1 /* Sets (bit vectors) of hard registers, and operations on them.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_HARD_REG_SET_H
21 #define GCC_HARD_REG_SET_H
23 /* Define the type of a set of hard registers. */
25 /* HARD_REG_ELT_TYPE is a typedef of the unsigned integral type which
26 will be used for hard reg sets, either alone or in an array.
28 If HARD_REG_SET is a macro, its definition is HARD_REG_ELT_TYPE,
29 and it has enough bits to represent all the target machine's hard
30 registers. Otherwise, it is a typedef for a suitably sized array
31 of HARD_REG_ELT_TYPEs. HARD_REG_SET_LONGS is defined as how many.
33 Note that lots of code assumes that the first part of a regset is
34 the same format as a HARD_REG_SET. To help make sure this is true,
35 we only try the widest fast integer mode (HOST_WIDEST_FAST_INT)
36 instead of all the smaller types. This approach loses only if
37 there are very few registers and then only in the few cases where
38 we have an array of HARD_REG_SETs, so it needn't be as complex as
41 typedef unsigned HOST_WIDEST_FAST_INT HARD_REG_ELT_TYPE
;
43 #if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDEST_FAST_INT
45 #define HARD_REG_SET HARD_REG_ELT_TYPE
49 #define HARD_REG_SET_LONGS \
50 ((FIRST_PSEUDO_REGISTER + HOST_BITS_PER_WIDEST_FAST_INT - 1) \
51 / HOST_BITS_PER_WIDEST_FAST_INT)
52 typedef HARD_REG_ELT_TYPE HARD_REG_SET
[HARD_REG_SET_LONGS
];
56 /* HARD_REG_SET wrapped into a structure, to make it possible to
57 use HARD_REG_SET even in APIs that should not include
59 struct hard_reg_set_container
64 /* HARD_CONST is used to cast a constant to the appropriate type
65 for use with a HARD_REG_SET. */
67 #define HARD_CONST(X) ((HARD_REG_ELT_TYPE) (X))
69 /* Define macros SET_HARD_REG_BIT, CLEAR_HARD_REG_BIT and TEST_HARD_REG_BIT
70 to set, clear or test one bit in a hard reg set of type HARD_REG_SET.
71 All three take two arguments: the set and the register number.
73 In the case where sets are arrays of longs, the first argument
74 is actually a pointer to a long.
76 Define two macros for initializing a set:
77 CLEAR_HARD_REG_SET and SET_HARD_REG_SET.
78 These take just one argument.
80 Also define macros for copying hard reg sets:
81 COPY_HARD_REG_SET and COMPL_HARD_REG_SET.
82 These take two arguments TO and FROM; they read from FROM
83 and store into TO. COMPL_HARD_REG_SET complements each bit.
85 Also define macros for combining hard reg sets:
86 IOR_HARD_REG_SET and AND_HARD_REG_SET.
87 These take two arguments TO and FROM; they read from FROM
88 and combine bitwise into TO. Define also two variants
89 IOR_COMPL_HARD_REG_SET and AND_COMPL_HARD_REG_SET
90 which use the complement of the set FROM.
94 hard_reg_set_subset_p (X, Y), which returns true if X is a subset of Y.
95 hard_reg_set_equal_p (X, Y), which returns true if X and Y are equal.
96 hard_reg_set_intersect_p (X, Y), which returns true if X and Y intersect.
97 hard_reg_set_empty_p (X), which returns true if X is empty. */
99 #define UHOST_BITS_PER_WIDE_INT ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT)
103 #define SET_HARD_REG_BIT(SET, BIT) \
104 ((SET) |= HARD_CONST (1) << (BIT))
105 #define CLEAR_HARD_REG_BIT(SET, BIT) \
106 ((SET) &= ~(HARD_CONST (1) << (BIT)))
107 #define TEST_HARD_REG_BIT(SET, BIT) \
108 (!!((SET) & (HARD_CONST (1) << (BIT))))
110 #define CLEAR_HARD_REG_SET(TO) ((TO) = HARD_CONST (0))
111 #define SET_HARD_REG_SET(TO) ((TO) = ~ HARD_CONST (0))
113 #define COPY_HARD_REG_SET(TO, FROM) ((TO) = (FROM))
114 #define COMPL_HARD_REG_SET(TO, FROM) ((TO) = ~(FROM))
116 #define IOR_HARD_REG_SET(TO, FROM) ((TO) |= (FROM))
117 #define IOR_COMPL_HARD_REG_SET(TO, FROM) ((TO) |= ~ (FROM))
118 #define AND_HARD_REG_SET(TO, FROM) ((TO) &= (FROM))
119 #define AND_COMPL_HARD_REG_SET(TO, FROM) ((TO) &= ~ (FROM))
122 hard_reg_set_subset_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
124 return (x
& ~y
) == HARD_CONST (0);
128 hard_reg_set_equal_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
134 hard_reg_set_intersect_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
136 return (x
& y
) != HARD_CONST (0);
140 hard_reg_set_empty_p (const HARD_REG_SET x
)
142 return x
== HARD_CONST (0);
147 #define SET_HARD_REG_BIT(SET, BIT) \
148 ((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT] \
149 |= HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT))
151 #define CLEAR_HARD_REG_BIT(SET, BIT) \
152 ((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT] \
153 &= ~(HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT)))
155 #define TEST_HARD_REG_BIT(SET, BIT) \
156 (!!((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT] \
157 & (HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT))))
159 #if FIRST_PSEUDO_REGISTER <= 2*HOST_BITS_PER_WIDEST_FAST_INT
160 #define CLEAR_HARD_REG_SET(TO) \
161 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
163 scan_tp_[1] = 0; } while (0)
165 #define SET_HARD_REG_SET(TO) \
166 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
168 scan_tp_[1] = -1; } while (0)
170 #define COPY_HARD_REG_SET(TO, FROM) \
171 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
172 scan_tp_[0] = scan_fp_[0]; \
173 scan_tp_[1] = scan_fp_[1]; } while (0)
175 #define COMPL_HARD_REG_SET(TO, FROM) \
176 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
177 scan_tp_[0] = ~ scan_fp_[0]; \
178 scan_tp_[1] = ~ scan_fp_[1]; } while (0)
180 #define AND_HARD_REG_SET(TO, FROM) \
181 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
182 scan_tp_[0] &= scan_fp_[0]; \
183 scan_tp_[1] &= scan_fp_[1]; } while (0)
185 #define AND_COMPL_HARD_REG_SET(TO, FROM) \
186 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
187 scan_tp_[0] &= ~ scan_fp_[0]; \
188 scan_tp_[1] &= ~ scan_fp_[1]; } while (0)
190 #define IOR_HARD_REG_SET(TO, FROM) \
191 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
192 scan_tp_[0] |= scan_fp_[0]; \
193 scan_tp_[1] |= scan_fp_[1]; } while (0)
195 #define IOR_COMPL_HARD_REG_SET(TO, FROM) \
196 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
197 scan_tp_[0] |= ~ scan_fp_[0]; \
198 scan_tp_[1] |= ~ scan_fp_[1]; } while (0)
201 hard_reg_set_subset_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
203 return (x
[0] & ~y
[0]) == 0 && (x
[1] & ~y
[1]) == 0;
207 hard_reg_set_equal_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
209 return x
[0] == y
[0] && x
[1] == y
[1];
213 hard_reg_set_intersect_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
215 return (x
[0] & y
[0]) != 0 || (x
[1] & y
[1]) != 0;
219 hard_reg_set_empty_p (const HARD_REG_SET x
)
221 return x
[0] == 0 && x
[1] == 0;
225 #if FIRST_PSEUDO_REGISTER <= 3*HOST_BITS_PER_WIDEST_FAST_INT
226 #define CLEAR_HARD_REG_SET(TO) \
227 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
230 scan_tp_[2] = 0; } while (0)
232 #define SET_HARD_REG_SET(TO) \
233 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
236 scan_tp_[2] = -1; } while (0)
238 #define COPY_HARD_REG_SET(TO, FROM) \
239 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
240 scan_tp_[0] = scan_fp_[0]; \
241 scan_tp_[1] = scan_fp_[1]; \
242 scan_tp_[2] = scan_fp_[2]; } while (0)
244 #define COMPL_HARD_REG_SET(TO, FROM) \
245 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
246 scan_tp_[0] = ~ scan_fp_[0]; \
247 scan_tp_[1] = ~ scan_fp_[1]; \
248 scan_tp_[2] = ~ scan_fp_[2]; } while (0)
250 #define AND_HARD_REG_SET(TO, FROM) \
251 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
252 scan_tp_[0] &= scan_fp_[0]; \
253 scan_tp_[1] &= scan_fp_[1]; \
254 scan_tp_[2] &= scan_fp_[2]; } while (0)
256 #define AND_COMPL_HARD_REG_SET(TO, FROM) \
257 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
258 scan_tp_[0] &= ~ scan_fp_[0]; \
259 scan_tp_[1] &= ~ scan_fp_[1]; \
260 scan_tp_[2] &= ~ scan_fp_[2]; } while (0)
262 #define IOR_HARD_REG_SET(TO, FROM) \
263 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
264 scan_tp_[0] |= scan_fp_[0]; \
265 scan_tp_[1] |= scan_fp_[1]; \
266 scan_tp_[2] |= scan_fp_[2]; } while (0)
268 #define IOR_COMPL_HARD_REG_SET(TO, FROM) \
269 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
270 scan_tp_[0] |= ~ scan_fp_[0]; \
271 scan_tp_[1] |= ~ scan_fp_[1]; \
272 scan_tp_[2] |= ~ scan_fp_[2]; } while (0)
275 hard_reg_set_subset_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
277 return ((x
[0] & ~y
[0]) == 0
278 && (x
[1] & ~y
[1]) == 0
279 && (x
[2] & ~y
[2]) == 0);
283 hard_reg_set_equal_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
285 return x
[0] == y
[0] && x
[1] == y
[1] && x
[2] == y
[2];
289 hard_reg_set_intersect_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
291 return ((x
[0] & y
[0]) != 0
292 || (x
[1] & y
[1]) != 0
293 || (x
[2] & y
[2]) != 0);
297 hard_reg_set_empty_p (const HARD_REG_SET x
)
299 return x
[0] == 0 && x
[1] == 0 && x
[2] == 0;
303 #if FIRST_PSEUDO_REGISTER <= 4*HOST_BITS_PER_WIDEST_FAST_INT
304 #define CLEAR_HARD_REG_SET(TO) \
305 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
309 scan_tp_[3] = 0; } while (0)
311 #define SET_HARD_REG_SET(TO) \
312 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
316 scan_tp_[3] = -1; } while (0)
318 #define COPY_HARD_REG_SET(TO, FROM) \
319 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
320 scan_tp_[0] = scan_fp_[0]; \
321 scan_tp_[1] = scan_fp_[1]; \
322 scan_tp_[2] = scan_fp_[2]; \
323 scan_tp_[3] = scan_fp_[3]; } while (0)
325 #define COMPL_HARD_REG_SET(TO, FROM) \
326 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
327 scan_tp_[0] = ~ scan_fp_[0]; \
328 scan_tp_[1] = ~ scan_fp_[1]; \
329 scan_tp_[2] = ~ scan_fp_[2]; \
330 scan_tp_[3] = ~ scan_fp_[3]; } while (0)
332 #define AND_HARD_REG_SET(TO, FROM) \
333 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
334 scan_tp_[0] &= scan_fp_[0]; \
335 scan_tp_[1] &= scan_fp_[1]; \
336 scan_tp_[2] &= scan_fp_[2]; \
337 scan_tp_[3] &= scan_fp_[3]; } while (0)
339 #define AND_COMPL_HARD_REG_SET(TO, FROM) \
340 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
341 scan_tp_[0] &= ~ scan_fp_[0]; \
342 scan_tp_[1] &= ~ scan_fp_[1]; \
343 scan_tp_[2] &= ~ scan_fp_[2]; \
344 scan_tp_[3] &= ~ scan_fp_[3]; } while (0)
346 #define IOR_HARD_REG_SET(TO, FROM) \
347 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
348 scan_tp_[0] |= scan_fp_[0]; \
349 scan_tp_[1] |= scan_fp_[1]; \
350 scan_tp_[2] |= scan_fp_[2]; \
351 scan_tp_[3] |= scan_fp_[3]; } while (0)
353 #define IOR_COMPL_HARD_REG_SET(TO, FROM) \
354 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
355 scan_tp_[0] |= ~ scan_fp_[0]; \
356 scan_tp_[1] |= ~ scan_fp_[1]; \
357 scan_tp_[2] |= ~ scan_fp_[2]; \
358 scan_tp_[3] |= ~ scan_fp_[3]; } while (0)
361 hard_reg_set_subset_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
363 return ((x
[0] & ~y
[0]) == 0
364 && (x
[1] & ~y
[1]) == 0
365 && (x
[2] & ~y
[2]) == 0
366 && (x
[3] & ~y
[3]) == 0);
370 hard_reg_set_equal_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
372 return x
[0] == y
[0] && x
[1] == y
[1] && x
[2] == y
[2] && x
[3] == y
[3];
376 hard_reg_set_intersect_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
378 return ((x
[0] & y
[0]) != 0
379 || (x
[1] & y
[1]) != 0
380 || (x
[2] & y
[2]) != 0
381 || (x
[3] & y
[3]) != 0);
385 hard_reg_set_empty_p (const HARD_REG_SET x
)
387 return x
[0] == 0 && x
[1] == 0 && x
[2] == 0 && x
[3] == 0;
390 #else /* FIRST_PSEUDO_REGISTER > 4*HOST_BITS_PER_WIDEST_FAST_INT */
392 #define CLEAR_HARD_REG_SET(TO) \
393 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
395 for (i = 0; i < HARD_REG_SET_LONGS; i++) \
396 *scan_tp_++ = 0; } while (0)
398 #define SET_HARD_REG_SET(TO) \
399 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \
401 for (i = 0; i < HARD_REG_SET_LONGS; i++) \
402 *scan_tp_++ = -1; } while (0)
404 #define COPY_HARD_REG_SET(TO, FROM) \
405 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
407 for (i = 0; i < HARD_REG_SET_LONGS; i++) \
408 *scan_tp_++ = *scan_fp_++; } while (0)
410 #define COMPL_HARD_REG_SET(TO, FROM) \
411 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
413 for (i = 0; i < HARD_REG_SET_LONGS; i++) \
414 *scan_tp_++ = ~ *scan_fp_++; } while (0)
416 #define AND_HARD_REG_SET(TO, FROM) \
417 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
419 for (i = 0; i < HARD_REG_SET_LONGS; i++) \
420 *scan_tp_++ &= *scan_fp_++; } while (0)
422 #define AND_COMPL_HARD_REG_SET(TO, FROM) \
423 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
425 for (i = 0; i < HARD_REG_SET_LONGS; i++) \
426 *scan_tp_++ &= ~ *scan_fp_++; } while (0)
428 #define IOR_HARD_REG_SET(TO, FROM) \
429 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
431 for (i = 0; i < HARD_REG_SET_LONGS; i++) \
432 *scan_tp_++ |= *scan_fp_++; } while (0)
434 #define IOR_COMPL_HARD_REG_SET(TO, FROM) \
435 do { HARD_REG_ELT_TYPE *scan_tp_ = (TO), *scan_fp_ = (FROM); \
437 for (i = 0; i < HARD_REG_SET_LONGS; i++) \
438 *scan_tp_++ |= ~ *scan_fp_++; } while (0)
441 hard_reg_set_subset_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
445 for (i
= 0; i
< HARD_REG_SET_LONGS
; i
++)
446 if ((x
[i
] & ~y
[i
]) != 0)
452 hard_reg_set_equal_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
456 for (i
= 0; i
< HARD_REG_SET_LONGS
; i
++)
463 hard_reg_set_intersect_p (const HARD_REG_SET x
, const HARD_REG_SET y
)
467 for (i
= 0; i
< HARD_REG_SET_LONGS
; i
++)
468 if ((x
[i
] & y
[i
]) != 0)
474 hard_reg_set_empty_p (const HARD_REG_SET x
)
478 for (i
= 0; i
< HARD_REG_SET_LONGS
; i
++)
489 /* Iterator for hard register sets. */
491 struct hard_reg_set_iterator
493 /* Pointer to the current element. */
494 HARD_REG_ELT_TYPE
*pelt
;
496 /* The length of the set. */
497 unsigned short length
;
499 /* Word within the current element. */
500 unsigned short word_no
;
502 /* Contents of the actually processed word. When finding next bit
503 it is shifted right, so that the actual bit is always the least
504 significant bit of ACTUAL. */
505 HARD_REG_ELT_TYPE bits
;
508 #define HARD_REG_ELT_BITS UHOST_BITS_PER_WIDE_INT
510 /* The implementation of the iterator functions is fully analogous to
511 the bitmap iterators. */
513 hard_reg_set_iter_init (hard_reg_set_iterator
*iter
, HARD_REG_SET set
,
514 unsigned min
, unsigned *regno
)
516 #ifdef HARD_REG_SET_LONGS
518 iter
->length
= HARD_REG_SET_LONGS
;
523 iter
->word_no
= min
/ HARD_REG_ELT_BITS
;
524 if (iter
->word_no
< iter
->length
)
526 iter
->bits
= iter
->pelt
[iter
->word_no
];
527 iter
->bits
>>= min
% HARD_REG_ELT_BITS
;
529 /* This is required for correct search of the next bit. */
536 hard_reg_set_iter_set (hard_reg_set_iterator
*iter
, unsigned *regno
)
540 /* Return false when we're advanced past the end of the set. */
541 if (iter
->word_no
>= iter
->length
)
546 /* Find the correct bit and return it. */
547 while (!(iter
->bits
& 1))
552 return (*regno
< FIRST_PSEUDO_REGISTER
);
555 /* Round to the beginning of the next word. */
556 *regno
= (*regno
+ HARD_REG_ELT_BITS
- 1);
557 *regno
-= *regno
% HARD_REG_ELT_BITS
;
559 /* Find the next non-zero word. */
560 while (++iter
->word_no
< iter
->length
)
562 iter
->bits
= iter
->pelt
[iter
->word_no
];
565 *regno
+= HARD_REG_ELT_BITS
;
571 hard_reg_set_iter_next (hard_reg_set_iterator
*iter
, unsigned *regno
)
577 #define EXECUTE_IF_SET_IN_HARD_REG_SET(SET, MIN, REGNUM, ITER) \
578 for (hard_reg_set_iter_init (&(ITER), (SET), (MIN), &(REGNUM)); \
579 hard_reg_set_iter_set (&(ITER), &(REGNUM)); \
580 hard_reg_set_iter_next (&(ITER), &(REGNUM)))
583 /* Define some standard sets of registers. */
585 /* Indexed by hard register number, contains 1 for registers
586 that are being used for global register decls.
587 These must be exempt from ordinary flow analysis
588 and are also considered fixed. */
590 extern char global_regs
[FIRST_PSEUDO_REGISTER
];
592 struct target_hard_regs
{
593 /* The set of registers that actually exist on the current target. */
594 HARD_REG_SET x_accessible_reg_set
;
596 /* The set of registers that should be considered to be register
597 operands. It is a subset of x_accessible_reg_set. */
598 HARD_REG_SET x_operand_reg_set
;
600 /* Indexed by hard register number, contains 1 for registers
601 that are fixed use (stack pointer, pc, frame pointer, etc.;.
602 These are the registers that cannot be used to allocate
603 a pseudo reg whose life does not cross calls. */
604 char x_fixed_regs
[FIRST_PSEUDO_REGISTER
];
606 /* The same info as a HARD_REG_SET. */
607 HARD_REG_SET x_fixed_reg_set
;
609 /* Indexed by hard register number, contains 1 for registers
610 that are fixed use or are clobbered by function calls.
611 These are the registers that cannot be used to allocate
612 a pseudo reg whose life crosses calls. */
613 char x_call_used_regs
[FIRST_PSEUDO_REGISTER
];
615 char x_call_really_used_regs
[FIRST_PSEUDO_REGISTER
];
617 /* The same info as a HARD_REG_SET. */
618 HARD_REG_SET x_call_used_reg_set
;
620 /* Contains registers that are fixed use -- i.e. in fixed_reg_set -- or
621 a function value return register or TARGET_STRUCT_VALUE_RTX or
622 STATIC_CHAIN_REGNUM. These are the registers that cannot hold quantities
623 across calls even if we are willing to save and restore them. */
624 HARD_REG_SET x_call_fixed_reg_set
;
626 /* Contains 1 for registers that are set or clobbered by calls. */
627 /* ??? Ideally, this would be just call_used_regs plus global_regs, but
628 for someone's bright idea to have call_used_regs strictly include
629 fixed_regs. Which leaves us guessing as to the set of fixed_regs
630 that are actually preserved. We know for sure that those associated
631 with the local stack frame are safe, but scant others. */
632 HARD_REG_SET x_regs_invalidated_by_call
;
634 /* Call used hard registers which can not be saved because there is no
636 HARD_REG_SET x_no_caller_save_reg_set
;
638 /* Table of register numbers in the order in which to try to use them. */
639 int x_reg_alloc_order
[FIRST_PSEUDO_REGISTER
];
641 /* The inverse of reg_alloc_order. */
642 int x_inv_reg_alloc_order
[FIRST_PSEUDO_REGISTER
];
644 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
645 HARD_REG_SET x_reg_class_contents
[N_REG_CLASSES
];
647 /* For each reg class, a boolean saying whether the class contains only
649 bool x_class_only_fixed_regs
[N_REG_CLASSES
];
651 /* For each reg class, number of regs it contains. */
652 unsigned int x_reg_class_size
[N_REG_CLASSES
];
654 /* For each reg class, table listing all the classes contained in it. */
655 enum reg_class x_reg_class_subclasses
[N_REG_CLASSES
][N_REG_CLASSES
];
657 /* For each pair of reg classes,
658 a largest reg class contained in their union. */
659 enum reg_class x_reg_class_subunion
[N_REG_CLASSES
][N_REG_CLASSES
];
661 /* For each pair of reg classes,
662 the smallest reg class that contains their union. */
663 enum reg_class x_reg_class_superunion
[N_REG_CLASSES
][N_REG_CLASSES
];
665 /* Vector indexed by hardware reg giving its name. */
666 const char *x_reg_names
[FIRST_PSEUDO_REGISTER
];
669 extern struct target_hard_regs default_target_hard_regs
;
670 #if SWITCHABLE_TARGET
671 extern struct target_hard_regs
*this_target_hard_regs
;
673 #define this_target_hard_regs (&default_target_hard_regs)
676 #define accessible_reg_set \
677 (this_target_hard_regs->x_accessible_reg_set)
678 #define operand_reg_set \
679 (this_target_hard_regs->x_operand_reg_set)
681 (this_target_hard_regs->x_fixed_regs)
682 #define fixed_reg_set \
683 (this_target_hard_regs->x_fixed_reg_set)
684 #define call_used_regs \
685 (this_target_hard_regs->x_call_used_regs)
686 #define call_really_used_regs \
687 (this_target_hard_regs->x_call_really_used_regs)
688 #define call_used_reg_set \
689 (this_target_hard_regs->x_call_used_reg_set)
690 #define call_fixed_reg_set \
691 (this_target_hard_regs->x_call_fixed_reg_set)
692 #define regs_invalidated_by_call \
693 (this_target_hard_regs->x_regs_invalidated_by_call)
694 #define no_caller_save_reg_set \
695 (this_target_hard_regs->x_no_caller_save_reg_set)
696 #define reg_alloc_order \
697 (this_target_hard_regs->x_reg_alloc_order)
698 #define inv_reg_alloc_order \
699 (this_target_hard_regs->x_inv_reg_alloc_order)
700 #define reg_class_contents \
701 (this_target_hard_regs->x_reg_class_contents)
702 #define class_only_fixed_regs \
703 (this_target_hard_regs->x_class_only_fixed_regs)
704 #define reg_class_size \
705 (this_target_hard_regs->x_reg_class_size)
706 #define reg_class_subclasses \
707 (this_target_hard_regs->x_reg_class_subclasses)
708 #define reg_class_subunion \
709 (this_target_hard_regs->x_reg_class_subunion)
710 #define reg_class_superunion \
711 (this_target_hard_regs->x_reg_class_superunion)
713 (this_target_hard_regs->x_reg_names)
715 /* Vector indexed by reg class giving its name. */
717 extern const char * reg_class_names
[];
719 /* Given a hard REGN a FROM mode and a TO mode, return nonzero if
720 REGN cannot change modes between the specified modes. */
721 #define REG_CANNOT_CHANGE_MODE_P(REGN, FROM, TO) \
722 CANNOT_CHANGE_MODE_CLASS (FROM, TO, REGNO_REG_CLASS (REGN))
724 #endif /* ! GCC_HARD_REG_SET_H */