Typo in previous changelog commit.
[official-gcc.git] / gcc / tree.c
blob58ec6f8e5ed487618eb2ef3ca9cc9676b5a1b19a
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
50 #define obstack_chunk_alloc xmalloc
51 #define obstack_chunk_free free
52 /* obstack.[ch] explicitly declined to prototype this. */
53 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
55 /* Objects allocated on this obstack last forever. */
57 struct obstack permanent_obstack;
59 /* Statistics-gathering stuff. */
60 typedef enum
62 d_kind,
63 t_kind,
64 b_kind,
65 s_kind,
66 r_kind,
67 e_kind,
68 c_kind,
69 id_kind,
70 perm_list_kind,
71 temp_list_kind,
72 vec_kind,
73 x_kind,
74 lang_decl,
75 lang_type,
76 all_kinds
77 } tree_node_kind;
79 int tree_node_counts[(int) all_kinds];
80 int tree_node_sizes[(int) all_kinds];
82 static const char * const tree_node_kind_names[] = {
83 "decls",
84 "types",
85 "blocks",
86 "stmts",
87 "refs",
88 "exprs",
89 "constants",
90 "identifiers",
91 "perm_tree_lists",
92 "temp_tree_lists",
93 "vecs",
94 "random kinds",
95 "lang_decl kinds",
96 "lang_type kinds"
99 /* Unique id for next decl created. */
100 static int next_decl_uid;
101 /* Unique id for next type created. */
102 static int next_type_uid = 1;
104 /* Since we cannot rehash a type after it is in the table, we have to
105 keep the hash code. */
107 struct type_hash
109 unsigned long hash;
110 tree type;
113 /* Initial size of the hash table (rounded to next prime). */
114 #define TYPE_HASH_INITIAL_SIZE 1000
116 /* Now here is the hash table. When recording a type, it is added to
117 the slot whose index is the hash code. Note that the hash table is
118 used for several kinds of types (function types, array types and
119 array index range types, for now). While all these live in the
120 same table, they are completely independent, and the hash code is
121 computed differently for each of these. */
123 htab_t type_hash_table;
125 static void set_type_quals PARAMS ((tree, int));
126 static void append_random_chars PARAMS ((char *));
127 static int type_hash_eq PARAMS ((const void *, const void *));
128 static unsigned int type_hash_hash PARAMS ((const void *));
129 static void print_type_hash_statistics PARAMS((void));
130 static void finish_vector_type PARAMS((tree));
131 static tree make_vector PARAMS ((enum machine_mode, tree, int));
132 static int type_hash_marked_p PARAMS ((const void *));
133 static void type_hash_mark PARAMS ((const void *));
134 static int mark_tree_hashtable_entry PARAMS((void **, void *));
136 tree global_trees[TI_MAX];
137 tree integer_types[itk_none];
139 /* Init the principal obstacks. */
141 void
142 init_obstacks ()
144 gcc_obstack_init (&permanent_obstack);
146 /* Initialize the hash table of types. */
147 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
148 type_hash_eq, 0);
149 ggc_add_deletable_htab (type_hash_table, type_hash_marked_p,
150 type_hash_mark);
151 ggc_add_tree_root (global_trees, TI_MAX);
152 ggc_add_tree_root (integer_types, itk_none);
156 /* Allocate SIZE bytes in the permanent obstack
157 and return a pointer to them. */
159 char *
160 permalloc (size)
161 int size;
163 return (char *) obstack_alloc (&permanent_obstack, size);
166 /* Allocate NELEM items of SIZE bytes in the permanent obstack
167 and return a pointer to them. The storage is cleared before
168 returning the value. */
170 char *
171 perm_calloc (nelem, size)
172 int nelem;
173 long size;
175 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
176 memset (rval, 0, nelem * size);
177 return rval;
180 /* The name of the object as the assembler will see it (but before any
181 translations made by ASM_OUTPUT_LABELREF). Often this is the same
182 as DECL_NAME. It is an IDENTIFIER_NODE. */
183 tree
184 decl_assembler_name (decl)
185 tree decl;
187 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
188 (*lang_hooks.set_decl_assembler_name) (decl);
189 return DECL_CHECK (decl)->decl.assembler_name;
192 /* Compute the number of bytes occupied by 'node'. This routine only
193 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
194 size_t
195 tree_size (node)
196 tree node;
198 enum tree_code code = TREE_CODE (node);
200 switch (TREE_CODE_CLASS (code))
202 case 'd': /* A decl node */
203 return sizeof (struct tree_decl);
205 case 't': /* a type node */
206 return sizeof (struct tree_type);
208 case 'b': /* a lexical block node */
209 return sizeof (struct tree_block);
211 case 'r': /* a reference */
212 case 'e': /* an expression */
213 case 's': /* an expression with side effects */
214 case '<': /* a comparison expression */
215 case '1': /* a unary arithmetic expression */
216 case '2': /* a binary arithmetic expression */
217 return (sizeof (struct tree_exp)
218 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
220 case 'c': /* a constant */
221 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
222 words is machine-dependent due to varying length of HOST_WIDE_INT,
223 which might be wider than a pointer (e.g., long long). Similarly
224 for REAL_CST, since the number of words is machine-dependent due
225 to varying size and alignment of `double'. */
226 if (code == INTEGER_CST)
227 return sizeof (struct tree_int_cst);
228 else if (code == REAL_CST)
229 return sizeof (struct tree_real_cst);
230 else
231 return (sizeof (struct tree_common)
232 + TREE_CODE_LENGTH (code) * sizeof (char *));
234 case 'x': /* something random, like an identifier. */
236 size_t length;
237 length = (sizeof (struct tree_common)
238 + TREE_CODE_LENGTH (code) * sizeof (char *));
239 if (code == TREE_VEC)
240 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
241 return length;
244 default:
245 abort ();
249 /* Return a newly allocated node of code CODE.
250 For decl and type nodes, some other fields are initialized.
251 The rest of the node is initialized to zero.
253 Achoo! I got a code in the node. */
255 tree
256 make_node (code)
257 enum tree_code code;
259 tree t;
260 int type = TREE_CODE_CLASS (code);
261 size_t length;
262 #ifdef GATHER_STATISTICS
263 tree_node_kind kind;
264 #endif
265 struct tree_common ttmp;
267 /* We can't allocate a TREE_VEC without knowing how many elements
268 it will have. */
269 if (code == TREE_VEC)
270 abort ();
272 TREE_SET_CODE ((tree)&ttmp, code);
273 length = tree_size ((tree)&ttmp);
275 #ifdef GATHER_STATISTICS
276 switch (type)
278 case 'd': /* A decl node */
279 kind = d_kind;
280 break;
282 case 't': /* a type node */
283 kind = t_kind;
284 break;
286 case 'b': /* a lexical block */
287 kind = b_kind;
288 break;
290 case 's': /* an expression with side effects */
291 kind = s_kind;
292 break;
294 case 'r': /* a reference */
295 kind = r_kind;
296 break;
298 case 'e': /* an expression */
299 case '<': /* a comparison expression */
300 case '1': /* a unary arithmetic expression */
301 case '2': /* a binary arithmetic expression */
302 kind = e_kind;
303 break;
305 case 'c': /* a constant */
306 kind = c_kind;
307 break;
309 case 'x': /* something random, like an identifier. */
310 if (code == IDENTIFIER_NODE)
311 kind = id_kind;
312 else if (code == TREE_VEC)
313 kind = vec_kind;
314 else
315 kind = x_kind;
316 break;
318 default:
319 abort ();
322 tree_node_counts[(int) kind]++;
323 tree_node_sizes[(int) kind] += length;
324 #endif
326 t = ggc_alloc_tree (length);
328 memset ((PTR) t, 0, length);
330 TREE_SET_CODE (t, code);
332 switch (type)
334 case 's':
335 TREE_SIDE_EFFECTS (t) = 1;
336 TREE_TYPE (t) = void_type_node;
337 break;
339 case 'd':
340 if (code != FUNCTION_DECL)
341 DECL_ALIGN (t) = 1;
342 DECL_USER_ALIGN (t) = 0;
343 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
344 DECL_SOURCE_LINE (t) = lineno;
345 DECL_SOURCE_FILE (t) =
346 (input_filename) ? input_filename : "<built-in>";
347 DECL_UID (t) = next_decl_uid++;
349 /* We have not yet computed the alias set for this declaration. */
350 DECL_POINTER_ALIAS_SET (t) = -1;
351 break;
353 case 't':
354 TYPE_UID (t) = next_type_uid++;
355 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
356 TYPE_USER_ALIGN (t) = 0;
357 TYPE_MAIN_VARIANT (t) = t;
359 /* Default to no attributes for type, but let target change that. */
360 TYPE_ATTRIBUTES (t) = NULL_TREE;
361 (*targetm.set_default_type_attributes) (t);
363 /* We have not yet computed the alias set for this type. */
364 TYPE_ALIAS_SET (t) = -1;
365 break;
367 case 'c':
368 TREE_CONSTANT (t) = 1;
369 break;
371 case 'e':
372 switch (code)
374 case INIT_EXPR:
375 case MODIFY_EXPR:
376 case VA_ARG_EXPR:
377 case RTL_EXPR:
378 case PREDECREMENT_EXPR:
379 case PREINCREMENT_EXPR:
380 case POSTDECREMENT_EXPR:
381 case POSTINCREMENT_EXPR:
382 /* All of these have side-effects, no matter what their
383 operands are. */
384 TREE_SIDE_EFFECTS (t) = 1;
385 break;
387 default:
388 break;
390 break;
393 return t;
396 /* Return a new node with the same contents as NODE except that its
397 TREE_CHAIN is zero and it has a fresh uid. */
399 tree
400 copy_node (node)
401 tree node;
403 tree t;
404 enum tree_code code = TREE_CODE (node);
405 size_t length;
407 length = tree_size (node);
408 t = ggc_alloc_tree (length);
409 memcpy (t, node, length);
411 TREE_CHAIN (t) = 0;
412 TREE_ASM_WRITTEN (t) = 0;
414 if (TREE_CODE_CLASS (code) == 'd')
415 DECL_UID (t) = next_decl_uid++;
416 else if (TREE_CODE_CLASS (code) == 't')
418 TYPE_UID (t) = next_type_uid++;
419 /* The following is so that the debug code for
420 the copy is different from the original type.
421 The two statements usually duplicate each other
422 (because they clear fields of the same union),
423 but the optimizer should catch that. */
424 TYPE_SYMTAB_POINTER (t) = 0;
425 TYPE_SYMTAB_ADDRESS (t) = 0;
428 return t;
431 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
432 For example, this can copy a list made of TREE_LIST nodes. */
434 tree
435 copy_list (list)
436 tree list;
438 tree head;
439 tree prev, next;
441 if (list == 0)
442 return 0;
444 head = prev = copy_node (list);
445 next = TREE_CHAIN (list);
446 while (next)
448 TREE_CHAIN (prev) = copy_node (next);
449 prev = TREE_CHAIN (prev);
450 next = TREE_CHAIN (next);
452 return head;
456 /* Return a newly constructed INTEGER_CST node whose constant value
457 is specified by the two ints LOW and HI.
458 The TREE_TYPE is set to `int'.
460 This function should be used via the `build_int_2' macro. */
462 tree
463 build_int_2_wide (low, hi)
464 unsigned HOST_WIDE_INT low;
465 HOST_WIDE_INT hi;
467 tree t = make_node (INTEGER_CST);
469 TREE_INT_CST_LOW (t) = low;
470 TREE_INT_CST_HIGH (t) = hi;
471 TREE_TYPE (t) = integer_type_node;
472 return t;
475 /* Return a new VECTOR_CST node whose type is TYPE and whose values
476 are in a list pointed by VALS. */
478 tree
479 build_vector (type, vals)
480 tree type, vals;
482 tree v = make_node (VECTOR_CST);
483 int over1 = 0, over2 = 0;
484 tree link;
486 TREE_VECTOR_CST_ELTS (v) = vals;
487 TREE_TYPE (v) = type;
489 /* Iterate through elements and check for overflow. */
490 for (link = vals; link; link = TREE_CHAIN (link))
492 tree value = TREE_VALUE (link);
494 over1 |= TREE_OVERFLOW (value);
495 over2 |= TREE_CONSTANT_OVERFLOW (value);
498 TREE_OVERFLOW (v) = over1;
499 TREE_CONSTANT_OVERFLOW (v) = over2;
501 return v;
504 /* Return a new REAL_CST node whose type is TYPE and value is D. */
506 tree
507 build_real (type, d)
508 tree type;
509 REAL_VALUE_TYPE d;
511 tree v;
512 int overflow = 0;
514 /* Check for valid float value for this type on this target machine;
515 if not, can print error message and store a valid value in D. */
516 #ifdef CHECK_FLOAT_VALUE
517 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
518 #endif
520 v = make_node (REAL_CST);
521 TREE_TYPE (v) = type;
522 TREE_REAL_CST (v) = d;
523 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
524 return v;
527 /* Return a new REAL_CST node whose type is TYPE
528 and whose value is the integer value of the INTEGER_CST node I. */
530 REAL_VALUE_TYPE
531 real_value_from_int_cst (type, i)
532 tree type ATTRIBUTE_UNUSED, i;
534 REAL_VALUE_TYPE d;
536 /* Clear all bits of the real value type so that we can later do
537 bitwise comparisons to see if two values are the same. */
538 memset ((char *) &d, 0, sizeof d);
540 if (! TREE_UNSIGNED (TREE_TYPE (i)))
541 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
542 TYPE_MODE (type));
543 else
544 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
545 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
546 return d;
549 /* Given a tree representing an integer constant I, return a tree
550 representing the same value as a floating-point constant of type TYPE. */
552 tree
553 build_real_from_int_cst (type, i)
554 tree type;
555 tree i;
557 tree v;
558 int overflow = TREE_OVERFLOW (i);
559 REAL_VALUE_TYPE d;
561 v = make_node (REAL_CST);
562 TREE_TYPE (v) = type;
564 d = real_value_from_int_cst (type, i);
566 /* Check for valid float value for this type on this target machine. */
567 #ifdef CHECK_FLOAT_VALUE
568 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
569 #endif
571 TREE_REAL_CST (v) = d;
572 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
573 return v;
576 /* Return a newly constructed STRING_CST node whose value is
577 the LEN characters at STR.
578 The TREE_TYPE is not initialized. */
580 tree
581 build_string (len, str)
582 int len;
583 const char *str;
585 tree s = make_node (STRING_CST);
587 TREE_STRING_LENGTH (s) = len;
588 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
590 return s;
593 /* Return a newly constructed COMPLEX_CST node whose value is
594 specified by the real and imaginary parts REAL and IMAG.
595 Both REAL and IMAG should be constant nodes. TYPE, if specified,
596 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
598 tree
599 build_complex (type, real, imag)
600 tree type;
601 tree real, imag;
603 tree t = make_node (COMPLEX_CST);
605 TREE_REALPART (t) = real;
606 TREE_IMAGPART (t) = imag;
607 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
608 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
609 TREE_CONSTANT_OVERFLOW (t)
610 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
611 return t;
614 /* Build a newly constructed TREE_VEC node of length LEN. */
616 tree
617 make_tree_vec (len)
618 int len;
620 tree t;
621 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
623 #ifdef GATHER_STATISTICS
624 tree_node_counts[(int) vec_kind]++;
625 tree_node_sizes[(int) vec_kind] += length;
626 #endif
628 t = ggc_alloc_tree (length);
630 memset ((PTR) t, 0, length);
631 TREE_SET_CODE (t, TREE_VEC);
632 TREE_VEC_LENGTH (t) = len;
634 return t;
637 /* Return 1 if EXPR is the integer constant zero or a complex constant
638 of zero. */
641 integer_zerop (expr)
642 tree expr;
644 STRIP_NOPS (expr);
646 return ((TREE_CODE (expr) == INTEGER_CST
647 && ! TREE_CONSTANT_OVERFLOW (expr)
648 && TREE_INT_CST_LOW (expr) == 0
649 && TREE_INT_CST_HIGH (expr) == 0)
650 || (TREE_CODE (expr) == COMPLEX_CST
651 && integer_zerop (TREE_REALPART (expr))
652 && integer_zerop (TREE_IMAGPART (expr))));
655 /* Return 1 if EXPR is the integer constant one or the corresponding
656 complex constant. */
659 integer_onep (expr)
660 tree expr;
662 STRIP_NOPS (expr);
664 return ((TREE_CODE (expr) == INTEGER_CST
665 && ! TREE_CONSTANT_OVERFLOW (expr)
666 && TREE_INT_CST_LOW (expr) == 1
667 && TREE_INT_CST_HIGH (expr) == 0)
668 || (TREE_CODE (expr) == COMPLEX_CST
669 && integer_onep (TREE_REALPART (expr))
670 && integer_zerop (TREE_IMAGPART (expr))));
673 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
674 it contains. Likewise for the corresponding complex constant. */
677 integer_all_onesp (expr)
678 tree expr;
680 int prec;
681 int uns;
683 STRIP_NOPS (expr);
685 if (TREE_CODE (expr) == COMPLEX_CST
686 && integer_all_onesp (TREE_REALPART (expr))
687 && integer_zerop (TREE_IMAGPART (expr)))
688 return 1;
690 else if (TREE_CODE (expr) != INTEGER_CST
691 || TREE_CONSTANT_OVERFLOW (expr))
692 return 0;
694 uns = TREE_UNSIGNED (TREE_TYPE (expr));
695 if (!uns)
696 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
697 && TREE_INT_CST_HIGH (expr) == -1);
699 /* Note that using TYPE_PRECISION here is wrong. We care about the
700 actual bits, not the (arbitrary) range of the type. */
701 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
702 if (prec >= HOST_BITS_PER_WIDE_INT)
704 HOST_WIDE_INT high_value;
705 int shift_amount;
707 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
709 if (shift_amount > HOST_BITS_PER_WIDE_INT)
710 /* Can not handle precisions greater than twice the host int size. */
711 abort ();
712 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
713 /* Shifting by the host word size is undefined according to the ANSI
714 standard, so we must handle this as a special case. */
715 high_value = -1;
716 else
717 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
719 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
720 && TREE_INT_CST_HIGH (expr) == high_value);
722 else
723 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
726 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
727 one bit on). */
730 integer_pow2p (expr)
731 tree expr;
733 int prec;
734 HOST_WIDE_INT high, low;
736 STRIP_NOPS (expr);
738 if (TREE_CODE (expr) == COMPLEX_CST
739 && integer_pow2p (TREE_REALPART (expr))
740 && integer_zerop (TREE_IMAGPART (expr)))
741 return 1;
743 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
744 return 0;
746 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
747 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
748 high = TREE_INT_CST_HIGH (expr);
749 low = TREE_INT_CST_LOW (expr);
751 /* First clear all bits that are beyond the type's precision in case
752 we've been sign extended. */
754 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
756 else if (prec > HOST_BITS_PER_WIDE_INT)
757 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
758 else
760 high = 0;
761 if (prec < HOST_BITS_PER_WIDE_INT)
762 low &= ~((HOST_WIDE_INT) (-1) << prec);
765 if (high == 0 && low == 0)
766 return 0;
768 return ((high == 0 && (low & (low - 1)) == 0)
769 || (low == 0 && (high & (high - 1)) == 0));
772 /* Return the power of two represented by a tree node known to be a
773 power of two. */
776 tree_log2 (expr)
777 tree expr;
779 int prec;
780 HOST_WIDE_INT high, low;
782 STRIP_NOPS (expr);
784 if (TREE_CODE (expr) == COMPLEX_CST)
785 return tree_log2 (TREE_REALPART (expr));
787 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
788 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
790 high = TREE_INT_CST_HIGH (expr);
791 low = TREE_INT_CST_LOW (expr);
793 /* First clear all bits that are beyond the type's precision in case
794 we've been sign extended. */
796 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
798 else if (prec > HOST_BITS_PER_WIDE_INT)
799 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
800 else
802 high = 0;
803 if (prec < HOST_BITS_PER_WIDE_INT)
804 low &= ~((HOST_WIDE_INT) (-1) << prec);
807 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
808 : exact_log2 (low));
811 /* Similar, but return the largest integer Y such that 2 ** Y is less
812 than or equal to EXPR. */
815 tree_floor_log2 (expr)
816 tree expr;
818 int prec;
819 HOST_WIDE_INT high, low;
821 STRIP_NOPS (expr);
823 if (TREE_CODE (expr) == COMPLEX_CST)
824 return tree_log2 (TREE_REALPART (expr));
826 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
827 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
829 high = TREE_INT_CST_HIGH (expr);
830 low = TREE_INT_CST_LOW (expr);
832 /* First clear all bits that are beyond the type's precision in case
833 we've been sign extended. Ignore if type's precision hasn't been set
834 since what we are doing is setting it. */
836 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
838 else if (prec > HOST_BITS_PER_WIDE_INT)
839 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
840 else
842 high = 0;
843 if (prec < HOST_BITS_PER_WIDE_INT)
844 low &= ~((HOST_WIDE_INT) (-1) << prec);
847 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
848 : floor_log2 (low));
851 /* Return 1 if EXPR is the real constant zero. */
854 real_zerop (expr)
855 tree expr;
857 STRIP_NOPS (expr);
859 return ((TREE_CODE (expr) == REAL_CST
860 && ! TREE_CONSTANT_OVERFLOW (expr)
861 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
862 || (TREE_CODE (expr) == COMPLEX_CST
863 && real_zerop (TREE_REALPART (expr))
864 && real_zerop (TREE_IMAGPART (expr))));
867 /* Return 1 if EXPR is the real constant one in real or complex form. */
870 real_onep (expr)
871 tree expr;
873 STRIP_NOPS (expr);
875 return ((TREE_CODE (expr) == REAL_CST
876 && ! TREE_CONSTANT_OVERFLOW (expr)
877 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
878 || (TREE_CODE (expr) == COMPLEX_CST
879 && real_onep (TREE_REALPART (expr))
880 && real_zerop (TREE_IMAGPART (expr))));
883 /* Return 1 if EXPR is the real constant two. */
886 real_twop (expr)
887 tree expr;
889 STRIP_NOPS (expr);
891 return ((TREE_CODE (expr) == REAL_CST
892 && ! TREE_CONSTANT_OVERFLOW (expr)
893 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
894 || (TREE_CODE (expr) == COMPLEX_CST
895 && real_twop (TREE_REALPART (expr))
896 && real_zerop (TREE_IMAGPART (expr))));
899 /* Nonzero if EXP is a constant or a cast of a constant. */
902 really_constant_p (exp)
903 tree exp;
905 /* This is not quite the same as STRIP_NOPS. It does more. */
906 while (TREE_CODE (exp) == NOP_EXPR
907 || TREE_CODE (exp) == CONVERT_EXPR
908 || TREE_CODE (exp) == NON_LVALUE_EXPR)
909 exp = TREE_OPERAND (exp, 0);
910 return TREE_CONSTANT (exp);
913 /* Return first list element whose TREE_VALUE is ELEM.
914 Return 0 if ELEM is not in LIST. */
916 tree
917 value_member (elem, list)
918 tree elem, list;
920 while (list)
922 if (elem == TREE_VALUE (list))
923 return list;
924 list = TREE_CHAIN (list);
926 return NULL_TREE;
929 /* Return first list element whose TREE_PURPOSE is ELEM.
930 Return 0 if ELEM is not in LIST. */
932 tree
933 purpose_member (elem, list)
934 tree elem, list;
936 while (list)
938 if (elem == TREE_PURPOSE (list))
939 return list;
940 list = TREE_CHAIN (list);
942 return NULL_TREE;
945 /* Return first list element whose BINFO_TYPE is ELEM.
946 Return 0 if ELEM is not in LIST. */
948 tree
949 binfo_member (elem, list)
950 tree elem, list;
952 while (list)
954 if (elem == BINFO_TYPE (list))
955 return list;
956 list = TREE_CHAIN (list);
958 return NULL_TREE;
961 /* Return nonzero if ELEM is part of the chain CHAIN. */
964 chain_member (elem, chain)
965 tree elem, chain;
967 while (chain)
969 if (elem == chain)
970 return 1;
971 chain = TREE_CHAIN (chain);
974 return 0;
977 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
978 chain CHAIN. This and the next function are currently unused, but
979 are retained for completeness. */
982 chain_member_value (elem, chain)
983 tree elem, chain;
985 while (chain)
987 if (elem == TREE_VALUE (chain))
988 return 1;
989 chain = TREE_CHAIN (chain);
992 return 0;
995 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
996 for any piece of chain CHAIN. */
999 chain_member_purpose (elem, chain)
1000 tree elem, chain;
1002 while (chain)
1004 if (elem == TREE_PURPOSE (chain))
1005 return 1;
1006 chain = TREE_CHAIN (chain);
1009 return 0;
1012 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1013 We expect a null pointer to mark the end of the chain.
1014 This is the Lisp primitive `length'. */
1017 list_length (t)
1018 tree t;
1020 tree tail;
1021 int len = 0;
1023 for (tail = t; tail; tail = TREE_CHAIN (tail))
1024 len++;
1026 return len;
1029 /* Returns the number of FIELD_DECLs in TYPE. */
1032 fields_length (type)
1033 tree type;
1035 tree t = TYPE_FIELDS (type);
1036 int count = 0;
1038 for (; t; t = TREE_CHAIN (t))
1039 if (TREE_CODE (t) == FIELD_DECL)
1040 ++count;
1042 return count;
1045 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1046 by modifying the last node in chain 1 to point to chain 2.
1047 This is the Lisp primitive `nconc'. */
1049 tree
1050 chainon (op1, op2)
1051 tree op1, op2;
1054 if (op1)
1056 tree t1;
1057 #ifdef ENABLE_TREE_CHECKING
1058 tree t2;
1059 #endif
1061 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1063 TREE_CHAIN (t1) = op2;
1064 #ifdef ENABLE_TREE_CHECKING
1065 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1066 if (t2 == t1)
1067 abort (); /* Circularity created. */
1068 #endif
1069 return op1;
1071 else
1072 return op2;
1075 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1077 tree
1078 tree_last (chain)
1079 tree chain;
1081 tree next;
1082 if (chain)
1083 while ((next = TREE_CHAIN (chain)))
1084 chain = next;
1085 return chain;
1088 /* Reverse the order of elements in the chain T,
1089 and return the new head of the chain (old last element). */
1091 tree
1092 nreverse (t)
1093 tree t;
1095 tree prev = 0, decl, next;
1096 for (decl = t; decl; decl = next)
1098 next = TREE_CHAIN (decl);
1099 TREE_CHAIN (decl) = prev;
1100 prev = decl;
1102 return prev;
1105 /* Given a chain CHAIN of tree nodes,
1106 construct and return a list of those nodes. */
1108 tree
1109 listify (chain)
1110 tree chain;
1112 tree result = NULL_TREE;
1113 tree in_tail = chain;
1114 tree out_tail = NULL_TREE;
1116 while (in_tail)
1118 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1119 if (out_tail)
1120 TREE_CHAIN (out_tail) = next;
1121 else
1122 result = next;
1123 out_tail = next;
1124 in_tail = TREE_CHAIN (in_tail);
1127 return result;
1130 /* Return a newly created TREE_LIST node whose
1131 purpose and value fields are PARM and VALUE. */
1133 tree
1134 build_tree_list (parm, value)
1135 tree parm, value;
1137 tree t = make_node (TREE_LIST);
1138 TREE_PURPOSE (t) = parm;
1139 TREE_VALUE (t) = value;
1140 return t;
1143 /* Return a newly created TREE_LIST node whose
1144 purpose and value fields are PARM and VALUE
1145 and whose TREE_CHAIN is CHAIN. */
1147 tree
1148 tree_cons (purpose, value, chain)
1149 tree purpose, value, chain;
1151 tree node;
1153 node = ggc_alloc_tree (sizeof (struct tree_list));
1155 memset (node, 0, sizeof (struct tree_common));
1157 #ifdef GATHER_STATISTICS
1158 tree_node_counts[(int) x_kind]++;
1159 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1160 #endif
1162 TREE_SET_CODE (node, TREE_LIST);
1163 TREE_CHAIN (node) = chain;
1164 TREE_PURPOSE (node) = purpose;
1165 TREE_VALUE (node) = value;
1166 return node;
1170 /* Return the size nominally occupied by an object of type TYPE
1171 when it resides in memory. The value is measured in units of bytes,
1172 and its data type is that normally used for type sizes
1173 (which is the first type created by make_signed_type or
1174 make_unsigned_type). */
1176 tree
1177 size_in_bytes (type)
1178 tree type;
1180 tree t;
1182 if (type == error_mark_node)
1183 return integer_zero_node;
1185 type = TYPE_MAIN_VARIANT (type);
1186 t = TYPE_SIZE_UNIT (type);
1188 if (t == 0)
1190 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1191 return size_zero_node;
1194 if (TREE_CODE (t) == INTEGER_CST)
1195 force_fit_type (t, 0);
1197 return t;
1200 /* Return the size of TYPE (in bytes) as a wide integer
1201 or return -1 if the size can vary or is larger than an integer. */
1203 HOST_WIDE_INT
1204 int_size_in_bytes (type)
1205 tree type;
1207 tree t;
1209 if (type == error_mark_node)
1210 return 0;
1212 type = TYPE_MAIN_VARIANT (type);
1213 t = TYPE_SIZE_UNIT (type);
1214 if (t == 0
1215 || TREE_CODE (t) != INTEGER_CST
1216 || TREE_OVERFLOW (t)
1217 || TREE_INT_CST_HIGH (t) != 0
1218 /* If the result would appear negative, it's too big to represent. */
1219 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1220 return -1;
1222 return TREE_INT_CST_LOW (t);
1225 /* Return the bit position of FIELD, in bits from the start of the record.
1226 This is a tree of type bitsizetype. */
1228 tree
1229 bit_position (field)
1230 tree field;
1233 return bit_from_pos (DECL_FIELD_OFFSET (field),
1234 DECL_FIELD_BIT_OFFSET (field));
1237 /* Likewise, but return as an integer. Abort if it cannot be represented
1238 in that way (since it could be a signed value, we don't have the option
1239 of returning -1 like int_size_in_byte can. */
1241 HOST_WIDE_INT
1242 int_bit_position (field)
1243 tree field;
1245 return tree_low_cst (bit_position (field), 0);
1248 /* Return the byte position of FIELD, in bytes from the start of the record.
1249 This is a tree of type sizetype. */
1251 tree
1252 byte_position (field)
1253 tree field;
1255 return byte_from_pos (DECL_FIELD_OFFSET (field),
1256 DECL_FIELD_BIT_OFFSET (field));
1259 /* Likewise, but return as an integer. Abort if it cannot be represented
1260 in that way (since it could be a signed value, we don't have the option
1261 of returning -1 like int_size_in_byte can. */
1263 HOST_WIDE_INT
1264 int_byte_position (field)
1265 tree field;
1267 return tree_low_cst (byte_position (field), 0);
1270 /* Return the strictest alignment, in bits, that T is known to have. */
1272 unsigned int
1273 expr_align (t)
1274 tree t;
1276 unsigned int align0, align1;
1278 switch (TREE_CODE (t))
1280 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1281 /* If we have conversions, we know that the alignment of the
1282 object must meet each of the alignments of the types. */
1283 align0 = expr_align (TREE_OPERAND (t, 0));
1284 align1 = TYPE_ALIGN (TREE_TYPE (t));
1285 return MAX (align0, align1);
1287 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1288 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1289 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1290 /* These don't change the alignment of an object. */
1291 return expr_align (TREE_OPERAND (t, 0));
1293 case COND_EXPR:
1294 /* The best we can do is say that the alignment is the least aligned
1295 of the two arms. */
1296 align0 = expr_align (TREE_OPERAND (t, 1));
1297 align1 = expr_align (TREE_OPERAND (t, 2));
1298 return MIN (align0, align1);
1300 case LABEL_DECL: case CONST_DECL:
1301 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1302 if (DECL_ALIGN (t) != 0)
1303 return DECL_ALIGN (t);
1304 break;
1306 case FUNCTION_DECL:
1307 return FUNCTION_BOUNDARY;
1309 default:
1310 break;
1313 /* Otherwise take the alignment from that of the type. */
1314 return TYPE_ALIGN (TREE_TYPE (t));
1317 /* Return, as a tree node, the number of elements for TYPE (which is an
1318 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1320 tree
1321 array_type_nelts (type)
1322 tree type;
1324 tree index_type, min, max;
1326 /* If they did it with unspecified bounds, then we should have already
1327 given an error about it before we got here. */
1328 if (! TYPE_DOMAIN (type))
1329 return error_mark_node;
1331 index_type = TYPE_DOMAIN (type);
1332 min = TYPE_MIN_VALUE (index_type);
1333 max = TYPE_MAX_VALUE (index_type);
1335 return (integer_zerop (min)
1336 ? max
1337 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1340 /* Return nonzero if arg is static -- a reference to an object in
1341 static storage. This is not the same as the C meaning of `static'. */
1344 staticp (arg)
1345 tree arg;
1347 switch (TREE_CODE (arg))
1349 case FUNCTION_DECL:
1350 /* Nested functions aren't static, since taking their address
1351 involves a trampoline. */
1352 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1353 && ! DECL_NON_ADDR_CONST_P (arg));
1355 case VAR_DECL:
1356 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1357 && ! DECL_THREAD_LOCAL (arg)
1358 && ! DECL_NON_ADDR_CONST_P (arg));
1360 case CONSTRUCTOR:
1361 return TREE_STATIC (arg);
1363 case LABEL_DECL:
1364 case STRING_CST:
1365 return 1;
1367 /* If we are referencing a bitfield, we can't evaluate an
1368 ADDR_EXPR at compile time and so it isn't a constant. */
1369 case COMPONENT_REF:
1370 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1371 && staticp (TREE_OPERAND (arg, 0)));
1373 case BIT_FIELD_REF:
1374 return 0;
1376 #if 0
1377 /* This case is technically correct, but results in setting
1378 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1379 compile time. */
1380 case INDIRECT_REF:
1381 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1382 #endif
1384 case ARRAY_REF:
1385 case ARRAY_RANGE_REF:
1386 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1387 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1388 return staticp (TREE_OPERAND (arg, 0));
1390 default:
1391 if ((unsigned int) TREE_CODE (arg)
1392 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1393 return (*lang_hooks.staticp) (arg);
1394 else
1395 return 0;
1399 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1400 Do this to any expression which may be used in more than one place,
1401 but must be evaluated only once.
1403 Normally, expand_expr would reevaluate the expression each time.
1404 Calling save_expr produces something that is evaluated and recorded
1405 the first time expand_expr is called on it. Subsequent calls to
1406 expand_expr just reuse the recorded value.
1408 The call to expand_expr that generates code that actually computes
1409 the value is the first call *at compile time*. Subsequent calls
1410 *at compile time* generate code to use the saved value.
1411 This produces correct result provided that *at run time* control
1412 always flows through the insns made by the first expand_expr
1413 before reaching the other places where the save_expr was evaluated.
1414 You, the caller of save_expr, must make sure this is so.
1416 Constants, and certain read-only nodes, are returned with no
1417 SAVE_EXPR because that is safe. Expressions containing placeholders
1418 are not touched; see tree.def for an explanation of what these
1419 are used for. */
1421 tree
1422 save_expr (expr)
1423 tree expr;
1425 tree t = fold (expr);
1426 tree inner;
1428 /* We don't care about whether this can be used as an lvalue in this
1429 context. */
1430 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1431 t = TREE_OPERAND (t, 0);
1433 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1434 a constant, it will be more efficient to not make another SAVE_EXPR since
1435 it will allow better simplification and GCSE will be able to merge the
1436 computations if they actualy occur. */
1437 for (inner = t;
1438 (TREE_CODE_CLASS (TREE_CODE (inner)) == '1'
1439 || (TREE_CODE_CLASS (TREE_CODE (inner)) == '2'
1440 && TREE_CONSTANT (TREE_OPERAND (inner, 1))));
1441 inner = TREE_OPERAND (inner, 0))
1444 /* If the tree evaluates to a constant, then we don't want to hide that
1445 fact (i.e. this allows further folding, and direct checks for constants).
1446 However, a read-only object that has side effects cannot be bypassed.
1447 Since it is no problem to reevaluate literals, we just return the
1448 literal node. */
1449 if (TREE_CONSTANT (inner)
1450 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1451 || TREE_CODE (inner) == SAVE_EXPR || TREE_CODE (inner) == ERROR_MARK)
1452 return t;
1454 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1455 it means that the size or offset of some field of an object depends on
1456 the value within another field.
1458 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1459 and some variable since it would then need to be both evaluated once and
1460 evaluated more than once. Front-ends must assure this case cannot
1461 happen by surrounding any such subexpressions in their own SAVE_EXPR
1462 and forcing evaluation at the proper time. */
1463 if (contains_placeholder_p (t))
1464 return t;
1466 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1468 /* This expression might be placed ahead of a jump to ensure that the
1469 value was computed on both sides of the jump. So make sure it isn't
1470 eliminated as dead. */
1471 TREE_SIDE_EFFECTS (t) = 1;
1472 TREE_READONLY (t) = 1;
1473 return t;
1476 /* Arrange for an expression to be expanded multiple independent
1477 times. This is useful for cleanup actions, as the backend can
1478 expand them multiple times in different places. */
1480 tree
1481 unsave_expr (expr)
1482 tree expr;
1484 tree t;
1486 /* If this is already protected, no sense in protecting it again. */
1487 if (TREE_CODE (expr) == UNSAVE_EXPR)
1488 return expr;
1490 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1491 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1492 return t;
1495 /* Returns the index of the first non-tree operand for CODE, or the number
1496 of operands if all are trees. */
1499 first_rtl_op (code)
1500 enum tree_code code;
1502 switch (code)
1504 case SAVE_EXPR:
1505 return 2;
1506 case GOTO_SUBROUTINE_EXPR:
1507 case RTL_EXPR:
1508 return 0;
1509 case WITH_CLEANUP_EXPR:
1510 return 2;
1511 case METHOD_CALL_EXPR:
1512 return 3;
1513 default:
1514 return TREE_CODE_LENGTH (code);
1518 /* Perform any modifications to EXPR required when it is unsaved. Does
1519 not recurse into EXPR's subtrees. */
1521 void
1522 unsave_expr_1 (expr)
1523 tree expr;
1525 switch (TREE_CODE (expr))
1527 case SAVE_EXPR:
1528 if (! SAVE_EXPR_PERSISTENT_P (expr))
1529 SAVE_EXPR_RTL (expr) = 0;
1530 break;
1532 case TARGET_EXPR:
1533 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1534 It's OK for this to happen if it was part of a subtree that
1535 isn't immediately expanded, such as operand 2 of another
1536 TARGET_EXPR. */
1537 if (TREE_OPERAND (expr, 1))
1538 break;
1540 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1541 TREE_OPERAND (expr, 3) = NULL_TREE;
1542 break;
1544 case RTL_EXPR:
1545 /* I don't yet know how to emit a sequence multiple times. */
1546 if (RTL_EXPR_SEQUENCE (expr) != 0)
1547 abort ();
1548 break;
1550 default:
1551 break;
1555 /* Default lang hook for "unsave_expr_now". */
1557 tree
1558 lhd_unsave_expr_now (expr)
1559 tree expr;
1561 enum tree_code code;
1563 /* There's nothing to do for NULL_TREE. */
1564 if (expr == 0)
1565 return expr;
1567 unsave_expr_1 (expr);
1569 code = TREE_CODE (expr);
1570 switch (TREE_CODE_CLASS (code))
1572 case 'c': /* a constant */
1573 case 't': /* a type node */
1574 case 'd': /* A decl node */
1575 case 'b': /* A block node */
1576 break;
1578 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1579 if (code == TREE_LIST)
1581 lhd_unsave_expr_now (TREE_VALUE (expr));
1582 lhd_unsave_expr_now (TREE_CHAIN (expr));
1584 break;
1586 case 'e': /* an expression */
1587 case 'r': /* a reference */
1588 case 's': /* an expression with side effects */
1589 case '<': /* a comparison expression */
1590 case '2': /* a binary arithmetic expression */
1591 case '1': /* a unary arithmetic expression */
1593 int i;
1595 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1596 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1598 break;
1600 default:
1601 abort ();
1604 return expr;
1607 /* Return 0 if it is safe to evaluate EXPR multiple times,
1608 return 1 if it is safe if EXPR is unsaved afterward, or
1609 return 2 if it is completely unsafe.
1611 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1612 an expression tree, so that it safe to unsave them and the surrounding
1613 context will be correct.
1615 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1616 occasionally across the whole of a function. It is therefore only
1617 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1618 below the UNSAVE_EXPR.
1620 RTL_EXPRs consume their rtl during evaluation. It is therefore
1621 never possible to unsave them. */
1624 unsafe_for_reeval (expr)
1625 tree expr;
1627 int unsafeness = 0;
1628 enum tree_code code;
1629 int i, tmp;
1630 tree exp;
1631 int first_rtl;
1633 if (expr == NULL_TREE)
1634 return 1;
1636 code = TREE_CODE (expr);
1637 first_rtl = first_rtl_op (code);
1639 switch (code)
1641 case SAVE_EXPR:
1642 case RTL_EXPR:
1643 return 2;
1645 case TREE_LIST:
1646 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1648 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1649 unsafeness = MAX (tmp, unsafeness);
1652 return unsafeness;
1654 case CALL_EXPR:
1655 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1656 return MAX (tmp, 1);
1658 case TARGET_EXPR:
1659 unsafeness = 1;
1660 break;
1662 default:
1663 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1664 if (tmp >= 0)
1665 return tmp;
1666 break;
1669 switch (TREE_CODE_CLASS (code))
1671 case 'c': /* a constant */
1672 case 't': /* a type node */
1673 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1674 case 'd': /* A decl node */
1675 case 'b': /* A block node */
1676 return 0;
1678 case 'e': /* an expression */
1679 case 'r': /* a reference */
1680 case 's': /* an expression with side effects */
1681 case '<': /* a comparison expression */
1682 case '2': /* a binary arithmetic expression */
1683 case '1': /* a unary arithmetic expression */
1684 for (i = first_rtl - 1; i >= 0; i--)
1686 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1687 unsafeness = MAX (tmp, unsafeness);
1690 return unsafeness;
1692 default:
1693 return 2;
1697 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1698 or offset that depends on a field within a record. */
1701 contains_placeholder_p (exp)
1702 tree exp;
1704 enum tree_code code;
1705 int result;
1707 if (!exp)
1708 return 0;
1710 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1711 in it since it is supplying a value for it. */
1712 code = TREE_CODE (exp);
1713 if (code == WITH_RECORD_EXPR)
1714 return 0;
1715 else if (code == PLACEHOLDER_EXPR)
1716 return 1;
1718 switch (TREE_CODE_CLASS (code))
1720 case 'r':
1721 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1722 position computations since they will be converted into a
1723 WITH_RECORD_EXPR involving the reference, which will assume
1724 here will be valid. */
1725 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1727 case 'x':
1728 if (code == TREE_LIST)
1729 return (contains_placeholder_p (TREE_VALUE (exp))
1730 || (TREE_CHAIN (exp) != 0
1731 && contains_placeholder_p (TREE_CHAIN (exp))));
1732 break;
1734 case '1':
1735 case '2': case '<':
1736 case 'e':
1737 switch (code)
1739 case COMPOUND_EXPR:
1740 /* Ignoring the first operand isn't quite right, but works best. */
1741 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1743 case RTL_EXPR:
1744 case CONSTRUCTOR:
1745 return 0;
1747 case COND_EXPR:
1748 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1749 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1750 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1752 case SAVE_EXPR:
1753 /* If we already know this doesn't have a placeholder, don't
1754 check again. */
1755 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1756 return 0;
1758 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1759 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1760 if (result)
1761 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1763 return result;
1765 case CALL_EXPR:
1766 return (TREE_OPERAND (exp, 1) != 0
1767 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1769 default:
1770 break;
1773 switch (TREE_CODE_LENGTH (code))
1775 case 1:
1776 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1777 case 2:
1778 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1779 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1780 default:
1781 return 0;
1784 default:
1785 return 0;
1787 return 0;
1790 /* Return 1 if EXP contains any expressions that produce cleanups for an
1791 outer scope to deal with. Used by fold. */
1794 has_cleanups (exp)
1795 tree exp;
1797 int i, nops, cmp;
1799 if (! TREE_SIDE_EFFECTS (exp))
1800 return 0;
1802 switch (TREE_CODE (exp))
1804 case TARGET_EXPR:
1805 case GOTO_SUBROUTINE_EXPR:
1806 case WITH_CLEANUP_EXPR:
1807 return 1;
1809 case CLEANUP_POINT_EXPR:
1810 return 0;
1812 case CALL_EXPR:
1813 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1815 cmp = has_cleanups (TREE_VALUE (exp));
1816 if (cmp)
1817 return cmp;
1819 return 0;
1821 default:
1822 break;
1825 /* This general rule works for most tree codes. All exceptions should be
1826 handled above. If this is a language-specific tree code, we can't
1827 trust what might be in the operand, so say we don't know
1828 the situation. */
1829 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1830 return -1;
1832 nops = first_rtl_op (TREE_CODE (exp));
1833 for (i = 0; i < nops; i++)
1834 if (TREE_OPERAND (exp, i) != 0)
1836 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1837 if (type == 'e' || type == '<' || type == '1' || type == '2'
1838 || type == 'r' || type == 's')
1840 cmp = has_cleanups (TREE_OPERAND (exp, i));
1841 if (cmp)
1842 return cmp;
1846 return 0;
1849 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1850 return a tree with all occurrences of references to F in a
1851 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1852 contains only arithmetic expressions or a CALL_EXPR with a
1853 PLACEHOLDER_EXPR occurring only in its arglist. */
1855 tree
1856 substitute_in_expr (exp, f, r)
1857 tree exp;
1858 tree f;
1859 tree r;
1861 enum tree_code code = TREE_CODE (exp);
1862 tree op0, op1, op2;
1863 tree new;
1864 tree inner;
1866 switch (TREE_CODE_CLASS (code))
1868 case 'c':
1869 case 'd':
1870 return exp;
1872 case 'x':
1873 if (code == PLACEHOLDER_EXPR)
1874 return exp;
1875 else if (code == TREE_LIST)
1877 op0 = (TREE_CHAIN (exp) == 0
1878 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1879 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1880 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1881 return exp;
1883 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1886 abort ();
1888 case '1':
1889 case '2':
1890 case '<':
1891 case 'e':
1892 switch (TREE_CODE_LENGTH (code))
1894 case 1:
1895 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1896 if (op0 == TREE_OPERAND (exp, 0))
1897 return exp;
1899 if (code == NON_LVALUE_EXPR)
1900 return op0;
1902 new = fold (build1 (code, TREE_TYPE (exp), op0));
1903 break;
1905 case 2:
1906 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1907 could, but we don't support it. */
1908 if (code == RTL_EXPR)
1909 return exp;
1910 else if (code == CONSTRUCTOR)
1911 abort ();
1913 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1914 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1915 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1916 return exp;
1918 new = fold (build (code, TREE_TYPE (exp), op0, op1));
1919 break;
1921 case 3:
1922 /* It cannot be that anything inside a SAVE_EXPR contains a
1923 PLACEHOLDER_EXPR. */
1924 if (code == SAVE_EXPR)
1925 return exp;
1927 else if (code == CALL_EXPR)
1929 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1930 if (op1 == TREE_OPERAND (exp, 1))
1931 return exp;
1933 return build (code, TREE_TYPE (exp),
1934 TREE_OPERAND (exp, 0), op1, NULL_TREE);
1937 else if (code != COND_EXPR)
1938 abort ();
1940 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1941 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1942 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1943 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1944 && op2 == TREE_OPERAND (exp, 2))
1945 return exp;
1947 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1948 break;
1950 default:
1951 abort ();
1954 break;
1956 case 'r':
1957 switch (code)
1959 case COMPONENT_REF:
1960 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1961 and it is the right field, replace it with R. */
1962 for (inner = TREE_OPERAND (exp, 0);
1963 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
1964 inner = TREE_OPERAND (inner, 0))
1966 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1967 && TREE_OPERAND (exp, 1) == f)
1968 return r;
1970 /* If this expression hasn't been completed let, leave it
1971 alone. */
1972 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1973 && TREE_TYPE (inner) == 0)
1974 return exp;
1976 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1977 if (op0 == TREE_OPERAND (exp, 0))
1978 return exp;
1980 new = fold (build (code, TREE_TYPE (exp), op0,
1981 TREE_OPERAND (exp, 1)));
1982 break;
1984 case BIT_FIELD_REF:
1985 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1986 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
1987 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
1988 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1989 && op2 == TREE_OPERAND (exp, 2))
1990 return exp;
1992 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
1993 break;
1995 case INDIRECT_REF:
1996 case BUFFER_REF:
1997 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1998 if (op0 == TREE_OPERAND (exp, 0))
1999 return exp;
2001 new = fold (build1 (code, TREE_TYPE (exp), op0));
2002 break;
2004 default:
2005 abort ();
2007 break;
2009 default:
2010 abort ();
2013 TREE_READONLY (new) = TREE_READONLY (exp);
2014 return new;
2017 /* Stabilize a reference so that we can use it any number of times
2018 without causing its operands to be evaluated more than once.
2019 Returns the stabilized reference. This works by means of save_expr,
2020 so see the caveats in the comments about save_expr.
2022 Also allows conversion expressions whose operands are references.
2023 Any other kind of expression is returned unchanged. */
2025 tree
2026 stabilize_reference (ref)
2027 tree ref;
2029 tree result;
2030 enum tree_code code = TREE_CODE (ref);
2032 switch (code)
2034 case VAR_DECL:
2035 case PARM_DECL:
2036 case RESULT_DECL:
2037 /* No action is needed in this case. */
2038 return ref;
2040 case NOP_EXPR:
2041 case CONVERT_EXPR:
2042 case FLOAT_EXPR:
2043 case FIX_TRUNC_EXPR:
2044 case FIX_FLOOR_EXPR:
2045 case FIX_ROUND_EXPR:
2046 case FIX_CEIL_EXPR:
2047 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2048 break;
2050 case INDIRECT_REF:
2051 result = build_nt (INDIRECT_REF,
2052 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2053 break;
2055 case COMPONENT_REF:
2056 result = build_nt (COMPONENT_REF,
2057 stabilize_reference (TREE_OPERAND (ref, 0)),
2058 TREE_OPERAND (ref, 1));
2059 break;
2061 case BIT_FIELD_REF:
2062 result = build_nt (BIT_FIELD_REF,
2063 stabilize_reference (TREE_OPERAND (ref, 0)),
2064 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2065 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2066 break;
2068 case ARRAY_REF:
2069 result = build_nt (ARRAY_REF,
2070 stabilize_reference (TREE_OPERAND (ref, 0)),
2071 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2072 break;
2074 case ARRAY_RANGE_REF:
2075 result = build_nt (ARRAY_RANGE_REF,
2076 stabilize_reference (TREE_OPERAND (ref, 0)),
2077 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2078 break;
2080 case COMPOUND_EXPR:
2081 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2082 it wouldn't be ignored. This matters when dealing with
2083 volatiles. */
2084 return stabilize_reference_1 (ref);
2086 case RTL_EXPR:
2087 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2088 save_expr (build1 (ADDR_EXPR,
2089 build_pointer_type (TREE_TYPE (ref)),
2090 ref)));
2091 break;
2093 /* If arg isn't a kind of lvalue we recognize, make no change.
2094 Caller should recognize the error for an invalid lvalue. */
2095 default:
2096 return ref;
2098 case ERROR_MARK:
2099 return error_mark_node;
2102 TREE_TYPE (result) = TREE_TYPE (ref);
2103 TREE_READONLY (result) = TREE_READONLY (ref);
2104 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2105 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2107 return result;
2110 /* Subroutine of stabilize_reference; this is called for subtrees of
2111 references. Any expression with side-effects must be put in a SAVE_EXPR
2112 to ensure that it is only evaluated once.
2114 We don't put SAVE_EXPR nodes around everything, because assigning very
2115 simple expressions to temporaries causes us to miss good opportunities
2116 for optimizations. Among other things, the opportunity to fold in the
2117 addition of a constant into an addressing mode often gets lost, e.g.
2118 "y[i+1] += x;". In general, we take the approach that we should not make
2119 an assignment unless we are forced into it - i.e., that any non-side effect
2120 operator should be allowed, and that cse should take care of coalescing
2121 multiple utterances of the same expression should that prove fruitful. */
2123 tree
2124 stabilize_reference_1 (e)
2125 tree e;
2127 tree result;
2128 enum tree_code code = TREE_CODE (e);
2130 /* We cannot ignore const expressions because it might be a reference
2131 to a const array but whose index contains side-effects. But we can
2132 ignore things that are actual constant or that already have been
2133 handled by this function. */
2135 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2136 return e;
2138 switch (TREE_CODE_CLASS (code))
2140 case 'x':
2141 case 't':
2142 case 'd':
2143 case 'b':
2144 case '<':
2145 case 's':
2146 case 'e':
2147 case 'r':
2148 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2149 so that it will only be evaluated once. */
2150 /* The reference (r) and comparison (<) classes could be handled as
2151 below, but it is generally faster to only evaluate them once. */
2152 if (TREE_SIDE_EFFECTS (e))
2153 return save_expr (e);
2154 return e;
2156 case 'c':
2157 /* Constants need no processing. In fact, we should never reach
2158 here. */
2159 return e;
2161 case '2':
2162 /* Division is slow and tends to be compiled with jumps,
2163 especially the division by powers of 2 that is often
2164 found inside of an array reference. So do it just once. */
2165 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2166 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2167 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2168 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2169 return save_expr (e);
2170 /* Recursively stabilize each operand. */
2171 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2172 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2173 break;
2175 case '1':
2176 /* Recursively stabilize each operand. */
2177 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2178 break;
2180 default:
2181 abort ();
2184 TREE_TYPE (result) = TREE_TYPE (e);
2185 TREE_READONLY (result) = TREE_READONLY (e);
2186 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2187 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2189 return result;
2192 /* Low-level constructors for expressions. */
2194 /* Build an expression of code CODE, data type TYPE,
2195 and operands as specified by the arguments ARG1 and following arguments.
2196 Expressions and reference nodes can be created this way.
2197 Constants, decls, types and misc nodes cannot be. */
2199 tree
2200 build VPARAMS ((enum tree_code code, tree tt, ...))
2202 tree t;
2203 int length;
2204 int i;
2205 int fro;
2206 int constant;
2208 VA_OPEN (p, tt);
2209 VA_FIXEDARG (p, enum tree_code, code);
2210 VA_FIXEDARG (p, tree, tt);
2212 t = make_node (code);
2213 length = TREE_CODE_LENGTH (code);
2214 TREE_TYPE (t) = tt;
2216 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2217 result based on those same flags for the arguments. But if the
2218 arguments aren't really even `tree' expressions, we shouldn't be trying
2219 to do this. */
2220 fro = first_rtl_op (code);
2222 /* Expressions without side effects may be constant if their
2223 arguments are as well. */
2224 constant = (TREE_CODE_CLASS (code) == '<'
2225 || TREE_CODE_CLASS (code) == '1'
2226 || TREE_CODE_CLASS (code) == '2'
2227 || TREE_CODE_CLASS (code) == 'c');
2229 if (length == 2)
2231 /* This is equivalent to the loop below, but faster. */
2232 tree arg0 = va_arg (p, tree);
2233 tree arg1 = va_arg (p, tree);
2235 TREE_OPERAND (t, 0) = arg0;
2236 TREE_OPERAND (t, 1) = arg1;
2237 TREE_READONLY (t) = 1;
2238 if (arg0 && fro > 0)
2240 if (TREE_SIDE_EFFECTS (arg0))
2241 TREE_SIDE_EFFECTS (t) = 1;
2242 if (!TREE_READONLY (arg0))
2243 TREE_READONLY (t) = 0;
2244 if (!TREE_CONSTANT (arg0))
2245 constant = 0;
2248 if (arg1 && fro > 1)
2250 if (TREE_SIDE_EFFECTS (arg1))
2251 TREE_SIDE_EFFECTS (t) = 1;
2252 if (!TREE_READONLY (arg1))
2253 TREE_READONLY (t) = 0;
2254 if (!TREE_CONSTANT (arg1))
2255 constant = 0;
2258 else if (length == 1)
2260 tree arg0 = va_arg (p, tree);
2262 /* The only one-operand cases we handle here are those with side-effects.
2263 Others are handled with build1. So don't bother checked if the
2264 arg has side-effects since we'll already have set it.
2266 ??? This really should use build1 too. */
2267 if (TREE_CODE_CLASS (code) != 's')
2268 abort ();
2269 TREE_OPERAND (t, 0) = arg0;
2271 else
2273 for (i = 0; i < length; i++)
2275 tree operand = va_arg (p, tree);
2277 TREE_OPERAND (t, i) = operand;
2278 if (operand && fro > i)
2280 if (TREE_SIDE_EFFECTS (operand))
2281 TREE_SIDE_EFFECTS (t) = 1;
2282 if (!TREE_CONSTANT (operand))
2283 constant = 0;
2287 VA_CLOSE (p);
2289 TREE_CONSTANT (t) = constant;
2290 return t;
2293 /* Same as above, but only builds for unary operators.
2294 Saves lions share of calls to `build'; cuts down use
2295 of varargs, which is expensive for RISC machines. */
2297 tree
2298 build1 (code, type, node)
2299 enum tree_code code;
2300 tree type;
2301 tree node;
2303 int length;
2304 #ifdef GATHER_STATISTICS
2305 tree_node_kind kind;
2306 #endif
2307 tree t;
2309 #ifdef GATHER_STATISTICS
2310 if (TREE_CODE_CLASS (code) == 'r')
2311 kind = r_kind;
2312 else
2313 kind = e_kind;
2314 #endif
2316 #ifdef ENABLE_CHECKING
2317 if (TREE_CODE_CLASS (code) == '2'
2318 || TREE_CODE_CLASS (code) == '<'
2319 || TREE_CODE_LENGTH (code) != 1)
2320 abort ();
2321 #endif /* ENABLE_CHECKING */
2323 length = sizeof (struct tree_exp);
2325 t = ggc_alloc_tree (length);
2327 memset ((PTR) t, 0, sizeof (struct tree_common));
2329 #ifdef GATHER_STATISTICS
2330 tree_node_counts[(int) kind]++;
2331 tree_node_sizes[(int) kind] += length;
2332 #endif
2334 TREE_SET_CODE (t, code);
2336 TREE_TYPE (t) = type;
2337 TREE_COMPLEXITY (t) = 0;
2338 TREE_OPERAND (t, 0) = node;
2339 if (node && first_rtl_op (code) != 0)
2341 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2342 TREE_READONLY (t) = TREE_READONLY (node);
2345 switch (code)
2347 case INIT_EXPR:
2348 case MODIFY_EXPR:
2349 case VA_ARG_EXPR:
2350 case RTL_EXPR:
2351 case PREDECREMENT_EXPR:
2352 case PREINCREMENT_EXPR:
2353 case POSTDECREMENT_EXPR:
2354 case POSTINCREMENT_EXPR:
2355 /* All of these have side-effects, no matter what their
2356 operands are. */
2357 TREE_SIDE_EFFECTS (t) = 1;
2358 TREE_READONLY (t) = 0;
2359 break;
2361 case INDIRECT_REF:
2362 /* Whether a dereference is readonly has nothing to do with whether
2363 its operand is readonly. */
2364 TREE_READONLY (t) = 0;
2365 break;
2367 default:
2368 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2369 TREE_CONSTANT (t) = 1;
2370 break;
2373 return t;
2376 /* Similar except don't specify the TREE_TYPE
2377 and leave the TREE_SIDE_EFFECTS as 0.
2378 It is permissible for arguments to be null,
2379 or even garbage if their values do not matter. */
2381 tree
2382 build_nt VPARAMS ((enum tree_code code, ...))
2384 tree t;
2385 int length;
2386 int i;
2388 VA_OPEN (p, code);
2389 VA_FIXEDARG (p, enum tree_code, code);
2391 t = make_node (code);
2392 length = TREE_CODE_LENGTH (code);
2394 for (i = 0; i < length; i++)
2395 TREE_OPERAND (t, i) = va_arg (p, tree);
2397 VA_CLOSE (p);
2398 return t;
2401 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2402 We do NOT enter this node in any sort of symbol table.
2404 layout_decl is used to set up the decl's storage layout.
2405 Other slots are initialized to 0 or null pointers. */
2407 tree
2408 build_decl (code, name, type)
2409 enum tree_code code;
2410 tree name, type;
2412 tree t;
2414 t = make_node (code);
2416 /* if (type == error_mark_node)
2417 type = integer_type_node; */
2418 /* That is not done, deliberately, so that having error_mark_node
2419 as the type can suppress useless errors in the use of this variable. */
2421 DECL_NAME (t) = name;
2422 TREE_TYPE (t) = type;
2424 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2425 layout_decl (t, 0);
2426 else if (code == FUNCTION_DECL)
2427 DECL_MODE (t) = FUNCTION_MODE;
2429 return t;
2432 /* BLOCK nodes are used to represent the structure of binding contours
2433 and declarations, once those contours have been exited and their contents
2434 compiled. This information is used for outputting debugging info. */
2436 tree
2437 build_block (vars, tags, subblocks, supercontext, chain)
2438 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2440 tree block = make_node (BLOCK);
2442 BLOCK_VARS (block) = vars;
2443 BLOCK_SUBBLOCKS (block) = subblocks;
2444 BLOCK_SUPERCONTEXT (block) = supercontext;
2445 BLOCK_CHAIN (block) = chain;
2446 return block;
2449 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2450 location where an expression or an identifier were encountered. It
2451 is necessary for languages where the frontend parser will handle
2452 recursively more than one file (Java is one of them). */
2454 tree
2455 build_expr_wfl (node, file, line, col)
2456 tree node;
2457 const char *file;
2458 int line, col;
2460 static const char *last_file = 0;
2461 static tree last_filenode = NULL_TREE;
2462 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2464 EXPR_WFL_NODE (wfl) = node;
2465 EXPR_WFL_SET_LINECOL (wfl, line, col);
2466 if (file != last_file)
2468 last_file = file;
2469 last_filenode = file ? get_identifier (file) : NULL_TREE;
2472 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2473 if (node)
2475 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2476 TREE_TYPE (wfl) = TREE_TYPE (node);
2479 return wfl;
2482 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2483 is ATTRIBUTE. */
2485 tree
2486 build_decl_attribute_variant (ddecl, attribute)
2487 tree ddecl, attribute;
2489 DECL_ATTRIBUTES (ddecl) = attribute;
2490 return ddecl;
2493 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2494 is ATTRIBUTE.
2496 Record such modified types already made so we don't make duplicates. */
2498 tree
2499 build_type_attribute_variant (ttype, attribute)
2500 tree ttype, attribute;
2502 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2504 unsigned int hashcode;
2505 tree ntype;
2507 ntype = copy_node (ttype);
2509 TYPE_POINTER_TO (ntype) = 0;
2510 TYPE_REFERENCE_TO (ntype) = 0;
2511 TYPE_ATTRIBUTES (ntype) = attribute;
2513 /* Create a new main variant of TYPE. */
2514 TYPE_MAIN_VARIANT (ntype) = ntype;
2515 TYPE_NEXT_VARIANT (ntype) = 0;
2516 set_type_quals (ntype, TYPE_UNQUALIFIED);
2518 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2519 + TYPE_HASH (TREE_TYPE (ntype))
2520 + attribute_hash_list (attribute));
2522 switch (TREE_CODE (ntype))
2524 case FUNCTION_TYPE:
2525 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2526 break;
2527 case ARRAY_TYPE:
2528 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2529 break;
2530 case INTEGER_TYPE:
2531 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2532 break;
2533 case REAL_TYPE:
2534 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2535 break;
2536 default:
2537 break;
2540 ntype = type_hash_canon (hashcode, ntype);
2541 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2544 return ttype;
2547 /* Default value of targetm.comp_type_attributes that always returns 1. */
2550 default_comp_type_attributes (type1, type2)
2551 tree type1 ATTRIBUTE_UNUSED;
2552 tree type2 ATTRIBUTE_UNUSED;
2554 return 1;
2557 /* Default version of targetm.set_default_type_attributes that always does
2558 nothing. */
2560 void
2561 default_set_default_type_attributes (type)
2562 tree type ATTRIBUTE_UNUSED;
2566 /* Default version of targetm.insert_attributes that always does nothing. */
2567 void
2568 default_insert_attributes (decl, attr_ptr)
2569 tree decl ATTRIBUTE_UNUSED;
2570 tree *attr_ptr ATTRIBUTE_UNUSED;
2574 /* Default value of targetm.function_attribute_inlinable_p that always
2575 returns false. */
2576 bool
2577 default_function_attribute_inlinable_p (fndecl)
2578 tree fndecl ATTRIBUTE_UNUSED;
2580 /* By default, functions with machine attributes cannot be inlined. */
2581 return false;
2584 /* Default value of targetm.ms_bitfield_layout_p that always returns
2585 false. */
2586 bool
2587 default_ms_bitfield_layout_p (record)
2588 tree record ATTRIBUTE_UNUSED;
2590 /* By default, GCC does not use the MS VC++ bitfield layout rules. */
2591 return false;
2594 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2595 or zero if not.
2597 We try both `text' and `__text__', ATTR may be either one. */
2598 /* ??? It might be a reasonable simplification to require ATTR to be only
2599 `text'. One might then also require attribute lists to be stored in
2600 their canonicalized form. */
2603 is_attribute_p (attr, ident)
2604 const char *attr;
2605 tree ident;
2607 int ident_len, attr_len;
2608 const char *p;
2610 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2611 return 0;
2613 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2614 return 1;
2616 p = IDENTIFIER_POINTER (ident);
2617 ident_len = strlen (p);
2618 attr_len = strlen (attr);
2620 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2621 if (attr[0] == '_')
2623 if (attr[1] != '_'
2624 || attr[attr_len - 2] != '_'
2625 || attr[attr_len - 1] != '_')
2626 abort ();
2627 if (ident_len == attr_len - 4
2628 && strncmp (attr + 2, p, attr_len - 4) == 0)
2629 return 1;
2631 else
2633 if (ident_len == attr_len + 4
2634 && p[0] == '_' && p[1] == '_'
2635 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2636 && strncmp (attr, p + 2, attr_len) == 0)
2637 return 1;
2640 return 0;
2643 /* Given an attribute name and a list of attributes, return a pointer to the
2644 attribute's list element if the attribute is part of the list, or NULL_TREE
2645 if not found. If the attribute appears more than once, this only
2646 returns the first occurrence; the TREE_CHAIN of the return value should
2647 be passed back in if further occurrences are wanted. */
2649 tree
2650 lookup_attribute (attr_name, list)
2651 const char *attr_name;
2652 tree list;
2654 tree l;
2656 for (l = list; l; l = TREE_CHAIN (l))
2658 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2659 abort ();
2660 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2661 return l;
2664 return NULL_TREE;
2667 /* Return an attribute list that is the union of a1 and a2. */
2669 tree
2670 merge_attributes (a1, a2)
2671 tree a1, a2;
2673 tree attributes;
2675 /* Either one unset? Take the set one. */
2677 if ((attributes = a1) == 0)
2678 attributes = a2;
2680 /* One that completely contains the other? Take it. */
2682 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2684 if (attribute_list_contained (a2, a1))
2685 attributes = a2;
2686 else
2688 /* Pick the longest list, and hang on the other list. */
2690 if (list_length (a1) < list_length (a2))
2691 attributes = a2, a2 = a1;
2693 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2695 tree a;
2696 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2697 attributes);
2698 a != NULL_TREE;
2699 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2700 TREE_CHAIN (a)))
2702 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2703 break;
2705 if (a == NULL_TREE)
2707 a1 = copy_node (a2);
2708 TREE_CHAIN (a1) = attributes;
2709 attributes = a1;
2714 return attributes;
2717 /* Given types T1 and T2, merge their attributes and return
2718 the result. */
2720 tree
2721 merge_type_attributes (t1, t2)
2722 tree t1, t2;
2724 return merge_attributes (TYPE_ATTRIBUTES (t1),
2725 TYPE_ATTRIBUTES (t2));
2728 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2729 the result. */
2731 tree
2732 merge_decl_attributes (olddecl, newdecl)
2733 tree olddecl, newdecl;
2735 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2736 DECL_ATTRIBUTES (newdecl));
2739 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2741 /* Specialization of merge_decl_attributes for various Windows targets.
2743 This handles the following situation:
2745 __declspec (dllimport) int foo;
2746 int foo;
2748 The second instance of `foo' nullifies the dllimport. */
2750 tree
2751 merge_dllimport_decl_attributes (old, new)
2752 tree old;
2753 tree new;
2755 tree a;
2756 int delete_dllimport_p;
2758 old = DECL_ATTRIBUTES (old);
2759 new = DECL_ATTRIBUTES (new);
2761 /* What we need to do here is remove from `old' dllimport if it doesn't
2762 appear in `new'. dllimport behaves like extern: if a declaration is
2763 marked dllimport and a definition appears later, then the object
2764 is not dllimport'd. */
2765 if (lookup_attribute ("dllimport", old) != NULL_TREE
2766 && lookup_attribute ("dllimport", new) == NULL_TREE)
2767 delete_dllimport_p = 1;
2768 else
2769 delete_dllimport_p = 0;
2771 a = merge_attributes (old, new);
2773 if (delete_dllimport_p)
2775 tree prev, t;
2777 /* Scan the list for dllimport and delete it. */
2778 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2780 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2782 if (prev == NULL_TREE)
2783 a = TREE_CHAIN (a);
2784 else
2785 TREE_CHAIN (prev) = TREE_CHAIN (t);
2786 break;
2791 return a;
2794 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2796 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2797 of the various TYPE_QUAL values. */
2799 static void
2800 set_type_quals (type, type_quals)
2801 tree type;
2802 int type_quals;
2804 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2805 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2806 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2809 /* Return a version of the TYPE, qualified as indicated by the
2810 TYPE_QUALS, if one exists. If no qualified version exists yet,
2811 return NULL_TREE. */
2813 tree
2814 get_qualified_type (type, type_quals)
2815 tree type;
2816 int type_quals;
2818 tree t;
2820 /* Search the chain of variants to see if there is already one there just
2821 like the one we need to have. If so, use that existing one. We must
2822 preserve the TYPE_NAME, since there is code that depends on this. */
2823 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2824 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
2825 return t;
2827 return NULL_TREE;
2830 /* Like get_qualified_type, but creates the type if it does not
2831 exist. This function never returns NULL_TREE. */
2833 tree
2834 build_qualified_type (type, type_quals)
2835 tree type;
2836 int type_quals;
2838 tree t;
2840 /* See if we already have the appropriate qualified variant. */
2841 t = get_qualified_type (type, type_quals);
2843 /* If not, build it. */
2844 if (!t)
2846 t = build_type_copy (type);
2847 set_type_quals (t, type_quals);
2850 return t;
2853 /* Create a new variant of TYPE, equivalent but distinct.
2854 This is so the caller can modify it. */
2856 tree
2857 build_type_copy (type)
2858 tree type;
2860 tree t, m = TYPE_MAIN_VARIANT (type);
2862 t = copy_node (type);
2864 TYPE_POINTER_TO (t) = 0;
2865 TYPE_REFERENCE_TO (t) = 0;
2867 /* Add this type to the chain of variants of TYPE. */
2868 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2869 TYPE_NEXT_VARIANT (m) = t;
2871 return t;
2874 /* Hashing of types so that we don't make duplicates.
2875 The entry point is `type_hash_canon'. */
2877 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2878 with types in the TREE_VALUE slots), by adding the hash codes
2879 of the individual types. */
2881 unsigned int
2882 type_hash_list (list)
2883 tree list;
2885 unsigned int hashcode;
2886 tree tail;
2888 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2889 hashcode += TYPE_HASH (TREE_VALUE (tail));
2891 return hashcode;
2894 /* These are the Hashtable callback functions. */
2896 /* Returns true if the types are equal. */
2898 static int
2899 type_hash_eq (va, vb)
2900 const void *va;
2901 const void *vb;
2903 const struct type_hash *a = va, *b = vb;
2904 if (a->hash == b->hash
2905 && TREE_CODE (a->type) == TREE_CODE (b->type)
2906 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2907 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2908 TYPE_ATTRIBUTES (b->type))
2909 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2910 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2911 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2912 TYPE_MAX_VALUE (b->type)))
2913 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2914 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2915 TYPE_MIN_VALUE (b->type)))
2916 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2917 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2918 || (TYPE_DOMAIN (a->type)
2919 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2920 && TYPE_DOMAIN (b->type)
2921 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2922 && type_list_equal (TYPE_DOMAIN (a->type),
2923 TYPE_DOMAIN (b->type)))))
2924 return 1;
2925 return 0;
2928 /* Return the cached hash value. */
2930 static unsigned int
2931 type_hash_hash (item)
2932 const void *item;
2934 return ((const struct type_hash *) item)->hash;
2937 /* Look in the type hash table for a type isomorphic to TYPE.
2938 If one is found, return it. Otherwise return 0. */
2940 tree
2941 type_hash_lookup (hashcode, type)
2942 unsigned int hashcode;
2943 tree type;
2945 struct type_hash *h, in;
2947 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2948 must call that routine before comparing TYPE_ALIGNs. */
2949 layout_type (type);
2951 in.hash = hashcode;
2952 in.type = type;
2954 h = htab_find_with_hash (type_hash_table, &in, hashcode);
2955 if (h)
2956 return h->type;
2957 return NULL_TREE;
2960 /* Add an entry to the type-hash-table
2961 for a type TYPE whose hash code is HASHCODE. */
2963 void
2964 type_hash_add (hashcode, type)
2965 unsigned int hashcode;
2966 tree type;
2968 struct type_hash *h;
2969 void **loc;
2971 h = (struct type_hash *) ggc_alloc (sizeof (struct type_hash));
2972 h->hash = hashcode;
2973 h->type = type;
2974 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
2975 *(struct type_hash **) loc = h;
2978 /* Given TYPE, and HASHCODE its hash code, return the canonical
2979 object for an identical type if one already exists.
2980 Otherwise, return TYPE, and record it as the canonical object
2981 if it is a permanent object.
2983 To use this function, first create a type of the sort you want.
2984 Then compute its hash code from the fields of the type that
2985 make it different from other similar types.
2986 Then call this function and use the value.
2987 This function frees the type you pass in if it is a duplicate. */
2989 /* Set to 1 to debug without canonicalization. Never set by program. */
2990 int debug_no_type_hash = 0;
2992 tree
2993 type_hash_canon (hashcode, type)
2994 unsigned int hashcode;
2995 tree type;
2997 tree t1;
2999 if (debug_no_type_hash)
3000 return type;
3002 /* See if the type is in the hash table already. If so, return it.
3003 Otherwise, add the type. */
3004 t1 = type_hash_lookup (hashcode, type);
3005 if (t1 != 0)
3007 #ifdef GATHER_STATISTICS
3008 tree_node_counts[(int) t_kind]--;
3009 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3010 #endif
3011 return t1;
3013 else
3015 type_hash_add (hashcode, type);
3016 return type;
3020 /* See if the data pointed to by the type hash table is marked. We consider
3021 it marked if the type is marked or if a debug type number or symbol
3022 table entry has been made for the type. This reduces the amount of
3023 debugging output and eliminates that dependency of the debug output on
3024 the number of garbage collections. */
3026 static int
3027 type_hash_marked_p (p)
3028 const void *p;
3030 tree type = ((struct type_hash *) p)->type;
3032 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3035 /* Mark the entry in the type hash table the type it points to is marked.
3036 Also mark the type in case we are considering this entry "marked" by
3037 virtue of TYPE_SYMTAB_POINTER being set. */
3039 static void
3040 type_hash_mark (p)
3041 const void *p;
3043 ggc_mark (p);
3044 ggc_mark_tree (((struct type_hash *) p)->type);
3047 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3048 `tree**') for GC. */
3050 static int
3051 mark_tree_hashtable_entry (entry, data)
3052 void **entry;
3053 void *data ATTRIBUTE_UNUSED;
3055 ggc_mark_tree ((tree) *entry);
3056 return 1;
3059 /* Mark ARG (which is really a htab_t whose slots are trees) for
3060 GC. */
3062 void
3063 mark_tree_hashtable (arg)
3064 void *arg;
3066 htab_t t = *(htab_t *) arg;
3067 htab_traverse (t, mark_tree_hashtable_entry, 0);
3070 static void
3071 print_type_hash_statistics ()
3073 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3074 (long) htab_size (type_hash_table),
3075 (long) htab_elements (type_hash_table),
3076 htab_collisions (type_hash_table));
3079 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3080 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3081 by adding the hash codes of the individual attributes. */
3083 unsigned int
3084 attribute_hash_list (list)
3085 tree list;
3087 unsigned int hashcode;
3088 tree tail;
3090 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3091 /* ??? Do we want to add in TREE_VALUE too? */
3092 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3093 return hashcode;
3096 /* Given two lists of attributes, return true if list l2 is
3097 equivalent to l1. */
3100 attribute_list_equal (l1, l2)
3101 tree l1, l2;
3103 return attribute_list_contained (l1, l2)
3104 && attribute_list_contained (l2, l1);
3107 /* Given two lists of attributes, return true if list L2 is
3108 completely contained within L1. */
3109 /* ??? This would be faster if attribute names were stored in a canonicalized
3110 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3111 must be used to show these elements are equivalent (which they are). */
3112 /* ??? It's not clear that attributes with arguments will always be handled
3113 correctly. */
3116 attribute_list_contained (l1, l2)
3117 tree l1, l2;
3119 tree t1, t2;
3121 /* First check the obvious, maybe the lists are identical. */
3122 if (l1 == l2)
3123 return 1;
3125 /* Maybe the lists are similar. */
3126 for (t1 = l1, t2 = l2;
3127 t1 != 0 && t2 != 0
3128 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3129 && TREE_VALUE (t1) == TREE_VALUE (t2);
3130 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3132 /* Maybe the lists are equal. */
3133 if (t1 == 0 && t2 == 0)
3134 return 1;
3136 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3138 tree attr;
3139 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3140 attr != NULL_TREE;
3141 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3142 TREE_CHAIN (attr)))
3144 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3145 break;
3148 if (attr == 0)
3149 return 0;
3151 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3152 return 0;
3155 return 1;
3158 /* Given two lists of types
3159 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3160 return 1 if the lists contain the same types in the same order.
3161 Also, the TREE_PURPOSEs must match. */
3164 type_list_equal (l1, l2)
3165 tree l1, l2;
3167 tree t1, t2;
3169 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3170 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3171 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3172 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3173 && (TREE_TYPE (TREE_PURPOSE (t1))
3174 == TREE_TYPE (TREE_PURPOSE (t2))))))
3175 return 0;
3177 return t1 == t2;
3180 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3181 given by TYPE. If the argument list accepts variable arguments,
3182 then this function counts only the ordinary arguments. */
3185 type_num_arguments (type)
3186 tree type;
3188 int i = 0;
3189 tree t;
3191 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3192 /* If the function does not take a variable number of arguments,
3193 the last element in the list will have type `void'. */
3194 if (VOID_TYPE_P (TREE_VALUE (t)))
3195 break;
3196 else
3197 ++i;
3199 return i;
3202 /* Nonzero if integer constants T1 and T2
3203 represent the same constant value. */
3206 tree_int_cst_equal (t1, t2)
3207 tree t1, t2;
3209 if (t1 == t2)
3210 return 1;
3212 if (t1 == 0 || t2 == 0)
3213 return 0;
3215 if (TREE_CODE (t1) == INTEGER_CST
3216 && TREE_CODE (t2) == INTEGER_CST
3217 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3218 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3219 return 1;
3221 return 0;
3224 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3225 The precise way of comparison depends on their data type. */
3228 tree_int_cst_lt (t1, t2)
3229 tree t1, t2;
3231 if (t1 == t2)
3232 return 0;
3234 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3236 int t1_sgn = tree_int_cst_sgn (t1);
3237 int t2_sgn = tree_int_cst_sgn (t2);
3239 if (t1_sgn < t2_sgn)
3240 return 1;
3241 else if (t1_sgn > t2_sgn)
3242 return 0;
3243 /* Otherwise, both are non-negative, so we compare them as
3244 unsigned just in case one of them would overflow a signed
3245 type. */
3247 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3248 return INT_CST_LT (t1, t2);
3250 return INT_CST_LT_UNSIGNED (t1, t2);
3253 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3256 tree_int_cst_compare (t1, t2)
3257 tree t1;
3258 tree t2;
3260 if (tree_int_cst_lt (t1, t2))
3261 return -1;
3262 else if (tree_int_cst_lt (t2, t1))
3263 return 1;
3264 else
3265 return 0;
3268 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3269 the host. If POS is zero, the value can be represented in a single
3270 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3271 be represented in a single unsigned HOST_WIDE_INT. */
3274 host_integerp (t, pos)
3275 tree t;
3276 int pos;
3278 return (TREE_CODE (t) == INTEGER_CST
3279 && ! TREE_OVERFLOW (t)
3280 && ((TREE_INT_CST_HIGH (t) == 0
3281 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3282 || (! pos && TREE_INT_CST_HIGH (t) == -1
3283 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3284 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3285 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3288 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3289 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3290 be positive. Abort if we cannot satisfy the above conditions. */
3292 HOST_WIDE_INT
3293 tree_low_cst (t, pos)
3294 tree t;
3295 int pos;
3297 if (host_integerp (t, pos))
3298 return TREE_INT_CST_LOW (t);
3299 else
3300 abort ();
3303 /* Return the most significant bit of the integer constant T. */
3306 tree_int_cst_msb (t)
3307 tree t;
3309 int prec;
3310 HOST_WIDE_INT h;
3311 unsigned HOST_WIDE_INT l;
3313 /* Note that using TYPE_PRECISION here is wrong. We care about the
3314 actual bits, not the (arbitrary) range of the type. */
3315 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3316 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3317 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3318 return (l & 1) == 1;
3321 /* Return an indication of the sign of the integer constant T.
3322 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3323 Note that -1 will never be returned it T's type is unsigned. */
3326 tree_int_cst_sgn (t)
3327 tree t;
3329 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3330 return 0;
3331 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3332 return 1;
3333 else if (TREE_INT_CST_HIGH (t) < 0)
3334 return -1;
3335 else
3336 return 1;
3339 /* Compare two constructor-element-type constants. Return 1 if the lists
3340 are known to be equal; otherwise return 0. */
3343 simple_cst_list_equal (l1, l2)
3344 tree l1, l2;
3346 while (l1 != NULL_TREE && l2 != NULL_TREE)
3348 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3349 return 0;
3351 l1 = TREE_CHAIN (l1);
3352 l2 = TREE_CHAIN (l2);
3355 return l1 == l2;
3358 /* Return truthvalue of whether T1 is the same tree structure as T2.
3359 Return 1 if they are the same.
3360 Return 0 if they are understandably different.
3361 Return -1 if either contains tree structure not understood by
3362 this function. */
3365 simple_cst_equal (t1, t2)
3366 tree t1, t2;
3368 enum tree_code code1, code2;
3369 int cmp;
3370 int i;
3372 if (t1 == t2)
3373 return 1;
3374 if (t1 == 0 || t2 == 0)
3375 return 0;
3377 code1 = TREE_CODE (t1);
3378 code2 = TREE_CODE (t2);
3380 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3382 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3383 || code2 == NON_LVALUE_EXPR)
3384 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3385 else
3386 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3389 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3390 || code2 == NON_LVALUE_EXPR)
3391 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3393 if (code1 != code2)
3394 return 0;
3396 switch (code1)
3398 case INTEGER_CST:
3399 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3400 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3402 case REAL_CST:
3403 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3405 case STRING_CST:
3406 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3407 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3408 TREE_STRING_LENGTH (t1)));
3410 case CONSTRUCTOR:
3411 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3412 return 1;
3413 else
3414 abort ();
3416 case SAVE_EXPR:
3417 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3419 case CALL_EXPR:
3420 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3421 if (cmp <= 0)
3422 return cmp;
3423 return
3424 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3426 case TARGET_EXPR:
3427 /* Special case: if either target is an unallocated VAR_DECL,
3428 it means that it's going to be unified with whatever the
3429 TARGET_EXPR is really supposed to initialize, so treat it
3430 as being equivalent to anything. */
3431 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3432 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3433 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3434 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3435 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3436 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3437 cmp = 1;
3438 else
3439 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3441 if (cmp <= 0)
3442 return cmp;
3444 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3446 case WITH_CLEANUP_EXPR:
3447 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3448 if (cmp <= 0)
3449 return cmp;
3451 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3453 case COMPONENT_REF:
3454 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3455 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3457 return 0;
3459 case VAR_DECL:
3460 case PARM_DECL:
3461 case CONST_DECL:
3462 case FUNCTION_DECL:
3463 return 0;
3465 default:
3466 break;
3469 /* This general rule works for most tree codes. All exceptions should be
3470 handled above. If this is a language-specific tree code, we can't
3471 trust what might be in the operand, so say we don't know
3472 the situation. */
3473 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3474 return -1;
3476 switch (TREE_CODE_CLASS (code1))
3478 case '1':
3479 case '2':
3480 case '<':
3481 case 'e':
3482 case 'r':
3483 case 's':
3484 cmp = 1;
3485 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3487 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3488 if (cmp <= 0)
3489 return cmp;
3492 return cmp;
3494 default:
3495 return -1;
3499 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3500 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3501 than U, respectively. */
3504 compare_tree_int (t, u)
3505 tree t;
3506 unsigned HOST_WIDE_INT u;
3508 if (tree_int_cst_sgn (t) < 0)
3509 return -1;
3510 else if (TREE_INT_CST_HIGH (t) != 0)
3511 return 1;
3512 else if (TREE_INT_CST_LOW (t) == u)
3513 return 0;
3514 else if (TREE_INT_CST_LOW (t) < u)
3515 return -1;
3516 else
3517 return 1;
3520 /* Constructors for pointer, array and function types.
3521 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3522 constructed by language-dependent code, not here.) */
3524 /* Construct, lay out and return the type of pointers to TO_TYPE.
3525 If such a type has already been constructed, reuse it. */
3527 tree
3528 build_pointer_type (to_type)
3529 tree to_type;
3531 tree t = TYPE_POINTER_TO (to_type);
3533 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3535 if (t != 0)
3536 return t;
3538 /* We need a new one. */
3539 t = make_node (POINTER_TYPE);
3541 TREE_TYPE (t) = to_type;
3543 /* Record this type as the pointer to TO_TYPE. */
3544 TYPE_POINTER_TO (to_type) = t;
3546 /* Lay out the type. This function has many callers that are concerned
3547 with expression-construction, and this simplifies them all.
3548 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3549 layout_type (t);
3551 return t;
3554 /* Build the node for the type of references-to-TO_TYPE. */
3556 tree
3557 build_reference_type (to_type)
3558 tree to_type;
3560 tree t = TYPE_REFERENCE_TO (to_type);
3562 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3564 if (t)
3565 return t;
3567 /* We need a new one. */
3568 t = make_node (REFERENCE_TYPE);
3570 TREE_TYPE (t) = to_type;
3572 /* Record this type as the pointer to TO_TYPE. */
3573 TYPE_REFERENCE_TO (to_type) = t;
3575 layout_type (t);
3577 return t;
3580 /* Build a type that is compatible with t but has no cv quals anywhere
3581 in its type, thus
3583 const char *const *const * -> char ***. */
3585 tree
3586 build_type_no_quals (t)
3587 tree t;
3589 switch (TREE_CODE (t))
3591 case POINTER_TYPE:
3592 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3593 case REFERENCE_TYPE:
3594 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3595 default:
3596 return TYPE_MAIN_VARIANT (t);
3600 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3601 MAXVAL should be the maximum value in the domain
3602 (one less than the length of the array).
3604 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3605 We don't enforce this limit, that is up to caller (e.g. language front end).
3606 The limit exists because the result is a signed type and we don't handle
3607 sizes that use more than one HOST_WIDE_INT. */
3609 tree
3610 build_index_type (maxval)
3611 tree maxval;
3613 tree itype = make_node (INTEGER_TYPE);
3615 TREE_TYPE (itype) = sizetype;
3616 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3617 TYPE_MIN_VALUE (itype) = size_zero_node;
3618 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3619 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3620 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3621 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3622 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3623 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3625 if (host_integerp (maxval, 1))
3626 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3627 else
3628 return itype;
3631 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3632 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3633 low bound LOWVAL and high bound HIGHVAL.
3634 if TYPE==NULL_TREE, sizetype is used. */
3636 tree
3637 build_range_type (type, lowval, highval)
3638 tree type, lowval, highval;
3640 tree itype = make_node (INTEGER_TYPE);
3642 TREE_TYPE (itype) = type;
3643 if (type == NULL_TREE)
3644 type = sizetype;
3646 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3647 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3649 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3650 TYPE_MODE (itype) = TYPE_MODE (type);
3651 TYPE_SIZE (itype) = TYPE_SIZE (type);
3652 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3653 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3654 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3656 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3657 return type_hash_canon (tree_low_cst (highval, 0)
3658 - tree_low_cst (lowval, 0),
3659 itype);
3660 else
3661 return itype;
3664 /* Just like build_index_type, but takes lowval and highval instead
3665 of just highval (maxval). */
3667 tree
3668 build_index_2_type (lowval, highval)
3669 tree lowval, highval;
3671 return build_range_type (sizetype, lowval, highval);
3674 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3675 Needed because when index types are not hashed, equal index types
3676 built at different times appear distinct, even though structurally,
3677 they are not. */
3680 index_type_equal (itype1, itype2)
3681 tree itype1, itype2;
3683 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3684 return 0;
3686 if (TREE_CODE (itype1) == INTEGER_TYPE)
3688 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3689 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3690 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3691 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3692 return 0;
3694 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3695 TYPE_MIN_VALUE (itype2))
3696 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3697 TYPE_MAX_VALUE (itype2)))
3698 return 1;
3701 return 0;
3704 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3705 and number of elements specified by the range of values of INDEX_TYPE.
3706 If such a type has already been constructed, reuse it. */
3708 tree
3709 build_array_type (elt_type, index_type)
3710 tree elt_type, index_type;
3712 tree t;
3713 unsigned int hashcode;
3715 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3717 error ("arrays of functions are not meaningful");
3718 elt_type = integer_type_node;
3721 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3722 build_pointer_type (elt_type);
3724 /* Allocate the array after the pointer type,
3725 in case we free it in type_hash_canon. */
3726 t = make_node (ARRAY_TYPE);
3727 TREE_TYPE (t) = elt_type;
3728 TYPE_DOMAIN (t) = index_type;
3730 if (index_type == 0)
3732 return t;
3735 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3736 t = type_hash_canon (hashcode, t);
3738 if (!COMPLETE_TYPE_P (t))
3739 layout_type (t);
3740 return t;
3743 /* Return the TYPE of the elements comprising
3744 the innermost dimension of ARRAY. */
3746 tree
3747 get_inner_array_type (array)
3748 tree array;
3750 tree type = TREE_TYPE (array);
3752 while (TREE_CODE (type) == ARRAY_TYPE)
3753 type = TREE_TYPE (type);
3755 return type;
3758 /* Construct, lay out and return
3759 the type of functions returning type VALUE_TYPE
3760 given arguments of types ARG_TYPES.
3761 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3762 are data type nodes for the arguments of the function.
3763 If such a type has already been constructed, reuse it. */
3765 tree
3766 build_function_type (value_type, arg_types)
3767 tree value_type, arg_types;
3769 tree t;
3770 unsigned int hashcode;
3772 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3774 error ("function return type cannot be function");
3775 value_type = integer_type_node;
3778 /* Make a node of the sort we want. */
3779 t = make_node (FUNCTION_TYPE);
3780 TREE_TYPE (t) = value_type;
3781 TYPE_ARG_TYPES (t) = arg_types;
3783 /* If we already have such a type, use the old one and free this one. */
3784 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3785 t = type_hash_canon (hashcode, t);
3787 if (!COMPLETE_TYPE_P (t))
3788 layout_type (t);
3789 return t;
3792 /* Construct, lay out and return the type of methods belonging to class
3793 BASETYPE and whose arguments and values are described by TYPE.
3794 If that type exists already, reuse it.
3795 TYPE must be a FUNCTION_TYPE node. */
3797 tree
3798 build_method_type (basetype, type)
3799 tree basetype, type;
3801 tree t;
3802 unsigned int hashcode;
3804 /* Make a node of the sort we want. */
3805 t = make_node (METHOD_TYPE);
3807 if (TREE_CODE (type) != FUNCTION_TYPE)
3808 abort ();
3810 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3811 TREE_TYPE (t) = TREE_TYPE (type);
3813 /* The actual arglist for this function includes a "hidden" argument
3814 which is "this". Put it into the list of argument types. */
3816 TYPE_ARG_TYPES (t)
3817 = tree_cons (NULL_TREE,
3818 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3820 /* If we already have such a type, use the old one and free this one. */
3821 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3822 t = type_hash_canon (hashcode, t);
3824 if (!COMPLETE_TYPE_P (t))
3825 layout_type (t);
3827 return t;
3830 /* Construct, lay out and return the type of offsets to a value
3831 of type TYPE, within an object of type BASETYPE.
3832 If a suitable offset type exists already, reuse it. */
3834 tree
3835 build_offset_type (basetype, type)
3836 tree basetype, type;
3838 tree t;
3839 unsigned int hashcode;
3841 /* Make a node of the sort we want. */
3842 t = make_node (OFFSET_TYPE);
3844 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3845 TREE_TYPE (t) = type;
3847 /* If we already have such a type, use the old one and free this one. */
3848 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3849 t = type_hash_canon (hashcode, t);
3851 if (!COMPLETE_TYPE_P (t))
3852 layout_type (t);
3854 return t;
3857 /* Create a complex type whose components are COMPONENT_TYPE. */
3859 tree
3860 build_complex_type (component_type)
3861 tree component_type;
3863 tree t;
3864 unsigned int hashcode;
3866 /* Make a node of the sort we want. */
3867 t = make_node (COMPLEX_TYPE);
3869 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3870 set_type_quals (t, TYPE_QUALS (component_type));
3872 /* If we already have such a type, use the old one and free this one. */
3873 hashcode = TYPE_HASH (component_type);
3874 t = type_hash_canon (hashcode, t);
3876 if (!COMPLETE_TYPE_P (t))
3877 layout_type (t);
3879 /* If we are writing Dwarf2 output we need to create a name,
3880 since complex is a fundamental type. */
3881 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3882 && ! TYPE_NAME (t))
3884 const char *name;
3885 if (component_type == char_type_node)
3886 name = "complex char";
3887 else if (component_type == signed_char_type_node)
3888 name = "complex signed char";
3889 else if (component_type == unsigned_char_type_node)
3890 name = "complex unsigned char";
3891 else if (component_type == short_integer_type_node)
3892 name = "complex short int";
3893 else if (component_type == short_unsigned_type_node)
3894 name = "complex short unsigned int";
3895 else if (component_type == integer_type_node)
3896 name = "complex int";
3897 else if (component_type == unsigned_type_node)
3898 name = "complex unsigned int";
3899 else if (component_type == long_integer_type_node)
3900 name = "complex long int";
3901 else if (component_type == long_unsigned_type_node)
3902 name = "complex long unsigned int";
3903 else if (component_type == long_long_integer_type_node)
3904 name = "complex long long int";
3905 else if (component_type == long_long_unsigned_type_node)
3906 name = "complex long long unsigned int";
3907 else
3908 name = 0;
3910 if (name != 0)
3911 TYPE_NAME (t) = get_identifier (name);
3914 return t;
3917 /* Return OP, stripped of any conversions to wider types as much as is safe.
3918 Converting the value back to OP's type makes a value equivalent to OP.
3920 If FOR_TYPE is nonzero, we return a value which, if converted to
3921 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3923 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3924 narrowest type that can hold the value, even if they don't exactly fit.
3925 Otherwise, bit-field references are changed to a narrower type
3926 only if they can be fetched directly from memory in that type.
3928 OP must have integer, real or enumeral type. Pointers are not allowed!
3930 There are some cases where the obvious value we could return
3931 would regenerate to OP if converted to OP's type,
3932 but would not extend like OP to wider types.
3933 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3934 For example, if OP is (unsigned short)(signed char)-1,
3935 we avoid returning (signed char)-1 if FOR_TYPE is int,
3936 even though extending that to an unsigned short would regenerate OP,
3937 since the result of extending (signed char)-1 to (int)
3938 is different from (int) OP. */
3940 tree
3941 get_unwidened (op, for_type)
3942 tree op;
3943 tree for_type;
3945 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
3946 tree type = TREE_TYPE (op);
3947 unsigned final_prec
3948 = TYPE_PRECISION (for_type != 0 ? for_type : type);
3949 int uns
3950 = (for_type != 0 && for_type != type
3951 && final_prec > TYPE_PRECISION (type)
3952 && TREE_UNSIGNED (type));
3953 tree win = op;
3955 while (TREE_CODE (op) == NOP_EXPR)
3957 int bitschange
3958 = TYPE_PRECISION (TREE_TYPE (op))
3959 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
3961 /* Truncations are many-one so cannot be removed.
3962 Unless we are later going to truncate down even farther. */
3963 if (bitschange < 0
3964 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
3965 break;
3967 /* See what's inside this conversion. If we decide to strip it,
3968 we will set WIN. */
3969 op = TREE_OPERAND (op, 0);
3971 /* If we have not stripped any zero-extensions (uns is 0),
3972 we can strip any kind of extension.
3973 If we have previously stripped a zero-extension,
3974 only zero-extensions can safely be stripped.
3975 Any extension can be stripped if the bits it would produce
3976 are all going to be discarded later by truncating to FOR_TYPE. */
3978 if (bitschange > 0)
3980 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
3981 win = op;
3982 /* TREE_UNSIGNED says whether this is a zero-extension.
3983 Let's avoid computing it if it does not affect WIN
3984 and if UNS will not be needed again. */
3985 if ((uns || TREE_CODE (op) == NOP_EXPR)
3986 && TREE_UNSIGNED (TREE_TYPE (op)))
3988 uns = 1;
3989 win = op;
3994 if (TREE_CODE (op) == COMPONENT_REF
3995 /* Since type_for_size always gives an integer type. */
3996 && TREE_CODE (type) != REAL_TYPE
3997 /* Don't crash if field not laid out yet. */
3998 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
3999 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4001 unsigned int innerprec
4002 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4003 int unsignedp = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4004 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4006 /* We can get this structure field in the narrowest type it fits in.
4007 If FOR_TYPE is 0, do this only for a field that matches the
4008 narrower type exactly and is aligned for it
4009 The resulting extension to its nominal type (a fullword type)
4010 must fit the same conditions as for other extensions. */
4012 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4013 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4014 && (! uns || final_prec <= innerprec || unsignedp)
4015 && type != 0)
4017 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4018 TREE_OPERAND (op, 1));
4019 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4020 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4024 return win;
4027 /* Return OP or a simpler expression for a narrower value
4028 which can be sign-extended or zero-extended to give back OP.
4029 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4030 or 0 if the value should be sign-extended. */
4032 tree
4033 get_narrower (op, unsignedp_ptr)
4034 tree op;
4035 int *unsignedp_ptr;
4037 int uns = 0;
4038 int first = 1;
4039 tree win = op;
4041 while (TREE_CODE (op) == NOP_EXPR)
4043 int bitschange
4044 = (TYPE_PRECISION (TREE_TYPE (op))
4045 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4047 /* Truncations are many-one so cannot be removed. */
4048 if (bitschange < 0)
4049 break;
4051 /* See what's inside this conversion. If we decide to strip it,
4052 we will set WIN. */
4053 op = TREE_OPERAND (op, 0);
4055 if (bitschange > 0)
4057 /* An extension: the outermost one can be stripped,
4058 but remember whether it is zero or sign extension. */
4059 if (first)
4060 uns = TREE_UNSIGNED (TREE_TYPE (op));
4061 /* Otherwise, if a sign extension has been stripped,
4062 only sign extensions can now be stripped;
4063 if a zero extension has been stripped, only zero-extensions. */
4064 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4065 break;
4066 first = 0;
4068 else /* bitschange == 0 */
4070 /* A change in nominal type can always be stripped, but we must
4071 preserve the unsignedness. */
4072 if (first)
4073 uns = TREE_UNSIGNED (TREE_TYPE (op));
4074 first = 0;
4077 win = op;
4080 if (TREE_CODE (op) == COMPONENT_REF
4081 /* Since type_for_size always gives an integer type. */
4082 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4083 /* Ensure field is laid out already. */
4084 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4086 unsigned HOST_WIDE_INT innerprec
4087 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4088 tree type = (*lang_hooks.types.type_for_size) (innerprec,
4089 TREE_UNSIGNED (op));
4091 /* We can get this structure field in a narrower type that fits it,
4092 but the resulting extension to its nominal type (a fullword type)
4093 must satisfy the same conditions as for other extensions.
4095 Do this only for fields that are aligned (not bit-fields),
4096 because when bit-field insns will be used there is no
4097 advantage in doing this. */
4099 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4100 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4101 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4102 && type != 0)
4104 if (first)
4105 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4106 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4107 TREE_OPERAND (op, 1));
4108 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4109 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4112 *unsignedp_ptr = uns;
4113 return win;
4116 /* Nonzero if integer constant C has a value that is permissible
4117 for type TYPE (an INTEGER_TYPE). */
4120 int_fits_type_p (c, type)
4121 tree c, type;
4123 /* If the bounds of the type are integers, we can check ourselves.
4124 If not, but this type is a subtype, try checking against that.
4125 Otherwise, use force_fit_type, which checks against the precision. */
4126 if (TYPE_MAX_VALUE (type) != NULL_TREE
4127 && TYPE_MIN_VALUE (type) != NULL_TREE
4128 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4129 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4131 if (TREE_UNSIGNED (type))
4132 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4133 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4134 /* Negative ints never fit unsigned types. */
4135 && ! (TREE_INT_CST_HIGH (c) < 0
4136 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4137 else
4138 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4139 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4140 /* Unsigned ints with top bit set never fit signed types. */
4141 && ! (TREE_INT_CST_HIGH (c) < 0
4142 && TREE_UNSIGNED (TREE_TYPE (c))));
4144 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4145 return int_fits_type_p (c, TREE_TYPE (type));
4146 else
4148 c = copy_node (c);
4149 TREE_TYPE (c) = type;
4150 return !force_fit_type (c, 0);
4154 /* Given a DECL or TYPE, return the scope in which it was declared, or
4155 NULL_TREE if there is no containing scope. */
4157 tree
4158 get_containing_scope (t)
4159 tree t;
4161 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4164 /* Return the innermost context enclosing DECL that is
4165 a FUNCTION_DECL, or zero if none. */
4167 tree
4168 decl_function_context (decl)
4169 tree decl;
4171 tree context;
4173 if (TREE_CODE (decl) == ERROR_MARK)
4174 return 0;
4176 if (TREE_CODE (decl) == SAVE_EXPR)
4177 context = SAVE_EXPR_CONTEXT (decl);
4179 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4180 where we look up the function at runtime. Such functions always take
4181 a first argument of type 'pointer to real context'.
4183 C++ should really be fixed to use DECL_CONTEXT for the real context,
4184 and use something else for the "virtual context". */
4185 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4186 context
4187 = TYPE_MAIN_VARIANT
4188 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4189 else
4190 context = DECL_CONTEXT (decl);
4192 while (context && TREE_CODE (context) != FUNCTION_DECL)
4194 if (TREE_CODE (context) == BLOCK)
4195 context = BLOCK_SUPERCONTEXT (context);
4196 else
4197 context = get_containing_scope (context);
4200 return context;
4203 /* Return the innermost context enclosing DECL that is
4204 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4205 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4207 tree
4208 decl_type_context (decl)
4209 tree decl;
4211 tree context = DECL_CONTEXT (decl);
4213 while (context)
4215 if (TREE_CODE (context) == NAMESPACE_DECL)
4216 return NULL_TREE;
4218 if (TREE_CODE (context) == RECORD_TYPE
4219 || TREE_CODE (context) == UNION_TYPE
4220 || TREE_CODE (context) == QUAL_UNION_TYPE)
4221 return context;
4223 if (TREE_CODE (context) == TYPE_DECL
4224 || TREE_CODE (context) == FUNCTION_DECL)
4225 context = DECL_CONTEXT (context);
4227 else if (TREE_CODE (context) == BLOCK)
4228 context = BLOCK_SUPERCONTEXT (context);
4230 else
4231 /* Unhandled CONTEXT!? */
4232 abort ();
4234 return NULL_TREE;
4237 /* CALL is a CALL_EXPR. Return the declaration for the function
4238 called, or NULL_TREE if the called function cannot be
4239 determined. */
4241 tree
4242 get_callee_fndecl (call)
4243 tree call;
4245 tree addr;
4247 /* It's invalid to call this function with anything but a
4248 CALL_EXPR. */
4249 if (TREE_CODE (call) != CALL_EXPR)
4250 abort ();
4252 /* The first operand to the CALL is the address of the function
4253 called. */
4254 addr = TREE_OPERAND (call, 0);
4256 STRIP_NOPS (addr);
4258 /* If this is a readonly function pointer, extract its initial value. */
4259 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4260 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4261 && DECL_INITIAL (addr))
4262 addr = DECL_INITIAL (addr);
4264 /* If the address is just `&f' for some function `f', then we know
4265 that `f' is being called. */
4266 if (TREE_CODE (addr) == ADDR_EXPR
4267 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4268 return TREE_OPERAND (addr, 0);
4270 /* We couldn't figure out what was being called. */
4271 return NULL_TREE;
4274 /* Print debugging information about the obstack O, named STR. */
4276 void
4277 print_obstack_statistics (str, o)
4278 const char *str;
4279 struct obstack *o;
4281 struct _obstack_chunk *chunk = o->chunk;
4282 int n_chunks = 1;
4283 int n_alloc = 0;
4285 n_alloc += o->next_free - chunk->contents;
4286 chunk = chunk->prev;
4287 while (chunk)
4289 n_chunks += 1;
4290 n_alloc += chunk->limit - &chunk->contents[0];
4291 chunk = chunk->prev;
4293 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4294 str, n_alloc, n_chunks);
4297 /* Print debugging information about tree nodes generated during the compile,
4298 and any language-specific information. */
4300 void
4301 dump_tree_statistics ()
4303 #ifdef GATHER_STATISTICS
4304 int i;
4305 int total_nodes, total_bytes;
4306 #endif
4308 fprintf (stderr, "\n??? tree nodes created\n\n");
4309 #ifdef GATHER_STATISTICS
4310 fprintf (stderr, "Kind Nodes Bytes\n");
4311 fprintf (stderr, "-------------------------------------\n");
4312 total_nodes = total_bytes = 0;
4313 for (i = 0; i < (int) all_kinds; i++)
4315 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4316 tree_node_counts[i], tree_node_sizes[i]);
4317 total_nodes += tree_node_counts[i];
4318 total_bytes += tree_node_sizes[i];
4320 fprintf (stderr, "-------------------------------------\n");
4321 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4322 fprintf (stderr, "-------------------------------------\n");
4323 #else
4324 fprintf (stderr, "(No per-node statistics)\n");
4325 #endif
4326 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4327 print_type_hash_statistics ();
4328 (*lang_hooks.print_statistics) ();
4331 #define FILE_FUNCTION_PREFIX_LEN 9
4333 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4335 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4336 clashes in cases where we can't reliably choose a unique name.
4338 Derived from mkstemp.c in libiberty. */
4340 static void
4341 append_random_chars (template)
4342 char *template;
4344 static const char letters[]
4345 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4346 static unsigned HOST_WIDE_INT value;
4347 unsigned HOST_WIDE_INT v;
4349 if (! value)
4351 struct stat st;
4353 /* VALUE should be unique for each file and must not change between
4354 compiles since this can cause bootstrap comparison errors. */
4356 if (stat (main_input_filename, &st) < 0)
4358 /* This can happen when preprocessed text is shipped between
4359 machines, e.g. with bug reports. Assume that uniqueness
4360 isn't actually an issue. */
4361 value = 1;
4363 else
4365 /* In VMS, ino is an array, so we have to use both values. We
4366 conditionalize that. */
4367 #ifdef VMS
4368 #define INO_TO_INT(INO) ((int) (INO)[1] << 16 ^ (int) (INO)[2])
4369 #else
4370 #define INO_TO_INT(INO) INO
4371 #endif
4372 value = st.st_dev ^ INO_TO_INT (st.st_ino) ^ st.st_mtime;
4376 template += strlen (template);
4378 v = value;
4380 /* Fill in the random bits. */
4381 template[0] = letters[v % 62];
4382 v /= 62;
4383 template[1] = letters[v % 62];
4384 v /= 62;
4385 template[2] = letters[v % 62];
4386 v /= 62;
4387 template[3] = letters[v % 62];
4388 v /= 62;
4389 template[4] = letters[v % 62];
4390 v /= 62;
4391 template[5] = letters[v % 62];
4393 template[6] = '\0';
4396 /* P is a string that will be used in a symbol. Mask out any characters
4397 that are not valid in that context. */
4399 void
4400 clean_symbol_name (p)
4401 char *p;
4403 for (; *p; p++)
4404 if (! (ISALNUM (*p)
4405 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4406 || *p == '$'
4407 #endif
4408 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4409 || *p == '.'
4410 #endif
4412 *p = '_';
4415 /* Generate a name for a function unique to this translation unit.
4416 TYPE is some string to identify the purpose of this function to the
4417 linker or collect2. */
4419 tree
4420 get_file_function_name_long (type)
4421 const char *type;
4423 char *buf;
4424 const char *p;
4425 char *q;
4427 if (first_global_object_name)
4428 p = first_global_object_name;
4429 else
4431 /* We don't have anything that we know to be unique to this translation
4432 unit, so use what we do have and throw in some randomness. */
4434 const char *name = weak_global_object_name;
4435 const char *file = main_input_filename;
4437 if (! name)
4438 name = "";
4439 if (! file)
4440 file = input_filename;
4442 q = (char *) alloca (7 + strlen (name) + strlen (file));
4444 sprintf (q, "%s%s", name, file);
4445 append_random_chars (q);
4446 p = q;
4449 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4450 + strlen (type));
4452 /* Set up the name of the file-level functions we may need.
4453 Use a global object (which is already required to be unique over
4454 the program) rather than the file name (which imposes extra
4455 constraints). */
4456 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4458 /* Don't need to pull weird characters out of global names. */
4459 if (p != first_global_object_name)
4460 clean_symbol_name (buf + 11);
4462 return get_identifier (buf);
4465 /* If KIND=='I', return a suitable global initializer (constructor) name.
4466 If KIND=='D', return a suitable global clean-up (destructor) name. */
4468 tree
4469 get_file_function_name (kind)
4470 int kind;
4472 char p[2];
4474 p[0] = kind;
4475 p[1] = 0;
4477 return get_file_function_name_long (p);
4480 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4481 The result is placed in BUFFER (which has length BIT_SIZE),
4482 with one bit in each char ('\000' or '\001').
4484 If the constructor is constant, NULL_TREE is returned.
4485 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4487 tree
4488 get_set_constructor_bits (init, buffer, bit_size)
4489 tree init;
4490 char *buffer;
4491 int bit_size;
4493 int i;
4494 tree vals;
4495 HOST_WIDE_INT domain_min
4496 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4497 tree non_const_bits = NULL_TREE;
4499 for (i = 0; i < bit_size; i++)
4500 buffer[i] = 0;
4502 for (vals = TREE_OPERAND (init, 1);
4503 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4505 if (!host_integerp (TREE_VALUE (vals), 0)
4506 || (TREE_PURPOSE (vals) != NULL_TREE
4507 && !host_integerp (TREE_PURPOSE (vals), 0)))
4508 non_const_bits
4509 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4510 else if (TREE_PURPOSE (vals) != NULL_TREE)
4512 /* Set a range of bits to ones. */
4513 HOST_WIDE_INT lo_index
4514 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4515 HOST_WIDE_INT hi_index
4516 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4518 if (lo_index < 0 || lo_index >= bit_size
4519 || hi_index < 0 || hi_index >= bit_size)
4520 abort ();
4521 for (; lo_index <= hi_index; lo_index++)
4522 buffer[lo_index] = 1;
4524 else
4526 /* Set a single bit to one. */
4527 HOST_WIDE_INT index
4528 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4529 if (index < 0 || index >= bit_size)
4531 error ("invalid initializer for bit string");
4532 return NULL_TREE;
4534 buffer[index] = 1;
4537 return non_const_bits;
4540 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4541 The result is placed in BUFFER (which is an array of bytes).
4542 If the constructor is constant, NULL_TREE is returned.
4543 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4545 tree
4546 get_set_constructor_bytes (init, buffer, wd_size)
4547 tree init;
4548 unsigned char *buffer;
4549 int wd_size;
4551 int i;
4552 int set_word_size = BITS_PER_UNIT;
4553 int bit_size = wd_size * set_word_size;
4554 int bit_pos = 0;
4555 unsigned char *bytep = buffer;
4556 char *bit_buffer = (char *) alloca (bit_size);
4557 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4559 for (i = 0; i < wd_size; i++)
4560 buffer[i] = 0;
4562 for (i = 0; i < bit_size; i++)
4564 if (bit_buffer[i])
4566 if (BYTES_BIG_ENDIAN)
4567 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4568 else
4569 *bytep |= 1 << bit_pos;
4571 bit_pos++;
4572 if (bit_pos >= set_word_size)
4573 bit_pos = 0, bytep++;
4575 return non_const_bits;
4578 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4579 /* Complain that the tree code of NODE does not match the expected CODE.
4580 FILE, LINE, and FUNCTION are of the caller. */
4582 void
4583 tree_check_failed (node, code, file, line, function)
4584 const tree node;
4585 enum tree_code code;
4586 const char *file;
4587 int line;
4588 const char *function;
4590 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4591 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4592 function, trim_filename (file), line);
4595 /* Similar to above, except that we check for a class of tree
4596 code, given in CL. */
4598 void
4599 tree_class_check_failed (node, cl, file, line, function)
4600 const tree node;
4601 int cl;
4602 const char *file;
4603 int line;
4604 const char *function;
4606 internal_error
4607 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4608 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4609 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4612 #endif /* ENABLE_TREE_CHECKING */
4614 /* For a new vector type node T, build the information necessary for
4615 debuggint output. */
4617 static void
4618 finish_vector_type (t)
4619 tree t;
4621 layout_type (t);
4624 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4625 tree array = build_array_type (TREE_TYPE (t),
4626 build_index_type (index));
4627 tree rt = make_node (RECORD_TYPE);
4629 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4630 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4631 layout_type (rt);
4632 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4633 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4634 the representation type, and we want to find that die when looking up
4635 the vector type. This is most easily achieved by making the TYPE_UID
4636 numbers equal. */
4637 TYPE_UID (rt) = TYPE_UID (t);
4641 /* Create nodes for all integer types (and error_mark_node) using the sizes
4642 of C datatypes. The caller should call set_sizetype soon after calling
4643 this function to select one of the types as sizetype. */
4645 void
4646 build_common_tree_nodes (signed_char)
4647 int signed_char;
4649 error_mark_node = make_node (ERROR_MARK);
4650 TREE_TYPE (error_mark_node) = error_mark_node;
4652 initialize_sizetypes ();
4654 /* Define both `signed char' and `unsigned char'. */
4655 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4656 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4658 /* Define `char', which is like either `signed char' or `unsigned char'
4659 but not the same as either. */
4660 char_type_node
4661 = (signed_char
4662 ? make_signed_type (CHAR_TYPE_SIZE)
4663 : make_unsigned_type (CHAR_TYPE_SIZE));
4665 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4666 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4667 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4668 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4669 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4670 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4671 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4672 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4674 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4675 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4676 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4677 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4678 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4680 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4681 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4682 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4683 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4684 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4687 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4688 It will create several other common tree nodes. */
4690 void
4691 build_common_tree_nodes_2 (short_double)
4692 int short_double;
4694 /* Define these next since types below may used them. */
4695 integer_zero_node = build_int_2 (0, 0);
4696 integer_one_node = build_int_2 (1, 0);
4697 integer_minus_one_node = build_int_2 (-1, -1);
4699 size_zero_node = size_int (0);
4700 size_one_node = size_int (1);
4701 bitsize_zero_node = bitsize_int (0);
4702 bitsize_one_node = bitsize_int (1);
4703 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4705 void_type_node = make_node (VOID_TYPE);
4706 layout_type (void_type_node);
4708 /* We are not going to have real types in C with less than byte alignment,
4709 so we might as well not have any types that claim to have it. */
4710 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4711 TYPE_USER_ALIGN (void_type_node) = 0;
4713 null_pointer_node = build_int_2 (0, 0);
4714 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4715 layout_type (TREE_TYPE (null_pointer_node));
4717 ptr_type_node = build_pointer_type (void_type_node);
4718 const_ptr_type_node
4719 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4721 float_type_node = make_node (REAL_TYPE);
4722 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4723 layout_type (float_type_node);
4725 double_type_node = make_node (REAL_TYPE);
4726 if (short_double)
4727 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4728 else
4729 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4730 layout_type (double_type_node);
4732 long_double_type_node = make_node (REAL_TYPE);
4733 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4734 layout_type (long_double_type_node);
4736 complex_integer_type_node = make_node (COMPLEX_TYPE);
4737 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4738 layout_type (complex_integer_type_node);
4740 complex_float_type_node = make_node (COMPLEX_TYPE);
4741 TREE_TYPE (complex_float_type_node) = float_type_node;
4742 layout_type (complex_float_type_node);
4744 complex_double_type_node = make_node (COMPLEX_TYPE);
4745 TREE_TYPE (complex_double_type_node) = double_type_node;
4746 layout_type (complex_double_type_node);
4748 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4749 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4750 layout_type (complex_long_double_type_node);
4753 tree t;
4754 BUILD_VA_LIST_TYPE (t);
4756 /* Many back-ends define record types without seting TYPE_NAME.
4757 If we copied the record type here, we'd keep the original
4758 record type without a name. This breaks name mangling. So,
4759 don't copy record types and let c_common_nodes_and_builtins()
4760 declare the type to be __builtin_va_list. */
4761 if (TREE_CODE (t) != RECORD_TYPE)
4762 t = build_type_copy (t);
4764 va_list_type_node = t;
4767 unsigned_V4SI_type_node
4768 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4769 unsigned_V2SI_type_node
4770 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4771 unsigned_V2DI_type_node
4772 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4773 unsigned_V4HI_type_node
4774 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4775 unsigned_V8QI_type_node
4776 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4777 unsigned_V8HI_type_node
4778 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4779 unsigned_V16QI_type_node
4780 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4782 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4783 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4784 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4785 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4786 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4787 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4788 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4789 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4790 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4791 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4792 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4795 /* Returns a vector tree node given a vector mode, the inner type, and
4796 the signness. */
4798 static tree
4799 make_vector (mode, innertype, unsignedp)
4800 enum machine_mode mode;
4801 tree innertype;
4802 int unsignedp;
4804 tree t;
4806 t = make_node (VECTOR_TYPE);
4807 TREE_TYPE (t) = innertype;
4808 TYPE_MODE (t) = mode;
4809 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4810 finish_vector_type (t);
4812 return t;
4815 /* Given an initializer INIT, return TRUE if INIT is zero or some
4816 aggregate of zeros. Otherwise return FALSE. */
4818 bool
4819 initializer_zerop (init)
4820 tree init;
4822 STRIP_NOPS (init);
4824 switch (TREE_CODE (init))
4826 case INTEGER_CST:
4827 return integer_zerop (init);
4828 case REAL_CST:
4829 return real_zerop (init)
4830 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
4831 case COMPLEX_CST:
4832 return integer_zerop (init)
4833 || (real_zerop (init)
4834 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
4835 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
4836 case CONSTRUCTOR:
4838 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
4840 tree aggr_init = TREE_OPERAND (init, 1);
4842 while (aggr_init)
4844 if (! initializer_zerop (TREE_VALUE (aggr_init)))
4845 return false;
4846 aggr_init = TREE_CHAIN (aggr_init);
4848 return true;
4850 return false;
4852 default:
4853 return false;