1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
80 #include "coretypes.h"
84 #include "stor-layout.h"
88 #include "hard-reg-set.h"
89 #include "basic-block.h"
90 #include "insn-config.h"
92 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
94 #include "insn-attr.h"
96 #include "diagnostic-core.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
102 #include "tree-pass.h"
104 #include "valtrack.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts
;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges
;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras
;
120 /* Number of instructions combined in this function. */
122 static int combine_successes
;
124 /* Totals over entire compilation. */
126 static int total_attempts
, total_merges
, total_extras
, total_successes
;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs
;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs
;
145 typedef struct reg_stat_struct
{
146 /* Record last point of death of (hard or pseudo) register n. */
149 /* Record last point of modification of (hard or pseudo) register n. */
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick
;
204 /* Record the value of label_tick when the value for register n is placed in
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
215 char last_set_sign_bit_copies
;
216 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid
;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies
;
238 unsigned HOST_WIDE_INT nonzero_bits
;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label
;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
251 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
255 static vec
<reg_stat_type
> reg_stat
;
257 /* Record the luid of the last insn that invalidated memory
258 (anything that writes memory, and subroutine calls, but not pushes). */
260 static int mem_last_set
;
262 /* Record the luid of the last CALL_INSN
263 so we can tell whether a potential combination crosses any calls. */
265 static int last_call_luid
;
267 /* When `subst' is called, this is the insn that is being modified
268 (by combining in a previous insn). The PATTERN of this insn
269 is still the old pattern partially modified and it should not be
270 looked at, but this may be used to examine the successors of the insn
271 to judge whether a simplification is valid. */
273 static rtx subst_insn
;
275 /* This is the lowest LUID that `subst' is currently dealing with.
276 get_last_value will not return a value if the register was set at or
277 after this LUID. If not for this mechanism, we could get confused if
278 I2 or I1 in try_combine were an insn that used the old value of a register
279 to obtain a new value. In that case, we might erroneously get the
280 new value of the register when we wanted the old one. */
282 static int subst_low_luid
;
284 /* This contains any hard registers that are used in newpat; reg_dead_at_p
285 must consider all these registers to be always live. */
287 static HARD_REG_SET newpat_used_regs
;
289 /* This is an insn to which a LOG_LINKS entry has been added. If this
290 insn is the earlier than I2 or I3, combine should rescan starting at
293 static rtx added_links_insn
;
295 /* Basic block in which we are performing combines. */
296 static basic_block this_basic_block
;
297 static bool optimize_this_for_speed_p
;
300 /* Length of the currently allocated uid_insn_cost array. */
302 static int max_uid_known
;
304 /* The following array records the insn_rtx_cost for every insn
305 in the instruction stream. */
307 static int *uid_insn_cost
;
309 /* The following array records the LOG_LINKS for every insn in the
310 instruction stream as struct insn_link pointers. */
314 struct insn_link
*next
;
317 static struct insn_link
**uid_log_links
;
319 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
320 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
322 #define FOR_EACH_LOG_LINK(L, INSN) \
323 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
325 /* Links for LOG_LINKS are allocated from this obstack. */
327 static struct obstack insn_link_obstack
;
329 /* Allocate a link. */
331 static inline struct insn_link
*
332 alloc_insn_link (rtx insn
, struct insn_link
*next
)
335 = (struct insn_link
*) obstack_alloc (&insn_link_obstack
,
336 sizeof (struct insn_link
));
342 /* Incremented for each basic block. */
344 static int label_tick
;
346 /* Reset to label_tick for each extended basic block in scanning order. */
348 static int label_tick_ebb_start
;
350 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
351 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
353 static enum machine_mode nonzero_bits_mode
;
355 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
356 be safely used. It is zero while computing them and after combine has
357 completed. This former test prevents propagating values based on
358 previously set values, which can be incorrect if a variable is modified
361 static int nonzero_sign_valid
;
364 /* Record one modification to rtl structure
365 to be undone by storing old_contents into *where. */
367 enum undo_kind
{ UNDO_RTX
, UNDO_INT
, UNDO_MODE
, UNDO_LINKS
};
373 union { rtx r
; int i
; enum machine_mode m
; struct insn_link
*l
; } old_contents
;
374 union { rtx
*r
; int *i
; struct insn_link
**l
; } where
;
377 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
378 num_undo says how many are currently recorded.
380 other_insn is nonzero if we have modified some other insn in the process
381 of working on subst_insn. It must be verified too. */
390 static struct undobuf undobuf
;
392 /* Number of times the pseudo being substituted for
393 was found and replaced. */
395 static int n_occurrences
;
397 static rtx
reg_nonzero_bits_for_combine (const_rtx
, enum machine_mode
, const_rtx
,
399 unsigned HOST_WIDE_INT
,
400 unsigned HOST_WIDE_INT
*);
401 static rtx
reg_num_sign_bit_copies_for_combine (const_rtx
, enum machine_mode
, const_rtx
,
403 unsigned int, unsigned int *);
404 static void do_SUBST (rtx
*, rtx
);
405 static void do_SUBST_INT (int *, int);
406 static void init_reg_last (void);
407 static void setup_incoming_promotions (rtx
);
408 static void set_nonzero_bits_and_sign_copies (rtx
, const_rtx
, void *);
409 static int cant_combine_insn_p (rtx
);
410 static int can_combine_p (rtx
, rtx
, rtx
, rtx
, rtx
, rtx
, rtx
*, rtx
*);
411 static int combinable_i3pat (rtx
, rtx
*, rtx
, rtx
, rtx
, int, int, rtx
*);
412 static int contains_muldiv (rtx
);
413 static rtx
try_combine (rtx
, rtx
, rtx
, rtx
, int *, rtx
);
414 static void undo_all (void);
415 static void undo_commit (void);
416 static rtx
*find_split_point (rtx
*, rtx
, bool);
417 static rtx
subst (rtx
, rtx
, rtx
, int, int, int);
418 static rtx
combine_simplify_rtx (rtx
, enum machine_mode
, int, int);
419 static rtx
simplify_if_then_else (rtx
);
420 static rtx
simplify_set (rtx
);
421 static rtx
simplify_logical (rtx
);
422 static rtx
expand_compound_operation (rtx
);
423 static const_rtx
expand_field_assignment (const_rtx
);
424 static rtx
make_extraction (enum machine_mode
, rtx
, HOST_WIDE_INT
,
425 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
426 static rtx
extract_left_shift (rtx
, int);
427 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
428 unsigned HOST_WIDE_INT
*);
429 static rtx
canon_reg_for_combine (rtx
, rtx
);
430 static rtx
force_to_mode (rtx
, enum machine_mode
,
431 unsigned HOST_WIDE_INT
, int);
432 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
433 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
434 static int rtx_equal_for_field_assignment_p (rtx
, rtx
);
435 static rtx
make_field_assignment (rtx
);
436 static rtx
apply_distributive_law (rtx
);
437 static rtx
distribute_and_simplify_rtx (rtx
, int);
438 static rtx
simplify_and_const_int_1 (enum machine_mode
, rtx
,
439 unsigned HOST_WIDE_INT
);
440 static rtx
simplify_and_const_int (rtx
, enum machine_mode
, rtx
,
441 unsigned HOST_WIDE_INT
);
442 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
443 HOST_WIDE_INT
, enum machine_mode
, int *);
444 static rtx
simplify_shift_const_1 (enum rtx_code
, enum machine_mode
, rtx
, int);
445 static rtx
simplify_shift_const (rtx
, enum rtx_code
, enum machine_mode
, rtx
,
447 static int recog_for_combine (rtx
*, rtx
, rtx
*);
448 static rtx
gen_lowpart_for_combine (enum machine_mode
, rtx
);
449 static enum rtx_code
simplify_compare_const (enum rtx_code
, rtx
, rtx
*);
450 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
451 static void update_table_tick (rtx
);
452 static void record_value_for_reg (rtx
, rtx
, rtx
);
453 static void check_promoted_subreg (rtx
, rtx
);
454 static void record_dead_and_set_regs_1 (rtx
, const_rtx
, void *);
455 static void record_dead_and_set_regs (rtx
);
456 static int get_last_value_validate (rtx
*, rtx
, int, int);
457 static rtx
get_last_value (const_rtx
);
458 static int use_crosses_set_p (const_rtx
, int);
459 static void reg_dead_at_p_1 (rtx
, const_rtx
, void *);
460 static int reg_dead_at_p (rtx
, rtx
);
461 static void move_deaths (rtx
, rtx
, int, rtx
, rtx
*);
462 static int reg_bitfield_target_p (rtx
, rtx
);
463 static void distribute_notes (rtx
, rtx
, rtx
, rtx
, rtx
, rtx
, rtx
);
464 static void distribute_links (struct insn_link
*);
465 static void mark_used_regs_combine (rtx
);
466 static void record_promoted_value (rtx
, rtx
);
467 static int unmentioned_reg_p_1 (rtx
*, void *);
468 static bool unmentioned_reg_p (rtx
, rtx
);
469 static int record_truncated_value (rtx
*, void *);
470 static void record_truncated_values (rtx
*, void *);
471 static bool reg_truncated_to_mode (enum machine_mode
, const_rtx
);
472 static rtx
gen_lowpart_or_truncate (enum machine_mode
, rtx
);
475 /* It is not safe to use ordinary gen_lowpart in combine.
476 See comments in gen_lowpart_for_combine. */
477 #undef RTL_HOOKS_GEN_LOWPART
478 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
480 /* Our implementation of gen_lowpart never emits a new pseudo. */
481 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
482 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
484 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
485 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
487 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
488 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
490 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
491 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
493 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
496 /* Convenience wrapper for the canonicalize_comparison target hook.
497 Target hooks cannot use enum rtx_code. */
499 target_canonicalize_comparison (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
,
500 bool op0_preserve_value
)
502 int code_int
= (int)*code
;
503 targetm
.canonicalize_comparison (&code_int
, op0
, op1
, op0_preserve_value
);
504 *code
= (enum rtx_code
)code_int
;
507 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
508 PATTERN can not be split. Otherwise, it returns an insn sequence.
509 This is a wrapper around split_insns which ensures that the
510 reg_stat vector is made larger if the splitter creates a new
514 combine_split_insns (rtx pattern
, rtx insn
)
519 ret
= split_insns (pattern
, insn
);
520 nregs
= max_reg_num ();
521 if (nregs
> reg_stat
.length ())
522 reg_stat
.safe_grow_cleared (nregs
);
526 /* This is used by find_single_use to locate an rtx in LOC that
527 contains exactly one use of DEST, which is typically either a REG
528 or CC0. It returns a pointer to the innermost rtx expression
529 containing DEST. Appearances of DEST that are being used to
530 totally replace it are not counted. */
533 find_single_use_1 (rtx dest
, rtx
*loc
)
536 enum rtx_code code
= GET_CODE (x
);
552 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
553 of a REG that occupies all of the REG, the insn uses DEST if
554 it is mentioned in the destination or the source. Otherwise, we
555 need just check the source. */
556 if (GET_CODE (SET_DEST (x
)) != CC0
557 && GET_CODE (SET_DEST (x
)) != PC
558 && !REG_P (SET_DEST (x
))
559 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
560 && REG_P (SUBREG_REG (SET_DEST (x
)))
561 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
562 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
563 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
564 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
567 return find_single_use_1 (dest
, &SET_SRC (x
));
571 return find_single_use_1 (dest
, &XEXP (x
, 0));
577 /* If it wasn't one of the common cases above, check each expression and
578 vector of this code. Look for a unique usage of DEST. */
580 fmt
= GET_RTX_FORMAT (code
);
581 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
585 if (dest
== XEXP (x
, i
)
586 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
587 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
590 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
593 result
= this_result
;
594 else if (this_result
)
595 /* Duplicate usage. */
598 else if (fmt
[i
] == 'E')
602 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
604 if (XVECEXP (x
, i
, j
) == dest
606 && REG_P (XVECEXP (x
, i
, j
))
607 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
610 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
613 result
= this_result
;
614 else if (this_result
)
624 /* See if DEST, produced in INSN, is used only a single time in the
625 sequel. If so, return a pointer to the innermost rtx expression in which
628 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
630 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
631 care about REG_DEAD notes or LOG_LINKS.
633 Otherwise, we find the single use by finding an insn that has a
634 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
635 only referenced once in that insn, we know that it must be the first
636 and last insn referencing DEST. */
639 find_single_use (rtx dest
, rtx insn
, rtx
*ploc
)
644 struct insn_link
*link
;
649 next
= NEXT_INSN (insn
);
651 || (!NONJUMP_INSN_P (next
) && !JUMP_P (next
)))
654 result
= find_single_use_1 (dest
, &PATTERN (next
));
664 bb
= BLOCK_FOR_INSN (insn
);
665 for (next
= NEXT_INSN (insn
);
666 next
&& BLOCK_FOR_INSN (next
) == bb
;
667 next
= NEXT_INSN (next
))
668 if (INSN_P (next
) && dead_or_set_p (next
, dest
))
670 FOR_EACH_LOG_LINK (link
, next
)
671 if (link
->insn
== insn
)
676 result
= find_single_use_1 (dest
, &PATTERN (next
));
686 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
687 insn. The substitution can be undone by undo_all. If INTO is already
688 set to NEWVAL, do not record this change. Because computing NEWVAL might
689 also call SUBST, we have to compute it before we put anything into
693 do_SUBST (rtx
*into
, rtx newval
)
698 if (oldval
== newval
)
701 /* We'd like to catch as many invalid transformations here as
702 possible. Unfortunately, there are way too many mode changes
703 that are perfectly valid, so we'd waste too much effort for
704 little gain doing the checks here. Focus on catching invalid
705 transformations involving integer constants. */
706 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
707 && CONST_INT_P (newval
))
709 /* Sanity check that we're replacing oldval with a CONST_INT
710 that is a valid sign-extension for the original mode. */
711 gcc_assert (INTVAL (newval
)
712 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
714 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
715 CONST_INT is not valid, because after the replacement, the
716 original mode would be gone. Unfortunately, we can't tell
717 when do_SUBST is called to replace the operand thereof, so we
718 perform this test on oldval instead, checking whether an
719 invalid replacement took place before we got here. */
720 gcc_assert (!(GET_CODE (oldval
) == SUBREG
721 && CONST_INT_P (SUBREG_REG (oldval
))));
722 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
723 && CONST_INT_P (XEXP (oldval
, 0))));
727 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
729 buf
= XNEW (struct undo
);
731 buf
->kind
= UNDO_RTX
;
733 buf
->old_contents
.r
= oldval
;
736 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
739 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
741 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
742 for the value of a HOST_WIDE_INT value (including CONST_INT) is
746 do_SUBST_INT (int *into
, int newval
)
751 if (oldval
== newval
)
755 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
757 buf
= XNEW (struct undo
);
759 buf
->kind
= UNDO_INT
;
761 buf
->old_contents
.i
= oldval
;
764 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
767 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
769 /* Similar to SUBST, but just substitute the mode. This is used when
770 changing the mode of a pseudo-register, so that any other
771 references to the entry in the regno_reg_rtx array will change as
775 do_SUBST_MODE (rtx
*into
, enum machine_mode newval
)
778 enum machine_mode oldval
= GET_MODE (*into
);
780 if (oldval
== newval
)
784 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
786 buf
= XNEW (struct undo
);
788 buf
->kind
= UNDO_MODE
;
790 buf
->old_contents
.m
= oldval
;
791 adjust_reg_mode (*into
, newval
);
793 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
796 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
799 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
802 do_SUBST_LINK (struct insn_link
**into
, struct insn_link
*newval
)
805 struct insn_link
* oldval
= *into
;
807 if (oldval
== newval
)
811 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
813 buf
= XNEW (struct undo
);
815 buf
->kind
= UNDO_LINKS
;
817 buf
->old_contents
.l
= oldval
;
820 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
823 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
826 /* Subroutine of try_combine. Determine whether the replacement patterns
827 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
828 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
829 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
830 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
831 of all the instructions can be estimated and the replacements are more
832 expensive than the original sequence. */
835 combine_validate_cost (rtx i0
, rtx i1
, rtx i2
, rtx i3
, rtx newpat
,
836 rtx newi2pat
, rtx newotherpat
)
838 int i0_cost
, i1_cost
, i2_cost
, i3_cost
;
839 int new_i2_cost
, new_i3_cost
;
840 int old_cost
, new_cost
;
842 /* Lookup the original insn_rtx_costs. */
843 i2_cost
= INSN_COST (i2
);
844 i3_cost
= INSN_COST (i3
);
848 i1_cost
= INSN_COST (i1
);
851 i0_cost
= INSN_COST (i0
);
852 old_cost
= (i0_cost
> 0 && i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
853 ? i0_cost
+ i1_cost
+ i2_cost
+ i3_cost
: 0);
857 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
858 ? i1_cost
+ i2_cost
+ i3_cost
: 0);
864 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
865 i1_cost
= i0_cost
= 0;
868 /* Calculate the replacement insn_rtx_costs. */
869 new_i3_cost
= insn_rtx_cost (newpat
, optimize_this_for_speed_p
);
872 new_i2_cost
= insn_rtx_cost (newi2pat
, optimize_this_for_speed_p
);
873 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
874 ? new_i2_cost
+ new_i3_cost
: 0;
878 new_cost
= new_i3_cost
;
882 if (undobuf
.other_insn
)
884 int old_other_cost
, new_other_cost
;
886 old_other_cost
= INSN_COST (undobuf
.other_insn
);
887 new_other_cost
= insn_rtx_cost (newotherpat
, optimize_this_for_speed_p
);
888 if (old_other_cost
> 0 && new_other_cost
> 0)
890 old_cost
+= old_other_cost
;
891 new_cost
+= new_other_cost
;
897 /* Disallow this combination if both new_cost and old_cost are greater than
898 zero, and new_cost is greater than old cost. */
899 if (old_cost
> 0 && new_cost
> old_cost
)
906 "rejecting combination of insns %d, %d, %d and %d\n",
907 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
),
909 fprintf (dump_file
, "original costs %d + %d + %d + %d = %d\n",
910 i0_cost
, i1_cost
, i2_cost
, i3_cost
, old_cost
);
915 "rejecting combination of insns %d, %d and %d\n",
916 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
917 fprintf (dump_file
, "original costs %d + %d + %d = %d\n",
918 i1_cost
, i2_cost
, i3_cost
, old_cost
);
923 "rejecting combination of insns %d and %d\n",
924 INSN_UID (i2
), INSN_UID (i3
));
925 fprintf (dump_file
, "original costs %d + %d = %d\n",
926 i2_cost
, i3_cost
, old_cost
);
931 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
932 new_i2_cost
, new_i3_cost
, new_cost
);
935 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
941 /* Update the uid_insn_cost array with the replacement costs. */
942 INSN_COST (i2
) = new_i2_cost
;
943 INSN_COST (i3
) = new_i3_cost
;
955 /* Delete any insns that copy a register to itself. */
958 delete_noop_moves (void)
963 FOR_EACH_BB_FN (bb
, cfun
)
965 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
967 next
= NEXT_INSN (insn
);
968 if (INSN_P (insn
) && noop_move_p (insn
))
971 fprintf (dump_file
, "deleting noop move %d\n", INSN_UID (insn
));
973 delete_insn_and_edges (insn
);
980 /* Fill in log links field for all insns. */
983 create_log_links (void)
987 df_ref
*def_vec
, *use_vec
;
989 next_use
= XCNEWVEC (rtx
, max_reg_num ());
991 /* Pass through each block from the end, recording the uses of each
992 register and establishing log links when def is encountered.
993 Note that we do not clear next_use array in order to save time,
994 so we have to test whether the use is in the same basic block as def.
996 There are a few cases below when we do not consider the definition or
997 usage -- these are taken from original flow.c did. Don't ask me why it is
998 done this way; I don't know and if it works, I don't want to know. */
1000 FOR_EACH_BB_FN (bb
, cfun
)
1002 FOR_BB_INSNS_REVERSE (bb
, insn
)
1004 if (!NONDEBUG_INSN_P (insn
))
1007 /* Log links are created only once. */
1008 gcc_assert (!LOG_LINKS (insn
));
1010 for (def_vec
= DF_INSN_DEFS (insn
); *def_vec
; def_vec
++)
1012 df_ref def
= *def_vec
;
1013 int regno
= DF_REF_REGNO (def
);
1016 if (!next_use
[regno
])
1019 /* Do not consider if it is pre/post modification in MEM. */
1020 if (DF_REF_FLAGS (def
) & DF_REF_PRE_POST_MODIFY
)
1023 /* Do not make the log link for frame pointer. */
1024 if ((regno
== FRAME_POINTER_REGNUM
1025 && (! reload_completed
|| frame_pointer_needed
))
1026 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1027 || (regno
== HARD_FRAME_POINTER_REGNUM
1028 && (! reload_completed
|| frame_pointer_needed
))
1030 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1031 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
1036 use_insn
= next_use
[regno
];
1037 if (BLOCK_FOR_INSN (use_insn
) == bb
)
1041 We don't build a LOG_LINK for hard registers contained
1042 in ASM_OPERANDs. If these registers get replaced,
1043 we might wind up changing the semantics of the insn,
1044 even if reload can make what appear to be valid
1045 assignments later. */
1046 if (regno
>= FIRST_PSEUDO_REGISTER
1047 || asm_noperands (PATTERN (use_insn
)) < 0)
1049 /* Don't add duplicate links between instructions. */
1050 struct insn_link
*links
;
1051 FOR_EACH_LOG_LINK (links
, use_insn
)
1052 if (insn
== links
->insn
)
1056 LOG_LINKS (use_insn
)
1057 = alloc_insn_link (insn
, LOG_LINKS (use_insn
));
1060 next_use
[regno
] = NULL_RTX
;
1063 for (use_vec
= DF_INSN_USES (insn
); *use_vec
; use_vec
++)
1065 df_ref use
= *use_vec
;
1066 int regno
= DF_REF_REGNO (use
);
1068 /* Do not consider the usage of the stack pointer
1069 by function call. */
1070 if (DF_REF_FLAGS (use
) & DF_REF_CALL_STACK_USAGE
)
1073 next_use
[regno
] = insn
;
1081 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1082 true if we found a LOG_LINK that proves that A feeds B. This only works
1083 if there are no instructions between A and B which could have a link
1084 depending on A, since in that case we would not record a link for B.
1085 We also check the implicit dependency created by a cc0 setter/user
1089 insn_a_feeds_b (rtx a
, rtx b
)
1091 struct insn_link
*links
;
1092 FOR_EACH_LOG_LINK (links
, b
)
1093 if (links
->insn
== a
)
1102 /* Main entry point for combiner. F is the first insn of the function.
1103 NREGS is the first unused pseudo-reg number.
1105 Return nonzero if the combiner has turned an indirect jump
1106 instruction into a direct jump. */
1108 combine_instructions (rtx f
, unsigned int nregs
)
1114 struct insn_link
*links
, *nextlinks
;
1116 basic_block last_bb
;
1118 int new_direct_jump_p
= 0;
1120 for (first
= f
; first
&& !INSN_P (first
); )
1121 first
= NEXT_INSN (first
);
1125 combine_attempts
= 0;
1128 combine_successes
= 0;
1130 rtl_hooks
= combine_rtl_hooks
;
1132 reg_stat
.safe_grow_cleared (nregs
);
1134 init_recog_no_volatile ();
1136 /* Allocate array for insn info. */
1137 max_uid_known
= get_max_uid ();
1138 uid_log_links
= XCNEWVEC (struct insn_link
*, max_uid_known
+ 1);
1139 uid_insn_cost
= XCNEWVEC (int, max_uid_known
+ 1);
1140 gcc_obstack_init (&insn_link_obstack
);
1142 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1144 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1145 problems when, for example, we have j <<= 1 in a loop. */
1147 nonzero_sign_valid
= 0;
1148 label_tick
= label_tick_ebb_start
= 1;
1150 /* Scan all SETs and see if we can deduce anything about what
1151 bits are known to be zero for some registers and how many copies
1152 of the sign bit are known to exist for those registers.
1154 Also set any known values so that we can use it while searching
1155 for what bits are known to be set. */
1157 setup_incoming_promotions (first
);
1158 /* Allow the entry block and the first block to fall into the same EBB.
1159 Conceptually the incoming promotions are assigned to the entry block. */
1160 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1162 create_log_links ();
1163 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1165 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1170 if (!single_pred_p (this_basic_block
)
1171 || single_pred (this_basic_block
) != last_bb
)
1172 label_tick_ebb_start
= label_tick
;
1173 last_bb
= this_basic_block
;
1175 FOR_BB_INSNS (this_basic_block
, insn
)
1176 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
))
1182 subst_low_luid
= DF_INSN_LUID (insn
);
1185 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
1187 record_dead_and_set_regs (insn
);
1190 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
1191 if (REG_NOTE_KIND (links
) == REG_INC
)
1192 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
1196 /* Record the current insn_rtx_cost of this instruction. */
1197 if (NONJUMP_INSN_P (insn
))
1198 INSN_COST (insn
) = insn_rtx_cost (PATTERN (insn
),
1199 optimize_this_for_speed_p
);
1201 fprintf (dump_file
, "insn_cost %d: %d\n",
1202 INSN_UID (insn
), INSN_COST (insn
));
1206 nonzero_sign_valid
= 1;
1208 /* Now scan all the insns in forward order. */
1209 label_tick
= label_tick_ebb_start
= 1;
1211 setup_incoming_promotions (first
);
1212 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1214 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1216 rtx last_combined_insn
= NULL_RTX
;
1217 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1222 if (!single_pred_p (this_basic_block
)
1223 || single_pred (this_basic_block
) != last_bb
)
1224 label_tick_ebb_start
= label_tick
;
1225 last_bb
= this_basic_block
;
1227 rtl_profile_for_bb (this_basic_block
);
1228 for (insn
= BB_HEAD (this_basic_block
);
1229 insn
!= NEXT_INSN (BB_END (this_basic_block
));
1230 insn
= next
? next
: NEXT_INSN (insn
))
1233 if (NONDEBUG_INSN_P (insn
))
1235 while (last_combined_insn
1236 && INSN_DELETED_P (last_combined_insn
))
1237 last_combined_insn
= PREV_INSN (last_combined_insn
);
1238 if (last_combined_insn
== NULL_RTX
1239 || BARRIER_P (last_combined_insn
)
1240 || BLOCK_FOR_INSN (last_combined_insn
) != this_basic_block
1241 || DF_INSN_LUID (last_combined_insn
) <= DF_INSN_LUID (insn
))
1242 last_combined_insn
= insn
;
1244 /* See if we know about function return values before this
1245 insn based upon SUBREG flags. */
1246 check_promoted_subreg (insn
, PATTERN (insn
));
1248 /* See if we can find hardregs and subreg of pseudos in
1249 narrower modes. This could help turning TRUNCATEs
1251 note_uses (&PATTERN (insn
), record_truncated_values
, NULL
);
1253 /* Try this insn with each insn it links back to. */
1255 FOR_EACH_LOG_LINK (links
, insn
)
1256 if ((next
= try_combine (insn
, links
->insn
, NULL_RTX
,
1257 NULL_RTX
, &new_direct_jump_p
,
1258 last_combined_insn
)) != 0)
1261 /* Try each sequence of three linked insns ending with this one. */
1263 FOR_EACH_LOG_LINK (links
, insn
)
1265 rtx link
= links
->insn
;
1267 /* If the linked insn has been replaced by a note, then there
1268 is no point in pursuing this chain any further. */
1272 FOR_EACH_LOG_LINK (nextlinks
, link
)
1273 if ((next
= try_combine (insn
, link
, nextlinks
->insn
,
1274 NULL_RTX
, &new_direct_jump_p
,
1275 last_combined_insn
)) != 0)
1280 /* Try to combine a jump insn that uses CC0
1281 with a preceding insn that sets CC0, and maybe with its
1282 logical predecessor as well.
1283 This is how we make decrement-and-branch insns.
1284 We need this special code because data flow connections
1285 via CC0 do not get entered in LOG_LINKS. */
1288 && (prev
= prev_nonnote_insn (insn
)) != 0
1289 && NONJUMP_INSN_P (prev
)
1290 && sets_cc0_p (PATTERN (prev
)))
1292 if ((next
= try_combine (insn
, prev
, NULL_RTX
, NULL_RTX
,
1294 last_combined_insn
)) != 0)
1297 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1298 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1299 NULL_RTX
, &new_direct_jump_p
,
1300 last_combined_insn
)) != 0)
1304 /* Do the same for an insn that explicitly references CC0. */
1305 if (NONJUMP_INSN_P (insn
)
1306 && (prev
= prev_nonnote_insn (insn
)) != 0
1307 && NONJUMP_INSN_P (prev
)
1308 && sets_cc0_p (PATTERN (prev
))
1309 && GET_CODE (PATTERN (insn
)) == SET
1310 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
1312 if ((next
= try_combine (insn
, prev
, NULL_RTX
, NULL_RTX
,
1314 last_combined_insn
)) != 0)
1317 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1318 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1319 NULL_RTX
, &new_direct_jump_p
,
1320 last_combined_insn
)) != 0)
1324 /* Finally, see if any of the insns that this insn links to
1325 explicitly references CC0. If so, try this insn, that insn,
1326 and its predecessor if it sets CC0. */
1327 FOR_EACH_LOG_LINK (links
, insn
)
1328 if (NONJUMP_INSN_P (links
->insn
)
1329 && GET_CODE (PATTERN (links
->insn
)) == SET
1330 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (links
->insn
)))
1331 && (prev
= prev_nonnote_insn (links
->insn
)) != 0
1332 && NONJUMP_INSN_P (prev
)
1333 && sets_cc0_p (PATTERN (prev
))
1334 && (next
= try_combine (insn
, links
->insn
,
1335 prev
, NULL_RTX
, &new_direct_jump_p
,
1336 last_combined_insn
)) != 0)
1340 /* Try combining an insn with two different insns whose results it
1342 FOR_EACH_LOG_LINK (links
, insn
)
1343 for (nextlinks
= links
->next
; nextlinks
;
1344 nextlinks
= nextlinks
->next
)
1345 if ((next
= try_combine (insn
, links
->insn
,
1346 nextlinks
->insn
, NULL_RTX
,
1348 last_combined_insn
)) != 0)
1351 /* Try four-instruction combinations. */
1352 FOR_EACH_LOG_LINK (links
, insn
)
1354 struct insn_link
*next1
;
1355 rtx link
= links
->insn
;
1357 /* If the linked insn has been replaced by a note, then there
1358 is no point in pursuing this chain any further. */
1362 FOR_EACH_LOG_LINK (next1
, link
)
1364 rtx link1
= next1
->insn
;
1367 /* I0 -> I1 -> I2 -> I3. */
1368 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1369 if ((next
= try_combine (insn
, link
, link1
,
1372 last_combined_insn
)) != 0)
1374 /* I0, I1 -> I2, I2 -> I3. */
1375 for (nextlinks
= next1
->next
; nextlinks
;
1376 nextlinks
= nextlinks
->next
)
1377 if ((next
= try_combine (insn
, link
, link1
,
1380 last_combined_insn
)) != 0)
1384 for (next1
= links
->next
; next1
; next1
= next1
->next
)
1386 rtx link1
= next1
->insn
;
1389 /* I0 -> I2; I1, I2 -> I3. */
1390 FOR_EACH_LOG_LINK (nextlinks
, link
)
1391 if ((next
= try_combine (insn
, link
, link1
,
1394 last_combined_insn
)) != 0)
1396 /* I0 -> I1; I1, I2 -> I3. */
1397 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1398 if ((next
= try_combine (insn
, link
, link1
,
1401 last_combined_insn
)) != 0)
1406 /* Try this insn with each REG_EQUAL note it links back to. */
1407 FOR_EACH_LOG_LINK (links
, insn
)
1410 rtx temp
= links
->insn
;
1411 if ((set
= single_set (temp
)) != 0
1412 && (note
= find_reg_equal_equiv_note (temp
)) != 0
1413 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
1414 /* Avoid using a register that may already been marked
1415 dead by an earlier instruction. */
1416 && ! unmentioned_reg_p (note
, SET_SRC (set
))
1417 && (GET_MODE (note
) == VOIDmode
1418 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
1419 : GET_MODE (SET_DEST (set
)) == GET_MODE (note
)))
1421 /* Temporarily replace the set's source with the
1422 contents of the REG_EQUAL note. The insn will
1423 be deleted or recognized by try_combine. */
1424 rtx orig
= SET_SRC (set
);
1425 SET_SRC (set
) = note
;
1427 i2mod_old_rhs
= copy_rtx (orig
);
1428 i2mod_new_rhs
= copy_rtx (note
);
1429 next
= try_combine (insn
, i2mod
, NULL_RTX
, NULL_RTX
,
1431 last_combined_insn
);
1435 SET_SRC (set
) = orig
;
1440 record_dead_and_set_regs (insn
);
1448 default_rtl_profile ();
1450 new_direct_jump_p
|= purge_all_dead_edges ();
1451 delete_noop_moves ();
1454 obstack_free (&insn_link_obstack
, NULL
);
1455 free (uid_log_links
);
1456 free (uid_insn_cost
);
1457 reg_stat
.release ();
1460 struct undo
*undo
, *next
;
1461 for (undo
= undobuf
.frees
; undo
; undo
= next
)
1469 total_attempts
+= combine_attempts
;
1470 total_merges
+= combine_merges
;
1471 total_extras
+= combine_extras
;
1472 total_successes
+= combine_successes
;
1474 nonzero_sign_valid
= 0;
1475 rtl_hooks
= general_rtl_hooks
;
1477 /* Make recognizer allow volatile MEMs again. */
1480 return new_direct_jump_p
;
1483 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1486 init_reg_last (void)
1491 FOR_EACH_VEC_ELT (reg_stat
, i
, p
)
1492 memset (p
, 0, offsetof (reg_stat_type
, sign_bit_copies
));
1495 /* Set up any promoted values for incoming argument registers. */
1498 setup_incoming_promotions (rtx first
)
1501 bool strictly_local
= false;
1503 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
1504 arg
= DECL_CHAIN (arg
))
1506 rtx x
, reg
= DECL_INCOMING_RTL (arg
);
1508 enum machine_mode mode1
, mode2
, mode3
, mode4
;
1510 /* Only continue if the incoming argument is in a register. */
1514 /* Determine, if possible, whether all call sites of the current
1515 function lie within the current compilation unit. (This does
1516 take into account the exporting of a function via taking its
1517 address, and so forth.) */
1518 strictly_local
= cgraph_local_info (current_function_decl
)->local
;
1520 /* The mode and signedness of the argument before any promotions happen
1521 (equal to the mode of the pseudo holding it at that stage). */
1522 mode1
= TYPE_MODE (TREE_TYPE (arg
));
1523 uns1
= TYPE_UNSIGNED (TREE_TYPE (arg
));
1525 /* The mode and signedness of the argument after any source language and
1526 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1527 mode2
= TYPE_MODE (DECL_ARG_TYPE (arg
));
1528 uns3
= TYPE_UNSIGNED (DECL_ARG_TYPE (arg
));
1530 /* The mode and signedness of the argument as it is actually passed,
1531 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1532 mode3
= promote_function_mode (DECL_ARG_TYPE (arg
), mode2
, &uns3
,
1533 TREE_TYPE (cfun
->decl
), 0);
1535 /* The mode of the register in which the argument is being passed. */
1536 mode4
= GET_MODE (reg
);
1538 /* Eliminate sign extensions in the callee when:
1539 (a) A mode promotion has occurred; */
1542 /* (b) The mode of the register is the same as the mode of
1543 the argument as it is passed; */
1546 /* (c) There's no language level extension; */
1549 /* (c.1) All callers are from the current compilation unit. If that's
1550 the case we don't have to rely on an ABI, we only have to know
1551 what we're generating right now, and we know that we will do the
1552 mode1 to mode2 promotion with the given sign. */
1553 else if (!strictly_local
)
1555 /* (c.2) The combination of the two promotions is useful. This is
1556 true when the signs match, or if the first promotion is unsigned.
1557 In the later case, (sign_extend (zero_extend x)) is the same as
1558 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1564 /* Record that the value was promoted from mode1 to mode3,
1565 so that any sign extension at the head of the current
1566 function may be eliminated. */
1567 x
= gen_rtx_CLOBBER (mode1
, const0_rtx
);
1568 x
= gen_rtx_fmt_e ((uns3
? ZERO_EXTEND
: SIGN_EXTEND
), mode3
, x
);
1569 record_value_for_reg (reg
, first
, x
);
1573 /* Called via note_stores. If X is a pseudo that is narrower than
1574 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1576 If we are setting only a portion of X and we can't figure out what
1577 portion, assume all bits will be used since we don't know what will
1580 Similarly, set how many bits of X are known to be copies of the sign bit
1581 at all locations in the function. This is the smallest number implied
1585 set_nonzero_bits_and_sign_copies (rtx x
, const_rtx set
, void *data
)
1587 rtx insn
= (rtx
) data
;
1591 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1592 /* If this register is undefined at the start of the file, we can't
1593 say what its contents were. */
1594 && ! REGNO_REG_SET_P
1595 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), REGNO (x
))
1596 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
)))
1598 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
1600 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1602 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1603 rsp
->sign_bit_copies
= 1;
1607 /* If this register is being initialized using itself, and the
1608 register is uninitialized in this basic block, and there are
1609 no LOG_LINKS which set the register, then part of the
1610 register is uninitialized. In that case we can't assume
1611 anything about the number of nonzero bits.
1613 ??? We could do better if we checked this in
1614 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1615 could avoid making assumptions about the insn which initially
1616 sets the register, while still using the information in other
1617 insns. We would have to be careful to check every insn
1618 involved in the combination. */
1621 && reg_referenced_p (x
, PATTERN (insn
))
1622 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn
)),
1625 struct insn_link
*link
;
1627 FOR_EACH_LOG_LINK (link
, insn
)
1628 if (dead_or_set_p (link
->insn
, x
))
1632 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1633 rsp
->sign_bit_copies
= 1;
1638 /* If this is a complex assignment, see if we can convert it into a
1639 simple assignment. */
1640 set
= expand_field_assignment (set
);
1642 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1643 set what we know about X. */
1645 if (SET_DEST (set
) == x
1646 || (paradoxical_subreg_p (SET_DEST (set
))
1647 && SUBREG_REG (SET_DEST (set
)) == x
))
1649 rtx src
= SET_SRC (set
);
1651 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1652 /* If X is narrower than a word and SRC is a non-negative
1653 constant that would appear negative in the mode of X,
1654 sign-extend it for use in reg_stat[].nonzero_bits because some
1655 machines (maybe most) will actually do the sign-extension
1656 and this is the conservative approach.
1658 ??? For 2.5, try to tighten up the MD files in this regard
1659 instead of this kludge. */
1661 if (GET_MODE_PRECISION (GET_MODE (x
)) < BITS_PER_WORD
1662 && CONST_INT_P (src
)
1664 && val_signbit_known_set_p (GET_MODE (x
), INTVAL (src
)))
1665 src
= GEN_INT (INTVAL (src
) | ~GET_MODE_MASK (GET_MODE (x
)));
1668 /* Don't call nonzero_bits if it cannot change anything. */
1669 if (rsp
->nonzero_bits
!= ~(unsigned HOST_WIDE_INT
) 0)
1670 rsp
->nonzero_bits
|= nonzero_bits (src
, nonzero_bits_mode
);
1671 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1672 if (rsp
->sign_bit_copies
== 0
1673 || rsp
->sign_bit_copies
> num
)
1674 rsp
->sign_bit_copies
= num
;
1678 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1679 rsp
->sign_bit_copies
= 1;
1684 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1685 optionally insns that were previously combined into I3 or that will be
1686 combined into the merger of INSN and I3. The order is PRED, PRED2,
1687 INSN, SUCC, SUCC2, I3.
1689 Return 0 if the combination is not allowed for any reason.
1691 If the combination is allowed, *PDEST will be set to the single
1692 destination of INSN and *PSRC to the single source, and this function
1696 can_combine_p (rtx insn
, rtx i3
, rtx pred ATTRIBUTE_UNUSED
,
1697 rtx pred2 ATTRIBUTE_UNUSED
, rtx succ
, rtx succ2
,
1698 rtx
*pdest
, rtx
*psrc
)
1707 bool all_adjacent
= true;
1708 int (*is_volatile_p
) (const_rtx
);
1714 if (next_active_insn (succ2
) != i3
)
1715 all_adjacent
= false;
1716 if (next_active_insn (succ
) != succ2
)
1717 all_adjacent
= false;
1719 else if (next_active_insn (succ
) != i3
)
1720 all_adjacent
= false;
1721 if (next_active_insn (insn
) != succ
)
1722 all_adjacent
= false;
1724 else if (next_active_insn (insn
) != i3
)
1725 all_adjacent
= false;
1727 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1728 or a PARALLEL consisting of such a SET and CLOBBERs.
1730 If INSN has CLOBBER parallel parts, ignore them for our processing.
1731 By definition, these happen during the execution of the insn. When it
1732 is merged with another insn, all bets are off. If they are, in fact,
1733 needed and aren't also supplied in I3, they may be added by
1734 recog_for_combine. Otherwise, it won't match.
1736 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1739 Get the source and destination of INSN. If more than one, can't
1742 if (GET_CODE (PATTERN (insn
)) == SET
)
1743 set
= PATTERN (insn
);
1744 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1745 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1747 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1749 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1751 switch (GET_CODE (elt
))
1753 /* This is important to combine floating point insns
1754 for the SH4 port. */
1756 /* Combining an isolated USE doesn't make sense.
1757 We depend here on combinable_i3pat to reject them. */
1758 /* The code below this loop only verifies that the inputs of
1759 the SET in INSN do not change. We call reg_set_between_p
1760 to verify that the REG in the USE does not change between
1762 If the USE in INSN was for a pseudo register, the matching
1763 insn pattern will likely match any register; combining this
1764 with any other USE would only be safe if we knew that the
1765 used registers have identical values, or if there was
1766 something to tell them apart, e.g. different modes. For
1767 now, we forgo such complicated tests and simply disallow
1768 combining of USES of pseudo registers with any other USE. */
1769 if (REG_P (XEXP (elt
, 0))
1770 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1772 rtx i3pat
= PATTERN (i3
);
1773 int i
= XVECLEN (i3pat
, 0) - 1;
1774 unsigned int regno
= REGNO (XEXP (elt
, 0));
1778 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1780 if (GET_CODE (i3elt
) == USE
1781 && REG_P (XEXP (i3elt
, 0))
1782 && (REGNO (XEXP (i3elt
, 0)) == regno
1783 ? reg_set_between_p (XEXP (elt
, 0),
1784 PREV_INSN (insn
), i3
)
1785 : regno
>= FIRST_PSEUDO_REGISTER
))
1792 /* We can ignore CLOBBERs. */
1797 /* Ignore SETs whose result isn't used but not those that
1798 have side-effects. */
1799 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1800 && insn_nothrow_p (insn
)
1801 && !side_effects_p (elt
))
1804 /* If we have already found a SET, this is a second one and
1805 so we cannot combine with this insn. */
1813 /* Anything else means we can't combine. */
1819 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1820 so don't do anything with it. */
1821 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1830 /* The simplification in expand_field_assignment may call back to
1831 get_last_value, so set safe guard here. */
1832 subst_low_luid
= DF_INSN_LUID (insn
);
1834 set
= expand_field_assignment (set
);
1835 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1837 /* Don't eliminate a store in the stack pointer. */
1838 if (dest
== stack_pointer_rtx
1839 /* Don't combine with an insn that sets a register to itself if it has
1840 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1841 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1842 /* Can't merge an ASM_OPERANDS. */
1843 || GET_CODE (src
) == ASM_OPERANDS
1844 /* Can't merge a function call. */
1845 || GET_CODE (src
) == CALL
1846 /* Don't eliminate a function call argument. */
1848 && (find_reg_fusage (i3
, USE
, dest
)
1850 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1851 && global_regs
[REGNO (dest
)])))
1852 /* Don't substitute into an incremented register. */
1853 || FIND_REG_INC_NOTE (i3
, dest
)
1854 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1855 || (succ2
&& FIND_REG_INC_NOTE (succ2
, dest
))
1856 /* Don't substitute into a non-local goto, this confuses CFG. */
1857 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1858 /* Make sure that DEST is not used after SUCC but before I3. */
1861 && (reg_used_between_p (dest
, succ2
, i3
)
1862 || reg_used_between_p (dest
, succ
, succ2
)))
1863 || (!succ2
&& succ
&& reg_used_between_p (dest
, succ
, i3
))))
1864 /* Make sure that the value that is to be substituted for the register
1865 does not use any registers whose values alter in between. However,
1866 If the insns are adjacent, a use can't cross a set even though we
1867 think it might (this can happen for a sequence of insns each setting
1868 the same destination; last_set of that register might point to
1869 a NOTE). If INSN has a REG_EQUIV note, the register is always
1870 equivalent to the memory so the substitution is valid even if there
1871 are intervening stores. Also, don't move a volatile asm or
1872 UNSPEC_VOLATILE across any other insns. */
1875 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1876 && use_crosses_set_p (src
, DF_INSN_LUID (insn
)))
1877 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1878 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1879 /* Don't combine across a CALL_INSN, because that would possibly
1880 change whether the life span of some REGs crosses calls or not,
1881 and it is a pain to update that information.
1882 Exception: if source is a constant, moving it later can't hurt.
1883 Accept that as a special case. */
1884 || (DF_INSN_LUID (insn
) < last_call_luid
&& ! CONSTANT_P (src
)))
1887 /* DEST must either be a REG or CC0. */
1890 /* If register alignment is being enforced for multi-word items in all
1891 cases except for parameters, it is possible to have a register copy
1892 insn referencing a hard register that is not allowed to contain the
1893 mode being copied and which would not be valid as an operand of most
1894 insns. Eliminate this problem by not combining with such an insn.
1896 Also, on some machines we don't want to extend the life of a hard
1900 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1901 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
1902 /* Don't extend the life of a hard register unless it is
1903 user variable (if we have few registers) or it can't
1904 fit into the desired register (meaning something special
1906 Also avoid substituting a return register into I3, because
1907 reload can't handle a conflict with constraints of other
1909 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1910 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
1913 else if (GET_CODE (dest
) != CC0
)
1917 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1918 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1919 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
1921 /* Don't substitute for a register intended as a clobberable
1923 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
1924 if (rtx_equal_p (reg
, dest
))
1927 /* If the clobber represents an earlyclobber operand, we must not
1928 substitute an expression containing the clobbered register.
1929 As we do not analyze the constraint strings here, we have to
1930 make the conservative assumption. However, if the register is
1931 a fixed hard reg, the clobber cannot represent any operand;
1932 we leave it up to the machine description to either accept or
1933 reject use-and-clobber patterns. */
1935 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1936 || !fixed_regs
[REGNO (reg
)])
1937 if (reg_overlap_mentioned_p (reg
, src
))
1941 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1942 or not), reject, unless nothing volatile comes between it and I3 */
1944 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1946 /* Make sure neither succ nor succ2 contains a volatile reference. */
1947 if (succ2
!= 0 && volatile_refs_p (PATTERN (succ2
)))
1949 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1951 /* We'll check insns between INSN and I3 below. */
1954 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1955 to be an explicit register variable, and was chosen for a reason. */
1957 if (GET_CODE (src
) == ASM_OPERANDS
1958 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
1961 /* If INSN contains volatile references (specifically volatile MEMs),
1962 we cannot combine across any other volatile references.
1963 Even if INSN doesn't contain volatile references, any intervening
1964 volatile insn might affect machine state. */
1966 is_volatile_p
= volatile_refs_p (PATTERN (insn
))
1970 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
1971 if (INSN_P (p
) && p
!= succ
&& p
!= succ2
&& is_volatile_p (PATTERN (p
)))
1974 /* If INSN contains an autoincrement or autodecrement, make sure that
1975 register is not used between there and I3, and not already used in
1976 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1977 Also insist that I3 not be a jump; if it were one
1978 and the incremented register were spilled, we would lose. */
1981 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
1982 if (REG_NOTE_KIND (link
) == REG_INC
1984 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
1985 || (pred
!= NULL_RTX
1986 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
1987 || (pred2
!= NULL_RTX
1988 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred2
)))
1989 || (succ
!= NULL_RTX
1990 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
1991 || (succ2
!= NULL_RTX
1992 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ2
)))
1993 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
1998 /* Don't combine an insn that follows a CC0-setting insn.
1999 An insn that uses CC0 must not be separated from the one that sets it.
2000 We do, however, allow I2 to follow a CC0-setting insn if that insn
2001 is passed as I1; in that case it will be deleted also.
2002 We also allow combining in this case if all the insns are adjacent
2003 because that would leave the two CC0 insns adjacent as well.
2004 It would be more logical to test whether CC0 occurs inside I1 or I2,
2005 but that would be much slower, and this ought to be equivalent. */
2007 p
= prev_nonnote_insn (insn
);
2008 if (p
&& p
!= pred
&& NONJUMP_INSN_P (p
) && sets_cc0_p (PATTERN (p
))
2013 /* If we get here, we have passed all the tests and the combination is
2022 /* LOC is the location within I3 that contains its pattern or the component
2023 of a PARALLEL of the pattern. We validate that it is valid for combining.
2025 One problem is if I3 modifies its output, as opposed to replacing it
2026 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2027 doing so would produce an insn that is not equivalent to the original insns.
2031 (set (reg:DI 101) (reg:DI 100))
2032 (set (subreg:SI (reg:DI 101) 0) <foo>)
2034 This is NOT equivalent to:
2036 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2037 (set (reg:DI 101) (reg:DI 100))])
2039 Not only does this modify 100 (in which case it might still be valid
2040 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2042 We can also run into a problem if I2 sets a register that I1
2043 uses and I1 gets directly substituted into I3 (not via I2). In that
2044 case, we would be getting the wrong value of I2DEST into I3, so we
2045 must reject the combination. This case occurs when I2 and I1 both
2046 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2047 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2048 of a SET must prevent combination from occurring. The same situation
2049 can occur for I0, in which case I0_NOT_IN_SRC is set.
2051 Before doing the above check, we first try to expand a field assignment
2052 into a set of logical operations.
2054 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2055 we place a register that is both set and used within I3. If more than one
2056 such register is detected, we fail.
2058 Return 1 if the combination is valid, zero otherwise. */
2061 combinable_i3pat (rtx i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
, rtx i0dest
,
2062 int i1_not_in_src
, int i0_not_in_src
, rtx
*pi3dest_killed
)
2066 if (GET_CODE (x
) == SET
)
2069 rtx dest
= SET_DEST (set
);
2070 rtx src
= SET_SRC (set
);
2071 rtx inner_dest
= dest
;
2074 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
2075 || GET_CODE (inner_dest
) == SUBREG
2076 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
2077 inner_dest
= XEXP (inner_dest
, 0);
2079 /* Check for the case where I3 modifies its output, as discussed
2080 above. We don't want to prevent pseudos from being combined
2081 into the address of a MEM, so only prevent the combination if
2082 i1 or i2 set the same MEM. */
2083 if ((inner_dest
!= dest
&&
2084 (!MEM_P (inner_dest
)
2085 || rtx_equal_p (i2dest
, inner_dest
)
2086 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
))
2087 || (i0dest
&& rtx_equal_p (i0dest
, inner_dest
)))
2088 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
2089 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))
2090 || (i0dest
&& reg_overlap_mentioned_p (i0dest
, inner_dest
))))
2092 /* This is the same test done in can_combine_p except we can't test
2093 all_adjacent; we don't have to, since this instruction will stay
2094 in place, thus we are not considering increasing the lifetime of
2097 Also, if this insn sets a function argument, combining it with
2098 something that might need a spill could clobber a previous
2099 function argument; the all_adjacent test in can_combine_p also
2100 checks this; here, we do a more specific test for this case. */
2102 || (REG_P (inner_dest
)
2103 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
2104 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
2105 GET_MODE (inner_dest
))))
2106 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
))
2107 || (i0_not_in_src
&& reg_overlap_mentioned_p (i0dest
, src
)))
2110 /* If DEST is used in I3, it is being killed in this insn, so
2111 record that for later. We have to consider paradoxical
2112 subregs here, since they kill the whole register, but we
2113 ignore partial subregs, STRICT_LOW_PART, etc.
2114 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2115 STACK_POINTER_REGNUM, since these are always considered to be
2116 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2118 if (GET_CODE (subdest
) == SUBREG
2119 && (GET_MODE_SIZE (GET_MODE (subdest
))
2120 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest
)))))
2121 subdest
= SUBREG_REG (subdest
);
2124 && reg_referenced_p (subdest
, PATTERN (i3
))
2125 && REGNO (subdest
) != FRAME_POINTER_REGNUM
2126 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2127 && REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
2129 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2130 && (REGNO (subdest
) != ARG_POINTER_REGNUM
2131 || ! fixed_regs
[REGNO (subdest
)])
2133 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
2135 if (*pi3dest_killed
)
2138 *pi3dest_killed
= subdest
;
2142 else if (GET_CODE (x
) == PARALLEL
)
2146 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2147 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
, i0dest
,
2148 i1_not_in_src
, i0_not_in_src
, pi3dest_killed
))
2155 /* Return 1 if X is an arithmetic expression that contains a multiplication
2156 and division. We don't count multiplications by powers of two here. */
2159 contains_muldiv (rtx x
)
2161 switch (GET_CODE (x
))
2163 case MOD
: case DIV
: case UMOD
: case UDIV
:
2167 return ! (CONST_INT_P (XEXP (x
, 1))
2168 && exact_log2 (UINTVAL (XEXP (x
, 1))) >= 0);
2171 return contains_muldiv (XEXP (x
, 0))
2172 || contains_muldiv (XEXP (x
, 1));
2175 return contains_muldiv (XEXP (x
, 0));
2181 /* Determine whether INSN can be used in a combination. Return nonzero if
2182 not. This is used in try_combine to detect early some cases where we
2183 can't perform combinations. */
2186 cant_combine_insn_p (rtx insn
)
2191 /* If this isn't really an insn, we can't do anything.
2192 This can occur when flow deletes an insn that it has merged into an
2193 auto-increment address. */
2194 if (! INSN_P (insn
))
2197 /* Never combine loads and stores involving hard regs that are likely
2198 to be spilled. The register allocator can usually handle such
2199 reg-reg moves by tying. If we allow the combiner to make
2200 substitutions of likely-spilled regs, reload might die.
2201 As an exception, we allow combinations involving fixed regs; these are
2202 not available to the register allocator so there's no risk involved. */
2204 set
= single_set (insn
);
2207 src
= SET_SRC (set
);
2208 dest
= SET_DEST (set
);
2209 if (GET_CODE (src
) == SUBREG
)
2210 src
= SUBREG_REG (src
);
2211 if (GET_CODE (dest
) == SUBREG
)
2212 dest
= SUBREG_REG (dest
);
2213 if (REG_P (src
) && REG_P (dest
)
2214 && ((HARD_REGISTER_P (src
)
2215 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
))
2216 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src
))))
2217 || (HARD_REGISTER_P (dest
)
2218 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (dest
))
2219 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest
))))))
2225 struct likely_spilled_retval_info
2227 unsigned regno
, nregs
;
2231 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2232 hard registers that are known to be written to / clobbered in full. */
2234 likely_spilled_retval_1 (rtx x
, const_rtx set
, void *data
)
2236 struct likely_spilled_retval_info
*const info
=
2237 (struct likely_spilled_retval_info
*) data
;
2238 unsigned regno
, nregs
;
2241 if (!REG_P (XEXP (set
, 0)))
2244 if (regno
>= info
->regno
+ info
->nregs
)
2246 nregs
= hard_regno_nregs
[regno
][GET_MODE (x
)];
2247 if (regno
+ nregs
<= info
->regno
)
2249 new_mask
= (2U << (nregs
- 1)) - 1;
2250 if (regno
< info
->regno
)
2251 new_mask
>>= info
->regno
- regno
;
2253 new_mask
<<= regno
- info
->regno
;
2254 info
->mask
&= ~new_mask
;
2257 /* Return nonzero iff part of the return value is live during INSN, and
2258 it is likely spilled. This can happen when more than one insn is needed
2259 to copy the return value, e.g. when we consider to combine into the
2260 second copy insn for a complex value. */
2263 likely_spilled_retval_p (rtx insn
)
2265 rtx use
= BB_END (this_basic_block
);
2267 unsigned regno
, nregs
;
2268 /* We assume here that no machine mode needs more than
2269 32 hard registers when the value overlaps with a register
2270 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2272 struct likely_spilled_retval_info info
;
2274 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
2276 reg
= XEXP (PATTERN (use
), 0);
2277 if (!REG_P (reg
) || !targetm
.calls
.function_value_regno_p (REGNO (reg
)))
2279 regno
= REGNO (reg
);
2280 nregs
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
2283 mask
= (2U << (nregs
- 1)) - 1;
2285 /* Disregard parts of the return value that are set later. */
2289 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
2291 note_stores (PATTERN (p
), likely_spilled_retval_1
, &info
);
2294 /* Check if any of the (probably) live return value registers is
2299 if ((mask
& 1 << nregs
)
2300 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
+ nregs
)))
2306 /* Adjust INSN after we made a change to its destination.
2308 Changing the destination can invalidate notes that say something about
2309 the results of the insn and a LOG_LINK pointing to the insn. */
2312 adjust_for_new_dest (rtx insn
)
2314 /* For notes, be conservative and simply remove them. */
2315 remove_reg_equal_equiv_notes (insn
);
2317 /* The new insn will have a destination that was previously the destination
2318 of an insn just above it. Call distribute_links to make a LOG_LINK from
2319 the next use of that destination. */
2320 distribute_links (alloc_insn_link (insn
, NULL
));
2322 df_insn_rescan (insn
);
2325 /* Return TRUE if combine can reuse reg X in mode MODE.
2326 ADDED_SETS is nonzero if the original set is still required. */
2328 can_change_dest_mode (rtx x
, int added_sets
, enum machine_mode mode
)
2336 /* Allow hard registers if the new mode is legal, and occupies no more
2337 registers than the old mode. */
2338 if (regno
< FIRST_PSEUDO_REGISTER
)
2339 return (HARD_REGNO_MODE_OK (regno
, mode
)
2340 && (hard_regno_nregs
[regno
][GET_MODE (x
)]
2341 >= hard_regno_nregs
[regno
][mode
]));
2343 /* Or a pseudo that is only used once. */
2344 return (REG_N_SETS (regno
) == 1 && !added_sets
2345 && !REG_USERVAR_P (x
));
2349 /* Check whether X, the destination of a set, refers to part of
2350 the register specified by REG. */
2353 reg_subword_p (rtx x
, rtx reg
)
2355 /* Check that reg is an integer mode register. */
2356 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
2359 if (GET_CODE (x
) == STRICT_LOW_PART
2360 || GET_CODE (x
) == ZERO_EXTRACT
)
2363 return GET_CODE (x
) == SUBREG
2364 && SUBREG_REG (x
) == reg
2365 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
2368 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2369 Note that the INSN should be deleted *after* removing dead edges, so
2370 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2371 but not for a (set (pc) (label_ref FOO)). */
2374 update_cfg_for_uncondjump (rtx insn
)
2376 basic_block bb
= BLOCK_FOR_INSN (insn
);
2377 gcc_assert (BB_END (bb
) == insn
);
2379 purge_dead_edges (bb
);
2382 if (EDGE_COUNT (bb
->succs
) == 1)
2386 single_succ_edge (bb
)->flags
|= EDGE_FALLTHRU
;
2388 /* Remove barriers from the footer if there are any. */
2389 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
2390 if (BARRIER_P (insn
))
2392 if (PREV_INSN (insn
))
2393 NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (insn
);
2395 BB_FOOTER (bb
) = NEXT_INSN (insn
);
2396 if (NEXT_INSN (insn
))
2397 PREV_INSN (NEXT_INSN (insn
)) = PREV_INSN (insn
);
2399 else if (LABEL_P (insn
))
2404 /* Try to combine the insns I0, I1 and I2 into I3.
2405 Here I0, I1 and I2 appear earlier than I3.
2406 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2409 If we are combining more than two insns and the resulting insn is not
2410 recognized, try splitting it into two insns. If that happens, I2 and I3
2411 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2412 Otherwise, I0, I1 and I2 are pseudo-deleted.
2414 Return 0 if the combination does not work. Then nothing is changed.
2415 If we did the combination, return the insn at which combine should
2418 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2419 new direct jump instruction.
2421 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2422 been I3 passed to an earlier try_combine within the same basic
2426 try_combine (rtx i3
, rtx i2
, rtx i1
, rtx i0
, int *new_direct_jump_p
,
2427 rtx last_combined_insn
)
2429 /* New patterns for I3 and I2, respectively. */
2430 rtx newpat
, newi2pat
= 0;
2431 rtvec newpat_vec_with_clobbers
= 0;
2432 int substed_i2
= 0, substed_i1
= 0, substed_i0
= 0;
2433 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2435 int added_sets_0
, added_sets_1
, added_sets_2
;
2436 /* Total number of SETs to put into I3. */
2438 /* Nonzero if I2's or I1's body now appears in I3. */
2439 int i2_is_used
= 0, i1_is_used
= 0;
2440 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2441 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
2442 /* Contains I3 if the destination of I3 is used in its source, which means
2443 that the old life of I3 is being killed. If that usage is placed into
2444 I2 and not in I3, a REG_DEAD note must be made. */
2445 rtx i3dest_killed
= 0;
2446 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2447 rtx i2dest
= 0, i2src
= 0, i1dest
= 0, i1src
= 0, i0dest
= 0, i0src
= 0;
2448 /* Copy of SET_SRC of I1 and I0, if needed. */
2449 rtx i1src_copy
= 0, i0src_copy
= 0, i0src_copy2
= 0;
2450 /* Set if I2DEST was reused as a scratch register. */
2451 bool i2scratch
= false;
2452 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2453 rtx i0pat
= 0, i1pat
= 0, i2pat
= 0;
2454 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2455 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
2456 int i0dest_in_i0src
= 0, i1dest_in_i0src
= 0, i2dest_in_i0src
= 0;
2457 int i2dest_killed
= 0, i1dest_killed
= 0, i0dest_killed
= 0;
2458 int i1_feeds_i2_n
= 0, i0_feeds_i2_n
= 0, i0_feeds_i1_n
= 0;
2459 /* Notes that must be added to REG_NOTES in I3 and I2. */
2460 rtx new_i3_notes
, new_i2_notes
;
2461 /* Notes that we substituted I3 into I2 instead of the normal case. */
2462 int i3_subst_into_i2
= 0;
2463 /* Notes that I1, I2 or I3 is a MULT operation. */
2466 int changed_i3_dest
= 0;
2470 struct insn_link
*link
;
2472 rtx new_other_notes
;
2475 /* Only try four-insn combinations when there's high likelihood of
2476 success. Look for simple insns, such as loads of constants or
2477 binary operations involving a constant. */
2484 if (!flag_expensive_optimizations
)
2487 for (i
= 0; i
< 4; i
++)
2489 rtx insn
= i
== 0 ? i0
: i
== 1 ? i1
: i
== 2 ? i2
: i3
;
2490 rtx set
= single_set (insn
);
2494 src
= SET_SRC (set
);
2495 if (CONSTANT_P (src
))
2500 else if (BINARY_P (src
) && CONSTANT_P (XEXP (src
, 1)))
2502 else if (GET_CODE (src
) == ASHIFT
|| GET_CODE (src
) == ASHIFTRT
2503 || GET_CODE (src
) == LSHIFTRT
)
2506 if (ngood
< 2 && nshift
< 2)
2510 /* Exit early if one of the insns involved can't be used for
2512 if (cant_combine_insn_p (i3
)
2513 || cant_combine_insn_p (i2
)
2514 || (i1
&& cant_combine_insn_p (i1
))
2515 || (i0
&& cant_combine_insn_p (i0
))
2516 || likely_spilled_retval_p (i3
))
2520 undobuf
.other_insn
= 0;
2522 /* Reset the hard register usage information. */
2523 CLEAR_HARD_REG_SET (newpat_used_regs
);
2525 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2528 fprintf (dump_file
, "\nTrying %d, %d, %d -> %d:\n",
2529 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2531 fprintf (dump_file
, "\nTrying %d, %d -> %d:\n",
2532 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2534 fprintf (dump_file
, "\nTrying %d -> %d:\n",
2535 INSN_UID (i2
), INSN_UID (i3
));
2538 /* If multiple insns feed into one of I2 or I3, they can be in any
2539 order. To simplify the code below, reorder them in sequence. */
2540 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i2
))
2541 temp
= i2
, i2
= i0
, i0
= temp
;
2542 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i1
))
2543 temp
= i1
, i1
= i0
, i0
= temp
;
2544 if (i1
&& DF_INSN_LUID (i1
) > DF_INSN_LUID (i2
))
2545 temp
= i1
, i1
= i2
, i2
= temp
;
2547 added_links_insn
= 0;
2549 /* First check for one important special case that the code below will
2550 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2551 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2552 we may be able to replace that destination with the destination of I3.
2553 This occurs in the common code where we compute both a quotient and
2554 remainder into a structure, in which case we want to do the computation
2555 directly into the structure to avoid register-register copies.
2557 Note that this case handles both multiple sets in I2 and also cases
2558 where I2 has a number of CLOBBERs inside the PARALLEL.
2560 We make very conservative checks below and only try to handle the
2561 most common cases of this. For example, we only handle the case
2562 where I2 and I3 are adjacent to avoid making difficult register
2565 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
2566 && REG_P (SET_SRC (PATTERN (i3
)))
2567 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
2568 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
2569 && GET_CODE (PATTERN (i2
)) == PARALLEL
2570 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
2571 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2572 below would need to check what is inside (and reg_overlap_mentioned_p
2573 doesn't support those codes anyway). Don't allow those destinations;
2574 the resulting insn isn't likely to be recognized anyway. */
2575 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
2576 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
2577 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
2578 SET_DEST (PATTERN (i3
)))
2579 && next_active_insn (i2
) == i3
)
2581 rtx p2
= PATTERN (i2
);
2583 /* Make sure that the destination of I3,
2584 which we are going to substitute into one output of I2,
2585 is not used within another output of I2. We must avoid making this:
2586 (parallel [(set (mem (reg 69)) ...)
2587 (set (reg 69) ...)])
2588 which is not well-defined as to order of actions.
2589 (Besides, reload can't handle output reloads for this.)
2591 The problem can also happen if the dest of I3 is a memory ref,
2592 if another dest in I2 is an indirect memory ref. */
2593 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2594 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2595 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
2596 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
2597 SET_DEST (XVECEXP (p2
, 0, i
))))
2600 if (i
== XVECLEN (p2
, 0))
2601 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2602 if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2603 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
2608 subst_low_luid
= DF_INSN_LUID (i2
);
2610 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2611 i2src
= SET_SRC (XVECEXP (p2
, 0, i
));
2612 i2dest
= SET_DEST (XVECEXP (p2
, 0, i
));
2613 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2615 /* Replace the dest in I2 with our dest and make the resulting
2616 insn the new pattern for I3. Then skip to where we validate
2617 the pattern. Everything was set up above. */
2618 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)), SET_DEST (PATTERN (i3
)));
2620 i3_subst_into_i2
= 1;
2621 goto validate_replacement
;
2625 /* If I2 is setting a pseudo to a constant and I3 is setting some
2626 sub-part of it to another constant, merge them by making a new
2629 && (temp
= single_set (i2
)) != 0
2630 && CONST_SCALAR_INT_P (SET_SRC (temp
))
2631 && GET_CODE (PATTERN (i3
)) == SET
2632 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3
)))
2633 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp
)))
2635 rtx dest
= SET_DEST (PATTERN (i3
));
2639 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2641 if (CONST_INT_P (XEXP (dest
, 1))
2642 && CONST_INT_P (XEXP (dest
, 2)))
2644 width
= INTVAL (XEXP (dest
, 1));
2645 offset
= INTVAL (XEXP (dest
, 2));
2646 dest
= XEXP (dest
, 0);
2647 if (BITS_BIG_ENDIAN
)
2648 offset
= GET_MODE_PRECISION (GET_MODE (dest
)) - width
- offset
;
2653 if (GET_CODE (dest
) == STRICT_LOW_PART
)
2654 dest
= XEXP (dest
, 0);
2655 width
= GET_MODE_PRECISION (GET_MODE (dest
));
2661 /* If this is the low part, we're done. */
2662 if (subreg_lowpart_p (dest
))
2664 /* Handle the case where inner is twice the size of outer. */
2665 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp
)))
2666 == 2 * GET_MODE_PRECISION (GET_MODE (dest
)))
2667 offset
+= GET_MODE_PRECISION (GET_MODE (dest
));
2668 /* Otherwise give up for now. */
2674 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp
)))
2675 <= HOST_BITS_PER_DOUBLE_INT
))
2678 rtx inner
= SET_SRC (PATTERN (i3
));
2679 rtx outer
= SET_SRC (temp
);
2681 o
= rtx_to_double_int (outer
);
2682 i
= rtx_to_double_int (inner
);
2684 m
= double_int::mask (width
);
2686 m
= m
.llshift (offset
, HOST_BITS_PER_DOUBLE_INT
);
2687 i
= i
.llshift (offset
, HOST_BITS_PER_DOUBLE_INT
);
2688 o
= o
.and_not (m
) | i
;
2692 subst_low_luid
= DF_INSN_LUID (i2
);
2693 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2694 i2dest
= SET_DEST (temp
);
2695 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2697 /* Replace the source in I2 with the new constant and make the
2698 resulting insn the new pattern for I3. Then skip to where we
2699 validate the pattern. Everything was set up above. */
2700 SUBST (SET_SRC (temp
),
2701 immed_double_int_const (o
, GET_MODE (SET_DEST (temp
))));
2703 newpat
= PATTERN (i2
);
2705 /* The dest of I3 has been replaced with the dest of I2. */
2706 changed_i3_dest
= 1;
2707 goto validate_replacement
;
2712 /* If we have no I1 and I2 looks like:
2713 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2715 make up a dummy I1 that is
2718 (set (reg:CC X) (compare:CC Y (const_int 0)))
2720 (We can ignore any trailing CLOBBERs.)
2722 This undoes a previous combination and allows us to match a branch-and-
2725 if (i1
== 0 && GET_CODE (PATTERN (i2
)) == PARALLEL
2726 && XVECLEN (PATTERN (i2
), 0) >= 2
2727 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 0)) == SET
2728 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2730 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2731 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2732 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 1)) == SET
2733 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)))
2734 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2735 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1))))
2737 for (i
= XVECLEN (PATTERN (i2
), 0) - 1; i
>= 2; i
--)
2738 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != CLOBBER
)
2743 /* We make I1 with the same INSN_UID as I2. This gives it
2744 the same DF_INSN_LUID for value tracking. Our fake I1 will
2745 never appear in the insn stream so giving it the same INSN_UID
2746 as I2 will not cause a problem. */
2748 i1
= gen_rtx_INSN (VOIDmode
, INSN_UID (i2
), NULL_RTX
, i2
,
2749 BLOCK_FOR_INSN (i2
), XVECEXP (PATTERN (i2
), 0, 1),
2750 INSN_LOCATION (i2
), -1, NULL_RTX
);
2752 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
2753 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
2754 SET_DEST (PATTERN (i1
)));
2755 SUBST_LINK (LOG_LINKS (i2
), alloc_insn_link (i1
, LOG_LINKS (i2
)));
2760 /* Verify that I2 and I1 are valid for combining. */
2761 if (! can_combine_p (i2
, i3
, i0
, i1
, NULL_RTX
, NULL_RTX
, &i2dest
, &i2src
)
2762 || (i1
&& ! can_combine_p (i1
, i3
, i0
, NULL_RTX
, i2
, NULL_RTX
,
2764 || (i0
&& ! can_combine_p (i0
, i3
, NULL_RTX
, NULL_RTX
, i1
, i2
,
2771 /* Record whether I2DEST is used in I2SRC and similarly for the other
2772 cases. Knowing this will help in register status updating below. */
2773 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
2774 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
2775 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
2776 i0dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i0dest
, i0src
);
2777 i1dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i1dest
, i0src
);
2778 i2dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i2dest
, i0src
);
2779 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2780 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
2781 i0dest_killed
= i0
&& dead_or_set_p (i0
, i0dest
);
2783 /* For the earlier insns, determine which of the subsequent ones they
2785 i1_feeds_i2_n
= i1
&& insn_a_feeds_b (i1
, i2
);
2786 i0_feeds_i1_n
= i0
&& insn_a_feeds_b (i0
, i1
);
2787 i0_feeds_i2_n
= (i0
&& (!i0_feeds_i1_n
? insn_a_feeds_b (i0
, i2
)
2788 : (!reg_overlap_mentioned_p (i1dest
, i0dest
)
2789 && reg_overlap_mentioned_p (i0dest
, i2src
))));
2791 /* Ensure that I3's pattern can be the destination of combines. */
2792 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
, i0dest
,
2793 i1
&& i2dest_in_i1src
&& !i1_feeds_i2_n
,
2794 i0
&& ((i2dest_in_i0src
&& !i0_feeds_i2_n
)
2795 || (i1dest_in_i0src
&& !i0_feeds_i1_n
)),
2802 /* See if any of the insns is a MULT operation. Unless one is, we will
2803 reject a combination that is, since it must be slower. Be conservative
2805 if (GET_CODE (i2src
) == MULT
2806 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
2807 || (i0
!= 0 && GET_CODE (i0src
) == MULT
)
2808 || (GET_CODE (PATTERN (i3
)) == SET
2809 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
2812 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2813 We used to do this EXCEPT in one case: I3 has a post-inc in an
2814 output operand. However, that exception can give rise to insns like
2816 which is a famous insn on the PDP-11 where the value of r3 used as the
2817 source was model-dependent. Avoid this sort of thing. */
2820 if (!(GET_CODE (PATTERN (i3
)) == SET
2821 && REG_P (SET_SRC (PATTERN (i3
)))
2822 && MEM_P (SET_DEST (PATTERN (i3
)))
2823 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
2824 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
2825 /* It's not the exception. */
2830 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
2831 if (REG_NOTE_KIND (link
) == REG_INC
2832 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
2834 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
2842 /* See if the SETs in I1 or I2 need to be kept around in the merged
2843 instruction: whenever the value set there is still needed past I3.
2844 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
2846 For the SET in I1, we have two cases: if I1 and I2 independently feed
2847 into I3, the set in I1 needs to be kept around unless I1DEST dies
2848 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2849 in I1 needs to be kept around unless I1DEST dies or is set in either
2850 I2 or I3. The same considerations apply to I0. */
2852 added_sets_2
= !dead_or_set_p (i3
, i2dest
);
2855 added_sets_1
= !(dead_or_set_p (i3
, i1dest
)
2856 || (i1_feeds_i2_n
&& dead_or_set_p (i2
, i1dest
)));
2861 added_sets_0
= !(dead_or_set_p (i3
, i0dest
)
2862 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
))
2863 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
2864 && dead_or_set_p (i2
, i0dest
)));
2868 /* We are about to copy insns for the case where they need to be kept
2869 around. Check that they can be copied in the merged instruction. */
2871 if (targetm
.cannot_copy_insn_p
2872 && ((added_sets_2
&& targetm
.cannot_copy_insn_p (i2
))
2873 || (i1
&& added_sets_1
&& targetm
.cannot_copy_insn_p (i1
))
2874 || (i0
&& added_sets_0
&& targetm
.cannot_copy_insn_p (i0
))))
2880 /* If the set in I2 needs to be kept around, we must make a copy of
2881 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2882 PATTERN (I2), we are only substituting for the original I1DEST, not into
2883 an already-substituted copy. This also prevents making self-referential
2884 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2889 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
2890 i2pat
= gen_rtx_SET (VOIDmode
, i2dest
, copy_rtx (i2src
));
2892 i2pat
= copy_rtx (PATTERN (i2
));
2897 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
2898 i1pat
= gen_rtx_SET (VOIDmode
, i1dest
, copy_rtx (i1src
));
2900 i1pat
= copy_rtx (PATTERN (i1
));
2905 if (GET_CODE (PATTERN (i0
)) == PARALLEL
)
2906 i0pat
= gen_rtx_SET (VOIDmode
, i0dest
, copy_rtx (i0src
));
2908 i0pat
= copy_rtx (PATTERN (i0
));
2913 /* Substitute in the latest insn for the regs set by the earlier ones. */
2915 maxreg
= max_reg_num ();
2920 /* Many machines that don't use CC0 have insns that can both perform an
2921 arithmetic operation and set the condition code. These operations will
2922 be represented as a PARALLEL with the first element of the vector
2923 being a COMPARE of an arithmetic operation with the constant zero.
2924 The second element of the vector will set some pseudo to the result
2925 of the same arithmetic operation. If we simplify the COMPARE, we won't
2926 match such a pattern and so will generate an extra insn. Here we test
2927 for this case, where both the comparison and the operation result are
2928 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2929 I2SRC. Later we will make the PARALLEL that contains I2. */
2931 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
2932 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
2933 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3
)), 1))
2934 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
2937 rtx
*cc_use_loc
= NULL
, cc_use_insn
= NULL_RTX
;
2938 rtx op0
= i2src
, op1
= XEXP (SET_SRC (PATTERN (i3
)), 1);
2939 enum machine_mode compare_mode
, orig_compare_mode
;
2940 enum rtx_code compare_code
= UNKNOWN
, orig_compare_code
= UNKNOWN
;
2942 newpat
= PATTERN (i3
);
2943 newpat_dest
= SET_DEST (newpat
);
2944 compare_mode
= orig_compare_mode
= GET_MODE (newpat_dest
);
2946 if (undobuf
.other_insn
== 0
2947 && (cc_use_loc
= find_single_use (SET_DEST (newpat
), i3
,
2950 compare_code
= orig_compare_code
= GET_CODE (*cc_use_loc
);
2951 compare_code
= simplify_compare_const (compare_code
,
2953 target_canonicalize_comparison (&compare_code
, &op0
, &op1
, 1);
2956 /* Do the rest only if op1 is const0_rtx, which may be the
2957 result of simplification. */
2958 if (op1
== const0_rtx
)
2960 /* If a single use of the CC is found, prepare to modify it
2961 when SELECT_CC_MODE returns a new CC-class mode, or when
2962 the above simplify_compare_const() returned a new comparison
2963 operator. undobuf.other_insn is assigned the CC use insn
2964 when modifying it. */
2967 #ifdef SELECT_CC_MODE
2968 enum machine_mode new_mode
2969 = SELECT_CC_MODE (compare_code
, op0
, op1
);
2970 if (new_mode
!= orig_compare_mode
2971 && can_change_dest_mode (SET_DEST (newpat
),
2972 added_sets_2
, new_mode
))
2974 unsigned int regno
= REGNO (newpat_dest
);
2975 compare_mode
= new_mode
;
2976 if (regno
< FIRST_PSEUDO_REGISTER
)
2977 newpat_dest
= gen_rtx_REG (compare_mode
, regno
);
2980 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
2981 newpat_dest
= regno_reg_rtx
[regno
];
2985 /* Cases for modifying the CC-using comparison. */
2986 if (compare_code
!= orig_compare_code
2987 /* ??? Do we need to verify the zero rtx? */
2988 && XEXP (*cc_use_loc
, 1) == const0_rtx
)
2990 /* Replace cc_use_loc with entire new RTX. */
2992 gen_rtx_fmt_ee (compare_code
, compare_mode
,
2993 newpat_dest
, const0_rtx
));
2994 undobuf
.other_insn
= cc_use_insn
;
2996 else if (compare_mode
!= orig_compare_mode
)
2998 /* Just replace the CC reg with a new mode. */
2999 SUBST (XEXP (*cc_use_loc
, 0), newpat_dest
);
3000 undobuf
.other_insn
= cc_use_insn
;
3004 /* Now we modify the current newpat:
3005 First, SET_DEST(newpat) is updated if the CC mode has been
3006 altered. For targets without SELECT_CC_MODE, this should be
3008 if (compare_mode
!= orig_compare_mode
)
3009 SUBST (SET_DEST (newpat
), newpat_dest
);
3010 /* This is always done to propagate i2src into newpat. */
3011 SUBST (SET_SRC (newpat
),
3012 gen_rtx_COMPARE (compare_mode
, op0
, op1
));
3013 /* Create new version of i2pat if needed; the below PARALLEL
3014 creation needs this to work correctly. */
3015 if (! rtx_equal_p (i2src
, op0
))
3016 i2pat
= gen_rtx_SET (VOIDmode
, i2dest
, op0
);
3022 if (i2_is_used
== 0)
3024 /* It is possible that the source of I2 or I1 may be performing
3025 an unneeded operation, such as a ZERO_EXTEND of something
3026 that is known to have the high part zero. Handle that case
3027 by letting subst look at the inner insns.
3029 Another way to do this would be to have a function that tries
3030 to simplify a single insn instead of merging two or more
3031 insns. We don't do this because of the potential of infinite
3032 loops and because of the potential extra memory required.
3033 However, doing it the way we are is a bit of a kludge and
3034 doesn't catch all cases.
3036 But only do this if -fexpensive-optimizations since it slows
3037 things down and doesn't usually win.
3039 This is not done in the COMPARE case above because the
3040 unmodified I2PAT is used in the PARALLEL and so a pattern
3041 with a modified I2SRC would not match. */
3043 if (flag_expensive_optimizations
)
3045 /* Pass pc_rtx so no substitutions are done, just
3049 subst_low_luid
= DF_INSN_LUID (i1
);
3050 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3053 subst_low_luid
= DF_INSN_LUID (i2
);
3054 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3057 n_occurrences
= 0; /* `subst' counts here */
3058 subst_low_luid
= DF_INSN_LUID (i2
);
3060 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3061 copy of I2SRC each time we substitute it, in order to avoid creating
3062 self-referential RTL when we will be substituting I1SRC for I1DEST
3063 later. Likewise if I0 feeds into I2, either directly or indirectly
3064 through I1, and I0DEST is in I0SRC. */
3065 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0, 0,
3066 (i1_feeds_i2_n
&& i1dest_in_i1src
)
3067 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3068 && i0dest_in_i0src
));
3071 /* Record whether I2's body now appears within I3's body. */
3072 i2_is_used
= n_occurrences
;
3075 /* If we already got a failure, don't try to do more. Otherwise, try to
3076 substitute I1 if we have it. */
3078 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
3080 /* Check that an autoincrement side-effect on I1 has not been lost.
3081 This happens if I1DEST is mentioned in I2 and dies there, and
3082 has disappeared from the new pattern. */
3083 if ((FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3085 && dead_or_set_p (i2
, i1dest
)
3086 && !reg_overlap_mentioned_p (i1dest
, newpat
))
3087 /* Before we can do this substitution, we must redo the test done
3088 above (see detailed comments there) that ensures I1DEST isn't
3089 mentioned in any SETs in NEWPAT that are field assignments. */
3090 || !combinable_i3pat (NULL_RTX
, &newpat
, i1dest
, NULL_RTX
, NULL_RTX
,
3098 subst_low_luid
= DF_INSN_LUID (i1
);
3100 /* If the following substitution will modify I1SRC, make a copy of it
3101 for the case where it is substituted for I1DEST in I2PAT later. */
3102 if (added_sets_2
&& i1_feeds_i2_n
)
3103 i1src_copy
= copy_rtx (i1src
);
3105 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3106 copy of I1SRC each time we substitute it, in order to avoid creating
3107 self-referential RTL when we will be substituting I0SRC for I0DEST
3109 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0,
3110 i0_feeds_i1_n
&& i0dest_in_i0src
);
3113 /* Record whether I1's body now appears within I3's body. */
3114 i1_is_used
= n_occurrences
;
3117 /* Likewise for I0 if we have it. */
3119 if (i0
&& GET_CODE (newpat
) != CLOBBER
)
3121 if ((FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3122 && ((i0_feeds_i2_n
&& dead_or_set_p (i2
, i0dest
))
3123 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
)))
3124 && !reg_overlap_mentioned_p (i0dest
, newpat
))
3125 || !combinable_i3pat (NULL_RTX
, &newpat
, i0dest
, NULL_RTX
, NULL_RTX
,
3132 /* If the following substitution will modify I0SRC, make a copy of it
3133 for the case where it is substituted for I0DEST in I1PAT later. */
3134 if (added_sets_1
&& i0_feeds_i1_n
)
3135 i0src_copy
= copy_rtx (i0src
);
3136 /* And a copy for I0DEST in I2PAT substitution. */
3137 if (added_sets_2
&& ((i0_feeds_i1_n
&& i1_feeds_i2_n
)
3138 || (i0_feeds_i2_n
)))
3139 i0src_copy2
= copy_rtx (i0src
);
3142 subst_low_luid
= DF_INSN_LUID (i0
);
3143 newpat
= subst (newpat
, i0dest
, i0src
, 0, 0, 0);
3147 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3148 to count all the ways that I2SRC and I1SRC can be used. */
3149 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
3150 && i2_is_used
+ added_sets_2
> 1)
3151 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3152 && (i1_is_used
+ added_sets_1
+ (added_sets_2
&& i1_feeds_i2_n
)
3154 || (i0
!= 0 && FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3155 && (n_occurrences
+ added_sets_0
3156 + (added_sets_1
&& i0_feeds_i1_n
)
3157 + (added_sets_2
&& i0_feeds_i2_n
)
3159 /* Fail if we tried to make a new register. */
3160 || max_reg_num () != maxreg
3161 /* Fail if we couldn't do something and have a CLOBBER. */
3162 || GET_CODE (newpat
) == CLOBBER
3163 /* Fail if this new pattern is a MULT and we didn't have one before
3164 at the outer level. */
3165 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
3172 /* If the actions of the earlier insns must be kept
3173 in addition to substituting them into the latest one,
3174 we must make a new PARALLEL for the latest insn
3175 to hold additional the SETs. */
3177 if (added_sets_0
|| added_sets_1
|| added_sets_2
)
3179 int extra_sets
= added_sets_0
+ added_sets_1
+ added_sets_2
;
3182 if (GET_CODE (newpat
) == PARALLEL
)
3184 rtvec old
= XVEC (newpat
, 0);
3185 total_sets
= XVECLEN (newpat
, 0) + extra_sets
;
3186 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3187 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
3188 sizeof (old
->elem
[0]) * old
->num_elem
);
3193 total_sets
= 1 + extra_sets
;
3194 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3195 XVECEXP (newpat
, 0, 0) = old
;
3199 XVECEXP (newpat
, 0, --total_sets
) = i0pat
;
3205 t
= subst (t
, i0dest
, i0src_copy
? i0src_copy
: i0src
, 0, 0, 0);
3207 XVECEXP (newpat
, 0, --total_sets
) = t
;
3213 t
= subst (t
, i1dest
, i1src_copy
? i1src_copy
: i1src
, 0, 0,
3214 i0_feeds_i1_n
&& i0dest_in_i0src
);
3215 if ((i0_feeds_i1_n
&& i1_feeds_i2_n
) || i0_feeds_i2_n
)
3216 t
= subst (t
, i0dest
, i0src_copy2
? i0src_copy2
: i0src
, 0, 0, 0);
3218 XVECEXP (newpat
, 0, --total_sets
) = t
;
3222 validate_replacement
:
3224 /* Note which hard regs this insn has as inputs. */
3225 mark_used_regs_combine (newpat
);
3227 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3228 consider splitting this pattern, we might need these clobbers. */
3229 if (i1
&& GET_CODE (newpat
) == PARALLEL
3230 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
3232 int len
= XVECLEN (newpat
, 0);
3234 newpat_vec_with_clobbers
= rtvec_alloc (len
);
3235 for (i
= 0; i
< len
; i
++)
3236 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
3239 /* Is the result of combination a valid instruction? */
3240 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3242 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3243 the second SET's destination is a register that is unused and isn't
3244 marked as an instruction that might trap in an EH region. In that case,
3245 we just need the first SET. This can occur when simplifying a divmod
3246 insn. We *must* test for this case here because the code below that
3247 splits two independent SETs doesn't handle this case correctly when it
3248 updates the register status.
3250 It's pointless doing this if we originally had two sets, one from
3251 i3, and one from i2. Combining then splitting the parallel results
3252 in the original i2 again plus an invalid insn (which we delete).
3253 The net effect is only to move instructions around, which makes
3254 debug info less accurate.
3256 Also check the case where the first SET's destination is unused.
3257 That would not cause incorrect code, but does cause an unneeded
3260 if (insn_code_number
< 0
3261 && !(added_sets_2
&& i1
== 0)
3262 && GET_CODE (newpat
) == PARALLEL
3263 && XVECLEN (newpat
, 0) == 2
3264 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3265 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3266 && asm_noperands (newpat
) < 0)
3268 rtx set0
= XVECEXP (newpat
, 0, 0);
3269 rtx set1
= XVECEXP (newpat
, 0, 1);
3271 if (((REG_P (SET_DEST (set1
))
3272 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
3273 || (GET_CODE (SET_DEST (set1
)) == SUBREG
3274 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
3275 && insn_nothrow_p (i3
)
3276 && !side_effects_p (SET_SRC (set1
)))
3279 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3282 else if (((REG_P (SET_DEST (set0
))
3283 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
3284 || (GET_CODE (SET_DEST (set0
)) == SUBREG
3285 && find_reg_note (i3
, REG_UNUSED
,
3286 SUBREG_REG (SET_DEST (set0
)))))
3287 && insn_nothrow_p (i3
)
3288 && !side_effects_p (SET_SRC (set0
)))
3291 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3293 if (insn_code_number
>= 0)
3294 changed_i3_dest
= 1;
3298 /* If we were combining three insns and the result is a simple SET
3299 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3300 insns. There are two ways to do this. It can be split using a
3301 machine-specific method (like when you have an addition of a large
3302 constant) or by combine in the function find_split_point. */
3304 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
3305 && asm_noperands (newpat
) < 0)
3307 rtx parallel
, m_split
, *split
;
3309 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3310 use I2DEST as a scratch register will help. In the latter case,
3311 convert I2DEST to the mode of the source of NEWPAT if we can. */
3313 m_split
= combine_split_insns (newpat
, i3
);
3315 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3316 inputs of NEWPAT. */
3318 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3319 possible to try that as a scratch reg. This would require adding
3320 more code to make it work though. */
3322 if (m_split
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
3324 enum machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
3326 /* First try to split using the original register as a
3327 scratch register. */
3328 parallel
= gen_rtx_PARALLEL (VOIDmode
,
3329 gen_rtvec (2, newpat
,
3330 gen_rtx_CLOBBER (VOIDmode
,
3332 m_split
= combine_split_insns (parallel
, i3
);
3334 /* If that didn't work, try changing the mode of I2DEST if
3337 && new_mode
!= GET_MODE (i2dest
)
3338 && new_mode
!= VOIDmode
3339 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
3341 enum machine_mode old_mode
= GET_MODE (i2dest
);
3344 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3345 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
3348 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], new_mode
);
3349 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
3352 parallel
= (gen_rtx_PARALLEL
3354 gen_rtvec (2, newpat
,
3355 gen_rtx_CLOBBER (VOIDmode
,
3357 m_split
= combine_split_insns (parallel
, i3
);
3360 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
3364 adjust_reg_mode (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
3365 buf
= undobuf
.undos
;
3366 undobuf
.undos
= buf
->next
;
3367 buf
->next
= undobuf
.frees
;
3368 undobuf
.frees
= buf
;
3372 i2scratch
= m_split
!= 0;
3375 /* If recog_for_combine has discarded clobbers, try to use them
3376 again for the split. */
3377 if (m_split
== 0 && newpat_vec_with_clobbers
)
3379 parallel
= gen_rtx_PARALLEL (VOIDmode
, newpat_vec_with_clobbers
);
3380 m_split
= combine_split_insns (parallel
, i3
);
3383 if (m_split
&& NEXT_INSN (m_split
) == NULL_RTX
)
3385 m_split
= PATTERN (m_split
);
3386 insn_code_number
= recog_for_combine (&m_split
, i3
, &new_i3_notes
);
3387 if (insn_code_number
>= 0)
3390 else if (m_split
&& NEXT_INSN (NEXT_INSN (m_split
)) == NULL_RTX
3391 && (next_nonnote_nondebug_insn (i2
) == i3
3392 || ! use_crosses_set_p (PATTERN (m_split
), DF_INSN_LUID (i2
))))
3395 rtx newi3pat
= PATTERN (NEXT_INSN (m_split
));
3396 newi2pat
= PATTERN (m_split
);
3398 i3set
= single_set (NEXT_INSN (m_split
));
3399 i2set
= single_set (m_split
);
3401 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3403 /* If I2 or I3 has multiple SETs, we won't know how to track
3404 register status, so don't use these insns. If I2's destination
3405 is used between I2 and I3, we also can't use these insns. */
3407 if (i2_code_number
>= 0 && i2set
&& i3set
3408 && (next_nonnote_nondebug_insn (i2
) == i3
3409 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
3410 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
3412 if (insn_code_number
>= 0)
3415 /* It is possible that both insns now set the destination of I3.
3416 If so, we must show an extra use of it. */
3418 if (insn_code_number
>= 0)
3420 rtx new_i3_dest
= SET_DEST (i3set
);
3421 rtx new_i2_dest
= SET_DEST (i2set
);
3423 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
3424 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
3425 || GET_CODE (new_i3_dest
) == SUBREG
)
3426 new_i3_dest
= XEXP (new_i3_dest
, 0);
3428 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
3429 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
3430 || GET_CODE (new_i2_dest
) == SUBREG
)
3431 new_i2_dest
= XEXP (new_i2_dest
, 0);
3433 if (REG_P (new_i3_dest
)
3434 && REG_P (new_i2_dest
)
3435 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
))
3436 INC_REG_N_SETS (REGNO (new_i2_dest
), 1);
3440 /* If we can split it and use I2DEST, go ahead and see if that
3441 helps things be recognized. Verify that none of the registers
3442 are set between I2 and I3. */
3443 if (insn_code_number
< 0
3444 && (split
= find_split_point (&newpat
, i3
, false)) != 0
3448 /* We need I2DEST in the proper mode. If it is a hard register
3449 or the only use of a pseudo, we can change its mode.
3450 Make sure we don't change a hard register to have a mode that
3451 isn't valid for it, or change the number of registers. */
3452 && (GET_MODE (*split
) == GET_MODE (i2dest
)
3453 || GET_MODE (*split
) == VOIDmode
3454 || can_change_dest_mode (i2dest
, added_sets_2
,
3456 && (next_nonnote_nondebug_insn (i2
) == i3
3457 || ! use_crosses_set_p (*split
, DF_INSN_LUID (i2
)))
3458 /* We can't overwrite I2DEST if its value is still used by
3460 && ! reg_referenced_p (i2dest
, newpat
))
3462 rtx newdest
= i2dest
;
3463 enum rtx_code split_code
= GET_CODE (*split
);
3464 enum machine_mode split_mode
= GET_MODE (*split
);
3465 bool subst_done
= false;
3466 newi2pat
= NULL_RTX
;
3470 /* *SPLIT may be part of I2SRC, so make sure we have the
3471 original expression around for later debug processing.
3472 We should not need I2SRC any more in other cases. */
3473 if (MAY_HAVE_DEBUG_INSNS
)
3474 i2src
= copy_rtx (i2src
);
3478 /* Get NEWDEST as a register in the proper mode. We have already
3479 validated that we can do this. */
3480 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
3482 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3483 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
3486 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], split_mode
);
3487 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
3491 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3492 an ASHIFT. This can occur if it was inside a PLUS and hence
3493 appeared to be a memory address. This is a kludge. */
3494 if (split_code
== MULT
3495 && CONST_INT_P (XEXP (*split
, 1))
3496 && INTVAL (XEXP (*split
, 1)) > 0
3497 && (i
= exact_log2 (UINTVAL (XEXP (*split
, 1)))) >= 0)
3499 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
3500 XEXP (*split
, 0), GEN_INT (i
)));
3501 /* Update split_code because we may not have a multiply
3503 split_code
= GET_CODE (*split
);
3506 #ifdef INSN_SCHEDULING
3507 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3508 be written as a ZERO_EXTEND. */
3509 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
3511 #ifdef LOAD_EXTEND_OP
3512 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3513 what it really is. */
3514 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split
)))
3516 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
3517 SUBREG_REG (*split
)));
3520 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
3521 SUBREG_REG (*split
)));
3525 /* Attempt to split binary operators using arithmetic identities. */
3526 if (BINARY_P (SET_SRC (newpat
))
3527 && split_mode
== GET_MODE (SET_SRC (newpat
))
3528 && ! side_effects_p (SET_SRC (newpat
)))
3530 rtx setsrc
= SET_SRC (newpat
);
3531 enum machine_mode mode
= GET_MODE (setsrc
);
3532 enum rtx_code code
= GET_CODE (setsrc
);
3533 rtx src_op0
= XEXP (setsrc
, 0);
3534 rtx src_op1
= XEXP (setsrc
, 1);
3536 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3537 if (rtx_equal_p (src_op0
, src_op1
))
3539 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, src_op0
);
3540 SUBST (XEXP (setsrc
, 0), newdest
);
3541 SUBST (XEXP (setsrc
, 1), newdest
);
3544 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3545 else if ((code
== PLUS
|| code
== MULT
)
3546 && GET_CODE (src_op0
) == code
3547 && GET_CODE (XEXP (src_op0
, 0)) == code
3548 && (INTEGRAL_MODE_P (mode
)
3549 || (FLOAT_MODE_P (mode
)
3550 && flag_unsafe_math_optimizations
)))
3552 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
3553 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
3554 rtx r
= XEXP (src_op0
, 1);
3557 /* Split both "((X op Y) op X) op Y" and
3558 "((X op Y) op Y) op X" as "T op T" where T is
3560 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
3561 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
3563 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
,
3565 SUBST (XEXP (setsrc
, 0), newdest
);
3566 SUBST (XEXP (setsrc
, 1), newdest
);
3569 /* Split "((X op X) op Y) op Y)" as "T op T" where
3571 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
3573 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
3574 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, tmp
);
3575 SUBST (XEXP (setsrc
, 0), newdest
);
3576 SUBST (XEXP (setsrc
, 1), newdest
);
3584 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, *split
);
3585 SUBST (*split
, newdest
);
3588 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3590 /* recog_for_combine might have added CLOBBERs to newi2pat.
3591 Make sure NEWPAT does not depend on the clobbered regs. */
3592 if (GET_CODE (newi2pat
) == PARALLEL
)
3593 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3594 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3596 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3597 if (reg_overlap_mentioned_p (reg
, newpat
))
3604 /* If the split point was a MULT and we didn't have one before,
3605 don't use one now. */
3606 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
3607 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3611 /* Check for a case where we loaded from memory in a narrow mode and
3612 then sign extended it, but we need both registers. In that case,
3613 we have a PARALLEL with both loads from the same memory location.
3614 We can split this into a load from memory followed by a register-register
3615 copy. This saves at least one insn, more if register allocation can
3618 We cannot do this if the destination of the first assignment is a
3619 condition code register or cc0. We eliminate this case by making sure
3620 the SET_DEST and SET_SRC have the same mode.
3622 We cannot do this if the destination of the second assignment is
3623 a register that we have already assumed is zero-extended. Similarly
3624 for a SUBREG of such a register. */
3626 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3627 && GET_CODE (newpat
) == PARALLEL
3628 && XVECLEN (newpat
, 0) == 2
3629 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3630 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
3631 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
3632 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
3633 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3634 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3635 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
3636 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3638 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3639 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3640 && ! (temp
= SET_DEST (XVECEXP (newpat
, 0, 1)),
3642 && reg_stat
[REGNO (temp
)].nonzero_bits
!= 0
3643 && GET_MODE_PRECISION (GET_MODE (temp
)) < BITS_PER_WORD
3644 && GET_MODE_PRECISION (GET_MODE (temp
)) < HOST_BITS_PER_INT
3645 && (reg_stat
[REGNO (temp
)].nonzero_bits
3646 != GET_MODE_MASK (word_mode
))))
3647 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
3648 && (temp
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
3650 && reg_stat
[REGNO (temp
)].nonzero_bits
!= 0
3651 && GET_MODE_PRECISION (GET_MODE (temp
)) < BITS_PER_WORD
3652 && GET_MODE_PRECISION (GET_MODE (temp
)) < HOST_BITS_PER_INT
3653 && (reg_stat
[REGNO (temp
)].nonzero_bits
3654 != GET_MODE_MASK (word_mode
)))))
3655 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3656 SET_SRC (XVECEXP (newpat
, 0, 1)))
3657 && ! find_reg_note (i3
, REG_UNUSED
,
3658 SET_DEST (XVECEXP (newpat
, 0, 0))))
3662 newi2pat
= XVECEXP (newpat
, 0, 0);
3663 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
3664 newpat
= XVECEXP (newpat
, 0, 1);
3665 SUBST (SET_SRC (newpat
),
3666 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
3667 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3669 if (i2_code_number
>= 0)
3670 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3672 if (insn_code_number
>= 0)
3676 /* Similarly, check for a case where we have a PARALLEL of two independent
3677 SETs but we started with three insns. In this case, we can do the sets
3678 as two separate insns. This case occurs when some SET allows two
3679 other insns to combine, but the destination of that SET is still live. */
3681 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3682 && GET_CODE (newpat
) == PARALLEL
3683 && XVECLEN (newpat
, 0) == 2
3684 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3685 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
3686 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
3687 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3688 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3689 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3690 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3691 XVECEXP (newpat
, 0, 0))
3692 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
3693 XVECEXP (newpat
, 0, 1))
3694 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
3695 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
3697 rtx set0
= XVECEXP (newpat
, 0, 0);
3698 rtx set1
= XVECEXP (newpat
, 0, 1);
3700 /* Normally, it doesn't matter which of the two is done first,
3701 but the one that references cc0 can't be the second, and
3702 one which uses any regs/memory set in between i2 and i3 can't
3703 be first. The PARALLEL might also have been pre-existing in i3,
3704 so we need to make sure that we won't wrongly hoist a SET to i2
3705 that would conflict with a death note present in there. */
3706 if (!use_crosses_set_p (SET_SRC (set1
), DF_INSN_LUID (i2
))
3707 && !(REG_P (SET_DEST (set1
))
3708 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set1
)))
3709 && !(GET_CODE (SET_DEST (set1
)) == SUBREG
3710 && find_reg_note (i2
, REG_DEAD
,
3711 SUBREG_REG (SET_DEST (set1
))))
3713 && !reg_referenced_p (cc0_rtx
, set0
)
3720 else if (!use_crosses_set_p (SET_SRC (set0
), DF_INSN_LUID (i2
))
3721 && !(REG_P (SET_DEST (set0
))
3722 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set0
)))
3723 && !(GET_CODE (SET_DEST (set0
)) == SUBREG
3724 && find_reg_note (i2
, REG_DEAD
,
3725 SUBREG_REG (SET_DEST (set0
))))
3727 && !reg_referenced_p (cc0_rtx
, set1
)
3740 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3742 if (i2_code_number
>= 0)
3744 /* recog_for_combine might have added CLOBBERs to newi2pat.
3745 Make sure NEWPAT does not depend on the clobbered regs. */
3746 if (GET_CODE (newi2pat
) == PARALLEL
)
3748 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3749 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3751 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3752 if (reg_overlap_mentioned_p (reg
, newpat
))
3760 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3764 /* If it still isn't recognized, fail and change things back the way they
3766 if ((insn_code_number
< 0
3767 /* Is the result a reasonable ASM_OPERANDS? */
3768 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
3774 /* If we had to change another insn, make sure it is valid also. */
3775 if (undobuf
.other_insn
)
3777 CLEAR_HARD_REG_SET (newpat_used_regs
);
3779 other_pat
= PATTERN (undobuf
.other_insn
);
3780 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
3783 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
3791 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3792 they are adjacent to each other or not. */
3794 rtx p
= prev_nonnote_insn (i3
);
3795 if (p
&& p
!= i2
&& NONJUMP_INSN_P (p
) && newi2pat
3796 && sets_cc0_p (newi2pat
))
3804 /* Only allow this combination if insn_rtx_costs reports that the
3805 replacement instructions are cheaper than the originals. */
3806 if (!combine_validate_cost (i0
, i1
, i2
, i3
, newpat
, newi2pat
, other_pat
))
3812 if (MAY_HAVE_DEBUG_INSNS
)
3816 for (undo
= undobuf
.undos
; undo
; undo
= undo
->next
)
3817 if (undo
->kind
== UNDO_MODE
)
3819 rtx reg
= *undo
->where
.r
;
3820 enum machine_mode new_mode
= GET_MODE (reg
);
3821 enum machine_mode old_mode
= undo
->old_contents
.m
;
3823 /* Temporarily revert mode back. */
3824 adjust_reg_mode (reg
, old_mode
);
3826 if (reg
== i2dest
&& i2scratch
)
3828 /* If we used i2dest as a scratch register with a
3829 different mode, substitute it for the original
3830 i2src while its original mode is temporarily
3831 restored, and then clear i2scratch so that we don't
3832 do it again later. */
3833 propagate_for_debug (i2
, last_combined_insn
, reg
, i2src
,
3836 /* Put back the new mode. */
3837 adjust_reg_mode (reg
, new_mode
);
3841 rtx tempreg
= gen_raw_REG (old_mode
, REGNO (reg
));
3847 last
= last_combined_insn
;
3852 last
= undobuf
.other_insn
;
3854 if (DF_INSN_LUID (last
)
3855 < DF_INSN_LUID (last_combined_insn
))
3856 last
= last_combined_insn
;
3859 /* We're dealing with a reg that changed mode but not
3860 meaning, so we want to turn it into a subreg for
3861 the new mode. However, because of REG sharing and
3862 because its mode had already changed, we have to do
3863 it in two steps. First, replace any debug uses of
3864 reg, with its original mode temporarily restored,
3865 with this copy we have created; then, replace the
3866 copy with the SUBREG of the original shared reg,
3867 once again changed to the new mode. */
3868 propagate_for_debug (first
, last
, reg
, tempreg
,
3870 adjust_reg_mode (reg
, new_mode
);
3871 propagate_for_debug (first
, last
, tempreg
,
3872 lowpart_subreg (old_mode
, reg
, new_mode
),
3878 /* If we will be able to accept this, we have made a
3879 change to the destination of I3. This requires us to
3880 do a few adjustments. */
3882 if (changed_i3_dest
)
3884 PATTERN (i3
) = newpat
;
3885 adjust_for_new_dest (i3
);
3888 /* We now know that we can do this combination. Merge the insns and
3889 update the status of registers and LOG_LINKS. */
3891 if (undobuf
.other_insn
)
3895 PATTERN (undobuf
.other_insn
) = other_pat
;
3897 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3898 are still valid. Then add any non-duplicate notes added by
3899 recog_for_combine. */
3900 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
3902 next
= XEXP (note
, 1);
3904 if (REG_NOTE_KIND (note
) == REG_UNUSED
3905 && ! reg_set_p (XEXP (note
, 0), PATTERN (undobuf
.other_insn
)))
3906 remove_note (undobuf
.other_insn
, note
);
3909 distribute_notes (new_other_notes
, undobuf
.other_insn
,
3910 undobuf
.other_insn
, NULL_RTX
, NULL_RTX
, NULL_RTX
,
3917 struct insn_link
*link
;
3920 /* I3 now uses what used to be its destination and which is now
3921 I2's destination. This requires us to do a few adjustments. */
3922 PATTERN (i3
) = newpat
;
3923 adjust_for_new_dest (i3
);
3925 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3928 However, some later insn might be using I2's dest and have
3929 a LOG_LINK pointing at I3. We must remove this link.
3930 The simplest way to remove the link is to point it at I1,
3931 which we know will be a NOTE. */
3933 /* newi2pat is usually a SET here; however, recog_for_combine might
3934 have added some clobbers. */
3935 if (GET_CODE (newi2pat
) == PARALLEL
)
3936 ni2dest
= SET_DEST (XVECEXP (newi2pat
, 0, 0));
3938 ni2dest
= SET_DEST (newi2pat
);
3940 for (insn
= NEXT_INSN (i3
);
3941 insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
3942 || insn
!= BB_HEAD (this_basic_block
->next_bb
));
3943 insn
= NEXT_INSN (insn
))
3945 if (INSN_P (insn
) && reg_referenced_p (ni2dest
, PATTERN (insn
)))
3947 FOR_EACH_LOG_LINK (link
, insn
)
3948 if (link
->insn
== i3
)
3957 rtx i3notes
, i2notes
, i1notes
= 0, i0notes
= 0;
3958 struct insn_link
*i3links
, *i2links
, *i1links
= 0, *i0links
= 0;
3961 /* Compute which registers we expect to eliminate. newi2pat may be setting
3962 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3963 same as i3dest, in which case newi2pat may be setting i1dest. */
3964 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
3965 || i2dest_in_i2src
|| i2dest_in_i1src
|| i2dest_in_i0src
3968 rtx elim_i1
= (i1
== 0 || i1dest_in_i1src
|| i1dest_in_i0src
3969 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
3972 rtx elim_i0
= (i0
== 0 || i0dest_in_i0src
3973 || (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
3977 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3979 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
3980 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
3982 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
3984 i0notes
= REG_NOTES (i0
), i0links
= LOG_LINKS (i0
);
3986 /* Ensure that we do not have something that should not be shared but
3987 occurs multiple times in the new insns. Check this by first
3988 resetting all the `used' flags and then copying anything is shared. */
3990 reset_used_flags (i3notes
);
3991 reset_used_flags (i2notes
);
3992 reset_used_flags (i1notes
);
3993 reset_used_flags (i0notes
);
3994 reset_used_flags (newpat
);
3995 reset_used_flags (newi2pat
);
3996 if (undobuf
.other_insn
)
3997 reset_used_flags (PATTERN (undobuf
.other_insn
));
3999 i3notes
= copy_rtx_if_shared (i3notes
);
4000 i2notes
= copy_rtx_if_shared (i2notes
);
4001 i1notes
= copy_rtx_if_shared (i1notes
);
4002 i0notes
= copy_rtx_if_shared (i0notes
);
4003 newpat
= copy_rtx_if_shared (newpat
);
4004 newi2pat
= copy_rtx_if_shared (newi2pat
);
4005 if (undobuf
.other_insn
)
4006 reset_used_flags (PATTERN (undobuf
.other_insn
));
4008 INSN_CODE (i3
) = insn_code_number
;
4009 PATTERN (i3
) = newpat
;
4011 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
4013 rtx call_usage
= CALL_INSN_FUNCTION_USAGE (i3
);
4015 reset_used_flags (call_usage
);
4016 call_usage
= copy_rtx (call_usage
);
4020 /* I2SRC must still be meaningful at this point. Some splitting
4021 operations can invalidate I2SRC, but those operations do not
4024 replace_rtx (call_usage
, i2dest
, i2src
);
4028 replace_rtx (call_usage
, i1dest
, i1src
);
4030 replace_rtx (call_usage
, i0dest
, i0src
);
4032 CALL_INSN_FUNCTION_USAGE (i3
) = call_usage
;
4035 if (undobuf
.other_insn
)
4036 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
4038 /* We had one special case above where I2 had more than one set and
4039 we replaced a destination of one of those sets with the destination
4040 of I3. In that case, we have to update LOG_LINKS of insns later
4041 in this basic block. Note that this (expensive) case is rare.
4043 Also, in this case, we must pretend that all REG_NOTEs for I2
4044 actually came from I3, so that REG_UNUSED notes from I2 will be
4045 properly handled. */
4047 if (i3_subst_into_i2
)
4049 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
4050 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
4051 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
4052 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
4053 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
4054 && ! find_reg_note (i2
, REG_UNUSED
,
4055 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
4056 for (temp
= NEXT_INSN (i2
);
4058 && (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4059 || BB_HEAD (this_basic_block
) != temp
);
4060 temp
= NEXT_INSN (temp
))
4061 if (temp
!= i3
&& INSN_P (temp
))
4062 FOR_EACH_LOG_LINK (link
, temp
)
4063 if (link
->insn
== i2
)
4069 while (XEXP (link
, 1))
4070 link
= XEXP (link
, 1);
4071 XEXP (link
, 1) = i2notes
;
4078 LOG_LINKS (i3
) = NULL
;
4080 LOG_LINKS (i2
) = NULL
;
4085 if (MAY_HAVE_DEBUG_INSNS
&& i2scratch
)
4086 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4088 INSN_CODE (i2
) = i2_code_number
;
4089 PATTERN (i2
) = newi2pat
;
4093 if (MAY_HAVE_DEBUG_INSNS
&& i2src
)
4094 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4096 SET_INSN_DELETED (i2
);
4101 LOG_LINKS (i1
) = NULL
;
4103 if (MAY_HAVE_DEBUG_INSNS
)
4104 propagate_for_debug (i1
, last_combined_insn
, i1dest
, i1src
,
4106 SET_INSN_DELETED (i1
);
4111 LOG_LINKS (i0
) = NULL
;
4113 if (MAY_HAVE_DEBUG_INSNS
)
4114 propagate_for_debug (i0
, last_combined_insn
, i0dest
, i0src
,
4116 SET_INSN_DELETED (i0
);
4119 /* Get death notes for everything that is now used in either I3 or
4120 I2 and used to die in a previous insn. If we built two new
4121 patterns, move from I1 to I2 then I2 to I3 so that we get the
4122 proper movement on registers that I2 modifies. */
4125 from_luid
= DF_INSN_LUID (i0
);
4127 from_luid
= DF_INSN_LUID (i1
);
4129 from_luid
= DF_INSN_LUID (i2
);
4131 move_deaths (newi2pat
, NULL_RTX
, from_luid
, i2
, &midnotes
);
4132 move_deaths (newpat
, newi2pat
, from_luid
, i3
, &midnotes
);
4134 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4136 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL_RTX
,
4137 elim_i2
, elim_i1
, elim_i0
);
4139 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL_RTX
,
4140 elim_i2
, elim_i1
, elim_i0
);
4142 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL_RTX
,
4143 elim_i2
, elim_i1
, elim_i0
);
4145 distribute_notes (i0notes
, i0
, i3
, newi2pat
? i2
: NULL_RTX
,
4146 elim_i2
, elim_i1
, elim_i0
);
4148 distribute_notes (midnotes
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4149 elim_i2
, elim_i1
, elim_i0
);
4151 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4152 know these are REG_UNUSED and want them to go to the desired insn,
4153 so we always pass it as i3. */
4155 if (newi2pat
&& new_i2_notes
)
4156 distribute_notes (new_i2_notes
, i2
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
,
4160 distribute_notes (new_i3_notes
, i3
, i3
, NULL_RTX
, NULL_RTX
, NULL_RTX
,
4163 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4164 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4165 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4166 in that case, it might delete I2. Similarly for I2 and I1.
4167 Show an additional death due to the REG_DEAD note we make here. If
4168 we discard it in distribute_notes, we will decrement it again. */
4172 rtx new_note
= alloc_reg_note (REG_DEAD
, i3dest_killed
, NULL_RTX
);
4173 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
4174 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, elim_i2
,
4177 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4178 elim_i2
, elim_i1
, elim_i0
);
4181 if (i2dest_in_i2src
)
4183 rtx new_note
= alloc_reg_note (REG_DEAD
, i2dest
, NULL_RTX
);
4184 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4185 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
,
4186 NULL_RTX
, NULL_RTX
);
4188 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4189 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4192 if (i1dest_in_i1src
)
4194 rtx new_note
= alloc_reg_note (REG_DEAD
, i1dest
, NULL_RTX
);
4195 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4196 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
,
4197 NULL_RTX
, NULL_RTX
);
4199 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4200 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4203 if (i0dest_in_i0src
)
4205 rtx new_note
= alloc_reg_note (REG_DEAD
, i0dest
, NULL_RTX
);
4206 if (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4207 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
,
4208 NULL_RTX
, NULL_RTX
);
4210 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4211 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4214 distribute_links (i3links
);
4215 distribute_links (i2links
);
4216 distribute_links (i1links
);
4217 distribute_links (i0links
);
4221 struct insn_link
*link
;
4222 rtx i2_insn
= 0, i2_val
= 0, set
;
4224 /* The insn that used to set this register doesn't exist, and
4225 this life of the register may not exist either. See if one of
4226 I3's links points to an insn that sets I2DEST. If it does,
4227 that is now the last known value for I2DEST. If we don't update
4228 this and I2 set the register to a value that depended on its old
4229 contents, we will get confused. If this insn is used, thing
4230 will be set correctly in combine_instructions. */
4231 FOR_EACH_LOG_LINK (link
, i3
)
4232 if ((set
= single_set (link
->insn
)) != 0
4233 && rtx_equal_p (i2dest
, SET_DEST (set
)))
4234 i2_insn
= link
->insn
, i2_val
= SET_SRC (set
);
4236 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
4238 /* If the reg formerly set in I2 died only once and that was in I3,
4239 zero its use count so it won't make `reload' do any work. */
4241 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
4242 && ! i2dest_in_i2src
)
4243 INC_REG_N_SETS (REGNO (i2dest
), -1);
4246 if (i1
&& REG_P (i1dest
))
4248 struct insn_link
*link
;
4249 rtx i1_insn
= 0, i1_val
= 0, set
;
4251 FOR_EACH_LOG_LINK (link
, i3
)
4252 if ((set
= single_set (link
->insn
)) != 0
4253 && rtx_equal_p (i1dest
, SET_DEST (set
)))
4254 i1_insn
= link
->insn
, i1_val
= SET_SRC (set
);
4256 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
4258 if (! added_sets_1
&& ! i1dest_in_i1src
)
4259 INC_REG_N_SETS (REGNO (i1dest
), -1);
4262 if (i0
&& REG_P (i0dest
))
4264 struct insn_link
*link
;
4265 rtx i0_insn
= 0, i0_val
= 0, set
;
4267 FOR_EACH_LOG_LINK (link
, i3
)
4268 if ((set
= single_set (link
->insn
)) != 0
4269 && rtx_equal_p (i0dest
, SET_DEST (set
)))
4270 i0_insn
= link
->insn
, i0_val
= SET_SRC (set
);
4272 record_value_for_reg (i0dest
, i0_insn
, i0_val
);
4274 if (! added_sets_0
&& ! i0dest_in_i0src
)
4275 INC_REG_N_SETS (REGNO (i0dest
), -1);
4278 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4279 been made to this insn. The order is important, because newi2pat
4280 can affect nonzero_bits of newpat. */
4282 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
4283 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
4286 if (undobuf
.other_insn
!= NULL_RTX
)
4290 fprintf (dump_file
, "modifying other_insn ");
4291 dump_insn_slim (dump_file
, undobuf
.other_insn
);
4293 df_insn_rescan (undobuf
.other_insn
);
4296 if (i0
&& !(NOTE_P (i0
) && (NOTE_KIND (i0
) == NOTE_INSN_DELETED
)))
4300 fprintf (dump_file
, "modifying insn i0 ");
4301 dump_insn_slim (dump_file
, i0
);
4303 df_insn_rescan (i0
);
4306 if (i1
&& !(NOTE_P (i1
) && (NOTE_KIND (i1
) == NOTE_INSN_DELETED
)))
4310 fprintf (dump_file
, "modifying insn i1 ");
4311 dump_insn_slim (dump_file
, i1
);
4313 df_insn_rescan (i1
);
4316 if (i2
&& !(NOTE_P (i2
) && (NOTE_KIND (i2
) == NOTE_INSN_DELETED
)))
4320 fprintf (dump_file
, "modifying insn i2 ");
4321 dump_insn_slim (dump_file
, i2
);
4323 df_insn_rescan (i2
);
4326 if (i3
&& !(NOTE_P (i3
) && (NOTE_KIND (i3
) == NOTE_INSN_DELETED
)))
4330 fprintf (dump_file
, "modifying insn i3 ");
4331 dump_insn_slim (dump_file
, i3
);
4333 df_insn_rescan (i3
);
4336 /* Set new_direct_jump_p if a new return or simple jump instruction
4337 has been created. Adjust the CFG accordingly. */
4338 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
4340 *new_direct_jump_p
= 1;
4341 mark_jump_label (PATTERN (i3
), i3
, 0);
4342 update_cfg_for_uncondjump (i3
);
4345 if (undobuf
.other_insn
!= NULL_RTX
4346 && (returnjump_p (undobuf
.other_insn
)
4347 || any_uncondjump_p (undobuf
.other_insn
)))
4349 *new_direct_jump_p
= 1;
4350 update_cfg_for_uncondjump (undobuf
.other_insn
);
4353 /* A noop might also need cleaning up of CFG, if it comes from the
4354 simplification of a jump. */
4356 && GET_CODE (newpat
) == SET
4357 && SET_SRC (newpat
) == pc_rtx
4358 && SET_DEST (newpat
) == pc_rtx
)
4360 *new_direct_jump_p
= 1;
4361 update_cfg_for_uncondjump (i3
);
4364 if (undobuf
.other_insn
!= NULL_RTX
4365 && JUMP_P (undobuf
.other_insn
)
4366 && GET_CODE (PATTERN (undobuf
.other_insn
)) == SET
4367 && SET_SRC (PATTERN (undobuf
.other_insn
)) == pc_rtx
4368 && SET_DEST (PATTERN (undobuf
.other_insn
)) == pc_rtx
)
4370 *new_direct_jump_p
= 1;
4371 update_cfg_for_uncondjump (undobuf
.other_insn
);
4374 combine_successes
++;
4377 if (added_links_insn
4378 && (newi2pat
== 0 || DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i2
))
4379 && DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i3
))
4380 return added_links_insn
;
4382 return newi2pat
? i2
: i3
;
4385 /* Undo all the modifications recorded in undobuf. */
4390 struct undo
*undo
, *next
;
4392 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4398 *undo
->where
.r
= undo
->old_contents
.r
;
4401 *undo
->where
.i
= undo
->old_contents
.i
;
4404 adjust_reg_mode (*undo
->where
.r
, undo
->old_contents
.m
);
4407 *undo
->where
.l
= undo
->old_contents
.l
;
4413 undo
->next
= undobuf
.frees
;
4414 undobuf
.frees
= undo
;
4420 /* We've committed to accepting the changes we made. Move all
4421 of the undos to the free list. */
4426 struct undo
*undo
, *next
;
4428 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4431 undo
->next
= undobuf
.frees
;
4432 undobuf
.frees
= undo
;
4437 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4438 where we have an arithmetic expression and return that point. LOC will
4441 try_combine will call this function to see if an insn can be split into
4445 find_split_point (rtx
*loc
, rtx insn
, bool set_src
)
4448 enum rtx_code code
= GET_CODE (x
);
4450 unsigned HOST_WIDE_INT len
= 0;
4451 HOST_WIDE_INT pos
= 0;
4453 rtx inner
= NULL_RTX
;
4455 /* First special-case some codes. */
4459 #ifdef INSN_SCHEDULING
4460 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4462 if (MEM_P (SUBREG_REG (x
)))
4465 return find_split_point (&SUBREG_REG (x
), insn
, false);
4469 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4470 using LO_SUM and HIGH. */
4471 if (GET_CODE (XEXP (x
, 0)) == CONST
4472 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
4474 enum machine_mode address_mode
= get_address_mode (x
);
4477 gen_rtx_LO_SUM (address_mode
,
4478 gen_rtx_HIGH (address_mode
, XEXP (x
, 0)),
4480 return &XEXP (XEXP (x
, 0), 0);
4484 /* If we have a PLUS whose second operand is a constant and the
4485 address is not valid, perhaps will can split it up using
4486 the machine-specific way to split large constants. We use
4487 the first pseudo-reg (one of the virtual regs) as a placeholder;
4488 it will not remain in the result. */
4489 if (GET_CODE (XEXP (x
, 0)) == PLUS
4490 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
4491 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4492 MEM_ADDR_SPACE (x
)))
4494 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
4495 rtx seq
= combine_split_insns (gen_rtx_SET (VOIDmode
, reg
,
4499 /* This should have produced two insns, each of which sets our
4500 placeholder. If the source of the second is a valid address,
4501 we can make put both sources together and make a split point
4505 && NEXT_INSN (seq
) != NULL_RTX
4506 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
4507 && NONJUMP_INSN_P (seq
)
4508 && GET_CODE (PATTERN (seq
)) == SET
4509 && SET_DEST (PATTERN (seq
)) == reg
4510 && ! reg_mentioned_p (reg
,
4511 SET_SRC (PATTERN (seq
)))
4512 && NONJUMP_INSN_P (NEXT_INSN (seq
))
4513 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
4514 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
4515 && memory_address_addr_space_p
4516 (GET_MODE (x
), SET_SRC (PATTERN (NEXT_INSN (seq
))),
4517 MEM_ADDR_SPACE (x
)))
4519 rtx src1
= SET_SRC (PATTERN (seq
));
4520 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
4522 /* Replace the placeholder in SRC2 with SRC1. If we can
4523 find where in SRC2 it was placed, that can become our
4524 split point and we can replace this address with SRC2.
4525 Just try two obvious places. */
4527 src2
= replace_rtx (src2
, reg
, src1
);
4529 if (XEXP (src2
, 0) == src1
)
4530 split
= &XEXP (src2
, 0);
4531 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
4532 && XEXP (XEXP (src2
, 0), 0) == src1
)
4533 split
= &XEXP (XEXP (src2
, 0), 0);
4537 SUBST (XEXP (x
, 0), src2
);
4542 /* If that didn't work, perhaps the first operand is complex and
4543 needs to be computed separately, so make a split point there.
4544 This will occur on machines that just support REG + CONST
4545 and have a constant moved through some previous computation. */
4547 else if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
4548 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4549 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4550 return &XEXP (XEXP (x
, 0), 0);
4553 /* If we have a PLUS whose first operand is complex, try computing it
4554 separately by making a split there. */
4555 if (GET_CODE (XEXP (x
, 0)) == PLUS
4556 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4558 && ! OBJECT_P (XEXP (XEXP (x
, 0), 0))
4559 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4560 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4561 return &XEXP (XEXP (x
, 0), 0);
4566 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4567 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4568 we need to put the operand into a register. So split at that
4571 if (SET_DEST (x
) == cc0_rtx
4572 && GET_CODE (SET_SRC (x
)) != COMPARE
4573 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
4574 && !OBJECT_P (SET_SRC (x
))
4575 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
4576 && OBJECT_P (SUBREG_REG (SET_SRC (x
)))))
4577 return &SET_SRC (x
);
4580 /* See if we can split SET_SRC as it stands. */
4581 split
= find_split_point (&SET_SRC (x
), insn
, true);
4582 if (split
&& split
!= &SET_SRC (x
))
4585 /* See if we can split SET_DEST as it stands. */
4586 split
= find_split_point (&SET_DEST (x
), insn
, false);
4587 if (split
&& split
!= &SET_DEST (x
))
4590 /* See if this is a bitfield assignment with everything constant. If
4591 so, this is an IOR of an AND, so split it into that. */
4592 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
4593 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x
), 0)))
4594 && CONST_INT_P (XEXP (SET_DEST (x
), 1))
4595 && CONST_INT_P (XEXP (SET_DEST (x
), 2))
4596 && CONST_INT_P (SET_SRC (x
))
4597 && ((INTVAL (XEXP (SET_DEST (x
), 1))
4598 + INTVAL (XEXP (SET_DEST (x
), 2)))
4599 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0))))
4600 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
4602 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
4603 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
4604 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
4605 rtx dest
= XEXP (SET_DEST (x
), 0);
4606 enum machine_mode mode
= GET_MODE (dest
);
4607 unsigned HOST_WIDE_INT mask
4608 = ((unsigned HOST_WIDE_INT
) 1 << len
) - 1;
4611 if (BITS_BIG_ENDIAN
)
4612 pos
= GET_MODE_PRECISION (mode
) - len
- pos
;
4614 or_mask
= gen_int_mode (src
<< pos
, mode
);
4617 simplify_gen_binary (IOR
, mode
, dest
, or_mask
));
4620 rtx negmask
= gen_int_mode (~(mask
<< pos
), mode
);
4622 simplify_gen_binary (IOR
, mode
,
4623 simplify_gen_binary (AND
, mode
,
4628 SUBST (SET_DEST (x
), dest
);
4630 split
= find_split_point (&SET_SRC (x
), insn
, true);
4631 if (split
&& split
!= &SET_SRC (x
))
4635 /* Otherwise, see if this is an operation that we can split into two.
4636 If so, try to split that. */
4637 code
= GET_CODE (SET_SRC (x
));
4642 /* If we are AND'ing with a large constant that is only a single
4643 bit and the result is only being used in a context where we
4644 need to know if it is zero or nonzero, replace it with a bit
4645 extraction. This will avoid the large constant, which might
4646 have taken more than one insn to make. If the constant were
4647 not a valid argument to the AND but took only one insn to make,
4648 this is no worse, but if it took more than one insn, it will
4651 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
4652 && REG_P (XEXP (SET_SRC (x
), 0))
4653 && (pos
= exact_log2 (UINTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
4654 && REG_P (SET_DEST (x
))
4655 && (split
= find_single_use (SET_DEST (x
), insn
, (rtx
*) 0)) != 0
4656 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
4657 && XEXP (*split
, 0) == SET_DEST (x
)
4658 && XEXP (*split
, 1) == const0_rtx
)
4660 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
4661 XEXP (SET_SRC (x
), 0),
4662 pos
, NULL_RTX
, 1, 1, 0, 0);
4663 if (extraction
!= 0)
4665 SUBST (SET_SRC (x
), extraction
);
4666 return find_split_point (loc
, insn
, false);
4672 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4673 is known to be on, this can be converted into a NEG of a shift. */
4674 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
4675 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
4676 && 1 <= (pos
= exact_log2
4677 (nonzero_bits (XEXP (SET_SRC (x
), 0),
4678 GET_MODE (XEXP (SET_SRC (x
), 0))))))
4680 enum machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
4684 gen_rtx_LSHIFTRT (mode
,
4685 XEXP (SET_SRC (x
), 0),
4688 split
= find_split_point (&SET_SRC (x
), insn
, true);
4689 if (split
&& split
!= &SET_SRC (x
))
4695 inner
= XEXP (SET_SRC (x
), 0);
4697 /* We can't optimize if either mode is a partial integer
4698 mode as we don't know how many bits are significant
4700 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
4701 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
4705 len
= GET_MODE_PRECISION (GET_MODE (inner
));
4711 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
4712 && CONST_INT_P (XEXP (SET_SRC (x
), 2)))
4714 inner
= XEXP (SET_SRC (x
), 0);
4715 len
= INTVAL (XEXP (SET_SRC (x
), 1));
4716 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
4718 if (BITS_BIG_ENDIAN
)
4719 pos
= GET_MODE_PRECISION (GET_MODE (inner
)) - len
- pos
;
4720 unsignedp
= (code
== ZERO_EXTRACT
);
4729 && pos
+ len
<= GET_MODE_PRECISION (GET_MODE (inner
)))
4731 enum machine_mode mode
= GET_MODE (SET_SRC (x
));
4733 /* For unsigned, we have a choice of a shift followed by an
4734 AND or two shifts. Use two shifts for field sizes where the
4735 constant might be too large. We assume here that we can
4736 always at least get 8-bit constants in an AND insn, which is
4737 true for every current RISC. */
4739 if (unsignedp
&& len
<= 8)
4741 unsigned HOST_WIDE_INT mask
4742 = ((unsigned HOST_WIDE_INT
) 1 << len
) - 1;
4746 (mode
, gen_lowpart (mode
, inner
),
4748 gen_int_mode (mask
, mode
)));
4750 split
= find_split_point (&SET_SRC (x
), insn
, true);
4751 if (split
&& split
!= &SET_SRC (x
))
4758 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
4759 gen_rtx_ASHIFT (mode
,
4760 gen_lowpart (mode
, inner
),
4761 GEN_INT (GET_MODE_PRECISION (mode
)
4763 GEN_INT (GET_MODE_PRECISION (mode
) - len
)));
4765 split
= find_split_point (&SET_SRC (x
), insn
, true);
4766 if (split
&& split
!= &SET_SRC (x
))
4771 /* See if this is a simple operation with a constant as the second
4772 operand. It might be that this constant is out of range and hence
4773 could be used as a split point. */
4774 if (BINARY_P (SET_SRC (x
))
4775 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
4776 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
4777 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
4778 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
4779 return &XEXP (SET_SRC (x
), 1);
4781 /* Finally, see if this is a simple operation with its first operand
4782 not in a register. The operation might require this operand in a
4783 register, so return it as a split point. We can always do this
4784 because if the first operand were another operation, we would have
4785 already found it as a split point. */
4786 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
4787 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
4788 return &XEXP (SET_SRC (x
), 0);
4794 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4795 it is better to write this as (not (ior A B)) so we can split it.
4796 Similarly for IOR. */
4797 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
4800 gen_rtx_NOT (GET_MODE (x
),
4801 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
4803 XEXP (XEXP (x
, 0), 0),
4804 XEXP (XEXP (x
, 1), 0))));
4805 return find_split_point (loc
, insn
, set_src
);
4808 /* Many RISC machines have a large set of logical insns. If the
4809 second operand is a NOT, put it first so we will try to split the
4810 other operand first. */
4811 if (GET_CODE (XEXP (x
, 1)) == NOT
)
4813 rtx tem
= XEXP (x
, 0);
4814 SUBST (XEXP (x
, 0), XEXP (x
, 1));
4815 SUBST (XEXP (x
, 1), tem
);
4821 /* Canonicalization can produce (minus A (mult B C)), where C is a
4822 constant. It may be better to try splitting (plus (mult B -C) A)
4823 instead if this isn't a multiply by a power of two. */
4824 if (set_src
&& code
== MINUS
&& GET_CODE (XEXP (x
, 1)) == MULT
4825 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
4826 && exact_log2 (INTVAL (XEXP (XEXP (x
, 1), 1))) < 0)
4828 enum machine_mode mode
= GET_MODE (x
);
4829 unsigned HOST_WIDE_INT this_int
= INTVAL (XEXP (XEXP (x
, 1), 1));
4830 HOST_WIDE_INT other_int
= trunc_int_for_mode (-this_int
, mode
);
4831 SUBST (*loc
, gen_rtx_PLUS (mode
,
4833 XEXP (XEXP (x
, 1), 0),
4834 gen_int_mode (other_int
,
4837 return find_split_point (loc
, insn
, set_src
);
4840 /* Split at a multiply-accumulate instruction. However if this is
4841 the SET_SRC, we likely do not have such an instruction and it's
4842 worthless to try this split. */
4843 if (!set_src
&& GET_CODE (XEXP (x
, 0)) == MULT
)
4850 /* Otherwise, select our actions depending on our rtx class. */
4851 switch (GET_RTX_CLASS (code
))
4853 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4855 split
= find_split_point (&XEXP (x
, 2), insn
, false);
4858 /* ... fall through ... */
4860 case RTX_COMM_ARITH
:
4862 case RTX_COMM_COMPARE
:
4863 split
= find_split_point (&XEXP (x
, 1), insn
, false);
4866 /* ... fall through ... */
4868 /* Some machines have (and (shift ...) ...) insns. If X is not
4869 an AND, but XEXP (X, 0) is, use it as our split point. */
4870 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
4871 return &XEXP (x
, 0);
4873 split
= find_split_point (&XEXP (x
, 0), insn
, false);
4879 /* Otherwise, we don't have a split point. */
4884 /* Throughout X, replace FROM with TO, and return the result.
4885 The result is TO if X is FROM;
4886 otherwise the result is X, but its contents may have been modified.
4887 If they were modified, a record was made in undobuf so that
4888 undo_all will (among other things) return X to its original state.
4890 If the number of changes necessary is too much to record to undo,
4891 the excess changes are not made, so the result is invalid.
4892 The changes already made can still be undone.
4893 undobuf.num_undo is incremented for such changes, so by testing that
4894 the caller can tell whether the result is valid.
4896 `n_occurrences' is incremented each time FROM is replaced.
4898 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4900 IN_COND is nonzero if we are at the top level of a condition.
4902 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4903 by copying if `n_occurrences' is nonzero. */
4906 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int in_cond
, int unique_copy
)
4908 enum rtx_code code
= GET_CODE (x
);
4909 enum machine_mode op0_mode
= VOIDmode
;
4914 /* Two expressions are equal if they are identical copies of a shared
4915 RTX or if they are both registers with the same register number
4918 #define COMBINE_RTX_EQUAL_P(X,Y) \
4920 || (REG_P (X) && REG_P (Y) \
4921 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4923 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
4926 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
4929 /* If X and FROM are the same register but different modes, they
4930 will not have been seen as equal above. However, the log links code
4931 will make a LOG_LINKS entry for that case. If we do nothing, we
4932 will try to rerecognize our original insn and, when it succeeds,
4933 we will delete the feeding insn, which is incorrect.
4935 So force this insn not to match in this (rare) case. */
4936 if (! in_dest
&& code
== REG
&& REG_P (from
)
4937 && reg_overlap_mentioned_p (x
, from
))
4938 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
4940 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4941 of which may contain things that can be combined. */
4942 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
4945 /* It is possible to have a subexpression appear twice in the insn.
4946 Suppose that FROM is a register that appears within TO.
4947 Then, after that subexpression has been scanned once by `subst',
4948 the second time it is scanned, TO may be found. If we were
4949 to scan TO here, we would find FROM within it and create a
4950 self-referent rtl structure which is completely wrong. */
4951 if (COMBINE_RTX_EQUAL_P (x
, to
))
4954 /* Parallel asm_operands need special attention because all of the
4955 inputs are shared across the arms. Furthermore, unsharing the
4956 rtl results in recognition failures. Failure to handle this case
4957 specially can result in circular rtl.
4959 Solve this by doing a normal pass across the first entry of the
4960 parallel, and only processing the SET_DESTs of the subsequent
4963 if (code
== PARALLEL
4964 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
4965 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
4967 new_rtx
= subst (XVECEXP (x
, 0, 0), from
, to
, 0, 0, unique_copy
);
4969 /* If this substitution failed, this whole thing fails. */
4970 if (GET_CODE (new_rtx
) == CLOBBER
4971 && XEXP (new_rtx
, 0) == const0_rtx
)
4974 SUBST (XVECEXP (x
, 0, 0), new_rtx
);
4976 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
4978 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
4981 && GET_CODE (dest
) != CC0
4982 && GET_CODE (dest
) != PC
)
4984 new_rtx
= subst (dest
, from
, to
, 0, 0, unique_copy
);
4986 /* If this substitution failed, this whole thing fails. */
4987 if (GET_CODE (new_rtx
) == CLOBBER
4988 && XEXP (new_rtx
, 0) == const0_rtx
)
4991 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new_rtx
);
4997 len
= GET_RTX_LENGTH (code
);
4998 fmt
= GET_RTX_FORMAT (code
);
5000 /* We don't need to process a SET_DEST that is a register, CC0,
5001 or PC, so set up to skip this common case. All other cases
5002 where we want to suppress replacing something inside a
5003 SET_SRC are handled via the IN_DEST operand. */
5005 && (REG_P (SET_DEST (x
))
5006 || GET_CODE (SET_DEST (x
)) == CC0
5007 || GET_CODE (SET_DEST (x
)) == PC
))
5010 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5013 op0_mode
= GET_MODE (XEXP (x
, 0));
5015 for (i
= 0; i
< len
; i
++)
5020 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5022 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
5024 new_rtx
= (unique_copy
&& n_occurrences
5025 ? copy_rtx (to
) : to
);
5030 new_rtx
= subst (XVECEXP (x
, i
, j
), from
, to
, 0, 0,
5033 /* If this substitution failed, this whole thing
5035 if (GET_CODE (new_rtx
) == CLOBBER
5036 && XEXP (new_rtx
, 0) == const0_rtx
)
5040 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
5043 else if (fmt
[i
] == 'e')
5045 /* If this is a register being set, ignore it. */
5046 new_rtx
= XEXP (x
, i
);
5049 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
5051 || code
== STRICT_LOW_PART
))
5054 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
5056 /* In general, don't install a subreg involving two
5057 modes not tieable. It can worsen register
5058 allocation, and can even make invalid reload
5059 insns, since the reg inside may need to be copied
5060 from in the outside mode, and that may be invalid
5061 if it is an fp reg copied in integer mode.
5063 We allow two exceptions to this: It is valid if
5064 it is inside another SUBREG and the mode of that
5065 SUBREG and the mode of the inside of TO is
5066 tieable and it is valid if X is a SET that copies
5069 if (GET_CODE (to
) == SUBREG
5070 && ! MODES_TIEABLE_P (GET_MODE (to
),
5071 GET_MODE (SUBREG_REG (to
)))
5072 && ! (code
== SUBREG
5073 && MODES_TIEABLE_P (GET_MODE (x
),
5074 GET_MODE (SUBREG_REG (to
))))
5076 && ! (code
== SET
&& i
== 1 && XEXP (x
, 0) == cc0_rtx
)
5079 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5081 #ifdef CANNOT_CHANGE_MODE_CLASS
5084 && REGNO (to
) < FIRST_PSEUDO_REGISTER
5085 && REG_CANNOT_CHANGE_MODE_P (REGNO (to
),
5088 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5091 new_rtx
= (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
5095 /* If we are in a SET_DEST, suppress most cases unless we
5096 have gone inside a MEM, in which case we want to
5097 simplify the address. We assume here that things that
5098 are actually part of the destination have their inner
5099 parts in the first expression. This is true for SUBREG,
5100 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5101 things aside from REG and MEM that should appear in a
5103 new_rtx
= subst (XEXP (x
, i
), from
, to
,
5105 && (code
== SUBREG
|| code
== STRICT_LOW_PART
5106 || code
== ZERO_EXTRACT
))
5109 code
== IF_THEN_ELSE
&& i
== 0,
5112 /* If we found that we will have to reject this combination,
5113 indicate that by returning the CLOBBER ourselves, rather than
5114 an expression containing it. This will speed things up as
5115 well as prevent accidents where two CLOBBERs are considered
5116 to be equal, thus producing an incorrect simplification. */
5118 if (GET_CODE (new_rtx
) == CLOBBER
&& XEXP (new_rtx
, 0) == const0_rtx
)
5121 if (GET_CODE (x
) == SUBREG
&& CONST_SCALAR_INT_P (new_rtx
))
5123 enum machine_mode mode
= GET_MODE (x
);
5125 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
5126 GET_MODE (SUBREG_REG (x
)),
5129 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
5131 else if (CONST_INT_P (new_rtx
)
5132 && GET_CODE (x
) == ZERO_EXTEND
)
5134 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
5135 new_rtx
, GET_MODE (XEXP (x
, 0)));
5139 SUBST (XEXP (x
, i
), new_rtx
);
5144 /* Check if we are loading something from the constant pool via float
5145 extension; in this case we would undo compress_float_constant
5146 optimization and degenerate constant load to an immediate value. */
5147 if (GET_CODE (x
) == FLOAT_EXTEND
5148 && MEM_P (XEXP (x
, 0))
5149 && MEM_READONLY_P (XEXP (x
, 0)))
5151 rtx tmp
= avoid_constant_pool_reference (x
);
5156 /* Try to simplify X. If the simplification changed the code, it is likely
5157 that further simplification will help, so loop, but limit the number
5158 of repetitions that will be performed. */
5160 for (i
= 0; i
< 4; i
++)
5162 /* If X is sufficiently simple, don't bother trying to do anything
5164 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
5165 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
, in_cond
);
5167 if (GET_CODE (x
) == code
)
5170 code
= GET_CODE (x
);
5172 /* We no longer know the original mode of operand 0 since we
5173 have changed the form of X) */
5174 op0_mode
= VOIDmode
;
5180 /* Simplify X, a piece of RTL. We just operate on the expression at the
5181 outer level; call `subst' to simplify recursively. Return the new
5184 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5185 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5189 combine_simplify_rtx (rtx x
, enum machine_mode op0_mode
, int in_dest
,
5192 enum rtx_code code
= GET_CODE (x
);
5193 enum machine_mode mode
= GET_MODE (x
);
5197 /* If this is a commutative operation, put a constant last and a complex
5198 expression first. We don't need to do this for comparisons here. */
5199 if (COMMUTATIVE_ARITH_P (x
)
5200 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5203 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5204 SUBST (XEXP (x
, 1), temp
);
5207 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5208 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5209 things. Check for cases where both arms are testing the same
5212 Don't do anything if all operands are very simple. */
5215 && ((!OBJECT_P (XEXP (x
, 0))
5216 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5217 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
5218 || (!OBJECT_P (XEXP (x
, 1))
5219 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
5220 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
5222 && (!OBJECT_P (XEXP (x
, 0))
5223 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5224 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
5226 rtx cond
, true_rtx
, false_rtx
;
5228 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
5230 /* If everything is a comparison, what we have is highly unlikely
5231 to be simpler, so don't use it. */
5232 && ! (COMPARISON_P (x
)
5233 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
))))
5235 rtx cop1
= const0_rtx
;
5236 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
5238 if (cond_code
== NE
&& COMPARISON_P (cond
))
5241 /* Simplify the alternative arms; this may collapse the true and
5242 false arms to store-flag values. Be careful to use copy_rtx
5243 here since true_rtx or false_rtx might share RTL with x as a
5244 result of the if_then_else_cond call above. */
5245 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5246 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5248 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5249 is unlikely to be simpler. */
5250 if (general_operand (true_rtx
, VOIDmode
)
5251 && general_operand (false_rtx
, VOIDmode
))
5253 enum rtx_code reversed
;
5255 /* Restarting if we generate a store-flag expression will cause
5256 us to loop. Just drop through in this case. */
5258 /* If the result values are STORE_FLAG_VALUE and zero, we can
5259 just make the comparison operation. */
5260 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5261 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
5263 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5264 && ((reversed
= reversed_comparison_code_parts
5265 (cond_code
, cond
, cop1
, NULL
))
5267 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
5270 /* Likewise, we can make the negate of a comparison operation
5271 if the result values are - STORE_FLAG_VALUE and zero. */
5272 else if (CONST_INT_P (true_rtx
)
5273 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
5274 && false_rtx
== const0_rtx
)
5275 x
= simplify_gen_unary (NEG
, mode
,
5276 simplify_gen_relational (cond_code
,
5280 else if (CONST_INT_P (false_rtx
)
5281 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
5282 && true_rtx
== const0_rtx
5283 && ((reversed
= reversed_comparison_code_parts
5284 (cond_code
, cond
, cop1
, NULL
))
5286 x
= simplify_gen_unary (NEG
, mode
,
5287 simplify_gen_relational (reversed
,
5292 return gen_rtx_IF_THEN_ELSE (mode
,
5293 simplify_gen_relational (cond_code
,
5298 true_rtx
, false_rtx
);
5300 code
= GET_CODE (x
);
5301 op0_mode
= VOIDmode
;
5306 /* Try to fold this expression in case we have constants that weren't
5309 switch (GET_RTX_CLASS (code
))
5312 if (op0_mode
== VOIDmode
)
5313 op0_mode
= GET_MODE (XEXP (x
, 0));
5314 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
5317 case RTX_COMM_COMPARE
:
5319 enum machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
5320 if (cmp_mode
== VOIDmode
)
5322 cmp_mode
= GET_MODE (XEXP (x
, 1));
5323 if (cmp_mode
== VOIDmode
)
5324 cmp_mode
= op0_mode
;
5326 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
5327 XEXP (x
, 0), XEXP (x
, 1));
5330 case RTX_COMM_ARITH
:
5332 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5334 case RTX_BITFIELD_OPS
:
5336 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
5337 XEXP (x
, 1), XEXP (x
, 2));
5346 code
= GET_CODE (temp
);
5347 op0_mode
= VOIDmode
;
5348 mode
= GET_MODE (temp
);
5351 /* First see if we can apply the inverse distributive law. */
5352 if (code
== PLUS
|| code
== MINUS
5353 || code
== AND
|| code
== IOR
|| code
== XOR
)
5355 x
= apply_distributive_law (x
);
5356 code
= GET_CODE (x
);
5357 op0_mode
= VOIDmode
;
5360 /* If CODE is an associative operation not otherwise handled, see if we
5361 can associate some operands. This can win if they are constants or
5362 if they are logically related (i.e. (a & b) & a). */
5363 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
5364 || code
== AND
|| code
== IOR
|| code
== XOR
5365 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
5366 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
5367 || (flag_associative_math
&& FLOAT_MODE_P (mode
))))
5369 if (GET_CODE (XEXP (x
, 0)) == code
)
5371 rtx other
= XEXP (XEXP (x
, 0), 0);
5372 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
5373 rtx inner_op1
= XEXP (x
, 1);
5376 /* Make sure we pass the constant operand if any as the second
5377 one if this is a commutative operation. */
5378 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
5380 rtx tem
= inner_op0
;
5381 inner_op0
= inner_op1
;
5384 inner
= simplify_binary_operation (code
== MINUS
? PLUS
5385 : code
== DIV
? MULT
5387 mode
, inner_op0
, inner_op1
);
5389 /* For commutative operations, try the other pair if that one
5391 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
5393 other
= XEXP (XEXP (x
, 0), 1);
5394 inner
= simplify_binary_operation (code
, mode
,
5395 XEXP (XEXP (x
, 0), 0),
5400 return simplify_gen_binary (code
, mode
, other
, inner
);
5404 /* A little bit of algebraic simplification here. */
5408 /* Ensure that our address has any ASHIFTs converted to MULT in case
5409 address-recognizing predicates are called later. */
5410 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
5411 SUBST (XEXP (x
, 0), temp
);
5415 if (op0_mode
== VOIDmode
)
5416 op0_mode
= GET_MODE (SUBREG_REG (x
));
5418 /* See if this can be moved to simplify_subreg. */
5419 if (CONSTANT_P (SUBREG_REG (x
))
5420 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
5421 /* Don't call gen_lowpart if the inner mode
5422 is VOIDmode and we cannot simplify it, as SUBREG without
5423 inner mode is invalid. */
5424 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
5425 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
5426 return gen_lowpart (mode
, SUBREG_REG (x
));
5428 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
5432 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
5437 /* If op is known to have all lower bits zero, the result is zero. */
5439 && SCALAR_INT_MODE_P (mode
)
5440 && SCALAR_INT_MODE_P (op0_mode
)
5441 && GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (op0_mode
)
5442 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
5443 && HWI_COMPUTABLE_MODE_P (op0_mode
)
5444 && (nonzero_bits (SUBREG_REG (x
), op0_mode
)
5445 & GET_MODE_MASK (mode
)) == 0)
5446 return CONST0_RTX (mode
);
5449 /* Don't change the mode of the MEM if that would change the meaning
5451 if (MEM_P (SUBREG_REG (x
))
5452 && (MEM_VOLATILE_P (SUBREG_REG (x
))
5453 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0),
5454 MEM_ADDR_SPACE (SUBREG_REG (x
)))))
5455 return gen_rtx_CLOBBER (mode
, const0_rtx
);
5457 /* Note that we cannot do any narrowing for non-constants since
5458 we might have been counting on using the fact that some bits were
5459 zero. We now do this in the SET. */
5464 temp
= expand_compound_operation (XEXP (x
, 0));
5466 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5467 replaced by (lshiftrt X C). This will convert
5468 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5470 if (GET_CODE (temp
) == ASHIFTRT
5471 && CONST_INT_P (XEXP (temp
, 1))
5472 && INTVAL (XEXP (temp
, 1)) == GET_MODE_PRECISION (mode
) - 1)
5473 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
5474 INTVAL (XEXP (temp
, 1)));
5476 /* If X has only a single bit that might be nonzero, say, bit I, convert
5477 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5478 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5479 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5480 or a SUBREG of one since we'd be making the expression more
5481 complex if it was just a register. */
5484 && ! (GET_CODE (temp
) == SUBREG
5485 && REG_P (SUBREG_REG (temp
)))
5486 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
5488 rtx temp1
= simplify_shift_const
5489 (NULL_RTX
, ASHIFTRT
, mode
,
5490 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
5491 GET_MODE_PRECISION (mode
) - 1 - i
),
5492 GET_MODE_PRECISION (mode
) - 1 - i
);
5494 /* If all we did was surround TEMP with the two shifts, we
5495 haven't improved anything, so don't use it. Otherwise,
5496 we are better off with TEMP1. */
5497 if (GET_CODE (temp1
) != ASHIFTRT
5498 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
5499 || XEXP (XEXP (temp1
, 0), 0) != temp
)
5505 /* We can't handle truncation to a partial integer mode here
5506 because we don't know the real bitsize of the partial
5508 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
5511 if (HWI_COMPUTABLE_MODE_P (mode
))
5513 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
5514 GET_MODE_MASK (mode
), 0));
5516 /* We can truncate a constant value and return it. */
5517 if (CONST_INT_P (XEXP (x
, 0)))
5518 return gen_int_mode (INTVAL (XEXP (x
, 0)), mode
);
5520 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5521 whose value is a comparison can be replaced with a subreg if
5522 STORE_FLAG_VALUE permits. */
5523 if (HWI_COMPUTABLE_MODE_P (mode
)
5524 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
5525 && (temp
= get_last_value (XEXP (x
, 0)))
5526 && COMPARISON_P (temp
))
5527 return gen_lowpart (mode
, XEXP (x
, 0));
5531 /* (const (const X)) can become (const X). Do it this way rather than
5532 returning the inner CONST since CONST can be shared with a
5534 if (GET_CODE (XEXP (x
, 0)) == CONST
)
5535 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
5540 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5541 can add in an offset. find_split_point will split this address up
5542 again if it doesn't match. */
5543 if (GET_CODE (XEXP (x
, 0)) == HIGH
5544 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
5550 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5551 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5552 bit-field and can be replaced by either a sign_extend or a
5553 sign_extract. The `and' may be a zero_extend and the two
5554 <c>, -<c> constants may be reversed. */
5555 if (GET_CODE (XEXP (x
, 0)) == XOR
5556 && CONST_INT_P (XEXP (x
, 1))
5557 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
5558 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
5559 && ((i
= exact_log2 (UINTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
5560 || (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
5561 && HWI_COMPUTABLE_MODE_P (mode
)
5562 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
5563 && CONST_INT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5564 && (UINTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5565 == ((unsigned HOST_WIDE_INT
) 1 << (i
+ 1)) - 1))
5566 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
5567 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
5568 == (unsigned int) i
+ 1))))
5569 return simplify_shift_const
5570 (NULL_RTX
, ASHIFTRT
, mode
,
5571 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5572 XEXP (XEXP (XEXP (x
, 0), 0), 0),
5573 GET_MODE_PRECISION (mode
) - (i
+ 1)),
5574 GET_MODE_PRECISION (mode
) - (i
+ 1));
5576 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5577 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5578 the bitsize of the mode - 1. This allows simplification of
5579 "a = (b & 8) == 0;" */
5580 if (XEXP (x
, 1) == constm1_rtx
5581 && !REG_P (XEXP (x
, 0))
5582 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5583 && REG_P (SUBREG_REG (XEXP (x
, 0))))
5584 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
5585 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
5586 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5587 gen_rtx_XOR (mode
, XEXP (x
, 0), const1_rtx
),
5588 GET_MODE_PRECISION (mode
) - 1),
5589 GET_MODE_PRECISION (mode
) - 1);
5591 /* If we are adding two things that have no bits in common, convert
5592 the addition into an IOR. This will often be further simplified,
5593 for example in cases like ((a & 1) + (a & 2)), which can
5596 if (HWI_COMPUTABLE_MODE_P (mode
)
5597 && (nonzero_bits (XEXP (x
, 0), mode
)
5598 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
5600 /* Try to simplify the expression further. */
5601 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5602 temp
= combine_simplify_rtx (tor
, VOIDmode
, in_dest
, 0);
5604 /* If we could, great. If not, do not go ahead with the IOR
5605 replacement, since PLUS appears in many special purpose
5606 address arithmetic instructions. */
5607 if (GET_CODE (temp
) != CLOBBER
5608 && (GET_CODE (temp
) != IOR
5609 || ((XEXP (temp
, 0) != XEXP (x
, 0)
5610 || XEXP (temp
, 1) != XEXP (x
, 1))
5611 && (XEXP (temp
, 0) != XEXP (x
, 1)
5612 || XEXP (temp
, 1) != XEXP (x
, 0)))))
5618 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5619 (and <foo> (const_int pow2-1)) */
5620 if (GET_CODE (XEXP (x
, 1)) == AND
5621 && CONST_INT_P (XEXP (XEXP (x
, 1), 1))
5622 && exact_log2 (-UINTVAL (XEXP (XEXP (x
, 1), 1))) >= 0
5623 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
5624 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
5625 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
5629 /* If we have (mult (plus A B) C), apply the distributive law and then
5630 the inverse distributive law to see if things simplify. This
5631 occurs mostly in addresses, often when unrolling loops. */
5633 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
5635 rtx result
= distribute_and_simplify_rtx (x
, 0);
5640 /* Try simplify a*(b/c) as (a*b)/c. */
5641 if (FLOAT_MODE_P (mode
) && flag_associative_math
5642 && GET_CODE (XEXP (x
, 0)) == DIV
)
5644 rtx tem
= simplify_binary_operation (MULT
, mode
,
5645 XEXP (XEXP (x
, 0), 0),
5648 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
5653 /* If this is a divide by a power of two, treat it as a shift if
5654 its first operand is a shift. */
5655 if (CONST_INT_P (XEXP (x
, 1))
5656 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
5657 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
5658 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
5659 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
5660 || GET_CODE (XEXP (x
, 0)) == ROTATE
5661 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
5662 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
5666 case GT
: case GTU
: case GE
: case GEU
:
5667 case LT
: case LTU
: case LE
: case LEU
:
5668 case UNEQ
: case LTGT
:
5669 case UNGT
: case UNGE
:
5670 case UNLT
: case UNLE
:
5671 case UNORDERED
: case ORDERED
:
5672 /* If the first operand is a condition code, we can't do anything
5674 if (GET_CODE (XEXP (x
, 0)) == COMPARE
5675 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
5676 && ! CC0_P (XEXP (x
, 0))))
5678 rtx op0
= XEXP (x
, 0);
5679 rtx op1
= XEXP (x
, 1);
5680 enum rtx_code new_code
;
5682 if (GET_CODE (op0
) == COMPARE
)
5683 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
5685 /* Simplify our comparison, if possible. */
5686 new_code
= simplify_comparison (code
, &op0
, &op1
);
5688 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5689 if only the low-order bit is possibly nonzero in X (such as when
5690 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5691 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5692 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5695 Remove any ZERO_EXTRACT we made when thinking this was a
5696 comparison. It may now be simpler to use, e.g., an AND. If a
5697 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5698 the call to make_compound_operation in the SET case.
5700 Don't apply these optimizations if the caller would
5701 prefer a comparison rather than a value.
5702 E.g., for the condition in an IF_THEN_ELSE most targets need
5703 an explicit comparison. */
5708 else if (STORE_FLAG_VALUE
== 1
5709 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5710 && op1
== const0_rtx
5711 && mode
== GET_MODE (op0
)
5712 && nonzero_bits (op0
, mode
) == 1)
5713 return gen_lowpart (mode
,
5714 expand_compound_operation (op0
));
5716 else if (STORE_FLAG_VALUE
== 1
5717 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5718 && op1
== const0_rtx
5719 && mode
== GET_MODE (op0
)
5720 && (num_sign_bit_copies (op0
, mode
)
5721 == GET_MODE_PRECISION (mode
)))
5723 op0
= expand_compound_operation (op0
);
5724 return simplify_gen_unary (NEG
, mode
,
5725 gen_lowpart (mode
, op0
),
5729 else if (STORE_FLAG_VALUE
== 1
5730 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5731 && op1
== const0_rtx
5732 && mode
== GET_MODE (op0
)
5733 && nonzero_bits (op0
, mode
) == 1)
5735 op0
= expand_compound_operation (op0
);
5736 return simplify_gen_binary (XOR
, mode
,
5737 gen_lowpart (mode
, op0
),
5741 else if (STORE_FLAG_VALUE
== 1
5742 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5743 && op1
== const0_rtx
5744 && mode
== GET_MODE (op0
)
5745 && (num_sign_bit_copies (op0
, mode
)
5746 == GET_MODE_PRECISION (mode
)))
5748 op0
= expand_compound_operation (op0
);
5749 return plus_constant (mode
, gen_lowpart (mode
, op0
), 1);
5752 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5757 else if (STORE_FLAG_VALUE
== -1
5758 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5759 && op1
== const0_rtx
5760 && (num_sign_bit_copies (op0
, mode
)
5761 == GET_MODE_PRECISION (mode
)))
5762 return gen_lowpart (mode
,
5763 expand_compound_operation (op0
));
5765 else if (STORE_FLAG_VALUE
== -1
5766 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5767 && op1
== const0_rtx
5768 && mode
== GET_MODE (op0
)
5769 && nonzero_bits (op0
, mode
) == 1)
5771 op0
= expand_compound_operation (op0
);
5772 return simplify_gen_unary (NEG
, mode
,
5773 gen_lowpart (mode
, op0
),
5777 else if (STORE_FLAG_VALUE
== -1
5778 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5779 && op1
== const0_rtx
5780 && mode
== GET_MODE (op0
)
5781 && (num_sign_bit_copies (op0
, mode
)
5782 == GET_MODE_PRECISION (mode
)))
5784 op0
= expand_compound_operation (op0
);
5785 return simplify_gen_unary (NOT
, mode
,
5786 gen_lowpart (mode
, op0
),
5790 /* If X is 0/1, (eq X 0) is X-1. */
5791 else if (STORE_FLAG_VALUE
== -1
5792 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5793 && op1
== const0_rtx
5794 && mode
== GET_MODE (op0
)
5795 && nonzero_bits (op0
, mode
) == 1)
5797 op0
= expand_compound_operation (op0
);
5798 return plus_constant (mode
, gen_lowpart (mode
, op0
), -1);
5801 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5802 one bit that might be nonzero, we can convert (ne x 0) to
5803 (ashift x c) where C puts the bit in the sign bit. Remove any
5804 AND with STORE_FLAG_VALUE when we are done, since we are only
5805 going to test the sign bit. */
5806 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5807 && HWI_COMPUTABLE_MODE_P (mode
)
5808 && val_signbit_p (mode
, STORE_FLAG_VALUE
)
5809 && op1
== const0_rtx
5810 && mode
== GET_MODE (op0
)
5811 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
5813 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5814 expand_compound_operation (op0
),
5815 GET_MODE_PRECISION (mode
) - 1 - i
);
5816 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
5822 /* If the code changed, return a whole new comparison.
5823 We also need to avoid using SUBST in cases where
5824 simplify_comparison has widened a comparison with a CONST_INT,
5825 since in that case the wider CONST_INT may fail the sanity
5826 checks in do_SUBST. */
5827 if (new_code
!= code
5828 || (CONST_INT_P (op1
)
5829 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 0))
5830 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 1))))
5831 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
5833 /* Otherwise, keep this operation, but maybe change its operands.
5834 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5835 SUBST (XEXP (x
, 0), op0
);
5836 SUBST (XEXP (x
, 1), op1
);
5841 return simplify_if_then_else (x
);
5847 /* If we are processing SET_DEST, we are done. */
5851 return expand_compound_operation (x
);
5854 return simplify_set (x
);
5858 return simplify_logical (x
);
5865 /* If this is a shift by a constant amount, simplify it. */
5866 if (CONST_INT_P (XEXP (x
, 1)))
5867 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
5868 INTVAL (XEXP (x
, 1)));
5870 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
5872 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
5873 ((unsigned HOST_WIDE_INT
) 1
5874 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
5886 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5889 simplify_if_then_else (rtx x
)
5891 enum machine_mode mode
= GET_MODE (x
);
5892 rtx cond
= XEXP (x
, 0);
5893 rtx true_rtx
= XEXP (x
, 1);
5894 rtx false_rtx
= XEXP (x
, 2);
5895 enum rtx_code true_code
= GET_CODE (cond
);
5896 int comparison_p
= COMPARISON_P (cond
);
5899 enum rtx_code false_code
;
5902 /* Simplify storing of the truth value. */
5903 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5904 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
5905 XEXP (cond
, 0), XEXP (cond
, 1));
5907 /* Also when the truth value has to be reversed. */
5909 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5910 && (reversed
= reversed_comparison (cond
, mode
)))
5913 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5914 in it is being compared against certain values. Get the true and false
5915 comparisons and see if that says anything about the value of each arm. */
5918 && ((false_code
= reversed_comparison_code (cond
, NULL
))
5920 && REG_P (XEXP (cond
, 0)))
5923 rtx from
= XEXP (cond
, 0);
5924 rtx true_val
= XEXP (cond
, 1);
5925 rtx false_val
= true_val
;
5928 /* If FALSE_CODE is EQ, swap the codes and arms. */
5930 if (false_code
== EQ
)
5932 swapped
= 1, true_code
= EQ
, false_code
= NE
;
5933 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
5936 /* If we are comparing against zero and the expression being tested has
5937 only a single bit that might be nonzero, that is its value when it is
5938 not equal to zero. Similarly if it is known to be -1 or 0. */
5940 if (true_code
== EQ
&& true_val
== const0_rtx
5941 && exact_log2 (nzb
= nonzero_bits (from
, GET_MODE (from
))) >= 0)
5944 false_val
= gen_int_mode (nzb
, GET_MODE (from
));
5946 else if (true_code
== EQ
&& true_val
== const0_rtx
5947 && (num_sign_bit_copies (from
, GET_MODE (from
))
5948 == GET_MODE_PRECISION (GET_MODE (from
))))
5951 false_val
= constm1_rtx
;
5954 /* Now simplify an arm if we know the value of the register in the
5955 branch and it is used in the arm. Be careful due to the potential
5956 of locally-shared RTL. */
5958 if (reg_mentioned_p (from
, true_rtx
))
5959 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
5961 pc_rtx
, pc_rtx
, 0, 0, 0);
5962 if (reg_mentioned_p (from
, false_rtx
))
5963 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
5965 pc_rtx
, pc_rtx
, 0, 0, 0);
5967 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
5968 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
5970 true_rtx
= XEXP (x
, 1);
5971 false_rtx
= XEXP (x
, 2);
5972 true_code
= GET_CODE (cond
);
5975 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5976 reversed, do so to avoid needing two sets of patterns for
5977 subtract-and-branch insns. Similarly if we have a constant in the true
5978 arm, the false arm is the same as the first operand of the comparison, or
5979 the false arm is more complicated than the true arm. */
5982 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
5983 && (true_rtx
== pc_rtx
5984 || (CONSTANT_P (true_rtx
)
5985 && !CONST_INT_P (false_rtx
) && false_rtx
!= pc_rtx
)
5986 || true_rtx
== const0_rtx
5987 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
5988 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
5989 && !OBJECT_P (false_rtx
))
5990 || reg_mentioned_p (true_rtx
, false_rtx
)
5991 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
5993 true_code
= reversed_comparison_code (cond
, NULL
);
5994 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
5995 SUBST (XEXP (x
, 1), false_rtx
);
5996 SUBST (XEXP (x
, 2), true_rtx
);
5998 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
6001 /* It is possible that the conditional has been simplified out. */
6002 true_code
= GET_CODE (cond
);
6003 comparison_p
= COMPARISON_P (cond
);
6006 /* If the two arms are identical, we don't need the comparison. */
6008 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
6011 /* Convert a == b ? b : a to "a". */
6012 if (true_code
== EQ
&& ! side_effects_p (cond
)
6013 && !HONOR_NANS (mode
)
6014 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
6015 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
6017 else if (true_code
== NE
&& ! side_effects_p (cond
)
6018 && !HONOR_NANS (mode
)
6019 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6020 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
6023 /* Look for cases where we have (abs x) or (neg (abs X)). */
6025 if (GET_MODE_CLASS (mode
) == MODE_INT
6027 && XEXP (cond
, 1) == const0_rtx
6028 && GET_CODE (false_rtx
) == NEG
6029 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
6030 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
6031 && ! side_effects_p (true_rtx
))
6036 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
6040 simplify_gen_unary (NEG
, mode
,
6041 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
6047 /* Look for MIN or MAX. */
6049 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
6051 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6052 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
6053 && ! side_effects_p (cond
))
6058 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
6061 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
6064 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
6067 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
6072 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6073 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6074 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6075 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6076 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6077 neither 1 or -1, but it isn't worth checking for. */
6079 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6081 && GET_MODE_CLASS (mode
) == MODE_INT
6082 && ! side_effects_p (x
))
6084 rtx t
= make_compound_operation (true_rtx
, SET
);
6085 rtx f
= make_compound_operation (false_rtx
, SET
);
6086 rtx cond_op0
= XEXP (cond
, 0);
6087 rtx cond_op1
= XEXP (cond
, 1);
6088 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
6089 enum machine_mode m
= mode
;
6090 rtx z
= 0, c1
= NULL_RTX
;
6092 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
6093 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
6094 || GET_CODE (t
) == ASHIFT
6095 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
6096 && rtx_equal_p (XEXP (t
, 0), f
))
6097 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
6099 /* If an identity-zero op is commutative, check whether there
6100 would be a match if we swapped the operands. */
6101 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
6102 || GET_CODE (t
) == XOR
)
6103 && rtx_equal_p (XEXP (t
, 1), f
))
6104 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
6105 else if (GET_CODE (t
) == SIGN_EXTEND
6106 && (GET_CODE (XEXP (t
, 0)) == PLUS
6107 || GET_CODE (XEXP (t
, 0)) == MINUS
6108 || GET_CODE (XEXP (t
, 0)) == IOR
6109 || GET_CODE (XEXP (t
, 0)) == XOR
6110 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6111 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6112 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6113 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6114 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6115 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6116 && (num_sign_bit_copies (f
, GET_MODE (f
))
6118 (GET_MODE_PRECISION (mode
)
6119 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
6121 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6122 extend_op
= SIGN_EXTEND
;
6123 m
= GET_MODE (XEXP (t
, 0));
6125 else if (GET_CODE (t
) == SIGN_EXTEND
6126 && (GET_CODE (XEXP (t
, 0)) == PLUS
6127 || GET_CODE (XEXP (t
, 0)) == IOR
6128 || GET_CODE (XEXP (t
, 0)) == XOR
)
6129 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6130 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6131 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6132 && (num_sign_bit_copies (f
, GET_MODE (f
))
6134 (GET_MODE_PRECISION (mode
)
6135 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
6137 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6138 extend_op
= SIGN_EXTEND
;
6139 m
= GET_MODE (XEXP (t
, 0));
6141 else if (GET_CODE (t
) == ZERO_EXTEND
6142 && (GET_CODE (XEXP (t
, 0)) == PLUS
6143 || GET_CODE (XEXP (t
, 0)) == MINUS
6144 || GET_CODE (XEXP (t
, 0)) == IOR
6145 || GET_CODE (XEXP (t
, 0)) == XOR
6146 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6147 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6148 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6149 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6150 && HWI_COMPUTABLE_MODE_P (mode
)
6151 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6152 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6153 && ((nonzero_bits (f
, GET_MODE (f
))
6154 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
6157 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6158 extend_op
= ZERO_EXTEND
;
6159 m
= GET_MODE (XEXP (t
, 0));
6161 else if (GET_CODE (t
) == ZERO_EXTEND
6162 && (GET_CODE (XEXP (t
, 0)) == PLUS
6163 || GET_CODE (XEXP (t
, 0)) == IOR
6164 || GET_CODE (XEXP (t
, 0)) == XOR
)
6165 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6166 && HWI_COMPUTABLE_MODE_P (mode
)
6167 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6168 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6169 && ((nonzero_bits (f
, GET_MODE (f
))
6170 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
6173 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6174 extend_op
= ZERO_EXTEND
;
6175 m
= GET_MODE (XEXP (t
, 0));
6180 temp
= subst (simplify_gen_relational (true_code
, m
, VOIDmode
,
6181 cond_op0
, cond_op1
),
6182 pc_rtx
, pc_rtx
, 0, 0, 0);
6183 temp
= simplify_gen_binary (MULT
, m
, temp
,
6184 simplify_gen_binary (MULT
, m
, c1
,
6186 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0, 0);
6187 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
6189 if (extend_op
!= UNKNOWN
)
6190 temp
= simplify_gen_unary (extend_op
, mode
, temp
, m
);
6196 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6197 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6198 negation of a single bit, we can convert this operation to a shift. We
6199 can actually do this more generally, but it doesn't seem worth it. */
6201 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6202 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6203 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
6204 && (i
= exact_log2 (UINTVAL (true_rtx
))) >= 0)
6205 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
6206 == GET_MODE_PRECISION (mode
))
6207 && (i
= exact_log2 (-UINTVAL (true_rtx
))) >= 0)))
6209 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
6210 gen_lowpart (mode
, XEXP (cond
, 0)), i
);
6212 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6213 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6214 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6215 && GET_MODE (XEXP (cond
, 0)) == mode
6216 && (UINTVAL (true_rtx
) & GET_MODE_MASK (mode
))
6217 == nonzero_bits (XEXP (cond
, 0), mode
)
6218 && (i
= exact_log2 (UINTVAL (true_rtx
) & GET_MODE_MASK (mode
))) >= 0)
6219 return XEXP (cond
, 0);
6224 /* Simplify X, a SET expression. Return the new expression. */
6227 simplify_set (rtx x
)
6229 rtx src
= SET_SRC (x
);
6230 rtx dest
= SET_DEST (x
);
6231 enum machine_mode mode
6232 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
6236 /* (set (pc) (return)) gets written as (return). */
6237 if (GET_CODE (dest
) == PC
&& ANY_RETURN_P (src
))
6240 /* Now that we know for sure which bits of SRC we are using, see if we can
6241 simplify the expression for the object knowing that we only need the
6244 if (GET_MODE_CLASS (mode
) == MODE_INT
&& HWI_COMPUTABLE_MODE_P (mode
))
6246 src
= force_to_mode (src
, mode
, ~(unsigned HOST_WIDE_INT
) 0, 0);
6247 SUBST (SET_SRC (x
), src
);
6250 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6251 the comparison result and try to simplify it unless we already have used
6252 undobuf.other_insn. */
6253 if ((GET_MODE_CLASS (mode
) == MODE_CC
6254 || GET_CODE (src
) == COMPARE
6256 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
6257 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
6258 && COMPARISON_P (*cc_use
)
6259 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
6261 enum rtx_code old_code
= GET_CODE (*cc_use
);
6262 enum rtx_code new_code
;
6264 int other_changed
= 0;
6265 rtx inner_compare
= NULL_RTX
;
6266 enum machine_mode compare_mode
= GET_MODE (dest
);
6268 if (GET_CODE (src
) == COMPARE
)
6270 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
6271 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
6273 inner_compare
= op0
;
6274 op0
= XEXP (inner_compare
, 0), op1
= XEXP (inner_compare
, 1);
6278 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
6280 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
6283 new_code
= old_code
;
6284 else if (!CONSTANT_P (tmp
))
6286 new_code
= GET_CODE (tmp
);
6287 op0
= XEXP (tmp
, 0);
6288 op1
= XEXP (tmp
, 1);
6292 rtx pat
= PATTERN (other_insn
);
6293 undobuf
.other_insn
= other_insn
;
6294 SUBST (*cc_use
, tmp
);
6296 /* Attempt to simplify CC user. */
6297 if (GET_CODE (pat
) == SET
)
6299 rtx new_rtx
= simplify_rtx (SET_SRC (pat
));
6300 if (new_rtx
!= NULL_RTX
)
6301 SUBST (SET_SRC (pat
), new_rtx
);
6304 /* Convert X into a no-op move. */
6305 SUBST (SET_DEST (x
), pc_rtx
);
6306 SUBST (SET_SRC (x
), pc_rtx
);
6310 /* Simplify our comparison, if possible. */
6311 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
6313 #ifdef SELECT_CC_MODE
6314 /* If this machine has CC modes other than CCmode, check to see if we
6315 need to use a different CC mode here. */
6316 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
6317 compare_mode
= GET_MODE (op0
);
6318 else if (inner_compare
6319 && GET_MODE_CLASS (GET_MODE (inner_compare
)) == MODE_CC
6320 && new_code
== old_code
6321 && op0
== XEXP (inner_compare
, 0)
6322 && op1
== XEXP (inner_compare
, 1))
6323 compare_mode
= GET_MODE (inner_compare
);
6325 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
6328 /* If the mode changed, we have to change SET_DEST, the mode in the
6329 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6330 a hard register, just build new versions with the proper mode. If it
6331 is a pseudo, we lose unless it is only time we set the pseudo, in
6332 which case we can safely change its mode. */
6333 if (compare_mode
!= GET_MODE (dest
))
6335 if (can_change_dest_mode (dest
, 0, compare_mode
))
6337 unsigned int regno
= REGNO (dest
);
6340 if (regno
< FIRST_PSEUDO_REGISTER
)
6341 new_dest
= gen_rtx_REG (compare_mode
, regno
);
6344 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
6345 new_dest
= regno_reg_rtx
[regno
];
6348 SUBST (SET_DEST (x
), new_dest
);
6349 SUBST (XEXP (*cc_use
, 0), new_dest
);
6356 #endif /* SELECT_CC_MODE */
6358 /* If the code changed, we have to build a new comparison in
6359 undobuf.other_insn. */
6360 if (new_code
!= old_code
)
6362 int other_changed_previously
= other_changed
;
6363 unsigned HOST_WIDE_INT mask
;
6364 rtx old_cc_use
= *cc_use
;
6366 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
6370 /* If the only change we made was to change an EQ into an NE or
6371 vice versa, OP0 has only one bit that might be nonzero, and OP1
6372 is zero, check if changing the user of the condition code will
6373 produce a valid insn. If it won't, we can keep the original code
6374 in that insn by surrounding our operation with an XOR. */
6376 if (((old_code
== NE
&& new_code
== EQ
)
6377 || (old_code
== EQ
&& new_code
== NE
))
6378 && ! other_changed_previously
&& op1
== const0_rtx
6379 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
6380 && exact_log2 (mask
= nonzero_bits (op0
, GET_MODE (op0
))) >= 0)
6382 rtx pat
= PATTERN (other_insn
), note
= 0;
6384 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
6385 && ! check_asm_operands (pat
)))
6387 *cc_use
= old_cc_use
;
6390 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
), op0
,
6398 undobuf
.other_insn
= other_insn
;
6400 /* Otherwise, if we didn't previously have a COMPARE in the
6401 correct mode, we need one. */
6402 if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
)
6404 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6407 else if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
6409 SUBST (SET_SRC (x
), op0
);
6412 /* Otherwise, update the COMPARE if needed. */
6413 else if (XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
6415 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6421 /* Get SET_SRC in a form where we have placed back any
6422 compound expressions. Then do the checks below. */
6423 src
= make_compound_operation (src
, SET
);
6424 SUBST (SET_SRC (x
), src
);
6427 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6428 and X being a REG or (subreg (reg)), we may be able to convert this to
6429 (set (subreg:m2 x) (op)).
6431 We can always do this if M1 is narrower than M2 because that means that
6432 we only care about the low bits of the result.
6434 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6435 perform a narrower operation than requested since the high-order bits will
6436 be undefined. On machine where it is defined, this transformation is safe
6437 as long as M1 and M2 have the same number of words. */
6439 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6440 && !OBJECT_P (SUBREG_REG (src
))
6441 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
6443 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
6444 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
6445 #ifndef WORD_REGISTER_OPERATIONS
6446 && (GET_MODE_SIZE (GET_MODE (src
))
6447 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
6449 #ifdef CANNOT_CHANGE_MODE_CLASS
6450 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
6451 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest
),
6452 GET_MODE (SUBREG_REG (src
)),
6456 || (GET_CODE (dest
) == SUBREG
6457 && REG_P (SUBREG_REG (dest
)))))
6459 SUBST (SET_DEST (x
),
6460 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
6462 SUBST (SET_SRC (x
), SUBREG_REG (src
));
6464 src
= SET_SRC (x
), dest
= SET_DEST (x
);
6468 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6471 && GET_CODE (src
) == SUBREG
6472 && subreg_lowpart_p (src
)
6473 && (GET_MODE_PRECISION (GET_MODE (src
))
6474 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src
)))))
6476 rtx inner
= SUBREG_REG (src
);
6477 enum machine_mode inner_mode
= GET_MODE (inner
);
6479 /* Here we make sure that we don't have a sign bit on. */
6480 if (val_signbit_known_clear_p (GET_MODE (src
),
6481 nonzero_bits (inner
, inner_mode
)))
6483 SUBST (SET_SRC (x
), inner
);
6489 #ifdef LOAD_EXTEND_OP
6490 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6491 would require a paradoxical subreg. Replace the subreg with a
6492 zero_extend to avoid the reload that would otherwise be required. */
6494 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6495 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src
)))
6496 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))) != UNKNOWN
6497 && SUBREG_BYTE (src
) == 0
6498 && paradoxical_subreg_p (src
)
6499 && MEM_P (SUBREG_REG (src
)))
6502 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))),
6503 GET_MODE (src
), SUBREG_REG (src
)));
6509 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6510 are comparing an item known to be 0 or -1 against 0, use a logical
6511 operation instead. Check for one of the arms being an IOR of the other
6512 arm with some value. We compute three terms to be IOR'ed together. In
6513 practice, at most two will be nonzero. Then we do the IOR's. */
6515 if (GET_CODE (dest
) != PC
6516 && GET_CODE (src
) == IF_THEN_ELSE
6517 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
6518 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
6519 && XEXP (XEXP (src
, 0), 1) == const0_rtx
6520 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
6521 #ifdef HAVE_conditional_move
6522 && ! can_conditionally_move_p (GET_MODE (src
))
6524 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
6525 GET_MODE (XEXP (XEXP (src
, 0), 0)))
6526 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src
, 0), 0))))
6527 && ! side_effects_p (src
))
6529 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6530 ? XEXP (src
, 1) : XEXP (src
, 2));
6531 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6532 ? XEXP (src
, 2) : XEXP (src
, 1));
6533 rtx term1
= const0_rtx
, term2
, term3
;
6535 if (GET_CODE (true_rtx
) == IOR
6536 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
6537 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
6538 else if (GET_CODE (true_rtx
) == IOR
6539 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
6540 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
6541 else if (GET_CODE (false_rtx
) == IOR
6542 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
6543 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
6544 else if (GET_CODE (false_rtx
) == IOR
6545 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
6546 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
6548 term2
= simplify_gen_binary (AND
, GET_MODE (src
),
6549 XEXP (XEXP (src
, 0), 0), true_rtx
);
6550 term3
= simplify_gen_binary (AND
, GET_MODE (src
),
6551 simplify_gen_unary (NOT
, GET_MODE (src
),
6552 XEXP (XEXP (src
, 0), 0),
6557 simplify_gen_binary (IOR
, GET_MODE (src
),
6558 simplify_gen_binary (IOR
, GET_MODE (src
),
6565 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6566 whole thing fail. */
6567 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
6569 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
6572 /* Convert this into a field assignment operation, if possible. */
6573 return make_field_assignment (x
);
6576 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6580 simplify_logical (rtx x
)
6582 enum machine_mode mode
= GET_MODE (x
);
6583 rtx op0
= XEXP (x
, 0);
6584 rtx op1
= XEXP (x
, 1);
6586 switch (GET_CODE (x
))
6589 /* We can call simplify_and_const_int only if we don't lose
6590 any (sign) bits when converting INTVAL (op1) to
6591 "unsigned HOST_WIDE_INT". */
6592 if (CONST_INT_P (op1
)
6593 && (HWI_COMPUTABLE_MODE_P (mode
)
6594 || INTVAL (op1
) > 0))
6596 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
6597 if (GET_CODE (x
) != AND
)
6604 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6605 apply the distributive law and then the inverse distributive
6606 law to see if things simplify. */
6607 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
6609 rtx result
= distribute_and_simplify_rtx (x
, 0);
6613 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
6615 rtx result
= distribute_and_simplify_rtx (x
, 1);
6622 /* If we have (ior (and A B) C), apply the distributive law and then
6623 the inverse distributive law to see if things simplify. */
6625 if (GET_CODE (op0
) == AND
)
6627 rtx result
= distribute_and_simplify_rtx (x
, 0);
6632 if (GET_CODE (op1
) == AND
)
6634 rtx result
= distribute_and_simplify_rtx (x
, 1);
6647 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6648 operations" because they can be replaced with two more basic operations.
6649 ZERO_EXTEND is also considered "compound" because it can be replaced with
6650 an AND operation, which is simpler, though only one operation.
6652 The function expand_compound_operation is called with an rtx expression
6653 and will convert it to the appropriate shifts and AND operations,
6654 simplifying at each stage.
6656 The function make_compound_operation is called to convert an expression
6657 consisting of shifts and ANDs into the equivalent compound expression.
6658 It is the inverse of this function, loosely speaking. */
6661 expand_compound_operation (rtx x
)
6663 unsigned HOST_WIDE_INT pos
= 0, len
;
6665 unsigned int modewidth
;
6668 switch (GET_CODE (x
))
6673 /* We can't necessarily use a const_int for a multiword mode;
6674 it depends on implicitly extending the value.
6675 Since we don't know the right way to extend it,
6676 we can't tell whether the implicit way is right.
6678 Even for a mode that is no wider than a const_int,
6679 we can't win, because we need to sign extend one of its bits through
6680 the rest of it, and we don't know which bit. */
6681 if (CONST_INT_P (XEXP (x
, 0)))
6684 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6685 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6686 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6687 reloaded. If not for that, MEM's would very rarely be safe.
6689 Reject MODEs bigger than a word, because we might not be able
6690 to reference a two-register group starting with an arbitrary register
6691 (and currently gen_lowpart might crash for a SUBREG). */
6693 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
6696 /* Reject MODEs that aren't scalar integers because turning vector
6697 or complex modes into shifts causes problems. */
6699 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
6702 len
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)));
6703 /* If the inner object has VOIDmode (the only way this can happen
6704 is if it is an ASM_OPERANDS), we can't do anything since we don't
6705 know how much masking to do. */
6714 /* ... fall through ... */
6717 /* If the operand is a CLOBBER, just return it. */
6718 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
6721 if (!CONST_INT_P (XEXP (x
, 1))
6722 || !CONST_INT_P (XEXP (x
, 2))
6723 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
6726 /* Reject MODEs that aren't scalar integers because turning vector
6727 or complex modes into shifts causes problems. */
6729 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
6732 len
= INTVAL (XEXP (x
, 1));
6733 pos
= INTVAL (XEXP (x
, 2));
6735 /* This should stay within the object being extracted, fail otherwise. */
6736 if (len
+ pos
> GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0))))
6739 if (BITS_BIG_ENDIAN
)
6740 pos
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0))) - len
- pos
;
6747 /* Convert sign extension to zero extension, if we know that the high
6748 bit is not set, as this is easier to optimize. It will be converted
6749 back to cheaper alternative in make_extraction. */
6750 if (GET_CODE (x
) == SIGN_EXTEND
6751 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6752 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
6753 & ~(((unsigned HOST_WIDE_INT
)
6754 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
6758 rtx temp
= gen_rtx_ZERO_EXTEND (GET_MODE (x
), XEXP (x
, 0));
6759 rtx temp2
= expand_compound_operation (temp
);
6761 /* Make sure this is a profitable operation. */
6762 if (set_src_cost (x
, optimize_this_for_speed_p
)
6763 > set_src_cost (temp2
, optimize_this_for_speed_p
))
6765 else if (set_src_cost (x
, optimize_this_for_speed_p
)
6766 > set_src_cost (temp
, optimize_this_for_speed_p
))
6772 /* We can optimize some special cases of ZERO_EXTEND. */
6773 if (GET_CODE (x
) == ZERO_EXTEND
)
6775 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6776 know that the last value didn't have any inappropriate bits
6778 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
6779 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
6780 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6781 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
6782 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6783 return XEXP (XEXP (x
, 0), 0);
6785 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6786 if (GET_CODE (XEXP (x
, 0)) == SUBREG
6787 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
6788 && subreg_lowpart_p (XEXP (x
, 0))
6789 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6790 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
6791 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6792 return SUBREG_REG (XEXP (x
, 0));
6794 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6795 is a comparison and STORE_FLAG_VALUE permits. This is like
6796 the first case, but it works even when GET_MODE (x) is larger
6797 than HOST_WIDE_INT. */
6798 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
6799 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
6800 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
6801 && (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
6802 <= HOST_BITS_PER_WIDE_INT
)
6803 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6804 return XEXP (XEXP (x
, 0), 0);
6806 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6807 if (GET_CODE (XEXP (x
, 0)) == SUBREG
6808 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
6809 && subreg_lowpart_p (XEXP (x
, 0))
6810 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
6811 && (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
6812 <= HOST_BITS_PER_WIDE_INT
)
6813 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6814 return SUBREG_REG (XEXP (x
, 0));
6818 /* If we reach here, we want to return a pair of shifts. The inner
6819 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6820 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6821 logical depending on the value of UNSIGNEDP.
6823 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6824 converted into an AND of a shift.
6826 We must check for the case where the left shift would have a negative
6827 count. This can happen in a case like (x >> 31) & 255 on machines
6828 that can't shift by a constant. On those machines, we would first
6829 combine the shift with the AND to produce a variable-position
6830 extraction. Then the constant of 31 would be substituted in
6831 to produce such a position. */
6833 modewidth
= GET_MODE_PRECISION (GET_MODE (x
));
6834 if (modewidth
>= pos
+ len
)
6836 enum machine_mode mode
= GET_MODE (x
);
6837 tem
= gen_lowpart (mode
, XEXP (x
, 0));
6838 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
6840 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
6841 tem
, modewidth
- pos
- len
);
6842 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
6843 mode
, tem
, modewidth
- len
);
6845 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
6846 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
6847 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
6850 ((unsigned HOST_WIDE_INT
) 1 << len
) - 1);
6852 /* Any other cases we can't handle. */
6855 /* If we couldn't do this for some reason, return the original
6857 if (GET_CODE (tem
) == CLOBBER
)
6863 /* X is a SET which contains an assignment of one object into
6864 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6865 or certain SUBREGS). If possible, convert it into a series of
6868 We half-heartedly support variable positions, but do not at all
6869 support variable lengths. */
6872 expand_field_assignment (const_rtx x
)
6875 rtx pos
; /* Always counts from low bit. */
6877 rtx mask
, cleared
, masked
;
6878 enum machine_mode compute_mode
;
6880 /* Loop until we find something we can't simplify. */
6883 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
6884 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
6886 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
6887 len
= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0)));
6888 pos
= GEN_INT (subreg_lsb (XEXP (SET_DEST (x
), 0)));
6890 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
6891 && CONST_INT_P (XEXP (SET_DEST (x
), 1)))
6893 inner
= XEXP (SET_DEST (x
), 0);
6894 len
= INTVAL (XEXP (SET_DEST (x
), 1));
6895 pos
= XEXP (SET_DEST (x
), 2);
6897 /* A constant position should stay within the width of INNER. */
6898 if (CONST_INT_P (pos
)
6899 && INTVAL (pos
) + len
> GET_MODE_PRECISION (GET_MODE (inner
)))
6902 if (BITS_BIG_ENDIAN
)
6904 if (CONST_INT_P (pos
))
6905 pos
= GEN_INT (GET_MODE_PRECISION (GET_MODE (inner
)) - len
6907 else if (GET_CODE (pos
) == MINUS
6908 && CONST_INT_P (XEXP (pos
, 1))
6909 && (INTVAL (XEXP (pos
, 1))
6910 == GET_MODE_PRECISION (GET_MODE (inner
)) - len
))
6911 /* If position is ADJUST - X, new position is X. */
6912 pos
= XEXP (pos
, 0);
6915 HOST_WIDE_INT prec
= GET_MODE_PRECISION (GET_MODE (inner
));
6916 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
6917 gen_int_mode (prec
- len
,
6924 /* A SUBREG between two modes that occupy the same numbers of words
6925 can be done by moving the SUBREG to the source. */
6926 else if (GET_CODE (SET_DEST (x
)) == SUBREG
6927 /* We need SUBREGs to compute nonzero_bits properly. */
6928 && nonzero_sign_valid
6929 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
6930 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
6931 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
6932 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
6934 x
= gen_rtx_SET (VOIDmode
, SUBREG_REG (SET_DEST (x
)),
6936 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
6943 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
6944 inner
= SUBREG_REG (inner
);
6946 compute_mode
= GET_MODE (inner
);
6948 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6949 if (! SCALAR_INT_MODE_P (compute_mode
))
6951 enum machine_mode imode
;
6953 /* Don't do anything for vector or complex integral types. */
6954 if (! FLOAT_MODE_P (compute_mode
))
6957 /* Try to find an integral mode to pun with. */
6958 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
6959 if (imode
== BLKmode
)
6962 compute_mode
= imode
;
6963 inner
= gen_lowpart (imode
, inner
);
6966 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6967 if (len
>= HOST_BITS_PER_WIDE_INT
)
6970 /* Now compute the equivalent expression. Make a copy of INNER
6971 for the SET_DEST in case it is a MEM into which we will substitute;
6972 we don't want shared RTL in that case. */
6973 mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
6975 cleared
= simplify_gen_binary (AND
, compute_mode
,
6976 simplify_gen_unary (NOT
, compute_mode
,
6977 simplify_gen_binary (ASHIFT
,
6982 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
6983 simplify_gen_binary (
6985 gen_lowpart (compute_mode
, SET_SRC (x
)),
6989 x
= gen_rtx_SET (VOIDmode
, copy_rtx (inner
),
6990 simplify_gen_binary (IOR
, compute_mode
,
6997 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6998 it is an RTX that represents the (variable) starting position; otherwise,
6999 POS is the (constant) starting bit position. Both are counted from the LSB.
7001 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7003 IN_DEST is nonzero if this is a reference in the destination of a SET.
7004 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7005 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7008 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7009 ZERO_EXTRACT should be built even for bits starting at bit 0.
7011 MODE is the desired mode of the result (if IN_DEST == 0).
7013 The result is an RTX for the extraction or NULL_RTX if the target
7017 make_extraction (enum machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
7018 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
7019 int in_dest
, int in_compare
)
7021 /* This mode describes the size of the storage area
7022 to fetch the overall value from. Within that, we
7023 ignore the POS lowest bits, etc. */
7024 enum machine_mode is_mode
= GET_MODE (inner
);
7025 enum machine_mode inner_mode
;
7026 enum machine_mode wanted_inner_mode
;
7027 enum machine_mode wanted_inner_reg_mode
= word_mode
;
7028 enum machine_mode pos_mode
= word_mode
;
7029 enum machine_mode extraction_mode
= word_mode
;
7030 enum machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
7032 rtx orig_pos_rtx
= pos_rtx
;
7033 HOST_WIDE_INT orig_pos
;
7035 if (pos_rtx
&& CONST_INT_P (pos_rtx
))
7036 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
7038 if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7040 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7041 consider just the QI as the memory to extract from.
7042 The subreg adds or removes high bits; its mode is
7043 irrelevant to the meaning of this extraction,
7044 since POS and LEN count from the lsb. */
7045 if (MEM_P (SUBREG_REG (inner
)))
7046 is_mode
= GET_MODE (SUBREG_REG (inner
));
7047 inner
= SUBREG_REG (inner
);
7049 else if (GET_CODE (inner
) == ASHIFT
7050 && CONST_INT_P (XEXP (inner
, 1))
7051 && pos_rtx
== 0 && pos
== 0
7052 && len
> UINTVAL (XEXP (inner
, 1)))
7054 /* We're extracting the least significant bits of an rtx
7055 (ashift X (const_int C)), where LEN > C. Extract the
7056 least significant (LEN - C) bits of X, giving an rtx
7057 whose mode is MODE, then shift it left C times. */
7058 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7059 0, 0, len
- INTVAL (XEXP (inner
, 1)),
7060 unsignedp
, in_dest
, in_compare
);
7062 return gen_rtx_ASHIFT (mode
, new_rtx
, XEXP (inner
, 1));
7064 else if (GET_CODE (inner
) == TRUNCATE
)
7065 inner
= XEXP (inner
, 0);
7067 inner_mode
= GET_MODE (inner
);
7069 /* See if this can be done without an extraction. We never can if the
7070 width of the field is not the same as that of some integer mode. For
7071 registers, we can only avoid the extraction if the position is at the
7072 low-order bit and this is either not in the destination or we have the
7073 appropriate STRICT_LOW_PART operation available.
7075 For MEM, we can avoid an extract if the field starts on an appropriate
7076 boundary and we can change the mode of the memory reference. */
7078 if (tmode
!= BLKmode
7079 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
7081 && (inner_mode
== tmode
7083 || TRULY_NOOP_TRUNCATION_MODES_P (tmode
, inner_mode
)
7084 || reg_truncated_to_mode (tmode
, inner
))
7087 && have_insn_for (STRICT_LOW_PART
, tmode
))))
7088 || (MEM_P (inner
) && pos_rtx
== 0
7090 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
7091 : BITS_PER_UNIT
)) == 0
7092 /* We can't do this if we are widening INNER_MODE (it
7093 may not be aligned, for one thing). */
7094 && GET_MODE_PRECISION (inner_mode
) >= GET_MODE_PRECISION (tmode
)
7095 && (inner_mode
== tmode
7096 || (! mode_dependent_address_p (XEXP (inner
, 0),
7097 MEM_ADDR_SPACE (inner
))
7098 && ! MEM_VOLATILE_P (inner
))))))
7100 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7101 field. If the original and current mode are the same, we need not
7102 adjust the offset. Otherwise, we do if bytes big endian.
7104 If INNER is not a MEM, get a piece consisting of just the field
7105 of interest (in this case POS % BITS_PER_WORD must be 0). */
7109 HOST_WIDE_INT offset
;
7111 /* POS counts from lsb, but make OFFSET count in memory order. */
7112 if (BYTES_BIG_ENDIAN
)
7113 offset
= (GET_MODE_PRECISION (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
7115 offset
= pos
/ BITS_PER_UNIT
;
7117 new_rtx
= adjust_address_nv (inner
, tmode
, offset
);
7119 else if (REG_P (inner
))
7121 if (tmode
!= inner_mode
)
7123 /* We can't call gen_lowpart in a DEST since we
7124 always want a SUBREG (see below) and it would sometimes
7125 return a new hard register. */
7128 HOST_WIDE_INT final_word
= pos
/ BITS_PER_WORD
;
7130 if (WORDS_BIG_ENDIAN
7131 && GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
7132 final_word
= ((GET_MODE_SIZE (inner_mode
)
7133 - GET_MODE_SIZE (tmode
))
7134 / UNITS_PER_WORD
) - final_word
;
7136 final_word
*= UNITS_PER_WORD
;
7137 if (BYTES_BIG_ENDIAN
&&
7138 GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (tmode
))
7139 final_word
+= (GET_MODE_SIZE (inner_mode
)
7140 - GET_MODE_SIZE (tmode
)) % UNITS_PER_WORD
;
7142 /* Avoid creating invalid subregs, for example when
7143 simplifying (x>>32)&255. */
7144 if (!validate_subreg (tmode
, inner_mode
, inner
, final_word
))
7147 new_rtx
= gen_rtx_SUBREG (tmode
, inner
, final_word
);
7150 new_rtx
= gen_lowpart (tmode
, inner
);
7156 new_rtx
= force_to_mode (inner
, tmode
,
7157 len
>= HOST_BITS_PER_WIDE_INT
7158 ? ~(unsigned HOST_WIDE_INT
) 0
7159 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7162 /* If this extraction is going into the destination of a SET,
7163 make a STRICT_LOW_PART unless we made a MEM. */
7166 return (MEM_P (new_rtx
) ? new_rtx
7167 : (GET_CODE (new_rtx
) != SUBREG
7168 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
7169 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new_rtx
)));
7174 if (CONST_SCALAR_INT_P (new_rtx
))
7175 return simplify_unary_operation (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7176 mode
, new_rtx
, tmode
);
7178 /* If we know that no extraneous bits are set, and that the high
7179 bit is not set, convert the extraction to the cheaper of
7180 sign and zero extension, that are equivalent in these cases. */
7181 if (flag_expensive_optimizations
7182 && (HWI_COMPUTABLE_MODE_P (tmode
)
7183 && ((nonzero_bits (new_rtx
, tmode
)
7184 & ~(((unsigned HOST_WIDE_INT
)GET_MODE_MASK (tmode
)) >> 1))
7187 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new_rtx
);
7188 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new_rtx
);
7190 /* Prefer ZERO_EXTENSION, since it gives more information to
7192 if (set_src_cost (temp
, optimize_this_for_speed_p
)
7193 <= set_src_cost (temp1
, optimize_this_for_speed_p
))
7198 /* Otherwise, sign- or zero-extend unless we already are in the
7201 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7205 /* Unless this is a COMPARE or we have a funny memory reference,
7206 don't do anything with zero-extending field extracts starting at
7207 the low-order bit since they are simple AND operations. */
7208 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
7209 && ! in_compare
&& unsignedp
)
7212 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7213 if the position is not a constant and the length is not 1. In all
7214 other cases, we would only be going outside our object in cases when
7215 an original shift would have been undefined. */
7217 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_PRECISION (is_mode
))
7218 || (pos_rtx
!= 0 && len
!= 1)))
7221 enum extraction_pattern pattern
= (in_dest
? EP_insv
7222 : unsignedp
? EP_extzv
: EP_extv
);
7224 /* If INNER is not from memory, we want it to have the mode of a register
7225 extraction pattern's structure operand, or word_mode if there is no
7226 such pattern. The same applies to extraction_mode and pos_mode
7227 and their respective operands.
7229 For memory, assume that the desired extraction_mode and pos_mode
7230 are the same as for a register operation, since at present we don't
7231 have named patterns for aligned memory structures. */
7232 struct extraction_insn insn
;
7233 if (get_best_reg_extraction_insn (&insn
, pattern
,
7234 GET_MODE_BITSIZE (inner_mode
), mode
))
7236 wanted_inner_reg_mode
= insn
.struct_mode
;
7237 pos_mode
= insn
.pos_mode
;
7238 extraction_mode
= insn
.field_mode
;
7241 /* Never narrow an object, since that might not be safe. */
7243 if (mode
!= VOIDmode
7244 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
7245 extraction_mode
= mode
;
7248 wanted_inner_mode
= wanted_inner_reg_mode
;
7251 /* Be careful not to go beyond the extracted object and maintain the
7252 natural alignment of the memory. */
7253 wanted_inner_mode
= smallest_mode_for_size (len
, MODE_INT
);
7254 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
7255 > GET_MODE_BITSIZE (wanted_inner_mode
))
7257 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
);
7258 gcc_assert (wanted_inner_mode
!= VOIDmode
);
7264 if (BITS_BIG_ENDIAN
)
7266 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7267 BITS_BIG_ENDIAN style. If position is constant, compute new
7268 position. Otherwise, build subtraction.
7269 Note that POS is relative to the mode of the original argument.
7270 If it's a MEM we need to recompute POS relative to that.
7271 However, if we're extracting from (or inserting into) a register,
7272 we want to recompute POS relative to wanted_inner_mode. */
7273 int width
= (MEM_P (inner
)
7274 ? GET_MODE_BITSIZE (is_mode
)
7275 : GET_MODE_BITSIZE (wanted_inner_mode
));
7278 pos
= width
- len
- pos
;
7281 = gen_rtx_MINUS (GET_MODE (pos_rtx
),
7282 gen_int_mode (width
- len
, GET_MODE (pos_rtx
)),
7284 /* POS may be less than 0 now, but we check for that below.
7285 Note that it can only be less than 0 if !MEM_P (inner). */
7288 /* If INNER has a wider mode, and this is a constant extraction, try to
7289 make it smaller and adjust the byte to point to the byte containing
7291 if (wanted_inner_mode
!= VOIDmode
7292 && inner_mode
!= wanted_inner_mode
7294 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
7296 && ! mode_dependent_address_p (XEXP (inner
, 0), MEM_ADDR_SPACE (inner
))
7297 && ! MEM_VOLATILE_P (inner
))
7301 /* The computations below will be correct if the machine is big
7302 endian in both bits and bytes or little endian in bits and bytes.
7303 If it is mixed, we must adjust. */
7305 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7306 adjust OFFSET to compensate. */
7307 if (BYTES_BIG_ENDIAN
7308 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
7309 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
7311 /* We can now move to the desired byte. */
7312 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
7313 * GET_MODE_SIZE (wanted_inner_mode
);
7314 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
7316 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
7317 && is_mode
!= wanted_inner_mode
)
7318 offset
= (GET_MODE_SIZE (is_mode
)
7319 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
7321 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
7324 /* If INNER is not memory, get it into the proper mode. If we are changing
7325 its mode, POS must be a constant and smaller than the size of the new
7327 else if (!MEM_P (inner
))
7329 /* On the LHS, don't create paradoxical subregs implicitely truncating
7330 the register unless TRULY_NOOP_TRUNCATION. */
7332 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner
),
7336 if (GET_MODE (inner
) != wanted_inner_mode
7338 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
7344 inner
= force_to_mode (inner
, wanted_inner_mode
,
7346 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
7347 ? ~(unsigned HOST_WIDE_INT
) 0
7348 : ((((unsigned HOST_WIDE_INT
) 1 << len
) - 1)
7353 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7354 have to zero extend. Otherwise, we can just use a SUBREG. */
7356 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
7358 rtx temp
= simplify_gen_unary (ZERO_EXTEND
, pos_mode
, pos_rtx
,
7359 GET_MODE (pos_rtx
));
7361 /* If we know that no extraneous bits are set, and that the high
7362 bit is not set, convert extraction to cheaper one - either
7363 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7365 if (flag_expensive_optimizations
7366 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx
))
7367 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
7368 & ~(((unsigned HOST_WIDE_INT
)
7369 GET_MODE_MASK (GET_MODE (pos_rtx
)))
7373 rtx temp1
= simplify_gen_unary (SIGN_EXTEND
, pos_mode
, pos_rtx
,
7374 GET_MODE (pos_rtx
));
7376 /* Prefer ZERO_EXTENSION, since it gives more information to
7378 if (set_src_cost (temp1
, optimize_this_for_speed_p
)
7379 < set_src_cost (temp
, optimize_this_for_speed_p
))
7385 /* Make POS_RTX unless we already have it and it is correct. If we don't
7386 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7388 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
7389 pos_rtx
= orig_pos_rtx
;
7391 else if (pos_rtx
== 0)
7392 pos_rtx
= GEN_INT (pos
);
7394 /* Make the required operation. See if we can use existing rtx. */
7395 new_rtx
= gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
7396 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
7398 new_rtx
= gen_lowpart (mode
, new_rtx
);
7403 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7404 with any other operations in X. Return X without that shift if so. */
7407 extract_left_shift (rtx x
, int count
)
7409 enum rtx_code code
= GET_CODE (x
);
7410 enum machine_mode mode
= GET_MODE (x
);
7416 /* This is the shift itself. If it is wide enough, we will return
7417 either the value being shifted if the shift count is equal to
7418 COUNT or a shift for the difference. */
7419 if (CONST_INT_P (XEXP (x
, 1))
7420 && INTVAL (XEXP (x
, 1)) >= count
)
7421 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
7422 INTVAL (XEXP (x
, 1)) - count
);
7426 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7427 return simplify_gen_unary (code
, mode
, tem
, mode
);
7431 case PLUS
: case IOR
: case XOR
: case AND
:
7432 /* If we can safely shift this constant and we find the inner shift,
7433 make a new operation. */
7434 if (CONST_INT_P (XEXP (x
, 1))
7435 && (UINTVAL (XEXP (x
, 1))
7436 & ((((unsigned HOST_WIDE_INT
) 1 << count
)) - 1)) == 0
7437 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7439 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1)) >> count
;
7440 return simplify_gen_binary (code
, mode
, tem
,
7441 gen_int_mode (val
, mode
));
7452 /* Look at the expression rooted at X. Look for expressions
7453 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7454 Form these expressions.
7456 Return the new rtx, usually just X.
7458 Also, for machines like the VAX that don't have logical shift insns,
7459 try to convert logical to arithmetic shift operations in cases where
7460 they are equivalent. This undoes the canonicalizations to logical
7461 shifts done elsewhere.
7463 We try, as much as possible, to re-use rtl expressions to save memory.
7465 IN_CODE says what kind of expression we are processing. Normally, it is
7466 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7467 being kludges), it is MEM. When processing the arguments of a comparison
7468 or a COMPARE against zero, it is COMPARE. */
7471 make_compound_operation (rtx x
, enum rtx_code in_code
)
7473 enum rtx_code code
= GET_CODE (x
);
7474 enum machine_mode mode
= GET_MODE (x
);
7475 int mode_width
= GET_MODE_PRECISION (mode
);
7477 enum rtx_code next_code
;
7483 /* Select the code to be used in recursive calls. Once we are inside an
7484 address, we stay there. If we have a comparison, set to COMPARE,
7485 but once inside, go back to our default of SET. */
7487 next_code
= (code
== MEM
? MEM
7488 : ((code
== PLUS
|| code
== MINUS
)
7489 && SCALAR_INT_MODE_P (mode
)) ? MEM
7490 : ((code
== COMPARE
|| COMPARISON_P (x
))
7491 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
7492 : in_code
== COMPARE
? SET
: in_code
);
7494 /* Process depending on the code of this operation. If NEW is set
7495 nonzero, it will be returned. */
7500 /* Convert shifts by constants into multiplications if inside
7502 if (in_code
== MEM
&& CONST_INT_P (XEXP (x
, 1))
7503 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7504 && INTVAL (XEXP (x
, 1)) >= 0
7505 && SCALAR_INT_MODE_P (mode
))
7507 HOST_WIDE_INT count
= INTVAL (XEXP (x
, 1));
7508 HOST_WIDE_INT multval
= (HOST_WIDE_INT
) 1 << count
;
7510 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7511 if (GET_CODE (new_rtx
) == NEG
)
7513 new_rtx
= XEXP (new_rtx
, 0);
7516 multval
= trunc_int_for_mode (multval
, mode
);
7517 new_rtx
= gen_rtx_MULT (mode
, new_rtx
, gen_int_mode (multval
, mode
));
7524 lhs
= make_compound_operation (lhs
, next_code
);
7525 rhs
= make_compound_operation (rhs
, next_code
);
7526 if (GET_CODE (lhs
) == MULT
&& GET_CODE (XEXP (lhs
, 0)) == NEG
7527 && SCALAR_INT_MODE_P (mode
))
7529 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (lhs
, 0), 0),
7531 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7533 else if (GET_CODE (lhs
) == MULT
7534 && (CONST_INT_P (XEXP (lhs
, 1)) && INTVAL (XEXP (lhs
, 1)) < 0))
7536 tem
= simplify_gen_binary (MULT
, mode
, XEXP (lhs
, 0),
7537 simplify_gen_unary (NEG
, mode
,
7540 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7544 SUBST (XEXP (x
, 0), lhs
);
7545 SUBST (XEXP (x
, 1), rhs
);
7548 x
= gen_lowpart (mode
, new_rtx
);
7554 lhs
= make_compound_operation (lhs
, next_code
);
7555 rhs
= make_compound_operation (rhs
, next_code
);
7556 if (GET_CODE (rhs
) == MULT
&& GET_CODE (XEXP (rhs
, 0)) == NEG
7557 && SCALAR_INT_MODE_P (mode
))
7559 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (rhs
, 0), 0),
7561 new_rtx
= simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7563 else if (GET_CODE (rhs
) == MULT
7564 && (CONST_INT_P (XEXP (rhs
, 1)) && INTVAL (XEXP (rhs
, 1)) < 0))
7566 tem
= simplify_gen_binary (MULT
, mode
, XEXP (rhs
, 0),
7567 simplify_gen_unary (NEG
, mode
,
7570 new_rtx
= simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7574 SUBST (XEXP (x
, 0), lhs
);
7575 SUBST (XEXP (x
, 1), rhs
);
7578 return gen_lowpart (mode
, new_rtx
);
7581 /* If the second operand is not a constant, we can't do anything
7583 if (!CONST_INT_P (XEXP (x
, 1)))
7586 /* If the constant is a power of two minus one and the first operand
7587 is a logical right shift, make an extraction. */
7588 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7589 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7591 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7592 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
7593 0, in_code
== COMPARE
);
7596 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7597 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
7598 && subreg_lowpart_p (XEXP (x
, 0))
7599 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
7600 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7602 new_rtx
= make_compound_operation (XEXP (SUBREG_REG (XEXP (x
, 0)), 0),
7604 new_rtx
= make_extraction (GET_MODE (SUBREG_REG (XEXP (x
, 0))), new_rtx
, 0,
7605 XEXP (SUBREG_REG (XEXP (x
, 0)), 1), i
, 1,
7606 0, in_code
== COMPARE
);
7608 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7609 else if ((GET_CODE (XEXP (x
, 0)) == XOR
7610 || GET_CODE (XEXP (x
, 0)) == IOR
)
7611 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
7612 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
7613 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7615 /* Apply the distributive law, and then try to make extractions. */
7616 new_rtx
= gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
7617 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
7619 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
7621 new_rtx
= make_compound_operation (new_rtx
, in_code
);
7624 /* If we are have (and (rotate X C) M) and C is larger than the number
7625 of bits in M, this is an extraction. */
7627 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
7628 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
7629 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0
7630 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
7632 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7633 new_rtx
= make_extraction (mode
, new_rtx
,
7634 (GET_MODE_PRECISION (mode
)
7635 - INTVAL (XEXP (XEXP (x
, 0), 1))),
7636 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
7639 /* On machines without logical shifts, if the operand of the AND is
7640 a logical shift and our mask turns off all the propagated sign
7641 bits, we can replace the logical shift with an arithmetic shift. */
7642 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7643 && !have_insn_for (LSHIFTRT
, mode
)
7644 && have_insn_for (ASHIFTRT
, mode
)
7645 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
7646 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7647 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
7648 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
7650 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
7652 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
7653 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
7655 gen_rtx_ASHIFTRT (mode
,
7656 make_compound_operation
7657 (XEXP (XEXP (x
, 0), 0), next_code
),
7658 XEXP (XEXP (x
, 0), 1)));
7661 /* If the constant is one less than a power of two, this might be
7662 representable by an extraction even if no shift is present.
7663 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7664 we are in a COMPARE. */
7665 else if ((i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7666 new_rtx
= make_extraction (mode
,
7667 make_compound_operation (XEXP (x
, 0),
7669 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
7671 /* If we are in a comparison and this is an AND with a power of two,
7672 convert this into the appropriate bit extract. */
7673 else if (in_code
== COMPARE
7674 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
7675 new_rtx
= make_extraction (mode
,
7676 make_compound_operation (XEXP (x
, 0),
7678 i
, NULL_RTX
, 1, 1, 0, 1);
7683 /* If the sign bit is known to be zero, replace this with an
7684 arithmetic shift. */
7685 if (have_insn_for (ASHIFTRT
, mode
)
7686 && ! have_insn_for (LSHIFTRT
, mode
)
7687 && mode_width
<= HOST_BITS_PER_WIDE_INT
7688 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
7690 new_rtx
= gen_rtx_ASHIFTRT (mode
,
7691 make_compound_operation (XEXP (x
, 0),
7697 /* ... fall through ... */
7703 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7704 this is a SIGN_EXTRACT. */
7705 if (CONST_INT_P (rhs
)
7706 && GET_CODE (lhs
) == ASHIFT
7707 && CONST_INT_P (XEXP (lhs
, 1))
7708 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1))
7709 && INTVAL (XEXP (lhs
, 1)) >= 0
7710 && INTVAL (rhs
) < mode_width
)
7712 new_rtx
= make_compound_operation (XEXP (lhs
, 0), next_code
);
7713 new_rtx
= make_extraction (mode
, new_rtx
,
7714 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
7715 NULL_RTX
, mode_width
- INTVAL (rhs
),
7716 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
7720 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7721 If so, try to merge the shifts into a SIGN_EXTEND. We could
7722 also do this for some cases of SIGN_EXTRACT, but it doesn't
7723 seem worth the effort; the case checked for occurs on Alpha. */
7726 && ! (GET_CODE (lhs
) == SUBREG
7727 && (OBJECT_P (SUBREG_REG (lhs
))))
7728 && CONST_INT_P (rhs
)
7729 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
7730 && INTVAL (rhs
) < mode_width
7731 && (new_rtx
= extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
7732 new_rtx
= make_extraction (mode
, make_compound_operation (new_rtx
, next_code
),
7733 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
7734 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
7739 /* Call ourselves recursively on the inner expression. If we are
7740 narrowing the object and it has a different RTL code from
7741 what it originally did, do this SUBREG as a force_to_mode. */
7743 rtx inner
= SUBREG_REG (x
), simplified
;
7744 enum rtx_code subreg_code
= in_code
;
7746 /* If in_code is COMPARE, it isn't always safe to pass it through
7747 to the recursive make_compound_operation call. */
7748 if (subreg_code
== COMPARE
7749 && (!subreg_lowpart_p (x
)
7750 || GET_CODE (inner
) == SUBREG
7751 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
7752 is (const_int 0), rather than
7753 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
7754 || (GET_CODE (inner
) == AND
7755 && CONST_INT_P (XEXP (inner
, 1))
7756 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
7757 && exact_log2 (UINTVAL (XEXP (inner
, 1)))
7758 >= GET_MODE_BITSIZE (mode
))))
7761 tem
= make_compound_operation (inner
, subreg_code
);
7764 = simplify_subreg (mode
, tem
, GET_MODE (inner
), SUBREG_BYTE (x
));
7768 if (GET_CODE (tem
) != GET_CODE (inner
)
7769 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
7770 && subreg_lowpart_p (x
))
7773 = force_to_mode (tem
, mode
, ~(unsigned HOST_WIDE_INT
) 0, 0);
7775 /* If we have something other than a SUBREG, we might have
7776 done an expansion, so rerun ourselves. */
7777 if (GET_CODE (newer
) != SUBREG
)
7778 newer
= make_compound_operation (newer
, in_code
);
7780 /* force_to_mode can expand compounds. If it just re-expanded the
7781 compound, use gen_lowpart to convert to the desired mode. */
7782 if (rtx_equal_p (newer
, x
)
7783 /* Likewise if it re-expanded the compound only partially.
7784 This happens for SUBREG of ZERO_EXTRACT if they extract
7785 the same number of bits. */
7786 || (GET_CODE (newer
) == SUBREG
7787 && (GET_CODE (SUBREG_REG (newer
)) == LSHIFTRT
7788 || GET_CODE (SUBREG_REG (newer
)) == ASHIFTRT
)
7789 && GET_CODE (inner
) == AND
7790 && rtx_equal_p (SUBREG_REG (newer
), XEXP (inner
, 0))))
7791 return gen_lowpart (GET_MODE (x
), tem
);
7807 x
= gen_lowpart (mode
, new_rtx
);
7808 code
= GET_CODE (x
);
7811 /* Now recursively process each operand of this operation. We need to
7812 handle ZERO_EXTEND specially so that we don't lose track of the
7814 if (GET_CODE (x
) == ZERO_EXTEND
)
7816 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7817 tem
= simplify_const_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
7818 new_rtx
, GET_MODE (XEXP (x
, 0)));
7821 SUBST (XEXP (x
, 0), new_rtx
);
7825 fmt
= GET_RTX_FORMAT (code
);
7826 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
7829 new_rtx
= make_compound_operation (XEXP (x
, i
), next_code
);
7830 SUBST (XEXP (x
, i
), new_rtx
);
7832 else if (fmt
[i
] == 'E')
7833 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
7835 new_rtx
= make_compound_operation (XVECEXP (x
, i
, j
), next_code
);
7836 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
7840 /* If this is a commutative operation, the changes to the operands
7841 may have made it noncanonical. */
7842 if (COMMUTATIVE_ARITH_P (x
)
7843 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
7846 SUBST (XEXP (x
, 0), XEXP (x
, 1));
7847 SUBST (XEXP (x
, 1), tem
);
7853 /* Given M see if it is a value that would select a field of bits
7854 within an item, but not the entire word. Return -1 if not.
7855 Otherwise, return the starting position of the field, where 0 is the
7858 *PLEN is set to the length of the field. */
7861 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
7863 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7864 int pos
= m
? ctz_hwi (m
) : -1;
7868 /* Now shift off the low-order zero bits and see if we have a
7869 power of two minus 1. */
7870 len
= exact_log2 ((m
>> pos
) + 1);
7879 /* If X refers to a register that equals REG in value, replace these
7880 references with REG. */
7882 canon_reg_for_combine (rtx x
, rtx reg
)
7889 enum rtx_code code
= GET_CODE (x
);
7890 switch (GET_RTX_CLASS (code
))
7893 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7894 if (op0
!= XEXP (x
, 0))
7895 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
7900 case RTX_COMM_ARITH
:
7901 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7902 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7903 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7904 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
7908 case RTX_COMM_COMPARE
:
7909 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7910 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7911 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7912 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
7913 GET_MODE (op0
), op0
, op1
);
7917 case RTX_BITFIELD_OPS
:
7918 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7919 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7920 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
7921 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
7922 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
7923 GET_MODE (op0
), op0
, op1
, op2
);
7928 if (rtx_equal_p (get_last_value (reg
), x
)
7929 || rtx_equal_p (reg
, get_last_value (x
)))
7938 fmt
= GET_RTX_FORMAT (code
);
7940 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7943 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
7944 if (op
!= XEXP (x
, i
))
7954 else if (fmt
[i
] == 'E')
7957 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
7959 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
7960 if (op
!= XVECEXP (x
, i
, j
))
7967 XVECEXP (x
, i
, j
) = op
;
7978 /* Return X converted to MODE. If the value is already truncated to
7979 MODE we can just return a subreg even though in the general case we
7980 would need an explicit truncation. */
7983 gen_lowpart_or_truncate (enum machine_mode mode
, rtx x
)
7985 if (!CONST_INT_P (x
)
7986 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
))
7987 && !TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
))
7988 && !(REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
7990 /* Bit-cast X into an integer mode. */
7991 if (!SCALAR_INT_MODE_P (GET_MODE (x
)))
7992 x
= gen_lowpart (int_mode_for_mode (GET_MODE (x
)), x
);
7993 x
= simplify_gen_unary (TRUNCATE
, int_mode_for_mode (mode
),
7997 return gen_lowpart (mode
, x
);
8000 /* See if X can be simplified knowing that we will only refer to it in
8001 MODE and will only refer to those bits that are nonzero in MASK.
8002 If other bits are being computed or if masking operations are done
8003 that select a superset of the bits in MASK, they can sometimes be
8006 Return a possibly simplified expression, but always convert X to
8007 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8009 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8010 are all off in X. This is used when X will be complemented, by either
8011 NOT, NEG, or XOR. */
8014 force_to_mode (rtx x
, enum machine_mode mode
, unsigned HOST_WIDE_INT mask
,
8017 enum rtx_code code
= GET_CODE (x
);
8018 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8019 enum machine_mode op_mode
;
8020 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
8023 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8024 code below will do the wrong thing since the mode of such an
8025 expression is VOIDmode.
8027 Also do nothing if X is a CLOBBER; this can happen if X was
8028 the return value from a call to gen_lowpart. */
8029 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
8032 /* We want to perform the operation in its present mode unless we know
8033 that the operation is valid in MODE, in which case we do the operation
8035 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
8036 && have_insn_for (code
, mode
))
8037 ? mode
: GET_MODE (x
));
8039 /* It is not valid to do a right-shift in a narrower mode
8040 than the one it came in with. */
8041 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
8042 && GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (GET_MODE (x
)))
8043 op_mode
= GET_MODE (x
);
8045 /* Truncate MASK to fit OP_MODE. */
8047 mask
&= GET_MODE_MASK (op_mode
);
8049 /* When we have an arithmetic operation, or a shift whose count we
8050 do not know, we need to assume that all bits up to the highest-order
8051 bit in MASK will be needed. This is how we form such a mask. */
8052 if (mask
& ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
8053 fuller_mask
= ~(unsigned HOST_WIDE_INT
) 0;
8055 fuller_mask
= (((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mask
) + 1))
8058 /* Determine what bits of X are guaranteed to be (non)zero. */
8059 nonzero
= nonzero_bits (x
, mode
);
8061 /* If none of the bits in X are needed, return a zero. */
8062 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
8065 /* If X is a CONST_INT, return a new one. Do this here since the
8066 test below will fail. */
8067 if (CONST_INT_P (x
))
8069 if (SCALAR_INT_MODE_P (mode
))
8070 return gen_int_mode (INTVAL (x
) & mask
, mode
);
8073 x
= GEN_INT (INTVAL (x
) & mask
);
8074 return gen_lowpart_common (mode
, x
);
8078 /* If X is narrower than MODE and we want all the bits in X's mode, just
8079 get X in the proper mode. */
8080 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
8081 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
8082 return gen_lowpart (mode
, x
);
8084 /* We can ignore the effect of a SUBREG if it narrows the mode or
8085 if the constant masks to zero all the bits the mode doesn't have. */
8086 if (GET_CODE (x
) == SUBREG
8087 && subreg_lowpart_p (x
)
8088 && ((GET_MODE_SIZE (GET_MODE (x
))
8089 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8091 & GET_MODE_MASK (GET_MODE (x
))
8092 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
8093 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
8095 /* The arithmetic simplifications here only work for scalar integer modes. */
8096 if (!SCALAR_INT_MODE_P (mode
) || !SCALAR_INT_MODE_P (GET_MODE (x
)))
8097 return gen_lowpart_or_truncate (mode
, x
);
8102 /* If X is a (clobber (const_int)), return it since we know we are
8103 generating something that won't match. */
8110 x
= expand_compound_operation (x
);
8111 if (GET_CODE (x
) != code
)
8112 return force_to_mode (x
, mode
, mask
, next_select
);
8116 /* Similarly for a truncate. */
8117 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8120 /* If this is an AND with a constant, convert it into an AND
8121 whose constant is the AND of that constant with MASK. If it
8122 remains an AND of MASK, delete it since it is redundant. */
8124 if (CONST_INT_P (XEXP (x
, 1)))
8126 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
8127 mask
& INTVAL (XEXP (x
, 1)));
8129 /* If X is still an AND, see if it is an AND with a mask that
8130 is just some low-order bits. If so, and it is MASK, we don't
8133 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8134 && ((INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (GET_MODE (x
)))
8138 /* If it remains an AND, try making another AND with the bits
8139 in the mode mask that aren't in MASK turned on. If the
8140 constant in the AND is wide enough, this might make a
8141 cheaper constant. */
8143 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8144 && GET_MODE_MASK (GET_MODE (x
)) != mask
8145 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
)))
8147 unsigned HOST_WIDE_INT cval
8148 = UINTVAL (XEXP (x
, 1))
8149 | (GET_MODE_MASK (GET_MODE (x
)) & ~mask
);
8152 y
= simplify_gen_binary (AND
, GET_MODE (x
), XEXP (x
, 0),
8153 gen_int_mode (cval
, GET_MODE (x
)));
8154 if (set_src_cost (y
, optimize_this_for_speed_p
)
8155 < set_src_cost (x
, optimize_this_for_speed_p
))
8165 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8166 low-order bits (as in an alignment operation) and FOO is already
8167 aligned to that boundary, mask C1 to that boundary as well.
8168 This may eliminate that PLUS and, later, the AND. */
8171 unsigned int width
= GET_MODE_PRECISION (mode
);
8172 unsigned HOST_WIDE_INT smask
= mask
;
8174 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8175 number, sign extend it. */
8177 if (width
< HOST_BITS_PER_WIDE_INT
8178 && (smask
& (HOST_WIDE_INT_1U
<< (width
- 1))) != 0)
8179 smask
|= HOST_WIDE_INT_M1U
<< width
;
8181 if (CONST_INT_P (XEXP (x
, 1))
8182 && exact_log2 (- smask
) >= 0
8183 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
8184 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
8185 return force_to_mode (plus_constant (GET_MODE (x
), XEXP (x
, 0),
8186 (INTVAL (XEXP (x
, 1)) & smask
)),
8187 mode
, smask
, next_select
);
8190 /* ... fall through ... */
8193 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8194 most significant bit in MASK since carries from those bits will
8195 affect the bits we are interested in. */
8200 /* If X is (minus C Y) where C's least set bit is larger than any bit
8201 in the mask, then we may replace with (neg Y). */
8202 if (CONST_INT_P (XEXP (x
, 0))
8203 && ((UINTVAL (XEXP (x
, 0)) & -UINTVAL (XEXP (x
, 0))) > mask
))
8205 x
= simplify_gen_unary (NEG
, GET_MODE (x
), XEXP (x
, 1),
8207 return force_to_mode (x
, mode
, mask
, next_select
);
8210 /* Similarly, if C contains every bit in the fuller_mask, then we may
8211 replace with (not Y). */
8212 if (CONST_INT_P (XEXP (x
, 0))
8213 && ((UINTVAL (XEXP (x
, 0)) | fuller_mask
) == UINTVAL (XEXP (x
, 0))))
8215 x
= simplify_gen_unary (NOT
, GET_MODE (x
),
8216 XEXP (x
, 1), GET_MODE (x
));
8217 return force_to_mode (x
, mode
, mask
, next_select
);
8225 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8226 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8227 operation which may be a bitfield extraction. Ensure that the
8228 constant we form is not wider than the mode of X. */
8230 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8231 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8232 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8233 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8234 && CONST_INT_P (XEXP (x
, 1))
8235 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
8236 + floor_log2 (INTVAL (XEXP (x
, 1))))
8237 < GET_MODE_PRECISION (GET_MODE (x
)))
8238 && (UINTVAL (XEXP (x
, 1))
8239 & ~nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
8241 temp
= gen_int_mode ((INTVAL (XEXP (x
, 1)) & mask
)
8242 << INTVAL (XEXP (XEXP (x
, 0), 1)),
8244 temp
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
),
8245 XEXP (XEXP (x
, 0), 0), temp
);
8246 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
8247 XEXP (XEXP (x
, 0), 1));
8248 return force_to_mode (x
, mode
, mask
, next_select
);
8252 /* For most binary operations, just propagate into the operation and
8253 change the mode if we have an operation of that mode. */
8255 op0
= force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8256 op1
= force_to_mode (XEXP (x
, 1), mode
, mask
, next_select
);
8258 /* If we ended up truncating both operands, truncate the result of the
8259 operation instead. */
8260 if (GET_CODE (op0
) == TRUNCATE
8261 && GET_CODE (op1
) == TRUNCATE
)
8263 op0
= XEXP (op0
, 0);
8264 op1
= XEXP (op1
, 0);
8267 op0
= gen_lowpart_or_truncate (op_mode
, op0
);
8268 op1
= gen_lowpart_or_truncate (op_mode
, op1
);
8270 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8271 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
8275 /* For left shifts, do the same, but just for the first operand.
8276 However, we cannot do anything with shifts where we cannot
8277 guarantee that the counts are smaller than the size of the mode
8278 because such a count will have a different meaning in a
8281 if (! (CONST_INT_P (XEXP (x
, 1))
8282 && INTVAL (XEXP (x
, 1)) >= 0
8283 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (mode
))
8284 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
8285 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
8286 < (unsigned HOST_WIDE_INT
) GET_MODE_PRECISION (mode
))))
8289 /* If the shift count is a constant and we can do arithmetic in
8290 the mode of the shift, refine which bits we need. Otherwise, use the
8291 conservative form of the mask. */
8292 if (CONST_INT_P (XEXP (x
, 1))
8293 && INTVAL (XEXP (x
, 1)) >= 0
8294 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (op_mode
)
8295 && HWI_COMPUTABLE_MODE_P (op_mode
))
8296 mask
>>= INTVAL (XEXP (x
, 1));
8300 op0
= gen_lowpart_or_truncate (op_mode
,
8301 force_to_mode (XEXP (x
, 0), op_mode
,
8302 mask
, next_select
));
8304 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
8305 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
8309 /* Here we can only do something if the shift count is a constant,
8310 this shift constant is valid for the host, and we can do arithmetic
8313 if (CONST_INT_P (XEXP (x
, 1))
8314 && INTVAL (XEXP (x
, 1)) >= 0
8315 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
8316 && HWI_COMPUTABLE_MODE_P (op_mode
))
8318 rtx inner
= XEXP (x
, 0);
8319 unsigned HOST_WIDE_INT inner_mask
;
8321 /* Select the mask of the bits we need for the shift operand. */
8322 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
8324 /* We can only change the mode of the shift if we can do arithmetic
8325 in the mode of the shift and INNER_MASK is no wider than the
8326 width of X's mode. */
8327 if ((inner_mask
& ~GET_MODE_MASK (GET_MODE (x
))) != 0)
8328 op_mode
= GET_MODE (x
);
8330 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
8332 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
8333 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
8336 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8337 shift and AND produces only copies of the sign bit (C2 is one less
8338 than a power of two), we can do this with just a shift. */
8340 if (GET_CODE (x
) == LSHIFTRT
8341 && CONST_INT_P (XEXP (x
, 1))
8342 /* The shift puts one of the sign bit copies in the least significant
8344 && ((INTVAL (XEXP (x
, 1))
8345 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
8346 >= GET_MODE_PRECISION (GET_MODE (x
)))
8347 && exact_log2 (mask
+ 1) >= 0
8348 /* Number of bits left after the shift must be more than the mask
8350 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
8351 <= GET_MODE_PRECISION (GET_MODE (x
)))
8352 /* Must be more sign bit copies than the mask needs. */
8353 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
8354 >= exact_log2 (mask
+ 1)))
8355 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
8356 GEN_INT (GET_MODE_PRECISION (GET_MODE (x
))
8357 - exact_log2 (mask
+ 1)));
8362 /* If we are just looking for the sign bit, we don't need this shift at
8363 all, even if it has a variable count. */
8364 if (val_signbit_p (GET_MODE (x
), mask
))
8365 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8367 /* If this is a shift by a constant, get a mask that contains those bits
8368 that are not copies of the sign bit. We then have two cases: If
8369 MASK only includes those bits, this can be a logical shift, which may
8370 allow simplifications. If MASK is a single-bit field not within
8371 those bits, we are requesting a copy of the sign bit and hence can
8372 shift the sign bit to the appropriate location. */
8374 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0
8375 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8379 /* If the considered data is wider than HOST_WIDE_INT, we can't
8380 represent a mask for all its bits in a single scalar.
8381 But we only care about the lower bits, so calculate these. */
8383 if (GET_MODE_PRECISION (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
8385 nonzero
= ~(unsigned HOST_WIDE_INT
) 0;
8387 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8388 is the number of bits a full-width mask would have set.
8389 We need only shift if these are fewer than nonzero can
8390 hold. If not, we must keep all bits set in nonzero. */
8392 if (GET_MODE_PRECISION (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
8393 < HOST_BITS_PER_WIDE_INT
)
8394 nonzero
>>= INTVAL (XEXP (x
, 1))
8395 + HOST_BITS_PER_WIDE_INT
8396 - GET_MODE_PRECISION (GET_MODE (x
)) ;
8400 nonzero
= GET_MODE_MASK (GET_MODE (x
));
8401 nonzero
>>= INTVAL (XEXP (x
, 1));
8404 if ((mask
& ~nonzero
) == 0)
8406 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, GET_MODE (x
),
8407 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
8408 if (GET_CODE (x
) != ASHIFTRT
)
8409 return force_to_mode (x
, mode
, mask
, next_select
);
8412 else if ((i
= exact_log2 (mask
)) >= 0)
8414 x
= simplify_shift_const
8415 (NULL_RTX
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
8416 GET_MODE_PRECISION (GET_MODE (x
)) - 1 - i
);
8418 if (GET_CODE (x
) != ASHIFTRT
)
8419 return force_to_mode (x
, mode
, mask
, next_select
);
8423 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8424 even if the shift count isn't a constant. */
8426 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
8427 XEXP (x
, 0), XEXP (x
, 1));
8431 /* If this is a zero- or sign-extension operation that just affects bits
8432 we don't care about, remove it. Be sure the call above returned
8433 something that is still a shift. */
8435 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
8436 && CONST_INT_P (XEXP (x
, 1))
8437 && INTVAL (XEXP (x
, 1)) >= 0
8438 && (INTVAL (XEXP (x
, 1))
8439 <= GET_MODE_PRECISION (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
8440 && GET_CODE (XEXP (x
, 0)) == ASHIFT
8441 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
8442 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
8449 /* If the shift count is constant and we can do computations
8450 in the mode of X, compute where the bits we care about are.
8451 Otherwise, we can't do anything. Don't change the mode of
8452 the shift or propagate MODE into the shift, though. */
8453 if (CONST_INT_P (XEXP (x
, 1))
8454 && INTVAL (XEXP (x
, 1)) >= 0)
8456 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
8458 gen_int_mode (mask
, GET_MODE (x
)),
8460 if (temp
&& CONST_INT_P (temp
))
8461 x
= simplify_gen_binary (code
, GET_MODE (x
),
8462 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
8463 INTVAL (temp
), next_select
),
8469 /* If we just want the low-order bit, the NEG isn't needed since it
8470 won't change the low-order bit. */
8472 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
8474 /* We need any bits less significant than the most significant bit in
8475 MASK since carries from those bits will affect the bits we are
8481 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8482 same as the XOR case above. Ensure that the constant we form is not
8483 wider than the mode of X. */
8485 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8486 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8487 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8488 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
8489 < GET_MODE_PRECISION (GET_MODE (x
)))
8490 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
8492 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)),
8494 temp
= simplify_gen_binary (XOR
, GET_MODE (x
),
8495 XEXP (XEXP (x
, 0), 0), temp
);
8496 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
8497 temp
, XEXP (XEXP (x
, 0), 1));
8499 return force_to_mode (x
, mode
, mask
, next_select
);
8502 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8503 use the full mask inside the NOT. */
8507 op0
= gen_lowpart_or_truncate (op_mode
,
8508 force_to_mode (XEXP (x
, 0), mode
, mask
,
8510 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
8511 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
8515 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8516 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8517 which is equal to STORE_FLAG_VALUE. */
8518 if ((mask
& ~STORE_FLAG_VALUE
) == 0
8519 && XEXP (x
, 1) == const0_rtx
8520 && GET_MODE (XEXP (x
, 0)) == mode
8521 && exact_log2 (nonzero_bits (XEXP (x
, 0), mode
)) >= 0
8522 && (nonzero_bits (XEXP (x
, 0), mode
)
8523 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
8524 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8529 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8530 written in a narrower mode. We play it safe and do not do so. */
8532 op0
= gen_lowpart_or_truncate (GET_MODE (x
),
8533 force_to_mode (XEXP (x
, 1), mode
,
8534 mask
, next_select
));
8535 op1
= gen_lowpart_or_truncate (GET_MODE (x
),
8536 force_to_mode (XEXP (x
, 2), mode
,
8537 mask
, next_select
));
8538 if (op0
!= XEXP (x
, 1) || op1
!= XEXP (x
, 2))
8539 x
= simplify_gen_ternary (IF_THEN_ELSE
, GET_MODE (x
),
8540 GET_MODE (XEXP (x
, 0)), XEXP (x
, 0),
8548 /* Ensure we return a value of the proper mode. */
8549 return gen_lowpart_or_truncate (mode
, x
);
8552 /* Return nonzero if X is an expression that has one of two values depending on
8553 whether some other value is zero or nonzero. In that case, we return the
8554 value that is being tested, *PTRUE is set to the value if the rtx being
8555 returned has a nonzero value, and *PFALSE is set to the other alternative.
8557 If we return zero, we set *PTRUE and *PFALSE to X. */
8560 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
8562 enum machine_mode mode
= GET_MODE (x
);
8563 enum rtx_code code
= GET_CODE (x
);
8564 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
8565 unsigned HOST_WIDE_INT nz
;
8567 /* If we are comparing a value against zero, we are done. */
8568 if ((code
== NE
|| code
== EQ
)
8569 && XEXP (x
, 1) == const0_rtx
)
8571 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
8572 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
8576 /* If this is a unary operation whose operand has one of two values, apply
8577 our opcode to compute those values. */
8578 else if (UNARY_P (x
)
8579 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
8581 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
8582 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
8583 GET_MODE (XEXP (x
, 0)));
8587 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8588 make can't possibly match and would suppress other optimizations. */
8589 else if (code
== COMPARE
)
8592 /* If this is a binary operation, see if either side has only one of two
8593 values. If either one does or if both do and they are conditional on
8594 the same value, compute the new true and false values. */
8595 else if (BINARY_P (x
))
8597 cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
);
8598 cond1
= if_then_else_cond (XEXP (x
, 1), &true1
, &false1
);
8600 if ((cond0
!= 0 || cond1
!= 0)
8601 && ! (cond0
!= 0 && cond1
!= 0 && ! rtx_equal_p (cond0
, cond1
)))
8603 /* If if_then_else_cond returned zero, then true/false are the
8604 same rtl. We must copy one of them to prevent invalid rtl
8607 true0
= copy_rtx (true0
);
8608 else if (cond1
== 0)
8609 true1
= copy_rtx (true1
);
8611 if (COMPARISON_P (x
))
8613 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
8615 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
8620 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
8621 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
8624 return cond0
? cond0
: cond1
;
8627 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8628 operands is zero when the other is nonzero, and vice-versa,
8629 and STORE_FLAG_VALUE is 1 or -1. */
8631 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8632 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
8634 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
8636 rtx op0
= XEXP (XEXP (x
, 0), 1);
8637 rtx op1
= XEXP (XEXP (x
, 1), 1);
8639 cond0
= XEXP (XEXP (x
, 0), 0);
8640 cond1
= XEXP (XEXP (x
, 1), 0);
8642 if (COMPARISON_P (cond0
)
8643 && COMPARISON_P (cond1
)
8644 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
8645 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
8646 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
8647 || ((swap_condition (GET_CODE (cond0
))
8648 == reversed_comparison_code (cond1
, NULL
))
8649 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
8650 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
8651 && ! side_effects_p (x
))
8653 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
8654 *pfalse
= simplify_gen_binary (MULT
, mode
,
8656 ? simplify_gen_unary (NEG
, mode
,
8664 /* Similarly for MULT, AND and UMIN, except that for these the result
8666 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8667 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
8668 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
8670 cond0
= XEXP (XEXP (x
, 0), 0);
8671 cond1
= XEXP (XEXP (x
, 1), 0);
8673 if (COMPARISON_P (cond0
)
8674 && COMPARISON_P (cond1
)
8675 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
8676 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
8677 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
8678 || ((swap_condition (GET_CODE (cond0
))
8679 == reversed_comparison_code (cond1
, NULL
))
8680 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
8681 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
8682 && ! side_effects_p (x
))
8684 *ptrue
= *pfalse
= const0_rtx
;
8690 else if (code
== IF_THEN_ELSE
)
8692 /* If we have IF_THEN_ELSE already, extract the condition and
8693 canonicalize it if it is NE or EQ. */
8694 cond0
= XEXP (x
, 0);
8695 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
8696 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
8697 return XEXP (cond0
, 0);
8698 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
8700 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
8701 return XEXP (cond0
, 0);
8707 /* If X is a SUBREG, we can narrow both the true and false values
8708 if the inner expression, if there is a condition. */
8709 else if (code
== SUBREG
8710 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
8713 true0
= simplify_gen_subreg (mode
, true0
,
8714 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
8715 false0
= simplify_gen_subreg (mode
, false0
,
8716 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
8717 if (true0
&& false0
)
8725 /* If X is a constant, this isn't special and will cause confusions
8726 if we treat it as such. Likewise if it is equivalent to a constant. */
8727 else if (CONSTANT_P (x
)
8728 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
8731 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8732 will be least confusing to the rest of the compiler. */
8733 else if (mode
== BImode
)
8735 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
8739 /* If X is known to be either 0 or -1, those are the true and
8740 false values when testing X. */
8741 else if (x
== constm1_rtx
|| x
== const0_rtx
8742 || (mode
!= VOIDmode
8743 && num_sign_bit_copies (x
, mode
) == GET_MODE_PRECISION (mode
)))
8745 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
8749 /* Likewise for 0 or a single bit. */
8750 else if (HWI_COMPUTABLE_MODE_P (mode
)
8751 && exact_log2 (nz
= nonzero_bits (x
, mode
)) >= 0)
8753 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
8757 /* Otherwise fail; show no condition with true and false values the same. */
8758 *ptrue
= *pfalse
= x
;
8762 /* Return the value of expression X given the fact that condition COND
8763 is known to be true when applied to REG as its first operand and VAL
8764 as its second. X is known to not be shared and so can be modified in
8767 We only handle the simplest cases, and specifically those cases that
8768 arise with IF_THEN_ELSE expressions. */
8771 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
8773 enum rtx_code code
= GET_CODE (x
);
8778 if (side_effects_p (x
))
8781 /* If either operand of the condition is a floating point value,
8782 then we have to avoid collapsing an EQ comparison. */
8784 && rtx_equal_p (x
, reg
)
8785 && ! FLOAT_MODE_P (GET_MODE (x
))
8786 && ! FLOAT_MODE_P (GET_MODE (val
)))
8789 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
8792 /* If X is (abs REG) and we know something about REG's relationship
8793 with zero, we may be able to simplify this. */
8795 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
8798 case GE
: case GT
: case EQ
:
8801 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
8803 GET_MODE (XEXP (x
, 0)));
8808 /* The only other cases we handle are MIN, MAX, and comparisons if the
8809 operands are the same as REG and VAL. */
8811 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
8813 if (rtx_equal_p (XEXP (x
, 0), val
))
8814 cond
= swap_condition (cond
), temp
= val
, val
= reg
, reg
= temp
;
8816 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
8818 if (COMPARISON_P (x
))
8820 if (comparison_dominates_p (cond
, code
))
8821 return const_true_rtx
;
8823 code
= reversed_comparison_code (x
, NULL
);
8825 && comparison_dominates_p (cond
, code
))
8830 else if (code
== SMAX
|| code
== SMIN
8831 || code
== UMIN
|| code
== UMAX
)
8833 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
8835 /* Do not reverse the condition when it is NE or EQ.
8836 This is because we cannot conclude anything about
8837 the value of 'SMAX (x, y)' when x is not equal to y,
8838 but we can when x equals y. */
8839 if ((code
== SMAX
|| code
== UMAX
)
8840 && ! (cond
== EQ
|| cond
== NE
))
8841 cond
= reverse_condition (cond
);
8846 return unsignedp
? x
: XEXP (x
, 1);
8848 return unsignedp
? x
: XEXP (x
, 0);
8850 return unsignedp
? XEXP (x
, 1) : x
;
8852 return unsignedp
? XEXP (x
, 0) : x
;
8859 else if (code
== SUBREG
)
8861 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
8862 rtx new_rtx
, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
8864 if (SUBREG_REG (x
) != r
)
8866 /* We must simplify subreg here, before we lose track of the
8867 original inner_mode. */
8868 new_rtx
= simplify_subreg (GET_MODE (x
), r
,
8869 inner_mode
, SUBREG_BYTE (x
));
8873 SUBST (SUBREG_REG (x
), r
);
8878 /* We don't have to handle SIGN_EXTEND here, because even in the
8879 case of replacing something with a modeless CONST_INT, a
8880 CONST_INT is already (supposed to be) a valid sign extension for
8881 its narrower mode, which implies it's already properly
8882 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8883 story is different. */
8884 else if (code
== ZERO_EXTEND
)
8886 enum machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
8887 rtx new_rtx
, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
8889 if (XEXP (x
, 0) != r
)
8891 /* We must simplify the zero_extend here, before we lose
8892 track of the original inner_mode. */
8893 new_rtx
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
8898 SUBST (XEXP (x
, 0), r
);
8904 fmt
= GET_RTX_FORMAT (code
);
8905 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8908 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
8909 else if (fmt
[i
] == 'E')
8910 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8911 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
8918 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8919 assignment as a field assignment. */
8922 rtx_equal_for_field_assignment_p (rtx x
, rtx y
)
8924 if (x
== y
|| rtx_equal_p (x
, y
))
8927 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
8930 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8931 Note that all SUBREGs of MEM are paradoxical; otherwise they
8932 would have been rewritten. */
8933 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
8934 && MEM_P (SUBREG_REG (y
))
8935 && rtx_equal_p (SUBREG_REG (y
),
8936 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
8939 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
8940 && MEM_P (SUBREG_REG (x
))
8941 && rtx_equal_p (SUBREG_REG (x
),
8942 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
8945 /* We used to see if get_last_value of X and Y were the same but that's
8946 not correct. In one direction, we'll cause the assignment to have
8947 the wrong destination and in the case, we'll import a register into this
8948 insn that might have already have been dead. So fail if none of the
8949 above cases are true. */
8953 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8954 Return that assignment if so.
8956 We only handle the most common cases. */
8959 make_field_assignment (rtx x
)
8961 rtx dest
= SET_DEST (x
);
8962 rtx src
= SET_SRC (x
);
8967 unsigned HOST_WIDE_INT len
;
8969 enum machine_mode mode
;
8971 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8972 a clear of a one-bit field. We will have changed it to
8973 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8976 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
8977 && CONST_INT_P (XEXP (XEXP (src
, 0), 0))
8978 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
8979 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
8981 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
8984 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
8988 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
8989 && subreg_lowpart_p (XEXP (src
, 0))
8990 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
8991 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
8992 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
8993 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src
, 0)), 0))
8994 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
8995 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
8997 assign
= make_extraction (VOIDmode
, dest
, 0,
8998 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
9001 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
9005 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9007 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
9008 && XEXP (XEXP (src
, 0), 0) == const1_rtx
9009 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9011 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9014 return gen_rtx_SET (VOIDmode
, assign
, const1_rtx
);
9018 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9019 SRC is an AND with all bits of that field set, then we can discard
9021 if (GET_CODE (dest
) == ZERO_EXTRACT
9022 && CONST_INT_P (XEXP (dest
, 1))
9023 && GET_CODE (src
) == AND
9024 && CONST_INT_P (XEXP (src
, 1)))
9026 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
9027 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
9028 unsigned HOST_WIDE_INT ze_mask
;
9030 if (width
>= HOST_BITS_PER_WIDE_INT
)
9033 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
9035 /* Complete overlap. We can remove the source AND. */
9036 if ((and_mask
& ze_mask
) == ze_mask
)
9037 return gen_rtx_SET (VOIDmode
, dest
, XEXP (src
, 0));
9039 /* Partial overlap. We can reduce the source AND. */
9040 if ((and_mask
& ze_mask
) != and_mask
)
9042 mode
= GET_MODE (src
);
9043 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
9044 gen_int_mode (and_mask
& ze_mask
, mode
));
9045 return gen_rtx_SET (VOIDmode
, dest
, src
);
9049 /* The other case we handle is assignments into a constant-position
9050 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9051 a mask that has all one bits except for a group of zero bits and
9052 OTHER is known to have zeros where C1 has ones, this is such an
9053 assignment. Compute the position and length from C1. Shift OTHER
9054 to the appropriate position, force it to the required mode, and
9055 make the extraction. Check for the AND in both operands. */
9057 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
9060 rhs
= expand_compound_operation (XEXP (src
, 0));
9061 lhs
= expand_compound_operation (XEXP (src
, 1));
9063 if (GET_CODE (rhs
) == AND
9064 && CONST_INT_P (XEXP (rhs
, 1))
9065 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
9066 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9067 else if (GET_CODE (lhs
) == AND
9068 && CONST_INT_P (XEXP (lhs
, 1))
9069 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
9070 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9074 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
9075 if (pos
< 0 || pos
+ len
> GET_MODE_PRECISION (GET_MODE (dest
))
9076 || GET_MODE_PRECISION (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
9077 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
9080 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
9084 /* The mode to use for the source is the mode of the assignment, or of
9085 what is inside a possible STRICT_LOW_PART. */
9086 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
9087 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
9089 /* Shift OTHER right POS places and make it the source, restricting it
9090 to the proper length and mode. */
9092 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
9096 src
= force_to_mode (src
, mode
,
9097 GET_MODE_PRECISION (mode
) >= HOST_BITS_PER_WIDE_INT
9098 ? ~(unsigned HOST_WIDE_INT
) 0
9099 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
9102 /* If SRC is masked by an AND that does not make a difference in
9103 the value being stored, strip it. */
9104 if (GET_CODE (assign
) == ZERO_EXTRACT
9105 && CONST_INT_P (XEXP (assign
, 1))
9106 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
9107 && GET_CODE (src
) == AND
9108 && CONST_INT_P (XEXP (src
, 1))
9109 && UINTVAL (XEXP (src
, 1))
9110 == ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (assign
, 1))) - 1)
9111 src
= XEXP (src
, 0);
9113 return gen_rtx_SET (VOIDmode
, assign
, src
);
9116 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9120 apply_distributive_law (rtx x
)
9122 enum rtx_code code
= GET_CODE (x
);
9123 enum rtx_code inner_code
;
9124 rtx lhs
, rhs
, other
;
9127 /* Distributivity is not true for floating point as it can change the
9128 value. So we don't do it unless -funsafe-math-optimizations. */
9129 if (FLOAT_MODE_P (GET_MODE (x
))
9130 && ! flag_unsafe_math_optimizations
)
9133 /* The outer operation can only be one of the following: */
9134 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
9135 && code
!= PLUS
&& code
!= MINUS
)
9141 /* If either operand is a primitive we can't do anything, so get out
9143 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
9146 lhs
= expand_compound_operation (lhs
);
9147 rhs
= expand_compound_operation (rhs
);
9148 inner_code
= GET_CODE (lhs
);
9149 if (inner_code
!= GET_CODE (rhs
))
9152 /* See if the inner and outer operations distribute. */
9159 /* These all distribute except over PLUS. */
9160 if (code
== PLUS
|| code
== MINUS
)
9165 if (code
!= PLUS
&& code
!= MINUS
)
9170 /* This is also a multiply, so it distributes over everything. */
9173 /* This used to handle SUBREG, but this turned out to be counter-
9174 productive, since (subreg (op ...)) usually is not handled by
9175 insn patterns, and this "optimization" therefore transformed
9176 recognizable patterns into unrecognizable ones. Therefore the
9177 SUBREG case was removed from here.
9179 It is possible that distributing SUBREG over arithmetic operations
9180 leads to an intermediate result than can then be optimized further,
9181 e.g. by moving the outer SUBREG to the other side of a SET as done
9182 in simplify_set. This seems to have been the original intent of
9183 handling SUBREGs here.
9185 However, with current GCC this does not appear to actually happen,
9186 at least on major platforms. If some case is found where removing
9187 the SUBREG case here prevents follow-on optimizations, distributing
9188 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9194 /* Set LHS and RHS to the inner operands (A and B in the example
9195 above) and set OTHER to the common operand (C in the example).
9196 There is only one way to do this unless the inner operation is
9198 if (COMMUTATIVE_ARITH_P (lhs
)
9199 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
9200 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
9201 else if (COMMUTATIVE_ARITH_P (lhs
)
9202 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
9203 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
9204 else if (COMMUTATIVE_ARITH_P (lhs
)
9205 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
9206 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
9207 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
9208 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
9212 /* Form the new inner operation, seeing if it simplifies first. */
9213 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
9215 /* There is one exception to the general way of distributing:
9216 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9217 if (code
== XOR
&& inner_code
== IOR
)
9220 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
9223 /* We may be able to continuing distributing the result, so call
9224 ourselves recursively on the inner operation before forming the
9225 outer operation, which we return. */
9226 return simplify_gen_binary (inner_code
, GET_MODE (x
),
9227 apply_distributive_law (tem
), other
);
9230 /* See if X is of the form (* (+ A B) C), and if so convert to
9231 (+ (* A C) (* B C)) and try to simplify.
9233 Most of the time, this results in no change. However, if some of
9234 the operands are the same or inverses of each other, simplifications
9237 For example, (and (ior A B) (not B)) can occur as the result of
9238 expanding a bit field assignment. When we apply the distributive
9239 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9240 which then simplifies to (and (A (not B))).
9242 Note that no checks happen on the validity of applying the inverse
9243 distributive law. This is pointless since we can do it in the
9244 few places where this routine is called.
9246 N is the index of the term that is decomposed (the arithmetic operation,
9247 i.e. (+ A B) in the first example above). !N is the index of the term that
9248 is distributed, i.e. of C in the first example above. */
9250 distribute_and_simplify_rtx (rtx x
, int n
)
9252 enum machine_mode mode
;
9253 enum rtx_code outer_code
, inner_code
;
9254 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
9256 /* Distributivity is not true for floating point as it can change the
9257 value. So we don't do it unless -funsafe-math-optimizations. */
9258 if (FLOAT_MODE_P (GET_MODE (x
))
9259 && ! flag_unsafe_math_optimizations
)
9262 decomposed
= XEXP (x
, n
);
9263 if (!ARITHMETIC_P (decomposed
))
9266 mode
= GET_MODE (x
);
9267 outer_code
= GET_CODE (x
);
9268 distributed
= XEXP (x
, !n
);
9270 inner_code
= GET_CODE (decomposed
);
9271 inner_op0
= XEXP (decomposed
, 0);
9272 inner_op1
= XEXP (decomposed
, 1);
9274 /* Special case (and (xor B C) (not A)), which is equivalent to
9275 (xor (ior A B) (ior A C)) */
9276 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
9278 distributed
= XEXP (distributed
, 0);
9284 /* Distribute the second term. */
9285 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
9286 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
9290 /* Distribute the first term. */
9291 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
9292 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
9295 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
9297 if (GET_CODE (tmp
) != outer_code
9298 && (set_src_cost (tmp
, optimize_this_for_speed_p
)
9299 < set_src_cost (x
, optimize_this_for_speed_p
)))
9305 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9306 in MODE. Return an equivalent form, if different from (and VAROP
9307 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9310 simplify_and_const_int_1 (enum machine_mode mode
, rtx varop
,
9311 unsigned HOST_WIDE_INT constop
)
9313 unsigned HOST_WIDE_INT nonzero
;
9314 unsigned HOST_WIDE_INT orig_constop
;
9319 orig_constop
= constop
;
9320 if (GET_CODE (varop
) == CLOBBER
)
9323 /* Simplify VAROP knowing that we will be only looking at some of the
9326 Note by passing in CONSTOP, we guarantee that the bits not set in
9327 CONSTOP are not significant and will never be examined. We must
9328 ensure that is the case by explicitly masking out those bits
9329 before returning. */
9330 varop
= force_to_mode (varop
, mode
, constop
, 0);
9332 /* If VAROP is a CLOBBER, we will fail so return it. */
9333 if (GET_CODE (varop
) == CLOBBER
)
9336 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9337 to VAROP and return the new constant. */
9338 if (CONST_INT_P (varop
))
9339 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
9341 /* See what bits may be nonzero in VAROP. Unlike the general case of
9342 a call to nonzero_bits, here we don't care about bits outside
9345 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
9347 /* Turn off all bits in the constant that are known to already be zero.
9348 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9349 which is tested below. */
9353 /* If we don't have any bits left, return zero. */
9357 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9358 a power of two, we can replace this with an ASHIFT. */
9359 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
9360 && (i
= exact_log2 (constop
)) >= 0)
9361 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
9363 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9364 or XOR, then try to apply the distributive law. This may eliminate
9365 operations if either branch can be simplified because of the AND.
9366 It may also make some cases more complex, but those cases probably
9367 won't match a pattern either with or without this. */
9369 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
9373 apply_distributive_law
9374 (simplify_gen_binary (GET_CODE (varop
), GET_MODE (varop
),
9375 simplify_and_const_int (NULL_RTX
,
9379 simplify_and_const_int (NULL_RTX
,
9384 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9385 the AND and see if one of the operands simplifies to zero. If so, we
9386 may eliminate it. */
9388 if (GET_CODE (varop
) == PLUS
9389 && exact_log2 (constop
+ 1) >= 0)
9393 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
9394 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
9395 if (o0
== const0_rtx
)
9397 if (o1
== const0_rtx
)
9401 /* Make a SUBREG if necessary. If we can't make it, fail. */
9402 varop
= gen_lowpart (mode
, varop
);
9403 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
9406 /* If we are only masking insignificant bits, return VAROP. */
9407 if (constop
== nonzero
)
9410 if (varop
== orig_varop
&& constop
== orig_constop
)
9413 /* Otherwise, return an AND. */
9414 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
9418 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9421 Return an equivalent form, if different from X. Otherwise, return X. If
9422 X is zero, we are to always construct the equivalent form. */
9425 simplify_and_const_int (rtx x
, enum machine_mode mode
, rtx varop
,
9426 unsigned HOST_WIDE_INT constop
)
9428 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
9433 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
9434 gen_int_mode (constop
, mode
));
9435 if (GET_MODE (x
) != mode
)
9436 x
= gen_lowpart (mode
, x
);
9440 /* Given a REG, X, compute which bits in X can be nonzero.
9441 We don't care about bits outside of those defined in MODE.
9443 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9444 a shift, AND, or zero_extract, we can do better. */
9447 reg_nonzero_bits_for_combine (const_rtx x
, enum machine_mode mode
,
9448 const_rtx known_x ATTRIBUTE_UNUSED
,
9449 enum machine_mode known_mode ATTRIBUTE_UNUSED
,
9450 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED
,
9451 unsigned HOST_WIDE_INT
*nonzero
)
9456 /* If X is a register whose nonzero bits value is current, use it.
9457 Otherwise, if X is a register whose value we can find, use that
9458 value. Otherwise, use the previously-computed global nonzero bits
9459 for this register. */
9461 rsp
= ®_stat
[REGNO (x
)];
9462 if (rsp
->last_set_value
!= 0
9463 && (rsp
->last_set_mode
== mode
9464 || (GET_MODE_CLASS (rsp
->last_set_mode
) == MODE_INT
9465 && GET_MODE_CLASS (mode
) == MODE_INT
))
9466 && ((rsp
->last_set_label
>= label_tick_ebb_start
9467 && rsp
->last_set_label
< label_tick
)
9468 || (rsp
->last_set_label
== label_tick
9469 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
9470 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
9471 && REG_N_SETS (REGNO (x
)) == 1
9473 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
9476 unsigned HOST_WIDE_INT mask
= rsp
->last_set_nonzero_bits
;
9478 if (GET_MODE_PRECISION (rsp
->last_set_mode
) < GET_MODE_PRECISION (mode
))
9479 /* We don't know anything about the upper bits. */
9480 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (rsp
->last_set_mode
);
9486 tem
= get_last_value (x
);
9490 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9491 /* If X is narrower than MODE and TEM is a non-negative
9492 constant that would appear negative in the mode of X,
9493 sign-extend it for use in reg_nonzero_bits because some
9494 machines (maybe most) will actually do the sign-extension
9495 and this is the conservative approach.
9497 ??? For 2.5, try to tighten up the MD files in this regard
9498 instead of this kludge. */
9500 if (GET_MODE_PRECISION (GET_MODE (x
)) < GET_MODE_PRECISION (mode
)
9501 && CONST_INT_P (tem
)
9503 && val_signbit_known_set_p (GET_MODE (x
), INTVAL (tem
)))
9504 tem
= GEN_INT (INTVAL (tem
) | ~GET_MODE_MASK (GET_MODE (x
)));
9508 else if (nonzero_sign_valid
&& rsp
->nonzero_bits
)
9510 unsigned HOST_WIDE_INT mask
= rsp
->nonzero_bits
;
9512 if (GET_MODE_PRECISION (GET_MODE (x
)) < GET_MODE_PRECISION (mode
))
9513 /* We don't know anything about the upper bits. */
9514 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (GET_MODE (x
));
9522 /* Return the number of bits at the high-order end of X that are known to
9523 be equal to the sign bit. X will be used in mode MODE; if MODE is
9524 VOIDmode, X will be used in its own mode. The returned value will always
9525 be between 1 and the number of bits in MODE. */
9528 reg_num_sign_bit_copies_for_combine (const_rtx x
, enum machine_mode mode
,
9529 const_rtx known_x ATTRIBUTE_UNUSED
,
9530 enum machine_mode known_mode
9532 unsigned int known_ret ATTRIBUTE_UNUSED
,
9533 unsigned int *result
)
9538 rsp
= ®_stat
[REGNO (x
)];
9539 if (rsp
->last_set_value
!= 0
9540 && rsp
->last_set_mode
== mode
9541 && ((rsp
->last_set_label
>= label_tick_ebb_start
9542 && rsp
->last_set_label
< label_tick
)
9543 || (rsp
->last_set_label
== label_tick
9544 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
9545 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
9546 && REG_N_SETS (REGNO (x
)) == 1
9548 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
9551 *result
= rsp
->last_set_sign_bit_copies
;
9555 tem
= get_last_value (x
);
9559 if (nonzero_sign_valid
&& rsp
->sign_bit_copies
!= 0
9560 && GET_MODE_PRECISION (GET_MODE (x
)) == GET_MODE_PRECISION (mode
))
9561 *result
= rsp
->sign_bit_copies
;
9566 /* Return the number of "extended" bits there are in X, when interpreted
9567 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9568 unsigned quantities, this is the number of high-order zero bits.
9569 For signed quantities, this is the number of copies of the sign bit
9570 minus 1. In both case, this function returns the number of "spare"
9571 bits. For example, if two quantities for which this function returns
9572 at least 1 are added, the addition is known not to overflow.
9574 This function will always return 0 unless called during combine, which
9575 implies that it must be called from a define_split. */
9578 extended_count (const_rtx x
, enum machine_mode mode
, int unsignedp
)
9580 if (nonzero_sign_valid
== 0)
9584 ? (HWI_COMPUTABLE_MODE_P (mode
)
9585 ? (unsigned int) (GET_MODE_PRECISION (mode
) - 1
9586 - floor_log2 (nonzero_bits (x
, mode
)))
9588 : num_sign_bit_copies (x
, mode
) - 1);
9591 /* This function is called from `simplify_shift_const' to merge two
9592 outer operations. Specifically, we have already found that we need
9593 to perform operation *POP0 with constant *PCONST0 at the outermost
9594 position. We would now like to also perform OP1 with constant CONST1
9595 (with *POP0 being done last).
9597 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9598 the resulting operation. *PCOMP_P is set to 1 if we would need to
9599 complement the innermost operand, otherwise it is unchanged.
9601 MODE is the mode in which the operation will be done. No bits outside
9602 the width of this mode matter. It is assumed that the width of this mode
9603 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9605 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9606 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9607 result is simply *PCONST0.
9609 If the resulting operation cannot be expressed as one operation, we
9610 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9613 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, enum machine_mode mode
, int *pcomp_p
)
9615 enum rtx_code op0
= *pop0
;
9616 HOST_WIDE_INT const0
= *pconst0
;
9618 const0
&= GET_MODE_MASK (mode
);
9619 const1
&= GET_MODE_MASK (mode
);
9621 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9625 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9628 if (op1
== UNKNOWN
|| op0
== SET
)
9631 else if (op0
== UNKNOWN
)
9632 op0
= op1
, const0
= const1
;
9634 else if (op0
== op1
)
9658 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9659 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
9662 /* If the two constants aren't the same, we can't do anything. The
9663 remaining six cases can all be done. */
9664 else if (const0
!= const1
)
9672 /* (a & b) | b == b */
9674 else /* op1 == XOR */
9675 /* (a ^ b) | b == a | b */
9681 /* (a & b) ^ b == (~a) & b */
9682 op0
= AND
, *pcomp_p
= 1;
9683 else /* op1 == IOR */
9684 /* (a | b) ^ b == a & ~b */
9685 op0
= AND
, const0
= ~const0
;
9690 /* (a | b) & b == b */
9692 else /* op1 == XOR */
9693 /* (a ^ b) & b) == (~a) & b */
9700 /* Check for NO-OP cases. */
9701 const0
&= GET_MODE_MASK (mode
);
9703 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
9705 else if (const0
== 0 && op0
== AND
)
9707 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
9713 /* ??? Slightly redundant with the above mask, but not entirely.
9714 Moving this above means we'd have to sign-extend the mode mask
9715 for the final test. */
9716 if (op0
!= UNKNOWN
&& op0
!= NEG
)
9717 *pconst0
= trunc_int_for_mode (const0
, mode
);
9722 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9723 the shift in. The original shift operation CODE is performed on OP in
9724 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9725 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9726 result of the shift is subject to operation OUTER_CODE with operand
9729 static enum machine_mode
9730 try_widen_shift_mode (enum rtx_code code
, rtx op
, int count
,
9731 enum machine_mode orig_mode
, enum machine_mode mode
,
9732 enum rtx_code outer_code
, HOST_WIDE_INT outer_const
)
9734 if (orig_mode
== mode
)
9736 gcc_assert (GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (orig_mode
));
9738 /* In general we can't perform in wider mode for right shift and rotate. */
9742 /* We can still widen if the bits brought in from the left are identical
9743 to the sign bit of ORIG_MODE. */
9744 if (num_sign_bit_copies (op
, mode
)
9745 > (unsigned) (GET_MODE_PRECISION (mode
)
9746 - GET_MODE_PRECISION (orig_mode
)))
9751 /* Similarly here but with zero bits. */
9752 if (HWI_COMPUTABLE_MODE_P (mode
)
9753 && (nonzero_bits (op
, mode
) & ~GET_MODE_MASK (orig_mode
)) == 0)
9756 /* We can also widen if the bits brought in will be masked off. This
9757 operation is performed in ORIG_MODE. */
9758 if (outer_code
== AND
)
9760 int care_bits
= low_bitmask_len (orig_mode
, outer_const
);
9763 && GET_MODE_PRECISION (orig_mode
) - care_bits
>= count
)
9779 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9780 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9781 if we cannot simplify it. Otherwise, return a simplified value.
9783 The shift is normally computed in the widest mode we find in VAROP, as
9784 long as it isn't a different number of words than RESULT_MODE. Exceptions
9785 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9788 simplify_shift_const_1 (enum rtx_code code
, enum machine_mode result_mode
,
9789 rtx varop
, int orig_count
)
9791 enum rtx_code orig_code
= code
;
9792 rtx orig_varop
= varop
;
9794 enum machine_mode mode
= result_mode
;
9795 enum machine_mode shift_mode
, tmode
;
9796 unsigned int mode_words
9797 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
9798 /* We form (outer_op (code varop count) (outer_const)). */
9799 enum rtx_code outer_op
= UNKNOWN
;
9800 HOST_WIDE_INT outer_const
= 0;
9801 int complement_p
= 0;
9804 /* Make sure and truncate the "natural" shift on the way in. We don't
9805 want to do this inside the loop as it makes it more difficult to
9807 if (SHIFT_COUNT_TRUNCATED
)
9808 orig_count
&= GET_MODE_BITSIZE (mode
) - 1;
9810 /* If we were given an invalid count, don't do anything except exactly
9811 what was requested. */
9813 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_PRECISION (mode
))
9818 /* Unless one of the branches of the `if' in this loop does a `continue',
9819 we will `break' the loop after the `if'. */
9823 /* If we have an operand of (clobber (const_int 0)), fail. */
9824 if (GET_CODE (varop
) == CLOBBER
)
9827 /* Convert ROTATERT to ROTATE. */
9828 if (code
== ROTATERT
)
9830 unsigned int bitsize
= GET_MODE_PRECISION (result_mode
);
9832 if (VECTOR_MODE_P (result_mode
))
9833 count
= bitsize
/ GET_MODE_NUNITS (result_mode
) - count
;
9835 count
= bitsize
- count
;
9838 shift_mode
= try_widen_shift_mode (code
, varop
, count
, result_mode
,
9839 mode
, outer_op
, outer_const
);
9841 /* Handle cases where the count is greater than the size of the mode
9842 minus 1. For ASHIFT, use the size minus one as the count (this can
9843 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9844 take the count modulo the size. For other shifts, the result is
9847 Since these shifts are being produced by the compiler by combining
9848 multiple operations, each of which are defined, we know what the
9849 result is supposed to be. */
9851 if (count
> (GET_MODE_PRECISION (shift_mode
) - 1))
9853 if (code
== ASHIFTRT
)
9854 count
= GET_MODE_PRECISION (shift_mode
) - 1;
9855 else if (code
== ROTATE
|| code
== ROTATERT
)
9856 count
%= GET_MODE_PRECISION (shift_mode
);
9859 /* We can't simply return zero because there may be an
9867 /* If we discovered we had to complement VAROP, leave. Making a NOT
9868 here would cause an infinite loop. */
9872 /* An arithmetic right shift of a quantity known to be -1 or 0
9874 if (code
== ASHIFTRT
9875 && (num_sign_bit_copies (varop
, shift_mode
)
9876 == GET_MODE_PRECISION (shift_mode
)))
9882 /* If we are doing an arithmetic right shift and discarding all but
9883 the sign bit copies, this is equivalent to doing a shift by the
9884 bitsize minus one. Convert it into that shift because it will often
9885 allow other simplifications. */
9887 if (code
== ASHIFTRT
9888 && (count
+ num_sign_bit_copies (varop
, shift_mode
)
9889 >= GET_MODE_PRECISION (shift_mode
)))
9890 count
= GET_MODE_PRECISION (shift_mode
) - 1;
9892 /* We simplify the tests below and elsewhere by converting
9893 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9894 `make_compound_operation' will convert it to an ASHIFTRT for
9895 those machines (such as VAX) that don't have an LSHIFTRT. */
9896 if (code
== ASHIFTRT
9897 && val_signbit_known_clear_p (shift_mode
,
9898 nonzero_bits (varop
, shift_mode
)))
9901 if (((code
== LSHIFTRT
9902 && HWI_COMPUTABLE_MODE_P (shift_mode
)
9903 && !(nonzero_bits (varop
, shift_mode
) >> count
))
9905 && HWI_COMPUTABLE_MODE_P (shift_mode
)
9906 && !((nonzero_bits (varop
, shift_mode
) << count
)
9907 & GET_MODE_MASK (shift_mode
))))
9908 && !side_effects_p (varop
))
9911 switch (GET_CODE (varop
))
9917 new_rtx
= expand_compound_operation (varop
);
9918 if (new_rtx
!= varop
)
9926 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9927 minus the width of a smaller mode, we can do this with a
9928 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9929 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9930 && ! mode_dependent_address_p (XEXP (varop
, 0),
9931 MEM_ADDR_SPACE (varop
))
9932 && ! MEM_VOLATILE_P (varop
)
9933 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
9934 MODE_INT
, 1)) != BLKmode
)
9936 new_rtx
= adjust_address_nv (varop
, tmode
,
9937 BYTES_BIG_ENDIAN
? 0
9938 : count
/ BITS_PER_UNIT
);
9940 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
9941 : ZERO_EXTEND
, mode
, new_rtx
);
9948 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9949 the same number of words as what we've seen so far. Then store
9950 the widest mode in MODE. */
9951 if (subreg_lowpart_p (varop
)
9952 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
9953 > GET_MODE_SIZE (GET_MODE (varop
)))
9954 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
9955 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
9957 && GET_MODE_CLASS (GET_MODE (varop
)) == MODE_INT
9958 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop
))) == MODE_INT
)
9960 varop
= SUBREG_REG (varop
);
9961 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
9962 mode
= GET_MODE (varop
);
9968 /* Some machines use MULT instead of ASHIFT because MULT
9969 is cheaper. But it is still better on those machines to
9970 merge two shifts into one. */
9971 if (CONST_INT_P (XEXP (varop
, 1))
9972 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
9975 = simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
9977 GEN_INT (exact_log2 (
9978 UINTVAL (XEXP (varop
, 1)))));
9984 /* Similar, for when divides are cheaper. */
9985 if (CONST_INT_P (XEXP (varop
, 1))
9986 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
9989 = simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
9991 GEN_INT (exact_log2 (
9992 UINTVAL (XEXP (varop
, 1)))));
9998 /* If we are extracting just the sign bit of an arithmetic
9999 right shift, that shift is not needed. However, the sign
10000 bit of a wider mode may be different from what would be
10001 interpreted as the sign bit in a narrower mode, so, if
10002 the result is narrower, don't discard the shift. */
10003 if (code
== LSHIFTRT
10004 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
10005 && (GET_MODE_BITSIZE (result_mode
)
10006 >= GET_MODE_BITSIZE (GET_MODE (varop
))))
10008 varop
= XEXP (varop
, 0);
10012 /* ... fall through ... */
10017 /* Here we have two nested shifts. The result is usually the
10018 AND of a new shift with a mask. We compute the result below. */
10019 if (CONST_INT_P (XEXP (varop
, 1))
10020 && INTVAL (XEXP (varop
, 1)) >= 0
10021 && INTVAL (XEXP (varop
, 1)) < GET_MODE_PRECISION (GET_MODE (varop
))
10022 && HWI_COMPUTABLE_MODE_P (result_mode
)
10023 && HWI_COMPUTABLE_MODE_P (mode
)
10024 && !VECTOR_MODE_P (result_mode
))
10026 enum rtx_code first_code
= GET_CODE (varop
);
10027 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
10028 unsigned HOST_WIDE_INT mask
;
10031 /* We have one common special case. We can't do any merging if
10032 the inner code is an ASHIFTRT of a smaller mode. However, if
10033 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10034 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10035 we can convert it to
10036 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10037 This simplifies certain SIGN_EXTEND operations. */
10038 if (code
== ASHIFT
&& first_code
== ASHIFTRT
10039 && count
== (GET_MODE_PRECISION (result_mode
)
10040 - GET_MODE_PRECISION (GET_MODE (varop
))))
10042 /* C3 has the low-order C1 bits zero. */
10044 mask
= GET_MODE_MASK (mode
)
10045 & ~(((unsigned HOST_WIDE_INT
) 1 << first_count
) - 1);
10047 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
10048 XEXP (varop
, 0), mask
);
10049 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
10051 count
= first_count
;
10056 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10057 than C1 high-order bits equal to the sign bit, we can convert
10058 this to either an ASHIFT or an ASHIFTRT depending on the
10061 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10063 if (code
== ASHIFTRT
&& first_code
== ASHIFT
10064 && GET_MODE (varop
) == shift_mode
10065 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
10068 varop
= XEXP (varop
, 0);
10069 count
-= first_count
;
10079 /* There are some cases we can't do. If CODE is ASHIFTRT,
10080 we can only do this if FIRST_CODE is also ASHIFTRT.
10082 We can't do the case when CODE is ROTATE and FIRST_CODE is
10085 If the mode of this shift is not the mode of the outer shift,
10086 we can't do this if either shift is a right shift or ROTATE.
10088 Finally, we can't do any of these if the mode is too wide
10089 unless the codes are the same.
10091 Handle the case where the shift codes are the same
10094 if (code
== first_code
)
10096 if (GET_MODE (varop
) != result_mode
10097 && (code
== ASHIFTRT
|| code
== LSHIFTRT
10098 || code
== ROTATE
))
10101 count
+= first_count
;
10102 varop
= XEXP (varop
, 0);
10106 if (code
== ASHIFTRT
10107 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
10108 || GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
10109 || (GET_MODE (varop
) != result_mode
10110 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
10111 || first_code
== ROTATE
10112 || code
== ROTATE
)))
10115 /* To compute the mask to apply after the shift, shift the
10116 nonzero bits of the inner shift the same way the
10117 outer shift will. */
10119 mask_rtx
= gen_int_mode (nonzero_bits (varop
, GET_MODE (varop
)),
10123 = simplify_const_binary_operation (code
, result_mode
, mask_rtx
,
10126 /* Give up if we can't compute an outer operation to use. */
10128 || !CONST_INT_P (mask_rtx
)
10129 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
10131 result_mode
, &complement_p
))
10134 /* If the shifts are in the same direction, we add the
10135 counts. Otherwise, we subtract them. */
10136 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10137 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
10138 count
+= first_count
;
10140 count
-= first_count
;
10142 /* If COUNT is positive, the new shift is usually CODE,
10143 except for the two exceptions below, in which case it is
10144 FIRST_CODE. If the count is negative, FIRST_CODE should
10147 && ((first_code
== ROTATE
&& code
== ASHIFT
)
10148 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
10150 else if (count
< 0)
10151 code
= first_code
, count
= -count
;
10153 varop
= XEXP (varop
, 0);
10157 /* If we have (A << B << C) for any shift, we can convert this to
10158 (A << C << B). This wins if A is a constant. Only try this if
10159 B is not a constant. */
10161 else if (GET_CODE (varop
) == code
10162 && CONST_INT_P (XEXP (varop
, 0))
10163 && !CONST_INT_P (XEXP (varop
, 1)))
10165 rtx new_rtx
= simplify_const_binary_operation (code
, mode
,
10168 varop
= gen_rtx_fmt_ee (code
, mode
, new_rtx
, XEXP (varop
, 1));
10175 if (VECTOR_MODE_P (mode
))
10178 /* Make this fit the case below. */
10179 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0), constm1_rtx
);
10185 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10186 with C the size of VAROP - 1 and the shift is logical if
10187 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10188 we have an (le X 0) operation. If we have an arithmetic shift
10189 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10190 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10192 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
10193 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
10194 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10195 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10196 && count
== (GET_MODE_PRECISION (GET_MODE (varop
)) - 1)
10197 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10200 varop
= gen_rtx_LE (GET_MODE (varop
), XEXP (varop
, 1),
10203 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10204 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
10209 /* If we have (shift (logical)), move the logical to the outside
10210 to allow it to possibly combine with another logical and the
10211 shift to combine with another shift. This also canonicalizes to
10212 what a ZERO_EXTRACT looks like. Also, some machines have
10213 (and (shift)) insns. */
10215 if (CONST_INT_P (XEXP (varop
, 1))
10216 /* We can't do this if we have (ashiftrt (xor)) and the
10217 constant has its sign bit set in shift_mode. */
10218 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10219 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10221 && (new_rtx
= simplify_const_binary_operation
10222 (code
, result_mode
,
10223 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10224 GEN_INT (count
))) != 0
10225 && CONST_INT_P (new_rtx
)
10226 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
10227 INTVAL (new_rtx
), result_mode
, &complement_p
))
10229 varop
= XEXP (varop
, 0);
10233 /* If we can't do that, try to simplify the shift in each arm of the
10234 logical expression, make a new logical expression, and apply
10235 the inverse distributive law. This also can't be done
10236 for some (ashiftrt (xor)). */
10237 if (CONST_INT_P (XEXP (varop
, 1))
10238 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10239 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10242 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
10243 XEXP (varop
, 0), count
);
10244 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
10245 XEXP (varop
, 1), count
);
10247 varop
= simplify_gen_binary (GET_CODE (varop
), shift_mode
,
10249 varop
= apply_distributive_law (varop
);
10257 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10258 says that the sign bit can be tested, FOO has mode MODE, C is
10259 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10260 that may be nonzero. */
10261 if (code
== LSHIFTRT
10262 && XEXP (varop
, 1) == const0_rtx
10263 && GET_MODE (XEXP (varop
, 0)) == result_mode
10264 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10265 && HWI_COMPUTABLE_MODE_P (result_mode
)
10266 && STORE_FLAG_VALUE
== -1
10267 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
10268 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1, result_mode
,
10271 varop
= XEXP (varop
, 0);
10278 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10279 than the number of bits in the mode is equivalent to A. */
10280 if (code
== LSHIFTRT
10281 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10282 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
10284 varop
= XEXP (varop
, 0);
10289 /* NEG commutes with ASHIFT since it is multiplication. Move the
10290 NEG outside to allow shifts to combine. */
10292 && merge_outer_ops (&outer_op
, &outer_const
, NEG
, 0, result_mode
,
10295 varop
= XEXP (varop
, 0);
10301 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10302 is one less than the number of bits in the mode is
10303 equivalent to (xor A 1). */
10304 if (code
== LSHIFTRT
10305 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10306 && XEXP (varop
, 1) == constm1_rtx
10307 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
10308 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1, result_mode
,
10312 varop
= XEXP (varop
, 0);
10316 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10317 that might be nonzero in BAR are those being shifted out and those
10318 bits are known zero in FOO, we can replace the PLUS with FOO.
10319 Similarly in the other operand order. This code occurs when
10320 we are computing the size of a variable-size array. */
10322 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10323 && count
< HOST_BITS_PER_WIDE_INT
10324 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
10325 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
10326 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
10328 varop
= XEXP (varop
, 0);
10331 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10332 && count
< HOST_BITS_PER_WIDE_INT
10333 && HWI_COMPUTABLE_MODE_P (result_mode
)
10334 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
10336 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
10337 & nonzero_bits (XEXP (varop
, 1),
10340 varop
= XEXP (varop
, 1);
10344 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10346 && CONST_INT_P (XEXP (varop
, 1))
10347 && (new_rtx
= simplify_const_binary_operation (ASHIFT
, result_mode
,
10349 GEN_INT (count
))) != 0
10350 && CONST_INT_P (new_rtx
)
10351 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
10352 INTVAL (new_rtx
), result_mode
, &complement_p
))
10354 varop
= XEXP (varop
, 0);
10358 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10359 signbit', and attempt to change the PLUS to an XOR and move it to
10360 the outer operation as is done above in the AND/IOR/XOR case
10361 leg for shift(logical). See details in logical handling above
10362 for reasoning in doing so. */
10363 if (code
== LSHIFTRT
10364 && CONST_INT_P (XEXP (varop
, 1))
10365 && mode_signbit_p (result_mode
, XEXP (varop
, 1))
10366 && (new_rtx
= simplify_const_binary_operation (code
, result_mode
,
10368 GEN_INT (count
))) != 0
10369 && CONST_INT_P (new_rtx
)
10370 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
10371 INTVAL (new_rtx
), result_mode
, &complement_p
))
10373 varop
= XEXP (varop
, 0);
10380 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10381 with C the size of VAROP - 1 and the shift is logical if
10382 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10383 we have a (gt X 0) operation. If the shift is arithmetic with
10384 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10385 we have a (neg (gt X 0)) operation. */
10387 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10388 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
10389 && count
== (GET_MODE_PRECISION (GET_MODE (varop
)) - 1)
10390 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10391 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
10392 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
10393 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10396 varop
= gen_rtx_GT (GET_MODE (varop
), XEXP (varop
, 1),
10399 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10400 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
10407 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10408 if the truncate does not affect the value. */
10409 if (code
== LSHIFTRT
10410 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
10411 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
10412 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
10413 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop
, 0)))
10414 - GET_MODE_PRECISION (GET_MODE (varop
)))))
10416 rtx varop_inner
= XEXP (varop
, 0);
10419 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
10420 XEXP (varop_inner
, 0),
10422 (count
+ INTVAL (XEXP (varop_inner
, 1))));
10423 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
10436 shift_mode
= try_widen_shift_mode (code
, varop
, count
, result_mode
, mode
,
10437 outer_op
, outer_const
);
10439 /* We have now finished analyzing the shift. The result should be
10440 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10441 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10442 to the result of the shift. OUTER_CONST is the relevant constant,
10443 but we must turn off all bits turned off in the shift. */
10445 if (outer_op
== UNKNOWN
10446 && orig_code
== code
&& orig_count
== count
10447 && varop
== orig_varop
10448 && shift_mode
== GET_MODE (varop
))
10451 /* Make a SUBREG if necessary. If we can't make it, fail. */
10452 varop
= gen_lowpart (shift_mode
, varop
);
10453 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
10456 /* If we have an outer operation and we just made a shift, it is
10457 possible that we could have simplified the shift were it not
10458 for the outer operation. So try to do the simplification
10461 if (outer_op
!= UNKNOWN
)
10462 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
10467 x
= simplify_gen_binary (code
, shift_mode
, varop
, GEN_INT (count
));
10469 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10470 turn off all the bits that the shift would have turned off. */
10471 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
10472 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
10473 GET_MODE_MASK (result_mode
) >> orig_count
);
10475 /* Do the remainder of the processing in RESULT_MODE. */
10476 x
= gen_lowpart_or_truncate (result_mode
, x
);
10478 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10481 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
10483 if (outer_op
!= UNKNOWN
)
10485 if (GET_RTX_CLASS (outer_op
) != RTX_UNARY
10486 && GET_MODE_PRECISION (result_mode
) < HOST_BITS_PER_WIDE_INT
)
10487 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
10489 if (outer_op
== AND
)
10490 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
10491 else if (outer_op
== SET
)
10493 /* This means that we have determined that the result is
10494 equivalent to a constant. This should be rare. */
10495 if (!side_effects_p (x
))
10496 x
= GEN_INT (outer_const
);
10498 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
10499 x
= simplify_gen_unary (outer_op
, result_mode
, x
, result_mode
);
10501 x
= simplify_gen_binary (outer_op
, result_mode
, x
,
10502 GEN_INT (outer_const
));
10508 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10509 The result of the shift is RESULT_MODE. If we cannot simplify it,
10510 return X or, if it is NULL, synthesize the expression with
10511 simplify_gen_binary. Otherwise, return a simplified value.
10513 The shift is normally computed in the widest mode we find in VAROP, as
10514 long as it isn't a different number of words than RESULT_MODE. Exceptions
10515 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10518 simplify_shift_const (rtx x
, enum rtx_code code
, enum machine_mode result_mode
,
10519 rtx varop
, int count
)
10521 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
10526 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
, GEN_INT (count
));
10527 if (GET_MODE (x
) != result_mode
)
10528 x
= gen_lowpart (result_mode
, x
);
10533 /* Like recog, but we receive the address of a pointer to a new pattern.
10534 We try to match the rtx that the pointer points to.
10535 If that fails, we may try to modify or replace the pattern,
10536 storing the replacement into the same pointer object.
10538 Modifications include deletion or addition of CLOBBERs.
10540 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10541 the CLOBBERs are placed.
10543 The value is the final insn code from the pattern ultimately matched,
10547 recog_for_combine (rtx
*pnewpat
, rtx insn
, rtx
*pnotes
)
10549 rtx pat
= *pnewpat
;
10550 rtx pat_without_clobbers
;
10551 int insn_code_number
;
10552 int num_clobbers_to_add
= 0;
10554 rtx notes
= NULL_RTX
;
10555 rtx old_notes
, old_pat
;
10558 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10559 we use to indicate that something didn't match. If we find such a
10560 thing, force rejection. */
10561 if (GET_CODE (pat
) == PARALLEL
)
10562 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
10563 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
10564 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
10567 old_pat
= PATTERN (insn
);
10568 old_notes
= REG_NOTES (insn
);
10569 PATTERN (insn
) = pat
;
10570 REG_NOTES (insn
) = NULL_RTX
;
10572 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
10573 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10575 if (insn_code_number
< 0)
10576 fputs ("Failed to match this instruction:\n", dump_file
);
10578 fputs ("Successfully matched this instruction:\n", dump_file
);
10579 print_rtl_single (dump_file
, pat
);
10582 /* If it isn't, there is the possibility that we previously had an insn
10583 that clobbered some register as a side effect, but the combined
10584 insn doesn't need to do that. So try once more without the clobbers
10585 unless this represents an ASM insn. */
10587 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
10588 && GET_CODE (pat
) == PARALLEL
)
10592 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
10593 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
10596 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
10600 SUBST_INT (XVECLEN (pat
, 0), pos
);
10603 pat
= XVECEXP (pat
, 0, 0);
10605 PATTERN (insn
) = pat
;
10606 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
10607 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10609 if (insn_code_number
< 0)
10610 fputs ("Failed to match this instruction:\n", dump_file
);
10612 fputs ("Successfully matched this instruction:\n", dump_file
);
10613 print_rtl_single (dump_file
, pat
);
10617 pat_without_clobbers
= pat
;
10619 PATTERN (insn
) = old_pat
;
10620 REG_NOTES (insn
) = old_notes
;
10622 /* Recognize all noop sets, these will be killed by followup pass. */
10623 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
10624 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
10626 /* If we had any clobbers to add, make a new pattern than contains
10627 them. Then check to make sure that all of them are dead. */
10628 if (num_clobbers_to_add
)
10630 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
10631 rtvec_alloc (GET_CODE (pat
) == PARALLEL
10632 ? (XVECLEN (pat
, 0)
10633 + num_clobbers_to_add
)
10634 : num_clobbers_to_add
+ 1));
10636 if (GET_CODE (pat
) == PARALLEL
)
10637 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
10638 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
10640 XVECEXP (newpat
, 0, 0) = pat
;
10642 add_clobbers (newpat
, insn_code_number
);
10644 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
10645 i
< XVECLEN (newpat
, 0); i
++)
10647 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
10648 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
10650 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) != SCRATCH
)
10652 gcc_assert (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0)));
10653 notes
= alloc_reg_note (REG_UNUSED
,
10654 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
10660 if (insn_code_number
>= 0
10661 && insn_code_number
!= NOOP_MOVE_INSN_CODE
)
10663 old_pat
= PATTERN (insn
);
10664 old_notes
= REG_NOTES (insn
);
10665 old_icode
= INSN_CODE (insn
);
10666 PATTERN (insn
) = pat
;
10667 REG_NOTES (insn
) = notes
;
10669 /* Allow targets to reject combined insn. */
10670 if (!targetm
.legitimate_combined_insn (insn
))
10672 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10673 fputs ("Instruction not appropriate for target.",
10676 /* Callers expect recog_for_combine to strip
10677 clobbers from the pattern on failure. */
10678 pat
= pat_without_clobbers
;
10681 insn_code_number
= -1;
10684 PATTERN (insn
) = old_pat
;
10685 REG_NOTES (insn
) = old_notes
;
10686 INSN_CODE (insn
) = old_icode
;
10692 return insn_code_number
;
10695 /* Like gen_lowpart_general but for use by combine. In combine it
10696 is not possible to create any new pseudoregs. However, it is
10697 safe to create invalid memory addresses, because combine will
10698 try to recognize them and all they will do is make the combine
10701 If for some reason this cannot do its job, an rtx
10702 (clobber (const_int 0)) is returned.
10703 An insn containing that will not be recognized. */
10706 gen_lowpart_for_combine (enum machine_mode omode
, rtx x
)
10708 enum machine_mode imode
= GET_MODE (x
);
10709 unsigned int osize
= GET_MODE_SIZE (omode
);
10710 unsigned int isize
= GET_MODE_SIZE (imode
);
10713 if (omode
== imode
)
10716 /* We can only support MODE being wider than a word if X is a
10717 constant integer or has a mode the same size. */
10718 if (GET_MODE_SIZE (omode
) > UNITS_PER_WORD
10719 && ! (CONST_SCALAR_INT_P (x
) || isize
== osize
))
10722 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10723 won't know what to do. So we will strip off the SUBREG here and
10724 process normally. */
10725 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
10727 x
= SUBREG_REG (x
);
10729 /* For use in case we fall down into the address adjustments
10730 further below, we need to adjust the known mode and size of
10731 x; imode and isize, since we just adjusted x. */
10732 imode
= GET_MODE (x
);
10734 if (imode
== omode
)
10737 isize
= GET_MODE_SIZE (imode
);
10740 result
= gen_lowpart_common (omode
, x
);
10749 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10751 if (MEM_VOLATILE_P (x
)
10752 || mode_dependent_address_p (XEXP (x
, 0), MEM_ADDR_SPACE (x
)))
10755 /* If we want to refer to something bigger than the original memref,
10756 generate a paradoxical subreg instead. That will force a reload
10757 of the original memref X. */
10759 return gen_rtx_SUBREG (omode
, x
, 0);
10761 if (WORDS_BIG_ENDIAN
)
10762 offset
= MAX (isize
, UNITS_PER_WORD
) - MAX (osize
, UNITS_PER_WORD
);
10764 /* Adjust the address so that the address-after-the-data is
10766 if (BYTES_BIG_ENDIAN
)
10767 offset
-= MIN (UNITS_PER_WORD
, osize
) - MIN (UNITS_PER_WORD
, isize
);
10769 return adjust_address_nv (x
, omode
, offset
);
10772 /* If X is a comparison operator, rewrite it in a new mode. This
10773 probably won't match, but may allow further simplifications. */
10774 else if (COMPARISON_P (x
))
10775 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
10777 /* If we couldn't simplify X any other way, just enclose it in a
10778 SUBREG. Normally, this SUBREG won't match, but some patterns may
10779 include an explicit SUBREG or we may simplify it further in combine. */
10785 offset
= subreg_lowpart_offset (omode
, imode
);
10786 if (imode
== VOIDmode
)
10788 imode
= int_mode_for_mode (omode
);
10789 x
= gen_lowpart_common (imode
, x
);
10793 res
= simplify_gen_subreg (omode
, x
, imode
, offset
);
10799 return gen_rtx_CLOBBER (omode
, const0_rtx
);
10802 /* Try to simplify a comparison between OP0 and a constant OP1,
10803 where CODE is the comparison code that will be tested, into a
10804 (CODE OP0 const0_rtx) form.
10806 The result is a possibly different comparison code to use.
10807 *POP1 may be updated. */
10809 static enum rtx_code
10810 simplify_compare_const (enum rtx_code code
, rtx op0
, rtx
*pop1
)
10812 enum machine_mode mode
= GET_MODE (op0
);
10813 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
10814 HOST_WIDE_INT const_op
= INTVAL (*pop1
);
10816 /* Get the constant we are comparing against and turn off all bits
10817 not on in our mode. */
10818 if (mode
!= VOIDmode
)
10819 const_op
= trunc_int_for_mode (const_op
, mode
);
10821 /* If we are comparing against a constant power of two and the value
10822 being compared can only have that single bit nonzero (e.g., it was
10823 `and'ed with that bit), we can replace this with a comparison
10826 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
10827 || code
== LT
|| code
== LTU
)
10828 && mode_width
<= HOST_BITS_PER_WIDE_INT
10829 && exact_log2 (const_op
& GET_MODE_MASK (mode
)) >= 0
10830 && (nonzero_bits (op0
, mode
)
10831 == (unsigned HOST_WIDE_INT
) (const_op
& GET_MODE_MASK (mode
))))
10833 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
10837 /* Similarly, if we are comparing a value known to be either -1 or
10838 0 with -1, change it to the opposite comparison against zero. */
10840 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
10841 || code
== GEU
|| code
== LTU
)
10842 && num_sign_bit_copies (op0
, mode
) == mode_width
)
10844 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
10848 /* Do some canonicalizations based on the comparison code. We prefer
10849 comparisons against zero and then prefer equality comparisons.
10850 If we can reduce the size of a constant, we will do that too. */
10854 /* < C is equivalent to <= (C - 1) */
10859 /* ... fall through to LE case below. */
10865 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10872 /* If we are doing a <= 0 comparison on a value known to have
10873 a zero sign bit, we can replace this with == 0. */
10874 else if (const_op
== 0
10875 && mode_width
<= HOST_BITS_PER_WIDE_INT
10876 && (nonzero_bits (op0
, mode
)
10877 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10883 /* >= C is equivalent to > (C - 1). */
10888 /* ... fall through to GT below. */
10894 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10901 /* If we are doing a > 0 comparison on a value known to have
10902 a zero sign bit, we can replace this with != 0. */
10903 else if (const_op
== 0
10904 && mode_width
<= HOST_BITS_PER_WIDE_INT
10905 && (nonzero_bits (op0
, mode
)
10906 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10912 /* < C is equivalent to <= (C - 1). */
10917 /* ... fall through ... */
10919 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10920 else if (mode_width
<= HOST_BITS_PER_WIDE_INT
10921 && (unsigned HOST_WIDE_INT
) const_op
10922 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1))
10932 /* unsigned <= 0 is equivalent to == 0 */
10935 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10936 else if (mode_width
<= HOST_BITS_PER_WIDE_INT
10937 && (unsigned HOST_WIDE_INT
) const_op
10938 == ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1)
10946 /* >= C is equivalent to > (C - 1). */
10951 /* ... fall through ... */
10954 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10955 else if (mode_width
<= HOST_BITS_PER_WIDE_INT
10956 && (unsigned HOST_WIDE_INT
) const_op
10957 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1))
10967 /* unsigned > 0 is equivalent to != 0 */
10970 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10971 else if (mode_width
<= HOST_BITS_PER_WIDE_INT
10972 && (unsigned HOST_WIDE_INT
) const_op
10973 == ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1)
10984 *pop1
= GEN_INT (const_op
);
10988 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
10989 comparison code that will be tested.
10991 The result is a possibly different comparison code to use. *POP0 and
10992 *POP1 may be updated.
10994 It is possible that we might detect that a comparison is either always
10995 true or always false. However, we do not perform general constant
10996 folding in combine, so this knowledge isn't useful. Such tautologies
10997 should have been detected earlier. Hence we ignore all such cases. */
10999 static enum rtx_code
11000 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
11006 enum machine_mode mode
, tmode
;
11008 /* Try a few ways of applying the same transformation to both operands. */
11011 #ifndef WORD_REGISTER_OPERATIONS
11012 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11013 so check specially. */
11014 if (code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
11015 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
11016 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11017 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
11018 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
11019 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
11020 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
11021 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
11022 && CONST_INT_P (XEXP (op0
, 1))
11023 && XEXP (op0
, 1) == XEXP (op1
, 1)
11024 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11025 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
11026 && (INTVAL (XEXP (op0
, 1))
11027 == (GET_MODE_PRECISION (GET_MODE (op0
))
11028 - (GET_MODE_PRECISION
11029 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
11031 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
11032 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
11036 /* If both operands are the same constant shift, see if we can ignore the
11037 shift. We can if the shift is a rotate or if the bits shifted out of
11038 this shift are known to be zero for both inputs and if the type of
11039 comparison is compatible with the shift. */
11040 if (GET_CODE (op0
) == GET_CODE (op1
)
11041 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
11042 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
11043 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
11044 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
11045 || (GET_CODE (op0
) == ASHIFTRT
11046 && (code
!= GTU
&& code
!= LTU
11047 && code
!= GEU
&& code
!= LEU
)))
11048 && CONST_INT_P (XEXP (op0
, 1))
11049 && INTVAL (XEXP (op0
, 1)) >= 0
11050 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11051 && XEXP (op0
, 1) == XEXP (op1
, 1))
11053 enum machine_mode mode
= GET_MODE (op0
);
11054 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11055 int shift_count
= INTVAL (XEXP (op0
, 1));
11057 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
11058 mask
&= (mask
>> shift_count
) << shift_count
;
11059 else if (GET_CODE (op0
) == ASHIFT
)
11060 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
11062 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
11063 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
11064 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
11069 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11070 SUBREGs are of the same mode, and, in both cases, the AND would
11071 be redundant if the comparison was done in the narrower mode,
11072 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11073 and the operand's possibly nonzero bits are 0xffffff01; in that case
11074 if we only care about QImode, we don't need the AND). This case
11075 occurs if the output mode of an scc insn is not SImode and
11076 STORE_FLAG_VALUE == 1 (e.g., the 386).
11078 Similarly, check for a case where the AND's are ZERO_EXTEND
11079 operations from some narrower mode even though a SUBREG is not
11082 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
11083 && CONST_INT_P (XEXP (op0
, 1))
11084 && CONST_INT_P (XEXP (op1
, 1)))
11086 rtx inner_op0
= XEXP (op0
, 0);
11087 rtx inner_op1
= XEXP (op1
, 0);
11088 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
11089 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
11092 if (paradoxical_subreg_p (inner_op0
)
11093 && GET_CODE (inner_op1
) == SUBREG
11094 && (GET_MODE (SUBREG_REG (inner_op0
))
11095 == GET_MODE (SUBREG_REG (inner_op1
)))
11096 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0
)))
11097 <= HOST_BITS_PER_WIDE_INT
)
11098 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
11099 GET_MODE (SUBREG_REG (inner_op0
)))))
11100 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
11101 GET_MODE (SUBREG_REG (inner_op1
))))))
11103 op0
= SUBREG_REG (inner_op0
);
11104 op1
= SUBREG_REG (inner_op1
);
11106 /* The resulting comparison is always unsigned since we masked
11107 off the original sign bit. */
11108 code
= unsigned_condition (code
);
11114 for (tmode
= GET_CLASS_NARROWEST_MODE
11115 (GET_MODE_CLASS (GET_MODE (op0
)));
11116 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
11117 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
11119 op0
= gen_lowpart (tmode
, inner_op0
);
11120 op1
= gen_lowpart (tmode
, inner_op1
);
11121 code
= unsigned_condition (code
);
11130 /* If both operands are NOT, we can strip off the outer operation
11131 and adjust the comparison code for swapped operands; similarly for
11132 NEG, except that this must be an equality comparison. */
11133 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
11134 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
11135 && (code
== EQ
|| code
== NE
)))
11136 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
11142 /* If the first operand is a constant, swap the operands and adjust the
11143 comparison code appropriately, but don't do this if the second operand
11144 is already a constant integer. */
11145 if (swap_commutative_operands_p (op0
, op1
))
11147 tem
= op0
, op0
= op1
, op1
= tem
;
11148 code
= swap_condition (code
);
11151 /* We now enter a loop during which we will try to simplify the comparison.
11152 For the most part, we only are concerned with comparisons with zero,
11153 but some things may really be comparisons with zero but not start
11154 out looking that way. */
11156 while (CONST_INT_P (op1
))
11158 enum machine_mode mode
= GET_MODE (op0
);
11159 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
11160 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11161 int equality_comparison_p
;
11162 int sign_bit_comparison_p
;
11163 int unsigned_comparison_p
;
11164 HOST_WIDE_INT const_op
;
11166 /* We only want to handle integral modes. This catches VOIDmode,
11167 CCmode, and the floating-point modes. An exception is that we
11168 can handle VOIDmode if OP0 is a COMPARE or a comparison
11171 if (GET_MODE_CLASS (mode
) != MODE_INT
11172 && ! (mode
== VOIDmode
11173 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
11176 /* Try to simplify the compare to constant, possibly changing the
11177 comparison op, and/or changing op1 to zero. */
11178 code
= simplify_compare_const (code
, op0
, &op1
);
11179 const_op
= INTVAL (op1
);
11181 /* Compute some predicates to simplify code below. */
11183 equality_comparison_p
= (code
== EQ
|| code
== NE
);
11184 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
11185 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
11188 /* If this is a sign bit comparison and we can do arithmetic in
11189 MODE, say that we will only be needing the sign bit of OP0. */
11190 if (sign_bit_comparison_p
&& HWI_COMPUTABLE_MODE_P (mode
))
11191 op0
= force_to_mode (op0
, mode
,
11192 (unsigned HOST_WIDE_INT
) 1
11193 << (GET_MODE_PRECISION (mode
) - 1),
11196 /* Now try cases based on the opcode of OP0. If none of the cases
11197 does a "continue", we exit this loop immediately after the
11200 switch (GET_CODE (op0
))
11203 /* If we are extracting a single bit from a variable position in
11204 a constant that has only a single bit set and are comparing it
11205 with zero, we can convert this into an equality comparison
11206 between the position and the location of the single bit. */
11207 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11208 have already reduced the shift count modulo the word size. */
11209 if (!SHIFT_COUNT_TRUNCATED
11210 && CONST_INT_P (XEXP (op0
, 0))
11211 && XEXP (op0
, 1) == const1_rtx
11212 && equality_comparison_p
&& const_op
== 0
11213 && (i
= exact_log2 (UINTVAL (XEXP (op0
, 0)))) >= 0)
11215 if (BITS_BIG_ENDIAN
)
11216 i
= BITS_PER_WORD
- 1 - i
;
11218 op0
= XEXP (op0
, 2);
11222 /* Result is nonzero iff shift count is equal to I. */
11223 code
= reverse_condition (code
);
11227 /* ... fall through ... */
11230 tem
= expand_compound_operation (op0
);
11239 /* If testing for equality, we can take the NOT of the constant. */
11240 if (equality_comparison_p
11241 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
11243 op0
= XEXP (op0
, 0);
11248 /* If just looking at the sign bit, reverse the sense of the
11250 if (sign_bit_comparison_p
)
11252 op0
= XEXP (op0
, 0);
11253 code
= (code
== GE
? LT
: GE
);
11259 /* If testing for equality, we can take the NEG of the constant. */
11260 if (equality_comparison_p
11261 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
11263 op0
= XEXP (op0
, 0);
11268 /* The remaining cases only apply to comparisons with zero. */
11272 /* When X is ABS or is known positive,
11273 (neg X) is < 0 if and only if X != 0. */
11275 if (sign_bit_comparison_p
11276 && (GET_CODE (XEXP (op0
, 0)) == ABS
11277 || (mode_width
<= HOST_BITS_PER_WIDE_INT
11278 && (nonzero_bits (XEXP (op0
, 0), mode
)
11279 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
11282 op0
= XEXP (op0
, 0);
11283 code
= (code
== LT
? NE
: EQ
);
11287 /* If we have NEG of something whose two high-order bits are the
11288 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11289 if (num_sign_bit_copies (op0
, mode
) >= 2)
11291 op0
= XEXP (op0
, 0);
11292 code
= swap_condition (code
);
11298 /* If we are testing equality and our count is a constant, we
11299 can perform the inverse operation on our RHS. */
11300 if (equality_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
11301 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
11302 op1
, XEXP (op0
, 1))) != 0)
11304 op0
= XEXP (op0
, 0);
11309 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11310 a particular bit. Convert it to an AND of a constant of that
11311 bit. This will be converted into a ZERO_EXTRACT. */
11312 if (const_op
== 0 && sign_bit_comparison_p
11313 && CONST_INT_P (XEXP (op0
, 1))
11314 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
11316 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
11317 ((unsigned HOST_WIDE_INT
) 1
11319 - INTVAL (XEXP (op0
, 1)))));
11320 code
= (code
== LT
? NE
: EQ
);
11324 /* Fall through. */
11327 /* ABS is ignorable inside an equality comparison with zero. */
11328 if (const_op
== 0 && equality_comparison_p
)
11330 op0
= XEXP (op0
, 0);
11336 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11337 (compare FOO CONST) if CONST fits in FOO's mode and we
11338 are either testing inequality or have an unsigned
11339 comparison with ZERO_EXTEND or a signed comparison with
11340 SIGN_EXTEND. But don't do it if we don't have a compare
11341 insn of the given mode, since we'd have to revert it
11342 later on, and then we wouldn't know whether to sign- or
11344 mode
= GET_MODE (XEXP (op0
, 0));
11345 if (GET_MODE_CLASS (mode
) == MODE_INT
11346 && ! unsigned_comparison_p
11347 && HWI_COMPUTABLE_MODE_P (mode
)
11348 && trunc_int_for_mode (const_op
, mode
) == const_op
11349 && have_insn_for (COMPARE
, mode
))
11351 op0
= XEXP (op0
, 0);
11357 /* Check for the case where we are comparing A - C1 with C2, that is
11359 (subreg:MODE (plus (A) (-C1))) op (C2)
11361 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11362 comparison in the wider mode. One of the following two conditions
11363 must be true in order for this to be valid:
11365 1. The mode extension results in the same bit pattern being added
11366 on both sides and the comparison is equality or unsigned. As
11367 C2 has been truncated to fit in MODE, the pattern can only be
11370 2. The mode extension results in the sign bit being copied on
11373 The difficulty here is that we have predicates for A but not for
11374 (A - C1) so we need to check that C1 is within proper bounds so
11375 as to perturbate A as little as possible. */
11377 if (mode_width
<= HOST_BITS_PER_WIDE_INT
11378 && subreg_lowpart_p (op0
)
11379 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) > mode_width
11380 && GET_CODE (SUBREG_REG (op0
)) == PLUS
11381 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1)))
11383 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
11384 rtx a
= XEXP (SUBREG_REG (op0
), 0);
11385 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
11388 && (unsigned HOST_WIDE_INT
) c1
11389 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)
11390 && (equality_comparison_p
|| unsigned_comparison_p
)
11391 /* (A - C1) zero-extends if it is positive and sign-extends
11392 if it is negative, C2 both zero- and sign-extends. */
11393 && ((0 == (nonzero_bits (a
, inner_mode
)
11394 & ~GET_MODE_MASK (mode
))
11396 /* (A - C1) sign-extends if it is positive and 1-extends
11397 if it is negative, C2 both sign- and 1-extends. */
11398 || (num_sign_bit_copies (a
, inner_mode
)
11399 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
11402 || ((unsigned HOST_WIDE_INT
) c1
11403 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 2)
11404 /* (A - C1) always sign-extends, like C2. */
11405 && num_sign_bit_copies (a
, inner_mode
)
11406 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
11407 - (mode_width
- 1))))
11409 op0
= SUBREG_REG (op0
);
11414 /* If the inner mode is narrower and we are extracting the low part,
11415 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11416 if (subreg_lowpart_p (op0
)
11417 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
11418 /* Fall through */ ;
11422 /* ... fall through ... */
11425 mode
= GET_MODE (XEXP (op0
, 0));
11426 if (GET_MODE_CLASS (mode
) == MODE_INT
11427 && (unsigned_comparison_p
|| equality_comparison_p
)
11428 && HWI_COMPUTABLE_MODE_P (mode
)
11429 && (unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (mode
)
11431 && have_insn_for (COMPARE
, mode
))
11433 op0
= XEXP (op0
, 0);
11439 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11440 this for equality comparisons due to pathological cases involving
11442 if (equality_comparison_p
11443 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
11444 op1
, XEXP (op0
, 1))))
11446 op0
= XEXP (op0
, 0);
11451 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11452 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
11453 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
11455 op0
= XEXP (XEXP (op0
, 0), 0);
11456 code
= (code
== LT
? EQ
: NE
);
11462 /* We used to optimize signed comparisons against zero, but that
11463 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11464 arrive here as equality comparisons, or (GEU, LTU) are
11465 optimized away. No need to special-case them. */
11467 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11468 (eq B (minus A C)), whichever simplifies. We can only do
11469 this for equality comparisons due to pathological cases involving
11471 if (equality_comparison_p
11472 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
11473 XEXP (op0
, 1), op1
)))
11475 op0
= XEXP (op0
, 0);
11480 if (equality_comparison_p
11481 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
11482 XEXP (op0
, 0), op1
)))
11484 op0
= XEXP (op0
, 1);
11489 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11490 of bits in X minus 1, is one iff X > 0. */
11491 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
11492 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11493 && UINTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
11494 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
11496 op0
= XEXP (op0
, 1);
11497 code
= (code
== GE
? LE
: GT
);
11503 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11504 if C is zero or B is a constant. */
11505 if (equality_comparison_p
11506 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
11507 XEXP (op0
, 1), op1
)))
11509 op0
= XEXP (op0
, 0);
11516 case UNEQ
: case LTGT
:
11517 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
11518 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
11519 case UNORDERED
: case ORDERED
:
11520 /* We can't do anything if OP0 is a condition code value, rather
11521 than an actual data value. */
11523 || CC0_P (XEXP (op0
, 0))
11524 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
11527 /* Get the two operands being compared. */
11528 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
11529 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
11531 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
11533 /* Check for the cases where we simply want the result of the
11534 earlier test or the opposite of that result. */
11535 if (code
== NE
|| code
== EQ
11536 || (val_signbit_known_set_p (GET_MODE (op0
), STORE_FLAG_VALUE
)
11537 && (code
== LT
|| code
== GE
)))
11539 enum rtx_code new_code
;
11540 if (code
== LT
|| code
== NE
)
11541 new_code
= GET_CODE (op0
);
11543 new_code
= reversed_comparison_code (op0
, NULL
);
11545 if (new_code
!= UNKNOWN
)
11556 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11558 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
11559 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
11560 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
11562 op0
= XEXP (op0
, 1);
11563 code
= (code
== GE
? GT
: LE
);
11569 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11570 will be converted to a ZERO_EXTRACT later. */
11571 if (const_op
== 0 && equality_comparison_p
11572 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11573 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
11575 op0
= gen_rtx_LSHIFTRT (mode
, XEXP (op0
, 1),
11576 XEXP (XEXP (op0
, 0), 1));
11577 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
11581 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11582 zero and X is a comparison and C1 and C2 describe only bits set
11583 in STORE_FLAG_VALUE, we can compare with X. */
11584 if (const_op
== 0 && equality_comparison_p
11585 && mode_width
<= HOST_BITS_PER_WIDE_INT
11586 && CONST_INT_P (XEXP (op0
, 1))
11587 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
11588 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11589 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
11590 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
11592 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
11593 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
11594 if ((~STORE_FLAG_VALUE
& mask
) == 0
11595 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
11596 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
11597 && COMPARISON_P (tem
))))
11599 op0
= XEXP (XEXP (op0
, 0), 0);
11604 /* If we are doing an equality comparison of an AND of a bit equal
11605 to the sign bit, replace this with a LT or GE comparison of
11606 the underlying value. */
11607 if (equality_comparison_p
11609 && CONST_INT_P (XEXP (op0
, 1))
11610 && mode_width
<= HOST_BITS_PER_WIDE_INT
11611 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
11612 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
11614 op0
= XEXP (op0
, 0);
11615 code
= (code
== EQ
? GE
: LT
);
11619 /* If this AND operation is really a ZERO_EXTEND from a narrower
11620 mode, the constant fits within that mode, and this is either an
11621 equality or unsigned comparison, try to do this comparison in
11626 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11627 -> (ne:DI (reg:SI 4) (const_int 0))
11629 unless TRULY_NOOP_TRUNCATION allows it or the register is
11630 known to hold a value of the required mode the
11631 transformation is invalid. */
11632 if ((equality_comparison_p
|| unsigned_comparison_p
)
11633 && CONST_INT_P (XEXP (op0
, 1))
11634 && (i
= exact_log2 ((UINTVAL (XEXP (op0
, 1))
11635 & GET_MODE_MASK (mode
))
11637 && const_op
>> i
== 0
11638 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
11639 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode
, GET_MODE (op0
))
11640 || (REG_P (XEXP (op0
, 0))
11641 && reg_truncated_to_mode (tmode
, XEXP (op0
, 0)))))
11643 op0
= gen_lowpart (tmode
, XEXP (op0
, 0));
11647 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11648 fits in both M1 and M2 and the SUBREG is either paradoxical
11649 or represents the low part, permute the SUBREG and the AND
11651 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
)
11653 unsigned HOST_WIDE_INT c1
;
11654 tmode
= GET_MODE (SUBREG_REG (XEXP (op0
, 0)));
11655 /* Require an integral mode, to avoid creating something like
11657 if (SCALAR_INT_MODE_P (tmode
)
11658 /* It is unsafe to commute the AND into the SUBREG if the
11659 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11660 not defined. As originally written the upper bits
11661 have a defined value due to the AND operation.
11662 However, if we commute the AND inside the SUBREG then
11663 they no longer have defined values and the meaning of
11664 the code has been changed. */
11666 #ifdef WORD_REGISTER_OPERATIONS
11667 || (mode_width
> GET_MODE_PRECISION (tmode
)
11668 && mode_width
<= BITS_PER_WORD
)
11670 || (mode_width
<= GET_MODE_PRECISION (tmode
)
11671 && subreg_lowpart_p (XEXP (op0
, 0))))
11672 && CONST_INT_P (XEXP (op0
, 1))
11673 && mode_width
<= HOST_BITS_PER_WIDE_INT
11674 && HWI_COMPUTABLE_MODE_P (tmode
)
11675 && ((c1
= INTVAL (XEXP (op0
, 1))) & ~mask
) == 0
11676 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
11678 && c1
!= GET_MODE_MASK (tmode
))
11680 op0
= simplify_gen_binary (AND
, tmode
,
11681 SUBREG_REG (XEXP (op0
, 0)),
11682 gen_int_mode (c1
, tmode
));
11683 op0
= gen_lowpart (mode
, op0
);
11688 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11689 if (const_op
== 0 && equality_comparison_p
11690 && XEXP (op0
, 1) == const1_rtx
11691 && GET_CODE (XEXP (op0
, 0)) == NOT
)
11693 op0
= simplify_and_const_int (NULL_RTX
, mode
,
11694 XEXP (XEXP (op0
, 0), 0), 1);
11695 code
= (code
== NE
? EQ
: NE
);
11699 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11700 (eq (and (lshiftrt X) 1) 0).
11701 Also handle the case where (not X) is expressed using xor. */
11702 if (const_op
== 0 && equality_comparison_p
11703 && XEXP (op0
, 1) == const1_rtx
11704 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
11706 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
11707 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
11709 if (GET_CODE (shift_op
) == NOT
11710 || (GET_CODE (shift_op
) == XOR
11711 && CONST_INT_P (XEXP (shift_op
, 1))
11712 && CONST_INT_P (shift_count
)
11713 && HWI_COMPUTABLE_MODE_P (mode
)
11714 && (UINTVAL (XEXP (shift_op
, 1))
11715 == (unsigned HOST_WIDE_INT
) 1
11716 << INTVAL (shift_count
))))
11719 = gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
);
11720 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
11721 code
= (code
== NE
? EQ
: NE
);
11728 /* If we have (compare (ashift FOO N) (const_int C)) and
11729 the high order N bits of FOO (N+1 if an inequality comparison)
11730 are known to be zero, we can do this by comparing FOO with C
11731 shifted right N bits so long as the low-order N bits of C are
11733 if (CONST_INT_P (XEXP (op0
, 1))
11734 && INTVAL (XEXP (op0
, 1)) >= 0
11735 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
11736 < HOST_BITS_PER_WIDE_INT
)
11737 && (((unsigned HOST_WIDE_INT
) const_op
11738 & (((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1)))
11740 && mode_width
<= HOST_BITS_PER_WIDE_INT
11741 && (nonzero_bits (XEXP (op0
, 0), mode
)
11742 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
11743 + ! equality_comparison_p
))) == 0)
11745 /* We must perform a logical shift, not an arithmetic one,
11746 as we want the top N bits of C to be zero. */
11747 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
11749 temp
>>= INTVAL (XEXP (op0
, 1));
11750 op1
= gen_int_mode (temp
, mode
);
11751 op0
= XEXP (op0
, 0);
11755 /* If we are doing a sign bit comparison, it means we are testing
11756 a particular bit. Convert it to the appropriate AND. */
11757 if (sign_bit_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
11758 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
11760 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
11761 ((unsigned HOST_WIDE_INT
) 1
11763 - INTVAL (XEXP (op0
, 1)))));
11764 code
= (code
== LT
? NE
: EQ
);
11768 /* If this an equality comparison with zero and we are shifting
11769 the low bit to the sign bit, we can convert this to an AND of the
11771 if (const_op
== 0 && equality_comparison_p
11772 && CONST_INT_P (XEXP (op0
, 1))
11773 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
11775 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0), 1);
11781 /* If this is an equality comparison with zero, we can do this
11782 as a logical shift, which might be much simpler. */
11783 if (equality_comparison_p
&& const_op
== 0
11784 && CONST_INT_P (XEXP (op0
, 1)))
11786 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
11788 INTVAL (XEXP (op0
, 1)));
11792 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11793 do the comparison in a narrower mode. */
11794 if (! unsigned_comparison_p
11795 && CONST_INT_P (XEXP (op0
, 1))
11796 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11797 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11798 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
11799 MODE_INT
, 1)) != BLKmode
11800 && (((unsigned HOST_WIDE_INT
) const_op
11801 + (GET_MODE_MASK (tmode
) >> 1) + 1)
11802 <= GET_MODE_MASK (tmode
)))
11804 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
11808 /* Likewise if OP0 is a PLUS of a sign extension with a
11809 constant, which is usually represented with the PLUS
11810 between the shifts. */
11811 if (! unsigned_comparison_p
11812 && CONST_INT_P (XEXP (op0
, 1))
11813 && GET_CODE (XEXP (op0
, 0)) == PLUS
11814 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11815 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
11816 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
11817 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
11818 MODE_INT
, 1)) != BLKmode
11819 && (((unsigned HOST_WIDE_INT
) const_op
11820 + (GET_MODE_MASK (tmode
) >> 1) + 1)
11821 <= GET_MODE_MASK (tmode
)))
11823 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
11824 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
11825 rtx new_const
= simplify_gen_binary (ASHIFTRT
, GET_MODE (op0
),
11826 add_const
, XEXP (op0
, 1));
11828 op0
= simplify_gen_binary (PLUS
, tmode
,
11829 gen_lowpart (tmode
, inner
),
11834 /* ... fall through ... */
11836 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11837 the low order N bits of FOO are known to be zero, we can do this
11838 by comparing FOO with C shifted left N bits so long as no
11839 overflow occurs. Even if the low order N bits of FOO aren't known
11840 to be zero, if the comparison is >= or < we can use the same
11841 optimization and for > or <= by setting all the low
11842 order N bits in the comparison constant. */
11843 if (CONST_INT_P (XEXP (op0
, 1))
11844 && INTVAL (XEXP (op0
, 1)) > 0
11845 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11846 && mode_width
<= HOST_BITS_PER_WIDE_INT
11847 && (((unsigned HOST_WIDE_INT
) const_op
11848 + (GET_CODE (op0
) != LSHIFTRT
11849 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
11852 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
11854 unsigned HOST_WIDE_INT low_bits
11855 = (nonzero_bits (XEXP (op0
, 0), mode
)
11856 & (((unsigned HOST_WIDE_INT
) 1
11857 << INTVAL (XEXP (op0
, 1))) - 1));
11858 if (low_bits
== 0 || !equality_comparison_p
)
11860 /* If the shift was logical, then we must make the condition
11862 if (GET_CODE (op0
) == LSHIFTRT
)
11863 code
= unsigned_condition (code
);
11865 const_op
<<= INTVAL (XEXP (op0
, 1));
11867 && (code
== GT
|| code
== GTU
11868 || code
== LE
|| code
== LEU
))
11870 |= (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1);
11871 op1
= GEN_INT (const_op
);
11872 op0
= XEXP (op0
, 0);
11877 /* If we are using this shift to extract just the sign bit, we
11878 can replace this with an LT or GE comparison. */
11880 && (equality_comparison_p
|| sign_bit_comparison_p
)
11881 && CONST_INT_P (XEXP (op0
, 1))
11882 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
11884 op0
= XEXP (op0
, 0);
11885 code
= (code
== NE
|| code
== GT
? LT
: GE
);
11897 /* Now make any compound operations involved in this comparison. Then,
11898 check for an outmost SUBREG on OP0 that is not doing anything or is
11899 paradoxical. The latter transformation must only be performed when
11900 it is known that the "extra" bits will be the same in op0 and op1 or
11901 that they don't matter. There are three cases to consider:
11903 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11904 care bits and we can assume they have any convenient value. So
11905 making the transformation is safe.
11907 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11908 In this case the upper bits of op0 are undefined. We should not make
11909 the simplification in that case as we do not know the contents of
11912 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11913 UNKNOWN. In that case we know those bits are zeros or ones. We must
11914 also be sure that they are the same as the upper bits of op1.
11916 We can never remove a SUBREG for a non-equality comparison because
11917 the sign bit is in a different place in the underlying object. */
11919 op0
= make_compound_operation (op0
, op1
== const0_rtx
? COMPARE
: SET
);
11920 op1
= make_compound_operation (op1
, SET
);
11922 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
11923 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
11924 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
11925 && (code
== NE
|| code
== EQ
))
11927 if (paradoxical_subreg_p (op0
))
11929 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11931 if (REG_P (SUBREG_REG (op0
)))
11933 op0
= SUBREG_REG (op0
);
11934 op1
= gen_lowpart (GET_MODE (op0
), op1
);
11937 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
)))
11938 <= HOST_BITS_PER_WIDE_INT
)
11939 && (nonzero_bits (SUBREG_REG (op0
),
11940 GET_MODE (SUBREG_REG (op0
)))
11941 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
11943 tem
= gen_lowpart (GET_MODE (SUBREG_REG (op0
)), op1
);
11945 if ((nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
11946 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
11947 op0
= SUBREG_REG (op0
), op1
= tem
;
11951 /* We now do the opposite procedure: Some machines don't have compare
11952 insns in all modes. If OP0's mode is an integer mode smaller than a
11953 word and we can't do a compare in that mode, see if there is a larger
11954 mode for which we can do the compare. There are a number of cases in
11955 which we can use the wider mode. */
11957 mode
= GET_MODE (op0
);
11958 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
11959 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
11960 && ! have_insn_for (COMPARE
, mode
))
11961 for (tmode
= GET_MODE_WIDER_MODE (mode
);
11962 (tmode
!= VOIDmode
&& HWI_COMPUTABLE_MODE_P (tmode
));
11963 tmode
= GET_MODE_WIDER_MODE (tmode
))
11964 if (have_insn_for (COMPARE
, tmode
))
11968 /* If this is a test for negative, we can make an explicit
11969 test of the sign bit. Test this first so we can use
11970 a paradoxical subreg to extend OP0. */
11972 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
11973 && HWI_COMPUTABLE_MODE_P (mode
))
11975 unsigned HOST_WIDE_INT sign
11976 = (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1);
11977 op0
= simplify_gen_binary (AND
, tmode
,
11978 gen_lowpart (tmode
, op0
),
11979 gen_int_mode (sign
, mode
));
11980 code
= (code
== LT
) ? NE
: EQ
;
11984 /* If the only nonzero bits in OP0 and OP1 are those in the
11985 narrower mode and this is an equality or unsigned comparison,
11986 we can use the wider mode. Similarly for sign-extended
11987 values, in which case it is true for all comparisons. */
11988 zero_extended
= ((code
== EQ
|| code
== NE
11989 || code
== GEU
|| code
== GTU
11990 || code
== LEU
|| code
== LTU
)
11991 && (nonzero_bits (op0
, tmode
)
11992 & ~GET_MODE_MASK (mode
)) == 0
11993 && ((CONST_INT_P (op1
)
11994 || (nonzero_bits (op1
, tmode
)
11995 & ~GET_MODE_MASK (mode
)) == 0)));
11998 || ((num_sign_bit_copies (op0
, tmode
)
11999 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12000 - GET_MODE_PRECISION (mode
)))
12001 && (num_sign_bit_copies (op1
, tmode
)
12002 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12003 - GET_MODE_PRECISION (mode
)))))
12005 /* If OP0 is an AND and we don't have an AND in MODE either,
12006 make a new AND in the proper mode. */
12007 if (GET_CODE (op0
) == AND
12008 && !have_insn_for (AND
, mode
))
12009 op0
= simplify_gen_binary (AND
, tmode
,
12010 gen_lowpart (tmode
,
12012 gen_lowpart (tmode
,
12018 op0
= simplify_gen_unary (ZERO_EXTEND
, tmode
, op0
, mode
);
12019 op1
= simplify_gen_unary (ZERO_EXTEND
, tmode
, op1
, mode
);
12023 op0
= simplify_gen_unary (SIGN_EXTEND
, tmode
, op0
, mode
);
12024 op1
= simplify_gen_unary (SIGN_EXTEND
, tmode
, op1
, mode
);
12031 /* We may have changed the comparison operands. Re-canonicalize. */
12032 if (swap_commutative_operands_p (op0
, op1
))
12034 tem
= op0
, op0
= op1
, op1
= tem
;
12035 code
= swap_condition (code
);
12038 /* If this machine only supports a subset of valid comparisons, see if we
12039 can convert an unsupported one into a supported one. */
12040 target_canonicalize_comparison (&code
, &op0
, &op1
, 0);
12048 /* Utility function for record_value_for_reg. Count number of
12053 enum rtx_code code
= GET_CODE (x
);
12057 if (GET_RTX_CLASS (code
) == RTX_BIN_ARITH
12058 || GET_RTX_CLASS (code
) == RTX_COMM_ARITH
)
12060 rtx x0
= XEXP (x
, 0);
12061 rtx x1
= XEXP (x
, 1);
12064 return 1 + 2 * count_rtxs (x0
);
12066 if ((GET_RTX_CLASS (GET_CODE (x1
)) == RTX_BIN_ARITH
12067 || GET_RTX_CLASS (GET_CODE (x1
)) == RTX_COMM_ARITH
)
12068 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12069 return 2 + 2 * count_rtxs (x0
)
12070 + count_rtxs (x
== XEXP (x1
, 0)
12071 ? XEXP (x1
, 1) : XEXP (x1
, 0));
12073 if ((GET_RTX_CLASS (GET_CODE (x0
)) == RTX_BIN_ARITH
12074 || GET_RTX_CLASS (GET_CODE (x0
)) == RTX_COMM_ARITH
)
12075 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12076 return 2 + 2 * count_rtxs (x1
)
12077 + count_rtxs (x
== XEXP (x0
, 0)
12078 ? XEXP (x0
, 1) : XEXP (x0
, 0));
12081 fmt
= GET_RTX_FORMAT (code
);
12082 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12084 ret
+= count_rtxs (XEXP (x
, i
));
12085 else if (fmt
[i
] == 'E')
12086 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12087 ret
+= count_rtxs (XVECEXP (x
, i
, j
));
12092 /* Utility function for following routine. Called when X is part of a value
12093 being stored into last_set_value. Sets last_set_table_tick
12094 for each register mentioned. Similar to mention_regs in cse.c */
12097 update_table_tick (rtx x
)
12099 enum rtx_code code
= GET_CODE (x
);
12100 const char *fmt
= GET_RTX_FORMAT (code
);
12105 unsigned int regno
= REGNO (x
);
12106 unsigned int endregno
= END_REGNO (x
);
12109 for (r
= regno
; r
< endregno
; r
++)
12111 reg_stat_type
*rsp
= ®_stat
[r
];
12112 rsp
->last_set_table_tick
= label_tick
;
12118 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12121 /* Check for identical subexpressions. If x contains
12122 identical subexpression we only have to traverse one of
12124 if (i
== 0 && ARITHMETIC_P (x
))
12126 /* Note that at this point x1 has already been
12128 rtx x0
= XEXP (x
, 0);
12129 rtx x1
= XEXP (x
, 1);
12131 /* If x0 and x1 are identical then there is no need to
12136 /* If x0 is identical to a subexpression of x1 then while
12137 processing x1, x0 has already been processed. Thus we
12138 are done with x. */
12139 if (ARITHMETIC_P (x1
)
12140 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12143 /* If x1 is identical to a subexpression of x0 then we
12144 still have to process the rest of x0. */
12145 if (ARITHMETIC_P (x0
)
12146 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12148 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
12153 update_table_tick (XEXP (x
, i
));
12155 else if (fmt
[i
] == 'E')
12156 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12157 update_table_tick (XVECEXP (x
, i
, j
));
12160 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12161 are saying that the register is clobbered and we no longer know its
12162 value. If INSN is zero, don't update reg_stat[].last_set; this is
12163 only permitted with VALUE also zero and is used to invalidate the
12167 record_value_for_reg (rtx reg
, rtx insn
, rtx value
)
12169 unsigned int regno
= REGNO (reg
);
12170 unsigned int endregno
= END_REGNO (reg
);
12172 reg_stat_type
*rsp
;
12174 /* If VALUE contains REG and we have a previous value for REG, substitute
12175 the previous value. */
12176 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
12180 /* Set things up so get_last_value is allowed to see anything set up to
12182 subst_low_luid
= DF_INSN_LUID (insn
);
12183 tem
= get_last_value (reg
);
12185 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12186 it isn't going to be useful and will take a lot of time to process,
12187 so just use the CLOBBER. */
12191 if (ARITHMETIC_P (tem
)
12192 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
12193 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
12194 tem
= XEXP (tem
, 0);
12195 else if (count_occurrences (value
, reg
, 1) >= 2)
12197 /* If there are two or more occurrences of REG in VALUE,
12198 prevent the value from growing too much. */
12199 if (count_rtxs (tem
) > MAX_LAST_VALUE_RTL
)
12200 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
12203 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
12207 /* For each register modified, show we don't know its value, that
12208 we don't know about its bitwise content, that its value has been
12209 updated, and that we don't know the location of the death of the
12211 for (i
= regno
; i
< endregno
; i
++)
12213 rsp
= ®_stat
[i
];
12216 rsp
->last_set
= insn
;
12218 rsp
->last_set_value
= 0;
12219 rsp
->last_set_mode
= VOIDmode
;
12220 rsp
->last_set_nonzero_bits
= 0;
12221 rsp
->last_set_sign_bit_copies
= 0;
12222 rsp
->last_death
= 0;
12223 rsp
->truncated_to_mode
= VOIDmode
;
12226 /* Mark registers that are being referenced in this value. */
12228 update_table_tick (value
);
12230 /* Now update the status of each register being set.
12231 If someone is using this register in this block, set this register
12232 to invalid since we will get confused between the two lives in this
12233 basic block. This makes using this register always invalid. In cse, we
12234 scan the table to invalidate all entries using this register, but this
12235 is too much work for us. */
12237 for (i
= regno
; i
< endregno
; i
++)
12239 rsp
= ®_stat
[i
];
12240 rsp
->last_set_label
= label_tick
;
12242 || (value
&& rsp
->last_set_table_tick
>= label_tick_ebb_start
))
12243 rsp
->last_set_invalid
= 1;
12245 rsp
->last_set_invalid
= 0;
12248 /* The value being assigned might refer to X (like in "x++;"). In that
12249 case, we must replace it with (clobber (const_int 0)) to prevent
12251 rsp
= ®_stat
[regno
];
12252 if (value
&& !get_last_value_validate (&value
, insn
, label_tick
, 0))
12254 value
= copy_rtx (value
);
12255 if (!get_last_value_validate (&value
, insn
, label_tick
, 1))
12259 /* For the main register being modified, update the value, the mode, the
12260 nonzero bits, and the number of sign bit copies. */
12262 rsp
->last_set_value
= value
;
12266 enum machine_mode mode
= GET_MODE (reg
);
12267 subst_low_luid
= DF_INSN_LUID (insn
);
12268 rsp
->last_set_mode
= mode
;
12269 if (GET_MODE_CLASS (mode
) == MODE_INT
12270 && HWI_COMPUTABLE_MODE_P (mode
))
12271 mode
= nonzero_bits_mode
;
12272 rsp
->last_set_nonzero_bits
= nonzero_bits (value
, mode
);
12273 rsp
->last_set_sign_bit_copies
12274 = num_sign_bit_copies (value
, GET_MODE (reg
));
12278 /* Called via note_stores from record_dead_and_set_regs to handle one
12279 SET or CLOBBER in an insn. DATA is the instruction in which the
12280 set is occurring. */
12283 record_dead_and_set_regs_1 (rtx dest
, const_rtx setter
, void *data
)
12285 rtx record_dead_insn
= (rtx
) data
;
12287 if (GET_CODE (dest
) == SUBREG
)
12288 dest
= SUBREG_REG (dest
);
12290 if (!record_dead_insn
)
12293 record_value_for_reg (dest
, NULL_RTX
, NULL_RTX
);
12299 /* If we are setting the whole register, we know its value. Otherwise
12300 show that we don't know the value. We can handle SUBREG in
12302 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
12303 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
12304 else if (GET_CODE (setter
) == SET
12305 && GET_CODE (SET_DEST (setter
)) == SUBREG
12306 && SUBREG_REG (SET_DEST (setter
)) == dest
12307 && GET_MODE_PRECISION (GET_MODE (dest
)) <= BITS_PER_WORD
12308 && subreg_lowpart_p (SET_DEST (setter
)))
12309 record_value_for_reg (dest
, record_dead_insn
,
12310 gen_lowpart (GET_MODE (dest
),
12311 SET_SRC (setter
)));
12313 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
12315 else if (MEM_P (dest
)
12316 /* Ignore pushes, they clobber nothing. */
12317 && ! push_operand (dest
, GET_MODE (dest
)))
12318 mem_last_set
= DF_INSN_LUID (record_dead_insn
);
12321 /* Update the records of when each REG was most recently set or killed
12322 for the things done by INSN. This is the last thing done in processing
12323 INSN in the combiner loop.
12325 We update reg_stat[], in particular fields last_set, last_set_value,
12326 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12327 last_death, and also the similar information mem_last_set (which insn
12328 most recently modified memory) and last_call_luid (which insn was the
12329 most recent subroutine call). */
12332 record_dead_and_set_regs (rtx insn
)
12337 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
12339 if (REG_NOTE_KIND (link
) == REG_DEAD
12340 && REG_P (XEXP (link
, 0)))
12342 unsigned int regno
= REGNO (XEXP (link
, 0));
12343 unsigned int endregno
= END_REGNO (XEXP (link
, 0));
12345 for (i
= regno
; i
< endregno
; i
++)
12347 reg_stat_type
*rsp
;
12349 rsp
= ®_stat
[i
];
12350 rsp
->last_death
= insn
;
12353 else if (REG_NOTE_KIND (link
) == REG_INC
)
12354 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
12359 hard_reg_set_iterator hrsi
;
12360 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
, 0, i
, hrsi
)
12362 reg_stat_type
*rsp
;
12364 rsp
= ®_stat
[i
];
12365 rsp
->last_set_invalid
= 1;
12366 rsp
->last_set
= insn
;
12367 rsp
->last_set_value
= 0;
12368 rsp
->last_set_mode
= VOIDmode
;
12369 rsp
->last_set_nonzero_bits
= 0;
12370 rsp
->last_set_sign_bit_copies
= 0;
12371 rsp
->last_death
= 0;
12372 rsp
->truncated_to_mode
= VOIDmode
;
12375 last_call_luid
= mem_last_set
= DF_INSN_LUID (insn
);
12377 /* We can't combine into a call pattern. Remember, though, that
12378 the return value register is set at this LUID. We could
12379 still replace a register with the return value from the
12380 wrong subroutine call! */
12381 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, NULL_RTX
);
12384 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
12387 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12388 register present in the SUBREG, so for each such SUBREG go back and
12389 adjust nonzero and sign bit information of the registers that are
12390 known to have some zero/sign bits set.
12392 This is needed because when combine blows the SUBREGs away, the
12393 information on zero/sign bits is lost and further combines can be
12394 missed because of that. */
12397 record_promoted_value (rtx insn
, rtx subreg
)
12399 struct insn_link
*links
;
12401 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
12402 enum machine_mode mode
= GET_MODE (subreg
);
12404 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
12407 for (links
= LOG_LINKS (insn
); links
;)
12409 reg_stat_type
*rsp
;
12411 insn
= links
->insn
;
12412 set
= single_set (insn
);
12414 if (! set
|| !REG_P (SET_DEST (set
))
12415 || REGNO (SET_DEST (set
)) != regno
12416 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
12418 links
= links
->next
;
12422 rsp
= ®_stat
[regno
];
12423 if (rsp
->last_set
== insn
)
12425 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
) > 0)
12426 rsp
->last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
12429 if (REG_P (SET_SRC (set
)))
12431 regno
= REGNO (SET_SRC (set
));
12432 links
= LOG_LINKS (insn
);
12439 /* Check if X, a register, is known to contain a value already
12440 truncated to MODE. In this case we can use a subreg to refer to
12441 the truncated value even though in the generic case we would need
12442 an explicit truncation. */
12445 reg_truncated_to_mode (enum machine_mode mode
, const_rtx x
)
12447 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
12448 enum machine_mode truncated
= rsp
->truncated_to_mode
;
12451 || rsp
->truncation_label
< label_tick_ebb_start
)
12453 if (GET_MODE_SIZE (truncated
) <= GET_MODE_SIZE (mode
))
12455 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, truncated
))
12460 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12461 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12462 might be able to turn a truncate into a subreg using this information.
12463 Return -1 if traversing *P is complete or 0 otherwise. */
12466 record_truncated_value (rtx
*p
, void *data ATTRIBUTE_UNUSED
)
12469 enum machine_mode truncated_mode
;
12470 reg_stat_type
*rsp
;
12472 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
12474 enum machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
12475 truncated_mode
= GET_MODE (x
);
12477 if (GET_MODE_SIZE (original_mode
) <= GET_MODE_SIZE (truncated_mode
))
12480 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode
, original_mode
))
12483 x
= SUBREG_REG (x
);
12485 /* ??? For hard-regs we now record everything. We might be able to
12486 optimize this using last_set_mode. */
12487 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
12488 truncated_mode
= GET_MODE (x
);
12492 rsp
= ®_stat
[REGNO (x
)];
12493 if (rsp
->truncated_to_mode
== 0
12494 || rsp
->truncation_label
< label_tick_ebb_start
12495 || (GET_MODE_SIZE (truncated_mode
)
12496 < GET_MODE_SIZE (rsp
->truncated_to_mode
)))
12498 rsp
->truncated_to_mode
= truncated_mode
;
12499 rsp
->truncation_label
= label_tick
;
12505 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12506 the modes they are used in. This can help truning TRUNCATEs into
12510 record_truncated_values (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
12512 for_each_rtx (x
, record_truncated_value
, NULL
);
12515 /* Scan X for promoted SUBREGs. For each one found,
12516 note what it implies to the registers used in it. */
12519 check_promoted_subreg (rtx insn
, rtx x
)
12521 if (GET_CODE (x
) == SUBREG
12522 && SUBREG_PROMOTED_VAR_P (x
)
12523 && REG_P (SUBREG_REG (x
)))
12524 record_promoted_value (insn
, x
);
12527 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
12530 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
12534 check_promoted_subreg (insn
, XEXP (x
, i
));
12538 if (XVEC (x
, i
) != 0)
12539 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12540 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
12546 /* Verify that all the registers and memory references mentioned in *LOC are
12547 still valid. *LOC was part of a value set in INSN when label_tick was
12548 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12549 the invalid references with (clobber (const_int 0)) and return 1. This
12550 replacement is useful because we often can get useful information about
12551 the form of a value (e.g., if it was produced by a shift that always
12552 produces -1 or 0) even though we don't know exactly what registers it
12553 was produced from. */
12556 get_last_value_validate (rtx
*loc
, rtx insn
, int tick
, int replace
)
12559 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
12560 int len
= GET_RTX_LENGTH (GET_CODE (x
));
12565 unsigned int regno
= REGNO (x
);
12566 unsigned int endregno
= END_REGNO (x
);
12569 for (j
= regno
; j
< endregno
; j
++)
12571 reg_stat_type
*rsp
= ®_stat
[j
];
12572 if (rsp
->last_set_invalid
12573 /* If this is a pseudo-register that was only set once and not
12574 live at the beginning of the function, it is always valid. */
12575 || (! (regno
>= FIRST_PSEUDO_REGISTER
12576 && REG_N_SETS (regno
) == 1
12577 && (!REGNO_REG_SET_P
12578 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
12580 && rsp
->last_set_label
> tick
))
12583 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
12590 /* If this is a memory reference, make sure that there were no stores after
12591 it that might have clobbered the value. We don't have alias info, so we
12592 assume any store invalidates it. Moreover, we only have local UIDs, so
12593 we also assume that there were stores in the intervening basic blocks. */
12594 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
12595 && (tick
!= label_tick
|| DF_INSN_LUID (insn
) <= mem_last_set
))
12598 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
12602 for (i
= 0; i
< len
; i
++)
12606 /* Check for identical subexpressions. If x contains
12607 identical subexpression we only have to traverse one of
12609 if (i
== 1 && ARITHMETIC_P (x
))
12611 /* Note that at this point x0 has already been checked
12612 and found valid. */
12613 rtx x0
= XEXP (x
, 0);
12614 rtx x1
= XEXP (x
, 1);
12616 /* If x0 and x1 are identical then x is also valid. */
12620 /* If x1 is identical to a subexpression of x0 then
12621 while checking x0, x1 has already been checked. Thus
12622 it is valid and so as x. */
12623 if (ARITHMETIC_P (x0
)
12624 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12627 /* If x0 is identical to a subexpression of x1 then x is
12628 valid iff the rest of x1 is valid. */
12629 if (ARITHMETIC_P (x1
)
12630 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12632 get_last_value_validate (&XEXP (x1
,
12633 x0
== XEXP (x1
, 0) ? 1 : 0),
12634 insn
, tick
, replace
);
12637 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
12641 else if (fmt
[i
] == 'E')
12642 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12643 if (get_last_value_validate (&XVECEXP (x
, i
, j
),
12644 insn
, tick
, replace
) == 0)
12648 /* If we haven't found a reason for it to be invalid, it is valid. */
12652 /* Get the last value assigned to X, if known. Some registers
12653 in the value may be replaced with (clobber (const_int 0)) if their value
12654 is known longer known reliably. */
12657 get_last_value (const_rtx x
)
12659 unsigned int regno
;
12661 reg_stat_type
*rsp
;
12663 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12664 then convert it to the desired mode. If this is a paradoxical SUBREG,
12665 we cannot predict what values the "extra" bits might have. */
12666 if (GET_CODE (x
) == SUBREG
12667 && subreg_lowpart_p (x
)
12668 && !paradoxical_subreg_p (x
)
12669 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
12670 return gen_lowpart (GET_MODE (x
), value
);
12676 rsp
= ®_stat
[regno
];
12677 value
= rsp
->last_set_value
;
12679 /* If we don't have a value, or if it isn't for this basic block and
12680 it's either a hard register, set more than once, or it's a live
12681 at the beginning of the function, return 0.
12683 Because if it's not live at the beginning of the function then the reg
12684 is always set before being used (is never used without being set).
12685 And, if it's set only once, and it's always set before use, then all
12686 uses must have the same last value, even if it's not from this basic
12690 || (rsp
->last_set_label
< label_tick_ebb_start
12691 && (regno
< FIRST_PSEUDO_REGISTER
12692 || REG_N_SETS (regno
) != 1
12694 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), regno
))))
12697 /* If the value was set in a later insn than the ones we are processing,
12698 we can't use it even if the register was only set once. */
12699 if (rsp
->last_set_label
== label_tick
12700 && DF_INSN_LUID (rsp
->last_set
) >= subst_low_luid
)
12703 /* If the value has all its registers valid, return it. */
12704 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 0))
12707 /* Otherwise, make a copy and replace any invalid register with
12708 (clobber (const_int 0)). If that fails for some reason, return 0. */
12710 value
= copy_rtx (value
);
12711 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 1))
12717 /* Return nonzero if expression X refers to a REG or to memory
12718 that is set in an instruction more recent than FROM_LUID. */
12721 use_crosses_set_p (const_rtx x
, int from_luid
)
12725 enum rtx_code code
= GET_CODE (x
);
12729 unsigned int regno
= REGNO (x
);
12730 unsigned endreg
= END_REGNO (x
);
12732 #ifdef PUSH_ROUNDING
12733 /* Don't allow uses of the stack pointer to be moved,
12734 because we don't know whether the move crosses a push insn. */
12735 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
12738 for (; regno
< endreg
; regno
++)
12740 reg_stat_type
*rsp
= ®_stat
[regno
];
12742 && rsp
->last_set_label
== label_tick
12743 && DF_INSN_LUID (rsp
->last_set
) > from_luid
)
12749 if (code
== MEM
&& mem_last_set
> from_luid
)
12752 fmt
= GET_RTX_FORMAT (code
);
12754 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12759 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
12760 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_luid
))
12763 else if (fmt
[i
] == 'e'
12764 && use_crosses_set_p (XEXP (x
, i
), from_luid
))
12770 /* Define three variables used for communication between the following
12773 static unsigned int reg_dead_regno
, reg_dead_endregno
;
12774 static int reg_dead_flag
;
12776 /* Function called via note_stores from reg_dead_at_p.
12778 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12779 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12782 reg_dead_at_p_1 (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
12784 unsigned int regno
, endregno
;
12789 regno
= REGNO (dest
);
12790 endregno
= END_REGNO (dest
);
12791 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
12792 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
12795 /* Return nonzero if REG is known to be dead at INSN.
12797 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12798 referencing REG, it is dead. If we hit a SET referencing REG, it is
12799 live. Otherwise, see if it is live or dead at the start of the basic
12800 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12801 must be assumed to be always live. */
12804 reg_dead_at_p (rtx reg
, rtx insn
)
12809 /* Set variables for reg_dead_at_p_1. */
12810 reg_dead_regno
= REGNO (reg
);
12811 reg_dead_endregno
= END_REGNO (reg
);
12815 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12816 we allow the machine description to decide whether use-and-clobber
12817 patterns are OK. */
12818 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
12820 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
12821 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
12825 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12826 beginning of basic block. */
12827 block
= BLOCK_FOR_INSN (insn
);
12832 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
12834 return reg_dead_flag
== 1 ? 1 : 0;
12836 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
12840 if (insn
== BB_HEAD (block
))
12843 insn
= PREV_INSN (insn
);
12846 /* Look at live-in sets for the basic block that we were in. */
12847 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
12848 if (REGNO_REG_SET_P (df_get_live_in (block
), i
))
12854 /* Note hard registers in X that are used. */
12857 mark_used_regs_combine (rtx x
)
12859 RTX_CODE code
= GET_CODE (x
);
12860 unsigned int regno
;
12871 case ADDR_DIFF_VEC
:
12874 /* CC0 must die in the insn after it is set, so we don't need to take
12875 special note of it here. */
12881 /* If we are clobbering a MEM, mark any hard registers inside the
12882 address as used. */
12883 if (MEM_P (XEXP (x
, 0)))
12884 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
12889 /* A hard reg in a wide mode may really be multiple registers.
12890 If so, mark all of them just like the first. */
12891 if (regno
< FIRST_PSEUDO_REGISTER
)
12893 /* None of this applies to the stack, frame or arg pointers. */
12894 if (regno
== STACK_POINTER_REGNUM
12895 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12896 || regno
== HARD_FRAME_POINTER_REGNUM
12898 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12899 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
12901 || regno
== FRAME_POINTER_REGNUM
)
12904 add_to_hard_reg_set (&newpat_used_regs
, GET_MODE (x
), regno
);
12910 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12912 rtx testreg
= SET_DEST (x
);
12914 while (GET_CODE (testreg
) == SUBREG
12915 || GET_CODE (testreg
) == ZERO_EXTRACT
12916 || GET_CODE (testreg
) == STRICT_LOW_PART
)
12917 testreg
= XEXP (testreg
, 0);
12919 if (MEM_P (testreg
))
12920 mark_used_regs_combine (XEXP (testreg
, 0));
12922 mark_used_regs_combine (SET_SRC (x
));
12930 /* Recursively scan the operands of this expression. */
12933 const char *fmt
= GET_RTX_FORMAT (code
);
12935 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12938 mark_used_regs_combine (XEXP (x
, i
));
12939 else if (fmt
[i
] == 'E')
12943 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12944 mark_used_regs_combine (XVECEXP (x
, i
, j
));
12950 /* Remove register number REGNO from the dead registers list of INSN.
12952 Return the note used to record the death, if there was one. */
12955 remove_death (unsigned int regno
, rtx insn
)
12957 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
12960 remove_note (insn
, note
);
12965 /* For each register (hardware or pseudo) used within expression X, if its
12966 death is in an instruction with luid between FROM_LUID (inclusive) and
12967 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12968 list headed by PNOTES.
12970 That said, don't move registers killed by maybe_kill_insn.
12972 This is done when X is being merged by combination into TO_INSN. These
12973 notes will then be distributed as needed. */
12976 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_luid
, rtx to_insn
,
12981 enum rtx_code code
= GET_CODE (x
);
12985 unsigned int regno
= REGNO (x
);
12986 rtx where_dead
= reg_stat
[regno
].last_death
;
12988 /* Don't move the register if it gets killed in between from and to. */
12989 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
12990 && ! reg_referenced_p (x
, maybe_kill_insn
))
12994 && BLOCK_FOR_INSN (where_dead
) == BLOCK_FOR_INSN (to_insn
)
12995 && DF_INSN_LUID (where_dead
) >= from_luid
12996 && DF_INSN_LUID (where_dead
) < DF_INSN_LUID (to_insn
))
12998 rtx note
= remove_death (regno
, where_dead
);
13000 /* It is possible for the call above to return 0. This can occur
13001 when last_death points to I2 or I1 that we combined with.
13002 In that case make a new note.
13004 We must also check for the case where X is a hard register
13005 and NOTE is a death note for a range of hard registers
13006 including X. In that case, we must put REG_DEAD notes for
13007 the remaining registers in place of NOTE. */
13009 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
13010 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13011 > GET_MODE_SIZE (GET_MODE (x
))))
13013 unsigned int deadregno
= REGNO (XEXP (note
, 0));
13014 unsigned int deadend
= END_HARD_REGNO (XEXP (note
, 0));
13015 unsigned int ourend
= END_HARD_REGNO (x
);
13018 for (i
= deadregno
; i
< deadend
; i
++)
13019 if (i
< regno
|| i
>= ourend
)
13020 add_reg_note (where_dead
, REG_DEAD
, regno_reg_rtx
[i
]);
13023 /* If we didn't find any note, or if we found a REG_DEAD note that
13024 covers only part of the given reg, and we have a multi-reg hard
13025 register, then to be safe we must check for REG_DEAD notes
13026 for each register other than the first. They could have
13027 their own REG_DEAD notes lying around. */
13028 else if ((note
== 0
13030 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13031 < GET_MODE_SIZE (GET_MODE (x
)))))
13032 && regno
< FIRST_PSEUDO_REGISTER
13033 && hard_regno_nregs
[regno
][GET_MODE (x
)] > 1)
13035 unsigned int ourend
= END_HARD_REGNO (x
);
13036 unsigned int i
, offset
;
13040 offset
= hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))];
13044 for (i
= regno
+ offset
; i
< ourend
; i
++)
13045 move_deaths (regno_reg_rtx
[i
],
13046 maybe_kill_insn
, from_luid
, to_insn
, &oldnotes
);
13049 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
13051 XEXP (note
, 1) = *pnotes
;
13055 *pnotes
= alloc_reg_note (REG_DEAD
, x
, *pnotes
);
13061 else if (GET_CODE (x
) == SET
)
13063 rtx dest
= SET_DEST (x
);
13065 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13067 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13068 that accesses one word of a multi-word item, some
13069 piece of everything register in the expression is used by
13070 this insn, so remove any old death. */
13071 /* ??? So why do we test for equality of the sizes? */
13073 if (GET_CODE (dest
) == ZERO_EXTRACT
13074 || GET_CODE (dest
) == STRICT_LOW_PART
13075 || (GET_CODE (dest
) == SUBREG
13076 && (((GET_MODE_SIZE (GET_MODE (dest
))
13077 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
13078 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
13079 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
13081 move_deaths (dest
, maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13085 /* If this is some other SUBREG, we know it replaces the entire
13086 value, so use that as the destination. */
13087 if (GET_CODE (dest
) == SUBREG
)
13088 dest
= SUBREG_REG (dest
);
13090 /* If this is a MEM, adjust deaths of anything used in the address.
13091 For a REG (the only other possibility), the entire value is
13092 being replaced so the old value is not used in this insn. */
13095 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_luid
,
13100 else if (GET_CODE (x
) == CLOBBER
)
13103 len
= GET_RTX_LENGTH (code
);
13104 fmt
= GET_RTX_FORMAT (code
);
13106 for (i
= 0; i
< len
; i
++)
13111 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
13112 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_luid
,
13115 else if (fmt
[i
] == 'e')
13116 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13120 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13121 pattern of an insn. X must be a REG. */
13124 reg_bitfield_target_p (rtx x
, rtx body
)
13128 if (GET_CODE (body
) == SET
)
13130 rtx dest
= SET_DEST (body
);
13132 unsigned int regno
, tregno
, endregno
, endtregno
;
13134 if (GET_CODE (dest
) == ZERO_EXTRACT
)
13135 target
= XEXP (dest
, 0);
13136 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
13137 target
= SUBREG_REG (XEXP (dest
, 0));
13141 if (GET_CODE (target
) == SUBREG
)
13142 target
= SUBREG_REG (target
);
13144 if (!REG_P (target
))
13147 tregno
= REGNO (target
), regno
= REGNO (x
);
13148 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
13149 return target
== x
;
13151 endtregno
= end_hard_regno (GET_MODE (target
), tregno
);
13152 endregno
= end_hard_regno (GET_MODE (x
), regno
);
13154 return endregno
> tregno
&& regno
< endtregno
;
13157 else if (GET_CODE (body
) == PARALLEL
)
13158 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
13159 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
13165 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13166 as appropriate. I3 and I2 are the insns resulting from the combination
13167 insns including FROM (I2 may be zero).
13169 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13170 not need REG_DEAD notes because they are being substituted for. This
13171 saves searching in the most common cases.
13173 Each note in the list is either ignored or placed on some insns, depending
13174 on the type of note. */
13177 distribute_notes (rtx notes
, rtx from_insn
, rtx i3
, rtx i2
, rtx elim_i2
,
13178 rtx elim_i1
, rtx elim_i0
)
13180 rtx note
, next_note
;
13183 for (note
= notes
; note
; note
= next_note
)
13185 rtx place
= 0, place2
= 0;
13187 next_note
= XEXP (note
, 1);
13188 switch (REG_NOTE_KIND (note
))
13192 /* Doesn't matter much where we put this, as long as it's somewhere.
13193 It is preferable to keep these notes on branches, which is most
13194 likely to be i3. */
13198 case REG_NON_LOCAL_GOTO
:
13203 gcc_assert (i2
&& JUMP_P (i2
));
13208 case REG_EH_REGION
:
13209 /* These notes must remain with the call or trapping instruction. */
13212 else if (i2
&& CALL_P (i2
))
13216 gcc_assert (cfun
->can_throw_non_call_exceptions
);
13217 if (may_trap_p (i3
))
13219 else if (i2
&& may_trap_p (i2
))
13221 /* ??? Otherwise assume we've combined things such that we
13222 can now prove that the instructions can't trap. Drop the
13223 note in this case. */
13227 case REG_ARGS_SIZE
:
13228 /* ??? How to distribute between i3-i1. Assume i3 contains the
13229 entire adjustment. Assert i3 contains at least some adjust. */
13230 if (!noop_move_p (i3
))
13232 int old_size
, args_size
= INTVAL (XEXP (note
, 0));
13233 /* fixup_args_size_notes looks at REG_NORETURN note,
13234 so ensure the note is placed there first. */
13238 for (np
= &next_note
; *np
; np
= &XEXP (*np
, 1))
13239 if (REG_NOTE_KIND (*np
) == REG_NORETURN
)
13243 XEXP (n
, 1) = REG_NOTES (i3
);
13244 REG_NOTES (i3
) = n
;
13248 old_size
= fixup_args_size_notes (PREV_INSN (i3
), i3
, args_size
);
13249 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13250 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13251 gcc_assert (old_size
!= args_size
13253 && !ACCUMULATE_OUTGOING_ARGS
13254 && find_reg_note (i3
, REG_NORETURN
, NULL_RTX
)));
13261 /* These notes must remain with the call. It should not be
13262 possible for both I2 and I3 to be a call. */
13267 gcc_assert (i2
&& CALL_P (i2
));
13273 /* Any clobbers for i3 may still exist, and so we must process
13274 REG_UNUSED notes from that insn.
13276 Any clobbers from i2 or i1 can only exist if they were added by
13277 recog_for_combine. In that case, recog_for_combine created the
13278 necessary REG_UNUSED notes. Trying to keep any original
13279 REG_UNUSED notes from these insns can cause incorrect output
13280 if it is for the same register as the original i3 dest.
13281 In that case, we will notice that the register is set in i3,
13282 and then add a REG_UNUSED note for the destination of i3, which
13283 is wrong. However, it is possible to have REG_UNUSED notes from
13284 i2 or i1 for register which were both used and clobbered, so
13285 we keep notes from i2 or i1 if they will turn into REG_DEAD
13288 /* If this register is set or clobbered in I3, put the note there
13289 unless there is one already. */
13290 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
13292 if (from_insn
!= i3
)
13295 if (! (REG_P (XEXP (note
, 0))
13296 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
13297 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
13300 /* Otherwise, if this register is used by I3, then this register
13301 now dies here, so we must put a REG_DEAD note here unless there
13303 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
13304 && ! (REG_P (XEXP (note
, 0))
13305 ? find_regno_note (i3
, REG_DEAD
,
13306 REGNO (XEXP (note
, 0)))
13307 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
13309 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
13317 /* These notes say something about results of an insn. We can
13318 only support them if they used to be on I3 in which case they
13319 remain on I3. Otherwise they are ignored.
13321 If the note refers to an expression that is not a constant, we
13322 must also ignore the note since we cannot tell whether the
13323 equivalence is still true. It might be possible to do
13324 slightly better than this (we only have a problem if I2DEST
13325 or I1DEST is present in the expression), but it doesn't
13326 seem worth the trouble. */
13328 if (from_insn
== i3
13329 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
13334 /* These notes say something about how a register is used. They must
13335 be present on any use of the register in I2 or I3. */
13336 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
13339 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
13348 case REG_LABEL_TARGET
:
13349 case REG_LABEL_OPERAND
:
13350 /* This can show up in several ways -- either directly in the
13351 pattern, or hidden off in the constant pool with (or without?)
13352 a REG_EQUAL note. */
13353 /* ??? Ignore the without-reg_equal-note problem for now. */
13354 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
13355 || ((tem
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
13356 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
13357 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0)))
13361 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
13362 || ((tem
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
13363 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
13364 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0))))
13372 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13373 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13375 if (place
&& JUMP_P (place
)
13376 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
13377 && (JUMP_LABEL (place
) == NULL
13378 || JUMP_LABEL (place
) == XEXP (note
, 0)))
13380 rtx label
= JUMP_LABEL (place
);
13383 JUMP_LABEL (place
) = XEXP (note
, 0);
13384 else if (LABEL_P (label
))
13385 LABEL_NUSES (label
)--;
13388 if (place2
&& JUMP_P (place2
)
13389 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
13390 && (JUMP_LABEL (place2
) == NULL
13391 || JUMP_LABEL (place2
) == XEXP (note
, 0)))
13393 rtx label
= JUMP_LABEL (place2
);
13396 JUMP_LABEL (place2
) = XEXP (note
, 0);
13397 else if (LABEL_P (label
))
13398 LABEL_NUSES (label
)--;
13404 /* This note says something about the value of a register prior
13405 to the execution of an insn. It is too much trouble to see
13406 if the note is still correct in all situations. It is better
13407 to simply delete it. */
13411 /* If we replaced the right hand side of FROM_INSN with a
13412 REG_EQUAL note, the original use of the dying register
13413 will not have been combined into I3 and I2. In such cases,
13414 FROM_INSN is guaranteed to be the first of the combined
13415 instructions, so we simply need to search back before
13416 FROM_INSN for the previous use or set of this register,
13417 then alter the notes there appropriately.
13419 If the register is used as an input in I3, it dies there.
13420 Similarly for I2, if it is nonzero and adjacent to I3.
13422 If the register is not used as an input in either I3 or I2
13423 and it is not one of the registers we were supposed to eliminate,
13424 there are two possibilities. We might have a non-adjacent I2
13425 or we might have somehow eliminated an additional register
13426 from a computation. For example, we might have had A & B where
13427 we discover that B will always be zero. In this case we will
13428 eliminate the reference to A.
13430 In both cases, we must search to see if we can find a previous
13431 use of A and put the death note there. */
13434 && from_insn
== i2mod
13435 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
13440 && CALL_P (from_insn
)
13441 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
13443 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
13445 else if (i2
!= 0 && next_nonnote_nondebug_insn (i2
) == i3
13446 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
13448 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
13450 && reg_overlap_mentioned_p (XEXP (note
, 0),
13452 || rtx_equal_p (XEXP (note
, 0), elim_i1
)
13453 || rtx_equal_p (XEXP (note
, 0), elim_i0
))
13460 basic_block bb
= this_basic_block
;
13462 for (tem
= PREV_INSN (tem
); place
== 0; tem
= PREV_INSN (tem
))
13464 if (!NONDEBUG_INSN_P (tem
))
13466 if (tem
== BB_HEAD (bb
))
13471 /* If the register is being set at TEM, see if that is all
13472 TEM is doing. If so, delete TEM. Otherwise, make this
13473 into a REG_UNUSED note instead. Don't delete sets to
13474 global register vars. */
13475 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
13476 || !global_regs
[REGNO (XEXP (note
, 0))])
13477 && reg_set_p (XEXP (note
, 0), PATTERN (tem
)))
13479 rtx set
= single_set (tem
);
13480 rtx inner_dest
= 0;
13482 rtx cc0_setter
= NULL_RTX
;
13486 for (inner_dest
= SET_DEST (set
);
13487 (GET_CODE (inner_dest
) == STRICT_LOW_PART
13488 || GET_CODE (inner_dest
) == SUBREG
13489 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
13490 inner_dest
= XEXP (inner_dest
, 0))
13493 /* Verify that it was the set, and not a clobber that
13494 modified the register.
13496 CC0 targets must be careful to maintain setter/user
13497 pairs. If we cannot delete the setter due to side
13498 effects, mark the user with an UNUSED note instead
13501 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
13502 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
13504 && (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
13505 || ((cc0_setter
= prev_cc0_setter (tem
)) != NULL
13506 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))
13510 /* Move the notes and links of TEM elsewhere.
13511 This might delete other dead insns recursively.
13512 First set the pattern to something that won't use
13514 rtx old_notes
= REG_NOTES (tem
);
13516 PATTERN (tem
) = pc_rtx
;
13517 REG_NOTES (tem
) = NULL
;
13519 distribute_notes (old_notes
, tem
, tem
, NULL_RTX
,
13520 NULL_RTX
, NULL_RTX
, NULL_RTX
);
13521 distribute_links (LOG_LINKS (tem
));
13523 SET_INSN_DELETED (tem
);
13528 /* Delete the setter too. */
13531 PATTERN (cc0_setter
) = pc_rtx
;
13532 old_notes
= REG_NOTES (cc0_setter
);
13533 REG_NOTES (cc0_setter
) = NULL
;
13535 distribute_notes (old_notes
, cc0_setter
,
13536 cc0_setter
, NULL_RTX
,
13537 NULL_RTX
, NULL_RTX
, NULL_RTX
);
13538 distribute_links (LOG_LINKS (cc0_setter
));
13540 SET_INSN_DELETED (cc0_setter
);
13541 if (cc0_setter
== i2
)
13548 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
13550 /* If there isn't already a REG_UNUSED note, put one
13551 here. Do not place a REG_DEAD note, even if
13552 the register is also used here; that would not
13553 match the algorithm used in lifetime analysis
13554 and can cause the consistency check in the
13555 scheduler to fail. */
13556 if (! find_regno_note (tem
, REG_UNUSED
,
13557 REGNO (XEXP (note
, 0))))
13562 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem
))
13564 && find_reg_fusage (tem
, USE
, XEXP (note
, 0))))
13568 /* If we are doing a 3->2 combination, and we have a
13569 register which formerly died in i3 and was not used
13570 by i2, which now no longer dies in i3 and is used in
13571 i2 but does not die in i2, and place is between i2
13572 and i3, then we may need to move a link from place to
13574 if (i2
&& DF_INSN_LUID (place
) > DF_INSN_LUID (i2
)
13576 && DF_INSN_LUID (from_insn
) > DF_INSN_LUID (i2
)
13577 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
13579 struct insn_link
*links
= LOG_LINKS (place
);
13580 LOG_LINKS (place
) = NULL
;
13581 distribute_links (links
);
13586 if (tem
== BB_HEAD (bb
))
13592 /* If the register is set or already dead at PLACE, we needn't do
13593 anything with this note if it is still a REG_DEAD note.
13594 We check here if it is set at all, not if is it totally replaced,
13595 which is what `dead_or_set_p' checks, so also check for it being
13598 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
13600 unsigned int regno
= REGNO (XEXP (note
, 0));
13601 reg_stat_type
*rsp
= ®_stat
[regno
];
13603 if (dead_or_set_p (place
, XEXP (note
, 0))
13604 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
13606 /* Unless the register previously died in PLACE, clear
13607 last_death. [I no longer understand why this is
13609 if (rsp
->last_death
!= place
)
13610 rsp
->last_death
= 0;
13614 rsp
->last_death
= place
;
13616 /* If this is a death note for a hard reg that is occupying
13617 multiple registers, ensure that we are still using all
13618 parts of the object. If we find a piece of the object
13619 that is unused, we must arrange for an appropriate REG_DEAD
13620 note to be added for it. However, we can't just emit a USE
13621 and tag the note to it, since the register might actually
13622 be dead; so we recourse, and the recursive call then finds
13623 the previous insn that used this register. */
13625 if (place
&& regno
< FIRST_PSEUDO_REGISTER
13626 && hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))] > 1)
13628 unsigned int endregno
= END_HARD_REGNO (XEXP (note
, 0));
13629 bool all_used
= true;
13632 for (i
= regno
; i
< endregno
; i
++)
13633 if ((! refers_to_regno_p (i
, i
+ 1, PATTERN (place
), 0)
13634 && ! find_regno_fusage (place
, USE
, i
))
13635 || dead_or_set_regno_p (place
, i
))
13643 /* Put only REG_DEAD notes for pieces that are
13644 not already dead or set. */
13646 for (i
= regno
; i
< endregno
;
13647 i
+= hard_regno_nregs
[i
][reg_raw_mode
[i
]])
13649 rtx piece
= regno_reg_rtx
[i
];
13650 basic_block bb
= this_basic_block
;
13652 if (! dead_or_set_p (place
, piece
)
13653 && ! reg_bitfield_target_p (piece
,
13656 rtx new_note
= alloc_reg_note (REG_DEAD
, piece
,
13659 distribute_notes (new_note
, place
, place
,
13660 NULL_RTX
, NULL_RTX
, NULL_RTX
,
13663 else if (! refers_to_regno_p (i
, i
+ 1,
13664 PATTERN (place
), 0)
13665 && ! find_regno_fusage (place
, USE
, i
))
13666 for (tem
= PREV_INSN (place
); ;
13667 tem
= PREV_INSN (tem
))
13669 if (!NONDEBUG_INSN_P (tem
))
13671 if (tem
== BB_HEAD (bb
))
13675 if (dead_or_set_p (tem
, piece
)
13676 || reg_bitfield_target_p (piece
,
13679 add_reg_note (tem
, REG_UNUSED
, piece
);
13692 /* Any other notes should not be present at this point in the
13694 gcc_unreachable ();
13699 XEXP (note
, 1) = REG_NOTES (place
);
13700 REG_NOTES (place
) = note
;
13704 add_shallow_copy_of_reg_note (place2
, note
);
13708 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13709 I3, I2, and I1 to new locations. This is also called to add a link
13710 pointing at I3 when I3's destination is changed. */
13713 distribute_links (struct insn_link
*links
)
13715 struct insn_link
*link
, *next_link
;
13717 for (link
= links
; link
; link
= next_link
)
13723 next_link
= link
->next
;
13725 /* If the insn that this link points to is a NOTE or isn't a single
13726 set, ignore it. In the latter case, it isn't clear what we
13727 can do other than ignore the link, since we can't tell which
13728 register it was for. Such links wouldn't be used by combine
13731 It is not possible for the destination of the target of the link to
13732 have been changed by combine. The only potential of this is if we
13733 replace I3, I2, and I1 by I3 and I2. But in that case the
13734 destination of I2 also remains unchanged. */
13736 if (NOTE_P (link
->insn
)
13737 || (set
= single_set (link
->insn
)) == 0)
13740 reg
= SET_DEST (set
);
13741 while (GET_CODE (reg
) == SUBREG
|| GET_CODE (reg
) == ZERO_EXTRACT
13742 || GET_CODE (reg
) == STRICT_LOW_PART
)
13743 reg
= XEXP (reg
, 0);
13745 /* A LOG_LINK is defined as being placed on the first insn that uses
13746 a register and points to the insn that sets the register. Start
13747 searching at the next insn after the target of the link and stop
13748 when we reach a set of the register or the end of the basic block.
13750 Note that this correctly handles the link that used to point from
13751 I3 to I2. Also note that not much searching is typically done here
13752 since most links don't point very far away. */
13754 for (insn
= NEXT_INSN (link
->insn
);
13755 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
13756 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
13757 insn
= NEXT_INSN (insn
))
13758 if (DEBUG_INSN_P (insn
))
13760 else if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
13762 if (reg_referenced_p (reg
, PATTERN (insn
)))
13766 else if (CALL_P (insn
)
13767 && find_reg_fusage (insn
, USE
, reg
))
13772 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
13775 /* If we found a place to put the link, place it there unless there
13776 is already a link to the same insn as LINK at that point. */
13780 struct insn_link
*link2
;
13782 FOR_EACH_LOG_LINK (link2
, place
)
13783 if (link2
->insn
== link
->insn
)
13788 link
->next
= LOG_LINKS (place
);
13789 LOG_LINKS (place
) = link
;
13791 /* Set added_links_insn to the earliest insn we added a
13793 if (added_links_insn
== 0
13794 || DF_INSN_LUID (added_links_insn
) > DF_INSN_LUID (place
))
13795 added_links_insn
= place
;
13801 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13802 Check whether the expression pointer to by LOC is a register or
13803 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13804 Otherwise return zero. */
13807 unmentioned_reg_p_1 (rtx
*loc
, void *expr
)
13812 && (REG_P (x
) || MEM_P (x
))
13813 && ! reg_mentioned_p (x
, (rtx
) expr
))
13818 /* Check for any register or memory mentioned in EQUIV that is not
13819 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13820 of EXPR where some registers may have been replaced by constants. */
13823 unmentioned_reg_p (rtx equiv
, rtx expr
)
13825 return for_each_rtx (&equiv
, unmentioned_reg_p_1
, expr
);
13828 DEBUG_FUNCTION
void
13829 dump_combine_stats (FILE *file
)
13833 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13834 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
13838 dump_combine_total_stats (FILE *file
)
13842 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13843 total_attempts
, total_merges
, total_extras
, total_successes
);
13847 gate_handle_combine (void)
13849 return (optimize
> 0);
13852 /* Try combining insns through substitution. */
13853 static unsigned int
13854 rest_of_handle_combine (void)
13856 int rebuild_jump_labels_after_combine
;
13858 df_set_flags (DF_LR_RUN_DCE
+ DF_DEFER_INSN_RESCAN
);
13859 df_note_add_problem ();
13862 regstat_init_n_sets_and_refs ();
13864 rebuild_jump_labels_after_combine
13865 = combine_instructions (get_insns (), max_reg_num ());
13867 /* Combining insns may have turned an indirect jump into a
13868 direct jump. Rebuild the JUMP_LABEL fields of jumping
13870 if (rebuild_jump_labels_after_combine
)
13872 timevar_push (TV_JUMP
);
13873 rebuild_jump_labels (get_insns ());
13875 timevar_pop (TV_JUMP
);
13878 regstat_free_n_sets_and_refs ();
13884 const pass_data pass_data_combine
=
13886 RTL_PASS
, /* type */
13887 "combine", /* name */
13888 OPTGROUP_NONE
, /* optinfo_flags */
13889 true, /* has_gate */
13890 true, /* has_execute */
13891 TV_COMBINE
, /* tv_id */
13892 PROP_cfglayout
, /* properties_required */
13893 0, /* properties_provided */
13894 0, /* properties_destroyed */
13895 0, /* todo_flags_start */
13896 ( TODO_df_finish
| TODO_verify_rtl_sharing
), /* todo_flags_finish */
13899 class pass_combine
: public rtl_opt_pass
13902 pass_combine (gcc::context
*ctxt
)
13903 : rtl_opt_pass (pass_data_combine
, ctxt
)
13906 /* opt_pass methods: */
13907 bool gate () { return gate_handle_combine (); }
13908 unsigned int execute () { return rest_of_handle_combine (); }
13910 }; // class pass_combine
13912 } // anon namespace
13915 make_pass_combine (gcc::context
*ctxt
)
13917 return new pass_combine (ctxt
);