exp_ch3.adb (Build_Array_Init_Proc): Clarify comment related to creating dummy init...
[official-gcc.git] / gcc / expmed.c
blobb102241dbb15e92f6c8418abd79614ef3981c213
1 /* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
3 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "real.h"
37 #include "recog.h"
38 #include "langhooks.h"
39 #include "df.h"
40 #include "target.h"
42 static void store_fixed_bit_field (rtx, unsigned HOST_WIDE_INT,
43 unsigned HOST_WIDE_INT,
44 unsigned HOST_WIDE_INT, rtx);
45 static void store_split_bit_field (rtx, unsigned HOST_WIDE_INT,
46 unsigned HOST_WIDE_INT, rtx);
47 static rtx extract_fixed_bit_field (enum machine_mode, rtx,
48 unsigned HOST_WIDE_INT,
49 unsigned HOST_WIDE_INT,
50 unsigned HOST_WIDE_INT, rtx, int);
51 static rtx mask_rtx (enum machine_mode, int, int, int);
52 static rtx lshift_value (enum machine_mode, rtx, int, int);
53 static rtx extract_split_bit_field (rtx, unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT, int);
55 static void do_cmp_and_jump (rtx, rtx, enum rtx_code, enum machine_mode, rtx);
56 static rtx expand_smod_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
57 static rtx expand_sdiv_pow2 (enum machine_mode, rtx, HOST_WIDE_INT);
59 /* Test whether a value is zero of a power of two. */
60 #define EXACT_POWER_OF_2_OR_ZERO_P(x) (((x) & ((x) - 1)) == 0)
62 /* Nonzero means divides or modulus operations are relatively cheap for
63 powers of two, so don't use branches; emit the operation instead.
64 Usually, this will mean that the MD file will emit non-branch
65 sequences. */
67 static bool sdiv_pow2_cheap[NUM_MACHINE_MODES];
68 static bool smod_pow2_cheap[NUM_MACHINE_MODES];
70 #ifndef SLOW_UNALIGNED_ACCESS
71 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
72 #endif
74 /* For compilers that support multiple targets with different word sizes,
75 MAX_BITS_PER_WORD contains the biggest value of BITS_PER_WORD. An example
76 is the H8/300(H) compiler. */
78 #ifndef MAX_BITS_PER_WORD
79 #define MAX_BITS_PER_WORD BITS_PER_WORD
80 #endif
82 /* Reduce conditional compilation elsewhere. */
83 #ifndef HAVE_insv
84 #define HAVE_insv 0
85 #define CODE_FOR_insv CODE_FOR_nothing
86 #define gen_insv(a,b,c,d) NULL_RTX
87 #endif
88 #ifndef HAVE_extv
89 #define HAVE_extv 0
90 #define CODE_FOR_extv CODE_FOR_nothing
91 #define gen_extv(a,b,c,d) NULL_RTX
92 #endif
93 #ifndef HAVE_extzv
94 #define HAVE_extzv 0
95 #define CODE_FOR_extzv CODE_FOR_nothing
96 #define gen_extzv(a,b,c,d) NULL_RTX
97 #endif
99 /* Cost of various pieces of RTL. Note that some of these are indexed by
100 shift count and some by mode. */
101 static int zero_cost;
102 static int add_cost[NUM_MACHINE_MODES];
103 static int neg_cost[NUM_MACHINE_MODES];
104 static int shift_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
105 static int shiftadd_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
106 static int shiftsub_cost[NUM_MACHINE_MODES][MAX_BITS_PER_WORD];
107 static int mul_cost[NUM_MACHINE_MODES];
108 static int sdiv_cost[NUM_MACHINE_MODES];
109 static int udiv_cost[NUM_MACHINE_MODES];
110 static int mul_widen_cost[NUM_MACHINE_MODES];
111 static int mul_highpart_cost[NUM_MACHINE_MODES];
113 void
114 init_expmed (void)
116 struct
118 struct rtx_def reg; rtunion reg_fld[2];
119 struct rtx_def plus; rtunion plus_fld1;
120 struct rtx_def neg;
121 struct rtx_def mult; rtunion mult_fld1;
122 struct rtx_def sdiv; rtunion sdiv_fld1;
123 struct rtx_def udiv; rtunion udiv_fld1;
124 struct rtx_def zext;
125 struct rtx_def sdiv_32; rtunion sdiv_32_fld1;
126 struct rtx_def smod_32; rtunion smod_32_fld1;
127 struct rtx_def wide_mult; rtunion wide_mult_fld1;
128 struct rtx_def wide_lshr; rtunion wide_lshr_fld1;
129 struct rtx_def wide_trunc;
130 struct rtx_def shift; rtunion shift_fld1;
131 struct rtx_def shift_mult; rtunion shift_mult_fld1;
132 struct rtx_def shift_add; rtunion shift_add_fld1;
133 struct rtx_def shift_sub; rtunion shift_sub_fld1;
134 } all;
136 rtx pow2[MAX_BITS_PER_WORD];
137 rtx cint[MAX_BITS_PER_WORD];
138 int m, n;
139 enum machine_mode mode, wider_mode;
141 zero_cost = rtx_cost (const0_rtx, 0);
143 for (m = 1; m < MAX_BITS_PER_WORD; m++)
145 pow2[m] = GEN_INT ((HOST_WIDE_INT) 1 << m);
146 cint[m] = GEN_INT (m);
149 memset (&all, 0, sizeof all);
151 PUT_CODE (&all.reg, REG);
152 /* Avoid using hard regs in ways which may be unsupported. */
153 SET_REGNO (&all.reg, LAST_VIRTUAL_REGISTER + 1);
155 PUT_CODE (&all.plus, PLUS);
156 XEXP (&all.plus, 0) = &all.reg;
157 XEXP (&all.plus, 1) = &all.reg;
159 PUT_CODE (&all.neg, NEG);
160 XEXP (&all.neg, 0) = &all.reg;
162 PUT_CODE (&all.mult, MULT);
163 XEXP (&all.mult, 0) = &all.reg;
164 XEXP (&all.mult, 1) = &all.reg;
166 PUT_CODE (&all.sdiv, DIV);
167 XEXP (&all.sdiv, 0) = &all.reg;
168 XEXP (&all.sdiv, 1) = &all.reg;
170 PUT_CODE (&all.udiv, UDIV);
171 XEXP (&all.udiv, 0) = &all.reg;
172 XEXP (&all.udiv, 1) = &all.reg;
174 PUT_CODE (&all.sdiv_32, DIV);
175 XEXP (&all.sdiv_32, 0) = &all.reg;
176 XEXP (&all.sdiv_32, 1) = 32 < MAX_BITS_PER_WORD ? cint[32] : GEN_INT (32);
178 PUT_CODE (&all.smod_32, MOD);
179 XEXP (&all.smod_32, 0) = &all.reg;
180 XEXP (&all.smod_32, 1) = XEXP (&all.sdiv_32, 1);
182 PUT_CODE (&all.zext, ZERO_EXTEND);
183 XEXP (&all.zext, 0) = &all.reg;
185 PUT_CODE (&all.wide_mult, MULT);
186 XEXP (&all.wide_mult, 0) = &all.zext;
187 XEXP (&all.wide_mult, 1) = &all.zext;
189 PUT_CODE (&all.wide_lshr, LSHIFTRT);
190 XEXP (&all.wide_lshr, 0) = &all.wide_mult;
192 PUT_CODE (&all.wide_trunc, TRUNCATE);
193 XEXP (&all.wide_trunc, 0) = &all.wide_lshr;
195 PUT_CODE (&all.shift, ASHIFT);
196 XEXP (&all.shift, 0) = &all.reg;
198 PUT_CODE (&all.shift_mult, MULT);
199 XEXP (&all.shift_mult, 0) = &all.reg;
201 PUT_CODE (&all.shift_add, PLUS);
202 XEXP (&all.shift_add, 0) = &all.shift_mult;
203 XEXP (&all.shift_add, 1) = &all.reg;
205 PUT_CODE (&all.shift_sub, MINUS);
206 XEXP (&all.shift_sub, 0) = &all.shift_mult;
207 XEXP (&all.shift_sub, 1) = &all.reg;
209 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
210 mode != VOIDmode;
211 mode = GET_MODE_WIDER_MODE (mode))
213 PUT_MODE (&all.reg, mode);
214 PUT_MODE (&all.plus, mode);
215 PUT_MODE (&all.neg, mode);
216 PUT_MODE (&all.mult, mode);
217 PUT_MODE (&all.sdiv, mode);
218 PUT_MODE (&all.udiv, mode);
219 PUT_MODE (&all.sdiv_32, mode);
220 PUT_MODE (&all.smod_32, mode);
221 PUT_MODE (&all.wide_trunc, mode);
222 PUT_MODE (&all.shift, mode);
223 PUT_MODE (&all.shift_mult, mode);
224 PUT_MODE (&all.shift_add, mode);
225 PUT_MODE (&all.shift_sub, mode);
227 add_cost[mode] = rtx_cost (&all.plus, SET);
228 neg_cost[mode] = rtx_cost (&all.neg, SET);
229 mul_cost[mode] = rtx_cost (&all.mult, SET);
230 sdiv_cost[mode] = rtx_cost (&all.sdiv, SET);
231 udiv_cost[mode] = rtx_cost (&all.udiv, SET);
233 sdiv_pow2_cheap[mode] = (rtx_cost (&all.sdiv_32, SET)
234 <= 2 * add_cost[mode]);
235 smod_pow2_cheap[mode] = (rtx_cost (&all.smod_32, SET)
236 <= 4 * add_cost[mode]);
238 wider_mode = GET_MODE_WIDER_MODE (mode);
239 if (wider_mode != VOIDmode)
241 PUT_MODE (&all.zext, wider_mode);
242 PUT_MODE (&all.wide_mult, wider_mode);
243 PUT_MODE (&all.wide_lshr, wider_mode);
244 XEXP (&all.wide_lshr, 1) = GEN_INT (GET_MODE_BITSIZE (mode));
246 mul_widen_cost[wider_mode] = rtx_cost (&all.wide_mult, SET);
247 mul_highpart_cost[mode] = rtx_cost (&all.wide_trunc, SET);
250 shift_cost[mode][0] = 0;
251 shiftadd_cost[mode][0] = shiftsub_cost[mode][0] = add_cost[mode];
253 n = MIN (MAX_BITS_PER_WORD, GET_MODE_BITSIZE (mode));
254 for (m = 1; m < n; m++)
256 XEXP (&all.shift, 1) = cint[m];
257 XEXP (&all.shift_mult, 1) = pow2[m];
259 shift_cost[mode][m] = rtx_cost (&all.shift, SET);
260 shiftadd_cost[mode][m] = rtx_cost (&all.shift_add, SET);
261 shiftsub_cost[mode][m] = rtx_cost (&all.shift_sub, SET);
266 /* Return an rtx representing minus the value of X.
267 MODE is the intended mode of the result,
268 useful if X is a CONST_INT. */
271 negate_rtx (enum machine_mode mode, rtx x)
273 rtx result = simplify_unary_operation (NEG, mode, x, mode);
275 if (result == 0)
276 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
278 return result;
281 /* Report on the availability of insv/extv/extzv and the desired mode
282 of each of their operands. Returns MAX_MACHINE_MODE if HAVE_foo
283 is false; else the mode of the specified operand. If OPNO is -1,
284 all the caller cares about is whether the insn is available. */
285 enum machine_mode
286 mode_for_extraction (enum extraction_pattern pattern, int opno)
288 const struct insn_data *data;
290 switch (pattern)
292 case EP_insv:
293 if (HAVE_insv)
295 data = &insn_data[CODE_FOR_insv];
296 break;
298 return MAX_MACHINE_MODE;
300 case EP_extv:
301 if (HAVE_extv)
303 data = &insn_data[CODE_FOR_extv];
304 break;
306 return MAX_MACHINE_MODE;
308 case EP_extzv:
309 if (HAVE_extzv)
311 data = &insn_data[CODE_FOR_extzv];
312 break;
314 return MAX_MACHINE_MODE;
316 default:
317 gcc_unreachable ();
320 if (opno == -1)
321 return VOIDmode;
323 /* Everyone who uses this function used to follow it with
324 if (result == VOIDmode) result = word_mode; */
325 if (data->operand[opno].mode == VOIDmode)
326 return word_mode;
327 return data->operand[opno].mode;
330 /* Return true if X, of mode MODE, matches the predicate for operand
331 OPNO of instruction ICODE. Allow volatile memories, regardless of
332 the ambient volatile_ok setting. */
334 static bool
335 check_predicate_volatile_ok (enum insn_code icode, int opno,
336 rtx x, enum machine_mode mode)
338 bool save_volatile_ok, result;
340 save_volatile_ok = volatile_ok;
341 result = insn_data[(int) icode].operand[opno].predicate (x, mode);
342 volatile_ok = save_volatile_ok;
343 return result;
346 /* A subroutine of store_bit_field, with the same arguments. Return true
347 if the operation could be implemented.
349 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
350 no other way of implementing the operation. If FALLBACK_P is false,
351 return false instead. */
353 static bool
354 store_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
355 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
356 rtx value, bool fallback_p)
358 unsigned int unit
359 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
360 unsigned HOST_WIDE_INT offset, bitpos;
361 rtx op0 = str_rtx;
362 int byte_offset;
363 rtx orig_value;
365 enum machine_mode op_mode = mode_for_extraction (EP_insv, 3);
367 while (GET_CODE (op0) == SUBREG)
369 /* The following line once was done only if WORDS_BIG_ENDIAN,
370 but I think that is a mistake. WORDS_BIG_ENDIAN is
371 meaningful at a much higher level; when structures are copied
372 between memory and regs, the higher-numbered regs
373 always get higher addresses. */
374 int inner_mode_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)));
375 int outer_mode_size = GET_MODE_SIZE (GET_MODE (op0));
377 byte_offset = 0;
379 /* Paradoxical subregs need special handling on big endian machines. */
380 if (SUBREG_BYTE (op0) == 0 && inner_mode_size < outer_mode_size)
382 int difference = inner_mode_size - outer_mode_size;
384 if (WORDS_BIG_ENDIAN)
385 byte_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
386 if (BYTES_BIG_ENDIAN)
387 byte_offset += difference % UNITS_PER_WORD;
389 else
390 byte_offset = SUBREG_BYTE (op0);
392 bitnum += byte_offset * BITS_PER_UNIT;
393 op0 = SUBREG_REG (op0);
396 /* No action is needed if the target is a register and if the field
397 lies completely outside that register. This can occur if the source
398 code contains an out-of-bounds access to a small array. */
399 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
400 return true;
402 /* Use vec_set patterns for inserting parts of vectors whenever
403 available. */
404 if (VECTOR_MODE_P (GET_MODE (op0))
405 && !MEM_P (op0)
406 && (optab_handler (vec_set_optab, GET_MODE (op0))->insn_code
407 != CODE_FOR_nothing)
408 && fieldmode == GET_MODE_INNER (GET_MODE (op0))
409 && bitsize == GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
410 && !(bitnum % GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
412 enum machine_mode outermode = GET_MODE (op0);
413 enum machine_mode innermode = GET_MODE_INNER (outermode);
414 int icode = (int) optab_handler (vec_set_optab, outermode)->insn_code;
415 int pos = bitnum / GET_MODE_BITSIZE (innermode);
416 rtx rtxpos = GEN_INT (pos);
417 rtx src = value;
418 rtx dest = op0;
419 rtx pat, seq;
420 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
421 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
422 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
424 start_sequence ();
426 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
427 src = copy_to_mode_reg (mode1, src);
429 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
430 rtxpos = copy_to_mode_reg (mode1, rtxpos);
432 /* We could handle this, but we should always be called with a pseudo
433 for our targets and all insns should take them as outputs. */
434 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
435 && (*insn_data[icode].operand[1].predicate) (src, mode1)
436 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
437 pat = GEN_FCN (icode) (dest, src, rtxpos);
438 seq = get_insns ();
439 end_sequence ();
440 if (pat)
442 emit_insn (seq);
443 emit_insn (pat);
444 return true;
448 /* If the target is a register, overwriting the entire object, or storing
449 a full-word or multi-word field can be done with just a SUBREG.
451 If the target is memory, storing any naturally aligned field can be
452 done with a simple store. For targets that support fast unaligned
453 memory, any naturally sized, unit aligned field can be done directly. */
455 offset = bitnum / unit;
456 bitpos = bitnum % unit;
457 byte_offset = (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
458 + (offset * UNITS_PER_WORD);
460 if (bitpos == 0
461 && bitsize == GET_MODE_BITSIZE (fieldmode)
462 && (!MEM_P (op0)
463 ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD
464 || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode))
465 && byte_offset % GET_MODE_SIZE (fieldmode) == 0)
466 : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0))
467 || (offset * BITS_PER_UNIT % bitsize == 0
468 && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))
470 if (MEM_P (op0))
471 op0 = adjust_address (op0, fieldmode, offset);
472 else if (GET_MODE (op0) != fieldmode)
473 op0 = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
474 byte_offset);
475 emit_move_insn (op0, value);
476 return true;
479 /* Make sure we are playing with integral modes. Pun with subregs
480 if we aren't. This must come after the entire register case above,
481 since that case is valid for any mode. The following cases are only
482 valid for integral modes. */
484 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
485 if (imode != GET_MODE (op0))
487 if (MEM_P (op0))
488 op0 = adjust_address (op0, imode, 0);
489 else
491 gcc_assert (imode != BLKmode);
492 op0 = gen_lowpart (imode, op0);
497 /* We may be accessing data outside the field, which means
498 we can alias adjacent data. */
499 if (MEM_P (op0))
501 op0 = shallow_copy_rtx (op0);
502 set_mem_alias_set (op0, 0);
503 set_mem_expr (op0, 0);
506 /* If OP0 is a register, BITPOS must count within a word.
507 But as we have it, it counts within whatever size OP0 now has.
508 On a bigendian machine, these are not the same, so convert. */
509 if (BYTES_BIG_ENDIAN
510 && !MEM_P (op0)
511 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
512 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
514 /* Storing an lsb-aligned field in a register
515 can be done with a movestrict instruction. */
517 if (!MEM_P (op0)
518 && (BYTES_BIG_ENDIAN ? bitpos + bitsize == unit : bitpos == 0)
519 && bitsize == GET_MODE_BITSIZE (fieldmode)
520 && (optab_handler (movstrict_optab, fieldmode)->insn_code
521 != CODE_FOR_nothing))
523 int icode = optab_handler (movstrict_optab, fieldmode)->insn_code;
525 /* Get appropriate low part of the value being stored. */
526 if (GET_CODE (value) == CONST_INT || REG_P (value))
527 value = gen_lowpart (fieldmode, value);
528 else if (!(GET_CODE (value) == SYMBOL_REF
529 || GET_CODE (value) == LABEL_REF
530 || GET_CODE (value) == CONST))
531 value = convert_to_mode (fieldmode, value, 0);
533 if (! (*insn_data[icode].operand[1].predicate) (value, fieldmode))
534 value = copy_to_mode_reg (fieldmode, value);
536 if (GET_CODE (op0) == SUBREG)
538 /* Else we've got some float mode source being extracted into
539 a different float mode destination -- this combination of
540 subregs results in Severe Tire Damage. */
541 gcc_assert (GET_MODE (SUBREG_REG (op0)) == fieldmode
542 || GET_MODE_CLASS (fieldmode) == MODE_INT
543 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
544 op0 = SUBREG_REG (op0);
547 emit_insn (GEN_FCN (icode)
548 (gen_rtx_SUBREG (fieldmode, op0,
549 (bitnum % BITS_PER_WORD) / BITS_PER_UNIT
550 + (offset * UNITS_PER_WORD)),
551 value));
553 return true;
556 /* Handle fields bigger than a word. */
558 if (bitsize > BITS_PER_WORD)
560 /* Here we transfer the words of the field
561 in the order least significant first.
562 This is because the most significant word is the one which may
563 be less than full.
564 However, only do that if the value is not BLKmode. */
566 unsigned int backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
567 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
568 unsigned int i;
569 rtx last;
571 /* This is the mode we must force value to, so that there will be enough
572 subwords to extract. Note that fieldmode will often (always?) be
573 VOIDmode, because that is what store_field uses to indicate that this
574 is a bit field, but passing VOIDmode to operand_subword_force
575 is not allowed. */
576 fieldmode = GET_MODE (value);
577 if (fieldmode == VOIDmode)
578 fieldmode = smallest_mode_for_size (nwords * BITS_PER_WORD, MODE_INT);
580 last = get_last_insn ();
581 for (i = 0; i < nwords; i++)
583 /* If I is 0, use the low-order word in both field and target;
584 if I is 1, use the next to lowest word; and so on. */
585 unsigned int wordnum = (backwards ? nwords - i - 1 : i);
586 unsigned int bit_offset = (backwards
587 ? MAX ((int) bitsize - ((int) i + 1)
588 * BITS_PER_WORD,
590 : (int) i * BITS_PER_WORD);
591 rtx value_word = operand_subword_force (value, wordnum, fieldmode);
593 if (!store_bit_field_1 (op0, MIN (BITS_PER_WORD,
594 bitsize - i * BITS_PER_WORD),
595 bitnum + bit_offset, word_mode,
596 value_word, fallback_p))
598 delete_insns_since (last);
599 return false;
602 return true;
605 /* From here on we can assume that the field to be stored in is
606 a full-word (whatever type that is), since it is shorter than a word. */
608 /* OFFSET is the number of words or bytes (UNIT says which)
609 from STR_RTX to the first word or byte containing part of the field. */
611 if (!MEM_P (op0))
613 if (offset != 0
614 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
616 if (!REG_P (op0))
618 /* Since this is a destination (lvalue), we can't copy
619 it to a pseudo. We can remove a SUBREG that does not
620 change the size of the operand. Such a SUBREG may
621 have been added above. */
622 gcc_assert (GET_CODE (op0) == SUBREG
623 && (GET_MODE_SIZE (GET_MODE (op0))
624 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))));
625 op0 = SUBREG_REG (op0);
627 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
628 op0, (offset * UNITS_PER_WORD));
630 offset = 0;
633 /* If VALUE has a floating-point or complex mode, access it as an
634 integer of the corresponding size. This can occur on a machine
635 with 64 bit registers that uses SFmode for float. It can also
636 occur for unaligned float or complex fields. */
637 orig_value = value;
638 if (GET_MODE (value) != VOIDmode
639 && GET_MODE_CLASS (GET_MODE (value)) != MODE_INT
640 && GET_MODE_CLASS (GET_MODE (value)) != MODE_PARTIAL_INT)
642 value = gen_reg_rtx (int_mode_for_mode (GET_MODE (value)));
643 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
646 /* Now OFFSET is nonzero only if OP0 is memory
647 and is therefore always measured in bytes. */
649 if (HAVE_insv
650 && GET_MODE (value) != BLKmode
651 && bitsize > 0
652 && GET_MODE_BITSIZE (op_mode) >= bitsize
653 && ! ((REG_P (op0) || GET_CODE (op0) == SUBREG)
654 && (bitsize + bitpos > GET_MODE_BITSIZE (op_mode)))
655 && insn_data[CODE_FOR_insv].operand[1].predicate (GEN_INT (bitsize),
656 VOIDmode)
657 && check_predicate_volatile_ok (CODE_FOR_insv, 0, op0, VOIDmode))
659 int xbitpos = bitpos;
660 rtx value1;
661 rtx xop0 = op0;
662 rtx last = get_last_insn ();
663 rtx pat;
665 /* Add OFFSET into OP0's address. */
666 if (MEM_P (xop0))
667 xop0 = adjust_address (xop0, byte_mode, offset);
669 /* If xop0 is a register, we need it in OP_MODE
670 to make it acceptable to the format of insv. */
671 if (GET_CODE (xop0) == SUBREG)
672 /* We can't just change the mode, because this might clobber op0,
673 and we will need the original value of op0 if insv fails. */
674 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0));
675 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
676 xop0 = gen_rtx_SUBREG (op_mode, xop0, 0);
678 /* On big-endian machines, we count bits from the most significant.
679 If the bit field insn does not, we must invert. */
681 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
682 xbitpos = unit - bitsize - xbitpos;
684 /* We have been counting XBITPOS within UNIT.
685 Count instead within the size of the register. */
686 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
687 xbitpos += GET_MODE_BITSIZE (op_mode) - unit;
689 unit = GET_MODE_BITSIZE (op_mode);
691 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
692 value1 = value;
693 if (GET_MODE (value) != op_mode)
695 if (GET_MODE_BITSIZE (GET_MODE (value)) >= bitsize)
697 /* Optimization: Don't bother really extending VALUE
698 if it has all the bits we will actually use. However,
699 if we must narrow it, be sure we do it correctly. */
701 if (GET_MODE_SIZE (GET_MODE (value)) < GET_MODE_SIZE (op_mode))
703 rtx tmp;
705 tmp = simplify_subreg (op_mode, value1, GET_MODE (value), 0);
706 if (! tmp)
707 tmp = simplify_gen_subreg (op_mode,
708 force_reg (GET_MODE (value),
709 value1),
710 GET_MODE (value), 0);
711 value1 = tmp;
713 else
714 value1 = gen_lowpart (op_mode, value1);
716 else if (GET_CODE (value) == CONST_INT)
717 value1 = gen_int_mode (INTVAL (value), op_mode);
718 else
719 /* Parse phase is supposed to make VALUE's data type
720 match that of the component reference, which is a type
721 at least as wide as the field; so VALUE should have
722 a mode that corresponds to that type. */
723 gcc_assert (CONSTANT_P (value));
726 /* If this machine's insv insists on a register,
727 get VALUE1 into a register. */
728 if (! ((*insn_data[(int) CODE_FOR_insv].operand[3].predicate)
729 (value1, op_mode)))
730 value1 = force_reg (op_mode, value1);
732 pat = gen_insv (xop0, GEN_INT (bitsize), GEN_INT (xbitpos), value1);
733 if (pat)
735 emit_insn (pat);
736 return true;
738 delete_insns_since (last);
741 /* If OP0 is a memory, try copying it to a register and seeing if a
742 cheap register alternative is available. */
743 if (HAVE_insv && MEM_P (op0))
745 enum machine_mode bestmode;
747 /* Get the mode to use for inserting into this field. If OP0 is
748 BLKmode, get the smallest mode consistent with the alignment. If
749 OP0 is a non-BLKmode object that is no wider than OP_MODE, use its
750 mode. Otherwise, use the smallest mode containing the field. */
752 if (GET_MODE (op0) == BLKmode
753 || (op_mode != MAX_MACHINE_MODE
754 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (op_mode)))
755 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
756 (op_mode == MAX_MACHINE_MODE
757 ? VOIDmode : op_mode),
758 MEM_VOLATILE_P (op0));
759 else
760 bestmode = GET_MODE (op0);
762 if (bestmode != VOIDmode
763 && GET_MODE_SIZE (bestmode) >= GET_MODE_SIZE (fieldmode)
764 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
765 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
767 rtx last, tempreg, xop0;
768 unsigned HOST_WIDE_INT xoffset, xbitpos;
770 last = get_last_insn ();
772 /* Adjust address to point to the containing unit of
773 that mode. Compute the offset as a multiple of this unit,
774 counting in bytes. */
775 unit = GET_MODE_BITSIZE (bestmode);
776 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
777 xbitpos = bitnum % unit;
778 xop0 = adjust_address (op0, bestmode, xoffset);
780 /* Fetch that unit, store the bitfield in it, then store
781 the unit. */
782 tempreg = copy_to_reg (xop0);
783 if (store_bit_field_1 (tempreg, bitsize, xbitpos,
784 fieldmode, orig_value, false))
786 emit_move_insn (xop0, tempreg);
787 return true;
789 delete_insns_since (last);
793 if (!fallback_p)
794 return false;
796 store_fixed_bit_field (op0, offset, bitsize, bitpos, value);
797 return true;
800 /* Generate code to store value from rtx VALUE
801 into a bit-field within structure STR_RTX
802 containing BITSIZE bits starting at bit BITNUM.
803 FIELDMODE is the machine-mode of the FIELD_DECL node for this field. */
805 void
806 store_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
807 unsigned HOST_WIDE_INT bitnum, enum machine_mode fieldmode,
808 rtx value)
810 if (!store_bit_field_1 (str_rtx, bitsize, bitnum, fieldmode, value, true))
811 gcc_unreachable ();
814 /* Use shifts and boolean operations to store VALUE
815 into a bit field of width BITSIZE
816 in a memory location specified by OP0 except offset by OFFSET bytes.
817 (OFFSET must be 0 if OP0 is a register.)
818 The field starts at position BITPOS within the byte.
819 (If OP0 is a register, it may be a full word or a narrower mode,
820 but BITPOS still counts within a full word,
821 which is significant on bigendian machines.) */
823 static void
824 store_fixed_bit_field (rtx op0, unsigned HOST_WIDE_INT offset,
825 unsigned HOST_WIDE_INT bitsize,
826 unsigned HOST_WIDE_INT bitpos, rtx value)
828 enum machine_mode mode;
829 unsigned int total_bits = BITS_PER_WORD;
830 rtx temp;
831 int all_zero = 0;
832 int all_one = 0;
834 /* There is a case not handled here:
835 a structure with a known alignment of just a halfword
836 and a field split across two aligned halfwords within the structure.
837 Or likewise a structure with a known alignment of just a byte
838 and a field split across two bytes.
839 Such cases are not supposed to be able to occur. */
841 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
843 gcc_assert (!offset);
844 /* Special treatment for a bit field split across two registers. */
845 if (bitsize + bitpos > BITS_PER_WORD)
847 store_split_bit_field (op0, bitsize, bitpos, value);
848 return;
851 else
853 /* Get the proper mode to use for this field. We want a mode that
854 includes the entire field. If such a mode would be larger than
855 a word, we won't be doing the extraction the normal way.
856 We don't want a mode bigger than the destination. */
858 mode = GET_MODE (op0);
859 if (GET_MODE_BITSIZE (mode) == 0
860 || GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (word_mode))
861 mode = word_mode;
862 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
863 MEM_ALIGN (op0), mode, MEM_VOLATILE_P (op0));
865 if (mode == VOIDmode)
867 /* The only way this should occur is if the field spans word
868 boundaries. */
869 store_split_bit_field (op0, bitsize, bitpos + offset * BITS_PER_UNIT,
870 value);
871 return;
874 total_bits = GET_MODE_BITSIZE (mode);
876 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
877 be in the range 0 to total_bits-1, and put any excess bytes in
878 OFFSET. */
879 if (bitpos >= total_bits)
881 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
882 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
883 * BITS_PER_UNIT);
886 /* Get ref to an aligned byte, halfword, or word containing the field.
887 Adjust BITPOS to be position within a word,
888 and OFFSET to be the offset of that word.
889 Then alter OP0 to refer to that word. */
890 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
891 offset -= (offset % (total_bits / BITS_PER_UNIT));
892 op0 = adjust_address (op0, mode, offset);
895 mode = GET_MODE (op0);
897 /* Now MODE is either some integral mode for a MEM as OP0,
898 or is a full-word for a REG as OP0. TOTAL_BITS corresponds.
899 The bit field is contained entirely within OP0.
900 BITPOS is the starting bit number within OP0.
901 (OP0's mode may actually be narrower than MODE.) */
903 if (BYTES_BIG_ENDIAN)
904 /* BITPOS is the distance between our msb
905 and that of the containing datum.
906 Convert it to the distance from the lsb. */
907 bitpos = total_bits - bitsize - bitpos;
909 /* Now BITPOS is always the distance between our lsb
910 and that of OP0. */
912 /* Shift VALUE left by BITPOS bits. If VALUE is not constant,
913 we must first convert its mode to MODE. */
915 if (GET_CODE (value) == CONST_INT)
917 HOST_WIDE_INT v = INTVAL (value);
919 if (bitsize < HOST_BITS_PER_WIDE_INT)
920 v &= ((HOST_WIDE_INT) 1 << bitsize) - 1;
922 if (v == 0)
923 all_zero = 1;
924 else if ((bitsize < HOST_BITS_PER_WIDE_INT
925 && v == ((HOST_WIDE_INT) 1 << bitsize) - 1)
926 || (bitsize == HOST_BITS_PER_WIDE_INT && v == -1))
927 all_one = 1;
929 value = lshift_value (mode, value, bitpos, bitsize);
931 else
933 int must_and = (GET_MODE_BITSIZE (GET_MODE (value)) != bitsize
934 && bitpos + bitsize != GET_MODE_BITSIZE (mode));
936 if (GET_MODE (value) != mode)
938 if ((REG_P (value) || GET_CODE (value) == SUBREG)
939 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (value)))
940 value = gen_lowpart (mode, value);
941 else
942 value = convert_to_mode (mode, value, 1);
945 if (must_and)
946 value = expand_binop (mode, and_optab, value,
947 mask_rtx (mode, 0, bitsize, 0),
948 NULL_RTX, 1, OPTAB_LIB_WIDEN);
949 if (bitpos > 0)
950 value = expand_shift (LSHIFT_EXPR, mode, value,
951 build_int_cst (NULL_TREE, bitpos), NULL_RTX, 1);
954 /* Now clear the chosen bits in OP0,
955 except that if VALUE is -1 we need not bother. */
956 /* We keep the intermediates in registers to allow CSE to combine
957 consecutive bitfield assignments. */
959 temp = force_reg (mode, op0);
961 if (! all_one)
963 temp = expand_binop (mode, and_optab, temp,
964 mask_rtx (mode, bitpos, bitsize, 1),
965 NULL_RTX, 1, OPTAB_LIB_WIDEN);
966 temp = force_reg (mode, temp);
969 /* Now logical-or VALUE into OP0, unless it is zero. */
971 if (! all_zero)
973 temp = expand_binop (mode, ior_optab, temp, value,
974 NULL_RTX, 1, OPTAB_LIB_WIDEN);
975 temp = force_reg (mode, temp);
978 if (op0 != temp)
980 op0 = copy_rtx (op0);
981 emit_move_insn (op0, temp);
985 /* Store a bit field that is split across multiple accessible memory objects.
987 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
988 BITSIZE is the field width; BITPOS the position of its first bit
989 (within the word).
990 VALUE is the value to store.
992 This does not yet handle fields wider than BITS_PER_WORD. */
994 static void
995 store_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
996 unsigned HOST_WIDE_INT bitpos, rtx value)
998 unsigned int unit;
999 unsigned int bitsdone = 0;
1001 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1002 much at a time. */
1003 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1004 unit = BITS_PER_WORD;
1005 else
1006 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1008 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1009 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1010 that VALUE might be a floating-point constant. */
1011 if (CONSTANT_P (value) && GET_CODE (value) != CONST_INT)
1013 rtx word = gen_lowpart_common (word_mode, value);
1015 if (word && (value != word))
1016 value = word;
1017 else
1018 value = gen_lowpart_common (word_mode,
1019 force_reg (GET_MODE (value) != VOIDmode
1020 ? GET_MODE (value)
1021 : word_mode, value));
1024 while (bitsdone < bitsize)
1026 unsigned HOST_WIDE_INT thissize;
1027 rtx part, word;
1028 unsigned HOST_WIDE_INT thispos;
1029 unsigned HOST_WIDE_INT offset;
1031 offset = (bitpos + bitsdone) / unit;
1032 thispos = (bitpos + bitsdone) % unit;
1034 /* THISSIZE must not overrun a word boundary. Otherwise,
1035 store_fixed_bit_field will call us again, and we will mutually
1036 recurse forever. */
1037 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1038 thissize = MIN (thissize, unit - thispos);
1040 if (BYTES_BIG_ENDIAN)
1042 int total_bits;
1044 /* We must do an endian conversion exactly the same way as it is
1045 done in extract_bit_field, so that the two calls to
1046 extract_fixed_bit_field will have comparable arguments. */
1047 if (!MEM_P (value) || GET_MODE (value) == BLKmode)
1048 total_bits = BITS_PER_WORD;
1049 else
1050 total_bits = GET_MODE_BITSIZE (GET_MODE (value));
1052 /* Fetch successively less significant portions. */
1053 if (GET_CODE (value) == CONST_INT)
1054 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1055 >> (bitsize - bitsdone - thissize))
1056 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1057 else
1058 /* The args are chosen so that the last part includes the
1059 lsb. Give extract_bit_field the value it needs (with
1060 endianness compensation) to fetch the piece we want. */
1061 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1062 total_bits - bitsize + bitsdone,
1063 NULL_RTX, 1);
1065 else
1067 /* Fetch successively more significant portions. */
1068 if (GET_CODE (value) == CONST_INT)
1069 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1070 >> bitsdone)
1071 & (((HOST_WIDE_INT) 1 << thissize) - 1));
1072 else
1073 part = extract_fixed_bit_field (word_mode, value, 0, thissize,
1074 bitsdone, NULL_RTX, 1);
1077 /* If OP0 is a register, then handle OFFSET here.
1079 When handling multiword bitfields, extract_bit_field may pass
1080 down a word_mode SUBREG of a larger REG for a bitfield that actually
1081 crosses a word boundary. Thus, for a SUBREG, we must find
1082 the current word starting from the base register. */
1083 if (GET_CODE (op0) == SUBREG)
1085 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1086 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1087 GET_MODE (SUBREG_REG (op0)));
1088 offset = 0;
1090 else if (REG_P (op0))
1092 word = operand_subword_force (op0, offset, GET_MODE (op0));
1093 offset = 0;
1095 else
1096 word = op0;
1098 /* OFFSET is in UNITs, and UNIT is in bits.
1099 store_fixed_bit_field wants offset in bytes. */
1100 store_fixed_bit_field (word, offset * unit / BITS_PER_UNIT, thissize,
1101 thispos, part);
1102 bitsdone += thissize;
1106 /* A subroutine of extract_bit_field_1 that converts return value X
1107 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1108 to extract_bit_field. */
1110 static rtx
1111 convert_extracted_bit_field (rtx x, enum machine_mode mode,
1112 enum machine_mode tmode, bool unsignedp)
1114 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1115 return x;
1117 /* If the x mode is not a scalar integral, first convert to the
1118 integer mode of that size and then access it as a floating-point
1119 value via a SUBREG. */
1120 if (!SCALAR_INT_MODE_P (tmode))
1122 enum machine_mode smode;
1124 smode = mode_for_size (GET_MODE_BITSIZE (tmode), MODE_INT, 0);
1125 x = convert_to_mode (smode, x, unsignedp);
1126 x = force_reg (smode, x);
1127 return gen_lowpart (tmode, x);
1130 return convert_to_mode (tmode, x, unsignedp);
1133 /* A subroutine of extract_bit_field, with the same arguments.
1134 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1135 if we can find no other means of implementing the operation.
1136 if FALLBACK_P is false, return NULL instead. */
1138 static rtx
1139 extract_bit_field_1 (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1140 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1141 enum machine_mode mode, enum machine_mode tmode,
1142 bool fallback_p)
1144 unsigned int unit
1145 = (MEM_P (str_rtx)) ? BITS_PER_UNIT : BITS_PER_WORD;
1146 unsigned HOST_WIDE_INT offset, bitpos;
1147 rtx op0 = str_rtx;
1148 enum machine_mode int_mode;
1149 enum machine_mode ext_mode;
1150 enum machine_mode mode1;
1151 enum insn_code icode;
1152 int byte_offset;
1154 if (tmode == VOIDmode)
1155 tmode = mode;
1157 while (GET_CODE (op0) == SUBREG)
1159 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
1160 op0 = SUBREG_REG (op0);
1163 /* If we have an out-of-bounds access to a register, just return an
1164 uninitialized register of the required mode. This can occur if the
1165 source code contains an out-of-bounds access to a small array. */
1166 if (REG_P (op0) && bitnum >= GET_MODE_BITSIZE (GET_MODE (op0)))
1167 return gen_reg_rtx (tmode);
1169 if (REG_P (op0)
1170 && mode == GET_MODE (op0)
1171 && bitnum == 0
1172 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
1174 /* We're trying to extract a full register from itself. */
1175 return op0;
1178 /* See if we can get a better vector mode before extracting. */
1179 if (VECTOR_MODE_P (GET_MODE (op0))
1180 && !MEM_P (op0)
1181 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1183 enum machine_mode new_mode;
1184 int nunits = GET_MODE_NUNITS (GET_MODE (op0));
1186 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1187 new_mode = MIN_MODE_VECTOR_FLOAT;
1188 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1189 new_mode = MIN_MODE_VECTOR_FRACT;
1190 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1191 new_mode = MIN_MODE_VECTOR_UFRACT;
1192 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1193 new_mode = MIN_MODE_VECTOR_ACCUM;
1194 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1195 new_mode = MIN_MODE_VECTOR_UACCUM;
1196 else
1197 new_mode = MIN_MODE_VECTOR_INT;
1199 for (; new_mode != VOIDmode ; new_mode = GET_MODE_WIDER_MODE (new_mode))
1200 if (GET_MODE_NUNITS (new_mode) == nunits
1201 && GET_MODE_INNER (new_mode) == tmode
1202 && targetm.vector_mode_supported_p (new_mode))
1203 break;
1204 if (new_mode != VOIDmode)
1205 op0 = gen_lowpart (new_mode, op0);
1208 /* Use vec_extract patterns for extracting parts of vectors whenever
1209 available. */
1210 if (VECTOR_MODE_P (GET_MODE (op0))
1211 && !MEM_P (op0)
1212 && (optab_handler (vec_extract_optab, GET_MODE (op0))->insn_code
1213 != CODE_FOR_nothing)
1214 && ((bitnum + bitsize - 1) / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))
1215 == bitnum / GET_MODE_BITSIZE (GET_MODE_INNER (GET_MODE (op0)))))
1217 enum machine_mode outermode = GET_MODE (op0);
1218 enum machine_mode innermode = GET_MODE_INNER (outermode);
1219 int icode = (int) optab_handler (vec_extract_optab, outermode)->insn_code;
1220 unsigned HOST_WIDE_INT pos = bitnum / GET_MODE_BITSIZE (innermode);
1221 rtx rtxpos = GEN_INT (pos);
1222 rtx src = op0;
1223 rtx dest = NULL, pat, seq;
1224 enum machine_mode mode0 = insn_data[icode].operand[0].mode;
1225 enum machine_mode mode1 = insn_data[icode].operand[1].mode;
1226 enum machine_mode mode2 = insn_data[icode].operand[2].mode;
1228 if (innermode == tmode || innermode == mode)
1229 dest = target;
1231 if (!dest)
1232 dest = gen_reg_rtx (innermode);
1234 start_sequence ();
1236 if (! (*insn_data[icode].operand[0].predicate) (dest, mode0))
1237 dest = copy_to_mode_reg (mode0, dest);
1239 if (! (*insn_data[icode].operand[1].predicate) (src, mode1))
1240 src = copy_to_mode_reg (mode1, src);
1242 if (! (*insn_data[icode].operand[2].predicate) (rtxpos, mode2))
1243 rtxpos = copy_to_mode_reg (mode1, rtxpos);
1245 /* We could handle this, but we should always be called with a pseudo
1246 for our targets and all insns should take them as outputs. */
1247 gcc_assert ((*insn_data[icode].operand[0].predicate) (dest, mode0)
1248 && (*insn_data[icode].operand[1].predicate) (src, mode1)
1249 && (*insn_data[icode].operand[2].predicate) (rtxpos, mode2));
1251 pat = GEN_FCN (icode) (dest, src, rtxpos);
1252 seq = get_insns ();
1253 end_sequence ();
1254 if (pat)
1256 emit_insn (seq);
1257 emit_insn (pat);
1258 if (mode0 != mode)
1259 return gen_lowpart (tmode, dest);
1260 return dest;
1264 /* Make sure we are playing with integral modes. Pun with subregs
1265 if we aren't. */
1267 enum machine_mode imode = int_mode_for_mode (GET_MODE (op0));
1268 if (imode != GET_MODE (op0))
1270 if (MEM_P (op0))
1271 op0 = adjust_address (op0, imode, 0);
1272 else
1274 gcc_assert (imode != BLKmode);
1275 op0 = gen_lowpart (imode, op0);
1277 /* If we got a SUBREG, force it into a register since we
1278 aren't going to be able to do another SUBREG on it. */
1279 if (GET_CODE (op0) == SUBREG)
1280 op0 = force_reg (imode, op0);
1285 /* We may be accessing data outside the field, which means
1286 we can alias adjacent data. */
1287 if (MEM_P (op0))
1289 op0 = shallow_copy_rtx (op0);
1290 set_mem_alias_set (op0, 0);
1291 set_mem_expr (op0, 0);
1294 /* Extraction of a full-word or multi-word value from a structure
1295 in a register or aligned memory can be done with just a SUBREG.
1296 A subword value in the least significant part of a register
1297 can also be extracted with a SUBREG. For this, we need the
1298 byte offset of the value in op0. */
1300 bitpos = bitnum % unit;
1301 offset = bitnum / unit;
1302 byte_offset = bitpos / BITS_PER_UNIT + offset * UNITS_PER_WORD;
1304 /* If OP0 is a register, BITPOS must count within a word.
1305 But as we have it, it counts within whatever size OP0 now has.
1306 On a bigendian machine, these are not the same, so convert. */
1307 if (BYTES_BIG_ENDIAN
1308 && !MEM_P (op0)
1309 && unit > GET_MODE_BITSIZE (GET_MODE (op0)))
1310 bitpos += unit - GET_MODE_BITSIZE (GET_MODE (op0));
1312 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1313 If that's wrong, the solution is to test for it and set TARGET to 0
1314 if needed. */
1316 /* Only scalar integer modes can be converted via subregs. There is an
1317 additional problem for FP modes here in that they can have a precision
1318 which is different from the size. mode_for_size uses precision, but
1319 we want a mode based on the size, so we must avoid calling it for FP
1320 modes. */
1321 mode1 = (SCALAR_INT_MODE_P (tmode)
1322 ? mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0)
1323 : mode);
1325 if (((bitsize >= BITS_PER_WORD && bitsize == GET_MODE_BITSIZE (mode)
1326 && bitpos % BITS_PER_WORD == 0)
1327 || (mode1 != BLKmode
1328 /* ??? The big endian test here is wrong. This is correct
1329 if the value is in a register, and if mode_for_size is not
1330 the same mode as op0. This causes us to get unnecessarily
1331 inefficient code from the Thumb port when -mbig-endian. */
1332 && (BYTES_BIG_ENDIAN
1333 ? bitpos + bitsize == BITS_PER_WORD
1334 : bitpos == 0)))
1335 && ((!MEM_P (op0)
1336 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
1337 GET_MODE_BITSIZE (GET_MODE (op0)))
1338 && GET_MODE_SIZE (mode1) != 0
1339 && byte_offset % GET_MODE_SIZE (mode1) == 0)
1340 || (MEM_P (op0)
1341 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (op0))
1342 || (offset * BITS_PER_UNIT % bitsize == 0
1343 && MEM_ALIGN (op0) % bitsize == 0)))))
1345 if (MEM_P (op0))
1346 op0 = adjust_address (op0, mode1, offset);
1347 else if (mode1 != GET_MODE (op0))
1349 rtx sub = simplify_gen_subreg (mode1, op0, GET_MODE (op0),
1350 byte_offset);
1351 if (sub == NULL)
1352 goto no_subreg_mode_swap;
1353 op0 = sub;
1355 if (mode1 != mode)
1356 return convert_to_mode (tmode, op0, unsignedp);
1357 return op0;
1359 no_subreg_mode_swap:
1361 /* Handle fields bigger than a word. */
1363 if (bitsize > BITS_PER_WORD)
1365 /* Here we transfer the words of the field
1366 in the order least significant first.
1367 This is because the most significant word is the one which may
1368 be less than full. */
1370 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1371 unsigned int i;
1373 if (target == 0 || !REG_P (target))
1374 target = gen_reg_rtx (mode);
1376 /* Indicate for flow that the entire target reg is being set. */
1377 emit_clobber (target);
1379 for (i = 0; i < nwords; i++)
1381 /* If I is 0, use the low-order word in both field and target;
1382 if I is 1, use the next to lowest word; and so on. */
1383 /* Word number in TARGET to use. */
1384 unsigned int wordnum
1385 = (WORDS_BIG_ENDIAN
1386 ? GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD - i - 1
1387 : i);
1388 /* Offset from start of field in OP0. */
1389 unsigned int bit_offset = (WORDS_BIG_ENDIAN
1390 ? MAX (0, ((int) bitsize - ((int) i + 1)
1391 * (int) BITS_PER_WORD))
1392 : (int) i * BITS_PER_WORD);
1393 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1394 rtx result_part
1395 = extract_bit_field (op0, MIN (BITS_PER_WORD,
1396 bitsize - i * BITS_PER_WORD),
1397 bitnum + bit_offset, 1, target_part, mode,
1398 word_mode);
1400 gcc_assert (target_part);
1402 if (result_part != target_part)
1403 emit_move_insn (target_part, result_part);
1406 if (unsignedp)
1408 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1409 need to be zero'd out. */
1410 if (GET_MODE_SIZE (GET_MODE (target)) > nwords * UNITS_PER_WORD)
1412 unsigned int i, total_words;
1414 total_words = GET_MODE_SIZE (GET_MODE (target)) / UNITS_PER_WORD;
1415 for (i = nwords; i < total_words; i++)
1416 emit_move_insn
1417 (operand_subword (target,
1418 WORDS_BIG_ENDIAN ? total_words - i - 1 : i,
1419 1, VOIDmode),
1420 const0_rtx);
1422 return target;
1425 /* Signed bit field: sign-extend with two arithmetic shifts. */
1426 target = expand_shift (LSHIFT_EXPR, mode, target,
1427 build_int_cst (NULL_TREE,
1428 GET_MODE_BITSIZE (mode) - bitsize),
1429 NULL_RTX, 0);
1430 return expand_shift (RSHIFT_EXPR, mode, target,
1431 build_int_cst (NULL_TREE,
1432 GET_MODE_BITSIZE (mode) - bitsize),
1433 NULL_RTX, 0);
1436 /* From here on we know the desired field is smaller than a word. */
1438 /* Check if there is a correspondingly-sized integer field, so we can
1439 safely extract it as one size of integer, if necessary; then
1440 truncate or extend to the size that is wanted; then use SUBREGs or
1441 convert_to_mode to get one of the modes we really wanted. */
1443 int_mode = int_mode_for_mode (tmode);
1444 if (int_mode == BLKmode)
1445 int_mode = int_mode_for_mode (mode);
1446 /* Should probably push op0 out to memory and then do a load. */
1447 gcc_assert (int_mode != BLKmode);
1449 /* OFFSET is the number of words or bytes (UNIT says which)
1450 from STR_RTX to the first word or byte containing part of the field. */
1451 if (!MEM_P (op0))
1453 if (offset != 0
1454 || GET_MODE_SIZE (GET_MODE (op0)) > UNITS_PER_WORD)
1456 if (!REG_P (op0))
1457 op0 = copy_to_reg (op0);
1458 op0 = gen_rtx_SUBREG (mode_for_size (BITS_PER_WORD, MODE_INT, 0),
1459 op0, (offset * UNITS_PER_WORD));
1461 offset = 0;
1464 /* Now OFFSET is nonzero only for memory operands. */
1465 ext_mode = mode_for_extraction (unsignedp ? EP_extzv : EP_extv, 0);
1466 icode = unsignedp ? CODE_FOR_extzv : CODE_FOR_extv;
1467 if (ext_mode != MAX_MACHINE_MODE
1468 && bitsize > 0
1469 && GET_MODE_BITSIZE (ext_mode) >= bitsize
1470 /* If op0 is a register, we need it in EXT_MODE to make it
1471 acceptable to the format of ext(z)v. */
1472 && !(GET_CODE (op0) == SUBREG && GET_MODE (op0) != ext_mode)
1473 && !((REG_P (op0) || GET_CODE (op0) == SUBREG)
1474 && (bitsize + bitpos > GET_MODE_BITSIZE (ext_mode)))
1475 && check_predicate_volatile_ok (icode, 1, op0, GET_MODE (op0)))
1477 unsigned HOST_WIDE_INT xbitpos = bitpos, xoffset = offset;
1478 rtx bitsize_rtx, bitpos_rtx;
1479 rtx last = get_last_insn ();
1480 rtx xop0 = op0;
1481 rtx xtarget = target;
1482 rtx xspec_target = target;
1483 rtx xspec_target_subreg = 0;
1484 rtx pat;
1486 /* If op0 is a register, we need it in EXT_MODE to make it
1487 acceptable to the format of ext(z)v. */
1488 if (REG_P (xop0) && GET_MODE (xop0) != ext_mode)
1489 xop0 = gen_rtx_SUBREG (ext_mode, xop0, 0);
1490 if (MEM_P (xop0))
1491 /* Get ref to first byte containing part of the field. */
1492 xop0 = adjust_address (xop0, byte_mode, xoffset);
1494 /* On big-endian machines, we count bits from the most significant.
1495 If the bit field insn does not, we must invert. */
1496 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1497 xbitpos = unit - bitsize - xbitpos;
1499 /* Now convert from counting within UNIT to counting in EXT_MODE. */
1500 if (BITS_BIG_ENDIAN && !MEM_P (xop0))
1501 xbitpos += GET_MODE_BITSIZE (ext_mode) - unit;
1503 unit = GET_MODE_BITSIZE (ext_mode);
1505 if (xtarget == 0)
1506 xtarget = xspec_target = gen_reg_rtx (tmode);
1508 if (GET_MODE (xtarget) != ext_mode)
1510 if (REG_P (xtarget))
1512 xtarget = gen_lowpart (ext_mode, xtarget);
1513 if (GET_MODE_SIZE (ext_mode)
1514 > GET_MODE_SIZE (GET_MODE (xspec_target)))
1515 xspec_target_subreg = xtarget;
1517 else
1518 xtarget = gen_reg_rtx (ext_mode);
1521 /* If this machine's ext(z)v insists on a register target,
1522 make sure we have one. */
1523 if (!insn_data[(int) icode].operand[0].predicate (xtarget, ext_mode))
1524 xtarget = gen_reg_rtx (ext_mode);
1526 bitsize_rtx = GEN_INT (bitsize);
1527 bitpos_rtx = GEN_INT (xbitpos);
1529 pat = (unsignedp
1530 ? gen_extzv (xtarget, xop0, bitsize_rtx, bitpos_rtx)
1531 : gen_extv (xtarget, xop0, bitsize_rtx, bitpos_rtx));
1532 if (pat)
1534 emit_insn (pat);
1535 if (xtarget == xspec_target)
1536 return xtarget;
1537 if (xtarget == xspec_target_subreg)
1538 return xspec_target;
1539 return convert_extracted_bit_field (xtarget, mode, tmode, unsignedp);
1541 delete_insns_since (last);
1544 /* If OP0 is a memory, try copying it to a register and seeing if a
1545 cheap register alternative is available. */
1546 if (ext_mode != MAX_MACHINE_MODE && MEM_P (op0))
1548 enum machine_mode bestmode;
1550 /* Get the mode to use for inserting into this field. If
1551 OP0 is BLKmode, get the smallest mode consistent with the
1552 alignment. If OP0 is a non-BLKmode object that is no
1553 wider than EXT_MODE, use its mode. Otherwise, use the
1554 smallest mode containing the field. */
1556 if (GET_MODE (op0) == BLKmode
1557 || (ext_mode != MAX_MACHINE_MODE
1558 && GET_MODE_SIZE (GET_MODE (op0)) > GET_MODE_SIZE (ext_mode)))
1559 bestmode = get_best_mode (bitsize, bitnum, MEM_ALIGN (op0),
1560 (ext_mode == MAX_MACHINE_MODE
1561 ? VOIDmode : ext_mode),
1562 MEM_VOLATILE_P (op0));
1563 else
1564 bestmode = GET_MODE (op0);
1566 if (bestmode != VOIDmode
1567 && !(SLOW_UNALIGNED_ACCESS (bestmode, MEM_ALIGN (op0))
1568 && GET_MODE_BITSIZE (bestmode) > MEM_ALIGN (op0)))
1570 unsigned HOST_WIDE_INT xoffset, xbitpos;
1572 /* Compute the offset as a multiple of this unit,
1573 counting in bytes. */
1574 unit = GET_MODE_BITSIZE (bestmode);
1575 xoffset = (bitnum / unit) * GET_MODE_SIZE (bestmode);
1576 xbitpos = bitnum % unit;
1578 /* Make sure the register is big enough for the whole field. */
1579 if (xoffset * BITS_PER_UNIT + unit
1580 >= offset * BITS_PER_UNIT + bitsize)
1582 rtx last, result, xop0;
1584 last = get_last_insn ();
1586 /* Fetch it to a register in that size. */
1587 xop0 = adjust_address (op0, bestmode, xoffset);
1588 xop0 = force_reg (bestmode, xop0);
1589 result = extract_bit_field_1 (xop0, bitsize, xbitpos,
1590 unsignedp, target,
1591 mode, tmode, false);
1592 if (result)
1593 return result;
1595 delete_insns_since (last);
1600 if (!fallback_p)
1601 return NULL;
1603 target = extract_fixed_bit_field (int_mode, op0, offset, bitsize,
1604 bitpos, target, unsignedp);
1605 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1608 /* Generate code to extract a byte-field from STR_RTX
1609 containing BITSIZE bits, starting at BITNUM,
1610 and put it in TARGET if possible (if TARGET is nonzero).
1611 Regardless of TARGET, we return the rtx for where the value is placed.
1613 STR_RTX is the structure containing the byte (a REG or MEM).
1614 UNSIGNEDP is nonzero if this is an unsigned bit field.
1615 MODE is the natural mode of the field value once extracted.
1616 TMODE is the mode the caller would like the value to have;
1617 but the value may be returned with type MODE instead.
1619 If a TARGET is specified and we can store in it at no extra cost,
1620 we do so, and return TARGET.
1621 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
1622 if they are equally easy. */
1625 extract_bit_field (rtx str_rtx, unsigned HOST_WIDE_INT bitsize,
1626 unsigned HOST_WIDE_INT bitnum, int unsignedp, rtx target,
1627 enum machine_mode mode, enum machine_mode tmode)
1629 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
1630 target, mode, tmode, true);
1633 /* Extract a bit field using shifts and boolean operations
1634 Returns an rtx to represent the value.
1635 OP0 addresses a register (word) or memory (byte).
1636 BITPOS says which bit within the word or byte the bit field starts in.
1637 OFFSET says how many bytes farther the bit field starts;
1638 it is 0 if OP0 is a register.
1639 BITSIZE says how many bits long the bit field is.
1640 (If OP0 is a register, it may be narrower than a full word,
1641 but BITPOS still counts within a full word,
1642 which is significant on bigendian machines.)
1644 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
1645 If TARGET is nonzero, attempts to store the value there
1646 and return TARGET, but this is not guaranteed.
1647 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
1649 static rtx
1650 extract_fixed_bit_field (enum machine_mode tmode, rtx op0,
1651 unsigned HOST_WIDE_INT offset,
1652 unsigned HOST_WIDE_INT bitsize,
1653 unsigned HOST_WIDE_INT bitpos, rtx target,
1654 int unsignedp)
1656 unsigned int total_bits = BITS_PER_WORD;
1657 enum machine_mode mode;
1659 if (GET_CODE (op0) == SUBREG || REG_P (op0))
1661 /* Special treatment for a bit field split across two registers. */
1662 if (bitsize + bitpos > BITS_PER_WORD)
1663 return extract_split_bit_field (op0, bitsize, bitpos, unsignedp);
1665 else
1667 /* Get the proper mode to use for this field. We want a mode that
1668 includes the entire field. If such a mode would be larger than
1669 a word, we won't be doing the extraction the normal way. */
1671 mode = get_best_mode (bitsize, bitpos + offset * BITS_PER_UNIT,
1672 MEM_ALIGN (op0), word_mode, MEM_VOLATILE_P (op0));
1674 if (mode == VOIDmode)
1675 /* The only way this should occur is if the field spans word
1676 boundaries. */
1677 return extract_split_bit_field (op0, bitsize,
1678 bitpos + offset * BITS_PER_UNIT,
1679 unsignedp);
1681 total_bits = GET_MODE_BITSIZE (mode);
1683 /* Make sure bitpos is valid for the chosen mode. Adjust BITPOS to
1684 be in the range 0 to total_bits-1, and put any excess bytes in
1685 OFFSET. */
1686 if (bitpos >= total_bits)
1688 offset += (bitpos / total_bits) * (total_bits / BITS_PER_UNIT);
1689 bitpos -= ((bitpos / total_bits) * (total_bits / BITS_PER_UNIT)
1690 * BITS_PER_UNIT);
1693 /* Get ref to an aligned byte, halfword, or word containing the field.
1694 Adjust BITPOS to be position within a word,
1695 and OFFSET to be the offset of that word.
1696 Then alter OP0 to refer to that word. */
1697 bitpos += (offset % (total_bits / BITS_PER_UNIT)) * BITS_PER_UNIT;
1698 offset -= (offset % (total_bits / BITS_PER_UNIT));
1699 op0 = adjust_address (op0, mode, offset);
1702 mode = GET_MODE (op0);
1704 if (BYTES_BIG_ENDIAN)
1705 /* BITPOS is the distance between our msb and that of OP0.
1706 Convert it to the distance from the lsb. */
1707 bitpos = total_bits - bitsize - bitpos;
1709 /* Now BITPOS is always the distance between the field's lsb and that of OP0.
1710 We have reduced the big-endian case to the little-endian case. */
1712 if (unsignedp)
1714 if (bitpos)
1716 /* If the field does not already start at the lsb,
1717 shift it so it does. */
1718 tree amount = build_int_cst (NULL_TREE, bitpos);
1719 /* Maybe propagate the target for the shift. */
1720 /* But not if we will return it--could confuse integrate.c. */
1721 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1722 if (tmode != mode) subtarget = 0;
1723 op0 = expand_shift (RSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1725 /* Convert the value to the desired mode. */
1726 if (mode != tmode)
1727 op0 = convert_to_mode (tmode, op0, 1);
1729 /* Unless the msb of the field used to be the msb when we shifted,
1730 mask out the upper bits. */
1732 if (GET_MODE_BITSIZE (mode) != bitpos + bitsize)
1733 return expand_binop (GET_MODE (op0), and_optab, op0,
1734 mask_rtx (GET_MODE (op0), 0, bitsize, 0),
1735 target, 1, OPTAB_LIB_WIDEN);
1736 return op0;
1739 /* To extract a signed bit-field, first shift its msb to the msb of the word,
1740 then arithmetic-shift its lsb to the lsb of the word. */
1741 op0 = force_reg (mode, op0);
1742 if (mode != tmode)
1743 target = 0;
1745 /* Find the narrowest integer mode that contains the field. */
1747 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1748 mode = GET_MODE_WIDER_MODE (mode))
1749 if (GET_MODE_BITSIZE (mode) >= bitsize + bitpos)
1751 op0 = convert_to_mode (mode, op0, 0);
1752 break;
1755 if (GET_MODE_BITSIZE (mode) != (bitsize + bitpos))
1757 tree amount
1758 = build_int_cst (NULL_TREE,
1759 GET_MODE_BITSIZE (mode) - (bitsize + bitpos));
1760 /* Maybe propagate the target for the shift. */
1761 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
1762 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
1765 return expand_shift (RSHIFT_EXPR, mode, op0,
1766 build_int_cst (NULL_TREE,
1767 GET_MODE_BITSIZE (mode) - bitsize),
1768 target, 0);
1771 /* Return a constant integer (CONST_INT or CONST_DOUBLE) mask value
1772 of mode MODE with BITSIZE ones followed by BITPOS zeros, or the
1773 complement of that if COMPLEMENT. The mask is truncated if
1774 necessary to the width of mode MODE. The mask is zero-extended if
1775 BITSIZE+BITPOS is too small for MODE. */
1777 static rtx
1778 mask_rtx (enum machine_mode mode, int bitpos, int bitsize, int complement)
1780 HOST_WIDE_INT masklow, maskhigh;
1782 if (bitsize == 0)
1783 masklow = 0;
1784 else if (bitpos < HOST_BITS_PER_WIDE_INT)
1785 masklow = (HOST_WIDE_INT) -1 << bitpos;
1786 else
1787 masklow = 0;
1789 if (bitpos + bitsize < HOST_BITS_PER_WIDE_INT)
1790 masklow &= ((unsigned HOST_WIDE_INT) -1
1791 >> (HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1793 if (bitpos <= HOST_BITS_PER_WIDE_INT)
1794 maskhigh = -1;
1795 else
1796 maskhigh = (HOST_WIDE_INT) -1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1798 if (bitsize == 0)
1799 maskhigh = 0;
1800 else if (bitpos + bitsize > HOST_BITS_PER_WIDE_INT)
1801 maskhigh &= ((unsigned HOST_WIDE_INT) -1
1802 >> (2 * HOST_BITS_PER_WIDE_INT - bitpos - bitsize));
1803 else
1804 maskhigh = 0;
1806 if (complement)
1808 maskhigh = ~maskhigh;
1809 masklow = ~masklow;
1812 return immed_double_const (masklow, maskhigh, mode);
1815 /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
1816 VALUE truncated to BITSIZE bits and then shifted left BITPOS bits. */
1818 static rtx
1819 lshift_value (enum machine_mode mode, rtx value, int bitpos, int bitsize)
1821 unsigned HOST_WIDE_INT v = INTVAL (value);
1822 HOST_WIDE_INT low, high;
1824 if (bitsize < HOST_BITS_PER_WIDE_INT)
1825 v &= ~((HOST_WIDE_INT) -1 << bitsize);
1827 if (bitpos < HOST_BITS_PER_WIDE_INT)
1829 low = v << bitpos;
1830 high = (bitpos > 0 ? (v >> (HOST_BITS_PER_WIDE_INT - bitpos)) : 0);
1832 else
1834 low = 0;
1835 high = v << (bitpos - HOST_BITS_PER_WIDE_INT);
1838 return immed_double_const (low, high, mode);
1841 /* Extract a bit field that is split across two words
1842 and return an RTX for the result.
1844 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
1845 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
1846 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. */
1848 static rtx
1849 extract_split_bit_field (rtx op0, unsigned HOST_WIDE_INT bitsize,
1850 unsigned HOST_WIDE_INT bitpos, int unsignedp)
1852 unsigned int unit;
1853 unsigned int bitsdone = 0;
1854 rtx result = NULL_RTX;
1855 int first = 1;
1857 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1858 much at a time. */
1859 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
1860 unit = BITS_PER_WORD;
1861 else
1862 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
1864 while (bitsdone < bitsize)
1866 unsigned HOST_WIDE_INT thissize;
1867 rtx part, word;
1868 unsigned HOST_WIDE_INT thispos;
1869 unsigned HOST_WIDE_INT offset;
1871 offset = (bitpos + bitsdone) / unit;
1872 thispos = (bitpos + bitsdone) % unit;
1874 /* THISSIZE must not overrun a word boundary. Otherwise,
1875 extract_fixed_bit_field will call us again, and we will mutually
1876 recurse forever. */
1877 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1878 thissize = MIN (thissize, unit - thispos);
1880 /* If OP0 is a register, then handle OFFSET here.
1882 When handling multiword bitfields, extract_bit_field may pass
1883 down a word_mode SUBREG of a larger REG for a bitfield that actually
1884 crosses a word boundary. Thus, for a SUBREG, we must find
1885 the current word starting from the base register. */
1886 if (GET_CODE (op0) == SUBREG)
1888 int word_offset = (SUBREG_BYTE (op0) / UNITS_PER_WORD) + offset;
1889 word = operand_subword_force (SUBREG_REG (op0), word_offset,
1890 GET_MODE (SUBREG_REG (op0)));
1891 offset = 0;
1893 else if (REG_P (op0))
1895 word = operand_subword_force (op0, offset, GET_MODE (op0));
1896 offset = 0;
1898 else
1899 word = op0;
1901 /* Extract the parts in bit-counting order,
1902 whose meaning is determined by BYTES_PER_UNIT.
1903 OFFSET is in UNITs, and UNIT is in bits.
1904 extract_fixed_bit_field wants offset in bytes. */
1905 part = extract_fixed_bit_field (word_mode, word,
1906 offset * unit / BITS_PER_UNIT,
1907 thissize, thispos, 0, 1);
1908 bitsdone += thissize;
1910 /* Shift this part into place for the result. */
1911 if (BYTES_BIG_ENDIAN)
1913 if (bitsize != bitsdone)
1914 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1915 build_int_cst (NULL_TREE, bitsize - bitsdone),
1916 0, 1);
1918 else
1920 if (bitsdone != thissize)
1921 part = expand_shift (LSHIFT_EXPR, word_mode, part,
1922 build_int_cst (NULL_TREE,
1923 bitsdone - thissize), 0, 1);
1926 if (first)
1927 result = part;
1928 else
1929 /* Combine the parts with bitwise or. This works
1930 because we extracted each part as an unsigned bit field. */
1931 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
1932 OPTAB_LIB_WIDEN);
1934 first = 0;
1937 /* Unsigned bit field: we are done. */
1938 if (unsignedp)
1939 return result;
1940 /* Signed bit field: sign-extend with two arithmetic shifts. */
1941 result = expand_shift (LSHIFT_EXPR, word_mode, result,
1942 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1943 NULL_RTX, 0);
1944 return expand_shift (RSHIFT_EXPR, word_mode, result,
1945 build_int_cst (NULL_TREE, BITS_PER_WORD - bitsize),
1946 NULL_RTX, 0);
1949 /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
1950 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
1951 MODE, fill the upper bits with zeros. Fail if the layout of either
1952 mode is unknown (as for CC modes) or if the extraction would involve
1953 unprofitable mode punning. Return the value on success, otherwise
1954 return null.
1956 This is different from gen_lowpart* in these respects:
1958 - the returned value must always be considered an rvalue
1960 - when MODE is wider than SRC_MODE, the extraction involves
1961 a zero extension
1963 - when MODE is smaller than SRC_MODE, the extraction involves
1964 a truncation (and is thus subject to TRULY_NOOP_TRUNCATION).
1966 In other words, this routine performs a computation, whereas the
1967 gen_lowpart* routines are conceptually lvalue or rvalue subreg
1968 operations. */
1971 extract_low_bits (enum machine_mode mode, enum machine_mode src_mode, rtx src)
1973 enum machine_mode int_mode, src_int_mode;
1975 if (mode == src_mode)
1976 return src;
1978 if (CONSTANT_P (src))
1979 return simplify_gen_subreg (mode, src, src_mode,
1980 subreg_lowpart_offset (mode, src_mode));
1982 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
1983 return NULL_RTX;
1985 if (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (src_mode)
1986 && MODES_TIEABLE_P (mode, src_mode))
1988 rtx x = gen_lowpart_common (mode, src);
1989 if (x)
1990 return x;
1993 src_int_mode = int_mode_for_mode (src_mode);
1994 int_mode = int_mode_for_mode (mode);
1995 if (src_int_mode == BLKmode || int_mode == BLKmode)
1996 return NULL_RTX;
1998 if (!MODES_TIEABLE_P (src_int_mode, src_mode))
1999 return NULL_RTX;
2000 if (!MODES_TIEABLE_P (int_mode, mode))
2001 return NULL_RTX;
2003 src = gen_lowpart (src_int_mode, src);
2004 src = convert_modes (int_mode, src_int_mode, src, true);
2005 src = gen_lowpart (mode, src);
2006 return src;
2009 /* Add INC into TARGET. */
2011 void
2012 expand_inc (rtx target, rtx inc)
2014 rtx value = expand_binop (GET_MODE (target), add_optab,
2015 target, inc,
2016 target, 0, OPTAB_LIB_WIDEN);
2017 if (value != target)
2018 emit_move_insn (target, value);
2021 /* Subtract DEC from TARGET. */
2023 void
2024 expand_dec (rtx target, rtx dec)
2026 rtx value = expand_binop (GET_MODE (target), sub_optab,
2027 target, dec,
2028 target, 0, OPTAB_LIB_WIDEN);
2029 if (value != target)
2030 emit_move_insn (target, value);
2033 /* Output a shift instruction for expression code CODE,
2034 with SHIFTED being the rtx for the value to shift,
2035 and AMOUNT the tree for the amount to shift by.
2036 Store the result in the rtx TARGET, if that is convenient.
2037 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2038 Return the rtx for where the value is. */
2041 expand_shift (enum tree_code code, enum machine_mode mode, rtx shifted,
2042 tree amount, rtx target, int unsignedp)
2044 rtx op1, temp = 0;
2045 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2046 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
2047 optab lshift_optab = ashl_optab;
2048 optab rshift_arith_optab = ashr_optab;
2049 optab rshift_uns_optab = lshr_optab;
2050 optab lrotate_optab = rotl_optab;
2051 optab rrotate_optab = rotr_optab;
2052 enum machine_mode op1_mode;
2053 int attempt;
2055 op1 = expand_normal (amount);
2056 op1_mode = GET_MODE (op1);
2058 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2059 shift amount is a vector, use the vector/vector shift patterns. */
2060 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2062 lshift_optab = vashl_optab;
2063 rshift_arith_optab = vashr_optab;
2064 rshift_uns_optab = vlshr_optab;
2065 lrotate_optab = vrotl_optab;
2066 rrotate_optab = vrotr_optab;
2069 /* Previously detected shift-counts computed by NEGATE_EXPR
2070 and shifted in the other direction; but that does not work
2071 on all machines. */
2073 if (SHIFT_COUNT_TRUNCATED)
2075 if (GET_CODE (op1) == CONST_INT
2076 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
2077 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode)))
2078 op1 = GEN_INT ((unsigned HOST_WIDE_INT) INTVAL (op1)
2079 % GET_MODE_BITSIZE (mode));
2080 else if (GET_CODE (op1) == SUBREG
2081 && subreg_lowpart_p (op1))
2082 op1 = SUBREG_REG (op1);
2085 if (op1 == const0_rtx)
2086 return shifted;
2088 /* Check whether its cheaper to implement a left shift by a constant
2089 bit count by a sequence of additions. */
2090 if (code == LSHIFT_EXPR
2091 && GET_CODE (op1) == CONST_INT
2092 && INTVAL (op1) > 0
2093 && INTVAL (op1) < GET_MODE_BITSIZE (mode)
2094 && INTVAL (op1) < MAX_BITS_PER_WORD
2095 && shift_cost[mode][INTVAL (op1)] > INTVAL (op1) * add_cost[mode]
2096 && shift_cost[mode][INTVAL (op1)] != MAX_COST)
2098 int i;
2099 for (i = 0; i < INTVAL (op1); i++)
2101 temp = force_reg (mode, shifted);
2102 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2103 unsignedp, OPTAB_LIB_WIDEN);
2105 return shifted;
2108 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
2110 enum optab_methods methods;
2112 if (attempt == 0)
2113 methods = OPTAB_DIRECT;
2114 else if (attempt == 1)
2115 methods = OPTAB_WIDEN;
2116 else
2117 methods = OPTAB_LIB_WIDEN;
2119 if (rotate)
2121 /* Widening does not work for rotation. */
2122 if (methods == OPTAB_WIDEN)
2123 continue;
2124 else if (methods == OPTAB_LIB_WIDEN)
2126 /* If we have been unable to open-code this by a rotation,
2127 do it as the IOR of two shifts. I.e., to rotate A
2128 by N bits, compute (A << N) | ((unsigned) A >> (C - N))
2129 where C is the bitsize of A.
2131 It is theoretically possible that the target machine might
2132 not be able to perform either shift and hence we would
2133 be making two libcalls rather than just the one for the
2134 shift (similarly if IOR could not be done). We will allow
2135 this extremely unlikely lossage to avoid complicating the
2136 code below. */
2138 rtx subtarget = target == shifted ? 0 : target;
2139 tree new_amount, other_amount;
2140 rtx temp1;
2141 tree type = TREE_TYPE (amount);
2142 if (GET_MODE (op1) != TYPE_MODE (type)
2143 && GET_MODE (op1) != VOIDmode)
2144 op1 = convert_to_mode (TYPE_MODE (type), op1, 1);
2145 new_amount = make_tree (type, op1);
2146 other_amount
2147 = fold_build2 (MINUS_EXPR, type,
2148 build_int_cst (type, GET_MODE_BITSIZE (mode)),
2149 new_amount);
2151 shifted = force_reg (mode, shifted);
2153 temp = expand_shift (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2154 mode, shifted, new_amount, 0, 1);
2155 temp1 = expand_shift (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2156 mode, shifted, other_amount, subtarget, 1);
2157 return expand_binop (mode, ior_optab, temp, temp1, target,
2158 unsignedp, methods);
2161 temp = expand_binop (mode,
2162 left ? lrotate_optab : rrotate_optab,
2163 shifted, op1, target, unsignedp, methods);
2165 else if (unsignedp)
2166 temp = expand_binop (mode,
2167 left ? lshift_optab : rshift_uns_optab,
2168 shifted, op1, target, unsignedp, methods);
2170 /* Do arithmetic shifts.
2171 Also, if we are going to widen the operand, we can just as well
2172 use an arithmetic right-shift instead of a logical one. */
2173 if (temp == 0 && ! rotate
2174 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2176 enum optab_methods methods1 = methods;
2178 /* If trying to widen a log shift to an arithmetic shift,
2179 don't accept an arithmetic shift of the same size. */
2180 if (unsignedp)
2181 methods1 = OPTAB_MUST_WIDEN;
2183 /* Arithmetic shift */
2185 temp = expand_binop (mode,
2186 left ? lshift_optab : rshift_arith_optab,
2187 shifted, op1, target, unsignedp, methods1);
2190 /* We used to try extzv here for logical right shifts, but that was
2191 only useful for one machine, the VAX, and caused poor code
2192 generation there for lshrdi3, so the code was deleted and a
2193 define_expand for lshrsi3 was added to vax.md. */
2196 gcc_assert (temp);
2197 return temp;
2200 enum alg_code {
2201 alg_unknown,
2202 alg_zero,
2203 alg_m, alg_shift,
2204 alg_add_t_m2,
2205 alg_sub_t_m2,
2206 alg_add_factor,
2207 alg_sub_factor,
2208 alg_add_t2_m,
2209 alg_sub_t2_m,
2210 alg_impossible
2213 /* This structure holds the "cost" of a multiply sequence. The
2214 "cost" field holds the total rtx_cost of every operator in the
2215 synthetic multiplication sequence, hence cost(a op b) is defined
2216 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
2217 The "latency" field holds the minimum possible latency of the
2218 synthetic multiply, on a hypothetical infinitely parallel CPU.
2219 This is the critical path, or the maximum height, of the expression
2220 tree which is the sum of rtx_costs on the most expensive path from
2221 any leaf to the root. Hence latency(a op b) is defined as zero for
2222 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
2224 struct mult_cost {
2225 short cost; /* Total rtx_cost of the multiplication sequence. */
2226 short latency; /* The latency of the multiplication sequence. */
2229 /* This macro is used to compare a pointer to a mult_cost against an
2230 single integer "rtx_cost" value. This is equivalent to the macro
2231 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
2232 #define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
2233 || ((X)->cost == (Y) && (X)->latency < (Y)))
2235 /* This macro is used to compare two pointers to mult_costs against
2236 each other. The macro returns true if X is cheaper than Y.
2237 Currently, the cheaper of two mult_costs is the one with the
2238 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
2239 #define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
2240 || ((X)->cost == (Y)->cost \
2241 && (X)->latency < (Y)->latency))
2243 /* This structure records a sequence of operations.
2244 `ops' is the number of operations recorded.
2245 `cost' is their total cost.
2246 The operations are stored in `op' and the corresponding
2247 logarithms of the integer coefficients in `log'.
2249 These are the operations:
2250 alg_zero total := 0;
2251 alg_m total := multiplicand;
2252 alg_shift total := total * coeff
2253 alg_add_t_m2 total := total + multiplicand * coeff;
2254 alg_sub_t_m2 total := total - multiplicand * coeff;
2255 alg_add_factor total := total * coeff + total;
2256 alg_sub_factor total := total * coeff - total;
2257 alg_add_t2_m total := total * coeff + multiplicand;
2258 alg_sub_t2_m total := total * coeff - multiplicand;
2260 The first operand must be either alg_zero or alg_m. */
2262 struct algorithm
2264 struct mult_cost cost;
2265 short ops;
2266 /* The size of the OP and LOG fields are not directly related to the
2267 word size, but the worst-case algorithms will be if we have few
2268 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
2269 In that case we will generate shift-by-2, add, shift-by-2, add,...,
2270 in total wordsize operations. */
2271 enum alg_code op[MAX_BITS_PER_WORD];
2272 char log[MAX_BITS_PER_WORD];
2275 /* The entry for our multiplication cache/hash table. */
2276 struct alg_hash_entry {
2277 /* The number we are multiplying by. */
2278 unsigned HOST_WIDE_INT t;
2280 /* The mode in which we are multiplying something by T. */
2281 enum machine_mode mode;
2283 /* The best multiplication algorithm for t. */
2284 enum alg_code alg;
2286 /* The cost of multiplication if ALG_CODE is not alg_impossible.
2287 Otherwise, the cost within which multiplication by T is
2288 impossible. */
2289 struct mult_cost cost;
2292 /* The number of cache/hash entries. */
2293 #if HOST_BITS_PER_WIDE_INT == 64
2294 #define NUM_ALG_HASH_ENTRIES 1031
2295 #else
2296 #define NUM_ALG_HASH_ENTRIES 307
2297 #endif
2299 /* Each entry of ALG_HASH caches alg_code for some integer. This is
2300 actually a hash table. If we have a collision, that the older
2301 entry is kicked out. */
2302 static struct alg_hash_entry alg_hash[NUM_ALG_HASH_ENTRIES];
2304 /* Indicates the type of fixup needed after a constant multiplication.
2305 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
2306 the result should be negated, and ADD_VARIANT means that the
2307 multiplicand should be added to the result. */
2308 enum mult_variant {basic_variant, negate_variant, add_variant};
2310 static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
2311 const struct mult_cost *, enum machine_mode mode);
2312 static bool choose_mult_variant (enum machine_mode, HOST_WIDE_INT,
2313 struct algorithm *, enum mult_variant *, int);
2314 static rtx expand_mult_const (enum machine_mode, rtx, HOST_WIDE_INT, rtx,
2315 const struct algorithm *, enum mult_variant);
2316 static unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
2317 int, rtx *, int *, int *);
2318 static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
2319 static rtx extract_high_half (enum machine_mode, rtx);
2320 static rtx expand_mult_highpart (enum machine_mode, rtx, rtx, rtx, int, int);
2321 static rtx expand_mult_highpart_optab (enum machine_mode, rtx, rtx, rtx,
2322 int, int);
2323 /* Compute and return the best algorithm for multiplying by T.
2324 The algorithm must cost less than cost_limit
2325 If retval.cost >= COST_LIMIT, no algorithm was found and all
2326 other field of the returned struct are undefined.
2327 MODE is the machine mode of the multiplication. */
2329 static void
2330 synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
2331 const struct mult_cost *cost_limit, enum machine_mode mode)
2333 int m;
2334 struct algorithm *alg_in, *best_alg;
2335 struct mult_cost best_cost;
2336 struct mult_cost new_limit;
2337 int op_cost, op_latency;
2338 unsigned HOST_WIDE_INT q;
2339 int maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (mode));
2340 int hash_index;
2341 bool cache_hit = false;
2342 enum alg_code cache_alg = alg_zero;
2344 /* Indicate that no algorithm is yet found. If no algorithm
2345 is found, this value will be returned and indicate failure. */
2346 alg_out->cost.cost = cost_limit->cost + 1;
2347 alg_out->cost.latency = cost_limit->latency + 1;
2349 if (cost_limit->cost < 0
2350 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
2351 return;
2353 /* Restrict the bits of "t" to the multiplication's mode. */
2354 t &= GET_MODE_MASK (mode);
2356 /* t == 1 can be done in zero cost. */
2357 if (t == 1)
2359 alg_out->ops = 1;
2360 alg_out->cost.cost = 0;
2361 alg_out->cost.latency = 0;
2362 alg_out->op[0] = alg_m;
2363 return;
2366 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2367 fail now. */
2368 if (t == 0)
2370 if (MULT_COST_LESS (cost_limit, zero_cost))
2371 return;
2372 else
2374 alg_out->ops = 1;
2375 alg_out->cost.cost = zero_cost;
2376 alg_out->cost.latency = zero_cost;
2377 alg_out->op[0] = alg_zero;
2378 return;
2382 /* We'll be needing a couple extra algorithm structures now. */
2384 alg_in = XALLOCA (struct algorithm);
2385 best_alg = XALLOCA (struct algorithm);
2386 best_cost = *cost_limit;
2388 /* Compute the hash index. */
2389 hash_index = (t ^ (unsigned int) mode) % NUM_ALG_HASH_ENTRIES;
2391 /* See if we already know what to do for T. */
2392 if (alg_hash[hash_index].t == t
2393 && alg_hash[hash_index].mode == mode
2394 && alg_hash[hash_index].alg != alg_unknown)
2396 cache_alg = alg_hash[hash_index].alg;
2398 if (cache_alg == alg_impossible)
2400 /* The cache tells us that it's impossible to synthesize
2401 multiplication by T within alg_hash[hash_index].cost. */
2402 if (!CHEAPER_MULT_COST (&alg_hash[hash_index].cost, cost_limit))
2403 /* COST_LIMIT is at least as restrictive as the one
2404 recorded in the hash table, in which case we have no
2405 hope of synthesizing a multiplication. Just
2406 return. */
2407 return;
2409 /* If we get here, COST_LIMIT is less restrictive than the
2410 one recorded in the hash table, so we may be able to
2411 synthesize a multiplication. Proceed as if we didn't
2412 have the cache entry. */
2414 else
2416 if (CHEAPER_MULT_COST (cost_limit, &alg_hash[hash_index].cost))
2417 /* The cached algorithm shows that this multiplication
2418 requires more cost than COST_LIMIT. Just return. This
2419 way, we don't clobber this cache entry with
2420 alg_impossible but retain useful information. */
2421 return;
2423 cache_hit = true;
2425 switch (cache_alg)
2427 case alg_shift:
2428 goto do_alg_shift;
2430 case alg_add_t_m2:
2431 case alg_sub_t_m2:
2432 goto do_alg_addsub_t_m2;
2434 case alg_add_factor:
2435 case alg_sub_factor:
2436 goto do_alg_addsub_factor;
2438 case alg_add_t2_m:
2439 goto do_alg_add_t2_m;
2441 case alg_sub_t2_m:
2442 goto do_alg_sub_t2_m;
2444 default:
2445 gcc_unreachable ();
2450 /* If we have a group of zero bits at the low-order part of T, try
2451 multiplying by the remaining bits and then doing a shift. */
2453 if ((t & 1) == 0)
2455 do_alg_shift:
2456 m = floor_log2 (t & -t); /* m = number of low zero bits */
2457 if (m < maxm)
2459 q = t >> m;
2460 /* The function expand_shift will choose between a shift and
2461 a sequence of additions, so the observed cost is given as
2462 MIN (m * add_cost[mode], shift_cost[mode][m]). */
2463 op_cost = m * add_cost[mode];
2464 if (shift_cost[mode][m] < op_cost)
2465 op_cost = shift_cost[mode][m];
2466 new_limit.cost = best_cost.cost - op_cost;
2467 new_limit.latency = best_cost.latency - op_cost;
2468 synth_mult (alg_in, q, &new_limit, mode);
2470 alg_in->cost.cost += op_cost;
2471 alg_in->cost.latency += op_cost;
2472 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2474 struct algorithm *x;
2475 best_cost = alg_in->cost;
2476 x = alg_in, alg_in = best_alg, best_alg = x;
2477 best_alg->log[best_alg->ops] = m;
2478 best_alg->op[best_alg->ops] = alg_shift;
2481 if (cache_hit)
2482 goto done;
2485 /* If we have an odd number, add or subtract one. */
2486 if ((t & 1) != 0)
2488 unsigned HOST_WIDE_INT w;
2490 do_alg_addsub_t_m2:
2491 for (w = 1; (w & t) != 0; w <<= 1)
2493 /* If T was -1, then W will be zero after the loop. This is another
2494 case where T ends with ...111. Handling this with (T + 1) and
2495 subtract 1 produces slightly better code and results in algorithm
2496 selection much faster than treating it like the ...0111 case
2497 below. */
2498 if (w == 0
2499 || (w > 2
2500 /* Reject the case where t is 3.
2501 Thus we prefer addition in that case. */
2502 && t != 3))
2504 /* T ends with ...111. Multiply by (T + 1) and subtract 1. */
2506 op_cost = add_cost[mode];
2507 new_limit.cost = best_cost.cost - op_cost;
2508 new_limit.latency = best_cost.latency - op_cost;
2509 synth_mult (alg_in, t + 1, &new_limit, mode);
2511 alg_in->cost.cost += op_cost;
2512 alg_in->cost.latency += op_cost;
2513 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2515 struct algorithm *x;
2516 best_cost = alg_in->cost;
2517 x = alg_in, alg_in = best_alg, best_alg = x;
2518 best_alg->log[best_alg->ops] = 0;
2519 best_alg->op[best_alg->ops] = alg_sub_t_m2;
2522 else
2524 /* T ends with ...01 or ...011. Multiply by (T - 1) and add 1. */
2526 op_cost = add_cost[mode];
2527 new_limit.cost = best_cost.cost - op_cost;
2528 new_limit.latency = best_cost.latency - op_cost;
2529 synth_mult (alg_in, t - 1, &new_limit, mode);
2531 alg_in->cost.cost += op_cost;
2532 alg_in->cost.latency += op_cost;
2533 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2535 struct algorithm *x;
2536 best_cost = alg_in->cost;
2537 x = alg_in, alg_in = best_alg, best_alg = x;
2538 best_alg->log[best_alg->ops] = 0;
2539 best_alg->op[best_alg->ops] = alg_add_t_m2;
2542 if (cache_hit)
2543 goto done;
2546 /* Look for factors of t of the form
2547 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
2548 If we find such a factor, we can multiply by t using an algorithm that
2549 multiplies by q, shift the result by m and add/subtract it to itself.
2551 We search for large factors first and loop down, even if large factors
2552 are less probable than small; if we find a large factor we will find a
2553 good sequence quickly, and therefore be able to prune (by decreasing
2554 COST_LIMIT) the search. */
2556 do_alg_addsub_factor:
2557 for (m = floor_log2 (t - 1); m >= 2; m--)
2559 unsigned HOST_WIDE_INT d;
2561 d = ((unsigned HOST_WIDE_INT) 1 << m) + 1;
2562 if (t % d == 0 && t > d && m < maxm
2563 && (!cache_hit || cache_alg == alg_add_factor))
2565 /* If the target has a cheap shift-and-add instruction use
2566 that in preference to a shift insn followed by an add insn.
2567 Assume that the shift-and-add is "atomic" with a latency
2568 equal to its cost, otherwise assume that on superscalar
2569 hardware the shift may be executed concurrently with the
2570 earlier steps in the algorithm. */
2571 op_cost = add_cost[mode] + shift_cost[mode][m];
2572 if (shiftadd_cost[mode][m] < op_cost)
2574 op_cost = shiftadd_cost[mode][m];
2575 op_latency = op_cost;
2577 else
2578 op_latency = add_cost[mode];
2580 new_limit.cost = best_cost.cost - op_cost;
2581 new_limit.latency = best_cost.latency - op_latency;
2582 synth_mult (alg_in, t / d, &new_limit, mode);
2584 alg_in->cost.cost += op_cost;
2585 alg_in->cost.latency += op_latency;
2586 if (alg_in->cost.latency < op_cost)
2587 alg_in->cost.latency = op_cost;
2588 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2590 struct algorithm *x;
2591 best_cost = alg_in->cost;
2592 x = alg_in, alg_in = best_alg, best_alg = x;
2593 best_alg->log[best_alg->ops] = m;
2594 best_alg->op[best_alg->ops] = alg_add_factor;
2596 /* Other factors will have been taken care of in the recursion. */
2597 break;
2600 d = ((unsigned HOST_WIDE_INT) 1 << m) - 1;
2601 if (t % d == 0 && t > d && m < maxm
2602 && (!cache_hit || cache_alg == alg_sub_factor))
2604 /* If the target has a cheap shift-and-subtract insn use
2605 that in preference to a shift insn followed by a sub insn.
2606 Assume that the shift-and-sub is "atomic" with a latency
2607 equal to it's cost, otherwise assume that on superscalar
2608 hardware the shift may be executed concurrently with the
2609 earlier steps in the algorithm. */
2610 op_cost = add_cost[mode] + shift_cost[mode][m];
2611 if (shiftsub_cost[mode][m] < op_cost)
2613 op_cost = shiftsub_cost[mode][m];
2614 op_latency = op_cost;
2616 else
2617 op_latency = add_cost[mode];
2619 new_limit.cost = best_cost.cost - op_cost;
2620 new_limit.latency = best_cost.latency - op_latency;
2621 synth_mult (alg_in, t / d, &new_limit, mode);
2623 alg_in->cost.cost += op_cost;
2624 alg_in->cost.latency += op_latency;
2625 if (alg_in->cost.latency < op_cost)
2626 alg_in->cost.latency = op_cost;
2627 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2629 struct algorithm *x;
2630 best_cost = alg_in->cost;
2631 x = alg_in, alg_in = best_alg, best_alg = x;
2632 best_alg->log[best_alg->ops] = m;
2633 best_alg->op[best_alg->ops] = alg_sub_factor;
2635 break;
2638 if (cache_hit)
2639 goto done;
2641 /* Try shift-and-add (load effective address) instructions,
2642 i.e. do a*3, a*5, a*9. */
2643 if ((t & 1) != 0)
2645 do_alg_add_t2_m:
2646 q = t - 1;
2647 q = q & -q;
2648 m = exact_log2 (q);
2649 if (m >= 0 && m < maxm)
2651 op_cost = shiftadd_cost[mode][m];
2652 new_limit.cost = best_cost.cost - op_cost;
2653 new_limit.latency = best_cost.latency - op_cost;
2654 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
2656 alg_in->cost.cost += op_cost;
2657 alg_in->cost.latency += op_cost;
2658 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2660 struct algorithm *x;
2661 best_cost = alg_in->cost;
2662 x = alg_in, alg_in = best_alg, best_alg = x;
2663 best_alg->log[best_alg->ops] = m;
2664 best_alg->op[best_alg->ops] = alg_add_t2_m;
2667 if (cache_hit)
2668 goto done;
2670 do_alg_sub_t2_m:
2671 q = t + 1;
2672 q = q & -q;
2673 m = exact_log2 (q);
2674 if (m >= 0 && m < maxm)
2676 op_cost = shiftsub_cost[mode][m];
2677 new_limit.cost = best_cost.cost - op_cost;
2678 new_limit.latency = best_cost.latency - op_cost;
2679 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
2681 alg_in->cost.cost += op_cost;
2682 alg_in->cost.latency += op_cost;
2683 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2685 struct algorithm *x;
2686 best_cost = alg_in->cost;
2687 x = alg_in, alg_in = best_alg, best_alg = x;
2688 best_alg->log[best_alg->ops] = m;
2689 best_alg->op[best_alg->ops] = alg_sub_t2_m;
2692 if (cache_hit)
2693 goto done;
2696 done:
2697 /* If best_cost has not decreased, we have not found any algorithm. */
2698 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
2700 /* We failed to find an algorithm. Record alg_impossible for
2701 this case (that is, <T, MODE, COST_LIMIT>) so that next time
2702 we are asked to find an algorithm for T within the same or
2703 lower COST_LIMIT, we can immediately return to the
2704 caller. */
2705 alg_hash[hash_index].t = t;
2706 alg_hash[hash_index].mode = mode;
2707 alg_hash[hash_index].alg = alg_impossible;
2708 alg_hash[hash_index].cost = *cost_limit;
2709 return;
2712 /* Cache the result. */
2713 if (!cache_hit)
2715 alg_hash[hash_index].t = t;
2716 alg_hash[hash_index].mode = mode;
2717 alg_hash[hash_index].alg = best_alg->op[best_alg->ops];
2718 alg_hash[hash_index].cost.cost = best_cost.cost;
2719 alg_hash[hash_index].cost.latency = best_cost.latency;
2722 /* If we are getting a too long sequence for `struct algorithm'
2723 to record, make this search fail. */
2724 if (best_alg->ops == MAX_BITS_PER_WORD)
2725 return;
2727 /* Copy the algorithm from temporary space to the space at alg_out.
2728 We avoid using structure assignment because the majority of
2729 best_alg is normally undefined, and this is a critical function. */
2730 alg_out->ops = best_alg->ops + 1;
2731 alg_out->cost = best_cost;
2732 memcpy (alg_out->op, best_alg->op,
2733 alg_out->ops * sizeof *alg_out->op);
2734 memcpy (alg_out->log, best_alg->log,
2735 alg_out->ops * sizeof *alg_out->log);
2738 /* Find the cheapest way of multiplying a value of mode MODE by VAL.
2739 Try three variations:
2741 - a shift/add sequence based on VAL itself
2742 - a shift/add sequence based on -VAL, followed by a negation
2743 - a shift/add sequence based on VAL - 1, followed by an addition.
2745 Return true if the cheapest of these cost less than MULT_COST,
2746 describing the algorithm in *ALG and final fixup in *VARIANT. */
2748 static bool
2749 choose_mult_variant (enum machine_mode mode, HOST_WIDE_INT val,
2750 struct algorithm *alg, enum mult_variant *variant,
2751 int mult_cost)
2753 struct algorithm alg2;
2754 struct mult_cost limit;
2755 int op_cost;
2757 /* Fail quickly for impossible bounds. */
2758 if (mult_cost < 0)
2759 return false;
2761 /* Ensure that mult_cost provides a reasonable upper bound.
2762 Any constant multiplication can be performed with less
2763 than 2 * bits additions. */
2764 op_cost = 2 * GET_MODE_BITSIZE (mode) * add_cost[mode];
2765 if (mult_cost > op_cost)
2766 mult_cost = op_cost;
2768 *variant = basic_variant;
2769 limit.cost = mult_cost;
2770 limit.latency = mult_cost;
2771 synth_mult (alg, val, &limit, mode);
2773 /* This works only if the inverted value actually fits in an
2774 `unsigned int' */
2775 if (HOST_BITS_PER_INT >= GET_MODE_BITSIZE (mode))
2777 op_cost = neg_cost[mode];
2778 if (MULT_COST_LESS (&alg->cost, mult_cost))
2780 limit.cost = alg->cost.cost - op_cost;
2781 limit.latency = alg->cost.latency - op_cost;
2783 else
2785 limit.cost = mult_cost - op_cost;
2786 limit.latency = mult_cost - op_cost;
2789 synth_mult (&alg2, -val, &limit, mode);
2790 alg2.cost.cost += op_cost;
2791 alg2.cost.latency += op_cost;
2792 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2793 *alg = alg2, *variant = negate_variant;
2796 /* This proves very useful for division-by-constant. */
2797 op_cost = add_cost[mode];
2798 if (MULT_COST_LESS (&alg->cost, mult_cost))
2800 limit.cost = alg->cost.cost - op_cost;
2801 limit.latency = alg->cost.latency - op_cost;
2803 else
2805 limit.cost = mult_cost - op_cost;
2806 limit.latency = mult_cost - op_cost;
2809 synth_mult (&alg2, val - 1, &limit, mode);
2810 alg2.cost.cost += op_cost;
2811 alg2.cost.latency += op_cost;
2812 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
2813 *alg = alg2, *variant = add_variant;
2815 return MULT_COST_LESS (&alg->cost, mult_cost);
2818 /* A subroutine of expand_mult, used for constant multiplications.
2819 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
2820 convenient. Use the shift/add sequence described by ALG and apply
2821 the final fixup specified by VARIANT. */
2823 static rtx
2824 expand_mult_const (enum machine_mode mode, rtx op0, HOST_WIDE_INT val,
2825 rtx target, const struct algorithm *alg,
2826 enum mult_variant variant)
2828 HOST_WIDE_INT val_so_far;
2829 rtx insn, accum, tem;
2830 int opno;
2831 enum machine_mode nmode;
2833 /* Avoid referencing memory over and over and invalid sharing
2834 on SUBREGs. */
2835 op0 = force_reg (mode, op0);
2837 /* ACCUM starts out either as OP0 or as a zero, depending on
2838 the first operation. */
2840 if (alg->op[0] == alg_zero)
2842 accum = copy_to_mode_reg (mode, const0_rtx);
2843 val_so_far = 0;
2845 else if (alg->op[0] == alg_m)
2847 accum = copy_to_mode_reg (mode, op0);
2848 val_so_far = 1;
2850 else
2851 gcc_unreachable ();
2853 for (opno = 1; opno < alg->ops; opno++)
2855 int log = alg->log[opno];
2856 rtx shift_subtarget = optimize ? 0 : accum;
2857 rtx add_target
2858 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
2859 && !optimize)
2860 ? target : 0;
2861 rtx accum_target = optimize ? 0 : accum;
2863 switch (alg->op[opno])
2865 case alg_shift:
2866 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2867 build_int_cst (NULL_TREE, log),
2868 NULL_RTX, 0);
2869 val_so_far <<= log;
2870 break;
2872 case alg_add_t_m2:
2873 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2874 build_int_cst (NULL_TREE, log),
2875 NULL_RTX, 0);
2876 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2877 add_target ? add_target : accum_target);
2878 val_so_far += (HOST_WIDE_INT) 1 << log;
2879 break;
2881 case alg_sub_t_m2:
2882 tem = expand_shift (LSHIFT_EXPR, mode, op0,
2883 build_int_cst (NULL_TREE, log),
2884 NULL_RTX, 0);
2885 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
2886 add_target ? add_target : accum_target);
2887 val_so_far -= (HOST_WIDE_INT) 1 << log;
2888 break;
2890 case alg_add_t2_m:
2891 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2892 build_int_cst (NULL_TREE, log),
2893 shift_subtarget,
2895 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
2896 add_target ? add_target : accum_target);
2897 val_so_far = (val_so_far << log) + 1;
2898 break;
2900 case alg_sub_t2_m:
2901 accum = expand_shift (LSHIFT_EXPR, mode, accum,
2902 build_int_cst (NULL_TREE, log),
2903 shift_subtarget, 0);
2904 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
2905 add_target ? add_target : accum_target);
2906 val_so_far = (val_so_far << log) - 1;
2907 break;
2909 case alg_add_factor:
2910 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2911 build_int_cst (NULL_TREE, log),
2912 NULL_RTX, 0);
2913 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
2914 add_target ? add_target : accum_target);
2915 val_so_far += val_so_far << log;
2916 break;
2918 case alg_sub_factor:
2919 tem = expand_shift (LSHIFT_EXPR, mode, accum,
2920 build_int_cst (NULL_TREE, log),
2921 NULL_RTX, 0);
2922 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
2923 (add_target
2924 ? add_target : (optimize ? 0 : tem)));
2925 val_so_far = (val_so_far << log) - val_so_far;
2926 break;
2928 default:
2929 gcc_unreachable ();
2932 /* Write a REG_EQUAL note on the last insn so that we can cse
2933 multiplication sequences. Note that if ACCUM is a SUBREG,
2934 we've set the inner register and must properly indicate
2935 that. */
2937 tem = op0, nmode = mode;
2938 if (GET_CODE (accum) == SUBREG)
2940 nmode = GET_MODE (SUBREG_REG (accum));
2941 tem = gen_lowpart (nmode, op0);
2944 insn = get_last_insn ();
2945 set_unique_reg_note (insn, REG_EQUAL,
2946 gen_rtx_MULT (nmode, tem,
2947 GEN_INT (val_so_far)));
2950 if (variant == negate_variant)
2952 val_so_far = -val_so_far;
2953 accum = expand_unop (mode, neg_optab, accum, target, 0);
2955 else if (variant == add_variant)
2957 val_so_far = val_so_far + 1;
2958 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
2961 /* Compare only the bits of val and val_so_far that are significant
2962 in the result mode, to avoid sign-/zero-extension confusion. */
2963 val &= GET_MODE_MASK (mode);
2964 val_so_far &= GET_MODE_MASK (mode);
2965 gcc_assert (val == val_so_far);
2967 return accum;
2970 /* Perform a multiplication and return an rtx for the result.
2971 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
2972 TARGET is a suggestion for where to store the result (an rtx).
2974 We check specially for a constant integer as OP1.
2975 If you want this check for OP0 as well, then before calling
2976 you should swap the two operands if OP0 would be constant. */
2979 expand_mult (enum machine_mode mode, rtx op0, rtx op1, rtx target,
2980 int unsignedp)
2982 enum mult_variant variant;
2983 struct algorithm algorithm;
2984 int max_cost;
2986 /* Handling const0_rtx here allows us to use zero as a rogue value for
2987 coeff below. */
2988 if (op1 == const0_rtx)
2989 return const0_rtx;
2990 if (op1 == const1_rtx)
2991 return op0;
2992 if (op1 == constm1_rtx)
2993 return expand_unop (mode,
2994 GET_MODE_CLASS (mode) == MODE_INT
2995 && !unsignedp && flag_trapv
2996 ? negv_optab : neg_optab,
2997 op0, target, 0);
2999 /* These are the operations that are potentially turned into a sequence
3000 of shifts and additions. */
3001 if (SCALAR_INT_MODE_P (mode)
3002 && (unsignedp || !flag_trapv))
3004 HOST_WIDE_INT coeff = 0;
3005 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3007 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3008 less than or equal in size to `unsigned int' this doesn't matter.
3009 If the mode is larger than `unsigned int', then synth_mult works
3010 only if the constant value exactly fits in an `unsigned int' without
3011 any truncation. This means that multiplying by negative values does
3012 not work; results are off by 2^32 on a 32 bit machine. */
3014 if (GET_CODE (op1) == CONST_INT)
3016 /* Attempt to handle multiplication of DImode values by negative
3017 coefficients, by performing the multiplication by a positive
3018 multiplier and then inverting the result. */
3019 if (INTVAL (op1) < 0
3020 && GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
3022 /* Its safe to use -INTVAL (op1) even for INT_MIN, as the
3023 result is interpreted as an unsigned coefficient.
3024 Exclude cost of op0 from max_cost to match the cost
3025 calculation of the synth_mult. */
3026 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET)
3027 - neg_cost[mode];
3028 if (max_cost > 0
3029 && choose_mult_variant (mode, -INTVAL (op1), &algorithm,
3030 &variant, max_cost))
3032 rtx temp = expand_mult_const (mode, op0, -INTVAL (op1),
3033 NULL_RTX, &algorithm,
3034 variant);
3035 return expand_unop (mode, neg_optab, temp, target, 0);
3038 else coeff = INTVAL (op1);
3040 else if (GET_CODE (op1) == CONST_DOUBLE)
3042 /* If we are multiplying in DImode, it may still be a win
3043 to try to work with shifts and adds. */
3044 if (CONST_DOUBLE_HIGH (op1) == 0)
3045 coeff = CONST_DOUBLE_LOW (op1);
3046 else if (CONST_DOUBLE_LOW (op1) == 0
3047 && EXACT_POWER_OF_2_OR_ZERO_P (CONST_DOUBLE_HIGH (op1)))
3049 int shift = floor_log2 (CONST_DOUBLE_HIGH (op1))
3050 + HOST_BITS_PER_WIDE_INT;
3051 return expand_shift (LSHIFT_EXPR, mode, op0,
3052 build_int_cst (NULL_TREE, shift),
3053 target, unsignedp);
3057 /* We used to test optimize here, on the grounds that it's better to
3058 produce a smaller program when -O is not used. But this causes
3059 such a terrible slowdown sometimes that it seems better to always
3060 use synth_mult. */
3061 if (coeff != 0)
3063 /* Special case powers of two. */
3064 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3065 return expand_shift (LSHIFT_EXPR, mode, op0,
3066 build_int_cst (NULL_TREE, floor_log2 (coeff)),
3067 target, unsignedp);
3069 /* Exclude cost of op0 from max_cost to match the cost
3070 calculation of the synth_mult. */
3071 max_cost = rtx_cost (gen_rtx_MULT (mode, fake_reg, op1), SET);
3072 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3073 max_cost))
3074 return expand_mult_const (mode, op0, coeff, target,
3075 &algorithm, variant);
3079 if (GET_CODE (op0) == CONST_DOUBLE)
3081 rtx temp = op0;
3082 op0 = op1;
3083 op1 = temp;
3086 /* Expand x*2.0 as x+x. */
3087 if (GET_CODE (op1) == CONST_DOUBLE
3088 && SCALAR_FLOAT_MODE_P (mode))
3090 REAL_VALUE_TYPE d;
3091 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
3093 if (REAL_VALUES_EQUAL (d, dconst2))
3095 op0 = force_reg (GET_MODE (op0), op0);
3096 return expand_binop (mode, add_optab, op0, op0,
3097 target, unsignedp, OPTAB_LIB_WIDEN);
3101 /* This used to use umul_optab if unsigned, but for non-widening multiply
3102 there is no difference between signed and unsigned. */
3103 op0 = expand_binop (mode,
3104 ! unsignedp
3105 && flag_trapv && (GET_MODE_CLASS(mode) == MODE_INT)
3106 ? smulv_optab : smul_optab,
3107 op0, op1, target, unsignedp, OPTAB_LIB_WIDEN);
3108 gcc_assert (op0);
3109 return op0;
3112 /* Return the smallest n such that 2**n >= X. */
3115 ceil_log2 (unsigned HOST_WIDE_INT x)
3117 return floor_log2 (x - 1) + 1;
3120 /* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3121 replace division by D, and put the least significant N bits of the result
3122 in *MULTIPLIER_PTR and return the most significant bit.
3124 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3125 needed precision is in PRECISION (should be <= N).
3127 PRECISION should be as small as possible so this function can choose
3128 multiplier more freely.
3130 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3131 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3133 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3134 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3136 static
3137 unsigned HOST_WIDE_INT
3138 choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
3139 rtx *multiplier_ptr, int *post_shift_ptr, int *lgup_ptr)
3141 HOST_WIDE_INT mhigh_hi, mlow_hi;
3142 unsigned HOST_WIDE_INT mhigh_lo, mlow_lo;
3143 int lgup, post_shift;
3144 int pow, pow2;
3145 unsigned HOST_WIDE_INT nl, dummy1;
3146 HOST_WIDE_INT nh, dummy2;
3148 /* lgup = ceil(log2(divisor)); */
3149 lgup = ceil_log2 (d);
3151 gcc_assert (lgup <= n);
3153 pow = n + lgup;
3154 pow2 = n + lgup - precision;
3156 /* We could handle this with some effort, but this case is much
3157 better handled directly with a scc insn, so rely on caller using
3158 that. */
3159 gcc_assert (pow != 2 * HOST_BITS_PER_WIDE_INT);
3161 /* mlow = 2^(N + lgup)/d */
3162 if (pow >= HOST_BITS_PER_WIDE_INT)
3164 nh = (HOST_WIDE_INT) 1 << (pow - HOST_BITS_PER_WIDE_INT);
3165 nl = 0;
3167 else
3169 nh = 0;
3170 nl = (unsigned HOST_WIDE_INT) 1 << pow;
3172 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3173 &mlow_lo, &mlow_hi, &dummy1, &dummy2);
3175 /* mhigh = (2^(N + lgup) + 2^N + lgup - precision)/d */
3176 if (pow2 >= HOST_BITS_PER_WIDE_INT)
3177 nh |= (HOST_WIDE_INT) 1 << (pow2 - HOST_BITS_PER_WIDE_INT);
3178 else
3179 nl |= (unsigned HOST_WIDE_INT) 1 << pow2;
3180 div_and_round_double (TRUNC_DIV_EXPR, 1, nl, nh, d, (HOST_WIDE_INT) 0,
3181 &mhigh_lo, &mhigh_hi, &dummy1, &dummy2);
3183 gcc_assert (!mhigh_hi || nh - d < d);
3184 gcc_assert (mhigh_hi <= 1 && mlow_hi <= 1);
3185 /* Assert that mlow < mhigh. */
3186 gcc_assert (mlow_hi < mhigh_hi
3187 || (mlow_hi == mhigh_hi && mlow_lo < mhigh_lo));
3189 /* If precision == N, then mlow, mhigh exceed 2^N
3190 (but they do not exceed 2^(N+1)). */
3192 /* Reduce to lowest terms. */
3193 for (post_shift = lgup; post_shift > 0; post_shift--)
3195 unsigned HOST_WIDE_INT ml_lo = (mlow_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mlow_lo >> 1);
3196 unsigned HOST_WIDE_INT mh_lo = (mhigh_hi << (HOST_BITS_PER_WIDE_INT - 1)) | (mhigh_lo >> 1);
3197 if (ml_lo >= mh_lo)
3198 break;
3200 mlow_hi = 0;
3201 mlow_lo = ml_lo;
3202 mhigh_hi = 0;
3203 mhigh_lo = mh_lo;
3206 *post_shift_ptr = post_shift;
3207 *lgup_ptr = lgup;
3208 if (n < HOST_BITS_PER_WIDE_INT)
3210 unsigned HOST_WIDE_INT mask = ((unsigned HOST_WIDE_INT) 1 << n) - 1;
3211 *multiplier_ptr = GEN_INT (mhigh_lo & mask);
3212 return mhigh_lo >= mask;
3214 else
3216 *multiplier_ptr = GEN_INT (mhigh_lo);
3217 return mhigh_hi;
3221 /* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3222 congruent to 1 (mod 2**N). */
3224 static unsigned HOST_WIDE_INT
3225 invert_mod2n (unsigned HOST_WIDE_INT x, int n)
3227 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
3229 /* The algorithm notes that the choice y = x satisfies
3230 x*y == 1 mod 2^3, since x is assumed odd.
3231 Each iteration doubles the number of bits of significance in y. */
3233 unsigned HOST_WIDE_INT mask;
3234 unsigned HOST_WIDE_INT y = x;
3235 int nbit = 3;
3237 mask = (n == HOST_BITS_PER_WIDE_INT
3238 ? ~(unsigned HOST_WIDE_INT) 0
3239 : ((unsigned HOST_WIDE_INT) 1 << n) - 1);
3241 while (nbit < n)
3243 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3244 nbit *= 2;
3246 return y;
3249 /* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3250 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3251 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3252 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3253 become signed.
3255 The result is put in TARGET if that is convenient.
3257 MODE is the mode of operation. */
3260 expand_mult_highpart_adjust (enum machine_mode mode, rtx adj_operand, rtx op0,
3261 rtx op1, rtx target, int unsignedp)
3263 rtx tem;
3264 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3266 tem = expand_shift (RSHIFT_EXPR, mode, op0,
3267 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3268 NULL_RTX, 0);
3269 tem = expand_and (mode, tem, op1, NULL_RTX);
3270 adj_operand
3271 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3272 adj_operand);
3274 tem = expand_shift (RSHIFT_EXPR, mode, op1,
3275 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode) - 1),
3276 NULL_RTX, 0);
3277 tem = expand_and (mode, tem, op0, NULL_RTX);
3278 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3279 target);
3281 return target;
3284 /* Subroutine of expand_mult_highpart. Return the MODE high part of OP. */
3286 static rtx
3287 extract_high_half (enum machine_mode mode, rtx op)
3289 enum machine_mode wider_mode;
3291 if (mode == word_mode)
3292 return gen_highpart (mode, op);
3294 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3296 wider_mode = GET_MODE_WIDER_MODE (mode);
3297 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
3298 build_int_cst (NULL_TREE, GET_MODE_BITSIZE (mode)), 0, 1);
3299 return convert_modes (mode, wider_mode, op, 0);
3302 /* Like expand_mult_highpart, but only consider using a multiplication
3303 optab. OP1 is an rtx for the constant operand. */
3305 static rtx
3306 expand_mult_highpart_optab (enum machine_mode mode, rtx op0, rtx op1,
3307 rtx target, int unsignedp, int max_cost)
3309 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
3310 enum machine_mode wider_mode;
3311 optab moptab;
3312 rtx tem;
3313 int size;
3315 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3317 wider_mode = GET_MODE_WIDER_MODE (mode);
3318 size = GET_MODE_BITSIZE (mode);
3320 /* Firstly, try using a multiplication insn that only generates the needed
3321 high part of the product, and in the sign flavor of unsignedp. */
3322 if (mul_highpart_cost[mode] < max_cost)
3324 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
3325 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3326 unsignedp, OPTAB_DIRECT);
3327 if (tem)
3328 return tem;
3331 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3332 Need to adjust the result after the multiplication. */
3333 if (size - 1 < BITS_PER_WORD
3334 && (mul_highpart_cost[mode] + 2 * shift_cost[mode][size-1]
3335 + 4 * add_cost[mode] < max_cost))
3337 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
3338 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
3339 unsignedp, OPTAB_DIRECT);
3340 if (tem)
3341 /* We used the wrong signedness. Adjust the result. */
3342 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3343 tem, unsignedp);
3346 /* Try widening multiplication. */
3347 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
3348 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3349 && mul_widen_cost[wider_mode] < max_cost)
3351 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
3352 unsignedp, OPTAB_WIDEN);
3353 if (tem)
3354 return extract_high_half (mode, tem);
3357 /* Try widening the mode and perform a non-widening multiplication. */
3358 if (optab_handler (smul_optab, wider_mode)->insn_code != CODE_FOR_nothing
3359 && size - 1 < BITS_PER_WORD
3360 && mul_cost[wider_mode] + shift_cost[mode][size-1] < max_cost)
3362 rtx insns, wop0, wop1;
3364 /* We need to widen the operands, for example to ensure the
3365 constant multiplier is correctly sign or zero extended.
3366 Use a sequence to clean-up any instructions emitted by
3367 the conversions if things don't work out. */
3368 start_sequence ();
3369 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3370 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3371 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
3372 unsignedp, OPTAB_WIDEN);
3373 insns = get_insns ();
3374 end_sequence ();
3376 if (tem)
3378 emit_insn (insns);
3379 return extract_high_half (mode, tem);
3383 /* Try widening multiplication of opposite signedness, and adjust. */
3384 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
3385 if (optab_handler (moptab, wider_mode)->insn_code != CODE_FOR_nothing
3386 && size - 1 < BITS_PER_WORD
3387 && (mul_widen_cost[wider_mode] + 2 * shift_cost[mode][size-1]
3388 + 4 * add_cost[mode] < max_cost))
3390 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
3391 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3392 if (tem != 0)
3394 tem = extract_high_half (mode, tem);
3395 /* We used the wrong signedness. Adjust the result. */
3396 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
3397 target, unsignedp);
3401 return 0;
3404 /* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3405 putting the high half of the result in TARGET if that is convenient,
3406 and return where the result is. If the operation can not be performed,
3407 0 is returned.
3409 MODE is the mode of operation and result.
3411 UNSIGNEDP nonzero means unsigned multiply.
3413 MAX_COST is the total allowed cost for the expanded RTL. */
3415 static rtx
3416 expand_mult_highpart (enum machine_mode mode, rtx op0, rtx op1,
3417 rtx target, int unsignedp, int max_cost)
3419 enum machine_mode wider_mode = GET_MODE_WIDER_MODE (mode);
3420 unsigned HOST_WIDE_INT cnst1;
3421 int extra_cost;
3422 bool sign_adjust = false;
3423 enum mult_variant variant;
3424 struct algorithm alg;
3425 rtx tem;
3427 gcc_assert (!SCALAR_FLOAT_MODE_P (mode));
3428 /* We can't support modes wider than HOST_BITS_PER_INT. */
3429 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT);
3431 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
3433 /* We can't optimize modes wider than BITS_PER_WORD.
3434 ??? We might be able to perform double-word arithmetic if
3435 mode == word_mode, however all the cost calculations in
3436 synth_mult etc. assume single-word operations. */
3437 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
3438 return expand_mult_highpart_optab (mode, op0, op1, target,
3439 unsignedp, max_cost);
3441 extra_cost = shift_cost[mode][GET_MODE_BITSIZE (mode) - 1];
3443 /* Check whether we try to multiply by a negative constant. */
3444 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3446 sign_adjust = true;
3447 extra_cost += add_cost[mode];
3450 /* See whether shift/add multiplication is cheap enough. */
3451 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3452 max_cost - extra_cost))
3454 /* See whether the specialized multiplication optabs are
3455 cheaper than the shift/add version. */
3456 tem = expand_mult_highpart_optab (mode, op0, op1, target, unsignedp,
3457 alg.cost.cost + extra_cost);
3458 if (tem)
3459 return tem;
3461 tem = convert_to_mode (wider_mode, op0, unsignedp);
3462 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3463 tem = extract_high_half (mode, tem);
3465 /* Adjust result for signedness. */
3466 if (sign_adjust)
3467 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3469 return tem;
3471 return expand_mult_highpart_optab (mode, op0, op1, target,
3472 unsignedp, max_cost);
3476 /* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3478 static rtx
3479 expand_smod_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3481 unsigned HOST_WIDE_INT masklow, maskhigh;
3482 rtx result, temp, shift, label;
3483 int logd;
3485 logd = floor_log2 (d);
3486 result = gen_reg_rtx (mode);
3488 /* Avoid conditional branches when they're expensive. */
3489 if (BRANCH_COST >= 2
3490 && optimize_insn_for_speed_p ())
3492 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
3493 mode, 0, -1);
3494 if (signmask)
3496 signmask = force_reg (mode, signmask);
3497 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3498 shift = GEN_INT (GET_MODE_BITSIZE (mode) - logd);
3500 /* Use the rtx_cost of a LSHIFTRT instruction to determine
3501 which instruction sequence to use. If logical right shifts
3502 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
3503 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
3505 temp = gen_rtx_LSHIFTRT (mode, result, shift);
3506 if (optab_handler (lshr_optab, mode)->insn_code == CODE_FOR_nothing
3507 || rtx_cost (temp, SET) > COSTS_N_INSNS (2))
3509 temp = expand_binop (mode, xor_optab, op0, signmask,
3510 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3511 temp = expand_binop (mode, sub_optab, temp, signmask,
3512 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3513 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3514 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3515 temp = expand_binop (mode, xor_optab, temp, signmask,
3516 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3517 temp = expand_binop (mode, sub_optab, temp, signmask,
3518 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3520 else
3522 signmask = expand_binop (mode, lshr_optab, signmask, shift,
3523 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3524 signmask = force_reg (mode, signmask);
3526 temp = expand_binop (mode, add_optab, op0, signmask,
3527 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3528 temp = expand_binop (mode, and_optab, temp, GEN_INT (masklow),
3529 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3530 temp = expand_binop (mode, sub_optab, temp, signmask,
3531 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3533 return temp;
3537 /* Mask contains the mode's signbit and the significant bits of the
3538 modulus. By including the signbit in the operation, many targets
3539 can avoid an explicit compare operation in the following comparison
3540 against zero. */
3542 masklow = ((HOST_WIDE_INT) 1 << logd) - 1;
3543 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3545 masklow |= (HOST_WIDE_INT) -1 << (GET_MODE_BITSIZE (mode) - 1);
3546 maskhigh = -1;
3548 else
3549 maskhigh = (HOST_WIDE_INT) -1
3550 << (GET_MODE_BITSIZE (mode) - HOST_BITS_PER_WIDE_INT - 1);
3552 temp = expand_binop (mode, and_optab, op0,
3553 immed_double_const (masklow, maskhigh, mode),
3554 result, 1, OPTAB_LIB_WIDEN);
3555 if (temp != result)
3556 emit_move_insn (result, temp);
3558 label = gen_label_rtx ();
3559 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
3561 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
3562 0, OPTAB_LIB_WIDEN);
3563 masklow = (HOST_WIDE_INT) -1 << logd;
3564 maskhigh = -1;
3565 temp = expand_binop (mode, ior_optab, temp,
3566 immed_double_const (masklow, maskhigh, mode),
3567 result, 1, OPTAB_LIB_WIDEN);
3568 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
3569 0, OPTAB_LIB_WIDEN);
3570 if (temp != result)
3571 emit_move_insn (result, temp);
3572 emit_label (label);
3573 return result;
3576 /* Expand signed division of OP0 by a power of two D in mode MODE.
3577 This routine is only called for positive values of D. */
3579 static rtx
3580 expand_sdiv_pow2 (enum machine_mode mode, rtx op0, HOST_WIDE_INT d)
3582 rtx temp, label;
3583 tree shift;
3584 int logd;
3586 logd = floor_log2 (d);
3587 shift = build_int_cst (NULL_TREE, logd);
3589 if (d == 2 && BRANCH_COST >= 1)
3591 temp = gen_reg_rtx (mode);
3592 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
3593 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3594 0, OPTAB_LIB_WIDEN);
3595 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3598 #ifdef HAVE_conditional_move
3599 if (BRANCH_COST >= 2)
3601 rtx temp2;
3603 /* ??? emit_conditional_move forces a stack adjustment via
3604 compare_from_rtx so, if the sequence is discarded, it will
3605 be lost. Do it now instead. */
3606 do_pending_stack_adjust ();
3608 start_sequence ();
3609 temp2 = copy_to_mode_reg (mode, op0);
3610 temp = expand_binop (mode, add_optab, temp2, GEN_INT (d-1),
3611 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3612 temp = force_reg (mode, temp);
3614 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
3615 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
3616 mode, temp, temp2, mode, 0);
3617 if (temp2)
3619 rtx seq = get_insns ();
3620 end_sequence ();
3621 emit_insn (seq);
3622 return expand_shift (RSHIFT_EXPR, mode, temp2, shift, NULL_RTX, 0);
3624 end_sequence ();
3626 #endif
3628 if (BRANCH_COST >= 2)
3630 int ushift = GET_MODE_BITSIZE (mode) - logd;
3632 temp = gen_reg_rtx (mode);
3633 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
3634 if (shift_cost[mode][ushift] > COSTS_N_INSNS (1))
3635 temp = expand_binop (mode, and_optab, temp, GEN_INT (d - 1),
3636 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3637 else
3638 temp = expand_shift (RSHIFT_EXPR, mode, temp,
3639 build_int_cst (NULL_TREE, ushift),
3640 NULL_RTX, 1);
3641 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
3642 0, OPTAB_LIB_WIDEN);
3643 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3646 label = gen_label_rtx ();
3647 temp = copy_to_mode_reg (mode, op0);
3648 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
3649 expand_inc (temp, GEN_INT (d - 1));
3650 emit_label (label);
3651 return expand_shift (RSHIFT_EXPR, mode, temp, shift, NULL_RTX, 0);
3654 /* Emit the code to divide OP0 by OP1, putting the result in TARGET
3655 if that is convenient, and returning where the result is.
3656 You may request either the quotient or the remainder as the result;
3657 specify REM_FLAG nonzero to get the remainder.
3659 CODE is the expression code for which kind of division this is;
3660 it controls how rounding is done. MODE is the machine mode to use.
3661 UNSIGNEDP nonzero means do unsigned division. */
3663 /* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
3664 and then correct it by or'ing in missing high bits
3665 if result of ANDI is nonzero.
3666 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
3667 This could optimize to a bfexts instruction.
3668 But C doesn't use these operations, so their optimizations are
3669 left for later. */
3670 /* ??? For modulo, we don't actually need the highpart of the first product,
3671 the low part will do nicely. And for small divisors, the second multiply
3672 can also be a low-part only multiply or even be completely left out.
3673 E.g. to calculate the remainder of a division by 3 with a 32 bit
3674 multiply, multiply with 0x55555556 and extract the upper two bits;
3675 the result is exact for inputs up to 0x1fffffff.
3676 The input range can be reduced by using cross-sum rules.
3677 For odd divisors >= 3, the following table gives right shift counts
3678 so that if a number is shifted by an integer multiple of the given
3679 amount, the remainder stays the same:
3680 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
3681 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
3682 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
3683 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
3684 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
3686 Cross-sum rules for even numbers can be derived by leaving as many bits
3687 to the right alone as the divisor has zeros to the right.
3688 E.g. if x is an unsigned 32 bit number:
3689 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
3693 expand_divmod (int rem_flag, enum tree_code code, enum machine_mode mode,
3694 rtx op0, rtx op1, rtx target, int unsignedp)
3696 enum machine_mode compute_mode;
3697 rtx tquotient;
3698 rtx quotient = 0, remainder = 0;
3699 rtx last;
3700 int size;
3701 rtx insn, set;
3702 optab optab1, optab2;
3703 int op1_is_constant, op1_is_pow2 = 0;
3704 int max_cost, extra_cost;
3705 static HOST_WIDE_INT last_div_const = 0;
3706 static HOST_WIDE_INT ext_op1;
3708 op1_is_constant = GET_CODE (op1) == CONST_INT;
3709 if (op1_is_constant)
3711 ext_op1 = INTVAL (op1);
3712 if (unsignedp)
3713 ext_op1 &= GET_MODE_MASK (mode);
3714 op1_is_pow2 = ((EXACT_POWER_OF_2_OR_ZERO_P (ext_op1)
3715 || (! unsignedp && EXACT_POWER_OF_2_OR_ZERO_P (-ext_op1))));
3719 This is the structure of expand_divmod:
3721 First comes code to fix up the operands so we can perform the operations
3722 correctly and efficiently.
3724 Second comes a switch statement with code specific for each rounding mode.
3725 For some special operands this code emits all RTL for the desired
3726 operation, for other cases, it generates only a quotient and stores it in
3727 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
3728 to indicate that it has not done anything.
3730 Last comes code that finishes the operation. If QUOTIENT is set and
3731 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
3732 QUOTIENT is not set, it is computed using trunc rounding.
3734 We try to generate special code for division and remainder when OP1 is a
3735 constant. If |OP1| = 2**n we can use shifts and some other fast
3736 operations. For other values of OP1, we compute a carefully selected
3737 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
3738 by m.
3740 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
3741 half of the product. Different strategies for generating the product are
3742 implemented in expand_mult_highpart.
3744 If what we actually want is the remainder, we generate that by another
3745 by-constant multiplication and a subtraction. */
3747 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3748 code below will malfunction if we are, so check here and handle
3749 the special case if so. */
3750 if (op1 == const1_rtx)
3751 return rem_flag ? const0_rtx : op0;
3753 /* When dividing by -1, we could get an overflow.
3754 negv_optab can handle overflows. */
3755 if (! unsignedp && op1 == constm1_rtx)
3757 if (rem_flag)
3758 return const0_rtx;
3759 return expand_unop (mode, flag_trapv && GET_MODE_CLASS(mode) == MODE_INT
3760 ? negv_optab : neg_optab, op0, target, 0);
3763 if (target
3764 /* Don't use the function value register as a target
3765 since we have to read it as well as write it,
3766 and function-inlining gets confused by this. */
3767 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
3768 /* Don't clobber an operand while doing a multi-step calculation. */
3769 || ((rem_flag || op1_is_constant)
3770 && (reg_mentioned_p (target, op0)
3771 || (MEM_P (op0) && MEM_P (target))))
3772 || reg_mentioned_p (target, op1)
3773 || (MEM_P (op1) && MEM_P (target))))
3774 target = 0;
3776 /* Get the mode in which to perform this computation. Normally it will
3777 be MODE, but sometimes we can't do the desired operation in MODE.
3778 If so, pick a wider mode in which we can do the operation. Convert
3779 to that mode at the start to avoid repeated conversions.
3781 First see what operations we need. These depend on the expression
3782 we are evaluating. (We assume that divxx3 insns exist under the
3783 same conditions that modxx3 insns and that these insns don't normally
3784 fail. If these assumptions are not correct, we may generate less
3785 efficient code in some cases.)
3787 Then see if we find a mode in which we can open-code that operation
3788 (either a division, modulus, or shift). Finally, check for the smallest
3789 mode for which we can do the operation with a library call. */
3791 /* We might want to refine this now that we have division-by-constant
3792 optimization. Since expand_mult_highpart tries so many variants, it is
3793 not straightforward to generalize this. Maybe we should make an array
3794 of possible modes in init_expmed? Save this for GCC 2.7. */
3796 optab1 = ((op1_is_pow2 && op1 != const0_rtx)
3797 ? (unsignedp ? lshr_optab : ashr_optab)
3798 : (unsignedp ? udiv_optab : sdiv_optab));
3799 optab2 = ((op1_is_pow2 && op1 != const0_rtx)
3800 ? optab1
3801 : (unsignedp ? udivmod_optab : sdivmod_optab));
3803 for (compute_mode = mode; compute_mode != VOIDmode;
3804 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3805 if (optab_handler (optab1, compute_mode)->insn_code != CODE_FOR_nothing
3806 || optab_handler (optab2, compute_mode)->insn_code != CODE_FOR_nothing)
3807 break;
3809 if (compute_mode == VOIDmode)
3810 for (compute_mode = mode; compute_mode != VOIDmode;
3811 compute_mode = GET_MODE_WIDER_MODE (compute_mode))
3812 if (optab_libfunc (optab1, compute_mode)
3813 || optab_libfunc (optab2, compute_mode))
3814 break;
3816 /* If we still couldn't find a mode, use MODE, but expand_binop will
3817 probably die. */
3818 if (compute_mode == VOIDmode)
3819 compute_mode = mode;
3821 if (target && GET_MODE (target) == compute_mode)
3822 tquotient = target;
3823 else
3824 tquotient = gen_reg_rtx (compute_mode);
3826 size = GET_MODE_BITSIZE (compute_mode);
3827 #if 0
3828 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
3829 (mode), and thereby get better code when OP1 is a constant. Do that
3830 later. It will require going over all usages of SIZE below. */
3831 size = GET_MODE_BITSIZE (mode);
3832 #endif
3834 /* Only deduct something for a REM if the last divide done was
3835 for a different constant. Then set the constant of the last
3836 divide. */
3837 max_cost = unsignedp ? udiv_cost[compute_mode] : sdiv_cost[compute_mode];
3838 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
3839 && INTVAL (op1) == last_div_const))
3840 max_cost -= mul_cost[compute_mode] + add_cost[compute_mode];
3842 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
3844 /* Now convert to the best mode to use. */
3845 if (compute_mode != mode)
3847 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
3848 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
3850 /* convert_modes may have placed op1 into a register, so we
3851 must recompute the following. */
3852 op1_is_constant = GET_CODE (op1) == CONST_INT;
3853 op1_is_pow2 = (op1_is_constant
3854 && ((EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
3855 || (! unsignedp
3856 && EXACT_POWER_OF_2_OR_ZERO_P (-INTVAL (op1)))))) ;
3859 /* If one of the operands is a volatile MEM, copy it into a register. */
3861 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
3862 op0 = force_reg (compute_mode, op0);
3863 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
3864 op1 = force_reg (compute_mode, op1);
3866 /* If we need the remainder or if OP1 is constant, we need to
3867 put OP0 in a register in case it has any queued subexpressions. */
3868 if (rem_flag || op1_is_constant)
3869 op0 = force_reg (compute_mode, op0);
3871 last = get_last_insn ();
3873 /* Promote floor rounding to trunc rounding for unsigned operations. */
3874 if (unsignedp)
3876 if (code == FLOOR_DIV_EXPR)
3877 code = TRUNC_DIV_EXPR;
3878 if (code == FLOOR_MOD_EXPR)
3879 code = TRUNC_MOD_EXPR;
3880 if (code == EXACT_DIV_EXPR && op1_is_pow2)
3881 code = TRUNC_DIV_EXPR;
3884 if (op1 != const0_rtx)
3885 switch (code)
3887 case TRUNC_MOD_EXPR:
3888 case TRUNC_DIV_EXPR:
3889 if (op1_is_constant)
3891 if (unsignedp)
3893 unsigned HOST_WIDE_INT mh;
3894 int pre_shift, post_shift;
3895 int dummy;
3896 rtx ml;
3897 unsigned HOST_WIDE_INT d = (INTVAL (op1)
3898 & GET_MODE_MASK (compute_mode));
3900 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
3902 pre_shift = floor_log2 (d);
3903 if (rem_flag)
3905 remainder
3906 = expand_binop (compute_mode, and_optab, op0,
3907 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
3908 remainder, 1,
3909 OPTAB_LIB_WIDEN);
3910 if (remainder)
3911 return gen_lowpart (mode, remainder);
3913 quotient = expand_shift (RSHIFT_EXPR, compute_mode, op0,
3914 build_int_cst (NULL_TREE,
3915 pre_shift),
3916 tquotient, 1);
3918 else if (size <= HOST_BITS_PER_WIDE_INT)
3920 if (d >= ((unsigned HOST_WIDE_INT) 1 << (size - 1)))
3922 /* Most significant bit of divisor is set; emit an scc
3923 insn. */
3924 quotient = emit_store_flag (tquotient, GEU, op0, op1,
3925 compute_mode, 1, 1);
3926 if (quotient == 0)
3927 goto fail1;
3929 else
3931 /* Find a suitable multiplier and right shift count
3932 instead of multiplying with D. */
3934 mh = choose_multiplier (d, size, size,
3935 &ml, &post_shift, &dummy);
3937 /* If the suggested multiplier is more than SIZE bits,
3938 we can do better for even divisors, using an
3939 initial right shift. */
3940 if (mh != 0 && (d & 1) == 0)
3942 pre_shift = floor_log2 (d & -d);
3943 mh = choose_multiplier (d >> pre_shift, size,
3944 size - pre_shift,
3945 &ml, &post_shift, &dummy);
3946 gcc_assert (!mh);
3948 else
3949 pre_shift = 0;
3951 if (mh != 0)
3953 rtx t1, t2, t3, t4;
3955 if (post_shift - 1 >= BITS_PER_WORD)
3956 goto fail1;
3958 extra_cost
3959 = (shift_cost[compute_mode][post_shift - 1]
3960 + shift_cost[compute_mode][1]
3961 + 2 * add_cost[compute_mode]);
3962 t1 = expand_mult_highpart (compute_mode, op0, ml,
3963 NULL_RTX, 1,
3964 max_cost - extra_cost);
3965 if (t1 == 0)
3966 goto fail1;
3967 t2 = force_operand (gen_rtx_MINUS (compute_mode,
3968 op0, t1),
3969 NULL_RTX);
3970 t3 = expand_shift
3971 (RSHIFT_EXPR, compute_mode, t2,
3972 build_int_cst (NULL_TREE, 1),
3973 NULL_RTX,1);
3974 t4 = force_operand (gen_rtx_PLUS (compute_mode,
3975 t1, t3),
3976 NULL_RTX);
3977 quotient = expand_shift
3978 (RSHIFT_EXPR, compute_mode, t4,
3979 build_int_cst (NULL_TREE, post_shift - 1),
3980 tquotient, 1);
3982 else
3984 rtx t1, t2;
3986 if (pre_shift >= BITS_PER_WORD
3987 || post_shift >= BITS_PER_WORD)
3988 goto fail1;
3990 t1 = expand_shift
3991 (RSHIFT_EXPR, compute_mode, op0,
3992 build_int_cst (NULL_TREE, pre_shift),
3993 NULL_RTX, 1);
3994 extra_cost
3995 = (shift_cost[compute_mode][pre_shift]
3996 + shift_cost[compute_mode][post_shift]);
3997 t2 = expand_mult_highpart (compute_mode, t1, ml,
3998 NULL_RTX, 1,
3999 max_cost - extra_cost);
4000 if (t2 == 0)
4001 goto fail1;
4002 quotient = expand_shift
4003 (RSHIFT_EXPR, compute_mode, t2,
4004 build_int_cst (NULL_TREE, post_shift),
4005 tquotient, 1);
4009 else /* Too wide mode to use tricky code */
4010 break;
4012 insn = get_last_insn ();
4013 if (insn != last
4014 && (set = single_set (insn)) != 0
4015 && SET_DEST (set) == quotient)
4016 set_unique_reg_note (insn,
4017 REG_EQUAL,
4018 gen_rtx_UDIV (compute_mode, op0, op1));
4020 else /* TRUNC_DIV, signed */
4022 unsigned HOST_WIDE_INT ml;
4023 int lgup, post_shift;
4024 rtx mlr;
4025 HOST_WIDE_INT d = INTVAL (op1);
4026 unsigned HOST_WIDE_INT abs_d;
4028 /* Since d might be INT_MIN, we have to cast to
4029 unsigned HOST_WIDE_INT before negating to avoid
4030 undefined signed overflow. */
4031 abs_d = (d >= 0
4032 ? (unsigned HOST_WIDE_INT) d
4033 : - (unsigned HOST_WIDE_INT) d);
4035 /* n rem d = n rem -d */
4036 if (rem_flag && d < 0)
4038 d = abs_d;
4039 op1 = gen_int_mode (abs_d, compute_mode);
4042 if (d == 1)
4043 quotient = op0;
4044 else if (d == -1)
4045 quotient = expand_unop (compute_mode, neg_optab, op0,
4046 tquotient, 0);
4047 else if (abs_d == (unsigned HOST_WIDE_INT) 1 << (size - 1))
4049 /* This case is not handled correctly below. */
4050 quotient = emit_store_flag (tquotient, EQ, op0, op1,
4051 compute_mode, 1, 1);
4052 if (quotient == 0)
4053 goto fail1;
4055 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
4056 && (rem_flag ? smod_pow2_cheap[compute_mode]
4057 : sdiv_pow2_cheap[compute_mode])
4058 /* We assume that cheap metric is true if the
4059 optab has an expander for this mode. */
4060 && ((optab_handler ((rem_flag ? smod_optab
4061 : sdiv_optab),
4062 compute_mode)->insn_code
4063 != CODE_FOR_nothing)
4064 || (optab_handler(sdivmod_optab,
4065 compute_mode)
4066 ->insn_code != CODE_FOR_nothing)))
4068 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
4070 if (rem_flag)
4072 remainder = expand_smod_pow2 (compute_mode, op0, d);
4073 if (remainder)
4074 return gen_lowpart (mode, remainder);
4077 if (sdiv_pow2_cheap[compute_mode]
4078 && ((optab_handler (sdiv_optab, compute_mode)->insn_code
4079 != CODE_FOR_nothing)
4080 || (optab_handler (sdivmod_optab, compute_mode)->insn_code
4081 != CODE_FOR_nothing)))
4082 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
4083 compute_mode, op0,
4084 gen_int_mode (abs_d,
4085 compute_mode),
4086 NULL_RTX, 0);
4087 else
4088 quotient = expand_sdiv_pow2 (compute_mode, op0, abs_d);
4090 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4091 negate the quotient. */
4092 if (d < 0)
4094 insn = get_last_insn ();
4095 if (insn != last
4096 && (set = single_set (insn)) != 0
4097 && SET_DEST (set) == quotient
4098 && abs_d < ((unsigned HOST_WIDE_INT) 1
4099 << (HOST_BITS_PER_WIDE_INT - 1)))
4100 set_unique_reg_note (insn,
4101 REG_EQUAL,
4102 gen_rtx_DIV (compute_mode,
4103 op0,
4104 GEN_INT
4105 (trunc_int_for_mode
4106 (abs_d,
4107 compute_mode))));
4109 quotient = expand_unop (compute_mode, neg_optab,
4110 quotient, quotient, 0);
4113 else if (size <= HOST_BITS_PER_WIDE_INT)
4115 choose_multiplier (abs_d, size, size - 1,
4116 &mlr, &post_shift, &lgup);
4117 ml = (unsigned HOST_WIDE_INT) INTVAL (mlr);
4118 if (ml < (unsigned HOST_WIDE_INT) 1 << (size - 1))
4120 rtx t1, t2, t3;
4122 if (post_shift >= BITS_PER_WORD
4123 || size - 1 >= BITS_PER_WORD)
4124 goto fail1;
4126 extra_cost = (shift_cost[compute_mode][post_shift]
4127 + shift_cost[compute_mode][size - 1]
4128 + add_cost[compute_mode]);
4129 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4130 NULL_RTX, 0,
4131 max_cost - extra_cost);
4132 if (t1 == 0)
4133 goto fail1;
4134 t2 = expand_shift
4135 (RSHIFT_EXPR, compute_mode, t1,
4136 build_int_cst (NULL_TREE, post_shift),
4137 NULL_RTX, 0);
4138 t3 = expand_shift
4139 (RSHIFT_EXPR, compute_mode, op0,
4140 build_int_cst (NULL_TREE, size - 1),
4141 NULL_RTX, 0);
4142 if (d < 0)
4143 quotient
4144 = force_operand (gen_rtx_MINUS (compute_mode,
4145 t3, t2),
4146 tquotient);
4147 else
4148 quotient
4149 = force_operand (gen_rtx_MINUS (compute_mode,
4150 t2, t3),
4151 tquotient);
4153 else
4155 rtx t1, t2, t3, t4;
4157 if (post_shift >= BITS_PER_WORD
4158 || size - 1 >= BITS_PER_WORD)
4159 goto fail1;
4161 ml |= (~(unsigned HOST_WIDE_INT) 0) << (size - 1);
4162 mlr = gen_int_mode (ml, compute_mode);
4163 extra_cost = (shift_cost[compute_mode][post_shift]
4164 + shift_cost[compute_mode][size - 1]
4165 + 2 * add_cost[compute_mode]);
4166 t1 = expand_mult_highpart (compute_mode, op0, mlr,
4167 NULL_RTX, 0,
4168 max_cost - extra_cost);
4169 if (t1 == 0)
4170 goto fail1;
4171 t2 = force_operand (gen_rtx_PLUS (compute_mode,
4172 t1, op0),
4173 NULL_RTX);
4174 t3 = expand_shift
4175 (RSHIFT_EXPR, compute_mode, t2,
4176 build_int_cst (NULL_TREE, post_shift),
4177 NULL_RTX, 0);
4178 t4 = expand_shift
4179 (RSHIFT_EXPR, compute_mode, op0,
4180 build_int_cst (NULL_TREE, size - 1),
4181 NULL_RTX, 0);
4182 if (d < 0)
4183 quotient
4184 = force_operand (gen_rtx_MINUS (compute_mode,
4185 t4, t3),
4186 tquotient);
4187 else
4188 quotient
4189 = force_operand (gen_rtx_MINUS (compute_mode,
4190 t3, t4),
4191 tquotient);
4194 else /* Too wide mode to use tricky code */
4195 break;
4197 insn = get_last_insn ();
4198 if (insn != last
4199 && (set = single_set (insn)) != 0
4200 && SET_DEST (set) == quotient)
4201 set_unique_reg_note (insn,
4202 REG_EQUAL,
4203 gen_rtx_DIV (compute_mode, op0, op1));
4205 break;
4207 fail1:
4208 delete_insns_since (last);
4209 break;
4211 case FLOOR_DIV_EXPR:
4212 case FLOOR_MOD_EXPR:
4213 /* We will come here only for signed operations. */
4214 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4216 unsigned HOST_WIDE_INT mh;
4217 int pre_shift, lgup, post_shift;
4218 HOST_WIDE_INT d = INTVAL (op1);
4219 rtx ml;
4221 if (d > 0)
4223 /* We could just as easily deal with negative constants here,
4224 but it does not seem worth the trouble for GCC 2.6. */
4225 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4227 pre_shift = floor_log2 (d);
4228 if (rem_flag)
4230 remainder = expand_binop (compute_mode, and_optab, op0,
4231 GEN_INT (((HOST_WIDE_INT) 1 << pre_shift) - 1),
4232 remainder, 0, OPTAB_LIB_WIDEN);
4233 if (remainder)
4234 return gen_lowpart (mode, remainder);
4236 quotient = expand_shift
4237 (RSHIFT_EXPR, compute_mode, op0,
4238 build_int_cst (NULL_TREE, pre_shift),
4239 tquotient, 0);
4241 else
4243 rtx t1, t2, t3, t4;
4245 mh = choose_multiplier (d, size, size - 1,
4246 &ml, &post_shift, &lgup);
4247 gcc_assert (!mh);
4249 if (post_shift < BITS_PER_WORD
4250 && size - 1 < BITS_PER_WORD)
4252 t1 = expand_shift
4253 (RSHIFT_EXPR, compute_mode, op0,
4254 build_int_cst (NULL_TREE, size - 1),
4255 NULL_RTX, 0);
4256 t2 = expand_binop (compute_mode, xor_optab, op0, t1,
4257 NULL_RTX, 0, OPTAB_WIDEN);
4258 extra_cost = (shift_cost[compute_mode][post_shift]
4259 + shift_cost[compute_mode][size - 1]
4260 + 2 * add_cost[compute_mode]);
4261 t3 = expand_mult_highpart (compute_mode, t2, ml,
4262 NULL_RTX, 1,
4263 max_cost - extra_cost);
4264 if (t3 != 0)
4266 t4 = expand_shift
4267 (RSHIFT_EXPR, compute_mode, t3,
4268 build_int_cst (NULL_TREE, post_shift),
4269 NULL_RTX, 1);
4270 quotient = expand_binop (compute_mode, xor_optab,
4271 t4, t1, tquotient, 0,
4272 OPTAB_WIDEN);
4277 else
4279 rtx nsign, t1, t2, t3, t4;
4280 t1 = force_operand (gen_rtx_PLUS (compute_mode,
4281 op0, constm1_rtx), NULL_RTX);
4282 t2 = expand_binop (compute_mode, ior_optab, op0, t1, NULL_RTX,
4283 0, OPTAB_WIDEN);
4284 nsign = expand_shift
4285 (RSHIFT_EXPR, compute_mode, t2,
4286 build_int_cst (NULL_TREE, size - 1),
4287 NULL_RTX, 0);
4288 t3 = force_operand (gen_rtx_MINUS (compute_mode, t1, nsign),
4289 NULL_RTX);
4290 t4 = expand_divmod (0, TRUNC_DIV_EXPR, compute_mode, t3, op1,
4291 NULL_RTX, 0);
4292 if (t4)
4294 rtx t5;
4295 t5 = expand_unop (compute_mode, one_cmpl_optab, nsign,
4296 NULL_RTX, 0);
4297 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4298 t4, t5),
4299 tquotient);
4304 if (quotient != 0)
4305 break;
4306 delete_insns_since (last);
4308 /* Try using an instruction that produces both the quotient and
4309 remainder, using truncation. We can easily compensate the quotient
4310 or remainder to get floor rounding, once we have the remainder.
4311 Notice that we compute also the final remainder value here,
4312 and return the result right away. */
4313 if (target == 0 || GET_MODE (target) != compute_mode)
4314 target = gen_reg_rtx (compute_mode);
4316 if (rem_flag)
4318 remainder
4319 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4320 quotient = gen_reg_rtx (compute_mode);
4322 else
4324 quotient
4325 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
4326 remainder = gen_reg_rtx (compute_mode);
4329 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4330 quotient, remainder, 0))
4332 /* This could be computed with a branch-less sequence.
4333 Save that for later. */
4334 rtx tem;
4335 rtx label = gen_label_rtx ();
4336 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
4337 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4338 NULL_RTX, 0, OPTAB_WIDEN);
4339 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
4340 expand_dec (quotient, const1_rtx);
4341 expand_inc (remainder, op1);
4342 emit_label (label);
4343 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4346 /* No luck with division elimination or divmod. Have to do it
4347 by conditionally adjusting op0 *and* the result. */
4349 rtx label1, label2, label3, label4, label5;
4350 rtx adjusted_op0;
4351 rtx tem;
4353 quotient = gen_reg_rtx (compute_mode);
4354 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4355 label1 = gen_label_rtx ();
4356 label2 = gen_label_rtx ();
4357 label3 = gen_label_rtx ();
4358 label4 = gen_label_rtx ();
4359 label5 = gen_label_rtx ();
4360 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4361 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
4362 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4363 quotient, 0, OPTAB_LIB_WIDEN);
4364 if (tem != quotient)
4365 emit_move_insn (quotient, tem);
4366 emit_jump_insn (gen_jump (label5));
4367 emit_barrier ();
4368 emit_label (label1);
4369 expand_inc (adjusted_op0, const1_rtx);
4370 emit_jump_insn (gen_jump (label4));
4371 emit_barrier ();
4372 emit_label (label2);
4373 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
4374 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4375 quotient, 0, OPTAB_LIB_WIDEN);
4376 if (tem != quotient)
4377 emit_move_insn (quotient, tem);
4378 emit_jump_insn (gen_jump (label5));
4379 emit_barrier ();
4380 emit_label (label3);
4381 expand_dec (adjusted_op0, const1_rtx);
4382 emit_label (label4);
4383 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4384 quotient, 0, OPTAB_LIB_WIDEN);
4385 if (tem != quotient)
4386 emit_move_insn (quotient, tem);
4387 expand_dec (quotient, const1_rtx);
4388 emit_label (label5);
4390 break;
4392 case CEIL_DIV_EXPR:
4393 case CEIL_MOD_EXPR:
4394 if (unsignedp)
4396 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1)))
4398 rtx t1, t2, t3;
4399 unsigned HOST_WIDE_INT d = INTVAL (op1);
4400 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4401 build_int_cst (NULL_TREE, floor_log2 (d)),
4402 tquotient, 1);
4403 t2 = expand_binop (compute_mode, and_optab, op0,
4404 GEN_INT (d - 1),
4405 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4406 t3 = gen_reg_rtx (compute_mode);
4407 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4408 compute_mode, 1, 1);
4409 if (t3 == 0)
4411 rtx lab;
4412 lab = gen_label_rtx ();
4413 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4414 expand_inc (t1, const1_rtx);
4415 emit_label (lab);
4416 quotient = t1;
4418 else
4419 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4420 t1, t3),
4421 tquotient);
4422 break;
4425 /* Try using an instruction that produces both the quotient and
4426 remainder, using truncation. We can easily compensate the
4427 quotient or remainder to get ceiling rounding, once we have the
4428 remainder. Notice that we compute also the final remainder
4429 value here, and return the result right away. */
4430 if (target == 0 || GET_MODE (target) != compute_mode)
4431 target = gen_reg_rtx (compute_mode);
4433 if (rem_flag)
4435 remainder = (REG_P (target)
4436 ? target : gen_reg_rtx (compute_mode));
4437 quotient = gen_reg_rtx (compute_mode);
4439 else
4441 quotient = (REG_P (target)
4442 ? target : gen_reg_rtx (compute_mode));
4443 remainder = gen_reg_rtx (compute_mode);
4446 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4447 remainder, 1))
4449 /* This could be computed with a branch-less sequence.
4450 Save that for later. */
4451 rtx label = gen_label_rtx ();
4452 do_cmp_and_jump (remainder, const0_rtx, EQ,
4453 compute_mode, label);
4454 expand_inc (quotient, const1_rtx);
4455 expand_dec (remainder, op1);
4456 emit_label (label);
4457 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4460 /* No luck with division elimination or divmod. Have to do it
4461 by conditionally adjusting op0 *and* the result. */
4463 rtx label1, label2;
4464 rtx adjusted_op0, tem;
4466 quotient = gen_reg_rtx (compute_mode);
4467 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4468 label1 = gen_label_rtx ();
4469 label2 = gen_label_rtx ();
4470 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4471 compute_mode, label1);
4472 emit_move_insn (quotient, const0_rtx);
4473 emit_jump_insn (gen_jump (label2));
4474 emit_barrier ();
4475 emit_label (label1);
4476 expand_dec (adjusted_op0, const1_rtx);
4477 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
4478 quotient, 1, OPTAB_LIB_WIDEN);
4479 if (tem != quotient)
4480 emit_move_insn (quotient, tem);
4481 expand_inc (quotient, const1_rtx);
4482 emit_label (label2);
4485 else /* signed */
4487 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4488 && INTVAL (op1) >= 0)
4490 /* This is extremely similar to the code for the unsigned case
4491 above. For 2.7 we should merge these variants, but for
4492 2.6.1 I don't want to touch the code for unsigned since that
4493 get used in C. The signed case will only be used by other
4494 languages (Ada). */
4496 rtx t1, t2, t3;
4497 unsigned HOST_WIDE_INT d = INTVAL (op1);
4498 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4499 build_int_cst (NULL_TREE, floor_log2 (d)),
4500 tquotient, 0);
4501 t2 = expand_binop (compute_mode, and_optab, op0,
4502 GEN_INT (d - 1),
4503 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4504 t3 = gen_reg_rtx (compute_mode);
4505 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
4506 compute_mode, 1, 1);
4507 if (t3 == 0)
4509 rtx lab;
4510 lab = gen_label_rtx ();
4511 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
4512 expand_inc (t1, const1_rtx);
4513 emit_label (lab);
4514 quotient = t1;
4516 else
4517 quotient = force_operand (gen_rtx_PLUS (compute_mode,
4518 t1, t3),
4519 tquotient);
4520 break;
4523 /* Try using an instruction that produces both the quotient and
4524 remainder, using truncation. We can easily compensate the
4525 quotient or remainder to get ceiling rounding, once we have the
4526 remainder. Notice that we compute also the final remainder
4527 value here, and return the result right away. */
4528 if (target == 0 || GET_MODE (target) != compute_mode)
4529 target = gen_reg_rtx (compute_mode);
4530 if (rem_flag)
4532 remainder= (REG_P (target)
4533 ? target : gen_reg_rtx (compute_mode));
4534 quotient = gen_reg_rtx (compute_mode);
4536 else
4538 quotient = (REG_P (target)
4539 ? target : gen_reg_rtx (compute_mode));
4540 remainder = gen_reg_rtx (compute_mode);
4543 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
4544 remainder, 0))
4546 /* This could be computed with a branch-less sequence.
4547 Save that for later. */
4548 rtx tem;
4549 rtx label = gen_label_rtx ();
4550 do_cmp_and_jump (remainder, const0_rtx, EQ,
4551 compute_mode, label);
4552 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4553 NULL_RTX, 0, OPTAB_WIDEN);
4554 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
4555 expand_inc (quotient, const1_rtx);
4556 expand_dec (remainder, op1);
4557 emit_label (label);
4558 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4561 /* No luck with division elimination or divmod. Have to do it
4562 by conditionally adjusting op0 *and* the result. */
4564 rtx label1, label2, label3, label4, label5;
4565 rtx adjusted_op0;
4566 rtx tem;
4568 quotient = gen_reg_rtx (compute_mode);
4569 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4570 label1 = gen_label_rtx ();
4571 label2 = gen_label_rtx ();
4572 label3 = gen_label_rtx ();
4573 label4 = gen_label_rtx ();
4574 label5 = gen_label_rtx ();
4575 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4576 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
4577 compute_mode, label1);
4578 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4579 quotient, 0, OPTAB_LIB_WIDEN);
4580 if (tem != quotient)
4581 emit_move_insn (quotient, tem);
4582 emit_jump_insn (gen_jump (label5));
4583 emit_barrier ();
4584 emit_label (label1);
4585 expand_dec (adjusted_op0, const1_rtx);
4586 emit_jump_insn (gen_jump (label4));
4587 emit_barrier ();
4588 emit_label (label2);
4589 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
4590 compute_mode, label3);
4591 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4592 quotient, 0, OPTAB_LIB_WIDEN);
4593 if (tem != quotient)
4594 emit_move_insn (quotient, tem);
4595 emit_jump_insn (gen_jump (label5));
4596 emit_barrier ();
4597 emit_label (label3);
4598 expand_inc (adjusted_op0, const1_rtx);
4599 emit_label (label4);
4600 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
4601 quotient, 0, OPTAB_LIB_WIDEN);
4602 if (tem != quotient)
4603 emit_move_insn (quotient, tem);
4604 expand_inc (quotient, const1_rtx);
4605 emit_label (label5);
4608 break;
4610 case EXACT_DIV_EXPR:
4611 if (op1_is_constant && HOST_BITS_PER_WIDE_INT >= size)
4613 HOST_WIDE_INT d = INTVAL (op1);
4614 unsigned HOST_WIDE_INT ml;
4615 int pre_shift;
4616 rtx t1;
4618 pre_shift = floor_log2 (d & -d);
4619 ml = invert_mod2n (d >> pre_shift, size);
4620 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
4621 build_int_cst (NULL_TREE, pre_shift),
4622 NULL_RTX, unsignedp);
4623 quotient = expand_mult (compute_mode, t1,
4624 gen_int_mode (ml, compute_mode),
4625 NULL_RTX, 1);
4627 insn = get_last_insn ();
4628 set_unique_reg_note (insn,
4629 REG_EQUAL,
4630 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
4631 compute_mode,
4632 op0, op1));
4634 break;
4636 case ROUND_DIV_EXPR:
4637 case ROUND_MOD_EXPR:
4638 if (unsignedp)
4640 rtx tem;
4641 rtx label;
4642 label = gen_label_rtx ();
4643 quotient = gen_reg_rtx (compute_mode);
4644 remainder = gen_reg_rtx (compute_mode);
4645 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
4647 rtx tem;
4648 quotient = expand_binop (compute_mode, udiv_optab, op0, op1,
4649 quotient, 1, OPTAB_LIB_WIDEN);
4650 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 1);
4651 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4652 remainder, 1, OPTAB_LIB_WIDEN);
4654 tem = plus_constant (op1, -1);
4655 tem = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4656 build_int_cst (NULL_TREE, 1),
4657 NULL_RTX, 1);
4658 do_cmp_and_jump (remainder, tem, LEU, compute_mode, label);
4659 expand_inc (quotient, const1_rtx);
4660 expand_dec (remainder, op1);
4661 emit_label (label);
4663 else
4665 rtx abs_rem, abs_op1, tem, mask;
4666 rtx label;
4667 label = gen_label_rtx ();
4668 quotient = gen_reg_rtx (compute_mode);
4669 remainder = gen_reg_rtx (compute_mode);
4670 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
4672 rtx tem;
4673 quotient = expand_binop (compute_mode, sdiv_optab, op0, op1,
4674 quotient, 0, OPTAB_LIB_WIDEN);
4675 tem = expand_mult (compute_mode, quotient, op1, NULL_RTX, 0);
4676 remainder = expand_binop (compute_mode, sub_optab, op0, tem,
4677 remainder, 0, OPTAB_LIB_WIDEN);
4679 abs_rem = expand_abs (compute_mode, remainder, NULL_RTX, 1, 0);
4680 abs_op1 = expand_abs (compute_mode, op1, NULL_RTX, 1, 0);
4681 tem = expand_shift (LSHIFT_EXPR, compute_mode, abs_rem,
4682 build_int_cst (NULL_TREE, 1),
4683 NULL_RTX, 1);
4684 do_cmp_and_jump (tem, abs_op1, LTU, compute_mode, label);
4685 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4686 NULL_RTX, 0, OPTAB_WIDEN);
4687 mask = expand_shift (RSHIFT_EXPR, compute_mode, tem,
4688 build_int_cst (NULL_TREE, size - 1),
4689 NULL_RTX, 0);
4690 tem = expand_binop (compute_mode, xor_optab, mask, const1_rtx,
4691 NULL_RTX, 0, OPTAB_WIDEN);
4692 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4693 NULL_RTX, 0, OPTAB_WIDEN);
4694 expand_inc (quotient, tem);
4695 tem = expand_binop (compute_mode, xor_optab, mask, op1,
4696 NULL_RTX, 0, OPTAB_WIDEN);
4697 tem = expand_binop (compute_mode, sub_optab, tem, mask,
4698 NULL_RTX, 0, OPTAB_WIDEN);
4699 expand_dec (remainder, tem);
4700 emit_label (label);
4702 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4704 default:
4705 gcc_unreachable ();
4708 if (quotient == 0)
4710 if (target && GET_MODE (target) != compute_mode)
4711 target = 0;
4713 if (rem_flag)
4715 /* Try to produce the remainder without producing the quotient.
4716 If we seem to have a divmod pattern that does not require widening,
4717 don't try widening here. We should really have a WIDEN argument
4718 to expand_twoval_binop, since what we'd really like to do here is
4719 1) try a mod insn in compute_mode
4720 2) try a divmod insn in compute_mode
4721 3) try a div insn in compute_mode and multiply-subtract to get
4722 remainder
4723 4) try the same things with widening allowed. */
4724 remainder
4725 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4726 op0, op1, target,
4727 unsignedp,
4728 ((optab_handler (optab2, compute_mode)->insn_code
4729 != CODE_FOR_nothing)
4730 ? OPTAB_DIRECT : OPTAB_WIDEN));
4731 if (remainder == 0)
4733 /* No luck there. Can we do remainder and divide at once
4734 without a library call? */
4735 remainder = gen_reg_rtx (compute_mode);
4736 if (! expand_twoval_binop ((unsignedp
4737 ? udivmod_optab
4738 : sdivmod_optab),
4739 op0, op1,
4740 NULL_RTX, remainder, unsignedp))
4741 remainder = 0;
4744 if (remainder)
4745 return gen_lowpart (mode, remainder);
4748 /* Produce the quotient. Try a quotient insn, but not a library call.
4749 If we have a divmod in this mode, use it in preference to widening
4750 the div (for this test we assume it will not fail). Note that optab2
4751 is set to the one of the two optabs that the call below will use. */
4752 quotient
4753 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
4754 op0, op1, rem_flag ? NULL_RTX : target,
4755 unsignedp,
4756 ((optab_handler (optab2, compute_mode)->insn_code
4757 != CODE_FOR_nothing)
4758 ? OPTAB_DIRECT : OPTAB_WIDEN));
4760 if (quotient == 0)
4762 /* No luck there. Try a quotient-and-remainder insn,
4763 keeping the quotient alone. */
4764 quotient = gen_reg_rtx (compute_mode);
4765 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
4766 op0, op1,
4767 quotient, NULL_RTX, unsignedp))
4769 quotient = 0;
4770 if (! rem_flag)
4771 /* Still no luck. If we are not computing the remainder,
4772 use a library call for the quotient. */
4773 quotient = sign_expand_binop (compute_mode,
4774 udiv_optab, sdiv_optab,
4775 op0, op1, target,
4776 unsignedp, OPTAB_LIB_WIDEN);
4781 if (rem_flag)
4783 if (target && GET_MODE (target) != compute_mode)
4784 target = 0;
4786 if (quotient == 0)
4788 /* No divide instruction either. Use library for remainder. */
4789 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
4790 op0, op1, target,
4791 unsignedp, OPTAB_LIB_WIDEN);
4792 /* No remainder function. Try a quotient-and-remainder
4793 function, keeping the remainder. */
4794 if (!remainder)
4796 remainder = gen_reg_rtx (compute_mode);
4797 if (!expand_twoval_binop_libfunc
4798 (unsignedp ? udivmod_optab : sdivmod_optab,
4799 op0, op1,
4800 NULL_RTX, remainder,
4801 unsignedp ? UMOD : MOD))
4802 remainder = NULL_RTX;
4805 else
4807 /* We divided. Now finish doing X - Y * (X / Y). */
4808 remainder = expand_mult (compute_mode, quotient, op1,
4809 NULL_RTX, unsignedp);
4810 remainder = expand_binop (compute_mode, sub_optab, op0,
4811 remainder, target, unsignedp,
4812 OPTAB_LIB_WIDEN);
4816 return gen_lowpart (mode, rem_flag ? remainder : quotient);
4819 /* Return a tree node with data type TYPE, describing the value of X.
4820 Usually this is an VAR_DECL, if there is no obvious better choice.
4821 X may be an expression, however we only support those expressions
4822 generated by loop.c. */
4824 tree
4825 make_tree (tree type, rtx x)
4827 tree t;
4829 switch (GET_CODE (x))
4831 case CONST_INT:
4833 HOST_WIDE_INT hi = 0;
4835 if (INTVAL (x) < 0
4836 && !(TYPE_UNSIGNED (type)
4837 && (GET_MODE_BITSIZE (TYPE_MODE (type))
4838 < HOST_BITS_PER_WIDE_INT)))
4839 hi = -1;
4841 t = build_int_cst_wide (type, INTVAL (x), hi);
4843 return t;
4846 case CONST_DOUBLE:
4847 if (GET_MODE (x) == VOIDmode)
4848 t = build_int_cst_wide (type,
4849 CONST_DOUBLE_LOW (x), CONST_DOUBLE_HIGH (x));
4850 else
4852 REAL_VALUE_TYPE d;
4854 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
4855 t = build_real (type, d);
4858 return t;
4860 case CONST_VECTOR:
4862 int units = CONST_VECTOR_NUNITS (x);
4863 tree itype = TREE_TYPE (type);
4864 tree t = NULL_TREE;
4865 int i;
4868 /* Build a tree with vector elements. */
4869 for (i = units - 1; i >= 0; --i)
4871 rtx elt = CONST_VECTOR_ELT (x, i);
4872 t = tree_cons (NULL_TREE, make_tree (itype, elt), t);
4875 return build_vector (type, t);
4878 case PLUS:
4879 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4880 make_tree (type, XEXP (x, 1)));
4882 case MINUS:
4883 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
4884 make_tree (type, XEXP (x, 1)));
4886 case NEG:
4887 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
4889 case MULT:
4890 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
4891 make_tree (type, XEXP (x, 1)));
4893 case ASHIFT:
4894 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
4895 make_tree (type, XEXP (x, 1)));
4897 case LSHIFTRT:
4898 t = unsigned_type_for (type);
4899 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4900 make_tree (t, XEXP (x, 0)),
4901 make_tree (type, XEXP (x, 1))));
4903 case ASHIFTRT:
4904 t = signed_type_for (type);
4905 return fold_convert (type, build2 (RSHIFT_EXPR, t,
4906 make_tree (t, XEXP (x, 0)),
4907 make_tree (type, XEXP (x, 1))));
4909 case DIV:
4910 if (TREE_CODE (type) != REAL_TYPE)
4911 t = signed_type_for (type);
4912 else
4913 t = type;
4915 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4916 make_tree (t, XEXP (x, 0)),
4917 make_tree (t, XEXP (x, 1))));
4918 case UDIV:
4919 t = unsigned_type_for (type);
4920 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
4921 make_tree (t, XEXP (x, 0)),
4922 make_tree (t, XEXP (x, 1))));
4924 case SIGN_EXTEND:
4925 case ZERO_EXTEND:
4926 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
4927 GET_CODE (x) == ZERO_EXTEND);
4928 return fold_convert (type, make_tree (t, XEXP (x, 0)));
4930 case CONST:
4931 return make_tree (type, XEXP (x, 0));
4933 case SYMBOL_REF:
4934 t = SYMBOL_REF_DECL (x);
4935 if (t)
4936 return fold_convert (type, build_fold_addr_expr (t));
4937 /* else fall through. */
4939 default:
4940 t = build_decl (VAR_DECL, NULL_TREE, type);
4942 /* If TYPE is a POINTER_TYPE, X might be Pmode with TYPE_MODE being
4943 ptr_mode. So convert. */
4944 if (POINTER_TYPE_P (type))
4945 x = convert_memory_address (TYPE_MODE (type), x);
4947 /* Note that we do *not* use SET_DECL_RTL here, because we do not
4948 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
4949 t->decl_with_rtl.rtl = x;
4951 return t;
4955 /* Compute the logical-and of OP0 and OP1, storing it in TARGET
4956 and returning TARGET.
4958 If TARGET is 0, a pseudo-register or constant is returned. */
4961 expand_and (enum machine_mode mode, rtx op0, rtx op1, rtx target)
4963 rtx tem = 0;
4965 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
4966 tem = simplify_binary_operation (AND, mode, op0, op1);
4967 if (tem == 0)
4968 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
4970 if (target == 0)
4971 target = tem;
4972 else if (tem != target)
4973 emit_move_insn (target, tem);
4974 return target;
4977 /* Helper function for emit_store_flag. */
4978 static rtx
4979 emit_store_flag_1 (rtx target, rtx subtarget, enum machine_mode mode,
4980 int normalizep)
4982 rtx op0;
4983 enum machine_mode target_mode = GET_MODE (target);
4985 /* If we are converting to a wider mode, first convert to
4986 TARGET_MODE, then normalize. This produces better combining
4987 opportunities on machines that have a SIGN_EXTRACT when we are
4988 testing a single bit. This mostly benefits the 68k.
4990 If STORE_FLAG_VALUE does not have the sign bit set when
4991 interpreted in MODE, we can do this conversion as unsigned, which
4992 is usually more efficient. */
4993 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
4995 convert_move (target, subtarget,
4996 (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
4997 && 0 == (STORE_FLAG_VALUE
4998 & ((HOST_WIDE_INT) 1
4999 << (GET_MODE_BITSIZE (mode) -1))));
5000 op0 = target;
5001 mode = target_mode;
5003 else
5004 op0 = subtarget;
5006 /* If we want to keep subexpressions around, don't reuse our last
5007 target. */
5008 if (optimize)
5009 subtarget = 0;
5011 /* Now normalize to the proper value in MODE. Sometimes we don't
5012 have to do anything. */
5013 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5015 /* STORE_FLAG_VALUE might be the most negative number, so write
5016 the comparison this way to avoid a compiler-time warning. */
5017 else if (- normalizep == STORE_FLAG_VALUE)
5018 op0 = expand_unop (mode, neg_optab, op0, subtarget, 0);
5020 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5021 it hard to use a value of just the sign bit due to ANSI integer
5022 constant typing rules. */
5023 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5024 && (STORE_FLAG_VALUE
5025 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))))
5026 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5027 size_int (GET_MODE_BITSIZE (mode) - 1), subtarget,
5028 normalizep == 1);
5029 else
5031 gcc_assert (STORE_FLAG_VALUE & 1);
5033 op0 = expand_and (mode, op0, const1_rtx, subtarget);
5034 if (normalizep == -1)
5035 op0 = expand_unop (mode, neg_optab, op0, op0, 0);
5038 /* If we were converting to a smaller mode, do the conversion now. */
5039 if (target_mode != mode)
5041 convert_move (target, op0, 0);
5042 return target;
5044 else
5045 return op0;
5048 /* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5049 and storing in TARGET. Normally return TARGET.
5050 Return 0 if that cannot be done.
5052 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5053 it is VOIDmode, they cannot both be CONST_INT.
5055 UNSIGNEDP is for the case where we have to widen the operands
5056 to perform the operation. It says to use zero-extension.
5058 NORMALIZEP is 1 if we should convert the result to be either zero
5059 or one. Normalize is -1 if we should convert the result to be
5060 either zero or -1. If NORMALIZEP is zero, the result will be left
5061 "raw" out of the scc insn. */
5064 emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
5065 enum machine_mode mode, int unsignedp, int normalizep)
5067 rtx subtarget;
5068 enum insn_code icode;
5069 enum machine_mode compare_mode;
5070 enum machine_mode target_mode = GET_MODE (target);
5071 rtx tem;
5072 rtx last = get_last_insn ();
5073 rtx pattern, comparison;
5075 if (unsignedp)
5076 code = unsigned_condition (code);
5078 /* If one operand is constant, make it the second one. Only do this
5079 if the other operand is not constant as well. */
5081 if (swap_commutative_operands_p (op0, op1))
5083 tem = op0;
5084 op0 = op1;
5085 op1 = tem;
5086 code = swap_condition (code);
5089 if (mode == VOIDmode)
5090 mode = GET_MODE (op0);
5092 /* For some comparisons with 1 and -1, we can convert this to
5093 comparisons with zero. This will often produce more opportunities for
5094 store-flag insns. */
5096 switch (code)
5098 case LT:
5099 if (op1 == const1_rtx)
5100 op1 = const0_rtx, code = LE;
5101 break;
5102 case LE:
5103 if (op1 == constm1_rtx)
5104 op1 = const0_rtx, code = LT;
5105 break;
5106 case GE:
5107 if (op1 == const1_rtx)
5108 op1 = const0_rtx, code = GT;
5109 break;
5110 case GT:
5111 if (op1 == constm1_rtx)
5112 op1 = const0_rtx, code = GE;
5113 break;
5114 case GEU:
5115 if (op1 == const1_rtx)
5116 op1 = const0_rtx, code = NE;
5117 break;
5118 case LTU:
5119 if (op1 == const1_rtx)
5120 op1 = const0_rtx, code = EQ;
5121 break;
5122 default:
5123 break;
5126 /* If we are comparing a double-word integer with zero or -1, we can
5127 convert the comparison into one involving a single word. */
5128 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD * 2
5129 && GET_MODE_CLASS (mode) == MODE_INT
5130 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
5132 if ((code == EQ || code == NE)
5133 && (op1 == const0_rtx || op1 == constm1_rtx))
5135 rtx op00, op01, op0both;
5137 /* Do a logical OR or AND of the two words and compare the
5138 result. */
5139 op00 = simplify_gen_subreg (word_mode, op0, mode, 0);
5140 op01 = simplify_gen_subreg (word_mode, op0, mode, UNITS_PER_WORD);
5141 op0both = expand_binop (word_mode,
5142 op1 == const0_rtx ? ior_optab : and_optab,
5143 op00, op01, NULL_RTX, unsignedp,
5144 OPTAB_DIRECT);
5146 if (op0both != 0)
5147 return emit_store_flag (target, code, op0both, op1, word_mode,
5148 unsignedp, normalizep);
5150 else if ((code == LT || code == GE) && op1 == const0_rtx)
5152 rtx op0h;
5154 /* If testing the sign bit, can just test on high word. */
5155 op0h = simplify_gen_subreg (word_mode, op0, mode,
5156 subreg_highpart_offset (word_mode,
5157 mode));
5158 return emit_store_flag (target, code, op0h, op1, word_mode,
5159 unsignedp, normalizep);
5163 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5164 complement of A (for GE) and shifting the sign bit to the low bit. */
5165 if (op1 == const0_rtx && (code == LT || code == GE)
5166 && GET_MODE_CLASS (mode) == MODE_INT
5167 && (normalizep || STORE_FLAG_VALUE == 1
5168 || (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5169 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5170 == ((unsigned HOST_WIDE_INT) 1
5171 << (GET_MODE_BITSIZE (mode) - 1))))))
5173 subtarget = target;
5175 /* If the result is to be wider than OP0, it is best to convert it
5176 first. If it is to be narrower, it is *incorrect* to convert it
5177 first. */
5178 if (GET_MODE_SIZE (target_mode) > GET_MODE_SIZE (mode))
5180 op0 = convert_modes (target_mode, mode, op0, 0);
5181 mode = target_mode;
5184 if (target_mode != mode)
5185 subtarget = 0;
5187 if (code == GE)
5188 op0 = expand_unop (mode, one_cmpl_optab, op0,
5189 ((STORE_FLAG_VALUE == 1 || normalizep)
5190 ? 0 : subtarget), 0);
5192 if (STORE_FLAG_VALUE == 1 || normalizep)
5193 /* If we are supposed to produce a 0/1 value, we want to do
5194 a logical shift from the sign bit to the low-order bit; for
5195 a -1/0 value, we do an arithmetic shift. */
5196 op0 = expand_shift (RSHIFT_EXPR, mode, op0,
5197 size_int (GET_MODE_BITSIZE (mode) - 1),
5198 subtarget, normalizep != -1);
5200 if (mode != target_mode)
5201 op0 = convert_modes (target_mode, mode, op0, 0);
5203 return op0;
5206 icode = setcc_gen_code[(int) code];
5208 if (icode != CODE_FOR_nothing)
5210 insn_operand_predicate_fn pred;
5212 /* We think we may be able to do this with a scc insn. Emit the
5213 comparison and then the scc insn. */
5215 do_pending_stack_adjust ();
5216 last = get_last_insn ();
5218 comparison
5219 = compare_from_rtx (op0, op1, code, unsignedp, mode, NULL_RTX);
5220 if (CONSTANT_P (comparison))
5222 switch (GET_CODE (comparison))
5224 case CONST_INT:
5225 if (comparison == const0_rtx)
5226 return const0_rtx;
5227 break;
5229 #ifdef FLOAT_STORE_FLAG_VALUE
5230 case CONST_DOUBLE:
5231 if (comparison == CONST0_RTX (GET_MODE (comparison)))
5232 return const0_rtx;
5233 break;
5234 #endif
5235 default:
5236 gcc_unreachable ();
5239 if (normalizep == 1)
5240 return const1_rtx;
5241 if (normalizep == -1)
5242 return constm1_rtx;
5243 return const_true_rtx;
5246 /* The code of COMPARISON may not match CODE if compare_from_rtx
5247 decided to swap its operands and reverse the original code.
5249 We know that compare_from_rtx returns either a CONST_INT or
5250 a new comparison code, so it is safe to just extract the
5251 code from COMPARISON. */
5252 code = GET_CODE (comparison);
5254 /* Get a reference to the target in the proper mode for this insn. */
5255 compare_mode = insn_data[(int) icode].operand[0].mode;
5256 subtarget = target;
5257 pred = insn_data[(int) icode].operand[0].predicate;
5258 if (optimize || ! (*pred) (subtarget, compare_mode))
5259 subtarget = gen_reg_rtx (compare_mode);
5261 pattern = GEN_FCN (icode) (subtarget);
5262 if (pattern)
5264 emit_insn (pattern);
5265 return emit_store_flag_1 (target, subtarget, compare_mode,
5266 normalizep);
5269 else
5271 /* We don't have an scc insn, so try a cstore insn. */
5273 for (compare_mode = mode; compare_mode != VOIDmode;
5274 compare_mode = GET_MODE_WIDER_MODE (compare_mode))
5276 icode = optab_handler (cstore_optab, compare_mode)->insn_code;
5277 if (icode != CODE_FOR_nothing)
5278 break;
5281 if (icode != CODE_FOR_nothing)
5283 enum machine_mode result_mode
5284 = insn_data[(int) icode].operand[0].mode;
5285 rtx cstore_op0 = op0;
5286 rtx cstore_op1 = op1;
5288 do_pending_stack_adjust ();
5289 last = get_last_insn ();
5291 if (compare_mode != mode)
5293 cstore_op0 = convert_modes (compare_mode, mode, cstore_op0,
5294 unsignedp);
5295 cstore_op1 = convert_modes (compare_mode, mode, cstore_op1,
5296 unsignedp);
5299 if (!insn_data[(int) icode].operand[2].predicate (cstore_op0,
5300 compare_mode))
5301 cstore_op0 = copy_to_mode_reg (compare_mode, cstore_op0);
5303 if (!insn_data[(int) icode].operand[3].predicate (cstore_op1,
5304 compare_mode))
5305 cstore_op1 = copy_to_mode_reg (compare_mode, cstore_op1);
5307 comparison = gen_rtx_fmt_ee (code, result_mode, cstore_op0,
5308 cstore_op1);
5309 subtarget = target;
5311 if (optimize || !(insn_data[(int) icode].operand[0].predicate
5312 (subtarget, result_mode)))
5313 subtarget = gen_reg_rtx (result_mode);
5315 pattern = GEN_FCN (icode) (subtarget, comparison, cstore_op0,
5316 cstore_op1);
5318 if (pattern)
5320 emit_insn (pattern);
5321 return emit_store_flag_1 (target, subtarget, result_mode,
5322 normalizep);
5327 delete_insns_since (last);
5329 /* If optimizing, use different pseudo registers for each insn, instead
5330 of reusing the same pseudo. This leads to better CSE, but slows
5331 down the compiler, since there are more pseudos */
5332 subtarget = (!optimize
5333 && (target_mode == mode)) ? target : NULL_RTX;
5335 /* If we reached here, we can't do this with a scc insn. However, there
5336 are some comparisons that can be done directly. For example, if
5337 this is an equality comparison of integers, we can try to exclusive-or
5338 (or subtract) the two operands and use a recursive call to try the
5339 comparison with zero. Don't do any of these cases if branches are
5340 very cheap. */
5342 if (BRANCH_COST > 0
5343 && GET_MODE_CLASS (mode) == MODE_INT && (code == EQ || code == NE)
5344 && op1 != const0_rtx)
5346 tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5347 OPTAB_WIDEN);
5349 if (tem == 0)
5350 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5351 OPTAB_WIDEN);
5352 if (tem != 0)
5353 tem = emit_store_flag (target, code, tem, const0_rtx,
5354 mode, unsignedp, normalizep);
5355 if (tem == 0)
5356 delete_insns_since (last);
5357 return tem;
5360 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
5361 the constant zero. Reject all other comparisons at this point. Only
5362 do LE and GT if branches are expensive since they are expensive on
5363 2-operand machines. */
5365 if (BRANCH_COST == 0
5366 || GET_MODE_CLASS (mode) != MODE_INT || op1 != const0_rtx
5367 || (code != EQ && code != NE
5368 && (BRANCH_COST <= 1 || (code != LE && code != GT))))
5369 return 0;
5371 /* See what we need to return. We can only return a 1, -1, or the
5372 sign bit. */
5374 if (normalizep == 0)
5376 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5377 normalizep = STORE_FLAG_VALUE;
5379 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5380 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5381 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1)))
5383 else
5384 return 0;
5387 /* Try to put the result of the comparison in the sign bit. Assume we can't
5388 do the necessary operation below. */
5390 tem = 0;
5392 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5393 the sign bit set. */
5395 if (code == LE)
5397 /* This is destructive, so SUBTARGET can't be OP0. */
5398 if (rtx_equal_p (subtarget, op0))
5399 subtarget = 0;
5401 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5402 OPTAB_WIDEN);
5403 if (tem)
5404 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5405 OPTAB_WIDEN);
5408 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5409 number of bits in the mode of OP0, minus one. */
5411 if (code == GT)
5413 if (rtx_equal_p (subtarget, op0))
5414 subtarget = 0;
5416 tem = expand_shift (RSHIFT_EXPR, mode, op0,
5417 size_int (GET_MODE_BITSIZE (mode) - 1),
5418 subtarget, 0);
5419 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5420 OPTAB_WIDEN);
5423 if (code == EQ || code == NE)
5425 /* For EQ or NE, one way to do the comparison is to apply an operation
5426 that converts the operand into a positive number if it is nonzero
5427 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5428 for NE we negate. This puts the result in the sign bit. Then we
5429 normalize with a shift, if needed.
5431 Two operations that can do the above actions are ABS and FFS, so try
5432 them. If that doesn't work, and MODE is smaller than a full word,
5433 we can use zero-extension to the wider mode (an unsigned conversion)
5434 as the operation. */
5436 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5437 that is compensated by the subsequent overflow when subtracting
5438 one / negating. */
5440 if (optab_handler (abs_optab, mode)->insn_code != CODE_FOR_nothing)
5441 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
5442 else if (optab_handler (ffs_optab, mode)->insn_code != CODE_FOR_nothing)
5443 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5444 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5446 tem = convert_modes (word_mode, mode, op0, 1);
5447 mode = word_mode;
5450 if (tem != 0)
5452 if (code == EQ)
5453 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5454 0, OPTAB_WIDEN);
5455 else
5456 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5459 /* If we couldn't do it that way, for NE we can "or" the two's complement
5460 of the value with itself. For EQ, we take the one's complement of
5461 that "or", which is an extra insn, so we only handle EQ if branches
5462 are expensive. */
5464 if (tem == 0 && (code == NE || BRANCH_COST > 1))
5466 if (rtx_equal_p (subtarget, op0))
5467 subtarget = 0;
5469 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5470 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5471 OPTAB_WIDEN);
5473 if (tem && code == EQ)
5474 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5478 if (tem && normalizep)
5479 tem = expand_shift (RSHIFT_EXPR, mode, tem,
5480 size_int (GET_MODE_BITSIZE (mode) - 1),
5481 subtarget, normalizep == 1);
5483 if (tem)
5485 if (GET_MODE (tem) != target_mode)
5487 convert_move (target, tem, 0);
5488 tem = target;
5490 else if (!subtarget)
5492 emit_move_insn (target, tem);
5493 tem = target;
5496 else
5497 delete_insns_since (last);
5499 return tem;
5502 /* Like emit_store_flag, but always succeeds. */
5505 emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
5506 enum machine_mode mode, int unsignedp, int normalizep)
5508 rtx tem, label;
5510 /* First see if emit_store_flag can do the job. */
5511 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
5512 if (tem != 0)
5513 return tem;
5515 if (normalizep == 0)
5516 normalizep = 1;
5518 /* If this failed, we have to do this with set/compare/jump/set code. */
5520 if (!REG_P (target)
5521 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
5522 target = gen_reg_rtx (GET_MODE (target));
5524 emit_move_insn (target, const1_rtx);
5525 label = gen_label_rtx ();
5526 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX,
5527 NULL_RTX, label);
5529 emit_move_insn (target, const0_rtx);
5530 emit_label (label);
5532 return target;
5535 /* Perform possibly multi-word comparison and conditional jump to LABEL
5536 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
5537 now a thin wrapper around do_compare_rtx_and_jump. */
5539 static void
5540 do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, enum machine_mode mode,
5541 rtx label)
5543 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
5544 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode,
5545 NULL_RTX, NULL_RTX, label);