* gcc.dg/Wtrampolines.c: XFAIL AIX.
[official-gcc.git] / gcc / ada / sem_attr.adb
blob7b31ca16ca3a1107eed7fbefa29f574cf9b029d4
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A T T R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2016, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;
28 with Atree; use Atree;
29 with Casing; use Casing;
30 with Checks; use Checks;
31 with Debug; use Debug;
32 with Einfo; use Einfo;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Eval_Fat;
36 with Exp_Dist; use Exp_Dist;
37 with Exp_Util; use Exp_Util;
38 with Expander; use Expander;
39 with Freeze; use Freeze;
40 with Gnatvsn; use Gnatvsn;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Nlists; use Nlists;
45 with Nmake; use Nmake;
46 with Opt; use Opt;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sdefault; use Sdefault;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Cat; use Sem_Cat;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Ch10; use Sem_Ch10;
57 with Sem_Dim; use Sem_Dim;
58 with Sem_Dist; use Sem_Dist;
59 with Sem_Elab; use Sem_Elab;
60 with Sem_Elim; use Sem_Elim;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Prag; use Sem_Prag;
63 with Sem_Res; use Sem_Res;
64 with Sem_Type; use Sem_Type;
65 with Sem_Util; use Sem_Util;
66 with Sem_Warn;
67 with Stand; use Stand;
68 with Sinfo; use Sinfo;
69 with Sinput; use Sinput;
70 with System;
71 with Stringt; use Stringt;
72 with Style;
73 with Stylesw; use Stylesw;
74 with Targparm; use Targparm;
75 with Ttypes; use Ttypes;
76 with Tbuild; use Tbuild;
77 with Uintp; use Uintp;
78 with Uname; use Uname;
79 with Urealp; use Urealp;
81 with System.CRC32; use System.CRC32;
83 package body Sem_Attr is
85 True_Value : constant Uint := Uint_1;
86 False_Value : constant Uint := Uint_0;
87 -- Synonyms to be used when these constants are used as Boolean values
89 Bad_Attribute : exception;
90 -- Exception raised if an error is detected during attribute processing,
91 -- used so that we can abandon the processing so we don't run into
92 -- trouble with cascaded errors.
94 -- The following array is the list of attributes defined in the Ada 83 RM.
95 -- In Ada 83 mode, these are the only recognized attributes. In other Ada
96 -- modes all these attributes are recognized, even if removed in Ada 95.
98 Attribute_83 : constant Attribute_Class_Array := Attribute_Class_Array'(
99 Attribute_Address |
100 Attribute_Aft |
101 Attribute_Alignment |
102 Attribute_Base |
103 Attribute_Callable |
104 Attribute_Constrained |
105 Attribute_Count |
106 Attribute_Delta |
107 Attribute_Digits |
108 Attribute_Emax |
109 Attribute_Epsilon |
110 Attribute_First |
111 Attribute_First_Bit |
112 Attribute_Fore |
113 Attribute_Image |
114 Attribute_Large |
115 Attribute_Last |
116 Attribute_Last_Bit |
117 Attribute_Leading_Part |
118 Attribute_Length |
119 Attribute_Machine_Emax |
120 Attribute_Machine_Emin |
121 Attribute_Machine_Mantissa |
122 Attribute_Machine_Overflows |
123 Attribute_Machine_Radix |
124 Attribute_Machine_Rounds |
125 Attribute_Mantissa |
126 Attribute_Pos |
127 Attribute_Position |
128 Attribute_Pred |
129 Attribute_Range |
130 Attribute_Safe_Emax |
131 Attribute_Safe_Large |
132 Attribute_Safe_Small |
133 Attribute_Size |
134 Attribute_Small |
135 Attribute_Storage_Size |
136 Attribute_Succ |
137 Attribute_Terminated |
138 Attribute_Val |
139 Attribute_Value |
140 Attribute_Width => True,
141 others => False);
143 -- The following array is the list of attributes defined in the Ada 2005
144 -- RM which are not defined in Ada 95. These are recognized in Ada 95 mode,
145 -- but in Ada 95 they are considered to be implementation defined.
147 Attribute_05 : constant Attribute_Class_Array := Attribute_Class_Array'(
148 Attribute_Machine_Rounding |
149 Attribute_Mod |
150 Attribute_Priority |
151 Attribute_Stream_Size |
152 Attribute_Wide_Wide_Width => True,
153 others => False);
155 -- The following array is the list of attributes defined in the Ada 2012
156 -- RM which are not defined in Ada 2005. These are recognized in Ada 95
157 -- and Ada 2005 modes, but are considered to be implementation defined.
159 Attribute_12 : constant Attribute_Class_Array := Attribute_Class_Array'(
160 Attribute_First_Valid |
161 Attribute_Has_Same_Storage |
162 Attribute_Last_Valid |
163 Attribute_Max_Alignment_For_Allocation => True,
164 others => False);
166 -- The following array contains all attributes that imply a modification
167 -- of their prefixes or result in an access value. Such prefixes can be
168 -- considered as lvalues.
170 Attribute_Name_Implies_Lvalue_Prefix : constant Attribute_Class_Array :=
171 Attribute_Class_Array'(
172 Attribute_Access |
173 Attribute_Address |
174 Attribute_Input |
175 Attribute_Read |
176 Attribute_Unchecked_Access |
177 Attribute_Unrestricted_Access => True,
178 others => False);
180 -----------------------
181 -- Local_Subprograms --
182 -----------------------
184 procedure Eval_Attribute (N : Node_Id);
185 -- Performs compile time evaluation of attributes where possible, leaving
186 -- the Is_Static_Expression/Raises_Constraint_Error flags appropriately
187 -- set, and replacing the node with a literal node if the value can be
188 -- computed at compile time. All static attribute references are folded,
189 -- as well as a number of cases of non-static attributes that can always
190 -- be computed at compile time (e.g. floating-point model attributes that
191 -- are applied to non-static subtypes). Of course in such cases, the
192 -- Is_Static_Expression flag will not be set on the resulting literal.
193 -- Note that the only required action of this procedure is to catch the
194 -- static expression cases as described in the RM. Folding of other cases
195 -- is done where convenient, but some additional non-static folding is in
196 -- Expand_N_Attribute_Reference in cases where this is more convenient.
198 function Is_Anonymous_Tagged_Base
199 (Anon : Entity_Id;
200 Typ : Entity_Id) return Boolean;
201 -- For derived tagged types that constrain parent discriminants we build
202 -- an anonymous unconstrained base type. We need to recognize the relation
203 -- between the two when analyzing an access attribute for a constrained
204 -- component, before the full declaration for Typ has been analyzed, and
205 -- where therefore the prefix of the attribute does not match the enclosing
206 -- scope.
208 procedure Set_Boolean_Result (N : Node_Id; B : Boolean);
209 -- Rewrites node N with an occurrence of either Standard_False or
210 -- Standard_True, depending on the value of the parameter B. The
211 -- result is marked as a static expression.
213 -----------------------
214 -- Analyze_Attribute --
215 -----------------------
217 procedure Analyze_Attribute (N : Node_Id) is
218 Loc : constant Source_Ptr := Sloc (N);
219 Aname : constant Name_Id := Attribute_Name (N);
220 P : constant Node_Id := Prefix (N);
221 Exprs : constant List_Id := Expressions (N);
222 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
223 E1 : Node_Id;
224 E2 : Node_Id;
226 P_Type : Entity_Id;
227 -- Type of prefix after analysis
229 P_Base_Type : Entity_Id;
230 -- Base type of prefix after analysis
232 -----------------------
233 -- Local Subprograms --
234 -----------------------
236 procedure Address_Checks;
237 -- Semantic checks for valid use of Address attribute. This was made
238 -- a separate routine with the idea of using it for unrestricted access
239 -- which seems like it should follow the same rules, but that turned
240 -- out to be impractical. So now this is only used for Address.
242 procedure Analyze_Access_Attribute;
243 -- Used for Access, Unchecked_Access, Unrestricted_Access attributes.
244 -- Internally, Id distinguishes which of the three cases is involved.
246 procedure Analyze_Attribute_Old_Result
247 (Legal : out Boolean;
248 Spec_Id : out Entity_Id);
249 -- Common processing for attributes 'Old and 'Result. The routine checks
250 -- that the attribute appears in a postcondition-like aspect or pragma
251 -- associated with a suitable subprogram or a body. Flag Legal is set
252 -- when the above criteria are met. Spec_Id denotes the entity of the
253 -- subprogram [body] or Empty if the attribute is illegal.
255 procedure Bad_Attribute_For_Predicate;
256 -- Output error message for use of a predicate (First, Last, Range) not
257 -- allowed with a type that has predicates. If the type is a generic
258 -- actual, then the message is a warning, and we generate code to raise
259 -- program error with an appropriate reason. No error message is given
260 -- for internally generated uses of the attributes. This legality rule
261 -- only applies to scalar types.
263 procedure Check_Array_Or_Scalar_Type;
264 -- Common procedure used by First, Last, Range attribute to check
265 -- that the prefix is a constrained array or scalar type, or a name
266 -- of an array object, and that an argument appears only if appropriate
267 -- (i.e. only in the array case).
269 procedure Check_Array_Type;
270 -- Common semantic checks for all array attributes. Checks that the
271 -- prefix is a constrained array type or the name of an array object.
272 -- The error message for non-arrays is specialized appropriately.
274 procedure Check_Asm_Attribute;
275 -- Common semantic checks for Asm_Input and Asm_Output attributes
277 procedure Check_Component;
278 -- Common processing for Bit_Position, First_Bit, Last_Bit, and
279 -- Position. Checks prefix is an appropriate selected component.
281 procedure Check_Decimal_Fixed_Point_Type;
282 -- Check that prefix of attribute N is a decimal fixed-point type
284 procedure Check_Dereference;
285 -- If the prefix of attribute is an object of an access type, then
286 -- introduce an explicit dereference, and adjust P_Type accordingly.
288 procedure Check_Discrete_Type;
289 -- Verify that prefix of attribute N is a discrete type
291 procedure Check_E0;
292 -- Check that no attribute arguments are present
294 procedure Check_Either_E0_Or_E1;
295 -- Check that there are zero or one attribute arguments present
297 procedure Check_E1;
298 -- Check that exactly one attribute argument is present
300 procedure Check_E2;
301 -- Check that two attribute arguments are present
303 procedure Check_Enum_Image;
304 -- If the prefix type of 'Image is an enumeration type, set all its
305 -- literals as referenced, since the image function could possibly end
306 -- up referencing any of the literals indirectly. Same for Enum_Val.
307 -- Set the flag only if the reference is in the main code unit. Same
308 -- restriction when resolving 'Value; otherwise an improperly set
309 -- reference when analyzing an inlined body will lose a proper
310 -- warning on a useless with_clause.
312 procedure Check_First_Last_Valid;
313 -- Perform all checks for First_Valid and Last_Valid attributes
315 procedure Check_Fixed_Point_Type;
316 -- Verify that prefix of attribute N is a fixed type
318 procedure Check_Fixed_Point_Type_0;
319 -- Verify that prefix of attribute N is a fixed type and that
320 -- no attribute expressions are present
322 procedure Check_Floating_Point_Type;
323 -- Verify that prefix of attribute N is a float type
325 procedure Check_Floating_Point_Type_0;
326 -- Verify that prefix of attribute N is a float type and that
327 -- no attribute expressions are present
329 procedure Check_Floating_Point_Type_1;
330 -- Verify that prefix of attribute N is a float type and that
331 -- exactly one attribute expression is present
333 procedure Check_Floating_Point_Type_2;
334 -- Verify that prefix of attribute N is a float type and that
335 -- two attribute expressions are present
337 procedure Check_SPARK_05_Restriction_On_Attribute;
338 -- Issue an error in formal mode because attribute N is allowed
340 procedure Check_Integer_Type;
341 -- Verify that prefix of attribute N is an integer type
343 procedure Check_Modular_Integer_Type;
344 -- Verify that prefix of attribute N is a modular integer type
346 procedure Check_Not_CPP_Type;
347 -- Check that P (the prefix of the attribute) is not an CPP type
348 -- for which no Ada predefined primitive is available.
350 procedure Check_Not_Incomplete_Type;
351 -- Check that P (the prefix of the attribute) is not an incomplete
352 -- type or a private type for which no full view has been given.
354 procedure Check_Object_Reference (P : Node_Id);
355 -- Check that P is an object reference
357 procedure Check_PolyORB_Attribute;
358 -- Validity checking for PolyORB/DSA attribute
360 procedure Check_Program_Unit;
361 -- Verify that prefix of attribute N is a program unit
363 procedure Check_Real_Type;
364 -- Verify that prefix of attribute N is fixed or float type
366 procedure Check_Scalar_Type;
367 -- Verify that prefix of attribute N is a scalar type
369 procedure Check_Standard_Prefix;
370 -- Verify that prefix of attribute N is package Standard. Also checks
371 -- that there are no arguments.
373 procedure Check_Stream_Attribute (Nam : TSS_Name_Type);
374 -- Validity checking for stream attribute. Nam is the TSS name of the
375 -- corresponding possible defined attribute function (e.g. for the
376 -- Read attribute, Nam will be TSS_Stream_Read).
378 procedure Check_System_Prefix;
379 -- Verify that prefix of attribute N is package System
381 procedure Check_Task_Prefix;
382 -- Verify that prefix of attribute N is a task or task type
384 procedure Check_Type;
385 -- Verify that the prefix of attribute N is a type
387 procedure Check_Unit_Name (Nod : Node_Id);
388 -- Check that Nod is of the form of a library unit name, i.e that
389 -- it is an identifier, or a selected component whose prefix is
390 -- itself of the form of a library unit name. Note that this is
391 -- quite different from Check_Program_Unit, since it only checks
392 -- the syntactic form of the name, not the semantic identity. This
393 -- is because it is used with attributes (Elab_Body, Elab_Spec and
394 -- Elaborated) which can refer to non-visible unit.
396 procedure Error_Attr (Msg : String; Error_Node : Node_Id);
397 pragma No_Return (Error_Attr);
398 procedure Error_Attr;
399 pragma No_Return (Error_Attr);
400 -- Posts error using Error_Msg_N at given node, sets type of attribute
401 -- node to Any_Type, and then raises Bad_Attribute to avoid any further
402 -- semantic processing. The message typically contains a % insertion
403 -- character which is replaced by the attribute name. The call with
404 -- no arguments is used when the caller has already generated the
405 -- required error messages.
407 procedure Error_Attr_P (Msg : String);
408 pragma No_Return (Error_Attr);
409 -- Like Error_Attr, but error is posted at the start of the prefix
411 procedure Legal_Formal_Attribute;
412 -- Common processing for attributes Definite and Has_Discriminants.
413 -- Checks that prefix is generic indefinite formal type.
415 procedure Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements;
416 -- Common processing for attributes Max_Alignment_For_Allocation and
417 -- Max_Size_In_Storage_Elements.
419 procedure Min_Max;
420 -- Common processing for attributes Max and Min
422 procedure Standard_Attribute (Val : Int);
423 -- Used to process attributes whose prefix is package Standard which
424 -- yield values of type Universal_Integer. The attribute reference
425 -- node is rewritten with an integer literal of the given value which
426 -- is marked as static.
428 procedure Uneval_Old_Msg;
429 -- Called when Loop_Entry or Old is used in a potentially unevaluated
430 -- expression. Generates appropriate message or warning depending on
431 -- the setting of Opt.Uneval_Old (or flags in an N_Aspect_Specification
432 -- node in the aspect case).
434 procedure Unexpected_Argument (En : Node_Id);
435 -- Signal unexpected attribute argument (En is the argument)
437 procedure Validate_Non_Static_Attribute_Function_Call;
438 -- Called when processing an attribute that is a function call to a
439 -- non-static function, i.e. an attribute function that either takes
440 -- non-scalar arguments or returns a non-scalar result. Verifies that
441 -- such a call does not appear in a preelaborable context.
443 --------------------
444 -- Address_Checks --
445 --------------------
447 procedure Address_Checks is
448 begin
449 -- An Address attribute created by expansion is legal even when it
450 -- applies to other entity-denoting expressions.
452 if not Comes_From_Source (N) then
453 return;
455 -- Address attribute on a protected object self reference is legal
457 elsif Is_Protected_Self_Reference (P) then
458 return;
460 -- Address applied to an entity
462 elsif Is_Entity_Name (P) then
463 declare
464 Ent : constant Entity_Id := Entity (P);
466 begin
467 if Is_Subprogram (Ent) then
468 Set_Address_Taken (Ent);
469 Kill_Current_Values (Ent);
471 -- An Address attribute is accepted when generated by the
472 -- compiler for dispatching operation, and an error is
473 -- issued once the subprogram is frozen (to avoid confusing
474 -- errors about implicit uses of Address in the dispatch
475 -- table initialization).
477 if Has_Pragma_Inline_Always (Entity (P))
478 and then Comes_From_Source (P)
479 then
480 Error_Attr_P
481 ("prefix of % attribute cannot be Inline_Always "
482 & "subprogram");
484 -- It is illegal to apply 'Address to an intrinsic
485 -- subprogram. This is now formalized in AI05-0095.
486 -- In an instance, an attempt to obtain 'Address of an
487 -- intrinsic subprogram (e.g the renaming of a predefined
488 -- operator that is an actual) raises Program_Error.
490 elsif Convention (Ent) = Convention_Intrinsic then
491 if In_Instance then
492 Rewrite (N,
493 Make_Raise_Program_Error (Loc,
494 Reason => PE_Address_Of_Intrinsic));
496 else
497 Error_Msg_Name_1 := Aname;
498 Error_Msg_N
499 ("cannot take % of intrinsic subprogram", N);
500 end if;
502 -- Issue an error if prefix denotes an eliminated subprogram
504 else
505 Check_For_Eliminated_Subprogram (P, Ent);
506 end if;
508 -- Object or label reference
510 elsif Is_Object (Ent) or else Ekind (Ent) = E_Label then
511 Set_Address_Taken (Ent);
513 -- Deal with No_Implicit_Aliasing restriction
515 if Restriction_Check_Required (No_Implicit_Aliasing) then
516 if not Is_Aliased_View (P) then
517 Check_Restriction (No_Implicit_Aliasing, P);
518 else
519 Check_No_Implicit_Aliasing (P);
520 end if;
521 end if;
523 -- If we have an address of an object, and the attribute
524 -- comes from source, then set the object as potentially
525 -- source modified. We do this because the resulting address
526 -- can potentially be used to modify the variable and we
527 -- might not detect this, leading to some junk warnings.
529 Set_Never_Set_In_Source (Ent, False);
531 -- Allow Address to be applied to task or protected type,
532 -- returning null address (what is that about???)
534 elsif (Is_Concurrent_Type (Etype (Ent))
535 and then Etype (Ent) = Base_Type (Ent))
536 or else Ekind (Ent) = E_Package
537 or else Is_Generic_Unit (Ent)
538 then
539 Rewrite (N,
540 New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
542 -- Anything else is illegal
544 else
545 Error_Attr ("invalid prefix for % attribute", P);
546 end if;
547 end;
549 -- Object is OK
551 elsif Is_Object_Reference (P) then
552 return;
554 -- Subprogram called using dot notation
556 elsif Nkind (P) = N_Selected_Component
557 and then Is_Subprogram (Entity (Selector_Name (P)))
558 then
559 return;
561 -- What exactly are we allowing here ??? and is this properly
562 -- documented in the sinfo documentation for this node ???
564 elsif Relaxed_RM_Semantics
565 and then Nkind (P) = N_Attribute_Reference
566 then
567 return;
569 -- All other non-entity name cases are illegal
571 else
572 Error_Attr ("invalid prefix for % attribute", P);
573 end if;
574 end Address_Checks;
576 ------------------------------
577 -- Analyze_Access_Attribute --
578 ------------------------------
580 procedure Analyze_Access_Attribute is
581 Acc_Type : Entity_Id;
583 Scop : Entity_Id;
584 Typ : Entity_Id;
586 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id;
587 -- Build an access-to-object type whose designated type is DT,
588 -- and whose Ekind is appropriate to the attribute type. The
589 -- type that is constructed is returned as the result.
591 procedure Build_Access_Subprogram_Type (P : Node_Id);
592 -- Build an access to subprogram whose designated type is the type of
593 -- the prefix. If prefix is overloaded, so is the node itself. The
594 -- result is stored in Acc_Type.
596 function OK_Self_Reference return Boolean;
597 -- An access reference whose prefix is a type can legally appear
598 -- within an aggregate, where it is obtained by expansion of
599 -- a defaulted aggregate. The enclosing aggregate that contains
600 -- the self-referenced is flagged so that the self-reference can
601 -- be expanded into a reference to the target object (see exp_aggr).
603 ------------------------------
604 -- Build_Access_Object_Type --
605 ------------------------------
607 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id is
608 Typ : constant Entity_Id :=
609 New_Internal_Entity
610 (E_Access_Attribute_Type, Current_Scope, Loc, 'A');
611 begin
612 Set_Etype (Typ, Typ);
613 Set_Is_Itype (Typ);
614 Set_Associated_Node_For_Itype (Typ, N);
615 Set_Directly_Designated_Type (Typ, DT);
616 return Typ;
617 end Build_Access_Object_Type;
619 ----------------------------------
620 -- Build_Access_Subprogram_Type --
621 ----------------------------------
623 procedure Build_Access_Subprogram_Type (P : Node_Id) is
624 Index : Interp_Index;
625 It : Interp;
627 procedure Check_Local_Access (E : Entity_Id);
628 -- Deal with possible access to local subprogram. If we have such
629 -- an access, we set a flag to kill all tracked values on any call
630 -- because this access value may be passed around, and any called
631 -- code might use it to access a local procedure which clobbers a
632 -- tracked value. If the scope is a loop or block, indicate that
633 -- value tracking is disabled for the enclosing subprogram.
635 function Get_Kind (E : Entity_Id) return Entity_Kind;
636 -- Distinguish between access to regular/protected subprograms
638 ------------------------
639 -- Check_Local_Access --
640 ------------------------
642 procedure Check_Local_Access (E : Entity_Id) is
643 begin
644 if not Is_Library_Level_Entity (E) then
645 Set_Suppress_Value_Tracking_On_Call (Current_Scope);
646 Set_Suppress_Value_Tracking_On_Call
647 (Nearest_Dynamic_Scope (Current_Scope));
648 end if;
649 end Check_Local_Access;
651 --------------
652 -- Get_Kind --
653 --------------
655 function Get_Kind (E : Entity_Id) return Entity_Kind is
656 begin
657 if Convention (E) = Convention_Protected then
658 return E_Access_Protected_Subprogram_Type;
659 else
660 return E_Access_Subprogram_Type;
661 end if;
662 end Get_Kind;
664 -- Start of processing for Build_Access_Subprogram_Type
666 begin
667 -- In the case of an access to subprogram, use the name of the
668 -- subprogram itself as the designated type. Type-checking in
669 -- this case compares the signatures of the designated types.
671 -- Note: This fragment of the tree is temporarily malformed
672 -- because the correct tree requires an E_Subprogram_Type entity
673 -- as the designated type. In most cases this designated type is
674 -- later overridden by the semantics with the type imposed by the
675 -- context during the resolution phase. In the specific case of
676 -- the expression Address!(Prim'Unrestricted_Access), used to
677 -- initialize slots of dispatch tables, this work will be done by
678 -- the expander (see Exp_Aggr).
680 -- The reason to temporarily add this kind of node to the tree
681 -- instead of a proper E_Subprogram_Type itype, is the following:
682 -- in case of errors found in the source file we report better
683 -- error messages. For example, instead of generating the
684 -- following error:
686 -- "expected access to subprogram with profile
687 -- defined at line X"
689 -- we currently generate:
691 -- "expected access to function Z defined at line X"
693 Set_Etype (N, Any_Type);
695 if not Is_Overloaded (P) then
696 Check_Local_Access (Entity (P));
698 if not Is_Intrinsic_Subprogram (Entity (P)) then
699 Acc_Type := Create_Itype (Get_Kind (Entity (P)), N);
700 Set_Is_Public (Acc_Type, False);
701 Set_Etype (Acc_Type, Acc_Type);
702 Set_Convention (Acc_Type, Convention (Entity (P)));
703 Set_Directly_Designated_Type (Acc_Type, Entity (P));
704 Set_Etype (N, Acc_Type);
705 Freeze_Before (N, Acc_Type);
706 end if;
708 else
709 Get_First_Interp (P, Index, It);
710 while Present (It.Nam) loop
711 Check_Local_Access (It.Nam);
713 if not Is_Intrinsic_Subprogram (It.Nam) then
714 Acc_Type := Create_Itype (Get_Kind (It.Nam), N);
715 Set_Is_Public (Acc_Type, False);
716 Set_Etype (Acc_Type, Acc_Type);
717 Set_Convention (Acc_Type, Convention (It.Nam));
718 Set_Directly_Designated_Type (Acc_Type, It.Nam);
719 Add_One_Interp (N, Acc_Type, Acc_Type);
720 Freeze_Before (N, Acc_Type);
721 end if;
723 Get_Next_Interp (Index, It);
724 end loop;
725 end if;
727 -- Cannot be applied to intrinsic. Looking at the tests above,
728 -- the only way Etype (N) can still be set to Any_Type is if
729 -- Is_Intrinsic_Subprogram was True for some referenced entity.
731 if Etype (N) = Any_Type then
732 Error_Attr_P ("prefix of % attribute cannot be intrinsic");
733 end if;
734 end Build_Access_Subprogram_Type;
736 ----------------------
737 -- OK_Self_Reference --
738 ----------------------
740 function OK_Self_Reference return Boolean is
741 Par : Node_Id;
743 begin
744 Par := Parent (N);
745 while Present (Par)
746 and then
747 (Nkind (Par) = N_Component_Association
748 or else Nkind (Par) in N_Subexpr)
749 loop
750 if Nkind_In (Par, N_Aggregate, N_Extension_Aggregate) then
751 if Etype (Par) = Typ then
752 Set_Has_Self_Reference (Par);
754 -- Check the context: the aggregate must be part of the
755 -- initialization of a type or component, or it is the
756 -- resulting expansion in an initialization procedure.
758 if Is_Init_Proc (Current_Scope) then
759 return True;
760 else
761 Par := Parent (Par);
762 while Present (Par) loop
763 if Nkind (Par) = N_Full_Type_Declaration then
764 return True;
765 end if;
767 Par := Parent (Par);
768 end loop;
769 end if;
771 return False;
772 end if;
773 end if;
775 Par := Parent (Par);
776 end loop;
778 -- No enclosing aggregate, or not a self-reference
780 return False;
781 end OK_Self_Reference;
783 -- Start of processing for Analyze_Access_Attribute
785 begin
786 Check_SPARK_05_Restriction_On_Attribute;
787 Check_E0;
789 if Nkind (P) = N_Character_Literal then
790 Error_Attr_P
791 ("prefix of % attribute cannot be enumeration literal");
792 end if;
794 -- Case of access to subprogram
796 if Is_Entity_Name (P) and then Is_Overloadable (Entity (P)) then
797 if Has_Pragma_Inline_Always (Entity (P)) then
798 Error_Attr_P
799 ("prefix of % attribute cannot be Inline_Always subprogram");
801 elsif Aname = Name_Unchecked_Access then
802 Error_Attr ("attribute% cannot be applied to a subprogram", P);
803 end if;
805 -- Issue an error if the prefix denotes an eliminated subprogram
807 Check_For_Eliminated_Subprogram (P, Entity (P));
809 -- Check for obsolescent subprogram reference
811 Check_Obsolescent_2005_Entity (Entity (P), P);
813 -- Build the appropriate subprogram type
815 Build_Access_Subprogram_Type (P);
817 -- For P'Access or P'Unrestricted_Access, where P is a nested
818 -- subprogram, we might be passing P to another subprogram (but we
819 -- don't check that here), which might call P. P could modify
820 -- local variables, so we need to kill current values. It is
821 -- important not to do this for library-level subprograms, because
822 -- Kill_Current_Values is very inefficient in the case of library
823 -- level packages with lots of tagged types.
825 if Is_Library_Level_Entity (Entity (Prefix (N))) then
826 null;
828 -- Do not kill values on nodes initializing dispatch tables
829 -- slots. The construct Prim_Ptr!(Prim'Unrestricted_Access)
830 -- is currently generated by the expander only for this
831 -- purpose. Done to keep the quality of warnings currently
832 -- generated by the compiler (otherwise any declaration of
833 -- a tagged type cleans constant indications from its scope).
835 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
836 and then (Etype (Parent (N)) = RTE (RE_Prim_Ptr)
837 or else
838 Etype (Parent (N)) = RTE (RE_Size_Ptr))
839 and then Is_Dispatching_Operation
840 (Directly_Designated_Type (Etype (N)))
841 then
842 null;
844 else
845 Kill_Current_Values;
846 end if;
848 -- In the static elaboration model, treat the attribute reference
849 -- as a call for elaboration purposes. Suppress this treatment
850 -- under debug flag. In any case, we are all done.
852 if not Dynamic_Elaboration_Checks and not Debug_Flag_Dot_UU then
853 Check_Elab_Call (N);
854 end if;
856 return;
858 -- Component is an operation of a protected type
860 elsif Nkind (P) = N_Selected_Component
861 and then Is_Overloadable (Entity (Selector_Name (P)))
862 then
863 if Ekind (Entity (Selector_Name (P))) = E_Entry then
864 Error_Attr_P ("prefix of % attribute must be subprogram");
865 end if;
867 Build_Access_Subprogram_Type (Selector_Name (P));
868 return;
869 end if;
871 -- Deal with incorrect reference to a type, but note that some
872 -- accesses are allowed: references to the current type instance,
873 -- or in Ada 2005 self-referential pointer in a default-initialized
874 -- aggregate.
876 if Is_Entity_Name (P) then
877 Typ := Entity (P);
879 -- The reference may appear in an aggregate that has been expanded
880 -- into a loop. Locate scope of type definition, if any.
882 Scop := Current_Scope;
883 while Ekind (Scop) = E_Loop loop
884 Scop := Scope (Scop);
885 end loop;
887 if Is_Type (Typ) then
889 -- OK if we are within the scope of a limited type
890 -- let's mark the component as having per object constraint
892 if Is_Anonymous_Tagged_Base (Scop, Typ) then
893 Typ := Scop;
894 Set_Entity (P, Typ);
895 Set_Etype (P, Typ);
896 end if;
898 if Typ = Scop then
899 declare
900 Q : Node_Id := Parent (N);
902 begin
903 while Present (Q)
904 and then Nkind (Q) /= N_Component_Declaration
905 loop
906 Q := Parent (Q);
907 end loop;
909 if Present (Q) then
910 Set_Has_Per_Object_Constraint
911 (Defining_Identifier (Q), True);
912 end if;
913 end;
915 if Nkind (P) = N_Expanded_Name then
916 Error_Msg_F
917 ("current instance prefix must be a direct name", P);
918 end if;
920 -- If a current instance attribute appears in a component
921 -- constraint it must appear alone; other contexts (spec-
922 -- expressions, within a task body) are not subject to this
923 -- restriction.
925 if not In_Spec_Expression
926 and then not Has_Completion (Scop)
927 and then not
928 Nkind_In (Parent (N), N_Discriminant_Association,
929 N_Index_Or_Discriminant_Constraint)
930 then
931 Error_Msg_N
932 ("current instance attribute must appear alone", N);
933 end if;
935 if Is_CPP_Class (Root_Type (Typ)) then
936 Error_Msg_N
937 ("??current instance unsupported for derivations of "
938 & "'C'P'P types", N);
939 end if;
941 -- OK if we are in initialization procedure for the type
942 -- in question, in which case the reference to the type
943 -- is rewritten as a reference to the current object.
945 elsif Ekind (Scop) = E_Procedure
946 and then Is_Init_Proc (Scop)
947 and then Etype (First_Formal (Scop)) = Typ
948 then
949 Rewrite (N,
950 Make_Attribute_Reference (Loc,
951 Prefix => Make_Identifier (Loc, Name_uInit),
952 Attribute_Name => Name_Unrestricted_Access));
953 Analyze (N);
954 return;
956 -- OK if a task type, this test needs sharpening up ???
958 elsif Is_Task_Type (Typ) then
959 null;
961 -- OK if self-reference in an aggregate in Ada 2005, and
962 -- the reference comes from a copied default expression.
964 -- Note that we check legality of self-reference even if the
965 -- expression comes from source, e.g. when a single component
966 -- association in an aggregate has a box association.
968 elsif Ada_Version >= Ada_2005
969 and then OK_Self_Reference
970 then
971 null;
973 -- OK if reference to current instance of a protected object
975 elsif Is_Protected_Self_Reference (P) then
976 null;
978 -- Otherwise we have an error case
980 else
981 Error_Attr ("% attribute cannot be applied to type", P);
982 return;
983 end if;
984 end if;
985 end if;
987 -- If we fall through, we have a normal access to object case
989 -- Unrestricted_Access is (for now) legal wherever an allocator would
990 -- be legal, so its Etype is set to E_Allocator. The expected type
991 -- of the other attributes is a general access type, and therefore
992 -- we label them with E_Access_Attribute_Type.
994 if not Is_Overloaded (P) then
995 Acc_Type := Build_Access_Object_Type (P_Type);
996 Set_Etype (N, Acc_Type);
998 else
999 declare
1000 Index : Interp_Index;
1001 It : Interp;
1002 begin
1003 Set_Etype (N, Any_Type);
1004 Get_First_Interp (P, Index, It);
1005 while Present (It.Typ) loop
1006 Acc_Type := Build_Access_Object_Type (It.Typ);
1007 Add_One_Interp (N, Acc_Type, Acc_Type);
1008 Get_Next_Interp (Index, It);
1009 end loop;
1010 end;
1011 end if;
1013 -- Special cases when we can find a prefix that is an entity name
1015 declare
1016 PP : Node_Id;
1017 Ent : Entity_Id;
1019 begin
1020 PP := P;
1021 loop
1022 if Is_Entity_Name (PP) then
1023 Ent := Entity (PP);
1025 -- If we have an access to an object, and the attribute
1026 -- comes from source, then set the object as potentially
1027 -- source modified. We do this because the resulting access
1028 -- pointer can be used to modify the variable, and we might
1029 -- not detect this, leading to some junk warnings.
1031 -- We only do this for source references, since otherwise
1032 -- we can suppress warnings, e.g. from the unrestricted
1033 -- access generated for validity checks in -gnatVa mode.
1035 if Comes_From_Source (N) then
1036 Set_Never_Set_In_Source (Ent, False);
1037 end if;
1039 -- Mark entity as address taken, and kill current values
1041 Set_Address_Taken (Ent);
1042 Kill_Current_Values (Ent);
1043 exit;
1045 elsif Nkind_In (PP, N_Selected_Component,
1046 N_Indexed_Component)
1047 then
1048 PP := Prefix (PP);
1050 else
1051 exit;
1052 end if;
1053 end loop;
1054 end;
1056 -- Check for aliased view.. We allow a nonaliased prefix when within
1057 -- an instance because the prefix may have been a tagged formal
1058 -- object, which is defined to be aliased even when the actual
1059 -- might not be (other instance cases will have been caught in the
1060 -- generic). Similarly, within an inlined body we know that the
1061 -- attribute is legal in the original subprogram, and therefore
1062 -- legal in the expansion.
1064 if not Is_Aliased_View (P)
1065 and then not In_Instance
1066 and then not In_Inlined_Body
1067 and then Comes_From_Source (N)
1068 then
1069 -- Here we have a non-aliased view. This is illegal unless we
1070 -- have the case of Unrestricted_Access, where for now we allow
1071 -- this (we will reject later if expected type is access to an
1072 -- unconstrained array with a thin pointer).
1074 -- No need for an error message on a generated access reference
1075 -- for the controlling argument in a dispatching call: error will
1076 -- be reported when resolving the call.
1078 if Aname /= Name_Unrestricted_Access then
1079 Error_Attr_P ("prefix of % attribute must be aliased");
1080 Check_No_Implicit_Aliasing (P);
1082 -- For Unrestricted_Access, record that prefix is not aliased
1083 -- to simplify legality check later on.
1085 else
1086 Set_Non_Aliased_Prefix (N);
1087 end if;
1089 -- If we have an aliased view, and we have Unrestricted_Access, then
1090 -- output a warning that Unchecked_Access would have been fine, and
1091 -- change the node to be Unchecked_Access.
1093 else
1094 -- For now, hold off on this change ???
1096 null;
1097 end if;
1098 end Analyze_Access_Attribute;
1100 ----------------------------------
1101 -- Analyze_Attribute_Old_Result --
1102 ----------------------------------
1104 procedure Analyze_Attribute_Old_Result
1105 (Legal : out Boolean;
1106 Spec_Id : out Entity_Id)
1108 procedure Check_Placement_In_Check (Prag : Node_Id);
1109 -- Verify that the attribute appears within pragma Check that mimics
1110 -- a postcondition.
1112 procedure Check_Placement_In_Contract_Cases (Prag : Node_Id);
1113 -- Verify that the attribute appears within a consequence of aspect
1114 -- or pragma Contract_Cases denoted by Prag.
1116 procedure Check_Placement_In_Test_Case (Prag : Node_Id);
1117 -- Verify that the attribute appears within the "Ensures" argument of
1118 -- aspect or pragma Test_Case denoted by Prag.
1120 function Is_Within
1121 (Nod : Node_Id;
1122 Encl_Nod : Node_Id) return Boolean;
1123 -- Subsidiary to Check_Placemenet_In_XXX. Determine whether arbitrary
1124 -- node Nod is within enclosing node Encl_Nod.
1126 procedure Placement_Error;
1127 -- Emit a general error when the attributes does not appear in a
1128 -- postcondition-like aspect or pragma.
1130 ------------------------------
1131 -- Check_Placement_In_Check --
1132 ------------------------------
1134 procedure Check_Placement_In_Check (Prag : Node_Id) is
1135 Args : constant List_Id := Pragma_Argument_Associations (Prag);
1136 Nam : constant Name_Id := Chars (Get_Pragma_Arg (First (Args)));
1138 begin
1139 -- The "Name" argument of pragma Check denotes a postcondition
1141 if Nam_In (Nam, Name_Post,
1142 Name_Post_Class,
1143 Name_Postcondition,
1144 Name_Refined_Post)
1145 then
1146 null;
1148 -- Otherwise the placement of the attribute is illegal
1150 else
1151 Placement_Error;
1152 end if;
1153 end Check_Placement_In_Check;
1155 ---------------------------------------
1156 -- Check_Placement_In_Contract_Cases --
1157 ---------------------------------------
1159 procedure Check_Placement_In_Contract_Cases (Prag : Node_Id) is
1160 Arg : Node_Id;
1161 Cases : Node_Id;
1162 CCase : Node_Id;
1164 begin
1165 -- Obtain the argument of the aspect or pragma
1167 if Nkind (Prag) = N_Aspect_Specification then
1168 Arg := Prag;
1169 else
1170 Arg := First (Pragma_Argument_Associations (Prag));
1171 end if;
1173 Cases := Expression (Arg);
1175 if Present (Component_Associations (Cases)) then
1176 CCase := First (Component_Associations (Cases));
1177 while Present (CCase) loop
1179 -- Detect whether the attribute appears within the
1180 -- consequence of the current contract case.
1182 if Nkind (CCase) = N_Component_Association
1183 and then Is_Within (N, Expression (CCase))
1184 then
1185 return;
1186 end if;
1188 Next (CCase);
1189 end loop;
1190 end if;
1192 -- Otherwise aspect or pragma Contract_Cases is either malformed
1193 -- or the attribute does not appear within a consequence.
1195 Error_Attr
1196 ("attribute % must appear in the consequence of a contract case",
1198 end Check_Placement_In_Contract_Cases;
1200 ----------------------------------
1201 -- Check_Placement_In_Test_Case --
1202 ----------------------------------
1204 procedure Check_Placement_In_Test_Case (Prag : Node_Id) is
1205 Arg : constant Node_Id :=
1206 Test_Case_Arg
1207 (Prag => Prag,
1208 Arg_Nam => Name_Ensures,
1209 From_Aspect => Nkind (Prag) = N_Aspect_Specification);
1211 begin
1212 -- Detect whether the attribute appears within the "Ensures"
1213 -- expression of aspect or pragma Test_Case.
1215 if Present (Arg) and then Is_Within (N, Arg) then
1216 null;
1218 else
1219 Error_Attr
1220 ("attribute % must appear in the ensures expression of a "
1221 & "test case", P);
1222 end if;
1223 end Check_Placement_In_Test_Case;
1225 ---------------
1226 -- Is_Within --
1227 ---------------
1229 function Is_Within
1230 (Nod : Node_Id;
1231 Encl_Nod : Node_Id) return Boolean
1233 Par : Node_Id;
1235 begin
1236 Par := Nod;
1237 while Present (Par) loop
1238 if Par = Encl_Nod then
1239 return True;
1241 -- Prevent the search from going too far
1243 elsif Is_Body_Or_Package_Declaration (Par) then
1244 exit;
1245 end if;
1247 Par := Parent (Par);
1248 end loop;
1250 return False;
1251 end Is_Within;
1253 ---------------------
1254 -- Placement_Error --
1255 ---------------------
1257 procedure Placement_Error is
1258 begin
1259 if Aname = Name_Old then
1260 Error_Attr ("attribute % can only appear in postcondition", P);
1262 -- Specialize the error message for attribute 'Result
1264 else
1265 Error_Attr
1266 ("attribute % can only appear in postcondition of function",
1268 end if;
1269 end Placement_Error;
1271 -- Local variables
1273 Prag : Node_Id;
1274 Prag_Nam : Name_Id;
1275 Subp_Decl : Node_Id;
1277 -- Start of processing for Analyze_Attribute_Old_Result
1279 begin
1280 -- Assume that the attribute is illegal
1282 Legal := False;
1283 Spec_Id := Empty;
1285 -- Traverse the parent chain to find the aspect or pragma where the
1286 -- attribute resides.
1288 Prag := N;
1289 while Present (Prag) loop
1290 if Nkind_In (Prag, N_Aspect_Specification, N_Pragma) then
1291 exit;
1293 -- Prevent the search from going too far
1295 elsif Is_Body_Or_Package_Declaration (Prag) then
1296 exit;
1297 end if;
1299 Prag := Parent (Prag);
1300 end loop;
1302 -- The attribute is allowed to appear only in postcondition-like
1303 -- aspects or pragmas.
1305 if Nkind_In (Prag, N_Aspect_Specification, N_Pragma) then
1306 if Nkind (Prag) = N_Aspect_Specification then
1307 Prag_Nam := Chars (Identifier (Prag));
1308 else
1309 Prag_Nam := Pragma_Name (Prag);
1310 end if;
1312 if Prag_Nam = Name_Check then
1313 Check_Placement_In_Check (Prag);
1315 elsif Prag_Nam = Name_Contract_Cases then
1316 Check_Placement_In_Contract_Cases (Prag);
1318 -- Attribute 'Result is allowed to appear in aspect or pragma
1319 -- [Refined_]Depends (SPARK RM 6.1.5(11)).
1321 elsif Nam_In (Prag_Nam, Name_Depends, Name_Refined_Depends)
1322 and then Aname = Name_Result
1323 then
1324 null;
1326 elsif Nam_In (Prag_Nam, Name_Post,
1327 Name_Post_Class,
1328 Name_Postcondition,
1329 Name_Refined_Post)
1330 then
1331 null;
1333 elsif Prag_Nam = Name_Test_Case then
1334 Check_Placement_In_Test_Case (Prag);
1336 else
1337 Placement_Error;
1338 return;
1339 end if;
1341 -- Otherwise the placement of the attribute is illegal
1343 else
1344 Placement_Error;
1345 return;
1346 end if;
1348 -- Find the related subprogram subject to the aspect or pragma
1350 if Nkind (Prag) = N_Aspect_Specification then
1351 Subp_Decl := Parent (Prag);
1352 else
1353 Subp_Decl := Find_Related_Declaration_Or_Body (Prag);
1354 end if;
1356 -- The aspect or pragma where the attribute resides should be
1357 -- associated with a subprogram declaration or a body. If this is not
1358 -- the case, then the aspect or pragma is illegal. Return as analysis
1359 -- cannot be carried out. Note that it is legal to have the aspect
1360 -- appear on a subprogram renaming, when the renamed entity is an
1361 -- attribute reference.
1363 -- Generating C code the internally built nested _postcondition
1364 -- subprograms are inlined; after expanded, inlined aspects are
1365 -- located in the internal block generated by the frontend.
1367 if Nkind (Subp_Decl) = N_Block_Statement
1368 and then Modify_Tree_For_C
1369 and then In_Inlined_Body
1370 then
1371 null;
1373 elsif not Nkind_In (Subp_Decl, N_Abstract_Subprogram_Declaration,
1374 N_Entry_Declaration,
1375 N_Generic_Subprogram_Declaration,
1376 N_Subprogram_Body,
1377 N_Subprogram_Body_Stub,
1378 N_Subprogram_Declaration,
1379 N_Subprogram_Renaming_Declaration)
1380 then
1381 return;
1382 end if;
1384 -- If we get here, then the attribute is legal
1386 Legal := True;
1387 Spec_Id := Unique_Defining_Entity (Subp_Decl);
1389 -- When generating C code, nested _postcondition subprograms are
1390 -- inlined by the front end to avoid problems (when unnested) with
1391 -- referenced itypes. Handle that here, since as part of inlining the
1392 -- expander nests subprogram within a dummy procedure named _parent
1393 -- (see Build_Postconditions_Procedure and Build_Body_To_Inline).
1394 -- Hence, in this context, the spec_id of _postconditions is the
1395 -- enclosing scope.
1397 if Modify_Tree_For_C
1398 and then Chars (Spec_Id) = Name_uParent
1399 and then Chars (Scope (Spec_Id)) = Name_uPostconditions
1400 then
1401 -- This situation occurs only when preanalyzing the inlined body
1403 pragma Assert (not Full_Analysis);
1405 Spec_Id := Scope (Spec_Id);
1406 pragma Assert (Is_Inlined (Spec_Id));
1407 end if;
1408 end Analyze_Attribute_Old_Result;
1410 ---------------------------------
1411 -- Bad_Attribute_For_Predicate --
1412 ---------------------------------
1414 procedure Bad_Attribute_For_Predicate is
1415 begin
1416 if Is_Scalar_Type (P_Type)
1417 and then Comes_From_Source (N)
1418 then
1419 Error_Msg_Name_1 := Aname;
1420 Bad_Predicated_Subtype_Use
1421 ("type& has predicates, attribute % not allowed", N, P_Type);
1422 end if;
1423 end Bad_Attribute_For_Predicate;
1425 --------------------------------
1426 -- Check_Array_Or_Scalar_Type --
1427 --------------------------------
1429 procedure Check_Array_Or_Scalar_Type is
1430 function In_Aspect_Specification return Boolean;
1431 -- A current instance of a type in an aspect specification is an
1432 -- object and not a type, and therefore cannot be of a scalar type
1433 -- in the prefix of one of the array attributes if the attribute
1434 -- reference is part of an aspect expression.
1436 -----------------------------
1437 -- In_Aspect_Specification --
1438 -----------------------------
1440 function In_Aspect_Specification return Boolean is
1441 P : Node_Id;
1443 begin
1444 P := Parent (N);
1445 while Present (P) loop
1446 if Nkind (P) = N_Aspect_Specification then
1447 return P_Type = Entity (P);
1449 elsif Nkind (P) in N_Declaration then
1450 return False;
1451 end if;
1453 P := Parent (P);
1454 end loop;
1456 return False;
1457 end In_Aspect_Specification;
1459 -- Local variables
1461 Dims : Int;
1462 Index : Entity_Id;
1464 -- Start of processing for Check_Array_Or_Scalar_Type
1466 begin
1467 -- Case of string literal or string literal subtype. These cases
1468 -- cannot arise from legal Ada code, but the expander is allowed
1469 -- to generate them. They require special handling because string
1470 -- literal subtypes do not have standard bounds (the whole idea
1471 -- of these subtypes is to avoid having to generate the bounds)
1473 if Ekind (P_Type) = E_String_Literal_Subtype then
1474 Set_Etype (N, Etype (First_Index (P_Base_Type)));
1475 return;
1477 -- Scalar types
1479 elsif Is_Scalar_Type (P_Type) then
1480 Check_Type;
1482 if Present (E1) then
1483 Error_Attr ("invalid argument in % attribute", E1);
1485 elsif In_Aspect_Specification then
1486 Error_Attr
1487 ("prefix of % attribute cannot be the current instance of a "
1488 & "scalar type", P);
1490 else
1491 Set_Etype (N, P_Base_Type);
1492 return;
1493 end if;
1495 -- The following is a special test to allow 'First to apply to
1496 -- private scalar types if the attribute comes from generated
1497 -- code. This occurs in the case of Normalize_Scalars code.
1499 elsif Is_Private_Type (P_Type)
1500 and then Present (Full_View (P_Type))
1501 and then Is_Scalar_Type (Full_View (P_Type))
1502 and then not Comes_From_Source (N)
1503 then
1504 Set_Etype (N, Implementation_Base_Type (P_Type));
1506 -- Array types other than string literal subtypes handled above
1508 else
1509 Check_Array_Type;
1511 -- We know prefix is an array type, or the name of an array
1512 -- object, and that the expression, if present, is static
1513 -- and within the range of the dimensions of the type.
1515 pragma Assert (Is_Array_Type (P_Type));
1516 Index := First_Index (P_Base_Type);
1518 if No (E1) then
1520 -- First dimension assumed
1522 Set_Etype (N, Base_Type (Etype (Index)));
1524 else
1525 Dims := UI_To_Int (Intval (E1));
1527 for J in 1 .. Dims - 1 loop
1528 Next_Index (Index);
1529 end loop;
1531 Set_Etype (N, Base_Type (Etype (Index)));
1532 Set_Etype (E1, Standard_Integer);
1533 end if;
1534 end if;
1535 end Check_Array_Or_Scalar_Type;
1537 ----------------------
1538 -- Check_Array_Type --
1539 ----------------------
1541 procedure Check_Array_Type is
1542 D : Int;
1543 -- Dimension number for array attributes
1545 begin
1546 -- If the type is a string literal type, then this must be generated
1547 -- internally, and no further check is required on its legality.
1549 if Ekind (P_Type) = E_String_Literal_Subtype then
1550 return;
1552 -- If the type is a composite, it is an illegal aggregate, no point
1553 -- in going on.
1555 elsif P_Type = Any_Composite then
1556 raise Bad_Attribute;
1557 end if;
1559 -- Normal case of array type or subtype
1561 Check_Either_E0_Or_E1;
1562 Check_Dereference;
1564 if Is_Array_Type (P_Type) then
1565 if not Is_Constrained (P_Type)
1566 and then Is_Entity_Name (P)
1567 and then Is_Type (Entity (P))
1568 then
1569 -- Note: we do not call Error_Attr here, since we prefer to
1570 -- continue, using the relevant index type of the array,
1571 -- even though it is unconstrained. This gives better error
1572 -- recovery behavior.
1574 Error_Msg_Name_1 := Aname;
1575 Error_Msg_F
1576 ("prefix for % attribute must be constrained array", P);
1577 end if;
1579 -- The attribute reference freezes the type, and thus the
1580 -- component type, even if the attribute may not depend on the
1581 -- component. Diagnose arrays with incomplete components now.
1582 -- If the prefix is an access to array, this does not freeze
1583 -- the designated type.
1585 if Nkind (P) /= N_Explicit_Dereference then
1586 Check_Fully_Declared (Component_Type (P_Type), P);
1587 end if;
1589 D := Number_Dimensions (P_Type);
1591 else
1592 if Is_Private_Type (P_Type) then
1593 Error_Attr_P ("prefix for % attribute may not be private type");
1595 elsif Is_Access_Type (P_Type)
1596 and then Is_Array_Type (Designated_Type (P_Type))
1597 and then Is_Entity_Name (P)
1598 and then Is_Type (Entity (P))
1599 then
1600 Error_Attr_P ("prefix of % attribute cannot be access type");
1602 elsif Attr_Id = Attribute_First
1603 or else
1604 Attr_Id = Attribute_Last
1605 then
1606 Error_Attr ("invalid prefix for % attribute", P);
1608 else
1609 Error_Attr_P ("prefix for % attribute must be array");
1610 end if;
1611 end if;
1613 if Present (E1) then
1614 Resolve (E1, Any_Integer);
1615 Set_Etype (E1, Standard_Integer);
1617 if not Is_OK_Static_Expression (E1)
1618 or else Raises_Constraint_Error (E1)
1619 then
1620 Flag_Non_Static_Expr
1621 ("expression for dimension must be static!", E1);
1622 Error_Attr;
1624 elsif UI_To_Int (Expr_Value (E1)) > D
1625 or else UI_To_Int (Expr_Value (E1)) < 1
1626 then
1627 Error_Attr ("invalid dimension number for array type", E1);
1628 end if;
1629 end if;
1631 if (Style_Check and Style_Check_Array_Attribute_Index)
1632 and then Comes_From_Source (N)
1633 then
1634 Style.Check_Array_Attribute_Index (N, E1, D);
1635 end if;
1636 end Check_Array_Type;
1638 -------------------------
1639 -- Check_Asm_Attribute --
1640 -------------------------
1642 procedure Check_Asm_Attribute is
1643 begin
1644 Check_Type;
1645 Check_E2;
1647 -- Check first argument is static string expression
1649 Analyze_And_Resolve (E1, Standard_String);
1651 if Etype (E1) = Any_Type then
1652 return;
1654 elsif not Is_OK_Static_Expression (E1) then
1655 Flag_Non_Static_Expr
1656 ("constraint argument must be static string expression!", E1);
1657 Error_Attr;
1658 end if;
1660 -- Check second argument is right type
1662 Analyze_And_Resolve (E2, Entity (P));
1664 -- Note: that is all we need to do, we don't need to check
1665 -- that it appears in a correct context. The Ada type system
1666 -- will do that for us.
1668 end Check_Asm_Attribute;
1670 ---------------------
1671 -- Check_Component --
1672 ---------------------
1674 procedure Check_Component is
1675 begin
1676 Check_E0;
1678 if Nkind (P) /= N_Selected_Component
1679 or else
1680 (Ekind (Entity (Selector_Name (P))) /= E_Component
1681 and then
1682 Ekind (Entity (Selector_Name (P))) /= E_Discriminant)
1683 then
1684 Error_Attr_P ("prefix for % attribute must be selected component");
1685 end if;
1686 end Check_Component;
1688 ------------------------------------
1689 -- Check_Decimal_Fixed_Point_Type --
1690 ------------------------------------
1692 procedure Check_Decimal_Fixed_Point_Type is
1693 begin
1694 Check_Type;
1696 if not Is_Decimal_Fixed_Point_Type (P_Type) then
1697 Error_Attr_P ("prefix of % attribute must be decimal type");
1698 end if;
1699 end Check_Decimal_Fixed_Point_Type;
1701 -----------------------
1702 -- Check_Dereference --
1703 -----------------------
1705 procedure Check_Dereference is
1706 begin
1708 -- Case of a subtype mark
1710 if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
1711 return;
1712 end if;
1714 -- Case of an expression
1716 Resolve (P);
1718 if Is_Access_Type (P_Type) then
1720 -- If there is an implicit dereference, then we must freeze the
1721 -- designated type of the access type, since the type of the
1722 -- referenced array is this type (see AI95-00106).
1724 -- As done elsewhere, freezing must not happen when pre-analyzing
1725 -- a pre- or postcondition or a default value for an object or for
1726 -- a formal parameter.
1728 if not In_Spec_Expression then
1729 Freeze_Before (N, Designated_Type (P_Type));
1730 end if;
1732 Rewrite (P,
1733 Make_Explicit_Dereference (Sloc (P),
1734 Prefix => Relocate_Node (P)));
1736 Analyze_And_Resolve (P);
1737 P_Type := Etype (P);
1739 if P_Type = Any_Type then
1740 raise Bad_Attribute;
1741 end if;
1743 P_Base_Type := Base_Type (P_Type);
1744 end if;
1745 end Check_Dereference;
1747 -------------------------
1748 -- Check_Discrete_Type --
1749 -------------------------
1751 procedure Check_Discrete_Type is
1752 begin
1753 Check_Type;
1755 if not Is_Discrete_Type (P_Type) then
1756 Error_Attr_P ("prefix of % attribute must be discrete type");
1757 end if;
1758 end Check_Discrete_Type;
1760 --------------
1761 -- Check_E0 --
1762 --------------
1764 procedure Check_E0 is
1765 begin
1766 if Present (E1) then
1767 Unexpected_Argument (E1);
1768 end if;
1769 end Check_E0;
1771 --------------
1772 -- Check_E1 --
1773 --------------
1775 procedure Check_E1 is
1776 begin
1777 Check_Either_E0_Or_E1;
1779 if No (E1) then
1781 -- Special-case attributes that are functions and that appear as
1782 -- the prefix of another attribute. Error is posted on parent.
1784 if Nkind (Parent (N)) = N_Attribute_Reference
1785 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
1786 Name_Code_Address,
1787 Name_Access)
1788 then
1789 Error_Msg_Name_1 := Attribute_Name (Parent (N));
1790 Error_Msg_N ("illegal prefix for % attribute", Parent (N));
1791 Set_Etype (Parent (N), Any_Type);
1792 Set_Entity (Parent (N), Any_Type);
1793 raise Bad_Attribute;
1795 else
1796 Error_Attr ("missing argument for % attribute", N);
1797 end if;
1798 end if;
1799 end Check_E1;
1801 --------------
1802 -- Check_E2 --
1803 --------------
1805 procedure Check_E2 is
1806 begin
1807 if No (E1) then
1808 Error_Attr ("missing arguments for % attribute (2 required)", N);
1809 elsif No (E2) then
1810 Error_Attr ("missing argument for % attribute (2 required)", N);
1811 end if;
1812 end Check_E2;
1814 ---------------------------
1815 -- Check_Either_E0_Or_E1 --
1816 ---------------------------
1818 procedure Check_Either_E0_Or_E1 is
1819 begin
1820 if Present (E2) then
1821 Unexpected_Argument (E2);
1822 end if;
1823 end Check_Either_E0_Or_E1;
1825 ----------------------
1826 -- Check_Enum_Image --
1827 ----------------------
1829 procedure Check_Enum_Image is
1830 Lit : Entity_Id;
1832 begin
1833 -- When an enumeration type appears in an attribute reference, all
1834 -- literals of the type are marked as referenced. This must only be
1835 -- done if the attribute reference appears in the current source.
1836 -- Otherwise the information on references may differ between a
1837 -- normal compilation and one that performs inlining.
1839 if Is_Enumeration_Type (P_Base_Type)
1840 and then In_Extended_Main_Code_Unit (N)
1841 then
1842 Lit := First_Literal (P_Base_Type);
1843 while Present (Lit) loop
1844 Set_Referenced (Lit);
1845 Next_Literal (Lit);
1846 end loop;
1847 end if;
1848 end Check_Enum_Image;
1850 ----------------------------
1851 -- Check_First_Last_Valid --
1852 ----------------------------
1854 procedure Check_First_Last_Valid is
1855 begin
1856 Check_Discrete_Type;
1858 -- Freeze the subtype now, so that the following test for predicates
1859 -- works (we set the predicates stuff up at freeze time)
1861 Insert_Actions (N, Freeze_Entity (P_Type, P));
1863 -- Now test for dynamic predicate
1865 if Has_Predicates (P_Type)
1866 and then not (Has_Static_Predicate (P_Type))
1867 then
1868 Error_Attr_P
1869 ("prefix of % attribute may not have dynamic predicate");
1870 end if;
1872 -- Check non-static subtype
1874 if not Is_OK_Static_Subtype (P_Type) then
1875 Error_Attr_P ("prefix of % attribute must be a static subtype");
1876 end if;
1878 -- Test case for no values
1880 if Expr_Value (Type_Low_Bound (P_Type)) >
1881 Expr_Value (Type_High_Bound (P_Type))
1882 or else (Has_Predicates (P_Type)
1883 and then
1884 Is_Empty_List (Static_Discrete_Predicate (P_Type)))
1885 then
1886 Error_Attr_P
1887 ("prefix of % attribute must be subtype with at least one "
1888 & "value");
1889 end if;
1890 end Check_First_Last_Valid;
1892 ----------------------------
1893 -- Check_Fixed_Point_Type --
1894 ----------------------------
1896 procedure Check_Fixed_Point_Type is
1897 begin
1898 Check_Type;
1900 if not Is_Fixed_Point_Type (P_Type) then
1901 Error_Attr_P ("prefix of % attribute must be fixed point type");
1902 end if;
1903 end Check_Fixed_Point_Type;
1905 ------------------------------
1906 -- Check_Fixed_Point_Type_0 --
1907 ------------------------------
1909 procedure Check_Fixed_Point_Type_0 is
1910 begin
1911 Check_Fixed_Point_Type;
1912 Check_E0;
1913 end Check_Fixed_Point_Type_0;
1915 -------------------------------
1916 -- Check_Floating_Point_Type --
1917 -------------------------------
1919 procedure Check_Floating_Point_Type is
1920 begin
1921 Check_Type;
1923 if not Is_Floating_Point_Type (P_Type) then
1924 Error_Attr_P ("prefix of % attribute must be float type");
1925 end if;
1926 end Check_Floating_Point_Type;
1928 ---------------------------------
1929 -- Check_Floating_Point_Type_0 --
1930 ---------------------------------
1932 procedure Check_Floating_Point_Type_0 is
1933 begin
1934 Check_Floating_Point_Type;
1935 Check_E0;
1936 end Check_Floating_Point_Type_0;
1938 ---------------------------------
1939 -- Check_Floating_Point_Type_1 --
1940 ---------------------------------
1942 procedure Check_Floating_Point_Type_1 is
1943 begin
1944 Check_Floating_Point_Type;
1945 Check_E1;
1946 end Check_Floating_Point_Type_1;
1948 ---------------------------------
1949 -- Check_Floating_Point_Type_2 --
1950 ---------------------------------
1952 procedure Check_Floating_Point_Type_2 is
1953 begin
1954 Check_Floating_Point_Type;
1955 Check_E2;
1956 end Check_Floating_Point_Type_2;
1958 ------------------------
1959 -- Check_Integer_Type --
1960 ------------------------
1962 procedure Check_Integer_Type is
1963 begin
1964 Check_Type;
1966 if not Is_Integer_Type (P_Type) then
1967 Error_Attr_P ("prefix of % attribute must be integer type");
1968 end if;
1969 end Check_Integer_Type;
1971 --------------------------------
1972 -- Check_Modular_Integer_Type --
1973 --------------------------------
1975 procedure Check_Modular_Integer_Type is
1976 begin
1977 Check_Type;
1979 if not Is_Modular_Integer_Type (P_Type) then
1980 Error_Attr_P
1981 ("prefix of % attribute must be modular integer type");
1982 end if;
1983 end Check_Modular_Integer_Type;
1985 ------------------------
1986 -- Check_Not_CPP_Type --
1987 ------------------------
1989 procedure Check_Not_CPP_Type is
1990 begin
1991 if Is_Tagged_Type (Etype (P))
1992 and then Convention (Etype (P)) = Convention_CPP
1993 and then Is_CPP_Class (Root_Type (Etype (P)))
1994 then
1995 Error_Attr_P
1996 ("invalid use of % attribute with 'C'P'P tagged type");
1997 end if;
1998 end Check_Not_CPP_Type;
2000 -------------------------------
2001 -- Check_Not_Incomplete_Type --
2002 -------------------------------
2004 procedure Check_Not_Incomplete_Type is
2005 E : Entity_Id;
2006 Typ : Entity_Id;
2008 begin
2009 -- Ada 2005 (AI-50217, AI-326): If the prefix is an explicit
2010 -- dereference we have to check wrong uses of incomplete types
2011 -- (other wrong uses are checked at their freezing point).
2013 -- In Ada 2012, incomplete types can appear in subprogram
2014 -- profiles, but formals with incomplete types cannot be the
2015 -- prefix of attributes.
2017 -- Example 1: Limited-with
2019 -- limited with Pkg;
2020 -- package P is
2021 -- type Acc is access Pkg.T;
2022 -- X : Acc;
2023 -- S : Integer := X.all'Size; -- ERROR
2024 -- end P;
2026 -- Example 2: Tagged incomplete
2028 -- type T is tagged;
2029 -- type Acc is access all T;
2030 -- X : Acc;
2031 -- S : constant Integer := X.all'Size; -- ERROR
2032 -- procedure Q (Obj : Integer := X.all'Alignment); -- ERROR
2034 if Ada_Version >= Ada_2005
2035 and then Nkind (P) = N_Explicit_Dereference
2036 then
2037 E := P;
2038 while Nkind (E) = N_Explicit_Dereference loop
2039 E := Prefix (E);
2040 end loop;
2042 Typ := Etype (E);
2044 if From_Limited_With (Typ) then
2045 Error_Attr_P
2046 ("prefix of % attribute cannot be an incomplete type");
2048 -- If the prefix is an access type check the designated type
2050 elsif Is_Access_Type (Typ)
2051 and then Nkind (P) = N_Explicit_Dereference
2052 then
2053 Typ := Directly_Designated_Type (Typ);
2054 end if;
2056 if Is_Class_Wide_Type (Typ) then
2057 Typ := Root_Type (Typ);
2058 end if;
2060 -- A legal use of a shadow entity occurs only when the unit where
2061 -- the non-limited view resides is imported via a regular with
2062 -- clause in the current body. Such references to shadow entities
2063 -- may occur in subprogram formals.
2065 if Is_Incomplete_Type (Typ)
2066 and then From_Limited_With (Typ)
2067 and then Present (Non_Limited_View (Typ))
2068 and then Is_Legal_Shadow_Entity_In_Body (Typ)
2069 then
2070 Typ := Non_Limited_View (Typ);
2071 end if;
2073 -- If still incomplete, it can be a local incomplete type, or a
2074 -- limited view whose scope is also a limited view.
2076 if Ekind (Typ) = E_Incomplete_Type then
2077 if not From_Limited_With (Typ)
2078 and then No (Full_View (Typ))
2079 then
2080 Error_Attr_P
2081 ("prefix of % attribute cannot be an incomplete type");
2083 -- The limited view may be available indirectly through
2084 -- an intermediate unit. If the non-limited view is available
2085 -- the attribute reference is legal.
2087 elsif From_Limited_With (Typ)
2088 and then
2089 (No (Non_Limited_View (Typ))
2090 or else Is_Incomplete_Type (Non_Limited_View (Typ)))
2091 then
2092 Error_Attr_P
2093 ("prefix of % attribute cannot be an incomplete type");
2094 end if;
2095 end if;
2097 -- Ada 2012 : formals in bodies may be incomplete, but no attribute
2098 -- legally applies.
2100 elsif Is_Entity_Name (P)
2101 and then Is_Formal (Entity (P))
2102 and then Is_Incomplete_Type (Etype (Etype (P)))
2103 then
2104 Error_Attr_P
2105 ("prefix of % attribute cannot be an incomplete type");
2106 end if;
2108 if not Is_Entity_Name (P)
2109 or else not Is_Type (Entity (P))
2110 or else In_Spec_Expression
2111 then
2112 return;
2113 else
2114 Check_Fully_Declared (P_Type, P);
2115 end if;
2116 end Check_Not_Incomplete_Type;
2118 ----------------------------
2119 -- Check_Object_Reference --
2120 ----------------------------
2122 procedure Check_Object_Reference (P : Node_Id) is
2123 Rtyp : Entity_Id;
2125 begin
2126 -- If we need an object, and we have a prefix that is the name of
2127 -- a function entity, convert it into a function call.
2129 if Is_Entity_Name (P)
2130 and then Ekind (Entity (P)) = E_Function
2131 then
2132 Rtyp := Etype (Entity (P));
2134 Rewrite (P,
2135 Make_Function_Call (Sloc (P),
2136 Name => Relocate_Node (P)));
2138 Analyze_And_Resolve (P, Rtyp);
2140 -- Otherwise we must have an object reference
2142 elsif not Is_Object_Reference (P) then
2143 Error_Attr_P ("prefix of % attribute must be object");
2144 end if;
2145 end Check_Object_Reference;
2147 ----------------------------
2148 -- Check_PolyORB_Attribute --
2149 ----------------------------
2151 procedure Check_PolyORB_Attribute is
2152 begin
2153 Validate_Non_Static_Attribute_Function_Call;
2155 Check_Type;
2156 Check_Not_CPP_Type;
2158 if Get_PCS_Name /= Name_PolyORB_DSA then
2159 Error_Attr
2160 ("attribute% requires the 'Poly'O'R'B 'P'C'S", N);
2161 end if;
2162 end Check_PolyORB_Attribute;
2164 ------------------------
2165 -- Check_Program_Unit --
2166 ------------------------
2168 procedure Check_Program_Unit is
2169 begin
2170 if Is_Entity_Name (P) then
2171 declare
2172 K : constant Entity_Kind := Ekind (Entity (P));
2173 T : constant Entity_Id := Etype (Entity (P));
2175 begin
2176 if K in Subprogram_Kind
2177 or else K in Task_Kind
2178 or else K in Protected_Kind
2179 or else K = E_Package
2180 or else K in Generic_Unit_Kind
2181 or else (K = E_Variable
2182 and then
2183 (Is_Task_Type (T)
2184 or else
2185 Is_Protected_Type (T)))
2186 then
2187 return;
2188 end if;
2189 end;
2190 end if;
2192 Error_Attr_P ("prefix of % attribute must be program unit");
2193 end Check_Program_Unit;
2195 ---------------------
2196 -- Check_Real_Type --
2197 ---------------------
2199 procedure Check_Real_Type is
2200 begin
2201 Check_Type;
2203 if not Is_Real_Type (P_Type) then
2204 Error_Attr_P ("prefix of % attribute must be real type");
2205 end if;
2206 end Check_Real_Type;
2208 -----------------------
2209 -- Check_Scalar_Type --
2210 -----------------------
2212 procedure Check_Scalar_Type is
2213 begin
2214 Check_Type;
2216 if not Is_Scalar_Type (P_Type) then
2217 Error_Attr_P ("prefix of % attribute must be scalar type");
2218 end if;
2219 end Check_Scalar_Type;
2221 ------------------------------------------
2222 -- Check_SPARK_05_Restriction_On_Attribute --
2223 ------------------------------------------
2225 procedure Check_SPARK_05_Restriction_On_Attribute is
2226 begin
2227 Error_Msg_Name_1 := Aname;
2228 Check_SPARK_05_Restriction ("attribute % is not allowed", P);
2229 end Check_SPARK_05_Restriction_On_Attribute;
2231 ---------------------------
2232 -- Check_Standard_Prefix --
2233 ---------------------------
2235 procedure Check_Standard_Prefix is
2236 begin
2237 Check_E0;
2239 if Nkind (P) /= N_Identifier or else Chars (P) /= Name_Standard then
2240 Error_Attr ("only allowed prefix for % attribute is Standard", P);
2241 end if;
2242 end Check_Standard_Prefix;
2244 ----------------------------
2245 -- Check_Stream_Attribute --
2246 ----------------------------
2248 procedure Check_Stream_Attribute (Nam : TSS_Name_Type) is
2249 Etyp : Entity_Id;
2250 Btyp : Entity_Id;
2252 In_Shared_Var_Procs : Boolean;
2253 -- True when compiling System.Shared_Storage.Shared_Var_Procs body.
2254 -- For this runtime package (always compiled in GNAT mode), we allow
2255 -- stream attributes references for limited types for the case where
2256 -- shared passive objects are implemented using stream attributes,
2257 -- which is the default in GNAT's persistent storage implementation.
2259 begin
2260 Validate_Non_Static_Attribute_Function_Call;
2262 -- With the exception of 'Input, Stream attributes are procedures,
2263 -- and can only appear at the position of procedure calls. We check
2264 -- for this here, before they are rewritten, to give a more precise
2265 -- diagnostic.
2267 if Nam = TSS_Stream_Input then
2268 null;
2270 elsif Is_List_Member (N)
2271 and then not Nkind_In (Parent (N), N_Procedure_Call_Statement,
2272 N_Aggregate)
2273 then
2274 null;
2276 else
2277 Error_Attr
2278 ("invalid context for attribute%, which is a procedure", N);
2279 end if;
2281 Check_Type;
2282 Btyp := Implementation_Base_Type (P_Type);
2284 -- Stream attributes not allowed on limited types unless the
2285 -- attribute reference was generated by the expander (in which
2286 -- case the underlying type will be used, as described in Sinfo),
2287 -- or the attribute was specified explicitly for the type itself
2288 -- or one of its ancestors (taking visibility rules into account if
2289 -- in Ada 2005 mode), or a pragma Stream_Convert applies to Btyp
2290 -- (with no visibility restriction).
2292 declare
2293 Gen_Body : constant Node_Id := Enclosing_Generic_Body (N);
2294 begin
2295 if Present (Gen_Body) then
2296 In_Shared_Var_Procs :=
2297 Is_RTE (Corresponding_Spec (Gen_Body), RE_Shared_Var_Procs);
2298 else
2299 In_Shared_Var_Procs := False;
2300 end if;
2301 end;
2303 if (Comes_From_Source (N)
2304 and then not (In_Shared_Var_Procs or In_Instance))
2305 and then not Stream_Attribute_Available (P_Type, Nam)
2306 and then not Has_Rep_Pragma (Btyp, Name_Stream_Convert)
2307 then
2308 Error_Msg_Name_1 := Aname;
2310 if Is_Limited_Type (P_Type) then
2311 Error_Msg_NE
2312 ("limited type& has no% attribute", P, P_Type);
2313 Explain_Limited_Type (P_Type, P);
2314 else
2315 Error_Msg_NE
2316 ("attribute% for type& is not available", P, P_Type);
2317 end if;
2318 end if;
2320 -- Check for no stream operations allowed from No_Tagged_Streams
2322 if Is_Tagged_Type (P_Type)
2323 and then Present (No_Tagged_Streams_Pragma (P_Type))
2324 then
2325 Error_Msg_Sloc := Sloc (No_Tagged_Streams_Pragma (P_Type));
2326 Error_Msg_NE
2327 ("no stream operations for & (No_Tagged_Streams #)", N, P_Type);
2328 return;
2329 end if;
2331 -- Check restriction violations
2333 -- First check the No_Streams restriction, which prohibits the use
2334 -- of explicit stream attributes in the source program. We do not
2335 -- prevent the occurrence of stream attributes in generated code,
2336 -- for instance those generated implicitly for dispatching purposes.
2338 if Comes_From_Source (N) then
2339 Check_Restriction (No_Streams, P);
2340 end if;
2342 -- AI05-0057: if restriction No_Default_Stream_Attributes is active,
2343 -- it is illegal to use a predefined elementary type stream attribute
2344 -- either by itself, or more importantly as part of the attribute
2345 -- subprogram for a composite type. However, if the broader
2346 -- restriction No_Streams is active, stream operations are not
2347 -- generated, and there is no error.
2349 if Restriction_Active (No_Default_Stream_Attributes)
2350 and then not Restriction_Active (No_Streams)
2351 then
2352 declare
2353 T : Entity_Id;
2355 begin
2356 if Nam = TSS_Stream_Input
2357 or else
2358 Nam = TSS_Stream_Read
2359 then
2360 T :=
2361 Type_Without_Stream_Operation (P_Type, TSS_Stream_Read);
2362 else
2363 T :=
2364 Type_Without_Stream_Operation (P_Type, TSS_Stream_Write);
2365 end if;
2367 if Present (T) then
2368 Check_Restriction (No_Default_Stream_Attributes, N);
2370 Error_Msg_NE
2371 ("missing user-defined Stream Read or Write for type&",
2372 N, T);
2373 if not Is_Elementary_Type (P_Type) then
2374 Error_Msg_NE
2375 ("\which is a component of type&", N, P_Type);
2376 end if;
2377 end if;
2378 end;
2379 end if;
2381 -- Check special case of Exception_Id and Exception_Occurrence which
2382 -- are not allowed for restriction No_Exception_Registration.
2384 if Restriction_Check_Required (No_Exception_Registration)
2385 and then (Is_RTE (P_Type, RE_Exception_Id)
2386 or else
2387 Is_RTE (P_Type, RE_Exception_Occurrence))
2388 then
2389 Check_Restriction (No_Exception_Registration, P);
2390 end if;
2392 -- Here we must check that the first argument is an access type
2393 -- that is compatible with Ada.Streams.Root_Stream_Type'Class.
2395 Analyze_And_Resolve (E1);
2396 Etyp := Etype (E1);
2398 -- Note: the double call to Root_Type here is needed because the
2399 -- root type of a class-wide type is the corresponding type (e.g.
2400 -- X for X'Class, and we really want to go to the root.)
2402 if not Is_Access_Type (Etyp)
2403 or else Root_Type (Root_Type (Designated_Type (Etyp))) /=
2404 RTE (RE_Root_Stream_Type)
2405 then
2406 Error_Attr
2407 ("expected access to Ada.Streams.Root_Stream_Type''Class", E1);
2408 end if;
2410 -- Check that the second argument is of the right type if there is
2411 -- one (the Input attribute has only one argument so this is skipped)
2413 if Present (E2) then
2414 Analyze (E2);
2416 if Nam = TSS_Stream_Read
2417 and then not Is_OK_Variable_For_Out_Formal (E2)
2418 then
2419 Error_Attr
2420 ("second argument of % attribute must be a variable", E2);
2421 end if;
2423 Resolve (E2, P_Type);
2424 end if;
2426 Check_Not_CPP_Type;
2427 end Check_Stream_Attribute;
2429 -------------------------
2430 -- Check_System_Prefix --
2431 -------------------------
2433 procedure Check_System_Prefix is
2434 begin
2435 if Nkind (P) /= N_Identifier or else Chars (P) /= Name_System then
2436 Error_Attr ("only allowed prefix for % attribute is System", P);
2437 end if;
2438 end Check_System_Prefix;
2440 -----------------------
2441 -- Check_Task_Prefix --
2442 -----------------------
2444 procedure Check_Task_Prefix is
2445 begin
2446 Analyze (P);
2448 -- Ada 2005 (AI-345): Attribute 'Terminated can be applied to
2449 -- task interface class-wide types.
2451 if Is_Task_Type (Etype (P))
2452 or else (Is_Access_Type (Etype (P))
2453 and then Is_Task_Type (Designated_Type (Etype (P))))
2454 or else (Ada_Version >= Ada_2005
2455 and then Ekind (Etype (P)) = E_Class_Wide_Type
2456 and then Is_Interface (Etype (P))
2457 and then Is_Task_Interface (Etype (P)))
2458 then
2459 Resolve (P);
2461 else
2462 if Ada_Version >= Ada_2005 then
2463 Error_Attr_P
2464 ("prefix of % attribute must be a task or a task " &
2465 "interface class-wide object");
2467 else
2468 Error_Attr_P ("prefix of % attribute must be a task");
2469 end if;
2470 end if;
2471 end Check_Task_Prefix;
2473 ----------------
2474 -- Check_Type --
2475 ----------------
2477 -- The possibilities are an entity name denoting a type, or an
2478 -- attribute reference that denotes a type (Base or Class). If
2479 -- the type is incomplete, replace it with its full view.
2481 procedure Check_Type is
2482 begin
2483 if not Is_Entity_Name (P)
2484 or else not Is_Type (Entity (P))
2485 then
2486 Error_Attr_P ("prefix of % attribute must be a type");
2488 elsif Is_Protected_Self_Reference (P) then
2489 Error_Attr_P
2490 ("prefix of % attribute denotes current instance "
2491 & "(RM 9.4(21/2))");
2493 elsif Ekind (Entity (P)) = E_Incomplete_Type
2494 and then Present (Full_View (Entity (P)))
2495 then
2496 P_Type := Full_View (Entity (P));
2497 Set_Entity (P, P_Type);
2498 end if;
2499 end Check_Type;
2501 ---------------------
2502 -- Check_Unit_Name --
2503 ---------------------
2505 procedure Check_Unit_Name (Nod : Node_Id) is
2506 begin
2507 if Nkind (Nod) = N_Identifier then
2508 return;
2510 elsif Nkind_In (Nod, N_Selected_Component, N_Expanded_Name) then
2511 Check_Unit_Name (Prefix (Nod));
2513 if Nkind (Selector_Name (Nod)) = N_Identifier then
2514 return;
2515 end if;
2516 end if;
2518 Error_Attr ("argument for % attribute must be unit name", P);
2519 end Check_Unit_Name;
2521 ----------------
2522 -- Error_Attr --
2523 ----------------
2525 procedure Error_Attr is
2526 begin
2527 Set_Etype (N, Any_Type);
2528 Set_Entity (N, Any_Type);
2529 raise Bad_Attribute;
2530 end Error_Attr;
2532 procedure Error_Attr (Msg : String; Error_Node : Node_Id) is
2533 begin
2534 Error_Msg_Name_1 := Aname;
2535 Error_Msg_N (Msg, Error_Node);
2536 Error_Attr;
2537 end Error_Attr;
2539 ------------------
2540 -- Error_Attr_P --
2541 ------------------
2543 procedure Error_Attr_P (Msg : String) is
2544 begin
2545 Error_Msg_Name_1 := Aname;
2546 Error_Msg_F (Msg, P);
2547 Error_Attr;
2548 end Error_Attr_P;
2550 ----------------------------
2551 -- Legal_Formal_Attribute --
2552 ----------------------------
2554 procedure Legal_Formal_Attribute is
2555 begin
2556 Check_E0;
2558 if not Is_Entity_Name (P)
2559 or else not Is_Type (Entity (P))
2560 then
2561 Error_Attr_P ("prefix of % attribute must be generic type");
2563 elsif Is_Generic_Actual_Type (Entity (P))
2564 or else In_Instance
2565 or else In_Inlined_Body
2566 then
2567 null;
2569 elsif Is_Generic_Type (Entity (P)) then
2570 if Is_Definite_Subtype (Entity (P)) then
2571 Error_Attr_P
2572 ("prefix of % attribute must be indefinite generic type");
2573 end if;
2575 else
2576 Error_Attr_P
2577 ("prefix of % attribute must be indefinite generic type");
2578 end if;
2580 Set_Etype (N, Standard_Boolean);
2581 end Legal_Formal_Attribute;
2583 ---------------------------------------------------------------
2584 -- Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements --
2585 ---------------------------------------------------------------
2587 procedure Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements is
2588 begin
2589 Check_E0;
2590 Check_Type;
2591 Check_Not_Incomplete_Type;
2592 Set_Etype (N, Universal_Integer);
2593 end Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements;
2595 -------------
2596 -- Min_Max --
2597 -------------
2599 procedure Min_Max is
2600 begin
2601 Check_E2;
2602 Check_Scalar_Type;
2603 Resolve (E1, P_Base_Type);
2604 Resolve (E2, P_Base_Type);
2605 Set_Etype (N, P_Base_Type);
2607 -- Check for comparison on unordered enumeration type
2609 if Bad_Unordered_Enumeration_Reference (N, P_Base_Type) then
2610 Error_Msg_Sloc := Sloc (P_Base_Type);
2611 Error_Msg_NE
2612 ("comparison on unordered enumeration type& declared#?U?",
2613 N, P_Base_Type);
2614 end if;
2615 end Min_Max;
2617 ------------------------
2618 -- Standard_Attribute --
2619 ------------------------
2621 procedure Standard_Attribute (Val : Int) is
2622 begin
2623 Check_Standard_Prefix;
2624 Rewrite (N, Make_Integer_Literal (Loc, Val));
2625 Analyze (N);
2626 Set_Is_Static_Expression (N, True);
2627 end Standard_Attribute;
2629 --------------------
2630 -- Uneval_Old_Msg --
2631 --------------------
2633 procedure Uneval_Old_Msg is
2634 Uneval_Old_Setting : Character;
2635 Prag : Node_Id;
2637 begin
2638 -- If from aspect, then Uneval_Old_Setting comes from flags in the
2639 -- N_Aspect_Specification node that corresponds to the attribute.
2641 -- First find the pragma in which we appear (note that at this stage,
2642 -- even if we appeared originally within an aspect specification, we
2643 -- are now within the corresponding pragma).
2645 Prag := N;
2646 loop
2647 Prag := Parent (Prag);
2648 exit when No (Prag) or else Nkind (Prag) = N_Pragma;
2649 end loop;
2651 if Present (Prag) then
2652 if Uneval_Old_Accept (Prag) then
2653 Uneval_Old_Setting := 'A';
2654 elsif Uneval_Old_Warn (Prag) then
2655 Uneval_Old_Setting := 'W';
2656 else
2657 Uneval_Old_Setting := 'E';
2658 end if;
2660 -- If we did not find the pragma, that's odd, just use the setting
2661 -- from Opt.Uneval_Old. Perhaps this is due to a previous error?
2663 else
2664 Uneval_Old_Setting := Opt.Uneval_Old;
2665 end if;
2667 -- Processing depends on the setting of Uneval_Old
2669 case Uneval_Old_Setting is
2670 when 'E' =>
2671 Error_Attr_P
2672 ("prefix of attribute % that is potentially "
2673 & "unevaluated must denote an entity");
2675 when 'W' =>
2676 Error_Msg_Name_1 := Aname;
2677 Error_Msg_F
2678 ("??prefix of attribute % appears in potentially "
2679 & "unevaluated context, exception may be raised", P);
2681 when 'A' =>
2682 null;
2684 when others =>
2685 raise Program_Error;
2686 end case;
2687 end Uneval_Old_Msg;
2689 -------------------------
2690 -- Unexpected Argument --
2691 -------------------------
2693 procedure Unexpected_Argument (En : Node_Id) is
2694 begin
2695 Error_Attr ("unexpected argument for % attribute", En);
2696 end Unexpected_Argument;
2698 -------------------------------------------------
2699 -- Validate_Non_Static_Attribute_Function_Call --
2700 -------------------------------------------------
2702 -- This function should be moved to Sem_Dist ???
2704 procedure Validate_Non_Static_Attribute_Function_Call is
2705 begin
2706 if In_Preelaborated_Unit
2707 and then not In_Subprogram_Or_Concurrent_Unit
2708 then
2709 Flag_Non_Static_Expr
2710 ("non-static function call in preelaborated unit!", N);
2711 end if;
2712 end Validate_Non_Static_Attribute_Function_Call;
2714 -- Start of processing for Analyze_Attribute
2716 begin
2717 -- Immediate return if unrecognized attribute (already diagnosed by
2718 -- parser, so there is nothing more that we need to do).
2720 if not Is_Attribute_Name (Aname) then
2721 raise Bad_Attribute;
2722 end if;
2724 Check_Restriction_No_Use_Of_Attribute (N);
2726 -- Deal with Ada 83 issues
2728 if Comes_From_Source (N) then
2729 if not Attribute_83 (Attr_Id) then
2730 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2731 Error_Msg_Name_1 := Aname;
2732 Error_Msg_N ("(Ada 83) attribute% is not standard??", N);
2733 end if;
2735 if Attribute_Impl_Def (Attr_Id) then
2736 Check_Restriction (No_Implementation_Attributes, N);
2737 end if;
2738 end if;
2739 end if;
2741 -- Deal with Ada 2005 attributes that are implementation attributes
2742 -- because they appear in a version of Ada before Ada 2005, and
2743 -- similarly for Ada 2012 attributes appearing in an earlier version.
2745 if (Attribute_05 (Attr_Id) and then Ada_Version < Ada_2005)
2746 or else
2747 (Attribute_12 (Attr_Id) and then Ada_Version < Ada_2012)
2748 then
2749 Check_Restriction (No_Implementation_Attributes, N);
2750 end if;
2752 -- Remote access to subprogram type access attribute reference needs
2753 -- unanalyzed copy for tree transformation. The analyzed copy is used
2754 -- for its semantic information (whether prefix is a remote subprogram
2755 -- name), the unanalyzed copy is used to construct new subtree rooted
2756 -- with N_Aggregate which represents a fat pointer aggregate.
2758 if Aname = Name_Access then
2759 Discard_Node (Copy_Separate_Tree (N));
2760 end if;
2762 -- Analyze prefix and exit if error in analysis. If the prefix is an
2763 -- incomplete type, use full view if available. Note that there are
2764 -- some attributes for which we do not analyze the prefix, since the
2765 -- prefix is not a normal name, or else needs special handling.
2767 if Aname /= Name_Elab_Body and then
2768 Aname /= Name_Elab_Spec and then
2769 Aname /= Name_Elab_Subp_Body and then
2770 Aname /= Name_Enabled and then
2771 Aname /= Name_Old
2772 then
2773 Analyze (P);
2774 P_Type := Etype (P);
2776 if Is_Entity_Name (P)
2777 and then Present (Entity (P))
2778 and then Is_Type (Entity (P))
2779 then
2780 if Ekind (Entity (P)) = E_Incomplete_Type then
2781 P_Type := Get_Full_View (P_Type);
2782 Set_Entity (P, P_Type);
2783 Set_Etype (P, P_Type);
2785 elsif Entity (P) = Current_Scope
2786 and then Is_Record_Type (Entity (P))
2787 then
2788 -- Use of current instance within the type. Verify that if the
2789 -- attribute appears within a constraint, it yields an access
2790 -- type, other uses are illegal.
2792 declare
2793 Par : Node_Id;
2795 begin
2796 Par := Parent (N);
2797 while Present (Par)
2798 and then Nkind (Parent (Par)) /= N_Component_Definition
2799 loop
2800 Par := Parent (Par);
2801 end loop;
2803 if Present (Par)
2804 and then Nkind (Par) = N_Subtype_Indication
2805 then
2806 if Attr_Id /= Attribute_Access
2807 and then Attr_Id /= Attribute_Unchecked_Access
2808 and then Attr_Id /= Attribute_Unrestricted_Access
2809 then
2810 Error_Msg_N
2811 ("in a constraint the current instance can only "
2812 & "be used with an access attribute", N);
2813 end if;
2814 end if;
2815 end;
2816 end if;
2817 end if;
2819 if P_Type = Any_Type then
2820 raise Bad_Attribute;
2821 end if;
2823 P_Base_Type := Base_Type (P_Type);
2824 end if;
2826 -- Analyze expressions that may be present, exiting if an error occurs
2828 if No (Exprs) then
2829 E1 := Empty;
2830 E2 := Empty;
2832 else
2833 E1 := First (Exprs);
2835 -- Skip analysis for case of Restriction_Set, we do not expect
2836 -- the argument to be analyzed in this case.
2838 if Aname /= Name_Restriction_Set then
2839 Analyze (E1);
2841 -- Check for missing/bad expression (result of previous error)
2843 if No (E1) or else Etype (E1) = Any_Type then
2844 raise Bad_Attribute;
2845 end if;
2846 end if;
2848 E2 := Next (E1);
2850 if Present (E2) then
2851 Analyze (E2);
2853 if Etype (E2) = Any_Type then
2854 raise Bad_Attribute;
2855 end if;
2857 if Present (Next (E2)) then
2858 Unexpected_Argument (Next (E2));
2859 end if;
2860 end if;
2861 end if;
2863 -- Cases where prefix must be resolvable by itself
2865 if Is_Overloaded (P)
2866 and then Aname /= Name_Access
2867 and then Aname /= Name_Address
2868 and then Aname /= Name_Code_Address
2869 and then Aname /= Name_Result
2870 and then Aname /= Name_Unchecked_Access
2871 then
2872 -- The prefix must be resolvable by itself, without reference to the
2873 -- attribute. One case that requires special handling is a prefix
2874 -- that is a function name, where one interpretation may be a
2875 -- parameterless call. Entry attributes are handled specially below.
2877 if Is_Entity_Name (P)
2878 and then not Nam_In (Aname, Name_Count, Name_Caller)
2879 then
2880 Check_Parameterless_Call (P);
2881 end if;
2883 if Is_Overloaded (P) then
2885 -- Ada 2005 (AI-345): Since protected and task types have
2886 -- primitive entry wrappers, the attributes Count, and Caller
2887 -- require a context check
2889 if Nam_In (Aname, Name_Count, Name_Caller) then
2890 declare
2891 Count : Natural := 0;
2892 I : Interp_Index;
2893 It : Interp;
2895 begin
2896 Get_First_Interp (P, I, It);
2897 while Present (It.Nam) loop
2898 if Comes_From_Source (It.Nam) then
2899 Count := Count + 1;
2900 else
2901 Remove_Interp (I);
2902 end if;
2904 Get_Next_Interp (I, It);
2905 end loop;
2907 if Count > 1 then
2908 Error_Attr ("ambiguous prefix for % attribute", P);
2909 else
2910 Set_Is_Overloaded (P, False);
2911 end if;
2912 end;
2914 else
2915 Error_Attr ("ambiguous prefix for % attribute", P);
2916 end if;
2917 end if;
2918 end if;
2920 -- In SPARK, attributes of private types are only allowed if the full
2921 -- type declaration is visible.
2923 -- Note: the check for Present (Entity (P)) defends against some error
2924 -- conditions where the Entity field is not set.
2926 if Is_Entity_Name (P) and then Present (Entity (P))
2927 and then Is_Type (Entity (P))
2928 and then Is_Private_Type (P_Type)
2929 and then not In_Open_Scopes (Scope (P_Type))
2930 and then not In_Spec_Expression
2931 then
2932 Check_SPARK_05_Restriction ("invisible attribute of type", N);
2933 end if;
2935 -- Remaining processing depends on attribute
2937 case Attr_Id is
2939 -- Attributes related to Ada 2012 iterators. Attribute specifications
2940 -- exist for these, but they cannot be queried.
2942 when Attribute_Constant_Indexing |
2943 Attribute_Default_Iterator |
2944 Attribute_Implicit_Dereference |
2945 Attribute_Iterator_Element |
2946 Attribute_Iterable |
2947 Attribute_Variable_Indexing =>
2948 Error_Msg_N ("illegal attribute", N);
2950 -- Internal attributes used to deal with Ada 2012 delayed aspects. These
2951 -- were already rejected by the parser. Thus they shouldn't appear here.
2953 when Internal_Attribute_Id =>
2954 raise Program_Error;
2956 ------------------
2957 -- Abort_Signal --
2958 ------------------
2960 when Attribute_Abort_Signal =>
2961 Check_Standard_Prefix;
2962 Rewrite (N, New_Occurrence_Of (Stand.Abort_Signal, Loc));
2963 Analyze (N);
2965 ------------
2966 -- Access --
2967 ------------
2969 when Attribute_Access =>
2970 Analyze_Access_Attribute;
2971 Check_Not_Incomplete_Type;
2973 -------------
2974 -- Address --
2975 -------------
2977 when Attribute_Address =>
2978 Check_E0;
2979 Address_Checks;
2980 Check_Not_Incomplete_Type;
2981 Set_Etype (N, RTE (RE_Address));
2983 ------------------
2984 -- Address_Size --
2985 ------------------
2987 when Attribute_Address_Size =>
2988 Standard_Attribute (System_Address_Size);
2990 --------------
2991 -- Adjacent --
2992 --------------
2994 when Attribute_Adjacent =>
2995 Check_Floating_Point_Type_2;
2996 Set_Etype (N, P_Base_Type);
2997 Resolve (E1, P_Base_Type);
2998 Resolve (E2, P_Base_Type);
3000 ---------
3001 -- Aft --
3002 ---------
3004 when Attribute_Aft =>
3005 Check_Fixed_Point_Type_0;
3006 Set_Etype (N, Universal_Integer);
3008 ---------------
3009 -- Alignment --
3010 ---------------
3012 when Attribute_Alignment =>
3014 -- Don't we need more checking here, cf Size ???
3016 Check_E0;
3017 Check_Not_Incomplete_Type;
3018 Check_Not_CPP_Type;
3019 Set_Etype (N, Universal_Integer);
3021 ---------------
3022 -- Asm_Input --
3023 ---------------
3025 when Attribute_Asm_Input =>
3026 Check_Asm_Attribute;
3028 -- The back end may need to take the address of E2
3030 if Is_Entity_Name (E2) then
3031 Set_Address_Taken (Entity (E2));
3032 end if;
3034 Set_Etype (N, RTE (RE_Asm_Input_Operand));
3036 ----------------
3037 -- Asm_Output --
3038 ----------------
3040 when Attribute_Asm_Output =>
3041 Check_Asm_Attribute;
3043 if Etype (E2) = Any_Type then
3044 return;
3046 elsif Aname = Name_Asm_Output then
3047 if not Is_Variable (E2) then
3048 Error_Attr
3049 ("second argument for Asm_Output is not variable", E2);
3050 end if;
3051 end if;
3053 Note_Possible_Modification (E2, Sure => True);
3055 -- The back end may need to take the address of E2
3057 if Is_Entity_Name (E2) then
3058 Set_Address_Taken (Entity (E2));
3059 end if;
3061 Set_Etype (N, RTE (RE_Asm_Output_Operand));
3063 -----------------------------
3064 -- Atomic_Always_Lock_Free --
3065 -----------------------------
3067 when Attribute_Atomic_Always_Lock_Free =>
3068 Check_E0;
3069 Check_Type;
3070 Set_Etype (N, Standard_Boolean);
3072 ----------
3073 -- Base --
3074 ----------
3076 -- Note: when the base attribute appears in the context of a subtype
3077 -- mark, the analysis is done by Sem_Ch8.Find_Type, rather than by
3078 -- the following circuit.
3080 when Attribute_Base => Base : declare
3081 Typ : Entity_Id;
3083 begin
3084 Check_E0;
3085 Find_Type (P);
3086 Typ := Entity (P);
3088 if Ada_Version >= Ada_95
3089 and then not Is_Scalar_Type (Typ)
3090 and then not Is_Generic_Type (Typ)
3091 then
3092 Error_Attr_P ("prefix of Base attribute must be scalar type");
3094 elsif Sloc (Typ) = Standard_Location
3095 and then Base_Type (Typ) = Typ
3096 and then Warn_On_Redundant_Constructs
3097 then
3098 Error_Msg_NE -- CODEFIX
3099 ("?r?redundant attribute, & is its own base type", N, Typ);
3100 end if;
3102 if Nkind (Parent (N)) /= N_Attribute_Reference then
3103 Error_Msg_Name_1 := Aname;
3104 Check_SPARK_05_Restriction
3105 ("attribute% is only allowed as prefix of another attribute", P);
3106 end if;
3108 Set_Etype (N, Base_Type (Entity (P)));
3109 Set_Entity (N, Base_Type (Entity (P)));
3110 Rewrite (N, New_Occurrence_Of (Entity (N), Loc));
3111 Analyze (N);
3112 end Base;
3114 ---------
3115 -- Bit --
3116 ---------
3118 when Attribute_Bit => Bit :
3119 begin
3120 Check_E0;
3122 if not Is_Object_Reference (P) then
3123 Error_Attr_P ("prefix for % attribute must be object");
3125 -- What about the access object cases ???
3127 else
3128 null;
3129 end if;
3131 Set_Etype (N, Universal_Integer);
3132 end Bit;
3134 ---------------
3135 -- Bit_Order --
3136 ---------------
3138 when Attribute_Bit_Order => Bit_Order :
3139 begin
3140 Check_E0;
3141 Check_Type;
3143 if not Is_Record_Type (P_Type) then
3144 Error_Attr_P ("prefix of % attribute must be record type");
3145 end if;
3147 if Bytes_Big_Endian xor Reverse_Bit_Order (P_Type) then
3148 Rewrite (N,
3149 New_Occurrence_Of (RTE (RE_High_Order_First), Loc));
3150 else
3151 Rewrite (N,
3152 New_Occurrence_Of (RTE (RE_Low_Order_First), Loc));
3153 end if;
3155 Set_Etype (N, RTE (RE_Bit_Order));
3156 Resolve (N);
3158 -- Reset incorrect indication of staticness
3160 Set_Is_Static_Expression (N, False);
3161 end Bit_Order;
3163 ------------------
3164 -- Bit_Position --
3165 ------------------
3167 -- Note: in generated code, we can have a Bit_Position attribute
3168 -- applied to a (naked) record component (i.e. the prefix is an
3169 -- identifier that references an E_Component or E_Discriminant
3170 -- entity directly, and this is interpreted as expected by Gigi.
3171 -- The following code will not tolerate such usage, but when the
3172 -- expander creates this special case, it marks it as analyzed
3173 -- immediately and sets an appropriate type.
3175 when Attribute_Bit_Position =>
3176 if Comes_From_Source (N) then
3177 Check_Component;
3178 end if;
3180 Set_Etype (N, Universal_Integer);
3182 ------------------
3183 -- Body_Version --
3184 ------------------
3186 when Attribute_Body_Version =>
3187 Check_E0;
3188 Check_Program_Unit;
3189 Set_Etype (N, RTE (RE_Version_String));
3191 --------------
3192 -- Callable --
3193 --------------
3195 when Attribute_Callable =>
3196 Check_E0;
3197 Set_Etype (N, Standard_Boolean);
3198 Check_Task_Prefix;
3200 ------------
3201 -- Caller --
3202 ------------
3204 when Attribute_Caller => Caller : declare
3205 Ent : Entity_Id;
3206 S : Entity_Id;
3208 begin
3209 Check_E0;
3211 if Nkind_In (P, N_Identifier, N_Expanded_Name) then
3212 Ent := Entity (P);
3214 if not Is_Entry (Ent) then
3215 Error_Attr ("invalid entry name", N);
3216 end if;
3218 else
3219 Error_Attr ("invalid entry name", N);
3220 return;
3221 end if;
3223 for J in reverse 0 .. Scope_Stack.Last loop
3224 S := Scope_Stack.Table (J).Entity;
3226 if S = Scope (Ent) then
3227 Error_Attr ("Caller must appear in matching accept or body", N);
3228 elsif S = Ent then
3229 exit;
3230 end if;
3231 end loop;
3233 Set_Etype (N, RTE (RO_AT_Task_Id));
3234 end Caller;
3236 -------------
3237 -- Ceiling --
3238 -------------
3240 when Attribute_Ceiling =>
3241 Check_Floating_Point_Type_1;
3242 Set_Etype (N, P_Base_Type);
3243 Resolve (E1, P_Base_Type);
3245 -----------
3246 -- Class --
3247 -----------
3249 when Attribute_Class =>
3250 Check_Restriction (No_Dispatch, N);
3251 Check_E0;
3252 Find_Type (N);
3254 -- Applying Class to untagged incomplete type is obsolescent in Ada
3255 -- 2005. Note that we can't test Is_Tagged_Type here on P_Type, since
3256 -- this flag gets set by Find_Type in this situation.
3258 if Restriction_Check_Required (No_Obsolescent_Features)
3259 and then Ada_Version >= Ada_2005
3260 and then Ekind (P_Type) = E_Incomplete_Type
3261 then
3262 declare
3263 DN : constant Node_Id := Declaration_Node (P_Type);
3264 begin
3265 if Nkind (DN) = N_Incomplete_Type_Declaration
3266 and then not Tagged_Present (DN)
3267 then
3268 Check_Restriction (No_Obsolescent_Features, P);
3269 end if;
3270 end;
3271 end if;
3273 ------------------
3274 -- Code_Address --
3275 ------------------
3277 when Attribute_Code_Address =>
3278 Check_E0;
3280 if Nkind (P) = N_Attribute_Reference
3281 and then Nam_In (Attribute_Name (P), Name_Elab_Body, Name_Elab_Spec)
3282 then
3283 null;
3285 elsif not Is_Entity_Name (P)
3286 or else (Ekind (Entity (P)) /= E_Function
3287 and then
3288 Ekind (Entity (P)) /= E_Procedure)
3289 then
3290 Error_Attr ("invalid prefix for % attribute", P);
3291 Set_Address_Taken (Entity (P));
3293 -- Issue an error if the prefix denotes an eliminated subprogram
3295 else
3296 Check_For_Eliminated_Subprogram (P, Entity (P));
3297 end if;
3299 Set_Etype (N, RTE (RE_Address));
3301 ----------------------
3302 -- Compiler_Version --
3303 ----------------------
3305 when Attribute_Compiler_Version =>
3306 Check_E0;
3307 Check_Standard_Prefix;
3308 Rewrite (N, Make_String_Literal (Loc, "GNAT " & Gnat_Version_String));
3309 Analyze_And_Resolve (N, Standard_String);
3310 Set_Is_Static_Expression (N, True);
3312 --------------------
3313 -- Component_Size --
3314 --------------------
3316 when Attribute_Component_Size =>
3317 Check_E0;
3318 Set_Etype (N, Universal_Integer);
3320 -- Note: unlike other array attributes, unconstrained arrays are OK
3322 if Is_Array_Type (P_Type) and then not Is_Constrained (P_Type) then
3323 null;
3324 else
3325 Check_Array_Type;
3326 end if;
3328 -------------
3329 -- Compose --
3330 -------------
3332 when Attribute_Compose =>
3333 Check_Floating_Point_Type_2;
3334 Set_Etype (N, P_Base_Type);
3335 Resolve (E1, P_Base_Type);
3336 Resolve (E2, Any_Integer);
3338 -----------------
3339 -- Constrained --
3340 -----------------
3342 when Attribute_Constrained =>
3343 Check_E0;
3344 Set_Etype (N, Standard_Boolean);
3346 -- Case from RM J.4(2) of constrained applied to private type
3348 if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
3349 Check_Restriction (No_Obsolescent_Features, P);
3351 if Warn_On_Obsolescent_Feature then
3352 Error_Msg_N
3353 ("constrained for private type is an " &
3354 "obsolescent feature (RM J.4)?j?", N);
3355 end if;
3357 -- If we are within an instance, the attribute must be legal
3358 -- because it was valid in the generic unit. Ditto if this is
3359 -- an inlining of a function declared in an instance.
3361 if In_Instance or else In_Inlined_Body then
3362 return;
3364 -- For sure OK if we have a real private type itself, but must
3365 -- be completed, cannot apply Constrained to incomplete type.
3367 elsif Is_Private_Type (Entity (P)) then
3369 -- Note: this is one of the Annex J features that does not
3370 -- generate a warning from -gnatwj, since in fact it seems
3371 -- very useful, and is used in the GNAT runtime.
3373 Check_Not_Incomplete_Type;
3374 return;
3375 end if;
3377 -- Normal (non-obsolescent case) of application to object of
3378 -- a discriminated type.
3380 else
3381 Check_Object_Reference (P);
3383 -- If N does not come from source, then we allow the
3384 -- the attribute prefix to be of a private type whose
3385 -- full type has discriminants. This occurs in cases
3386 -- involving expanded calls to stream attributes.
3388 if not Comes_From_Source (N) then
3389 P_Type := Underlying_Type (P_Type);
3390 end if;
3392 -- Must have discriminants or be an access type designating a type
3393 -- with discriminants. If it is a class-wide type it has unknown
3394 -- discriminants.
3396 if Has_Discriminants (P_Type)
3397 or else Has_Unknown_Discriminants (P_Type)
3398 or else
3399 (Is_Access_Type (P_Type)
3400 and then Has_Discriminants (Designated_Type (P_Type)))
3401 then
3402 return;
3404 -- The rule given in 3.7.2 is part of static semantics, but the
3405 -- intent is clearly that it be treated as a legality rule, and
3406 -- rechecked in the visible part of an instance. Nevertheless
3407 -- the intent also seems to be it should legally apply to the
3408 -- actual of a formal with unknown discriminants, regardless of
3409 -- whether the actual has discriminants, in which case the value
3410 -- of the attribute is determined using the J.4 rules. This choice
3411 -- seems the most useful, and is compatible with existing tests.
3413 elsif In_Instance then
3414 return;
3416 -- Also allow an object of a generic type if extensions allowed
3417 -- and allow this for any type at all. (this may be obsolete ???)
3419 elsif (Is_Generic_Type (P_Type)
3420 or else Is_Generic_Actual_Type (P_Type))
3421 and then Extensions_Allowed
3422 then
3423 return;
3424 end if;
3425 end if;
3427 -- Fall through if bad prefix
3429 Error_Attr_P
3430 ("prefix of % attribute must be object of discriminated type");
3432 ---------------
3433 -- Copy_Sign --
3434 ---------------
3436 when Attribute_Copy_Sign =>
3437 Check_Floating_Point_Type_2;
3438 Set_Etype (N, P_Base_Type);
3439 Resolve (E1, P_Base_Type);
3440 Resolve (E2, P_Base_Type);
3442 -----------
3443 -- Count --
3444 -----------
3446 when Attribute_Count => Count :
3447 declare
3448 Ent : Entity_Id;
3449 S : Entity_Id;
3450 Tsk : Entity_Id;
3452 begin
3453 Check_E0;
3455 if Nkind_In (P, N_Identifier, N_Expanded_Name) then
3456 Ent := Entity (P);
3458 if Ekind (Ent) /= E_Entry then
3459 Error_Attr ("invalid entry name", N);
3460 end if;
3462 elsif Nkind (P) = N_Indexed_Component then
3463 if not Is_Entity_Name (Prefix (P))
3464 or else No (Entity (Prefix (P)))
3465 or else Ekind (Entity (Prefix (P))) /= E_Entry_Family
3466 then
3467 if Nkind (Prefix (P)) = N_Selected_Component
3468 and then Present (Entity (Selector_Name (Prefix (P))))
3469 and then Ekind (Entity (Selector_Name (Prefix (P)))) =
3470 E_Entry_Family
3471 then
3472 Error_Attr
3473 ("attribute % must apply to entry of current task", P);
3475 else
3476 Error_Attr ("invalid entry family name", P);
3477 end if;
3478 return;
3480 else
3481 Ent := Entity (Prefix (P));
3482 end if;
3484 elsif Nkind (P) = N_Selected_Component
3485 and then Present (Entity (Selector_Name (P)))
3486 and then Ekind (Entity (Selector_Name (P))) = E_Entry
3487 then
3488 Error_Attr
3489 ("attribute % must apply to entry of current task", P);
3491 else
3492 Error_Attr ("invalid entry name", N);
3493 return;
3494 end if;
3496 for J in reverse 0 .. Scope_Stack.Last loop
3497 S := Scope_Stack.Table (J).Entity;
3499 if S = Scope (Ent) then
3500 if Nkind (P) = N_Expanded_Name then
3501 Tsk := Entity (Prefix (P));
3503 -- The prefix denotes either the task type, or else a
3504 -- single task whose task type is being analyzed.
3506 if (Is_Type (Tsk) and then Tsk = S)
3507 or else (not Is_Type (Tsk)
3508 and then Etype (Tsk) = S
3509 and then not (Comes_From_Source (S)))
3510 then
3511 null;
3512 else
3513 Error_Attr
3514 ("Attribute % must apply to entry of current task", N);
3515 end if;
3516 end if;
3518 exit;
3520 elsif Ekind (Scope (Ent)) in Task_Kind
3521 and then
3522 not Ekind_In (S, E_Loop, E_Block, E_Entry, E_Entry_Family)
3523 then
3524 Error_Attr ("Attribute % cannot appear in inner unit", N);
3526 elsif Ekind (Scope (Ent)) = E_Protected_Type
3527 and then not Has_Completion (Scope (Ent))
3528 then
3529 Error_Attr ("attribute % can only be used inside body", N);
3530 end if;
3531 end loop;
3533 if Is_Overloaded (P) then
3534 declare
3535 Index : Interp_Index;
3536 It : Interp;
3538 begin
3539 Get_First_Interp (P, Index, It);
3540 while Present (It.Nam) loop
3541 if It.Nam = Ent then
3542 null;
3544 -- Ada 2005 (AI-345): Do not consider primitive entry
3545 -- wrappers generated for task or protected types.
3547 elsif Ada_Version >= Ada_2005
3548 and then not Comes_From_Source (It.Nam)
3549 then
3550 null;
3552 else
3553 Error_Attr ("ambiguous entry name", N);
3554 end if;
3556 Get_Next_Interp (Index, It);
3557 end loop;
3558 end;
3559 end if;
3561 Set_Etype (N, Universal_Integer);
3562 end Count;
3564 -----------------------
3565 -- Default_Bit_Order --
3566 -----------------------
3568 when Attribute_Default_Bit_Order => Default_Bit_Order : declare
3569 Target_Default_Bit_Order : System.Bit_Order;
3571 begin
3572 Check_Standard_Prefix;
3574 if Bytes_Big_Endian then
3575 Target_Default_Bit_Order := System.High_Order_First;
3576 else
3577 Target_Default_Bit_Order := System.Low_Order_First;
3578 end if;
3580 Rewrite (N,
3581 Make_Integer_Literal (Loc,
3582 UI_From_Int (System.Bit_Order'Pos (Target_Default_Bit_Order))));
3584 Set_Etype (N, Universal_Integer);
3585 Set_Is_Static_Expression (N);
3586 end Default_Bit_Order;
3588 ----------------------------------
3589 -- Default_Scalar_Storage_Order --
3590 ----------------------------------
3592 when Attribute_Default_Scalar_Storage_Order => Default_SSO : declare
3593 RE_Default_SSO : RE_Id;
3595 begin
3596 Check_Standard_Prefix;
3598 case Opt.Default_SSO is
3599 when ' ' =>
3600 if Bytes_Big_Endian then
3601 RE_Default_SSO := RE_High_Order_First;
3602 else
3603 RE_Default_SSO := RE_Low_Order_First;
3604 end if;
3606 when 'H' =>
3607 RE_Default_SSO := RE_High_Order_First;
3609 when 'L' =>
3610 RE_Default_SSO := RE_Low_Order_First;
3612 when others =>
3613 raise Program_Error;
3614 end case;
3616 Rewrite (N, New_Occurrence_Of (RTE (RE_Default_SSO), Loc));
3617 end Default_SSO;
3619 --------------
3620 -- Definite --
3621 --------------
3623 when Attribute_Definite =>
3624 Legal_Formal_Attribute;
3626 -----------
3627 -- Delta --
3628 -----------
3630 when Attribute_Delta =>
3631 Check_Fixed_Point_Type_0;
3632 Set_Etype (N, Universal_Real);
3634 ------------
3635 -- Denorm --
3636 ------------
3638 when Attribute_Denorm =>
3639 Check_Floating_Point_Type_0;
3640 Set_Etype (N, Standard_Boolean);
3642 -----------
3643 -- Deref --
3644 -----------
3646 when Attribute_Deref =>
3647 Check_Type;
3648 Check_E1;
3649 Resolve (E1, RTE (RE_Address));
3650 Set_Etype (N, P_Type);
3652 ---------------------
3653 -- Descriptor_Size --
3654 ---------------------
3656 when Attribute_Descriptor_Size =>
3657 Check_E0;
3659 if not Is_Entity_Name (P) or else not Is_Type (Entity (P)) then
3660 Error_Attr_P ("prefix of attribute % must denote a type");
3661 end if;
3663 Set_Etype (N, Universal_Integer);
3665 ------------
3666 -- Digits --
3667 ------------
3669 when Attribute_Digits =>
3670 Check_E0;
3671 Check_Type;
3673 if not Is_Floating_Point_Type (P_Type)
3674 and then not Is_Decimal_Fixed_Point_Type (P_Type)
3675 then
3676 Error_Attr_P
3677 ("prefix of % attribute must be float or decimal type");
3678 end if;
3680 Set_Etype (N, Universal_Integer);
3682 ---------------
3683 -- Elab_Body --
3684 ---------------
3686 -- Also handles processing for Elab_Spec and Elab_Subp_Body
3688 when Attribute_Elab_Body |
3689 Attribute_Elab_Spec |
3690 Attribute_Elab_Subp_Body =>
3692 Check_E0;
3693 Check_Unit_Name (P);
3694 Set_Etype (N, Standard_Void_Type);
3696 -- We have to manually call the expander in this case to get
3697 -- the necessary expansion (normally attributes that return
3698 -- entities are not expanded).
3700 Expand (N);
3702 ---------------
3703 -- Elab_Spec --
3704 ---------------
3706 -- Shares processing with Elab_Body
3708 ----------------
3709 -- Elaborated --
3710 ----------------
3712 when Attribute_Elaborated =>
3713 Check_E0;
3714 Check_Unit_Name (P);
3715 Set_Etype (N, Standard_Boolean);
3717 ----------
3718 -- Emax --
3719 ----------
3721 when Attribute_Emax =>
3722 Check_Floating_Point_Type_0;
3723 Set_Etype (N, Universal_Integer);
3725 -------------
3726 -- Enabled --
3727 -------------
3729 when Attribute_Enabled =>
3730 Check_Either_E0_Or_E1;
3732 if Present (E1) then
3733 if not Is_Entity_Name (E1) or else No (Entity (E1)) then
3734 Error_Msg_N ("entity name expected for Enabled attribute", E1);
3735 E1 := Empty;
3736 end if;
3737 end if;
3739 if Nkind (P) /= N_Identifier then
3740 Error_Msg_N ("identifier expected (check name)", P);
3741 elsif Get_Check_Id (Chars (P)) = No_Check_Id then
3742 Error_Msg_N ("& is not a recognized check name", P);
3743 end if;
3745 Set_Etype (N, Standard_Boolean);
3747 --------------
3748 -- Enum_Rep --
3749 --------------
3751 when Attribute_Enum_Rep => Enum_Rep : declare
3752 begin
3753 if Present (E1) then
3754 Check_E1;
3755 Check_Discrete_Type;
3756 Resolve (E1, P_Base_Type);
3758 elsif not Is_Discrete_Type (Etype (P)) then
3759 Error_Attr_P ("prefix of % attribute must be of discrete type");
3760 end if;
3762 Set_Etype (N, Universal_Integer);
3763 end Enum_Rep;
3765 --------------
3766 -- Enum_Val --
3767 --------------
3769 when Attribute_Enum_Val => Enum_Val : begin
3770 Check_E1;
3771 Check_Type;
3773 if not Is_Enumeration_Type (P_Type) then
3774 Error_Attr_P ("prefix of % attribute must be enumeration type");
3775 end if;
3777 -- If the enumeration type has a standard representation, the effect
3778 -- is the same as 'Val, so rewrite the attribute as a 'Val.
3780 if not Has_Non_Standard_Rep (P_Base_Type) then
3781 Rewrite (N,
3782 Make_Attribute_Reference (Loc,
3783 Prefix => Relocate_Node (Prefix (N)),
3784 Attribute_Name => Name_Val,
3785 Expressions => New_List (Relocate_Node (E1))));
3786 Analyze_And_Resolve (N, P_Base_Type);
3788 -- Non-standard representation case (enumeration with holes)
3790 else
3791 Check_Enum_Image;
3792 Resolve (E1, Any_Integer);
3793 Set_Etype (N, P_Base_Type);
3794 end if;
3795 end Enum_Val;
3797 -------------
3798 -- Epsilon --
3799 -------------
3801 when Attribute_Epsilon =>
3802 Check_Floating_Point_Type_0;
3803 Set_Etype (N, Universal_Real);
3805 --------------
3806 -- Exponent --
3807 --------------
3809 when Attribute_Exponent =>
3810 Check_Floating_Point_Type_1;
3811 Set_Etype (N, Universal_Integer);
3812 Resolve (E1, P_Base_Type);
3814 ------------------
3815 -- External_Tag --
3816 ------------------
3818 when Attribute_External_Tag =>
3819 Check_E0;
3820 Check_Type;
3822 Set_Etype (N, Standard_String);
3824 if not Is_Tagged_Type (P_Type) then
3825 Error_Attr_P ("prefix of % attribute must be tagged");
3826 end if;
3828 ---------------
3829 -- Fast_Math --
3830 ---------------
3832 when Attribute_Fast_Math =>
3833 Check_Standard_Prefix;
3834 Rewrite (N, New_Occurrence_Of (Boolean_Literals (Fast_Math), Loc));
3836 -----------
3837 -- First --
3838 -----------
3840 when Attribute_First =>
3841 Check_Array_Or_Scalar_Type;
3842 Bad_Attribute_For_Predicate;
3844 ---------------
3845 -- First_Bit --
3846 ---------------
3848 when Attribute_First_Bit =>
3849 Check_Component;
3850 Set_Etype (N, Universal_Integer);
3852 -----------------
3853 -- First_Valid --
3854 -----------------
3856 when Attribute_First_Valid =>
3857 Check_First_Last_Valid;
3858 Set_Etype (N, P_Type);
3860 -----------------
3861 -- Fixed_Value --
3862 -----------------
3864 when Attribute_Fixed_Value =>
3865 Check_E1;
3866 Check_Fixed_Point_Type;
3867 Resolve (E1, Any_Integer);
3868 Set_Etype (N, P_Base_Type);
3870 -----------
3871 -- Floor --
3872 -----------
3874 when Attribute_Floor =>
3875 Check_Floating_Point_Type_1;
3876 Set_Etype (N, P_Base_Type);
3877 Resolve (E1, P_Base_Type);
3879 ----------
3880 -- Fore --
3881 ----------
3883 when Attribute_Fore =>
3884 Check_Fixed_Point_Type_0;
3885 Set_Etype (N, Universal_Integer);
3887 --------------
3888 -- Fraction --
3889 --------------
3891 when Attribute_Fraction =>
3892 Check_Floating_Point_Type_1;
3893 Set_Etype (N, P_Base_Type);
3894 Resolve (E1, P_Base_Type);
3896 --------------
3897 -- From_Any --
3898 --------------
3900 when Attribute_From_Any =>
3901 Check_E1;
3902 Check_PolyORB_Attribute;
3903 Set_Etype (N, P_Base_Type);
3905 -----------------------
3906 -- Has_Access_Values --
3907 -----------------------
3909 when Attribute_Has_Access_Values =>
3910 Check_Type;
3911 Check_E0;
3912 Set_Etype (N, Standard_Boolean);
3914 ----------------------
3915 -- Has_Same_Storage --
3916 ----------------------
3918 when Attribute_Has_Same_Storage =>
3919 Check_E1;
3921 -- The arguments must be objects of any type
3923 Analyze_And_Resolve (P);
3924 Analyze_And_Resolve (E1);
3925 Check_Object_Reference (P);
3926 Check_Object_Reference (E1);
3927 Set_Etype (N, Standard_Boolean);
3929 -----------------------
3930 -- Has_Tagged_Values --
3931 -----------------------
3933 when Attribute_Has_Tagged_Values =>
3934 Check_Type;
3935 Check_E0;
3936 Set_Etype (N, Standard_Boolean);
3938 -----------------------
3939 -- Has_Discriminants --
3940 -----------------------
3942 when Attribute_Has_Discriminants =>
3943 Legal_Formal_Attribute;
3945 --------------
3946 -- Identity --
3947 --------------
3949 when Attribute_Identity =>
3950 Check_E0;
3951 Analyze (P);
3953 if Etype (P) = Standard_Exception_Type then
3954 Set_Etype (N, RTE (RE_Exception_Id));
3956 -- Ada 2005 (AI-345): Attribute 'Identity may be applied to task
3957 -- interface class-wide types.
3959 elsif Is_Task_Type (Etype (P))
3960 or else (Is_Access_Type (Etype (P))
3961 and then Is_Task_Type (Designated_Type (Etype (P))))
3962 or else (Ada_Version >= Ada_2005
3963 and then Ekind (Etype (P)) = E_Class_Wide_Type
3964 and then Is_Interface (Etype (P))
3965 and then Is_Task_Interface (Etype (P)))
3966 then
3967 Resolve (P);
3968 Set_Etype (N, RTE (RO_AT_Task_Id));
3970 else
3971 if Ada_Version >= Ada_2005 then
3972 Error_Attr_P
3973 ("prefix of % attribute must be an exception, a " &
3974 "task or a task interface class-wide object");
3975 else
3976 Error_Attr_P
3977 ("prefix of % attribute must be a task or an exception");
3978 end if;
3979 end if;
3981 -----------
3982 -- Image --
3983 -----------
3985 when Attribute_Image => Image : begin
3986 Check_SPARK_05_Restriction_On_Attribute;
3988 -- AI12-00124-1 : The ARG has adopted the GNAT semantics of 'Img
3989 -- for scalar types, so that the prefix can be an object and not
3990 -- a type, and there is no need for an argument. Given this vote
3991 -- of confidence from the ARG, simplest is to transform this new
3992 -- usage of 'Image into a reference to 'Img.
3994 if Ada_Version > Ada_2005
3995 and then Is_Object_Reference (P)
3996 and then Is_Scalar_Type (P_Type)
3997 then
3998 Rewrite (N,
3999 Make_Attribute_Reference (Loc,
4000 Prefix => Relocate_Node (P),
4001 Attribute_Name => Name_Img));
4002 Analyze (N);
4003 return;
4005 else
4006 Check_Scalar_Type;
4007 end if;
4009 Set_Etype (N, Standard_String);
4011 if Is_Real_Type (P_Type) then
4012 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4013 Error_Msg_Name_1 := Aname;
4014 Error_Msg_N
4015 ("(Ada 83) % attribute not allowed for real types", N);
4016 end if;
4017 end if;
4019 if Is_Enumeration_Type (P_Type) then
4020 Check_Restriction (No_Enumeration_Maps, N);
4021 end if;
4023 Check_E1;
4024 Resolve (E1, P_Base_Type);
4025 Check_Enum_Image;
4026 Validate_Non_Static_Attribute_Function_Call;
4028 -- Check restriction No_Fixed_IO. Note the check of Comes_From_Source
4029 -- to avoid giving a duplicate message for Img expanded into Image.
4031 if Restriction_Check_Required (No_Fixed_IO)
4032 and then Comes_From_Source (N)
4033 and then Is_Fixed_Point_Type (P_Type)
4034 then
4035 Check_Restriction (No_Fixed_IO, P);
4036 end if;
4037 end Image;
4039 ---------
4040 -- Img --
4041 ---------
4043 when Attribute_Img => Img :
4044 begin
4045 Check_E0;
4046 Set_Etype (N, Standard_String);
4048 if not Is_Scalar_Type (P_Type)
4049 or else (Is_Entity_Name (P) and then Is_Type (Entity (P)))
4050 then
4051 Error_Attr_P
4052 ("prefix of % attribute must be scalar object name");
4053 end if;
4055 Check_Enum_Image;
4057 -- Check restriction No_Fixed_IO
4059 if Restriction_Check_Required (No_Fixed_IO)
4060 and then Is_Fixed_Point_Type (P_Type)
4061 then
4062 Check_Restriction (No_Fixed_IO, P);
4063 end if;
4064 end Img;
4066 -----------
4067 -- Input --
4068 -----------
4070 when Attribute_Input =>
4071 Check_E1;
4072 Check_Stream_Attribute (TSS_Stream_Input);
4073 Set_Etype (N, P_Base_Type);
4075 -------------------
4076 -- Integer_Value --
4077 -------------------
4079 when Attribute_Integer_Value =>
4080 Check_E1;
4081 Check_Integer_Type;
4082 Resolve (E1, Any_Fixed);
4084 -- Signal an error if argument type is not a specific fixed-point
4085 -- subtype. An error has been signalled already if the argument
4086 -- was not of a fixed-point type.
4088 if Etype (E1) = Any_Fixed and then not Error_Posted (E1) then
4089 Error_Attr ("argument of % must be of a fixed-point type", E1);
4090 end if;
4092 Set_Etype (N, P_Base_Type);
4094 -------------------
4095 -- Invalid_Value --
4096 -------------------
4098 when Attribute_Invalid_Value =>
4099 Check_E0;
4100 Check_Scalar_Type;
4101 Set_Etype (N, P_Base_Type);
4102 Invalid_Value_Used := True;
4104 -----------
4105 -- Large --
4106 -----------
4108 when Attribute_Large =>
4109 Check_E0;
4110 Check_Real_Type;
4111 Set_Etype (N, Universal_Real);
4113 ----------
4114 -- Last --
4115 ----------
4117 when Attribute_Last =>
4118 Check_Array_Or_Scalar_Type;
4119 Bad_Attribute_For_Predicate;
4121 --------------
4122 -- Last_Bit --
4123 --------------
4125 when Attribute_Last_Bit =>
4126 Check_Component;
4127 Set_Etype (N, Universal_Integer);
4129 ----------------
4130 -- Last_Valid --
4131 ----------------
4133 when Attribute_Last_Valid =>
4134 Check_First_Last_Valid;
4135 Set_Etype (N, P_Type);
4137 ------------------
4138 -- Leading_Part --
4139 ------------------
4141 when Attribute_Leading_Part =>
4142 Check_Floating_Point_Type_2;
4143 Set_Etype (N, P_Base_Type);
4144 Resolve (E1, P_Base_Type);
4145 Resolve (E2, Any_Integer);
4147 ------------
4148 -- Length --
4149 ------------
4151 when Attribute_Length =>
4152 Check_Array_Type;
4153 Set_Etype (N, Universal_Integer);
4155 -------------------
4156 -- Library_Level --
4157 -------------------
4159 when Attribute_Library_Level =>
4160 Check_E0;
4162 if not Is_Entity_Name (P) then
4163 Error_Attr_P ("prefix of % attribute must be an entity name");
4164 end if;
4166 if not Inside_A_Generic then
4167 Set_Boolean_Result (N,
4168 Is_Library_Level_Entity (Entity (P)));
4169 end if;
4171 Set_Etype (N, Standard_Boolean);
4173 ---------------
4174 -- Lock_Free --
4175 ---------------
4177 when Attribute_Lock_Free =>
4178 Check_E0;
4179 Set_Etype (N, Standard_Boolean);
4181 if not Is_Protected_Type (P_Type) then
4182 Error_Attr_P
4183 ("prefix of % attribute must be a protected object");
4184 end if;
4186 ----------------
4187 -- Loop_Entry --
4188 ----------------
4190 when Attribute_Loop_Entry => Loop_Entry : declare
4191 procedure Check_References_In_Prefix (Loop_Id : Entity_Id);
4192 -- Inspect the prefix for any uses of entities declared within the
4193 -- related loop. Loop_Id denotes the loop identifier.
4195 --------------------------------
4196 -- Check_References_In_Prefix --
4197 --------------------------------
4199 procedure Check_References_In_Prefix (Loop_Id : Entity_Id) is
4200 Loop_Decl : constant Node_Id := Label_Construct (Parent (Loop_Id));
4202 function Check_Reference (Nod : Node_Id) return Traverse_Result;
4203 -- Determine whether a reference mentions an entity declared
4204 -- within the related loop.
4206 function Declared_Within (Nod : Node_Id) return Boolean;
4207 -- Determine whether Nod appears in the subtree of Loop_Decl
4209 ---------------------
4210 -- Check_Reference --
4211 ---------------------
4213 function Check_Reference (Nod : Node_Id) return Traverse_Result is
4214 begin
4215 if Nkind (Nod) = N_Identifier
4216 and then Present (Entity (Nod))
4217 and then Declared_Within (Declaration_Node (Entity (Nod)))
4218 then
4219 Error_Attr
4220 ("prefix of attribute % cannot reference local entities",
4221 Nod);
4222 return Abandon;
4223 else
4224 return OK;
4225 end if;
4226 end Check_Reference;
4228 procedure Check_References is new Traverse_Proc (Check_Reference);
4230 ---------------------
4231 -- Declared_Within --
4232 ---------------------
4234 function Declared_Within (Nod : Node_Id) return Boolean is
4235 Stmt : Node_Id;
4237 begin
4238 Stmt := Nod;
4239 while Present (Stmt) loop
4240 if Stmt = Loop_Decl then
4241 return True;
4243 -- Prevent the search from going too far
4245 elsif Is_Body_Or_Package_Declaration (Stmt) then
4246 exit;
4247 end if;
4249 Stmt := Parent (Stmt);
4250 end loop;
4252 return False;
4253 end Declared_Within;
4255 -- Start of processing for Check_Prefix_For_Local_References
4257 begin
4258 Check_References (P);
4259 end Check_References_In_Prefix;
4261 -- Local variables
4263 Context : constant Node_Id := Parent (N);
4264 Attr : Node_Id;
4265 Enclosing_Loop : Node_Id;
4266 Loop_Id : Entity_Id := Empty;
4267 Scop : Entity_Id;
4268 Stmt : Node_Id;
4269 Enclosing_Pragma : Node_Id := Empty;
4271 -- Start of processing for Loop_Entry
4273 begin
4274 Attr := N;
4276 -- Set the type of the attribute now to ensure the successfull
4277 -- continuation of analysis even if the attribute is misplaced.
4279 Set_Etype (Attr, P_Type);
4281 -- Attribute 'Loop_Entry may appear in several flavors:
4283 -- * Prefix'Loop_Entry - in this form, the attribute applies to the
4284 -- nearest enclosing loop.
4286 -- * Prefix'Loop_Entry (Expr) - depending on what Expr denotes, the
4287 -- attribute may be related to a loop denoted by label Expr or
4288 -- the prefix may denote an array object and Expr may act as an
4289 -- indexed component.
4291 -- * Prefix'Loop_Entry (Expr1, ..., ExprN) - the attribute applies
4292 -- to the nearest enclosing loop, all expressions are part of
4293 -- an indexed component.
4295 -- * Prefix'Loop_Entry (Expr) (...) (...) - depending on what Expr
4296 -- denotes, the attribute may be related to a loop denoted by
4297 -- label Expr or the prefix may denote a multidimensional array
4298 -- array object and Expr along with the rest of the expressions
4299 -- may act as indexed components.
4301 -- Regardless of variations, the attribute reference does not have an
4302 -- expression list. Instead, all available expressions are stored as
4303 -- indexed components.
4305 -- When the attribute is part of an indexed component, find the first
4306 -- expression as it will determine the semantics of 'Loop_Entry.
4308 if Nkind (Context) = N_Indexed_Component then
4309 E1 := First (Expressions (Context));
4310 E2 := Next (E1);
4312 -- The attribute reference appears in the following form:
4314 -- Prefix'Loop_Entry (Exp1, Expr2, ..., ExprN) [(...)]
4316 -- In this case, the loop name is omitted and no rewriting is
4317 -- required.
4319 if Present (E2) then
4320 null;
4322 -- The form of the attribute is:
4324 -- Prefix'Loop_Entry (Expr) [(...)]
4326 -- If Expr denotes a loop entry, the whole attribute and indexed
4327 -- component will have to be rewritten to reflect this relation.
4329 else
4330 pragma Assert (Present (E1));
4332 -- Do not expand the expression as it may have side effects.
4333 -- Simply preanalyze to determine whether it is a loop name or
4334 -- something else.
4336 Preanalyze_And_Resolve (E1);
4338 if Is_Entity_Name (E1)
4339 and then Present (Entity (E1))
4340 and then Ekind (Entity (E1)) = E_Loop
4341 then
4342 Loop_Id := Entity (E1);
4344 -- Transform the attribute and enclosing indexed component
4346 Set_Expressions (N, Expressions (Context));
4347 Rewrite (Context, N);
4348 Set_Etype (Context, P_Type);
4350 Attr := Context;
4351 end if;
4352 end if;
4353 end if;
4355 -- The prefix must denote an object
4357 if not Is_Object_Reference (P) then
4358 Error_Attr_P ("prefix of attribute % must denote an object");
4359 end if;
4361 -- The prefix cannot be of a limited type because the expansion of
4362 -- Loop_Entry must create a constant initialized by the evaluated
4363 -- prefix.
4365 if Is_Limited_View (Etype (P)) then
4366 Error_Attr_P ("prefix of attribute % cannot be limited");
4367 end if;
4369 -- Climb the parent chain to verify the location of the attribute and
4370 -- find the enclosing loop.
4372 Stmt := Attr;
4373 while Present (Stmt) loop
4375 -- Locate the corresponding enclosing pragma. Note that in the
4376 -- case of Assert[And_Cut] and Assume, we have already checked
4377 -- that the pragma appears in an appropriate loop location.
4379 if Nkind (Original_Node (Stmt)) = N_Pragma
4380 and then Nam_In (Pragma_Name (Original_Node (Stmt)),
4381 Name_Loop_Invariant,
4382 Name_Loop_Variant,
4383 Name_Assert,
4384 Name_Assert_And_Cut,
4385 Name_Assume)
4386 then
4387 Enclosing_Pragma := Original_Node (Stmt);
4389 -- Locate the enclosing loop (if any). Note that Ada 2012 array
4390 -- iteration may be expanded into several nested loops, we are
4391 -- interested in the outermost one which has the loop identifier,
4392 -- and comes from source.
4394 elsif Nkind (Stmt) = N_Loop_Statement
4395 and then Present (Identifier (Stmt))
4396 and then Comes_From_Source (Original_Node (Stmt))
4397 and then Nkind (Original_Node (Stmt)) = N_Loop_Statement
4398 then
4399 Enclosing_Loop := Stmt;
4401 -- The original attribute reference may lack a loop name. Use
4402 -- the name of the enclosing loop because it is the related
4403 -- loop.
4405 if No (Loop_Id) then
4406 Loop_Id := Entity (Identifier (Enclosing_Loop));
4407 end if;
4409 exit;
4411 -- Prevent the search from going too far
4413 elsif Is_Body_Or_Package_Declaration (Stmt) then
4414 exit;
4415 end if;
4417 Stmt := Parent (Stmt);
4418 end loop;
4420 -- Loop_Entry must appear within a Loop_Assertion pragma (Assert,
4421 -- Assert_And_Cut, Assume count as loop assertion pragmas for this
4422 -- purpose if they appear in an appropriate location in a loop,
4423 -- which was already checked by the top level pragma circuit).
4425 if No (Enclosing_Pragma) then
4426 Error_Attr ("attribute% must appear within appropriate pragma", N);
4427 end if;
4429 -- A Loop_Entry that applies to a given loop statement must not
4430 -- appear within a body of accept statement, if this construct is
4431 -- itself enclosed by the given loop statement.
4433 for Index in reverse 0 .. Scope_Stack.Last loop
4434 Scop := Scope_Stack.Table (Index).Entity;
4436 if Ekind (Scop) = E_Loop and then Scop = Loop_Id then
4437 exit;
4438 elsif Ekind_In (Scop, E_Block, E_Loop, E_Return_Statement) then
4439 null;
4440 else
4441 Error_Attr
4442 ("attribute % cannot appear in body or accept statement", N);
4443 exit;
4444 end if;
4445 end loop;
4447 -- The prefix cannot mention entities declared within the related
4448 -- loop because they will not be visible once the prefix is moved
4449 -- outside the loop.
4451 Check_References_In_Prefix (Loop_Id);
4453 -- The prefix must denote a static entity if the pragma does not
4454 -- apply to the innermost enclosing loop statement, or if it appears
4455 -- within a potentially unevaluated epxression.
4457 if Is_Entity_Name (P)
4458 or else Nkind (Parent (P)) = N_Object_Renaming_Declaration
4459 then
4460 null;
4462 elsif Present (Enclosing_Loop)
4463 and then Entity (Identifier (Enclosing_Loop)) /= Loop_Id
4464 then
4465 Error_Attr_P
4466 ("prefix of attribute % that applies to outer loop must denote "
4467 & "an entity");
4469 elsif Is_Potentially_Unevaluated (P) then
4470 Uneval_Old_Msg;
4471 end if;
4473 -- Replace the Loop_Entry attribute reference by its prefix if the
4474 -- related pragma is ignored. This transformation is OK with respect
4475 -- to typing because Loop_Entry's type is that of its prefix. This
4476 -- early transformation also avoids the generation of a useless loop
4477 -- entry constant.
4479 if Is_Ignored (Enclosing_Pragma) then
4480 Rewrite (N, Relocate_Node (P));
4481 end if;
4483 Preanalyze_And_Resolve (P);
4484 end Loop_Entry;
4486 -------------
4487 -- Machine --
4488 -------------
4490 when Attribute_Machine =>
4491 Check_Floating_Point_Type_1;
4492 Set_Etype (N, P_Base_Type);
4493 Resolve (E1, P_Base_Type);
4495 ------------------
4496 -- Machine_Emax --
4497 ------------------
4499 when Attribute_Machine_Emax =>
4500 Check_Floating_Point_Type_0;
4501 Set_Etype (N, Universal_Integer);
4503 ------------------
4504 -- Machine_Emin --
4505 ------------------
4507 when Attribute_Machine_Emin =>
4508 Check_Floating_Point_Type_0;
4509 Set_Etype (N, Universal_Integer);
4511 ----------------------
4512 -- Machine_Mantissa --
4513 ----------------------
4515 when Attribute_Machine_Mantissa =>
4516 Check_Floating_Point_Type_0;
4517 Set_Etype (N, Universal_Integer);
4519 -----------------------
4520 -- Machine_Overflows --
4521 -----------------------
4523 when Attribute_Machine_Overflows =>
4524 Check_Real_Type;
4525 Check_E0;
4526 Set_Etype (N, Standard_Boolean);
4528 -------------------
4529 -- Machine_Radix --
4530 -------------------
4532 when Attribute_Machine_Radix =>
4533 Check_Real_Type;
4534 Check_E0;
4535 Set_Etype (N, Universal_Integer);
4537 ----------------------
4538 -- Machine_Rounding --
4539 ----------------------
4541 when Attribute_Machine_Rounding =>
4542 Check_Floating_Point_Type_1;
4543 Set_Etype (N, P_Base_Type);
4544 Resolve (E1, P_Base_Type);
4546 --------------------
4547 -- Machine_Rounds --
4548 --------------------
4550 when Attribute_Machine_Rounds =>
4551 Check_Real_Type;
4552 Check_E0;
4553 Set_Etype (N, Standard_Boolean);
4555 ------------------
4556 -- Machine_Size --
4557 ------------------
4559 when Attribute_Machine_Size =>
4560 Check_E0;
4561 Check_Type;
4562 Check_Not_Incomplete_Type;
4563 Set_Etype (N, Universal_Integer);
4565 --------------
4566 -- Mantissa --
4567 --------------
4569 when Attribute_Mantissa =>
4570 Check_E0;
4571 Check_Real_Type;
4572 Set_Etype (N, Universal_Integer);
4574 ---------
4575 -- Max --
4576 ---------
4578 when Attribute_Max =>
4579 Min_Max;
4581 ----------------------------------
4582 -- Max_Alignment_For_Allocation --
4583 ----------------------------------
4585 when Attribute_Max_Size_In_Storage_Elements =>
4586 Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements;
4588 ----------------------------------
4589 -- Max_Size_In_Storage_Elements --
4590 ----------------------------------
4592 when Attribute_Max_Alignment_For_Allocation =>
4593 Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements;
4595 -----------------------
4596 -- Maximum_Alignment --
4597 -----------------------
4599 when Attribute_Maximum_Alignment =>
4600 Standard_Attribute (Ttypes.Maximum_Alignment);
4602 --------------------
4603 -- Mechanism_Code --
4604 --------------------
4606 when Attribute_Mechanism_Code =>
4607 if not Is_Entity_Name (P)
4608 or else not Is_Subprogram (Entity (P))
4609 then
4610 Error_Attr_P ("prefix of % attribute must be subprogram");
4611 end if;
4613 Check_Either_E0_Or_E1;
4615 if Present (E1) then
4616 Resolve (E1, Any_Integer);
4617 Set_Etype (E1, Standard_Integer);
4619 if not Is_OK_Static_Expression (E1) then
4620 Flag_Non_Static_Expr
4621 ("expression for parameter number must be static!", E1);
4622 Error_Attr;
4624 elsif UI_To_Int (Intval (E1)) > Number_Formals (Entity (P))
4625 or else UI_To_Int (Intval (E1)) < 0
4626 then
4627 Error_Attr ("invalid parameter number for % attribute", E1);
4628 end if;
4629 end if;
4631 Set_Etype (N, Universal_Integer);
4633 ---------
4634 -- Min --
4635 ---------
4637 when Attribute_Min =>
4638 Min_Max;
4640 ---------
4641 -- Mod --
4642 ---------
4644 when Attribute_Mod =>
4646 -- Note: this attribute is only allowed in Ada 2005 mode, but
4647 -- we do not need to test that here, since Mod is only recognized
4648 -- as an attribute name in Ada 2005 mode during the parse.
4650 Check_E1;
4651 Check_Modular_Integer_Type;
4652 Resolve (E1, Any_Integer);
4653 Set_Etype (N, P_Base_Type);
4655 -----------
4656 -- Model --
4657 -----------
4659 when Attribute_Model =>
4660 Check_Floating_Point_Type_1;
4661 Set_Etype (N, P_Base_Type);
4662 Resolve (E1, P_Base_Type);
4664 ----------------
4665 -- Model_Emin --
4666 ----------------
4668 when Attribute_Model_Emin =>
4669 Check_Floating_Point_Type_0;
4670 Set_Etype (N, Universal_Integer);
4672 -------------------
4673 -- Model_Epsilon --
4674 -------------------
4676 when Attribute_Model_Epsilon =>
4677 Check_Floating_Point_Type_0;
4678 Set_Etype (N, Universal_Real);
4680 --------------------
4681 -- Model_Mantissa --
4682 --------------------
4684 when Attribute_Model_Mantissa =>
4685 Check_Floating_Point_Type_0;
4686 Set_Etype (N, Universal_Integer);
4688 -----------------
4689 -- Model_Small --
4690 -----------------
4692 when Attribute_Model_Small =>
4693 Check_Floating_Point_Type_0;
4694 Set_Etype (N, Universal_Real);
4696 -------------
4697 -- Modulus --
4698 -------------
4700 when Attribute_Modulus =>
4701 Check_E0;
4702 Check_Modular_Integer_Type;
4703 Set_Etype (N, Universal_Integer);
4705 --------------------
4706 -- Null_Parameter --
4707 --------------------
4709 when Attribute_Null_Parameter => Null_Parameter : declare
4710 Parnt : constant Node_Id := Parent (N);
4711 GParnt : constant Node_Id := Parent (Parnt);
4713 procedure Bad_Null_Parameter (Msg : String);
4714 -- Used if bad Null parameter attribute node is found. Issues
4715 -- given error message, and also sets the type to Any_Type to
4716 -- avoid blowups later on from dealing with a junk node.
4718 procedure Must_Be_Imported (Proc_Ent : Entity_Id);
4719 -- Called to check that Proc_Ent is imported subprogram
4721 ------------------------
4722 -- Bad_Null_Parameter --
4723 ------------------------
4725 procedure Bad_Null_Parameter (Msg : String) is
4726 begin
4727 Error_Msg_N (Msg, N);
4728 Set_Etype (N, Any_Type);
4729 end Bad_Null_Parameter;
4731 ----------------------
4732 -- Must_Be_Imported --
4733 ----------------------
4735 procedure Must_Be_Imported (Proc_Ent : Entity_Id) is
4736 Pent : constant Entity_Id := Ultimate_Alias (Proc_Ent);
4738 begin
4739 -- Ignore check if procedure not frozen yet (we will get
4740 -- another chance when the default parameter is reanalyzed)
4742 if not Is_Frozen (Pent) then
4743 return;
4745 elsif not Is_Imported (Pent) then
4746 Bad_Null_Parameter
4747 ("Null_Parameter can only be used with imported subprogram");
4749 else
4750 return;
4751 end if;
4752 end Must_Be_Imported;
4754 -- Start of processing for Null_Parameter
4756 begin
4757 Check_Type;
4758 Check_E0;
4759 Set_Etype (N, P_Type);
4761 -- Case of attribute used as default expression
4763 if Nkind (Parnt) = N_Parameter_Specification then
4764 Must_Be_Imported (Defining_Entity (GParnt));
4766 -- Case of attribute used as actual for subprogram (positional)
4768 elsif Nkind (Parnt) in N_Subprogram_Call
4769 and then Is_Entity_Name (Name (Parnt))
4770 then
4771 Must_Be_Imported (Entity (Name (Parnt)));
4773 -- Case of attribute used as actual for subprogram (named)
4775 elsif Nkind (Parnt) = N_Parameter_Association
4776 and then Nkind (GParnt) in N_Subprogram_Call
4777 and then Is_Entity_Name (Name (GParnt))
4778 then
4779 Must_Be_Imported (Entity (Name (GParnt)));
4781 -- Not an allowed case
4783 else
4784 Bad_Null_Parameter
4785 ("Null_Parameter must be actual or default parameter");
4786 end if;
4787 end Null_Parameter;
4789 -----------------
4790 -- Object_Size --
4791 -----------------
4793 when Attribute_Object_Size =>
4794 Check_E0;
4795 Check_Type;
4796 Check_Not_Incomplete_Type;
4797 Set_Etype (N, Universal_Integer);
4799 ---------
4800 -- Old --
4801 ---------
4803 when Attribute_Old => Old : declare
4804 procedure Check_References_In_Prefix (Subp_Id : Entity_Id);
4805 -- Inspect the contents of the prefix and detect illegal uses of a
4806 -- nested 'Old, attribute 'Result or a use of an entity declared in
4807 -- the related postcondition expression. Subp_Id is the subprogram to
4808 -- which the related postcondition applies.
4810 --------------------------------
4811 -- Check_References_In_Prefix --
4812 --------------------------------
4814 procedure Check_References_In_Prefix (Subp_Id : Entity_Id) is
4815 function Check_Reference (Nod : Node_Id) return Traverse_Result;
4816 -- Detect attribute 'Old, attribute 'Result of a use of an entity
4817 -- and perform the appropriate semantic check.
4819 ---------------------
4820 -- Check_Reference --
4821 ---------------------
4823 function Check_Reference (Nod : Node_Id) return Traverse_Result is
4824 begin
4825 -- Attributes 'Old and 'Result cannot appear in the prefix of
4826 -- another attribute 'Old.
4828 if Nkind (Nod) = N_Attribute_Reference
4829 and then Nam_In (Attribute_Name (Nod), Name_Old,
4830 Name_Result)
4831 then
4832 Error_Msg_Name_1 := Attribute_Name (Nod);
4833 Error_Msg_Name_2 := Name_Old;
4834 Error_Msg_N
4835 ("attribute % cannot appear in the prefix of attribute %",
4836 Nod);
4837 return Abandon;
4839 -- Entities mentioned within the prefix of attribute 'Old must
4840 -- be global to the related postcondition. If this is not the
4841 -- case, then the scope of the local entity is nested within
4842 -- that of the subprogram.
4844 elsif Is_Entity_Name (Nod)
4845 and then Present (Entity (Nod))
4846 and then Scope_Within (Scope (Entity (Nod)), Subp_Id)
4847 then
4848 Error_Attr
4849 ("prefix of attribute % cannot reference local entities",
4850 Nod);
4851 return Abandon;
4853 -- Otherwise keep inspecting the prefix
4855 else
4856 return OK;
4857 end if;
4858 end Check_Reference;
4860 procedure Check_References is new Traverse_Proc (Check_Reference);
4862 -- Start of processing for Check_References_In_Prefix
4864 begin
4865 Check_References (P);
4866 end Check_References_In_Prefix;
4868 -- Local variables
4870 Legal : Boolean;
4871 Pref_Id : Entity_Id;
4872 Pref_Typ : Entity_Id;
4873 Spec_Id : Entity_Id;
4875 -- Start of processing for Old
4877 begin
4878 -- The attribute reference is a primary. If any expressions follow,
4879 -- then the attribute reference is an indexable object. Transform the
4880 -- attribute into an indexed component and analyze it.
4882 if Present (E1) then
4883 Rewrite (N,
4884 Make_Indexed_Component (Loc,
4885 Prefix =>
4886 Make_Attribute_Reference (Loc,
4887 Prefix => Relocate_Node (P),
4888 Attribute_Name => Name_Old),
4889 Expressions => Expressions (N)));
4890 Analyze (N);
4891 return;
4892 end if;
4894 Analyze_Attribute_Old_Result (Legal, Spec_Id);
4896 -- The aspect or pragma where attribute 'Old resides should be
4897 -- associated with a subprogram declaration or a body. If this is not
4898 -- the case, then the aspect or pragma is illegal. Return as analysis
4899 -- cannot be carried out.
4901 -- The exception to this rule is when generating C since in this case
4902 -- postconditions are inlined.
4904 if No (Spec_Id)
4905 and then Modify_Tree_For_C
4906 and then In_Inlined_Body
4907 then
4908 Spec_Id := Entity (P);
4910 elsif not Legal then
4911 return;
4912 end if;
4914 -- The prefix must be preanalyzed as the full analysis will take
4915 -- place during expansion.
4917 Preanalyze_And_Resolve (P);
4919 -- Ensure that the prefix does not contain attributes 'Old or 'Result
4921 Check_References_In_Prefix (Spec_Id);
4923 -- Set the type of the attribute now to prevent cascaded errors
4925 Pref_Typ := Etype (P);
4926 Set_Etype (N, Pref_Typ);
4928 -- Legality checks
4930 if Is_Limited_Type (Pref_Typ) then
4931 Error_Attr ("attribute % cannot apply to limited objects", P);
4932 end if;
4934 -- The prefix is a simple name
4936 if Is_Entity_Name (P) and then Present (Entity (P)) then
4937 Pref_Id := Entity (P);
4939 -- Emit a warning when the prefix is a constant. Note that the use
4940 -- of Error_Attr would reset the type of N to Any_Type even though
4941 -- this is a warning. Use Error_Msg_XXX instead.
4943 if Is_Constant_Object (Pref_Id) then
4944 Error_Msg_Name_1 := Name_Old;
4945 Error_Msg_N
4946 ("??attribute % applied to constant has no effect", P);
4947 end if;
4949 -- Otherwise the prefix is not a simple name
4951 else
4952 -- Ensure that the prefix of attribute 'Old is an entity when it
4953 -- is potentially unevaluated (6.1.1 (27/3)).
4955 if Is_Potentially_Unevaluated (N) then
4956 Uneval_Old_Msg;
4958 -- Detect a possible infinite recursion when the prefix denotes
4959 -- the related function.
4961 -- function Func (...) return ...
4962 -- with Post => Func'Old ...;
4964 -- The function may be specified in qualified form X.Y where X is
4965 -- a protected object and Y is a protected function. In that case
4966 -- ensure that the qualified form has an entity.
4968 elsif Nkind (P) = N_Function_Call
4969 and then Nkind (Name (P)) in N_Has_Entity
4970 then
4971 Pref_Id := Entity (Name (P));
4973 if Ekind_In (Spec_Id, E_Function, E_Generic_Function)
4974 and then Pref_Id = Spec_Id
4975 then
4976 Error_Msg_Warn := SPARK_Mode /= On;
4977 Error_Msg_N ("!possible infinite recursion<<", P);
4978 Error_Msg_N ("\!??Storage_Error ]<<", P);
4979 end if;
4980 end if;
4982 -- The prefix of attribute 'Old may refer to a component of a
4983 -- formal parameter. In this case its expansion may generate
4984 -- actual subtypes that are referenced in an inner context and
4985 -- that must be elaborated within the subprogram itself. If the
4986 -- prefix includes a function call, it may involve finalization
4987 -- actions that should be inserted when the attribute has been
4988 -- rewritten as a declaration. Create a declaration for the prefix
4989 -- and insert it at the start of the enclosing subprogram. This is
4990 -- an expansion activity that has to be performed now to prevent
4991 -- out-of-order issues.
4993 -- This expansion is both harmful and not needed in SPARK mode,
4994 -- since the formal verification back end relies on the types of
4995 -- nodes (hence is not robust w.r.t. a change to base type here),
4996 -- and does not suffer from the out-of-order issue described
4997 -- above. Thus, this expansion is skipped in SPARK mode.
4999 -- The expansion is not relevant for discrete types, which will
5000 -- not generate extra declarations, and where use of the base type
5001 -- may lead to spurious errors if context is a case.
5003 if not GNATprove_Mode then
5004 if not Is_Discrete_Type (Pref_Typ) then
5005 Pref_Typ := Base_Type (Pref_Typ);
5006 end if;
5008 Set_Etype (N, Pref_Typ);
5009 Set_Etype (P, Pref_Typ);
5011 Analyze_Dimension (N);
5012 Expand (N);
5013 end if;
5014 end if;
5015 end Old;
5017 ----------------------
5018 -- Overlaps_Storage --
5019 ----------------------
5021 when Attribute_Overlaps_Storage =>
5022 Check_E1;
5024 -- Both arguments must be objects of any type
5026 Analyze_And_Resolve (P);
5027 Analyze_And_Resolve (E1);
5028 Check_Object_Reference (P);
5029 Check_Object_Reference (E1);
5030 Set_Etype (N, Standard_Boolean);
5032 ------------
5033 -- Output --
5034 ------------
5036 when Attribute_Output =>
5037 Check_E2;
5038 Check_Stream_Attribute (TSS_Stream_Output);
5039 Set_Etype (N, Standard_Void_Type);
5040 Resolve (N, Standard_Void_Type);
5042 ------------------
5043 -- Partition_ID --
5044 ------------------
5046 when Attribute_Partition_ID => Partition_Id :
5047 begin
5048 Check_E0;
5050 if P_Type /= Any_Type then
5051 if not Is_Library_Level_Entity (Entity (P)) then
5052 Error_Attr_P
5053 ("prefix of % attribute must be library-level entity");
5055 -- The defining entity of prefix should not be declared inside a
5056 -- Pure unit. RM E.1(8). Is_Pure was set during declaration.
5058 elsif Is_Entity_Name (P)
5059 and then Is_Pure (Entity (P))
5060 then
5061 Error_Attr_P ("prefix of% attribute must not be declared pure");
5062 end if;
5063 end if;
5065 Set_Etype (N, Universal_Integer);
5066 end Partition_Id;
5068 -------------------------
5069 -- Passed_By_Reference --
5070 -------------------------
5072 when Attribute_Passed_By_Reference =>
5073 Check_E0;
5074 Check_Type;
5075 Set_Etype (N, Standard_Boolean);
5077 ------------------
5078 -- Pool_Address --
5079 ------------------
5081 when Attribute_Pool_Address =>
5082 Check_E0;
5083 Set_Etype (N, RTE (RE_Address));
5085 ---------
5086 -- Pos --
5087 ---------
5089 when Attribute_Pos =>
5090 Check_Discrete_Type;
5091 Check_E1;
5093 if Is_Boolean_Type (P_Type) then
5094 Error_Msg_Name_1 := Aname;
5095 Error_Msg_Name_2 := Chars (P_Type);
5096 Check_SPARK_05_Restriction
5097 ("attribute% is not allowed for type%", P);
5098 end if;
5100 Resolve (E1, P_Base_Type);
5101 Set_Etype (N, Universal_Integer);
5103 --------------
5104 -- Position --
5105 --------------
5107 when Attribute_Position =>
5108 Check_Component;
5109 Set_Etype (N, Universal_Integer);
5111 ----------
5112 -- Pred --
5113 ----------
5115 when Attribute_Pred =>
5116 Check_Scalar_Type;
5117 Check_E1;
5119 if Is_Real_Type (P_Type) or else Is_Boolean_Type (P_Type) then
5120 Error_Msg_Name_1 := Aname;
5121 Error_Msg_Name_2 := Chars (P_Type);
5122 Check_SPARK_05_Restriction
5123 ("attribute% is not allowed for type%", P);
5124 end if;
5126 Resolve (E1, P_Base_Type);
5127 Set_Etype (N, P_Base_Type);
5129 -- Since Pred works on the base type, we normally do no check for the
5130 -- floating-point case, since the base type is unconstrained. But we
5131 -- make an exception in Check_Float_Overflow mode.
5133 if Is_Floating_Point_Type (P_Type) then
5134 if not Range_Checks_Suppressed (P_Base_Type) then
5135 Set_Do_Range_Check (E1);
5136 end if;
5138 -- If not modular type, test for overflow check required
5140 else
5141 if not Is_Modular_Integer_Type (P_Type)
5142 and then not Range_Checks_Suppressed (P_Base_Type)
5143 then
5144 Enable_Range_Check (E1);
5145 end if;
5146 end if;
5148 --------------
5149 -- Priority --
5150 --------------
5152 -- Ada 2005 (AI-327): Dynamic ceiling priorities
5154 when Attribute_Priority =>
5155 if Ada_Version < Ada_2005 then
5156 Error_Attr ("% attribute is allowed only in Ada 2005 mode", P);
5157 end if;
5159 Check_E0;
5161 -- The prefix must be a protected object (AARM D.5.2 (2/2))
5163 Analyze (P);
5165 if Is_Protected_Type (Etype (P))
5166 or else (Is_Access_Type (Etype (P))
5167 and then Is_Protected_Type (Designated_Type (Etype (P))))
5168 then
5169 Resolve (P, Etype (P));
5170 else
5171 Error_Attr_P ("prefix of % attribute must be a protected object");
5172 end if;
5174 Set_Etype (N, Standard_Integer);
5176 -- Must be called from within a protected procedure or entry of the
5177 -- protected object.
5179 declare
5180 S : Entity_Id;
5182 begin
5183 S := Current_Scope;
5184 while S /= Etype (P)
5185 and then S /= Standard_Standard
5186 loop
5187 S := Scope (S);
5188 end loop;
5190 if S = Standard_Standard then
5191 Error_Attr ("the attribute % is only allowed inside protected "
5192 & "operations", P);
5193 end if;
5194 end;
5196 Validate_Non_Static_Attribute_Function_Call;
5198 -----------
5199 -- Range --
5200 -----------
5202 when Attribute_Range =>
5203 Check_Array_Or_Scalar_Type;
5204 Bad_Attribute_For_Predicate;
5206 if Ada_Version = Ada_83
5207 and then Is_Scalar_Type (P_Type)
5208 and then Comes_From_Source (N)
5209 then
5210 Error_Attr
5211 ("(Ada 83) % attribute not allowed for scalar type", P);
5212 end if;
5214 ------------
5215 -- Result --
5216 ------------
5218 when Attribute_Result => Result : declare
5219 function Denote_Same_Function
5220 (Pref_Id : Entity_Id;
5221 Spec_Id : Entity_Id) return Boolean;
5222 -- Determine whether the entity of the prefix Pref_Id denotes the
5223 -- same entity as that of the related subprogram Spec_Id.
5225 --------------------------
5226 -- Denote_Same_Function --
5227 --------------------------
5229 function Denote_Same_Function
5230 (Pref_Id : Entity_Id;
5231 Spec_Id : Entity_Id) return Boolean
5233 Over_Id : constant Entity_Id := Overridden_Operation (Spec_Id);
5234 Subp_Spec : constant Node_Id := Parent (Spec_Id);
5236 begin
5237 -- The prefix denotes the related subprogram
5239 if Pref_Id = Spec_Id then
5240 return True;
5242 -- Account for a special case when attribute 'Result appears in
5243 -- the postcondition of a generic function.
5245 -- generic
5246 -- function Gen_Func return ...
5247 -- with Post => Gen_Func'Result ...;
5249 -- When the generic function is instantiated, the Chars field of
5250 -- the instantiated prefix still denotes the name of the generic
5251 -- function. Note that any preemptive transformation is impossible
5252 -- without a proper analysis. The structure of the wrapper package
5253 -- is as follows:
5255 -- package Anon_Gen_Pack is
5256 -- <subtypes and renamings>
5257 -- function Subp_Decl return ...; -- (!)
5258 -- pragma Postcondition (Gen_Func'Result ...); -- (!)
5259 -- function Gen_Func ... renames Subp_Decl;
5260 -- end Anon_Gen_Pack;
5262 elsif Nkind (Subp_Spec) = N_Function_Specification
5263 and then Present (Generic_Parent (Subp_Spec))
5264 and then Ekind_In (Pref_Id, E_Generic_Function, E_Function)
5265 then
5266 if Generic_Parent (Subp_Spec) = Pref_Id then
5267 return True;
5269 elsif Present (Alias (Pref_Id))
5270 and then Alias (Pref_Id) = Spec_Id
5271 then
5272 return True;
5273 end if;
5275 -- Account for a special case where a primitive of a tagged type
5276 -- inherits a class-wide postcondition from a parent type. In this
5277 -- case the prefix of attribute 'Result denotes the overriding
5278 -- primitive.
5280 elsif Present (Over_Id) and then Pref_Id = Over_Id then
5281 return True;
5282 end if;
5284 -- Otherwise the prefix does not denote the related subprogram
5286 return False;
5287 end Denote_Same_Function;
5289 -- Local variables
5291 In_Inlined_C_Postcondition : constant Boolean :=
5292 Modify_Tree_For_C
5293 and then In_Inlined_Body;
5295 Legal : Boolean;
5296 Pref_Id : Entity_Id;
5297 Spec_Id : Entity_Id;
5299 -- Start of processing for Result
5301 begin
5302 -- The attribute reference is a primary. If any expressions follow,
5303 -- then the attribute reference is an indexable object. Transform the
5304 -- attribute into an indexed component and analyze it.
5306 if Present (E1) then
5307 Rewrite (N,
5308 Make_Indexed_Component (Loc,
5309 Prefix =>
5310 Make_Attribute_Reference (Loc,
5311 Prefix => Relocate_Node (P),
5312 Attribute_Name => Name_Result),
5313 Expressions => Expressions (N)));
5314 Analyze (N);
5315 return;
5316 end if;
5318 Analyze_Attribute_Old_Result (Legal, Spec_Id);
5320 -- The aspect or pragma where attribute 'Result resides should be
5321 -- associated with a subprogram declaration or a body. If this is not
5322 -- the case, then the aspect or pragma is illegal. Return as analysis
5323 -- cannot be carried out.
5325 -- The exception to this rule is when generating C since in this case
5326 -- postconditions are inlined.
5328 if No (Spec_Id) and then In_Inlined_C_Postcondition then
5329 Spec_Id := Entity (P);
5331 elsif not Legal then
5332 return;
5333 end if;
5335 -- Attribute 'Result is part of a _Postconditions procedure. There is
5336 -- no need to perform the semantic checks below as they were already
5337 -- verified when the attribute was analyzed in its original context.
5338 -- Instead, rewrite the attribute as a reference to formal parameter
5339 -- _Result of the _Postconditions procedure.
5341 if Chars (Spec_Id) = Name_uPostconditions
5342 or else
5343 (In_Inlined_C_Postcondition
5344 and then Nkind (Parent (Spec_Id)) = N_Block_Statement)
5345 then
5346 Rewrite (N, Make_Identifier (Loc, Name_uResult));
5348 -- The type of formal parameter _Result is that of the function
5349 -- encapsulating the _Postconditions procedure. Resolution must
5350 -- be carried out against the function return type.
5352 Analyze_And_Resolve (N, Etype (Scope (Spec_Id)));
5354 -- Otherwise attribute 'Result appears in its original context and
5355 -- all semantic checks should be carried out.
5357 else
5358 -- Verify the legality of the prefix. It must denotes the entity
5359 -- of the related [generic] function.
5361 if Is_Entity_Name (P) then
5362 Pref_Id := Entity (P);
5364 if Ekind_In (Pref_Id, E_Function, E_Generic_Function)
5365 and then Ekind (Spec_Id) = Ekind (Pref_Id)
5366 then
5367 if Denote_Same_Function (Pref_Id, Spec_Id) then
5369 -- Correct the prefix of the attribute when the context
5370 -- is a generic function.
5372 if Pref_Id /= Spec_Id then
5373 Rewrite (P, New_Occurrence_Of (Spec_Id, Loc));
5374 Analyze (P);
5375 end if;
5377 Set_Etype (N, Etype (Spec_Id));
5379 -- Otherwise the prefix denotes some unrelated function
5381 else
5382 Error_Msg_Name_2 := Chars (Spec_Id);
5383 Error_Attr
5384 ("incorrect prefix for attribute %, expected %", P);
5385 end if;
5387 -- Otherwise the prefix denotes some other form of subprogram
5388 -- entity.
5390 else
5391 Error_Attr
5392 ("attribute % can only appear in postcondition of "
5393 & "function", P);
5394 end if;
5396 -- Otherwise the prefix is illegal
5398 else
5399 Error_Msg_Name_2 := Chars (Spec_Id);
5400 Error_Attr ("incorrect prefix for attribute %, expected %", P);
5401 end if;
5402 end if;
5403 end Result;
5405 ------------------
5406 -- Range_Length --
5407 ------------------
5409 when Attribute_Range_Length =>
5410 Check_E0;
5411 Check_Discrete_Type;
5412 Set_Etype (N, Universal_Integer);
5414 ----------
5415 -- Read --
5416 ----------
5418 when Attribute_Read =>
5419 Check_E2;
5420 Check_Stream_Attribute (TSS_Stream_Read);
5421 Set_Etype (N, Standard_Void_Type);
5422 Resolve (N, Standard_Void_Type);
5423 Note_Possible_Modification (E2, Sure => True);
5425 ---------
5426 -- Ref --
5427 ---------
5429 when Attribute_Ref =>
5430 Check_E1;
5431 Analyze (P);
5433 if Nkind (P) /= N_Expanded_Name
5434 or else not Is_RTE (P_Type, RE_Address)
5435 then
5436 Error_Attr_P ("prefix of % attribute must be System.Address");
5437 end if;
5439 Analyze_And_Resolve (E1, Any_Integer);
5440 Set_Etype (N, RTE (RE_Address));
5442 ---------------
5443 -- Remainder --
5444 ---------------
5446 when Attribute_Remainder =>
5447 Check_Floating_Point_Type_2;
5448 Set_Etype (N, P_Base_Type);
5449 Resolve (E1, P_Base_Type);
5450 Resolve (E2, P_Base_Type);
5452 ---------------------
5453 -- Restriction_Set --
5454 ---------------------
5456 when Attribute_Restriction_Set => Restriction_Set : declare
5457 R : Restriction_Id;
5458 U : Node_Id;
5459 Unam : Unit_Name_Type;
5461 begin
5462 Check_E1;
5463 Analyze (P);
5464 Check_System_Prefix;
5466 -- No_Dependence case
5468 if Nkind (E1) = N_Parameter_Association then
5469 pragma Assert (Chars (Selector_Name (E1)) = Name_No_Dependence);
5470 U := Explicit_Actual_Parameter (E1);
5472 if not OK_No_Dependence_Unit_Name (U) then
5473 Set_Boolean_Result (N, False);
5474 Error_Attr;
5475 end if;
5477 -- See if there is an entry already in the table. That's the
5478 -- case in which we can return True.
5480 for J in No_Dependences.First .. No_Dependences.Last loop
5481 if Designate_Same_Unit (U, No_Dependences.Table (J).Unit)
5482 and then No_Dependences.Table (J).Warn = False
5483 then
5484 Set_Boolean_Result (N, True);
5485 return;
5486 end if;
5487 end loop;
5489 -- If not in the No_Dependence table, result is False
5491 Set_Boolean_Result (N, False);
5493 -- In this case, we must ensure that the binder will reject any
5494 -- other unit in the partition that sets No_Dependence for this
5495 -- unit. We do that by making an entry in the special table kept
5496 -- for this purpose (if the entry is not there already).
5498 Unam := Get_Spec_Name (Get_Unit_Name (U));
5500 for J in Restriction_Set_Dependences.First ..
5501 Restriction_Set_Dependences.Last
5502 loop
5503 if Restriction_Set_Dependences.Table (J) = Unam then
5504 return;
5505 end if;
5506 end loop;
5508 Restriction_Set_Dependences.Append (Unam);
5510 -- Normal restriction case
5512 else
5513 if Nkind (E1) /= N_Identifier then
5514 Set_Boolean_Result (N, False);
5515 Error_Attr ("attribute % requires restriction identifier", E1);
5517 else
5518 R := Get_Restriction_Id (Process_Restriction_Synonyms (E1));
5520 if R = Not_A_Restriction_Id then
5521 Set_Boolean_Result (N, False);
5522 Error_Msg_Node_1 := E1;
5523 Error_Attr ("invalid restriction identifier &", E1);
5525 elsif R not in Partition_Boolean_Restrictions then
5526 Set_Boolean_Result (N, False);
5527 Error_Msg_Node_1 := E1;
5528 Error_Attr
5529 ("& is not a boolean partition-wide restriction", E1);
5530 end if;
5532 if Restriction_Active (R) then
5533 Set_Boolean_Result (N, True);
5534 else
5535 Check_Restriction (R, N);
5536 Set_Boolean_Result (N, False);
5537 end if;
5538 end if;
5539 end if;
5540 end Restriction_Set;
5542 -----------
5543 -- Round --
5544 -----------
5546 when Attribute_Round =>
5547 Check_E1;
5548 Check_Decimal_Fixed_Point_Type;
5549 Set_Etype (N, P_Base_Type);
5551 -- Because the context is universal_real (3.5.10(12)) it is a
5552 -- legal context for a universal fixed expression. This is the
5553 -- only attribute whose functional description involves U_R.
5555 if Etype (E1) = Universal_Fixed then
5556 declare
5557 Conv : constant Node_Id := Make_Type_Conversion (Loc,
5558 Subtype_Mark => New_Occurrence_Of (Universal_Real, Loc),
5559 Expression => Relocate_Node (E1));
5561 begin
5562 Rewrite (E1, Conv);
5563 Analyze (E1);
5564 end;
5565 end if;
5567 Resolve (E1, Any_Real);
5569 --------------
5570 -- Rounding --
5571 --------------
5573 when Attribute_Rounding =>
5574 Check_Floating_Point_Type_1;
5575 Set_Etype (N, P_Base_Type);
5576 Resolve (E1, P_Base_Type);
5578 ---------------
5579 -- Safe_Emax --
5580 ---------------
5582 when Attribute_Safe_Emax =>
5583 Check_Floating_Point_Type_0;
5584 Set_Etype (N, Universal_Integer);
5586 ----------------
5587 -- Safe_First --
5588 ----------------
5590 when Attribute_Safe_First =>
5591 Check_Floating_Point_Type_0;
5592 Set_Etype (N, Universal_Real);
5594 ----------------
5595 -- Safe_Large --
5596 ----------------
5598 when Attribute_Safe_Large =>
5599 Check_E0;
5600 Check_Real_Type;
5601 Set_Etype (N, Universal_Real);
5603 ---------------
5604 -- Safe_Last --
5605 ---------------
5607 when Attribute_Safe_Last =>
5608 Check_Floating_Point_Type_0;
5609 Set_Etype (N, Universal_Real);
5611 ----------------
5612 -- Safe_Small --
5613 ----------------
5615 when Attribute_Safe_Small =>
5616 Check_E0;
5617 Check_Real_Type;
5618 Set_Etype (N, Universal_Real);
5620 --------------------------
5621 -- Scalar_Storage_Order --
5622 --------------------------
5624 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order :
5625 declare
5626 Ent : Entity_Id := Empty;
5628 begin
5629 Check_E0;
5630 Check_Type;
5632 if not (Is_Record_Type (P_Type) or else Is_Array_Type (P_Type)) then
5634 -- In GNAT mode, the attribute applies to generic types as well
5635 -- as composite types, and for non-composite types always returns
5636 -- the default bit order for the target.
5638 if not (GNAT_Mode and then Is_Generic_Type (P_Type))
5639 and then not In_Instance
5640 then
5641 Error_Attr_P
5642 ("prefix of % attribute must be record or array type");
5644 elsif not Is_Generic_Type (P_Type) then
5645 if Bytes_Big_Endian then
5646 Ent := RTE (RE_High_Order_First);
5647 else
5648 Ent := RTE (RE_Low_Order_First);
5649 end if;
5650 end if;
5652 elsif Bytes_Big_Endian xor Reverse_Storage_Order (P_Type) then
5653 Ent := RTE (RE_High_Order_First);
5655 else
5656 Ent := RTE (RE_Low_Order_First);
5657 end if;
5659 if Present (Ent) then
5660 Rewrite (N, New_Occurrence_Of (Ent, Loc));
5661 end if;
5663 Set_Etype (N, RTE (RE_Bit_Order));
5664 Resolve (N);
5666 -- Reset incorrect indication of staticness
5668 Set_Is_Static_Expression (N, False);
5669 end Scalar_Storage_Order;
5671 -----------
5672 -- Scale --
5673 -----------
5675 when Attribute_Scale =>
5676 Check_E0;
5677 Check_Decimal_Fixed_Point_Type;
5678 Set_Etype (N, Universal_Integer);
5680 -------------
5681 -- Scaling --
5682 -------------
5684 when Attribute_Scaling =>
5685 Check_Floating_Point_Type_2;
5686 Set_Etype (N, P_Base_Type);
5687 Resolve (E1, P_Base_Type);
5689 ------------------
5690 -- Signed_Zeros --
5691 ------------------
5693 when Attribute_Signed_Zeros =>
5694 Check_Floating_Point_Type_0;
5695 Set_Etype (N, Standard_Boolean);
5697 ----------
5698 -- Size --
5699 ----------
5701 when Attribute_Size | Attribute_VADS_Size => Size :
5702 begin
5703 Check_E0;
5705 -- If prefix is parameterless function call, rewrite and resolve
5706 -- as such.
5708 if Is_Entity_Name (P)
5709 and then Ekind (Entity (P)) = E_Function
5710 then
5711 Resolve (P);
5713 -- Similar processing for a protected function call
5715 elsif Nkind (P) = N_Selected_Component
5716 and then Ekind (Entity (Selector_Name (P))) = E_Function
5717 then
5718 Resolve (P);
5719 end if;
5721 if Is_Object_Reference (P) then
5722 Check_Object_Reference (P);
5724 elsif Is_Entity_Name (P)
5725 and then (Is_Type (Entity (P))
5726 or else Ekind (Entity (P)) = E_Enumeration_Literal)
5727 then
5728 null;
5730 elsif Nkind (P) = N_Type_Conversion
5731 and then not Comes_From_Source (P)
5732 then
5733 null;
5735 -- Some other compilers allow dubious use of X'???'Size
5737 elsif Relaxed_RM_Semantics
5738 and then Nkind (P) = N_Attribute_Reference
5739 then
5740 null;
5742 else
5743 Error_Attr_P ("invalid prefix for % attribute");
5744 end if;
5746 Check_Not_Incomplete_Type;
5747 Check_Not_CPP_Type;
5748 Set_Etype (N, Universal_Integer);
5750 -- If we are processing pragmas Compile_Time_Warning and Compile_
5751 -- Time_Errors after the back end has been called and this occurrence
5752 -- of 'Size is known at compile time then it is safe to perform this
5753 -- evaluation. Needed to perform the static evaluation of the full
5754 -- boolean expression of these pragmas.
5756 if In_Compile_Time_Warning_Or_Error
5757 and then Is_Entity_Name (P)
5758 and then (Is_Type (Entity (P))
5759 or else Ekind (Entity (P)) = E_Enumeration_Literal)
5760 and then Size_Known_At_Compile_Time (Entity (P))
5761 then
5762 Rewrite (N, Make_Integer_Literal (Sloc (N), Esize (Entity (P))));
5763 Analyze (N);
5764 end if;
5765 end Size;
5767 -----------
5768 -- Small --
5769 -----------
5771 when Attribute_Small =>
5772 Check_E0;
5773 Check_Real_Type;
5774 Set_Etype (N, Universal_Real);
5776 ------------------
5777 -- Storage_Pool --
5778 ------------------
5780 when Attribute_Storage_Pool |
5781 Attribute_Simple_Storage_Pool => Storage_Pool :
5782 begin
5783 Check_E0;
5785 if Is_Access_Type (P_Type) then
5786 if Ekind (P_Type) = E_Access_Subprogram_Type then
5787 Error_Attr_P
5788 ("cannot use % attribute for access-to-subprogram type");
5789 end if;
5791 -- Set appropriate entity
5793 if Present (Associated_Storage_Pool (Root_Type (P_Type))) then
5794 Set_Entity (N, Associated_Storage_Pool (Root_Type (P_Type)));
5795 else
5796 Set_Entity (N, RTE (RE_Global_Pool_Object));
5797 end if;
5799 if Attr_Id = Attribute_Storage_Pool then
5800 if Present (Get_Rep_Pragma (Etype (Entity (N)),
5801 Name_Simple_Storage_Pool_Type))
5802 then
5803 Error_Msg_Name_1 := Aname;
5804 Error_Msg_Warn := SPARK_Mode /= On;
5805 Error_Msg_N ("cannot use % attribute for type with simple "
5806 & "storage pool<<", N);
5807 Error_Msg_N ("\Program_Error [<<", N);
5809 Rewrite
5810 (N, Make_Raise_Program_Error
5811 (Sloc (N), Reason => PE_Explicit_Raise));
5812 end if;
5814 Set_Etype (N, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5816 -- In the Simple_Storage_Pool case, verify that the pool entity is
5817 -- actually of a simple storage pool type, and set the attribute's
5818 -- type to the pool object's type.
5820 else
5821 if not Present (Get_Rep_Pragma (Etype (Entity (N)),
5822 Name_Simple_Storage_Pool_Type))
5823 then
5824 Error_Attr_P
5825 ("cannot use % attribute for type without simple " &
5826 "storage pool");
5827 end if;
5829 Set_Etype (N, Etype (Entity (N)));
5830 end if;
5832 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
5833 -- Storage_Pool since this attribute is not defined for such
5834 -- types (RM E.2.3(22)).
5836 Validate_Remote_Access_To_Class_Wide_Type (N);
5838 else
5839 Error_Attr_P ("prefix of % attribute must be access type");
5840 end if;
5841 end Storage_Pool;
5843 ------------------
5844 -- Storage_Size --
5845 ------------------
5847 when Attribute_Storage_Size => Storage_Size :
5848 begin
5849 Check_E0;
5851 if Is_Task_Type (P_Type) then
5852 Set_Etype (N, Universal_Integer);
5854 -- Use with tasks is an obsolescent feature
5856 Check_Restriction (No_Obsolescent_Features, P);
5858 elsif Is_Access_Type (P_Type) then
5859 if Ekind (P_Type) = E_Access_Subprogram_Type then
5860 Error_Attr_P
5861 ("cannot use % attribute for access-to-subprogram type");
5862 end if;
5864 if Is_Entity_Name (P)
5865 and then Is_Type (Entity (P))
5866 then
5867 Check_Type;
5868 Set_Etype (N, Universal_Integer);
5870 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
5871 -- Storage_Size since this attribute is not defined for
5872 -- such types (RM E.2.3(22)).
5874 Validate_Remote_Access_To_Class_Wide_Type (N);
5876 -- The prefix is allowed to be an implicit dereference of an
5877 -- access value designating a task.
5879 else
5880 Check_Task_Prefix;
5881 Set_Etype (N, Universal_Integer);
5882 end if;
5884 else
5885 Error_Attr_P ("prefix of % attribute must be access or task type");
5886 end if;
5887 end Storage_Size;
5889 ------------------
5890 -- Storage_Unit --
5891 ------------------
5893 when Attribute_Storage_Unit =>
5894 Standard_Attribute (Ttypes.System_Storage_Unit);
5896 -----------------
5897 -- Stream_Size --
5898 -----------------
5900 when Attribute_Stream_Size =>
5901 Check_E0;
5902 Check_Type;
5904 if Is_Entity_Name (P)
5905 and then Is_Elementary_Type (Entity (P))
5906 then
5907 Set_Etype (N, Universal_Integer);
5908 else
5909 Error_Attr_P ("invalid prefix for % attribute");
5910 end if;
5912 ---------------
5913 -- Stub_Type --
5914 ---------------
5916 when Attribute_Stub_Type =>
5917 Check_Type;
5918 Check_E0;
5920 if Is_Remote_Access_To_Class_Wide_Type (Base_Type (P_Type)) then
5922 -- For a real RACW [sub]type, use corresponding stub type
5924 if not Is_Generic_Type (P_Type) then
5925 Rewrite (N,
5926 New_Occurrence_Of
5927 (Corresponding_Stub_Type (Base_Type (P_Type)), Loc));
5929 -- For a generic type (that has been marked as an RACW using the
5930 -- Remote_Access_Type aspect or pragma), use a generic RACW stub
5931 -- type. Note that if the actual is not a remote access type, the
5932 -- instantiation will fail.
5934 else
5935 -- Note: we go to the underlying type here because the view
5936 -- returned by RTE (RE_RACW_Stub_Type) might be incomplete.
5938 Rewrite (N,
5939 New_Occurrence_Of
5940 (Underlying_Type (RTE (RE_RACW_Stub_Type)), Loc));
5941 end if;
5943 else
5944 Error_Attr_P
5945 ("prefix of% attribute must be remote access-to-class-wide");
5946 end if;
5948 ----------
5949 -- Succ --
5950 ----------
5952 when Attribute_Succ =>
5953 Check_Scalar_Type;
5954 Check_E1;
5956 if Is_Real_Type (P_Type) or else Is_Boolean_Type (P_Type) then
5957 Error_Msg_Name_1 := Aname;
5958 Error_Msg_Name_2 := Chars (P_Type);
5959 Check_SPARK_05_Restriction
5960 ("attribute% is not allowed for type%", P);
5961 end if;
5963 Resolve (E1, P_Base_Type);
5964 Set_Etype (N, P_Base_Type);
5966 -- Since Pred works on the base type, we normally do no check for the
5967 -- floating-point case, since the base type is unconstrained. But we
5968 -- make an exception in Check_Float_Overflow mode.
5970 if Is_Floating_Point_Type (P_Type) then
5971 if not Range_Checks_Suppressed (P_Base_Type) then
5972 Set_Do_Range_Check (E1);
5973 end if;
5975 -- If not modular type, test for overflow check required
5977 else
5978 if not Is_Modular_Integer_Type (P_Type)
5979 and then not Range_Checks_Suppressed (P_Base_Type)
5980 then
5981 Enable_Range_Check (E1);
5982 end if;
5983 end if;
5985 --------------------------------
5986 -- System_Allocator_Alignment --
5987 --------------------------------
5989 when Attribute_System_Allocator_Alignment =>
5990 Standard_Attribute (Ttypes.System_Allocator_Alignment);
5992 ---------
5993 -- Tag --
5994 ---------
5996 when Attribute_Tag => Tag :
5997 begin
5998 Check_E0;
5999 Check_Dereference;
6001 if not Is_Tagged_Type (P_Type) then
6002 Error_Attr_P ("prefix of % attribute must be tagged");
6004 -- Next test does not apply to generated code why not, and what does
6005 -- the illegal reference mean???
6007 elsif Is_Object_Reference (P)
6008 and then not Is_Class_Wide_Type (P_Type)
6009 and then Comes_From_Source (N)
6010 then
6011 Error_Attr_P
6012 ("% attribute can only be applied to objects " &
6013 "of class - wide type");
6014 end if;
6016 -- The prefix cannot be an incomplete type. However, references to
6017 -- 'Tag can be generated when expanding interface conversions, and
6018 -- this is legal.
6020 if Comes_From_Source (N) then
6021 Check_Not_Incomplete_Type;
6022 end if;
6024 -- Set appropriate type
6026 Set_Etype (N, RTE (RE_Tag));
6027 end Tag;
6029 -----------------
6030 -- Target_Name --
6031 -----------------
6033 when Attribute_Target_Name => Target_Name : declare
6034 TN : constant String := Sdefault.Target_Name.all;
6035 TL : Natural;
6037 begin
6038 Check_Standard_Prefix;
6040 TL := TN'Last;
6042 if TN (TL) = '/' or else TN (TL) = '\' then
6043 TL := TL - 1;
6044 end if;
6046 Rewrite (N,
6047 Make_String_Literal (Loc,
6048 Strval => TN (TN'First .. TL)));
6049 Analyze_And_Resolve (N, Standard_String);
6050 Set_Is_Static_Expression (N, True);
6051 end Target_Name;
6053 ----------------
6054 -- Terminated --
6055 ----------------
6057 when Attribute_Terminated =>
6058 Check_E0;
6059 Set_Etype (N, Standard_Boolean);
6060 Check_Task_Prefix;
6062 ----------------
6063 -- To_Address --
6064 ----------------
6066 when Attribute_To_Address => To_Address : declare
6067 Val : Uint;
6069 begin
6070 Check_E1;
6071 Analyze (P);
6072 Check_System_Prefix;
6074 Generate_Reference (RTE (RE_Address), P);
6075 Analyze_And_Resolve (E1, Any_Integer);
6076 Set_Etype (N, RTE (RE_Address));
6078 if Is_Static_Expression (E1) then
6079 Set_Is_Static_Expression (N, True);
6080 end if;
6082 -- OK static expression case, check range and set appropriate type
6084 if Is_OK_Static_Expression (E1) then
6085 Val := Expr_Value (E1);
6087 if Val < -(2 ** UI_From_Int (Standard'Address_Size - 1))
6088 or else
6089 Val > 2 ** UI_From_Int (Standard'Address_Size) - 1
6090 then
6091 Error_Attr ("address value out of range for % attribute", E1);
6092 end if;
6094 -- In most cases the expression is a numeric literal or some other
6095 -- address expression, but if it is a declared constant it may be
6096 -- of a compatible type that must be left on the node.
6098 if Is_Entity_Name (E1) then
6099 null;
6101 -- Set type to universal integer if negative
6103 elsif Val < 0 then
6104 Set_Etype (E1, Universal_Integer);
6106 -- Otherwise set type to Unsigned_64 to accomodate max values
6108 else
6109 Set_Etype (E1, Standard_Unsigned_64);
6110 end if;
6111 end if;
6113 Set_Is_Static_Expression (N, True);
6114 end To_Address;
6116 ------------
6117 -- To_Any --
6118 ------------
6120 when Attribute_To_Any =>
6121 Check_E1;
6122 Check_PolyORB_Attribute;
6123 Set_Etype (N, RTE (RE_Any));
6125 ----------------
6126 -- Truncation --
6127 ----------------
6129 when Attribute_Truncation =>
6130 Check_Floating_Point_Type_1;
6131 Resolve (E1, P_Base_Type);
6132 Set_Etype (N, P_Base_Type);
6134 ----------------
6135 -- Type_Class --
6136 ----------------
6138 when Attribute_Type_Class =>
6139 Check_E0;
6140 Check_Type;
6141 Check_Not_Incomplete_Type;
6142 Set_Etype (N, RTE (RE_Type_Class));
6144 --------------
6145 -- TypeCode --
6146 --------------
6148 when Attribute_TypeCode =>
6149 Check_E0;
6150 Check_PolyORB_Attribute;
6151 Set_Etype (N, RTE (RE_TypeCode));
6153 --------------
6154 -- Type_Key --
6155 --------------
6157 when Attribute_Type_Key => Type_Key : declare
6158 Full_Name : constant String_Id :=
6159 Fully_Qualified_Name_String (Entity (P));
6161 CRC : CRC32;
6162 -- The computed signature for the type
6164 Deref : Boolean;
6165 -- To simplify the handling of mutually recursive types, follow a
6166 -- single dereference link in a composite type.
6168 procedure Compute_Type_Key (T : Entity_Id);
6169 -- Create a CRC integer from the declaration of the type, For a
6170 -- composite type, fold in the representation of its components in
6171 -- recursive fashion. We use directly the source representation of
6172 -- the types involved.
6174 ----------------------
6175 -- Compute_Type_Key --
6176 ----------------------
6178 procedure Compute_Type_Key (T : Entity_Id) is
6179 Buffer : Source_Buffer_Ptr;
6180 P_Max : Source_Ptr;
6181 P_Min : Source_Ptr;
6182 Rep : Node_Id;
6183 SFI : Source_File_Index;
6185 procedure Process_One_Declaration;
6186 -- Update CRC with the characters of one type declaration, or a
6187 -- representation pragma that applies to the type.
6189 -----------------------------
6190 -- Process_One_Declaration --
6191 -----------------------------
6193 procedure Process_One_Declaration is
6194 Ptr : Source_Ptr;
6196 begin
6197 Ptr := P_Min;
6199 -- Scan type declaration, skipping blanks
6201 while Ptr <= P_Max loop
6202 if Buffer (Ptr) /= ' ' then
6203 System.CRC32.Update (CRC, Buffer (Ptr));
6204 end if;
6206 Ptr := Ptr + 1;
6207 end loop;
6208 end Process_One_Declaration;
6210 -- Start of processing for Compute_Type_Key
6212 begin
6213 if Is_Itype (T) then
6214 return;
6215 end if;
6217 Sloc_Range (Enclosing_Declaration (T), P_Min, P_Max);
6218 SFI := Get_Source_File_Index (P_Min);
6219 Buffer := Source_Text (SFI);
6221 Process_One_Declaration;
6223 -- Recurse on relevant component types
6225 if Is_Array_Type (T) then
6226 Compute_Type_Key (Component_Type (T));
6228 elsif Is_Access_Type (T) then
6229 if not Deref then
6230 Deref := True;
6231 Compute_Type_Key (Designated_Type (T));
6232 end if;
6234 elsif Is_Derived_Type (T) then
6235 Compute_Type_Key (Etype (T));
6237 elsif Is_Record_Type (T) then
6238 declare
6239 Comp : Entity_Id;
6240 begin
6241 Comp := First_Component (T);
6242 while Present (Comp) loop
6243 Compute_Type_Key (Etype (Comp));
6244 Next_Component (Comp);
6245 end loop;
6246 end;
6247 end if;
6249 -- Fold in representation aspects for the type, which appear in
6250 -- the same source buffer.
6252 Rep := First_Rep_Item (T);
6254 while Present (Rep) loop
6255 if Comes_From_Source (Rep) then
6256 Sloc_Range (Rep, P_Min, P_Max);
6257 Process_One_Declaration;
6258 end if;
6260 Rep := Next_Rep_Item (Rep);
6261 end loop;
6262 end Compute_Type_Key;
6264 -- Start of processing for Type_Key
6266 begin
6267 Check_E0;
6268 Check_Type;
6270 Start_String;
6271 Deref := False;
6273 -- Copy all characters in Full_Name but the trailing NUL
6275 for J in 1 .. String_Length (Full_Name) - 1 loop
6276 Store_String_Char (Get_String_Char (Full_Name, Pos (J)));
6277 end loop;
6279 -- For standard types return the name of the type, as there is no
6280 -- explicit source declaration to use. Otherwise compute CRC and
6281 -- convert it to string one character at a time, so as not to use
6282 -- Image within the compiler.
6284 if Scope (Entity (P)) /= Standard_Standard then
6285 Initialize (CRC);
6286 Compute_Type_Key (Entity (P));
6288 if not Is_Frozen (Entity (P)) then
6289 Error_Msg_N ("premature usage of Type_Key?", N);
6290 end if;
6292 while CRC > 0 loop
6293 Store_String_Char (Character'Val (48 + (CRC rem 10)));
6294 CRC := CRC / 10;
6295 end loop;
6296 end if;
6298 Rewrite (N, Make_String_Literal (Loc, End_String));
6299 Analyze_And_Resolve (N, Standard_String);
6300 end Type_Key;
6302 -----------------------
6303 -- Unbiased_Rounding --
6304 -----------------------
6306 when Attribute_Unbiased_Rounding =>
6307 Check_Floating_Point_Type_1;
6308 Set_Etype (N, P_Base_Type);
6309 Resolve (E1, P_Base_Type);
6311 ----------------------
6312 -- Unchecked_Access --
6313 ----------------------
6315 when Attribute_Unchecked_Access =>
6316 if Comes_From_Source (N) then
6317 Check_Restriction (No_Unchecked_Access, N);
6318 end if;
6320 Analyze_Access_Attribute;
6321 Check_Not_Incomplete_Type;
6323 -------------------------
6324 -- Unconstrained_Array --
6325 -------------------------
6327 when Attribute_Unconstrained_Array =>
6328 Check_E0;
6329 Check_Type;
6330 Check_Not_Incomplete_Type;
6331 Set_Etype (N, Standard_Boolean);
6332 Set_Is_Static_Expression (N, True);
6334 ------------------------------
6335 -- Universal_Literal_String --
6336 ------------------------------
6338 -- This is a GNAT specific attribute whose prefix must be a named
6339 -- number where the expression is either a single numeric literal,
6340 -- or a numeric literal immediately preceded by a minus sign. The
6341 -- result is equivalent to a string literal containing the text of
6342 -- the literal as it appeared in the source program with a possible
6343 -- leading minus sign.
6345 when Attribute_Universal_Literal_String => Universal_Literal_String :
6346 begin
6347 Check_E0;
6349 if not Is_Entity_Name (P)
6350 or else Ekind (Entity (P)) not in Named_Kind
6351 then
6352 Error_Attr_P ("prefix for % attribute must be named number");
6354 else
6355 declare
6356 Expr : Node_Id;
6357 Negative : Boolean;
6358 S : Source_Ptr;
6359 Src : Source_Buffer_Ptr;
6361 begin
6362 Expr := Original_Node (Expression (Parent (Entity (P))));
6364 if Nkind (Expr) = N_Op_Minus then
6365 Negative := True;
6366 Expr := Original_Node (Right_Opnd (Expr));
6367 else
6368 Negative := False;
6369 end if;
6371 if not Nkind_In (Expr, N_Integer_Literal, N_Real_Literal) then
6372 Error_Attr
6373 ("named number for % attribute must be simple literal", N);
6374 end if;
6376 -- Build string literal corresponding to source literal text
6378 Start_String;
6380 if Negative then
6381 Store_String_Char (Get_Char_Code ('-'));
6382 end if;
6384 S := Sloc (Expr);
6385 Src := Source_Text (Get_Source_File_Index (S));
6387 while Src (S) /= ';' and then Src (S) /= ' ' loop
6388 Store_String_Char (Get_Char_Code (Src (S)));
6389 S := S + 1;
6390 end loop;
6392 -- Now we rewrite the attribute with the string literal
6394 Rewrite (N,
6395 Make_String_Literal (Loc, End_String));
6396 Analyze (N);
6397 Set_Is_Static_Expression (N, True);
6398 end;
6399 end if;
6400 end Universal_Literal_String;
6402 -------------------------
6403 -- Unrestricted_Access --
6404 -------------------------
6406 -- This is a GNAT specific attribute which is like Access except that
6407 -- all scope checks and checks for aliased views are omitted. It is
6408 -- documented as being equivalent to the use of the Address attribute
6409 -- followed by an unchecked conversion to the target access type.
6411 when Attribute_Unrestricted_Access =>
6413 -- If from source, deal with relevant restrictions
6415 if Comes_From_Source (N) then
6416 Check_Restriction (No_Unchecked_Access, N);
6418 if Nkind (P) in N_Has_Entity
6419 and then Present (Entity (P))
6420 and then Is_Object (Entity (P))
6421 then
6422 Check_Restriction (No_Implicit_Aliasing, N);
6423 end if;
6424 end if;
6426 if Is_Entity_Name (P) then
6427 Set_Address_Taken (Entity (P));
6428 end if;
6430 -- It might seem reasonable to call Address_Checks here to apply the
6431 -- same set of semantic checks that we enforce for 'Address (after
6432 -- all we document Unrestricted_Access as being equivalent to the
6433 -- use of Address followed by an Unchecked_Conversion). However, if
6434 -- we do enable these checks, we get multiple failures in both the
6435 -- compiler run-time and in our regression test suite, so we leave
6436 -- out these checks for now. To be investigated further some time???
6438 -- Address_Checks;
6440 -- Now complete analysis using common access processing
6442 Analyze_Access_Attribute;
6444 ------------
6445 -- Update --
6446 ------------
6448 when Attribute_Update => Update : declare
6449 Common_Typ : Entity_Id;
6450 -- The common type of a multiple component update for a record
6452 Comps : Elist_Id := No_Elist;
6453 -- A list used in the resolution of a record update. It contains the
6454 -- entities of all record components processed so far.
6456 procedure Analyze_Array_Component_Update (Assoc : Node_Id);
6457 -- Analyze and resolve array_component_association Assoc against the
6458 -- index of array type P_Type.
6460 procedure Analyze_Record_Component_Update (Comp : Node_Id);
6461 -- Analyze and resolve record_component_association Comp against
6462 -- record type P_Type.
6464 ------------------------------------
6465 -- Analyze_Array_Component_Update --
6466 ------------------------------------
6468 procedure Analyze_Array_Component_Update (Assoc : Node_Id) is
6469 Expr : Node_Id;
6470 High : Node_Id;
6471 Index : Node_Id;
6472 Index_Typ : Entity_Id;
6473 Low : Node_Id;
6475 begin
6476 -- The current association contains a sequence of indexes denoting
6477 -- an element of a multidimensional array:
6479 -- (Index_1, ..., Index_N)
6481 -- Examine each individual index and resolve it against the proper
6482 -- index type of the array.
6484 if Nkind (First (Choices (Assoc))) = N_Aggregate then
6485 Expr := First (Choices (Assoc));
6486 while Present (Expr) loop
6488 -- The use of others is illegal (SPARK RM 4.4.1(12))
6490 if Nkind (Expr) = N_Others_Choice then
6491 Error_Attr
6492 ("others choice not allowed in attribute %", Expr);
6494 -- Otherwise analyze and resolve all indexes
6496 else
6497 Index := First (Expressions (Expr));
6498 Index_Typ := First_Index (P_Type);
6499 while Present (Index) and then Present (Index_Typ) loop
6500 Analyze_And_Resolve (Index, Etype (Index_Typ));
6501 Next (Index);
6502 Next_Index (Index_Typ);
6503 end loop;
6505 -- Detect a case where the association either lacks an
6506 -- index or contains an extra index.
6508 if Present (Index) or else Present (Index_Typ) then
6509 Error_Msg_N
6510 ("dimension mismatch in index list", Assoc);
6511 end if;
6512 end if;
6514 Next (Expr);
6515 end loop;
6517 -- The current association denotes either a single component or a
6518 -- range of components of a one dimensional array:
6520 -- 1, 2 .. 5
6522 -- Resolve the index or its high and low bounds (if range) against
6523 -- the proper index type of the array.
6525 else
6526 Index := First (Choices (Assoc));
6527 Index_Typ := First_Index (P_Type);
6529 if Present (Next_Index (Index_Typ)) then
6530 Error_Msg_N ("too few subscripts in array reference", Assoc);
6531 end if;
6533 while Present (Index) loop
6535 -- The use of others is illegal (SPARK RM 4.4.1(12))
6537 if Nkind (Index) = N_Others_Choice then
6538 Error_Attr
6539 ("others choice not allowed in attribute %", Index);
6541 -- The index denotes a range of elements
6543 elsif Nkind (Index) = N_Range then
6544 Low := Low_Bound (Index);
6545 High := High_Bound (Index);
6547 Analyze_And_Resolve (Low, Etype (Index_Typ));
6548 Analyze_And_Resolve (High, Etype (Index_Typ));
6550 -- Add a range check to ensure that the bounds of the
6551 -- range are within the index type when this cannot be
6552 -- determined statically.
6554 if not Is_OK_Static_Expression (Low) then
6555 Set_Do_Range_Check (Low);
6556 end if;
6558 if not Is_OK_Static_Expression (High) then
6559 Set_Do_Range_Check (High);
6560 end if;
6562 -- Otherwise the index denotes a single element
6564 else
6565 Analyze_And_Resolve (Index, Etype (Index_Typ));
6567 -- Add a range check to ensure that the index is within
6568 -- the index type when it is not possible to determine
6569 -- this statically.
6571 if not Is_OK_Static_Expression (Index) then
6572 Set_Do_Range_Check (Index);
6573 end if;
6574 end if;
6576 Next (Index);
6577 end loop;
6578 end if;
6579 end Analyze_Array_Component_Update;
6581 -------------------------------------
6582 -- Analyze_Record_Component_Update --
6583 -------------------------------------
6585 procedure Analyze_Record_Component_Update (Comp : Node_Id) is
6586 Comp_Name : constant Name_Id := Chars (Comp);
6587 Base_Typ : Entity_Id;
6588 Comp_Or_Discr : Entity_Id;
6590 begin
6591 -- Find the discriminant or component whose name corresponds to
6592 -- Comp. A simple character comparison is sufficient because all
6593 -- visible names within a record type are unique.
6595 Comp_Or_Discr := First_Entity (P_Type);
6596 while Present (Comp_Or_Discr) loop
6597 if Chars (Comp_Or_Discr) = Comp_Name then
6599 -- Decorate the component reference by setting its entity
6600 -- and type for resolution purposes.
6602 Set_Entity (Comp, Comp_Or_Discr);
6603 Set_Etype (Comp, Etype (Comp_Or_Discr));
6604 exit;
6605 end if;
6607 Comp_Or_Discr := Next_Entity (Comp_Or_Discr);
6608 end loop;
6610 -- Diagnose an illegal reference
6612 if Present (Comp_Or_Discr) then
6613 if Ekind (Comp_Or_Discr) = E_Discriminant then
6614 Error_Attr
6615 ("attribute % may not modify record discriminants", Comp);
6617 else pragma Assert (Ekind (Comp_Or_Discr) = E_Component);
6618 if Contains (Comps, Comp_Or_Discr) then
6619 Error_Msg_N ("component & already updated", Comp);
6621 -- Mark this component as processed
6623 else
6624 Append_New_Elmt (Comp_Or_Discr, Comps);
6625 end if;
6626 end if;
6628 -- The update aggregate mentions an entity that does not belong to
6629 -- the record type.
6631 else
6632 Error_Msg_N ("& is not a component of aggregate subtype", Comp);
6633 end if;
6635 -- Verify the consistency of types when the current component is
6636 -- part of a miltiple component update.
6638 -- Comp_1, ..., Comp_N => <value>
6640 if Present (Etype (Comp)) then
6641 Base_Typ := Base_Type (Etype (Comp));
6643 -- Save the type of the first component reference as the
6644 -- remaning references (if any) must resolve to this type.
6646 if No (Common_Typ) then
6647 Common_Typ := Base_Typ;
6649 elsif Base_Typ /= Common_Typ then
6650 Error_Msg_N
6651 ("components in choice list must have same type", Comp);
6652 end if;
6653 end if;
6654 end Analyze_Record_Component_Update;
6656 -- Local variables
6658 Assoc : Node_Id;
6659 Comp : Node_Id;
6661 -- Start of processing for Update
6663 begin
6664 Check_E1;
6666 if not Is_Object_Reference (P) then
6667 Error_Attr_P ("prefix of attribute % must denote an object");
6669 elsif not Is_Array_Type (P_Type)
6670 and then not Is_Record_Type (P_Type)
6671 then
6672 Error_Attr_P ("prefix of attribute % must be a record or array");
6674 elsif Is_Limited_View (P_Type) then
6675 Error_Attr ("prefix of attribute % cannot be limited", N);
6677 elsif Nkind (E1) /= N_Aggregate then
6678 Error_Attr ("attribute % requires component association list", N);
6679 end if;
6681 -- Inspect the update aggregate, looking at all the associations and
6682 -- choices. Perform the following checks:
6684 -- 1) Legality of "others" in all cases
6685 -- 2) Legality of <>
6686 -- 3) Component legality for arrays
6687 -- 4) Component legality for records
6689 -- The remaining checks are performed on the expanded attribute
6691 Assoc := First (Component_Associations (E1));
6692 while Present (Assoc) loop
6694 -- The use of <> is illegal (SPARK RM 4.4.1(1))
6696 if Box_Present (Assoc) then
6697 Error_Attr
6698 ("default initialization not allowed in attribute %", Assoc);
6700 -- Otherwise process the association
6702 else
6703 Analyze (Expression (Assoc));
6705 if Is_Array_Type (P_Type) then
6706 Analyze_Array_Component_Update (Assoc);
6708 elsif Is_Record_Type (P_Type) then
6710 -- Reset the common type used in a multiple component update
6711 -- as we are processing the contents of a new association.
6713 Common_Typ := Empty;
6715 Comp := First (Choices (Assoc));
6716 while Present (Comp) loop
6717 if Nkind (Comp) = N_Identifier then
6718 Analyze_Record_Component_Update (Comp);
6720 -- The use of others is illegal (SPARK RM 4.4.1(5))
6722 elsif Nkind (Comp) = N_Others_Choice then
6723 Error_Attr
6724 ("others choice not allowed in attribute %", Comp);
6726 -- The name of a record component cannot appear in any
6727 -- other form.
6729 else
6730 Error_Msg_N
6731 ("name should be identifier or OTHERS", Comp);
6732 end if;
6734 Next (Comp);
6735 end loop;
6736 end if;
6737 end if;
6739 Next (Assoc);
6740 end loop;
6742 -- The type of attribute 'Update is that of the prefix
6744 Set_Etype (N, P_Type);
6746 Sem_Warn.Warn_On_Suspicious_Update (N);
6747 end Update;
6749 ---------
6750 -- Val --
6751 ---------
6753 when Attribute_Val => Val : declare
6754 begin
6755 Check_E1;
6756 Check_Discrete_Type;
6758 if Is_Boolean_Type (P_Type) then
6759 Error_Msg_Name_1 := Aname;
6760 Error_Msg_Name_2 := Chars (P_Type);
6761 Check_SPARK_05_Restriction
6762 ("attribute% is not allowed for type%", P);
6763 end if;
6765 Resolve (E1, Any_Integer);
6766 Set_Etype (N, P_Base_Type);
6768 -- Note, we need a range check in general, but we wait for the
6769 -- Resolve call to do this, since we want to let Eval_Attribute
6770 -- have a chance to find an static illegality first.
6771 end Val;
6773 -----------
6774 -- Valid --
6775 -----------
6777 when Attribute_Valid =>
6778 Check_E0;
6780 -- Ignore check for object if we have a 'Valid reference generated
6781 -- by the expanded code, since in some cases valid checks can occur
6782 -- on items that are names, but are not objects (e.g. attributes).
6784 if Comes_From_Source (N) then
6785 Check_Object_Reference (P);
6786 end if;
6788 if not Is_Scalar_Type (P_Type) then
6789 Error_Attr_P ("object for % attribute must be of scalar type");
6790 end if;
6792 -- If the attribute appears within the subtype's own predicate
6793 -- function, then issue a warning that this will cause infinite
6794 -- recursion.
6796 declare
6797 Pred_Func : constant Entity_Id := Predicate_Function (P_Type);
6799 begin
6800 if Present (Pred_Func) and then Current_Scope = Pred_Func then
6801 Error_Msg_N
6802 ("attribute Valid requires a predicate check??", N);
6803 Error_Msg_N ("\and will result in infinite recursion??", N);
6804 end if;
6805 end;
6807 Set_Etype (N, Standard_Boolean);
6809 -------------------
6810 -- Valid_Scalars --
6811 -------------------
6813 when Attribute_Valid_Scalars =>
6814 Check_E0;
6815 Check_Object_Reference (P);
6816 Set_Etype (N, Standard_Boolean);
6818 -- Following checks are only for source types
6820 if Comes_From_Source (N) then
6821 if not Scalar_Part_Present (P_Type) then
6822 Error_Attr_P
6823 ("??attribute % always True, no scalars to check");
6824 end if;
6826 -- Not allowed for unchecked union type
6828 if Has_Unchecked_Union (P_Type) then
6829 Error_Attr_P
6830 ("attribute % not allowed for Unchecked_Union type");
6831 end if;
6832 end if;
6834 -----------
6835 -- Value --
6836 -----------
6838 when Attribute_Value => Value :
6839 begin
6840 Check_SPARK_05_Restriction_On_Attribute;
6841 Check_E1;
6842 Check_Scalar_Type;
6844 -- Case of enumeration type
6846 -- When an enumeration type appears in an attribute reference, all
6847 -- literals of the type are marked as referenced. This must only be
6848 -- done if the attribute reference appears in the current source.
6849 -- Otherwise the information on references may differ between a
6850 -- normal compilation and one that performs inlining.
6852 if Is_Enumeration_Type (P_Type)
6853 and then In_Extended_Main_Code_Unit (N)
6854 then
6855 Check_Restriction (No_Enumeration_Maps, N);
6857 -- Mark all enumeration literals as referenced, since the use of
6858 -- the Value attribute can implicitly reference any of the
6859 -- literals of the enumeration base type.
6861 declare
6862 Ent : Entity_Id := First_Literal (P_Base_Type);
6863 begin
6864 while Present (Ent) loop
6865 Set_Referenced (Ent);
6866 Next_Literal (Ent);
6867 end loop;
6868 end;
6869 end if;
6871 -- Set Etype before resolving expression because expansion of
6872 -- expression may require enclosing type. Note that the type
6873 -- returned by 'Value is the base type of the prefix type.
6875 Set_Etype (N, P_Base_Type);
6876 Validate_Non_Static_Attribute_Function_Call;
6878 -- Check restriction No_Fixed_IO
6880 if Restriction_Check_Required (No_Fixed_IO)
6881 and then Is_Fixed_Point_Type (P_Type)
6882 then
6883 Check_Restriction (No_Fixed_IO, P);
6884 end if;
6885 end Value;
6887 ----------------
6888 -- Value_Size --
6889 ----------------
6891 when Attribute_Value_Size =>
6892 Check_E0;
6893 Check_Type;
6894 Check_Not_Incomplete_Type;
6895 Set_Etype (N, Universal_Integer);
6897 -------------
6898 -- Version --
6899 -------------
6901 when Attribute_Version =>
6902 Check_E0;
6903 Check_Program_Unit;
6904 Set_Etype (N, RTE (RE_Version_String));
6906 ------------------
6907 -- Wchar_T_Size --
6908 ------------------
6910 when Attribute_Wchar_T_Size =>
6911 Standard_Attribute (Interfaces_Wchar_T_Size);
6913 ----------------
6914 -- Wide_Image --
6915 ----------------
6917 when Attribute_Wide_Image => Wide_Image :
6918 begin
6919 Check_SPARK_05_Restriction_On_Attribute;
6920 Check_Scalar_Type;
6921 Set_Etype (N, Standard_Wide_String);
6922 Check_E1;
6923 Resolve (E1, P_Base_Type);
6924 Validate_Non_Static_Attribute_Function_Call;
6926 -- Check restriction No_Fixed_IO
6928 if Restriction_Check_Required (No_Fixed_IO)
6929 and then Is_Fixed_Point_Type (P_Type)
6930 then
6931 Check_Restriction (No_Fixed_IO, P);
6932 end if;
6933 end Wide_Image;
6935 ---------------------
6936 -- Wide_Wide_Image --
6937 ---------------------
6939 when Attribute_Wide_Wide_Image => Wide_Wide_Image :
6940 begin
6941 Check_Scalar_Type;
6942 Set_Etype (N, Standard_Wide_Wide_String);
6943 Check_E1;
6944 Resolve (E1, P_Base_Type);
6945 Validate_Non_Static_Attribute_Function_Call;
6947 -- Check restriction No_Fixed_IO
6949 if Restriction_Check_Required (No_Fixed_IO)
6950 and then Is_Fixed_Point_Type (P_Type)
6951 then
6952 Check_Restriction (No_Fixed_IO, P);
6953 end if;
6954 end Wide_Wide_Image;
6956 ----------------
6957 -- Wide_Value --
6958 ----------------
6960 when Attribute_Wide_Value => Wide_Value :
6961 begin
6962 Check_SPARK_05_Restriction_On_Attribute;
6963 Check_E1;
6964 Check_Scalar_Type;
6966 -- Set Etype before resolving expression because expansion
6967 -- of expression may require enclosing type.
6969 Set_Etype (N, P_Type);
6970 Validate_Non_Static_Attribute_Function_Call;
6972 -- Check restriction No_Fixed_IO
6974 if Restriction_Check_Required (No_Fixed_IO)
6975 and then Is_Fixed_Point_Type (P_Type)
6976 then
6977 Check_Restriction (No_Fixed_IO, P);
6978 end if;
6979 end Wide_Value;
6981 ---------------------
6982 -- Wide_Wide_Value --
6983 ---------------------
6985 when Attribute_Wide_Wide_Value => Wide_Wide_Value :
6986 begin
6987 Check_E1;
6988 Check_Scalar_Type;
6990 -- Set Etype before resolving expression because expansion
6991 -- of expression may require enclosing type.
6993 Set_Etype (N, P_Type);
6994 Validate_Non_Static_Attribute_Function_Call;
6996 -- Check restriction No_Fixed_IO
6998 if Restriction_Check_Required (No_Fixed_IO)
6999 and then Is_Fixed_Point_Type (P_Type)
7000 then
7001 Check_Restriction (No_Fixed_IO, P);
7002 end if;
7003 end Wide_Wide_Value;
7005 ---------------------
7006 -- Wide_Wide_Width --
7007 ---------------------
7009 when Attribute_Wide_Wide_Width =>
7010 Check_E0;
7011 Check_Scalar_Type;
7012 Set_Etype (N, Universal_Integer);
7014 ----------------
7015 -- Wide_Width --
7016 ----------------
7018 when Attribute_Wide_Width =>
7019 Check_SPARK_05_Restriction_On_Attribute;
7020 Check_E0;
7021 Check_Scalar_Type;
7022 Set_Etype (N, Universal_Integer);
7024 -----------
7025 -- Width --
7026 -----------
7028 when Attribute_Width =>
7029 Check_SPARK_05_Restriction_On_Attribute;
7030 Check_E0;
7031 Check_Scalar_Type;
7032 Set_Etype (N, Universal_Integer);
7034 ---------------
7035 -- Word_Size --
7036 ---------------
7038 when Attribute_Word_Size =>
7039 Standard_Attribute (System_Word_Size);
7041 -----------
7042 -- Write --
7043 -----------
7045 when Attribute_Write =>
7046 Check_E2;
7047 Check_Stream_Attribute (TSS_Stream_Write);
7048 Set_Etype (N, Standard_Void_Type);
7049 Resolve (N, Standard_Void_Type);
7051 end case;
7053 -- All errors raise Bad_Attribute, so that we get out before any further
7054 -- damage occurs when an error is detected (for example, if we check for
7055 -- one attribute expression, and the check succeeds, we want to be able
7056 -- to proceed securely assuming that an expression is in fact present.
7058 -- Note: we set the attribute analyzed in this case to prevent any
7059 -- attempt at reanalysis which could generate spurious error msgs.
7061 exception
7062 when Bad_Attribute =>
7063 Set_Analyzed (N);
7064 Set_Etype (N, Any_Type);
7065 return;
7066 end Analyze_Attribute;
7068 --------------------
7069 -- Eval_Attribute --
7070 --------------------
7072 procedure Eval_Attribute (N : Node_Id) is
7073 Loc : constant Source_Ptr := Sloc (N);
7074 Aname : constant Name_Id := Attribute_Name (N);
7075 Id : constant Attribute_Id := Get_Attribute_Id (Aname);
7076 P : constant Node_Id := Prefix (N);
7078 C_Type : constant Entity_Id := Etype (N);
7079 -- The type imposed by the context
7081 E1 : Node_Id;
7082 -- First expression, or Empty if none
7084 E2 : Node_Id;
7085 -- Second expression, or Empty if none
7087 P_Entity : Entity_Id;
7088 -- Entity denoted by prefix
7090 P_Type : Entity_Id;
7091 -- The type of the prefix
7093 P_Base_Type : Entity_Id;
7094 -- The base type of the prefix type
7096 P_Root_Type : Entity_Id;
7097 -- The root type of the prefix type
7099 Static : Boolean;
7100 -- True if the result is Static. This is set by the general processing
7101 -- to true if the prefix is static, and all expressions are static. It
7102 -- can be reset as processing continues for particular attributes. This
7103 -- flag can still be True if the reference raises a constraint error.
7104 -- Is_Static_Expression (N) is set to follow this value as it is set
7105 -- and we could always reference this, but it is convenient to have a
7106 -- simple short name to use, since it is frequently referenced.
7108 Lo_Bound, Hi_Bound : Node_Id;
7109 -- Expressions for low and high bounds of type or array index referenced
7110 -- by First, Last, or Length attribute for array, set by Set_Bounds.
7112 CE_Node : Node_Id;
7113 -- Constraint error node used if we have an attribute reference has
7114 -- an argument that raises a constraint error. In this case we replace
7115 -- the attribute with a raise constraint_error node. This is important
7116 -- processing, since otherwise gigi might see an attribute which it is
7117 -- unprepared to deal with.
7119 procedure Check_Concurrent_Discriminant (Bound : Node_Id);
7120 -- If Bound is a reference to a discriminant of a task or protected type
7121 -- occurring within the object's body, rewrite attribute reference into
7122 -- a reference to the corresponding discriminal. Use for the expansion
7123 -- of checks against bounds of entry family index subtypes.
7125 procedure Check_Expressions;
7126 -- In case where the attribute is not foldable, the expressions, if
7127 -- any, of the attribute, are in a non-static context. This procedure
7128 -- performs the required additional checks.
7130 function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean;
7131 -- Determines if the given type has compile time known bounds. Note
7132 -- that we enter the case statement even in cases where the prefix
7133 -- type does NOT have known bounds, so it is important to guard any
7134 -- attempt to evaluate both bounds with a call to this function.
7136 procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint);
7137 -- This procedure is called when the attribute N has a non-static
7138 -- but compile time known value given by Val. It includes the
7139 -- necessary checks for out of range values.
7141 function Fore_Value return Nat;
7142 -- Computes the Fore value for the current attribute prefix, which is
7143 -- known to be a static fixed-point type. Used by Fore and Width.
7145 function Mantissa return Uint;
7146 -- Returns the Mantissa value for the prefix type
7148 procedure Set_Bounds;
7149 -- Used for First, Last and Length attributes applied to an array or
7150 -- array subtype. Sets the variables Lo_Bound and Hi_Bound to the low
7151 -- and high bound expressions for the index referenced by the attribute
7152 -- designator (i.e. the first index if no expression is present, and the
7153 -- N'th index if the value N is present as an expression). Also used for
7154 -- First and Last of scalar types and for First_Valid and Last_Valid.
7155 -- Static is reset to False if the type or index type is not statically
7156 -- constrained.
7158 function Statically_Denotes_Entity (N : Node_Id) return Boolean;
7159 -- Verify that the prefix of a potentially static array attribute
7160 -- satisfies the conditions of 4.9 (14).
7162 -----------------------------------
7163 -- Check_Concurrent_Discriminant --
7164 -----------------------------------
7166 procedure Check_Concurrent_Discriminant (Bound : Node_Id) is
7167 Tsk : Entity_Id;
7168 -- The concurrent (task or protected) type
7170 begin
7171 if Nkind (Bound) = N_Identifier
7172 and then Ekind (Entity (Bound)) = E_Discriminant
7173 and then Is_Concurrent_Record_Type (Scope (Entity (Bound)))
7174 then
7175 Tsk := Corresponding_Concurrent_Type (Scope (Entity (Bound)));
7177 if In_Open_Scopes (Tsk) and then Has_Completion (Tsk) then
7179 -- Find discriminant of original concurrent type, and use
7180 -- its current discriminal, which is the renaming within
7181 -- the task/protected body.
7183 Rewrite (N,
7184 New_Occurrence_Of
7185 (Find_Body_Discriminal (Entity (Bound)), Loc));
7186 end if;
7187 end if;
7188 end Check_Concurrent_Discriminant;
7190 -----------------------
7191 -- Check_Expressions --
7192 -----------------------
7194 procedure Check_Expressions is
7195 E : Node_Id;
7196 begin
7197 E := E1;
7198 while Present (E) loop
7199 Check_Non_Static_Context (E);
7200 Next (E);
7201 end loop;
7202 end Check_Expressions;
7204 ----------------------------------
7205 -- Compile_Time_Known_Attribute --
7206 ----------------------------------
7208 procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint) is
7209 T : constant Entity_Id := Etype (N);
7211 begin
7212 Fold_Uint (N, Val, False);
7214 -- Check that result is in bounds of the type if it is static
7216 if Is_In_Range (N, T, Assume_Valid => False) then
7217 null;
7219 elsif Is_Out_Of_Range (N, T) then
7220 Apply_Compile_Time_Constraint_Error
7221 (N, "value not in range of}??", CE_Range_Check_Failed);
7223 elsif not Range_Checks_Suppressed (T) then
7224 Enable_Range_Check (N);
7226 else
7227 Set_Do_Range_Check (N, False);
7228 end if;
7229 end Compile_Time_Known_Attribute;
7231 -------------------------------
7232 -- Compile_Time_Known_Bounds --
7233 -------------------------------
7235 function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean is
7236 begin
7237 return
7238 Compile_Time_Known_Value (Type_Low_Bound (Typ))
7239 and then
7240 Compile_Time_Known_Value (Type_High_Bound (Typ));
7241 end Compile_Time_Known_Bounds;
7243 ----------------
7244 -- Fore_Value --
7245 ----------------
7247 -- Note that the Fore calculation is based on the actual values
7248 -- of the bounds, and does not take into account possible rounding.
7250 function Fore_Value return Nat is
7251 Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
7252 Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
7253 Small : constant Ureal := Small_Value (P_Type);
7254 Lo_Real : constant Ureal := Lo * Small;
7255 Hi_Real : constant Ureal := Hi * Small;
7256 T : Ureal;
7257 R : Nat;
7259 begin
7260 -- Bounds are given in terms of small units, so first compute
7261 -- proper values as reals.
7263 T := UR_Max (abs Lo_Real, abs Hi_Real);
7264 R := 2;
7266 -- Loop to compute proper value if more than one digit required
7268 while T >= Ureal_10 loop
7269 R := R + 1;
7270 T := T / Ureal_10;
7271 end loop;
7273 return R;
7274 end Fore_Value;
7276 --------------
7277 -- Mantissa --
7278 --------------
7280 -- Table of mantissa values accessed by function Computed using
7281 -- the relation:
7283 -- T'Mantissa = integer next above (D * log(10)/log(2)) + 1)
7285 -- where D is T'Digits (RM83 3.5.7)
7287 Mantissa_Value : constant array (Nat range 1 .. 40) of Nat := (
7288 1 => 5,
7289 2 => 8,
7290 3 => 11,
7291 4 => 15,
7292 5 => 18,
7293 6 => 21,
7294 7 => 25,
7295 8 => 28,
7296 9 => 31,
7297 10 => 35,
7298 11 => 38,
7299 12 => 41,
7300 13 => 45,
7301 14 => 48,
7302 15 => 51,
7303 16 => 55,
7304 17 => 58,
7305 18 => 61,
7306 19 => 65,
7307 20 => 68,
7308 21 => 71,
7309 22 => 75,
7310 23 => 78,
7311 24 => 81,
7312 25 => 85,
7313 26 => 88,
7314 27 => 91,
7315 28 => 95,
7316 29 => 98,
7317 30 => 101,
7318 31 => 104,
7319 32 => 108,
7320 33 => 111,
7321 34 => 114,
7322 35 => 118,
7323 36 => 121,
7324 37 => 124,
7325 38 => 128,
7326 39 => 131,
7327 40 => 134);
7329 function Mantissa return Uint is
7330 begin
7331 return
7332 UI_From_Int (Mantissa_Value (UI_To_Int (Digits_Value (P_Type))));
7333 end Mantissa;
7335 ----------------
7336 -- Set_Bounds --
7337 ----------------
7339 procedure Set_Bounds is
7340 Ndim : Nat;
7341 Indx : Node_Id;
7342 Ityp : Entity_Id;
7344 begin
7345 -- For a string literal subtype, we have to construct the bounds.
7346 -- Valid Ada code never applies attributes to string literals, but
7347 -- it is convenient to allow the expander to generate attribute
7348 -- references of this type (e.g. First and Last applied to a string
7349 -- literal).
7351 -- Note that the whole point of the E_String_Literal_Subtype is to
7352 -- avoid this construction of bounds, but the cases in which we
7353 -- have to materialize them are rare enough that we don't worry.
7355 -- The low bound is simply the low bound of the base type. The
7356 -- high bound is computed from the length of the string and this
7357 -- low bound.
7359 if Ekind (P_Type) = E_String_Literal_Subtype then
7360 Ityp := Etype (First_Index (Base_Type (P_Type)));
7361 Lo_Bound := Type_Low_Bound (Ityp);
7363 Hi_Bound :=
7364 Make_Integer_Literal (Sloc (P),
7365 Intval =>
7366 Expr_Value (Lo_Bound) + String_Literal_Length (P_Type) - 1);
7368 Set_Parent (Hi_Bound, P);
7369 Analyze_And_Resolve (Hi_Bound, Etype (Lo_Bound));
7370 return;
7372 -- For non-array case, just get bounds of scalar type
7374 elsif Is_Scalar_Type (P_Type) then
7375 Ityp := P_Type;
7377 -- For a fixed-point type, we must freeze to get the attributes
7378 -- of the fixed-point type set now so we can reference them.
7380 if Is_Fixed_Point_Type (P_Type)
7381 and then not Is_Frozen (Base_Type (P_Type))
7382 and then Compile_Time_Known_Value (Type_Low_Bound (P_Type))
7383 and then Compile_Time_Known_Value (Type_High_Bound (P_Type))
7384 then
7385 Freeze_Fixed_Point_Type (Base_Type (P_Type));
7386 end if;
7388 -- For array case, get type of proper index
7390 else
7391 if No (E1) then
7392 Ndim := 1;
7393 else
7394 Ndim := UI_To_Int (Expr_Value (E1));
7395 end if;
7397 Indx := First_Index (P_Type);
7398 for J in 1 .. Ndim - 1 loop
7399 Next_Index (Indx);
7400 end loop;
7402 -- If no index type, get out (some other error occurred, and
7403 -- we don't have enough information to complete the job).
7405 if No (Indx) then
7406 Lo_Bound := Error;
7407 Hi_Bound := Error;
7408 return;
7409 end if;
7411 Ityp := Etype (Indx);
7412 end if;
7414 -- A discrete range in an index constraint is allowed to be a
7415 -- subtype indication. This is syntactically a pain, but should
7416 -- not propagate to the entity for the corresponding index subtype.
7417 -- After checking that the subtype indication is legal, the range
7418 -- of the subtype indication should be transfered to the entity.
7419 -- The attributes for the bounds should remain the simple retrievals
7420 -- that they are now.
7422 Lo_Bound := Type_Low_Bound (Ityp);
7423 Hi_Bound := Type_High_Bound (Ityp);
7425 -- If subtype is non-static, result is definitely non-static
7427 if not Is_Static_Subtype (Ityp) then
7428 Static := False;
7429 Set_Is_Static_Expression (N, False);
7431 -- Subtype is static, does it raise CE?
7433 elsif not Is_OK_Static_Subtype (Ityp) then
7434 Set_Raises_Constraint_Error (N);
7435 end if;
7436 end Set_Bounds;
7438 -------------------------------
7439 -- Statically_Denotes_Entity --
7440 -------------------------------
7442 function Statically_Denotes_Entity (N : Node_Id) return Boolean is
7443 E : Entity_Id;
7445 begin
7446 if not Is_Entity_Name (N) then
7447 return False;
7448 else
7449 E := Entity (N);
7450 end if;
7452 return
7453 Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7454 or else Statically_Denotes_Entity (Renamed_Object (E));
7455 end Statically_Denotes_Entity;
7457 -- Start of processing for Eval_Attribute
7459 begin
7460 -- Initialize result as non-static, will be reset if appropriate
7462 Set_Is_Static_Expression (N, False);
7463 Static := False;
7465 -- Acquire first two expressions (at the moment, no attributes take more
7466 -- than two expressions in any case).
7468 if Present (Expressions (N)) then
7469 E1 := First (Expressions (N));
7470 E2 := Next (E1);
7471 else
7472 E1 := Empty;
7473 E2 := Empty;
7474 end if;
7476 -- Special processing for Enabled attribute. This attribute has a very
7477 -- special prefix, and the easiest way to avoid lots of special checks
7478 -- to protect this special prefix from causing trouble is to deal with
7479 -- this attribute immediately and be done with it.
7481 if Id = Attribute_Enabled then
7483 -- We skip evaluation if the expander is not active. This is not just
7484 -- an optimization. It is of key importance that we not rewrite the
7485 -- attribute in a generic template, since we want to pick up the
7486 -- setting of the check in the instance, Testing Expander_Active
7487 -- might seem an easy way of doing this, but we need to account for
7488 -- ASIS needs, so check explicitly for a generic context.
7490 if not Inside_A_Generic then
7491 declare
7492 C : constant Check_Id := Get_Check_Id (Chars (P));
7493 R : Boolean;
7495 begin
7496 if No (E1) then
7497 if C in Predefined_Check_Id then
7498 R := Scope_Suppress.Suppress (C);
7499 else
7500 R := Is_Check_Suppressed (Empty, C);
7501 end if;
7503 else
7504 R := Is_Check_Suppressed (Entity (E1), C);
7505 end if;
7507 Rewrite (N, New_Occurrence_Of (Boolean_Literals (not R), Loc));
7508 end;
7509 end if;
7511 return;
7512 end if;
7514 -- Attribute 'Img applied to a static enumeration value is static, and
7515 -- we will do the folding right here (things get confused if we let this
7516 -- case go through the normal circuitry).
7518 if Attribute_Name (N) = Name_Img
7519 and then Is_Entity_Name (P)
7520 and then Is_Enumeration_Type (Etype (Entity (P)))
7521 and then Is_OK_Static_Expression (P)
7522 then
7523 declare
7524 Lit : constant Entity_Id := Expr_Value_E (P);
7525 Str : String_Id;
7527 begin
7528 Start_String;
7529 Get_Unqualified_Decoded_Name_String (Chars (Lit));
7530 Set_Casing (All_Upper_Case);
7531 Store_String_Chars (Name_Buffer (1 .. Name_Len));
7532 Str := End_String;
7534 Rewrite (N, Make_String_Literal (Loc, Strval => Str));
7535 Analyze_And_Resolve (N, Standard_String);
7536 Set_Is_Static_Expression (N, True);
7537 end;
7539 return;
7540 end if;
7542 -- Special processing for cases where the prefix is an object. For this
7543 -- purpose, a string literal counts as an object (attributes of string
7544 -- literals can only appear in generated code).
7546 if Is_Object_Reference (P) or else Nkind (P) = N_String_Literal then
7548 -- For Component_Size, the prefix is an array object, and we apply
7549 -- the attribute to the type of the object. This is allowed for both
7550 -- unconstrained and constrained arrays, since the bounds have no
7551 -- influence on the value of this attribute.
7553 if Id = Attribute_Component_Size then
7554 P_Entity := Etype (P);
7556 -- For Enum_Rep, evaluation depends on the nature of the prefix and
7557 -- the optional argument.
7559 elsif Id = Attribute_Enum_Rep then
7560 if Is_Entity_Name (P) then
7562 declare
7563 Enum_Expr : Node_Id;
7564 -- The enumeration-type expression of interest
7566 begin
7567 -- P'Enum_Rep case
7569 if Ekind_In (Entity (P), E_Constant,
7570 E_Enumeration_Literal)
7571 then
7572 Enum_Expr := P;
7574 -- Enum_Type'Enum_Rep (E1) case
7576 elsif Is_Enumeration_Type (Entity (P)) then
7577 Enum_Expr := E1;
7579 -- Otherwise the attribute must be expanded into a
7580 -- conversion and evaluated at run time.
7582 else
7583 Check_Expressions;
7584 return;
7585 end if;
7587 -- We can fold if the expression is an enumeration
7588 -- literal, or if it denotes a constant whose value
7589 -- is known at compile time.
7591 if Nkind (Enum_Expr) in N_Has_Entity
7592 and then (Ekind (Entity (Enum_Expr)) =
7593 E_Enumeration_Literal
7594 or else
7595 (Ekind (Entity (Enum_Expr)) = E_Constant
7596 and then Nkind (Parent (Entity (Enum_Expr))) =
7597 N_Object_Declaration
7598 and then Compile_Time_Known_Value
7599 (Expression (Parent (Entity (P))))))
7600 then
7601 P_Entity := Etype (P);
7602 else
7603 Check_Expressions;
7604 return;
7605 end if;
7606 end;
7608 -- Otherwise the attribute is illegal, do not attempt to perform
7609 -- any kind of folding.
7611 else
7612 return;
7613 end if;
7615 -- For First and Last, the prefix is an array object, and we apply
7616 -- the attribute to the type of the array, but we need a constrained
7617 -- type for this, so we use the actual subtype if available.
7619 elsif Id = Attribute_First or else
7620 Id = Attribute_Last or else
7621 Id = Attribute_Length
7622 then
7623 declare
7624 AS : constant Entity_Id := Get_Actual_Subtype_If_Available (P);
7626 begin
7627 if Present (AS) and then Is_Constrained (AS) then
7628 P_Entity := AS;
7630 -- If we have an unconstrained type we cannot fold
7632 else
7633 Check_Expressions;
7634 return;
7635 end if;
7636 end;
7638 -- For Size, give size of object if available, otherwise we
7639 -- cannot fold Size.
7641 elsif Id = Attribute_Size then
7642 if Is_Entity_Name (P)
7643 and then Known_Esize (Entity (P))
7644 then
7645 Compile_Time_Known_Attribute (N, Esize (Entity (P)));
7646 return;
7648 else
7649 Check_Expressions;
7650 return;
7651 end if;
7653 -- For Alignment, give size of object if available, otherwise we
7654 -- cannot fold Alignment.
7656 elsif Id = Attribute_Alignment then
7657 if Is_Entity_Name (P)
7658 and then Known_Alignment (Entity (P))
7659 then
7660 Fold_Uint (N, Alignment (Entity (P)), Static);
7661 return;
7663 else
7664 Check_Expressions;
7665 return;
7666 end if;
7668 -- For Lock_Free, we apply the attribute to the type of the object.
7669 -- This is allowed since we have already verified that the type is a
7670 -- protected type.
7672 elsif Id = Attribute_Lock_Free then
7673 P_Entity := Etype (P);
7675 -- No other attributes for objects are folded
7677 else
7678 Check_Expressions;
7679 return;
7680 end if;
7682 -- Cases where P is not an object. Cannot do anything if P is not the
7683 -- name of an entity.
7685 elsif not Is_Entity_Name (P) then
7686 Check_Expressions;
7687 return;
7689 -- Otherwise get prefix entity
7691 else
7692 P_Entity := Entity (P);
7693 end if;
7695 -- If we are asked to evaluate an attribute where the prefix is a
7696 -- non-frozen generic actual type whose RM_Size is still set to zero,
7697 -- then abandon the effort.
7699 if Is_Type (P_Entity)
7700 and then (not Is_Frozen (P_Entity)
7701 and then Is_Generic_Actual_Type (P_Entity)
7702 and then RM_Size (P_Entity) = 0)
7704 -- However, the attribute Unconstrained_Array must be evaluated,
7705 -- since it is documented to be a static attribute (and can for
7706 -- example appear in a Compile_Time_Warning pragma). The frozen
7707 -- status of the type does not affect its evaluation.
7709 and then Id /= Attribute_Unconstrained_Array
7710 then
7711 return;
7712 end if;
7714 -- At this stage P_Entity is the entity to which the attribute
7715 -- is to be applied. This is usually simply the entity of the
7716 -- prefix, except in some cases of attributes for objects, where
7717 -- as described above, we apply the attribute to the object type.
7719 -- Here is where we make sure that static attributes are properly
7720 -- marked as such. These are attributes whose prefix is a static
7721 -- scalar subtype, whose result is scalar, and whose arguments, if
7722 -- present, are static scalar expressions. Note that such references
7723 -- are static expressions even if they raise Constraint_Error.
7725 -- For example, Boolean'Pos (1/0 = 0) is a static expression, even
7726 -- though evaluating it raises constraint error. This means that a
7727 -- declaration like:
7729 -- X : constant := (if True then 1 else Boolean'Pos (1/0 = 0));
7731 -- is legal, since here this expression appears in a statically
7732 -- unevaluated position, so it does not actually raise an exception.
7734 if Is_Scalar_Type (P_Entity)
7735 and then (not Is_Generic_Type (P_Entity))
7736 and then Is_Static_Subtype (P_Entity)
7737 and then Is_Scalar_Type (Etype (N))
7738 and then
7739 (No (E1)
7740 or else (Is_Static_Expression (E1)
7741 and then Is_Scalar_Type (Etype (E1))))
7742 and then
7743 (No (E2)
7744 or else (Is_Static_Expression (E2)
7745 and then Is_Scalar_Type (Etype (E1))))
7746 then
7747 Static := True;
7748 Set_Is_Static_Expression (N, True);
7749 end if;
7751 -- First foldable possibility is a scalar or array type (RM 4.9(7))
7752 -- that is not generic (generic types are eliminated by RM 4.9(25)).
7753 -- Note we allow non-static non-generic types at this stage as further
7754 -- described below.
7756 if Is_Type (P_Entity)
7757 and then (Is_Scalar_Type (P_Entity) or Is_Array_Type (P_Entity))
7758 and then (not Is_Generic_Type (P_Entity))
7759 then
7760 P_Type := P_Entity;
7762 -- Second foldable possibility is an array object (RM 4.9(8))
7764 elsif Ekind_In (P_Entity, E_Variable, E_Constant)
7765 and then Is_Array_Type (Etype (P_Entity))
7766 and then (not Is_Generic_Type (Etype (P_Entity)))
7767 then
7768 P_Type := Etype (P_Entity);
7770 -- If the entity is an array constant with an unconstrained nominal
7771 -- subtype then get the type from the initial value. If the value has
7772 -- been expanded into assignments, there is no expression and the
7773 -- attribute reference remains dynamic.
7775 -- We could do better here and retrieve the type ???
7777 if Ekind (P_Entity) = E_Constant
7778 and then not Is_Constrained (P_Type)
7779 then
7780 if No (Constant_Value (P_Entity)) then
7781 return;
7782 else
7783 P_Type := Etype (Constant_Value (P_Entity));
7784 end if;
7785 end if;
7787 -- Definite must be folded if the prefix is not a generic type, that
7788 -- is to say if we are within an instantiation. Same processing applies
7789 -- to the GNAT attributes Atomic_Always_Lock_Free, Has_Discriminants,
7790 -- Lock_Free, Type_Class, Has_Tagged_Value, and Unconstrained_Array.
7792 elsif (Id = Attribute_Atomic_Always_Lock_Free or else
7793 Id = Attribute_Definite or else
7794 Id = Attribute_Has_Access_Values or else
7795 Id = Attribute_Has_Discriminants or else
7796 Id = Attribute_Has_Tagged_Values or else
7797 Id = Attribute_Lock_Free or else
7798 Id = Attribute_Type_Class or else
7799 Id = Attribute_Unconstrained_Array or else
7800 Id = Attribute_Max_Alignment_For_Allocation)
7801 and then not Is_Generic_Type (P_Entity)
7802 then
7803 P_Type := P_Entity;
7805 -- We can fold 'Size applied to a type if the size is known (as happens
7806 -- for a size from an attribute definition clause). At this stage, this
7807 -- can happen only for types (e.g. record types) for which the size is
7808 -- always non-static. We exclude generic types from consideration (since
7809 -- they have bogus sizes set within templates).
7811 elsif Id = Attribute_Size
7812 and then Is_Type (P_Entity)
7813 and then (not Is_Generic_Type (P_Entity))
7814 and then Known_Static_RM_Size (P_Entity)
7815 then
7816 Compile_Time_Known_Attribute (N, RM_Size (P_Entity));
7817 return;
7819 -- We can fold 'Alignment applied to a type if the alignment is known
7820 -- (as happens for an alignment from an attribute definition clause).
7821 -- At this stage, this can happen only for types (e.g. record types) for
7822 -- which the size is always non-static. We exclude generic types from
7823 -- consideration (since they have bogus sizes set within templates).
7825 elsif Id = Attribute_Alignment
7826 and then Is_Type (P_Entity)
7827 and then (not Is_Generic_Type (P_Entity))
7828 and then Known_Alignment (P_Entity)
7829 then
7830 Compile_Time_Known_Attribute (N, Alignment (P_Entity));
7831 return;
7833 -- If this is an access attribute that is known to fail accessibility
7834 -- check, rewrite accordingly.
7836 elsif Attribute_Name (N) = Name_Access
7837 and then Raises_Constraint_Error (N)
7838 then
7839 Rewrite (N,
7840 Make_Raise_Program_Error (Loc,
7841 Reason => PE_Accessibility_Check_Failed));
7842 Set_Etype (N, C_Type);
7843 return;
7845 -- No other cases are foldable (they certainly aren't static, and at
7846 -- the moment we don't try to fold any cases other than the ones above).
7848 else
7849 Check_Expressions;
7850 return;
7851 end if;
7853 -- If either attribute or the prefix is Any_Type, then propagate
7854 -- Any_Type to the result and don't do anything else at all.
7856 if P_Type = Any_Type
7857 or else (Present (E1) and then Etype (E1) = Any_Type)
7858 or else (Present (E2) and then Etype (E2) = Any_Type)
7859 then
7860 Set_Etype (N, Any_Type);
7861 return;
7862 end if;
7864 -- Scalar subtype case. We have not yet enforced the static requirement
7865 -- of (RM 4.9(7)) and we don't intend to just yet, since there are cases
7866 -- of non-static attribute references (e.g. S'Digits for a non-static
7867 -- floating-point type, which we can compute at compile time).
7869 -- Note: this folding of non-static attributes is not simply a case of
7870 -- optimization. For many of the attributes affected, Gigi cannot handle
7871 -- the attribute and depends on the front end having folded them away.
7873 -- Note: although we don't require staticness at this stage, we do set
7874 -- the Static variable to record the staticness, for easy reference by
7875 -- those attributes where it matters (e.g. Succ and Pred), and also to
7876 -- be used to ensure that non-static folded things are not marked as
7877 -- being static (a check that is done right at the end).
7879 P_Root_Type := Root_Type (P_Type);
7880 P_Base_Type := Base_Type (P_Type);
7882 -- If the root type or base type is generic, then we cannot fold. This
7883 -- test is needed because subtypes of generic types are not always
7884 -- marked as being generic themselves (which seems odd???)
7886 if Is_Generic_Type (P_Root_Type)
7887 or else Is_Generic_Type (P_Base_Type)
7888 then
7889 return;
7890 end if;
7892 if Is_Scalar_Type (P_Type) then
7893 if not Is_Static_Subtype (P_Type) then
7894 Static := False;
7895 Set_Is_Static_Expression (N, False);
7896 elsif not Is_OK_Static_Subtype (P_Type) then
7897 Set_Raises_Constraint_Error (N);
7898 end if;
7900 -- Array case. We enforce the constrained requirement of (RM 4.9(7-8))
7901 -- since we can't do anything with unconstrained arrays. In addition,
7902 -- only the First, Last and Length attributes are possibly static.
7904 -- Atomic_Always_Lock_Free, Definite, Has_Access_Values,
7905 -- Has_Discriminants, Has_Tagged_Values, Lock_Free, Type_Class, and
7906 -- Unconstrained_Array are again exceptions, because they apply as well
7907 -- to unconstrained types.
7909 -- In addition Component_Size is an exception since it is possibly
7910 -- foldable, even though it is never static, and it does apply to
7911 -- unconstrained arrays. Furthermore, it is essential to fold this
7912 -- in the packed case, since otherwise the value will be incorrect.
7914 elsif Id = Attribute_Atomic_Always_Lock_Free or else
7915 Id = Attribute_Definite or else
7916 Id = Attribute_Has_Access_Values or else
7917 Id = Attribute_Has_Discriminants or else
7918 Id = Attribute_Has_Tagged_Values or else
7919 Id = Attribute_Lock_Free or else
7920 Id = Attribute_Type_Class or else
7921 Id = Attribute_Unconstrained_Array or else
7922 Id = Attribute_Component_Size
7923 then
7924 Static := False;
7925 Set_Is_Static_Expression (N, False);
7927 elsif Id /= Attribute_Max_Alignment_For_Allocation then
7928 if not Is_Constrained (P_Type)
7929 or else (Id /= Attribute_First and then
7930 Id /= Attribute_Last and then
7931 Id /= Attribute_Length)
7932 then
7933 Check_Expressions;
7934 return;
7935 end if;
7937 -- The rules in (RM 4.9(7,8)) require a static array, but as in the
7938 -- scalar case, we hold off on enforcing staticness, since there are
7939 -- cases which we can fold at compile time even though they are not
7940 -- static (e.g. 'Length applied to a static index, even though other
7941 -- non-static indexes make the array type non-static). This is only
7942 -- an optimization, but it falls out essentially free, so why not.
7943 -- Again we compute the variable Static for easy reference later
7944 -- (note that no array attributes are static in Ada 83).
7946 -- We also need to set Static properly for subsequent legality checks
7947 -- which might otherwise accept non-static constants in contexts
7948 -- where they are not legal.
7950 Static :=
7951 Ada_Version >= Ada_95 and then Statically_Denotes_Entity (P);
7952 Set_Is_Static_Expression (N, Static);
7954 declare
7955 Nod : Node_Id;
7957 begin
7958 Nod := First_Index (P_Type);
7960 -- The expression is static if the array type is constrained
7961 -- by given bounds, and not by an initial expression. Constant
7962 -- strings are static in any case.
7964 if Root_Type (P_Type) /= Standard_String then
7965 Static :=
7966 Static and then not Is_Constr_Subt_For_U_Nominal (P_Type);
7967 Set_Is_Static_Expression (N, Static);
7968 end if;
7970 while Present (Nod) loop
7971 if not Is_Static_Subtype (Etype (Nod)) then
7972 Static := False;
7973 Set_Is_Static_Expression (N, False);
7975 elsif not Is_OK_Static_Subtype (Etype (Nod)) then
7976 Set_Raises_Constraint_Error (N);
7977 Static := False;
7978 Set_Is_Static_Expression (N, False);
7979 end if;
7981 -- If however the index type is generic, or derived from
7982 -- one, attributes cannot be folded.
7984 if Is_Generic_Type (Root_Type (Etype (Nod)))
7985 and then Id /= Attribute_Component_Size
7986 then
7987 return;
7988 end if;
7990 Next_Index (Nod);
7991 end loop;
7992 end;
7993 end if;
7995 -- Check any expressions that are present. Note that these expressions,
7996 -- depending on the particular attribute type, are either part of the
7997 -- attribute designator, or they are arguments in a case where the
7998 -- attribute reference returns a function. In the latter case, the
7999 -- rule in (RM 4.9(22)) applies and in particular requires the type
8000 -- of the expressions to be scalar in order for the attribute to be
8001 -- considered to be static.
8003 declare
8004 E : Node_Id;
8006 begin
8007 E := E1;
8009 while Present (E) loop
8011 -- If expression is not static, then the attribute reference
8012 -- result certainly cannot be static.
8014 if not Is_Static_Expression (E) then
8015 Static := False;
8016 Set_Is_Static_Expression (N, False);
8017 end if;
8019 if Raises_Constraint_Error (E) then
8020 Set_Raises_Constraint_Error (N);
8021 end if;
8023 -- If the result is not known at compile time, or is not of
8024 -- a scalar type, then the result is definitely not static,
8025 -- so we can quit now.
8027 if not Compile_Time_Known_Value (E)
8028 or else not Is_Scalar_Type (Etype (E))
8029 then
8030 -- An odd special case, if this is a Pos attribute, this
8031 -- is where we need to apply a range check since it does
8032 -- not get done anywhere else.
8034 if Id = Attribute_Pos then
8035 if Is_Integer_Type (Etype (E)) then
8036 Apply_Range_Check (E, Etype (N));
8037 end if;
8038 end if;
8040 Check_Expressions;
8041 return;
8043 -- If the expression raises a constraint error, then so does
8044 -- the attribute reference. We keep going in this case because
8045 -- we are still interested in whether the attribute reference
8046 -- is static even if it is not static.
8048 elsif Raises_Constraint_Error (E) then
8049 Set_Raises_Constraint_Error (N);
8050 end if;
8052 Next (E);
8053 end loop;
8055 if Raises_Constraint_Error (Prefix (N)) then
8056 Set_Is_Static_Expression (N, False);
8057 return;
8058 end if;
8059 end;
8061 -- Deal with the case of a static attribute reference that raises
8062 -- constraint error. The Raises_Constraint_Error flag will already
8063 -- have been set, and the Static flag shows whether the attribute
8064 -- reference is static. In any case we certainly can't fold such an
8065 -- attribute reference.
8067 -- Note that the rewriting of the attribute node with the constraint
8068 -- error node is essential in this case, because otherwise Gigi might
8069 -- blow up on one of the attributes it never expects to see.
8071 -- The constraint_error node must have the type imposed by the context,
8072 -- to avoid spurious errors in the enclosing expression.
8074 if Raises_Constraint_Error (N) then
8075 CE_Node :=
8076 Make_Raise_Constraint_Error (Sloc (N),
8077 Reason => CE_Range_Check_Failed);
8078 Set_Etype (CE_Node, Etype (N));
8079 Set_Raises_Constraint_Error (CE_Node);
8080 Check_Expressions;
8081 Rewrite (N, Relocate_Node (CE_Node));
8082 Set_Raises_Constraint_Error (N, True);
8083 return;
8084 end if;
8086 -- At this point we have a potentially foldable attribute reference.
8087 -- If Static is set, then the attribute reference definitely obeys
8088 -- the requirements in (RM 4.9(7,8,22)), and it definitely can be
8089 -- folded. If Static is not set, then the attribute may or may not
8090 -- be foldable, and the individual attribute processing routines
8091 -- test Static as required in cases where it makes a difference.
8093 -- In the case where Static is not set, we do know that all the
8094 -- expressions present are at least known at compile time (we assumed
8095 -- above that if this was not the case, then there was no hope of static
8096 -- evaluation). However, we did not require that the bounds of the
8097 -- prefix type be compile time known, let alone static). That's because
8098 -- there are many attributes that can be computed at compile time on
8099 -- non-static subtypes, even though such references are not static
8100 -- expressions.
8102 -- For VAX float, the root type is an IEEE type. So make sure to use the
8103 -- base type instead of the root-type for floating point attributes.
8105 case Id is
8107 -- Attributes related to Ada 2012 iterators (placeholder ???)
8109 when Attribute_Constant_Indexing |
8110 Attribute_Default_Iterator |
8111 Attribute_Implicit_Dereference |
8112 Attribute_Iterator_Element |
8113 Attribute_Iterable |
8114 Attribute_Variable_Indexing => null;
8116 -- Internal attributes used to deal with Ada 2012 delayed aspects.
8117 -- These were already rejected by the parser. Thus they shouldn't
8118 -- appear here.
8120 when Internal_Attribute_Id =>
8121 raise Program_Error;
8123 --------------
8124 -- Adjacent --
8125 --------------
8127 when Attribute_Adjacent =>
8128 Fold_Ureal
8130 Eval_Fat.Adjacent
8131 (P_Base_Type, Expr_Value_R (E1), Expr_Value_R (E2)),
8132 Static);
8134 ---------
8135 -- Aft --
8136 ---------
8138 when Attribute_Aft =>
8139 Fold_Uint (N, Aft_Value (P_Type), Static);
8141 ---------------
8142 -- Alignment --
8143 ---------------
8145 when Attribute_Alignment => Alignment_Block : declare
8146 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
8148 begin
8149 -- Fold if alignment is set and not otherwise
8151 if Known_Alignment (P_TypeA) then
8152 Fold_Uint (N, Alignment (P_TypeA), Static);
8153 end if;
8154 end Alignment_Block;
8156 -----------------------------
8157 -- Atomic_Always_Lock_Free --
8158 -----------------------------
8160 -- Atomic_Always_Lock_Free attribute is a Boolean, thus no need to fold
8161 -- here.
8163 when Attribute_Atomic_Always_Lock_Free => Atomic_Always_Lock_Free :
8164 declare
8165 V : constant Entity_Id :=
8166 Boolean_Literals
8167 (Support_Atomic_Primitives_On_Target
8168 and then Support_Atomic_Primitives (P_Type));
8170 begin
8171 Rewrite (N, New_Occurrence_Of (V, Loc));
8173 -- Analyze and resolve as boolean. Note that this attribute is a
8174 -- static attribute in GNAT.
8176 Analyze_And_Resolve (N, Standard_Boolean);
8177 Static := True;
8178 Set_Is_Static_Expression (N, True);
8179 end Atomic_Always_Lock_Free;
8181 ---------
8182 -- Bit --
8183 ---------
8185 -- Bit can never be folded
8187 when Attribute_Bit =>
8188 null;
8190 ------------------
8191 -- Body_Version --
8192 ------------------
8194 -- Body_version can never be static
8196 when Attribute_Body_Version =>
8197 null;
8199 -------------
8200 -- Ceiling --
8201 -------------
8203 when Attribute_Ceiling =>
8204 Fold_Ureal
8205 (N, Eval_Fat.Ceiling (P_Base_Type, Expr_Value_R (E1)), Static);
8207 --------------------
8208 -- Component_Size --
8209 --------------------
8211 when Attribute_Component_Size =>
8212 if Known_Static_Component_Size (P_Type) then
8213 Fold_Uint (N, Component_Size (P_Type), Static);
8214 end if;
8216 -------------
8217 -- Compose --
8218 -------------
8220 when Attribute_Compose =>
8221 Fold_Ureal
8223 Eval_Fat.Compose (P_Base_Type, Expr_Value_R (E1), Expr_Value (E2)),
8224 Static);
8226 -----------------
8227 -- Constrained --
8228 -----------------
8230 -- Constrained is never folded for now, there may be cases that
8231 -- could be handled at compile time. To be looked at later.
8233 when Attribute_Constrained =>
8235 -- The expander might fold it and set the static flag accordingly,
8236 -- but with expansion disabled (as in ASIS), it remains as an
8237 -- attribute reference, and this reference is not static.
8239 Set_Is_Static_Expression (N, False);
8240 null;
8242 ---------------
8243 -- Copy_Sign --
8244 ---------------
8246 when Attribute_Copy_Sign =>
8247 Fold_Ureal
8249 Eval_Fat.Copy_Sign
8250 (P_Base_Type, Expr_Value_R (E1), Expr_Value_R (E2)),
8251 Static);
8253 --------------
8254 -- Definite --
8255 --------------
8257 when Attribute_Definite =>
8258 Rewrite (N, New_Occurrence_Of (
8259 Boolean_Literals (Is_Definite_Subtype (P_Entity)), Loc));
8260 Analyze_And_Resolve (N, Standard_Boolean);
8262 -----------
8263 -- Delta --
8264 -----------
8266 when Attribute_Delta =>
8267 Fold_Ureal (N, Delta_Value (P_Type), True);
8269 ------------
8270 -- Denorm --
8271 ------------
8273 when Attribute_Denorm =>
8274 Fold_Uint
8275 (N, UI_From_Int (Boolean'Pos (Has_Denormals (P_Type))), Static);
8277 ---------------------
8278 -- Descriptor_Size --
8279 ---------------------
8281 when Attribute_Descriptor_Size =>
8282 null;
8284 ------------
8285 -- Digits --
8286 ------------
8288 when Attribute_Digits =>
8289 Fold_Uint (N, Digits_Value (P_Type), Static);
8291 ----------
8292 -- Emax --
8293 ----------
8295 when Attribute_Emax =>
8297 -- Ada 83 attribute is defined as (RM83 3.5.8)
8299 -- T'Emax = 4 * T'Mantissa
8301 Fold_Uint (N, 4 * Mantissa, Static);
8303 --------------
8304 -- Enum_Rep --
8305 --------------
8307 when Attribute_Enum_Rep => Enum_Rep : declare
8308 Val : Node_Id;
8310 begin
8311 -- The attribute appears in the form:
8313 -- Enum_Typ'Enum_Rep (Const)
8314 -- Enum_Typ'Enum_Rep (Enum_Lit)
8316 if Present (E1) then
8317 Val := E1;
8319 -- Otherwise the prefix denotes a constant or enumeration literal:
8321 -- Const'Enum_Rep
8322 -- Enum_Lit'Enum_Rep
8324 else
8325 Val := P;
8326 end if;
8328 -- For an enumeration type with a non-standard representation use
8329 -- the Enumeration_Rep field of the proper constant. Note that this
8330 -- will not work for types Character/Wide_[Wide-]Character, since no
8331 -- real entities are created for the enumeration literals, but that
8332 -- does not matter since these two types do not have non-standard
8333 -- representations anyway.
8335 if Is_Enumeration_Type (P_Type)
8336 and then Has_Non_Standard_Rep (P_Type)
8337 then
8338 Fold_Uint (N, Enumeration_Rep (Expr_Value_E (Val)), Static);
8340 -- For enumeration types with standard representations and all other
8341 -- cases (i.e. all integer and modular types), Enum_Rep is equivalent
8342 -- to Pos.
8344 else
8345 Fold_Uint (N, Expr_Value (Val), Static);
8346 end if;
8347 end Enum_Rep;
8349 --------------
8350 -- Enum_Val --
8351 --------------
8353 when Attribute_Enum_Val => Enum_Val : declare
8354 Lit : Node_Id;
8356 begin
8357 -- We have something like Enum_Type'Enum_Val (23), so search for a
8358 -- corresponding value in the list of Enum_Rep values for the type.
8360 Lit := First_Literal (P_Base_Type);
8361 loop
8362 if Enumeration_Rep (Lit) = Expr_Value (E1) then
8363 Fold_Uint (N, Enumeration_Pos (Lit), Static);
8364 exit;
8365 end if;
8367 Next_Literal (Lit);
8369 if No (Lit) then
8370 Apply_Compile_Time_Constraint_Error
8371 (N, "no representation value matches",
8372 CE_Range_Check_Failed,
8373 Warn => not Static);
8374 exit;
8375 end if;
8376 end loop;
8377 end Enum_Val;
8379 -------------
8380 -- Epsilon --
8381 -------------
8383 when Attribute_Epsilon =>
8385 -- Ada 83 attribute is defined as (RM83 3.5.8)
8387 -- T'Epsilon = 2.0**(1 - T'Mantissa)
8389 Fold_Ureal (N, Ureal_2 ** (1 - Mantissa), True);
8391 --------------
8392 -- Exponent --
8393 --------------
8395 when Attribute_Exponent =>
8396 Fold_Uint (N,
8397 Eval_Fat.Exponent (P_Base_Type, Expr_Value_R (E1)), Static);
8399 -----------
8400 -- First --
8401 -----------
8403 when Attribute_First => First_Attr :
8404 begin
8405 Set_Bounds;
8407 if Compile_Time_Known_Value (Lo_Bound) then
8408 if Is_Real_Type (P_Type) then
8409 Fold_Ureal (N, Expr_Value_R (Lo_Bound), Static);
8410 else
8411 Fold_Uint (N, Expr_Value (Lo_Bound), Static);
8412 end if;
8414 else
8415 Check_Concurrent_Discriminant (Lo_Bound);
8416 end if;
8417 end First_Attr;
8419 -----------------
8420 -- First_Valid --
8421 -----------------
8423 when Attribute_First_Valid => First_Valid :
8424 begin
8425 if Has_Predicates (P_Type)
8426 and then Has_Static_Predicate (P_Type)
8427 then
8428 declare
8429 FirstN : constant Node_Id :=
8430 First (Static_Discrete_Predicate (P_Type));
8431 begin
8432 if Nkind (FirstN) = N_Range then
8433 Fold_Uint (N, Expr_Value (Low_Bound (FirstN)), Static);
8434 else
8435 Fold_Uint (N, Expr_Value (FirstN), Static);
8436 end if;
8437 end;
8439 else
8440 Set_Bounds;
8441 Fold_Uint (N, Expr_Value (Lo_Bound), Static);
8442 end if;
8443 end First_Valid;
8445 -----------------
8446 -- Fixed_Value --
8447 -----------------
8449 when Attribute_Fixed_Value =>
8450 null;
8452 -----------
8453 -- Floor --
8454 -----------
8456 when Attribute_Floor =>
8457 Fold_Ureal
8458 (N, Eval_Fat.Floor (P_Base_Type, Expr_Value_R (E1)), Static);
8460 ----------
8461 -- Fore --
8462 ----------
8464 when Attribute_Fore =>
8465 if Compile_Time_Known_Bounds (P_Type) then
8466 Fold_Uint (N, UI_From_Int (Fore_Value), Static);
8467 end if;
8469 --------------
8470 -- Fraction --
8471 --------------
8473 when Attribute_Fraction =>
8474 Fold_Ureal
8475 (N, Eval_Fat.Fraction (P_Base_Type, Expr_Value_R (E1)), Static);
8477 -----------------------
8478 -- Has_Access_Values --
8479 -----------------------
8481 when Attribute_Has_Access_Values =>
8482 Rewrite (N, New_Occurrence_Of
8483 (Boolean_Literals (Has_Access_Values (P_Root_Type)), Loc));
8484 Analyze_And_Resolve (N, Standard_Boolean);
8486 -----------------------
8487 -- Has_Discriminants --
8488 -----------------------
8490 when Attribute_Has_Discriminants =>
8491 Rewrite (N, New_Occurrence_Of (
8492 Boolean_Literals (Has_Discriminants (P_Entity)), Loc));
8493 Analyze_And_Resolve (N, Standard_Boolean);
8495 ----------------------
8496 -- Has_Same_Storage --
8497 ----------------------
8499 when Attribute_Has_Same_Storage =>
8500 null;
8502 -----------------------
8503 -- Has_Tagged_Values --
8504 -----------------------
8506 when Attribute_Has_Tagged_Values =>
8507 Rewrite (N, New_Occurrence_Of
8508 (Boolean_Literals (Has_Tagged_Component (P_Root_Type)), Loc));
8509 Analyze_And_Resolve (N, Standard_Boolean);
8511 --------------
8512 -- Identity --
8513 --------------
8515 when Attribute_Identity =>
8516 null;
8518 -----------
8519 -- Image --
8520 -----------
8522 -- Image is a scalar attribute, but is never static, because it is
8523 -- not a static function (having a non-scalar argument (RM 4.9(22))
8524 -- However, we can constant-fold the image of an enumeration literal
8525 -- if names are available.
8527 when Attribute_Image =>
8528 if Is_Entity_Name (E1)
8529 and then Ekind (Entity (E1)) = E_Enumeration_Literal
8530 and then not Discard_Names (First_Subtype (Etype (E1)))
8531 and then not Global_Discard_Names
8532 then
8533 declare
8534 Lit : constant Entity_Id := Entity (E1);
8535 Str : String_Id;
8536 begin
8537 Start_String;
8538 Get_Unqualified_Decoded_Name_String (Chars (Lit));
8539 Set_Casing (All_Upper_Case);
8540 Store_String_Chars (Name_Buffer (1 .. Name_Len));
8541 Str := End_String;
8542 Rewrite (N, Make_String_Literal (Loc, Strval => Str));
8543 Analyze_And_Resolve (N, Standard_String);
8544 Set_Is_Static_Expression (N, False);
8545 end;
8546 end if;
8548 -------------------
8549 -- Integer_Value --
8550 -------------------
8552 -- We never try to fold Integer_Value (though perhaps we could???)
8554 when Attribute_Integer_Value =>
8555 null;
8557 -------------------
8558 -- Invalid_Value --
8559 -------------------
8561 -- Invalid_Value is a scalar attribute that is never static, because
8562 -- the value is by design out of range.
8564 when Attribute_Invalid_Value =>
8565 null;
8567 -----------
8568 -- Large --
8569 -----------
8571 when Attribute_Large =>
8573 -- For fixed-point, we use the identity:
8575 -- T'Large = (2.0**T'Mantissa - 1.0) * T'Small
8577 if Is_Fixed_Point_Type (P_Type) then
8578 Rewrite (N,
8579 Make_Op_Multiply (Loc,
8580 Left_Opnd =>
8581 Make_Op_Subtract (Loc,
8582 Left_Opnd =>
8583 Make_Op_Expon (Loc,
8584 Left_Opnd =>
8585 Make_Real_Literal (Loc, Ureal_2),
8586 Right_Opnd =>
8587 Make_Attribute_Reference (Loc,
8588 Prefix => P,
8589 Attribute_Name => Name_Mantissa)),
8590 Right_Opnd => Make_Real_Literal (Loc, Ureal_1)),
8592 Right_Opnd =>
8593 Make_Real_Literal (Loc, Small_Value (Entity (P)))));
8595 Analyze_And_Resolve (N, C_Type);
8597 -- Floating-point (Ada 83 compatibility)
8599 else
8600 -- Ada 83 attribute is defined as (RM83 3.5.8)
8602 -- T'Large = 2.0**T'Emax * (1.0 - 2.0**(-T'Mantissa))
8604 -- where
8606 -- T'Emax = 4 * T'Mantissa
8608 Fold_Ureal
8610 Ureal_2 ** (4 * Mantissa) * (Ureal_1 - Ureal_2 ** (-Mantissa)),
8611 True);
8612 end if;
8614 ---------------
8615 -- Lock_Free --
8616 ---------------
8618 when Attribute_Lock_Free => Lock_Free : declare
8619 V : constant Entity_Id := Boolean_Literals (Uses_Lock_Free (P_Type));
8621 begin
8622 Rewrite (N, New_Occurrence_Of (V, Loc));
8624 -- Analyze and resolve as boolean. Note that this attribute is a
8625 -- static attribute in GNAT.
8627 Analyze_And_Resolve (N, Standard_Boolean);
8628 Static := True;
8629 Set_Is_Static_Expression (N, True);
8630 end Lock_Free;
8632 ----------
8633 -- Last --
8634 ----------
8636 when Attribute_Last => Last_Attr :
8637 begin
8638 Set_Bounds;
8640 if Compile_Time_Known_Value (Hi_Bound) then
8641 if Is_Real_Type (P_Type) then
8642 Fold_Ureal (N, Expr_Value_R (Hi_Bound), Static);
8643 else
8644 Fold_Uint (N, Expr_Value (Hi_Bound), Static);
8645 end if;
8647 else
8648 Check_Concurrent_Discriminant (Hi_Bound);
8649 end if;
8650 end Last_Attr;
8652 ----------------
8653 -- Last_Valid --
8654 ----------------
8656 when Attribute_Last_Valid => Last_Valid :
8657 begin
8658 if Has_Predicates (P_Type)
8659 and then Has_Static_Predicate (P_Type)
8660 then
8661 declare
8662 LastN : constant Node_Id :=
8663 Last (Static_Discrete_Predicate (P_Type));
8664 begin
8665 if Nkind (LastN) = N_Range then
8666 Fold_Uint (N, Expr_Value (High_Bound (LastN)), Static);
8667 else
8668 Fold_Uint (N, Expr_Value (LastN), Static);
8669 end if;
8670 end;
8672 else
8673 Set_Bounds;
8674 Fold_Uint (N, Expr_Value (Hi_Bound), Static);
8675 end if;
8676 end Last_Valid;
8678 ------------------
8679 -- Leading_Part --
8680 ------------------
8682 when Attribute_Leading_Part =>
8683 Fold_Ureal
8685 Eval_Fat.Leading_Part
8686 (P_Base_Type, Expr_Value_R (E1), Expr_Value (E2)),
8687 Static);
8689 ------------
8690 -- Length --
8691 ------------
8693 when Attribute_Length => Length : declare
8694 Ind : Node_Id;
8696 begin
8697 -- If any index type is a formal type, or derived from one, the
8698 -- bounds are not static. Treating them as static can produce
8699 -- spurious warnings or improper constant folding.
8701 Ind := First_Index (P_Type);
8702 while Present (Ind) loop
8703 if Is_Generic_Type (Root_Type (Etype (Ind))) then
8704 return;
8705 end if;
8707 Next_Index (Ind);
8708 end loop;
8710 Set_Bounds;
8712 -- For two compile time values, we can compute length
8714 if Compile_Time_Known_Value (Lo_Bound)
8715 and then Compile_Time_Known_Value (Hi_Bound)
8716 then
8717 Fold_Uint (N,
8718 UI_Max (0, 1 + (Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound))),
8719 Static);
8720 end if;
8722 -- One more case is where Hi_Bound and Lo_Bound are compile-time
8723 -- comparable, and we can figure out the difference between them.
8725 declare
8726 Diff : aliased Uint;
8728 begin
8729 case
8730 Compile_Time_Compare
8731 (Lo_Bound, Hi_Bound, Diff'Access, Assume_Valid => False)
8733 when EQ =>
8734 Fold_Uint (N, Uint_1, Static);
8736 when GT =>
8737 Fold_Uint (N, Uint_0, Static);
8739 when LT =>
8740 if Diff /= No_Uint then
8741 Fold_Uint (N, Diff + 1, Static);
8742 end if;
8744 when others =>
8745 null;
8746 end case;
8747 end;
8748 end Length;
8750 ----------------
8751 -- Loop_Entry --
8752 ----------------
8754 -- Loop_Entry acts as an alias of a constant initialized to the prefix
8755 -- of the said attribute at the point of entry into the related loop. As
8756 -- such, the attribute reference does not need to be evaluated because
8757 -- the prefix is the one that is evaluted.
8759 when Attribute_Loop_Entry =>
8760 null;
8762 -------------
8763 -- Machine --
8764 -------------
8766 when Attribute_Machine =>
8767 Fold_Ureal
8769 Eval_Fat.Machine
8770 (P_Base_Type, Expr_Value_R (E1), Eval_Fat.Round, N),
8771 Static);
8773 ------------------
8774 -- Machine_Emax --
8775 ------------------
8777 when Attribute_Machine_Emax =>
8778 Fold_Uint (N, Machine_Emax_Value (P_Type), Static);
8780 ------------------
8781 -- Machine_Emin --
8782 ------------------
8784 when Attribute_Machine_Emin =>
8785 Fold_Uint (N, Machine_Emin_Value (P_Type), Static);
8787 ----------------------
8788 -- Machine_Mantissa --
8789 ----------------------
8791 when Attribute_Machine_Mantissa =>
8792 Fold_Uint (N, Machine_Mantissa_Value (P_Type), Static);
8794 -----------------------
8795 -- Machine_Overflows --
8796 -----------------------
8798 when Attribute_Machine_Overflows =>
8800 -- Always true for fixed-point
8802 if Is_Fixed_Point_Type (P_Type) then
8803 Fold_Uint (N, True_Value, Static);
8805 -- Floating point case
8807 else
8808 Fold_Uint (N,
8809 UI_From_Int (Boolean'Pos (Machine_Overflows_On_Target)),
8810 Static);
8811 end if;
8813 -------------------
8814 -- Machine_Radix --
8815 -------------------
8817 when Attribute_Machine_Radix =>
8818 if Is_Fixed_Point_Type (P_Type) then
8819 if Is_Decimal_Fixed_Point_Type (P_Type)
8820 and then Machine_Radix_10 (P_Type)
8821 then
8822 Fold_Uint (N, Uint_10, Static);
8823 else
8824 Fold_Uint (N, Uint_2, Static);
8825 end if;
8827 -- All floating-point type always have radix 2
8829 else
8830 Fold_Uint (N, Uint_2, Static);
8831 end if;
8833 ----------------------
8834 -- Machine_Rounding --
8835 ----------------------
8837 -- Note: for the folding case, it is fine to treat Machine_Rounding
8838 -- exactly the same way as Rounding, since this is one of the allowed
8839 -- behaviors, and performance is not an issue here. It might be a bit
8840 -- better to give the same result as it would give at run time, even
8841 -- though the non-determinism is certainly permitted.
8843 when Attribute_Machine_Rounding =>
8844 Fold_Ureal
8845 (N, Eval_Fat.Rounding (P_Base_Type, Expr_Value_R (E1)), Static);
8847 --------------------
8848 -- Machine_Rounds --
8849 --------------------
8851 when Attribute_Machine_Rounds =>
8853 -- Always False for fixed-point
8855 if Is_Fixed_Point_Type (P_Type) then
8856 Fold_Uint (N, False_Value, Static);
8858 -- Else yield proper floating-point result
8860 else
8861 Fold_Uint
8862 (N, UI_From_Int (Boolean'Pos (Machine_Rounds_On_Target)),
8863 Static);
8864 end if;
8866 ------------------
8867 -- Machine_Size --
8868 ------------------
8870 -- Note: Machine_Size is identical to Object_Size
8872 when Attribute_Machine_Size => Machine_Size : declare
8873 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
8875 begin
8876 if Known_Esize (P_TypeA) then
8877 Fold_Uint (N, Esize (P_TypeA), Static);
8878 end if;
8879 end Machine_Size;
8881 --------------
8882 -- Mantissa --
8883 --------------
8885 when Attribute_Mantissa =>
8887 -- Fixed-point mantissa
8889 if Is_Fixed_Point_Type (P_Type) then
8891 -- Compile time foldable case
8893 if Compile_Time_Known_Value (Type_Low_Bound (P_Type))
8894 and then
8895 Compile_Time_Known_Value (Type_High_Bound (P_Type))
8896 then
8897 -- The calculation of the obsolete Ada 83 attribute Mantissa
8898 -- is annoying, because of AI00143, quoted here:
8900 -- !question 84-01-10
8902 -- Consider the model numbers for F:
8904 -- type F is delta 1.0 range -7.0 .. 8.0;
8906 -- The wording requires that F'MANTISSA be the SMALLEST
8907 -- integer number for which each bound of the specified
8908 -- range is either a model number or lies at most small
8909 -- distant from a model number. This means F'MANTISSA
8910 -- is required to be 3 since the range -7.0 .. 7.0 fits
8911 -- in 3 signed bits, and 8 is "at most" 1.0 from a model
8912 -- number, namely, 7. Is this analysis correct? Note that
8913 -- this implies the upper bound of the range is not
8914 -- represented as a model number.
8916 -- !response 84-03-17
8918 -- The analysis is correct. The upper and lower bounds for
8919 -- a fixed point type can lie outside the range of model
8920 -- numbers.
8922 declare
8923 Siz : Uint;
8924 LBound : Ureal;
8925 UBound : Ureal;
8926 Bound : Ureal;
8927 Max_Man : Uint;
8929 begin
8930 LBound := Expr_Value_R (Type_Low_Bound (P_Type));
8931 UBound := Expr_Value_R (Type_High_Bound (P_Type));
8932 Bound := UR_Max (UR_Abs (LBound), UR_Abs (UBound));
8933 Max_Man := UR_Trunc (Bound / Small_Value (P_Type));
8935 -- If the Bound is exactly a model number, i.e. a multiple
8936 -- of Small, then we back it off by one to get the integer
8937 -- value that must be representable.
8939 if Small_Value (P_Type) * Max_Man = Bound then
8940 Max_Man := Max_Man - 1;
8941 end if;
8943 -- Now find corresponding size = Mantissa value
8945 Siz := Uint_0;
8946 while 2 ** Siz < Max_Man loop
8947 Siz := Siz + 1;
8948 end loop;
8950 Fold_Uint (N, Siz, Static);
8951 end;
8953 else
8954 -- The case of dynamic bounds cannot be evaluated at compile
8955 -- time. Instead we use a runtime routine (see Exp_Attr).
8957 null;
8958 end if;
8960 -- Floating-point Mantissa
8962 else
8963 Fold_Uint (N, Mantissa, Static);
8964 end if;
8966 ---------
8967 -- Max --
8968 ---------
8970 when Attribute_Max => Max :
8971 begin
8972 if Is_Real_Type (P_Type) then
8973 Fold_Ureal
8974 (N, UR_Max (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
8975 else
8976 Fold_Uint (N, UI_Max (Expr_Value (E1), Expr_Value (E2)), Static);
8977 end if;
8978 end Max;
8980 ----------------------------------
8981 -- Max_Alignment_For_Allocation --
8982 ----------------------------------
8984 -- Max_Alignment_For_Allocation is usually the Alignment. However,
8985 -- arrays are allocated with dope, so we need to take into account both
8986 -- the alignment of the array, which comes from the component alignment,
8987 -- and the alignment of the dope. Also, if the alignment is unknown, we
8988 -- use the max (it's OK to be pessimistic).
8990 when Attribute_Max_Alignment_For_Allocation =>
8991 declare
8992 A : Uint := UI_From_Int (Ttypes.Maximum_Alignment);
8993 begin
8994 if Known_Alignment (P_Type) and then
8995 (not Is_Array_Type (P_Type) or else Alignment (P_Type) > A)
8996 then
8997 A := Alignment (P_Type);
8998 end if;
9000 Fold_Uint (N, A, Static);
9001 end;
9003 ----------------------------------
9004 -- Max_Size_In_Storage_Elements --
9005 ----------------------------------
9007 -- Max_Size_In_Storage_Elements is simply the Size rounded up to a
9008 -- Storage_Unit boundary. We can fold any cases for which the size
9009 -- is known by the front end.
9011 when Attribute_Max_Size_In_Storage_Elements =>
9012 if Known_Esize (P_Type) then
9013 Fold_Uint (N,
9014 (Esize (P_Type) + System_Storage_Unit - 1) /
9015 System_Storage_Unit,
9016 Static);
9017 end if;
9019 --------------------
9020 -- Mechanism_Code --
9021 --------------------
9023 when Attribute_Mechanism_Code =>
9024 declare
9025 Val : Int;
9026 Formal : Entity_Id;
9027 Mech : Mechanism_Type;
9029 begin
9030 if No (E1) then
9031 Mech := Mechanism (P_Entity);
9033 else
9034 Val := UI_To_Int (Expr_Value (E1));
9036 Formal := First_Formal (P_Entity);
9037 for J in 1 .. Val - 1 loop
9038 Next_Formal (Formal);
9039 end loop;
9040 Mech := Mechanism (Formal);
9041 end if;
9043 if Mech < 0 then
9044 Fold_Uint (N, UI_From_Int (Int (-Mech)), Static);
9045 end if;
9046 end;
9048 ---------
9049 -- Min --
9050 ---------
9052 when Attribute_Min => Min :
9053 begin
9054 if Is_Real_Type (P_Type) then
9055 Fold_Ureal
9056 (N, UR_Min (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
9057 else
9058 Fold_Uint
9059 (N, UI_Min (Expr_Value (E1), Expr_Value (E2)), Static);
9060 end if;
9061 end Min;
9063 ---------
9064 -- Mod --
9065 ---------
9067 when Attribute_Mod =>
9068 Fold_Uint
9069 (N, UI_Mod (Expr_Value (E1), Modulus (P_Base_Type)), Static);
9071 -----------
9072 -- Model --
9073 -----------
9075 when Attribute_Model =>
9076 Fold_Ureal
9077 (N, Eval_Fat.Model (P_Base_Type, Expr_Value_R (E1)), Static);
9079 ----------------
9080 -- Model_Emin --
9081 ----------------
9083 when Attribute_Model_Emin =>
9084 Fold_Uint (N, Model_Emin_Value (P_Base_Type), Static);
9086 -------------------
9087 -- Model_Epsilon --
9088 -------------------
9090 when Attribute_Model_Epsilon =>
9091 Fold_Ureal (N, Model_Epsilon_Value (P_Base_Type), Static);
9093 --------------------
9094 -- Model_Mantissa --
9095 --------------------
9097 when Attribute_Model_Mantissa =>
9098 Fold_Uint (N, Model_Mantissa_Value (P_Base_Type), Static);
9100 -----------------
9101 -- Model_Small --
9102 -----------------
9104 when Attribute_Model_Small =>
9105 Fold_Ureal (N, Model_Small_Value (P_Base_Type), Static);
9107 -------------
9108 -- Modulus --
9109 -------------
9111 when Attribute_Modulus =>
9112 Fold_Uint (N, Modulus (P_Type), Static);
9114 --------------------
9115 -- Null_Parameter --
9116 --------------------
9118 -- Cannot fold, we know the value sort of, but the whole point is
9119 -- that there is no way to talk about this imaginary value except
9120 -- by using the attribute, so we leave it the way it is.
9122 when Attribute_Null_Parameter =>
9123 null;
9125 -----------------
9126 -- Object_Size --
9127 -----------------
9129 -- The Object_Size attribute for a type returns the Esize of the
9130 -- type and can be folded if this value is known.
9132 when Attribute_Object_Size => Object_Size : declare
9133 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
9135 begin
9136 if Known_Esize (P_TypeA) then
9137 Fold_Uint (N, Esize (P_TypeA), Static);
9138 end if;
9139 end Object_Size;
9141 ----------------------
9142 -- Overlaps_Storage --
9143 ----------------------
9145 when Attribute_Overlaps_Storage =>
9146 null;
9148 -------------------------
9149 -- Passed_By_Reference --
9150 -------------------------
9152 -- Scalar types are never passed by reference
9154 when Attribute_Passed_By_Reference =>
9155 Fold_Uint (N, False_Value, Static);
9157 ---------
9158 -- Pos --
9159 ---------
9161 when Attribute_Pos =>
9162 Fold_Uint (N, Expr_Value (E1), Static);
9164 ----------
9165 -- Pred --
9166 ----------
9168 when Attribute_Pred => Pred :
9169 begin
9170 -- Floating-point case
9172 if Is_Floating_Point_Type (P_Type) then
9173 Fold_Ureal
9174 (N, Eval_Fat.Pred (P_Base_Type, Expr_Value_R (E1)), Static);
9176 -- Fixed-point case
9178 elsif Is_Fixed_Point_Type (P_Type) then
9179 Fold_Ureal
9180 (N, Expr_Value_R (E1) - Small_Value (P_Type), True);
9182 -- Modular integer case (wraps)
9184 elsif Is_Modular_Integer_Type (P_Type) then
9185 Fold_Uint (N, (Expr_Value (E1) - 1) mod Modulus (P_Type), Static);
9187 -- Other scalar cases
9189 else
9190 pragma Assert (Is_Scalar_Type (P_Type));
9192 if Is_Enumeration_Type (P_Type)
9193 and then Expr_Value (E1) =
9194 Expr_Value (Type_Low_Bound (P_Base_Type))
9195 then
9196 Apply_Compile_Time_Constraint_Error
9197 (N, "Pred of `&''First`",
9198 CE_Overflow_Check_Failed,
9199 Ent => P_Base_Type,
9200 Warn => not Static);
9202 Check_Expressions;
9203 return;
9204 end if;
9206 Fold_Uint (N, Expr_Value (E1) - 1, Static);
9207 end if;
9208 end Pred;
9210 -----------
9211 -- Range --
9212 -----------
9214 -- No processing required, because by this stage, Range has been
9215 -- replaced by First .. Last, so this branch can never be taken.
9217 when Attribute_Range =>
9218 raise Program_Error;
9220 ------------------
9221 -- Range_Length --
9222 ------------------
9224 when Attribute_Range_Length =>
9225 Set_Bounds;
9227 -- Can fold if both bounds are compile time known
9229 if Compile_Time_Known_Value (Hi_Bound)
9230 and then Compile_Time_Known_Value (Lo_Bound)
9231 then
9232 Fold_Uint (N,
9233 UI_Max
9234 (0, Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound) + 1),
9235 Static);
9236 end if;
9238 -- One more case is where Hi_Bound and Lo_Bound are compile-time
9239 -- comparable, and we can figure out the difference between them.
9241 declare
9242 Diff : aliased Uint;
9244 begin
9245 case
9246 Compile_Time_Compare
9247 (Lo_Bound, Hi_Bound, Diff'Access, Assume_Valid => False)
9249 when EQ =>
9250 Fold_Uint (N, Uint_1, Static);
9252 when GT =>
9253 Fold_Uint (N, Uint_0, Static);
9255 when LT =>
9256 if Diff /= No_Uint then
9257 Fold_Uint (N, Diff + 1, Static);
9258 end if;
9260 when others =>
9261 null;
9262 end case;
9263 end;
9265 ---------
9266 -- Ref --
9267 ---------
9269 when Attribute_Ref =>
9270 Fold_Uint (N, Expr_Value (E1), Static);
9272 ---------------
9273 -- Remainder --
9274 ---------------
9276 when Attribute_Remainder => Remainder : declare
9277 X : constant Ureal := Expr_Value_R (E1);
9278 Y : constant Ureal := Expr_Value_R (E2);
9280 begin
9281 if UR_Is_Zero (Y) then
9282 Apply_Compile_Time_Constraint_Error
9283 (N, "division by zero in Remainder",
9284 CE_Overflow_Check_Failed,
9285 Warn => not Static);
9287 Check_Expressions;
9288 return;
9289 end if;
9291 Fold_Ureal (N, Eval_Fat.Remainder (P_Base_Type, X, Y), Static);
9292 end Remainder;
9294 -----------------
9295 -- Restriction --
9296 -----------------
9298 when Attribute_Restriction_Set => Restriction_Set : declare
9299 begin
9300 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
9301 Set_Is_Static_Expression (N);
9302 end Restriction_Set;
9304 -----------
9305 -- Round --
9306 -----------
9308 when Attribute_Round => Round :
9309 declare
9310 Sr : Ureal;
9311 Si : Uint;
9313 begin
9314 -- First we get the (exact result) in units of small
9316 Sr := Expr_Value_R (E1) / Small_Value (C_Type);
9318 -- Now round that exactly to an integer
9320 Si := UR_To_Uint (Sr);
9322 -- Finally the result is obtained by converting back to real
9324 Fold_Ureal (N, Si * Small_Value (C_Type), Static);
9325 end Round;
9327 --------------
9328 -- Rounding --
9329 --------------
9331 when Attribute_Rounding =>
9332 Fold_Ureal
9333 (N, Eval_Fat.Rounding (P_Base_Type, Expr_Value_R (E1)), Static);
9335 ---------------
9336 -- Safe_Emax --
9337 ---------------
9339 when Attribute_Safe_Emax =>
9340 Fold_Uint (N, Safe_Emax_Value (P_Type), Static);
9342 ----------------
9343 -- Safe_First --
9344 ----------------
9346 when Attribute_Safe_First =>
9347 Fold_Ureal (N, Safe_First_Value (P_Type), Static);
9349 ----------------
9350 -- Safe_Large --
9351 ----------------
9353 when Attribute_Safe_Large =>
9354 if Is_Fixed_Point_Type (P_Type) then
9355 Fold_Ureal
9356 (N, Expr_Value_R (Type_High_Bound (P_Base_Type)), Static);
9357 else
9358 Fold_Ureal (N, Safe_Last_Value (P_Type), Static);
9359 end if;
9361 ---------------
9362 -- Safe_Last --
9363 ---------------
9365 when Attribute_Safe_Last =>
9366 Fold_Ureal (N, Safe_Last_Value (P_Type), Static);
9368 ----------------
9369 -- Safe_Small --
9370 ----------------
9372 when Attribute_Safe_Small =>
9374 -- In Ada 95, the old Ada 83 attribute Safe_Small is redundant
9375 -- for fixed-point, since is the same as Small, but we implement
9376 -- it for backwards compatibility.
9378 if Is_Fixed_Point_Type (P_Type) then
9379 Fold_Ureal (N, Small_Value (P_Type), Static);
9381 -- Ada 83 Safe_Small for floating-point cases
9383 else
9384 Fold_Ureal (N, Model_Small_Value (P_Type), Static);
9385 end if;
9387 -----------
9388 -- Scale --
9389 -----------
9391 when Attribute_Scale =>
9392 Fold_Uint (N, Scale_Value (P_Type), Static);
9394 -------------
9395 -- Scaling --
9396 -------------
9398 when Attribute_Scaling =>
9399 Fold_Ureal
9401 Eval_Fat.Scaling
9402 (P_Base_Type, Expr_Value_R (E1), Expr_Value (E2)),
9403 Static);
9405 ------------------
9406 -- Signed_Zeros --
9407 ------------------
9409 when Attribute_Signed_Zeros =>
9410 Fold_Uint
9411 (N, UI_From_Int (Boolean'Pos (Has_Signed_Zeros (P_Type))), Static);
9413 ----------
9414 -- Size --
9415 ----------
9417 -- Size attribute returns the RM size. All scalar types can be folded,
9418 -- as well as any types for which the size is known by the front end,
9419 -- including any type for which a size attribute is specified. This is
9420 -- one of the places where it is annoying that a size of zero means two
9421 -- things (zero size for scalars, unspecified size for non-scalars).
9423 when Attribute_Size | Attribute_VADS_Size => Size : declare
9424 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
9426 begin
9427 if Is_Scalar_Type (P_TypeA) or else RM_Size (P_TypeA) /= Uint_0 then
9429 -- VADS_Size case
9431 if Id = Attribute_VADS_Size or else Use_VADS_Size then
9432 declare
9433 S : constant Node_Id := Size_Clause (P_TypeA);
9435 begin
9436 -- If a size clause applies, then use the size from it.
9437 -- This is one of the rare cases where we can use the
9438 -- Size_Clause field for a subtype when Has_Size_Clause
9439 -- is False. Consider:
9441 -- type x is range 1 .. 64;
9442 -- for x'size use 12;
9443 -- subtype y is x range 0 .. 3;
9445 -- Here y has a size clause inherited from x, but normally
9446 -- it does not apply, and y'size is 2. However, y'VADS_Size
9447 -- is indeed 12 and not 2.
9449 if Present (S)
9450 and then Is_OK_Static_Expression (Expression (S))
9451 then
9452 Fold_Uint (N, Expr_Value (Expression (S)), Static);
9454 -- If no size is specified, then we simply use the object
9455 -- size in the VADS_Size case (e.g. Natural'Size is equal
9456 -- to Integer'Size, not one less).
9458 else
9459 Fold_Uint (N, Esize (P_TypeA), Static);
9460 end if;
9461 end;
9463 -- Normal case (Size) in which case we want the RM_Size
9465 else
9466 Fold_Uint (N, RM_Size (P_TypeA), Static);
9467 end if;
9468 end if;
9469 end Size;
9471 -----------
9472 -- Small --
9473 -----------
9475 when Attribute_Small =>
9477 -- The floating-point case is present only for Ada 83 compatibility.
9478 -- Note that strictly this is an illegal addition, since we are
9479 -- extending an Ada 95 defined attribute, but we anticipate an
9480 -- ARG ruling that will permit this.
9482 if Is_Floating_Point_Type (P_Type) then
9484 -- Ada 83 attribute is defined as (RM83 3.5.8)
9486 -- T'Small = 2.0**(-T'Emax - 1)
9488 -- where
9490 -- T'Emax = 4 * T'Mantissa
9492 Fold_Ureal (N, Ureal_2 ** ((-(4 * Mantissa)) - 1), Static);
9494 -- Normal Ada 95 fixed-point case
9496 else
9497 Fold_Ureal (N, Small_Value (P_Type), True);
9498 end if;
9500 -----------------
9501 -- Stream_Size --
9502 -----------------
9504 when Attribute_Stream_Size =>
9505 null;
9507 ----------
9508 -- Succ --
9509 ----------
9511 when Attribute_Succ => Succ :
9512 begin
9513 -- Floating-point case
9515 if Is_Floating_Point_Type (P_Type) then
9516 Fold_Ureal
9517 (N, Eval_Fat.Succ (P_Base_Type, Expr_Value_R (E1)), Static);
9519 -- Fixed-point case
9521 elsif Is_Fixed_Point_Type (P_Type) then
9522 Fold_Ureal (N, Expr_Value_R (E1) + Small_Value (P_Type), Static);
9524 -- Modular integer case (wraps)
9526 elsif Is_Modular_Integer_Type (P_Type) then
9527 Fold_Uint (N, (Expr_Value (E1) + 1) mod Modulus (P_Type), Static);
9529 -- Other scalar cases
9531 else
9532 pragma Assert (Is_Scalar_Type (P_Type));
9534 if Is_Enumeration_Type (P_Type)
9535 and then Expr_Value (E1) =
9536 Expr_Value (Type_High_Bound (P_Base_Type))
9537 then
9538 Apply_Compile_Time_Constraint_Error
9539 (N, "Succ of `&''Last`",
9540 CE_Overflow_Check_Failed,
9541 Ent => P_Base_Type,
9542 Warn => not Static);
9544 Check_Expressions;
9545 return;
9546 else
9547 Fold_Uint (N, Expr_Value (E1) + 1, Static);
9548 end if;
9549 end if;
9550 end Succ;
9552 ----------------
9553 -- Truncation --
9554 ----------------
9556 when Attribute_Truncation =>
9557 Fold_Ureal
9559 Eval_Fat.Truncation (P_Base_Type, Expr_Value_R (E1)),
9560 Static);
9562 ----------------
9563 -- Type_Class --
9564 ----------------
9566 when Attribute_Type_Class => Type_Class : declare
9567 Typ : constant Entity_Id := Underlying_Type (P_Base_Type);
9568 Id : RE_Id;
9570 begin
9571 if Is_Descendant_Of_Address (Typ) then
9572 Id := RE_Type_Class_Address;
9574 elsif Is_Enumeration_Type (Typ) then
9575 Id := RE_Type_Class_Enumeration;
9577 elsif Is_Integer_Type (Typ) then
9578 Id := RE_Type_Class_Integer;
9580 elsif Is_Fixed_Point_Type (Typ) then
9581 Id := RE_Type_Class_Fixed_Point;
9583 elsif Is_Floating_Point_Type (Typ) then
9584 Id := RE_Type_Class_Floating_Point;
9586 elsif Is_Array_Type (Typ) then
9587 Id := RE_Type_Class_Array;
9589 elsif Is_Record_Type (Typ) then
9590 Id := RE_Type_Class_Record;
9592 elsif Is_Access_Type (Typ) then
9593 Id := RE_Type_Class_Access;
9595 elsif Is_Enumeration_Type (Typ) then
9596 Id := RE_Type_Class_Enumeration;
9598 elsif Is_Task_Type (Typ) then
9599 Id := RE_Type_Class_Task;
9601 -- We treat protected types like task types. It would make more
9602 -- sense to have another enumeration value, but after all the
9603 -- whole point of this feature is to be exactly DEC compatible,
9604 -- and changing the type Type_Class would not meet this requirement.
9606 elsif Is_Protected_Type (Typ) then
9607 Id := RE_Type_Class_Task;
9609 -- Not clear if there are any other possibilities, but if there
9610 -- are, then we will treat them as the address case.
9612 else
9613 Id := RE_Type_Class_Address;
9614 end if;
9616 Rewrite (N, New_Occurrence_Of (RTE (Id), Loc));
9617 end Type_Class;
9619 -----------------------
9620 -- Unbiased_Rounding --
9621 -----------------------
9623 when Attribute_Unbiased_Rounding =>
9624 Fold_Ureal
9626 Eval_Fat.Unbiased_Rounding (P_Base_Type, Expr_Value_R (E1)),
9627 Static);
9629 -------------------------
9630 -- Unconstrained_Array --
9631 -------------------------
9633 when Attribute_Unconstrained_Array => Unconstrained_Array : declare
9634 Typ : constant Entity_Id := Underlying_Type (P_Type);
9636 begin
9637 Rewrite (N, New_Occurrence_Of (
9638 Boolean_Literals (
9639 Is_Array_Type (P_Type)
9640 and then not Is_Constrained (Typ)), Loc));
9642 -- Analyze and resolve as boolean, note that this attribute is
9643 -- a static attribute in GNAT.
9645 Analyze_And_Resolve (N, Standard_Boolean);
9646 Static := True;
9647 Set_Is_Static_Expression (N, True);
9648 end Unconstrained_Array;
9650 -- Attribute Update is never static
9652 when Attribute_Update =>
9653 return;
9655 ---------------
9656 -- VADS_Size --
9657 ---------------
9659 -- Processing is shared with Size
9661 ---------
9662 -- Val --
9663 ---------
9665 when Attribute_Val => Val :
9666 begin
9667 if Expr_Value (E1) < Expr_Value (Type_Low_Bound (P_Base_Type))
9668 or else
9669 Expr_Value (E1) > Expr_Value (Type_High_Bound (P_Base_Type))
9670 then
9671 Apply_Compile_Time_Constraint_Error
9672 (N, "Val expression out of range",
9673 CE_Range_Check_Failed,
9674 Warn => not Static);
9676 Check_Expressions;
9677 return;
9679 else
9680 Fold_Uint (N, Expr_Value (E1), Static);
9681 end if;
9682 end Val;
9684 ----------------
9685 -- Value_Size --
9686 ----------------
9688 -- The Value_Size attribute for a type returns the RM size of the type.
9689 -- This an always be folded for scalar types, and can also be folded for
9690 -- non-scalar types if the size is set. This is one of the places where
9691 -- it is annoying that a size of zero means two things!
9693 when Attribute_Value_Size => Value_Size : declare
9694 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
9695 begin
9696 if Is_Scalar_Type (P_TypeA) or else RM_Size (P_TypeA) /= Uint_0 then
9697 Fold_Uint (N, RM_Size (P_TypeA), Static);
9698 end if;
9699 end Value_Size;
9701 -------------
9702 -- Version --
9703 -------------
9705 -- Version can never be static
9707 when Attribute_Version =>
9708 null;
9710 ----------------
9711 -- Wide_Image --
9712 ----------------
9714 -- Wide_Image is a scalar attribute, but is never static, because it
9715 -- is not a static function (having a non-scalar argument (RM 4.9(22))
9717 when Attribute_Wide_Image =>
9718 null;
9720 ---------------------
9721 -- Wide_Wide_Image --
9722 ---------------------
9724 -- Wide_Wide_Image is a scalar attribute but is never static, because it
9725 -- is not a static function (having a non-scalar argument (RM 4.9(22)).
9727 when Attribute_Wide_Wide_Image =>
9728 null;
9730 ---------------------
9731 -- Wide_Wide_Width --
9732 ---------------------
9734 -- Processing for Wide_Wide_Width is combined with Width
9736 ----------------
9737 -- Wide_Width --
9738 ----------------
9740 -- Processing for Wide_Width is combined with Width
9742 -----------
9743 -- Width --
9744 -----------
9746 -- This processing also handles the case of Wide_[Wide_]Width
9748 when Attribute_Width |
9749 Attribute_Wide_Width |
9750 Attribute_Wide_Wide_Width => Width :
9751 begin
9752 if Compile_Time_Known_Bounds (P_Type) then
9754 -- Floating-point types
9756 if Is_Floating_Point_Type (P_Type) then
9758 -- Width is zero for a null range (RM 3.5 (38))
9760 if Expr_Value_R (Type_High_Bound (P_Type)) <
9761 Expr_Value_R (Type_Low_Bound (P_Type))
9762 then
9763 Fold_Uint (N, Uint_0, Static);
9765 else
9766 -- For floating-point, we have +N.dddE+nnn where length
9767 -- of ddd is determined by type'Digits - 1, but is one
9768 -- if Digits is one (RM 3.5 (33)).
9770 -- nnn is set to 2 for Short_Float and Float (32 bit
9771 -- floats), and 3 for Long_Float and Long_Long_Float.
9772 -- For machines where Long_Long_Float is the IEEE
9773 -- extended precision type, the exponent takes 4 digits.
9775 declare
9776 Len : Int :=
9777 Int'Max (2, UI_To_Int (Digits_Value (P_Type)));
9779 begin
9780 if Esize (P_Type) <= 32 then
9781 Len := Len + 6;
9782 elsif Esize (P_Type) = 64 then
9783 Len := Len + 7;
9784 else
9785 Len := Len + 8;
9786 end if;
9788 Fold_Uint (N, UI_From_Int (Len), Static);
9789 end;
9790 end if;
9792 -- Fixed-point types
9794 elsif Is_Fixed_Point_Type (P_Type) then
9796 -- Width is zero for a null range (RM 3.5 (38))
9798 if Expr_Value (Type_High_Bound (P_Type)) <
9799 Expr_Value (Type_Low_Bound (P_Type))
9800 then
9801 Fold_Uint (N, Uint_0, Static);
9803 -- The non-null case depends on the specific real type
9805 else
9806 -- For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
9808 Fold_Uint
9809 (N, UI_From_Int (Fore_Value + 1) + Aft_Value (P_Type),
9810 Static);
9811 end if;
9813 -- Discrete types
9815 else
9816 declare
9817 R : constant Entity_Id := Root_Type (P_Type);
9818 Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
9819 Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
9820 W : Nat;
9821 Wt : Nat;
9822 T : Uint;
9823 L : Node_Id;
9824 C : Character;
9826 begin
9827 -- Empty ranges
9829 if Lo > Hi then
9830 W := 0;
9832 -- Width for types derived from Standard.Character
9833 -- and Standard.Wide_[Wide_]Character.
9835 elsif Is_Standard_Character_Type (P_Type) then
9836 W := 0;
9838 -- Set W larger if needed
9840 for J in UI_To_Int (Lo) .. UI_To_Int (Hi) loop
9842 -- All wide characters look like Hex_hhhhhhhh
9844 if J > 255 then
9846 -- No need to compute this more than once
9848 exit;
9850 else
9851 C := Character'Val (J);
9853 -- Test for all cases where Character'Image
9854 -- yields an image that is longer than three
9855 -- characters. First the cases of Reserved_xxx
9856 -- names (length = 12).
9858 case C is
9859 when Reserved_128 | Reserved_129 |
9860 Reserved_132 | Reserved_153
9861 => Wt := 12;
9863 when BS | HT | LF | VT | FF | CR |
9864 SO | SI | EM | FS | GS | RS |
9865 US | RI | MW | ST | PM
9866 => Wt := 2;
9868 when NUL | SOH | STX | ETX | EOT |
9869 ENQ | ACK | BEL | DLE | DC1 |
9870 DC2 | DC3 | DC4 | NAK | SYN |
9871 ETB | CAN | SUB | ESC | DEL |
9872 BPH | NBH | NEL | SSA | ESA |
9873 HTS | HTJ | VTS | PLD | PLU |
9874 SS2 | SS3 | DCS | PU1 | PU2 |
9875 STS | CCH | SPA | EPA | SOS |
9876 SCI | CSI | OSC | APC
9877 => Wt := 3;
9879 when Space .. Tilde |
9880 No_Break_Space .. LC_Y_Diaeresis
9882 -- Special case of soft hyphen in Ada 2005
9884 if C = Character'Val (16#AD#)
9885 and then Ada_Version >= Ada_2005
9886 then
9887 Wt := 11;
9888 else
9889 Wt := 3;
9890 end if;
9891 end case;
9893 W := Int'Max (W, Wt);
9894 end if;
9895 end loop;
9897 -- Width for types derived from Standard.Boolean
9899 elsif R = Standard_Boolean then
9900 if Lo = 0 then
9901 W := 5; -- FALSE
9902 else
9903 W := 4; -- TRUE
9904 end if;
9906 -- Width for integer types
9908 elsif Is_Integer_Type (P_Type) then
9909 T := UI_Max (abs Lo, abs Hi);
9911 W := 2;
9912 while T >= 10 loop
9913 W := W + 1;
9914 T := T / 10;
9915 end loop;
9917 -- User declared enum type with discard names
9919 elsif Discard_Names (R) then
9921 -- If range is null, result is zero, that has already
9922 -- been dealt with, so what we need is the power of ten
9923 -- that accomodates the Pos of the largest value, which
9924 -- is the high bound of the range + one for the space.
9926 W := 1;
9927 T := Hi;
9928 while T /= 0 loop
9929 T := T / 10;
9930 W := W + 1;
9931 end loop;
9933 -- Only remaining possibility is user declared enum type
9934 -- with normal case of Discard_Names not active.
9936 else
9937 pragma Assert (Is_Enumeration_Type (P_Type));
9939 W := 0;
9940 L := First_Literal (P_Type);
9941 while Present (L) loop
9943 -- Only pay attention to in range characters
9945 if Lo <= Enumeration_Pos (L)
9946 and then Enumeration_Pos (L) <= Hi
9947 then
9948 -- For Width case, use decoded name
9950 if Id = Attribute_Width then
9951 Get_Decoded_Name_String (Chars (L));
9952 Wt := Nat (Name_Len);
9954 -- For Wide_[Wide_]Width, use encoded name, and
9955 -- then adjust for the encoding.
9957 else
9958 Get_Name_String (Chars (L));
9960 -- Character literals are always of length 3
9962 if Name_Buffer (1) = 'Q' then
9963 Wt := 3;
9965 -- Otherwise loop to adjust for upper/wide chars
9967 else
9968 Wt := Nat (Name_Len);
9970 for J in 1 .. Name_Len loop
9971 if Name_Buffer (J) = 'U' then
9972 Wt := Wt - 2;
9973 elsif Name_Buffer (J) = 'W' then
9974 Wt := Wt - 4;
9975 end if;
9976 end loop;
9977 end if;
9978 end if;
9980 W := Int'Max (W, Wt);
9981 end if;
9983 Next_Literal (L);
9984 end loop;
9985 end if;
9987 Fold_Uint (N, UI_From_Int (W), Static);
9988 end;
9989 end if;
9990 end if;
9991 end Width;
9993 -- The following attributes denote functions that cannot be folded
9995 when Attribute_From_Any |
9996 Attribute_To_Any |
9997 Attribute_TypeCode =>
9998 null;
10000 -- The following attributes can never be folded, and furthermore we
10001 -- should not even have entered the case statement for any of these.
10002 -- Note that in some cases, the values have already been folded as
10003 -- a result of the processing in Analyze_Attribute or earlier in
10004 -- this procedure.
10006 when Attribute_Abort_Signal |
10007 Attribute_Access |
10008 Attribute_Address |
10009 Attribute_Address_Size |
10010 Attribute_Asm_Input |
10011 Attribute_Asm_Output |
10012 Attribute_Base |
10013 Attribute_Bit_Order |
10014 Attribute_Bit_Position |
10015 Attribute_Callable |
10016 Attribute_Caller |
10017 Attribute_Class |
10018 Attribute_Code_Address |
10019 Attribute_Compiler_Version |
10020 Attribute_Count |
10021 Attribute_Default_Bit_Order |
10022 Attribute_Default_Scalar_Storage_Order |
10023 Attribute_Deref |
10024 Attribute_Elaborated |
10025 Attribute_Elab_Body |
10026 Attribute_Elab_Spec |
10027 Attribute_Elab_Subp_Body |
10028 Attribute_Enabled |
10029 Attribute_External_Tag |
10030 Attribute_Fast_Math |
10031 Attribute_First_Bit |
10032 Attribute_Img |
10033 Attribute_Input |
10034 Attribute_Last_Bit |
10035 Attribute_Library_Level |
10036 Attribute_Maximum_Alignment |
10037 Attribute_Old |
10038 Attribute_Output |
10039 Attribute_Partition_ID |
10040 Attribute_Pool_Address |
10041 Attribute_Position |
10042 Attribute_Priority |
10043 Attribute_Read |
10044 Attribute_Result |
10045 Attribute_Scalar_Storage_Order |
10046 Attribute_Simple_Storage_Pool |
10047 Attribute_Storage_Pool |
10048 Attribute_Storage_Size |
10049 Attribute_Storage_Unit |
10050 Attribute_Stub_Type |
10051 Attribute_System_Allocator_Alignment |
10052 Attribute_Tag |
10053 Attribute_Target_Name |
10054 Attribute_Terminated |
10055 Attribute_To_Address |
10056 Attribute_Type_Key |
10057 Attribute_Unchecked_Access |
10058 Attribute_Universal_Literal_String |
10059 Attribute_Unrestricted_Access |
10060 Attribute_Valid |
10061 Attribute_Valid_Scalars |
10062 Attribute_Value |
10063 Attribute_Wchar_T_Size |
10064 Attribute_Wide_Value |
10065 Attribute_Wide_Wide_Value |
10066 Attribute_Word_Size |
10067 Attribute_Write =>
10069 raise Program_Error;
10070 end case;
10072 -- At the end of the case, one more check. If we did a static evaluation
10073 -- so that the result is now a literal, then set Is_Static_Expression
10074 -- in the constant only if the prefix type is a static subtype. For
10075 -- non-static subtypes, the folding is still OK, but not static.
10077 -- An exception is the GNAT attribute Constrained_Array which is
10078 -- defined to be a static attribute in all cases.
10080 if Nkind_In (N, N_Integer_Literal,
10081 N_Real_Literal,
10082 N_Character_Literal,
10083 N_String_Literal)
10084 or else (Is_Entity_Name (N)
10085 and then Ekind (Entity (N)) = E_Enumeration_Literal)
10086 then
10087 Set_Is_Static_Expression (N, Static);
10089 -- If this is still an attribute reference, then it has not been folded
10090 -- and that means that its expressions are in a non-static context.
10092 elsif Nkind (N) = N_Attribute_Reference then
10093 Check_Expressions;
10095 -- Note: the else case not covered here are odd cases where the
10096 -- processing has transformed the attribute into something other
10097 -- than a constant. Nothing more to do in such cases.
10099 else
10100 null;
10101 end if;
10102 end Eval_Attribute;
10104 ------------------------------
10105 -- Is_Anonymous_Tagged_Base --
10106 ------------------------------
10108 function Is_Anonymous_Tagged_Base
10109 (Anon : Entity_Id;
10110 Typ : Entity_Id) return Boolean
10112 begin
10113 return
10114 Anon = Current_Scope
10115 and then Is_Itype (Anon)
10116 and then Associated_Node_For_Itype (Anon) = Parent (Typ);
10117 end Is_Anonymous_Tagged_Base;
10119 --------------------------------
10120 -- Name_Implies_Lvalue_Prefix --
10121 --------------------------------
10123 function Name_Implies_Lvalue_Prefix (Nam : Name_Id) return Boolean is
10124 pragma Assert (Is_Attribute_Name (Nam));
10125 begin
10126 return Attribute_Name_Implies_Lvalue_Prefix (Get_Attribute_Id (Nam));
10127 end Name_Implies_Lvalue_Prefix;
10129 -----------------------
10130 -- Resolve_Attribute --
10131 -----------------------
10133 procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id) is
10134 Loc : constant Source_Ptr := Sloc (N);
10135 P : constant Node_Id := Prefix (N);
10136 Aname : constant Name_Id := Attribute_Name (N);
10137 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
10138 Btyp : constant Entity_Id := Base_Type (Typ);
10139 Des_Btyp : Entity_Id;
10140 Index : Interp_Index;
10141 It : Interp;
10142 Nom_Subt : Entity_Id;
10144 procedure Accessibility_Message;
10145 -- Error, or warning within an instance, if the static accessibility
10146 -- rules of 3.10.2 are violated.
10148 function Declared_Within_Generic_Unit
10149 (Entity : Entity_Id;
10150 Generic_Unit : Node_Id) return Boolean;
10151 -- Returns True if Declared_Entity is declared within the declarative
10152 -- region of Generic_Unit; otherwise returns False.
10154 ---------------------------
10155 -- Accessibility_Message --
10156 ---------------------------
10158 procedure Accessibility_Message is
10159 Indic : Node_Id := Parent (Parent (N));
10161 begin
10162 -- In an instance, this is a runtime check, but one we
10163 -- know will fail, so generate an appropriate warning.
10165 if In_Instance_Body then
10166 Error_Msg_Warn := SPARK_Mode /= On;
10167 Error_Msg_F
10168 ("non-local pointer cannot point to local object<<", P);
10169 Error_Msg_F ("\Program_Error [<<", P);
10170 Rewrite (N,
10171 Make_Raise_Program_Error (Loc,
10172 Reason => PE_Accessibility_Check_Failed));
10173 Set_Etype (N, Typ);
10174 return;
10176 else
10177 Error_Msg_F ("non-local pointer cannot point to local object", P);
10179 -- Check for case where we have a missing access definition
10181 if Is_Record_Type (Current_Scope)
10182 and then
10183 Nkind_In (Parent (N), N_Discriminant_Association,
10184 N_Index_Or_Discriminant_Constraint)
10185 then
10186 Indic := Parent (Parent (N));
10187 while Present (Indic)
10188 and then Nkind (Indic) /= N_Subtype_Indication
10189 loop
10190 Indic := Parent (Indic);
10191 end loop;
10193 if Present (Indic) then
10194 Error_Msg_NE
10195 ("\use an access definition for" &
10196 " the access discriminant of&",
10197 N, Entity (Subtype_Mark (Indic)));
10198 end if;
10199 end if;
10200 end if;
10201 end Accessibility_Message;
10203 ----------------------------------
10204 -- Declared_Within_Generic_Unit --
10205 ----------------------------------
10207 function Declared_Within_Generic_Unit
10208 (Entity : Entity_Id;
10209 Generic_Unit : Node_Id) return Boolean
10211 Generic_Encloser : Node_Id := Enclosing_Generic_Unit (Entity);
10213 begin
10214 while Present (Generic_Encloser) loop
10215 if Generic_Encloser = Generic_Unit then
10216 return True;
10217 end if;
10219 -- We have to step to the scope of the generic's entity, because
10220 -- otherwise we'll just get back the same generic.
10222 Generic_Encloser :=
10223 Enclosing_Generic_Unit
10224 (Scope (Defining_Entity (Generic_Encloser)));
10225 end loop;
10227 return False;
10228 end Declared_Within_Generic_Unit;
10230 -- Start of processing for Resolve_Attribute
10232 begin
10233 -- If error during analysis, no point in continuing, except for array
10234 -- types, where we get better recovery by using unconstrained indexes
10235 -- than nothing at all (see Check_Array_Type).
10237 if Error_Posted (N)
10238 and then Attr_Id /= Attribute_First
10239 and then Attr_Id /= Attribute_Last
10240 and then Attr_Id /= Attribute_Length
10241 and then Attr_Id /= Attribute_Range
10242 then
10243 return;
10244 end if;
10246 -- If attribute was universal type, reset to actual type
10248 if Etype (N) = Universal_Integer
10249 or else Etype (N) = Universal_Real
10250 then
10251 Set_Etype (N, Typ);
10252 end if;
10254 -- Remaining processing depends on attribute
10256 case Attr_Id is
10258 ------------
10259 -- Access --
10260 ------------
10262 -- For access attributes, if the prefix denotes an entity, it is
10263 -- interpreted as a name, never as a call. It may be overloaded,
10264 -- in which case resolution uses the profile of the context type.
10265 -- Otherwise prefix must be resolved.
10267 when Attribute_Access
10268 | Attribute_Unchecked_Access
10269 | Attribute_Unrestricted_Access =>
10271 Access_Attribute :
10272 begin
10273 -- Note possible modification if we have a variable
10275 if Is_Variable (P) then
10276 declare
10277 PN : constant Node_Id := Parent (N);
10278 Nm : Node_Id;
10280 Note : Boolean := True;
10281 -- Skip this for the case of Unrestricted_Access occuring in
10282 -- the context of a Valid check, since this otherwise leads
10283 -- to a missed warning (the Valid check does not really
10284 -- modify!) If this case, Note will be reset to False.
10286 -- Skip it as well if the type is an Acccess_To_Constant,
10287 -- given that no use of the value can modify the prefix.
10289 begin
10290 if Attr_Id = Attribute_Unrestricted_Access
10291 and then Nkind (PN) = N_Function_Call
10292 then
10293 Nm := Name (PN);
10295 if Nkind (Nm) = N_Expanded_Name
10296 and then Chars (Nm) = Name_Valid
10297 and then Nkind (Prefix (Nm)) = N_Identifier
10298 and then Chars (Prefix (Nm)) = Name_Attr_Long_Float
10299 then
10300 Note := False;
10301 end if;
10303 elsif Is_Access_Constant (Typ) then
10304 Note := False;
10305 end if;
10307 if Note then
10308 Note_Possible_Modification (P, Sure => False);
10309 end if;
10310 end;
10311 end if;
10313 -- The following comes from a query concerning improper use of
10314 -- universal_access in equality tests involving anonymous access
10315 -- types. Another good reason for 'Ref, but for now disable the
10316 -- test, which breaks several filed tests???
10318 if Ekind (Typ) = E_Anonymous_Access_Type
10319 and then Nkind_In (Parent (N), N_Op_Eq, N_Op_Ne)
10320 and then False
10321 then
10322 Error_Msg_N ("need unique type to resolve 'Access", N);
10323 Error_Msg_N ("\qualify attribute with some access type", N);
10324 end if;
10326 -- Case where prefix is an entity name
10328 if Is_Entity_Name (P) then
10330 -- Deal with case where prefix itself is overloaded
10332 if Is_Overloaded (P) then
10333 Get_First_Interp (P, Index, It);
10334 while Present (It.Nam) loop
10335 if Type_Conformant (Designated_Type (Typ), It.Nam) then
10336 Set_Entity (P, It.Nam);
10338 -- The prefix is definitely NOT overloaded anymore at
10339 -- this point, so we reset the Is_Overloaded flag to
10340 -- avoid any confusion when reanalyzing the node.
10342 Set_Is_Overloaded (P, False);
10343 Set_Is_Overloaded (N, False);
10344 Generate_Reference (Entity (P), P);
10345 exit;
10346 end if;
10348 Get_Next_Interp (Index, It);
10349 end loop;
10351 -- If Prefix is a subprogram name, this reference freezes,
10352 -- but not if within spec expression mode. The profile of
10353 -- the subprogram is not frozen at this point.
10355 if not In_Spec_Expression then
10356 Freeze_Before (N, Entity (P), Do_Freeze_Profile => False);
10357 end if;
10359 -- If it is a type, there is nothing to resolve.
10360 -- If it is a subprogram, do not freeze its profile.
10361 -- If it is an object, complete its resolution.
10363 elsif Is_Overloadable (Entity (P)) then
10364 if not In_Spec_Expression then
10365 Freeze_Before (N, Entity (P), Do_Freeze_Profile => False);
10366 end if;
10368 -- Nothing to do if prefix is a type name
10370 elsif Is_Type (Entity (P)) then
10371 null;
10373 -- Otherwise non-overloaded other case, resolve the prefix
10375 else
10376 Resolve (P);
10377 end if;
10379 -- Some further error checks
10381 Error_Msg_Name_1 := Aname;
10383 if not Is_Entity_Name (P) then
10384 null;
10386 elsif Is_Overloadable (Entity (P))
10387 and then Is_Abstract_Subprogram (Entity (P))
10388 then
10389 Error_Msg_F ("prefix of % attribute cannot be abstract", P);
10390 Set_Etype (N, Any_Type);
10392 elsif Ekind (Entity (P)) = E_Enumeration_Literal then
10393 Error_Msg_F
10394 ("prefix of % attribute cannot be enumeration literal", P);
10395 Set_Etype (N, Any_Type);
10397 -- An attempt to take 'Access of a function that renames an
10398 -- enumeration literal. Issue a specialized error message.
10400 elsif Ekind (Entity (P)) = E_Function
10401 and then Present (Alias (Entity (P)))
10402 and then Ekind (Alias (Entity (P))) = E_Enumeration_Literal
10403 then
10404 Error_Msg_F
10405 ("prefix of % attribute cannot be function renaming "
10406 & "an enumeration literal", P);
10407 Set_Etype (N, Any_Type);
10409 elsif Convention (Entity (P)) = Convention_Intrinsic then
10410 Error_Msg_F ("prefix of % attribute cannot be intrinsic", P);
10411 Set_Etype (N, Any_Type);
10412 end if;
10414 -- Assignments, return statements, components of aggregates,
10415 -- generic instantiations will require convention checks if
10416 -- the type is an access to subprogram. Given that there will
10417 -- also be accessibility checks on those, this is where the
10418 -- checks can eventually be centralized ???
10420 if Ekind_In (Btyp, E_Access_Subprogram_Type,
10421 E_Anonymous_Access_Subprogram_Type,
10422 E_Access_Protected_Subprogram_Type,
10423 E_Anonymous_Access_Protected_Subprogram_Type)
10424 then
10425 -- Deal with convention mismatch
10427 if Convention (Designated_Type (Btyp)) /=
10428 Convention (Entity (P))
10429 then
10430 Error_Msg_FE
10431 ("subprogram & has wrong convention", P, Entity (P));
10432 Error_Msg_Sloc := Sloc (Btyp);
10433 Error_Msg_FE ("\does not match & declared#", P, Btyp);
10435 if not Is_Itype (Btyp)
10436 and then not Has_Convention_Pragma (Btyp)
10437 then
10438 Error_Msg_FE
10439 ("\probable missing pragma Convention for &",
10440 P, Btyp);
10441 end if;
10443 else
10444 Check_Subtype_Conformant
10445 (New_Id => Entity (P),
10446 Old_Id => Designated_Type (Btyp),
10447 Err_Loc => P);
10448 end if;
10450 if Attr_Id = Attribute_Unchecked_Access then
10451 Error_Msg_Name_1 := Aname;
10452 Error_Msg_F
10453 ("attribute% cannot be applied to a subprogram", P);
10455 elsif Aname = Name_Unrestricted_Access then
10456 null; -- Nothing to check
10458 -- Check the static accessibility rule of 3.10.2(32).
10459 -- This rule also applies within the private part of an
10460 -- instantiation. This rule does not apply to anonymous
10461 -- access-to-subprogram types in access parameters.
10463 elsif Attr_Id = Attribute_Access
10464 and then not In_Instance_Body
10465 and then
10466 (Ekind (Btyp) = E_Access_Subprogram_Type
10467 or else Is_Local_Anonymous_Access (Btyp))
10468 and then Subprogram_Access_Level (Entity (P)) >
10469 Type_Access_Level (Btyp)
10470 then
10471 Error_Msg_F
10472 ("subprogram must not be deeper than access type", P);
10474 -- Check the restriction of 3.10.2(32) that disallows the
10475 -- access attribute within a generic body when the ultimate
10476 -- ancestor of the type of the attribute is declared outside
10477 -- of the generic unit and the subprogram is declared within
10478 -- that generic unit. This includes any such attribute that
10479 -- occurs within the body of a generic unit that is a child
10480 -- of the generic unit where the subprogram is declared.
10482 -- The rule also prohibits applying the attribute when the
10483 -- access type is a generic formal access type (since the
10484 -- level of the actual type is not known). This restriction
10485 -- does not apply when the attribute type is an anonymous
10486 -- access-to-subprogram type. Note that this check was
10487 -- revised by AI-229, because the original Ada 95 rule
10488 -- was too lax. The original rule only applied when the
10489 -- subprogram was declared within the body of the generic,
10490 -- which allowed the possibility of dangling references).
10491 -- The rule was also too strict in some cases, in that it
10492 -- didn't permit the access to be declared in the generic
10493 -- spec, whereas the revised rule does (as long as it's not
10494 -- a formal type).
10496 -- There are a couple of subtleties of the test for applying
10497 -- the check that are worth noting. First, we only apply it
10498 -- when the levels of the subprogram and access type are the
10499 -- same (the case where the subprogram is statically deeper
10500 -- was applied above, and the case where the type is deeper
10501 -- is always safe). Second, we want the check to apply
10502 -- within nested generic bodies and generic child unit
10503 -- bodies, but not to apply to an attribute that appears in
10504 -- the generic unit's specification. This is done by testing
10505 -- that the attribute's innermost enclosing generic body is
10506 -- not the same as the innermost generic body enclosing the
10507 -- generic unit where the subprogram is declared (we don't
10508 -- want the check to apply when the access attribute is in
10509 -- the spec and there's some other generic body enclosing
10510 -- generic). Finally, there's no point applying the check
10511 -- when within an instance, because any violations will have
10512 -- been caught by the compilation of the generic unit.
10514 -- We relax this check in Relaxed_RM_Semantics mode for
10515 -- compatibility with legacy code for use by Ada source
10516 -- code analyzers (e.g. CodePeer).
10518 elsif Attr_Id = Attribute_Access
10519 and then not Relaxed_RM_Semantics
10520 and then not In_Instance
10521 and then Present (Enclosing_Generic_Unit (Entity (P)))
10522 and then Present (Enclosing_Generic_Body (N))
10523 and then Enclosing_Generic_Body (N) /=
10524 Enclosing_Generic_Body
10525 (Enclosing_Generic_Unit (Entity (P)))
10526 and then Subprogram_Access_Level (Entity (P)) =
10527 Type_Access_Level (Btyp)
10528 and then Ekind (Btyp) /=
10529 E_Anonymous_Access_Subprogram_Type
10530 and then Ekind (Btyp) /=
10531 E_Anonymous_Access_Protected_Subprogram_Type
10532 then
10533 -- The attribute type's ultimate ancestor must be
10534 -- declared within the same generic unit as the
10535 -- subprogram is declared (including within another
10536 -- nested generic unit). The error message is
10537 -- specialized to say "ancestor" for the case where the
10538 -- access type is not its own ancestor, since saying
10539 -- simply "access type" would be very confusing.
10541 if not Declared_Within_Generic_Unit
10542 (Root_Type (Btyp),
10543 Enclosing_Generic_Unit (Entity (P)))
10544 then
10545 Error_Msg_N
10546 ("''Access attribute not allowed in generic body",
10549 if Root_Type (Btyp) = Btyp then
10550 Error_Msg_NE
10551 ("\because " &
10552 "access type & is declared outside " &
10553 "generic unit (RM 3.10.2(32))", N, Btyp);
10554 else
10555 Error_Msg_NE
10556 ("\because ancestor of " &
10557 "access type & is declared outside " &
10558 "generic unit (RM 3.10.2(32))", N, Btyp);
10559 end if;
10561 Error_Msg_NE
10562 ("\move ''Access to private part, or " &
10563 "(Ada 2005) use anonymous access type instead of &",
10564 N, Btyp);
10566 -- If the ultimate ancestor of the attribute's type is
10567 -- a formal type, then the attribute is illegal because
10568 -- the actual type might be declared at a higher level.
10569 -- The error message is specialized to say "ancestor"
10570 -- for the case where the access type is not its own
10571 -- ancestor, since saying simply "access type" would be
10572 -- very confusing.
10574 elsif Is_Generic_Type (Root_Type (Btyp)) then
10575 if Root_Type (Btyp) = Btyp then
10576 Error_Msg_N
10577 ("access type must not be a generic formal type",
10579 else
10580 Error_Msg_N
10581 ("ancestor access type must not be a generic " &
10582 "formal type", N);
10583 end if;
10584 end if;
10585 end if;
10586 end if;
10588 -- If this is a renaming, an inherited operation, or a
10589 -- subprogram instance, use the original entity. This may make
10590 -- the node type-inconsistent, so this transformation can only
10591 -- be done if the node will not be reanalyzed. In particular,
10592 -- if it is within a default expression, the transformation
10593 -- must be delayed until the default subprogram is created for
10594 -- it, when the enclosing subprogram is frozen.
10596 if Is_Entity_Name (P)
10597 and then Is_Overloadable (Entity (P))
10598 and then Present (Alias (Entity (P)))
10599 and then Expander_Active
10600 then
10601 Rewrite (P,
10602 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
10603 end if;
10605 elsif Nkind (P) = N_Selected_Component
10606 and then Is_Overloadable (Entity (Selector_Name (P)))
10607 then
10608 -- Protected operation. If operation is overloaded, must
10609 -- disambiguate. Prefix that denotes protected object itself
10610 -- is resolved with its own type.
10612 if Attr_Id = Attribute_Unchecked_Access then
10613 Error_Msg_Name_1 := Aname;
10614 Error_Msg_F
10615 ("attribute% cannot be applied to protected operation", P);
10616 end if;
10618 Resolve (Prefix (P));
10619 Generate_Reference (Entity (Selector_Name (P)), P);
10621 -- Implement check implied by 3.10.2 (18.1/2) : F.all'access is
10622 -- statically illegal if F is an anonymous access to subprogram.
10624 elsif Nkind (P) = N_Explicit_Dereference
10625 and then Is_Entity_Name (Prefix (P))
10626 and then Ekind (Etype (Entity (Prefix (P)))) =
10627 E_Anonymous_Access_Subprogram_Type
10628 then
10629 Error_Msg_N ("anonymous access to subprogram "
10630 & "has deeper accessibility than any master", P);
10632 elsif Is_Overloaded (P) then
10634 -- Use the designated type of the context to disambiguate
10635 -- Note that this was not strictly conformant to Ada 95,
10636 -- but was the implementation adopted by most Ada 95 compilers.
10637 -- The use of the context type to resolve an Access attribute
10638 -- reference is now mandated in AI-235 for Ada 2005.
10640 declare
10641 Index : Interp_Index;
10642 It : Interp;
10644 begin
10645 Get_First_Interp (P, Index, It);
10646 while Present (It.Typ) loop
10647 if Covers (Designated_Type (Typ), It.Typ) then
10648 Resolve (P, It.Typ);
10649 exit;
10650 end if;
10652 Get_Next_Interp (Index, It);
10653 end loop;
10654 end;
10655 else
10656 Resolve (P);
10657 end if;
10659 -- X'Access is illegal if X denotes a constant and the access type
10660 -- is access-to-variable. Same for 'Unchecked_Access. The rule
10661 -- does not apply to 'Unrestricted_Access. If the reference is a
10662 -- default-initialized aggregate component for a self-referential
10663 -- type the reference is legal.
10665 if not (Ekind (Btyp) = E_Access_Subprogram_Type
10666 or else Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type
10667 or else (Is_Record_Type (Btyp)
10668 and then
10669 Present (Corresponding_Remote_Type (Btyp)))
10670 or else Ekind (Btyp) = E_Access_Protected_Subprogram_Type
10671 or else Ekind (Btyp)
10672 = E_Anonymous_Access_Protected_Subprogram_Type
10673 or else Is_Access_Constant (Btyp)
10674 or else Is_Variable (P)
10675 or else Attr_Id = Attribute_Unrestricted_Access)
10676 then
10677 if Is_Entity_Name (P)
10678 and then Is_Type (Entity (P))
10679 then
10680 -- Legality of a self-reference through an access
10681 -- attribute has been verified in Analyze_Access_Attribute.
10683 null;
10685 elsif Comes_From_Source (N) then
10686 Error_Msg_F ("access-to-variable designates constant", P);
10687 end if;
10688 end if;
10690 Des_Btyp := Designated_Type (Btyp);
10692 if Ada_Version >= Ada_2005
10693 and then Is_Incomplete_Type (Des_Btyp)
10694 then
10695 -- Ada 2005 (AI-412): If the (sub)type is a limited view of an
10696 -- imported entity, and the non-limited view is visible, make
10697 -- use of it. If it is an incomplete subtype, use the base type
10698 -- in any case.
10700 if From_Limited_With (Des_Btyp)
10701 and then Present (Non_Limited_View (Des_Btyp))
10702 then
10703 Des_Btyp := Non_Limited_View (Des_Btyp);
10705 elsif Ekind (Des_Btyp) = E_Incomplete_Subtype then
10706 Des_Btyp := Etype (Des_Btyp);
10707 end if;
10708 end if;
10710 if (Attr_Id = Attribute_Access
10711 or else
10712 Attr_Id = Attribute_Unchecked_Access)
10713 and then (Ekind (Btyp) = E_General_Access_Type
10714 or else Ekind (Btyp) = E_Anonymous_Access_Type)
10715 then
10716 -- Ada 2005 (AI-230): Check the accessibility of anonymous
10717 -- access types for stand-alone objects, record and array
10718 -- components, and return objects. For a component definition
10719 -- the level is the same of the enclosing composite type.
10721 if Ada_Version >= Ada_2005
10722 and then (Is_Local_Anonymous_Access (Btyp)
10724 -- Handle cases where Btyp is the anonymous access
10725 -- type of an Ada 2012 stand-alone object.
10727 or else Nkind (Associated_Node_For_Itype (Btyp)) =
10728 N_Object_Declaration)
10729 and then
10730 Object_Access_Level (P) > Deepest_Type_Access_Level (Btyp)
10731 and then Attr_Id = Attribute_Access
10732 then
10733 -- In an instance, this is a runtime check, but one we know
10734 -- will fail, so generate an appropriate warning. As usual,
10735 -- this kind of warning is an error in SPARK mode.
10737 if In_Instance_Body then
10738 Error_Msg_Warn := SPARK_Mode /= On;
10739 Error_Msg_F
10740 ("non-local pointer cannot point to local object<<", P);
10741 Error_Msg_F ("\Program_Error [<<", P);
10743 Rewrite (N,
10744 Make_Raise_Program_Error (Loc,
10745 Reason => PE_Accessibility_Check_Failed));
10746 Set_Etype (N, Typ);
10748 else
10749 Error_Msg_F
10750 ("non-local pointer cannot point to local object", P);
10751 end if;
10752 end if;
10754 if Is_Dependent_Component_Of_Mutable_Object (P) then
10755 Error_Msg_F
10756 ("illegal attribute for discriminant-dependent component",
10758 end if;
10760 -- Check static matching rule of 3.10.2(27). Nominal subtype
10761 -- of the prefix must statically match the designated type.
10763 Nom_Subt := Etype (P);
10765 if Is_Constr_Subt_For_U_Nominal (Nom_Subt) then
10766 Nom_Subt := Base_Type (Nom_Subt);
10767 end if;
10769 if Is_Tagged_Type (Designated_Type (Typ)) then
10771 -- If the attribute is in the context of an access
10772 -- parameter, then the prefix is allowed to be of
10773 -- the class-wide type (by AI-127).
10775 if Ekind (Typ) = E_Anonymous_Access_Type then
10776 if not Covers (Designated_Type (Typ), Nom_Subt)
10777 and then not Covers (Nom_Subt, Designated_Type (Typ))
10778 then
10779 declare
10780 Desig : Entity_Id;
10782 begin
10783 Desig := Designated_Type (Typ);
10785 if Is_Class_Wide_Type (Desig) then
10786 Desig := Etype (Desig);
10787 end if;
10789 if Is_Anonymous_Tagged_Base (Nom_Subt, Desig) then
10790 null;
10792 else
10793 Error_Msg_FE
10794 ("type of prefix: & not compatible",
10795 P, Nom_Subt);
10796 Error_Msg_FE
10797 ("\with &, the expected designated type",
10798 P, Designated_Type (Typ));
10799 end if;
10800 end;
10801 end if;
10803 elsif not Covers (Designated_Type (Typ), Nom_Subt)
10804 or else
10805 (not Is_Class_Wide_Type (Designated_Type (Typ))
10806 and then Is_Class_Wide_Type (Nom_Subt))
10807 then
10808 Error_Msg_FE
10809 ("type of prefix: & is not covered", P, Nom_Subt);
10810 Error_Msg_FE
10811 ("\by &, the expected designated type" &
10812 " (RM 3.10.2 (27))", P, Designated_Type (Typ));
10813 end if;
10815 if Is_Class_Wide_Type (Designated_Type (Typ))
10816 and then Has_Discriminants (Etype (Designated_Type (Typ)))
10817 and then Is_Constrained (Etype (Designated_Type (Typ)))
10818 and then Designated_Type (Typ) /= Nom_Subt
10819 then
10820 Apply_Discriminant_Check
10821 (N, Etype (Designated_Type (Typ)));
10822 end if;
10824 -- Ada 2005 (AI-363): Require static matching when designated
10825 -- type has discriminants and a constrained partial view, since
10826 -- in general objects of such types are mutable, so we can't
10827 -- allow the access value to designate a constrained object
10828 -- (because access values must be assumed to designate mutable
10829 -- objects when designated type does not impose a constraint).
10831 elsif Subtypes_Statically_Match (Des_Btyp, Nom_Subt) then
10832 null;
10834 elsif Has_Discriminants (Designated_Type (Typ))
10835 and then not Is_Constrained (Des_Btyp)
10836 and then
10837 (Ada_Version < Ada_2005
10838 or else
10839 not Object_Type_Has_Constrained_Partial_View
10840 (Typ => Designated_Type (Base_Type (Typ)),
10841 Scop => Current_Scope))
10842 then
10843 null;
10845 else
10846 Error_Msg_F
10847 ("object subtype must statically match "
10848 & "designated subtype", P);
10850 if Is_Entity_Name (P)
10851 and then Is_Array_Type (Designated_Type (Typ))
10852 then
10853 declare
10854 D : constant Node_Id := Declaration_Node (Entity (P));
10855 begin
10856 Error_Msg_N
10857 ("aliased object has explicit bounds??", D);
10858 Error_Msg_N
10859 ("\declare without bounds (and with explicit "
10860 & "initialization)??", D);
10861 Error_Msg_N
10862 ("\for use with unconstrained access??", D);
10863 end;
10864 end if;
10865 end if;
10867 -- Check the static accessibility rule of 3.10.2(28). Note that
10868 -- this check is not performed for the case of an anonymous
10869 -- access type, since the access attribute is always legal
10870 -- in such a context.
10872 if Attr_Id /= Attribute_Unchecked_Access
10873 and then Ekind (Btyp) = E_General_Access_Type
10874 and then
10875 Object_Access_Level (P) > Deepest_Type_Access_Level (Btyp)
10876 then
10877 Accessibility_Message;
10878 return;
10879 end if;
10880 end if;
10882 if Ekind_In (Btyp, E_Access_Protected_Subprogram_Type,
10883 E_Anonymous_Access_Protected_Subprogram_Type)
10884 then
10885 if Is_Entity_Name (P)
10886 and then not Is_Protected_Type (Scope (Entity (P)))
10887 then
10888 Error_Msg_F ("context requires a protected subprogram", P);
10890 -- Check accessibility of protected object against that of the
10891 -- access type, but only on user code, because the expander
10892 -- creates access references for handlers. If the context is an
10893 -- anonymous_access_to_protected, there are no accessibility
10894 -- checks either. Omit check entirely for Unrestricted_Access.
10896 elsif Object_Access_Level (P) > Deepest_Type_Access_Level (Btyp)
10897 and then Comes_From_Source (N)
10898 and then Ekind (Btyp) = E_Access_Protected_Subprogram_Type
10899 and then Attr_Id /= Attribute_Unrestricted_Access
10900 then
10901 Accessibility_Message;
10902 return;
10904 -- AI05-0225: If the context is not an access to protected
10905 -- function, the prefix must be a variable, given that it may
10906 -- be used subsequently in a protected call.
10908 elsif Nkind (P) = N_Selected_Component
10909 and then not Is_Variable (Prefix (P))
10910 and then Ekind (Entity (Selector_Name (P))) /= E_Function
10911 then
10912 Error_Msg_N
10913 ("target object of access to protected procedure "
10914 & "must be variable", N);
10916 elsif Is_Entity_Name (P) then
10917 Check_Internal_Protected_Use (N, Entity (P));
10918 end if;
10920 elsif Ekind_In (Btyp, E_Access_Subprogram_Type,
10921 E_Anonymous_Access_Subprogram_Type)
10922 and then Ekind (Etype (N)) = E_Access_Protected_Subprogram_Type
10923 then
10924 Error_Msg_F ("context requires a non-protected subprogram", P);
10925 end if;
10927 -- The context cannot be a pool-specific type, but this is a
10928 -- legality rule, not a resolution rule, so it must be checked
10929 -- separately, after possibly disambiguation (see AI-245).
10931 if Ekind (Btyp) = E_Access_Type
10932 and then Attr_Id /= Attribute_Unrestricted_Access
10933 then
10934 Wrong_Type (N, Typ);
10935 end if;
10937 -- The context may be a constrained access type (however ill-
10938 -- advised such subtypes might be) so in order to generate a
10939 -- constraint check when needed set the type of the attribute
10940 -- reference to the base type of the context.
10942 Set_Etype (N, Btyp);
10944 -- Check for incorrect atomic/volatile reference (RM C.6(12))
10946 if Attr_Id /= Attribute_Unrestricted_Access then
10947 if Is_Atomic_Object (P)
10948 and then not Is_Atomic (Designated_Type (Typ))
10949 then
10950 Error_Msg_F
10951 ("access to atomic object cannot yield access-to-" &
10952 "non-atomic type", P);
10954 elsif Is_Volatile_Object (P)
10955 and then not Is_Volatile (Designated_Type (Typ))
10956 then
10957 Error_Msg_F
10958 ("access to volatile object cannot yield access-to-" &
10959 "non-volatile type", P);
10960 end if;
10961 end if;
10963 -- Check for unrestricted access where expected type is a thin
10964 -- pointer to an unconstrained array.
10966 if Non_Aliased_Prefix (N)
10967 and then Has_Size_Clause (Typ)
10968 and then RM_Size (Typ) = System_Address_Size
10969 then
10970 declare
10971 DT : constant Entity_Id := Designated_Type (Typ);
10972 begin
10973 if Is_Array_Type (DT) and then not Is_Constrained (DT) then
10974 Error_Msg_N
10975 ("illegal use of Unrestricted_Access attribute", P);
10976 Error_Msg_N
10977 ("\attempt to generate thin pointer to unaliased "
10978 & "object", P);
10979 end if;
10980 end;
10981 end if;
10983 -- Mark that address of entity is taken
10985 if Is_Entity_Name (P) then
10986 Set_Address_Taken (Entity (P));
10987 end if;
10989 -- Deal with possible elaboration check
10991 if Is_Entity_Name (P) and then Is_Subprogram (Entity (P)) then
10992 declare
10993 Subp_Id : constant Entity_Id := Entity (P);
10994 Scop : constant Entity_Id := Scope (Subp_Id);
10995 Subp_Decl : constant Node_Id :=
10996 Unit_Declaration_Node (Subp_Id);
10997 Flag_Id : Entity_Id;
10998 Subp_Body : Node_Id;
11000 -- If the access has been taken and the body of the subprogram
11001 -- has not been see yet, indirect calls must be protected with
11002 -- elaboration checks. We have the proper elaboration machinery
11003 -- for subprograms declared in packages, but within a block or
11004 -- a subprogram the body will appear in the same declarative
11005 -- part, and we must insert a check in the eventual body itself
11006 -- using the elaboration flag that we generate now. The check
11007 -- is then inserted when the body is expanded. This processing
11008 -- is not needed for a stand alone expression function because
11009 -- the internally generated spec and body are always inserted
11010 -- as a pair in the same declarative list.
11012 begin
11013 if Expander_Active
11014 and then Comes_From_Source (Subp_Id)
11015 and then Comes_From_Source (N)
11016 and then In_Open_Scopes (Scop)
11017 and then Ekind_In (Scop, E_Block, E_Procedure, E_Function)
11018 and then not Has_Completion (Subp_Id)
11019 and then No (Elaboration_Entity (Subp_Id))
11020 and then Nkind (Subp_Decl) = N_Subprogram_Declaration
11021 and then Nkind (Original_Node (Subp_Decl)) /=
11022 N_Expression_Function
11023 then
11024 -- Create elaboration variable for it
11026 Flag_Id := Make_Temporary (Loc, 'E');
11027 Set_Elaboration_Entity (Subp_Id, Flag_Id);
11028 Set_Is_Frozen (Flag_Id);
11030 -- Insert declaration for flag after subprogram
11031 -- declaration. Note that attribute reference may
11032 -- appear within a nested scope.
11034 Insert_After_And_Analyze (Subp_Decl,
11035 Make_Object_Declaration (Loc,
11036 Defining_Identifier => Flag_Id,
11037 Object_Definition =>
11038 New_Occurrence_Of (Standard_Short_Integer, Loc),
11039 Expression =>
11040 Make_Integer_Literal (Loc, Uint_0)));
11041 end if;
11043 -- Taking the 'Access of an expression function freezes its
11044 -- expression (RM 13.14 10.3/3). This does not apply to an
11045 -- expression function that acts as a completion because the
11046 -- generated body is immediately analyzed and the expression
11047 -- is automatically frozen.
11049 if Is_Expression_Function (Subp_Id)
11050 and then Present (Corresponding_Body (Subp_Decl))
11051 then
11052 Subp_Body :=
11053 Unit_Declaration_Node (Corresponding_Body (Subp_Decl));
11055 -- The body has already been analyzed when the expression
11056 -- function acts as a completion.
11058 if Analyzed (Subp_Body) then
11059 null;
11061 -- Attribute 'Access may appear within the generated body
11062 -- of the expression function subject to the attribute:
11064 -- function F is (... F'Access ...);
11066 -- If the expression function is on the scope stack, then
11067 -- the body is currently being analyzed. Do not reanalyze
11068 -- it because this will lead to infinite recursion.
11070 elsif In_Open_Scopes (Subp_Id) then
11071 null;
11073 -- If reference to the expression function appears in an
11074 -- inner scope, for example as an actual in an instance,
11075 -- this is not a freeze point either.
11077 elsif Scope (Subp_Id) /= Current_Scope then
11078 null;
11080 -- Analyze the body of the expression function to freeze
11081 -- the expression. This takes care of the case where the
11082 -- 'Access is part of dispatch table initialization and
11083 -- the generated body of the expression function has not
11084 -- been analyzed yet.
11086 else
11087 Analyze (Subp_Body);
11088 end if;
11089 end if;
11090 end;
11091 end if;
11092 end Access_Attribute;
11094 -------------
11095 -- Address --
11096 -------------
11098 -- Deal with resolving the type for Address attribute, overloading
11099 -- is not permitted here, since there is no context to resolve it.
11101 when Attribute_Address | Attribute_Code_Address =>
11102 Address_Attribute : begin
11104 -- To be safe, assume that if the address of a variable is taken,
11105 -- it may be modified via this address, so note modification.
11107 if Is_Variable (P) then
11108 Note_Possible_Modification (P, Sure => False);
11109 end if;
11111 if Nkind (P) in N_Subexpr
11112 and then Is_Overloaded (P)
11113 then
11114 Get_First_Interp (P, Index, It);
11115 Get_Next_Interp (Index, It);
11117 if Present (It.Nam) then
11118 Error_Msg_Name_1 := Aname;
11119 Error_Msg_F
11120 ("prefix of % attribute cannot be overloaded", P);
11121 end if;
11122 end if;
11124 if not Is_Entity_Name (P)
11125 or else not Is_Overloadable (Entity (P))
11126 then
11127 if not Is_Task_Type (Etype (P))
11128 or else Nkind (P) = N_Explicit_Dereference
11129 then
11130 Resolve (P);
11131 end if;
11132 end if;
11134 -- If this is the name of a derived subprogram, or that of a
11135 -- generic actual, the address is that of the original entity.
11137 if Is_Entity_Name (P)
11138 and then Is_Overloadable (Entity (P))
11139 and then Present (Alias (Entity (P)))
11140 then
11141 Rewrite (P,
11142 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
11143 end if;
11145 if Is_Entity_Name (P) then
11146 Set_Address_Taken (Entity (P));
11147 end if;
11149 if Nkind (P) = N_Slice then
11151 -- Arr (X .. Y)'address is identical to Arr (X)'address,
11152 -- even if the array is packed and the slice itself is not
11153 -- addressable. Transform the prefix into an indexed component.
11155 -- Note that the transformation is safe only if we know that
11156 -- the slice is non-null. That is because a null slice can have
11157 -- an out of bounds index value.
11159 -- Right now, gigi blows up if given 'Address on a slice as a
11160 -- result of some incorrect freeze nodes generated by the front
11161 -- end, and this covers up that bug in one case, but the bug is
11162 -- likely still there in the cases not handled by this code ???
11164 -- It's not clear what 'Address *should* return for a null
11165 -- slice with out of bounds indexes, this might be worth an ARG
11166 -- discussion ???
11168 -- One approach would be to do a length check unconditionally,
11169 -- and then do the transformation below unconditionally, but
11170 -- analyze with checks off, avoiding the problem of the out of
11171 -- bounds index. This approach would interpret the address of
11172 -- an out of bounds null slice as being the address where the
11173 -- array element would be if there was one, which is probably
11174 -- as reasonable an interpretation as any ???
11176 declare
11177 Loc : constant Source_Ptr := Sloc (P);
11178 D : constant Node_Id := Discrete_Range (P);
11179 Lo : Node_Id;
11181 begin
11182 if Is_Entity_Name (D)
11183 and then
11184 Not_Null_Range
11185 (Type_Low_Bound (Entity (D)),
11186 Type_High_Bound (Entity (D)))
11187 then
11188 Lo :=
11189 Make_Attribute_Reference (Loc,
11190 Prefix => (New_Occurrence_Of (Entity (D), Loc)),
11191 Attribute_Name => Name_First);
11193 elsif Nkind (D) = N_Range
11194 and then Not_Null_Range (Low_Bound (D), High_Bound (D))
11195 then
11196 Lo := Low_Bound (D);
11198 else
11199 Lo := Empty;
11200 end if;
11202 if Present (Lo) then
11203 Rewrite (P,
11204 Make_Indexed_Component (Loc,
11205 Prefix => Relocate_Node (Prefix (P)),
11206 Expressions => New_List (Lo)));
11208 Analyze_And_Resolve (P);
11209 end if;
11210 end;
11211 end if;
11212 end Address_Attribute;
11214 ------------------
11215 -- Body_Version --
11216 ------------------
11218 -- Prefix of Body_Version attribute can be a subprogram name which
11219 -- must not be resolved, since this is not a call.
11221 when Attribute_Body_Version =>
11222 null;
11224 ------------
11225 -- Caller --
11226 ------------
11228 -- Prefix of Caller attribute is an entry name which must not
11229 -- be resolved, since this is definitely not an entry call.
11231 when Attribute_Caller =>
11232 null;
11234 ------------------
11235 -- Code_Address --
11236 ------------------
11238 -- Shares processing with Address attribute
11240 -----------
11241 -- Count --
11242 -----------
11244 -- If the prefix of the Count attribute is an entry name it must not
11245 -- be resolved, since this is definitely not an entry call. However,
11246 -- if it is an element of an entry family, the index itself may
11247 -- have to be resolved because it can be a general expression.
11249 when Attribute_Count =>
11250 if Nkind (P) = N_Indexed_Component
11251 and then Is_Entity_Name (Prefix (P))
11252 then
11253 declare
11254 Indx : constant Node_Id := First (Expressions (P));
11255 Fam : constant Entity_Id := Entity (Prefix (P));
11256 begin
11257 Resolve (Indx, Entry_Index_Type (Fam));
11258 Apply_Range_Check (Indx, Entry_Index_Type (Fam));
11259 end;
11260 end if;
11262 ----------------
11263 -- Elaborated --
11264 ----------------
11266 -- Prefix of the Elaborated attribute is a subprogram name which
11267 -- must not be resolved, since this is definitely not a call. Note
11268 -- that it is a library unit, so it cannot be overloaded here.
11270 when Attribute_Elaborated =>
11271 null;
11273 -------------
11274 -- Enabled --
11275 -------------
11277 -- Prefix of Enabled attribute is a check name, which must be treated
11278 -- specially and not touched by Resolve.
11280 when Attribute_Enabled =>
11281 null;
11283 ----------------
11284 -- Loop_Entry --
11285 ----------------
11287 -- Do not resolve the prefix of Loop_Entry, instead wait until the
11288 -- attribute has been expanded (see Expand_Loop_Entry_Attributes).
11289 -- The delay ensures that any generated checks or temporaries are
11290 -- inserted before the relocated prefix.
11292 when Attribute_Loop_Entry =>
11293 null;
11295 --------------------
11296 -- Mechanism_Code --
11297 --------------------
11299 -- Prefix of the Mechanism_Code attribute is a function name
11300 -- which must not be resolved. Should we check for overloaded ???
11302 when Attribute_Mechanism_Code =>
11303 null;
11305 ------------------
11306 -- Partition_ID --
11307 ------------------
11309 -- Most processing is done in sem_dist, after determining the
11310 -- context type. Node is rewritten as a conversion to a runtime call.
11312 when Attribute_Partition_ID =>
11313 Process_Partition_Id (N);
11314 return;
11316 ------------------
11317 -- Pool_Address --
11318 ------------------
11320 when Attribute_Pool_Address =>
11321 Resolve (P);
11323 -----------
11324 -- Range --
11325 -----------
11327 -- We replace the Range attribute node with a range expression whose
11328 -- bounds are the 'First and 'Last attributes applied to the same
11329 -- prefix. The reason that we do this transformation here instead of
11330 -- in the expander is that it simplifies other parts of the semantic
11331 -- analysis which assume that the Range has been replaced; thus it
11332 -- must be done even when in semantic-only mode (note that the RM
11333 -- specifically mentions this equivalence, we take care that the
11334 -- prefix is only evaluated once).
11336 when Attribute_Range => Range_Attribute :
11337 declare
11338 LB : Node_Id;
11339 HB : Node_Id;
11340 Dims : List_Id;
11342 begin
11343 if not Is_Entity_Name (P)
11344 or else not Is_Type (Entity (P))
11345 then
11346 Resolve (P);
11347 end if;
11349 Dims := Expressions (N);
11351 HB :=
11352 Make_Attribute_Reference (Loc,
11353 Prefix => Duplicate_Subexpr (P, Name_Req => True),
11354 Attribute_Name => Name_Last,
11355 Expressions => Dims);
11357 LB :=
11358 Make_Attribute_Reference (Loc,
11359 Prefix => P,
11360 Attribute_Name => Name_First,
11361 Expressions => (Dims));
11363 -- Do not share the dimension indicator, if present. Even
11364 -- though it is a static constant, its source location
11365 -- may be modified when printing expanded code and node
11366 -- sharing will lead to chaos in Sprint.
11368 if Present (Dims) then
11369 Set_Expressions (LB,
11370 New_List (New_Copy_Tree (First (Dims))));
11371 end if;
11373 -- If the original was marked as Must_Not_Freeze (see code
11374 -- in Sem_Ch3.Make_Index), then make sure the rewriting
11375 -- does not freeze either.
11377 if Must_Not_Freeze (N) then
11378 Set_Must_Not_Freeze (HB);
11379 Set_Must_Not_Freeze (LB);
11380 Set_Must_Not_Freeze (Prefix (HB));
11381 Set_Must_Not_Freeze (Prefix (LB));
11382 end if;
11384 if Raises_Constraint_Error (Prefix (N)) then
11386 -- Preserve Sloc of prefix in the new bounds, so that
11387 -- the posted warning can be removed if we are within
11388 -- unreachable code.
11390 Set_Sloc (LB, Sloc (Prefix (N)));
11391 Set_Sloc (HB, Sloc (Prefix (N)));
11392 end if;
11394 Rewrite (N, Make_Range (Loc, LB, HB));
11395 Analyze_And_Resolve (N, Typ);
11397 -- Ensure that the expanded range does not have side effects
11399 Force_Evaluation (LB);
11400 Force_Evaluation (HB);
11402 -- Normally after resolving attribute nodes, Eval_Attribute
11403 -- is called to do any possible static evaluation of the node.
11404 -- However, here since the Range attribute has just been
11405 -- transformed into a range expression it is no longer an
11406 -- attribute node and therefore the call needs to be avoided
11407 -- and is accomplished by simply returning from the procedure.
11409 return;
11410 end Range_Attribute;
11412 ------------
11413 -- Result --
11414 ------------
11416 -- We will only come here during the prescan of a spec expression
11417 -- containing a Result attribute. In that case the proper Etype has
11418 -- already been set, and nothing more needs to be done here.
11420 when Attribute_Result =>
11421 null;
11423 ----------------------
11424 -- Unchecked_Access --
11425 ----------------------
11427 -- Processing is shared with Access
11429 -------------------------
11430 -- Unrestricted_Access --
11431 -------------------------
11433 -- Processing is shared with Access
11435 ------------
11436 -- Update --
11437 ------------
11439 -- Resolve aggregate components in component associations
11441 when Attribute_Update =>
11442 declare
11443 Aggr : constant Node_Id := First (Expressions (N));
11444 Typ : constant Entity_Id := Etype (Prefix (N));
11445 Assoc : Node_Id;
11446 Comp : Node_Id;
11447 Expr : Node_Id;
11449 begin
11450 -- Set the Etype of the aggregate to that of the prefix, even
11451 -- though the aggregate may not be a proper representation of a
11452 -- value of the type (missing or duplicated associations, etc.)
11453 -- Complete resolution of the prefix. Note that in Ada 2012 it
11454 -- can be a qualified expression that is e.g. an aggregate.
11456 Set_Etype (Aggr, Typ);
11457 Resolve (Prefix (N), Typ);
11459 -- For an array type, resolve expressions with the component
11460 -- type of the array, and apply constraint checks when needed.
11462 if Is_Array_Type (Typ) then
11463 Assoc := First (Component_Associations (Aggr));
11464 while Present (Assoc) loop
11465 Expr := Expression (Assoc);
11466 Resolve (Expr, Component_Type (Typ));
11468 -- For scalar array components set Do_Range_Check when
11469 -- needed. Constraint checking on non-scalar components
11470 -- is done in Aggregate_Constraint_Checks, but only if
11471 -- full analysis is enabled. These flags are not set in
11472 -- the front-end in GnatProve mode.
11474 if Is_Scalar_Type (Component_Type (Typ))
11475 and then not Is_OK_Static_Expression (Expr)
11476 then
11477 if Is_Entity_Name (Expr)
11478 and then Etype (Expr) = Component_Type (Typ)
11479 then
11480 null;
11482 else
11483 Set_Do_Range_Check (Expr);
11484 end if;
11485 end if;
11487 -- The choices in the association are static constants,
11488 -- or static aggregates each of whose components belongs
11489 -- to the proper index type. However, they must also
11490 -- belong to the index subtype (s) of the prefix, which
11491 -- may be a subtype (e.g. given by a slice).
11493 -- Choices may also be identifiers with no staticness
11494 -- requirements, in which case they must resolve to the
11495 -- index type.
11497 declare
11498 C : Node_Id;
11499 C_E : Node_Id;
11500 Indx : Node_Id;
11502 begin
11503 C := First (Choices (Assoc));
11504 while Present (C) loop
11505 Indx := First_Index (Etype (Prefix (N)));
11507 if Nkind (C) /= N_Aggregate then
11508 Analyze_And_Resolve (C, Etype (Indx));
11509 Apply_Constraint_Check (C, Etype (Indx));
11510 Check_Non_Static_Context (C);
11512 else
11513 C_E := First (Expressions (C));
11514 while Present (C_E) loop
11515 Analyze_And_Resolve (C_E, Etype (Indx));
11516 Apply_Constraint_Check (C_E, Etype (Indx));
11517 Check_Non_Static_Context (C_E);
11519 Next (C_E);
11520 Next_Index (Indx);
11521 end loop;
11522 end if;
11524 Next (C);
11525 end loop;
11526 end;
11528 Next (Assoc);
11529 end loop;
11531 -- For a record type, use type of each component, which is
11532 -- recorded during analysis.
11534 else
11535 Assoc := First (Component_Associations (Aggr));
11536 while Present (Assoc) loop
11537 Comp := First (Choices (Assoc));
11538 Expr := Expression (Assoc);
11540 if Nkind (Comp) /= N_Others_Choice
11541 and then not Error_Posted (Comp)
11542 then
11543 Resolve (Expr, Etype (Entity (Comp)));
11545 if Is_Scalar_Type (Etype (Entity (Comp)))
11546 and then not Is_OK_Static_Expression (Expr)
11547 then
11548 Set_Do_Range_Check (Expr);
11549 end if;
11550 end if;
11552 Next (Assoc);
11553 end loop;
11554 end if;
11555 end;
11557 ---------
11558 -- Val --
11559 ---------
11561 -- Apply range check. Note that we did not do this during the
11562 -- analysis phase, since we wanted Eval_Attribute to have a
11563 -- chance at finding an illegal out of range value.
11565 when Attribute_Val =>
11567 -- Note that we do our own Eval_Attribute call here rather than
11568 -- use the common one, because we need to do processing after
11569 -- the call, as per above comment.
11571 Eval_Attribute (N);
11573 -- Eval_Attribute may replace the node with a raise CE, or
11574 -- fold it to a constant. Obviously we only apply a scalar
11575 -- range check if this did not happen.
11577 if Nkind (N) = N_Attribute_Reference
11578 and then Attribute_Name (N) = Name_Val
11579 then
11580 Apply_Scalar_Range_Check (First (Expressions (N)), Btyp);
11581 end if;
11583 return;
11585 -------------
11586 -- Version --
11587 -------------
11589 -- Prefix of Version attribute can be a subprogram name which
11590 -- must not be resolved, since this is not a call.
11592 when Attribute_Version =>
11593 null;
11595 ----------------------
11596 -- Other Attributes --
11597 ----------------------
11599 -- For other attributes, resolve prefix unless it is a type. If
11600 -- the attribute reference itself is a type name ('Base and 'Class)
11601 -- then this is only legal within a task or protected record.
11603 when others =>
11604 if not Is_Entity_Name (P) or else not Is_Type (Entity (P)) then
11605 Resolve (P);
11606 end if;
11608 -- If the attribute reference itself is a type name ('Base,
11609 -- 'Class) then this is only legal within a task or protected
11610 -- record. What is this all about ???
11612 if Is_Entity_Name (N) and then Is_Type (Entity (N)) then
11613 if Is_Concurrent_Type (Entity (N))
11614 and then In_Open_Scopes (Entity (P))
11615 then
11616 null;
11617 else
11618 Error_Msg_N
11619 ("invalid use of subtype name in expression or call", N);
11620 end if;
11621 end if;
11623 -- For attributes whose argument may be a string, complete
11624 -- resolution of argument now. This avoids premature expansion
11625 -- (and the creation of transient scopes) before the attribute
11626 -- reference is resolved.
11628 case Attr_Id is
11629 when Attribute_Value =>
11630 Resolve (First (Expressions (N)), Standard_String);
11632 when Attribute_Wide_Value =>
11633 Resolve (First (Expressions (N)), Standard_Wide_String);
11635 when Attribute_Wide_Wide_Value =>
11636 Resolve (First (Expressions (N)), Standard_Wide_Wide_String);
11638 when others => null;
11639 end case;
11641 -- If the prefix of the attribute is a class-wide type then it
11642 -- will be expanded into a dispatching call to a predefined
11643 -- primitive. Therefore we must check for potential violation
11644 -- of such restriction.
11646 if Is_Class_Wide_Type (Etype (P)) then
11647 Check_Restriction (No_Dispatching_Calls, N);
11648 end if;
11649 end case;
11651 -- Normally the Freezing is done by Resolve but sometimes the Prefix
11652 -- is not resolved, in which case the freezing must be done now.
11654 -- For an elaboration check on a subprogram, we do not freeze its type.
11655 -- It may be declared in an unrelated scope, in particular in the case
11656 -- of a generic function whose type may remain unelaborated.
11658 if Attr_Id = Attribute_Elaborated then
11659 null;
11661 else
11662 Freeze_Expression (P);
11663 end if;
11665 -- Finally perform static evaluation on the attribute reference
11667 Analyze_Dimension (N);
11668 Eval_Attribute (N);
11669 end Resolve_Attribute;
11671 ------------------------
11672 -- Set_Boolean_Result --
11673 ------------------------
11675 procedure Set_Boolean_Result (N : Node_Id; B : Boolean) is
11676 Loc : constant Source_Ptr := Sloc (N);
11677 begin
11678 if B then
11679 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
11680 else
11681 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
11682 end if;
11683 end Set_Boolean_Result;
11685 --------------------------------
11686 -- Stream_Attribute_Available --
11687 --------------------------------
11689 function Stream_Attribute_Available
11690 (Typ : Entity_Id;
11691 Nam : TSS_Name_Type;
11692 Partial_View : Node_Id := Empty) return Boolean
11694 Etyp : Entity_Id := Typ;
11696 -- Start of processing for Stream_Attribute_Available
11698 begin
11699 -- We need some comments in this body ???
11701 if Has_Stream_Attribute_Definition (Typ, Nam) then
11702 return True;
11703 end if;
11705 if Is_Class_Wide_Type (Typ) then
11706 return not Is_Limited_Type (Typ)
11707 or else Stream_Attribute_Available (Etype (Typ), Nam);
11708 end if;
11710 if Nam = TSS_Stream_Input
11711 and then Is_Abstract_Type (Typ)
11712 and then not Is_Class_Wide_Type (Typ)
11713 then
11714 return False;
11715 end if;
11717 if not (Is_Limited_Type (Typ)
11718 or else (Present (Partial_View)
11719 and then Is_Limited_Type (Partial_View)))
11720 then
11721 return True;
11722 end if;
11724 -- In Ada 2005, Input can invoke Read, and Output can invoke Write
11726 if Nam = TSS_Stream_Input
11727 and then Ada_Version >= Ada_2005
11728 and then Stream_Attribute_Available (Etyp, TSS_Stream_Read)
11729 then
11730 return True;
11732 elsif Nam = TSS_Stream_Output
11733 and then Ada_Version >= Ada_2005
11734 and then Stream_Attribute_Available (Etyp, TSS_Stream_Write)
11735 then
11736 return True;
11737 end if;
11739 -- Case of Read and Write: check for attribute definition clause that
11740 -- applies to an ancestor type.
11742 while Etype (Etyp) /= Etyp loop
11743 Etyp := Etype (Etyp);
11745 if Has_Stream_Attribute_Definition (Etyp, Nam) then
11746 return True;
11747 end if;
11748 end loop;
11750 if Ada_Version < Ada_2005 then
11752 -- In Ada 95 mode, also consider a non-visible definition
11754 declare
11755 Btyp : constant Entity_Id := Implementation_Base_Type (Typ);
11756 begin
11757 return Btyp /= Typ
11758 and then Stream_Attribute_Available
11759 (Btyp, Nam, Partial_View => Typ);
11760 end;
11761 end if;
11763 return False;
11764 end Stream_Attribute_Available;
11766 end Sem_Attr;