* decl.c (compute_array_index_type): Use type_dependent_expression_p.
[official-gcc.git] / gcc / sel-sched-ir.c
blob449efc97cbccb69bb495132b64cac917ad7d4cf2
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "function.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "except.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "sched-int.h"
39 #include "ggc.h"
40 #include "tree.h"
41 #include "vec.h"
42 #include "langhooks.h"
43 #include "rtlhooks-def.h"
44 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 /* We don't have to use it except for sel_print_insn. */
49 #include "sel-sched-dump.h"
51 /* A vector holding bb info for whole scheduling pass. */
52 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
54 /* A vector holding bb info. */
55 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
57 /* A pool for allocating all lists. */
58 alloc_pool sched_lists_pool;
60 /* This contains information about successors for compute_av_set. */
61 struct succs_info current_succs;
63 /* Data structure to describe interaction with the generic scheduler utils. */
64 static struct common_sched_info_def sel_common_sched_info;
66 /* The loop nest being pipelined. */
67 struct loop *current_loop_nest;
69 /* LOOP_NESTS is a vector containing the corresponding loop nest for
70 each region. */
71 static VEC(loop_p, heap) *loop_nests = NULL;
73 /* Saves blocks already in loop regions, indexed by bb->index. */
74 static sbitmap bbs_in_loop_rgns = NULL;
76 /* CFG hooks that are saved before changing create_basic_block hook. */
77 static struct cfg_hooks orig_cfg_hooks;
80 /* Array containing reverse topological index of function basic blocks,
81 indexed by BB->INDEX. */
82 static int *rev_top_order_index = NULL;
84 /* Length of the above array. */
85 static int rev_top_order_index_len = -1;
87 /* A regset pool structure. */
88 static struct
90 /* The stack to which regsets are returned. */
91 regset *v;
93 /* Its pointer. */
94 int n;
96 /* Its size. */
97 int s;
99 /* In VV we save all generated regsets so that, when destructing the
100 pool, we can compare it with V and check that every regset was returned
101 back to pool. */
102 regset *vv;
104 /* The pointer of VV stack. */
105 int nn;
107 /* Its size. */
108 int ss;
110 /* The difference between allocated and returned regsets. */
111 int diff;
112 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114 /* This represents the nop pool. */
115 static struct
117 /* The vector which holds previously emitted nops. */
118 insn_t *v;
120 /* Its pointer. */
121 int n;
123 /* Its size. */
124 int s;
125 } nop_pool = { NULL, 0, 0 };
127 /* The pool for basic block notes. */
128 static rtx_vec_t bb_note_pool;
130 /* A NOP pattern used to emit placeholder insns. */
131 rtx nop_pattern = NULL_RTX;
132 /* A special instruction that resides in EXIT_BLOCK.
133 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
134 rtx exit_insn = NULL_RTX;
136 /* TRUE if while scheduling current region, which is loop, its preheader
137 was removed. */
138 bool preheader_removed = false;
141 /* Forward static declarations. */
142 static void fence_clear (fence_t);
144 static void deps_init_id (idata_t, insn_t, bool);
145 static void init_id_from_df (idata_t, insn_t, bool);
146 static expr_t set_insn_init (expr_t, vinsn_t, int);
148 static void cfg_preds (basic_block, insn_t **, int *);
149 static void prepare_insn_expr (insn_t, int);
150 static void free_history_vect (VEC (expr_history_def, heap) **);
152 static void move_bb_info (basic_block, basic_block);
153 static void remove_empty_bb (basic_block, bool);
154 static void sel_merge_blocks (basic_block, basic_block);
155 static void sel_remove_loop_preheader (void);
156 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
158 static bool insn_is_the_only_one_in_bb_p (insn_t);
159 static void create_initial_data_sets (basic_block);
161 static void free_av_set (basic_block);
162 static void invalidate_av_set (basic_block);
163 static void extend_insn_data (void);
164 static void sel_init_new_insn (insn_t, int);
165 static void finish_insns (void);
167 /* Various list functions. */
169 /* Copy an instruction list L. */
170 ilist_t
171 ilist_copy (ilist_t l)
173 ilist_t head = NULL, *tailp = &head;
175 while (l)
177 ilist_add (tailp, ILIST_INSN (l));
178 tailp = &ILIST_NEXT (*tailp);
179 l = ILIST_NEXT (l);
182 return head;
185 /* Invert an instruction list L. */
186 ilist_t
187 ilist_invert (ilist_t l)
189 ilist_t res = NULL;
191 while (l)
193 ilist_add (&res, ILIST_INSN (l));
194 l = ILIST_NEXT (l);
197 return res;
200 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
201 void
202 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
204 bnd_t bnd;
206 _list_add (lp);
207 bnd = BLIST_BND (*lp);
209 BND_TO (bnd) = to;
210 BND_PTR (bnd) = ptr;
211 BND_AV (bnd) = NULL;
212 BND_AV1 (bnd) = NULL;
213 BND_DC (bnd) = dc;
216 /* Remove the list note pointed to by LP. */
217 void
218 blist_remove (blist_t *lp)
220 bnd_t b = BLIST_BND (*lp);
222 av_set_clear (&BND_AV (b));
223 av_set_clear (&BND_AV1 (b));
224 ilist_clear (&BND_PTR (b));
226 _list_remove (lp);
229 /* Init a fence tail L. */
230 void
231 flist_tail_init (flist_tail_t l)
233 FLIST_TAIL_HEAD (l) = NULL;
234 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
237 /* Try to find fence corresponding to INSN in L. */
238 fence_t
239 flist_lookup (flist_t l, insn_t insn)
241 while (l)
243 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
244 return FLIST_FENCE (l);
246 l = FLIST_NEXT (l);
249 return NULL;
252 /* Init the fields of F before running fill_insns. */
253 static void
254 init_fence_for_scheduling (fence_t f)
256 FENCE_BNDS (f) = NULL;
257 FENCE_PROCESSED_P (f) = false;
258 FENCE_SCHEDULED_P (f) = false;
261 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
262 static void
263 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
264 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
265 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
266 int cycle, int cycle_issued_insns, int issue_more,
267 bool starts_cycle_p, bool after_stall_p)
269 fence_t f;
271 _list_add (lp);
272 f = FLIST_FENCE (*lp);
274 FENCE_INSN (f) = insn;
276 gcc_assert (state != NULL);
277 FENCE_STATE (f) = state;
279 FENCE_CYCLE (f) = cycle;
280 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
281 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
282 FENCE_AFTER_STALL_P (f) = after_stall_p;
284 gcc_assert (dc != NULL);
285 FENCE_DC (f) = dc;
287 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
288 FENCE_TC (f) = tc;
290 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
291 FENCE_ISSUE_MORE (f) = issue_more;
292 FENCE_EXECUTING_INSNS (f) = executing_insns;
293 FENCE_READY_TICKS (f) = ready_ticks;
294 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
295 FENCE_SCHED_NEXT (f) = sched_next;
297 init_fence_for_scheduling (f);
300 /* Remove the head node of the list pointed to by LP. */
301 static void
302 flist_remove (flist_t *lp)
304 if (FENCE_INSN (FLIST_FENCE (*lp)))
305 fence_clear (FLIST_FENCE (*lp));
306 _list_remove (lp);
309 /* Clear the fence list pointed to by LP. */
310 void
311 flist_clear (flist_t *lp)
313 while (*lp)
314 flist_remove (lp);
317 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
318 void
319 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
321 def_t d;
323 _list_add (dl);
324 d = DEF_LIST_DEF (*dl);
326 d->orig_insn = original_insn;
327 d->crosses_call = crosses_call;
331 /* Functions to work with target contexts. */
333 /* Bulk target context. It is convenient for debugging purposes to ensure
334 that there are no uninitialized (null) target contexts. */
335 static tc_t bulk_tc = (tc_t) 1;
337 /* Target hooks wrappers. In the future we can provide some default
338 implementations for them. */
340 /* Allocate a store for the target context. */
341 static tc_t
342 alloc_target_context (void)
344 return (targetm.sched.alloc_sched_context
345 ? targetm.sched.alloc_sched_context () : bulk_tc);
348 /* Init target context TC.
349 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
350 Overwise, copy current backend context to TC. */
351 static void
352 init_target_context (tc_t tc, bool clean_p)
354 if (targetm.sched.init_sched_context)
355 targetm.sched.init_sched_context (tc, clean_p);
358 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
359 int init_target_context (). */
360 tc_t
361 create_target_context (bool clean_p)
363 tc_t tc = alloc_target_context ();
365 init_target_context (tc, clean_p);
366 return tc;
369 /* Copy TC to the current backend context. */
370 void
371 set_target_context (tc_t tc)
373 if (targetm.sched.set_sched_context)
374 targetm.sched.set_sched_context (tc);
377 /* TC is about to be destroyed. Free any internal data. */
378 static void
379 clear_target_context (tc_t tc)
381 if (targetm.sched.clear_sched_context)
382 targetm.sched.clear_sched_context (tc);
385 /* Clear and free it. */
386 static void
387 delete_target_context (tc_t tc)
389 clear_target_context (tc);
391 if (targetm.sched.free_sched_context)
392 targetm.sched.free_sched_context (tc);
395 /* Make a copy of FROM in TO.
396 NB: May be this should be a hook. */
397 static void
398 copy_target_context (tc_t to, tc_t from)
400 tc_t tmp = create_target_context (false);
402 set_target_context (from);
403 init_target_context (to, false);
405 set_target_context (tmp);
406 delete_target_context (tmp);
409 /* Create a copy of TC. */
410 static tc_t
411 create_copy_of_target_context (tc_t tc)
413 tc_t copy = alloc_target_context ();
415 copy_target_context (copy, tc);
417 return copy;
420 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
421 is the same as in init_target_context (). */
422 void
423 reset_target_context (tc_t tc, bool clean_p)
425 clear_target_context (tc);
426 init_target_context (tc, clean_p);
429 /* Functions to work with dependence contexts.
430 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
431 context. It accumulates information about processed insns to decide if
432 current insn is dependent on the processed ones. */
434 /* Make a copy of FROM in TO. */
435 static void
436 copy_deps_context (deps_t to, deps_t from)
438 init_deps (to, false);
439 deps_join (to, from);
442 /* Allocate store for dep context. */
443 static deps_t
444 alloc_deps_context (void)
446 return XNEW (struct deps_desc);
449 /* Allocate and initialize dep context. */
450 static deps_t
451 create_deps_context (void)
453 deps_t dc = alloc_deps_context ();
455 init_deps (dc, false);
456 return dc;
459 /* Create a copy of FROM. */
460 static deps_t
461 create_copy_of_deps_context (deps_t from)
463 deps_t to = alloc_deps_context ();
465 copy_deps_context (to, from);
466 return to;
469 /* Clean up internal data of DC. */
470 static void
471 clear_deps_context (deps_t dc)
473 free_deps (dc);
476 /* Clear and free DC. */
477 static void
478 delete_deps_context (deps_t dc)
480 clear_deps_context (dc);
481 free (dc);
484 /* Clear and init DC. */
485 static void
486 reset_deps_context (deps_t dc)
488 clear_deps_context (dc);
489 init_deps (dc, false);
492 /* This structure describes the dependence analysis hooks for advancing
493 dependence context. */
494 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
496 NULL,
498 NULL, /* start_insn */
499 NULL, /* finish_insn */
500 NULL, /* start_lhs */
501 NULL, /* finish_lhs */
502 NULL, /* start_rhs */
503 NULL, /* finish_rhs */
504 haifa_note_reg_set,
505 haifa_note_reg_clobber,
506 haifa_note_reg_use,
507 NULL, /* note_mem_dep */
508 NULL, /* note_dep */
510 0, 0, 0
513 /* Process INSN and add its impact on DC. */
514 void
515 advance_deps_context (deps_t dc, insn_t insn)
517 sched_deps_info = &advance_deps_context_sched_deps_info;
518 deps_analyze_insn (dc, insn);
522 /* Functions to work with DFA states. */
524 /* Allocate store for a DFA state. */
525 static state_t
526 state_alloc (void)
528 return xmalloc (dfa_state_size);
531 /* Allocate and initialize DFA state. */
532 static state_t
533 state_create (void)
535 state_t state = state_alloc ();
537 state_reset (state);
538 advance_state (state);
539 return state;
542 /* Free DFA state. */
543 static void
544 state_free (state_t state)
546 free (state);
549 /* Make a copy of FROM in TO. */
550 static void
551 state_copy (state_t to, state_t from)
553 memcpy (to, from, dfa_state_size);
556 /* Create a copy of FROM. */
557 static state_t
558 state_create_copy (state_t from)
560 state_t to = state_alloc ();
562 state_copy (to, from);
563 return to;
567 /* Functions to work with fences. */
569 /* Clear the fence. */
570 static void
571 fence_clear (fence_t f)
573 state_t s = FENCE_STATE (f);
574 deps_t dc = FENCE_DC (f);
575 void *tc = FENCE_TC (f);
577 ilist_clear (&FENCE_BNDS (f));
579 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
580 || (s == NULL && dc == NULL && tc == NULL));
582 free (s);
584 if (dc != NULL)
585 delete_deps_context (dc);
587 if (tc != NULL)
588 delete_target_context (tc);
589 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
590 free (FENCE_READY_TICKS (f));
591 FENCE_READY_TICKS (f) = NULL;
594 /* Init a list of fences with successors of OLD_FENCE. */
595 void
596 init_fences (insn_t old_fence)
598 insn_t succ;
599 succ_iterator si;
600 bool first = true;
601 int ready_ticks_size = get_max_uid () + 1;
603 FOR_EACH_SUCC_1 (succ, si, old_fence,
604 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
607 if (first)
608 first = false;
609 else
610 gcc_assert (flag_sel_sched_pipelining_outer_loops);
612 flist_add (&fences, succ,
613 state_create (),
614 create_deps_context () /* dc */,
615 create_target_context (true) /* tc */,
616 NULL_RTX /* last_scheduled_insn */,
617 NULL, /* executing_insns */
618 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
619 ready_ticks_size,
620 NULL_RTX /* sched_next */,
621 1 /* cycle */, 0 /* cycle_issued_insns */,
622 issue_rate, /* issue_more */
623 1 /* starts_cycle_p */, 0 /* after_stall_p */);
627 /* Merges two fences (filling fields of fence F with resulting values) by
628 following rules: 1) state, target context and last scheduled insn are
629 propagated from fallthrough edge if it is available;
630 2) deps context and cycle is propagated from more probable edge;
631 3) all other fields are set to corresponding constant values.
633 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
634 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
635 and AFTER_STALL_P are the corresponding fields of the second fence. */
636 static void
637 merge_fences (fence_t f, insn_t insn,
638 state_t state, deps_t dc, void *tc,
639 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
640 int *ready_ticks, int ready_ticks_size,
641 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
643 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
645 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
646 && !sched_next && !FENCE_SCHED_NEXT (f));
648 /* Check if we can decide which path fences came.
649 If we can't (or don't want to) - reset all. */
650 if (last_scheduled_insn == NULL
651 || last_scheduled_insn_old == NULL
652 /* This is a case when INSN is reachable on several paths from
653 one insn (this can happen when pipelining of outer loops is on and
654 there are two edges: one going around of inner loop and the other -
655 right through it; in such case just reset everything). */
656 || last_scheduled_insn == last_scheduled_insn_old)
658 state_reset (FENCE_STATE (f));
659 state_free (state);
661 reset_deps_context (FENCE_DC (f));
662 delete_deps_context (dc);
664 reset_target_context (FENCE_TC (f), true);
665 delete_target_context (tc);
667 if (cycle > FENCE_CYCLE (f))
668 FENCE_CYCLE (f) = cycle;
670 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
671 FENCE_ISSUE_MORE (f) = issue_rate;
672 VEC_free (rtx, gc, executing_insns);
673 free (ready_ticks);
674 if (FENCE_EXECUTING_INSNS (f))
675 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
676 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
677 if (FENCE_READY_TICKS (f))
678 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
680 else
682 edge edge_old = NULL, edge_new = NULL;
683 edge candidate;
684 succ_iterator si;
685 insn_t succ;
687 /* Find fallthrough edge. */
688 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
689 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
691 if (!candidate
692 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
693 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
695 /* No fallthrough edge leading to basic block of INSN. */
696 state_reset (FENCE_STATE (f));
697 state_free (state);
699 reset_target_context (FENCE_TC (f), true);
700 delete_target_context (tc);
702 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
703 FENCE_ISSUE_MORE (f) = issue_rate;
705 else
706 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
708 /* Would be weird if same insn is successor of several fallthrough
709 edges. */
710 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
711 != BLOCK_FOR_INSN (last_scheduled_insn_old));
713 state_free (FENCE_STATE (f));
714 FENCE_STATE (f) = state;
716 delete_target_context (FENCE_TC (f));
717 FENCE_TC (f) = tc;
719 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
720 FENCE_ISSUE_MORE (f) = issue_more;
722 else
724 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
725 state_free (state);
726 delete_target_context (tc);
728 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
729 != BLOCK_FOR_INSN (last_scheduled_insn));
732 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
733 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
734 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
736 if (succ == insn)
738 /* No same successor allowed from several edges. */
739 gcc_assert (!edge_old);
740 edge_old = si.e1;
743 /* Find edge of second predecessor (last_scheduled_insn->insn). */
744 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
745 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
747 if (succ == insn)
749 /* No same successor allowed from several edges. */
750 gcc_assert (!edge_new);
751 edge_new = si.e1;
755 /* Check if we can choose most probable predecessor. */
756 if (edge_old == NULL || edge_new == NULL)
758 reset_deps_context (FENCE_DC (f));
759 delete_deps_context (dc);
760 VEC_free (rtx, gc, executing_insns);
761 free (ready_ticks);
763 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
764 if (FENCE_EXECUTING_INSNS (f))
765 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
766 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
767 if (FENCE_READY_TICKS (f))
768 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
770 else
771 if (edge_new->probability > edge_old->probability)
773 delete_deps_context (FENCE_DC (f));
774 FENCE_DC (f) = dc;
775 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
776 FENCE_EXECUTING_INSNS (f) = executing_insns;
777 free (FENCE_READY_TICKS (f));
778 FENCE_READY_TICKS (f) = ready_ticks;
779 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
780 FENCE_CYCLE (f) = cycle;
782 else
784 /* Leave DC and CYCLE untouched. */
785 delete_deps_context (dc);
786 VEC_free (rtx, gc, executing_insns);
787 free (ready_ticks);
791 /* Fill remaining invariant fields. */
792 if (after_stall_p)
793 FENCE_AFTER_STALL_P (f) = 1;
795 FENCE_ISSUED_INSNS (f) = 0;
796 FENCE_STARTS_CYCLE_P (f) = 1;
797 FENCE_SCHED_NEXT (f) = NULL;
800 /* Add a new fence to NEW_FENCES list, initializing it from all
801 other parameters. */
802 static void
803 add_to_fences (flist_tail_t new_fences, insn_t insn,
804 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
805 VEC(rtx, gc) *executing_insns, int *ready_ticks,
806 int ready_ticks_size, rtx sched_next, int cycle,
807 int cycle_issued_insns, int issue_rate,
808 bool starts_cycle_p, bool after_stall_p)
810 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
812 if (! f)
814 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
815 last_scheduled_insn, executing_insns, ready_ticks,
816 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
817 issue_rate, starts_cycle_p, after_stall_p);
819 FLIST_TAIL_TAILP (new_fences)
820 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
822 else
824 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
825 executing_insns, ready_ticks, ready_ticks_size,
826 sched_next, cycle, issue_rate, after_stall_p);
830 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
831 void
832 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
834 fence_t f, old;
835 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
837 old = FLIST_FENCE (old_fences);
838 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
839 FENCE_INSN (FLIST_FENCE (old_fences)));
840 if (f)
842 merge_fences (f, old->insn, old->state, old->dc, old->tc,
843 old->last_scheduled_insn, old->executing_insns,
844 old->ready_ticks, old->ready_ticks_size,
845 old->sched_next, old->cycle, old->issue_more,
846 old->after_stall_p);
848 else
850 _list_add (tailp);
851 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
852 *FLIST_FENCE (*tailp) = *old;
853 init_fence_for_scheduling (FLIST_FENCE (*tailp));
855 FENCE_INSN (old) = NULL;
858 /* Add a new fence to NEW_FENCES list and initialize most of its data
859 as a clean one. */
860 void
861 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
863 int ready_ticks_size = get_max_uid () + 1;
865 add_to_fences (new_fences,
866 succ, state_create (), create_deps_context (),
867 create_target_context (true),
868 NULL_RTX, NULL,
869 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
870 NULL_RTX, FENCE_CYCLE (fence) + 1,
871 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
874 /* Add a new fence to NEW_FENCES list and initialize all of its data
875 from FENCE and SUCC. */
876 void
877 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
879 int * new_ready_ticks
880 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
882 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
883 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
884 add_to_fences (new_fences,
885 succ, state_create_copy (FENCE_STATE (fence)),
886 create_copy_of_deps_context (FENCE_DC (fence)),
887 create_copy_of_target_context (FENCE_TC (fence)),
888 FENCE_LAST_SCHEDULED_INSN (fence),
889 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
890 new_ready_ticks,
891 FENCE_READY_TICKS_SIZE (fence),
892 FENCE_SCHED_NEXT (fence),
893 FENCE_CYCLE (fence),
894 FENCE_ISSUED_INSNS (fence),
895 FENCE_ISSUE_MORE (fence),
896 FENCE_STARTS_CYCLE_P (fence),
897 FENCE_AFTER_STALL_P (fence));
901 /* Functions to work with regset and nop pools. */
903 /* Returns the new regset from pool. It might have some of the bits set
904 from the previous usage. */
905 regset
906 get_regset_from_pool (void)
908 regset rs;
910 if (regset_pool.n != 0)
911 rs = regset_pool.v[--regset_pool.n];
912 else
913 /* We need to create the regset. */
915 rs = ALLOC_REG_SET (&reg_obstack);
917 if (regset_pool.nn == regset_pool.ss)
918 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
919 (regset_pool.ss = 2 * regset_pool.ss + 1));
920 regset_pool.vv[regset_pool.nn++] = rs;
923 regset_pool.diff++;
925 return rs;
928 /* Same as above, but returns the empty regset. */
929 regset
930 get_clear_regset_from_pool (void)
932 regset rs = get_regset_from_pool ();
934 CLEAR_REG_SET (rs);
935 return rs;
938 /* Return regset RS to the pool for future use. */
939 void
940 return_regset_to_pool (regset rs)
942 gcc_assert (rs);
943 regset_pool.diff--;
945 if (regset_pool.n == regset_pool.s)
946 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
947 (regset_pool.s = 2 * regset_pool.s + 1));
948 regset_pool.v[regset_pool.n++] = rs;
951 #ifdef ENABLE_CHECKING
952 /* This is used as a qsort callback for sorting regset pool stacks.
953 X and XX are addresses of two regsets. They are never equal. */
954 static int
955 cmp_v_in_regset_pool (const void *x, const void *xx)
957 uintptr_t r1 = (uintptr_t) *((const regset *) x);
958 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
959 if (r1 > r2)
960 return 1;
961 else if (r1 < r2)
962 return -1;
963 gcc_unreachable ();
965 #endif
967 /* Free the regset pool possibly checking for memory leaks. */
968 void
969 free_regset_pool (void)
971 #ifdef ENABLE_CHECKING
973 regset *v = regset_pool.v;
974 int i = 0;
975 int n = regset_pool.n;
977 regset *vv = regset_pool.vv;
978 int ii = 0;
979 int nn = regset_pool.nn;
981 int diff = 0;
983 gcc_assert (n <= nn);
985 /* Sort both vectors so it will be possible to compare them. */
986 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
987 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
989 while (ii < nn)
991 if (v[i] == vv[ii])
992 i++;
993 else
994 /* VV[II] was lost. */
995 diff++;
997 ii++;
1000 gcc_assert (diff == regset_pool.diff);
1002 #endif
1004 /* If not true - we have a memory leak. */
1005 gcc_assert (regset_pool.diff == 0);
1007 while (regset_pool.n)
1009 --regset_pool.n;
1010 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1013 free (regset_pool.v);
1014 regset_pool.v = NULL;
1015 regset_pool.s = 0;
1017 free (regset_pool.vv);
1018 regset_pool.vv = NULL;
1019 regset_pool.nn = 0;
1020 regset_pool.ss = 0;
1022 regset_pool.diff = 0;
1026 /* Functions to work with nop pools. NOP insns are used as temporary
1027 placeholders of the insns being scheduled to allow correct update of
1028 the data sets. When update is finished, NOPs are deleted. */
1030 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1031 nops sel-sched generates. */
1032 static vinsn_t nop_vinsn = NULL;
1034 /* Emit a nop before INSN, taking it from pool. */
1035 insn_t
1036 get_nop_from_pool (insn_t insn)
1038 insn_t nop;
1039 bool old_p = nop_pool.n != 0;
1040 int flags;
1042 if (old_p)
1043 nop = nop_pool.v[--nop_pool.n];
1044 else
1045 nop = nop_pattern;
1047 nop = emit_insn_before (nop, insn);
1049 if (old_p)
1050 flags = INSN_INIT_TODO_SSID;
1051 else
1052 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1054 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1055 sel_init_new_insn (nop, flags);
1057 return nop;
1060 /* Remove NOP from the instruction stream and return it to the pool. */
1061 void
1062 return_nop_to_pool (insn_t nop, bool full_tidying)
1064 gcc_assert (INSN_IN_STREAM_P (nop));
1065 sel_remove_insn (nop, false, full_tidying);
1067 if (nop_pool.n == nop_pool.s)
1068 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1069 (nop_pool.s = 2 * nop_pool.s + 1));
1070 nop_pool.v[nop_pool.n++] = nop;
1073 /* Free the nop pool. */
1074 void
1075 free_nop_pool (void)
1077 nop_pool.n = 0;
1078 nop_pool.s = 0;
1079 free (nop_pool.v);
1080 nop_pool.v = NULL;
1084 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1085 The callback is given two rtxes XX and YY and writes the new rtxes
1086 to NX and NY in case some needs to be skipped. */
1087 static int
1088 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1090 const_rtx x = *xx;
1091 const_rtx y = *yy;
1093 if (GET_CODE (x) == UNSPEC
1094 && (targetm.sched.skip_rtx_p == NULL
1095 || targetm.sched.skip_rtx_p (x)))
1097 *nx = XVECEXP (x, 0, 0);
1098 *ny = CONST_CAST_RTX (y);
1099 return 1;
1102 if (GET_CODE (y) == UNSPEC
1103 && (targetm.sched.skip_rtx_p == NULL
1104 || targetm.sched.skip_rtx_p (y)))
1106 *nx = CONST_CAST_RTX (x);
1107 *ny = XVECEXP (y, 0, 0);
1108 return 1;
1111 return 0;
1114 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1115 to support ia64 speculation. When changes are needed, new rtx X and new mode
1116 NMODE are written, and the callback returns true. */
1117 static int
1118 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1119 rtx *nx, enum machine_mode* nmode)
1121 if (GET_CODE (x) == UNSPEC
1122 && targetm.sched.skip_rtx_p
1123 && targetm.sched.skip_rtx_p (x))
1125 *nx = XVECEXP (x, 0 ,0);
1126 *nmode = VOIDmode;
1127 return 1;
1130 return 0;
1133 /* Returns LHS and RHS are ok to be scheduled separately. */
1134 static bool
1135 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1137 if (lhs == NULL || rhs == NULL)
1138 return false;
1140 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1141 to use reg, if const can be used. Moreover, scheduling const as rhs may
1142 lead to mode mismatch cause consts don't have modes but they could be
1143 merged from branches where the same const used in different modes. */
1144 if (CONSTANT_P (rhs))
1145 return false;
1147 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1148 if (COMPARISON_P (rhs))
1149 return false;
1151 /* Do not allow single REG to be an rhs. */
1152 if (REG_P (rhs))
1153 return false;
1155 /* See comment at find_used_regs_1 (*1) for explanation of this
1156 restriction. */
1157 /* FIXME: remove this later. */
1158 if (MEM_P (lhs))
1159 return false;
1161 /* This will filter all tricky things like ZERO_EXTRACT etc.
1162 For now we don't handle it. */
1163 if (!REG_P (lhs) && !MEM_P (lhs))
1164 return false;
1166 return true;
1169 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1170 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1171 used e.g. for insns from recovery blocks. */
1172 static void
1173 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1175 hash_rtx_callback_function hrcf;
1176 int insn_class;
1178 VINSN_INSN_RTX (vi) = insn;
1179 VINSN_COUNT (vi) = 0;
1180 vi->cost = -1;
1182 if (INSN_NOP_P (insn))
1183 return;
1185 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1186 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1187 else
1188 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1190 /* Hash vinsn depending on whether it is separable or not. */
1191 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1192 if (VINSN_SEPARABLE_P (vi))
1194 rtx rhs = VINSN_RHS (vi);
1196 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1197 NULL, NULL, false, hrcf);
1198 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1199 VOIDmode, NULL, NULL,
1200 false, hrcf);
1202 else
1204 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1205 NULL, NULL, false, hrcf);
1206 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1209 insn_class = haifa_classify_insn (insn);
1210 if (insn_class >= 2
1211 && (!targetm.sched.get_insn_spec_ds
1212 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1213 == 0)))
1214 VINSN_MAY_TRAP_P (vi) = true;
1215 else
1216 VINSN_MAY_TRAP_P (vi) = false;
1219 /* Indicate that VI has become the part of an rtx object. */
1220 void
1221 vinsn_attach (vinsn_t vi)
1223 /* Assert that VI is not pending for deletion. */
1224 gcc_assert (VINSN_INSN_RTX (vi));
1226 VINSN_COUNT (vi)++;
1229 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1230 VINSN_TYPE (VI). */
1231 static vinsn_t
1232 vinsn_create (insn_t insn, bool force_unique_p)
1234 vinsn_t vi = XCNEW (struct vinsn_def);
1236 vinsn_init (vi, insn, force_unique_p);
1237 return vi;
1240 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1241 the copy. */
1242 vinsn_t
1243 vinsn_copy (vinsn_t vi, bool reattach_p)
1245 rtx copy;
1246 bool unique = VINSN_UNIQUE_P (vi);
1247 vinsn_t new_vi;
1249 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1250 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1251 if (reattach_p)
1253 vinsn_detach (vi);
1254 vinsn_attach (new_vi);
1257 return new_vi;
1260 /* Delete the VI vinsn and free its data. */
1261 static void
1262 vinsn_delete (vinsn_t vi)
1264 gcc_assert (VINSN_COUNT (vi) == 0);
1266 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1268 return_regset_to_pool (VINSN_REG_SETS (vi));
1269 return_regset_to_pool (VINSN_REG_USES (vi));
1270 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1273 free (vi);
1276 /* Indicate that VI is no longer a part of some rtx object.
1277 Remove VI if it is no longer needed. */
1278 void
1279 vinsn_detach (vinsn_t vi)
1281 gcc_assert (VINSN_COUNT (vi) > 0);
1283 if (--VINSN_COUNT (vi) == 0)
1284 vinsn_delete (vi);
1287 /* Returns TRUE if VI is a branch. */
1288 bool
1289 vinsn_cond_branch_p (vinsn_t vi)
1291 insn_t insn;
1293 if (!VINSN_UNIQUE_P (vi))
1294 return false;
1296 insn = VINSN_INSN_RTX (vi);
1297 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1298 return false;
1300 return control_flow_insn_p (insn);
1303 /* Return latency of INSN. */
1304 static int
1305 sel_insn_rtx_cost (rtx insn)
1307 int cost;
1309 /* A USE insn, or something else we don't need to
1310 understand. We can't pass these directly to
1311 result_ready_cost or insn_default_latency because it will
1312 trigger a fatal error for unrecognizable insns. */
1313 if (recog_memoized (insn) < 0)
1314 cost = 0;
1315 else
1317 cost = insn_default_latency (insn);
1319 if (cost < 0)
1320 cost = 0;
1323 return cost;
1326 /* Return the cost of the VI.
1327 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1329 sel_vinsn_cost (vinsn_t vi)
1331 int cost = vi->cost;
1333 if (cost < 0)
1335 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1336 vi->cost = cost;
1339 return cost;
1343 /* Functions for insn emitting. */
1345 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1346 EXPR and SEQNO. */
1347 insn_t
1348 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1350 insn_t new_insn;
1352 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1354 new_insn = emit_insn_after (pattern, after);
1355 set_insn_init (expr, NULL, seqno);
1356 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1358 return new_insn;
1361 /* Force newly generated vinsns to be unique. */
1362 static bool init_insn_force_unique_p = false;
1364 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1365 initialize its data from EXPR and SEQNO. */
1366 insn_t
1367 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1368 insn_t after)
1370 insn_t insn;
1372 gcc_assert (!init_insn_force_unique_p);
1374 init_insn_force_unique_p = true;
1375 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1376 CANT_MOVE (insn) = 1;
1377 init_insn_force_unique_p = false;
1379 return insn;
1382 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1383 take it as a new vinsn instead of EXPR's vinsn.
1384 We simplify insns later, after scheduling region in
1385 simplify_changed_insns. */
1386 insn_t
1387 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1388 insn_t after)
1390 expr_t emit_expr;
1391 insn_t insn;
1392 int flags;
1394 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1395 seqno);
1396 insn = EXPR_INSN_RTX (emit_expr);
1397 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1399 flags = INSN_INIT_TODO_SSID;
1400 if (INSN_LUID (insn) == 0)
1401 flags |= INSN_INIT_TODO_LUID;
1402 sel_init_new_insn (insn, flags);
1404 return insn;
1407 /* Move insn from EXPR after AFTER. */
1408 insn_t
1409 sel_move_insn (expr_t expr, int seqno, insn_t after)
1411 insn_t insn = EXPR_INSN_RTX (expr);
1412 basic_block bb = BLOCK_FOR_INSN (after);
1413 insn_t next = NEXT_INSN (after);
1415 /* Assert that in move_op we disconnected this insn properly. */
1416 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1417 PREV_INSN (insn) = after;
1418 NEXT_INSN (insn) = next;
1420 NEXT_INSN (after) = insn;
1421 PREV_INSN (next) = insn;
1423 /* Update links from insn to bb and vice versa. */
1424 df_insn_change_bb (insn, bb);
1425 if (BB_END (bb) == after)
1426 BB_END (bb) = insn;
1428 prepare_insn_expr (insn, seqno);
1429 return insn;
1433 /* Functions to work with right-hand sides. */
1435 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1436 VECT and return true when found. Use NEW_VINSN for comparison only when
1437 COMPARE_VINSNS is true. Write to INDP the index on which
1438 the search has stopped, such that inserting the new element at INDP will
1439 retain VECT's sort order. */
1440 static bool
1441 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1442 unsigned uid, vinsn_t new_vinsn,
1443 bool compare_vinsns, int *indp)
1445 expr_history_def *arr;
1446 int i, j, len = VEC_length (expr_history_def, vect);
1448 if (len == 0)
1450 *indp = 0;
1451 return false;
1454 arr = VEC_address (expr_history_def, vect);
1455 i = 0, j = len - 1;
1457 while (i <= j)
1459 unsigned auid = arr[i].uid;
1460 vinsn_t avinsn = arr[i].new_expr_vinsn;
1462 if (auid == uid
1463 /* When undoing transformation on a bookkeeping copy, the new vinsn
1464 may not be exactly equal to the one that is saved in the vector.
1465 This is because the insn whose copy we're checking was possibly
1466 substituted itself. */
1467 && (! compare_vinsns
1468 || vinsn_equal_p (avinsn, new_vinsn)))
1470 *indp = i;
1471 return true;
1473 else if (auid > uid)
1474 break;
1475 i++;
1478 *indp = i;
1479 return false;
1482 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1483 the position found or -1, if no such value is in vector.
1484 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1486 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1487 vinsn_t new_vinsn, bool originators_p)
1489 int ind;
1491 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1492 false, &ind))
1493 return ind;
1495 if (INSN_ORIGINATORS (insn) && originators_p)
1497 unsigned uid;
1498 bitmap_iterator bi;
1500 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1501 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1502 return ind;
1505 return -1;
1508 /* Insert new element in a sorted history vector pointed to by PVECT,
1509 if it is not there already. The element is searched using
1510 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1511 the history of a transformation. */
1512 void
1513 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1514 unsigned uid, enum local_trans_type type,
1515 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1516 ds_t spec_ds)
1518 VEC(expr_history_def, heap) *vect = *pvect;
1519 expr_history_def temp;
1520 bool res;
1521 int ind;
1523 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1525 if (res)
1527 expr_history_def *phist = &VEC_index (expr_history_def, vect, ind);
1529 /* It is possible that speculation types of expressions that were
1530 propagated through different paths will be different here. In this
1531 case, merge the status to get the correct check later. */
1532 if (phist->spec_ds != spec_ds)
1533 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1534 return;
1537 temp.uid = uid;
1538 temp.old_expr_vinsn = old_expr_vinsn;
1539 temp.new_expr_vinsn = new_expr_vinsn;
1540 temp.spec_ds = spec_ds;
1541 temp.type = type;
1543 vinsn_attach (old_expr_vinsn);
1544 vinsn_attach (new_expr_vinsn);
1545 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1546 *pvect = vect;
1549 /* Free history vector PVECT. */
1550 static void
1551 free_history_vect (VEC (expr_history_def, heap) **pvect)
1553 unsigned i;
1554 expr_history_def *phist;
1556 if (! *pvect)
1557 return;
1559 for (i = 0;
1560 VEC_iterate (expr_history_def, *pvect, i, phist);
1561 i++)
1563 vinsn_detach (phist->old_expr_vinsn);
1564 vinsn_detach (phist->new_expr_vinsn);
1567 VEC_free (expr_history_def, heap, *pvect);
1568 *pvect = NULL;
1571 /* Merge vector FROM to PVECT. */
1572 static void
1573 merge_history_vect (VEC (expr_history_def, heap) **pvect,
1574 VEC (expr_history_def, heap) *from)
1576 expr_history_def *phist;
1577 int i;
1579 /* We keep this vector sorted. */
1580 for (i = 0; VEC_iterate (expr_history_def, from, i, phist); i++)
1581 insert_in_history_vect (pvect, phist->uid, phist->type,
1582 phist->old_expr_vinsn, phist->new_expr_vinsn,
1583 phist->spec_ds);
1586 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1587 bool
1588 vinsn_equal_p (vinsn_t x, vinsn_t y)
1590 rtx_equal_p_callback_function repcf;
1592 if (x == y)
1593 return true;
1595 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1596 return false;
1598 if (VINSN_HASH (x) != VINSN_HASH (y))
1599 return false;
1601 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1602 if (VINSN_SEPARABLE_P (x))
1604 /* Compare RHSes of VINSNs. */
1605 gcc_assert (VINSN_RHS (x));
1606 gcc_assert (VINSN_RHS (y));
1608 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1611 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1615 /* Functions for working with expressions. */
1617 /* Initialize EXPR. */
1618 static void
1619 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1620 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1621 ds_t spec_to_check_ds, int orig_sched_cycle,
1622 VEC(expr_history_def, heap) *history, signed char target_available,
1623 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1624 bool cant_move)
1626 vinsn_attach (vi);
1628 EXPR_VINSN (expr) = vi;
1629 EXPR_SPEC (expr) = spec;
1630 EXPR_USEFULNESS (expr) = use;
1631 EXPR_PRIORITY (expr) = priority;
1632 EXPR_PRIORITY_ADJ (expr) = 0;
1633 EXPR_SCHED_TIMES (expr) = sched_times;
1634 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1635 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1636 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1637 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1639 if (history)
1640 EXPR_HISTORY_OF_CHANGES (expr) = history;
1641 else
1642 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1644 EXPR_TARGET_AVAILABLE (expr) = target_available;
1645 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1646 EXPR_WAS_RENAMED (expr) = was_renamed;
1647 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1648 EXPR_CANT_MOVE (expr) = cant_move;
1651 /* Make a copy of the expr FROM into the expr TO. */
1652 void
1653 copy_expr (expr_t to, expr_t from)
1655 VEC(expr_history_def, heap) *temp = NULL;
1657 if (EXPR_HISTORY_OF_CHANGES (from))
1659 unsigned i;
1660 expr_history_def *phist;
1662 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1663 for (i = 0;
1664 VEC_iterate (expr_history_def, temp, i, phist);
1665 i++)
1667 vinsn_attach (phist->old_expr_vinsn);
1668 vinsn_attach (phist->new_expr_vinsn);
1672 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1673 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1674 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1675 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1676 EXPR_ORIG_SCHED_CYCLE (from), temp,
1677 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1678 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1679 EXPR_CANT_MOVE (from));
1682 /* Same, but the final expr will not ever be in av sets, so don't copy
1683 "uninteresting" data such as bitmap cache. */
1684 void
1685 copy_expr_onside (expr_t to, expr_t from)
1687 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1688 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1689 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1690 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1691 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1692 EXPR_CANT_MOVE (from));
1695 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1696 initializing new insns. */
1697 static void
1698 prepare_insn_expr (insn_t insn, int seqno)
1700 expr_t expr = INSN_EXPR (insn);
1701 ds_t ds;
1703 INSN_SEQNO (insn) = seqno;
1704 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1705 EXPR_SPEC (expr) = 0;
1706 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1707 EXPR_WAS_SUBSTITUTED (expr) = 0;
1708 EXPR_WAS_RENAMED (expr) = 0;
1709 EXPR_TARGET_AVAILABLE (expr) = 1;
1710 INSN_LIVE_VALID_P (insn) = false;
1712 /* ??? If this expression is speculative, make its dependence
1713 as weak as possible. We can filter this expression later
1714 in process_spec_exprs, because we do not distinguish
1715 between the status we got during compute_av_set and the
1716 existing status. To be fixed. */
1717 ds = EXPR_SPEC_DONE_DS (expr);
1718 if (ds)
1719 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1721 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1724 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1725 is non-null when expressions are merged from different successors at
1726 a split point. */
1727 static void
1728 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1730 if (EXPR_TARGET_AVAILABLE (to) < 0
1731 || EXPR_TARGET_AVAILABLE (from) < 0)
1732 EXPR_TARGET_AVAILABLE (to) = -1;
1733 else
1735 /* We try to detect the case when one of the expressions
1736 can only be reached through another one. In this case,
1737 we can do better. */
1738 if (split_point == NULL)
1740 int toind, fromind;
1742 toind = EXPR_ORIG_BB_INDEX (to);
1743 fromind = EXPR_ORIG_BB_INDEX (from);
1745 if (toind && toind == fromind)
1746 /* Do nothing -- everything is done in
1747 merge_with_other_exprs. */
1749 else
1750 EXPR_TARGET_AVAILABLE (to) = -1;
1752 else if (EXPR_TARGET_AVAILABLE (from) == 0
1753 && EXPR_LHS (from)
1754 && REG_P (EXPR_LHS (from))
1755 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1756 EXPR_TARGET_AVAILABLE (to) = -1;
1757 else
1758 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1762 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1763 is non-null when expressions are merged from different successors at
1764 a split point. */
1765 static void
1766 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1768 ds_t old_to_ds, old_from_ds;
1770 old_to_ds = EXPR_SPEC_DONE_DS (to);
1771 old_from_ds = EXPR_SPEC_DONE_DS (from);
1773 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1774 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1775 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1777 /* When merging e.g. control & data speculative exprs, or a control
1778 speculative with a control&data speculative one, we really have
1779 to change vinsn too. Also, when speculative status is changed,
1780 we also need to record this as a transformation in expr's history. */
1781 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1783 old_to_ds = ds_get_speculation_types (old_to_ds);
1784 old_from_ds = ds_get_speculation_types (old_from_ds);
1786 if (old_to_ds != old_from_ds)
1788 ds_t record_ds;
1790 /* When both expressions are speculative, we need to change
1791 the vinsn first. */
1792 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1794 int res;
1796 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1797 gcc_assert (res >= 0);
1800 if (split_point != NULL)
1802 /* Record the change with proper status. */
1803 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1804 record_ds &= ~(old_to_ds & SPECULATIVE);
1805 record_ds &= ~(old_from_ds & SPECULATIVE);
1807 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1808 INSN_UID (split_point), TRANS_SPECULATION,
1809 EXPR_VINSN (from), EXPR_VINSN (to),
1810 record_ds);
1817 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1818 this is done along different paths. */
1819 void
1820 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1822 /* Choose the maximum of the specs of merged exprs. This is required
1823 for correctness of bookkeeping. */
1824 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1825 EXPR_SPEC (to) = EXPR_SPEC (from);
1827 if (split_point)
1828 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1829 else
1830 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1831 EXPR_USEFULNESS (from));
1833 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1834 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1836 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1837 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1839 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1840 EXPR_ORIG_BB_INDEX (to) = 0;
1842 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1843 EXPR_ORIG_SCHED_CYCLE (from));
1845 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1846 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1847 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1849 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1850 EXPR_HISTORY_OF_CHANGES (from));
1851 update_target_availability (to, from, split_point);
1852 update_speculative_bits (to, from, split_point);
1855 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1856 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1857 are merged from different successors at a split point. */
1858 void
1859 merge_expr (expr_t to, expr_t from, insn_t split_point)
1861 vinsn_t to_vi = EXPR_VINSN (to);
1862 vinsn_t from_vi = EXPR_VINSN (from);
1864 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1866 /* Make sure that speculative pattern is propagated into exprs that
1867 have non-speculative one. This will provide us with consistent
1868 speculative bits and speculative patterns inside expr. */
1869 if (EXPR_SPEC_DONE_DS (to) == 0
1870 && EXPR_SPEC_DONE_DS (from) != 0)
1871 change_vinsn_in_expr (to, EXPR_VINSN (from));
1873 merge_expr_data (to, from, split_point);
1874 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1877 /* Clear the information of this EXPR. */
1878 void
1879 clear_expr (expr_t expr)
1882 vinsn_detach (EXPR_VINSN (expr));
1883 EXPR_VINSN (expr) = NULL;
1885 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1888 /* For a given LV_SET, mark EXPR having unavailable target register. */
1889 static void
1890 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1892 if (EXPR_SEPARABLE_P (expr))
1894 if (REG_P (EXPR_LHS (expr))
1895 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1897 /* If it's an insn like r1 = use (r1, ...), and it exists in
1898 different forms in each of the av_sets being merged, we can't say
1899 whether original destination register is available or not.
1900 However, this still works if destination register is not used
1901 in the original expression: if the branch at which LV_SET we're
1902 looking here is not actually 'other branch' in sense that same
1903 expression is available through it (but it can't be determined
1904 at computation stage because of transformations on one of the
1905 branches), it still won't affect the availability.
1906 Liveness of a register somewhere on a code motion path means
1907 it's either read somewhere on a codemotion path, live on
1908 'other' branch, live at the point immediately following
1909 the original operation, or is read by the original operation.
1910 The latter case is filtered out in the condition below.
1911 It still doesn't cover the case when register is defined and used
1912 somewhere within the code motion path, and in this case we could
1913 miss a unifying code motion along both branches using a renamed
1914 register, but it won't affect a code correctness since upon
1915 an actual code motion a bookkeeping code would be generated. */
1916 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1917 EXPR_LHS (expr)))
1918 EXPR_TARGET_AVAILABLE (expr) = -1;
1919 else
1920 EXPR_TARGET_AVAILABLE (expr) = false;
1923 else
1925 unsigned regno;
1926 reg_set_iterator rsi;
1928 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1929 0, regno, rsi)
1930 if (bitmap_bit_p (lv_set, regno))
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1933 break;
1936 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1937 0, regno, rsi)
1938 if (bitmap_bit_p (lv_set, regno))
1940 EXPR_TARGET_AVAILABLE (expr) = false;
1941 break;
1946 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1947 or dependence status have changed, 2 when also the target register
1948 became unavailable, 0 if nothing had to be changed. */
1950 speculate_expr (expr_t expr, ds_t ds)
1952 int res;
1953 rtx orig_insn_rtx;
1954 rtx spec_pat;
1955 ds_t target_ds, current_ds;
1957 /* Obtain the status we need to put on EXPR. */
1958 target_ds = (ds & SPECULATIVE);
1959 current_ds = EXPR_SPEC_DONE_DS (expr);
1960 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1962 orig_insn_rtx = EXPR_INSN_RTX (expr);
1964 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1966 switch (res)
1968 case 0:
1969 EXPR_SPEC_DONE_DS (expr) = ds;
1970 return current_ds != ds ? 1 : 0;
1972 case 1:
1974 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1975 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1977 change_vinsn_in_expr (expr, spec_vinsn);
1978 EXPR_SPEC_DONE_DS (expr) = ds;
1979 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1981 /* Do not allow clobbering the address register of speculative
1982 insns. */
1983 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1984 expr_dest_reg (expr)))
1986 EXPR_TARGET_AVAILABLE (expr) = false;
1987 return 2;
1990 return 1;
1993 case -1:
1994 return -1;
1996 default:
1997 gcc_unreachable ();
1998 return -1;
2002 /* Return a destination register, if any, of EXPR. */
2004 expr_dest_reg (expr_t expr)
2006 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2008 if (dest != NULL_RTX && REG_P (dest))
2009 return dest;
2011 return NULL_RTX;
2014 /* Returns the REGNO of the R's destination. */
2015 unsigned
2016 expr_dest_regno (expr_t expr)
2018 rtx dest = expr_dest_reg (expr);
2020 gcc_assert (dest != NULL_RTX);
2021 return REGNO (dest);
2024 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2025 AV_SET having unavailable target register. */
2026 void
2027 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2029 expr_t expr;
2030 av_set_iterator avi;
2032 FOR_EACH_EXPR (expr, avi, join_set)
2033 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2034 set_unavailable_target_for_expr (expr, lv_set);
2038 /* Returns true if REG (at least partially) is present in REGS. */
2039 bool
2040 register_unavailable_p (regset regs, rtx reg)
2042 unsigned regno, end_regno;
2044 regno = REGNO (reg);
2045 if (bitmap_bit_p (regs, regno))
2046 return true;
2048 end_regno = END_REGNO (reg);
2050 while (++regno < end_regno)
2051 if (bitmap_bit_p (regs, regno))
2052 return true;
2054 return false;
2057 /* Av set functions. */
2059 /* Add a new element to av set SETP.
2060 Return the element added. */
2061 static av_set_t
2062 av_set_add_element (av_set_t *setp)
2064 /* Insert at the beginning of the list. */
2065 _list_add (setp);
2066 return *setp;
2069 /* Add EXPR to SETP. */
2070 void
2071 av_set_add (av_set_t *setp, expr_t expr)
2073 av_set_t elem;
2075 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2076 elem = av_set_add_element (setp);
2077 copy_expr (_AV_SET_EXPR (elem), expr);
2080 /* Same, but do not copy EXPR. */
2081 static void
2082 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2084 av_set_t elem;
2086 elem = av_set_add_element (setp);
2087 *_AV_SET_EXPR (elem) = *expr;
2090 /* Remove expr pointed to by IP from the av_set. */
2091 void
2092 av_set_iter_remove (av_set_iterator *ip)
2094 clear_expr (_AV_SET_EXPR (*ip->lp));
2095 _list_iter_remove (ip);
2098 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2099 sense of vinsn_equal_p function. Return NULL if no such expr is
2100 in SET was found. */
2101 expr_t
2102 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2104 expr_t expr;
2105 av_set_iterator i;
2107 FOR_EACH_EXPR (expr, i, set)
2108 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2109 return expr;
2110 return NULL;
2113 /* Same, but also remove the EXPR found. */
2114 static expr_t
2115 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2117 expr_t expr;
2118 av_set_iterator i;
2120 FOR_EACH_EXPR_1 (expr, i, setp)
2121 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2123 _list_iter_remove_nofree (&i);
2124 return expr;
2126 return NULL;
2129 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2130 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2131 Returns NULL if no such expr is in SET was found. */
2132 static expr_t
2133 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2135 expr_t cur_expr;
2136 av_set_iterator i;
2138 FOR_EACH_EXPR (cur_expr, i, set)
2140 if (cur_expr == expr)
2141 continue;
2142 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2143 return cur_expr;
2146 return NULL;
2149 /* If other expression is already in AVP, remove one of them. */
2150 expr_t
2151 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2153 expr_t expr2;
2155 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2156 if (expr2 != NULL)
2158 /* Reset target availability on merge, since taking it only from one
2159 of the exprs would be controversial for different code. */
2160 EXPR_TARGET_AVAILABLE (expr2) = -1;
2161 EXPR_USEFULNESS (expr2) = 0;
2163 merge_expr (expr2, expr, NULL);
2165 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2166 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2168 av_set_iter_remove (ip);
2169 return expr2;
2172 return expr;
2175 /* Return true if there is an expr that correlates to VI in SET. */
2176 bool
2177 av_set_is_in_p (av_set_t set, vinsn_t vi)
2179 return av_set_lookup (set, vi) != NULL;
2182 /* Return a copy of SET. */
2183 av_set_t
2184 av_set_copy (av_set_t set)
2186 expr_t expr;
2187 av_set_iterator i;
2188 av_set_t res = NULL;
2190 FOR_EACH_EXPR (expr, i, set)
2191 av_set_add (&res, expr);
2193 return res;
2196 /* Join two av sets that do not have common elements by attaching second set
2197 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2198 _AV_SET_NEXT of first set's last element). */
2199 static void
2200 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2202 gcc_assert (*to_tailp == NULL);
2203 *to_tailp = *fromp;
2204 *fromp = NULL;
2207 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2208 pointed to by FROMP afterwards. */
2209 void
2210 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2212 expr_t expr1;
2213 av_set_iterator i;
2215 /* Delete from TOP all exprs, that present in FROMP. */
2216 FOR_EACH_EXPR_1 (expr1, i, top)
2218 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2220 if (expr2)
2222 merge_expr (expr2, expr1, insn);
2223 av_set_iter_remove (&i);
2227 join_distinct_sets (i.lp, fromp);
2230 /* Same as above, but also update availability of target register in
2231 TOP judging by TO_LV_SET and FROM_LV_SET. */
2232 void
2233 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2234 regset from_lv_set, insn_t insn)
2236 expr_t expr1;
2237 av_set_iterator i;
2238 av_set_t *to_tailp, in_both_set = NULL;
2240 /* Delete from TOP all expres, that present in FROMP. */
2241 FOR_EACH_EXPR_1 (expr1, i, top)
2243 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2245 if (expr2)
2247 /* It may be that the expressions have different destination
2248 registers, in which case we need to check liveness here. */
2249 if (EXPR_SEPARABLE_P (expr1))
2251 int regno1 = (REG_P (EXPR_LHS (expr1))
2252 ? (int) expr_dest_regno (expr1) : -1);
2253 int regno2 = (REG_P (EXPR_LHS (expr2))
2254 ? (int) expr_dest_regno (expr2) : -1);
2256 /* ??? We don't have a way to check restrictions for
2257 *other* register on the current path, we did it only
2258 for the current target register. Give up. */
2259 if (regno1 != regno2)
2260 EXPR_TARGET_AVAILABLE (expr2) = -1;
2262 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2263 EXPR_TARGET_AVAILABLE (expr2) = -1;
2265 merge_expr (expr2, expr1, insn);
2266 av_set_add_nocopy (&in_both_set, expr2);
2267 av_set_iter_remove (&i);
2269 else
2270 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2271 FROM_LV_SET. */
2272 set_unavailable_target_for_expr (expr1, from_lv_set);
2274 to_tailp = i.lp;
2276 /* These expressions are not present in TOP. Check liveness
2277 restrictions on TO_LV_SET. */
2278 FOR_EACH_EXPR (expr1, i, *fromp)
2279 set_unavailable_target_for_expr (expr1, to_lv_set);
2281 join_distinct_sets (i.lp, &in_both_set);
2282 join_distinct_sets (to_tailp, fromp);
2285 /* Clear av_set pointed to by SETP. */
2286 void
2287 av_set_clear (av_set_t *setp)
2289 expr_t expr;
2290 av_set_iterator i;
2292 FOR_EACH_EXPR_1 (expr, i, setp)
2293 av_set_iter_remove (&i);
2295 gcc_assert (*setp == NULL);
2298 /* Leave only one non-speculative element in the SETP. */
2299 void
2300 av_set_leave_one_nonspec (av_set_t *setp)
2302 expr_t expr;
2303 av_set_iterator i;
2304 bool has_one_nonspec = false;
2306 /* Keep all speculative exprs, and leave one non-speculative
2307 (the first one). */
2308 FOR_EACH_EXPR_1 (expr, i, setp)
2310 if (!EXPR_SPEC_DONE_DS (expr))
2312 if (has_one_nonspec)
2313 av_set_iter_remove (&i);
2314 else
2315 has_one_nonspec = true;
2320 /* Return the N'th element of the SET. */
2321 expr_t
2322 av_set_element (av_set_t set, int n)
2324 expr_t expr;
2325 av_set_iterator i;
2327 FOR_EACH_EXPR (expr, i, set)
2328 if (n-- == 0)
2329 return expr;
2331 gcc_unreachable ();
2332 return NULL;
2335 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2336 void
2337 av_set_substract_cond_branches (av_set_t *avp)
2339 av_set_iterator i;
2340 expr_t expr;
2342 FOR_EACH_EXPR_1 (expr, i, avp)
2343 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2344 av_set_iter_remove (&i);
2347 /* Multiplies usefulness attribute of each member of av-set *AVP by
2348 value PROB / ALL_PROB. */
2349 void
2350 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2352 av_set_iterator i;
2353 expr_t expr;
2355 FOR_EACH_EXPR (expr, i, av)
2356 EXPR_USEFULNESS (expr) = (all_prob
2357 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2358 : 0);
2361 /* Leave in AVP only those expressions, which are present in AV,
2362 and return it, merging history expressions. */
2363 void
2364 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2366 av_set_iterator i;
2367 expr_t expr, expr2;
2369 FOR_EACH_EXPR_1 (expr, i, avp)
2370 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2371 av_set_iter_remove (&i);
2372 else
2373 /* When updating av sets in bookkeeping blocks, we can add more insns
2374 there which will be transformed but the upper av sets will not
2375 reflect those transformations. We then fail to undo those
2376 when searching for such insns. So merge the history saved
2377 in the av set of the block we are processing. */
2378 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2379 EXPR_HISTORY_OF_CHANGES (expr2));
2384 /* Dependence hooks to initialize insn data. */
2386 /* This is used in hooks callable from dependence analysis when initializing
2387 instruction's data. */
2388 static struct
2390 /* Where the dependence was found (lhs/rhs). */
2391 deps_where_t where;
2393 /* The actual data object to initialize. */
2394 idata_t id;
2396 /* True when the insn should not be made clonable. */
2397 bool force_unique_p;
2399 /* True when insn should be treated as of type USE, i.e. never renamed. */
2400 bool force_use_p;
2401 } deps_init_id_data;
2404 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2405 clonable. */
2406 static void
2407 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2409 int type;
2411 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2412 That clonable insns which can be separated into lhs and rhs have type SET.
2413 Other clonable insns have type USE. */
2414 type = GET_CODE (insn);
2416 /* Only regular insns could be cloned. */
2417 if (type == INSN && !force_unique_p)
2418 type = SET;
2419 else if (type == JUMP_INSN && simplejump_p (insn))
2420 type = PC;
2421 else if (type == DEBUG_INSN)
2422 type = !force_unique_p ? USE : INSN;
2424 IDATA_TYPE (id) = type;
2425 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2426 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2427 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2430 /* Start initializing insn data. */
2431 static void
2432 deps_init_id_start_insn (insn_t insn)
2434 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2436 setup_id_for_insn (deps_init_id_data.id, insn,
2437 deps_init_id_data.force_unique_p);
2438 deps_init_id_data.where = DEPS_IN_INSN;
2441 /* Start initializing lhs data. */
2442 static void
2443 deps_init_id_start_lhs (rtx lhs)
2445 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2446 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2448 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2450 IDATA_LHS (deps_init_id_data.id) = lhs;
2451 deps_init_id_data.where = DEPS_IN_LHS;
2455 /* Finish initializing lhs data. */
2456 static void
2457 deps_init_id_finish_lhs (void)
2459 deps_init_id_data.where = DEPS_IN_INSN;
2462 /* Note a set of REGNO. */
2463 static void
2464 deps_init_id_note_reg_set (int regno)
2466 haifa_note_reg_set (regno);
2468 if (deps_init_id_data.where == DEPS_IN_RHS)
2469 deps_init_id_data.force_use_p = true;
2471 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2472 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2474 #ifdef STACK_REGS
2475 /* Make instructions that set stack registers to be ineligible for
2476 renaming to avoid issues with find_used_regs. */
2477 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2478 deps_init_id_data.force_use_p = true;
2479 #endif
2482 /* Note a clobber of REGNO. */
2483 static void
2484 deps_init_id_note_reg_clobber (int regno)
2486 haifa_note_reg_clobber (regno);
2488 if (deps_init_id_data.where == DEPS_IN_RHS)
2489 deps_init_id_data.force_use_p = true;
2491 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2492 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2495 /* Note a use of REGNO. */
2496 static void
2497 deps_init_id_note_reg_use (int regno)
2499 haifa_note_reg_use (regno);
2501 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2502 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2505 /* Start initializing rhs data. */
2506 static void
2507 deps_init_id_start_rhs (rtx rhs)
2509 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2511 /* And there was no sel_deps_reset_to_insn (). */
2512 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2514 IDATA_RHS (deps_init_id_data.id) = rhs;
2515 deps_init_id_data.where = DEPS_IN_RHS;
2519 /* Finish initializing rhs data. */
2520 static void
2521 deps_init_id_finish_rhs (void)
2523 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2524 || deps_init_id_data.where == DEPS_IN_INSN);
2525 deps_init_id_data.where = DEPS_IN_INSN;
2528 /* Finish initializing insn data. */
2529 static void
2530 deps_init_id_finish_insn (void)
2532 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2534 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2536 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2537 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2539 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2540 || deps_init_id_data.force_use_p)
2542 /* This should be a USE, as we don't want to schedule its RHS
2543 separately. However, we still want to have them recorded
2544 for the purposes of substitution. That's why we don't
2545 simply call downgrade_to_use () here. */
2546 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2547 gcc_assert (!lhs == !rhs);
2549 IDATA_TYPE (deps_init_id_data.id) = USE;
2553 deps_init_id_data.where = DEPS_IN_NOWHERE;
2556 /* This is dependence info used for initializing insn's data. */
2557 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2559 /* This initializes most of the static part of the above structure. */
2560 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2562 NULL,
2564 deps_init_id_start_insn,
2565 deps_init_id_finish_insn,
2566 deps_init_id_start_lhs,
2567 deps_init_id_finish_lhs,
2568 deps_init_id_start_rhs,
2569 deps_init_id_finish_rhs,
2570 deps_init_id_note_reg_set,
2571 deps_init_id_note_reg_clobber,
2572 deps_init_id_note_reg_use,
2573 NULL, /* note_mem_dep */
2574 NULL, /* note_dep */
2576 0, /* use_cselib */
2577 0, /* use_deps_list */
2578 0 /* generate_spec_deps */
2581 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2582 we don't actually need information about lhs and rhs. */
2583 static void
2584 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2586 rtx pat = PATTERN (insn);
2588 if (NONJUMP_INSN_P (insn)
2589 && GET_CODE (pat) == SET
2590 && !force_unique_p)
2592 IDATA_RHS (id) = SET_SRC (pat);
2593 IDATA_LHS (id) = SET_DEST (pat);
2595 else
2596 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2599 /* Possibly downgrade INSN to USE. */
2600 static void
2601 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2603 bool must_be_use = false;
2604 unsigned uid = INSN_UID (insn);
2605 df_ref *rec;
2606 rtx lhs = IDATA_LHS (id);
2607 rtx rhs = IDATA_RHS (id);
2609 /* We downgrade only SETs. */
2610 if (IDATA_TYPE (id) != SET)
2611 return;
2613 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2615 IDATA_TYPE (id) = USE;
2616 return;
2619 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2621 df_ref def = *rec;
2623 if (DF_REF_INSN (def)
2624 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2625 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2627 must_be_use = true;
2628 break;
2631 #ifdef STACK_REGS
2632 /* Make instructions that set stack registers to be ineligible for
2633 renaming to avoid issues with find_used_regs. */
2634 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2636 must_be_use = true;
2637 break;
2639 #endif
2642 if (must_be_use)
2643 IDATA_TYPE (id) = USE;
2646 /* Setup register sets describing INSN in ID. */
2647 static void
2648 setup_id_reg_sets (idata_t id, insn_t insn)
2650 unsigned uid = INSN_UID (insn);
2651 df_ref *rec;
2652 regset tmp = get_clear_regset_from_pool ();
2654 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2656 df_ref def = *rec;
2657 unsigned int regno = DF_REF_REGNO (def);
2659 /* Post modifies are treated like clobbers by sched-deps.c. */
2660 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2661 | DF_REF_PRE_POST_MODIFY)))
2662 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2663 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2665 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2667 #ifdef STACK_REGS
2668 /* For stack registers, treat writes to them as writes
2669 to the first one to be consistent with sched-deps.c. */
2670 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2671 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2672 #endif
2674 /* Mark special refs that generate read/write def pair. */
2675 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2676 || regno == STACK_POINTER_REGNUM)
2677 bitmap_set_bit (tmp, regno);
2680 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2682 df_ref use = *rec;
2683 unsigned int regno = DF_REF_REGNO (use);
2685 /* When these refs are met for the first time, skip them, as
2686 these uses are just counterparts of some defs. */
2687 if (bitmap_bit_p (tmp, regno))
2688 bitmap_clear_bit (tmp, regno);
2689 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2691 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2693 #ifdef STACK_REGS
2694 /* For stack registers, treat reads from them as reads from
2695 the first one to be consistent with sched-deps.c. */
2696 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2697 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2698 #endif
2702 return_regset_to_pool (tmp);
2705 /* Initialize instruction data for INSN in ID using DF's data. */
2706 static void
2707 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2709 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2711 setup_id_for_insn (id, insn, force_unique_p);
2712 setup_id_lhs_rhs (id, insn, force_unique_p);
2714 if (INSN_NOP_P (insn))
2715 return;
2717 maybe_downgrade_id_to_use (id, insn);
2718 setup_id_reg_sets (id, insn);
2721 /* Initialize instruction data for INSN in ID. */
2722 static void
2723 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2725 struct deps_desc _dc, *dc = &_dc;
2727 deps_init_id_data.where = DEPS_IN_NOWHERE;
2728 deps_init_id_data.id = id;
2729 deps_init_id_data.force_unique_p = force_unique_p;
2730 deps_init_id_data.force_use_p = false;
2732 init_deps (dc, false);
2734 memcpy (&deps_init_id_sched_deps_info,
2735 &const_deps_init_id_sched_deps_info,
2736 sizeof (deps_init_id_sched_deps_info));
2738 if (spec_info != NULL)
2739 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2741 sched_deps_info = &deps_init_id_sched_deps_info;
2743 deps_analyze_insn (dc, insn);
2745 free_deps (dc);
2747 deps_init_id_data.id = NULL;
2751 struct sched_scan_info_def
2753 /* This hook notifies scheduler frontend to extend its internal per basic
2754 block data structures. This hook should be called once before a series of
2755 calls to bb_init (). */
2756 void (*extend_bb) (void);
2758 /* This hook makes scheduler frontend to initialize its internal data
2759 structures for the passed basic block. */
2760 void (*init_bb) (basic_block);
2762 /* This hook notifies scheduler frontend to extend its internal per insn data
2763 structures. This hook should be called once before a series of calls to
2764 insn_init (). */
2765 void (*extend_insn) (void);
2767 /* This hook makes scheduler frontend to initialize its internal data
2768 structures for the passed insn. */
2769 void (*init_insn) (rtx);
2772 /* A driver function to add a set of basic blocks (BBS) to the
2773 scheduling region. */
2774 static void
2775 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2777 unsigned i;
2778 basic_block bb;
2780 if (ssi->extend_bb)
2781 ssi->extend_bb ();
2783 if (ssi->init_bb)
2784 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2785 ssi->init_bb (bb);
2787 if (ssi->extend_insn)
2788 ssi->extend_insn ();
2790 if (ssi->init_insn)
2791 FOR_EACH_VEC_ELT (basic_block, bbs, i, bb)
2793 rtx insn;
2795 FOR_BB_INSNS (bb, insn)
2796 ssi->init_insn (insn);
2800 /* Implement hooks for collecting fundamental insn properties like if insn is
2801 an ASM or is within a SCHED_GROUP. */
2803 /* True when a "one-time init" data for INSN was already inited. */
2804 static bool
2805 first_time_insn_init (insn_t insn)
2807 return INSN_LIVE (insn) == NULL;
2810 /* Hash an entry in a transformed_insns hashtable. */
2811 static hashval_t
2812 hash_transformed_insns (const void *p)
2814 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2817 /* Compare the entries in a transformed_insns hashtable. */
2818 static int
2819 eq_transformed_insns (const void *p, const void *q)
2821 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2822 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2824 if (INSN_UID (i1) == INSN_UID (i2))
2825 return 1;
2826 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2829 /* Free an entry in a transformed_insns hashtable. */
2830 static void
2831 free_transformed_insns (void *p)
2833 struct transformed_insns *pti = (struct transformed_insns *) p;
2835 vinsn_detach (pti->vinsn_old);
2836 vinsn_detach (pti->vinsn_new);
2837 free (pti);
2840 /* Init the s_i_d data for INSN which should be inited just once, when
2841 we first see the insn. */
2842 static void
2843 init_first_time_insn_data (insn_t insn)
2845 /* This should not be set if this is the first time we init data for
2846 insn. */
2847 gcc_assert (first_time_insn_init (insn));
2849 /* These are needed for nops too. */
2850 INSN_LIVE (insn) = get_regset_from_pool ();
2851 INSN_LIVE_VALID_P (insn) = false;
2853 if (!INSN_NOP_P (insn))
2855 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2856 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2857 INSN_TRANSFORMED_INSNS (insn)
2858 = htab_create (16, hash_transformed_insns,
2859 eq_transformed_insns, free_transformed_insns);
2860 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2864 /* Free almost all above data for INSN that is scheduled already.
2865 Used for extra-large basic blocks. */
2866 void
2867 free_data_for_scheduled_insn (insn_t insn)
2869 gcc_assert (! first_time_insn_init (insn));
2871 if (! INSN_ANALYZED_DEPS (insn))
2872 return;
2874 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2875 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2876 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2878 /* This is allocated only for bookkeeping insns. */
2879 if (INSN_ORIGINATORS (insn))
2880 BITMAP_FREE (INSN_ORIGINATORS (insn));
2881 free_deps (&INSN_DEPS_CONTEXT (insn));
2883 INSN_ANALYZED_DEPS (insn) = NULL;
2885 /* Clear the readonly flag so we would ICE when trying to recalculate
2886 the deps context (as we believe that it should not happen). */
2887 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2890 /* Free the same data as above for INSN. */
2891 static void
2892 free_first_time_insn_data (insn_t insn)
2894 gcc_assert (! first_time_insn_init (insn));
2896 free_data_for_scheduled_insn (insn);
2897 return_regset_to_pool (INSN_LIVE (insn));
2898 INSN_LIVE (insn) = NULL;
2899 INSN_LIVE_VALID_P (insn) = false;
2902 /* Initialize region-scope data structures for basic blocks. */
2903 static void
2904 init_global_and_expr_for_bb (basic_block bb)
2906 if (sel_bb_empty_p (bb))
2907 return;
2909 invalidate_av_set (bb);
2912 /* Data for global dependency analysis (to initialize CANT_MOVE and
2913 SCHED_GROUP_P). */
2914 static struct
2916 /* Previous insn. */
2917 insn_t prev_insn;
2918 } init_global_data;
2920 /* Determine if INSN is in the sched_group, is an asm or should not be
2921 cloned. After that initialize its expr. */
2922 static void
2923 init_global_and_expr_for_insn (insn_t insn)
2925 if (LABEL_P (insn))
2926 return;
2928 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2930 init_global_data.prev_insn = NULL_RTX;
2931 return;
2934 gcc_assert (INSN_P (insn));
2936 if (SCHED_GROUP_P (insn))
2937 /* Setup a sched_group. */
2939 insn_t prev_insn = init_global_data.prev_insn;
2941 if (prev_insn)
2942 INSN_SCHED_NEXT (prev_insn) = insn;
2944 init_global_data.prev_insn = insn;
2946 else
2947 init_global_data.prev_insn = NULL_RTX;
2949 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2950 || asm_noperands (PATTERN (insn)) >= 0)
2951 /* Mark INSN as an asm. */
2952 INSN_ASM_P (insn) = true;
2955 bool force_unique_p;
2956 ds_t spec_done_ds;
2958 /* Certain instructions cannot be cloned, and frame related insns and
2959 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2960 their block. */
2961 if (prologue_epilogue_contains (insn))
2963 if (RTX_FRAME_RELATED_P (insn))
2964 CANT_MOVE (insn) = 1;
2965 else
2967 rtx note;
2968 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2969 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2970 && ((enum insn_note) INTVAL (XEXP (note, 0))
2971 == NOTE_INSN_EPILOGUE_BEG))
2973 CANT_MOVE (insn) = 1;
2974 break;
2977 force_unique_p = true;
2979 else
2980 if (CANT_MOVE (insn)
2981 || INSN_ASM_P (insn)
2982 || SCHED_GROUP_P (insn)
2983 || CALL_P (insn)
2984 /* Exception handling insns are always unique. */
2985 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2986 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2987 || control_flow_insn_p (insn)
2988 || volatile_insn_p (PATTERN (insn))
2989 || (targetm.cannot_copy_insn_p
2990 && targetm.cannot_copy_insn_p (insn)))
2991 force_unique_p = true;
2992 else
2993 force_unique_p = false;
2995 if (targetm.sched.get_insn_spec_ds)
2997 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2998 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3000 else
3001 spec_done_ds = 0;
3003 /* Initialize INSN's expr. */
3004 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3005 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3006 spec_done_ds, 0, 0, NULL, true, false, false, false,
3007 CANT_MOVE (insn));
3010 init_first_time_insn_data (insn);
3013 /* Scan the region and initialize instruction data for basic blocks BBS. */
3014 void
3015 sel_init_global_and_expr (bb_vec_t bbs)
3017 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3018 const struct sched_scan_info_def ssi =
3020 NULL, /* extend_bb */
3021 init_global_and_expr_for_bb, /* init_bb */
3022 extend_insn_data, /* extend_insn */
3023 init_global_and_expr_for_insn /* init_insn */
3026 sched_scan (&ssi, bbs);
3029 /* Finalize region-scope data structures for basic blocks. */
3030 static void
3031 finish_global_and_expr_for_bb (basic_block bb)
3033 av_set_clear (&BB_AV_SET (bb));
3034 BB_AV_LEVEL (bb) = 0;
3037 /* Finalize INSN's data. */
3038 static void
3039 finish_global_and_expr_insn (insn_t insn)
3041 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3042 return;
3044 gcc_assert (INSN_P (insn));
3046 if (INSN_LUID (insn) > 0)
3048 free_first_time_insn_data (insn);
3049 INSN_WS_LEVEL (insn) = 0;
3050 CANT_MOVE (insn) = 0;
3052 /* We can no longer assert this, as vinsns of this insn could be
3053 easily live in other insn's caches. This should be changed to
3054 a counter-like approach among all vinsns. */
3055 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3056 clear_expr (INSN_EXPR (insn));
3060 /* Finalize per instruction data for the whole region. */
3061 void
3062 sel_finish_global_and_expr (void)
3065 bb_vec_t bbs;
3066 int i;
3068 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
3070 for (i = 0; i < current_nr_blocks; i++)
3071 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
3073 /* Clear AV_SETs and INSN_EXPRs. */
3075 const struct sched_scan_info_def ssi =
3077 NULL, /* extend_bb */
3078 finish_global_and_expr_for_bb, /* init_bb */
3079 NULL, /* extend_insn */
3080 finish_global_and_expr_insn /* init_insn */
3083 sched_scan (&ssi, bbs);
3086 VEC_free (basic_block, heap, bbs);
3089 finish_insns ();
3093 /* In the below hooks, we merely calculate whether or not a dependence
3094 exists, and in what part of insn. However, we will need more data
3095 when we'll start caching dependence requests. */
3097 /* Container to hold information for dependency analysis. */
3098 static struct
3100 deps_t dc;
3102 /* A variable to track which part of rtx we are scanning in
3103 sched-deps.c: sched_analyze_insn (). */
3104 deps_where_t where;
3106 /* Current producer. */
3107 insn_t pro;
3109 /* Current consumer. */
3110 vinsn_t con;
3112 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3113 X is from { INSN, LHS, RHS }. */
3114 ds_t has_dep_p[DEPS_IN_NOWHERE];
3115 } has_dependence_data;
3117 /* Start analyzing dependencies of INSN. */
3118 static void
3119 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3121 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3123 has_dependence_data.where = DEPS_IN_INSN;
3126 /* Finish analyzing dependencies of an insn. */
3127 static void
3128 has_dependence_finish_insn (void)
3130 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3132 has_dependence_data.where = DEPS_IN_NOWHERE;
3135 /* Start analyzing dependencies of LHS. */
3136 static void
3137 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3139 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3141 if (VINSN_LHS (has_dependence_data.con) != NULL)
3142 has_dependence_data.where = DEPS_IN_LHS;
3145 /* Finish analyzing dependencies of an lhs. */
3146 static void
3147 has_dependence_finish_lhs (void)
3149 has_dependence_data.where = DEPS_IN_INSN;
3152 /* Start analyzing dependencies of RHS. */
3153 static void
3154 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3156 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3158 if (VINSN_RHS (has_dependence_data.con) != NULL)
3159 has_dependence_data.where = DEPS_IN_RHS;
3162 /* Start analyzing dependencies of an rhs. */
3163 static void
3164 has_dependence_finish_rhs (void)
3166 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3167 || has_dependence_data.where == DEPS_IN_INSN);
3169 has_dependence_data.where = DEPS_IN_INSN;
3172 /* Note a set of REGNO. */
3173 static void
3174 has_dependence_note_reg_set (int regno)
3176 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3178 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3179 VINSN_INSN_RTX
3180 (has_dependence_data.con)))
3182 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3184 if (reg_last->sets != NULL
3185 || reg_last->clobbers != NULL)
3186 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3188 if (reg_last->uses)
3189 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3193 /* Note a clobber of REGNO. */
3194 static void
3195 has_dependence_note_reg_clobber (int regno)
3197 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3199 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3200 VINSN_INSN_RTX
3201 (has_dependence_data.con)))
3203 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3205 if (reg_last->sets)
3206 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3208 if (reg_last->uses)
3209 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3213 /* Note a use of REGNO. */
3214 static void
3215 has_dependence_note_reg_use (int regno)
3217 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3219 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3220 VINSN_INSN_RTX
3221 (has_dependence_data.con)))
3223 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3225 if (reg_last->sets)
3226 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3228 if (reg_last->clobbers)
3229 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3231 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3232 is actually a check insn. We need to do this for any register
3233 read-read dependency with the check unless we track properly
3234 all registers written by BE_IN_SPEC-speculated insns, as
3235 we don't have explicit dependence lists. See PR 53975. */
3236 if (reg_last->uses)
3238 ds_t pro_spec_checked_ds;
3240 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3241 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3243 if (pro_spec_checked_ds != 0)
3244 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3245 NULL_RTX, NULL_RTX);
3250 /* Note a memory dependence. */
3251 static void
3252 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3253 rtx pending_mem ATTRIBUTE_UNUSED,
3254 insn_t pending_insn ATTRIBUTE_UNUSED,
3255 ds_t ds ATTRIBUTE_UNUSED)
3257 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3258 VINSN_INSN_RTX (has_dependence_data.con)))
3260 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3262 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3266 /* Note a dependence. */
3267 static void
3268 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3269 ds_t ds ATTRIBUTE_UNUSED)
3271 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3272 VINSN_INSN_RTX (has_dependence_data.con)))
3274 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3276 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3280 /* Mark the insn as having a hard dependence that prevents speculation. */
3281 void
3282 sel_mark_hard_insn (rtx insn)
3284 int i;
3286 /* Only work when we're in has_dependence_p mode.
3287 ??? This is a hack, this should actually be a hook. */
3288 if (!has_dependence_data.dc || !has_dependence_data.pro)
3289 return;
3291 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3292 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3294 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3295 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3298 /* This structure holds the hooks for the dependency analysis used when
3299 actually processing dependencies in the scheduler. */
3300 static struct sched_deps_info_def has_dependence_sched_deps_info;
3302 /* This initializes most of the fields of the above structure. */
3303 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3305 NULL,
3307 has_dependence_start_insn,
3308 has_dependence_finish_insn,
3309 has_dependence_start_lhs,
3310 has_dependence_finish_lhs,
3311 has_dependence_start_rhs,
3312 has_dependence_finish_rhs,
3313 has_dependence_note_reg_set,
3314 has_dependence_note_reg_clobber,
3315 has_dependence_note_reg_use,
3316 has_dependence_note_mem_dep,
3317 has_dependence_note_dep,
3319 0, /* use_cselib */
3320 0, /* use_deps_list */
3321 0 /* generate_spec_deps */
3324 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3325 static void
3326 setup_has_dependence_sched_deps_info (void)
3328 memcpy (&has_dependence_sched_deps_info,
3329 &const_has_dependence_sched_deps_info,
3330 sizeof (has_dependence_sched_deps_info));
3332 if (spec_info != NULL)
3333 has_dependence_sched_deps_info.generate_spec_deps = 1;
3335 sched_deps_info = &has_dependence_sched_deps_info;
3338 /* Remove all dependences found and recorded in has_dependence_data array. */
3339 void
3340 sel_clear_has_dependence (void)
3342 int i;
3344 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3345 has_dependence_data.has_dep_p[i] = 0;
3348 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3349 to the dependence information array in HAS_DEP_PP. */
3350 ds_t
3351 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3353 int i;
3354 ds_t ds;
3355 struct deps_desc *dc;
3357 if (INSN_SIMPLEJUMP_P (pred))
3358 /* Unconditional jump is just a transfer of control flow.
3359 Ignore it. */
3360 return false;
3362 dc = &INSN_DEPS_CONTEXT (pred);
3364 /* We init this field lazily. */
3365 if (dc->reg_last == NULL)
3366 init_deps_reg_last (dc);
3368 if (!dc->readonly)
3370 has_dependence_data.pro = NULL;
3371 /* Initialize empty dep context with information about PRED. */
3372 advance_deps_context (dc, pred);
3373 dc->readonly = 1;
3376 has_dependence_data.where = DEPS_IN_NOWHERE;
3377 has_dependence_data.pro = pred;
3378 has_dependence_data.con = EXPR_VINSN (expr);
3379 has_dependence_data.dc = dc;
3381 sel_clear_has_dependence ();
3383 /* Now catch all dependencies that would be generated between PRED and
3384 INSN. */
3385 setup_has_dependence_sched_deps_info ();
3386 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3387 has_dependence_data.dc = NULL;
3389 /* When a barrier was found, set DEPS_IN_INSN bits. */
3390 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3391 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3392 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3393 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3395 /* Do not allow stores to memory to move through checks. Currently
3396 we don't move this to sched-deps.c as the check doesn't have
3397 obvious places to which this dependence can be attached.
3398 FIMXE: this should go to a hook. */
3399 if (EXPR_LHS (expr)
3400 && MEM_P (EXPR_LHS (expr))
3401 && sel_insn_is_speculation_check (pred))
3402 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3404 *has_dep_pp = has_dependence_data.has_dep_p;
3405 ds = 0;
3406 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3407 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3408 NULL_RTX, NULL_RTX);
3410 return ds;
3414 /* Dependence hooks implementation that checks dependence latency constraints
3415 on the insns being scheduled. The entry point for these routines is
3416 tick_check_p predicate. */
3418 static struct
3420 /* An expr we are currently checking. */
3421 expr_t expr;
3423 /* A minimal cycle for its scheduling. */
3424 int cycle;
3426 /* Whether we have seen a true dependence while checking. */
3427 bool seen_true_dep_p;
3428 } tick_check_data;
3430 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3431 on PRO with status DS and weight DW. */
3432 static void
3433 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3435 expr_t con_expr = tick_check_data.expr;
3436 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3438 if (con_insn != pro_insn)
3440 enum reg_note dt;
3441 int tick;
3443 if (/* PROducer was removed from above due to pipelining. */
3444 !INSN_IN_STREAM_P (pro_insn)
3445 /* Or PROducer was originally on the next iteration regarding the
3446 CONsumer. */
3447 || (INSN_SCHED_TIMES (pro_insn)
3448 - EXPR_SCHED_TIMES (con_expr)) > 1)
3449 /* Don't count this dependence. */
3450 return;
3452 dt = ds_to_dt (ds);
3453 if (dt == REG_DEP_TRUE)
3454 tick_check_data.seen_true_dep_p = true;
3456 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3459 dep_def _dep, *dep = &_dep;
3461 init_dep (dep, pro_insn, con_insn, dt);
3463 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3466 /* When there are several kinds of dependencies between pro and con,
3467 only REG_DEP_TRUE should be taken into account. */
3468 if (tick > tick_check_data.cycle
3469 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3470 tick_check_data.cycle = tick;
3474 /* An implementation of note_dep hook. */
3475 static void
3476 tick_check_note_dep (insn_t pro, ds_t ds)
3478 tick_check_dep_with_dw (pro, ds, 0);
3481 /* An implementation of note_mem_dep hook. */
3482 static void
3483 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3485 dw_t dw;
3487 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3488 ? estimate_dep_weak (mem1, mem2)
3489 : 0);
3491 tick_check_dep_with_dw (pro, ds, dw);
3494 /* This structure contains hooks for dependence analysis used when determining
3495 whether an insn is ready for scheduling. */
3496 static struct sched_deps_info_def tick_check_sched_deps_info =
3498 NULL,
3500 NULL,
3501 NULL,
3502 NULL,
3503 NULL,
3504 NULL,
3505 NULL,
3506 haifa_note_reg_set,
3507 haifa_note_reg_clobber,
3508 haifa_note_reg_use,
3509 tick_check_note_mem_dep,
3510 tick_check_note_dep,
3512 0, 0, 0
3515 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3516 scheduled. Return 0 if all data from producers in DC is ready. */
3518 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3520 int cycles_left;
3521 /* Initialize variables. */
3522 tick_check_data.expr = expr;
3523 tick_check_data.cycle = 0;
3524 tick_check_data.seen_true_dep_p = false;
3525 sched_deps_info = &tick_check_sched_deps_info;
3527 gcc_assert (!dc->readonly);
3528 dc->readonly = 1;
3529 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3530 dc->readonly = 0;
3532 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3534 return cycles_left >= 0 ? cycles_left : 0;
3538 /* Functions to work with insns. */
3540 /* Returns true if LHS of INSN is the same as DEST of an insn
3541 being moved. */
3542 bool
3543 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3545 rtx lhs = INSN_LHS (insn);
3547 if (lhs == NULL || dest == NULL)
3548 return false;
3550 return rtx_equal_p (lhs, dest);
3553 /* Return s_i_d entry of INSN. Callable from debugger. */
3554 sel_insn_data_def
3555 insn_sid (insn_t insn)
3557 return *SID (insn);
3560 /* True when INSN is a speculative check. We can tell this by looking
3561 at the data structures of the selective scheduler, not by examining
3562 the pattern. */
3563 bool
3564 sel_insn_is_speculation_check (rtx insn)
3566 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3569 /* Extracts machine mode MODE and destination location DST_LOC
3570 for given INSN. */
3571 void
3572 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3574 rtx pat = PATTERN (insn);
3576 gcc_assert (dst_loc);
3577 gcc_assert (GET_CODE (pat) == SET);
3579 *dst_loc = SET_DEST (pat);
3581 gcc_assert (*dst_loc);
3582 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3584 if (mode)
3585 *mode = GET_MODE (*dst_loc);
3588 /* Returns true when moving through JUMP will result in bookkeeping
3589 creation. */
3590 bool
3591 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3593 insn_t succ;
3594 succ_iterator si;
3596 FOR_EACH_SUCC (succ, si, jump)
3597 if (sel_num_cfg_preds_gt_1 (succ))
3598 return true;
3600 return false;
3603 /* Return 'true' if INSN is the only one in its basic block. */
3604 static bool
3605 insn_is_the_only_one_in_bb_p (insn_t insn)
3607 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3610 #ifdef ENABLE_CHECKING
3611 /* Check that the region we're scheduling still has at most one
3612 backedge. */
3613 static void
3614 verify_backedges (void)
3616 if (pipelining_p)
3618 int i, n = 0;
3619 edge e;
3620 edge_iterator ei;
3622 for (i = 0; i < current_nr_blocks; i++)
3623 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3624 if (in_current_region_p (e->dest)
3625 && BLOCK_TO_BB (e->dest->index) < i)
3626 n++;
3628 gcc_assert (n <= 1);
3631 #endif
3634 /* Functions to work with control flow. */
3636 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3637 are sorted in topological order (it might have been invalidated by
3638 redirecting an edge). */
3639 static void
3640 sel_recompute_toporder (void)
3642 int i, n, rgn;
3643 int *postorder, n_blocks;
3645 postorder = XALLOCAVEC (int, n_basic_blocks);
3646 n_blocks = post_order_compute (postorder, false, false);
3648 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3649 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3650 if (CONTAINING_RGN (postorder[i]) == rgn)
3652 BLOCK_TO_BB (postorder[i]) = n;
3653 BB_TO_BLOCK (n) = postorder[i];
3654 n++;
3657 /* Assert that we updated info for all blocks. We may miss some blocks if
3658 this function is called when redirecting an edge made a block
3659 unreachable, but that block is not deleted yet. */
3660 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3663 /* Tidy the possibly empty block BB. */
3664 static bool
3665 maybe_tidy_empty_bb (basic_block bb)
3667 basic_block succ_bb, pred_bb, note_bb;
3668 VEC (basic_block, heap) *dom_bbs;
3669 edge e;
3670 edge_iterator ei;
3671 bool rescan_p;
3673 /* Keep empty bb only if this block immediately precedes EXIT and
3674 has incoming non-fallthrough edge, or it has no predecessors or
3675 successors. Otherwise remove it. */
3676 if (!sel_bb_empty_p (bb)
3677 || (single_succ_p (bb)
3678 && single_succ (bb) == EXIT_BLOCK_PTR
3679 && (!single_pred_p (bb)
3680 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3681 || EDGE_COUNT (bb->preds) == 0
3682 || EDGE_COUNT (bb->succs) == 0)
3683 return false;
3685 /* Do not attempt to redirect complex edges. */
3686 FOR_EACH_EDGE (e, ei, bb->preds)
3687 if (e->flags & EDGE_COMPLEX)
3688 return false;
3690 free_data_sets (bb);
3692 /* Do not delete BB if it has more than one successor.
3693 That can occur when we moving a jump. */
3694 if (!single_succ_p (bb))
3696 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3697 sel_merge_blocks (bb->prev_bb, bb);
3698 return true;
3701 succ_bb = single_succ (bb);
3702 rescan_p = true;
3703 pred_bb = NULL;
3704 dom_bbs = NULL;
3706 /* Save a pred/succ from the current region to attach the notes to. */
3707 note_bb = NULL;
3708 FOR_EACH_EDGE (e, ei, bb->preds)
3709 if (in_current_region_p (e->src))
3711 note_bb = e->src;
3712 break;
3714 if (note_bb == NULL)
3715 note_bb = succ_bb;
3717 /* Redirect all non-fallthru edges to the next bb. */
3718 while (rescan_p)
3720 rescan_p = false;
3722 FOR_EACH_EDGE (e, ei, bb->preds)
3724 pred_bb = e->src;
3726 if (!(e->flags & EDGE_FALLTHRU))
3728 /* We can not invalidate computed topological order by moving
3729 the edge destination block (E->SUCC) along a fallthru edge.
3731 We will update dominators here only when we'll get
3732 an unreachable block when redirecting, otherwise
3733 sel_redirect_edge_and_branch will take care of it. */
3734 if (e->dest != bb
3735 && single_pred_p (e->dest))
3736 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
3737 sel_redirect_edge_and_branch (e, succ_bb);
3738 rescan_p = true;
3739 break;
3741 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3742 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3743 still have to adjust it. */
3744 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3746 /* If possible, try to remove the unneeded conditional jump. */
3747 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3748 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3750 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3751 tidy_fallthru_edge (e);
3753 else
3754 sel_redirect_edge_and_branch (e, succ_bb);
3755 rescan_p = true;
3756 break;
3761 if (can_merge_blocks_p (bb->prev_bb, bb))
3762 sel_merge_blocks (bb->prev_bb, bb);
3763 else
3765 /* This is a block without fallthru predecessor. Just delete it. */
3766 gcc_assert (note_bb);
3767 move_bb_info (note_bb, bb);
3768 remove_empty_bb (bb, true);
3771 if (!VEC_empty (basic_block, dom_bbs))
3773 VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3774 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3775 VEC_free (basic_block, heap, dom_bbs);
3778 return true;
3781 /* Tidy the control flow after we have removed original insn from
3782 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3783 is true, also try to optimize control flow on non-empty blocks. */
3784 bool
3785 tidy_control_flow (basic_block xbb, bool full_tidying)
3787 bool changed = true;
3788 insn_t first, last;
3790 /* First check whether XBB is empty. */
3791 changed = maybe_tidy_empty_bb (xbb);
3792 if (changed || !full_tidying)
3793 return changed;
3795 /* Check if there is a unnecessary jump after insn left. */
3796 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3797 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3798 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3800 if (sel_remove_insn (BB_END (xbb), false, false))
3801 return true;
3802 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3805 first = sel_bb_head (xbb);
3806 last = sel_bb_end (xbb);
3807 if (MAY_HAVE_DEBUG_INSNS)
3809 if (first != last && DEBUG_INSN_P (first))
3811 first = NEXT_INSN (first);
3812 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3814 if (first != last && DEBUG_INSN_P (last))
3816 last = PREV_INSN (last);
3817 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3819 /* Check if there is an unnecessary jump in previous basic block leading
3820 to next basic block left after removing INSN from stream.
3821 If it is so, remove that jump and redirect edge to current
3822 basic block (where there was INSN before deletion). This way
3823 when NOP will be deleted several instructions later with its
3824 basic block we will not get a jump to next instruction, which
3825 can be harmful. */
3826 if (first == last
3827 && !sel_bb_empty_p (xbb)
3828 && INSN_NOP_P (last)
3829 /* Flow goes fallthru from current block to the next. */
3830 && EDGE_COUNT (xbb->succs) == 1
3831 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3832 /* When successor is an EXIT block, it may not be the next block. */
3833 && single_succ (xbb) != EXIT_BLOCK_PTR
3834 /* And unconditional jump in previous basic block leads to
3835 next basic block of XBB and this jump can be safely removed. */
3836 && in_current_region_p (xbb->prev_bb)
3837 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3838 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3839 /* Also this jump is not at the scheduling boundary. */
3840 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3842 bool recompute_toporder_p;
3843 /* Clear data structures of jump - jump itself will be removed
3844 by sel_redirect_edge_and_branch. */
3845 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3846 recompute_toporder_p
3847 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3849 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3851 /* It can turn out that after removing unused jump, basic block
3852 that contained that jump, becomes empty too. In such case
3853 remove it too. */
3854 if (sel_bb_empty_p (xbb->prev_bb))
3855 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3856 if (recompute_toporder_p)
3857 sel_recompute_toporder ();
3860 #ifdef ENABLE_CHECKING
3861 verify_backedges ();
3862 verify_dominators (CDI_DOMINATORS);
3863 #endif
3865 return changed;
3868 /* Purge meaningless empty blocks in the middle of a region. */
3869 void
3870 purge_empty_blocks (void)
3872 int i;
3874 /* Do not attempt to delete the first basic block in the region. */
3875 for (i = 1; i < current_nr_blocks; )
3877 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3879 if (maybe_tidy_empty_bb (b))
3880 continue;
3882 i++;
3886 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3887 do not delete insn's data, because it will be later re-emitted.
3888 Return true if we have removed some blocks afterwards. */
3889 bool
3890 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3892 basic_block bb = BLOCK_FOR_INSN (insn);
3894 gcc_assert (INSN_IN_STREAM_P (insn));
3896 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3898 expr_t expr;
3899 av_set_iterator i;
3901 /* When we remove a debug insn that is head of a BB, it remains
3902 in the AV_SET of the block, but it shouldn't. */
3903 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3904 if (EXPR_INSN_RTX (expr) == insn)
3906 av_set_iter_remove (&i);
3907 break;
3911 if (only_disconnect)
3913 insn_t prev = PREV_INSN (insn);
3914 insn_t next = NEXT_INSN (insn);
3915 basic_block bb = BLOCK_FOR_INSN (insn);
3917 NEXT_INSN (prev) = next;
3918 PREV_INSN (next) = prev;
3920 if (BB_HEAD (bb) == insn)
3922 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3923 BB_HEAD (bb) = prev;
3925 if (BB_END (bb) == insn)
3926 BB_END (bb) = prev;
3928 else
3930 remove_insn (insn);
3931 clear_expr (INSN_EXPR (insn));
3934 /* It is necessary to null this fields before calling add_insn (). */
3935 PREV_INSN (insn) = NULL_RTX;
3936 NEXT_INSN (insn) = NULL_RTX;
3938 return tidy_control_flow (bb, full_tidying);
3941 /* Estimate number of the insns in BB. */
3942 static int
3943 sel_estimate_number_of_insns (basic_block bb)
3945 int res = 0;
3946 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3948 for (; insn != next_tail; insn = NEXT_INSN (insn))
3949 if (NONDEBUG_INSN_P (insn))
3950 res++;
3952 return res;
3955 /* We don't need separate luids for notes or labels. */
3956 static int
3957 sel_luid_for_non_insn (rtx x)
3959 gcc_assert (NOTE_P (x) || LABEL_P (x));
3961 return -1;
3964 /* Find the proper seqno for inserting at INSN by successors.
3965 Return -1 if no successors with positive seqno exist. */
3966 static int
3967 get_seqno_by_succs (rtx insn)
3969 basic_block bb = BLOCK_FOR_INSN (insn);
3970 rtx tmp = insn, end = BB_END (bb);
3971 int seqno;
3972 insn_t succ = NULL;
3973 succ_iterator si;
3975 while (tmp != end)
3977 tmp = NEXT_INSN (tmp);
3978 if (INSN_P (tmp))
3979 return INSN_SEQNO (tmp);
3982 seqno = INT_MAX;
3984 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
3985 if (INSN_SEQNO (succ) > 0)
3986 seqno = MIN (seqno, INSN_SEQNO (succ));
3988 if (seqno == INT_MAX)
3989 return -1;
3991 return seqno;
3994 /* Compute seqno for INSN by its preds or succs. */
3995 static int
3996 get_seqno_for_a_jump (insn_t insn)
3998 int seqno;
4000 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4002 if (!sel_bb_head_p (insn))
4003 seqno = INSN_SEQNO (PREV_INSN (insn));
4004 else
4006 basic_block bb = BLOCK_FOR_INSN (insn);
4008 if (single_pred_p (bb)
4009 && !in_current_region_p (single_pred (bb)))
4011 /* We can have preds outside a region when splitting edges
4012 for pipelining of an outer loop. Use succ instead.
4013 There should be only one of them. */
4014 insn_t succ = NULL;
4015 succ_iterator si;
4016 bool first = true;
4018 gcc_assert (flag_sel_sched_pipelining_outer_loops
4019 && current_loop_nest);
4020 FOR_EACH_SUCC_1 (succ, si, insn,
4021 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4023 gcc_assert (first);
4024 first = false;
4027 gcc_assert (succ != NULL);
4028 seqno = INSN_SEQNO (succ);
4030 else
4032 insn_t *preds;
4033 int n;
4035 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4037 gcc_assert (n > 0);
4038 /* For one predecessor, use simple method. */
4039 if (n == 1)
4040 seqno = INSN_SEQNO (preds[0]);
4041 else
4042 seqno = get_seqno_by_preds (insn);
4044 free (preds);
4048 /* We were unable to find a good seqno among preds. */
4049 if (seqno < 0)
4050 seqno = get_seqno_by_succs (insn);
4052 gcc_assert (seqno >= 0);
4054 return seqno;
4057 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4058 with positive seqno exist. */
4060 get_seqno_by_preds (rtx insn)
4062 basic_block bb = BLOCK_FOR_INSN (insn);
4063 rtx tmp = insn, head = BB_HEAD (bb);
4064 insn_t *preds;
4065 int n, i, seqno;
4067 while (tmp != head)
4069 tmp = PREV_INSN (tmp);
4070 if (INSN_P (tmp))
4071 return INSN_SEQNO (tmp);
4074 cfg_preds (bb, &preds, &n);
4075 for (i = 0, seqno = -1; i < n; i++)
4076 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4078 return seqno;
4083 /* Extend pass-scope data structures for basic blocks. */
4084 void
4085 sel_extend_global_bb_info (void)
4087 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
4088 last_basic_block);
4091 /* Extend region-scope data structures for basic blocks. */
4092 static void
4093 extend_region_bb_info (void)
4095 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
4096 last_basic_block);
4099 /* Extend all data structures to fit for all basic blocks. */
4100 static void
4101 extend_bb_info (void)
4103 sel_extend_global_bb_info ();
4104 extend_region_bb_info ();
4107 /* Finalize pass-scope data structures for basic blocks. */
4108 void
4109 sel_finish_global_bb_info (void)
4111 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
4114 /* Finalize region-scope data structures for basic blocks. */
4115 static void
4116 finish_region_bb_info (void)
4118 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
4122 /* Data for each insn in current region. */
4123 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
4125 /* Extend data structures for insns from current region. */
4126 static void
4127 extend_insn_data (void)
4129 int reserve;
4131 sched_extend_target ();
4132 sched_deps_init (false);
4134 /* Extend data structures for insns from current region. */
4135 reserve = (sched_max_luid + 1
4136 - VEC_length (sel_insn_data_def, s_i_d));
4137 if (reserve > 0
4138 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
4140 int size;
4142 if (sched_max_luid / 2 > 1024)
4143 size = sched_max_luid + 1024;
4144 else
4145 size = 3 * sched_max_luid / 2;
4148 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4152 /* Finalize data structures for insns from current region. */
4153 static void
4154 finish_insns (void)
4156 unsigned i;
4158 /* Clear here all dependence contexts that may have left from insns that were
4159 removed during the scheduling. */
4160 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4162 sel_insn_data_def *sid_entry = &VEC_index (sel_insn_data_def, s_i_d, i);
4164 if (sid_entry->live)
4165 return_regset_to_pool (sid_entry->live);
4166 if (sid_entry->analyzed_deps)
4168 BITMAP_FREE (sid_entry->analyzed_deps);
4169 BITMAP_FREE (sid_entry->found_deps);
4170 htab_delete (sid_entry->transformed_insns);
4171 free_deps (&sid_entry->deps_context);
4173 if (EXPR_VINSN (&sid_entry->expr))
4175 clear_expr (&sid_entry->expr);
4177 /* Also, clear CANT_MOVE bit here, because we really don't want it
4178 to be passed to the next region. */
4179 CANT_MOVE_BY_LUID (i) = 0;
4183 VEC_free (sel_insn_data_def, heap, s_i_d);
4186 /* A proxy to pass initialization data to init_insn (). */
4187 static sel_insn_data_def _insn_init_ssid;
4188 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4190 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4191 static bool insn_init_create_new_vinsn_p;
4193 /* Set all necessary data for initialization of the new insn[s]. */
4194 static expr_t
4195 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4197 expr_t x = &insn_init_ssid->expr;
4199 copy_expr_onside (x, expr);
4200 if (vi != NULL)
4202 insn_init_create_new_vinsn_p = false;
4203 change_vinsn_in_expr (x, vi);
4205 else
4206 insn_init_create_new_vinsn_p = true;
4208 insn_init_ssid->seqno = seqno;
4209 return x;
4212 /* Init data for INSN. */
4213 static void
4214 init_insn_data (insn_t insn)
4216 expr_t expr;
4217 sel_insn_data_t ssid = insn_init_ssid;
4219 /* The fields mentioned below are special and hence are not being
4220 propagated to the new insns. */
4221 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4222 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4223 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4225 expr = INSN_EXPR (insn);
4226 copy_expr (expr, &ssid->expr);
4227 prepare_insn_expr (insn, ssid->seqno);
4229 if (insn_init_create_new_vinsn_p)
4230 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4232 if (first_time_insn_init (insn))
4233 init_first_time_insn_data (insn);
4236 /* This is used to initialize spurious jumps generated by
4237 sel_redirect_edge (). */
4238 static void
4239 init_simplejump_data (insn_t insn)
4241 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4242 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4243 false, true);
4244 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn);
4245 init_first_time_insn_data (insn);
4248 /* Perform deferred initialization of insns. This is used to process
4249 a new jump that may be created by redirect_edge. */
4250 void
4251 sel_init_new_insn (insn_t insn, int flags)
4253 /* We create data structures for bb when the first insn is emitted in it. */
4254 if (INSN_P (insn)
4255 && INSN_IN_STREAM_P (insn)
4256 && insn_is_the_only_one_in_bb_p (insn))
4258 extend_bb_info ();
4259 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4262 if (flags & INSN_INIT_TODO_LUID)
4264 sched_extend_luids ();
4265 sched_init_insn_luid (insn);
4268 if (flags & INSN_INIT_TODO_SSID)
4270 extend_insn_data ();
4271 init_insn_data (insn);
4272 clear_expr (&insn_init_ssid->expr);
4275 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4277 extend_insn_data ();
4278 init_simplejump_data (insn);
4281 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4282 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4286 /* Functions to init/finish work with lv sets. */
4288 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4289 static void
4290 init_lv_set (basic_block bb)
4292 gcc_assert (!BB_LV_SET_VALID_P (bb));
4294 BB_LV_SET (bb) = get_regset_from_pool ();
4295 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4296 BB_LV_SET_VALID_P (bb) = true;
4299 /* Copy liveness information to BB from FROM_BB. */
4300 static void
4301 copy_lv_set_from (basic_block bb, basic_block from_bb)
4303 gcc_assert (!BB_LV_SET_VALID_P (bb));
4305 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4306 BB_LV_SET_VALID_P (bb) = true;
4309 /* Initialize lv set of all bb headers. */
4310 void
4311 init_lv_sets (void)
4313 basic_block bb;
4315 /* Initialize of LV sets. */
4316 FOR_EACH_BB (bb)
4317 init_lv_set (bb);
4319 /* Don't forget EXIT_BLOCK. */
4320 init_lv_set (EXIT_BLOCK_PTR);
4323 /* Release lv set of HEAD. */
4324 static void
4325 free_lv_set (basic_block bb)
4327 gcc_assert (BB_LV_SET (bb) != NULL);
4329 return_regset_to_pool (BB_LV_SET (bb));
4330 BB_LV_SET (bb) = NULL;
4331 BB_LV_SET_VALID_P (bb) = false;
4334 /* Finalize lv sets of all bb headers. */
4335 void
4336 free_lv_sets (void)
4338 basic_block bb;
4340 /* Don't forget EXIT_BLOCK. */
4341 free_lv_set (EXIT_BLOCK_PTR);
4343 /* Free LV sets. */
4344 FOR_EACH_BB (bb)
4345 if (BB_LV_SET (bb))
4346 free_lv_set (bb);
4349 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4350 compute_av() processes BB. This function is called when creating new basic
4351 blocks, as well as for blocks (either new or existing) where new jumps are
4352 created when the control flow is being updated. */
4353 static void
4354 invalidate_av_set (basic_block bb)
4356 BB_AV_LEVEL (bb) = -1;
4359 /* Create initial data sets for BB (they will be invalid). */
4360 static void
4361 create_initial_data_sets (basic_block bb)
4363 if (BB_LV_SET (bb))
4364 BB_LV_SET_VALID_P (bb) = false;
4365 else
4366 BB_LV_SET (bb) = get_regset_from_pool ();
4367 invalidate_av_set (bb);
4370 /* Free av set of BB. */
4371 static void
4372 free_av_set (basic_block bb)
4374 av_set_clear (&BB_AV_SET (bb));
4375 BB_AV_LEVEL (bb) = 0;
4378 /* Free data sets of BB. */
4379 void
4380 free_data_sets (basic_block bb)
4382 free_lv_set (bb);
4383 free_av_set (bb);
4386 /* Exchange lv sets of TO and FROM. */
4387 static void
4388 exchange_lv_sets (basic_block to, basic_block from)
4391 regset to_lv_set = BB_LV_SET (to);
4393 BB_LV_SET (to) = BB_LV_SET (from);
4394 BB_LV_SET (from) = to_lv_set;
4398 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4400 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4401 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4406 /* Exchange av sets of TO and FROM. */
4407 static void
4408 exchange_av_sets (basic_block to, basic_block from)
4411 av_set_t to_av_set = BB_AV_SET (to);
4413 BB_AV_SET (to) = BB_AV_SET (from);
4414 BB_AV_SET (from) = to_av_set;
4418 int to_av_level = BB_AV_LEVEL (to);
4420 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4421 BB_AV_LEVEL (from) = to_av_level;
4425 /* Exchange data sets of TO and FROM. */
4426 void
4427 exchange_data_sets (basic_block to, basic_block from)
4429 exchange_lv_sets (to, from);
4430 exchange_av_sets (to, from);
4433 /* Copy data sets of FROM to TO. */
4434 void
4435 copy_data_sets (basic_block to, basic_block from)
4437 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4438 gcc_assert (BB_AV_SET (to) == NULL);
4440 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4441 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4443 if (BB_AV_SET_VALID_P (from))
4445 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4447 if (BB_LV_SET_VALID_P (from))
4449 gcc_assert (BB_LV_SET (to) != NULL);
4450 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4454 /* Return an av set for INSN, if any. */
4455 av_set_t
4456 get_av_set (insn_t insn)
4458 av_set_t av_set;
4460 gcc_assert (AV_SET_VALID_P (insn));
4462 if (sel_bb_head_p (insn))
4463 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4464 else
4465 av_set = NULL;
4467 return av_set;
4470 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4472 get_av_level (insn_t insn)
4474 int av_level;
4476 gcc_assert (INSN_P (insn));
4478 if (sel_bb_head_p (insn))
4479 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4480 else
4481 av_level = INSN_WS_LEVEL (insn);
4483 return av_level;
4488 /* Variables to work with control-flow graph. */
4490 /* The basic block that already has been processed by the sched_data_update (),
4491 but hasn't been in sel_add_bb () yet. */
4492 static VEC (basic_block, heap) *last_added_blocks = NULL;
4494 /* A pool for allocating successor infos. */
4495 static struct
4497 /* A stack for saving succs_info structures. */
4498 struct succs_info *stack;
4500 /* Its size. */
4501 int size;
4503 /* Top of the stack. */
4504 int top;
4506 /* Maximal value of the top. */
4507 int max_top;
4508 } succs_info_pool;
4510 /* Functions to work with control-flow graph. */
4512 /* Return basic block note of BB. */
4513 insn_t
4514 sel_bb_head (basic_block bb)
4516 insn_t head;
4518 if (bb == EXIT_BLOCK_PTR)
4520 gcc_assert (exit_insn != NULL_RTX);
4521 head = exit_insn;
4523 else
4525 insn_t note;
4527 note = bb_note (bb);
4528 head = next_nonnote_insn (note);
4530 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4531 head = NULL_RTX;
4534 return head;
4537 /* Return true if INSN is a basic block header. */
4538 bool
4539 sel_bb_head_p (insn_t insn)
4541 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4544 /* Return last insn of BB. */
4545 insn_t
4546 sel_bb_end (basic_block bb)
4548 if (sel_bb_empty_p (bb))
4549 return NULL_RTX;
4551 gcc_assert (bb != EXIT_BLOCK_PTR);
4553 return BB_END (bb);
4556 /* Return true if INSN is the last insn in its basic block. */
4557 bool
4558 sel_bb_end_p (insn_t insn)
4560 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4563 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4564 bool
4565 sel_bb_empty_p (basic_block bb)
4567 return sel_bb_head (bb) == NULL;
4570 /* True when BB belongs to the current scheduling region. */
4571 bool
4572 in_current_region_p (basic_block bb)
4574 if (bb->index < NUM_FIXED_BLOCKS)
4575 return false;
4577 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4580 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4581 basic_block
4582 fallthru_bb_of_jump (rtx jump)
4584 if (!JUMP_P (jump))
4585 return NULL;
4587 if (!any_condjump_p (jump))
4588 return NULL;
4590 /* A basic block that ends with a conditional jump may still have one successor
4591 (and be followed by a barrier), we are not interested. */
4592 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4593 return NULL;
4595 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4598 /* Remove all notes from BB. */
4599 static void
4600 init_bb (basic_block bb)
4602 remove_notes (bb_note (bb), BB_END (bb));
4603 BB_NOTE_LIST (bb) = note_list;
4606 void
4607 sel_init_bbs (bb_vec_t bbs)
4609 const struct sched_scan_info_def ssi =
4611 extend_bb_info, /* extend_bb */
4612 init_bb, /* init_bb */
4613 NULL, /* extend_insn */
4614 NULL /* init_insn */
4617 sched_scan (&ssi, bbs);
4620 /* Restore notes for the whole region. */
4621 static void
4622 sel_restore_notes (void)
4624 int bb;
4625 insn_t insn;
4627 for (bb = 0; bb < current_nr_blocks; bb++)
4629 basic_block first, last;
4631 first = EBB_FIRST_BB (bb);
4632 last = EBB_LAST_BB (bb)->next_bb;
4636 note_list = BB_NOTE_LIST (first);
4637 restore_other_notes (NULL, first);
4638 BB_NOTE_LIST (first) = NULL_RTX;
4640 FOR_BB_INSNS (first, insn)
4641 if (NONDEBUG_INSN_P (insn))
4642 reemit_notes (insn);
4644 first = first->next_bb;
4646 while (first != last);
4650 /* Free per-bb data structures. */
4651 void
4652 sel_finish_bbs (void)
4654 sel_restore_notes ();
4656 /* Remove current loop preheader from this loop. */
4657 if (current_loop_nest)
4658 sel_remove_loop_preheader ();
4660 finish_region_bb_info ();
4663 /* Return true if INSN has a single successor of type FLAGS. */
4664 bool
4665 sel_insn_has_single_succ_p (insn_t insn, int flags)
4667 insn_t succ;
4668 succ_iterator si;
4669 bool first_p = true;
4671 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4673 if (first_p)
4674 first_p = false;
4675 else
4676 return false;
4679 return true;
4682 /* Allocate successor's info. */
4683 static struct succs_info *
4684 alloc_succs_info (void)
4686 if (succs_info_pool.top == succs_info_pool.max_top)
4688 int i;
4690 if (++succs_info_pool.max_top >= succs_info_pool.size)
4691 gcc_unreachable ();
4693 i = ++succs_info_pool.top;
4694 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4695 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4696 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4698 else
4699 succs_info_pool.top++;
4701 return &succs_info_pool.stack[succs_info_pool.top];
4704 /* Free successor's info. */
4705 void
4706 free_succs_info (struct succs_info * sinfo)
4708 gcc_assert (succs_info_pool.top >= 0
4709 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4710 succs_info_pool.top--;
4712 /* Clear stale info. */
4713 VEC_block_remove (rtx, sinfo->succs_ok,
4714 0, VEC_length (rtx, sinfo->succs_ok));
4715 VEC_block_remove (rtx, sinfo->succs_other,
4716 0, VEC_length (rtx, sinfo->succs_other));
4717 VEC_block_remove (int, sinfo->probs_ok,
4718 0, VEC_length (int, sinfo->probs_ok));
4719 sinfo->all_prob = 0;
4720 sinfo->succs_ok_n = 0;
4721 sinfo->all_succs_n = 0;
4724 /* Compute successor info for INSN. FLAGS are the flags passed
4725 to the FOR_EACH_SUCC_1 iterator. */
4726 struct succs_info *
4727 compute_succs_info (insn_t insn, short flags)
4729 succ_iterator si;
4730 insn_t succ;
4731 struct succs_info *sinfo = alloc_succs_info ();
4733 /* Traverse *all* successors and decide what to do with each. */
4734 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4736 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4737 perform code motion through inner loops. */
4738 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4740 if (current_flags & flags)
4742 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4743 VEC_safe_push (int, heap, sinfo->probs_ok,
4744 /* FIXME: Improve calculation when skipping
4745 inner loop to exits. */
4746 (si.bb_end
4747 ? si.e1->probability
4748 : REG_BR_PROB_BASE));
4749 sinfo->succs_ok_n++;
4751 else
4752 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4754 /* Compute all_prob. */
4755 if (!si.bb_end)
4756 sinfo->all_prob = REG_BR_PROB_BASE;
4757 else
4758 sinfo->all_prob += si.e1->probability;
4760 sinfo->all_succs_n++;
4763 return sinfo;
4766 /* Return the predecessors of BB in PREDS and their number in N.
4767 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4768 static void
4769 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4771 edge e;
4772 edge_iterator ei;
4774 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4776 FOR_EACH_EDGE (e, ei, bb->preds)
4778 basic_block pred_bb = e->src;
4779 insn_t bb_end = BB_END (pred_bb);
4781 if (!in_current_region_p (pred_bb))
4783 gcc_assert (flag_sel_sched_pipelining_outer_loops
4784 && current_loop_nest);
4785 continue;
4788 if (sel_bb_empty_p (pred_bb))
4789 cfg_preds_1 (pred_bb, preds, n, size);
4790 else
4792 if (*n == *size)
4793 *preds = XRESIZEVEC (insn_t, *preds,
4794 (*size = 2 * *size + 1));
4795 (*preds)[(*n)++] = bb_end;
4799 gcc_assert (*n != 0
4800 || (flag_sel_sched_pipelining_outer_loops
4801 && current_loop_nest));
4804 /* Find all predecessors of BB and record them in PREDS and their number
4805 in N. Empty blocks are skipped, and only normal (forward in-region)
4806 edges are processed. */
4807 static void
4808 cfg_preds (basic_block bb, insn_t **preds, int *n)
4810 int size = 0;
4812 *preds = NULL;
4813 *n = 0;
4814 cfg_preds_1 (bb, preds, n, &size);
4817 /* Returns true if we are moving INSN through join point. */
4818 bool
4819 sel_num_cfg_preds_gt_1 (insn_t insn)
4821 basic_block bb;
4823 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4824 return false;
4826 bb = BLOCK_FOR_INSN (insn);
4828 while (1)
4830 if (EDGE_COUNT (bb->preds) > 1)
4831 return true;
4833 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4834 bb = EDGE_PRED (bb, 0)->src;
4836 if (!sel_bb_empty_p (bb))
4837 break;
4840 return false;
4843 /* Returns true when BB should be the end of an ebb. Adapted from the
4844 code in sched-ebb.c. */
4845 bool
4846 bb_ends_ebb_p (basic_block bb)
4848 basic_block next_bb = bb_next_bb (bb);
4849 edge e;
4851 if (next_bb == EXIT_BLOCK_PTR
4852 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4853 || (LABEL_P (BB_HEAD (next_bb))
4854 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4855 Work around that. */
4856 && !single_pred_p (next_bb)))
4857 return true;
4859 if (!in_current_region_p (next_bb))
4860 return true;
4862 e = find_fallthru_edge (bb->succs);
4863 if (e)
4865 gcc_assert (e->dest == next_bb);
4867 return false;
4870 return true;
4873 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4874 successor of INSN. */
4875 bool
4876 in_same_ebb_p (insn_t insn, insn_t succ)
4878 basic_block ptr = BLOCK_FOR_INSN (insn);
4880 for(;;)
4882 if (ptr == BLOCK_FOR_INSN (succ))
4883 return true;
4885 if (bb_ends_ebb_p (ptr))
4886 return false;
4888 ptr = bb_next_bb (ptr);
4891 gcc_unreachable ();
4892 return false;
4895 /* Recomputes the reverse topological order for the function and
4896 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4897 modified appropriately. */
4898 static void
4899 recompute_rev_top_order (void)
4901 int *postorder;
4902 int n_blocks, i;
4904 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4906 rev_top_order_index_len = last_basic_block;
4907 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4908 rev_top_order_index_len);
4911 postorder = XNEWVEC (int, n_basic_blocks);
4913 n_blocks = post_order_compute (postorder, true, false);
4914 gcc_assert (n_basic_blocks == n_blocks);
4916 /* Build reverse function: for each basic block with BB->INDEX == K
4917 rev_top_order_index[K] is it's reverse topological sort number. */
4918 for (i = 0; i < n_blocks; i++)
4920 gcc_assert (postorder[i] < rev_top_order_index_len);
4921 rev_top_order_index[postorder[i]] = i;
4924 free (postorder);
4927 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4928 void
4929 clear_outdated_rtx_info (basic_block bb)
4931 rtx insn;
4933 FOR_BB_INSNS (bb, insn)
4934 if (INSN_P (insn))
4936 SCHED_GROUP_P (insn) = 0;
4937 INSN_AFTER_STALL_P (insn) = 0;
4938 INSN_SCHED_TIMES (insn) = 0;
4939 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4941 /* We cannot use the changed caches, as previously we could ignore
4942 the LHS dependence due to enabled renaming and transform
4943 the expression, and currently we'll be unable to do this. */
4944 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4948 /* Add BB_NOTE to the pool of available basic block notes. */
4949 static void
4950 return_bb_to_pool (basic_block bb)
4952 rtx note = bb_note (bb);
4954 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4955 && bb->aux == NULL);
4957 /* It turns out that current cfg infrastructure does not support
4958 reuse of basic blocks. Don't bother for now. */
4959 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4962 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4963 static rtx
4964 get_bb_note_from_pool (void)
4966 if (VEC_empty (rtx, bb_note_pool))
4967 return NULL_RTX;
4968 else
4970 rtx note = VEC_pop (rtx, bb_note_pool);
4972 PREV_INSN (note) = NULL_RTX;
4973 NEXT_INSN (note) = NULL_RTX;
4975 return note;
4979 /* Free bb_note_pool. */
4980 void
4981 free_bb_note_pool (void)
4983 VEC_free (rtx, heap, bb_note_pool);
4986 /* Setup scheduler pool and successor structure. */
4987 void
4988 alloc_sched_pools (void)
4990 int succs_size;
4992 succs_size = MAX_WS + 1;
4993 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4994 succs_info_pool.size = succs_size;
4995 succs_info_pool.top = -1;
4996 succs_info_pool.max_top = -1;
4998 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4999 sizeof (struct _list_node), 500);
5002 /* Free the pools. */
5003 void
5004 free_sched_pools (void)
5006 int i;
5008 free_alloc_pool (sched_lists_pool);
5009 gcc_assert (succs_info_pool.top == -1);
5010 for (i = 0; i < succs_info_pool.max_top; i++)
5012 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
5013 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
5014 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
5016 free (succs_info_pool.stack);
5020 /* Returns a position in RGN where BB can be inserted retaining
5021 topological order. */
5022 static int
5023 find_place_to_insert_bb (basic_block bb, int rgn)
5025 bool has_preds_outside_rgn = false;
5026 edge e;
5027 edge_iterator ei;
5029 /* Find whether we have preds outside the region. */
5030 FOR_EACH_EDGE (e, ei, bb->preds)
5031 if (!in_current_region_p (e->src))
5033 has_preds_outside_rgn = true;
5034 break;
5037 /* Recompute the top order -- needed when we have > 1 pred
5038 and in case we don't have preds outside. */
5039 if (flag_sel_sched_pipelining_outer_loops
5040 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5042 int i, bbi = bb->index, cur_bbi;
5044 recompute_rev_top_order ();
5045 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5047 cur_bbi = BB_TO_BLOCK (i);
5048 if (rev_top_order_index[bbi]
5049 < rev_top_order_index[cur_bbi])
5050 break;
5053 /* We skipped the right block, so we increase i. We accommodate
5054 it for increasing by step later, so we decrease i. */
5055 return (i + 1) - 1;
5057 else if (has_preds_outside_rgn)
5059 /* This is the case when we generate an extra empty block
5060 to serve as region head during pipelining. */
5061 e = EDGE_SUCC (bb, 0);
5062 gcc_assert (EDGE_COUNT (bb->succs) == 1
5063 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5064 && (BLOCK_TO_BB (e->dest->index) == 0));
5065 return -1;
5068 /* We don't have preds outside the region. We should have
5069 the only pred, because the multiple preds case comes from
5070 the pipelining of outer loops, and that is handled above.
5071 Just take the bbi of this single pred. */
5072 if (EDGE_COUNT (bb->succs) > 0)
5074 int pred_bbi;
5076 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5078 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5079 return BLOCK_TO_BB (pred_bbi);
5081 else
5082 /* BB has no successors. It is safe to put it in the end. */
5083 return current_nr_blocks - 1;
5086 /* Deletes an empty basic block freeing its data. */
5087 static void
5088 delete_and_free_basic_block (basic_block bb)
5090 gcc_assert (sel_bb_empty_p (bb));
5092 if (BB_LV_SET (bb))
5093 free_lv_set (bb);
5095 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5097 /* Can't assert av_set properties because we use sel_aremove_bb
5098 when removing loop preheader from the region. At the point of
5099 removing the preheader we already have deallocated sel_region_bb_info. */
5100 gcc_assert (BB_LV_SET (bb) == NULL
5101 && !BB_LV_SET_VALID_P (bb)
5102 && BB_AV_LEVEL (bb) == 0
5103 && BB_AV_SET (bb) == NULL);
5105 delete_basic_block (bb);
5108 /* Add BB to the current region and update the region data. */
5109 static void
5110 add_block_to_current_region (basic_block bb)
5112 int i, pos, bbi = -2, rgn;
5114 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5115 bbi = find_place_to_insert_bb (bb, rgn);
5116 bbi += 1;
5117 pos = RGN_BLOCKS (rgn) + bbi;
5119 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5120 && ebb_head[bbi] == pos);
5122 /* Make a place for the new block. */
5123 extend_regions ();
5125 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5126 BLOCK_TO_BB (rgn_bb_table[i])++;
5128 memmove (rgn_bb_table + pos + 1,
5129 rgn_bb_table + pos,
5130 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5132 /* Initialize data for BB. */
5133 rgn_bb_table[pos] = bb->index;
5134 BLOCK_TO_BB (bb->index) = bbi;
5135 CONTAINING_RGN (bb->index) = rgn;
5137 RGN_NR_BLOCKS (rgn)++;
5139 for (i = rgn + 1; i <= nr_regions; i++)
5140 RGN_BLOCKS (i)++;
5143 /* Remove BB from the current region and update the region data. */
5144 static void
5145 remove_bb_from_region (basic_block bb)
5147 int i, pos, bbi = -2, rgn;
5149 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5150 bbi = BLOCK_TO_BB (bb->index);
5151 pos = RGN_BLOCKS (rgn) + bbi;
5153 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5154 && ebb_head[bbi] == pos);
5156 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5157 BLOCK_TO_BB (rgn_bb_table[i])--;
5159 memmove (rgn_bb_table + pos,
5160 rgn_bb_table + pos + 1,
5161 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5163 RGN_NR_BLOCKS (rgn)--;
5164 for (i = rgn + 1; i <= nr_regions; i++)
5165 RGN_BLOCKS (i)--;
5168 /* Add BB to the current region and update all data. If BB is NULL, add all
5169 blocks from last_added_blocks vector. */
5170 static void
5171 sel_add_bb (basic_block bb)
5173 /* Extend luids so that new notes will receive zero luids. */
5174 sched_extend_luids ();
5175 sched_init_bbs ();
5176 sel_init_bbs (last_added_blocks);
5178 /* When bb is passed explicitly, the vector should contain
5179 the only element that equals to bb; otherwise, the vector
5180 should not be NULL. */
5181 gcc_assert (last_added_blocks != NULL);
5183 if (bb != NULL)
5185 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5186 && VEC_index (basic_block,
5187 last_added_blocks, 0) == bb);
5188 add_block_to_current_region (bb);
5190 /* We associate creating/deleting data sets with the first insn
5191 appearing / disappearing in the bb. */
5192 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5193 create_initial_data_sets (bb);
5195 VEC_free (basic_block, heap, last_added_blocks);
5197 else
5198 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5200 int i;
5201 basic_block temp_bb = NULL;
5203 for (i = 0;
5204 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5206 add_block_to_current_region (bb);
5207 temp_bb = bb;
5210 /* We need to fetch at least one bb so we know the region
5211 to update. */
5212 gcc_assert (temp_bb != NULL);
5213 bb = temp_bb;
5215 VEC_free (basic_block, heap, last_added_blocks);
5218 rgn_setup_region (CONTAINING_RGN (bb->index));
5221 /* Remove BB from the current region and update all data.
5222 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5223 static void
5224 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5226 unsigned idx = bb->index;
5228 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5230 remove_bb_from_region (bb);
5231 return_bb_to_pool (bb);
5232 bitmap_clear_bit (blocks_to_reschedule, idx);
5234 if (remove_from_cfg_p)
5236 basic_block succ = single_succ (bb);
5237 delete_and_free_basic_block (bb);
5238 set_immediate_dominator (CDI_DOMINATORS, succ,
5239 recompute_dominator (CDI_DOMINATORS, succ));
5242 rgn_setup_region (CONTAINING_RGN (idx));
5245 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5246 static void
5247 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5249 if (in_current_region_p (merge_bb))
5250 concat_note_lists (BB_NOTE_LIST (empty_bb),
5251 &BB_NOTE_LIST (merge_bb));
5252 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5256 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5257 region, but keep it in CFG. */
5258 static void
5259 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5261 /* The block should contain just a note or a label.
5262 We try to check whether it is unused below. */
5263 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5264 || LABEL_P (BB_HEAD (empty_bb)));
5266 /* If basic block has predecessors or successors, redirect them. */
5267 if (remove_from_cfg_p
5268 && (EDGE_COUNT (empty_bb->preds) > 0
5269 || EDGE_COUNT (empty_bb->succs) > 0))
5271 basic_block pred;
5272 basic_block succ;
5274 /* We need to init PRED and SUCC before redirecting edges. */
5275 if (EDGE_COUNT (empty_bb->preds) > 0)
5277 edge e;
5279 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5281 e = EDGE_PRED (empty_bb, 0);
5282 gcc_assert (e->src == empty_bb->prev_bb
5283 && (e->flags & EDGE_FALLTHRU));
5285 pred = empty_bb->prev_bb;
5287 else
5288 pred = NULL;
5290 if (EDGE_COUNT (empty_bb->succs) > 0)
5292 /* We do not check fallthruness here as above, because
5293 after removing a jump the edge may actually be not fallthru. */
5294 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5295 succ = EDGE_SUCC (empty_bb, 0)->dest;
5297 else
5298 succ = NULL;
5300 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5302 edge e = EDGE_PRED (empty_bb, 0);
5304 if (e->flags & EDGE_FALLTHRU)
5305 redirect_edge_succ_nodup (e, succ);
5306 else
5307 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5310 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5312 edge e = EDGE_SUCC (empty_bb, 0);
5314 if (find_edge (pred, e->dest) == NULL)
5315 redirect_edge_pred (e, pred);
5319 /* Finish removing. */
5320 sel_remove_bb (empty_bb, remove_from_cfg_p);
5323 /* An implementation of create_basic_block hook, which additionally updates
5324 per-bb data structures. */
5325 static basic_block
5326 sel_create_basic_block (void *headp, void *endp, basic_block after)
5328 basic_block new_bb;
5329 insn_t new_bb_note;
5331 gcc_assert (flag_sel_sched_pipelining_outer_loops
5332 || last_added_blocks == NULL);
5334 new_bb_note = get_bb_note_from_pool ();
5336 if (new_bb_note == NULL_RTX)
5337 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5338 else
5340 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5341 new_bb_note, after);
5342 new_bb->aux = NULL;
5345 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5347 return new_bb;
5350 /* Implement sched_init_only_bb (). */
5351 static void
5352 sel_init_only_bb (basic_block bb, basic_block after)
5354 gcc_assert (after == NULL);
5356 extend_regions ();
5357 rgn_make_new_region_out_of_new_block (bb);
5360 /* Update the latch when we've splitted or merged it from FROM block to TO.
5361 This should be checked for all outer loops, too. */
5362 static void
5363 change_loops_latches (basic_block from, basic_block to)
5365 gcc_assert (from != to);
5367 if (current_loop_nest)
5369 struct loop *loop;
5371 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5372 if (considered_for_pipelining_p (loop) && loop->latch == from)
5374 gcc_assert (loop == current_loop_nest);
5375 loop->latch = to;
5376 gcc_assert (loop_latch_edge (loop));
5381 /* Splits BB on two basic blocks, adding it to the region and extending
5382 per-bb data structures. Returns the newly created bb. */
5383 static basic_block
5384 sel_split_block (basic_block bb, rtx after)
5386 basic_block new_bb;
5387 insn_t insn;
5389 new_bb = sched_split_block_1 (bb, after);
5390 sel_add_bb (new_bb);
5392 /* This should be called after sel_add_bb, because this uses
5393 CONTAINING_RGN for the new block, which is not yet initialized.
5394 FIXME: this function may be a no-op now. */
5395 change_loops_latches (bb, new_bb);
5397 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5398 FOR_BB_INSNS (new_bb, insn)
5399 if (INSN_P (insn))
5400 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5402 if (sel_bb_empty_p (bb))
5404 gcc_assert (!sel_bb_empty_p (new_bb));
5406 /* NEW_BB has data sets that need to be updated and BB holds
5407 data sets that should be removed. Exchange these data sets
5408 so that we won't lose BB's valid data sets. */
5409 exchange_data_sets (new_bb, bb);
5410 free_data_sets (bb);
5413 if (!sel_bb_empty_p (new_bb)
5414 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5415 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5417 return new_bb;
5420 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5421 Otherwise returns NULL. */
5422 static rtx
5423 check_for_new_jump (basic_block bb, int prev_max_uid)
5425 rtx end;
5427 end = sel_bb_end (bb);
5428 if (end && INSN_UID (end) >= prev_max_uid)
5429 return end;
5430 return NULL;
5433 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5434 New means having UID at least equal to PREV_MAX_UID. */
5435 static rtx
5436 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5438 rtx jump;
5440 /* Return immediately if no new insns were emitted. */
5441 if (get_max_uid () == prev_max_uid)
5442 return NULL;
5444 /* Now check both blocks for new jumps. It will ever be only one. */
5445 if ((jump = check_for_new_jump (from, prev_max_uid)))
5446 return jump;
5448 if (jump_bb != NULL
5449 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5450 return jump;
5451 return NULL;
5454 /* Splits E and adds the newly created basic block to the current region.
5455 Returns this basic block. */
5456 basic_block
5457 sel_split_edge (edge e)
5459 basic_block new_bb, src, other_bb = NULL;
5460 int prev_max_uid;
5461 rtx jump;
5463 src = e->src;
5464 prev_max_uid = get_max_uid ();
5465 new_bb = split_edge (e);
5467 if (flag_sel_sched_pipelining_outer_loops
5468 && current_loop_nest)
5470 int i;
5471 basic_block bb;
5473 /* Some of the basic blocks might not have been added to the loop.
5474 Add them here, until this is fixed in force_fallthru. */
5475 for (i = 0;
5476 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5477 if (!bb->loop_father)
5479 add_bb_to_loop (bb, e->dest->loop_father);
5481 gcc_assert (!other_bb && (new_bb->index != bb->index));
5482 other_bb = bb;
5486 /* Add all last_added_blocks to the region. */
5487 sel_add_bb (NULL);
5489 jump = find_new_jump (src, new_bb, prev_max_uid);
5490 if (jump)
5491 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5493 /* Put the correct lv set on this block. */
5494 if (other_bb && !sel_bb_empty_p (other_bb))
5495 compute_live (sel_bb_head (other_bb));
5497 return new_bb;
5500 /* Implement sched_create_empty_bb (). */
5501 static basic_block
5502 sel_create_empty_bb (basic_block after)
5504 basic_block new_bb;
5506 new_bb = sched_create_empty_bb_1 (after);
5508 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5509 later. */
5510 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5511 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5513 VEC_free (basic_block, heap, last_added_blocks);
5514 return new_bb;
5517 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5518 will be splitted to insert a check. */
5519 basic_block
5520 sel_create_recovery_block (insn_t orig_insn)
5522 basic_block first_bb, second_bb, recovery_block;
5523 basic_block before_recovery = NULL;
5524 rtx jump;
5526 first_bb = BLOCK_FOR_INSN (orig_insn);
5527 if (sel_bb_end_p (orig_insn))
5529 /* Avoid introducing an empty block while splitting. */
5530 gcc_assert (single_succ_p (first_bb));
5531 second_bb = single_succ (first_bb);
5533 else
5534 second_bb = sched_split_block (first_bb, orig_insn);
5536 recovery_block = sched_create_recovery_block (&before_recovery);
5537 if (before_recovery)
5538 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5540 gcc_assert (sel_bb_empty_p (recovery_block));
5541 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5542 if (current_loops != NULL)
5543 add_bb_to_loop (recovery_block, first_bb->loop_father);
5545 sel_add_bb (recovery_block);
5547 jump = BB_END (recovery_block);
5548 gcc_assert (sel_bb_head (recovery_block) == jump);
5549 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5551 return recovery_block;
5554 /* Merge basic block B into basic block A. */
5555 static void
5556 sel_merge_blocks (basic_block a, basic_block b)
5558 gcc_assert (sel_bb_empty_p (b)
5559 && EDGE_COUNT (b->preds) == 1
5560 && EDGE_PRED (b, 0)->src == b->prev_bb);
5562 move_bb_info (b->prev_bb, b);
5563 remove_empty_bb (b, false);
5564 merge_blocks (a, b);
5565 change_loops_latches (b, a);
5568 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5569 data structures for possibly created bb and insns. Returns the newly
5570 added bb or NULL, when a bb was not needed. */
5571 void
5572 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5574 basic_block jump_bb, src, orig_dest = e->dest;
5575 int prev_max_uid;
5576 rtx jump;
5578 /* This function is now used only for bookkeeping code creation, where
5579 we'll never get the single pred of orig_dest block and thus will not
5580 hit unreachable blocks when updating dominator info. */
5581 gcc_assert (!sel_bb_empty_p (e->src)
5582 && !single_pred_p (orig_dest));
5583 src = e->src;
5584 prev_max_uid = get_max_uid ();
5585 jump_bb = redirect_edge_and_branch_force (e, to);
5587 if (jump_bb != NULL)
5588 sel_add_bb (jump_bb);
5590 /* This function could not be used to spoil the loop structure by now,
5591 thus we don't care to update anything. But check it to be sure. */
5592 if (current_loop_nest
5593 && pipelining_p)
5594 gcc_assert (loop_latch_edge (current_loop_nest));
5596 jump = find_new_jump (src, jump_bb, prev_max_uid);
5597 if (jump)
5598 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5599 set_immediate_dominator (CDI_DOMINATORS, to,
5600 recompute_dominator (CDI_DOMINATORS, to));
5601 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5602 recompute_dominator (CDI_DOMINATORS, orig_dest));
5605 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5606 redirected edge are in reverse topological order. */
5607 bool
5608 sel_redirect_edge_and_branch (edge e, basic_block to)
5610 bool latch_edge_p;
5611 basic_block src, orig_dest = e->dest;
5612 int prev_max_uid;
5613 rtx jump;
5614 edge redirected;
5615 bool recompute_toporder_p = false;
5616 bool maybe_unreachable = single_pred_p (orig_dest);
5618 latch_edge_p = (pipelining_p
5619 && current_loop_nest
5620 && e == loop_latch_edge (current_loop_nest));
5622 src = e->src;
5623 prev_max_uid = get_max_uid ();
5625 redirected = redirect_edge_and_branch (e, to);
5627 gcc_assert (redirected && last_added_blocks == NULL);
5629 /* When we've redirected a latch edge, update the header. */
5630 if (latch_edge_p)
5632 current_loop_nest->header = to;
5633 gcc_assert (loop_latch_edge (current_loop_nest));
5636 /* In rare situations, the topological relation between the blocks connected
5637 by the redirected edge can change (see PR42245 for an example). Update
5638 block_to_bb/bb_to_block. */
5639 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5640 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5641 recompute_toporder_p = true;
5643 jump = find_new_jump (src, NULL, prev_max_uid);
5644 if (jump)
5645 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5647 /* Only update dominator info when we don't have unreachable blocks.
5648 Otherwise we'll update in maybe_tidy_empty_bb. */
5649 if (!maybe_unreachable)
5651 set_immediate_dominator (CDI_DOMINATORS, to,
5652 recompute_dominator (CDI_DOMINATORS, to));
5653 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5654 recompute_dominator (CDI_DOMINATORS, orig_dest));
5656 return recompute_toporder_p;
5659 /* This variable holds the cfg hooks used by the selective scheduler. */
5660 static struct cfg_hooks sel_cfg_hooks;
5662 /* Register sel-sched cfg hooks. */
5663 void
5664 sel_register_cfg_hooks (void)
5666 sched_split_block = sel_split_block;
5668 orig_cfg_hooks = get_cfg_hooks ();
5669 sel_cfg_hooks = orig_cfg_hooks;
5671 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5673 set_cfg_hooks (sel_cfg_hooks);
5675 sched_init_only_bb = sel_init_only_bb;
5676 sched_split_block = sel_split_block;
5677 sched_create_empty_bb = sel_create_empty_bb;
5680 /* Unregister sel-sched cfg hooks. */
5681 void
5682 sel_unregister_cfg_hooks (void)
5684 sched_create_empty_bb = NULL;
5685 sched_split_block = NULL;
5686 sched_init_only_bb = NULL;
5688 set_cfg_hooks (orig_cfg_hooks);
5692 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5693 LABEL is where this jump should be directed. */
5695 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5697 rtx insn_rtx;
5699 gcc_assert (!INSN_P (pattern));
5701 start_sequence ();
5703 if (label == NULL_RTX)
5704 insn_rtx = emit_insn (pattern);
5705 else if (DEBUG_INSN_P (label))
5706 insn_rtx = emit_debug_insn (pattern);
5707 else
5709 insn_rtx = emit_jump_insn (pattern);
5710 JUMP_LABEL (insn_rtx) = label;
5711 ++LABEL_NUSES (label);
5714 end_sequence ();
5716 sched_extend_luids ();
5717 sched_extend_target ();
5718 sched_deps_init (false);
5720 /* Initialize INSN_CODE now. */
5721 recog_memoized (insn_rtx);
5722 return insn_rtx;
5725 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5726 must not be clonable. */
5727 vinsn_t
5728 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5730 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5732 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5733 return vinsn_create (insn_rtx, force_unique_p);
5736 /* Create a copy of INSN_RTX. */
5738 create_copy_of_insn_rtx (rtx insn_rtx)
5740 rtx res, link;
5742 if (DEBUG_INSN_P (insn_rtx))
5743 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5744 insn_rtx);
5746 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5748 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5749 NULL_RTX);
5751 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5752 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5753 there too, but are supposed to be sticky, so we copy them. */
5754 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5755 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5756 && REG_NOTE_KIND (link) != REG_EQUAL
5757 && REG_NOTE_KIND (link) != REG_EQUIV)
5759 if (GET_CODE (link) == EXPR_LIST)
5760 add_reg_note (res, REG_NOTE_KIND (link),
5761 copy_insn_1 (XEXP (link, 0)));
5762 else
5763 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5766 return res;
5769 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5770 void
5771 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5773 vinsn_detach (EXPR_VINSN (expr));
5775 EXPR_VINSN (expr) = new_vinsn;
5776 vinsn_attach (new_vinsn);
5779 /* Helpers for global init. */
5780 /* This structure is used to be able to call existing bundling mechanism
5781 and calculate insn priorities. */
5782 static struct haifa_sched_info sched_sel_haifa_sched_info =
5784 NULL, /* init_ready_list */
5785 NULL, /* can_schedule_ready_p */
5786 NULL, /* schedule_more_p */
5787 NULL, /* new_ready */
5788 NULL, /* rgn_rank */
5789 sel_print_insn, /* rgn_print_insn */
5790 contributes_to_priority,
5791 NULL, /* insn_finishes_block_p */
5793 NULL, NULL,
5794 NULL, NULL,
5795 0, 0,
5797 NULL, /* add_remove_insn */
5798 NULL, /* begin_schedule_ready */
5799 NULL, /* begin_move_insn */
5800 NULL, /* advance_target_bb */
5802 NULL,
5803 NULL,
5805 SEL_SCHED | NEW_BBS
5808 /* Setup special insns used in the scheduler. */
5809 void
5810 setup_nop_and_exit_insns (void)
5812 gcc_assert (nop_pattern == NULL_RTX
5813 && exit_insn == NULL_RTX);
5815 nop_pattern = constm1_rtx;
5817 start_sequence ();
5818 emit_insn (nop_pattern);
5819 exit_insn = get_insns ();
5820 end_sequence ();
5821 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5824 /* Free special insns used in the scheduler. */
5825 void
5826 free_nop_and_exit_insns (void)
5828 exit_insn = NULL_RTX;
5829 nop_pattern = NULL_RTX;
5832 /* Setup a special vinsn used in new insns initialization. */
5833 void
5834 setup_nop_vinsn (void)
5836 nop_vinsn = vinsn_create (exit_insn, false);
5837 vinsn_attach (nop_vinsn);
5840 /* Free a special vinsn used in new insns initialization. */
5841 void
5842 free_nop_vinsn (void)
5844 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5845 vinsn_detach (nop_vinsn);
5846 nop_vinsn = NULL;
5849 /* Call a set_sched_flags hook. */
5850 void
5851 sel_set_sched_flags (void)
5853 /* ??? This means that set_sched_flags were called, and we decided to
5854 support speculation. However, set_sched_flags also modifies flags
5855 on current_sched_info, doing this only at global init. And we
5856 sometimes change c_s_i later. So put the correct flags again. */
5857 if (spec_info && targetm.sched.set_sched_flags)
5858 targetm.sched.set_sched_flags (spec_info);
5861 /* Setup pointers to global sched info structures. */
5862 void
5863 sel_setup_sched_infos (void)
5865 rgn_setup_common_sched_info ();
5867 memcpy (&sel_common_sched_info, common_sched_info,
5868 sizeof (sel_common_sched_info));
5870 sel_common_sched_info.fix_recovery_cfg = NULL;
5871 sel_common_sched_info.add_block = NULL;
5872 sel_common_sched_info.estimate_number_of_insns
5873 = sel_estimate_number_of_insns;
5874 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5875 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5877 common_sched_info = &sel_common_sched_info;
5879 current_sched_info = &sched_sel_haifa_sched_info;
5880 current_sched_info->sched_max_insns_priority =
5881 get_rgn_sched_max_insns_priority ();
5883 sel_set_sched_flags ();
5887 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5888 *BB_ORD_INDEX after that is increased. */
5889 static void
5890 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5892 RGN_NR_BLOCKS (rgn) += 1;
5893 RGN_DONT_CALC_DEPS (rgn) = 0;
5894 RGN_HAS_REAL_EBB (rgn) = 0;
5895 CONTAINING_RGN (bb->index) = rgn;
5896 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5897 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5898 (*bb_ord_index)++;
5900 /* FIXME: it is true only when not scheduling ebbs. */
5901 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5904 /* Functions to support pipelining of outer loops. */
5906 /* Creates a new empty region and returns it's number. */
5907 static int
5908 sel_create_new_region (void)
5910 int new_rgn_number = nr_regions;
5912 RGN_NR_BLOCKS (new_rgn_number) = 0;
5914 /* FIXME: This will work only when EBBs are not created. */
5915 if (new_rgn_number != 0)
5916 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5917 RGN_NR_BLOCKS (new_rgn_number - 1);
5918 else
5919 RGN_BLOCKS (new_rgn_number) = 0;
5921 /* Set the blocks of the next region so the other functions may
5922 calculate the number of blocks in the region. */
5923 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5924 RGN_NR_BLOCKS (new_rgn_number);
5926 nr_regions++;
5928 return new_rgn_number;
5931 /* If X has a smaller topological sort number than Y, returns -1;
5932 if greater, returns 1. */
5933 static int
5934 bb_top_order_comparator (const void *x, const void *y)
5936 basic_block bb1 = *(const basic_block *) x;
5937 basic_block bb2 = *(const basic_block *) y;
5939 gcc_assert (bb1 == bb2
5940 || rev_top_order_index[bb1->index]
5941 != rev_top_order_index[bb2->index]);
5943 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5944 bbs with greater number should go earlier. */
5945 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5946 return -1;
5947 else
5948 return 1;
5951 /* Create a region for LOOP and return its number. If we don't want
5952 to pipeline LOOP, return -1. */
5953 static int
5954 make_region_from_loop (struct loop *loop)
5956 unsigned int i;
5957 int new_rgn_number = -1;
5958 struct loop *inner;
5960 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5961 int bb_ord_index = 0;
5962 basic_block *loop_blocks;
5963 basic_block preheader_block;
5965 if (loop->num_nodes
5966 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5967 return -1;
5969 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5970 for (inner = loop->inner; inner; inner = inner->inner)
5971 if (flow_bb_inside_loop_p (inner, loop->latch))
5972 return -1;
5974 loop->ninsns = num_loop_insns (loop);
5975 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5976 return -1;
5978 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5980 for (i = 0; i < loop->num_nodes; i++)
5981 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5983 free (loop_blocks);
5984 return -1;
5987 preheader_block = loop_preheader_edge (loop)->src;
5988 gcc_assert (preheader_block);
5989 gcc_assert (loop_blocks[0] == loop->header);
5991 new_rgn_number = sel_create_new_region ();
5993 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5994 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5996 for (i = 0; i < loop->num_nodes; i++)
5998 /* Add only those blocks that haven't been scheduled in the inner loop.
5999 The exception is the basic blocks with bookkeeping code - they should
6000 be added to the region (and they actually don't belong to the loop
6001 body, but to the region containing that loop body). */
6003 gcc_assert (new_rgn_number >= 0);
6005 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
6007 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6008 new_rgn_number);
6009 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
6013 free (loop_blocks);
6014 MARK_LOOP_FOR_PIPELINING (loop);
6016 return new_rgn_number;
6019 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6020 void
6021 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
6023 unsigned int i;
6024 int new_rgn_number = -1;
6025 basic_block bb;
6027 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6028 int bb_ord_index = 0;
6030 new_rgn_number = sel_create_new_region ();
6032 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
6034 gcc_assert (new_rgn_number >= 0);
6036 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6039 VEC_free (basic_block, heap, *loop_blocks);
6040 gcc_assert (*loop_blocks == NULL);
6044 /* Create region(s) from loop nest LOOP, such that inner loops will be
6045 pipelined before outer loops. Returns true when a region for LOOP
6046 is created. */
6047 static bool
6048 make_regions_from_loop_nest (struct loop *loop)
6050 struct loop *cur_loop;
6051 int rgn_number;
6053 /* Traverse all inner nodes of the loop. */
6054 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6055 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
6056 return false;
6058 /* At this moment all regular inner loops should have been pipelined.
6059 Try to create a region from this loop. */
6060 rgn_number = make_region_from_loop (loop);
6062 if (rgn_number < 0)
6063 return false;
6065 VEC_safe_push (loop_p, heap, loop_nests, loop);
6066 return true;
6069 /* Initalize data structures needed. */
6070 void
6071 sel_init_pipelining (void)
6073 /* Collect loop information to be used in outer loops pipelining. */
6074 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6075 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6076 | LOOPS_HAVE_RECORDED_EXITS
6077 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6078 current_loop_nest = NULL;
6080 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
6081 sbitmap_zero (bbs_in_loop_rgns);
6083 recompute_rev_top_order ();
6086 /* Returns a struct loop for region RGN. */
6087 loop_p
6088 get_loop_nest_for_rgn (unsigned int rgn)
6090 /* Regions created with extend_rgns don't have corresponding loop nests,
6091 because they don't represent loops. */
6092 if (rgn < VEC_length (loop_p, loop_nests))
6093 return VEC_index (loop_p, loop_nests, rgn);
6094 else
6095 return NULL;
6098 /* True when LOOP was included into pipelining regions. */
6099 bool
6100 considered_for_pipelining_p (struct loop *loop)
6102 if (loop_depth (loop) == 0)
6103 return false;
6105 /* Now, the loop could be too large or irreducible. Check whether its
6106 region is in LOOP_NESTS.
6107 We determine the region number of LOOP as the region number of its
6108 latch. We can't use header here, because this header could be
6109 just removed preheader and it will give us the wrong region number.
6110 Latch can't be used because it could be in the inner loop too. */
6111 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6113 int rgn = CONTAINING_RGN (loop->latch->index);
6115 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
6116 return true;
6119 return false;
6122 /* Makes regions from the rest of the blocks, after loops are chosen
6123 for pipelining. */
6124 static void
6125 make_regions_from_the_rest (void)
6127 int cur_rgn_blocks;
6128 int *loop_hdr;
6129 int i;
6131 basic_block bb;
6132 edge e;
6133 edge_iterator ei;
6134 int *degree;
6136 /* Index in rgn_bb_table where to start allocating new regions. */
6137 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6139 /* Make regions from all the rest basic blocks - those that don't belong to
6140 any loop or belong to irreducible loops. Prepare the data structures
6141 for extend_rgns. */
6143 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6144 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6145 loop. */
6146 loop_hdr = XNEWVEC (int, last_basic_block);
6147 degree = XCNEWVEC (int, last_basic_block);
6150 /* For each basic block that belongs to some loop assign the number
6151 of innermost loop it belongs to. */
6152 for (i = 0; i < last_basic_block; i++)
6153 loop_hdr[i] = -1;
6155 FOR_EACH_BB (bb)
6157 if (bb->loop_father && !bb->loop_father->num == 0
6158 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6159 loop_hdr[bb->index] = bb->loop_father->num;
6162 /* For each basic block degree is calculated as the number of incoming
6163 edges, that are going out of bbs that are not yet scheduled.
6164 The basic blocks that are scheduled have degree value of zero. */
6165 FOR_EACH_BB (bb)
6167 degree[bb->index] = 0;
6169 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6171 FOR_EACH_EDGE (e, ei, bb->preds)
6172 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6173 degree[bb->index]++;
6175 else
6176 degree[bb->index] = -1;
6179 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6181 /* Any block that did not end up in a region is placed into a region
6182 by itself. */
6183 FOR_EACH_BB (bb)
6184 if (degree[bb->index] >= 0)
6186 rgn_bb_table[cur_rgn_blocks] = bb->index;
6187 RGN_NR_BLOCKS (nr_regions) = 1;
6188 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6189 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6190 RGN_HAS_REAL_EBB (nr_regions) = 0;
6191 CONTAINING_RGN (bb->index) = nr_regions++;
6192 BLOCK_TO_BB (bb->index) = 0;
6195 free (degree);
6196 free (loop_hdr);
6199 /* Free data structures used in pipelining of loops. */
6200 void sel_finish_pipelining (void)
6202 loop_iterator li;
6203 struct loop *loop;
6205 /* Release aux fields so we don't free them later by mistake. */
6206 FOR_EACH_LOOP (li, loop, 0)
6207 loop->aux = NULL;
6209 loop_optimizer_finalize ();
6211 VEC_free (loop_p, heap, loop_nests);
6213 free (rev_top_order_index);
6214 rev_top_order_index = NULL;
6217 /* This function replaces the find_rgns when
6218 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6219 void
6220 sel_find_rgns (void)
6222 sel_init_pipelining ();
6223 extend_regions ();
6225 if (current_loops)
6227 loop_p loop;
6228 loop_iterator li;
6230 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6231 ? LI_FROM_INNERMOST
6232 : LI_ONLY_INNERMOST))
6233 make_regions_from_loop_nest (loop);
6236 /* Make regions from all the rest basic blocks and schedule them.
6237 These blocks include blocks that don't belong to any loop or belong
6238 to irreducible loops. */
6239 make_regions_from_the_rest ();
6241 /* We don't need bbs_in_loop_rgns anymore. */
6242 sbitmap_free (bbs_in_loop_rgns);
6243 bbs_in_loop_rgns = NULL;
6246 /* Add the preheader blocks from previous loop to current region taking
6247 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6248 This function is only used with -fsel-sched-pipelining-outer-loops. */
6249 void
6250 sel_add_loop_preheaders (bb_vec_t *bbs)
6252 int i;
6253 basic_block bb;
6254 VEC(basic_block, heap) *preheader_blocks
6255 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6257 for (i = 0;
6258 VEC_iterate (basic_block, preheader_blocks, i, bb);
6259 i++)
6261 VEC_safe_push (basic_block, heap, *bbs, bb);
6262 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6263 sel_add_bb (bb);
6266 VEC_free (basic_block, heap, preheader_blocks);
6269 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6270 Please note that the function should also work when pipelining_p is
6271 false, because it is used when deciding whether we should or should
6272 not reschedule pipelined code. */
6273 bool
6274 sel_is_loop_preheader_p (basic_block bb)
6276 if (current_loop_nest)
6278 struct loop *outer;
6280 if (preheader_removed)
6281 return false;
6283 /* Preheader is the first block in the region. */
6284 if (BLOCK_TO_BB (bb->index) == 0)
6285 return true;
6287 /* We used to find a preheader with the topological information.
6288 Check that the above code is equivalent to what we did before. */
6290 if (in_current_region_p (current_loop_nest->header))
6291 gcc_assert (!(BLOCK_TO_BB (bb->index)
6292 < BLOCK_TO_BB (current_loop_nest->header->index)));
6294 /* Support the situation when the latch block of outer loop
6295 could be from here. */
6296 for (outer = loop_outer (current_loop_nest);
6297 outer;
6298 outer = loop_outer (outer))
6299 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6300 gcc_unreachable ();
6303 return false;
6306 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6307 can be removed, making the corresponding edge fallthrough (assuming that
6308 all basic blocks between JUMP_BB and DEST_BB are empty). */
6309 static bool
6310 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6312 if (!onlyjump_p (BB_END (jump_bb))
6313 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6314 return false;
6316 /* Several outgoing edges, abnormal edge or destination of jump is
6317 not DEST_BB. */
6318 if (EDGE_COUNT (jump_bb->succs) != 1
6319 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6320 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6321 return false;
6323 /* If not anything of the upper. */
6324 return true;
6327 /* Removes the loop preheader from the current region and saves it in
6328 PREHEADER_BLOCKS of the father loop, so they will be added later to
6329 region that represents an outer loop. */
6330 static void
6331 sel_remove_loop_preheader (void)
6333 int i, old_len;
6334 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6335 basic_block bb;
6336 bool all_empty_p = true;
6337 VEC(basic_block, heap) *preheader_blocks
6338 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6340 gcc_assert (current_loop_nest);
6341 old_len = VEC_length (basic_block, preheader_blocks);
6343 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6344 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6346 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6348 /* If the basic block belongs to region, but doesn't belong to
6349 corresponding loop, then it should be a preheader. */
6350 if (sel_is_loop_preheader_p (bb))
6352 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6353 if (BB_END (bb) != bb_note (bb))
6354 all_empty_p = false;
6358 /* Remove these blocks only after iterating over the whole region. */
6359 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6360 i >= old_len;
6361 i--)
6363 bb = VEC_index (basic_block, preheader_blocks, i);
6364 sel_remove_bb (bb, false);
6367 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6369 if (!all_empty_p)
6370 /* Immediately create new region from preheader. */
6371 make_region_from_loop_preheader (&preheader_blocks);
6372 else
6374 /* If all preheader blocks are empty - dont create new empty region.
6375 Instead, remove them completely. */
6376 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
6378 edge e;
6379 edge_iterator ei;
6380 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6382 /* Redirect all incoming edges to next basic block. */
6383 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6385 if (! (e->flags & EDGE_FALLTHRU))
6386 redirect_edge_and_branch (e, bb->next_bb);
6387 else
6388 redirect_edge_succ (e, bb->next_bb);
6390 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6391 delete_and_free_basic_block (bb);
6393 /* Check if after deleting preheader there is a nonconditional
6394 jump in PREV_BB that leads to the next basic block NEXT_BB.
6395 If it is so - delete this jump and clear data sets of its
6396 basic block if it becomes empty. */
6397 if (next_bb->prev_bb == prev_bb
6398 && prev_bb != ENTRY_BLOCK_PTR
6399 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6401 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6402 if (BB_END (prev_bb) == bb_note (prev_bb))
6403 free_data_sets (prev_bb);
6406 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6407 recompute_dominator (CDI_DOMINATORS,
6408 next_bb));
6411 VEC_free (basic_block, heap, preheader_blocks);
6413 else
6414 /* Store preheader within the father's loop structure. */
6415 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6416 preheader_blocks);
6418 #endif