1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
26 #include "coretypes.h"
33 #include "insn-config.h"
38 #include "langhooks.h"
42 static void store_fixed_bit_field (rtx
, unsigned HOST_WIDE_INT
,
43 unsigned HOST_WIDE_INT
,
44 unsigned HOST_WIDE_INT
, rtx
);
45 static void store_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
46 unsigned HOST_WIDE_INT
, rtx
);
47 static rtx
extract_fixed_bit_field (enum machine_mode
, rtx
,
48 unsigned HOST_WIDE_INT
,
49 unsigned HOST_WIDE_INT
,
50 unsigned HOST_WIDE_INT
, rtx
, int);
51 static rtx
mask_rtx (enum machine_mode
, int, int, int);
52 static rtx
lshift_value (enum machine_mode
, rtx
, int, int);
53 static rtx
extract_split_bit_field (rtx
, unsigned HOST_WIDE_INT
,
54 unsigned HOST_WIDE_INT
, int);
55 static void do_cmp_and_jump (rtx
, rtx
, enum rtx_code
, enum machine_mode
, rtx
);
56 static rtx
expand_smod_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
57 static rtx
expand_sdiv_pow2 (enum machine_mode
, rtx
, HOST_WIDE_INT
);
59 /* Test whether a value is zero of a power of two. */
60 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
62 /* Nonzero means divides or modulus operations are relatively cheap for
63 powers of two, so don't use branches; emit the operation instead.
64 Usually, this will mean that the MD file will emit non-branch
67 static bool sdiv_pow2_cheap
[NUM_MACHINE_MODES
];
68 static bool smod_pow2_cheap
[NUM_MACHINE_MODES
];
70 #ifndef SLOW_UNALIGNED_ACCESS
71 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
74 /* For compilers that support multiple targets with different word sizes,
75 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
76 is the H8/300(H) compiler. */
78 #ifndef MAX_BITS_PER_WORD
79 #define MAX_BITS_PER_WORD BITS_PER_WORD
82 /* Reduce conditional compilation elsewhere. */
85 #define CODE_FOR_insv CODE_FOR_nothing
86 #define gen_insv(a,b,c,d) NULL_RTX
90 #define CODE_FOR_extv CODE_FOR_nothing
91 #define gen_extv(a,b,c,d) NULL_RTX
95 #define CODE_FOR_extzv CODE_FOR_nothing
96 #define gen_extzv(a,b,c,d) NULL_RTX
99 /* Cost of various pieces of RTL. Note that some of these are indexed by
100 shift count and some by mode. */
101 static int zero_cost
;
102 static int add_cost
[NUM_MACHINE_MODES
];
103 static int neg_cost
[NUM_MACHINE_MODES
];
104 static int shift_cost
[NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
105 static int shiftadd_cost
[NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
106 static int shiftsub_cost
[NUM_MACHINE_MODES
][MAX_BITS_PER_WORD
];
107 static int mul_cost
[NUM_MACHINE_MODES
];
108 static int sdiv_cost
[NUM_MACHINE_MODES
];
109 static int udiv_cost
[NUM_MACHINE_MODES
];
110 static int mul_widen_cost
[NUM_MACHINE_MODES
];
111 static int mul_highpart_cost
[NUM_MACHINE_MODES
];
118 struct rtx_def reg
; rtunion reg_fld
[2];
119 struct rtx_def plus
; rtunion plus_fld1
;
121 struct rtx_def mult
; rtunion mult_fld1
;
122 struct rtx_def sdiv
; rtunion sdiv_fld1
;
123 struct rtx_def udiv
; rtunion udiv_fld1
;
125 struct rtx_def sdiv_32
; rtunion sdiv_32_fld1
;
126 struct rtx_def smod_32
; rtunion smod_32_fld1
;
127 struct rtx_def wide_mult
; rtunion wide_mult_fld1
;
128 struct rtx_def wide_lshr
; rtunion wide_lshr_fld1
;
129 struct rtx_def wide_trunc
;
130 struct rtx_def shift
; rtunion shift_fld1
;
131 struct rtx_def shift_mult
; rtunion shift_mult_fld1
;
132 struct rtx_def shift_add
; rtunion shift_add_fld1
;
133 struct rtx_def shift_sub
; rtunion shift_sub_fld1
;
136 rtx pow2
[MAX_BITS_PER_WORD
];
137 rtx cint
[MAX_BITS_PER_WORD
];
139 enum machine_mode mode
, wider_mode
;
141 zero_cost
= rtx_cost (const0_rtx
, 0);
143 for (m
= 1; m
< MAX_BITS_PER_WORD
; m
++)
145 pow2
[m
] = GEN_INT ((HOST_WIDE_INT
) 1 << m
);
146 cint
[m
] = GEN_INT (m
);
149 memset (&all
, 0, sizeof all
);
151 PUT_CODE (&all
.reg
, REG
);
152 /* Avoid using hard regs in ways which may be unsupported. */
153 SET_REGNO (&all
.reg
, LAST_VIRTUAL_REGISTER
+ 1);
155 PUT_CODE (&all
.plus
, PLUS
);
156 XEXP (&all
.plus
, 0) = &all
.reg
;
157 XEXP (&all
.plus
, 1) = &all
.reg
;
159 PUT_CODE (&all
.neg
, NEG
);
160 XEXP (&all
.neg
, 0) = &all
.reg
;
162 PUT_CODE (&all
.mult
, MULT
);
163 XEXP (&all
.mult
, 0) = &all
.reg
;
164 XEXP (&all
.mult
, 1) = &all
.reg
;
166 PUT_CODE (&all
.sdiv
, DIV
);
167 XEXP (&all
.sdiv
, 0) = &all
.reg
;
168 XEXP (&all
.sdiv
, 1) = &all
.reg
;
170 PUT_CODE (&all
.udiv
, UDIV
);
171 XEXP (&all
.udiv
, 0) = &all
.reg
;
172 XEXP (&all
.udiv
, 1) = &all
.reg
;
174 PUT_CODE (&all
.sdiv_32
, DIV
);
175 XEXP (&all
.sdiv_32
, 0) = &all
.reg
;
176 XEXP (&all
.sdiv_32
, 1) = 32 < MAX_BITS_PER_WORD
? cint
[32] : GEN_INT (32);
178 PUT_CODE (&all
.smod_32
, MOD
);
179 XEXP (&all
.smod_32
, 0) = &all
.reg
;
180 XEXP (&all
.smod_32
, 1) = XEXP (&all
.sdiv_32
, 1);
182 PUT_CODE (&all
.zext
, ZERO_EXTEND
);
183 XEXP (&all
.zext
, 0) = &all
.reg
;
185 PUT_CODE (&all
.wide_mult
, MULT
);
186 XEXP (&all
.wide_mult
, 0) = &all
.zext
;
187 XEXP (&all
.wide_mult
, 1) = &all
.zext
;
189 PUT_CODE (&all
.wide_lshr
, LSHIFTRT
);
190 XEXP (&all
.wide_lshr
, 0) = &all
.wide_mult
;
192 PUT_CODE (&all
.wide_trunc
, TRUNCATE
);
193 XEXP (&all
.wide_trunc
, 0) = &all
.wide_lshr
;
195 PUT_CODE (&all
.shift
, ASHIFT
);
196 XEXP (&all
.shift
, 0) = &all
.reg
;
198 PUT_CODE (&all
.shift_mult
, MULT
);
199 XEXP (&all
.shift_mult
, 0) = &all
.reg
;
201 PUT_CODE (&all
.shift_add
, PLUS
);
202 XEXP (&all
.shift_add
, 0) = &all
.shift_mult
;
203 XEXP (&all
.shift_add
, 1) = &all
.reg
;
205 PUT_CODE (&all
.shift_sub
, MINUS
);
206 XEXP (&all
.shift_sub
, 0) = &all
.shift_mult
;
207 XEXP (&all
.shift_sub
, 1) = &all
.reg
;
209 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
211 mode
= GET_MODE_WIDER_MODE (mode
))
213 PUT_MODE (&all
.reg
, mode
);
214 PUT_MODE (&all
.plus
, mode
);
215 PUT_MODE (&all
.neg
, mode
);
216 PUT_MODE (&all
.mult
, mode
);
217 PUT_MODE (&all
.sdiv
, mode
);
218 PUT_MODE (&all
.udiv
, mode
);
219 PUT_MODE (&all
.sdiv_32
, mode
);
220 PUT_MODE (&all
.smod_32
, mode
);
221 PUT_MODE (&all
.wide_trunc
, mode
);
222 PUT_MODE (&all
.shift
, mode
);
223 PUT_MODE (&all
.shift_mult
, mode
);
224 PUT_MODE (&all
.shift_add
, mode
);
225 PUT_MODE (&all
.shift_sub
, mode
);
227 add_cost
[mode
] = rtx_cost (&all
.plus
, SET
);
228 neg_cost
[mode
] = rtx_cost (&all
.neg
, SET
);
229 mul_cost
[mode
] = rtx_cost (&all
.mult
, SET
);
230 sdiv_cost
[mode
] = rtx_cost (&all
.sdiv
, SET
);
231 udiv_cost
[mode
] = rtx_cost (&all
.udiv
, SET
);
233 sdiv_pow2_cheap
[mode
] = (rtx_cost (&all
.sdiv_32
, SET
)
234 <= 2 * add_cost
[mode
]);
235 smod_pow2_cheap
[mode
] = (rtx_cost (&all
.smod_32
, SET
)
236 <= 4 * add_cost
[mode
]);
238 wider_mode
= GET_MODE_WIDER_MODE (mode
);
239 if (wider_mode
!= VOIDmode
)
241 PUT_MODE (&all
.zext
, wider_mode
);
242 PUT_MODE (&all
.wide_mult
, wider_mode
);
243 PUT_MODE (&all
.wide_lshr
, wider_mode
);
244 XEXP (&all
.wide_lshr
, 1) = GEN_INT (GET_MODE_BITSIZE (mode
));
246 mul_widen_cost
[wider_mode
] = rtx_cost (&all
.wide_mult
, SET
);
247 mul_highpart_cost
[mode
] = rtx_cost (&all
.wide_trunc
, SET
);
250 shift_cost
[mode
][0] = 0;
251 shiftadd_cost
[mode
][0] = shiftsub_cost
[mode
][0] = add_cost
[mode
];
253 n
= MIN (MAX_BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
254 for (m
= 1; m
< n
; m
++)
256 XEXP (&all
.shift
, 1) = cint
[m
];
257 XEXP (&all
.shift_mult
, 1) = pow2
[m
];
259 shift_cost
[mode
][m
] = rtx_cost (&all
.shift
, SET
);
260 shiftadd_cost
[mode
][m
] = rtx_cost (&all
.shift_add
, SET
);
261 shiftsub_cost
[mode
][m
] = rtx_cost (&all
.shift_sub
, SET
);
266 /* Return an rtx representing minus the value of X.
267 MODE is the intended mode of the result,
268 useful if X is a CONST_INT. */
271 negate_rtx (enum machine_mode mode
, rtx x
)
273 rtx result
= simplify_unary_operation (NEG
, mode
, x
, mode
);
276 result
= expand_unop (mode
, neg_optab
, x
, NULL_RTX
, 0);
281 /* Report on the availability of insv/extv/extzv and the desired mode
282 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
283 is false; else the mode of the specified operand. If OPNO is -1,
284 all the caller cares about is whether the insn is available. */
286 mode_for_extraction (enum extraction_pattern pattern
, int opno
)
288 const struct insn_data
*data
;
295 data
= &insn_data
[CODE_FOR_insv
];
298 return MAX_MACHINE_MODE
;
303 data
= &insn_data
[CODE_FOR_extv
];
306 return MAX_MACHINE_MODE
;
311 data
= &insn_data
[CODE_FOR_extzv
];
314 return MAX_MACHINE_MODE
;
323 /* Everyone who uses this function used to follow it with
324 if (result == VOIDmode) result = word_mode; */
325 if (data
->operand
[opno
].mode
== VOIDmode
)
327 return data
->operand
[opno
].mode
;
330 /* Return true if X, of mode MODE, matches the predicate for operand
331 OPNO of instruction ICODE. Allow volatile memories, regardless of
332 the ambient volatile_ok setting. */
335 check_predicate_volatile_ok (enum insn_code icode
, int opno
,
336 rtx x
, enum machine_mode mode
)
338 bool save_volatile_ok
, result
;
340 save_volatile_ok
= volatile_ok
;
341 result
= insn_data
[(int) icode
].operand
[opno
].predicate (x
, mode
);
342 volatile_ok
= save_volatile_ok
;
346 /* A subroutine of store_bit_field, with the same arguments. Return true
347 if the operation could be implemented.
349 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
350 no other way of implementing the operation. If FALLBACK_P is false,
351 return false instead. */
354 store_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
355 unsigned HOST_WIDE_INT bitnum
, enum machine_mode fieldmode
,
356 rtx value
, bool fallback_p
)
359 = (MEM_P (str_rtx
)) ? BITS_PER_UNIT
: BITS_PER_WORD
;
360 unsigned HOST_WIDE_INT offset
, bitpos
;
365 enum machine_mode op_mode
= mode_for_extraction (EP_insv
, 3);
367 while (GET_CODE (op0
) == SUBREG
)
369 /* The following line once was done only if WORDS_BIG_ENDIAN,
370 but I think that is a mistake. WORDS_BIG_ENDIAN is
371 meaningful at a much higher level; when structures are copied
372 between memory and regs, the higher-numbered regs
373 always get higher addresses. */
374 int inner_mode_size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)));
375 int outer_mode_size
= GET_MODE_SIZE (GET_MODE (op0
));
379 /* Paradoxical subregs need special handling on big endian machines. */
380 if (SUBREG_BYTE (op0
) == 0 && inner_mode_size
< outer_mode_size
)
382 int difference
= inner_mode_size
- outer_mode_size
;
384 if (WORDS_BIG_ENDIAN
)
385 byte_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
386 if (BYTES_BIG_ENDIAN
)
387 byte_offset
+= difference
% UNITS_PER_WORD
;
390 byte_offset
= SUBREG_BYTE (op0
);
392 bitnum
+= byte_offset
* BITS_PER_UNIT
;
393 op0
= SUBREG_REG (op0
);
396 /* No action is needed if the target is a register and if the field
397 lies completely outside that register. This can occur if the source
398 code contains an out-of-bounds access to a small array. */
399 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
402 /* Use vec_set patterns for inserting parts of vectors whenever
404 if (VECTOR_MODE_P (GET_MODE (op0
))
406 && (optab_handler (vec_set_optab
, GET_MODE (op0
))->insn_code
408 && fieldmode
== GET_MODE_INNER (GET_MODE (op0
))
409 && bitsize
== GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
410 && !(bitnum
% GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
412 enum machine_mode outermode
= GET_MODE (op0
);
413 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
414 int icode
= (int) optab_handler (vec_set_optab
, outermode
)->insn_code
;
415 int pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
416 rtx rtxpos
= GEN_INT (pos
);
420 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
421 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
422 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
426 if (! (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
))
427 src
= copy_to_mode_reg (mode1
, src
);
429 if (! (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
))
430 rtxpos
= copy_to_mode_reg (mode1
, rtxpos
);
432 /* We could handle this, but we should always be called with a pseudo
433 for our targets and all insns should take them as outputs. */
434 gcc_assert ((*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
)
435 && (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
)
436 && (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
));
437 pat
= GEN_FCN (icode
) (dest
, src
, rtxpos
);
448 /* If the target is a register, overwriting the entire object, or storing
449 a full-word or multi-word field can be done with just a SUBREG.
451 If the target is memory, storing any naturally aligned field can be
452 done with a simple store. For targets that support fast unaligned
453 memory, any naturally sized, unit aligned field can be done directly. */
455 offset
= bitnum
/ unit
;
456 bitpos
= bitnum
% unit
;
457 byte_offset
= (bitnum
% BITS_PER_WORD
) / BITS_PER_UNIT
458 + (offset
* UNITS_PER_WORD
);
461 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
463 ? ((GET_MODE_SIZE (fieldmode
) >= UNITS_PER_WORD
464 || GET_MODE_SIZE (GET_MODE (op0
)) == GET_MODE_SIZE (fieldmode
))
465 && byte_offset
% GET_MODE_SIZE (fieldmode
) == 0)
466 : (! SLOW_UNALIGNED_ACCESS (fieldmode
, MEM_ALIGN (op0
))
467 || (offset
* BITS_PER_UNIT
% bitsize
== 0
468 && MEM_ALIGN (op0
) % GET_MODE_BITSIZE (fieldmode
) == 0))))
471 op0
= adjust_address (op0
, fieldmode
, offset
);
472 else if (GET_MODE (op0
) != fieldmode
)
473 op0
= simplify_gen_subreg (fieldmode
, op0
, GET_MODE (op0
),
475 emit_move_insn (op0
, value
);
479 /* Make sure we are playing with integral modes. Pun with subregs
480 if we aren't. This must come after the entire register case above,
481 since that case is valid for any mode. The following cases are only
482 valid for integral modes. */
484 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
485 if (imode
!= GET_MODE (op0
))
488 op0
= adjust_address (op0
, imode
, 0);
491 gcc_assert (imode
!= BLKmode
);
492 op0
= gen_lowpart (imode
, op0
);
497 /* We may be accessing data outside the field, which means
498 we can alias adjacent data. */
501 op0
= shallow_copy_rtx (op0
);
502 set_mem_alias_set (op0
, 0);
503 set_mem_expr (op0
, 0);
506 /* If OP0 is a register, BITPOS must count within a word.
507 But as we have it, it counts within whatever size OP0 now has.
508 On a bigendian machine, these are not the same, so convert. */
511 && unit
> GET_MODE_BITSIZE (GET_MODE (op0
)))
512 bitpos
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
514 /* Storing an lsb-aligned field in a register
515 can be done with a movestrict instruction. */
518 && (BYTES_BIG_ENDIAN
? bitpos
+ bitsize
== unit
: bitpos
== 0)
519 && bitsize
== GET_MODE_BITSIZE (fieldmode
)
520 && (optab_handler (movstrict_optab
, fieldmode
)->insn_code
521 != CODE_FOR_nothing
))
523 int icode
= optab_handler (movstrict_optab
, fieldmode
)->insn_code
;
525 /* Get appropriate low part of the value being stored. */
526 if (GET_CODE (value
) == CONST_INT
|| REG_P (value
))
527 value
= gen_lowpart (fieldmode
, value
);
528 else if (!(GET_CODE (value
) == SYMBOL_REF
529 || GET_CODE (value
) == LABEL_REF
530 || GET_CODE (value
) == CONST
))
531 value
= convert_to_mode (fieldmode
, value
, 0);
533 if (! (*insn_data
[icode
].operand
[1].predicate
) (value
, fieldmode
))
534 value
= copy_to_mode_reg (fieldmode
, value
);
536 if (GET_CODE (op0
) == SUBREG
)
538 /* Else we've got some float mode source being extracted into
539 a different float mode destination -- this combination of
540 subregs results in Severe Tire Damage. */
541 gcc_assert (GET_MODE (SUBREG_REG (op0
)) == fieldmode
542 || GET_MODE_CLASS (fieldmode
) == MODE_INT
543 || GET_MODE_CLASS (fieldmode
) == MODE_PARTIAL_INT
);
544 op0
= SUBREG_REG (op0
);
547 emit_insn (GEN_FCN (icode
)
548 (gen_rtx_SUBREG (fieldmode
, op0
,
549 (bitnum
% BITS_PER_WORD
) / BITS_PER_UNIT
550 + (offset
* UNITS_PER_WORD
)),
556 /* Handle fields bigger than a word. */
558 if (bitsize
> BITS_PER_WORD
)
560 /* Here we transfer the words of the field
561 in the order least significant first.
562 This is because the most significant word is the one which may
564 However, only do that if the value is not BLKmode. */
566 unsigned int backwards
= WORDS_BIG_ENDIAN
&& fieldmode
!= BLKmode
;
567 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
571 /* This is the mode we must force value to, so that there will be enough
572 subwords to extract. Note that fieldmode will often (always?) be
573 VOIDmode, because that is what store_field uses to indicate that this
574 is a bit field, but passing VOIDmode to operand_subword_force
576 fieldmode
= GET_MODE (value
);
577 if (fieldmode
== VOIDmode
)
578 fieldmode
= smallest_mode_for_size (nwords
* BITS_PER_WORD
, MODE_INT
);
580 last
= get_last_insn ();
581 for (i
= 0; i
< nwords
; i
++)
583 /* If I is 0, use the low-order word in both field and target;
584 if I is 1, use the next to lowest word; and so on. */
585 unsigned int wordnum
= (backwards
? nwords
- i
- 1 : i
);
586 unsigned int bit_offset
= (backwards
587 ? MAX ((int) bitsize
- ((int) i
+ 1)
590 : (int) i
* BITS_PER_WORD
);
591 rtx value_word
= operand_subword_force (value
, wordnum
, fieldmode
);
593 if (!store_bit_field_1 (op0
, MIN (BITS_PER_WORD
,
594 bitsize
- i
* BITS_PER_WORD
),
595 bitnum
+ bit_offset
, word_mode
,
596 value_word
, fallback_p
))
598 delete_insns_since (last
);
605 /* From here on we can assume that the field to be stored in is
606 a full-word (whatever type that is), since it is shorter than a word. */
608 /* OFFSET is the number of words or bytes (UNIT says which)
609 from STR_RTX to the first word or byte containing part of the field. */
614 || GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
618 /* Since this is a destination (lvalue), we can't copy
619 it to a pseudo. We can remove a SUBREG that does not
620 change the size of the operand. Such a SUBREG may
621 have been added above. */
622 gcc_assert (GET_CODE (op0
) == SUBREG
623 && (GET_MODE_SIZE (GET_MODE (op0
))
624 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0
)))));
625 op0
= SUBREG_REG (op0
);
627 op0
= gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD
, MODE_INT
, 0),
628 op0
, (offset
* UNITS_PER_WORD
));
633 /* If VALUE has a floating-point or complex mode, access it as an
634 integer of the corresponding size. This can occur on a machine
635 with 64 bit registers that uses SFmode for float. It can also
636 occur for unaligned float or complex fields. */
638 if (GET_MODE (value
) != VOIDmode
639 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_INT
640 && GET_MODE_CLASS (GET_MODE (value
)) != MODE_PARTIAL_INT
)
642 value
= gen_reg_rtx (int_mode_for_mode (GET_MODE (value
)));
643 emit_move_insn (gen_lowpart (GET_MODE (orig_value
), value
), orig_value
);
646 /* Now OFFSET is nonzero only if OP0 is memory
647 and is therefore always measured in bytes. */
650 && GET_MODE (value
) != BLKmode
652 && GET_MODE_BITSIZE (op_mode
) >= bitsize
653 && ! ((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
654 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (op_mode
)))
655 && insn_data
[CODE_FOR_insv
].operand
[1].predicate (GEN_INT (bitsize
),
657 && check_predicate_volatile_ok (CODE_FOR_insv
, 0, op0
, VOIDmode
))
659 int xbitpos
= bitpos
;
662 rtx last
= get_last_insn ();
665 /* Add OFFSET into OP0's address. */
667 xop0
= adjust_address (xop0
, byte_mode
, offset
);
669 /* If xop0 is a register, we need it in OP_MODE
670 to make it acceptable to the format of insv. */
671 if (GET_CODE (xop0
) == SUBREG
)
672 /* We can't just change the mode, because this might clobber op0,
673 and we will need the original value of op0 if insv fails. */
674 xop0
= gen_rtx_SUBREG (op_mode
, SUBREG_REG (xop0
), SUBREG_BYTE (xop0
));
675 if (REG_P (xop0
) && GET_MODE (xop0
) != op_mode
)
676 xop0
= gen_rtx_SUBREG (op_mode
, xop0
, 0);
678 /* On big-endian machines, we count bits from the most significant.
679 If the bit field insn does not, we must invert. */
681 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
682 xbitpos
= unit
- bitsize
- xbitpos
;
684 /* We have been counting XBITPOS within UNIT.
685 Count instead within the size of the register. */
686 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
687 xbitpos
+= GET_MODE_BITSIZE (op_mode
) - unit
;
689 unit
= GET_MODE_BITSIZE (op_mode
);
691 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
693 if (GET_MODE (value
) != op_mode
)
695 if (GET_MODE_BITSIZE (GET_MODE (value
)) >= bitsize
)
697 /* Optimization: Don't bother really extending VALUE
698 if it has all the bits we will actually use. However,
699 if we must narrow it, be sure we do it correctly. */
701 if (GET_MODE_SIZE (GET_MODE (value
)) < GET_MODE_SIZE (op_mode
))
705 tmp
= simplify_subreg (op_mode
, value1
, GET_MODE (value
), 0);
707 tmp
= simplify_gen_subreg (op_mode
,
708 force_reg (GET_MODE (value
),
710 GET_MODE (value
), 0);
714 value1
= gen_lowpart (op_mode
, value1
);
716 else if (GET_CODE (value
) == CONST_INT
)
717 value1
= gen_int_mode (INTVAL (value
), op_mode
);
719 /* Parse phase is supposed to make VALUE's data type
720 match that of the component reference, which is a type
721 at least as wide as the field; so VALUE should have
722 a mode that corresponds to that type. */
723 gcc_assert (CONSTANT_P (value
));
726 /* If this machine's insv insists on a register,
727 get VALUE1 into a register. */
728 if (! ((*insn_data
[(int) CODE_FOR_insv
].operand
[3].predicate
)
730 value1
= force_reg (op_mode
, value1
);
732 pat
= gen_insv (xop0
, GEN_INT (bitsize
), GEN_INT (xbitpos
), value1
);
738 delete_insns_since (last
);
741 /* If OP0 is a memory, try copying it to a register and seeing if a
742 cheap register alternative is available. */
743 if (HAVE_insv
&& MEM_P (op0
))
745 enum machine_mode bestmode
;
747 /* Get the mode to use for inserting into this field. If OP0 is
748 BLKmode, get the smallest mode consistent with the alignment. If
749 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
750 mode. Otherwise, use the smallest mode containing the field. */
752 if (GET_MODE (op0
) == BLKmode
753 || (op_mode
!= MAX_MACHINE_MODE
754 && GET_MODE_SIZE (GET_MODE (op0
)) > GET_MODE_SIZE (op_mode
)))
755 bestmode
= get_best_mode (bitsize
, bitnum
, MEM_ALIGN (op0
),
756 (op_mode
== MAX_MACHINE_MODE
757 ? VOIDmode
: op_mode
),
758 MEM_VOLATILE_P (op0
));
760 bestmode
= GET_MODE (op0
);
762 if (bestmode
!= VOIDmode
763 && GET_MODE_SIZE (bestmode
) >= GET_MODE_SIZE (fieldmode
)
764 && !(SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (op0
))
765 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (op0
)))
767 rtx last
, tempreg
, xop0
;
768 unsigned HOST_WIDE_INT xoffset
, xbitpos
;
770 last
= get_last_insn ();
772 /* Adjust address to point to the containing unit of
773 that mode. Compute the offset as a multiple of this unit,
774 counting in bytes. */
775 unit
= GET_MODE_BITSIZE (bestmode
);
776 xoffset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
777 xbitpos
= bitnum
% unit
;
778 xop0
= adjust_address (op0
, bestmode
, xoffset
);
780 /* Fetch that unit, store the bitfield in it, then store
782 tempreg
= copy_to_reg (xop0
);
783 if (store_bit_field_1 (tempreg
, bitsize
, xbitpos
,
784 fieldmode
, orig_value
, false))
786 emit_move_insn (xop0
, tempreg
);
789 delete_insns_since (last
);
796 store_fixed_bit_field (op0
, offset
, bitsize
, bitpos
, value
);
800 /* Generate code to store value from rtx VALUE
801 into a bit-field within structure STR_RTX
802 containing BITSIZE bits starting at bit BITNUM.
803 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
806 store_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
807 unsigned HOST_WIDE_INT bitnum
, enum machine_mode fieldmode
,
810 if (!store_bit_field_1 (str_rtx
, bitsize
, bitnum
, fieldmode
, value
, true))
814 /* Use shifts and boolean operations to store VALUE
815 into a bit field of width BITSIZE
816 in a memory location specified by OP0 except offset by OFFSET bytes.
817 (OFFSET must be 0 if OP0 is a register.)
818 The field starts at position BITPOS within the byte.
819 (If OP0 is a register, it may be a full word or a narrower mode,
820 but BITPOS still counts within a full word,
821 which is significant on bigendian machines.) */
824 store_fixed_bit_field (rtx op0
, unsigned HOST_WIDE_INT offset
,
825 unsigned HOST_WIDE_INT bitsize
,
826 unsigned HOST_WIDE_INT bitpos
, rtx value
)
828 enum machine_mode mode
;
829 unsigned int total_bits
= BITS_PER_WORD
;
834 /* There is a case not handled here:
835 a structure with a known alignment of just a halfword
836 and a field split across two aligned halfwords within the structure.
837 Or likewise a structure with a known alignment of just a byte
838 and a field split across two bytes.
839 Such cases are not supposed to be able to occur. */
841 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
843 gcc_assert (!offset
);
844 /* Special treatment for a bit field split across two registers. */
845 if (bitsize
+ bitpos
> BITS_PER_WORD
)
847 store_split_bit_field (op0
, bitsize
, bitpos
, value
);
853 /* Get the proper mode to use for this field. We want a mode that
854 includes the entire field. If such a mode would be larger than
855 a word, we won't be doing the extraction the normal way.
856 We don't want a mode bigger than the destination. */
858 mode
= GET_MODE (op0
);
859 if (GET_MODE_BITSIZE (mode
) == 0
860 || GET_MODE_BITSIZE (mode
) > GET_MODE_BITSIZE (word_mode
))
862 mode
= get_best_mode (bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
863 MEM_ALIGN (op0
), mode
, MEM_VOLATILE_P (op0
));
865 if (mode
== VOIDmode
)
867 /* The only way this should occur is if the field spans word
869 store_split_bit_field (op0
, bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
874 total_bits
= GET_MODE_BITSIZE (mode
);
876 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
877 be in the range 0 to total_bits-1, and put any excess bytes in
879 if (bitpos
>= total_bits
)
881 offset
+= (bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
);
882 bitpos
-= ((bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
)
886 /* Get ref to an aligned byte, halfword, or word containing the field.
887 Adjust BITPOS to be position within a word,
888 and OFFSET to be the offset of that word.
889 Then alter OP0 to refer to that word. */
890 bitpos
+= (offset
% (total_bits
/ BITS_PER_UNIT
)) * BITS_PER_UNIT
;
891 offset
-= (offset
% (total_bits
/ BITS_PER_UNIT
));
892 op0
= adjust_address (op0
, mode
, offset
);
895 mode
= GET_MODE (op0
);
897 /* Now MODE is either some integral mode for a MEM as OP0,
898 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
899 The bit field is contained entirely within OP0.
900 BITPOS is the starting bit number within OP0.
901 (OP0's mode may actually be narrower than MODE.) */
903 if (BYTES_BIG_ENDIAN
)
904 /* BITPOS is the distance between our msb
905 and that of the containing datum.
906 Convert it to the distance from the lsb. */
907 bitpos
= total_bits
- bitsize
- bitpos
;
909 /* Now BITPOS is always the distance between our lsb
912 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
913 we must first convert its mode to MODE. */
915 if (GET_CODE (value
) == CONST_INT
)
917 HOST_WIDE_INT v
= INTVAL (value
);
919 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
920 v
&= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
924 else if ((bitsize
< HOST_BITS_PER_WIDE_INT
925 && v
== ((HOST_WIDE_INT
) 1 << bitsize
) - 1)
926 || (bitsize
== HOST_BITS_PER_WIDE_INT
&& v
== -1))
929 value
= lshift_value (mode
, value
, bitpos
, bitsize
);
933 int must_and
= (GET_MODE_BITSIZE (GET_MODE (value
)) != bitsize
934 && bitpos
+ bitsize
!= GET_MODE_BITSIZE (mode
));
936 if (GET_MODE (value
) != mode
)
938 if ((REG_P (value
) || GET_CODE (value
) == SUBREG
)
939 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (value
)))
940 value
= gen_lowpart (mode
, value
);
942 value
= convert_to_mode (mode
, value
, 1);
946 value
= expand_binop (mode
, and_optab
, value
,
947 mask_rtx (mode
, 0, bitsize
, 0),
948 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
950 value
= expand_shift (LSHIFT_EXPR
, mode
, value
,
951 build_int_cst (NULL_TREE
, bitpos
), NULL_RTX
, 1);
954 /* Now clear the chosen bits in OP0,
955 except that if VALUE is -1 we need not bother. */
956 /* We keep the intermediates in registers to allow CSE to combine
957 consecutive bitfield assignments. */
959 temp
= force_reg (mode
, op0
);
963 temp
= expand_binop (mode
, and_optab
, temp
,
964 mask_rtx (mode
, bitpos
, bitsize
, 1),
965 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
966 temp
= force_reg (mode
, temp
);
969 /* Now logical-or VALUE into OP0, unless it is zero. */
973 temp
= expand_binop (mode
, ior_optab
, temp
, value
,
974 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
975 temp
= force_reg (mode
, temp
);
980 op0
= copy_rtx (op0
);
981 emit_move_insn (op0
, temp
);
985 /* Store a bit field that is split across multiple accessible memory objects.
987 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
988 BITSIZE is the field width; BITPOS the position of its first bit
990 VALUE is the value to store.
992 This does not yet handle fields wider than BITS_PER_WORD. */
995 store_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
996 unsigned HOST_WIDE_INT bitpos
, rtx value
)
999 unsigned int bitsdone
= 0;
1001 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1003 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1004 unit
= BITS_PER_WORD
;
1006 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1008 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1009 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1010 that VALUE might be a floating-point constant. */
1011 if (CONSTANT_P (value
) && GET_CODE (value
) != CONST_INT
)
1013 rtx word
= gen_lowpart_common (word_mode
, value
);
1015 if (word
&& (value
!= word
))
1018 value
= gen_lowpart_common (word_mode
,
1019 force_reg (GET_MODE (value
) != VOIDmode
1021 : word_mode
, value
));
1024 while (bitsdone
< bitsize
)
1026 unsigned HOST_WIDE_INT thissize
;
1028 unsigned HOST_WIDE_INT thispos
;
1029 unsigned HOST_WIDE_INT offset
;
1031 offset
= (bitpos
+ bitsdone
) / unit
;
1032 thispos
= (bitpos
+ bitsdone
) % unit
;
1034 /* THISSIZE must not overrun a word boundary. Otherwise,
1035 store_fixed_bit_field will call us again, and we will mutually
1037 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1038 thissize
= MIN (thissize
, unit
- thispos
);
1040 if (BYTES_BIG_ENDIAN
)
1044 /* We must do an endian conversion exactly the same way as it is
1045 done in extract_bit_field, so that the two calls to
1046 extract_fixed_bit_field will have comparable arguments. */
1047 if (!MEM_P (value
) || GET_MODE (value
) == BLKmode
)
1048 total_bits
= BITS_PER_WORD
;
1050 total_bits
= GET_MODE_BITSIZE (GET_MODE (value
));
1052 /* Fetch successively less significant portions. */
1053 if (GET_CODE (value
) == CONST_INT
)
1054 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1055 >> (bitsize
- bitsdone
- thissize
))
1056 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1058 /* The args are chosen so that the last part includes the
1059 lsb. Give extract_bit_field the value it needs (with
1060 endianness compensation) to fetch the piece we want. */
1061 part
= extract_fixed_bit_field (word_mode
, value
, 0, thissize
,
1062 total_bits
- bitsize
+ bitsdone
,
1067 /* Fetch successively more significant portions. */
1068 if (GET_CODE (value
) == CONST_INT
)
1069 part
= GEN_INT (((unsigned HOST_WIDE_INT
) (INTVAL (value
))
1071 & (((HOST_WIDE_INT
) 1 << thissize
) - 1));
1073 part
= extract_fixed_bit_field (word_mode
, value
, 0, thissize
,
1074 bitsdone
, NULL_RTX
, 1);
1077 /* If OP0 is a register, then handle OFFSET here.
1079 When handling multiword bitfields, extract_bit_field may pass
1080 down a word_mode SUBREG of a larger REG for a bitfield that actually
1081 crosses a word boundary. Thus, for a SUBREG, we must find
1082 the current word starting from the base register. */
1083 if (GET_CODE (op0
) == SUBREG
)
1085 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1086 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1087 GET_MODE (SUBREG_REG (op0
)));
1090 else if (REG_P (op0
))
1092 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
1098 /* OFFSET is in UNITs, and UNIT is in bits.
1099 store_fixed_bit_field wants offset in bytes. */
1100 store_fixed_bit_field (word
, offset
* unit
/ BITS_PER_UNIT
, thissize
,
1102 bitsdone
+= thissize
;
1106 /* A subroutine of extract_bit_field_1 that converts return value X
1107 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1108 to extract_bit_field. */
1111 convert_extracted_bit_field (rtx x
, enum machine_mode mode
,
1112 enum machine_mode tmode
, bool unsignedp
)
1114 if (GET_MODE (x
) == tmode
|| GET_MODE (x
) == mode
)
1117 /* If the x mode is not a scalar integral, first convert to the
1118 integer mode of that size and then access it as a floating-point
1119 value via a SUBREG. */
1120 if (!SCALAR_INT_MODE_P (tmode
))
1122 enum machine_mode smode
;
1124 smode
= mode_for_size (GET_MODE_BITSIZE (tmode
), MODE_INT
, 0);
1125 x
= convert_to_mode (smode
, x
, unsignedp
);
1126 x
= force_reg (smode
, x
);
1127 return gen_lowpart (tmode
, x
);
1130 return convert_to_mode (tmode
, x
, unsignedp
);
1133 /* A subroutine of extract_bit_field, with the same arguments.
1134 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1135 if we can find no other means of implementing the operation.
1136 if FALLBACK_P is false, return NULL instead. */
1139 extract_bit_field_1 (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1140 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1141 enum machine_mode mode
, enum machine_mode tmode
,
1145 = (MEM_P (str_rtx
)) ? BITS_PER_UNIT
: BITS_PER_WORD
;
1146 unsigned HOST_WIDE_INT offset
, bitpos
;
1148 enum machine_mode int_mode
;
1149 enum machine_mode ext_mode
;
1150 enum machine_mode mode1
;
1151 enum insn_code icode
;
1154 if (tmode
== VOIDmode
)
1157 while (GET_CODE (op0
) == SUBREG
)
1159 bitnum
+= SUBREG_BYTE (op0
) * BITS_PER_UNIT
;
1160 op0
= SUBREG_REG (op0
);
1163 /* If we have an out-of-bounds access to a register, just return an
1164 uninitialized register of the required mode. This can occur if the
1165 source code contains an out-of-bounds access to a small array. */
1166 if (REG_P (op0
) && bitnum
>= GET_MODE_BITSIZE (GET_MODE (op0
)))
1167 return gen_reg_rtx (tmode
);
1170 && mode
== GET_MODE (op0
)
1172 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)))
1174 /* We're trying to extract a full register from itself. */
1178 /* See if we can get a better vector mode before extracting. */
1179 if (VECTOR_MODE_P (GET_MODE (op0
))
1181 && GET_MODE_INNER (GET_MODE (op0
)) != tmode
)
1183 enum machine_mode new_mode
;
1184 int nunits
= GET_MODE_NUNITS (GET_MODE (op0
));
1186 if (GET_MODE_CLASS (tmode
) == MODE_FLOAT
)
1187 new_mode
= MIN_MODE_VECTOR_FLOAT
;
1188 else if (GET_MODE_CLASS (tmode
) == MODE_FRACT
)
1189 new_mode
= MIN_MODE_VECTOR_FRACT
;
1190 else if (GET_MODE_CLASS (tmode
) == MODE_UFRACT
)
1191 new_mode
= MIN_MODE_VECTOR_UFRACT
;
1192 else if (GET_MODE_CLASS (tmode
) == MODE_ACCUM
)
1193 new_mode
= MIN_MODE_VECTOR_ACCUM
;
1194 else if (GET_MODE_CLASS (tmode
) == MODE_UACCUM
)
1195 new_mode
= MIN_MODE_VECTOR_UACCUM
;
1197 new_mode
= MIN_MODE_VECTOR_INT
;
1199 for (; new_mode
!= VOIDmode
; new_mode
= GET_MODE_WIDER_MODE (new_mode
))
1200 if (GET_MODE_NUNITS (new_mode
) == nunits
1201 && GET_MODE_INNER (new_mode
) == tmode
1202 && targetm
.vector_mode_supported_p (new_mode
))
1204 if (new_mode
!= VOIDmode
)
1205 op0
= gen_lowpart (new_mode
, op0
);
1208 /* Use vec_extract patterns for extracting parts of vectors whenever
1210 if (VECTOR_MODE_P (GET_MODE (op0
))
1212 && (optab_handler (vec_extract_optab
, GET_MODE (op0
))->insn_code
1213 != CODE_FOR_nothing
)
1214 && ((bitnum
+ bitsize
- 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))
1215 == bitnum
/ GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0
)))))
1217 enum machine_mode outermode
= GET_MODE (op0
);
1218 enum machine_mode innermode
= GET_MODE_INNER (outermode
);
1219 int icode
= (int) optab_handler (vec_extract_optab
, outermode
)->insn_code
;
1220 unsigned HOST_WIDE_INT pos
= bitnum
/ GET_MODE_BITSIZE (innermode
);
1221 rtx rtxpos
= GEN_INT (pos
);
1223 rtx dest
= NULL
, pat
, seq
;
1224 enum machine_mode mode0
= insn_data
[icode
].operand
[0].mode
;
1225 enum machine_mode mode1
= insn_data
[icode
].operand
[1].mode
;
1226 enum machine_mode mode2
= insn_data
[icode
].operand
[2].mode
;
1228 if (innermode
== tmode
|| innermode
== mode
)
1232 dest
= gen_reg_rtx (innermode
);
1236 if (! (*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
))
1237 dest
= copy_to_mode_reg (mode0
, dest
);
1239 if (! (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
))
1240 src
= copy_to_mode_reg (mode1
, src
);
1242 if (! (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
))
1243 rtxpos
= copy_to_mode_reg (mode1
, rtxpos
);
1245 /* We could handle this, but we should always be called with a pseudo
1246 for our targets and all insns should take them as outputs. */
1247 gcc_assert ((*insn_data
[icode
].operand
[0].predicate
) (dest
, mode0
)
1248 && (*insn_data
[icode
].operand
[1].predicate
) (src
, mode1
)
1249 && (*insn_data
[icode
].operand
[2].predicate
) (rtxpos
, mode2
));
1251 pat
= GEN_FCN (icode
) (dest
, src
, rtxpos
);
1259 return gen_lowpart (tmode
, dest
);
1264 /* Make sure we are playing with integral modes. Pun with subregs
1267 enum machine_mode imode
= int_mode_for_mode (GET_MODE (op0
));
1268 if (imode
!= GET_MODE (op0
))
1271 op0
= adjust_address (op0
, imode
, 0);
1274 gcc_assert (imode
!= BLKmode
);
1275 op0
= gen_lowpart (imode
, op0
);
1277 /* If we got a SUBREG, force it into a register since we
1278 aren't going to be able to do another SUBREG on it. */
1279 if (GET_CODE (op0
) == SUBREG
)
1280 op0
= force_reg (imode
, op0
);
1285 /* We may be accessing data outside the field, which means
1286 we can alias adjacent data. */
1289 op0
= shallow_copy_rtx (op0
);
1290 set_mem_alias_set (op0
, 0);
1291 set_mem_expr (op0
, 0);
1294 /* Extraction of a full-word or multi-word value from a structure
1295 in a register or aligned memory can be done with just a SUBREG.
1296 A subword value in the least significant part of a register
1297 can also be extracted with a SUBREG. For this, we need the
1298 byte offset of the value in op0. */
1300 bitpos
= bitnum
% unit
;
1301 offset
= bitnum
/ unit
;
1302 byte_offset
= bitpos
/ BITS_PER_UNIT
+ offset
* UNITS_PER_WORD
;
1304 /* If OP0 is a register, BITPOS must count within a word.
1305 But as we have it, it counts within whatever size OP0 now has.
1306 On a bigendian machine, these are not the same, so convert. */
1307 if (BYTES_BIG_ENDIAN
1309 && unit
> GET_MODE_BITSIZE (GET_MODE (op0
)))
1310 bitpos
+= unit
- GET_MODE_BITSIZE (GET_MODE (op0
));
1312 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1313 If that's wrong, the solution is to test for it and set TARGET to 0
1316 /* Only scalar integer modes can be converted via subregs. There is an
1317 additional problem for FP modes here in that they can have a precision
1318 which is different from the size. mode_for_size uses precision, but
1319 we want a mode based on the size, so we must avoid calling it for FP
1321 mode1
= (SCALAR_INT_MODE_P (tmode
)
1322 ? mode_for_size (bitsize
, GET_MODE_CLASS (tmode
), 0)
1325 if (((bitsize
>= BITS_PER_WORD
&& bitsize
== GET_MODE_BITSIZE (mode
)
1326 && bitpos
% BITS_PER_WORD
== 0)
1327 || (mode1
!= BLKmode
1328 /* ??? The big endian test here is wrong. This is correct
1329 if the value is in a register, and if mode_for_size is not
1330 the same mode as op0. This causes us to get unnecessarily
1331 inefficient code from the Thumb port when -mbig-endian. */
1332 && (BYTES_BIG_ENDIAN
1333 ? bitpos
+ bitsize
== BITS_PER_WORD
1336 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
1337 GET_MODE_BITSIZE (GET_MODE (op0
)))
1338 && GET_MODE_SIZE (mode1
) != 0
1339 && byte_offset
% GET_MODE_SIZE (mode1
) == 0)
1341 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (op0
))
1342 || (offset
* BITS_PER_UNIT
% bitsize
== 0
1343 && MEM_ALIGN (op0
) % bitsize
== 0)))))
1346 op0
= adjust_address (op0
, mode1
, offset
);
1347 else if (mode1
!= GET_MODE (op0
))
1349 rtx sub
= simplify_gen_subreg (mode1
, op0
, GET_MODE (op0
),
1352 goto no_subreg_mode_swap
;
1356 return convert_to_mode (tmode
, op0
, unsignedp
);
1359 no_subreg_mode_swap
:
1361 /* Handle fields bigger than a word. */
1363 if (bitsize
> BITS_PER_WORD
)
1365 /* Here we transfer the words of the field
1366 in the order least significant first.
1367 This is because the most significant word is the one which may
1368 be less than full. */
1370 unsigned int nwords
= (bitsize
+ (BITS_PER_WORD
- 1)) / BITS_PER_WORD
;
1373 if (target
== 0 || !REG_P (target
))
1374 target
= gen_reg_rtx (mode
);
1376 /* Indicate for flow that the entire target reg is being set. */
1377 emit_clobber (target
);
1379 for (i
= 0; i
< nwords
; i
++)
1381 /* If I is 0, use the low-order word in both field and target;
1382 if I is 1, use the next to lowest word; and so on. */
1383 /* Word number in TARGET to use. */
1384 unsigned int wordnum
1386 ? GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
- i
- 1
1388 /* Offset from start of field in OP0. */
1389 unsigned int bit_offset
= (WORDS_BIG_ENDIAN
1390 ? MAX (0, ((int) bitsize
- ((int) i
+ 1)
1391 * (int) BITS_PER_WORD
))
1392 : (int) i
* BITS_PER_WORD
);
1393 rtx target_part
= operand_subword (target
, wordnum
, 1, VOIDmode
);
1395 = extract_bit_field (op0
, MIN (BITS_PER_WORD
,
1396 bitsize
- i
* BITS_PER_WORD
),
1397 bitnum
+ bit_offset
, 1, target_part
, mode
,
1400 gcc_assert (target_part
);
1402 if (result_part
!= target_part
)
1403 emit_move_insn (target_part
, result_part
);
1408 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1409 need to be zero'd out. */
1410 if (GET_MODE_SIZE (GET_MODE (target
)) > nwords
* UNITS_PER_WORD
)
1412 unsigned int i
, total_words
;
1414 total_words
= GET_MODE_SIZE (GET_MODE (target
)) / UNITS_PER_WORD
;
1415 for (i
= nwords
; i
< total_words
; i
++)
1417 (operand_subword (target
,
1418 WORDS_BIG_ENDIAN
? total_words
- i
- 1 : i
,
1425 /* Signed bit field: sign-extend with two arithmetic shifts. */
1426 target
= expand_shift (LSHIFT_EXPR
, mode
, target
,
1427 build_int_cst (NULL_TREE
,
1428 GET_MODE_BITSIZE (mode
) - bitsize
),
1430 return expand_shift (RSHIFT_EXPR
, mode
, target
,
1431 build_int_cst (NULL_TREE
,
1432 GET_MODE_BITSIZE (mode
) - bitsize
),
1436 /* From here on we know the desired field is smaller than a word. */
1438 /* Check if there is a correspondingly-sized integer field, so we can
1439 safely extract it as one size of integer, if necessary; then
1440 truncate or extend to the size that is wanted; then use SUBREGs or
1441 convert_to_mode to get one of the modes we really wanted. */
1443 int_mode
= int_mode_for_mode (tmode
);
1444 if (int_mode
== BLKmode
)
1445 int_mode
= int_mode_for_mode (mode
);
1446 /* Should probably push op0 out to memory and then do a load. */
1447 gcc_assert (int_mode
!= BLKmode
);
1449 /* OFFSET is the number of words or bytes (UNIT says which)
1450 from STR_RTX to the first word or byte containing part of the field. */
1454 || GET_MODE_SIZE (GET_MODE (op0
)) > UNITS_PER_WORD
)
1457 op0
= copy_to_reg (op0
);
1458 op0
= gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD
, MODE_INT
, 0),
1459 op0
, (offset
* UNITS_PER_WORD
));
1464 /* Now OFFSET is nonzero only for memory operands. */
1465 ext_mode
= mode_for_extraction (unsignedp
? EP_extzv
: EP_extv
, 0);
1466 icode
= unsignedp
? CODE_FOR_extzv
: CODE_FOR_extv
;
1467 if (ext_mode
!= MAX_MACHINE_MODE
1469 && GET_MODE_BITSIZE (ext_mode
) >= bitsize
1470 /* If op0 is a register, we need it in EXT_MODE to make it
1471 acceptable to the format of ext(z)v. */
1472 && !(GET_CODE (op0
) == SUBREG
&& GET_MODE (op0
) != ext_mode
)
1473 && !((REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1474 && (bitsize
+ bitpos
> GET_MODE_BITSIZE (ext_mode
)))
1475 && check_predicate_volatile_ok (icode
, 1, op0
, GET_MODE (op0
)))
1477 unsigned HOST_WIDE_INT xbitpos
= bitpos
, xoffset
= offset
;
1478 rtx bitsize_rtx
, bitpos_rtx
;
1479 rtx last
= get_last_insn ();
1481 rtx xtarget
= target
;
1482 rtx xspec_target
= target
;
1483 rtx xspec_target_subreg
= 0;
1486 /* If op0 is a register, we need it in EXT_MODE to make it
1487 acceptable to the format of ext(z)v. */
1488 if (REG_P (xop0
) && GET_MODE (xop0
) != ext_mode
)
1489 xop0
= gen_rtx_SUBREG (ext_mode
, xop0
, 0);
1491 /* Get ref to first byte containing part of the field. */
1492 xop0
= adjust_address (xop0
, byte_mode
, xoffset
);
1494 /* On big-endian machines, we count bits from the most significant.
1495 If the bit field insn does not, we must invert. */
1496 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
1497 xbitpos
= unit
- bitsize
- xbitpos
;
1499 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1500 if (BITS_BIG_ENDIAN
&& !MEM_P (xop0
))
1501 xbitpos
+= GET_MODE_BITSIZE (ext_mode
) - unit
;
1503 unit
= GET_MODE_BITSIZE (ext_mode
);
1506 xtarget
= xspec_target
= gen_reg_rtx (tmode
);
1508 if (GET_MODE (xtarget
) != ext_mode
)
1510 if (REG_P (xtarget
))
1512 xtarget
= gen_lowpart (ext_mode
, xtarget
);
1513 if (GET_MODE_SIZE (ext_mode
)
1514 > GET_MODE_SIZE (GET_MODE (xspec_target
)))
1515 xspec_target_subreg
= xtarget
;
1518 xtarget
= gen_reg_rtx (ext_mode
);
1521 /* If this machine's ext(z)v insists on a register target,
1522 make sure we have one. */
1523 if (!insn_data
[(int) icode
].operand
[0].predicate (xtarget
, ext_mode
))
1524 xtarget
= gen_reg_rtx (ext_mode
);
1526 bitsize_rtx
= GEN_INT (bitsize
);
1527 bitpos_rtx
= GEN_INT (xbitpos
);
1530 ? gen_extzv (xtarget
, xop0
, bitsize_rtx
, bitpos_rtx
)
1531 : gen_extv (xtarget
, xop0
, bitsize_rtx
, bitpos_rtx
));
1535 if (xtarget
== xspec_target
)
1537 if (xtarget
== xspec_target_subreg
)
1538 return xspec_target
;
1539 return convert_extracted_bit_field (xtarget
, mode
, tmode
, unsignedp
);
1541 delete_insns_since (last
);
1544 /* If OP0 is a memory, try copying it to a register and seeing if a
1545 cheap register alternative is available. */
1546 if (ext_mode
!= MAX_MACHINE_MODE
&& MEM_P (op0
))
1548 enum machine_mode bestmode
;
1550 /* Get the mode to use for inserting into this field. If
1551 OP0 is BLKmode, get the smallest mode consistent with the
1552 alignment. If OP0 is a non-BLKmode object that is no
1553 wider than EXT_MODE, use its mode. Otherwise, use the
1554 smallest mode containing the field. */
1556 if (GET_MODE (op0
) == BLKmode
1557 || (ext_mode
!= MAX_MACHINE_MODE
1558 && GET_MODE_SIZE (GET_MODE (op0
)) > GET_MODE_SIZE (ext_mode
)))
1559 bestmode
= get_best_mode (bitsize
, bitnum
, MEM_ALIGN (op0
),
1560 (ext_mode
== MAX_MACHINE_MODE
1561 ? VOIDmode
: ext_mode
),
1562 MEM_VOLATILE_P (op0
));
1564 bestmode
= GET_MODE (op0
);
1566 if (bestmode
!= VOIDmode
1567 && !(SLOW_UNALIGNED_ACCESS (bestmode
, MEM_ALIGN (op0
))
1568 && GET_MODE_BITSIZE (bestmode
) > MEM_ALIGN (op0
)))
1570 unsigned HOST_WIDE_INT xoffset
, xbitpos
;
1572 /* Compute the offset as a multiple of this unit,
1573 counting in bytes. */
1574 unit
= GET_MODE_BITSIZE (bestmode
);
1575 xoffset
= (bitnum
/ unit
) * GET_MODE_SIZE (bestmode
);
1576 xbitpos
= bitnum
% unit
;
1578 /* Make sure the register is big enough for the whole field. */
1579 if (xoffset
* BITS_PER_UNIT
+ unit
1580 >= offset
* BITS_PER_UNIT
+ bitsize
)
1582 rtx last
, result
, xop0
;
1584 last
= get_last_insn ();
1586 /* Fetch it to a register in that size. */
1587 xop0
= adjust_address (op0
, bestmode
, xoffset
);
1588 xop0
= force_reg (bestmode
, xop0
);
1589 result
= extract_bit_field_1 (xop0
, bitsize
, xbitpos
,
1591 mode
, tmode
, false);
1595 delete_insns_since (last
);
1603 target
= extract_fixed_bit_field (int_mode
, op0
, offset
, bitsize
,
1604 bitpos
, target
, unsignedp
);
1605 return convert_extracted_bit_field (target
, mode
, tmode
, unsignedp
);
1608 /* Generate code to extract a byte-field from STR_RTX
1609 containing BITSIZE bits, starting at BITNUM,
1610 and put it in TARGET if possible (if TARGET is nonzero).
1611 Regardless of TARGET, we return the rtx for where the value is placed.
1613 STR_RTX is the structure containing the byte (a REG or MEM).
1614 UNSIGNEDP is nonzero if this is an unsigned bit field.
1615 MODE is the natural mode of the field value once extracted.
1616 TMODE is the mode the caller would like the value to have;
1617 but the value may be returned with type MODE instead.
1619 If a TARGET is specified and we can store in it at no extra cost,
1620 we do so, and return TARGET.
1621 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1622 if they are equally easy. */
1625 extract_bit_field (rtx str_rtx
, unsigned HOST_WIDE_INT bitsize
,
1626 unsigned HOST_WIDE_INT bitnum
, int unsignedp
, rtx target
,
1627 enum machine_mode mode
, enum machine_mode tmode
)
1629 return extract_bit_field_1 (str_rtx
, bitsize
, bitnum
, unsignedp
,
1630 target
, mode
, tmode
, true);
1633 /* Extract a bit field using shifts and boolean operations
1634 Returns an rtx to represent the value.
1635 OP0 addresses a register (word) or memory (byte).
1636 BITPOS says which bit within the word or byte the bit field starts in.
1637 OFFSET says how many bytes farther the bit field starts;
1638 it is 0 if OP0 is a register.
1639 BITSIZE says how many bits long the bit field is.
1640 (If OP0 is a register, it may be narrower than a full word,
1641 but BITPOS still counts within a full word,
1642 which is significant on bigendian machines.)
1644 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1645 If TARGET is nonzero, attempts to store the value there
1646 and return TARGET, but this is not guaranteed.
1647 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1650 extract_fixed_bit_field (enum machine_mode tmode
, rtx op0
,
1651 unsigned HOST_WIDE_INT offset
,
1652 unsigned HOST_WIDE_INT bitsize
,
1653 unsigned HOST_WIDE_INT bitpos
, rtx target
,
1656 unsigned int total_bits
= BITS_PER_WORD
;
1657 enum machine_mode mode
;
1659 if (GET_CODE (op0
) == SUBREG
|| REG_P (op0
))
1661 /* Special treatment for a bit field split across two registers. */
1662 if (bitsize
+ bitpos
> BITS_PER_WORD
)
1663 return extract_split_bit_field (op0
, bitsize
, bitpos
, unsignedp
);
1667 /* Get the proper mode to use for this field. We want a mode that
1668 includes the entire field. If such a mode would be larger than
1669 a word, we won't be doing the extraction the normal way. */
1671 mode
= get_best_mode (bitsize
, bitpos
+ offset
* BITS_PER_UNIT
,
1672 MEM_ALIGN (op0
), word_mode
, MEM_VOLATILE_P (op0
));
1674 if (mode
== VOIDmode
)
1675 /* The only way this should occur is if the field spans word
1677 return extract_split_bit_field (op0
, bitsize
,
1678 bitpos
+ offset
* BITS_PER_UNIT
,
1681 total_bits
= GET_MODE_BITSIZE (mode
);
1683 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1684 be in the range 0 to total_bits-1, and put any excess bytes in
1686 if (bitpos
>= total_bits
)
1688 offset
+= (bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
);
1689 bitpos
-= ((bitpos
/ total_bits
) * (total_bits
/ BITS_PER_UNIT
)
1693 /* Get ref to an aligned byte, halfword, or word containing the field.
1694 Adjust BITPOS to be position within a word,
1695 and OFFSET to be the offset of that word.
1696 Then alter OP0 to refer to that word. */
1697 bitpos
+= (offset
% (total_bits
/ BITS_PER_UNIT
)) * BITS_PER_UNIT
;
1698 offset
-= (offset
% (total_bits
/ BITS_PER_UNIT
));
1699 op0
= adjust_address (op0
, mode
, offset
);
1702 mode
= GET_MODE (op0
);
1704 if (BYTES_BIG_ENDIAN
)
1705 /* BITPOS is the distance between our msb and that of OP0.
1706 Convert it to the distance from the lsb. */
1707 bitpos
= total_bits
- bitsize
- bitpos
;
1709 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1710 We have reduced the big-endian case to the little-endian case. */
1716 /* If the field does not already start at the lsb,
1717 shift it so it does. */
1718 tree amount
= build_int_cst (NULL_TREE
, bitpos
);
1719 /* Maybe propagate the target for the shift. */
1720 /* But not if we will return it--could confuse integrate.c. */
1721 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1722 if (tmode
!= mode
) subtarget
= 0;
1723 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1725 /* Convert the value to the desired mode. */
1727 op0
= convert_to_mode (tmode
, op0
, 1);
1729 /* Unless the msb of the field used to be the msb when we shifted,
1730 mask out the upper bits. */
1732 if (GET_MODE_BITSIZE (mode
) != bitpos
+ bitsize
)
1733 return expand_binop (GET_MODE (op0
), and_optab
, op0
,
1734 mask_rtx (GET_MODE (op0
), 0, bitsize
, 0),
1735 target
, 1, OPTAB_LIB_WIDEN
);
1739 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1740 then arithmetic-shift its lsb to the lsb of the word. */
1741 op0
= force_reg (mode
, op0
);
1745 /* Find the narrowest integer mode that contains the field. */
1747 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1748 mode
= GET_MODE_WIDER_MODE (mode
))
1749 if (GET_MODE_BITSIZE (mode
) >= bitsize
+ bitpos
)
1751 op0
= convert_to_mode (mode
, op0
, 0);
1755 if (GET_MODE_BITSIZE (mode
) != (bitsize
+ bitpos
))
1758 = build_int_cst (NULL_TREE
,
1759 GET_MODE_BITSIZE (mode
) - (bitsize
+ bitpos
));
1760 /* Maybe propagate the target for the shift. */
1761 rtx subtarget
= (target
!= 0 && REG_P (target
) ? target
: 0);
1762 op0
= expand_shift (LSHIFT_EXPR
, mode
, op0
, amount
, subtarget
, 1);
1765 return expand_shift (RSHIFT_EXPR
, mode
, op0
,
1766 build_int_cst (NULL_TREE
,
1767 GET_MODE_BITSIZE (mode
) - bitsize
),
1771 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1772 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1773 complement of that if COMPLEMENT. The mask is truncated if
1774 necessary to the width of mode MODE. The mask is zero-extended if
1775 BITSIZE+BITPOS is too small for MODE. */
1778 mask_rtx (enum machine_mode mode
, int bitpos
, int bitsize
, int complement
)
1780 HOST_WIDE_INT masklow
, maskhigh
;
1784 else if (bitpos
< HOST_BITS_PER_WIDE_INT
)
1785 masklow
= (HOST_WIDE_INT
) -1 << bitpos
;
1789 if (bitpos
+ bitsize
< HOST_BITS_PER_WIDE_INT
)
1790 masklow
&= ((unsigned HOST_WIDE_INT
) -1
1791 >> (HOST_BITS_PER_WIDE_INT
- bitpos
- bitsize
));
1793 if (bitpos
<= HOST_BITS_PER_WIDE_INT
)
1796 maskhigh
= (HOST_WIDE_INT
) -1 << (bitpos
- HOST_BITS_PER_WIDE_INT
);
1800 else if (bitpos
+ bitsize
> HOST_BITS_PER_WIDE_INT
)
1801 maskhigh
&= ((unsigned HOST_WIDE_INT
) -1
1802 >> (2 * HOST_BITS_PER_WIDE_INT
- bitpos
- bitsize
));
1808 maskhigh
= ~maskhigh
;
1812 return immed_double_const (masklow
, maskhigh
, mode
);
1815 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1816 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1819 lshift_value (enum machine_mode mode
, rtx value
, int bitpos
, int bitsize
)
1821 unsigned HOST_WIDE_INT v
= INTVAL (value
);
1822 HOST_WIDE_INT low
, high
;
1824 if (bitsize
< HOST_BITS_PER_WIDE_INT
)
1825 v
&= ~((HOST_WIDE_INT
) -1 << bitsize
);
1827 if (bitpos
< HOST_BITS_PER_WIDE_INT
)
1830 high
= (bitpos
> 0 ? (v
>> (HOST_BITS_PER_WIDE_INT
- bitpos
)) : 0);
1835 high
= v
<< (bitpos
- HOST_BITS_PER_WIDE_INT
);
1838 return immed_double_const (low
, high
, mode
);
1841 /* Extract a bit field that is split across two words
1842 and return an RTX for the result.
1844 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1845 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1846 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1849 extract_split_bit_field (rtx op0
, unsigned HOST_WIDE_INT bitsize
,
1850 unsigned HOST_WIDE_INT bitpos
, int unsignedp
)
1853 unsigned int bitsdone
= 0;
1854 rtx result
= NULL_RTX
;
1857 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1859 if (REG_P (op0
) || GET_CODE (op0
) == SUBREG
)
1860 unit
= BITS_PER_WORD
;
1862 unit
= MIN (MEM_ALIGN (op0
), BITS_PER_WORD
);
1864 while (bitsdone
< bitsize
)
1866 unsigned HOST_WIDE_INT thissize
;
1868 unsigned HOST_WIDE_INT thispos
;
1869 unsigned HOST_WIDE_INT offset
;
1871 offset
= (bitpos
+ bitsdone
) / unit
;
1872 thispos
= (bitpos
+ bitsdone
) % unit
;
1874 /* THISSIZE must not overrun a word boundary. Otherwise,
1875 extract_fixed_bit_field will call us again, and we will mutually
1877 thissize
= MIN (bitsize
- bitsdone
, BITS_PER_WORD
);
1878 thissize
= MIN (thissize
, unit
- thispos
);
1880 /* If OP0 is a register, then handle OFFSET here.
1882 When handling multiword bitfields, extract_bit_field may pass
1883 down a word_mode SUBREG of a larger REG for a bitfield that actually
1884 crosses a word boundary. Thus, for a SUBREG, we must find
1885 the current word starting from the base register. */
1886 if (GET_CODE (op0
) == SUBREG
)
1888 int word_offset
= (SUBREG_BYTE (op0
) / UNITS_PER_WORD
) + offset
;
1889 word
= operand_subword_force (SUBREG_REG (op0
), word_offset
,
1890 GET_MODE (SUBREG_REG (op0
)));
1893 else if (REG_P (op0
))
1895 word
= operand_subword_force (op0
, offset
, GET_MODE (op0
));
1901 /* Extract the parts in bit-counting order,
1902 whose meaning is determined by BYTES_PER_UNIT.
1903 OFFSET is in UNITs, and UNIT is in bits.
1904 extract_fixed_bit_field wants offset in bytes. */
1905 part
= extract_fixed_bit_field (word_mode
, word
,
1906 offset
* unit
/ BITS_PER_UNIT
,
1907 thissize
, thispos
, 0, 1);
1908 bitsdone
+= thissize
;
1910 /* Shift this part into place for the result. */
1911 if (BYTES_BIG_ENDIAN
)
1913 if (bitsize
!= bitsdone
)
1914 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
1915 build_int_cst (NULL_TREE
, bitsize
- bitsdone
),
1920 if (bitsdone
!= thissize
)
1921 part
= expand_shift (LSHIFT_EXPR
, word_mode
, part
,
1922 build_int_cst (NULL_TREE
,
1923 bitsdone
- thissize
), 0, 1);
1929 /* Combine the parts with bitwise or. This works
1930 because we extracted each part as an unsigned bit field. */
1931 result
= expand_binop (word_mode
, ior_optab
, part
, result
, NULL_RTX
, 1,
1937 /* Unsigned bit field: we are done. */
1940 /* Signed bit field: sign-extend with two arithmetic shifts. */
1941 result
= expand_shift (LSHIFT_EXPR
, word_mode
, result
,
1942 build_int_cst (NULL_TREE
, BITS_PER_WORD
- bitsize
),
1944 return expand_shift (RSHIFT_EXPR
, word_mode
, result
,
1945 build_int_cst (NULL_TREE
, BITS_PER_WORD
- bitsize
),
1949 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1950 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1951 MODE, fill the upper bits with zeros. Fail if the layout of either
1952 mode is unknown (as for CC modes) or if the extraction would involve
1953 unprofitable mode punning. Return the value on success, otherwise
1956 This is different from gen_lowpart* in these respects:
1958 - the returned value must always be considered an rvalue
1960 - when MODE is wider than SRC_MODE, the extraction involves
1963 - when MODE is smaller than SRC_MODE, the extraction involves
1964 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
1966 In other words, this routine performs a computation, whereas the
1967 gen_lowpart* routines are conceptually lvalue or rvalue subreg
1971 extract_low_bits (enum machine_mode mode
, enum machine_mode src_mode
, rtx src
)
1973 enum machine_mode int_mode
, src_int_mode
;
1975 if (mode
== src_mode
)
1978 if (CONSTANT_P (src
))
1979 return simplify_gen_subreg (mode
, src
, src_mode
,
1980 subreg_lowpart_offset (mode
, src_mode
));
1982 if (GET_MODE_CLASS (mode
) == MODE_CC
|| GET_MODE_CLASS (src_mode
) == MODE_CC
)
1985 if (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (src_mode
)
1986 && MODES_TIEABLE_P (mode
, src_mode
))
1988 rtx x
= gen_lowpart_common (mode
, src
);
1993 src_int_mode
= int_mode_for_mode (src_mode
);
1994 int_mode
= int_mode_for_mode (mode
);
1995 if (src_int_mode
== BLKmode
|| int_mode
== BLKmode
)
1998 if (!MODES_TIEABLE_P (src_int_mode
, src_mode
))
2000 if (!MODES_TIEABLE_P (int_mode
, mode
))
2003 src
= gen_lowpart (src_int_mode
, src
);
2004 src
= convert_modes (int_mode
, src_int_mode
, src
, true);
2005 src
= gen_lowpart (mode
, src
);
2009 /* Add INC into TARGET. */
2012 expand_inc (rtx target
, rtx inc
)
2014 rtx value
= expand_binop (GET_MODE (target
), add_optab
,
2016 target
, 0, OPTAB_LIB_WIDEN
);
2017 if (value
!= target
)
2018 emit_move_insn (target
, value
);
2021 /* Subtract DEC from TARGET. */
2024 expand_dec (rtx target
, rtx dec
)
2026 rtx value
= expand_binop (GET_MODE (target
), sub_optab
,
2028 target
, 0, OPTAB_LIB_WIDEN
);
2029 if (value
!= target
)
2030 emit_move_insn (target
, value
);
2033 /* Output a shift instruction for expression code CODE,
2034 with SHIFTED being the rtx for the value to shift,
2035 and AMOUNT the tree for the amount to shift by.
2036 Store the result in the rtx TARGET, if that is convenient.
2037 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2038 Return the rtx for where the value is. */
2041 expand_shift (enum tree_code code
, enum machine_mode mode
, rtx shifted
,
2042 tree amount
, rtx target
, int unsignedp
)
2045 int left
= (code
== LSHIFT_EXPR
|| code
== LROTATE_EXPR
);
2046 int rotate
= (code
== LROTATE_EXPR
|| code
== RROTATE_EXPR
);
2047 optab lshift_optab
= ashl_optab
;
2048 optab rshift_arith_optab
= ashr_optab
;
2049 optab rshift_uns_optab
= lshr_optab
;
2050 optab lrotate_optab
= rotl_optab
;
2051 optab rrotate_optab
= rotr_optab
;
2052 enum machine_mode op1_mode
;
2055 op1
= expand_normal (amount
);
2056 op1_mode
= GET_MODE (op1
);
2058 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2059 shift amount is a vector, use the vector/vector shift patterns. */
2060 if (VECTOR_MODE_P (mode
) && VECTOR_MODE_P (op1_mode
))
2062 lshift_optab
= vashl_optab
;
2063 rshift_arith_optab
= vashr_optab
;
2064 rshift_uns_optab
= vlshr_optab
;
2065 lrotate_optab
= vrotl_optab
;
2066 rrotate_optab
= vrotr_optab
;
2069 /* Previously detected shift-counts computed by NEGATE_EXPR
2070 and shifted in the other direction; but that does not work
2073 if (SHIFT_COUNT_TRUNCATED
)
2075 if (GET_CODE (op1
) == CONST_INT
2076 && ((unsigned HOST_WIDE_INT
) INTVAL (op1
) >=
2077 (unsigned HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)))
2078 op1
= GEN_INT ((unsigned HOST_WIDE_INT
) INTVAL (op1
)
2079 % GET_MODE_BITSIZE (mode
));
2080 else if (GET_CODE (op1
) == SUBREG
2081 && subreg_lowpart_p (op1
))
2082 op1
= SUBREG_REG (op1
);
2085 if (op1
== const0_rtx
)
2088 /* Check whether its cheaper to implement a left shift by a constant
2089 bit count by a sequence of additions. */
2090 if (code
== LSHIFT_EXPR
2091 && GET_CODE (op1
) == CONST_INT
2093 && INTVAL (op1
) < GET_MODE_BITSIZE (mode
)
2094 && INTVAL (op1
) < MAX_BITS_PER_WORD
2095 && shift_cost
[mode
][INTVAL (op1
)] > INTVAL (op1
) * add_cost
[mode
]
2096 && shift_cost
[mode
][INTVAL (op1
)] != MAX_COST
)
2099 for (i
= 0; i
< INTVAL (op1
); i
++)
2101 temp
= force_reg (mode
, shifted
);
2102 shifted
= expand_binop (mode
, add_optab
, temp
, temp
, NULL_RTX
,
2103 unsignedp
, OPTAB_LIB_WIDEN
);
2108 for (attempt
= 0; temp
== 0 && attempt
< 3; attempt
++)
2110 enum optab_methods methods
;
2113 methods
= OPTAB_DIRECT
;
2114 else if (attempt
== 1)
2115 methods
= OPTAB_WIDEN
;
2117 methods
= OPTAB_LIB_WIDEN
;
2121 /* Widening does not work for rotation. */
2122 if (methods
== OPTAB_WIDEN
)
2124 else if (methods
== OPTAB_LIB_WIDEN
)
2126 /* If we have been unable to open-code this by a rotation,
2127 do it as the IOR of two shifts. I.e., to rotate A
2128 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2129 where C is the bitsize of A.
2131 It is theoretically possible that the target machine might
2132 not be able to perform either shift and hence we would
2133 be making two libcalls rather than just the one for the
2134 shift (similarly if IOR could not be done). We will allow
2135 this extremely unlikely lossage to avoid complicating the
2138 rtx subtarget
= target
== shifted
? 0 : target
;
2139 tree new_amount
, other_amount
;
2141 tree type
= TREE_TYPE (amount
);
2142 if (GET_MODE (op1
) != TYPE_MODE (type
)
2143 && GET_MODE (op1
) != VOIDmode
)
2144 op1
= convert_to_mode (TYPE_MODE (type
), op1
, 1);
2145 new_amount
= make_tree (type
, op1
);
2147 = fold_build2 (MINUS_EXPR
, type
,
2148 build_int_cst (type
, GET_MODE_BITSIZE (mode
)),
2151 shifted
= force_reg (mode
, shifted
);
2153 temp
= expand_shift (left
? LSHIFT_EXPR
: RSHIFT_EXPR
,
2154 mode
, shifted
, new_amount
, 0, 1);
2155 temp1
= expand_shift (left
? RSHIFT_EXPR
: LSHIFT_EXPR
,
2156 mode
, shifted
, other_amount
, subtarget
, 1);
2157 return expand_binop (mode
, ior_optab
, temp
, temp1
, target
,
2158 unsignedp
, methods
);
2161 temp
= expand_binop (mode
,
2162 left
? lrotate_optab
: rrotate_optab
,
2163 shifted
, op1
, target
, unsignedp
, methods
);
2166 temp
= expand_binop (mode
,
2167 left
? lshift_optab
: rshift_uns_optab
,
2168 shifted
, op1
, target
, unsignedp
, methods
);
2170 /* Do arithmetic shifts.
2171 Also, if we are going to widen the operand, we can just as well
2172 use an arithmetic right-shift instead of a logical one. */
2173 if (temp
== 0 && ! rotate
2174 && (! unsignedp
|| (! left
&& methods
== OPTAB_WIDEN
)))
2176 enum optab_methods methods1
= methods
;
2178 /* If trying to widen a log shift to an arithmetic shift,
2179 don't accept an arithmetic shift of the same size. */
2181 methods1
= OPTAB_MUST_WIDEN
;
2183 /* Arithmetic shift */
2185 temp
= expand_binop (mode
,
2186 left
? lshift_optab
: rshift_arith_optab
,
2187 shifted
, op1
, target
, unsignedp
, methods1
);
2190 /* We used to try extzv here for logical right shifts, but that was
2191 only useful for one machine, the VAX, and caused poor code
2192 generation there for lshrdi3, so the code was deleted and a
2193 define_expand for lshrsi3 was added to vax.md. */
2213 /* This structure holds the "cost" of a multiply sequence. The
2214 "cost" field holds the total rtx_cost of every operator in the
2215 synthetic multiplication sequence, hence cost(a op b) is defined
2216 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2217 The "latency" field holds the minimum possible latency of the
2218 synthetic multiply, on a hypothetical infinitely parallel CPU.
2219 This is the critical path, or the maximum height, of the expression
2220 tree which is the sum of rtx_costs on the most expensive path from
2221 any leaf to the root. Hence latency(a op b) is defined as zero for
2222 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2225 short cost
; /* Total rtx_cost of the multiplication sequence. */
2226 short latency
; /* The latency of the multiplication sequence. */
2229 /* This macro is used to compare a pointer to a mult_cost against an
2230 single integer "rtx_cost" value. This is equivalent to the macro
2231 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2232 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2233 || ((X)->cost == (Y) && (X)->latency < (Y)))
2235 /* This macro is used to compare two pointers to mult_costs against
2236 each other. The macro returns true if X is cheaper than Y.
2237 Currently, the cheaper of two mult_costs is the one with the
2238 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2239 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2240 || ((X)->cost == (Y)->cost \
2241 && (X)->latency < (Y)->latency))
2243 /* This structure records a sequence of operations.
2244 `ops' is the number of operations recorded.
2245 `cost' is their total cost.
2246 The operations are stored in `op' and the corresponding
2247 logarithms of the integer coefficients in `log'.
2249 These are the operations:
2250 alg_zero total := 0;
2251 alg_m total := multiplicand;
2252 alg_shift total := total * coeff
2253 alg_add_t_m2 total := total + multiplicand * coeff;
2254 alg_sub_t_m2 total := total - multiplicand * coeff;
2255 alg_add_factor total := total * coeff + total;
2256 alg_sub_factor total := total * coeff - total;
2257 alg_add_t2_m total := total * coeff + multiplicand;
2258 alg_sub_t2_m total := total * coeff - multiplicand;
2260 The first operand must be either alg_zero or alg_m. */
2264 struct mult_cost cost
;
2266 /* The size of the OP and LOG fields are not directly related to the
2267 word size, but the worst-case algorithms will be if we have few
2268 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2269 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2270 in total wordsize operations. */
2271 enum alg_code op
[MAX_BITS_PER_WORD
];
2272 char log
[MAX_BITS_PER_WORD
];
2275 /* The entry for our multiplication cache/hash table. */
2276 struct alg_hash_entry
{
2277 /* The number we are multiplying by. */
2278 unsigned HOST_WIDE_INT t
;
2280 /* The mode in which we are multiplying something by T. */
2281 enum machine_mode mode
;
2283 /* The best multiplication algorithm for t. */
2286 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2287 Otherwise, the cost within which multiplication by T is
2289 struct mult_cost cost
;
2292 /* The number of cache/hash entries. */
2293 #if HOST_BITS_PER_WIDE_INT == 64
2294 #define NUM_ALG_HASH_ENTRIES 1031
2296 #define NUM_ALG_HASH_ENTRIES 307
2299 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2300 actually a hash table. If we have a collision, that the older
2301 entry is kicked out. */
2302 static struct alg_hash_entry alg_hash
[NUM_ALG_HASH_ENTRIES
];
2304 /* Indicates the type of fixup needed after a constant multiplication.
2305 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2306 the result should be negated, and ADD_VARIANT means that the
2307 multiplicand should be added to the result. */
2308 enum mult_variant
{basic_variant
, negate_variant
, add_variant
};
2310 static void synth_mult (struct algorithm
*, unsigned HOST_WIDE_INT
,
2311 const struct mult_cost
*, enum machine_mode mode
);
2312 static bool choose_mult_variant (enum machine_mode
, HOST_WIDE_INT
,
2313 struct algorithm
*, enum mult_variant
*, int);
2314 static rtx
expand_mult_const (enum machine_mode
, rtx
, HOST_WIDE_INT
, rtx
,
2315 const struct algorithm
*, enum mult_variant
);
2316 static unsigned HOST_WIDE_INT
choose_multiplier (unsigned HOST_WIDE_INT
, int,
2317 int, rtx
*, int *, int *);
2318 static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT
, int);
2319 static rtx
extract_high_half (enum machine_mode
, rtx
);
2320 static rtx
expand_mult_highpart (enum machine_mode
, rtx
, rtx
, rtx
, int, int);
2321 static rtx
expand_mult_highpart_optab (enum machine_mode
, rtx
, rtx
, rtx
,
2323 /* Compute and return the best algorithm for multiplying by T.
2324 The algorithm must cost less than cost_limit
2325 If retval.cost >= COST_LIMIT, no algorithm was found and all
2326 other field of the returned struct are undefined.
2327 MODE is the machine mode of the multiplication. */
2330 synth_mult (struct algorithm
*alg_out
, unsigned HOST_WIDE_INT t
,
2331 const struct mult_cost
*cost_limit
, enum machine_mode mode
)
2334 struct algorithm
*alg_in
, *best_alg
;
2335 struct mult_cost best_cost
;
2336 struct mult_cost new_limit
;
2337 int op_cost
, op_latency
;
2338 unsigned HOST_WIDE_INT q
;
2339 int maxm
= MIN (BITS_PER_WORD
, GET_MODE_BITSIZE (mode
));
2341 bool cache_hit
= false;
2342 enum alg_code cache_alg
= alg_zero
;
2344 /* Indicate that no algorithm is yet found. If no algorithm
2345 is found, this value will be returned and indicate failure. */
2346 alg_out
->cost
.cost
= cost_limit
->cost
+ 1;
2347 alg_out
->cost
.latency
= cost_limit
->latency
+ 1;
2349 if (cost_limit
->cost
< 0
2350 || (cost_limit
->cost
== 0 && cost_limit
->latency
<= 0))
2353 /* Restrict the bits of "t" to the multiplication's mode. */
2354 t
&= GET_MODE_MASK (mode
);
2356 /* t == 1 can be done in zero cost. */
2360 alg_out
->cost
.cost
= 0;
2361 alg_out
->cost
.latency
= 0;
2362 alg_out
->op
[0] = alg_m
;
2366 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2370 if (MULT_COST_LESS (cost_limit
, zero_cost
))
2375 alg_out
->cost
.cost
= zero_cost
;
2376 alg_out
->cost
.latency
= zero_cost
;
2377 alg_out
->op
[0] = alg_zero
;
2382 /* We'll be needing a couple extra algorithm structures now. */
2384 alg_in
= XALLOCA (struct algorithm
);
2385 best_alg
= XALLOCA (struct algorithm
);
2386 best_cost
= *cost_limit
;
2388 /* Compute the hash index. */
2389 hash_index
= (t
^ (unsigned int) mode
) % NUM_ALG_HASH_ENTRIES
;
2391 /* See if we already know what to do for T. */
2392 if (alg_hash
[hash_index
].t
== t
2393 && alg_hash
[hash_index
].mode
== mode
2394 && alg_hash
[hash_index
].alg
!= alg_unknown
)
2396 cache_alg
= alg_hash
[hash_index
].alg
;
2398 if (cache_alg
== alg_impossible
)
2400 /* The cache tells us that it's impossible to synthesize
2401 multiplication by T within alg_hash[hash_index].cost. */
2402 if (!CHEAPER_MULT_COST (&alg_hash
[hash_index
].cost
, cost_limit
))
2403 /* COST_LIMIT is at least as restrictive as the one
2404 recorded in the hash table, in which case we have no
2405 hope of synthesizing a multiplication. Just
2409 /* If we get here, COST_LIMIT is less restrictive than the
2410 one recorded in the hash table, so we may be able to
2411 synthesize a multiplication. Proceed as if we didn't
2412 have the cache entry. */
2416 if (CHEAPER_MULT_COST (cost_limit
, &alg_hash
[hash_index
].cost
))
2417 /* The cached algorithm shows that this multiplication
2418 requires more cost than COST_LIMIT. Just return. This
2419 way, we don't clobber this cache entry with
2420 alg_impossible but retain useful information. */
2432 goto do_alg_addsub_t_m2
;
2434 case alg_add_factor
:
2435 case alg_sub_factor
:
2436 goto do_alg_addsub_factor
;
2439 goto do_alg_add_t2_m
;
2442 goto do_alg_sub_t2_m
;
2450 /* If we have a group of zero bits at the low-order part of T, try
2451 multiplying by the remaining bits and then doing a shift. */
2456 m
= floor_log2 (t
& -t
); /* m = number of low zero bits */
2460 /* The function expand_shift will choose between a shift and
2461 a sequence of additions, so the observed cost is given as
2462 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2463 op_cost
= m
* add_cost
[mode
];
2464 if (shift_cost
[mode
][m
] < op_cost
)
2465 op_cost
= shift_cost
[mode
][m
];
2466 new_limit
.cost
= best_cost
.cost
- op_cost
;
2467 new_limit
.latency
= best_cost
.latency
- op_cost
;
2468 synth_mult (alg_in
, q
, &new_limit
, mode
);
2470 alg_in
->cost
.cost
+= op_cost
;
2471 alg_in
->cost
.latency
+= op_cost
;
2472 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2474 struct algorithm
*x
;
2475 best_cost
= alg_in
->cost
;
2476 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2477 best_alg
->log
[best_alg
->ops
] = m
;
2478 best_alg
->op
[best_alg
->ops
] = alg_shift
;
2485 /* If we have an odd number, add or subtract one. */
2488 unsigned HOST_WIDE_INT w
;
2491 for (w
= 1; (w
& t
) != 0; w
<<= 1)
2493 /* If T was -1, then W will be zero after the loop. This is another
2494 case where T ends with ...111. Handling this with (T + 1) and
2495 subtract 1 produces slightly better code and results in algorithm
2496 selection much faster than treating it like the ...0111 case
2500 /* Reject the case where t is 3.
2501 Thus we prefer addition in that case. */
2504 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2506 op_cost
= add_cost
[mode
];
2507 new_limit
.cost
= best_cost
.cost
- op_cost
;
2508 new_limit
.latency
= best_cost
.latency
- op_cost
;
2509 synth_mult (alg_in
, t
+ 1, &new_limit
, mode
);
2511 alg_in
->cost
.cost
+= op_cost
;
2512 alg_in
->cost
.latency
+= op_cost
;
2513 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2515 struct algorithm
*x
;
2516 best_cost
= alg_in
->cost
;
2517 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2518 best_alg
->log
[best_alg
->ops
] = 0;
2519 best_alg
->op
[best_alg
->ops
] = alg_sub_t_m2
;
2524 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2526 op_cost
= add_cost
[mode
];
2527 new_limit
.cost
= best_cost
.cost
- op_cost
;
2528 new_limit
.latency
= best_cost
.latency
- op_cost
;
2529 synth_mult (alg_in
, t
- 1, &new_limit
, mode
);
2531 alg_in
->cost
.cost
+= op_cost
;
2532 alg_in
->cost
.latency
+= op_cost
;
2533 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2535 struct algorithm
*x
;
2536 best_cost
= alg_in
->cost
;
2537 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2538 best_alg
->log
[best_alg
->ops
] = 0;
2539 best_alg
->op
[best_alg
->ops
] = alg_add_t_m2
;
2546 /* Look for factors of t of the form
2547 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2548 If we find such a factor, we can multiply by t using an algorithm that
2549 multiplies by q, shift the result by m and add/subtract it to itself.
2551 We search for large factors first and loop down, even if large factors
2552 are less probable than small; if we find a large factor we will find a
2553 good sequence quickly, and therefore be able to prune (by decreasing
2554 COST_LIMIT) the search. */
2556 do_alg_addsub_factor
:
2557 for (m
= floor_log2 (t
- 1); m
>= 2; m
--)
2559 unsigned HOST_WIDE_INT d
;
2561 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) + 1;
2562 if (t
% d
== 0 && t
> d
&& m
< maxm
2563 && (!cache_hit
|| cache_alg
== alg_add_factor
))
2565 /* If the target has a cheap shift-and-add instruction use
2566 that in preference to a shift insn followed by an add insn.
2567 Assume that the shift-and-add is "atomic" with a latency
2568 equal to its cost, otherwise assume that on superscalar
2569 hardware the shift may be executed concurrently with the
2570 earlier steps in the algorithm. */
2571 op_cost
= add_cost
[mode
] + shift_cost
[mode
][m
];
2572 if (shiftadd_cost
[mode
][m
] < op_cost
)
2574 op_cost
= shiftadd_cost
[mode
][m
];
2575 op_latency
= op_cost
;
2578 op_latency
= add_cost
[mode
];
2580 new_limit
.cost
= best_cost
.cost
- op_cost
;
2581 new_limit
.latency
= best_cost
.latency
- op_latency
;
2582 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2584 alg_in
->cost
.cost
+= op_cost
;
2585 alg_in
->cost
.latency
+= op_latency
;
2586 if (alg_in
->cost
.latency
< op_cost
)
2587 alg_in
->cost
.latency
= op_cost
;
2588 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2590 struct algorithm
*x
;
2591 best_cost
= alg_in
->cost
;
2592 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2593 best_alg
->log
[best_alg
->ops
] = m
;
2594 best_alg
->op
[best_alg
->ops
] = alg_add_factor
;
2596 /* Other factors will have been taken care of in the recursion. */
2600 d
= ((unsigned HOST_WIDE_INT
) 1 << m
) - 1;
2601 if (t
% d
== 0 && t
> d
&& m
< maxm
2602 && (!cache_hit
|| cache_alg
== alg_sub_factor
))
2604 /* If the target has a cheap shift-and-subtract insn use
2605 that in preference to a shift insn followed by a sub insn.
2606 Assume that the shift-and-sub is "atomic" with a latency
2607 equal to it's cost, otherwise assume that on superscalar
2608 hardware the shift may be executed concurrently with the
2609 earlier steps in the algorithm. */
2610 op_cost
= add_cost
[mode
] + shift_cost
[mode
][m
];
2611 if (shiftsub_cost
[mode
][m
] < op_cost
)
2613 op_cost
= shiftsub_cost
[mode
][m
];
2614 op_latency
= op_cost
;
2617 op_latency
= add_cost
[mode
];
2619 new_limit
.cost
= best_cost
.cost
- op_cost
;
2620 new_limit
.latency
= best_cost
.latency
- op_latency
;
2621 synth_mult (alg_in
, t
/ d
, &new_limit
, mode
);
2623 alg_in
->cost
.cost
+= op_cost
;
2624 alg_in
->cost
.latency
+= op_latency
;
2625 if (alg_in
->cost
.latency
< op_cost
)
2626 alg_in
->cost
.latency
= op_cost
;
2627 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2629 struct algorithm
*x
;
2630 best_cost
= alg_in
->cost
;
2631 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2632 best_alg
->log
[best_alg
->ops
] = m
;
2633 best_alg
->op
[best_alg
->ops
] = alg_sub_factor
;
2641 /* Try shift-and-add (load effective address) instructions,
2642 i.e. do a*3, a*5, a*9. */
2649 if (m
>= 0 && m
< maxm
)
2651 op_cost
= shiftadd_cost
[mode
][m
];
2652 new_limit
.cost
= best_cost
.cost
- op_cost
;
2653 new_limit
.latency
= best_cost
.latency
- op_cost
;
2654 synth_mult (alg_in
, (t
- 1) >> m
, &new_limit
, mode
);
2656 alg_in
->cost
.cost
+= op_cost
;
2657 alg_in
->cost
.latency
+= op_cost
;
2658 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2660 struct algorithm
*x
;
2661 best_cost
= alg_in
->cost
;
2662 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2663 best_alg
->log
[best_alg
->ops
] = m
;
2664 best_alg
->op
[best_alg
->ops
] = alg_add_t2_m
;
2674 if (m
>= 0 && m
< maxm
)
2676 op_cost
= shiftsub_cost
[mode
][m
];
2677 new_limit
.cost
= best_cost
.cost
- op_cost
;
2678 new_limit
.latency
= best_cost
.latency
- op_cost
;
2679 synth_mult (alg_in
, (t
+ 1) >> m
, &new_limit
, mode
);
2681 alg_in
->cost
.cost
+= op_cost
;
2682 alg_in
->cost
.latency
+= op_cost
;
2683 if (CHEAPER_MULT_COST (&alg_in
->cost
, &best_cost
))
2685 struct algorithm
*x
;
2686 best_cost
= alg_in
->cost
;
2687 x
= alg_in
, alg_in
= best_alg
, best_alg
= x
;
2688 best_alg
->log
[best_alg
->ops
] = m
;
2689 best_alg
->op
[best_alg
->ops
] = alg_sub_t2_m
;
2697 /* If best_cost has not decreased, we have not found any algorithm. */
2698 if (!CHEAPER_MULT_COST (&best_cost
, cost_limit
))
2700 /* We failed to find an algorithm. Record alg_impossible for
2701 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2702 we are asked to find an algorithm for T within the same or
2703 lower COST_LIMIT, we can immediately return to the
2705 alg_hash
[hash_index
].t
= t
;
2706 alg_hash
[hash_index
].mode
= mode
;
2707 alg_hash
[hash_index
].alg
= alg_impossible
;
2708 alg_hash
[hash_index
].cost
= *cost_limit
;
2712 /* Cache the result. */
2715 alg_hash
[hash_index
].t
= t
;
2716 alg_hash
[hash_index
].mode
= mode
;
2717 alg_hash
[hash_index
].alg
= best_alg
->op
[best_alg
->ops
];
2718 alg_hash
[hash_index
].cost
.cost
= best_cost
.cost
;
2719 alg_hash
[hash_index
].cost
.latency
= best_cost
.latency
;
2722 /* If we are getting a too long sequence for `struct algorithm'
2723 to record, make this search fail. */
2724 if (best_alg
->ops
== MAX_BITS_PER_WORD
)
2727 /* Copy the algorithm from temporary space to the space at alg_out.
2728 We avoid using structure assignment because the majority of
2729 best_alg is normally undefined, and this is a critical function. */
2730 alg_out
->ops
= best_alg
->ops
+ 1;
2731 alg_out
->cost
= best_cost
;
2732 memcpy (alg_out
->op
, best_alg
->op
,
2733 alg_out
->ops
* sizeof *alg_out
->op
);
2734 memcpy (alg_out
->log
, best_alg
->log
,
2735 alg_out
->ops
* sizeof *alg_out
->log
);
2738 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2739 Try three variations:
2741 - a shift/add sequence based on VAL itself
2742 - a shift/add sequence based on -VAL, followed by a negation
2743 - a shift/add sequence based on VAL - 1, followed by an addition.
2745 Return true if the cheapest of these cost less than MULT_COST,
2746 describing the algorithm in *ALG and final fixup in *VARIANT. */
2749 choose_mult_variant (enum machine_mode mode
, HOST_WIDE_INT val
,
2750 struct algorithm
*alg
, enum mult_variant
*variant
,
2753 struct algorithm alg2
;
2754 struct mult_cost limit
;
2757 /* Fail quickly for impossible bounds. */
2761 /* Ensure that mult_cost provides a reasonable upper bound.
2762 Any constant multiplication can be performed with less
2763 than 2 * bits additions. */
2764 op_cost
= 2 * GET_MODE_BITSIZE (mode
) * add_cost
[mode
];
2765 if (mult_cost
> op_cost
)
2766 mult_cost
= op_cost
;
2768 *variant
= basic_variant
;
2769 limit
.cost
= mult_cost
;
2770 limit
.latency
= mult_cost
;
2771 synth_mult (alg
, val
, &limit
, mode
);
2773 /* This works only if the inverted value actually fits in an
2775 if (HOST_BITS_PER_INT
>= GET_MODE_BITSIZE (mode
))
2777 op_cost
= neg_cost
[mode
];
2778 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2780 limit
.cost
= alg
->cost
.cost
- op_cost
;
2781 limit
.latency
= alg
->cost
.latency
- op_cost
;
2785 limit
.cost
= mult_cost
- op_cost
;
2786 limit
.latency
= mult_cost
- op_cost
;
2789 synth_mult (&alg2
, -val
, &limit
, mode
);
2790 alg2
.cost
.cost
+= op_cost
;
2791 alg2
.cost
.latency
+= op_cost
;
2792 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2793 *alg
= alg2
, *variant
= negate_variant
;
2796 /* This proves very useful for division-by-constant. */
2797 op_cost
= add_cost
[mode
];
2798 if (MULT_COST_LESS (&alg
->cost
, mult_cost
))
2800 limit
.cost
= alg
->cost
.cost
- op_cost
;
2801 limit
.latency
= alg
->cost
.latency
- op_cost
;
2805 limit
.cost
= mult_cost
- op_cost
;
2806 limit
.latency
= mult_cost
- op_cost
;
2809 synth_mult (&alg2
, val
- 1, &limit
, mode
);
2810 alg2
.cost
.cost
+= op_cost
;
2811 alg2
.cost
.latency
+= op_cost
;
2812 if (CHEAPER_MULT_COST (&alg2
.cost
, &alg
->cost
))
2813 *alg
= alg2
, *variant
= add_variant
;
2815 return MULT_COST_LESS (&alg
->cost
, mult_cost
);
2818 /* A subroutine of expand_mult, used for constant multiplications.
2819 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2820 convenient. Use the shift/add sequence described by ALG and apply
2821 the final fixup specified by VARIANT. */
2824 expand_mult_const (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT val
,
2825 rtx target
, const struct algorithm
*alg
,
2826 enum mult_variant variant
)
2828 HOST_WIDE_INT val_so_far
;
2829 rtx insn
, accum
, tem
;
2831 enum machine_mode nmode
;
2833 /* Avoid referencing memory over and over and invalid sharing
2835 op0
= force_reg (mode
, op0
);
2837 /* ACCUM starts out either as OP0 or as a zero, depending on
2838 the first operation. */
2840 if (alg
->op
[0] == alg_zero
)
2842 accum
= copy_to_mode_reg (mode
, const0_rtx
);
2845 else if (alg
->op
[0] == alg_m
)
2847 accum
= copy_to_mode_reg (mode
, op0
);
2853 for (opno
= 1; opno
< alg
->ops
; opno
++)
2855 int log
= alg
->log
[opno
];
2856 rtx shift_subtarget
= optimize
? 0 : accum
;
2858 = (opno
== alg
->ops
- 1 && target
!= 0 && variant
!= add_variant
2861 rtx accum_target
= optimize
? 0 : accum
;
2863 switch (alg
->op
[opno
])
2866 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2867 build_int_cst (NULL_TREE
, log
),
2873 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
2874 build_int_cst (NULL_TREE
, log
),
2876 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
2877 add_target
? add_target
: accum_target
);
2878 val_so_far
+= (HOST_WIDE_INT
) 1 << log
;
2882 tem
= expand_shift (LSHIFT_EXPR
, mode
, op0
,
2883 build_int_cst (NULL_TREE
, log
),
2885 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, tem
),
2886 add_target
? add_target
: accum_target
);
2887 val_so_far
-= (HOST_WIDE_INT
) 1 << log
;
2891 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2892 build_int_cst (NULL_TREE
, log
),
2895 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
),
2896 add_target
? add_target
: accum_target
);
2897 val_so_far
= (val_so_far
<< log
) + 1;
2901 accum
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2902 build_int_cst (NULL_TREE
, log
),
2903 shift_subtarget
, 0);
2904 accum
= force_operand (gen_rtx_MINUS (mode
, accum
, op0
),
2905 add_target
? add_target
: accum_target
);
2906 val_so_far
= (val_so_far
<< log
) - 1;
2909 case alg_add_factor
:
2910 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2911 build_int_cst (NULL_TREE
, log
),
2913 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, tem
),
2914 add_target
? add_target
: accum_target
);
2915 val_so_far
+= val_so_far
<< log
;
2918 case alg_sub_factor
:
2919 tem
= expand_shift (LSHIFT_EXPR
, mode
, accum
,
2920 build_int_cst (NULL_TREE
, log
),
2922 accum
= force_operand (gen_rtx_MINUS (mode
, tem
, accum
),
2924 ? add_target
: (optimize
? 0 : tem
)));
2925 val_so_far
= (val_so_far
<< log
) - val_so_far
;
2932 /* Write a REG_EQUAL note on the last insn so that we can cse
2933 multiplication sequences. Note that if ACCUM is a SUBREG,
2934 we've set the inner register and must properly indicate
2937 tem
= op0
, nmode
= mode
;
2938 if (GET_CODE (accum
) == SUBREG
)
2940 nmode
= GET_MODE (SUBREG_REG (accum
));
2941 tem
= gen_lowpart (nmode
, op0
);
2944 insn
= get_last_insn ();
2945 set_unique_reg_note (insn
, REG_EQUAL
,
2946 gen_rtx_MULT (nmode
, tem
,
2947 GEN_INT (val_so_far
)));
2950 if (variant
== negate_variant
)
2952 val_so_far
= -val_so_far
;
2953 accum
= expand_unop (mode
, neg_optab
, accum
, target
, 0);
2955 else if (variant
== add_variant
)
2957 val_so_far
= val_so_far
+ 1;
2958 accum
= force_operand (gen_rtx_PLUS (mode
, accum
, op0
), target
);
2961 /* Compare only the bits of val and val_so_far that are significant
2962 in the result mode, to avoid sign-/zero-extension confusion. */
2963 val
&= GET_MODE_MASK (mode
);
2964 val_so_far
&= GET_MODE_MASK (mode
);
2965 gcc_assert (val
== val_so_far
);
2970 /* Perform a multiplication and return an rtx for the result.
2971 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
2972 TARGET is a suggestion for where to store the result (an rtx).
2974 We check specially for a constant integer as OP1.
2975 If you want this check for OP0 as well, then before calling
2976 you should swap the two operands if OP0 would be constant. */
2979 expand_mult (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
2982 enum mult_variant variant
;
2983 struct algorithm algorithm
;
2986 /* Handling const0_rtx here allows us to use zero as a rogue value for
2988 if (op1
== const0_rtx
)
2990 if (op1
== const1_rtx
)
2992 if (op1
== constm1_rtx
)
2993 return expand_unop (mode
,
2994 GET_MODE_CLASS (mode
) == MODE_INT
2995 && !unsignedp
&& flag_trapv
2996 ? negv_optab
: neg_optab
,
2999 /* These are the operations that are potentially turned into a sequence
3000 of shifts and additions. */
3001 if (SCALAR_INT_MODE_P (mode
)
3002 && (unsignedp
|| !flag_trapv
))
3004 HOST_WIDE_INT coeff
= 0;
3005 rtx fake_reg
= gen_raw_REG (mode
, LAST_VIRTUAL_REGISTER
+ 1);
3007 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3008 less than or equal in size to `unsigned int' this doesn't matter.
3009 If the mode is larger than `unsigned int', then synth_mult works
3010 only if the constant value exactly fits in an `unsigned int' without
3011 any truncation. This means that multiplying by negative values does
3012 not work; results are off by 2^32 on a 32 bit machine. */
3014 if (GET_CODE (op1
) == CONST_INT
)
3016 /* Attempt to handle multiplication of DImode values by negative
3017 coefficients, by performing the multiplication by a positive
3018 multiplier and then inverting the result. */
3019 if (INTVAL (op1
) < 0
3020 && GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
3022 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3023 result is interpreted as an unsigned coefficient.
3024 Exclude cost of op0 from max_cost to match the cost
3025 calculation of the synth_mult. */
3026 max_cost
= rtx_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), SET
)
3029 && choose_mult_variant (mode
, -INTVAL (op1
), &algorithm
,
3030 &variant
, max_cost
))
3032 rtx temp
= expand_mult_const (mode
, op0
, -INTVAL (op1
),
3033 NULL_RTX
, &algorithm
,
3035 return expand_unop (mode
, neg_optab
, temp
, target
, 0);
3038 else coeff
= INTVAL (op1
);
3040 else if (GET_CODE (op1
) == CONST_DOUBLE
)
3042 /* If we are multiplying in DImode, it may still be a win
3043 to try to work with shifts and adds. */
3044 if (CONST_DOUBLE_HIGH (op1
) == 0)
3045 coeff
= CONST_DOUBLE_LOW (op1
);
3046 else if (CONST_DOUBLE_LOW (op1
) == 0
3047 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1
)))
3049 int shift
= floor_log2 (CONST_DOUBLE_HIGH (op1
))
3050 + HOST_BITS_PER_WIDE_INT
;
3051 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3052 build_int_cst (NULL_TREE
, shift
),
3057 /* We used to test optimize here, on the grounds that it's better to
3058 produce a smaller program when -O is not used. But this causes
3059 such a terrible slowdown sometimes that it seems better to always
3063 /* Special case powers of two. */
3064 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff
))
3065 return expand_shift (LSHIFT_EXPR
, mode
, op0
,
3066 build_int_cst (NULL_TREE
, floor_log2 (coeff
)),
3069 /* Exclude cost of op0 from max_cost to match the cost
3070 calculation of the synth_mult. */
3071 max_cost
= rtx_cost (gen_rtx_MULT (mode
, fake_reg
, op1
), SET
);
3072 if (choose_mult_variant (mode
, coeff
, &algorithm
, &variant
,
3074 return expand_mult_const (mode
, op0
, coeff
, target
,
3075 &algorithm
, variant
);
3079 if (GET_CODE (op0
) == CONST_DOUBLE
)
3086 /* Expand x*2.0 as x+x. */
3087 if (GET_CODE (op1
) == CONST_DOUBLE
3088 && SCALAR_FLOAT_MODE_P (mode
))
3091 REAL_VALUE_FROM_CONST_DOUBLE (d
, op1
);
3093 if (REAL_VALUES_EQUAL (d
, dconst2
))
3095 op0
= force_reg (GET_MODE (op0
), op0
);
3096 return expand_binop (mode
, add_optab
, op0
, op0
,
3097 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3101 /* This used to use umul_optab if unsigned, but for non-widening multiply
3102 there is no difference between signed and unsigned. */
3103 op0
= expand_binop (mode
,
3105 && flag_trapv
&& (GET_MODE_CLASS(mode
) == MODE_INT
)
3106 ? smulv_optab
: smul_optab
,
3107 op0
, op1
, target
, unsignedp
, OPTAB_LIB_WIDEN
);
3112 /* Return the smallest n such that 2**n >= X. */
3115 ceil_log2 (unsigned HOST_WIDE_INT x
)
3117 return floor_log2 (x
- 1) + 1;
3120 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3121 replace division by D, and put the least significant N bits of the result
3122 in *MULTIPLIER_PTR and return the most significant bit.
3124 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3125 needed precision is in PRECISION (should be <= N).
3127 PRECISION should be as small as possible so this function can choose
3128 multiplier more freely.
3130 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3131 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3133 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3134 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3137 unsigned HOST_WIDE_INT
3138 choose_multiplier (unsigned HOST_WIDE_INT d
, int n
, int precision
,
3139 rtx
*multiplier_ptr
, int *post_shift_ptr
, int *lgup_ptr
)
3141 HOST_WIDE_INT mhigh_hi
, mlow_hi
;
3142 unsigned HOST_WIDE_INT mhigh_lo
, mlow_lo
;
3143 int lgup
, post_shift
;
3145 unsigned HOST_WIDE_INT nl
, dummy1
;
3146 HOST_WIDE_INT nh
, dummy2
;
3148 /* lgup = ceil(log2(divisor)); */
3149 lgup
= ceil_log2 (d
);
3151 gcc_assert (lgup
<= n
);
3154 pow2
= n
+ lgup
- precision
;
3156 /* We could handle this with some effort, but this case is much
3157 better handled directly with a scc insn, so rely on caller using
3159 gcc_assert (pow
!= 2 * HOST_BITS_PER_WIDE_INT
);
3161 /* mlow = 2^(N + lgup)/d */
3162 if (pow
>= HOST_BITS_PER_WIDE_INT
)
3164 nh
= (HOST_WIDE_INT
) 1 << (pow
- HOST_BITS_PER_WIDE_INT
);
3170 nl
= (unsigned HOST_WIDE_INT
) 1 << pow
;
3172 div_and_round_double (TRUNC_DIV_EXPR
, 1, nl
, nh
, d
, (HOST_WIDE_INT
) 0,
3173 &mlow_lo
, &mlow_hi
, &dummy1
, &dummy2
);
3175 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3176 if (pow2
>= HOST_BITS_PER_WIDE_INT
)
3177 nh
|= (HOST_WIDE_INT
) 1 << (pow2
- HOST_BITS_PER_WIDE_INT
);
3179 nl
|= (unsigned HOST_WIDE_INT
) 1 << pow2
;
3180 div_and_round_double (TRUNC_DIV_EXPR
, 1, nl
, nh
, d
, (HOST_WIDE_INT
) 0,
3181 &mhigh_lo
, &mhigh_hi
, &dummy1
, &dummy2
);
3183 gcc_assert (!mhigh_hi
|| nh
- d
< d
);
3184 gcc_assert (mhigh_hi
<= 1 && mlow_hi
<= 1);
3185 /* Assert that mlow < mhigh. */
3186 gcc_assert (mlow_hi
< mhigh_hi
3187 || (mlow_hi
== mhigh_hi
&& mlow_lo
< mhigh_lo
));
3189 /* If precision == N, then mlow, mhigh exceed 2^N
3190 (but they do not exceed 2^(N+1)). */
3192 /* Reduce to lowest terms. */
3193 for (post_shift
= lgup
; post_shift
> 0; post_shift
--)
3195 unsigned HOST_WIDE_INT ml_lo
= (mlow_hi
<< (HOST_BITS_PER_WIDE_INT
- 1)) | (mlow_lo
>> 1);
3196 unsigned HOST_WIDE_INT mh_lo
= (mhigh_hi
<< (HOST_BITS_PER_WIDE_INT
- 1)) | (mhigh_lo
>> 1);
3206 *post_shift_ptr
= post_shift
;
3208 if (n
< HOST_BITS_PER_WIDE_INT
)
3210 unsigned HOST_WIDE_INT mask
= ((unsigned HOST_WIDE_INT
) 1 << n
) - 1;
3211 *multiplier_ptr
= GEN_INT (mhigh_lo
& mask
);
3212 return mhigh_lo
>= mask
;
3216 *multiplier_ptr
= GEN_INT (mhigh_lo
);
3221 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3222 congruent to 1 (mod 2**N). */
3224 static unsigned HOST_WIDE_INT
3225 invert_mod2n (unsigned HOST_WIDE_INT x
, int n
)
3227 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3229 /* The algorithm notes that the choice y = x satisfies
3230 x*y == 1 mod 2^3, since x is assumed odd.
3231 Each iteration doubles the number of bits of significance in y. */
3233 unsigned HOST_WIDE_INT mask
;
3234 unsigned HOST_WIDE_INT y
= x
;
3237 mask
= (n
== HOST_BITS_PER_WIDE_INT
3238 ? ~(unsigned HOST_WIDE_INT
) 0
3239 : ((unsigned HOST_WIDE_INT
) 1 << n
) - 1);
3243 y
= y
* (2 - x
*y
) & mask
; /* Modulo 2^N */
3249 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3250 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3251 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3252 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3255 The result is put in TARGET if that is convenient.
3257 MODE is the mode of operation. */
3260 expand_mult_highpart_adjust (enum machine_mode mode
, rtx adj_operand
, rtx op0
,
3261 rtx op1
, rtx target
, int unsignedp
)
3264 enum rtx_code adj_code
= unsignedp
? PLUS
: MINUS
;
3266 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
3267 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
) - 1),
3269 tem
= expand_and (mode
, tem
, op1
, NULL_RTX
);
3271 = force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3274 tem
= expand_shift (RSHIFT_EXPR
, mode
, op1
,
3275 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
) - 1),
3277 tem
= expand_and (mode
, tem
, op0
, NULL_RTX
);
3278 target
= force_operand (gen_rtx_fmt_ee (adj_code
, mode
, adj_operand
, tem
),
3284 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3287 extract_high_half (enum machine_mode mode
, rtx op
)
3289 enum machine_mode wider_mode
;
3291 if (mode
== word_mode
)
3292 return gen_highpart (mode
, op
);
3294 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3296 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3297 op
= expand_shift (RSHIFT_EXPR
, wider_mode
, op
,
3298 build_int_cst (NULL_TREE
, GET_MODE_BITSIZE (mode
)), 0, 1);
3299 return convert_modes (mode
, wider_mode
, op
, 0);
3302 /* Like expand_mult_highpart, but only consider using a multiplication
3303 optab. OP1 is an rtx for the constant operand. */
3306 expand_mult_highpart_optab (enum machine_mode mode
, rtx op0
, rtx op1
,
3307 rtx target
, int unsignedp
, int max_cost
)
3309 rtx narrow_op1
= gen_int_mode (INTVAL (op1
), mode
);
3310 enum machine_mode wider_mode
;
3315 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3317 wider_mode
= GET_MODE_WIDER_MODE (mode
);
3318 size
= GET_MODE_BITSIZE (mode
);
3320 /* Firstly, try using a multiplication insn that only generates the needed
3321 high part of the product, and in the sign flavor of unsignedp. */
3322 if (mul_highpart_cost
[mode
] < max_cost
)
3324 moptab
= unsignedp
? umul_highpart_optab
: smul_highpart_optab
;
3325 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3326 unsignedp
, OPTAB_DIRECT
);
3331 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3332 Need to adjust the result after the multiplication. */
3333 if (size
- 1 < BITS_PER_WORD
3334 && (mul_highpart_cost
[mode
] + 2 * shift_cost
[mode
][size
-1]
3335 + 4 * add_cost
[mode
] < max_cost
))
3337 moptab
= unsignedp
? smul_highpart_optab
: umul_highpart_optab
;
3338 tem
= expand_binop (mode
, moptab
, op0
, narrow_op1
, target
,
3339 unsignedp
, OPTAB_DIRECT
);
3341 /* We used the wrong signedness. Adjust the result. */
3342 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3346 /* Try widening multiplication. */
3347 moptab
= unsignedp
? umul_widen_optab
: smul_widen_optab
;
3348 if (optab_handler (moptab
, wider_mode
)->insn_code
!= CODE_FOR_nothing
3349 && mul_widen_cost
[wider_mode
] < max_cost
)
3351 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
, 0,
3352 unsignedp
, OPTAB_WIDEN
);
3354 return extract_high_half (mode
, tem
);
3357 /* Try widening the mode and perform a non-widening multiplication. */
3358 if (optab_handler (smul_optab
, wider_mode
)->insn_code
!= CODE_FOR_nothing
3359 && size
- 1 < BITS_PER_WORD
3360 && mul_cost
[wider_mode
] + shift_cost
[mode
][size
-1] < max_cost
)
3362 rtx insns
, wop0
, wop1
;
3364 /* We need to widen the operands, for example to ensure the
3365 constant multiplier is correctly sign or zero extended.
3366 Use a sequence to clean-up any instructions emitted by
3367 the conversions if things don't work out. */
3369 wop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
3370 wop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
3371 tem
= expand_binop (wider_mode
, smul_optab
, wop0
, wop1
, 0,
3372 unsignedp
, OPTAB_WIDEN
);
3373 insns
= get_insns ();
3379 return extract_high_half (mode
, tem
);
3383 /* Try widening multiplication of opposite signedness, and adjust. */
3384 moptab
= unsignedp
? smul_widen_optab
: umul_widen_optab
;
3385 if (optab_handler (moptab
, wider_mode
)->insn_code
!= CODE_FOR_nothing
3386 && size
- 1 < BITS_PER_WORD
3387 && (mul_widen_cost
[wider_mode
] + 2 * shift_cost
[mode
][size
-1]
3388 + 4 * add_cost
[mode
] < max_cost
))
3390 tem
= expand_binop (wider_mode
, moptab
, op0
, narrow_op1
,
3391 NULL_RTX
, ! unsignedp
, OPTAB_WIDEN
);
3394 tem
= extract_high_half (mode
, tem
);
3395 /* We used the wrong signedness. Adjust the result. */
3396 return expand_mult_highpart_adjust (mode
, tem
, op0
, narrow_op1
,
3404 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3405 putting the high half of the result in TARGET if that is convenient,
3406 and return where the result is. If the operation can not be performed,
3409 MODE is the mode of operation and result.
3411 UNSIGNEDP nonzero means unsigned multiply.
3413 MAX_COST is the total allowed cost for the expanded RTL. */
3416 expand_mult_highpart (enum machine_mode mode
, rtx op0
, rtx op1
,
3417 rtx target
, int unsignedp
, int max_cost
)
3419 enum machine_mode wider_mode
= GET_MODE_WIDER_MODE (mode
);
3420 unsigned HOST_WIDE_INT cnst1
;
3422 bool sign_adjust
= false;
3423 enum mult_variant variant
;
3424 struct algorithm alg
;
3427 gcc_assert (!SCALAR_FLOAT_MODE_P (mode
));
3428 /* We can't support modes wider than HOST_BITS_PER_INT. */
3429 gcc_assert (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
);
3431 cnst1
= INTVAL (op1
) & GET_MODE_MASK (mode
);
3433 /* We can't optimize modes wider than BITS_PER_WORD.
3434 ??? We might be able to perform double-word arithmetic if
3435 mode == word_mode, however all the cost calculations in
3436 synth_mult etc. assume single-word operations. */
3437 if (GET_MODE_BITSIZE (wider_mode
) > BITS_PER_WORD
)
3438 return expand_mult_highpart_optab (mode
, op0
, op1
, target
,
3439 unsignedp
, max_cost
);
3441 extra_cost
= shift_cost
[mode
][GET_MODE_BITSIZE (mode
) - 1];
3443 /* Check whether we try to multiply by a negative constant. */
3444 if (!unsignedp
&& ((cnst1
>> (GET_MODE_BITSIZE (mode
) - 1)) & 1))
3447 extra_cost
+= add_cost
[mode
];
3450 /* See whether shift/add multiplication is cheap enough. */
3451 if (choose_mult_variant (wider_mode
, cnst1
, &alg
, &variant
,
3452 max_cost
- extra_cost
))
3454 /* See whether the specialized multiplication optabs are
3455 cheaper than the shift/add version. */
3456 tem
= expand_mult_highpart_optab (mode
, op0
, op1
, target
, unsignedp
,
3457 alg
.cost
.cost
+ extra_cost
);
3461 tem
= convert_to_mode (wider_mode
, op0
, unsignedp
);
3462 tem
= expand_mult_const (wider_mode
, tem
, cnst1
, 0, &alg
, variant
);
3463 tem
= extract_high_half (mode
, tem
);
3465 /* Adjust result for signedness. */
3467 tem
= force_operand (gen_rtx_MINUS (mode
, tem
, op0
), tem
);
3471 return expand_mult_highpart_optab (mode
, op0
, op1
, target
,
3472 unsignedp
, max_cost
);
3476 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3479 expand_smod_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3481 unsigned HOST_WIDE_INT masklow
, maskhigh
;
3482 rtx result
, temp
, shift
, label
;
3485 logd
= floor_log2 (d
);
3486 result
= gen_reg_rtx (mode
);
3488 /* Avoid conditional branches when they're expensive. */
3489 if (BRANCH_COST
>= 2
3490 && optimize_insn_for_speed_p ())
3492 rtx signmask
= emit_store_flag (result
, LT
, op0
, const0_rtx
,
3496 signmask
= force_reg (mode
, signmask
);
3497 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3498 shift
= GEN_INT (GET_MODE_BITSIZE (mode
) - logd
);
3500 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3501 which instruction sequence to use. If logical right shifts
3502 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3503 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3505 temp
= gen_rtx_LSHIFTRT (mode
, result
, shift
);
3506 if (optab_handler (lshr_optab
, mode
)->insn_code
== CODE_FOR_nothing
3507 || rtx_cost (temp
, SET
) > COSTS_N_INSNS (2))
3509 temp
= expand_binop (mode
, xor_optab
, op0
, signmask
,
3510 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3511 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3512 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3513 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (masklow
),
3514 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3515 temp
= expand_binop (mode
, xor_optab
, temp
, signmask
,
3516 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3517 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3518 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3522 signmask
= expand_binop (mode
, lshr_optab
, signmask
, shift
,
3523 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3524 signmask
= force_reg (mode
, signmask
);
3526 temp
= expand_binop (mode
, add_optab
, op0
, signmask
,
3527 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3528 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (masklow
),
3529 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3530 temp
= expand_binop (mode
, sub_optab
, temp
, signmask
,
3531 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3537 /* Mask contains the mode's signbit and the significant bits of the
3538 modulus. By including the signbit in the operation, many targets
3539 can avoid an explicit compare operation in the following comparison
3542 masklow
= ((HOST_WIDE_INT
) 1 << logd
) - 1;
3543 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3545 masklow
|= (HOST_WIDE_INT
) -1 << (GET_MODE_BITSIZE (mode
) - 1);
3549 maskhigh
= (HOST_WIDE_INT
) -1
3550 << (GET_MODE_BITSIZE (mode
) - HOST_BITS_PER_WIDE_INT
- 1);
3552 temp
= expand_binop (mode
, and_optab
, op0
,
3553 immed_double_const (masklow
, maskhigh
, mode
),
3554 result
, 1, OPTAB_LIB_WIDEN
);
3556 emit_move_insn (result
, temp
);
3558 label
= gen_label_rtx ();
3559 do_cmp_and_jump (result
, const0_rtx
, GE
, mode
, label
);
3561 temp
= expand_binop (mode
, sub_optab
, result
, const1_rtx
, result
,
3562 0, OPTAB_LIB_WIDEN
);
3563 masklow
= (HOST_WIDE_INT
) -1 << logd
;
3565 temp
= expand_binop (mode
, ior_optab
, temp
,
3566 immed_double_const (masklow
, maskhigh
, mode
),
3567 result
, 1, OPTAB_LIB_WIDEN
);
3568 temp
= expand_binop (mode
, add_optab
, temp
, const1_rtx
, result
,
3569 0, OPTAB_LIB_WIDEN
);
3571 emit_move_insn (result
, temp
);
3576 /* Expand signed division of OP0 by a power of two D in mode MODE.
3577 This routine is only called for positive values of D. */
3580 expand_sdiv_pow2 (enum machine_mode mode
, rtx op0
, HOST_WIDE_INT d
)
3586 logd
= floor_log2 (d
);
3587 shift
= build_int_cst (NULL_TREE
, logd
);
3589 if (d
== 2 && BRANCH_COST
>= 1)
3591 temp
= gen_reg_rtx (mode
);
3592 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, 1);
3593 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3594 0, OPTAB_LIB_WIDEN
);
3595 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3598 #ifdef HAVE_conditional_move
3599 if (BRANCH_COST
>= 2)
3603 /* ??? emit_conditional_move forces a stack adjustment via
3604 compare_from_rtx so, if the sequence is discarded, it will
3605 be lost. Do it now instead. */
3606 do_pending_stack_adjust ();
3609 temp2
= copy_to_mode_reg (mode
, op0
);
3610 temp
= expand_binop (mode
, add_optab
, temp2
, GEN_INT (d
-1),
3611 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3612 temp
= force_reg (mode
, temp
);
3614 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3615 temp2
= emit_conditional_move (temp2
, LT
, temp2
, const0_rtx
,
3616 mode
, temp
, temp2
, mode
, 0);
3619 rtx seq
= get_insns ();
3622 return expand_shift (RSHIFT_EXPR
, mode
, temp2
, shift
, NULL_RTX
, 0);
3628 if (BRANCH_COST
>= 2)
3630 int ushift
= GET_MODE_BITSIZE (mode
) - logd
;
3632 temp
= gen_reg_rtx (mode
);
3633 temp
= emit_store_flag (temp
, LT
, op0
, const0_rtx
, mode
, 0, -1);
3634 if (shift_cost
[mode
][ushift
] > COSTS_N_INSNS (1))
3635 temp
= expand_binop (mode
, and_optab
, temp
, GEN_INT (d
- 1),
3636 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
3638 temp
= expand_shift (RSHIFT_EXPR
, mode
, temp
,
3639 build_int_cst (NULL_TREE
, ushift
),
3641 temp
= expand_binop (mode
, add_optab
, temp
, op0
, NULL_RTX
,
3642 0, OPTAB_LIB_WIDEN
);
3643 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3646 label
= gen_label_rtx ();
3647 temp
= copy_to_mode_reg (mode
, op0
);
3648 do_cmp_and_jump (temp
, const0_rtx
, GE
, mode
, label
);
3649 expand_inc (temp
, GEN_INT (d
- 1));
3651 return expand_shift (RSHIFT_EXPR
, mode
, temp
, shift
, NULL_RTX
, 0);
3654 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3655 if that is convenient, and returning where the result is.
3656 You may request either the quotient or the remainder as the result;
3657 specify REM_FLAG nonzero to get the remainder.
3659 CODE is the expression code for which kind of division this is;
3660 it controls how rounding is done. MODE is the machine mode to use.
3661 UNSIGNEDP nonzero means do unsigned division. */
3663 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3664 and then correct it by or'ing in missing high bits
3665 if result of ANDI is nonzero.
3666 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3667 This could optimize to a bfexts instruction.
3668 But C doesn't use these operations, so their optimizations are
3670 /* ??? For modulo, we don't actually need the highpart of the first product,
3671 the low part will do nicely. And for small divisors, the second multiply
3672 can also be a low-part only multiply or even be completely left out.
3673 E.g. to calculate the remainder of a division by 3 with a 32 bit
3674 multiply, multiply with 0x55555556 and extract the upper two bits;
3675 the result is exact for inputs up to 0x1fffffff.
3676 The input range can be reduced by using cross-sum rules.
3677 For odd divisors >= 3, the following table gives right shift counts
3678 so that if a number is shifted by an integer multiple of the given
3679 amount, the remainder stays the same:
3680 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3681 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3682 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3683 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3684 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3686 Cross-sum rules for even numbers can be derived by leaving as many bits
3687 to the right alone as the divisor has zeros to the right.
3688 E.g. if x is an unsigned 32 bit number:
3689 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3693 expand_divmod (int rem_flag
, enum tree_code code
, enum machine_mode mode
,
3694 rtx op0
, rtx op1
, rtx target
, int unsignedp
)
3696 enum machine_mode compute_mode
;
3698 rtx quotient
= 0, remainder
= 0;
3702 optab optab1
, optab2
;
3703 int op1_is_constant
, op1_is_pow2
= 0;
3704 int max_cost
, extra_cost
;
3705 static HOST_WIDE_INT last_div_const
= 0;
3706 static HOST_WIDE_INT ext_op1
;
3708 op1_is_constant
= GET_CODE (op1
) == CONST_INT
;
3709 if (op1_is_constant
)
3711 ext_op1
= INTVAL (op1
);
3713 ext_op1
&= GET_MODE_MASK (mode
);
3714 op1_is_pow2
= ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1
)
3715 || (! unsignedp
&& EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1
))));
3719 This is the structure of expand_divmod:
3721 First comes code to fix up the operands so we can perform the operations
3722 correctly and efficiently.
3724 Second comes a switch statement with code specific for each rounding mode.
3725 For some special operands this code emits all RTL for the desired
3726 operation, for other cases, it generates only a quotient and stores it in
3727 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3728 to indicate that it has not done anything.
3730 Last comes code that finishes the operation. If QUOTIENT is set and
3731 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3732 QUOTIENT is not set, it is computed using trunc rounding.
3734 We try to generate special code for division and remainder when OP1 is a
3735 constant. If |OP1| = 2**n we can use shifts and some other fast
3736 operations. For other values of OP1, we compute a carefully selected
3737 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3740 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3741 half of the product. Different strategies for generating the product are
3742 implemented in expand_mult_highpart.
3744 If what we actually want is the remainder, we generate that by another
3745 by-constant multiplication and a subtraction. */
3747 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3748 code below will malfunction if we are, so check here and handle
3749 the special case if so. */
3750 if (op1
== const1_rtx
)
3751 return rem_flag
? const0_rtx
: op0
;
3753 /* When dividing by -1, we could get an overflow.
3754 negv_optab can handle overflows. */
3755 if (! unsignedp
&& op1
== constm1_rtx
)
3759 return expand_unop (mode
, flag_trapv
&& GET_MODE_CLASS(mode
) == MODE_INT
3760 ? negv_optab
: neg_optab
, op0
, target
, 0);
3764 /* Don't use the function value register as a target
3765 since we have to read it as well as write it,
3766 and function-inlining gets confused by this. */
3767 && ((REG_P (target
) && REG_FUNCTION_VALUE_P (target
))
3768 /* Don't clobber an operand while doing a multi-step calculation. */
3769 || ((rem_flag
|| op1_is_constant
)
3770 && (reg_mentioned_p (target
, op0
)
3771 || (MEM_P (op0
) && MEM_P (target
))))
3772 || reg_mentioned_p (target
, op1
)
3773 || (MEM_P (op1
) && MEM_P (target
))))
3776 /* Get the mode in which to perform this computation. Normally it will
3777 be MODE, but sometimes we can't do the desired operation in MODE.
3778 If so, pick a wider mode in which we can do the operation. Convert
3779 to that mode at the start to avoid repeated conversions.
3781 First see what operations we need. These depend on the expression
3782 we are evaluating. (We assume that divxx3 insns exist under the
3783 same conditions that modxx3 insns and that these insns don't normally
3784 fail. If these assumptions are not correct, we may generate less
3785 efficient code in some cases.)
3787 Then see if we find a mode in which we can open-code that operation
3788 (either a division, modulus, or shift). Finally, check for the smallest
3789 mode for which we can do the operation with a library call. */
3791 /* We might want to refine this now that we have division-by-constant
3792 optimization. Since expand_mult_highpart tries so many variants, it is
3793 not straightforward to generalize this. Maybe we should make an array
3794 of possible modes in init_expmed? Save this for GCC 2.7. */
3796 optab1
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3797 ? (unsignedp
? lshr_optab
: ashr_optab
)
3798 : (unsignedp
? udiv_optab
: sdiv_optab
));
3799 optab2
= ((op1_is_pow2
&& op1
!= const0_rtx
)
3801 : (unsignedp
? udivmod_optab
: sdivmod_optab
));
3803 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3804 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3805 if (optab_handler (optab1
, compute_mode
)->insn_code
!= CODE_FOR_nothing
3806 || optab_handler (optab2
, compute_mode
)->insn_code
!= CODE_FOR_nothing
)
3809 if (compute_mode
== VOIDmode
)
3810 for (compute_mode
= mode
; compute_mode
!= VOIDmode
;
3811 compute_mode
= GET_MODE_WIDER_MODE (compute_mode
))
3812 if (optab_libfunc (optab1
, compute_mode
)
3813 || optab_libfunc (optab2
, compute_mode
))
3816 /* If we still couldn't find a mode, use MODE, but expand_binop will
3818 if (compute_mode
== VOIDmode
)
3819 compute_mode
= mode
;
3821 if (target
&& GET_MODE (target
) == compute_mode
)
3824 tquotient
= gen_reg_rtx (compute_mode
);
3826 size
= GET_MODE_BITSIZE (compute_mode
);
3828 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3829 (mode), and thereby get better code when OP1 is a constant. Do that
3830 later. It will require going over all usages of SIZE below. */
3831 size
= GET_MODE_BITSIZE (mode
);
3834 /* Only deduct something for a REM if the last divide done was
3835 for a different constant. Then set the constant of the last
3837 max_cost
= unsignedp
? udiv_cost
[compute_mode
] : sdiv_cost
[compute_mode
];
3838 if (rem_flag
&& ! (last_div_const
!= 0 && op1_is_constant
3839 && INTVAL (op1
) == last_div_const
))
3840 max_cost
-= mul_cost
[compute_mode
] + add_cost
[compute_mode
];
3842 last_div_const
= ! rem_flag
&& op1_is_constant
? INTVAL (op1
) : 0;
3844 /* Now convert to the best mode to use. */
3845 if (compute_mode
!= mode
)
3847 op0
= convert_modes (compute_mode
, mode
, op0
, unsignedp
);
3848 op1
= convert_modes (compute_mode
, mode
, op1
, unsignedp
);
3850 /* convert_modes may have placed op1 into a register, so we
3851 must recompute the following. */
3852 op1_is_constant
= GET_CODE (op1
) == CONST_INT
;
3853 op1_is_pow2
= (op1_is_constant
3854 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
3856 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1
)))))) ;
3859 /* If one of the operands is a volatile MEM, copy it into a register. */
3861 if (MEM_P (op0
) && MEM_VOLATILE_P (op0
))
3862 op0
= force_reg (compute_mode
, op0
);
3863 if (MEM_P (op1
) && MEM_VOLATILE_P (op1
))
3864 op1
= force_reg (compute_mode
, op1
);
3866 /* If we need the remainder or if OP1 is constant, we need to
3867 put OP0 in a register in case it has any queued subexpressions. */
3868 if (rem_flag
|| op1_is_constant
)
3869 op0
= force_reg (compute_mode
, op0
);
3871 last
= get_last_insn ();
3873 /* Promote floor rounding to trunc rounding for unsigned operations. */
3876 if (code
== FLOOR_DIV_EXPR
)
3877 code
= TRUNC_DIV_EXPR
;
3878 if (code
== FLOOR_MOD_EXPR
)
3879 code
= TRUNC_MOD_EXPR
;
3880 if (code
== EXACT_DIV_EXPR
&& op1_is_pow2
)
3881 code
= TRUNC_DIV_EXPR
;
3884 if (op1
!= const0_rtx
)
3887 case TRUNC_MOD_EXPR
:
3888 case TRUNC_DIV_EXPR
:
3889 if (op1_is_constant
)
3893 unsigned HOST_WIDE_INT mh
;
3894 int pre_shift
, post_shift
;
3897 unsigned HOST_WIDE_INT d
= (INTVAL (op1
)
3898 & GET_MODE_MASK (compute_mode
));
3900 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
3902 pre_shift
= floor_log2 (d
);
3906 = expand_binop (compute_mode
, and_optab
, op0
,
3907 GEN_INT (((HOST_WIDE_INT
) 1 << pre_shift
) - 1),
3911 return gen_lowpart (mode
, remainder
);
3913 quotient
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
3914 build_int_cst (NULL_TREE
,
3918 else if (size
<= HOST_BITS_PER_WIDE_INT
)
3920 if (d
>= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)))
3922 /* Most significant bit of divisor is set; emit an scc
3924 quotient
= emit_store_flag (tquotient
, GEU
, op0
, op1
,
3925 compute_mode
, 1, 1);
3931 /* Find a suitable multiplier and right shift count
3932 instead of multiplying with D. */
3934 mh
= choose_multiplier (d
, size
, size
,
3935 &ml
, &post_shift
, &dummy
);
3937 /* If the suggested multiplier is more than SIZE bits,
3938 we can do better for even divisors, using an
3939 initial right shift. */
3940 if (mh
!= 0 && (d
& 1) == 0)
3942 pre_shift
= floor_log2 (d
& -d
);
3943 mh
= choose_multiplier (d
>> pre_shift
, size
,
3945 &ml
, &post_shift
, &dummy
);
3955 if (post_shift
- 1 >= BITS_PER_WORD
)
3959 = (shift_cost
[compute_mode
][post_shift
- 1]
3960 + shift_cost
[compute_mode
][1]
3961 + 2 * add_cost
[compute_mode
]);
3962 t1
= expand_mult_highpart (compute_mode
, op0
, ml
,
3964 max_cost
- extra_cost
);
3967 t2
= force_operand (gen_rtx_MINUS (compute_mode
,
3971 (RSHIFT_EXPR
, compute_mode
, t2
,
3972 build_int_cst (NULL_TREE
, 1),
3974 t4
= force_operand (gen_rtx_PLUS (compute_mode
,
3977 quotient
= expand_shift
3978 (RSHIFT_EXPR
, compute_mode
, t4
,
3979 build_int_cst (NULL_TREE
, post_shift
- 1),
3986 if (pre_shift
>= BITS_PER_WORD
3987 || post_shift
>= BITS_PER_WORD
)
3991 (RSHIFT_EXPR
, compute_mode
, op0
,
3992 build_int_cst (NULL_TREE
, pre_shift
),
3995 = (shift_cost
[compute_mode
][pre_shift
]
3996 + shift_cost
[compute_mode
][post_shift
]);
3997 t2
= expand_mult_highpart (compute_mode
, t1
, ml
,
3999 max_cost
- extra_cost
);
4002 quotient
= expand_shift
4003 (RSHIFT_EXPR
, compute_mode
, t2
,
4004 build_int_cst (NULL_TREE
, post_shift
),
4009 else /* Too wide mode to use tricky code */
4012 insn
= get_last_insn ();
4014 && (set
= single_set (insn
)) != 0
4015 && SET_DEST (set
) == quotient
)
4016 set_unique_reg_note (insn
,
4018 gen_rtx_UDIV (compute_mode
, op0
, op1
));
4020 else /* TRUNC_DIV, signed */
4022 unsigned HOST_WIDE_INT ml
;
4023 int lgup
, post_shift
;
4025 HOST_WIDE_INT d
= INTVAL (op1
);
4026 unsigned HOST_WIDE_INT abs_d
;
4028 /* Since d might be INT_MIN, we have to cast to
4029 unsigned HOST_WIDE_INT before negating to avoid
4030 undefined signed overflow. */
4032 ? (unsigned HOST_WIDE_INT
) d
4033 : - (unsigned HOST_WIDE_INT
) d
);
4035 /* n rem d = n rem -d */
4036 if (rem_flag
&& d
< 0)
4039 op1
= gen_int_mode (abs_d
, compute_mode
);
4045 quotient
= expand_unop (compute_mode
, neg_optab
, op0
,
4047 else if (abs_d
== (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4049 /* This case is not handled correctly below. */
4050 quotient
= emit_store_flag (tquotient
, EQ
, op0
, op1
,
4051 compute_mode
, 1, 1);
4055 else if (EXACT_POWER_OF_2_OR_ZERO_P (d
)
4056 && (rem_flag
? smod_pow2_cheap
[compute_mode
]
4057 : sdiv_pow2_cheap
[compute_mode
])
4058 /* We assume that cheap metric is true if the
4059 optab has an expander for this mode. */
4060 && ((optab_handler ((rem_flag
? smod_optab
4062 compute_mode
)->insn_code
4063 != CODE_FOR_nothing
)
4064 || (optab_handler(sdivmod_optab
,
4066 ->insn_code
!= CODE_FOR_nothing
)))
4068 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d
))
4072 remainder
= expand_smod_pow2 (compute_mode
, op0
, d
);
4074 return gen_lowpart (mode
, remainder
);
4077 if (sdiv_pow2_cheap
[compute_mode
]
4078 && ((optab_handler (sdiv_optab
, compute_mode
)->insn_code
4079 != CODE_FOR_nothing
)
4080 || (optab_handler (sdivmod_optab
, compute_mode
)->insn_code
4081 != CODE_FOR_nothing
)))
4082 quotient
= expand_divmod (0, TRUNC_DIV_EXPR
,
4084 gen_int_mode (abs_d
,
4088 quotient
= expand_sdiv_pow2 (compute_mode
, op0
, abs_d
);
4090 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4091 negate the quotient. */
4094 insn
= get_last_insn ();
4096 && (set
= single_set (insn
)) != 0
4097 && SET_DEST (set
) == quotient
4098 && abs_d
< ((unsigned HOST_WIDE_INT
) 1
4099 << (HOST_BITS_PER_WIDE_INT
- 1)))
4100 set_unique_reg_note (insn
,
4102 gen_rtx_DIV (compute_mode
,
4109 quotient
= expand_unop (compute_mode
, neg_optab
,
4110 quotient
, quotient
, 0);
4113 else if (size
<= HOST_BITS_PER_WIDE_INT
)
4115 choose_multiplier (abs_d
, size
, size
- 1,
4116 &mlr
, &post_shift
, &lgup
);
4117 ml
= (unsigned HOST_WIDE_INT
) INTVAL (mlr
);
4118 if (ml
< (unsigned HOST_WIDE_INT
) 1 << (size
- 1))
4122 if (post_shift
>= BITS_PER_WORD
4123 || size
- 1 >= BITS_PER_WORD
)
4126 extra_cost
= (shift_cost
[compute_mode
][post_shift
]
4127 + shift_cost
[compute_mode
][size
- 1]
4128 + add_cost
[compute_mode
]);
4129 t1
= expand_mult_highpart (compute_mode
, op0
, mlr
,
4131 max_cost
- extra_cost
);
4135 (RSHIFT_EXPR
, compute_mode
, t1
,
4136 build_int_cst (NULL_TREE
, post_shift
),
4139 (RSHIFT_EXPR
, compute_mode
, op0
,
4140 build_int_cst (NULL_TREE
, size
- 1),
4144 = force_operand (gen_rtx_MINUS (compute_mode
,
4149 = force_operand (gen_rtx_MINUS (compute_mode
,
4157 if (post_shift
>= BITS_PER_WORD
4158 || size
- 1 >= BITS_PER_WORD
)
4161 ml
|= (~(unsigned HOST_WIDE_INT
) 0) << (size
- 1);
4162 mlr
= gen_int_mode (ml
, compute_mode
);
4163 extra_cost
= (shift_cost
[compute_mode
][post_shift
]
4164 + shift_cost
[compute_mode
][size
- 1]
4165 + 2 * add_cost
[compute_mode
]);
4166 t1
= expand_mult_highpart (compute_mode
, op0
, mlr
,
4168 max_cost
- extra_cost
);
4171 t2
= force_operand (gen_rtx_PLUS (compute_mode
,
4175 (RSHIFT_EXPR
, compute_mode
, t2
,
4176 build_int_cst (NULL_TREE
, post_shift
),
4179 (RSHIFT_EXPR
, compute_mode
, op0
,
4180 build_int_cst (NULL_TREE
, size
- 1),
4184 = force_operand (gen_rtx_MINUS (compute_mode
,
4189 = force_operand (gen_rtx_MINUS (compute_mode
,
4194 else /* Too wide mode to use tricky code */
4197 insn
= get_last_insn ();
4199 && (set
= single_set (insn
)) != 0
4200 && SET_DEST (set
) == quotient
)
4201 set_unique_reg_note (insn
,
4203 gen_rtx_DIV (compute_mode
, op0
, op1
));
4208 delete_insns_since (last
);
4211 case FLOOR_DIV_EXPR
:
4212 case FLOOR_MOD_EXPR
:
4213 /* We will come here only for signed operations. */
4214 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4216 unsigned HOST_WIDE_INT mh
;
4217 int pre_shift
, lgup
, post_shift
;
4218 HOST_WIDE_INT d
= INTVAL (op1
);
4223 /* We could just as easily deal with negative constants here,
4224 but it does not seem worth the trouble for GCC 2.6. */
4225 if (EXACT_POWER_OF_2_OR_ZERO_P (d
))
4227 pre_shift
= floor_log2 (d
);
4230 remainder
= expand_binop (compute_mode
, and_optab
, op0
,
4231 GEN_INT (((HOST_WIDE_INT
) 1 << pre_shift
) - 1),
4232 remainder
, 0, OPTAB_LIB_WIDEN
);
4234 return gen_lowpart (mode
, remainder
);
4236 quotient
= expand_shift
4237 (RSHIFT_EXPR
, compute_mode
, op0
,
4238 build_int_cst (NULL_TREE
, pre_shift
),
4245 mh
= choose_multiplier (d
, size
, size
- 1,
4246 &ml
, &post_shift
, &lgup
);
4249 if (post_shift
< BITS_PER_WORD
4250 && size
- 1 < BITS_PER_WORD
)
4253 (RSHIFT_EXPR
, compute_mode
, op0
,
4254 build_int_cst (NULL_TREE
, size
- 1),
4256 t2
= expand_binop (compute_mode
, xor_optab
, op0
, t1
,
4257 NULL_RTX
, 0, OPTAB_WIDEN
);
4258 extra_cost
= (shift_cost
[compute_mode
][post_shift
]
4259 + shift_cost
[compute_mode
][size
- 1]
4260 + 2 * add_cost
[compute_mode
]);
4261 t3
= expand_mult_highpart (compute_mode
, t2
, ml
,
4263 max_cost
- extra_cost
);
4267 (RSHIFT_EXPR
, compute_mode
, t3
,
4268 build_int_cst (NULL_TREE
, post_shift
),
4270 quotient
= expand_binop (compute_mode
, xor_optab
,
4271 t4
, t1
, tquotient
, 0,
4279 rtx nsign
, t1
, t2
, t3
, t4
;
4280 t1
= force_operand (gen_rtx_PLUS (compute_mode
,
4281 op0
, constm1_rtx
), NULL_RTX
);
4282 t2
= expand_binop (compute_mode
, ior_optab
, op0
, t1
, NULL_RTX
,
4284 nsign
= expand_shift
4285 (RSHIFT_EXPR
, compute_mode
, t2
,
4286 build_int_cst (NULL_TREE
, size
- 1),
4288 t3
= force_operand (gen_rtx_MINUS (compute_mode
, t1
, nsign
),
4290 t4
= expand_divmod (0, TRUNC_DIV_EXPR
, compute_mode
, t3
, op1
,
4295 t5
= expand_unop (compute_mode
, one_cmpl_optab
, nsign
,
4297 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4306 delete_insns_since (last
);
4308 /* Try using an instruction that produces both the quotient and
4309 remainder, using truncation. We can easily compensate the quotient
4310 or remainder to get floor rounding, once we have the remainder.
4311 Notice that we compute also the final remainder value here,
4312 and return the result right away. */
4313 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4314 target
= gen_reg_rtx (compute_mode
);
4319 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4320 quotient
= gen_reg_rtx (compute_mode
);
4325 = REG_P (target
) ? target
: gen_reg_rtx (compute_mode
);
4326 remainder
= gen_reg_rtx (compute_mode
);
4329 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
,
4330 quotient
, remainder
, 0))
4332 /* This could be computed with a branch-less sequence.
4333 Save that for later. */
4335 rtx label
= gen_label_rtx ();
4336 do_cmp_and_jump (remainder
, const0_rtx
, EQ
, compute_mode
, label
);
4337 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4338 NULL_RTX
, 0, OPTAB_WIDEN
);
4339 do_cmp_and_jump (tem
, const0_rtx
, GE
, compute_mode
, label
);
4340 expand_dec (quotient
, const1_rtx
);
4341 expand_inc (remainder
, op1
);
4343 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4346 /* No luck with division elimination or divmod. Have to do it
4347 by conditionally adjusting op0 *and* the result. */
4349 rtx label1
, label2
, label3
, label4
, label5
;
4353 quotient
= gen_reg_rtx (compute_mode
);
4354 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4355 label1
= gen_label_rtx ();
4356 label2
= gen_label_rtx ();
4357 label3
= gen_label_rtx ();
4358 label4
= gen_label_rtx ();
4359 label5
= gen_label_rtx ();
4360 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4361 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
, compute_mode
, label1
);
4362 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4363 quotient
, 0, OPTAB_LIB_WIDEN
);
4364 if (tem
!= quotient
)
4365 emit_move_insn (quotient
, tem
);
4366 emit_jump_insn (gen_jump (label5
));
4368 emit_label (label1
);
4369 expand_inc (adjusted_op0
, const1_rtx
);
4370 emit_jump_insn (gen_jump (label4
));
4372 emit_label (label2
);
4373 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
, compute_mode
, label3
);
4374 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4375 quotient
, 0, OPTAB_LIB_WIDEN
);
4376 if (tem
!= quotient
)
4377 emit_move_insn (quotient
, tem
);
4378 emit_jump_insn (gen_jump (label5
));
4380 emit_label (label3
);
4381 expand_dec (adjusted_op0
, const1_rtx
);
4382 emit_label (label4
);
4383 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4384 quotient
, 0, OPTAB_LIB_WIDEN
);
4385 if (tem
!= quotient
)
4386 emit_move_insn (quotient
, tem
);
4387 expand_dec (quotient
, const1_rtx
);
4388 emit_label (label5
);
4396 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
)))
4399 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4400 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4401 build_int_cst (NULL_TREE
, floor_log2 (d
)),
4403 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4405 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4406 t3
= gen_reg_rtx (compute_mode
);
4407 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4408 compute_mode
, 1, 1);
4412 lab
= gen_label_rtx ();
4413 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4414 expand_inc (t1
, const1_rtx
);
4419 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4425 /* Try using an instruction that produces both the quotient and
4426 remainder, using truncation. We can easily compensate the
4427 quotient or remainder to get ceiling rounding, once we have the
4428 remainder. Notice that we compute also the final remainder
4429 value here, and return the result right away. */
4430 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4431 target
= gen_reg_rtx (compute_mode
);
4435 remainder
= (REG_P (target
)
4436 ? target
: gen_reg_rtx (compute_mode
));
4437 quotient
= gen_reg_rtx (compute_mode
);
4441 quotient
= (REG_P (target
)
4442 ? target
: gen_reg_rtx (compute_mode
));
4443 remainder
= gen_reg_rtx (compute_mode
);
4446 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
,
4449 /* This could be computed with a branch-less sequence.
4450 Save that for later. */
4451 rtx label
= gen_label_rtx ();
4452 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4453 compute_mode
, label
);
4454 expand_inc (quotient
, const1_rtx
);
4455 expand_dec (remainder
, op1
);
4457 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4460 /* No luck with division elimination or divmod. Have to do it
4461 by conditionally adjusting op0 *and* the result. */
4464 rtx adjusted_op0
, tem
;
4466 quotient
= gen_reg_rtx (compute_mode
);
4467 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4468 label1
= gen_label_rtx ();
4469 label2
= gen_label_rtx ();
4470 do_cmp_and_jump (adjusted_op0
, const0_rtx
, NE
,
4471 compute_mode
, label1
);
4472 emit_move_insn (quotient
, const0_rtx
);
4473 emit_jump_insn (gen_jump (label2
));
4475 emit_label (label1
);
4476 expand_dec (adjusted_op0
, const1_rtx
);
4477 tem
= expand_binop (compute_mode
, udiv_optab
, adjusted_op0
, op1
,
4478 quotient
, 1, OPTAB_LIB_WIDEN
);
4479 if (tem
!= quotient
)
4480 emit_move_insn (quotient
, tem
);
4481 expand_inc (quotient
, const1_rtx
);
4482 emit_label (label2
);
4487 if (op1_is_constant
&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1
))
4488 && INTVAL (op1
) >= 0)
4490 /* This is extremely similar to the code for the unsigned case
4491 above. For 2.7 we should merge these variants, but for
4492 2.6.1 I don't want to touch the code for unsigned since that
4493 get used in C. The signed case will only be used by other
4497 unsigned HOST_WIDE_INT d
= INTVAL (op1
);
4498 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4499 build_int_cst (NULL_TREE
, floor_log2 (d
)),
4501 t2
= expand_binop (compute_mode
, and_optab
, op0
,
4503 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4504 t3
= gen_reg_rtx (compute_mode
);
4505 t3
= emit_store_flag (t3
, NE
, t2
, const0_rtx
,
4506 compute_mode
, 1, 1);
4510 lab
= gen_label_rtx ();
4511 do_cmp_and_jump (t2
, const0_rtx
, EQ
, compute_mode
, lab
);
4512 expand_inc (t1
, const1_rtx
);
4517 quotient
= force_operand (gen_rtx_PLUS (compute_mode
,
4523 /* Try using an instruction that produces both the quotient and
4524 remainder, using truncation. We can easily compensate the
4525 quotient or remainder to get ceiling rounding, once we have the
4526 remainder. Notice that we compute also the final remainder
4527 value here, and return the result right away. */
4528 if (target
== 0 || GET_MODE (target
) != compute_mode
)
4529 target
= gen_reg_rtx (compute_mode
);
4532 remainder
= (REG_P (target
)
4533 ? target
: gen_reg_rtx (compute_mode
));
4534 quotient
= gen_reg_rtx (compute_mode
);
4538 quotient
= (REG_P (target
)
4539 ? target
: gen_reg_rtx (compute_mode
));
4540 remainder
= gen_reg_rtx (compute_mode
);
4543 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
,
4546 /* This could be computed with a branch-less sequence.
4547 Save that for later. */
4549 rtx label
= gen_label_rtx ();
4550 do_cmp_and_jump (remainder
, const0_rtx
, EQ
,
4551 compute_mode
, label
);
4552 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4553 NULL_RTX
, 0, OPTAB_WIDEN
);
4554 do_cmp_and_jump (tem
, const0_rtx
, LT
, compute_mode
, label
);
4555 expand_inc (quotient
, const1_rtx
);
4556 expand_dec (remainder
, op1
);
4558 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4561 /* No luck with division elimination or divmod. Have to do it
4562 by conditionally adjusting op0 *and* the result. */
4564 rtx label1
, label2
, label3
, label4
, label5
;
4568 quotient
= gen_reg_rtx (compute_mode
);
4569 adjusted_op0
= copy_to_mode_reg (compute_mode
, op0
);
4570 label1
= gen_label_rtx ();
4571 label2
= gen_label_rtx ();
4572 label3
= gen_label_rtx ();
4573 label4
= gen_label_rtx ();
4574 label5
= gen_label_rtx ();
4575 do_cmp_and_jump (op1
, const0_rtx
, LT
, compute_mode
, label2
);
4576 do_cmp_and_jump (adjusted_op0
, const0_rtx
, GT
,
4577 compute_mode
, label1
);
4578 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4579 quotient
, 0, OPTAB_LIB_WIDEN
);
4580 if (tem
!= quotient
)
4581 emit_move_insn (quotient
, tem
);
4582 emit_jump_insn (gen_jump (label5
));
4584 emit_label (label1
);
4585 expand_dec (adjusted_op0
, const1_rtx
);
4586 emit_jump_insn (gen_jump (label4
));
4588 emit_label (label2
);
4589 do_cmp_and_jump (adjusted_op0
, const0_rtx
, LT
,
4590 compute_mode
, label3
);
4591 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4592 quotient
, 0, OPTAB_LIB_WIDEN
);
4593 if (tem
!= quotient
)
4594 emit_move_insn (quotient
, tem
);
4595 emit_jump_insn (gen_jump (label5
));
4597 emit_label (label3
);
4598 expand_inc (adjusted_op0
, const1_rtx
);
4599 emit_label (label4
);
4600 tem
= expand_binop (compute_mode
, sdiv_optab
, adjusted_op0
, op1
,
4601 quotient
, 0, OPTAB_LIB_WIDEN
);
4602 if (tem
!= quotient
)
4603 emit_move_insn (quotient
, tem
);
4604 expand_inc (quotient
, const1_rtx
);
4605 emit_label (label5
);
4610 case EXACT_DIV_EXPR
:
4611 if (op1_is_constant
&& HOST_BITS_PER_WIDE_INT
>= size
)
4613 HOST_WIDE_INT d
= INTVAL (op1
);
4614 unsigned HOST_WIDE_INT ml
;
4618 pre_shift
= floor_log2 (d
& -d
);
4619 ml
= invert_mod2n (d
>> pre_shift
, size
);
4620 t1
= expand_shift (RSHIFT_EXPR
, compute_mode
, op0
,
4621 build_int_cst (NULL_TREE
, pre_shift
),
4622 NULL_RTX
, unsignedp
);
4623 quotient
= expand_mult (compute_mode
, t1
,
4624 gen_int_mode (ml
, compute_mode
),
4627 insn
= get_last_insn ();
4628 set_unique_reg_note (insn
,
4630 gen_rtx_fmt_ee (unsignedp
? UDIV
: DIV
,
4636 case ROUND_DIV_EXPR
:
4637 case ROUND_MOD_EXPR
:
4642 label
= gen_label_rtx ();
4643 quotient
= gen_reg_rtx (compute_mode
);
4644 remainder
= gen_reg_rtx (compute_mode
);
4645 if (expand_twoval_binop (udivmod_optab
, op0
, op1
, quotient
, remainder
, 1) == 0)
4648 quotient
= expand_binop (compute_mode
, udiv_optab
, op0
, op1
,
4649 quotient
, 1, OPTAB_LIB_WIDEN
);
4650 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 1);
4651 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4652 remainder
, 1, OPTAB_LIB_WIDEN
);
4654 tem
= plus_constant (op1
, -1);
4655 tem
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4656 build_int_cst (NULL_TREE
, 1),
4658 do_cmp_and_jump (remainder
, tem
, LEU
, compute_mode
, label
);
4659 expand_inc (quotient
, const1_rtx
);
4660 expand_dec (remainder
, op1
);
4665 rtx abs_rem
, abs_op1
, tem
, mask
;
4667 label
= gen_label_rtx ();
4668 quotient
= gen_reg_rtx (compute_mode
);
4669 remainder
= gen_reg_rtx (compute_mode
);
4670 if (expand_twoval_binop (sdivmod_optab
, op0
, op1
, quotient
, remainder
, 0) == 0)
4673 quotient
= expand_binop (compute_mode
, sdiv_optab
, op0
, op1
,
4674 quotient
, 0, OPTAB_LIB_WIDEN
);
4675 tem
= expand_mult (compute_mode
, quotient
, op1
, NULL_RTX
, 0);
4676 remainder
= expand_binop (compute_mode
, sub_optab
, op0
, tem
,
4677 remainder
, 0, OPTAB_LIB_WIDEN
);
4679 abs_rem
= expand_abs (compute_mode
, remainder
, NULL_RTX
, 1, 0);
4680 abs_op1
= expand_abs (compute_mode
, op1
, NULL_RTX
, 1, 0);
4681 tem
= expand_shift (LSHIFT_EXPR
, compute_mode
, abs_rem
,
4682 build_int_cst (NULL_TREE
, 1),
4684 do_cmp_and_jump (tem
, abs_op1
, LTU
, compute_mode
, label
);
4685 tem
= expand_binop (compute_mode
, xor_optab
, op0
, op1
,
4686 NULL_RTX
, 0, OPTAB_WIDEN
);
4687 mask
= expand_shift (RSHIFT_EXPR
, compute_mode
, tem
,
4688 build_int_cst (NULL_TREE
, size
- 1),
4690 tem
= expand_binop (compute_mode
, xor_optab
, mask
, const1_rtx
,
4691 NULL_RTX
, 0, OPTAB_WIDEN
);
4692 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4693 NULL_RTX
, 0, OPTAB_WIDEN
);
4694 expand_inc (quotient
, tem
);
4695 tem
= expand_binop (compute_mode
, xor_optab
, mask
, op1
,
4696 NULL_RTX
, 0, OPTAB_WIDEN
);
4697 tem
= expand_binop (compute_mode
, sub_optab
, tem
, mask
,
4698 NULL_RTX
, 0, OPTAB_WIDEN
);
4699 expand_dec (remainder
, tem
);
4702 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4710 if (target
&& GET_MODE (target
) != compute_mode
)
4715 /* Try to produce the remainder without producing the quotient.
4716 If we seem to have a divmod pattern that does not require widening,
4717 don't try widening here. We should really have a WIDEN argument
4718 to expand_twoval_binop, since what we'd really like to do here is
4719 1) try a mod insn in compute_mode
4720 2) try a divmod insn in compute_mode
4721 3) try a div insn in compute_mode and multiply-subtract to get
4723 4) try the same things with widening allowed. */
4725 = sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4728 ((optab_handler (optab2
, compute_mode
)->insn_code
4729 != CODE_FOR_nothing
)
4730 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4733 /* No luck there. Can we do remainder and divide at once
4734 without a library call? */
4735 remainder
= gen_reg_rtx (compute_mode
);
4736 if (! expand_twoval_binop ((unsignedp
4740 NULL_RTX
, remainder
, unsignedp
))
4745 return gen_lowpart (mode
, remainder
);
4748 /* Produce the quotient. Try a quotient insn, but not a library call.
4749 If we have a divmod in this mode, use it in preference to widening
4750 the div (for this test we assume it will not fail). Note that optab2
4751 is set to the one of the two optabs that the call below will use. */
4753 = sign_expand_binop (compute_mode
, udiv_optab
, sdiv_optab
,
4754 op0
, op1
, rem_flag
? NULL_RTX
: target
,
4756 ((optab_handler (optab2
, compute_mode
)->insn_code
4757 != CODE_FOR_nothing
)
4758 ? OPTAB_DIRECT
: OPTAB_WIDEN
));
4762 /* No luck there. Try a quotient-and-remainder insn,
4763 keeping the quotient alone. */
4764 quotient
= gen_reg_rtx (compute_mode
);
4765 if (! expand_twoval_binop (unsignedp
? udivmod_optab
: sdivmod_optab
,
4767 quotient
, NULL_RTX
, unsignedp
))
4771 /* Still no luck. If we are not computing the remainder,
4772 use a library call for the quotient. */
4773 quotient
= sign_expand_binop (compute_mode
,
4774 udiv_optab
, sdiv_optab
,
4776 unsignedp
, OPTAB_LIB_WIDEN
);
4783 if (target
&& GET_MODE (target
) != compute_mode
)
4788 /* No divide instruction either. Use library for remainder. */
4789 remainder
= sign_expand_binop (compute_mode
, umod_optab
, smod_optab
,
4791 unsignedp
, OPTAB_LIB_WIDEN
);
4792 /* No remainder function. Try a quotient-and-remainder
4793 function, keeping the remainder. */
4796 remainder
= gen_reg_rtx (compute_mode
);
4797 if (!expand_twoval_binop_libfunc
4798 (unsignedp
? udivmod_optab
: sdivmod_optab
,
4800 NULL_RTX
, remainder
,
4801 unsignedp
? UMOD
: MOD
))
4802 remainder
= NULL_RTX
;
4807 /* We divided. Now finish doing X - Y * (X / Y). */
4808 remainder
= expand_mult (compute_mode
, quotient
, op1
,
4809 NULL_RTX
, unsignedp
);
4810 remainder
= expand_binop (compute_mode
, sub_optab
, op0
,
4811 remainder
, target
, unsignedp
,
4816 return gen_lowpart (mode
, rem_flag
? remainder
: quotient
);
4819 /* Return a tree node with data type TYPE, describing the value of X.
4820 Usually this is an VAR_DECL, if there is no obvious better choice.
4821 X may be an expression, however we only support those expressions
4822 generated by loop.c. */
4825 make_tree (tree type
, rtx x
)
4829 switch (GET_CODE (x
))
4833 HOST_WIDE_INT hi
= 0;
4836 && !(TYPE_UNSIGNED (type
)
4837 && (GET_MODE_BITSIZE (TYPE_MODE (type
))
4838 < HOST_BITS_PER_WIDE_INT
)))
4841 t
= build_int_cst_wide (type
, INTVAL (x
), hi
);
4847 if (GET_MODE (x
) == VOIDmode
)
4848 t
= build_int_cst_wide (type
,
4849 CONST_DOUBLE_LOW (x
), CONST_DOUBLE_HIGH (x
));
4854 REAL_VALUE_FROM_CONST_DOUBLE (d
, x
);
4855 t
= build_real (type
, d
);
4862 int units
= CONST_VECTOR_NUNITS (x
);
4863 tree itype
= TREE_TYPE (type
);
4868 /* Build a tree with vector elements. */
4869 for (i
= units
- 1; i
>= 0; --i
)
4871 rtx elt
= CONST_VECTOR_ELT (x
, i
);
4872 t
= tree_cons (NULL_TREE
, make_tree (itype
, elt
), t
);
4875 return build_vector (type
, t
);
4879 return fold_build2 (PLUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4880 make_tree (type
, XEXP (x
, 1)));
4883 return fold_build2 (MINUS_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4884 make_tree (type
, XEXP (x
, 1)));
4887 return fold_build1 (NEGATE_EXPR
, type
, make_tree (type
, XEXP (x
, 0)));
4890 return fold_build2 (MULT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4891 make_tree (type
, XEXP (x
, 1)));
4894 return fold_build2 (LSHIFT_EXPR
, type
, make_tree (type
, XEXP (x
, 0)),
4895 make_tree (type
, XEXP (x
, 1)));
4898 t
= unsigned_type_for (type
);
4899 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
4900 make_tree (t
, XEXP (x
, 0)),
4901 make_tree (type
, XEXP (x
, 1))));
4904 t
= signed_type_for (type
);
4905 return fold_convert (type
, build2 (RSHIFT_EXPR
, t
,
4906 make_tree (t
, XEXP (x
, 0)),
4907 make_tree (type
, XEXP (x
, 1))));
4910 if (TREE_CODE (type
) != REAL_TYPE
)
4911 t
= signed_type_for (type
);
4915 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
4916 make_tree (t
, XEXP (x
, 0)),
4917 make_tree (t
, XEXP (x
, 1))));
4919 t
= unsigned_type_for (type
);
4920 return fold_convert (type
, build2 (TRUNC_DIV_EXPR
, t
,
4921 make_tree (t
, XEXP (x
, 0)),
4922 make_tree (t
, XEXP (x
, 1))));
4926 t
= lang_hooks
.types
.type_for_mode (GET_MODE (XEXP (x
, 0)),
4927 GET_CODE (x
) == ZERO_EXTEND
);
4928 return fold_convert (type
, make_tree (t
, XEXP (x
, 0)));
4931 return make_tree (type
, XEXP (x
, 0));
4934 t
= SYMBOL_REF_DECL (x
);
4936 return fold_convert (type
, build_fold_addr_expr (t
));
4937 /* else fall through. */
4940 t
= build_decl (VAR_DECL
, NULL_TREE
, type
);
4942 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4943 ptr_mode. So convert. */
4944 if (POINTER_TYPE_P (type
))
4945 x
= convert_memory_address (TYPE_MODE (type
), x
);
4947 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4948 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4949 t
->decl_with_rtl
.rtl
= x
;
4955 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
4956 and returning TARGET.
4958 If TARGET is 0, a pseudo-register or constant is returned. */
4961 expand_and (enum machine_mode mode
, rtx op0
, rtx op1
, rtx target
)
4965 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
4966 tem
= simplify_binary_operation (AND
, mode
, op0
, op1
);
4968 tem
= expand_binop (mode
, and_optab
, op0
, op1
, target
, 0, OPTAB_LIB_WIDEN
);
4972 else if (tem
!= target
)
4973 emit_move_insn (target
, tem
);
4977 /* Helper function for emit_store_flag. */
4979 emit_store_flag_1 (rtx target
, rtx subtarget
, enum machine_mode mode
,
4983 enum machine_mode target_mode
= GET_MODE (target
);
4985 /* If we are converting to a wider mode, first convert to
4986 TARGET_MODE, then normalize. This produces better combining
4987 opportunities on machines that have a SIGN_EXTRACT when we are
4988 testing a single bit. This mostly benefits the 68k.
4990 If STORE_FLAG_VALUE does not have the sign bit set when
4991 interpreted in MODE, we can do this conversion as unsigned, which
4992 is usually more efficient. */
4993 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
4995 convert_move (target
, subtarget
,
4996 (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
4997 && 0 == (STORE_FLAG_VALUE
4998 & ((HOST_WIDE_INT
) 1
4999 << (GET_MODE_BITSIZE (mode
) -1))));
5006 /* If we want to keep subexpressions around, don't reuse our last
5011 /* Now normalize to the proper value in MODE. Sometimes we don't
5012 have to do anything. */
5013 if (normalizep
== 0 || normalizep
== STORE_FLAG_VALUE
)
5015 /* STORE_FLAG_VALUE might be the most negative number, so write
5016 the comparison this way to avoid a compiler-time warning. */
5017 else if (- normalizep
== STORE_FLAG_VALUE
)
5018 op0
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5020 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5021 it hard to use a value of just the sign bit due to ANSI integer
5022 constant typing rules. */
5023 else if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5024 && (STORE_FLAG_VALUE
5025 & ((HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1))))
5026 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5027 size_int (GET_MODE_BITSIZE (mode
) - 1), subtarget
,
5031 gcc_assert (STORE_FLAG_VALUE
& 1);
5033 op0
= expand_and (mode
, op0
, const1_rtx
, subtarget
);
5034 if (normalizep
== -1)
5035 op0
= expand_unop (mode
, neg_optab
, op0
, op0
, 0);
5038 /* If we were converting to a smaller mode, do the conversion now. */
5039 if (target_mode
!= mode
)
5041 convert_move (target
, op0
, 0);
5048 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5049 and storing in TARGET. Normally return TARGET.
5050 Return 0 if that cannot be done.
5052 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5053 it is VOIDmode, they cannot both be CONST_INT.
5055 UNSIGNEDP is for the case where we have to widen the operands
5056 to perform the operation. It says to use zero-extension.
5058 NORMALIZEP is 1 if we should convert the result to be either zero
5059 or one. Normalize is -1 if we should convert the result to be
5060 either zero or -1. If NORMALIZEP is zero, the result will be left
5061 "raw" out of the scc insn. */
5064 emit_store_flag (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5065 enum machine_mode mode
, int unsignedp
, int normalizep
)
5068 enum insn_code icode
;
5069 enum machine_mode compare_mode
;
5070 enum machine_mode target_mode
= GET_MODE (target
);
5072 rtx last
= get_last_insn ();
5073 rtx pattern
, comparison
;
5076 code
= unsigned_condition (code
);
5078 /* If one operand is constant, make it the second one. Only do this
5079 if the other operand is not constant as well. */
5081 if (swap_commutative_operands_p (op0
, op1
))
5086 code
= swap_condition (code
);
5089 if (mode
== VOIDmode
)
5090 mode
= GET_MODE (op0
);
5092 /* For some comparisons with 1 and -1, we can convert this to
5093 comparisons with zero. This will often produce more opportunities for
5094 store-flag insns. */
5099 if (op1
== const1_rtx
)
5100 op1
= const0_rtx
, code
= LE
;
5103 if (op1
== constm1_rtx
)
5104 op1
= const0_rtx
, code
= LT
;
5107 if (op1
== const1_rtx
)
5108 op1
= const0_rtx
, code
= GT
;
5111 if (op1
== constm1_rtx
)
5112 op1
= const0_rtx
, code
= GE
;
5115 if (op1
== const1_rtx
)
5116 op1
= const0_rtx
, code
= NE
;
5119 if (op1
== const1_rtx
)
5120 op1
= const0_rtx
, code
= EQ
;
5126 /* If we are comparing a double-word integer with zero or -1, we can
5127 convert the comparison into one involving a single word. */
5128 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
* 2
5129 && GET_MODE_CLASS (mode
) == MODE_INT
5130 && (!MEM_P (op0
) || ! MEM_VOLATILE_P (op0
)))
5132 if ((code
== EQ
|| code
== NE
)
5133 && (op1
== const0_rtx
|| op1
== constm1_rtx
))
5135 rtx op00
, op01
, op0both
;
5137 /* Do a logical OR or AND of the two words and compare the
5139 op00
= simplify_gen_subreg (word_mode
, op0
, mode
, 0);
5140 op01
= simplify_gen_subreg (word_mode
, op0
, mode
, UNITS_PER_WORD
);
5141 op0both
= expand_binop (word_mode
,
5142 op1
== const0_rtx
? ior_optab
: and_optab
,
5143 op00
, op01
, NULL_RTX
, unsignedp
,
5147 return emit_store_flag (target
, code
, op0both
, op1
, word_mode
,
5148 unsignedp
, normalizep
);
5150 else if ((code
== LT
|| code
== GE
) && op1
== const0_rtx
)
5154 /* If testing the sign bit, can just test on high word. */
5155 op0h
= simplify_gen_subreg (word_mode
, op0
, mode
,
5156 subreg_highpart_offset (word_mode
,
5158 return emit_store_flag (target
, code
, op0h
, op1
, word_mode
,
5159 unsignedp
, normalizep
);
5163 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5164 complement of A (for GE) and shifting the sign bit to the low bit. */
5165 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
5166 && GET_MODE_CLASS (mode
) == MODE_INT
5167 && (normalizep
|| STORE_FLAG_VALUE
== 1
5168 || (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5169 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5170 == ((unsigned HOST_WIDE_INT
) 1
5171 << (GET_MODE_BITSIZE (mode
) - 1))))))
5175 /* If the result is to be wider than OP0, it is best to convert it
5176 first. If it is to be narrower, it is *incorrect* to convert it
5178 if (GET_MODE_SIZE (target_mode
) > GET_MODE_SIZE (mode
))
5180 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5184 if (target_mode
!= mode
)
5188 op0
= expand_unop (mode
, one_cmpl_optab
, op0
,
5189 ((STORE_FLAG_VALUE
== 1 || normalizep
)
5190 ? 0 : subtarget
), 0);
5192 if (STORE_FLAG_VALUE
== 1 || normalizep
)
5193 /* If we are supposed to produce a 0/1 value, we want to do
5194 a logical shift from the sign bit to the low-order bit; for
5195 a -1/0 value, we do an arithmetic shift. */
5196 op0
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5197 size_int (GET_MODE_BITSIZE (mode
) - 1),
5198 subtarget
, normalizep
!= -1);
5200 if (mode
!= target_mode
)
5201 op0
= convert_modes (target_mode
, mode
, op0
, 0);
5206 icode
= setcc_gen_code
[(int) code
];
5208 if (icode
!= CODE_FOR_nothing
)
5210 insn_operand_predicate_fn pred
;
5212 /* We think we may be able to do this with a scc insn. Emit the
5213 comparison and then the scc insn. */
5215 do_pending_stack_adjust ();
5216 last
= get_last_insn ();
5219 = compare_from_rtx (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
);
5220 if (CONSTANT_P (comparison
))
5222 switch (GET_CODE (comparison
))
5225 if (comparison
== const0_rtx
)
5229 #ifdef FLOAT_STORE_FLAG_VALUE
5231 if (comparison
== CONST0_RTX (GET_MODE (comparison
)))
5239 if (normalizep
== 1)
5241 if (normalizep
== -1)
5243 return const_true_rtx
;
5246 /* The code of COMPARISON may not match CODE if compare_from_rtx
5247 decided to swap its operands and reverse the original code.
5249 We know that compare_from_rtx returns either a CONST_INT or
5250 a new comparison code, so it is safe to just extract the
5251 code from COMPARISON. */
5252 code
= GET_CODE (comparison
);
5254 /* Get a reference to the target in the proper mode for this insn. */
5255 compare_mode
= insn_data
[(int) icode
].operand
[0].mode
;
5257 pred
= insn_data
[(int) icode
].operand
[0].predicate
;
5258 if (optimize
|| ! (*pred
) (subtarget
, compare_mode
))
5259 subtarget
= gen_reg_rtx (compare_mode
);
5261 pattern
= GEN_FCN (icode
) (subtarget
);
5264 emit_insn (pattern
);
5265 return emit_store_flag_1 (target
, subtarget
, compare_mode
,
5271 /* We don't have an scc insn, so try a cstore insn. */
5273 for (compare_mode
= mode
; compare_mode
!= VOIDmode
;
5274 compare_mode
= GET_MODE_WIDER_MODE (compare_mode
))
5276 icode
= optab_handler (cstore_optab
, compare_mode
)->insn_code
;
5277 if (icode
!= CODE_FOR_nothing
)
5281 if (icode
!= CODE_FOR_nothing
)
5283 enum machine_mode result_mode
5284 = insn_data
[(int) icode
].operand
[0].mode
;
5285 rtx cstore_op0
= op0
;
5286 rtx cstore_op1
= op1
;
5288 do_pending_stack_adjust ();
5289 last
= get_last_insn ();
5291 if (compare_mode
!= mode
)
5293 cstore_op0
= convert_modes (compare_mode
, mode
, cstore_op0
,
5295 cstore_op1
= convert_modes (compare_mode
, mode
, cstore_op1
,
5299 if (!insn_data
[(int) icode
].operand
[2].predicate (cstore_op0
,
5301 cstore_op0
= copy_to_mode_reg (compare_mode
, cstore_op0
);
5303 if (!insn_data
[(int) icode
].operand
[3].predicate (cstore_op1
,
5305 cstore_op1
= copy_to_mode_reg (compare_mode
, cstore_op1
);
5307 comparison
= gen_rtx_fmt_ee (code
, result_mode
, cstore_op0
,
5311 if (optimize
|| !(insn_data
[(int) icode
].operand
[0].predicate
5312 (subtarget
, result_mode
)))
5313 subtarget
= gen_reg_rtx (result_mode
);
5315 pattern
= GEN_FCN (icode
) (subtarget
, comparison
, cstore_op0
,
5320 emit_insn (pattern
);
5321 return emit_store_flag_1 (target
, subtarget
, result_mode
,
5327 delete_insns_since (last
);
5329 /* If optimizing, use different pseudo registers for each insn, instead
5330 of reusing the same pseudo. This leads to better CSE, but slows
5331 down the compiler, since there are more pseudos */
5332 subtarget
= (!optimize
5333 && (target_mode
== mode
)) ? target
: NULL_RTX
;
5335 /* If we reached here, we can't do this with a scc insn. However, there
5336 are some comparisons that can be done directly. For example, if
5337 this is an equality comparison of integers, we can try to exclusive-or
5338 (or subtract) the two operands and use a recursive call to try the
5339 comparison with zero. Don't do any of these cases if branches are
5343 && GET_MODE_CLASS (mode
) == MODE_INT
&& (code
== EQ
|| code
== NE
)
5344 && op1
!= const0_rtx
)
5346 tem
= expand_binop (mode
, xor_optab
, op0
, op1
, subtarget
, 1,
5350 tem
= expand_binop (mode
, sub_optab
, op0
, op1
, subtarget
, 1,
5353 tem
= emit_store_flag (target
, code
, tem
, const0_rtx
,
5354 mode
, unsignedp
, normalizep
);
5356 delete_insns_since (last
);
5360 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5361 the constant zero. Reject all other comparisons at this point. Only
5362 do LE and GT if branches are expensive since they are expensive on
5363 2-operand machines. */
5365 if (BRANCH_COST
== 0
5366 || GET_MODE_CLASS (mode
) != MODE_INT
|| op1
!= const0_rtx
5367 || (code
!= EQ
&& code
!= NE
5368 && (BRANCH_COST
<= 1 || (code
!= LE
&& code
!= GT
))))
5371 /* See what we need to return. We can only return a 1, -1, or the
5374 if (normalizep
== 0)
5376 if (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
5377 normalizep
= STORE_FLAG_VALUE
;
5379 else if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
5380 && ((STORE_FLAG_VALUE
& GET_MODE_MASK (mode
))
5381 == (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1)))
5387 /* Try to put the result of the comparison in the sign bit. Assume we can't
5388 do the necessary operation below. */
5392 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5393 the sign bit set. */
5397 /* This is destructive, so SUBTARGET can't be OP0. */
5398 if (rtx_equal_p (subtarget
, op0
))
5401 tem
= expand_binop (mode
, sub_optab
, op0
, const1_rtx
, subtarget
, 0,
5404 tem
= expand_binop (mode
, ior_optab
, op0
, tem
, subtarget
, 0,
5408 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5409 number of bits in the mode of OP0, minus one. */
5413 if (rtx_equal_p (subtarget
, op0
))
5416 tem
= expand_shift (RSHIFT_EXPR
, mode
, op0
,
5417 size_int (GET_MODE_BITSIZE (mode
) - 1),
5419 tem
= expand_binop (mode
, sub_optab
, tem
, op0
, subtarget
, 0,
5423 if (code
== EQ
|| code
== NE
)
5425 /* For EQ or NE, one way to do the comparison is to apply an operation
5426 that converts the operand into a positive number if it is nonzero
5427 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5428 for NE we negate. This puts the result in the sign bit. Then we
5429 normalize with a shift, if needed.
5431 Two operations that can do the above actions are ABS and FFS, so try
5432 them. If that doesn't work, and MODE is smaller than a full word,
5433 we can use zero-extension to the wider mode (an unsigned conversion)
5434 as the operation. */
5436 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5437 that is compensated by the subsequent overflow when subtracting
5440 if (optab_handler (abs_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
5441 tem
= expand_unop (mode
, abs_optab
, op0
, subtarget
, 1);
5442 else if (optab_handler (ffs_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
5443 tem
= expand_unop (mode
, ffs_optab
, op0
, subtarget
, 1);
5444 else if (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
)
5446 tem
= convert_modes (word_mode
, mode
, op0
, 1);
5453 tem
= expand_binop (mode
, sub_optab
, tem
, const1_rtx
, subtarget
,
5456 tem
= expand_unop (mode
, neg_optab
, tem
, subtarget
, 0);
5459 /* If we couldn't do it that way, for NE we can "or" the two's complement
5460 of the value with itself. For EQ, we take the one's complement of
5461 that "or", which is an extra insn, so we only handle EQ if branches
5464 if (tem
== 0 && (code
== NE
|| BRANCH_COST
> 1))
5466 if (rtx_equal_p (subtarget
, op0
))
5469 tem
= expand_unop (mode
, neg_optab
, op0
, subtarget
, 0);
5470 tem
= expand_binop (mode
, ior_optab
, tem
, op0
, subtarget
, 0,
5473 if (tem
&& code
== EQ
)
5474 tem
= expand_unop (mode
, one_cmpl_optab
, tem
, subtarget
, 0);
5478 if (tem
&& normalizep
)
5479 tem
= expand_shift (RSHIFT_EXPR
, mode
, tem
,
5480 size_int (GET_MODE_BITSIZE (mode
) - 1),
5481 subtarget
, normalizep
== 1);
5485 if (GET_MODE (tem
) != target_mode
)
5487 convert_move (target
, tem
, 0);
5490 else if (!subtarget
)
5492 emit_move_insn (target
, tem
);
5497 delete_insns_since (last
);
5502 /* Like emit_store_flag, but always succeeds. */
5505 emit_store_flag_force (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
5506 enum machine_mode mode
, int unsignedp
, int normalizep
)
5510 /* First see if emit_store_flag can do the job. */
5511 tem
= emit_store_flag (target
, code
, op0
, op1
, mode
, unsignedp
, normalizep
);
5515 if (normalizep
== 0)
5518 /* If this failed, we have to do this with set/compare/jump/set code. */
5521 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
5522 target
= gen_reg_rtx (GET_MODE (target
));
5524 emit_move_insn (target
, const1_rtx
);
5525 label
= gen_label_rtx ();
5526 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, mode
, NULL_RTX
,
5529 emit_move_insn (target
, const0_rtx
);
5535 /* Perform possibly multi-word comparison and conditional jump to LABEL
5536 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5537 now a thin wrapper around do_compare_rtx_and_jump. */
5540 do_cmp_and_jump (rtx arg1
, rtx arg2
, enum rtx_code op
, enum machine_mode mode
,
5543 int unsignedp
= (op
== LTU
|| op
== LEU
|| op
== GTU
|| op
== GEU
);
5544 do_compare_rtx_and_jump (arg1
, arg2
, op
, unsignedp
, mode
,
5545 NULL_RTX
, NULL_RTX
, label
);