as used by local alloc.
225 It is zero for a reg that contains global pseudos or is explicitly used. */
227 static int local_reg_n_refs[FIRST_PSEUDO_REGISTER];
229 /* Frequency of uses of given hard reg. */
230 static int local_reg_freq[FIRST_PSEUDO_REGISTER];
232 /* Guess at live length of each hard reg, as used by local alloc.
233 This is actually the sum of the live lengths of the specific regs. */
235 static int local_reg_live_length[FIRST_PSEUDO_REGISTER];
237 /* Set to 1 a bit in a vector TABLE of HARD_REG_SETs, for vector
238 element I, and hard register number J. */
240 #define SET_REGBIT(TABLE, I, J) SET_HARD_REG_BIT (allocno[I].TABLE, J)
242 /* Bit mask for allocnos live at current point in the scan. */
244 static INT_TYPE *allocnos_live;
246 /* Test, set or clear bit number I in allocnos_live,
247 a bit vector indexed by allocno. */
249 #define SET_ALLOCNO_LIVE(I) \
250 (allocnos_live[(unsigned) (I) / INT_BITS] \
251 |= ((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS)))
253 #define CLEAR_ALLOCNO_LIVE(I) \
254 (allocnos_live[(unsigned) (I) / INT_BITS] \
255 &= ~((INT_TYPE) 1 << ((unsigned) (I) % INT_BITS)))
257 /* This is turned off because it doesn't work right for DImode.
258 (And it is only used for DImode, so the other cases are worthless.)
259 The problem is that it isn't true that there is NO possibility of conflict;
260 only that there is no conflict if the two pseudos get the exact same regs.
261 If they were allocated with a partial overlap, there would be a conflict.
262 We can't safely turn off the conflict unless we have another way to
263 prevent the partial overlap.
265 Idea: change hard_reg_conflicts so that instead of recording which
266 hard regs the allocno may not overlap, it records where the allocno
267 may not start. Change both where it is used and where it is updated.
268 Then there is a way to record that (reg:DI 108) may start at 10
269 but not at 9 or 11. There is still the question of how to record
270 this semi-conflict between two pseudos. */
271 #if 0
272 /* Reg pairs for which conflict after the current insn
273 is inhibited by a REG_NO_CONFLICT note.
274 If the table gets full, we ignore any other notes--that is conservative. */
275 #define NUM_NO_CONFLICT_PAIRS 4
276 /* Number of pairs in use in this insn. */
277 int n_no_conflict_pairs;
278 static struct { int allocno1, allocno2;}
279 no_conflict_pairs[NUM_NO_CONFLICT_PAIRS];
280 #endif /* 0 */
282 /* Record all regs that are set in any one insn.
283 Communication from mark_reg_{store,clobber} and global_conflicts. */
285 static rtx *regs_set;
286 static int n_regs_set;
288 /* All registers that can be eliminated. */
290 static HARD_REG_SET eliminable_regset;
292 static int allocno_compare (const void *, const void *);
293 static void global_conflicts (void);
294 static void mirror_conflicts (void);
295 static void expand_preferences (void);
296 static void prune_preferences (void);
297 static void find_reg (int, HARD_REG_SET, int, int, int);
298 static void record_one_conflict (int);
299 static void record_conflicts (int *, int);
300 static void mark_reg_store (rtx, rtx, void *);
301 static void mark_reg_clobber (rtx, rtx, void *);
302 static void mark_reg_conflicts (rtx);
303 static void mark_reg_death (rtx);
304 static void mark_reg_live_nc (int, enum machine_mode);
305 static void set_preference (rtx, rtx);
306 static void dump_conflicts (FILE *);
307 static void reg_becomes_live (rtx, rtx, void *);
308 static void reg_dies (int, enum machine_mode, struct insn_chain *);
310 /* Perform allocation of pseudo-registers not allocated by local_alloc.
311 FILE is a file to output debugging information on,
312 or zero if such output is not desired.
314 Return value is nonzero if reload failed
315 and we must not do any more for this function. */
318 global_alloc (FILE *file)
320 int retval;
321 #ifdef ELIMINABLE_REGS
322 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
323 #endif
324 int need_fp
325 = (! flag_omit_frame_pointer
326 || (current_function_calls_alloca && EXIT_IGNORE_STACK)
327 || FRAME_POINTER_REQUIRED);
329 size_t i;
330 rtx x;
332 max_allocno = 0;
334 /* A machine may have certain hard registers that
335 are safe to use only within a basic block. */
337 CLEAR_HARD_REG_SET (no_global_alloc_regs);
339 /* Build the regset of all eliminable registers and show we can't use those
340 that we already know won't be eliminated. */
341 #ifdef ELIMINABLE_REGS
342 for (i = 0; i < ARRAY_SIZE (eliminables); i++)
344 bool cannot_elim
345 = (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
346 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
348 if (!regs_asm_clobbered[eliminables[i].from])
350 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
352 if (cannot_elim)
353 SET_HARD_REG_BIT (no_global_alloc_regs, eliminables[i].from);
355 else if (cannot_elim)
356 error ("%s cannot be used in asm here",
357 reg_names[eliminables[i].from]);
358 else
359 regs_ever_live[eliminables[i].from] = 1;
361 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
362 if (!regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM])
364 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
365 if (need_fp)
366 SET_HARD_REG_BIT (no_global_alloc_regs, HARD_FRAME_POINTER_REGNUM);
368 else if (need_fp)
369 error ("%s cannot be used in asm here",
370 reg_names[HARD_FRAME_POINTER_REGNUM]);
371 else
372 regs_ever_live[HARD_FRAME_POINTER_REGNUM] = 1;
373 #endif
375 #else
376 if (!regs_asm_clobbered[FRAME_POINTER_REGNUM])
378 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
379 if (need_fp)
380 SET_HARD_REG_BIT (no_global_alloc_regs, FRAME_POINTER_REGNUM);
382 else if (need_fp)
383 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
384 else
385 regs_ever_live[FRAME_POINTER_REGNUM] = 1;
386 #endif
388 /* Track which registers have already been used. Start with registers
389 explicitly in the rtl, then registers allocated by local register
390 allocation. */
392 CLEAR_HARD_REG_SET (regs_used_so_far);
393 #ifdef LEAF_REGISTERS
394 /* If we are doing the leaf function optimization, and this is a leaf
395 function, it means that the registers that take work to save are those
396 that need a register window. So prefer the ones that can be used in
397 a leaf function. */
399 const char *cheap_regs;
400 const char *const leaf_regs = LEAF_REGISTERS;
402 if (only_leaf_regs_used () && leaf_function_p ())
403 cheap_regs = leaf_regs;
404 else
405 cheap_regs = call_used_regs;
406 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
407 if (regs_ever_live[i] || cheap_regs[i])
408 SET_HARD_REG_BIT (regs_used_so_far, i);
410 #else
411 /* We consider registers that do not have to be saved over calls as if
412 they were already used since there is no cost in using them. */
413 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
414 if (regs_ever_live[i] || call_used_regs[i])
415 SET_HARD_REG_BIT (regs_used_so_far, i);
416 #endif
418 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
419 if (reg_renumber[i] >= 0)
420 SET_HARD_REG_BIT (regs_used_so_far, reg_renumber[i]);
422 /* Establish mappings from register number to allocation number
423 and vice versa. In the process, count the allocnos. */
425 reg_allocno = xmalloc (max_regno * sizeof (int));
427 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
428 reg_allocno[i] = -1;
430 /* Initialize the shared-hard-reg mapping
431 from the list of pairs that may share. */
432 reg_may_share = xcalloc (max_regno, sizeof (int));
433 for (x = regs_may_share; x; x = XEXP (XEXP (x, 1), 1))
435 int r1 = REGNO (XEXP (x, 0));
436 int r2 = REGNO (XEXP (XEXP (x, 1), 0));
437 if (r1 > r2)
438 reg_may_share[r1] = r2;
439 else
440 reg_may_share[r2] = r1;
443 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
444 /* Note that reg_live_length[i] < 0 indicates a "constant" reg
445 that we are supposed to refrain from putting in a hard reg.
446 -2 means do make an allocno but don't allocate it. */
447 if (REG_N_REFS (i) != 0 && REG_LIVE_LENGTH (i) != -1
448 /* Don't allocate pseudos that cross calls,
449 if this function receives a nonlocal goto. */
450 && (! current_function_has_nonlocal_label
451 || REG_N_CALLS_CROSSED (i) == 0))
453 if (reg_renumber[i] < 0 && reg_may_share[i] && reg_allocno[reg_may_share[i]] >= 0)
454 reg_allocno[i] = reg_allocno[reg_may_share[i]];
455 else
456 reg_allocno[i] = max_allocno++;
457 if (REG_LIVE_LENGTH (i) == 0)
458 abort ();
460 else
461 reg_allocno[i] = -1;
463 allocno = xcalloc (max_allocno, sizeof (struct allocno));
465 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
466 if (reg_allocno[i] >= 0)
468 int num = reg_allocno[i];
469 allocno[num].reg = i;
470 allocno[num].size = PSEUDO_REGNO_SIZE (i);
471 allocno[num].calls_crossed += REG_N_CALLS_CROSSED (i);
472 allocno[num].n_refs += REG_N_REFS (i);
473 allocno[num].freq += REG_FREQ (i);
474 if (allocno[num].live_length < REG_LIVE_LENGTH (i))
475 allocno[num].live_length = REG_LIVE_LENGTH (i);
478 /* Calculate amount of usage of each hard reg by pseudos
479 allocated by local-alloc. This is to see if we want to
480 override it. */
481 memset (local_reg_live_length, 0, sizeof local_reg_live_length);
482 memset (local_reg_n_refs, 0, sizeof local_reg_n_refs);
483 memset (local_reg_freq, 0, sizeof local_reg_freq);
484 for (i = FIRST_PSEUDO_REGISTER; i < (size_t) max_regno; i++)
485 if (reg_renumber[i] >= 0)
487 int regno = reg_renumber[i];
488 int endregno = regno + HARD_REGNO_NREGS (regno, PSEUDO_REGNO_MODE (i));
489 int j;
491 for (j = regno; j < endregno; j++)
493 local_reg_n_refs[j] += REG_N_REFS (i);
494 local_reg_freq[j] += REG_FREQ (i);
495 local_reg_live_length[j] += REG_LIVE_LENGTH (i);
499 /* We can't override local-alloc for a reg used not just by local-alloc. */
500 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (regs_ever_live[i])
502 local_reg_n_refs[i] = 0, local_reg_freq[i] = 0;
504 allocno_row_words = (max_allocno + INT_BITS - 1) / INT_BITS;
506 /* We used to use alloca here, but the size of what it would try to
507 allocate would occasionally cause it to exceed the stack limit and
508 cause unpredictable core dumps. Some examples were > 2Mb in size. */
509 conflicts = xcalloc (max_allocno * allocno_row_words, sizeof (INT_TYPE));
511 allocnos_live = xmalloc (allocno_row_words * sizeof (INT_TYPE));
513 /* If there is work to be done (at least one reg to allocate),
514 perform global conflict analysis and allocate the regs. */
516 if (max_allocno > 0)
518 /* Scan all the insns and compute the conflicts among allocnos
519 and between allocnos and hard regs. */
521 global_conflicts ();
523 mirror_conflicts ();
525 /* Eliminate conflicts between pseudos and eliminable registers. If
526 the register is not eliminated, the pseudo won't really be able to
527 live in the eliminable register, so the conflict doesn't matter.
528 If we do eliminate the register, the conflict will no longer exist.
529 So in either case, we can ignore the conflict. Likewise for
530 preferences. */
532 for (i = 0; i < (size_t) max_allocno; i++)
534 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_conflicts,
535 eliminable_regset);
536 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_copy_preferences,
537 eliminable_regset);
538 AND_COMPL_HARD_REG_SET (allocno[i].hard_reg_preferences,
539 eliminable_regset);
542 /* Try to expand the preferences by merging them between allocnos. */
544 expand_preferences ();
546 /* Determine the order to allocate the remaining pseudo registers. */
548 allocno_order = xmalloc (max_allocno * sizeof (int));
549 for (i = 0; i < (size_t) max_allocno; i++)
550 allocno_order[i] = i;
552 /* Default the size to 1, since allocno_compare uses it to divide by.
553 Also convert allocno_live_length of zero to -1. A length of zero
554 can occur when all the registers for that allocno have reg_live_length
555 equal to -2. In this case, we want to make an allocno, but not
556 allocate it. So avoid the divide-by-zero and set it to a low
557 priority. */
559 for (i = 0; i < (size_t) max_allocno; i++)
561 if (allocno[i].size == 0)
562 allocno[i].size = 1;
563 if (allocno[i].live_length == 0)
564 allocno[i].live_length = -1;
567 qsort (allocno_order, max_allocno, sizeof (int), allocno_compare);
569 prune_preferences ();
571 if (file)
572 dump_conflicts (file);
574 /* Try allocating them, one by one, in that order,
575 except for parameters marked with reg_live_length[regno] == -2. */
577 for (i = 0; i < (size_t) max_allocno; i++)
578 if (reg_renumber[allocno[allocno_order[i]].reg] < 0
579 && REG_LIVE_LENGTH (allocno[allocno_order[i]].reg) >= 0)
581 /* If we have more than one register class,
582 first try allocating in the class that is cheapest
583 for this pseudo-reg. If that fails, try any reg. */
584 if (N_REG_CLASSES > 1)
586 find_reg (allocno_order[i], 0, 0, 0, 0);
587 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
588 continue;
590 if (reg_alternate_class (allocno[allocno_order[i]].reg) != NO_REGS)
591 find_reg (allocno_order[i], 0, 1, 0, 0);
594 free (allocno_order);
597 /* Do the reloads now while the allocno data still exist, so that we can
598 try to assign new hard regs to any pseudo regs that are spilled. */
600 #if 0 /* We need to eliminate regs even if there is no rtl code,
601 for the sake of debugging information. */
602 if (n_basic_blocks > 0)
603 #endif
605 build_insn_chain (get_insns ());
606 retval = reload (get_insns (), 1);
609 /* Clean up. */
610 free (reg_allocno);
611 free (reg_may_share);
612 free (allocno);
613 free (conflicts);
614 free (allocnos_live);
616 return retval;
619 /* Sort predicate for ordering the allocnos.
620 Returns -1 (1) if *v1 should be allocated before (after) *v2. */
622 static int
623 allocno_compare (const void *v1p, const void *v2p)
625 int v1 = *(const int *)v1p, v2 = *(const int *)v2p;
626 /* Note that the quotient will never be bigger than
627 the value of floor_log2 times the maximum number of
628 times a register can occur in one insn (surely less than 100)
629 weighted by the frequency (maximally REG_FREQ_MAX).
630 Multiplying this by 10000/REG_FREQ_MAX can't overflow. */
631 int pri1
632 = (((double) (floor_log2 (allocno[v1].n_refs) * allocno[v1].freq)
633 / allocno[v1].live_length)
634 * (10000 / REG_FREQ_MAX) * allocno[v1].size);
635 int pri2
636 = (((double) (floor_log2 (allocno[v2].n_refs) * allocno[v2].freq)
637 / allocno[v2].live_length)
638 * (10000 / REG_FREQ_MAX) * allocno[v2].size);
639 if (pri2 - pri1)
640 return pri2 - pri1;
642 /* If regs are equally good, sort by allocno,
643 so that the results of qsort leave nothing to chance. */
644 return v1 - v2;
647 /* Scan the rtl code and record all conflicts and register preferences in the
648 conflict matrices and preference tables. */
650 static void
651 global_conflicts (void)
653 int i;
654 basic_block b;
655 rtx insn;
656 int *block_start_allocnos;
658 /* Make a vector that mark_reg_{store,clobber} will store in. */
659 regs_set = xmalloc (max_parallel * sizeof (rtx) * 2);
661 block_start_allocnos = xmalloc (max_allocno * sizeof (int));
663 FOR_EACH_BB (b)
665 memset (allocnos_live, 0, allocno_row_words * sizeof (INT_TYPE));
667 /* Initialize table of registers currently live
668 to the state at the beginning of this basic block.
669 This also marks the conflicts among hard registers
670 and any allocnos that are live.
672 For pseudo-regs, there is only one bit for each one
673 no matter how many hard regs it occupies.
674 This is ok; we know the size from PSEUDO_REGNO_SIZE.
675 For explicit hard regs, we cannot know the size that way
676 since one hard reg can be used with various sizes.
677 Therefore, we must require that all the hard regs
678 implicitly live as part of a multi-word hard reg
679 are explicitly marked in basic_block_live_at_start. */
682 regset old = b->global_live_at_start;
683 int ax = 0;
685 REG_SET_TO_HARD_REG_SET (hard_regs_live, old);
686 EXECUTE_IF_SET_IN_REG_SET (old, FIRST_PSEUDO_REGISTER, i,
688 int a = reg_allocno[i];
689 if (a >= 0)
691 SET_ALLOCNO_LIVE (a);
692 block_start_allocnos[ax++] = a;
694 else if ((a = reg_renumber[i]) >= 0)
695 mark_reg_live_nc
696 (a, PSEUDO_REGNO_MODE (i));
699 /* Record that each allocno now live conflicts with each hard reg
700 now live.
702 It is not necessary to mark any conflicts between pseudos as
703 this point, even for pseudos which are live at the start of
704 the basic block.
706 Given two pseudos X and Y and any point in the CFG P.
708 On any path to point P where X and Y are live one of the
709 following conditions must be true:
711 1. X is live at some instruction on the path that
712 evaluates Y.
714 2. Y is live at some instruction on the path that
715 evaluates X.
717 3. Either X or Y is not evaluated on the path to P
718 (ie it is used uninitialized) and thus the
719 conflict can be ignored.
721 In cases #1 and #2 the conflict will be recorded when we
722 scan the instruction that makes either X or Y become live. */
723 record_conflicts (block_start_allocnos, ax);
725 /* Pseudos can't go in stack regs at the start of a basic block that
726 is reached by an abnormal edge. Likewise for call clobbered regs,
727 because because caller-save, fixup_abnormal_edges, and possibly
728 the table driven EH machinery are not quite ready to handle such
729 regs live across such edges. */
731 edge e;
733 for (e = b->pred; e ; e = e->pred_next)
734 if (e->flags & EDGE_ABNORMAL)
735 break;
737 if (e != NULL)
739 #ifdef STACK_REGS
740 EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, ax,
742 allocno[ax].no_stack_reg = 1;
744 for (ax = FIRST_STACK_REG; ax <= LAST_STACK_REG; ax++)
745 record_one_conflict (ax);
746 #endif
748 /* No need to record conflicts for call clobbered regs if we have
749 nonlocal labels around, as we don't ever try to allocate such
750 regs in this case. */
751 if (! current_function_has_nonlocal_label)
752 for (ax = 0; ax < FIRST_PSEUDO_REGISTER; ax++)
753 if (call_used_regs [ax])
754 record_one_conflict (ax);
759 insn = BB_HEAD (b);
761 /* Scan the code of this basic block, noting which allocnos
762 and hard regs are born or die. When one is born,
763 record a conflict with all others currently live. */
765 while (1)
767 RTX_CODE code = GET_CODE (insn);
768 rtx link;
770 /* Make regs_set an empty set. */
772 n_regs_set = 0;
774 if (code == INSN || code == CALL_INSN || code == JUMP_INSN)
777 #if 0
778 int i = 0;
779 for (link = REG_NOTES (insn);
780 link && i < NUM_NO_CONFLICT_PAIRS;
781 link = XEXP (link, 1))
782 if (REG_NOTE_KIND (link) == REG_NO_CONFLICT)
784 no_conflict_pairs[i].allocno1
785 = reg_allocno[REGNO (SET_DEST (PATTERN (insn)))];
786 no_conflict_pairs[i].allocno2
787 = reg_allocno[REGNO (XEXP (link, 0))];
788 i++;
790 #endif /* 0 */
792 /* Mark any registers clobbered by INSN as live,
793 so they conflict with the inputs. */
795 note_stores (PATTERN (insn), mark_reg_clobber, NULL);
797 /* Mark any registers dead after INSN as dead now. */
799 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
800 if (REG_NOTE_KIND (link) == REG_DEAD)
801 mark_reg_death (XEXP (link, 0));
803 /* Mark any registers set in INSN as live,
804 and mark them as conflicting with all other live regs.
805 Clobbers are processed again, so they conflict with
806 the registers that are set. */
808 note_stores (PATTERN (insn), mark_reg_store, NULL);
810 #ifdef AUTO_INC_DEC
811 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
812 if (REG_NOTE_KIND (link) == REG_INC)
813 mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
814 #endif
816 /* If INSN has multiple outputs, then any reg that dies here
817 and is used inside of an output
818 must conflict with the other outputs.
820 It is unsafe to use !single_set here since it will ignore an
821 unused output. Just because an output is unused does not mean
822 the compiler can assume the side effect will not occur.
823 Consider if REG appears in the address of an output and we
824 reload the output. If we allocate REG to the same hard
825 register as an unused output we could set the hard register
826 before the output reload insn. */
827 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
828 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
829 if (REG_NOTE_KIND (link) == REG_DEAD)
831 int used_in_output = 0;
832 int i;
833 rtx reg = XEXP (link, 0);
835 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
837 rtx set = XVECEXP (PATTERN (insn), 0, i);
838 if (GET_CODE (set) == SET
839 && GET_CODE (SET_DEST (set)) != REG
840 && !rtx_equal_p (reg, SET_DEST (set))
841 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
842 used_in_output = 1;
844 if (used_in_output)
845 mark_reg_conflicts (reg);
848 /* Mark any registers set in INSN and then never used. */
850 while (n_regs_set-- > 0)
852 rtx note = find_regno_note (insn, REG_UNUSED,
853 REGNO (regs_set[n_regs_set]));
854 if (note)
855 mark_reg_death (XEXP (note, 0));
859 if (insn == BB_END (b))
860 break;
861 insn = NEXT_INSN (insn);
865 /* Clean up. */
866 free (block_start_allocnos);
867 free (regs_set);
869 /* Expand the preference information by looking for cases where one allocno
870 dies in an insn that sets an allocno. If those two allocnos don't conflict,
871 merge any preferences between those allocnos. */
873 static void
874 expand_preferences (void)
876 rtx insn;
877 rtx link;
878 rtx set;
880 /* We only try to handle the most common cases here. Most of the cases
881 where this wins are reg-reg copies. */
883 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
884 if (INSN_P (insn)
885 && (set = single_set (insn)) != 0
886 && GET_CODE (SET_DEST (set)) == REG
887 && reg_allocno[REGNO (SET_DEST (set))] >= 0)
888 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
889 if (REG_NOTE_KIND (link) == REG_DEAD
890 && GET_CODE (XEXP (link, 0)) == REG
891 && reg_allocno[REGNO (XEXP (link, 0))] >= 0
892 && ! CONFLICTP (reg_allocno[REGNO (SET_DEST (set))],
893 reg_allocno[REGNO (XEXP (link, 0))]))
895 int a1 = reg_allocno[REGNO (SET_DEST (set))];
896 int a2 = reg_allocno[REGNO (XEXP (link, 0))];
898 if (XEXP (link, 0) == SET_SRC (set))
900 IOR_HARD_REG_SET (allocno[a1].hard_reg_copy_preferences,
901 allocno[a2].hard_reg_copy_preferences);
902 IOR_HARD_REG_SET (allocno[a2].hard_reg_copy_preferences,
903 allocno[a1].hard_reg_copy_preferences);
906 IOR_HARD_REG_SET (allocno[a1].hard_reg_preferences,
907 allocno[a2].hard_reg_preferences);
908 IOR_HARD_REG_SET (allocno[a2].hard_reg_preferences,
909 allocno[a1].hard_reg_preferences);
910 IOR_HARD_REG_SET (allocno[a1].hard_reg_full_preferences,
911 allocno[a2].hard_reg_full_preferences);
912 IOR_HARD_REG_SET (allocno[a2].hard_reg_full_preferences,
913 allocno[a1].hard_reg_full_preferences);
917 /* Prune the preferences for global registers to exclude registers that cannot
918 be used.
920 Compute `regs_someone_prefers', which is a bitmask of the hard registers
921 that are preferred by conflicting registers of lower priority. If possible,
922 we will avoid using these registers. */
924 static void
925 prune_preferences (void)
927 int i;
928 int num;
929 int *allocno_to_order = xmalloc (max_allocno * sizeof (int));
931 /* Scan least most important to most important.
932 For each allocno, remove from preferences registers that cannot be used,
933 either because of conflicts or register type. Then compute all registers
934 preferred by each lower-priority register that conflicts. */
936 for (i = max_allocno - 1; i >= 0; i--)
938 HARD_REG_SET temp;
940 num = allocno_order[i];
941 allocno_to_order[num] = i;
942 COPY_HARD_REG_SET (temp, allocno[num].hard_reg_conflicts);
944 if (allocno[num].calls_crossed == 0)
945 IOR_HARD_REG_SET (temp, fixed_reg_set);
946 else
947 IOR_HARD_REG_SET (temp, call_used_reg_set);
949 IOR_COMPL_HARD_REG_SET
950 (temp,
951 reg_class_contents[(int) reg_preferred_class (allocno[num].reg)]);
953 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, temp);
954 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, temp);
955 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_full_preferences, temp);
958 for (i = max_allocno - 1; i >= 0; i--)
960 /* Merge in the preferences of lower-priority registers (they have
961 already been pruned). If we also prefer some of those registers,
962 don't exclude them unless we are of a smaller size (in which case
963 we want to give the lower-priority allocno the first chance for
964 these registers). */
965 HARD_REG_SET temp, temp2;
966 int allocno2;
968 num = allocno_order[i];
970 CLEAR_HARD_REG_SET (temp);
971 CLEAR_HARD_REG_SET (temp2);
973 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + num * allocno_row_words,
974 allocno2,
976 if (allocno_to_order[allocno2] > i)
978 if (allocno[allocno2].size <= allocno[num].size)
979 IOR_HARD_REG_SET (temp,
980 allocno[allocno2].hard_reg_full_preferences);
981 else
982 IOR_HARD_REG_SET (temp2,
983 allocno[allocno2].hard_reg_full_preferences);
987 AND_COMPL_HARD_REG_SET (temp, allocno[num].hard_reg_full_preferences);
988 IOR_HARD_REG_SET (temp, temp2);
989 COPY_HARD_REG_SET (allocno[num].regs_someone_prefers, temp);
991 free (allocno_to_order);
994 /* Assign a hard register to allocno NUM; look for one that is the beginning
995 of a long enough stretch of hard regs none of which conflicts with ALLOCNO.
996 The registers marked in PREFREGS are tried first.
998 LOSERS, if nonzero, is a HARD_REG_SET indicating registers that cannot
999 be used for this allocation.
1001 If ALT_REGS_P is zero, consider only the preferred class of ALLOCNO's reg.
1002 Otherwise ignore that preferred class and use the alternate class.
1004 If ACCEPT_CALL_CLOBBERED is nonzero, accept a call-clobbered hard reg that
1005 will have to be saved and restored at calls.
1007 RETRYING is nonzero if this is called from retry_global_alloc.
1009 If we find one, record it in reg_renumber.
1010 If not, do nothing. */
1012 static void
1013 find_reg (int num, HARD_REG_SET losers, int alt_regs_p, int accept_call_clobbered, int retrying)
1015 int i, best_reg, pass;
1016 HARD_REG_SET used, used1, used2;
1018 enum reg_class class = (alt_regs_p
1019 ? reg_alternate_class (allocno[num].reg)
1020 : reg_preferred_class (allocno[num].reg));
1021 enum machine_mode mode = PSEUDO_REGNO_MODE (allocno[num].reg);
1023 if (accept_call_clobbered)
1024 COPY_HARD_REG_SET (used1, call_fixed_reg_set);
1025 else if (allocno[num].calls_crossed == 0)
1026 COPY_HARD_REG_SET (used1, fixed_reg_set);
1027 else
1028 COPY_HARD_REG_SET (used1, call_used_reg_set);
1030 /* Some registers should not be allocated in global-alloc. */
1031 IOR_HARD_REG_SET (used1, no_global_alloc_regs);
1032 if (losers)
1033 IOR_HARD_REG_SET (used1, losers);
1035 IOR_COMPL_HARD_REG_SET (used1, reg_class_contents[(int) class]);
1036 COPY_HARD_REG_SET (used2, used1);
1038 IOR_HARD_REG_SET (used1, allocno[num].hard_reg_conflicts);
1040 #ifdef CANNOT_CHANGE_MODE_CLASS
1041 cannot_change_mode_set_regs (&used1, mode, allocno[num].reg);
1042 #endif
1044 /* Try each hard reg to see if it fits. Do this in two passes.
1045 In the first pass, skip registers that are preferred by some other pseudo
1046 to give it a better chance of getting one of those registers. Only if
1047 we can't get a register when excluding those do we take one of them.
1048 However, we never allocate a register for the first time in pass 0. */
1050 COPY_HARD_REG_SET (used, used1);
1051 IOR_COMPL_HARD_REG_SET (used, regs_used_so_far);
1052 IOR_HARD_REG_SET (used, allocno[num].regs_someone_prefers);
1054 best_reg = -1;
1055 for (i = FIRST_PSEUDO_REGISTER, pass = 0;
1056 pass <= 1 && i >= FIRST_PSEUDO_REGISTER;
1057 pass++)
1059 if (pass == 1)
1060 COPY_HARD_REG_SET (used, used1);
1061 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1063 #ifdef REG_ALLOC_ORDER
1064 int regno = reg_alloc_order[i];
1065 #else
1066 int regno = i;
1067 #endif
1068 if (! TEST_HARD_REG_BIT (used, regno)
1069 && HARD_REGNO_MODE_OK (regno, mode)
1070 && (allocno[num].calls_crossed == 0
1071 || accept_call_clobbered
1072 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)))
1074 int j;
1075 int lim = regno + HARD_REGNO_NREGS (regno, mode);
1076 for (j = regno + 1;
1077 (j < lim
1078 && ! TEST_HARD_REG_BIT (used, j));
1079 j++);
1080 if (j == lim)
1082 best_reg = regno;
1083 break;
1085 #ifndef REG_ALLOC_ORDER
1086 i = j; /* Skip starting points we know will lose */
1087 #endif
1092 /* See if there is a preferred register with the same class as the register
1093 we allocated above. Making this restriction prevents register
1094 preferencing from creating worse register allocation.
1096 Remove from the preferred registers and conflicting registers. Note that
1097 additional conflicts may have been added after `prune_preferences' was
1098 called.
1100 First do this for those register with copy preferences, then all
1101 preferred registers. */
1103 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_copy_preferences, used);
1104 GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_copy_preferences,
1105 reg_class_contents[(int) NO_REGS], no_copy_prefs);
1107 if (best_reg >= 0)
1109 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1110 if (TEST_HARD_REG_BIT (allocno[num].hard_reg_copy_preferences, i)
1111 && HARD_REGNO_MODE_OK (i, mode)
1112 && (allocno[num].calls_crossed == 0
1113 || accept_call_clobbered
1114 || ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode))
1115 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1116 || reg_class_subset_p (REGNO_REG_CLASS (i),
1117 REGNO_REG_CLASS (best_reg))
1118 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1119 REGNO_REG_CLASS (i))))
1121 int j;
1122 int lim = i + HARD_REGNO_NREGS (i, mode);
1123 for (j = i + 1;
1124 (j < lim
1125 && ! TEST_HARD_REG_BIT (used, j)
1126 && (REGNO_REG_CLASS (j)
1127 == REGNO_REG_CLASS (best_reg + (j - i))
1128 || reg_class_subset_p (REGNO_REG_CLASS (j),
1129 REGNO_REG_CLASS (best_reg + (j - i)))
1130 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1131 REGNO_REG_CLASS (j))));
1132 j++);
1133 if (j == lim)
1135 best_reg = i;
1136 goto no_prefs;
1140 no_copy_prefs:
1142 AND_COMPL_HARD_REG_SET (allocno[num].hard_reg_preferences, used);
1143 GO_IF_HARD_REG_SUBSET (allocno[num].hard_reg_preferences,
1144 reg_class_contents[(int) NO_REGS], no_prefs);
1146 if (best_reg >= 0)
1148 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1149 if (TEST_HARD_REG_BIT (allocno[num].hard_reg_preferences, i)
1150 && HARD_REGNO_MODE_OK (i, mode)
1151 && (allocno[num].calls_crossed == 0
1152 || accept_call_clobbered
1153 || ! HARD_REGNO_CALL_PART_CLOBBERED (i, mode))
1154 && (REGNO_REG_CLASS (i) == REGNO_REG_CLASS (best_reg)
1155 || reg_class_subset_p (REGNO_REG_CLASS (i),
1156 REGNO_REG_CLASS (best_reg))
1157 || reg_class_subset_p (REGNO_REG_CLASS (best_reg),
1158 REGNO_REG_CLASS (i))))
1160 int j;
1161 int lim = i + HARD_REGNO_NREGS (i, mode);
1162 for (j = i + 1;
1163 (j < lim
1164 && ! TEST_HARD_REG_BIT (used, j)
1165 && (REGNO_REG_CLASS (j)
1166 == REGNO_REG_CLASS (best_reg + (j - i))
1167 || reg_class_subset_p (REGNO_REG_CLASS (j),
1168 REGNO_REG_CLASS (best_reg + (j - i)))
1169 || reg_class_subset_p (REGNO_REG_CLASS (best_reg + (j - i)),
1170 REGNO_REG_CLASS (j))));
1171 j++);
1172 if (j == lim)
1174 best_reg = i;
1175 break;
1179 no_prefs:
1181 /* If we haven't succeeded yet, try with caller-saves.
1182 We need not check to see if the current function has nonlocal
1183 labels because we don't put any pseudos that are live over calls in
1184 registers in that case. */
1186 if (flag_caller_saves && best_reg < 0)
1188 /* Did not find a register. If it would be profitable to
1189 allocate a call-clobbered register and save and restore it
1190 around calls, do that. */
1191 if (! accept_call_clobbered
1192 && allocno[num].calls_crossed != 0
1193 && CALLER_SAVE_PROFITABLE (allocno[num].n_refs,
1194 allocno[num].calls_crossed))
1196 HARD_REG_SET new_losers;
1197 if (! losers)
1198 CLEAR_HARD_REG_SET (new_losers);
1199 else
1200 COPY_HARD_REG_SET (new_losers, losers);
1202 IOR_HARD_REG_SET(new_losers, losing_caller_save_reg_set);
1203 find_reg (num, new_losers, alt_regs_p, 1, retrying);
1204 if (reg_renumber[allocno[num].reg] >= 0)
1206 caller_save_needed = 1;
1207 return;
1212 /* If we haven't succeeded yet,
1213 see if some hard reg that conflicts with us
1214 was utilized poorly by local-alloc.
1215 If so, kick out the regs that were put there by local-alloc
1216 so we can use it instead. */
1217 if (best_reg < 0 && !retrying
1218 /* Let's not bother with multi-reg allocnos. */
1219 && allocno[num].size == 1)
1221 /* Count from the end, to find the least-used ones first. */
1222 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1224 #ifdef REG_ALLOC_ORDER
1225 int regno = reg_alloc_order[i];
1226 #else
1227 int regno = i;
1228 #endif
1230 if (local_reg_n_refs[regno] != 0
1231 /* Don't use a reg no good for this pseudo. */
1232 && ! TEST_HARD_REG_BIT (used2, regno)
1233 && HARD_REGNO_MODE_OK (regno, mode)
1234 /* The code below assumes that we need only a single
1235 register, but the check of allocno[num].size above
1236 was not enough. Sometimes we need more than one
1237 register for a single-word value. */
1238 && HARD_REGNO_NREGS (regno, mode) == 1
1239 && (allocno[num].calls_crossed == 0
1240 || accept_call_clobbered
1241 || ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1242 #ifdef CANNOT_CHANGE_MODE_CLASS
1243 && ! invalid_mode_change_p (regno, REGNO_REG_CLASS (regno),
1244 mode)
1245 #endif
1246 #ifdef STACK_REGS
1247 && (!allocno[num].no_stack_reg
1248 || regno < FIRST_STACK_REG || regno > LAST_STACK_REG)
1249 #endif
1252 /* We explicitly evaluate the divide results into temporary
1253 variables so as to avoid excess precision problems that occur
1254 on an i386-unknown-sysv4.2 (unixware) host. */
1256 double tmp1 = ((double) local_reg_freq[regno]
1257 / local_reg_live_length[regno]);
1258 double tmp2 = ((double) allocno[num].freq
1259 / allocno[num].live_length);
1261 if (tmp1 < tmp2)
1263 /* Hard reg REGNO was used less in total by local regs
1264 than it would be used by this one allocno! */
1265 int k;
1266 for (k = 0; k < max_regno; k++)
1267 if (reg_renumber[k] >= 0)
1269 int r = reg_renumber[k];
1270 int endregno
1271 = r + HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (k));
1273 if (regno >= r && regno < endregno)
1274 reg_renumber[k] = -1;
1277 best_reg = regno;
1278 break;
1284 /* Did we find a register? */
1286 if (best_reg >= 0)
1288 int lim, j;
1289 HARD_REG_SET this_reg;
1291 /* Yes. Record it as the hard register of this pseudo-reg. */
1292 reg_renumber[allocno[num].reg] = best_reg;
1293 /* Also of any pseudo-regs that share with it. */
1294 if (reg_may_share[allocno[num].reg])
1295 for (j = FIRST_PSEUDO_REGISTER; j < max_regno; j++)
1296 if (reg_allocno[j] == num)
1297 reg_renumber[j] = best_reg;
1299 /* Make a set of the hard regs being allocated. */
1300 CLEAR_HARD_REG_SET (this_reg);
1301 lim = best_reg + HARD_REGNO_NREGS (best_reg, mode);
1302 for (j = best_reg; j < lim; j++)
1304 SET_HARD_REG_BIT (this_reg, j);
1305 SET_HARD_REG_BIT (regs_used_so_far, j);
1306 /* This is no longer a reg used just by local regs. */
1307 local_reg_n_refs[j] = 0;
1308 local_reg_freq[j] = 0;
1310 /* For each other pseudo-reg conflicting with this one,
1311 mark it as conflicting with the hard regs this one occupies. */
1312 lim = num;
1313 EXECUTE_IF_SET_IN_ALLOCNO_SET (conflicts + lim * allocno_row_words, j,
1315 IOR_HARD_REG_SET (allocno[j].hard_reg_conflicts, this_reg);
1320 /* Called from `reload' to look for a hard reg to put pseudo reg REGNO in.
1321 Perhaps it had previously seemed not worth a hard reg,
1322 or perhaps its old hard reg has been commandeered for reloads.
1323 FORBIDDEN_REGS indicates certain hard regs that may not be used, even if
1324 they do not appear to be allocated.
1325 If FORBIDDEN_REGS is zero, no regs are forbidden. */
1327 void
1328 retry_global_alloc (int regno, HARD_REG_SET forbidden_regs)
1330 int alloc_no = reg_allocno[regno];
1331 if (alloc_no >= 0)
1333 /* If we have more than one register class,
1334 first try allocating in the class that is cheapest
1335 for this pseudo-reg. If that fails, try any reg. */
1336 if (N_REG_CLASSES > 1)
1337 find_reg (alloc_no, forbidden_regs, 0, 0, 1);
1338 if (reg_renumber[regno] < 0
1339 && reg_alternate_class (regno) != NO_REGS)
1340 find_reg (alloc_no, forbidden_regs, 1, 0, 1);
1342 /* If we found a register, modify the RTL for the register to
1343 show the hard register, and mark that register live. */
1344 if (reg_renumber[regno] >= 0)
1346 REGNO (regno_reg_rtx[regno]) = reg_renumber[regno];
1347 mark_home_live (regno);
1352 /* Record a conflict between register REGNO
1353 and everything currently live.
1354 REGNO must not be a pseudo reg that was allocated
1355 by local_alloc; such numbers must be translated through
1356 reg_renumber before calling here. */
1358 static void
1359 record_one_conflict (int regno)
1361 int j;
1363 if (regno < FIRST_PSEUDO_REGISTER)
1364 /* When a hard register becomes live,
1365 record conflicts with live pseudo regs. */
1366 EXECUTE_IF_SET_IN_ALLOCNO_SET (allocnos_live, j,
1368 SET_HARD_REG_BIT (allocno[j].hard_reg_conflicts, regno);
1370 else
1371 /* When a pseudo-register becomes live,
1372 record conflicts first with hard regs,
1373 then with other pseudo regs. */
1375 int ialloc = reg_allocno[regno];
1376 int ialloc_prod = ialloc * allocno_row_words;
1378 IOR_HARD_REG_SET (allocno[ialloc].hard_reg_conflicts, hard_regs_live);
1379 for (j = allocno_row_words - 1; j >= 0; j--)
1381 #if 0
1382 int k;
1383 for (k = 0; k < n_no_conflict_pairs; k++)
1384 if (! ((j == no_conflict_pairs[k].allocno1
1385 && ialloc == no_conflict_pairs[k].allocno2)
1387 (j == no_conflict_pairs[k].allocno2
1388 && ialloc == no_conflict_pairs[k].allocno1)))
1389 #endif /* 0 */
1390 conflicts[ialloc_prod + j] |= allocnos_live[j];
1395 /* Record all allocnos currently live as conflicting
1396 with all hard regs currently live.
1398 ALLOCNO_VEC is a vector of LEN allocnos, all allocnos that
1399 are currently live. Their bits are also flagged in allocnos_live. */
1401 static void
1402 record_conflicts (int *allocno_vec, int len)
1404 while (--len >= 0)
1405 IOR_HARD_REG_SET (allocno[allocno_vec[len]].hard_reg_conflicts,
1406 hard_regs_live);
1409 /* If CONFLICTP (i, j) is true, make sure CONFLICTP (j, i) is also true. */
1410 static void
1411 mirror_conflicts (void)
1413 int i, j;
1414 int rw = allocno_row_words;
1415 int rwb = rw * INT_BITS;
1416 INT_TYPE *p = conflicts;
1417 INT_TYPE *q0 = conflicts, *q1, *q2;
1418 unsigned INT_TYPE mask;
1420 for (i = max_allocno - 1, mask = 1; i >= 0; i--, mask <<= 1)
1422 if (! mask)
1424 mask = 1;
1425 q0++;
1427 for (j = allocno_row_words - 1, q1 = q0; j >= 0; j--, q1 += rwb)
1429 unsigned INT_TYPE word;
1431 for (word = (unsigned INT_TYPE) *p++, q2 = q1; word;
1432 word >>= 1, q2 += rw)
1434 if (word & 1)
1435 *q2 |= mask;
1441 /* Handle the case where REG is set by the insn being scanned,
1442 during the forward scan to accumulate conflicts.
1443 Store a 1 in regs_live or allocnos_live for this register, record how many
1444 consecutive hardware registers it actually needs,
1445 and record a conflict with all other registers already live.
1447 Note that even if REG does not remain alive after this insn,
1448 we must mark it here as live, to ensure a conflict between
1449 REG and any other regs set in this insn that really do live.
1450 This is because those other regs could be considered after this.
1452 REG might actually be something other than a register;
1453 if so, we do nothing.
1455 SETTER is 0 if this register was modified by an auto-increment (i.e.,
1456 a REG_INC note was found for it). */
1458 static void
1459 mark_reg_store (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
1461 int regno;
1463 if (GET_CODE (reg) == SUBREG)
1464 reg = SUBREG_REG (reg);
1466 if (GET_CODE (reg) != REG)
1467 return;
1469 regs_set[n_regs_set++] = reg;
1471 if (setter && GET_CODE (setter) != CLOBBER)
1472 set_preference (reg, SET_SRC (setter));
1474 regno = REGNO (reg);
1476 /* Either this is one of the max_allocno pseudo regs not allocated,
1477 or it is or has a hardware reg. First handle the pseudo-regs. */
1478 if (regno >= FIRST_PSEUDO_REGISTER)
1480 if (reg_allocno[regno] >= 0)
1482 SET_ALLOCNO_LIVE (reg_allocno[regno]);
1483 record_one_conflict (regno);
1487 if (reg_renumber[regno] >= 0)
1488 regno = reg_renumber[regno];
1490 /* Handle hardware regs (and pseudos allocated to hard regs). */
1491 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1493 int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1494 while (regno < last)
1496 record_one_conflict (regno);
1497 SET_HARD_REG_BIT (hard_regs_live, regno);
1498 regno++;
1503 /* Like mark_reg_set except notice just CLOBBERs; ignore SETs. */
1505 static void
1506 mark_reg_clobber (rtx reg, rtx setter, void *data ATTRIBUTE_UNUSED)
1508 if (GET_CODE (setter) == CLOBBER)
1509 mark_reg_store (reg, setter, data);
1512 /* Record that REG has conflicts with all the regs currently live.
1513 Do not mark REG itself as live. */
1515 static void
1516 mark_reg_conflicts (rtx reg)
1518 int regno;
1520 if (GET_CODE (reg) == SUBREG)
1521 reg = SUBREG_REG (reg);
1523 if (GET_CODE (reg) != REG)
1524 return;
1526 regno = REGNO (reg);
1528 /* Either this is one of the max_allocno pseudo regs not allocated,
1529 or it is or has a hardware reg. First handle the pseudo-regs. */
1530 if (regno >= FIRST_PSEUDO_REGISTER)
1532 if (reg_allocno[regno] >= 0)
1533 record_one_conflict (regno);
1536 if (reg_renumber[regno] >= 0)
1537 regno = reg_renumber[regno];
1539 /* Handle hardware regs (and pseudos allocated to hard regs). */
1540 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1542 int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1543 while (regno < last)
1545 record_one_conflict (regno);
1546 regno++;
1551 /* Mark REG as being dead (following the insn being scanned now).
1552 Store a 0 in regs_live or allocnos_live for this register. */
1554 static void
1555 mark_reg_death (rtx reg)
1557 int regno = REGNO (reg);
1559 /* Either this is one of the max_allocno pseudo regs not allocated,
1560 or it is a hardware reg. First handle the pseudo-regs. */
1561 if (regno >= FIRST_PSEUDO_REGISTER)
1563 if (reg_allocno[regno] >= 0)
1564 CLEAR_ALLOCNO_LIVE (reg_allocno[regno]);
1567 /* For pseudo reg, see if it has been assigned a hardware reg. */
1568 if (reg_renumber[regno] >= 0)
1569 regno = reg_renumber[regno];
1571 /* Handle hardware regs (and pseudos allocated to hard regs). */
1572 if (regno < FIRST_PSEUDO_REGISTER && ! fixed_regs[regno])
1574 /* Pseudo regs already assigned hardware regs are treated
1575 almost the same as explicit hardware regs. */
1576 int last = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
1577 while (regno < last)
1579 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
1580 regno++;
1585 /* Mark hard reg REGNO as currently live, assuming machine mode MODE
1586 for the value stored in it. MODE determines how many consecutive
1587 registers are actually in use. Do not record conflicts;
1588 it is assumed that the caller will do that. */
1590 static void
1591 mark_reg_live_nc (int regno, enum machine_mode mode)
1593 int last = regno + HARD_REGNO_NREGS (regno, mode);
1594 while (regno < last)
1596 SET_HARD_REG_BIT (hard_regs_live, regno);
1597 regno++;
1601 /* Try to set a preference for an allocno to a hard register.
1602 We are passed DEST and SRC which are the operands of a SET. It is known
1603 that SRC is a register. If SRC or the first operand of SRC is a register,
1604 try to set a preference. If one of the two is a hard register and the other
1605 is a pseudo-register, mark the preference.
1607 Note that we are not as aggressive as local-alloc in trying to tie a
1608 pseudo-register to a hard register. */
1610 static void
1611 set_preference (rtx dest, rtx src)
1613 unsigned int src_regno, dest_regno;
1614 /* Amount to add to the hard regno for SRC, or subtract from that for DEST,
1615 to compensate for subregs in SRC or DEST. */
1616 int offset = 0;
1617 unsigned int i;
1618 int copy = 1;
1620 if (GET_RTX_FORMAT (GET_CODE (src))[0] == 'e')
1621 src = XEXP (src, 0), copy = 0;
1623 /* Get the reg number for both SRC and DEST.
1624 If neither is a reg, give up. */
1626 if (GET_CODE (src) == REG)
1627 src_regno = REGNO (src);
1628 else if (GET_CODE (src) == SUBREG && GET_CODE (SUBREG_REG (src)) == REG)
1630 src_regno = REGNO (SUBREG_REG (src));
1632 if (REGNO (SUBREG_REG (src)) < FIRST_PSEUDO_REGISTER)
1633 offset += subreg_regno_offset (REGNO (SUBREG_REG (src)),
1634 GET_MODE (SUBREG_REG (src)),
1635 SUBREG_BYTE (src),
1636 GET_MODE (src));
1637 else
1638 offset += (SUBREG_BYTE (src)
1639 / REGMODE_NATURAL_SIZE (GET_MODE (src)));
1641 else
1642 return;
1644 if (GET_CODE (dest) == REG)
1645 dest_regno = REGNO (dest);
1646 else if (GET_CODE (dest) == SUBREG && GET_CODE (SUBREG_REG (dest)) == REG)
1648 dest_regno = REGNO (SUBREG_REG (dest));
1650 if (REGNO (SUBREG_REG (dest)) < FIRST_PSEUDO_REGISTER)
1651 offset -= subreg_regno_offset (REGNO (SUBREG_REG (dest)),
1652 GET_MODE (SUBREG_REG (dest)),
1653 SUBREG_BYTE (dest),
1654 GET_MODE (dest));
1655 else
1656 offset -= (SUBREG_BYTE (dest)
1657 / REGMODE_NATURAL_SIZE (GET_MODE (dest)));
1659 else
1660 return;
1662 /* Convert either or both to hard reg numbers. */
1664 if (reg_renumber[src_regno] >= 0)
1665 src_regno = reg_renumber[src_regno];
1667 if (reg_renumber[dest_regno] >= 0)
1668 dest_regno = reg_renumber[dest_regno];
1670 /* Now if one is a hard reg and the other is a global pseudo
1671 then give the other a preference. */
1673 if (dest_regno < FIRST_PSEUDO_REGISTER && src_regno >= FIRST_PSEUDO_REGISTER
1674 && reg_allocno[src_regno] >= 0)
1676 dest_regno -= offset;
1677 if (dest_regno < FIRST_PSEUDO_REGISTER)
1679 if (copy)
1680 SET_REGBIT (hard_reg_copy_preferences,
1681 reg_allocno[src_regno], dest_regno);
1683 SET_REGBIT (hard_reg_preferences,
1684 reg_allocno[src_regno], dest_regno);
1685 for (i = dest_regno;
1686 i < dest_regno + HARD_REGNO_NREGS (dest_regno, GET_MODE (dest));
1687 i++)
1688 SET_REGBIT (hard_reg_full_preferences, reg_allocno[src_regno], i);
1692 if (src_regno < FIRST_PSEUDO_REGISTER && dest_regno >= FIRST_PSEUDO_REGISTER
1693 && reg_allocno[dest_regno] >= 0)
1695 src_regno += offset;
1696 if (src_regno < FIRST_PSEUDO_REGISTER)
1698 if (copy)
1699 SET_REGBIT (hard_reg_copy_preferences,
1700 reg_allocno[dest_regno], src_regno);
1702 SET_REGBIT (hard_reg_preferences,
1703 reg_allocno[dest_regno], src_regno);
1704 for (i = src_regno;
1705 i < src_regno + HARD_REGNO_NREGS (src_regno, GET_MODE (src));
1706 i++)
1707 SET_REGBIT (hard_reg_full_preferences, reg_allocno[dest_regno], i);
1712 /* Indicate that hard register number FROM was eliminated and replaced with
1713 an offset from hard register number TO. The status of hard registers live
1714 at the start of a basic block is updated by replacing a use of FROM with
1715 a use of TO. */
1717 void
1718 mark_elimination (int from, int to)
1720 basic_block bb;
1722 FOR_EACH_BB (bb)
1724 regset r = bb->global_live_at_start;
1725 if (REGNO_REG_SET_P (r, from))
1727 CLEAR_REGNO_REG_SET (r, from);
1728 SET_REGNO_REG_SET (r, to);
1733 /* Used for communication between the following functions. Holds the
1734 current life information. */
1735 static regset live_relevant_regs;
1737 /* Record in live_relevant_regs and REGS_SET that register REG became live.
1738 This is called via note_stores. */
1739 static void
1740 reg_becomes_live (rtx reg, rtx setter ATTRIBUTE_UNUSED, void *regs_set)
1742 int regno;
1744 if (GET_CODE (reg) == SUBREG)
1745 reg = SUBREG_REG (reg);
1747 if (GET_CODE (reg) != REG)
1748 return;
1750 regno = REGNO (reg);
1751 if (regno < FIRST_PSEUDO_REGISTER)
1753 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
1754 while (nregs-- > 0)
1756 SET_REGNO_REG_SET (live_relevant_regs, regno);
1757 if (! fixed_regs[regno])
1758 SET_REGNO_REG_SET ((regset) regs_set, regno);
1759 regno++;
1762 else if (reg_renumber[regno] >= 0)
1764 SET_REGNO_REG_SET (live_relevant_regs, regno);
1765 SET_REGNO_REG_SET ((regset) regs_set, regno);
1769 /* Record in live_relevant_regs that register REGNO died. */
1770 static void
1771 reg_dies (int regno, enum machine_mode mode, struct insn_chain *chain)
1773 if (regno < FIRST_PSEUDO_REGISTER)
1775 int nregs = HARD_REGNO_NREGS (regno, mode);
1776 while (nregs-- > 0)
1778 CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
1779 if (! fixed_regs[regno])
1780 SET_REGNO_REG_SET (&chain->dead_or_set, regno);
1781 regno++;
1784 else
1786 CLEAR_REGNO_REG_SET (live_relevant_regs, regno);
1787 if (reg_renumber[regno] >= 0)
1788 SET_REGNO_REG_SET (&chain->dead_or_set, regno);
1792 /* Walk the insns of the current function and build reload_insn_chain,
1793 and record register life information. */
1794 void
1795 build_insn_chain (rtx first)
1797 struct insn_chain **p = &reload_insn_chain;
1798 struct insn_chain *prev = 0;
1799 basic_block b = ENTRY_BLOCK_PTR->next_bb;
1800 regset_head live_relevant_regs_head;
1802 live_relevant_regs = INITIALIZE_REG_SET (live_relevant_regs_head);
1804 for (; first; first = NEXT_INSN (first))
1806 struct insn_chain *c;
1808 if (first == BB_HEAD (b))
1810 int i;
1812 CLEAR_REG_SET (live_relevant_regs);
1814 EXECUTE_IF_SET_IN_BITMAP
1815 (b->global_live_at_start, 0, i,
1817 if (i < FIRST_PSEUDO_REGISTER
1818 ? ! TEST_HARD_REG_BIT (eliminable_regset, i)
1819 : reg_renumber[i] >= 0)
1820 SET_REGNO_REG_SET (live_relevant_regs, i);
1824 if (GET_CODE (first) != NOTE && GET_CODE (first) != BARRIER)
1826 c = new_insn_chain ();
1827 c->prev = prev;
1828 prev = c;
1829 *p = c;
1830 p = &c->next;
1831 c->insn = first;
1832 c->block = b->index;
1834 if (INSN_P (first))
1836 rtx link;
1838 /* Mark the death of everything that dies in this instruction. */
1840 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1841 if (REG_NOTE_KIND (link) == REG_DEAD
1842 && GET_CODE (XEXP (link, 0)) == REG)
1843 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
1846 COPY_REG_SET (&c->live_throughout, live_relevant_regs);
1848 /* Mark everything born in this instruction as live. */
1850 note_stores (PATTERN (first), reg_becomes_live,
1851 &c->dead_or_set);
1853 else
1854 COPY_REG_SET (&c->live_throughout, live_relevant_regs);
1856 if (INSN_P (first))
1858 rtx link;
1860 /* Mark anything that is set in this insn and then unused as dying. */
1862 for (link = REG_NOTES (first); link; link = XEXP (link, 1))
1863 if (REG_NOTE_KIND (link) == REG_UNUSED
1864 && GET_CODE (XEXP (link, 0)) == REG)
1865 reg_dies (REGNO (XEXP (link, 0)), GET_MODE (XEXP (link, 0)),
1870 if (first == BB_END (b))
1871 b = b->next_bb;
1873 /* Stop after we pass the end of the last basic block. Verify that
1874 no real insns are after the end of the last basic block.
1876 We may want to reorganize the loop somewhat since this test should
1877 always be the right exit test. Allow an ADDR_VEC or ADDR_DIF_VEC if
1878 the previous real insn is a JUMP_INSN. */
1879 if (b == EXIT_BLOCK_PTR)
1881 for (first = NEXT_INSN (first) ; first; first = NEXT_INSN (first))
1882 if (INSN_P (first)
1883 && GET_CODE (PATTERN (first)) != USE
1884 && ! ((GET_CODE (PATTERN (first)) == ADDR_VEC
1885 || GET_CODE (PATTERN (first)) == ADDR_DIFF_VEC)
1886 && prev_real_insn (first) != 0
1887 && GET_CODE (prev_real_insn (first)) == JUMP_INSN))
1888 abort ();
1889 break;
1892 FREE_REG_SET (live_relevant_regs);
1893 *p = 0;
1896 /* Print debugging trace information if -dg switch is given,
1897 showing the information on which the allocation decisions are based. */
1899 static void
1900 dump_conflicts (FILE *file)
1902 int i;
1903 int has_preferences;
1904 int nregs;
1905 nregs = 0;
1906 for (i = 0; i < max_allocno; i++)
1908 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
1909 continue;
1910 nregs++;
1912 fprintf (file, ";; %d regs to allocate:", nregs);
1913 for (i = 0; i < max_allocno; i++)
1915 int j;
1916 if (reg_renumber[allocno[allocno_order[i]].reg] >= 0)
1917 continue;
1918 fprintf (file, " %d", allocno[allocno_order[i]].reg);
1919 for (j = 0; j < max_regno; j++)
1920 if (reg_allocno[j] == allocno_order[i]
1921 && j != allocno[allocno_order[i]].reg)
1922 fprintf (file, "+%d", j);
1923 if (allocno[allocno_order[i]].size != 1)
1924 fprintf (file, " (%d)", allocno[allocno_order[i]].size);
1926 fprintf (file, "\n");
1928 for (i = 0; i < max_allocno; i++)
1930 int j;
1931 fprintf (file, ";; %d conflicts:", allocno[i].reg);
1932 for (j = 0; j < max_allocno; j++)
1933 if (CONFLICTP (j, i))
1934 fprintf (file, " %d", allocno[j].reg);
1935 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1936 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_conflicts, j))
1937 fprintf (file, " %d", j);
1938 fprintf (file, "\n");
1940 has_preferences = 0;
1941 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1942 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
1943 has_preferences = 1;
1945 if (! has_preferences)
1946 continue;
1947 fprintf (file, ";; %d preferences:", allocno[i].reg);
1948 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1949 if (TEST_HARD_REG_BIT (allocno[i].hard_reg_preferences, j))
1950 fprintf (file, " %d", j);
1951 fprintf (file, "\n");
1953 fprintf (file, "\n");
1956 void
1957 dump_global_regs (FILE *file)
1959 int i, j;
1961 fprintf (file, ";; Register dispositions:\n");
1962 for (i = FIRST_PSEUDO_REGISTER, j = 0; i < max_regno; i++)
1963 if (reg_renumber[i] >= 0)
1965 fprintf (file, "%d in %d ", i, reg_renumber[i]);
1966 if (++j % 6 == 0)
1967 fprintf (file, "\n");
1970 fprintf (file, "\n\n;; Hard regs used: ");
1971 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1972 if (regs_ever_live[i])
1973 fprintf (file, " %d", i);
1974 fprintf (file, "\n\n");