2014-11-18 Christophe Lyon <christophe.lyon@linaro.org>
[official-gcc.git] / gcc / ada / sem_res.adb
blob0afa28cdc869c3d53b730ad2c518c9610a64f3e3
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Fname; use Fname;
39 with Freeze; use Freeze;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Restrict; use Restrict;
50 with Rident; use Rident;
51 with Rtsfind; use Rtsfind;
52 with Sem; use Sem;
53 with Sem_Aux; use Sem_Aux;
54 with Sem_Aggr; use Sem_Aggr;
55 with Sem_Attr; use Sem_Attr;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch4; use Sem_Ch4;
58 with Sem_Ch6; use Sem_Ch6;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Elab; use Sem_Elab;
66 with Sem_Eval; use Sem_Eval;
67 with Sem_Intr; use Sem_Intr;
68 with Sem_Util; use Sem_Util;
69 with Targparm; use Targparm;
70 with Sem_Type; use Sem_Type;
71 with Sem_Warn; use Sem_Warn;
72 with Sinfo; use Sinfo;
73 with Sinfo.CN; use Sinfo.CN;
74 with Snames; use Snames;
75 with Stand; use Stand;
76 with Stringt; use Stringt;
77 with Style; use Style;
78 with Tbuild; use Tbuild;
79 with Uintp; use Uintp;
80 with Urealp; use Urealp;
82 package body Sem_Res is
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
88 -- Second pass (top-down) type checking and overload resolution procedures
89 -- Typ is the type required by context. These procedures propagate the type
90 -- information recursively to the descendants of N. If the node is not
91 -- overloaded, its Etype is established in the first pass. If overloaded,
92 -- the Resolve routines set the correct type. For arith. operators, the
93 -- Etype is the base type of the context.
95 -- Note that Resolve_Attribute is separated off in Sem_Attr
97 procedure Check_Discriminant_Use (N : Node_Id);
98 -- Enforce the restrictions on the use of discriminants when constraining
99 -- a component of a discriminated type (record or concurrent type).
101 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
102 -- Given a node for an operator associated with type T, check that
103 -- the operator is visible. Operators all of whose operands are
104 -- universal must be checked for visibility during resolution
105 -- because their type is not determinable based on their operands.
107 procedure Check_Fully_Declared_Prefix
108 (Typ : Entity_Id;
109 Pref : Node_Id);
110 -- Check that the type of the prefix of a dereference is not incomplete
112 procedure Check_Ghost_Context (Ghost_Id : Entity_Id; Ghost_Ref : Node_Id);
113 -- Determine whether node Ghost_Ref appears within a Ghost-friendly context
114 -- where Ghost entity Ghost_Id can safely reside.
116 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
117 -- Given a call node, N, which is known to occur immediately within the
118 -- subprogram being called, determines whether it is a detectable case of
119 -- an infinite recursion, and if so, outputs appropriate messages. Returns
120 -- True if an infinite recursion is detected, and False otherwise.
122 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
123 -- If the type of the object being initialized uses the secondary stack
124 -- directly or indirectly, create a transient scope for the call to the
125 -- init proc. This is because we do not create transient scopes for the
126 -- initialization of individual components within the init proc itself.
127 -- Could be optimized away perhaps?
129 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
130 -- N is the node for a logical operator. If the operator is predefined, and
131 -- the root type of the operands is Standard.Boolean, then a check is made
132 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
133 -- the style check for Style_Check_Boolean_And_Or.
135 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
136 -- N is either an indexed component or a selected component. This function
137 -- returns true if the prefix refers to an object that has an address
138 -- clause (the case in which we may want to issue a warning).
140 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
141 -- Determine whether E is an access type declared by an access declaration,
142 -- and not an (anonymous) allocator type.
144 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
145 -- Utility to check whether the entity for an operator is a predefined
146 -- operator, in which case the expression is left as an operator in the
147 -- tree (else it is rewritten into a call). An instance of an intrinsic
148 -- conversion operation may be given an operator name, but is not treated
149 -- like an operator. Note that an operator that is an imported back-end
150 -- builtin has convention Intrinsic, but is expected to be rewritten into
151 -- a call, so such an operator is not treated as predefined by this
152 -- predicate.
154 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
155 -- If a default expression in entry call N depends on the discriminants
156 -- of the task, it must be replaced with a reference to the discriminant
157 -- of the task being called.
159 procedure Resolve_Op_Concat_Arg
160 (N : Node_Id;
161 Arg : Node_Id;
162 Typ : Entity_Id;
163 Is_Comp : Boolean);
164 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
165 -- concatenation operator. The operand is either of the array type or of
166 -- the component type. If the operand is an aggregate, and the component
167 -- type is composite, this is ambiguous if component type has aggregates.
169 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
170 -- Does the first part of the work of Resolve_Op_Concat
172 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
173 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
174 -- has been resolved. See Resolve_Op_Concat for details.
176 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
210 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
212 function Operator_Kind
213 (Op_Name : Name_Id;
214 Is_Binary : Boolean) return Node_Kind;
215 -- Utility to map the name of an operator into the corresponding Node. Used
216 -- by other node rewriting procedures.
218 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
219 -- Resolve actuals of call, and add default expressions for missing ones.
220 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
221 -- called subprogram.
223 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
224 -- Called from Resolve_Call, when the prefix denotes an entry or element
225 -- of entry family. Actuals are resolved as for subprograms, and the node
226 -- is rebuilt as an entry call. Also called for protected operations. Typ
227 -- is the context type, which is used when the operation is a protected
228 -- function with no arguments, and the return value is indexed.
230 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
231 -- A call to a user-defined intrinsic operator is rewritten as a call to
232 -- the corresponding predefined operator, with suitable conversions. Note
233 -- that this applies only for intrinsic operators that denote predefined
234 -- operators, not ones that are intrinsic imports of back-end builtins.
236 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
237 -- Ditto, for arithmetic unary operators
239 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
240 -- If an operator node resolves to a call to a user-defined operator,
241 -- rewrite the node as a function call.
243 procedure Make_Call_Into_Operator
244 (N : Node_Id;
245 Typ : Entity_Id;
246 Op_Id : Entity_Id);
247 -- Inverse transformation: if an operator is given in functional notation,
248 -- then after resolving the node, transform into an operator node, so
249 -- that operands are resolved properly. Recall that predefined operators
250 -- do not have a full signature and special resolution rules apply.
252 procedure Rewrite_Renamed_Operator
253 (N : Node_Id;
254 Op : Entity_Id;
255 Typ : Entity_Id);
256 -- An operator can rename another, e.g. in an instantiation. In that
257 -- case, the proper operator node must be constructed and resolved.
259 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
260 -- The String_Literal_Subtype is built for all strings that are not
261 -- operands of a static concatenation operation. If the argument is
262 -- not a N_String_Literal node, then the call has no effect.
264 procedure Set_Slice_Subtype (N : Node_Id);
265 -- Build subtype of array type, with the range specified by the slice
267 procedure Simplify_Type_Conversion (N : Node_Id);
268 -- Called after N has been resolved and evaluated, but before range checks
269 -- have been applied. Currently simplifies a combination of floating-point
270 -- to integer conversion and Rounding or Truncation attribute.
272 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
273 -- A universal_fixed expression in an universal context is unambiguous if
274 -- there is only one applicable fixed point type. Determining whether there
275 -- is only one requires a search over all visible entities, and happens
276 -- only in very pathological cases (see 6115-006).
278 -------------------------
279 -- Ambiguous_Character --
280 -------------------------
282 procedure Ambiguous_Character (C : Node_Id) is
283 E : Entity_Id;
285 begin
286 if Nkind (C) = N_Character_Literal then
287 Error_Msg_N ("ambiguous character literal", C);
289 -- First the ones in Standard
291 Error_Msg_N ("\\possible interpretation: Character!", C);
292 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
294 -- Include Wide_Wide_Character in Ada 2005 mode
296 if Ada_Version >= Ada_2005 then
297 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
298 end if;
300 -- Now any other types that match
302 E := Current_Entity (C);
303 while Present (E) loop
304 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
305 E := Homonym (E);
306 end loop;
307 end if;
308 end Ambiguous_Character;
310 -------------------------
311 -- Analyze_And_Resolve --
312 -------------------------
314 procedure Analyze_And_Resolve (N : Node_Id) is
315 begin
316 Analyze (N);
317 Resolve (N);
318 end Analyze_And_Resolve;
320 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
321 begin
322 Analyze (N);
323 Resolve (N, Typ);
324 end Analyze_And_Resolve;
326 -- Versions with check(s) suppressed
328 procedure Analyze_And_Resolve
329 (N : Node_Id;
330 Typ : Entity_Id;
331 Suppress : Check_Id)
333 Scop : constant Entity_Id := Current_Scope;
335 begin
336 if Suppress = All_Checks then
337 declare
338 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
339 begin
340 Scope_Suppress.Suppress := (others => True);
341 Analyze_And_Resolve (N, Typ);
342 Scope_Suppress.Suppress := Sva;
343 end;
345 else
346 declare
347 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
348 begin
349 Scope_Suppress.Suppress (Suppress) := True;
350 Analyze_And_Resolve (N, Typ);
351 Scope_Suppress.Suppress (Suppress) := Svg;
352 end;
353 end if;
355 if Current_Scope /= Scop
356 and then Scope_Is_Transient
357 then
358 -- This can only happen if a transient scope was created for an inner
359 -- expression, which will be removed upon completion of the analysis
360 -- of an enclosing construct. The transient scope must have the
361 -- suppress status of the enclosing environment, not of this Analyze
362 -- call.
364 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
365 Scope_Suppress;
366 end if;
367 end Analyze_And_Resolve;
369 procedure Analyze_And_Resolve
370 (N : Node_Id;
371 Suppress : Check_Id)
373 Scop : constant Entity_Id := Current_Scope;
375 begin
376 if Suppress = All_Checks then
377 declare
378 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
379 begin
380 Scope_Suppress.Suppress := (others => True);
381 Analyze_And_Resolve (N);
382 Scope_Suppress.Suppress := Sva;
383 end;
385 else
386 declare
387 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
388 begin
389 Scope_Suppress.Suppress (Suppress) := True;
390 Analyze_And_Resolve (N);
391 Scope_Suppress.Suppress (Suppress) := Svg;
392 end;
393 end if;
395 if Current_Scope /= Scop and then Scope_Is_Transient then
396 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
397 Scope_Suppress;
398 end if;
399 end Analyze_And_Resolve;
401 ----------------------------
402 -- Check_Discriminant_Use --
403 ----------------------------
405 procedure Check_Discriminant_Use (N : Node_Id) is
406 PN : constant Node_Id := Parent (N);
407 Disc : constant Entity_Id := Entity (N);
408 P : Node_Id;
409 D : Node_Id;
411 begin
412 -- Any use in a spec-expression is legal
414 if In_Spec_Expression then
415 null;
417 elsif Nkind (PN) = N_Range then
419 -- Discriminant cannot be used to constrain a scalar type
421 P := Parent (PN);
423 if Nkind (P) = N_Range_Constraint
424 and then Nkind (Parent (P)) = N_Subtype_Indication
425 and then Nkind (Parent (Parent (P))) = N_Component_Definition
426 then
427 Error_Msg_N ("discriminant cannot constrain scalar type", N);
429 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
431 -- The following check catches the unusual case where a
432 -- discriminant appears within an index constraint that is part of
433 -- a larger expression within a constraint on a component, e.g. "C
434 -- : Int range 1 .. F (new A(1 .. D))". For now we only check case
435 -- of record components, and note that a similar check should also
436 -- apply in the case of discriminant constraints below. ???
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
444 -- for more info.
446 if Ekind (Current_Scope) = E_Record_Type
447 and then Scope (Disc) = Current_Scope
448 and then not
449 (Nkind (Parent (P)) = N_Subtype_Indication
450 and then
451 Nkind_In (Parent (Parent (P)), N_Component_Definition,
452 N_Subtype_Declaration)
453 and then Paren_Count (N) = 0)
454 then
455 Error_Msg_N
456 ("discriminant must appear alone in component constraint", N);
457 return;
458 end if;
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
464 -- end record;
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large : declare
472 SI : Node_Id;
473 T : Entity_Id;
474 TB : Node_Id;
475 CB : Entity_Id;
477 function Large_Storage_Type (T : Entity_Id) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type (T : Entity_Id) return Boolean is
487 begin
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value (Type_Low_Bound (T))
493 and then Compile_Time_Known_Value (Type_High_Bound (T))
494 and then
495 Minimum_Size (T, Biased => True) >=
496 RM_Size (Standard_Positive);
497 end Large_Storage_Type;
499 -- Start of processing for Check_Large
501 begin
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type (Etype (Disc)) then
505 goto No_Danger;
506 end if;
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
510 -- a warning.
512 if Is_Limited_Type (Scope (Disc)) then
513 goto No_Danger;
514 end if;
516 -- Check that it is the high bound
518 if N /= High_Bound (PN)
519 or else No (Discriminant_Default_Value (Disc))
520 then
521 goto No_Danger;
522 end if;
524 -- Check the array allows a large range at this bound. First
525 -- find the array
527 SI := Parent (P);
529 if Nkind (SI) /= N_Subtype_Indication then
530 goto No_Danger;
531 end if;
533 T := Entity (Subtype_Mark (SI));
535 if not Is_Array_Type (T) then
536 goto No_Danger;
537 end if;
539 -- Next, find the dimension
541 TB := First_Index (T);
542 CB := First (Constraints (P));
543 while True
544 and then Present (TB)
545 and then Present (CB)
546 and then CB /= PN
547 loop
548 Next_Index (TB);
549 Next (CB);
550 end loop;
552 if CB /= PN then
553 goto No_Danger;
554 end if;
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type (Etype (TB)) then
559 goto No_Danger;
560 end if;
562 -- Warn about the danger
564 Error_Msg_N
565 ("??creation of & object may raise Storage_Error!",
566 Scope (Disc));
568 <<No_Danger>>
569 null;
571 end Check_Large;
572 end if;
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
577 N_Discriminant_Association)
578 then
579 if Paren_Count (N) > 0 then
580 Error_Msg_N
581 ("discriminant in constraint must appear alone", N);
583 elsif Nkind (N) = N_Expanded_Name
584 and then Comes_From_Source (N)
585 then
586 Error_Msg_N
587 ("discriminant must appear alone as a direct name", N);
588 end if;
590 return;
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
595 else
596 D := PN;
597 P := Parent (PN);
598 while not Nkind_In (P, N_Component_Declaration,
599 N_Subtype_Indication,
600 N_Entry_Declaration)
601 loop
602 D := P;
603 P := Parent (P);
604 exit when No (P);
605 end loop;
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind (P) = N_Subtype_Indication
613 and then Nkind_In (Parent (P), N_Component_Definition,
614 N_Derived_Type_Definition)
615 and then D = Constraint (P))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind (P) = N_Subtype_Indication
621 and then
622 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
623 or else Nkind (P) = N_Entry_Declaration
624 or else Nkind (D) = N_Defining_Identifier
625 then
626 Error_Msg_N
627 ("discriminant in constraint must appear alone", N);
628 end if;
629 end if;
630 end Check_Discriminant_Use;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
637 begin
638 if Is_Invisible_Operator (N, T) then
639 Error_Msg_NE -- CODEFIX
640 ("operator for} is not directly visible!", N, First_Subtype (T));
641 Error_Msg_N -- CODEFIX
642 ("use clause would make operation legal!", N);
643 end if;
644 end Check_For_Visible_Operator;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
651 (Typ : Entity_Id;
652 Pref : Node_Id)
654 begin
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name (Pref)
674 and then Ekind (Entity (Pref)) = E_In_Parameter
675 then
676 null;
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version >= Ada_2005
683 and then Is_Entity_Name (Pref)
684 and then Is_Access_Type (Etype (Pref))
685 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
686 E_Incomplete_Type
687 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
688 then
689 null;
690 else
691 Check_Fully_Declared (Typ, Parent (Pref));
692 end if;
693 end Check_Fully_Declared_Prefix;
695 -------------------------
696 -- Check_Ghost_Context --
697 -------------------------
699 procedure Check_Ghost_Context (Ghost_Id : Entity_Id; Ghost_Ref : Node_Id) is
700 procedure Check_Ghost_Policy (Id : Entity_Id; Err_N : Node_Id);
701 -- Verify that the Ghost policy at the point of declaration of entity Id
702 -- matches the policy at the point of reference. If this is not the case
703 -- emit an error at Err_N.
705 function Is_OK_Ghost_Context (Context : Node_Id) return Boolean;
706 -- Determine whether node Context denotes a Ghost-friendly context where
707 -- a Ghost entity can safely reside.
709 -------------------------
710 -- Is_OK_Ghost_Context --
711 -------------------------
713 function Is_OK_Ghost_Context (Context : Node_Id) return Boolean is
714 function Is_Ghost_Declaration (Decl : Node_Id) return Boolean;
715 -- Determine whether node Decl is a Ghost declaration or appears
716 -- within a Ghost declaration.
718 --------------------------
719 -- Is_Ghost_Declaration --
720 --------------------------
722 function Is_Ghost_Declaration (Decl : Node_Id) return Boolean is
723 Par : Node_Id;
724 Subp_Decl : Node_Id;
725 Subp_Id : Entity_Id;
727 begin
728 -- Climb the parent chain looking for an object declaration
730 Par := Decl;
731 while Present (Par) loop
732 case Nkind (Par) is
733 when N_Abstract_Subprogram_Declaration |
734 N_Exception_Declaration |
735 N_Exception_Renaming_Declaration |
736 N_Full_Type_Declaration |
737 N_Generic_Function_Renaming_Declaration |
738 N_Generic_Package_Declaration |
739 N_Generic_Package_Renaming_Declaration |
740 N_Generic_Procedure_Renaming_Declaration |
741 N_Generic_Subprogram_Declaration |
742 N_Number_Declaration |
743 N_Object_Declaration |
744 N_Object_Renaming_Declaration |
745 N_Package_Declaration |
746 N_Package_Renaming_Declaration |
747 N_Private_Extension_Declaration |
748 N_Private_Type_Declaration |
749 N_Subprogram_Declaration |
750 N_Subprogram_Renaming_Declaration |
751 N_Subtype_Declaration =>
752 return Is_Subject_To_Ghost (Par);
754 when others =>
755 null;
756 end case;
758 -- Special cases
760 -- A reference to a Ghost entity may appear as the default
761 -- expression of a formal parameter of a subprogram body. This
762 -- context must be treated as suitable because the relation
763 -- between the spec and the body has not been established and
764 -- the body is not marked as Ghost yet. The real check was
765 -- performed on the spec.
767 if Nkind (Par) = N_Parameter_Specification
768 and then Nkind (Parent (Parent (Par))) = N_Subprogram_Body
769 then
770 return True;
772 -- References to Ghost entities may be relocated in internally
773 -- generated bodies.
775 elsif Nkind (Par) = N_Subprogram_Body
776 and then not Comes_From_Source (Par)
777 then
778 Subp_Id := Corresponding_Spec (Par);
780 -- The original context is an expression function that has
781 -- been split into a spec and a body. The context is OK as
782 -- long as the the initial declaration is Ghost.
784 if Present (Subp_Id) then
785 Subp_Decl :=
786 Original_Node (Unit_Declaration_Node (Subp_Id));
788 if Nkind (Subp_Decl) = N_Expression_Function then
789 return Is_Subject_To_Ghost (Subp_Decl);
790 end if;
791 end if;
793 -- Otherwise this is either an internal body or an internal
794 -- completion. Both are OK because the real check was done
795 -- before expansion activities.
797 return True;
798 end if;
800 -- Prevent the search from going too far
802 if Is_Body_Or_Package_Declaration (Par) then
803 return False;
804 end if;
806 Par := Parent (Par);
807 end loop;
809 return False;
810 end Is_Ghost_Declaration;
812 -- Start of processing for Is_OK_Ghost_Context
814 begin
815 -- The Ghost entity appears within an assertion expression
817 if In_Assertion_Expr > 0 then
818 return True;
820 -- The Ghost entity is part of a declaration or its completion
822 elsif Is_Ghost_Declaration (Context) then
823 return True;
825 -- The Ghost entity is referenced within a Ghost statement
827 elsif Is_Ghost_Statement_Or_Pragma (Context) then
828 return True;
830 else
831 return False;
832 end if;
833 end Is_OK_Ghost_Context;
835 ------------------------
836 -- Check_Ghost_Policy --
837 ------------------------
839 procedure Check_Ghost_Policy (Id : Entity_Id; Err_N : Node_Id) is
840 Policy : constant Name_Id := Policy_In_Effect (Name_Ghost);
842 begin
843 -- The Ghost policy in effect a the point of declaration and at the
844 -- point of use must match (SPARK RM 6.9(14)).
846 if Is_Checked_Ghost_Entity (Id) and then Policy = Name_Ignore then
847 Error_Msg_Sloc := Sloc (Err_N);
849 Error_Msg_N ("incompatible ghost policies in effect", Err_N);
850 Error_Msg_NE ("\& declared with ghost policy Check", Err_N, Id);
851 Error_Msg_NE ("\& used # with ghost policy Ignore", Err_N, Id);
853 elsif Is_Ignored_Ghost_Entity (Id) and then Policy = Name_Check then
854 Error_Msg_Sloc := Sloc (Err_N);
856 Error_Msg_N ("incompatible ghost policies in effect", Err_N);
857 Error_Msg_NE ("\& declared with ghost policy Ignore", Err_N, Id);
858 Error_Msg_NE ("\& used # with ghost policy Check", Err_N, Id);
859 end if;
860 end Check_Ghost_Policy;
862 -- Start of processing for Check_Ghost_Context
864 begin
865 -- Once it has been established that the reference to the Ghost entity
866 -- is within a suitable context, ensure that the policy at the point of
867 -- declaration and at the point of use match.
869 if Is_OK_Ghost_Context (Ghost_Ref) then
870 Check_Ghost_Policy (Ghost_Id, Ghost_Ref);
872 -- Otherwise the Ghost entity appears in a non-Ghost context and affects
873 -- its behavior or value.
875 else
876 Error_Msg_N
877 ("ghost entity cannot appear in this context (SPARK RM 6.9(12))",
878 Ghost_Ref);
879 end if;
880 end Check_Ghost_Context;
882 ------------------------------
883 -- Check_Infinite_Recursion --
884 ------------------------------
886 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
887 P : Node_Id;
888 C : Node_Id;
890 function Same_Argument_List return Boolean;
891 -- Check whether list of actuals is identical to list of formals of
892 -- called function (which is also the enclosing scope).
894 ------------------------
895 -- Same_Argument_List --
896 ------------------------
898 function Same_Argument_List return Boolean is
899 A : Node_Id;
900 F : Entity_Id;
901 Subp : Entity_Id;
903 begin
904 if not Is_Entity_Name (Name (N)) then
905 return False;
906 else
907 Subp := Entity (Name (N));
908 end if;
910 F := First_Formal (Subp);
911 A := First_Actual (N);
912 while Present (F) and then Present (A) loop
913 if not Is_Entity_Name (A)
914 or else Entity (A) /= F
915 then
916 return False;
917 end if;
919 Next_Actual (A);
920 Next_Formal (F);
921 end loop;
923 return True;
924 end Same_Argument_List;
926 -- Start of processing for Check_Infinite_Recursion
928 begin
929 -- Special case, if this is a procedure call and is a call to the
930 -- current procedure with the same argument list, then this is for
931 -- sure an infinite recursion and we insert a call to raise SE.
933 if Is_List_Member (N)
934 and then List_Length (List_Containing (N)) = 1
935 and then Same_Argument_List
936 then
937 declare
938 P : constant Node_Id := Parent (N);
939 begin
940 if Nkind (P) = N_Handled_Sequence_Of_Statements
941 and then Nkind (Parent (P)) = N_Subprogram_Body
942 and then Is_Empty_List (Declarations (Parent (P)))
943 then
944 Error_Msg_Warn := SPARK_Mode /= On;
945 Error_Msg_N ("!infinite recursion<<", N);
946 Error_Msg_N ("\!Storage_Error [<<", N);
947 Insert_Action (N,
948 Make_Raise_Storage_Error (Sloc (N),
949 Reason => SE_Infinite_Recursion));
950 return True;
951 end if;
952 end;
953 end if;
955 -- If not that special case, search up tree, quitting if we reach a
956 -- construct (e.g. a conditional) that tells us that this is not a
957 -- case for an infinite recursion warning.
959 C := N;
960 loop
961 P := Parent (C);
963 -- If no parent, then we were not inside a subprogram, this can for
964 -- example happen when processing certain pragmas in a spec. Just
965 -- return False in this case.
967 if No (P) then
968 return False;
969 end if;
971 -- Done if we get to subprogram body, this is definitely an infinite
972 -- recursion case if we did not find anything to stop us.
974 exit when Nkind (P) = N_Subprogram_Body;
976 -- If appearing in conditional, result is false
978 if Nkind_In (P, N_Or_Else,
979 N_And_Then,
980 N_Case_Expression,
981 N_Case_Statement,
982 N_If_Expression,
983 N_If_Statement)
984 then
985 return False;
987 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
988 and then C /= First (Statements (P))
989 then
990 -- If the call is the expression of a return statement and the
991 -- actuals are identical to the formals, it's worth a warning.
992 -- However, we skip this if there is an immediately preceding
993 -- raise statement, since the call is never executed.
995 -- Furthermore, this corresponds to a common idiom:
997 -- function F (L : Thing) return Boolean is
998 -- begin
999 -- raise Program_Error;
1000 -- return F (L);
1001 -- end F;
1003 -- for generating a stub function
1005 if Nkind (Parent (N)) = N_Simple_Return_Statement
1006 and then Same_Argument_List
1007 then
1008 exit when not Is_List_Member (Parent (N));
1010 -- OK, return statement is in a statement list, look for raise
1012 declare
1013 Nod : Node_Id;
1015 begin
1016 -- Skip past N_Freeze_Entity nodes generated by expansion
1018 Nod := Prev (Parent (N));
1019 while Present (Nod)
1020 and then Nkind (Nod) = N_Freeze_Entity
1021 loop
1022 Prev (Nod);
1023 end loop;
1025 -- If no raise statement, give warning. We look at the
1026 -- original node, because in the case of "raise ... with
1027 -- ...", the node has been transformed into a call.
1029 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
1030 and then
1031 (Nkind (Nod) not in N_Raise_xxx_Error
1032 or else Present (Condition (Nod)));
1033 end;
1034 end if;
1036 return False;
1038 else
1039 C := P;
1040 end if;
1041 end loop;
1043 Error_Msg_Warn := SPARK_Mode /= On;
1044 Error_Msg_N ("!possible infinite recursion<<", N);
1045 Error_Msg_N ("\!??Storage_Error ]<<", N);
1047 return True;
1048 end Check_Infinite_Recursion;
1050 -------------------------------
1051 -- Check_Initialization_Call --
1052 -------------------------------
1054 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
1055 Typ : constant Entity_Id := Etype (First_Formal (Nam));
1057 function Uses_SS (T : Entity_Id) return Boolean;
1058 -- Check whether the creation of an object of the type will involve
1059 -- use of the secondary stack. If T is a record type, this is true
1060 -- if the expression for some component uses the secondary stack, e.g.
1061 -- through a call to a function that returns an unconstrained value.
1062 -- False if T is controlled, because cleanups occur elsewhere.
1064 -------------
1065 -- Uses_SS --
1066 -------------
1068 function Uses_SS (T : Entity_Id) return Boolean is
1069 Comp : Entity_Id;
1070 Expr : Node_Id;
1071 Full_Type : Entity_Id := Underlying_Type (T);
1073 begin
1074 -- Normally we want to use the underlying type, but if it's not set
1075 -- then continue with T.
1077 if not Present (Full_Type) then
1078 Full_Type := T;
1079 end if;
1081 if Is_Controlled (Full_Type) then
1082 return False;
1084 elsif Is_Array_Type (Full_Type) then
1085 return Uses_SS (Component_Type (Full_Type));
1087 elsif Is_Record_Type (Full_Type) then
1088 Comp := First_Component (Full_Type);
1089 while Present (Comp) loop
1090 if Ekind (Comp) = E_Component
1091 and then Nkind (Parent (Comp)) = N_Component_Declaration
1092 then
1093 -- The expression for a dynamic component may be rewritten
1094 -- as a dereference, so retrieve original node.
1096 Expr := Original_Node (Expression (Parent (Comp)));
1098 -- Return True if the expression is a call to a function
1099 -- (including an attribute function such as Image, or a
1100 -- user-defined operator) with a result that requires a
1101 -- transient scope.
1103 if (Nkind (Expr) = N_Function_Call
1104 or else Nkind (Expr) in N_Op
1105 or else (Nkind (Expr) = N_Attribute_Reference
1106 and then Present (Expressions (Expr))))
1107 and then Requires_Transient_Scope (Etype (Expr))
1108 then
1109 return True;
1111 elsif Uses_SS (Etype (Comp)) then
1112 return True;
1113 end if;
1114 end if;
1116 Next_Component (Comp);
1117 end loop;
1119 return False;
1121 else
1122 return False;
1123 end if;
1124 end Uses_SS;
1126 -- Start of processing for Check_Initialization_Call
1128 begin
1129 -- Establish a transient scope if the type needs it
1131 if Uses_SS (Typ) then
1132 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
1133 end if;
1134 end Check_Initialization_Call;
1136 ---------------------------------------
1137 -- Check_No_Direct_Boolean_Operators --
1138 ---------------------------------------
1140 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
1141 begin
1142 if Scope (Entity (N)) = Standard_Standard
1143 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
1144 then
1145 -- Restriction only applies to original source code
1147 if Comes_From_Source (N) then
1148 Check_Restriction (No_Direct_Boolean_Operators, N);
1149 end if;
1150 end if;
1152 -- Do style check (but skip if in instance, error is on template)
1154 if Style_Check then
1155 if not In_Instance then
1156 Check_Boolean_Operator (N);
1157 end if;
1158 end if;
1159 end Check_No_Direct_Boolean_Operators;
1161 ------------------------------
1162 -- Check_Parameterless_Call --
1163 ------------------------------
1165 procedure Check_Parameterless_Call (N : Node_Id) is
1166 Nam : Node_Id;
1168 function Prefix_Is_Access_Subp return Boolean;
1169 -- If the prefix is of an access_to_subprogram type, the node must be
1170 -- rewritten as a call. Ditto if the prefix is overloaded and all its
1171 -- interpretations are access to subprograms.
1173 ---------------------------
1174 -- Prefix_Is_Access_Subp --
1175 ---------------------------
1177 function Prefix_Is_Access_Subp return Boolean is
1178 I : Interp_Index;
1179 It : Interp;
1181 begin
1182 -- If the context is an attribute reference that can apply to
1183 -- functions, this is never a parameterless call (RM 4.1.4(6)).
1185 if Nkind (Parent (N)) = N_Attribute_Reference
1186 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
1187 Name_Code_Address,
1188 Name_Access)
1189 then
1190 return False;
1191 end if;
1193 if not Is_Overloaded (N) then
1194 return
1195 Ekind (Etype (N)) = E_Subprogram_Type
1196 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1197 else
1198 Get_First_Interp (N, I, It);
1199 while Present (It.Typ) loop
1200 if Ekind (It.Typ) /= E_Subprogram_Type
1201 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1202 then
1203 return False;
1204 end if;
1206 Get_Next_Interp (I, It);
1207 end loop;
1209 return True;
1210 end if;
1211 end Prefix_Is_Access_Subp;
1213 -- Start of processing for Check_Parameterless_Call
1215 begin
1216 -- Defend against junk stuff if errors already detected
1218 if Total_Errors_Detected /= 0 then
1219 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1220 return;
1221 elsif Nkind (N) in N_Has_Chars
1222 and then Chars (N) in Error_Name_Or_No_Name
1223 then
1224 return;
1225 end if;
1227 Require_Entity (N);
1228 end if;
1230 -- If the context expects a value, and the name is a procedure, this is
1231 -- most likely a missing 'Access. Don't try to resolve the parameterless
1232 -- call, error will be caught when the outer call is analyzed.
1234 if Is_Entity_Name (N)
1235 and then Ekind (Entity (N)) = E_Procedure
1236 and then not Is_Overloaded (N)
1237 and then
1238 Nkind_In (Parent (N), N_Parameter_Association,
1239 N_Function_Call,
1240 N_Procedure_Call_Statement)
1241 then
1242 return;
1243 end if;
1245 -- Rewrite as call if overloadable entity that is (or could be, in the
1246 -- overloaded case) a function call. If we know for sure that the entity
1247 -- is an enumeration literal, we do not rewrite it.
1249 -- If the entity is the name of an operator, it cannot be a call because
1250 -- operators cannot have default parameters. In this case, this must be
1251 -- a string whose contents coincide with an operator name. Set the kind
1252 -- of the node appropriately.
1254 if (Is_Entity_Name (N)
1255 and then Nkind (N) /= N_Operator_Symbol
1256 and then Is_Overloadable (Entity (N))
1257 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1258 or else Is_Overloaded (N)))
1260 -- Rewrite as call if it is an explicit dereference of an expression of
1261 -- a subprogram access type, and the subprogram type is not that of a
1262 -- procedure or entry.
1264 or else
1265 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1267 -- Rewrite as call if it is a selected component which is a function,
1268 -- this is the case of a call to a protected function (which may be
1269 -- overloaded with other protected operations).
1271 or else
1272 (Nkind (N) = N_Selected_Component
1273 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1274 or else
1275 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1276 E_Procedure)
1277 and then Is_Overloaded (Selector_Name (N)))))
1279 -- If one of the above three conditions is met, rewrite as call. Apply
1280 -- the rewriting only once.
1282 then
1283 if Nkind (Parent (N)) /= N_Function_Call
1284 or else N /= Name (Parent (N))
1285 then
1287 -- This may be a prefixed call that was not fully analyzed, e.g.
1288 -- an actual in an instance.
1290 if Ada_Version >= Ada_2005
1291 and then Nkind (N) = N_Selected_Component
1292 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1293 then
1294 Analyze_Selected_Component (N);
1296 if Nkind (N) /= N_Selected_Component then
1297 return;
1298 end if;
1299 end if;
1301 -- The node is the name of the parameterless call. Preserve its
1302 -- descendants, which may be complex expressions.
1304 Nam := Relocate_Node (N);
1306 -- If overloaded, overload set belongs to new copy
1308 Save_Interps (N, Nam);
1310 -- Change node to parameterless function call (note that the
1311 -- Parameter_Associations associations field is left set to Empty,
1312 -- its normal default value since there are no parameters)
1314 Change_Node (N, N_Function_Call);
1315 Set_Name (N, Nam);
1316 Set_Sloc (N, Sloc (Nam));
1317 Analyze_Call (N);
1318 end if;
1320 elsif Nkind (N) = N_Parameter_Association then
1321 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1323 elsif Nkind (N) = N_Operator_Symbol then
1324 Change_Operator_Symbol_To_String_Literal (N);
1325 Set_Is_Overloaded (N, False);
1326 Set_Etype (N, Any_String);
1327 end if;
1328 end Check_Parameterless_Call;
1330 --------------------------------
1331 -- Is_Atomic_Ref_With_Address --
1332 --------------------------------
1334 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1335 Pref : constant Node_Id := Prefix (N);
1337 begin
1338 if not Is_Entity_Name (Pref) then
1339 return False;
1341 else
1342 declare
1343 Pent : constant Entity_Id := Entity (Pref);
1344 Ptyp : constant Entity_Id := Etype (Pent);
1345 begin
1346 return not Is_Access_Type (Ptyp)
1347 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1348 and then Present (Address_Clause (Pent));
1349 end;
1350 end if;
1351 end Is_Atomic_Ref_With_Address;
1353 -----------------------------
1354 -- Is_Definite_Access_Type --
1355 -----------------------------
1357 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1358 Btyp : constant Entity_Id := Base_Type (E);
1359 begin
1360 return Ekind (Btyp) = E_Access_Type
1361 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1362 and then Comes_From_Source (Btyp));
1363 end Is_Definite_Access_Type;
1365 ----------------------
1366 -- Is_Predefined_Op --
1367 ----------------------
1369 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1370 begin
1371 -- Predefined operators are intrinsic subprograms
1373 if not Is_Intrinsic_Subprogram (Nam) then
1374 return False;
1375 end if;
1377 -- A call to a back-end builtin is never a predefined operator
1379 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1380 return False;
1381 end if;
1383 return not Is_Generic_Instance (Nam)
1384 and then Chars (Nam) in Any_Operator_Name
1385 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1386 end Is_Predefined_Op;
1388 -----------------------------
1389 -- Make_Call_Into_Operator --
1390 -----------------------------
1392 procedure Make_Call_Into_Operator
1393 (N : Node_Id;
1394 Typ : Entity_Id;
1395 Op_Id : Entity_Id)
1397 Op_Name : constant Name_Id := Chars (Op_Id);
1398 Act1 : Node_Id := First_Actual (N);
1399 Act2 : Node_Id := Next_Actual (Act1);
1400 Error : Boolean := False;
1401 Func : constant Entity_Id := Entity (Name (N));
1402 Is_Binary : constant Boolean := Present (Act2);
1403 Op_Node : Node_Id;
1404 Opnd_Type : Entity_Id;
1405 Orig_Type : Entity_Id := Empty;
1406 Pack : Entity_Id;
1408 type Kind_Test is access function (E : Entity_Id) return Boolean;
1410 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1411 -- If the operand is not universal, and the operator is given by an
1412 -- expanded name, verify that the operand has an interpretation with a
1413 -- type defined in the given scope of the operator.
1415 function Type_In_P (Test : Kind_Test) return Entity_Id;
1416 -- Find a type of the given class in package Pack that contains the
1417 -- operator.
1419 ---------------------------
1420 -- Operand_Type_In_Scope --
1421 ---------------------------
1423 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1424 Nod : constant Node_Id := Right_Opnd (Op_Node);
1425 I : Interp_Index;
1426 It : Interp;
1428 begin
1429 if not Is_Overloaded (Nod) then
1430 return Scope (Base_Type (Etype (Nod))) = S;
1432 else
1433 Get_First_Interp (Nod, I, It);
1434 while Present (It.Typ) loop
1435 if Scope (Base_Type (It.Typ)) = S then
1436 return True;
1437 end if;
1439 Get_Next_Interp (I, It);
1440 end loop;
1442 return False;
1443 end if;
1444 end Operand_Type_In_Scope;
1446 ---------------
1447 -- Type_In_P --
1448 ---------------
1450 function Type_In_P (Test : Kind_Test) return Entity_Id is
1451 E : Entity_Id;
1453 function In_Decl return Boolean;
1454 -- Verify that node is not part of the type declaration for the
1455 -- candidate type, which would otherwise be invisible.
1457 -------------
1458 -- In_Decl --
1459 -------------
1461 function In_Decl return Boolean is
1462 Decl_Node : constant Node_Id := Parent (E);
1463 N2 : Node_Id;
1465 begin
1466 N2 := N;
1468 if Etype (E) = Any_Type then
1469 return True;
1471 elsif No (Decl_Node) then
1472 return False;
1474 else
1475 while Present (N2)
1476 and then Nkind (N2) /= N_Compilation_Unit
1477 loop
1478 if N2 = Decl_Node then
1479 return True;
1480 else
1481 N2 := Parent (N2);
1482 end if;
1483 end loop;
1485 return False;
1486 end if;
1487 end In_Decl;
1489 -- Start of processing for Type_In_P
1491 begin
1492 -- If the context type is declared in the prefix package, this is the
1493 -- desired base type.
1495 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1496 return Base_Type (Typ);
1498 else
1499 E := First_Entity (Pack);
1500 while Present (E) loop
1501 if Test (E)
1502 and then not In_Decl
1503 then
1504 return E;
1505 end if;
1507 Next_Entity (E);
1508 end loop;
1510 return Empty;
1511 end if;
1512 end Type_In_P;
1514 -- Start of processing for Make_Call_Into_Operator
1516 begin
1517 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1519 -- Binary operator
1521 if Is_Binary then
1522 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1523 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1524 Save_Interps (Act1, Left_Opnd (Op_Node));
1525 Save_Interps (Act2, Right_Opnd (Op_Node));
1526 Act1 := Left_Opnd (Op_Node);
1527 Act2 := Right_Opnd (Op_Node);
1529 -- Unary operator
1531 else
1532 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1533 Save_Interps (Act1, Right_Opnd (Op_Node));
1534 Act1 := Right_Opnd (Op_Node);
1535 end if;
1537 -- If the operator is denoted by an expanded name, and the prefix is
1538 -- not Standard, but the operator is a predefined one whose scope is
1539 -- Standard, then this is an implicit_operator, inserted as an
1540 -- interpretation by the procedure of the same name. This procedure
1541 -- overestimates the presence of implicit operators, because it does
1542 -- not examine the type of the operands. Verify now that the operand
1543 -- type appears in the given scope. If right operand is universal,
1544 -- check the other operand. In the case of concatenation, either
1545 -- argument can be the component type, so check the type of the result.
1546 -- If both arguments are literals, look for a type of the right kind
1547 -- defined in the given scope. This elaborate nonsense is brought to
1548 -- you courtesy of b33302a. The type itself must be frozen, so we must
1549 -- find the type of the proper class in the given scope.
1551 -- A final wrinkle is the multiplication operator for fixed point types,
1552 -- which is defined in Standard only, and not in the scope of the
1553 -- fixed point type itself.
1555 if Nkind (Name (N)) = N_Expanded_Name then
1556 Pack := Entity (Prefix (Name (N)));
1558 -- If this is a package renaming, get renamed entity, which will be
1559 -- the scope of the operands if operaton is type-correct.
1561 if Present (Renamed_Entity (Pack)) then
1562 Pack := Renamed_Entity (Pack);
1563 end if;
1565 -- If the entity being called is defined in the given package, it is
1566 -- a renaming of a predefined operator, and known to be legal.
1568 if Scope (Entity (Name (N))) = Pack
1569 and then Pack /= Standard_Standard
1570 then
1571 null;
1573 -- Visibility does not need to be checked in an instance: if the
1574 -- operator was not visible in the generic it has been diagnosed
1575 -- already, else there is an implicit copy of it in the instance.
1577 elsif In_Instance then
1578 null;
1580 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1581 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1582 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1583 then
1584 if Pack /= Standard_Standard then
1585 Error := True;
1586 end if;
1588 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1589 -- available.
1591 elsif Ada_Version >= Ada_2005
1592 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1593 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1594 then
1595 null;
1597 else
1598 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1600 if Op_Name = Name_Op_Concat then
1601 Opnd_Type := Base_Type (Typ);
1603 elsif (Scope (Opnd_Type) = Standard_Standard
1604 and then Is_Binary)
1605 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1606 and then Is_Binary
1607 and then not Comes_From_Source (Opnd_Type))
1608 then
1609 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1610 end if;
1612 if Scope (Opnd_Type) = Standard_Standard then
1614 -- Verify that the scope contains a type that corresponds to
1615 -- the given literal. Optimize the case where Pack is Standard.
1617 if Pack /= Standard_Standard then
1619 if Opnd_Type = Universal_Integer then
1620 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1622 elsif Opnd_Type = Universal_Real then
1623 Orig_Type := Type_In_P (Is_Real_Type'Access);
1625 elsif Opnd_Type = Any_String then
1626 Orig_Type := Type_In_P (Is_String_Type'Access);
1628 elsif Opnd_Type = Any_Access then
1629 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1631 elsif Opnd_Type = Any_Composite then
1632 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1634 if Present (Orig_Type) then
1635 if Has_Private_Component (Orig_Type) then
1636 Orig_Type := Empty;
1637 else
1638 Set_Etype (Act1, Orig_Type);
1640 if Is_Binary then
1641 Set_Etype (Act2, Orig_Type);
1642 end if;
1643 end if;
1644 end if;
1646 else
1647 Orig_Type := Empty;
1648 end if;
1650 Error := No (Orig_Type);
1651 end if;
1653 elsif Ekind (Opnd_Type) = E_Allocator_Type
1654 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1655 then
1656 Error := True;
1658 -- If the type is defined elsewhere, and the operator is not
1659 -- defined in the given scope (by a renaming declaration, e.g.)
1660 -- then this is an error as well. If an extension of System is
1661 -- present, and the type may be defined there, Pack must be
1662 -- System itself.
1664 elsif Scope (Opnd_Type) /= Pack
1665 and then Scope (Op_Id) /= Pack
1666 and then (No (System_Aux_Id)
1667 or else Scope (Opnd_Type) /= System_Aux_Id
1668 or else Pack /= Scope (System_Aux_Id))
1669 then
1670 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1671 Error := True;
1672 else
1673 Error := not Operand_Type_In_Scope (Pack);
1674 end if;
1676 elsif Pack = Standard_Standard
1677 and then not Operand_Type_In_Scope (Standard_Standard)
1678 then
1679 Error := True;
1680 end if;
1681 end if;
1683 if Error then
1684 Error_Msg_Node_2 := Pack;
1685 Error_Msg_NE
1686 ("& not declared in&", N, Selector_Name (Name (N)));
1687 Set_Etype (N, Any_Type);
1688 return;
1690 -- Detect a mismatch between the context type and the result type
1691 -- in the named package, which is otherwise not detected if the
1692 -- operands are universal. Check is only needed if source entity is
1693 -- an operator, not a function that renames an operator.
1695 elsif Nkind (Parent (N)) /= N_Type_Conversion
1696 and then Ekind (Entity (Name (N))) = E_Operator
1697 and then Is_Numeric_Type (Typ)
1698 and then not Is_Universal_Numeric_Type (Typ)
1699 and then Scope (Base_Type (Typ)) /= Pack
1700 and then not In_Instance
1701 then
1702 if Is_Fixed_Point_Type (Typ)
1703 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1704 then
1705 -- Already checked above
1707 null;
1709 -- Operator may be defined in an extension of System
1711 elsif Present (System_Aux_Id)
1712 and then Scope (Opnd_Type) = System_Aux_Id
1713 then
1714 null;
1716 else
1717 -- Could we use Wrong_Type here??? (this would require setting
1718 -- Etype (N) to the actual type found where Typ was expected).
1720 Error_Msg_NE ("expect }", N, Typ);
1721 end if;
1722 end if;
1723 end if;
1725 Set_Chars (Op_Node, Op_Name);
1727 if not Is_Private_Type (Etype (N)) then
1728 Set_Etype (Op_Node, Base_Type (Etype (N)));
1729 else
1730 Set_Etype (Op_Node, Etype (N));
1731 end if;
1733 -- If this is a call to a function that renames a predefined equality,
1734 -- the renaming declaration provides a type that must be used to
1735 -- resolve the operands. This must be done now because resolution of
1736 -- the equality node will not resolve any remaining ambiguity, and it
1737 -- assumes that the first operand is not overloaded.
1739 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1740 and then Ekind (Func) = E_Function
1741 and then Is_Overloaded (Act1)
1742 then
1743 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1744 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1745 end if;
1747 Set_Entity (Op_Node, Op_Id);
1748 Generate_Reference (Op_Id, N, ' ');
1750 -- Do rewrite setting Comes_From_Source on the result if the original
1751 -- call came from source. Although it is not strictly the case that the
1752 -- operator as such comes from the source, logically it corresponds
1753 -- exactly to the function call in the source, so it should be marked
1754 -- this way (e.g. to make sure that validity checks work fine).
1756 declare
1757 CS : constant Boolean := Comes_From_Source (N);
1758 begin
1759 Rewrite (N, Op_Node);
1760 Set_Comes_From_Source (N, CS);
1761 end;
1763 -- If this is an arithmetic operator and the result type is private,
1764 -- the operands and the result must be wrapped in conversion to
1765 -- expose the underlying numeric type and expand the proper checks,
1766 -- e.g. on division.
1768 if Is_Private_Type (Typ) then
1769 case Nkind (N) is
1770 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
1771 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
1772 Resolve_Intrinsic_Operator (N, Typ);
1774 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
1775 Resolve_Intrinsic_Unary_Operator (N, Typ);
1777 when others =>
1778 Resolve (N, Typ);
1779 end case;
1780 else
1781 Resolve (N, Typ);
1782 end if;
1784 -- If in ASIS_Mode, propagate operand types to original actuals of
1785 -- function call, which would otherwise not be fully resolved. If
1786 -- the call has already been constant-folded, nothing to do. We
1787 -- relocate the operand nodes rather than copy them, to preserve
1788 -- original_node pointers, given that the operands themselves may
1789 -- have been rewritten. If the call was itself a rewriting of an
1790 -- operator node, nothing to do.
1792 if ASIS_Mode
1793 and then Nkind (N) in N_Op
1794 and then Nkind (Original_Node (N)) = N_Function_Call
1795 then
1796 if Is_Binary then
1797 Rewrite (First (Parameter_Associations (Original_Node (N))),
1798 Relocate_Node (Left_Opnd (N)));
1799 Rewrite (Next (First (Parameter_Associations (Original_Node (N)))),
1800 Relocate_Node (Right_Opnd (N)));
1801 else
1802 Rewrite (First (Parameter_Associations (Original_Node (N))),
1803 Relocate_Node (Right_Opnd (N)));
1804 end if;
1806 Set_Parent (Original_Node (N), Parent (N));
1807 end if;
1808 end Make_Call_Into_Operator;
1810 -------------------
1811 -- Operator_Kind --
1812 -------------------
1814 function Operator_Kind
1815 (Op_Name : Name_Id;
1816 Is_Binary : Boolean) return Node_Kind
1818 Kind : Node_Kind;
1820 begin
1821 -- Use CASE statement or array???
1823 if Is_Binary then
1824 if Op_Name = Name_Op_And then
1825 Kind := N_Op_And;
1826 elsif Op_Name = Name_Op_Or then
1827 Kind := N_Op_Or;
1828 elsif Op_Name = Name_Op_Xor then
1829 Kind := N_Op_Xor;
1830 elsif Op_Name = Name_Op_Eq then
1831 Kind := N_Op_Eq;
1832 elsif Op_Name = Name_Op_Ne then
1833 Kind := N_Op_Ne;
1834 elsif Op_Name = Name_Op_Lt then
1835 Kind := N_Op_Lt;
1836 elsif Op_Name = Name_Op_Le then
1837 Kind := N_Op_Le;
1838 elsif Op_Name = Name_Op_Gt then
1839 Kind := N_Op_Gt;
1840 elsif Op_Name = Name_Op_Ge then
1841 Kind := N_Op_Ge;
1842 elsif Op_Name = Name_Op_Add then
1843 Kind := N_Op_Add;
1844 elsif Op_Name = Name_Op_Subtract then
1845 Kind := N_Op_Subtract;
1846 elsif Op_Name = Name_Op_Concat then
1847 Kind := N_Op_Concat;
1848 elsif Op_Name = Name_Op_Multiply then
1849 Kind := N_Op_Multiply;
1850 elsif Op_Name = Name_Op_Divide then
1851 Kind := N_Op_Divide;
1852 elsif Op_Name = Name_Op_Mod then
1853 Kind := N_Op_Mod;
1854 elsif Op_Name = Name_Op_Rem then
1855 Kind := N_Op_Rem;
1856 elsif Op_Name = Name_Op_Expon then
1857 Kind := N_Op_Expon;
1858 else
1859 raise Program_Error;
1860 end if;
1862 -- Unary operators
1864 else
1865 if Op_Name = Name_Op_Add then
1866 Kind := N_Op_Plus;
1867 elsif Op_Name = Name_Op_Subtract then
1868 Kind := N_Op_Minus;
1869 elsif Op_Name = Name_Op_Abs then
1870 Kind := N_Op_Abs;
1871 elsif Op_Name = Name_Op_Not then
1872 Kind := N_Op_Not;
1873 else
1874 raise Program_Error;
1875 end if;
1876 end if;
1878 return Kind;
1879 end Operator_Kind;
1881 ----------------------------
1882 -- Preanalyze_And_Resolve --
1883 ----------------------------
1885 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1886 Save_Full_Analysis : constant Boolean := Full_Analysis;
1888 begin
1889 Full_Analysis := False;
1890 Expander_Mode_Save_And_Set (False);
1892 -- Normally, we suppress all checks for this preanalysis. There is no
1893 -- point in processing them now, since they will be applied properly
1894 -- and in the proper location when the default expressions reanalyzed
1895 -- and reexpanded later on. We will also have more information at that
1896 -- point for possible suppression of individual checks.
1898 -- However, in SPARK mode, most expansion is suppressed, and this
1899 -- later reanalysis and reexpansion may not occur. SPARK mode does
1900 -- require the setting of checking flags for proof purposes, so we
1901 -- do the SPARK preanalysis without suppressing checks.
1903 -- This special handling for SPARK mode is required for example in the
1904 -- case of Ada 2012 constructs such as quantified expressions, which are
1905 -- expanded in two separate steps.
1907 if GNATprove_Mode then
1908 Analyze_And_Resolve (N, T);
1909 else
1910 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1911 end if;
1913 Expander_Mode_Restore;
1914 Full_Analysis := Save_Full_Analysis;
1915 end Preanalyze_And_Resolve;
1917 -- Version without context type
1919 procedure Preanalyze_And_Resolve (N : Node_Id) is
1920 Save_Full_Analysis : constant Boolean := Full_Analysis;
1922 begin
1923 Full_Analysis := False;
1924 Expander_Mode_Save_And_Set (False);
1926 Analyze (N);
1927 Resolve (N, Etype (N), Suppress => All_Checks);
1929 Expander_Mode_Restore;
1930 Full_Analysis := Save_Full_Analysis;
1931 end Preanalyze_And_Resolve;
1933 ----------------------------------
1934 -- Replace_Actual_Discriminants --
1935 ----------------------------------
1937 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1938 Loc : constant Source_Ptr := Sloc (N);
1939 Tsk : Node_Id := Empty;
1941 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1942 -- Comment needed???
1944 -------------------
1945 -- Process_Discr --
1946 -------------------
1948 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1949 Ent : Entity_Id;
1951 begin
1952 if Nkind (Nod) = N_Identifier then
1953 Ent := Entity (Nod);
1955 if Present (Ent)
1956 and then Ekind (Ent) = E_Discriminant
1957 then
1958 Rewrite (Nod,
1959 Make_Selected_Component (Loc,
1960 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1961 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1963 Set_Etype (Nod, Etype (Ent));
1964 end if;
1966 end if;
1968 return OK;
1969 end Process_Discr;
1971 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1973 -- Start of processing for Replace_Actual_Discriminants
1975 begin
1976 if not Expander_Active then
1977 return;
1978 end if;
1980 if Nkind (Name (N)) = N_Selected_Component then
1981 Tsk := Prefix (Name (N));
1983 elsif Nkind (Name (N)) = N_Indexed_Component then
1984 Tsk := Prefix (Prefix (Name (N)));
1985 end if;
1987 if No (Tsk) then
1988 return;
1989 else
1990 Replace_Discrs (Default);
1991 end if;
1992 end Replace_Actual_Discriminants;
1994 -------------
1995 -- Resolve --
1996 -------------
1998 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1999 Ambiguous : Boolean := False;
2000 Ctx_Type : Entity_Id := Typ;
2001 Expr_Type : Entity_Id := Empty; -- prevent junk warning
2002 Err_Type : Entity_Id := Empty;
2003 Found : Boolean := False;
2004 From_Lib : Boolean;
2005 I : Interp_Index;
2006 I1 : Interp_Index := 0; -- prevent junk warning
2007 It : Interp;
2008 It1 : Interp;
2009 Seen : Entity_Id := Empty; -- prevent junk warning
2011 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
2012 -- Determine whether a node comes from a predefined library unit or
2013 -- Standard.
2015 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
2016 -- Try and fix up a literal so that it matches its expected type. New
2017 -- literals are manufactured if necessary to avoid cascaded errors.
2019 procedure Report_Ambiguous_Argument;
2020 -- Additional diagnostics when an ambiguous call has an ambiguous
2021 -- argument (typically a controlling actual).
2023 procedure Resolution_Failed;
2024 -- Called when attempt at resolving current expression fails
2026 ------------------------------------
2027 -- Comes_From_Predefined_Lib_Unit --
2028 -------------------------------------
2030 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
2031 begin
2032 return
2033 Sloc (Nod) = Standard_Location
2034 or else Is_Predefined_File_Name
2035 (Unit_File_Name (Get_Source_Unit (Sloc (Nod))));
2036 end Comes_From_Predefined_Lib_Unit;
2038 --------------------
2039 -- Patch_Up_Value --
2040 --------------------
2042 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
2043 begin
2044 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
2045 Rewrite (N,
2046 Make_Real_Literal (Sloc (N),
2047 Realval => UR_From_Uint (Intval (N))));
2048 Set_Etype (N, Universal_Real);
2049 Set_Is_Static_Expression (N);
2051 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
2052 Rewrite (N,
2053 Make_Integer_Literal (Sloc (N),
2054 Intval => UR_To_Uint (Realval (N))));
2055 Set_Etype (N, Universal_Integer);
2056 Set_Is_Static_Expression (N);
2058 elsif Nkind (N) = N_String_Literal
2059 and then Is_Character_Type (Typ)
2060 then
2061 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
2062 Rewrite (N,
2063 Make_Character_Literal (Sloc (N),
2064 Chars => Name_Find,
2065 Char_Literal_Value =>
2066 UI_From_Int (Character'Pos ('A'))));
2067 Set_Etype (N, Any_Character);
2068 Set_Is_Static_Expression (N);
2070 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
2071 Rewrite (N,
2072 Make_String_Literal (Sloc (N),
2073 Strval => End_String));
2075 elsif Nkind (N) = N_Range then
2076 Patch_Up_Value (Low_Bound (N), Typ);
2077 Patch_Up_Value (High_Bound (N), Typ);
2078 end if;
2079 end Patch_Up_Value;
2081 -------------------------------
2082 -- Report_Ambiguous_Argument --
2083 -------------------------------
2085 procedure Report_Ambiguous_Argument is
2086 Arg : constant Node_Id := First (Parameter_Associations (N));
2087 I : Interp_Index;
2088 It : Interp;
2090 begin
2091 if Nkind (Arg) = N_Function_Call
2092 and then Is_Entity_Name (Name (Arg))
2093 and then Is_Overloaded (Name (Arg))
2094 then
2095 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
2097 -- Could use comments on what is going on here???
2099 Get_First_Interp (Name (Arg), I, It);
2100 while Present (It.Nam) loop
2101 Error_Msg_Sloc := Sloc (It.Nam);
2103 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
2104 Error_Msg_N ("interpretation (inherited) #!", Arg);
2105 else
2106 Error_Msg_N ("interpretation #!", Arg);
2107 end if;
2109 Get_Next_Interp (I, It);
2110 end loop;
2111 end if;
2112 end Report_Ambiguous_Argument;
2114 -----------------------
2115 -- Resolution_Failed --
2116 -----------------------
2118 procedure Resolution_Failed is
2119 begin
2120 Patch_Up_Value (N, Typ);
2121 Set_Etype (N, Typ);
2122 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
2123 Set_Is_Overloaded (N, False);
2125 -- The caller will return without calling the expander, so we need
2126 -- to set the analyzed flag. Note that it is fine to set Analyzed
2127 -- to True even if we are in the middle of a shallow analysis,
2128 -- (see the spec of sem for more details) since this is an error
2129 -- situation anyway, and there is no point in repeating the
2130 -- analysis later (indeed it won't work to repeat it later, since
2131 -- we haven't got a clear resolution of which entity is being
2132 -- referenced.)
2134 Set_Analyzed (N, True);
2135 return;
2136 end Resolution_Failed;
2138 -- Start of processing for Resolve
2140 begin
2141 if N = Error then
2142 return;
2143 end if;
2145 -- Access attribute on remote subprogram cannot be used for a non-remote
2146 -- access-to-subprogram type.
2148 if Nkind (N) = N_Attribute_Reference
2149 and then Nam_In (Attribute_Name (N), Name_Access,
2150 Name_Unrestricted_Access,
2151 Name_Unchecked_Access)
2152 and then Comes_From_Source (N)
2153 and then Is_Entity_Name (Prefix (N))
2154 and then Is_Subprogram (Entity (Prefix (N)))
2155 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2156 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2157 then
2158 Error_Msg_N
2159 ("prefix must statically denote a non-remote subprogram", N);
2160 end if;
2162 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2164 -- If the context is a Remote_Access_To_Subprogram, access attributes
2165 -- must be resolved with the corresponding fat pointer. There is no need
2166 -- to check for the attribute name since the return type of an
2167 -- attribute is never a remote type.
2169 if Nkind (N) = N_Attribute_Reference
2170 and then Comes_From_Source (N)
2171 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2172 then
2173 declare
2174 Attr : constant Attribute_Id :=
2175 Get_Attribute_Id (Attribute_Name (N));
2176 Pref : constant Node_Id := Prefix (N);
2177 Decl : Node_Id;
2178 Spec : Node_Id;
2179 Is_Remote : Boolean := True;
2181 begin
2182 -- Check that Typ is a remote access-to-subprogram type
2184 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2186 -- Prefix (N) must statically denote a remote subprogram
2187 -- declared in a package specification.
2189 if Attr = Attribute_Access or else
2190 Attr = Attribute_Unchecked_Access or else
2191 Attr = Attribute_Unrestricted_Access
2192 then
2193 Decl := Unit_Declaration_Node (Entity (Pref));
2195 if Nkind (Decl) = N_Subprogram_Body then
2196 Spec := Corresponding_Spec (Decl);
2198 if Present (Spec) then
2199 Decl := Unit_Declaration_Node (Spec);
2200 end if;
2201 end if;
2203 Spec := Parent (Decl);
2205 if not Is_Entity_Name (Prefix (N))
2206 or else Nkind (Spec) /= N_Package_Specification
2207 or else
2208 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2209 then
2210 Is_Remote := False;
2211 Error_Msg_N
2212 ("prefix must statically denote a remote subprogram ",
2214 end if;
2216 -- If we are generating code in distributed mode, perform
2217 -- semantic checks against corresponding remote entities.
2219 if Expander_Active
2220 and then Get_PCS_Name /= Name_No_DSA
2221 then
2222 Check_Subtype_Conformant
2223 (New_Id => Entity (Prefix (N)),
2224 Old_Id => Designated_Type
2225 (Corresponding_Remote_Type (Typ)),
2226 Err_Loc => N);
2228 if Is_Remote then
2229 Process_Remote_AST_Attribute (N, Typ);
2230 end if;
2231 end if;
2232 end if;
2233 end if;
2234 end;
2235 end if;
2237 Debug_A_Entry ("resolving ", N);
2239 if Debug_Flag_V then
2240 Write_Overloads (N);
2241 end if;
2243 if Comes_From_Source (N) then
2244 if Is_Fixed_Point_Type (Typ) then
2245 Check_Restriction (No_Fixed_Point, N);
2247 elsif Is_Floating_Point_Type (Typ)
2248 and then Typ /= Universal_Real
2249 and then Typ /= Any_Real
2250 then
2251 Check_Restriction (No_Floating_Point, N);
2252 end if;
2253 end if;
2255 -- Return if already analyzed
2257 if Analyzed (N) then
2258 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2259 Analyze_Dimension (N);
2260 return;
2262 -- Any case of Any_Type as the Etype value means that we had a
2263 -- previous error.
2265 elsif Etype (N) = Any_Type then
2266 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2267 return;
2268 end if;
2270 Check_Parameterless_Call (N);
2272 -- The resolution of an Expression_With_Actions is determined by
2273 -- its Expression.
2275 if Nkind (N) = N_Expression_With_Actions then
2276 Resolve (Expression (N), Typ);
2278 Found := True;
2279 Expr_Type := Etype (Expression (N));
2281 -- If not overloaded, then we know the type, and all that needs doing
2282 -- is to check that this type is compatible with the context.
2284 elsif not Is_Overloaded (N) then
2285 Found := Covers (Typ, Etype (N));
2286 Expr_Type := Etype (N);
2288 -- In the overloaded case, we must select the interpretation that
2289 -- is compatible with the context (i.e. the type passed to Resolve)
2291 else
2292 -- Loop through possible interpretations
2294 Get_First_Interp (N, I, It);
2295 Interp_Loop : while Present (It.Typ) loop
2297 if Debug_Flag_V then
2298 Write_Str ("Interp: ");
2299 Write_Interp (It);
2300 end if;
2302 -- We are only interested in interpretations that are compatible
2303 -- with the expected type, any other interpretations are ignored.
2305 if not Covers (Typ, It.Typ) then
2306 if Debug_Flag_V then
2307 Write_Str (" interpretation incompatible with context");
2308 Write_Eol;
2309 end if;
2311 else
2312 -- Skip the current interpretation if it is disabled by an
2313 -- abstract operator. This action is performed only when the
2314 -- type against which we are resolving is the same as the
2315 -- type of the interpretation.
2317 if Ada_Version >= Ada_2005
2318 and then It.Typ = Typ
2319 and then Typ /= Universal_Integer
2320 and then Typ /= Universal_Real
2321 and then Present (It.Abstract_Op)
2322 then
2323 if Debug_Flag_V then
2324 Write_Line ("Skip.");
2325 end if;
2327 goto Continue;
2328 end if;
2330 -- First matching interpretation
2332 if not Found then
2333 Found := True;
2334 I1 := I;
2335 Seen := It.Nam;
2336 Expr_Type := It.Typ;
2338 -- Matching interpretation that is not the first, maybe an
2339 -- error, but there are some cases where preference rules are
2340 -- used to choose between the two possibilities. These and
2341 -- some more obscure cases are handled in Disambiguate.
2343 else
2344 -- If the current statement is part of a predefined library
2345 -- unit, then all interpretations which come from user level
2346 -- packages should not be considered. Check previous and
2347 -- current one.
2349 if From_Lib then
2350 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2351 goto Continue;
2353 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2355 -- Previous interpretation must be discarded
2357 I1 := I;
2358 Seen := It.Nam;
2359 Expr_Type := It.Typ;
2360 Set_Entity (N, Seen);
2361 goto Continue;
2362 end if;
2363 end if;
2365 -- Otherwise apply further disambiguation steps
2367 Error_Msg_Sloc := Sloc (Seen);
2368 It1 := Disambiguate (N, I1, I, Typ);
2370 -- Disambiguation has succeeded. Skip the remaining
2371 -- interpretations.
2373 if It1 /= No_Interp then
2374 Seen := It1.Nam;
2375 Expr_Type := It1.Typ;
2377 while Present (It.Typ) loop
2378 Get_Next_Interp (I, It);
2379 end loop;
2381 else
2382 -- Before we issue an ambiguity complaint, check for
2383 -- the case of a subprogram call where at least one
2384 -- of the arguments is Any_Type, and if so, suppress
2385 -- the message, since it is a cascaded error.
2387 if Nkind (N) in N_Subprogram_Call then
2388 declare
2389 A : Node_Id;
2390 E : Node_Id;
2392 begin
2393 A := First_Actual (N);
2394 while Present (A) loop
2395 E := A;
2397 if Nkind (E) = N_Parameter_Association then
2398 E := Explicit_Actual_Parameter (E);
2399 end if;
2401 if Etype (E) = Any_Type then
2402 if Debug_Flag_V then
2403 Write_Str ("Any_Type in call");
2404 Write_Eol;
2405 end if;
2407 exit Interp_Loop;
2408 end if;
2410 Next_Actual (A);
2411 end loop;
2412 end;
2414 elsif Nkind (N) in N_Binary_Op
2415 and then (Etype (Left_Opnd (N)) = Any_Type
2416 or else Etype (Right_Opnd (N)) = Any_Type)
2417 then
2418 exit Interp_Loop;
2420 elsif Nkind (N) in N_Unary_Op
2421 and then Etype (Right_Opnd (N)) = Any_Type
2422 then
2423 exit Interp_Loop;
2424 end if;
2426 -- Not that special case, so issue message using the
2427 -- flag Ambiguous to control printing of the header
2428 -- message only at the start of an ambiguous set.
2430 if not Ambiguous then
2431 if Nkind (N) = N_Function_Call
2432 and then Nkind (Name (N)) = N_Explicit_Dereference
2433 then
2434 Error_Msg_N
2435 ("ambiguous expression "
2436 & "(cannot resolve indirect call)!", N);
2437 else
2438 Error_Msg_NE -- CODEFIX
2439 ("ambiguous expression (cannot resolve&)!",
2440 N, It.Nam);
2441 end if;
2443 Ambiguous := True;
2445 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2446 Error_Msg_N
2447 ("\\possible interpretation (inherited)#!", N);
2448 else
2449 Error_Msg_N -- CODEFIX
2450 ("\\possible interpretation#!", N);
2451 end if;
2453 if Nkind (N) in N_Subprogram_Call
2454 and then Present (Parameter_Associations (N))
2455 then
2456 Report_Ambiguous_Argument;
2457 end if;
2458 end if;
2460 Error_Msg_Sloc := Sloc (It.Nam);
2462 -- By default, the error message refers to the candidate
2463 -- interpretation. But if it is a predefined operator, it
2464 -- is implicitly declared at the declaration of the type
2465 -- of the operand. Recover the sloc of that declaration
2466 -- for the error message.
2468 if Nkind (N) in N_Op
2469 and then Scope (It.Nam) = Standard_Standard
2470 and then not Is_Overloaded (Right_Opnd (N))
2471 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2472 Standard_Standard
2473 then
2474 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2476 if Comes_From_Source (Err_Type)
2477 and then Present (Parent (Err_Type))
2478 then
2479 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2480 end if;
2482 elsif Nkind (N) in N_Binary_Op
2483 and then Scope (It.Nam) = Standard_Standard
2484 and then not Is_Overloaded (Left_Opnd (N))
2485 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2486 Standard_Standard
2487 then
2488 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2490 if Comes_From_Source (Err_Type)
2491 and then Present (Parent (Err_Type))
2492 then
2493 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2494 end if;
2496 -- If this is an indirect call, use the subprogram_type
2497 -- in the message, to have a meaningful location. Also
2498 -- indicate if this is an inherited operation, created
2499 -- by a type declaration.
2501 elsif Nkind (N) = N_Function_Call
2502 and then Nkind (Name (N)) = N_Explicit_Dereference
2503 and then Is_Type (It.Nam)
2504 then
2505 Err_Type := It.Nam;
2506 Error_Msg_Sloc :=
2507 Sloc (Associated_Node_For_Itype (Err_Type));
2508 else
2509 Err_Type := Empty;
2510 end if;
2512 if Nkind (N) in N_Op
2513 and then Scope (It.Nam) = Standard_Standard
2514 and then Present (Err_Type)
2515 then
2516 -- Special-case the message for universal_fixed
2517 -- operators, which are not declared with the type
2518 -- of the operand, but appear forever in Standard.
2520 if It.Typ = Universal_Fixed
2521 and then Scope (It.Nam) = Standard_Standard
2522 then
2523 Error_Msg_N
2524 ("\\possible interpretation as universal_fixed "
2525 & "operation (RM 4.5.5 (19))", N);
2526 else
2527 Error_Msg_N
2528 ("\\possible interpretation (predefined)#!", N);
2529 end if;
2531 elsif
2532 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2533 then
2534 Error_Msg_N
2535 ("\\possible interpretation (inherited)#!", N);
2536 else
2537 Error_Msg_N -- CODEFIX
2538 ("\\possible interpretation#!", N);
2539 end if;
2541 end if;
2542 end if;
2544 -- We have a matching interpretation, Expr_Type is the type
2545 -- from this interpretation, and Seen is the entity.
2547 -- For an operator, just set the entity name. The type will be
2548 -- set by the specific operator resolution routine.
2550 if Nkind (N) in N_Op then
2551 Set_Entity (N, Seen);
2552 Generate_Reference (Seen, N);
2554 elsif Nkind (N) = N_Case_Expression then
2555 Set_Etype (N, Expr_Type);
2557 elsif Nkind (N) = N_Character_Literal then
2558 Set_Etype (N, Expr_Type);
2560 elsif Nkind (N) = N_If_Expression then
2561 Set_Etype (N, Expr_Type);
2563 -- AI05-0139-2: Expression is overloaded because type has
2564 -- implicit dereference. If type matches context, no implicit
2565 -- dereference is involved.
2567 elsif Has_Implicit_Dereference (Expr_Type) then
2568 Set_Etype (N, Expr_Type);
2569 Set_Is_Overloaded (N, False);
2570 exit Interp_Loop;
2572 elsif Is_Overloaded (N)
2573 and then Present (It.Nam)
2574 and then Ekind (It.Nam) = E_Discriminant
2575 and then Has_Implicit_Dereference (It.Nam)
2576 then
2577 -- If the node is a general indexing, the dereference is
2578 -- is inserted when resolving the rewritten form, else
2579 -- insert it now.
2581 if Nkind (N) /= N_Indexed_Component
2582 or else No (Generalized_Indexing (N))
2583 then
2584 Build_Explicit_Dereference (N, It.Nam);
2585 end if;
2587 -- For an explicit dereference, attribute reference, range,
2588 -- short-circuit form (which is not an operator node), or call
2589 -- with a name that is an explicit dereference, there is
2590 -- nothing to be done at this point.
2592 elsif Nkind_In (N, N_Explicit_Dereference,
2593 N_Attribute_Reference,
2594 N_And_Then,
2595 N_Indexed_Component,
2596 N_Or_Else,
2597 N_Range,
2598 N_Selected_Component,
2599 N_Slice)
2600 or else Nkind (Name (N)) = N_Explicit_Dereference
2601 then
2602 null;
2604 -- For procedure or function calls, set the type of the name,
2605 -- and also the entity pointer for the prefix.
2607 elsif Nkind (N) in N_Subprogram_Call
2608 and then Is_Entity_Name (Name (N))
2609 then
2610 Set_Etype (Name (N), Expr_Type);
2611 Set_Entity (Name (N), Seen);
2612 Generate_Reference (Seen, Name (N));
2614 elsif Nkind (N) = N_Function_Call
2615 and then Nkind (Name (N)) = N_Selected_Component
2616 then
2617 Set_Etype (Name (N), Expr_Type);
2618 Set_Entity (Selector_Name (Name (N)), Seen);
2619 Generate_Reference (Seen, Selector_Name (Name (N)));
2621 -- For all other cases, just set the type of the Name
2623 else
2624 Set_Etype (Name (N), Expr_Type);
2625 end if;
2627 end if;
2629 <<Continue>>
2631 -- Move to next interpretation
2633 exit Interp_Loop when No (It.Typ);
2635 Get_Next_Interp (I, It);
2636 end loop Interp_Loop;
2637 end if;
2639 -- At this stage Found indicates whether or not an acceptable
2640 -- interpretation exists. If not, then we have an error, except that if
2641 -- the context is Any_Type as a result of some other error, then we
2642 -- suppress the error report.
2644 if not Found then
2645 if Typ /= Any_Type then
2647 -- If type we are looking for is Void, then this is the procedure
2648 -- call case, and the error is simply that what we gave is not a
2649 -- procedure name (we think of procedure calls as expressions with
2650 -- types internally, but the user doesn't think of them this way).
2652 if Typ = Standard_Void_Type then
2654 -- Special case message if function used as a procedure
2656 if Nkind (N) = N_Procedure_Call_Statement
2657 and then Is_Entity_Name (Name (N))
2658 and then Ekind (Entity (Name (N))) = E_Function
2659 then
2660 Error_Msg_NE
2661 ("cannot use function & in a procedure call",
2662 Name (N), Entity (Name (N)));
2664 -- Otherwise give general message (not clear what cases this
2665 -- covers, but no harm in providing for them).
2667 else
2668 Error_Msg_N ("expect procedure name in procedure call", N);
2669 end if;
2671 Found := True;
2673 -- Otherwise we do have a subexpression with the wrong type
2675 -- Check for the case of an allocator which uses an access type
2676 -- instead of the designated type. This is a common error and we
2677 -- specialize the message, posting an error on the operand of the
2678 -- allocator, complaining that we expected the designated type of
2679 -- the allocator.
2681 elsif Nkind (N) = N_Allocator
2682 and then Is_Access_Type (Typ)
2683 and then Is_Access_Type (Etype (N))
2684 and then Designated_Type (Etype (N)) = Typ
2685 then
2686 Wrong_Type (Expression (N), Designated_Type (Typ));
2687 Found := True;
2689 -- Check for view mismatch on Null in instances, for which the
2690 -- view-swapping mechanism has no identifier.
2692 elsif (In_Instance or else In_Inlined_Body)
2693 and then (Nkind (N) = N_Null)
2694 and then Is_Private_Type (Typ)
2695 and then Is_Access_Type (Full_View (Typ))
2696 then
2697 Resolve (N, Full_View (Typ));
2698 Set_Etype (N, Typ);
2699 return;
2701 -- Check for an aggregate. Sometimes we can get bogus aggregates
2702 -- from misuse of parentheses, and we are about to complain about
2703 -- the aggregate without even looking inside it.
2705 -- Instead, if we have an aggregate of type Any_Composite, then
2706 -- analyze and resolve the component fields, and then only issue
2707 -- another message if we get no errors doing this (otherwise
2708 -- assume that the errors in the aggregate caused the problem).
2710 elsif Nkind (N) = N_Aggregate
2711 and then Etype (N) = Any_Composite
2712 then
2713 -- Disable expansion in any case. If there is a type mismatch
2714 -- it may be fatal to try to expand the aggregate. The flag
2715 -- would otherwise be set to false when the error is posted.
2717 Expander_Active := False;
2719 declare
2720 procedure Check_Aggr (Aggr : Node_Id);
2721 -- Check one aggregate, and set Found to True if we have a
2722 -- definite error in any of its elements
2724 procedure Check_Elmt (Aelmt : Node_Id);
2725 -- Check one element of aggregate and set Found to True if
2726 -- we definitely have an error in the element.
2728 ----------------
2729 -- Check_Aggr --
2730 ----------------
2732 procedure Check_Aggr (Aggr : Node_Id) is
2733 Elmt : Node_Id;
2735 begin
2736 if Present (Expressions (Aggr)) then
2737 Elmt := First (Expressions (Aggr));
2738 while Present (Elmt) loop
2739 Check_Elmt (Elmt);
2740 Next (Elmt);
2741 end loop;
2742 end if;
2744 if Present (Component_Associations (Aggr)) then
2745 Elmt := First (Component_Associations (Aggr));
2746 while Present (Elmt) loop
2748 -- If this is a default-initialized component, then
2749 -- there is nothing to check. The box will be
2750 -- replaced by the appropriate call during late
2751 -- expansion.
2753 if not Box_Present (Elmt) then
2754 Check_Elmt (Expression (Elmt));
2755 end if;
2757 Next (Elmt);
2758 end loop;
2759 end if;
2760 end Check_Aggr;
2762 ----------------
2763 -- Check_Elmt --
2764 ----------------
2766 procedure Check_Elmt (Aelmt : Node_Id) is
2767 begin
2768 -- If we have a nested aggregate, go inside it (to
2769 -- attempt a naked analyze-resolve of the aggregate can
2770 -- cause undesirable cascaded errors). Do not resolve
2771 -- expression if it needs a type from context, as for
2772 -- integer * fixed expression.
2774 if Nkind (Aelmt) = N_Aggregate then
2775 Check_Aggr (Aelmt);
2777 else
2778 Analyze (Aelmt);
2780 if not Is_Overloaded (Aelmt)
2781 and then Etype (Aelmt) /= Any_Fixed
2782 then
2783 Resolve (Aelmt);
2784 end if;
2786 if Etype (Aelmt) = Any_Type then
2787 Found := True;
2788 end if;
2789 end if;
2790 end Check_Elmt;
2792 begin
2793 Check_Aggr (N);
2794 end;
2795 end if;
2797 -- Looks like we have a type error, but check for special case
2798 -- of Address wanted, integer found, with the configuration pragma
2799 -- Allow_Integer_Address active. If we have this case, introduce
2800 -- an unchecked conversion to allow the integer expression to be
2801 -- treated as an Address. The reverse case of integer wanted,
2802 -- Address found, is treated in an analogous manner.
2804 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2805 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2806 Analyze_And_Resolve (N, Typ);
2807 return;
2808 end if;
2810 -- That special Allow_Integer_Address check did not appply, so we
2811 -- have a real type error. If an error message was issued already,
2812 -- Found got reset to True, so if it's still False, issue standard
2813 -- Wrong_Type message.
2815 if not Found then
2816 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2817 declare
2818 Subp_Name : Node_Id;
2820 begin
2821 if Is_Entity_Name (Name (N)) then
2822 Subp_Name := Name (N);
2824 elsif Nkind (Name (N)) = N_Selected_Component then
2826 -- Protected operation: retrieve operation name
2828 Subp_Name := Selector_Name (Name (N));
2830 else
2831 raise Program_Error;
2832 end if;
2834 Error_Msg_Node_2 := Typ;
2835 Error_Msg_NE
2836 ("no visible interpretation of& "
2837 & "matches expected type&", N, Subp_Name);
2838 end;
2840 if All_Errors_Mode then
2841 declare
2842 Index : Interp_Index;
2843 It : Interp;
2845 begin
2846 Error_Msg_N ("\\possible interpretations:", N);
2848 Get_First_Interp (Name (N), Index, It);
2849 while Present (It.Nam) loop
2850 Error_Msg_Sloc := Sloc (It.Nam);
2851 Error_Msg_Node_2 := It.Nam;
2852 Error_Msg_NE
2853 ("\\ type& for & declared#", N, It.Typ);
2854 Get_Next_Interp (Index, It);
2855 end loop;
2856 end;
2858 else
2859 Error_Msg_N ("\use -gnatf for details", N);
2860 end if;
2862 else
2863 Wrong_Type (N, Typ);
2864 end if;
2865 end if;
2866 end if;
2868 Resolution_Failed;
2869 return;
2871 -- Test if we have more than one interpretation for the context
2873 elsif Ambiguous then
2874 Resolution_Failed;
2875 return;
2877 -- Only one intepretation
2879 else
2880 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2881 -- the "+" on T is abstract, and the operands are of universal type,
2882 -- the above code will have (incorrectly) resolved the "+" to the
2883 -- universal one in Standard. Therefore check for this case and give
2884 -- an error. We can't do this earlier, because it would cause legal
2885 -- cases to get errors (when some other type has an abstract "+").
2887 if Ada_Version >= Ada_2005
2888 and then Nkind (N) in N_Op
2889 and then Is_Overloaded (N)
2890 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2891 then
2892 Get_First_Interp (N, I, It);
2893 while Present (It.Typ) loop
2894 if Present (It.Abstract_Op) and then
2895 Etype (It.Abstract_Op) = Typ
2896 then
2897 Error_Msg_NE
2898 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2899 return;
2900 end if;
2902 Get_Next_Interp (I, It);
2903 end loop;
2904 end if;
2906 -- Here we have an acceptable interpretation for the context
2908 -- Propagate type information and normalize tree for various
2909 -- predefined operations. If the context only imposes a class of
2910 -- types, rather than a specific type, propagate the actual type
2911 -- downward.
2913 if Typ = Any_Integer or else
2914 Typ = Any_Boolean or else
2915 Typ = Any_Modular or else
2916 Typ = Any_Real or else
2917 Typ = Any_Discrete
2918 then
2919 Ctx_Type := Expr_Type;
2921 -- Any_Fixed is legal in a real context only if a specific fixed-
2922 -- point type is imposed. If Norman Cohen can be confused by this,
2923 -- it deserves a separate message.
2925 if Typ = Any_Real
2926 and then Expr_Type = Any_Fixed
2927 then
2928 Error_Msg_N ("illegal context for mixed mode operation", N);
2929 Set_Etype (N, Universal_Real);
2930 Ctx_Type := Universal_Real;
2931 end if;
2932 end if;
2934 -- A user-defined operator is transformed into a function call at
2935 -- this point, so that further processing knows that operators are
2936 -- really operators (i.e. are predefined operators). User-defined
2937 -- operators that are intrinsic are just renamings of the predefined
2938 -- ones, and need not be turned into calls either, but if they rename
2939 -- a different operator, we must transform the node accordingly.
2940 -- Instantiations of Unchecked_Conversion are intrinsic but are
2941 -- treated as functions, even if given an operator designator.
2943 if Nkind (N) in N_Op
2944 and then Present (Entity (N))
2945 and then Ekind (Entity (N)) /= E_Operator
2946 then
2948 if not Is_Predefined_Op (Entity (N)) then
2949 Rewrite_Operator_As_Call (N, Entity (N));
2951 elsif Present (Alias (Entity (N)))
2952 and then
2953 Nkind (Parent (Parent (Entity (N)))) =
2954 N_Subprogram_Renaming_Declaration
2955 then
2956 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2958 -- If the node is rewritten, it will be fully resolved in
2959 -- Rewrite_Renamed_Operator.
2961 if Analyzed (N) then
2962 return;
2963 end if;
2964 end if;
2965 end if;
2967 case N_Subexpr'(Nkind (N)) is
2969 when N_Aggregate => Resolve_Aggregate (N, Ctx_Type);
2971 when N_Allocator => Resolve_Allocator (N, Ctx_Type);
2973 when N_Short_Circuit
2974 => Resolve_Short_Circuit (N, Ctx_Type);
2976 when N_Attribute_Reference
2977 => Resolve_Attribute (N, Ctx_Type);
2979 when N_Case_Expression
2980 => Resolve_Case_Expression (N, Ctx_Type);
2982 when N_Character_Literal
2983 => Resolve_Character_Literal (N, Ctx_Type);
2985 when N_Expanded_Name
2986 => Resolve_Entity_Name (N, Ctx_Type);
2988 when N_Explicit_Dereference
2989 => Resolve_Explicit_Dereference (N, Ctx_Type);
2991 when N_Expression_With_Actions
2992 => Resolve_Expression_With_Actions (N, Ctx_Type);
2994 when N_Extension_Aggregate
2995 => Resolve_Extension_Aggregate (N, Ctx_Type);
2997 when N_Function_Call
2998 => Resolve_Call (N, Ctx_Type);
3000 when N_Identifier
3001 => Resolve_Entity_Name (N, Ctx_Type);
3003 when N_If_Expression
3004 => Resolve_If_Expression (N, Ctx_Type);
3006 when N_Indexed_Component
3007 => Resolve_Indexed_Component (N, Ctx_Type);
3009 when N_Integer_Literal
3010 => Resolve_Integer_Literal (N, Ctx_Type);
3012 when N_Membership_Test
3013 => Resolve_Membership_Op (N, Ctx_Type);
3015 when N_Null => Resolve_Null (N, Ctx_Type);
3017 when N_Op_And | N_Op_Or | N_Op_Xor
3018 => Resolve_Logical_Op (N, Ctx_Type);
3020 when N_Op_Eq | N_Op_Ne
3021 => Resolve_Equality_Op (N, Ctx_Type);
3023 when N_Op_Lt | N_Op_Le | N_Op_Gt | N_Op_Ge
3024 => Resolve_Comparison_Op (N, Ctx_Type);
3026 when N_Op_Not => Resolve_Op_Not (N, Ctx_Type);
3028 when N_Op_Add | N_Op_Subtract | N_Op_Multiply |
3029 N_Op_Divide | N_Op_Mod | N_Op_Rem
3031 => Resolve_Arithmetic_Op (N, Ctx_Type);
3033 when N_Op_Concat => Resolve_Op_Concat (N, Ctx_Type);
3035 when N_Op_Expon => Resolve_Op_Expon (N, Ctx_Type);
3037 when N_Op_Plus | N_Op_Minus | N_Op_Abs
3038 => Resolve_Unary_Op (N, Ctx_Type);
3040 when N_Op_Shift => Resolve_Shift (N, Ctx_Type);
3042 when N_Procedure_Call_Statement
3043 => Resolve_Call (N, Ctx_Type);
3045 when N_Operator_Symbol
3046 => Resolve_Operator_Symbol (N, Ctx_Type);
3048 when N_Qualified_Expression
3049 => Resolve_Qualified_Expression (N, Ctx_Type);
3051 -- Why is the following null, needs a comment ???
3053 when N_Quantified_Expression
3054 => null;
3056 when N_Raise_Expression
3057 => Resolve_Raise_Expression (N, Ctx_Type);
3059 when N_Raise_xxx_Error
3060 => Set_Etype (N, Ctx_Type);
3062 when N_Range => Resolve_Range (N, Ctx_Type);
3064 when N_Real_Literal
3065 => Resolve_Real_Literal (N, Ctx_Type);
3067 when N_Reference => Resolve_Reference (N, Ctx_Type);
3069 when N_Selected_Component
3070 => Resolve_Selected_Component (N, Ctx_Type);
3072 when N_Slice => Resolve_Slice (N, Ctx_Type);
3074 when N_String_Literal
3075 => Resolve_String_Literal (N, Ctx_Type);
3077 when N_Type_Conversion
3078 => Resolve_Type_Conversion (N, Ctx_Type);
3080 when N_Unchecked_Expression =>
3081 Resolve_Unchecked_Expression (N, Ctx_Type);
3083 when N_Unchecked_Type_Conversion =>
3084 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3085 end case;
3087 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3088 -- expression of an anonymous access type that occurs in the context
3089 -- of a named general access type, except when the expression is that
3090 -- of a membership test. This ensures proper legality checking in
3091 -- terms of allowed conversions (expressions that would be illegal to
3092 -- convert implicitly are allowed in membership tests).
3094 if Ada_Version >= Ada_2012
3095 and then Ekind (Ctx_Type) = E_General_Access_Type
3096 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3097 and then Nkind (Parent (N)) not in N_Membership_Test
3098 then
3099 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3100 Analyze_And_Resolve (N, Ctx_Type);
3101 end if;
3103 -- If the subexpression was replaced by a non-subexpression, then
3104 -- all we do is to expand it. The only legitimate case we know of
3105 -- is converting procedure call statement to entry call statements,
3106 -- but there may be others, so we are making this test general.
3108 if Nkind (N) not in N_Subexpr then
3109 Debug_A_Exit ("resolving ", N, " (done)");
3110 Expand (N);
3111 return;
3112 end if;
3114 -- The expression is definitely NOT overloaded at this point, so
3115 -- we reset the Is_Overloaded flag to avoid any confusion when
3116 -- reanalyzing the node.
3118 Set_Is_Overloaded (N, False);
3120 -- Freeze expression type, entity if it is a name, and designated
3121 -- type if it is an allocator (RM 13.14(10,11,13)).
3123 -- Now that the resolution of the type of the node is complete, and
3124 -- we did not detect an error, we can expand this node. We skip the
3125 -- expand call if we are in a default expression, see section
3126 -- "Handling of Default Expressions" in Sem spec.
3128 Debug_A_Exit ("resolving ", N, " (done)");
3130 -- We unconditionally freeze the expression, even if we are in
3131 -- default expression mode (the Freeze_Expression routine tests this
3132 -- flag and only freezes static types if it is set).
3134 -- Ada 2012 (AI05-177): The declaration of an expression function
3135 -- does not cause freezing, but we never reach here in that case.
3136 -- Here we are resolving the corresponding expanded body, so we do
3137 -- need to perform normal freezing.
3139 Freeze_Expression (N);
3141 -- Now we can do the expansion
3143 Expand (N);
3144 end if;
3145 end Resolve;
3147 -------------
3148 -- Resolve --
3149 -------------
3151 -- Version with check(s) suppressed
3153 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3154 begin
3155 if Suppress = All_Checks then
3156 declare
3157 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3158 begin
3159 Scope_Suppress.Suppress := (others => True);
3160 Resolve (N, Typ);
3161 Scope_Suppress.Suppress := Sva;
3162 end;
3164 else
3165 declare
3166 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3167 begin
3168 Scope_Suppress.Suppress (Suppress) := True;
3169 Resolve (N, Typ);
3170 Scope_Suppress.Suppress (Suppress) := Svg;
3171 end;
3172 end if;
3173 end Resolve;
3175 -------------
3176 -- Resolve --
3177 -------------
3179 -- Version with implicit type
3181 procedure Resolve (N : Node_Id) is
3182 begin
3183 Resolve (N, Etype (N));
3184 end Resolve;
3186 ---------------------
3187 -- Resolve_Actuals --
3188 ---------------------
3190 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3191 Loc : constant Source_Ptr := Sloc (N);
3192 A : Node_Id;
3193 A_Id : Entity_Id;
3194 A_Typ : Entity_Id;
3195 F : Entity_Id;
3196 F_Typ : Entity_Id;
3197 Prev : Node_Id := Empty;
3198 Orig_A : Node_Id;
3200 procedure Check_Aliased_Parameter;
3201 -- Check rules on aliased parameters and related accessibility rules
3202 -- in (RM 3.10.2 (10.2-10.4)).
3204 procedure Check_Argument_Order;
3205 -- Performs a check for the case where the actuals are all simple
3206 -- identifiers that correspond to the formal names, but in the wrong
3207 -- order, which is considered suspicious and cause for a warning.
3209 procedure Check_Prefixed_Call;
3210 -- If the original node is an overloaded call in prefix notation,
3211 -- insert an 'Access or a dereference as needed over the first actual.
3212 -- Try_Object_Operation has already verified that there is a valid
3213 -- interpretation, but the form of the actual can only be determined
3214 -- once the primitive operation is identified.
3216 procedure Insert_Default;
3217 -- If the actual is missing in a call, insert in the actuals list
3218 -- an instance of the default expression. The insertion is always
3219 -- a named association.
3221 procedure Property_Error
3222 (Var : Node_Id;
3223 Var_Id : Entity_Id;
3224 Prop_Nam : Name_Id);
3225 -- Emit an error concerning variable Var with entity Var_Id that has
3226 -- enabled property Prop_Nam when it acts as an actual parameter in a
3227 -- call and the corresponding formal parameter is of mode IN.
3229 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3230 -- Check whether T1 and T2, or their full views, are derived from a
3231 -- common type. Used to enforce the restrictions on array conversions
3232 -- of AI95-00246.
3234 function Static_Concatenation (N : Node_Id) return Boolean;
3235 -- Predicate to determine whether an actual that is a concatenation
3236 -- will be evaluated statically and does not need a transient scope.
3237 -- This must be determined before the actual is resolved and expanded
3238 -- because if needed the transient scope must be introduced earlier.
3240 ------------------------------
3241 -- Check_Aliased_Parameter --
3242 ------------------------------
3244 procedure Check_Aliased_Parameter is
3245 Nominal_Subt : Entity_Id;
3247 begin
3248 if Is_Aliased (F) then
3249 if Is_Tagged_Type (A_Typ) then
3250 null;
3252 elsif Is_Aliased_View (A) then
3253 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3254 Nominal_Subt := Base_Type (A_Typ);
3255 else
3256 Nominal_Subt := A_Typ;
3257 end if;
3259 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3260 null;
3262 -- In a generic body assume the worst for generic formals:
3263 -- they can have a constrained partial view (AI05-041).
3265 elsif Has_Discriminants (F_Typ)
3266 and then not Is_Constrained (F_Typ)
3267 and then not Has_Constrained_Partial_View (F_Typ)
3268 and then not Is_Generic_Type (F_Typ)
3269 then
3270 null;
3272 else
3273 Error_Msg_NE ("untagged actual does not match "
3274 & "aliased formal&", A, F);
3275 end if;
3277 else
3278 Error_Msg_NE ("actual for aliased formal& must be "
3279 & "aliased object", A, F);
3280 end if;
3282 if Ekind (Nam) = E_Procedure then
3283 null;
3285 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3286 if Nkind (Parent (N)) = N_Type_Conversion
3287 and then Type_Access_Level (Etype (Parent (N))) <
3288 Object_Access_Level (A)
3289 then
3290 Error_Msg_N ("aliased actual has wrong accessibility", A);
3291 end if;
3293 elsif Nkind (Parent (N)) = N_Qualified_Expression
3294 and then Nkind (Parent (Parent (N))) = N_Allocator
3295 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3296 Object_Access_Level (A)
3297 then
3298 Error_Msg_N
3299 ("aliased actual in allocator has wrong accessibility", A);
3300 end if;
3301 end if;
3302 end Check_Aliased_Parameter;
3304 --------------------------
3305 -- Check_Argument_Order --
3306 --------------------------
3308 procedure Check_Argument_Order is
3309 begin
3310 -- Nothing to do if no parameters, or original node is neither a
3311 -- function call nor a procedure call statement (happens in the
3312 -- operator-transformed-to-function call case), or the call does
3313 -- not come from source, or this warning is off.
3315 if not Warn_On_Parameter_Order
3316 or else No (Parameter_Associations (N))
3317 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3318 or else not Comes_From_Source (N)
3319 then
3320 return;
3321 end if;
3323 declare
3324 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3326 begin
3327 -- Nothing to do if only one parameter
3329 if Nargs < 2 then
3330 return;
3331 end if;
3333 -- Here if at least two arguments
3335 declare
3336 Actuals : array (1 .. Nargs) of Node_Id;
3337 Actual : Node_Id;
3338 Formal : Node_Id;
3340 Wrong_Order : Boolean := False;
3341 -- Set True if an out of order case is found
3343 begin
3344 -- Collect identifier names of actuals, fail if any actual is
3345 -- not a simple identifier, and record max length of name.
3347 Actual := First (Parameter_Associations (N));
3348 for J in Actuals'Range loop
3349 if Nkind (Actual) /= N_Identifier then
3350 return;
3351 else
3352 Actuals (J) := Actual;
3353 Next (Actual);
3354 end if;
3355 end loop;
3357 -- If we got this far, all actuals are identifiers and the list
3358 -- of their names is stored in the Actuals array.
3360 Formal := First_Formal (Nam);
3361 for J in Actuals'Range loop
3363 -- If we ran out of formals, that's odd, probably an error
3364 -- which will be detected elsewhere, but abandon the search.
3366 if No (Formal) then
3367 return;
3368 end if;
3370 -- If name matches and is in order OK
3372 if Chars (Formal) = Chars (Actuals (J)) then
3373 null;
3375 else
3376 -- If no match, see if it is elsewhere in list and if so
3377 -- flag potential wrong order if type is compatible.
3379 for K in Actuals'Range loop
3380 if Chars (Formal) = Chars (Actuals (K))
3381 and then
3382 Has_Compatible_Type (Actuals (K), Etype (Formal))
3383 then
3384 Wrong_Order := True;
3385 goto Continue;
3386 end if;
3387 end loop;
3389 -- No match
3391 return;
3392 end if;
3394 <<Continue>> Next_Formal (Formal);
3395 end loop;
3397 -- If Formals left over, also probably an error, skip warning
3399 if Present (Formal) then
3400 return;
3401 end if;
3403 -- Here we give the warning if something was out of order
3405 if Wrong_Order then
3406 Error_Msg_N
3407 ("?P?actuals for this call may be in wrong order", N);
3408 end if;
3409 end;
3410 end;
3411 end Check_Argument_Order;
3413 -------------------------
3414 -- Check_Prefixed_Call --
3415 -------------------------
3417 procedure Check_Prefixed_Call is
3418 Act : constant Node_Id := First_Actual (N);
3419 A_Type : constant Entity_Id := Etype (Act);
3420 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3421 Orig : constant Node_Id := Original_Node (N);
3422 New_A : Node_Id;
3424 begin
3425 -- Check whether the call is a prefixed call, with or without
3426 -- additional actuals.
3428 if Nkind (Orig) = N_Selected_Component
3429 or else
3430 (Nkind (Orig) = N_Indexed_Component
3431 and then Nkind (Prefix (Orig)) = N_Selected_Component
3432 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3433 and then Is_Entity_Name (Act)
3434 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3435 then
3436 if Is_Access_Type (A_Type)
3437 and then not Is_Access_Type (F_Type)
3438 then
3439 -- Introduce dereference on object in prefix
3441 New_A :=
3442 Make_Explicit_Dereference (Sloc (Act),
3443 Prefix => Relocate_Node (Act));
3444 Rewrite (Act, New_A);
3445 Analyze (Act);
3447 elsif Is_Access_Type (F_Type)
3448 and then not Is_Access_Type (A_Type)
3449 then
3450 -- Introduce an implicit 'Access in prefix
3452 if not Is_Aliased_View (Act) then
3453 Error_Msg_NE
3454 ("object in prefixed call to& must be aliased "
3455 & "(RM 4.1.3 (13 1/2))",
3456 Prefix (Act), Nam);
3457 end if;
3459 Rewrite (Act,
3460 Make_Attribute_Reference (Loc,
3461 Attribute_Name => Name_Access,
3462 Prefix => Relocate_Node (Act)));
3463 end if;
3465 Analyze (Act);
3466 end if;
3467 end Check_Prefixed_Call;
3469 --------------------
3470 -- Insert_Default --
3471 --------------------
3473 procedure Insert_Default is
3474 Actval : Node_Id;
3475 Assoc : Node_Id;
3477 begin
3478 -- Missing argument in call, nothing to insert
3480 if No (Default_Value (F)) then
3481 return;
3483 else
3484 -- Note that we do a full New_Copy_Tree, so that any associated
3485 -- Itypes are properly copied. This may not be needed any more,
3486 -- but it does no harm as a safety measure. Defaults of a generic
3487 -- formal may be out of bounds of the corresponding actual (see
3488 -- cc1311b) and an additional check may be required.
3490 Actval :=
3491 New_Copy_Tree
3492 (Default_Value (F),
3493 New_Scope => Current_Scope,
3494 New_Sloc => Loc);
3496 if Is_Concurrent_Type (Scope (Nam))
3497 and then Has_Discriminants (Scope (Nam))
3498 then
3499 Replace_Actual_Discriminants (N, Actval);
3500 end if;
3502 if Is_Overloadable (Nam)
3503 and then Present (Alias (Nam))
3504 then
3505 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3506 and then not Is_Tagged_Type (Etype (F))
3507 then
3508 -- If default is a real literal, do not introduce a
3509 -- conversion whose effect may depend on the run-time
3510 -- size of universal real.
3512 if Nkind (Actval) = N_Real_Literal then
3513 Set_Etype (Actval, Base_Type (Etype (F)));
3514 else
3515 Actval := Unchecked_Convert_To (Etype (F), Actval);
3516 end if;
3517 end if;
3519 if Is_Scalar_Type (Etype (F)) then
3520 Enable_Range_Check (Actval);
3521 end if;
3523 Set_Parent (Actval, N);
3525 -- Resolve aggregates with their base type, to avoid scope
3526 -- anomalies: the subtype was first built in the subprogram
3527 -- declaration, and the current call may be nested.
3529 if Nkind (Actval) = N_Aggregate then
3530 Analyze_And_Resolve (Actval, Etype (F));
3531 else
3532 Analyze_And_Resolve (Actval, Etype (Actval));
3533 end if;
3535 else
3536 Set_Parent (Actval, N);
3538 -- See note above concerning aggregates
3540 if Nkind (Actval) = N_Aggregate
3541 and then Has_Discriminants (Etype (Actval))
3542 then
3543 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3545 -- Resolve entities with their own type, which may differ from
3546 -- the type of a reference in a generic context (the view
3547 -- swapping mechanism did not anticipate the re-analysis of
3548 -- default values in calls).
3550 elsif Is_Entity_Name (Actval) then
3551 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3553 else
3554 Analyze_And_Resolve (Actval, Etype (Actval));
3555 end if;
3556 end if;
3558 -- If default is a tag indeterminate function call, propagate tag
3559 -- to obtain proper dispatching.
3561 if Is_Controlling_Formal (F)
3562 and then Nkind (Default_Value (F)) = N_Function_Call
3563 then
3564 Set_Is_Controlling_Actual (Actval);
3565 end if;
3567 end if;
3569 -- If the default expression raises constraint error, then just
3570 -- silently replace it with an N_Raise_Constraint_Error node, since
3571 -- we already gave the warning on the subprogram spec. If node is
3572 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3573 -- the warnings removal machinery.
3575 if Raises_Constraint_Error (Actval)
3576 and then Nkind (Actval) /= N_Raise_Constraint_Error
3577 then
3578 Rewrite (Actval,
3579 Make_Raise_Constraint_Error (Loc,
3580 Reason => CE_Range_Check_Failed));
3581 Set_Raises_Constraint_Error (Actval);
3582 Set_Etype (Actval, Etype (F));
3583 end if;
3585 Assoc :=
3586 Make_Parameter_Association (Loc,
3587 Explicit_Actual_Parameter => Actval,
3588 Selector_Name => Make_Identifier (Loc, Chars (F)));
3590 -- Case of insertion is first named actual
3592 if No (Prev) or else
3593 Nkind (Parent (Prev)) /= N_Parameter_Association
3594 then
3595 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3596 Set_First_Named_Actual (N, Actval);
3598 if No (Prev) then
3599 if No (Parameter_Associations (N)) then
3600 Set_Parameter_Associations (N, New_List (Assoc));
3601 else
3602 Append (Assoc, Parameter_Associations (N));
3603 end if;
3605 else
3606 Insert_After (Prev, Assoc);
3607 end if;
3609 -- Case of insertion is not first named actual
3611 else
3612 Set_Next_Named_Actual
3613 (Assoc, Next_Named_Actual (Parent (Prev)));
3614 Set_Next_Named_Actual (Parent (Prev), Actval);
3615 Append (Assoc, Parameter_Associations (N));
3616 end if;
3618 Mark_Rewrite_Insertion (Assoc);
3619 Mark_Rewrite_Insertion (Actval);
3621 Prev := Actval;
3622 end Insert_Default;
3624 --------------------
3625 -- Property_Error --
3626 --------------------
3628 procedure Property_Error
3629 (Var : Node_Id;
3630 Var_Id : Entity_Id;
3631 Prop_Nam : Name_Id)
3633 begin
3634 Error_Msg_Name_1 := Prop_Nam;
3635 Error_Msg_NE
3636 ("external variable & with enabled property % cannot appear as "
3637 & "actual in procedure call (SPARK RM 7.1.3(11))", Var, Var_Id);
3638 Error_Msg_N ("\\corresponding formal parameter has mode In", Var);
3639 end Property_Error;
3641 -------------------
3642 -- Same_Ancestor --
3643 -------------------
3645 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3646 FT1 : Entity_Id := T1;
3647 FT2 : Entity_Id := T2;
3649 begin
3650 if Is_Private_Type (T1)
3651 and then Present (Full_View (T1))
3652 then
3653 FT1 := Full_View (T1);
3654 end if;
3656 if Is_Private_Type (T2)
3657 and then Present (Full_View (T2))
3658 then
3659 FT2 := Full_View (T2);
3660 end if;
3662 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3663 end Same_Ancestor;
3665 --------------------------
3666 -- Static_Concatenation --
3667 --------------------------
3669 function Static_Concatenation (N : Node_Id) return Boolean is
3670 begin
3671 case Nkind (N) is
3672 when N_String_Literal =>
3673 return True;
3675 when N_Op_Concat =>
3677 -- Concatenation is static when both operands are static and
3678 -- the concatenation operator is a predefined one.
3680 return Scope (Entity (N)) = Standard_Standard
3681 and then
3682 Static_Concatenation (Left_Opnd (N))
3683 and then
3684 Static_Concatenation (Right_Opnd (N));
3686 when others =>
3687 if Is_Entity_Name (N) then
3688 declare
3689 Ent : constant Entity_Id := Entity (N);
3690 begin
3691 return Ekind (Ent) = E_Constant
3692 and then Present (Constant_Value (Ent))
3693 and then
3694 Is_OK_Static_Expression (Constant_Value (Ent));
3695 end;
3697 else
3698 return False;
3699 end if;
3700 end case;
3701 end Static_Concatenation;
3703 -- Start of processing for Resolve_Actuals
3705 begin
3706 Check_Argument_Order;
3707 Check_Function_Writable_Actuals (N);
3709 if Present (First_Actual (N)) then
3710 Check_Prefixed_Call;
3711 end if;
3713 A := First_Actual (N);
3714 F := First_Formal (Nam);
3715 while Present (F) loop
3716 if No (A) and then Needs_No_Actuals (Nam) then
3717 null;
3719 -- If we have an error in any actual or formal, indicated by a type
3720 -- of Any_Type, then abandon resolution attempt, and set result type
3721 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3722 -- type is imposed from context.
3724 elsif (Present (A) and then Etype (A) = Any_Type)
3725 or else Etype (F) = Any_Type
3726 then
3727 if Nkind (A) /= N_Raise_Expression then
3728 Set_Etype (N, Any_Type);
3729 return;
3730 end if;
3731 end if;
3733 -- Case where actual is present
3735 -- If the actual is an entity, generate a reference to it now. We
3736 -- do this before the actual is resolved, because a formal of some
3737 -- protected subprogram, or a task discriminant, will be rewritten
3738 -- during expansion, and the source entity reference may be lost.
3740 if Present (A)
3741 and then Is_Entity_Name (A)
3742 and then Comes_From_Source (N)
3743 then
3744 Orig_A := Entity (A);
3746 if Present (Orig_A) then
3747 if Is_Formal (Orig_A)
3748 and then Ekind (F) /= E_In_Parameter
3749 then
3750 Generate_Reference (Orig_A, A, 'm');
3752 elsif not Is_Overloaded (A) then
3753 if Ekind (F) /= E_Out_Parameter then
3754 Generate_Reference (Orig_A, A);
3756 -- RM 6.4.1(12): For an out parameter that is passed by
3757 -- copy, the formal parameter object is created, and:
3759 -- * For an access type, the formal parameter is initialized
3760 -- from the value of the actual, without checking that the
3761 -- value satisfies any constraint, any predicate, or any
3762 -- exclusion of the null value.
3764 -- * For a scalar type that has the Default_Value aspect
3765 -- specified, the formal parameter is initialized from the
3766 -- value of the actual, without checking that the value
3767 -- satisfies any constraint or any predicate.
3768 -- I do not understand why this case is included??? this is
3769 -- not a case where an OUT parameter is treated as IN OUT.
3771 -- * For a composite type with discriminants or that has
3772 -- implicit initial values for any subcomponents, the
3773 -- behavior is as for an in out parameter passed by copy.
3775 -- Hence for these cases we generate the read reference now
3776 -- (the write reference will be generated later by
3777 -- Note_Possible_Modification).
3779 elsif Is_By_Copy_Type (Etype (F))
3780 and then
3781 (Is_Access_Type (Etype (F))
3782 or else
3783 (Is_Scalar_Type (Etype (F))
3784 and then
3785 Present (Default_Aspect_Value (Etype (F))))
3786 or else
3787 (Is_Composite_Type (Etype (F))
3788 and then (Has_Discriminants (Etype (F))
3789 or else Is_Partially_Initialized_Type
3790 (Etype (F)))))
3791 then
3792 Generate_Reference (Orig_A, A);
3793 end if;
3794 end if;
3795 end if;
3796 end if;
3798 if Present (A)
3799 and then (Nkind (Parent (A)) /= N_Parameter_Association
3800 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3801 then
3802 -- If style checking mode on, check match of formal name
3804 if Style_Check then
3805 if Nkind (Parent (A)) = N_Parameter_Association then
3806 Check_Identifier (Selector_Name (Parent (A)), F);
3807 end if;
3808 end if;
3810 -- If the formal is Out or In_Out, do not resolve and expand the
3811 -- conversion, because it is subsequently expanded into explicit
3812 -- temporaries and assignments. However, the object of the
3813 -- conversion can be resolved. An exception is the case of tagged
3814 -- type conversion with a class-wide actual. In that case we want
3815 -- the tag check to occur and no temporary will be needed (no
3816 -- representation change can occur) and the parameter is passed by
3817 -- reference, so we go ahead and resolve the type conversion.
3818 -- Another exception is the case of reference to component or
3819 -- subcomponent of a bit-packed array, in which case we want to
3820 -- defer expansion to the point the in and out assignments are
3821 -- performed.
3823 if Ekind (F) /= E_In_Parameter
3824 and then Nkind (A) = N_Type_Conversion
3825 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3826 then
3827 if Ekind (F) = E_In_Out_Parameter
3828 and then Is_Array_Type (Etype (F))
3829 then
3830 -- In a view conversion, the conversion must be legal in
3831 -- both directions, and thus both component types must be
3832 -- aliased, or neither (4.6 (8)).
3834 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3835 -- the privacy requirement should not apply to generic
3836 -- types, and should be checked in an instance. ARG query
3837 -- is in order ???
3839 if Has_Aliased_Components (Etype (Expression (A))) /=
3840 Has_Aliased_Components (Etype (F))
3841 then
3842 Error_Msg_N
3843 ("both component types in a view conversion must be"
3844 & " aliased, or neither", A);
3846 -- Comment here??? what set of cases???
3848 elsif
3849 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3850 then
3851 -- Check view conv between unrelated by ref array types
3853 if Is_By_Reference_Type (Etype (F))
3854 or else Is_By_Reference_Type (Etype (Expression (A)))
3855 then
3856 Error_Msg_N
3857 ("view conversion between unrelated by reference "
3858 & "array types not allowed (\'A'I-00246)", A);
3860 -- In Ada 2005 mode, check view conversion component
3861 -- type cannot be private, tagged, or volatile. Note
3862 -- that we only apply this to source conversions. The
3863 -- generated code can contain conversions which are
3864 -- not subject to this test, and we cannot extract the
3865 -- component type in such cases since it is not present.
3867 elsif Comes_From_Source (A)
3868 and then Ada_Version >= Ada_2005
3869 then
3870 declare
3871 Comp_Type : constant Entity_Id :=
3872 Component_Type
3873 (Etype (Expression (A)));
3874 begin
3875 if (Is_Private_Type (Comp_Type)
3876 and then not Is_Generic_Type (Comp_Type))
3877 or else Is_Tagged_Type (Comp_Type)
3878 or else Is_Volatile (Comp_Type)
3879 then
3880 Error_Msg_N
3881 ("component type of a view conversion cannot"
3882 & " be private, tagged, or volatile"
3883 & " (RM 4.6 (24))",
3884 Expression (A));
3885 end if;
3886 end;
3887 end if;
3888 end if;
3889 end if;
3891 -- Resolve expression if conversion is all OK
3893 if (Conversion_OK (A)
3894 or else Valid_Conversion (A, Etype (A), Expression (A)))
3895 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3896 then
3897 Resolve (Expression (A));
3898 end if;
3900 -- If the actual is a function call that returns a limited
3901 -- unconstrained object that needs finalization, create a
3902 -- transient scope for it, so that it can receive the proper
3903 -- finalization list.
3905 elsif Nkind (A) = N_Function_Call
3906 and then Is_Limited_Record (Etype (F))
3907 and then not Is_Constrained (Etype (F))
3908 and then Expander_Active
3909 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3910 then
3911 Establish_Transient_Scope (A, Sec_Stack => False);
3912 Resolve (A, Etype (F));
3914 -- A small optimization: if one of the actuals is a concatenation
3915 -- create a block around a procedure call to recover stack space.
3916 -- This alleviates stack usage when several procedure calls in
3917 -- the same statement list use concatenation. We do not perform
3918 -- this wrapping for code statements, where the argument is a
3919 -- static string, and we want to preserve warnings involving
3920 -- sequences of such statements.
3922 elsif Nkind (A) = N_Op_Concat
3923 and then Nkind (N) = N_Procedure_Call_Statement
3924 and then Expander_Active
3925 and then
3926 not (Is_Intrinsic_Subprogram (Nam)
3927 and then Chars (Nam) = Name_Asm)
3928 and then not Static_Concatenation (A)
3929 then
3930 Establish_Transient_Scope (A, Sec_Stack => False);
3931 Resolve (A, Etype (F));
3933 else
3934 if Nkind (A) = N_Type_Conversion
3935 and then Is_Array_Type (Etype (F))
3936 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3937 and then
3938 (Is_Limited_Type (Etype (F))
3939 or else Is_Limited_Type (Etype (Expression (A))))
3940 then
3941 Error_Msg_N
3942 ("conversion between unrelated limited array types "
3943 & "not allowed ('A'I-00246)", A);
3945 if Is_Limited_Type (Etype (F)) then
3946 Explain_Limited_Type (Etype (F), A);
3947 end if;
3949 if Is_Limited_Type (Etype (Expression (A))) then
3950 Explain_Limited_Type (Etype (Expression (A)), A);
3951 end if;
3952 end if;
3954 -- (Ada 2005: AI-251): If the actual is an allocator whose
3955 -- directly designated type is a class-wide interface, we build
3956 -- an anonymous access type to use it as the type of the
3957 -- allocator. Later, when the subprogram call is expanded, if
3958 -- the interface has a secondary dispatch table the expander
3959 -- will add a type conversion to force the correct displacement
3960 -- of the pointer.
3962 if Nkind (A) = N_Allocator then
3963 declare
3964 DDT : constant Entity_Id :=
3965 Directly_Designated_Type (Base_Type (Etype (F)));
3967 New_Itype : Entity_Id;
3969 begin
3970 if Is_Class_Wide_Type (DDT)
3971 and then Is_Interface (DDT)
3972 then
3973 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3974 Set_Etype (New_Itype, Etype (A));
3975 Set_Directly_Designated_Type
3976 (New_Itype, Directly_Designated_Type (Etype (A)));
3977 Set_Etype (A, New_Itype);
3978 end if;
3980 -- Ada 2005, AI-162:If the actual is an allocator, the
3981 -- innermost enclosing statement is the master of the
3982 -- created object. This needs to be done with expansion
3983 -- enabled only, otherwise the transient scope will not
3984 -- be removed in the expansion of the wrapped construct.
3986 if (Is_Controlled (DDT) or else Has_Task (DDT))
3987 and then Expander_Active
3988 then
3989 Establish_Transient_Scope (A, Sec_Stack => False);
3990 end if;
3991 end;
3993 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3994 Check_Restriction (No_Access_Parameter_Allocators, A);
3995 end if;
3996 end if;
3998 -- (Ada 2005): The call may be to a primitive operation of a
3999 -- tagged synchronized type, declared outside of the type. In
4000 -- this case the controlling actual must be converted to its
4001 -- corresponding record type, which is the formal type. The
4002 -- actual may be a subtype, either because of a constraint or
4003 -- because it is a generic actual, so use base type to locate
4004 -- concurrent type.
4006 F_Typ := Base_Type (Etype (F));
4008 if Is_Tagged_Type (F_Typ)
4009 and then (Is_Concurrent_Type (F_Typ)
4010 or else Is_Concurrent_Record_Type (F_Typ))
4011 then
4012 -- If the actual is overloaded, look for an interpretation
4013 -- that has a synchronized type.
4015 if not Is_Overloaded (A) then
4016 A_Typ := Base_Type (Etype (A));
4018 else
4019 declare
4020 Index : Interp_Index;
4021 It : Interp;
4023 begin
4024 Get_First_Interp (A, Index, It);
4025 while Present (It.Typ) loop
4026 if Is_Concurrent_Type (It.Typ)
4027 or else Is_Concurrent_Record_Type (It.Typ)
4028 then
4029 A_Typ := Base_Type (It.Typ);
4030 exit;
4031 end if;
4033 Get_Next_Interp (Index, It);
4034 end loop;
4035 end;
4036 end if;
4038 declare
4039 Full_A_Typ : Entity_Id;
4041 begin
4042 if Present (Full_View (A_Typ)) then
4043 Full_A_Typ := Base_Type (Full_View (A_Typ));
4044 else
4045 Full_A_Typ := A_Typ;
4046 end if;
4048 -- Tagged synchronized type (case 1): the actual is a
4049 -- concurrent type.
4051 if Is_Concurrent_Type (A_Typ)
4052 and then Corresponding_Record_Type (A_Typ) = F_Typ
4053 then
4054 Rewrite (A,
4055 Unchecked_Convert_To
4056 (Corresponding_Record_Type (A_Typ), A));
4057 Resolve (A, Etype (F));
4059 -- Tagged synchronized type (case 2): the formal is a
4060 -- concurrent type.
4062 elsif Ekind (Full_A_Typ) = E_Record_Type
4063 and then Present
4064 (Corresponding_Concurrent_Type (Full_A_Typ))
4065 and then Is_Concurrent_Type (F_Typ)
4066 and then Present (Corresponding_Record_Type (F_Typ))
4067 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4068 then
4069 Resolve (A, Corresponding_Record_Type (F_Typ));
4071 -- Common case
4073 else
4074 Resolve (A, Etype (F));
4075 end if;
4076 end;
4078 -- Not a synchronized operation
4080 else
4081 Resolve (A, Etype (F));
4082 end if;
4083 end if;
4085 A_Typ := Etype (A);
4086 F_Typ := Etype (F);
4088 -- An actual cannot be an untagged formal incomplete type
4090 if Ekind (A_Typ) = E_Incomplete_Type
4091 and then not Is_Tagged_Type (A_Typ)
4092 and then Is_Generic_Type (A_Typ)
4093 then
4094 Error_Msg_N
4095 ("invalid use of untagged formal incomplete type", A);
4096 end if;
4098 if Comes_From_Source (Original_Node (N))
4099 and then Nkind_In (Original_Node (N), N_Function_Call,
4100 N_Procedure_Call_Statement)
4101 then
4102 -- In formal mode, check that actual parameters matching
4103 -- formals of tagged types are objects (or ancestor type
4104 -- conversions of objects), not general expressions.
4106 if Is_Actual_Tagged_Parameter (A) then
4107 if Is_SPARK_05_Object_Reference (A) then
4108 null;
4110 elsif Nkind (A) = N_Type_Conversion then
4111 declare
4112 Operand : constant Node_Id := Expression (A);
4113 Operand_Typ : constant Entity_Id := Etype (Operand);
4114 Target_Typ : constant Entity_Id := A_Typ;
4116 begin
4117 if not Is_SPARK_05_Object_Reference (Operand) then
4118 Check_SPARK_05_Restriction
4119 ("object required", Operand);
4121 -- In formal mode, the only view conversions are those
4122 -- involving ancestor conversion of an extended type.
4124 elsif not
4125 (Is_Tagged_Type (Target_Typ)
4126 and then not Is_Class_Wide_Type (Target_Typ)
4127 and then Is_Tagged_Type (Operand_Typ)
4128 and then not Is_Class_Wide_Type (Operand_Typ)
4129 and then Is_Ancestor (Target_Typ, Operand_Typ))
4130 then
4131 if Ekind_In
4132 (F, E_Out_Parameter, E_In_Out_Parameter)
4133 then
4134 Check_SPARK_05_Restriction
4135 ("ancestor conversion is the only permitted "
4136 & "view conversion", A);
4137 else
4138 Check_SPARK_05_Restriction
4139 ("ancestor conversion required", A);
4140 end if;
4142 else
4143 null;
4144 end if;
4145 end;
4147 else
4148 Check_SPARK_05_Restriction ("object required", A);
4149 end if;
4151 -- In formal mode, the only view conversions are those
4152 -- involving ancestor conversion of an extended type.
4154 elsif Nkind (A) = N_Type_Conversion
4155 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4156 then
4157 Check_SPARK_05_Restriction
4158 ("ancestor conversion is the only permitted view "
4159 & "conversion", A);
4160 end if;
4161 end if;
4163 -- has warnings suppressed, then we reset Never_Set_In_Source for
4164 -- the calling entity. The reason for this is to catch cases like
4165 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4166 -- uses trickery to modify an IN parameter.
4168 if Ekind (F) = E_In_Parameter
4169 and then Is_Entity_Name (A)
4170 and then Present (Entity (A))
4171 and then Ekind (Entity (A)) = E_Variable
4172 and then Has_Warnings_Off (F_Typ)
4173 then
4174 Set_Never_Set_In_Source (Entity (A), False);
4175 end if;
4177 -- Perform error checks for IN and IN OUT parameters
4179 if Ekind (F) /= E_Out_Parameter then
4181 -- Check unset reference. For scalar parameters, it is clearly
4182 -- wrong to pass an uninitialized value as either an IN or
4183 -- IN-OUT parameter. For composites, it is also clearly an
4184 -- error to pass a completely uninitialized value as an IN
4185 -- parameter, but the case of IN OUT is trickier. We prefer
4186 -- not to give a warning here. For example, suppose there is
4187 -- a routine that sets some component of a record to False.
4188 -- It is perfectly reasonable to make this IN-OUT and allow
4189 -- either initialized or uninitialized records to be passed
4190 -- in this case.
4192 -- For partially initialized composite values, we also avoid
4193 -- warnings, since it is quite likely that we are passing a
4194 -- partially initialized value and only the initialized fields
4195 -- will in fact be read in the subprogram.
4197 if Is_Scalar_Type (A_Typ)
4198 or else (Ekind (F) = E_In_Parameter
4199 and then not Is_Partially_Initialized_Type (A_Typ))
4200 then
4201 Check_Unset_Reference (A);
4202 end if;
4204 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4205 -- actual to a nested call, since this is case of reading an
4206 -- out parameter, which is not allowed.
4208 if Ada_Version = Ada_83
4209 and then Is_Entity_Name (A)
4210 and then Ekind (Entity (A)) = E_Out_Parameter
4211 then
4212 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4213 end if;
4214 end if;
4216 -- Case of OUT or IN OUT parameter
4218 if Ekind (F) /= E_In_Parameter then
4220 -- For an Out parameter, check for useless assignment. Note
4221 -- that we can't set Last_Assignment this early, because we may
4222 -- kill current values in Resolve_Call, and that call would
4223 -- clobber the Last_Assignment field.
4225 -- Note: call Warn_On_Useless_Assignment before doing the check
4226 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4227 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4228 -- reflects the last assignment, not this one.
4230 if Ekind (F) = E_Out_Parameter then
4231 if Warn_On_Modified_As_Out_Parameter (F)
4232 and then Is_Entity_Name (A)
4233 and then Present (Entity (A))
4234 and then Comes_From_Source (N)
4235 then
4236 Warn_On_Useless_Assignment (Entity (A), A);
4237 end if;
4238 end if;
4240 -- Validate the form of the actual. Note that the call to
4241 -- Is_OK_Variable_For_Out_Formal generates the required
4242 -- reference in this case.
4244 -- A call to an initialization procedure for an aggregate
4245 -- component may initialize a nested component of a constant
4246 -- designated object. In this context the object is variable.
4248 if not Is_OK_Variable_For_Out_Formal (A)
4249 and then not Is_Init_Proc (Nam)
4250 then
4251 Error_Msg_NE ("actual for& must be a variable", A, F);
4253 if Is_Subprogram (Current_Scope)
4254 and then
4255 (Is_Invariant_Procedure (Current_Scope)
4256 or else Is_Predicate_Function (Current_Scope))
4257 then
4258 Error_Msg_N
4259 ("function used in predicate cannot "
4260 & "modify its argument", F);
4261 end if;
4262 end if;
4264 -- What's the following about???
4266 if Is_Entity_Name (A) then
4267 Kill_Checks (Entity (A));
4268 else
4269 Kill_All_Checks;
4270 end if;
4271 end if;
4273 if Etype (A) = Any_Type then
4274 Set_Etype (N, Any_Type);
4275 return;
4276 end if;
4278 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4280 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4282 -- Apply predicate tests except in certain special cases. Note
4283 -- that it might be more consistent to apply these only when
4284 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4285 -- for the outbound predicate tests ???
4287 if Predicate_Tests_On_Arguments (Nam) then
4288 Apply_Predicate_Check (A, F_Typ);
4289 end if;
4291 -- Apply required constraint checks
4293 -- Gigi looks at the check flag and uses the appropriate types.
4294 -- For now since one flag is used there is an optimization
4295 -- which might not be done in the IN OUT case since Gigi does
4296 -- not do any analysis. More thought required about this ???
4298 -- In fact is this comment obsolete??? doesn't the expander now
4299 -- generate all these tests anyway???
4301 if Is_Scalar_Type (Etype (A)) then
4302 Apply_Scalar_Range_Check (A, F_Typ);
4304 elsif Is_Array_Type (Etype (A)) then
4305 Apply_Length_Check (A, F_Typ);
4307 elsif Is_Record_Type (F_Typ)
4308 and then Has_Discriminants (F_Typ)
4309 and then Is_Constrained (F_Typ)
4310 and then (not Is_Derived_Type (F_Typ)
4311 or else Comes_From_Source (Nam))
4312 then
4313 Apply_Discriminant_Check (A, F_Typ);
4315 -- For view conversions of a discriminated object, apply
4316 -- check to object itself, the conversion alreay has the
4317 -- proper type.
4319 if Nkind (A) = N_Type_Conversion
4320 and then Is_Constrained (Etype (Expression (A)))
4321 then
4322 Apply_Discriminant_Check (Expression (A), F_Typ);
4323 end if;
4325 elsif Is_Access_Type (F_Typ)
4326 and then Is_Array_Type (Designated_Type (F_Typ))
4327 and then Is_Constrained (Designated_Type (F_Typ))
4328 then
4329 Apply_Length_Check (A, F_Typ);
4331 elsif Is_Access_Type (F_Typ)
4332 and then Has_Discriminants (Designated_Type (F_Typ))
4333 and then Is_Constrained (Designated_Type (F_Typ))
4334 then
4335 Apply_Discriminant_Check (A, F_Typ);
4337 else
4338 Apply_Range_Check (A, F_Typ);
4339 end if;
4341 -- Ada 2005 (AI-231): Note that the controlling parameter case
4342 -- already existed in Ada 95, which is partially checked
4343 -- elsewhere (see Checks), and we don't want the warning
4344 -- message to differ.
4346 if Is_Access_Type (F_Typ)
4347 and then Can_Never_Be_Null (F_Typ)
4348 and then Known_Null (A)
4349 then
4350 if Is_Controlling_Formal (F) then
4351 Apply_Compile_Time_Constraint_Error
4352 (N => A,
4353 Msg => "null value not allowed here??",
4354 Reason => CE_Access_Check_Failed);
4356 elsif Ada_Version >= Ada_2005 then
4357 Apply_Compile_Time_Constraint_Error
4358 (N => A,
4359 Msg => "(Ada 2005) null not allowed in "
4360 & "null-excluding formal??",
4361 Reason => CE_Null_Not_Allowed);
4362 end if;
4363 end if;
4364 end if;
4366 -- Checks for OUT parameters and IN OUT parameters
4368 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4370 -- If there is a type conversion, to make sure the return value
4371 -- meets the constraints of the variable before the conversion.
4373 if Nkind (A) = N_Type_Conversion then
4374 if Is_Scalar_Type (A_Typ) then
4375 Apply_Scalar_Range_Check
4376 (Expression (A), Etype (Expression (A)), A_Typ);
4377 else
4378 Apply_Range_Check
4379 (Expression (A), Etype (Expression (A)), A_Typ);
4380 end if;
4382 -- If no conversion apply scalar range checks and length checks
4383 -- base on the subtype of the actual (NOT that of the formal).
4385 else
4386 if Is_Scalar_Type (F_Typ) then
4387 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4388 elsif Is_Array_Type (F_Typ)
4389 and then Ekind (F) = E_Out_Parameter
4390 then
4391 Apply_Length_Check (A, F_Typ);
4392 else
4393 Apply_Range_Check (A, A_Typ, F_Typ);
4394 end if;
4395 end if;
4397 -- Note: we do not apply the predicate checks for the case of
4398 -- OUT and IN OUT parameters. They are instead applied in the
4399 -- Expand_Actuals routine in Exp_Ch6.
4400 end if;
4402 -- An actual associated with an access parameter is implicitly
4403 -- converted to the anonymous access type of the formal and must
4404 -- satisfy the legality checks for access conversions.
4406 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4407 if not Valid_Conversion (A, F_Typ, A) then
4408 Error_Msg_N
4409 ("invalid implicit conversion for access parameter", A);
4410 end if;
4412 -- If the actual is an access selected component of a variable,
4413 -- the call may modify its designated object. It is reasonable
4414 -- to treat this as a potential modification of the enclosing
4415 -- record, to prevent spurious warnings that it should be
4416 -- declared as a constant, because intuitively programmers
4417 -- regard the designated subcomponent as part of the record.
4419 if Nkind (A) = N_Selected_Component
4420 and then Is_Entity_Name (Prefix (A))
4421 and then not Is_Constant_Object (Entity (Prefix (A)))
4422 then
4423 Note_Possible_Modification (A, Sure => False);
4424 end if;
4425 end if;
4427 -- Check bad case of atomic/volatile argument (RM C.6(12))
4429 if Is_By_Reference_Type (Etype (F))
4430 and then Comes_From_Source (N)
4431 then
4432 if Is_Atomic_Object (A)
4433 and then not Is_Atomic (Etype (F))
4434 then
4435 Error_Msg_NE
4436 ("cannot pass atomic argument to non-atomic formal&",
4437 A, F);
4439 elsif Is_Volatile_Object (A)
4440 and then not Is_Volatile (Etype (F))
4441 then
4442 Error_Msg_NE
4443 ("cannot pass volatile argument to non-volatile formal&",
4444 A, F);
4445 end if;
4446 end if;
4448 -- Check that subprograms don't have improper controlling
4449 -- arguments (RM 3.9.2 (9)).
4451 -- A primitive operation may have an access parameter of an
4452 -- incomplete tagged type, but a dispatching call is illegal
4453 -- if the type is still incomplete.
4455 if Is_Controlling_Formal (F) then
4456 Set_Is_Controlling_Actual (A);
4458 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4459 declare
4460 Desig : constant Entity_Id := Designated_Type (Etype (F));
4461 begin
4462 if Ekind (Desig) = E_Incomplete_Type
4463 and then No (Full_View (Desig))
4464 and then No (Non_Limited_View (Desig))
4465 then
4466 Error_Msg_NE
4467 ("premature use of incomplete type& "
4468 & "in dispatching call", A, Desig);
4469 end if;
4470 end;
4471 end if;
4473 elsif Nkind (A) = N_Explicit_Dereference then
4474 Validate_Remote_Access_To_Class_Wide_Type (A);
4475 end if;
4477 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4478 and then not Is_Class_Wide_Type (F_Typ)
4479 and then not Is_Controlling_Formal (F)
4480 then
4481 Error_Msg_N ("class-wide argument not allowed here!", A);
4483 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4484 Error_Msg_Node_2 := F_Typ;
4485 Error_Msg_NE
4486 ("& is not a dispatching operation of &!", A, Nam);
4487 end if;
4489 -- Apply the checks described in 3.10.2(27): if the context is a
4490 -- specific access-to-object, the actual cannot be class-wide.
4491 -- Use base type to exclude access_to_subprogram cases.
4493 elsif Is_Access_Type (A_Typ)
4494 and then Is_Access_Type (F_Typ)
4495 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4496 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4497 or else (Nkind (A) = N_Attribute_Reference
4498 and then
4499 Is_Class_Wide_Type (Etype (Prefix (A)))))
4500 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4501 and then not Is_Controlling_Formal (F)
4503 -- Disable these checks for call to imported C++ subprograms
4505 and then not
4506 (Is_Entity_Name (Name (N))
4507 and then Is_Imported (Entity (Name (N)))
4508 and then Convention (Entity (Name (N))) = Convention_CPP)
4509 then
4510 Error_Msg_N
4511 ("access to class-wide argument not allowed here!", A);
4513 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4514 Error_Msg_Node_2 := Designated_Type (F_Typ);
4515 Error_Msg_NE
4516 ("& is not a dispatching operation of &!", A, Nam);
4517 end if;
4518 end if;
4520 Check_Aliased_Parameter;
4522 Eval_Actual (A);
4524 -- If it is a named association, treat the selector_name as a
4525 -- proper identifier, and mark the corresponding entity.
4527 if Nkind (Parent (A)) = N_Parameter_Association
4529 -- Ignore reference in SPARK mode, as it refers to an entity not
4530 -- in scope at the point of reference, so the reference should
4531 -- be ignored for computing effects of subprograms.
4533 and then not GNATprove_Mode
4534 then
4535 Set_Entity (Selector_Name (Parent (A)), F);
4536 Generate_Reference (F, Selector_Name (Parent (A)));
4537 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4538 Generate_Reference (F_Typ, N, ' ');
4539 end if;
4541 Prev := A;
4543 if Ekind (F) /= E_Out_Parameter then
4544 Check_Unset_Reference (A);
4545 end if;
4547 -- The following checks are only relevant when SPARK_Mode is on as
4548 -- they are not standard Ada legality rule. Internally generated
4549 -- temporaries are ignored.
4551 if SPARK_Mode = On
4552 and then Is_Effectively_Volatile_Object (A)
4553 and then Comes_From_Source (A)
4554 then
4555 -- An effectively volatile object may act as an actual
4556 -- parameter when the corresponding formal is of a non-scalar
4557 -- volatile type.
4559 if Is_Volatile (Etype (F))
4560 and then not Is_Scalar_Type (Etype (F))
4561 then
4562 null;
4564 -- An effectively volatile object may act as an actual
4565 -- parameter in a call to an instance of Unchecked_Conversion.
4567 elsif Is_Unchecked_Conversion_Instance (Nam) then
4568 null;
4570 else
4571 Error_Msg_N
4572 ("volatile object cannot act as actual in a call (SPARK "
4573 & "RM 7.1.3(12))", A);
4574 end if;
4576 -- Detect an external variable with an enabled property that
4577 -- does not match the mode of the corresponding formal in a
4578 -- procedure call. Functions are not considered because they
4579 -- cannot have effectively volatile formal parameters in the
4580 -- first place.
4582 if Ekind (Nam) = E_Procedure
4583 and then Is_Entity_Name (A)
4584 and then Present (Entity (A))
4585 and then Ekind (Entity (A)) = E_Variable
4586 then
4587 A_Id := Entity (A);
4589 if Ekind (F) = E_In_Parameter then
4590 if Async_Readers_Enabled (A_Id) then
4591 Property_Error (A, A_Id, Name_Async_Readers);
4592 elsif Effective_Reads_Enabled (A_Id) then
4593 Property_Error (A, A_Id, Name_Effective_Reads);
4594 elsif Effective_Writes_Enabled (A_Id) then
4595 Property_Error (A, A_Id, Name_Effective_Writes);
4596 end if;
4598 elsif Ekind (F) = E_Out_Parameter
4599 and then Async_Writers_Enabled (A_Id)
4600 then
4601 Error_Msg_Name_1 := Name_Async_Writers;
4602 Error_Msg_NE
4603 ("external variable & with enabled property % cannot "
4604 & "appear as actual in procedure call "
4605 & "(SPARK RM 7.1.3(11))", A, A_Id);
4606 Error_Msg_N
4607 ("\\corresponding formal parameter has mode Out", A);
4608 end if;
4609 end if;
4610 end if;
4612 -- A formal parameter of a specific tagged type whose related
4613 -- subprogram is subject to pragma Extensions_Visible with value
4614 -- "False" cannot act as an actual in a subprogram with value
4615 -- "True" (SPARK RM 6.1.7(3)).
4617 if Is_EVF_Expression (A)
4618 and then Extensions_Visible_Status (Nam) =
4619 Extensions_Visible_True
4620 then
4621 Error_Msg_N
4622 ("formal parameter with Extensions_Visible False cannot act "
4623 & "as actual parameter", A);
4624 Error_Msg_NE
4625 ("\subprogram & has Extensions_Visible True", A, Nam);
4626 end if;
4628 -- The actual parameter of a Ghost subprogram whose formal is of
4629 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(13)).
4631 if Is_Ghost_Entity (Nam)
4632 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4633 and then Is_Entity_Name (A)
4634 and then Present (Entity (A))
4635 and then not Is_Ghost_Entity (Entity (A))
4636 then
4637 Error_Msg_NE
4638 ("non-ghost variable & cannot appear as actual in call to "
4639 & "ghost procedure", A, Entity (A));
4641 if Ekind (F) = E_In_Out_Parameter then
4642 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4643 else
4644 Error_Msg_N ("\corresponding formal has mode OUT", A);
4645 end if;
4646 end if;
4648 Next_Actual (A);
4650 -- Case where actual is not present
4652 else
4653 Insert_Default;
4654 end if;
4656 Next_Formal (F);
4657 end loop;
4658 end Resolve_Actuals;
4660 -----------------------
4661 -- Resolve_Allocator --
4662 -----------------------
4664 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4665 Desig_T : constant Entity_Id := Designated_Type (Typ);
4666 E : constant Node_Id := Expression (N);
4667 Subtyp : Entity_Id;
4668 Discrim : Entity_Id;
4669 Constr : Node_Id;
4670 Aggr : Node_Id;
4671 Assoc : Node_Id := Empty;
4672 Disc_Exp : Node_Id;
4674 procedure Check_Allocator_Discrim_Accessibility
4675 (Disc_Exp : Node_Id;
4676 Alloc_Typ : Entity_Id);
4677 -- Check that accessibility level associated with an access discriminant
4678 -- initialized in an allocator by the expression Disc_Exp is not deeper
4679 -- than the level of the allocator type Alloc_Typ. An error message is
4680 -- issued if this condition is violated. Specialized checks are done for
4681 -- the cases of a constraint expression which is an access attribute or
4682 -- an access discriminant.
4684 function In_Dispatching_Context return Boolean;
4685 -- If the allocator is an actual in a call, it is allowed to be class-
4686 -- wide when the context is not because it is a controlling actual.
4688 -------------------------------------------
4689 -- Check_Allocator_Discrim_Accessibility --
4690 -------------------------------------------
4692 procedure Check_Allocator_Discrim_Accessibility
4693 (Disc_Exp : Node_Id;
4694 Alloc_Typ : Entity_Id)
4696 begin
4697 if Type_Access_Level (Etype (Disc_Exp)) >
4698 Deepest_Type_Access_Level (Alloc_Typ)
4699 then
4700 Error_Msg_N
4701 ("operand type has deeper level than allocator type", Disc_Exp);
4703 -- When the expression is an Access attribute the level of the prefix
4704 -- object must not be deeper than that of the allocator's type.
4706 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4707 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4708 Attribute_Access
4709 and then Object_Access_Level (Prefix (Disc_Exp)) >
4710 Deepest_Type_Access_Level (Alloc_Typ)
4711 then
4712 Error_Msg_N
4713 ("prefix of attribute has deeper level than allocator type",
4714 Disc_Exp);
4716 -- When the expression is an access discriminant the check is against
4717 -- the level of the prefix object.
4719 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4720 and then Nkind (Disc_Exp) = N_Selected_Component
4721 and then Object_Access_Level (Prefix (Disc_Exp)) >
4722 Deepest_Type_Access_Level (Alloc_Typ)
4723 then
4724 Error_Msg_N
4725 ("access discriminant has deeper level than allocator type",
4726 Disc_Exp);
4728 -- All other cases are legal
4730 else
4731 null;
4732 end if;
4733 end Check_Allocator_Discrim_Accessibility;
4735 ----------------------------
4736 -- In_Dispatching_Context --
4737 ----------------------------
4739 function In_Dispatching_Context return Boolean is
4740 Par : constant Node_Id := Parent (N);
4742 begin
4743 return Nkind (Par) in N_Subprogram_Call
4744 and then Is_Entity_Name (Name (Par))
4745 and then Is_Dispatching_Operation (Entity (Name (Par)));
4746 end In_Dispatching_Context;
4748 -- Start of processing for Resolve_Allocator
4750 begin
4751 -- Replace general access with specific type
4753 if Ekind (Etype (N)) = E_Allocator_Type then
4754 Set_Etype (N, Base_Type (Typ));
4755 end if;
4757 if Is_Abstract_Type (Typ) then
4758 Error_Msg_N ("type of allocator cannot be abstract", N);
4759 end if;
4761 -- For qualified expression, resolve the expression using the given
4762 -- subtype (nothing to do for type mark, subtype indication)
4764 if Nkind (E) = N_Qualified_Expression then
4765 if Is_Class_Wide_Type (Etype (E))
4766 and then not Is_Class_Wide_Type (Desig_T)
4767 and then not In_Dispatching_Context
4768 then
4769 Error_Msg_N
4770 ("class-wide allocator not allowed for this access type", N);
4771 end if;
4773 Resolve (Expression (E), Etype (E));
4774 Check_Non_Static_Context (Expression (E));
4775 Check_Unset_Reference (Expression (E));
4777 -- A qualified expression requires an exact match of the type.
4778 -- Class-wide matching is not allowed.
4780 if (Is_Class_Wide_Type (Etype (Expression (E)))
4781 or else Is_Class_Wide_Type (Etype (E)))
4782 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4783 then
4784 Wrong_Type (Expression (E), Etype (E));
4785 end if;
4787 -- Calls to build-in-place functions are not currently supported in
4788 -- allocators for access types associated with a simple storage pool.
4789 -- Supporting such allocators may require passing additional implicit
4790 -- parameters to build-in-place functions (or a significant revision
4791 -- of the current b-i-p implementation to unify the handling for
4792 -- multiple kinds of storage pools). ???
4794 if Is_Limited_View (Desig_T)
4795 and then Nkind (Expression (E)) = N_Function_Call
4796 then
4797 declare
4798 Pool : constant Entity_Id :=
4799 Associated_Storage_Pool (Root_Type (Typ));
4800 begin
4801 if Present (Pool)
4802 and then
4803 Present (Get_Rep_Pragma
4804 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4805 then
4806 Error_Msg_N
4807 ("limited function calls not yet supported in simple "
4808 & "storage pool allocators", Expression (E));
4809 end if;
4810 end;
4811 end if;
4813 -- A special accessibility check is needed for allocators that
4814 -- constrain access discriminants. The level of the type of the
4815 -- expression used to constrain an access discriminant cannot be
4816 -- deeper than the type of the allocator (in contrast to access
4817 -- parameters, where the level of the actual can be arbitrary).
4819 -- We can't use Valid_Conversion to perform this check because in
4820 -- general the type of the allocator is unrelated to the type of
4821 -- the access discriminant.
4823 if Ekind (Typ) /= E_Anonymous_Access_Type
4824 or else Is_Local_Anonymous_Access (Typ)
4825 then
4826 Subtyp := Entity (Subtype_Mark (E));
4828 Aggr := Original_Node (Expression (E));
4830 if Has_Discriminants (Subtyp)
4831 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4832 then
4833 Discrim := First_Discriminant (Base_Type (Subtyp));
4835 -- Get the first component expression of the aggregate
4837 if Present (Expressions (Aggr)) then
4838 Disc_Exp := First (Expressions (Aggr));
4840 elsif Present (Component_Associations (Aggr)) then
4841 Assoc := First (Component_Associations (Aggr));
4843 if Present (Assoc) then
4844 Disc_Exp := Expression (Assoc);
4845 else
4846 Disc_Exp := Empty;
4847 end if;
4849 else
4850 Disc_Exp := Empty;
4851 end if;
4853 while Present (Discrim) and then Present (Disc_Exp) loop
4854 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4855 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4856 end if;
4858 Next_Discriminant (Discrim);
4860 if Present (Discrim) then
4861 if Present (Assoc) then
4862 Next (Assoc);
4863 Disc_Exp := Expression (Assoc);
4865 elsif Present (Next (Disc_Exp)) then
4866 Next (Disc_Exp);
4868 else
4869 Assoc := First (Component_Associations (Aggr));
4871 if Present (Assoc) then
4872 Disc_Exp := Expression (Assoc);
4873 else
4874 Disc_Exp := Empty;
4875 end if;
4876 end if;
4877 end if;
4878 end loop;
4879 end if;
4880 end if;
4882 -- For a subtype mark or subtype indication, freeze the subtype
4884 else
4885 Freeze_Expression (E);
4887 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4888 Error_Msg_N
4889 ("initialization required for access-to-constant allocator", N);
4890 end if;
4892 -- A special accessibility check is needed for allocators that
4893 -- constrain access discriminants. The level of the type of the
4894 -- expression used to constrain an access discriminant cannot be
4895 -- deeper than the type of the allocator (in contrast to access
4896 -- parameters, where the level of the actual can be arbitrary).
4897 -- We can't use Valid_Conversion to perform this check because
4898 -- in general the type of the allocator is unrelated to the type
4899 -- of the access discriminant.
4901 if Nkind (Original_Node (E)) = N_Subtype_Indication
4902 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4903 or else Is_Local_Anonymous_Access (Typ))
4904 then
4905 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4907 if Has_Discriminants (Subtyp) then
4908 Discrim := First_Discriminant (Base_Type (Subtyp));
4909 Constr := First (Constraints (Constraint (Original_Node (E))));
4910 while Present (Discrim) and then Present (Constr) loop
4911 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4912 if Nkind (Constr) = N_Discriminant_Association then
4913 Disc_Exp := Original_Node (Expression (Constr));
4914 else
4915 Disc_Exp := Original_Node (Constr);
4916 end if;
4918 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4919 end if;
4921 Next_Discriminant (Discrim);
4922 Next (Constr);
4923 end loop;
4924 end if;
4925 end if;
4926 end if;
4928 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
4929 -- check that the level of the type of the created object is not deeper
4930 -- than the level of the allocator's access type, since extensions can
4931 -- now occur at deeper levels than their ancestor types. This is a
4932 -- static accessibility level check; a run-time check is also needed in
4933 -- the case of an initialized allocator with a class-wide argument (see
4934 -- Expand_Allocator_Expression).
4936 if Ada_Version >= Ada_2005
4937 and then Is_Class_Wide_Type (Desig_T)
4938 then
4939 declare
4940 Exp_Typ : Entity_Id;
4942 begin
4943 if Nkind (E) = N_Qualified_Expression then
4944 Exp_Typ := Etype (E);
4945 elsif Nkind (E) = N_Subtype_Indication then
4946 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
4947 else
4948 Exp_Typ := Entity (E);
4949 end if;
4951 if Type_Access_Level (Exp_Typ) >
4952 Deepest_Type_Access_Level (Typ)
4953 then
4954 if In_Instance_Body then
4955 Error_Msg_Warn := SPARK_Mode /= On;
4956 Error_Msg_N
4957 ("type in allocator has deeper level than "
4958 & "designated class-wide type<<", E);
4959 Error_Msg_N ("\Program_Error [<<", E);
4960 Rewrite (N,
4961 Make_Raise_Program_Error (Sloc (N),
4962 Reason => PE_Accessibility_Check_Failed));
4963 Set_Etype (N, Typ);
4965 -- Do not apply Ada 2005 accessibility checks on a class-wide
4966 -- allocator if the type given in the allocator is a formal
4967 -- type. A run-time check will be performed in the instance.
4969 elsif not Is_Generic_Type (Exp_Typ) then
4970 Error_Msg_N ("type in allocator has deeper level than "
4971 & "designated class-wide type", E);
4972 end if;
4973 end if;
4974 end;
4975 end if;
4977 -- Check for allocation from an empty storage pool
4979 if No_Pool_Assigned (Typ) then
4980 Error_Msg_N ("allocation from empty storage pool!", N);
4982 -- If the context is an unchecked conversion, as may happen within an
4983 -- inlined subprogram, the allocator is being resolved with its own
4984 -- anonymous type. In that case, if the target type has a specific
4985 -- storage pool, it must be inherited explicitly by the allocator type.
4987 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
4988 and then No (Associated_Storage_Pool (Typ))
4989 then
4990 Set_Associated_Storage_Pool
4991 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
4992 end if;
4994 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
4995 Check_Restriction (No_Anonymous_Allocators, N);
4996 end if;
4998 -- Check that an allocator with task parts isn't for a nested access
4999 -- type when restriction No_Task_Hierarchy applies.
5001 if not Is_Library_Level_Entity (Base_Type (Typ))
5002 and then Has_Task (Base_Type (Desig_T))
5003 then
5004 Check_Restriction (No_Task_Hierarchy, N);
5005 end if;
5007 -- An illegal allocator may be rewritten as a raise Program_Error
5008 -- statement.
5010 if Nkind (N) = N_Allocator then
5012 -- An anonymous access discriminant is the definition of a
5013 -- coextension.
5015 if Ekind (Typ) = E_Anonymous_Access_Type
5016 and then Nkind (Associated_Node_For_Itype (Typ)) =
5017 N_Discriminant_Specification
5018 then
5019 declare
5020 Discr : constant Entity_Id :=
5021 Defining_Identifier (Associated_Node_For_Itype (Typ));
5023 begin
5024 Check_Restriction (No_Coextensions, N);
5026 -- Ada 2012 AI05-0052: If the designated type of the allocator
5027 -- is limited, then the allocator shall not be used to define
5028 -- the value of an access discriminant unless the discriminated
5029 -- type is immutably limited.
5031 if Ada_Version >= Ada_2012
5032 and then Is_Limited_Type (Desig_T)
5033 and then not Is_Limited_View (Scope (Discr))
5034 then
5035 Error_Msg_N
5036 ("only immutably limited types can have anonymous "
5037 & "access discriminants designating a limited type", N);
5038 end if;
5039 end;
5041 -- Avoid marking an allocator as a dynamic coextension if it is
5042 -- within a static construct.
5044 if not Is_Static_Coextension (N) then
5045 Set_Is_Dynamic_Coextension (N);
5046 end if;
5048 -- Cleanup for potential static coextensions
5050 else
5051 Set_Is_Dynamic_Coextension (N, False);
5052 Set_Is_Static_Coextension (N, False);
5053 end if;
5054 end if;
5056 -- Report a simple error: if the designated object is a local task,
5057 -- its body has not been seen yet, and its activation will fail an
5058 -- elaboration check.
5060 if Is_Task_Type (Desig_T)
5061 and then Scope (Base_Type (Desig_T)) = Current_Scope
5062 and then Is_Compilation_Unit (Current_Scope)
5063 and then Ekind (Current_Scope) = E_Package
5064 and then not In_Package_Body (Current_Scope)
5065 then
5066 Error_Msg_Warn := SPARK_Mode /= On;
5067 Error_Msg_N ("cannot activate task before body seen<<", N);
5068 Error_Msg_N ("\Program_Error [<<", N);
5069 end if;
5071 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5072 -- type with a task component on a subpool. This action must raise
5073 -- Program_Error at runtime.
5075 if Ada_Version >= Ada_2012
5076 and then Nkind (N) = N_Allocator
5077 and then Present (Subpool_Handle_Name (N))
5078 and then Has_Task (Desig_T)
5079 then
5080 Error_Msg_Warn := SPARK_Mode /= On;
5081 Error_Msg_N ("cannot allocate task on subpool<<", N);
5082 Error_Msg_N ("\Program_Error [<<", N);
5084 Rewrite (N,
5085 Make_Raise_Program_Error (Sloc (N),
5086 Reason => PE_Explicit_Raise));
5087 Set_Etype (N, Typ);
5088 end if;
5089 end Resolve_Allocator;
5091 ---------------------------
5092 -- Resolve_Arithmetic_Op --
5093 ---------------------------
5095 -- Used for resolving all arithmetic operators except exponentiation
5097 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5098 L : constant Node_Id := Left_Opnd (N);
5099 R : constant Node_Id := Right_Opnd (N);
5100 TL : constant Entity_Id := Base_Type (Etype (L));
5101 TR : constant Entity_Id := Base_Type (Etype (R));
5102 T : Entity_Id;
5103 Rop : Node_Id;
5105 B_Typ : constant Entity_Id := Base_Type (Typ);
5106 -- We do the resolution using the base type, because intermediate values
5107 -- in expressions always are of the base type, not a subtype of it.
5109 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5110 -- Returns True if N is in a context that expects "any real type"
5112 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5113 -- Return True iff given type is Integer or universal real/integer
5115 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5116 -- Choose type of integer literal in fixed-point operation to conform
5117 -- to available fixed-point type. T is the type of the other operand,
5118 -- which is needed to determine the expected type of N.
5120 procedure Set_Operand_Type (N : Node_Id);
5121 -- Set operand type to T if universal
5123 -------------------------------
5124 -- Expected_Type_Is_Any_Real --
5125 -------------------------------
5127 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5128 begin
5129 -- N is the expression after "delta" in a fixed_point_definition;
5130 -- see RM-3.5.9(6):
5132 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5133 N_Decimal_Fixed_Point_Definition,
5135 -- N is one of the bounds in a real_range_specification;
5136 -- see RM-3.5.7(5):
5138 N_Real_Range_Specification,
5140 -- N is the expression of a delta_constraint;
5141 -- see RM-J.3(3):
5143 N_Delta_Constraint);
5144 end Expected_Type_Is_Any_Real;
5146 -----------------------------
5147 -- Is_Integer_Or_Universal --
5148 -----------------------------
5150 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5151 T : Entity_Id;
5152 Index : Interp_Index;
5153 It : Interp;
5155 begin
5156 if not Is_Overloaded (N) then
5157 T := Etype (N);
5158 return Base_Type (T) = Base_Type (Standard_Integer)
5159 or else T = Universal_Integer
5160 or else T = Universal_Real;
5161 else
5162 Get_First_Interp (N, Index, It);
5163 while Present (It.Typ) loop
5164 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5165 or else It.Typ = Universal_Integer
5166 or else It.Typ = Universal_Real
5167 then
5168 return True;
5169 end if;
5171 Get_Next_Interp (Index, It);
5172 end loop;
5173 end if;
5175 return False;
5176 end Is_Integer_Or_Universal;
5178 ----------------------------
5179 -- Set_Mixed_Mode_Operand --
5180 ----------------------------
5182 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5183 Index : Interp_Index;
5184 It : Interp;
5186 begin
5187 if Universal_Interpretation (N) = Universal_Integer then
5189 -- A universal integer literal is resolved as standard integer
5190 -- except in the case of a fixed-point result, where we leave it
5191 -- as universal (to be handled by Exp_Fixd later on)
5193 if Is_Fixed_Point_Type (T) then
5194 Resolve (N, Universal_Integer);
5195 else
5196 Resolve (N, Standard_Integer);
5197 end if;
5199 elsif Universal_Interpretation (N) = Universal_Real
5200 and then (T = Base_Type (Standard_Integer)
5201 or else T = Universal_Integer
5202 or else T = Universal_Real)
5203 then
5204 -- A universal real can appear in a fixed-type context. We resolve
5205 -- the literal with that context, even though this might raise an
5206 -- exception prematurely (the other operand may be zero).
5208 Resolve (N, B_Typ);
5210 elsif Etype (N) = Base_Type (Standard_Integer)
5211 and then T = Universal_Real
5212 and then Is_Overloaded (N)
5213 then
5214 -- Integer arg in mixed-mode operation. Resolve with universal
5215 -- type, in case preference rule must be applied.
5217 Resolve (N, Universal_Integer);
5219 elsif Etype (N) = T
5220 and then B_Typ /= Universal_Fixed
5221 then
5222 -- Not a mixed-mode operation, resolve with context
5224 Resolve (N, B_Typ);
5226 elsif Etype (N) = Any_Fixed then
5228 -- N may itself be a mixed-mode operation, so use context type
5230 Resolve (N, B_Typ);
5232 elsif Is_Fixed_Point_Type (T)
5233 and then B_Typ = Universal_Fixed
5234 and then Is_Overloaded (N)
5235 then
5236 -- Must be (fixed * fixed) operation, operand must have one
5237 -- compatible interpretation.
5239 Resolve (N, Any_Fixed);
5241 elsif Is_Fixed_Point_Type (B_Typ)
5242 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5243 and then Is_Overloaded (N)
5244 then
5245 -- C * F(X) in a fixed context, where C is a real literal or a
5246 -- fixed-point expression. F must have either a fixed type
5247 -- interpretation or an integer interpretation, but not both.
5249 Get_First_Interp (N, Index, It);
5250 while Present (It.Typ) loop
5251 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5252 if Analyzed (N) then
5253 Error_Msg_N ("ambiguous operand in fixed operation", N);
5254 else
5255 Resolve (N, Standard_Integer);
5256 end if;
5258 elsif Is_Fixed_Point_Type (It.Typ) then
5259 if Analyzed (N) then
5260 Error_Msg_N ("ambiguous operand in fixed operation", N);
5261 else
5262 Resolve (N, It.Typ);
5263 end if;
5264 end if;
5266 Get_Next_Interp (Index, It);
5267 end loop;
5269 -- Reanalyze the literal with the fixed type of the context. If
5270 -- context is Universal_Fixed, we are within a conversion, leave
5271 -- the literal as a universal real because there is no usable
5272 -- fixed type, and the target of the conversion plays no role in
5273 -- the resolution.
5275 declare
5276 Op2 : Node_Id;
5277 T2 : Entity_Id;
5279 begin
5280 if N = L then
5281 Op2 := R;
5282 else
5283 Op2 := L;
5284 end if;
5286 if B_Typ = Universal_Fixed
5287 and then Nkind (Op2) = N_Real_Literal
5288 then
5289 T2 := Universal_Real;
5290 else
5291 T2 := B_Typ;
5292 end if;
5294 Set_Analyzed (Op2, False);
5295 Resolve (Op2, T2);
5296 end;
5298 else
5299 Resolve (N);
5300 end if;
5301 end Set_Mixed_Mode_Operand;
5303 ----------------------
5304 -- Set_Operand_Type --
5305 ----------------------
5307 procedure Set_Operand_Type (N : Node_Id) is
5308 begin
5309 if Etype (N) = Universal_Integer
5310 or else Etype (N) = Universal_Real
5311 then
5312 Set_Etype (N, T);
5313 end if;
5314 end Set_Operand_Type;
5316 -- Start of processing for Resolve_Arithmetic_Op
5318 begin
5319 if Comes_From_Source (N)
5320 and then Ekind (Entity (N)) = E_Function
5321 and then Is_Imported (Entity (N))
5322 and then Is_Intrinsic_Subprogram (Entity (N))
5323 then
5324 Resolve_Intrinsic_Operator (N, Typ);
5325 return;
5327 -- Special-case for mixed-mode universal expressions or fixed point type
5328 -- operation: each argument is resolved separately. The same treatment
5329 -- is required if one of the operands of a fixed point operation is
5330 -- universal real, since in this case we don't do a conversion to a
5331 -- specific fixed-point type (instead the expander handles the case).
5333 -- Set the type of the node to its universal interpretation because
5334 -- legality checks on an exponentiation operand need the context.
5336 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5337 and then Present (Universal_Interpretation (L))
5338 and then Present (Universal_Interpretation (R))
5339 then
5340 Set_Etype (N, B_Typ);
5341 Resolve (L, Universal_Interpretation (L));
5342 Resolve (R, Universal_Interpretation (R));
5344 elsif (B_Typ = Universal_Real
5345 or else Etype (N) = Universal_Fixed
5346 or else (Etype (N) = Any_Fixed
5347 and then Is_Fixed_Point_Type (B_Typ))
5348 or else (Is_Fixed_Point_Type (B_Typ)
5349 and then (Is_Integer_Or_Universal (L)
5350 or else
5351 Is_Integer_Or_Universal (R))))
5352 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5353 then
5354 if TL = Universal_Integer or else TR = Universal_Integer then
5355 Check_For_Visible_Operator (N, B_Typ);
5356 end if;
5358 -- If context is a fixed type and one operand is integer, the other
5359 -- is resolved with the type of the context.
5361 if Is_Fixed_Point_Type (B_Typ)
5362 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5363 or else TL = Universal_Integer)
5364 then
5365 Resolve (R, B_Typ);
5366 Resolve (L, TL);
5368 elsif Is_Fixed_Point_Type (B_Typ)
5369 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5370 or else TR = Universal_Integer)
5371 then
5372 Resolve (L, B_Typ);
5373 Resolve (R, TR);
5375 else
5376 Set_Mixed_Mode_Operand (L, TR);
5377 Set_Mixed_Mode_Operand (R, TL);
5378 end if;
5380 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5381 -- multiplying operators from being used when the expected type is
5382 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5383 -- some cases where the expected type is actually Any_Real;
5384 -- Expected_Type_Is_Any_Real takes care of that case.
5386 if Etype (N) = Universal_Fixed
5387 or else Etype (N) = Any_Fixed
5388 then
5389 if B_Typ = Universal_Fixed
5390 and then not Expected_Type_Is_Any_Real (N)
5391 and then not Nkind_In (Parent (N), N_Type_Conversion,
5392 N_Unchecked_Type_Conversion)
5393 then
5394 Error_Msg_N ("type cannot be determined from context!", N);
5395 Error_Msg_N ("\explicit conversion to result type required", N);
5397 Set_Etype (L, Any_Type);
5398 Set_Etype (R, Any_Type);
5400 else
5401 if Ada_Version = Ada_83
5402 and then Etype (N) = Universal_Fixed
5403 and then not
5404 Nkind_In (Parent (N), N_Type_Conversion,
5405 N_Unchecked_Type_Conversion)
5406 then
5407 Error_Msg_N
5408 ("(Ada 83) fixed-point operation "
5409 & "needs explicit conversion", N);
5410 end if;
5412 -- The expected type is "any real type" in contexts like
5414 -- type T is delta <universal_fixed-expression> ...
5416 -- in which case we need to set the type to Universal_Real
5417 -- so that static expression evaluation will work properly.
5419 if Expected_Type_Is_Any_Real (N) then
5420 Set_Etype (N, Universal_Real);
5421 else
5422 Set_Etype (N, B_Typ);
5423 end if;
5424 end if;
5426 elsif Is_Fixed_Point_Type (B_Typ)
5427 and then (Is_Integer_Or_Universal (L)
5428 or else Nkind (L) = N_Real_Literal
5429 or else Nkind (R) = N_Real_Literal
5430 or else Is_Integer_Or_Universal (R))
5431 then
5432 Set_Etype (N, B_Typ);
5434 elsif Etype (N) = Any_Fixed then
5436 -- If no previous errors, this is only possible if one operand is
5437 -- overloaded and the context is universal. Resolve as such.
5439 Set_Etype (N, B_Typ);
5440 end if;
5442 else
5443 if (TL = Universal_Integer or else TL = Universal_Real)
5444 and then
5445 (TR = Universal_Integer or else TR = Universal_Real)
5446 then
5447 Check_For_Visible_Operator (N, B_Typ);
5448 end if;
5450 -- If the context is Universal_Fixed and the operands are also
5451 -- universal fixed, this is an error, unless there is only one
5452 -- applicable fixed_point type (usually Duration).
5454 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5455 T := Unique_Fixed_Point_Type (N);
5457 if T = Any_Type then
5458 Set_Etype (N, T);
5459 return;
5460 else
5461 Resolve (L, T);
5462 Resolve (R, T);
5463 end if;
5465 else
5466 Resolve (L, B_Typ);
5467 Resolve (R, B_Typ);
5468 end if;
5470 -- If one of the arguments was resolved to a non-universal type.
5471 -- label the result of the operation itself with the same type.
5472 -- Do the same for the universal argument, if any.
5474 T := Intersect_Types (L, R);
5475 Set_Etype (N, Base_Type (T));
5476 Set_Operand_Type (L);
5477 Set_Operand_Type (R);
5478 end if;
5480 Generate_Operator_Reference (N, Typ);
5481 Analyze_Dimension (N);
5482 Eval_Arithmetic_Op (N);
5484 -- In SPARK, a multiplication or division with operands of fixed point
5485 -- types must be qualified or explicitly converted to identify the
5486 -- result type.
5488 if (Is_Fixed_Point_Type (Etype (L))
5489 or else Is_Fixed_Point_Type (Etype (R)))
5490 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5491 and then
5492 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5493 then
5494 Check_SPARK_05_Restriction
5495 ("operation should be qualified or explicitly converted", N);
5496 end if;
5498 -- Set overflow and division checking bit
5500 if Nkind (N) in N_Op then
5501 if not Overflow_Checks_Suppressed (Etype (N)) then
5502 Enable_Overflow_Check (N);
5503 end if;
5505 -- Give warning if explicit division by zero
5507 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5508 and then not Division_Checks_Suppressed (Etype (N))
5509 then
5510 Rop := Right_Opnd (N);
5512 if Compile_Time_Known_Value (Rop)
5513 and then ((Is_Integer_Type (Etype (Rop))
5514 and then Expr_Value (Rop) = Uint_0)
5515 or else
5516 (Is_Real_Type (Etype (Rop))
5517 and then Expr_Value_R (Rop) = Ureal_0))
5518 then
5519 -- Specialize the warning message according to the operation.
5520 -- The following warnings are for the case
5522 case Nkind (N) is
5523 when N_Op_Divide =>
5525 -- For division, we have two cases, for float division
5526 -- of an unconstrained float type, on a machine where
5527 -- Machine_Overflows is false, we don't get an exception
5528 -- at run-time, but rather an infinity or Nan. The Nan
5529 -- case is pretty obscure, so just warn about infinities.
5531 if Is_Floating_Point_Type (Typ)
5532 and then not Is_Constrained (Typ)
5533 and then not Machine_Overflows_On_Target
5534 then
5535 Error_Msg_N
5536 ("float division by zero, may generate "
5537 & "'+'/'- infinity??", Right_Opnd (N));
5539 -- For all other cases, we get a Constraint_Error
5541 else
5542 Apply_Compile_Time_Constraint_Error
5543 (N, "division by zero??", CE_Divide_By_Zero,
5544 Loc => Sloc (Right_Opnd (N)));
5545 end if;
5547 when N_Op_Rem =>
5548 Apply_Compile_Time_Constraint_Error
5549 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5550 Loc => Sloc (Right_Opnd (N)));
5552 when N_Op_Mod =>
5553 Apply_Compile_Time_Constraint_Error
5554 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5555 Loc => Sloc (Right_Opnd (N)));
5557 -- Division by zero can only happen with division, rem,
5558 -- and mod operations.
5560 when others =>
5561 raise Program_Error;
5562 end case;
5564 -- Otherwise just set the flag to check at run time
5566 else
5567 Activate_Division_Check (N);
5568 end if;
5569 end if;
5571 -- If Restriction No_Implicit_Conditionals is active, then it is
5572 -- violated if either operand can be negative for mod, or for rem
5573 -- if both operands can be negative.
5575 if Restriction_Check_Required (No_Implicit_Conditionals)
5576 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5577 then
5578 declare
5579 Lo : Uint;
5580 Hi : Uint;
5581 OK : Boolean;
5583 LNeg : Boolean;
5584 RNeg : Boolean;
5585 -- Set if corresponding operand might be negative
5587 begin
5588 Determine_Range
5589 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5590 LNeg := (not OK) or else Lo < 0;
5592 Determine_Range
5593 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5594 RNeg := (not OK) or else Lo < 0;
5596 -- Check if we will be generating conditionals. There are two
5597 -- cases where that can happen, first for REM, the only case
5598 -- is largest negative integer mod -1, where the division can
5599 -- overflow, but we still have to give the right result. The
5600 -- front end generates a test for this annoying case. Here we
5601 -- just test if both operands can be negative (that's what the
5602 -- expander does, so we match its logic here).
5604 -- The second case is mod where either operand can be negative.
5605 -- In this case, the back end has to generate additional tests.
5607 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5608 or else
5609 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5610 then
5611 Check_Restriction (No_Implicit_Conditionals, N);
5612 end if;
5613 end;
5614 end if;
5615 end if;
5617 Check_Unset_Reference (L);
5618 Check_Unset_Reference (R);
5619 Check_Function_Writable_Actuals (N);
5620 end Resolve_Arithmetic_Op;
5622 ------------------
5623 -- Resolve_Call --
5624 ------------------
5626 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5627 function Same_Or_Aliased_Subprograms
5628 (S : Entity_Id;
5629 E : Entity_Id) return Boolean;
5630 -- Returns True if the subprogram entity S is the same as E or else
5631 -- S is an alias of E.
5633 ---------------------------------
5634 -- Same_Or_Aliased_Subprograms --
5635 ---------------------------------
5637 function Same_Or_Aliased_Subprograms
5638 (S : Entity_Id;
5639 E : Entity_Id) return Boolean
5641 Subp_Alias : constant Entity_Id := Alias (S);
5642 begin
5643 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5644 end Same_Or_Aliased_Subprograms;
5646 -- Local variables
5648 Loc : constant Source_Ptr := Sloc (N);
5649 Subp : constant Node_Id := Name (N);
5650 Body_Id : Entity_Id;
5651 I : Interp_Index;
5652 It : Interp;
5653 Nam : Entity_Id;
5654 Nam_Decl : Node_Id;
5655 Nam_UA : Entity_Id;
5656 Norm_OK : Boolean;
5657 Rtype : Entity_Id;
5658 Scop : Entity_Id;
5660 -- Start of processing for Resolve_Call
5662 begin
5663 -- The context imposes a unique interpretation with type Typ on a
5664 -- procedure or function call. Find the entity of the subprogram that
5665 -- yields the expected type, and propagate the corresponding formal
5666 -- constraints on the actuals. The caller has established that an
5667 -- interpretation exists, and emitted an error if not unique.
5669 -- First deal with the case of a call to an access-to-subprogram,
5670 -- dereference made explicit in Analyze_Call.
5672 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5673 if not Is_Overloaded (Subp) then
5674 Nam := Etype (Subp);
5676 else
5677 -- Find the interpretation whose type (a subprogram type) has a
5678 -- return type that is compatible with the context. Analysis of
5679 -- the node has established that one exists.
5681 Nam := Empty;
5683 Get_First_Interp (Subp, I, It);
5684 while Present (It.Typ) loop
5685 if Covers (Typ, Etype (It.Typ)) then
5686 Nam := It.Typ;
5687 exit;
5688 end if;
5690 Get_Next_Interp (I, It);
5691 end loop;
5693 if No (Nam) then
5694 raise Program_Error;
5695 end if;
5696 end if;
5698 -- If the prefix is not an entity, then resolve it
5700 if not Is_Entity_Name (Subp) then
5701 Resolve (Subp, Nam);
5702 end if;
5704 -- For an indirect call, we always invalidate checks, since we do not
5705 -- know whether the subprogram is local or global. Yes we could do
5706 -- better here, e.g. by knowing that there are no local subprograms,
5707 -- but it does not seem worth the effort. Similarly, we kill all
5708 -- knowledge of current constant values.
5710 Kill_Current_Values;
5712 -- If this is a procedure call which is really an entry call, do
5713 -- the conversion of the procedure call to an entry call. Protected
5714 -- operations use the same circuitry because the name in the call
5715 -- can be an arbitrary expression with special resolution rules.
5717 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5718 or else (Is_Entity_Name (Subp)
5719 and then Ekind (Entity (Subp)) = E_Entry)
5720 then
5721 Resolve_Entry_Call (N, Typ);
5722 Check_Elab_Call (N);
5724 -- Kill checks and constant values, as above for indirect case
5725 -- Who knows what happens when another task is activated?
5727 Kill_Current_Values;
5728 return;
5730 -- Normal subprogram call with name established in Resolve
5732 elsif not (Is_Type (Entity (Subp))) then
5733 Nam := Entity (Subp);
5734 Set_Entity_With_Checks (Subp, Nam);
5736 -- Otherwise we must have the case of an overloaded call
5738 else
5739 pragma Assert (Is_Overloaded (Subp));
5741 -- Initialize Nam to prevent warning (we know it will be assigned
5742 -- in the loop below, but the compiler does not know that).
5744 Nam := Empty;
5746 Get_First_Interp (Subp, I, It);
5747 while Present (It.Typ) loop
5748 if Covers (Typ, It.Typ) then
5749 Nam := It.Nam;
5750 Set_Entity_With_Checks (Subp, Nam);
5751 exit;
5752 end if;
5754 Get_Next_Interp (I, It);
5755 end loop;
5756 end if;
5758 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5759 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5760 and then Nkind (Subp) /= N_Explicit_Dereference
5761 and then Present (Parameter_Associations (N))
5762 then
5763 -- The prefix is a parameterless function call that returns an access
5764 -- to subprogram. If parameters are present in the current call, add
5765 -- add an explicit dereference. We use the base type here because
5766 -- within an instance these may be subtypes.
5768 -- The dereference is added either in Analyze_Call or here. Should
5769 -- be consolidated ???
5771 Set_Is_Overloaded (Subp, False);
5772 Set_Etype (Subp, Etype (Nam));
5773 Insert_Explicit_Dereference (Subp);
5774 Nam := Designated_Type (Etype (Nam));
5775 Resolve (Subp, Nam);
5776 end if;
5778 -- Check that a call to Current_Task does not occur in an entry body
5780 if Is_RTE (Nam, RE_Current_Task) then
5781 declare
5782 P : Node_Id;
5784 begin
5785 P := N;
5786 loop
5787 P := Parent (P);
5789 -- Exclude calls that occur within the default of a formal
5790 -- parameter of the entry, since those are evaluated outside
5791 -- of the body.
5793 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5795 if Nkind (P) = N_Entry_Body
5796 or else (Nkind (P) = N_Subprogram_Body
5797 and then Is_Entry_Barrier_Function (P))
5798 then
5799 Rtype := Etype (N);
5800 Error_Msg_Warn := SPARK_Mode /= On;
5801 Error_Msg_NE
5802 ("& should not be used in entry body (RM C.7(17))<<",
5803 N, Nam);
5804 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5805 Rewrite (N,
5806 Make_Raise_Program_Error (Loc,
5807 Reason => PE_Current_Task_In_Entry_Body));
5808 Set_Etype (N, Rtype);
5809 return;
5810 end if;
5811 end loop;
5812 end;
5813 end if;
5815 -- Check that a procedure call does not occur in the context of the
5816 -- entry call statement of a conditional or timed entry call. Note that
5817 -- the case of a call to a subprogram renaming of an entry will also be
5818 -- rejected. The test for N not being an N_Entry_Call_Statement is
5819 -- defensive, covering the possibility that the processing of entry
5820 -- calls might reach this point due to later modifications of the code
5821 -- above.
5823 if Nkind (Parent (N)) = N_Entry_Call_Alternative
5824 and then Nkind (N) /= N_Entry_Call_Statement
5825 and then Entry_Call_Statement (Parent (N)) = N
5826 then
5827 if Ada_Version < Ada_2005 then
5828 Error_Msg_N ("entry call required in select statement", N);
5830 -- Ada 2005 (AI-345): If a procedure_call_statement is used
5831 -- for a procedure_or_entry_call, the procedure_name or
5832 -- procedure_prefix of the procedure_call_statement shall denote
5833 -- an entry renamed by a procedure, or (a view of) a primitive
5834 -- subprogram of a limited interface whose first parameter is
5835 -- a controlling parameter.
5837 elsif Nkind (N) = N_Procedure_Call_Statement
5838 and then not Is_Renamed_Entry (Nam)
5839 and then not Is_Controlling_Limited_Procedure (Nam)
5840 then
5841 Error_Msg_N
5842 ("entry call or dispatching primitive of interface required", N);
5843 end if;
5844 end if;
5846 -- If the SPARK_05 restriction is active, we are not allowed
5847 -- to have a call to a subprogram before we see its completion.
5849 if not Has_Completion (Nam)
5850 and then Restriction_Check_Required (SPARK_05)
5852 -- Don't flag strange internal calls
5854 and then Comes_From_Source (N)
5855 and then Comes_From_Source (Nam)
5857 -- Only flag calls in extended main source
5859 and then In_Extended_Main_Source_Unit (Nam)
5860 and then In_Extended_Main_Source_Unit (N)
5862 -- Exclude enumeration literals from this processing
5864 and then Ekind (Nam) /= E_Enumeration_Literal
5865 then
5866 Check_SPARK_05_Restriction
5867 ("call to subprogram cannot appear before its body", N);
5868 end if;
5870 -- Check that this is not a call to a protected procedure or entry from
5871 -- within a protected function.
5873 Check_Internal_Protected_Use (N, Nam);
5875 -- Freeze the subprogram name if not in a spec-expression. Note that
5876 -- we freeze procedure calls as well as function calls. Procedure calls
5877 -- are not frozen according to the rules (RM 13.14(14)) because it is
5878 -- impossible to have a procedure call to a non-frozen procedure in
5879 -- pure Ada, but in the code that we generate in the expander, this
5880 -- rule needs extending because we can generate procedure calls that
5881 -- need freezing.
5883 -- In Ada 2012, expression functions may be called within pre/post
5884 -- conditions of subsequent functions or expression functions. Such
5885 -- calls do not freeze when they appear within generated bodies,
5886 -- (including the body of another expression function) which would
5887 -- place the freeze node in the wrong scope. An expression function
5888 -- is frozen in the usual fashion, by the appearance of a real body,
5889 -- or at the end of a declarative part.
5891 if Is_Entity_Name (Subp) and then not In_Spec_Expression
5892 and then not Is_Expression_Function (Current_Scope)
5893 and then
5894 (not Is_Expression_Function (Entity (Subp))
5895 or else Scope (Entity (Subp)) = Current_Scope)
5896 then
5897 Freeze_Expression (Subp);
5898 end if;
5900 -- For a predefined operator, the type of the result is the type imposed
5901 -- by context, except for a predefined operation on universal fixed.
5902 -- Otherwise The type of the call is the type returned by the subprogram
5903 -- being called.
5905 if Is_Predefined_Op (Nam) then
5906 if Etype (N) /= Universal_Fixed then
5907 Set_Etype (N, Typ);
5908 end if;
5910 -- If the subprogram returns an array type, and the context requires the
5911 -- component type of that array type, the node is really an indexing of
5912 -- the parameterless call. Resolve as such. A pathological case occurs
5913 -- when the type of the component is an access to the array type. In
5914 -- this case the call is truly ambiguous.
5916 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
5917 and then
5918 ((Is_Array_Type (Etype (Nam))
5919 and then Covers (Typ, Component_Type (Etype (Nam))))
5920 or else
5921 (Is_Access_Type (Etype (Nam))
5922 and then Is_Array_Type (Designated_Type (Etype (Nam)))
5923 and then
5924 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))))
5925 then
5926 declare
5927 Index_Node : Node_Id;
5928 New_Subp : Node_Id;
5929 Ret_Type : constant Entity_Id := Etype (Nam);
5931 begin
5932 if Is_Access_Type (Ret_Type)
5933 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
5934 then
5935 Error_Msg_N
5936 ("cannot disambiguate function call and indexing", N);
5937 else
5938 New_Subp := Relocate_Node (Subp);
5940 -- The called entity may be an explicit dereference, in which
5941 -- case there is no entity to set.
5943 if Nkind (New_Subp) /= N_Explicit_Dereference then
5944 Set_Entity (Subp, Nam);
5945 end if;
5947 if (Is_Array_Type (Ret_Type)
5948 and then Component_Type (Ret_Type) /= Any_Type)
5949 or else
5950 (Is_Access_Type (Ret_Type)
5951 and then
5952 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
5953 then
5954 if Needs_No_Actuals (Nam) then
5956 -- Indexed call to a parameterless function
5958 Index_Node :=
5959 Make_Indexed_Component (Loc,
5960 Prefix =>
5961 Make_Function_Call (Loc, Name => New_Subp),
5962 Expressions => Parameter_Associations (N));
5963 else
5964 -- An Ada 2005 prefixed call to a primitive operation
5965 -- whose first parameter is the prefix. This prefix was
5966 -- prepended to the parameter list, which is actually a
5967 -- list of indexes. Remove the prefix in order to build
5968 -- the proper indexed component.
5970 Index_Node :=
5971 Make_Indexed_Component (Loc,
5972 Prefix =>
5973 Make_Function_Call (Loc,
5974 Name => New_Subp,
5975 Parameter_Associations =>
5976 New_List
5977 (Remove_Head (Parameter_Associations (N)))),
5978 Expressions => Parameter_Associations (N));
5979 end if;
5981 -- Preserve the parenthesis count of the node
5983 Set_Paren_Count (Index_Node, Paren_Count (N));
5985 -- Since we are correcting a node classification error made
5986 -- by the parser, we call Replace rather than Rewrite.
5988 Replace (N, Index_Node);
5990 Set_Etype (Prefix (N), Ret_Type);
5991 Set_Etype (N, Typ);
5992 Resolve_Indexed_Component (N, Typ);
5993 Check_Elab_Call (Prefix (N));
5994 end if;
5995 end if;
5997 return;
5998 end;
6000 else
6001 Set_Etype (N, Etype (Nam));
6002 end if;
6004 -- In the case where the call is to an overloaded subprogram, Analyze
6005 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6006 -- such a case Normalize_Actuals needs to be called once more to order
6007 -- the actuals correctly. Otherwise the call will have the ordering
6008 -- given by the last overloaded subprogram whether this is the correct
6009 -- one being called or not.
6011 if Is_Overloaded (Subp) then
6012 Normalize_Actuals (N, Nam, False, Norm_OK);
6013 pragma Assert (Norm_OK);
6014 end if;
6016 -- In any case, call is fully resolved now. Reset Overload flag, to
6017 -- prevent subsequent overload resolution if node is analyzed again
6019 Set_Is_Overloaded (Subp, False);
6020 Set_Is_Overloaded (N, False);
6022 -- A Ghost entity must appear in a specific context
6024 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6025 Check_Ghost_Context (Nam, N);
6026 end if;
6028 -- If we are calling the current subprogram from immediately within its
6029 -- body, then that is the case where we can sometimes detect cases of
6030 -- infinite recursion statically. Do not try this in case restriction
6031 -- No_Recursion is in effect anyway, and do it only for source calls.
6033 if Comes_From_Source (N) then
6034 Scop := Current_Scope;
6036 -- Check violation of SPARK_05 restriction which does not permit
6037 -- a subprogram body to contain a call to the subprogram directly.
6039 if Restriction_Check_Required (SPARK_05)
6040 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6041 then
6042 Check_SPARK_05_Restriction
6043 ("subprogram may not contain direct call to itself", N);
6044 end if;
6046 -- Issue warning for possible infinite recursion in the absence
6047 -- of the No_Recursion restriction.
6049 if Same_Or_Aliased_Subprograms (Nam, Scop)
6050 and then not Restriction_Active (No_Recursion)
6051 and then Check_Infinite_Recursion (N)
6052 then
6053 -- Here we detected and flagged an infinite recursion, so we do
6054 -- not need to test the case below for further warnings. Also we
6055 -- are all done if we now have a raise SE node.
6057 if Nkind (N) = N_Raise_Storage_Error then
6058 return;
6059 end if;
6061 -- If call is to immediately containing subprogram, then check for
6062 -- the case of a possible run-time detectable infinite recursion.
6064 else
6065 Scope_Loop : while Scop /= Standard_Standard loop
6066 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6068 -- Although in general case, recursion is not statically
6069 -- checkable, the case of calling an immediately containing
6070 -- subprogram is easy to catch.
6072 Check_Restriction (No_Recursion, N);
6074 -- If the recursive call is to a parameterless subprogram,
6075 -- then even if we can't statically detect infinite
6076 -- recursion, this is pretty suspicious, and we output a
6077 -- warning. Furthermore, we will try later to detect some
6078 -- cases here at run time by expanding checking code (see
6079 -- Detect_Infinite_Recursion in package Exp_Ch6).
6081 -- If the recursive call is within a handler, do not emit a
6082 -- warning, because this is a common idiom: loop until input
6083 -- is correct, catch illegal input in handler and restart.
6085 if No (First_Formal (Nam))
6086 and then Etype (Nam) = Standard_Void_Type
6087 and then not Error_Posted (N)
6088 and then Nkind (Parent (N)) /= N_Exception_Handler
6089 then
6090 -- For the case of a procedure call. We give the message
6091 -- only if the call is the first statement in a sequence
6092 -- of statements, or if all previous statements are
6093 -- simple assignments. This is simply a heuristic to
6094 -- decrease false positives, without losing too many good
6095 -- warnings. The idea is that these previous statements
6096 -- may affect global variables the procedure depends on.
6097 -- We also exclude raise statements, that may arise from
6098 -- constraint checks and are probably unrelated to the
6099 -- intended control flow.
6101 if Nkind (N) = N_Procedure_Call_Statement
6102 and then Is_List_Member (N)
6103 then
6104 declare
6105 P : Node_Id;
6106 begin
6107 P := Prev (N);
6108 while Present (P) loop
6109 if not Nkind_In (P, N_Assignment_Statement,
6110 N_Raise_Constraint_Error)
6111 then
6112 exit Scope_Loop;
6113 end if;
6115 Prev (P);
6116 end loop;
6117 end;
6118 end if;
6120 -- Do not give warning if we are in a conditional context
6122 declare
6123 K : constant Node_Kind := Nkind (Parent (N));
6124 begin
6125 if (K = N_Loop_Statement
6126 and then Present (Iteration_Scheme (Parent (N))))
6127 or else K = N_If_Statement
6128 or else K = N_Elsif_Part
6129 or else K = N_Case_Statement_Alternative
6130 then
6131 exit Scope_Loop;
6132 end if;
6133 end;
6135 -- Here warning is to be issued
6137 Set_Has_Recursive_Call (Nam);
6138 Error_Msg_Warn := SPARK_Mode /= On;
6139 Error_Msg_N ("possible infinite recursion<<!", N);
6140 Error_Msg_N ("\Storage_Error ]<<!", N);
6141 end if;
6143 exit Scope_Loop;
6144 end if;
6146 Scop := Scope (Scop);
6147 end loop Scope_Loop;
6148 end if;
6149 end if;
6151 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6153 Check_Obsolescent_2005_Entity (Nam, Subp);
6155 -- If subprogram name is a predefined operator, it was given in
6156 -- functional notation. Replace call node with operator node, so
6157 -- that actuals can be resolved appropriately.
6159 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6160 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6161 return;
6163 elsif Present (Alias (Nam))
6164 and then Is_Predefined_Op (Alias (Nam))
6165 then
6166 Resolve_Actuals (N, Nam);
6167 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6168 return;
6169 end if;
6171 -- Create a transient scope if the resulting type requires it
6173 -- There are several notable exceptions:
6175 -- a) In init procs, the transient scope overhead is not needed, and is
6176 -- even incorrect when the call is a nested initialization call for a
6177 -- component whose expansion may generate adjust calls. However, if the
6178 -- call is some other procedure call within an initialization procedure
6179 -- (for example a call to Create_Task in the init_proc of the task
6180 -- run-time record) a transient scope must be created around this call.
6182 -- b) Enumeration literal pseudo-calls need no transient scope
6184 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6185 -- functions) do not use the secondary stack even though the return
6186 -- type may be unconstrained.
6188 -- d) Calls to a build-in-place function, since such functions may
6189 -- allocate their result directly in a target object, and cases where
6190 -- the result does get allocated in the secondary stack are checked for
6191 -- within the specialized Exp_Ch6 procedures for expanding those
6192 -- build-in-place calls.
6194 -- e) If the subprogram is marked Inline_Always, then even if it returns
6195 -- an unconstrained type the call does not require use of the secondary
6196 -- stack. However, inlining will only take place if the body to inline
6197 -- is already present. It may not be available if e.g. the subprogram is
6198 -- declared in a child instance.
6200 -- If this is an initialization call for a type whose construction
6201 -- uses the secondary stack, and it is not a nested call to initialize
6202 -- a component, we do need to create a transient scope for it. We
6203 -- check for this by traversing the type in Check_Initialization_Call.
6205 if Is_Inlined (Nam)
6206 and then Has_Pragma_Inline (Nam)
6207 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6208 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6209 then
6210 null;
6212 elsif Ekind (Nam) = E_Enumeration_Literal
6213 or else Is_Build_In_Place_Function (Nam)
6214 or else Is_Intrinsic_Subprogram (Nam)
6215 then
6216 null;
6218 elsif Expander_Active
6219 and then Is_Type (Etype (Nam))
6220 and then Requires_Transient_Scope (Etype (Nam))
6221 and then
6222 (not Within_Init_Proc
6223 or else
6224 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6225 then
6226 Establish_Transient_Scope (N, Sec_Stack => True);
6228 -- If the call appears within the bounds of a loop, it will
6229 -- be rewritten and reanalyzed, nothing left to do here.
6231 if Nkind (N) /= N_Function_Call then
6232 return;
6233 end if;
6235 elsif Is_Init_Proc (Nam)
6236 and then not Within_Init_Proc
6237 then
6238 Check_Initialization_Call (N, Nam);
6239 end if;
6241 -- A protected function cannot be called within the definition of the
6242 -- enclosing protected type, unless it is part of a pre/postcondition
6243 -- on another protected operation.
6245 if Is_Protected_Type (Scope (Nam))
6246 and then In_Open_Scopes (Scope (Nam))
6247 and then not Has_Completion (Scope (Nam))
6248 and then not In_Spec_Expression
6249 then
6250 Error_Msg_NE
6251 ("& cannot be called before end of protected definition", N, Nam);
6252 end if;
6254 -- Propagate interpretation to actuals, and add default expressions
6255 -- where needed.
6257 if Present (First_Formal (Nam)) then
6258 Resolve_Actuals (N, Nam);
6260 -- Overloaded literals are rewritten as function calls, for purpose of
6261 -- resolution. After resolution, we can replace the call with the
6262 -- literal itself.
6264 elsif Ekind (Nam) = E_Enumeration_Literal then
6265 Copy_Node (Subp, N);
6266 Resolve_Entity_Name (N, Typ);
6268 -- Avoid validation, since it is a static function call
6270 Generate_Reference (Nam, Subp);
6271 return;
6272 end if;
6274 -- If the subprogram is not global, then kill all saved values and
6275 -- checks. This is a bit conservative, since in many cases we could do
6276 -- better, but it is not worth the effort. Similarly, we kill constant
6277 -- values. However we do not need to do this for internal entities
6278 -- (unless they are inherited user-defined subprograms), since they
6279 -- are not in the business of molesting local values.
6281 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6282 -- kill all checks and values for calls to global subprograms. This
6283 -- takes care of the case where an access to a local subprogram is
6284 -- taken, and could be passed directly or indirectly and then called
6285 -- from almost any context.
6287 -- Note: we do not do this step till after resolving the actuals. That
6288 -- way we still take advantage of the current value information while
6289 -- scanning the actuals.
6291 -- We suppress killing values if we are processing the nodes associated
6292 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6293 -- type kills all the values as part of analyzing the code that
6294 -- initializes the dispatch tables.
6296 if Inside_Freezing_Actions = 0
6297 and then (not Is_Library_Level_Entity (Nam)
6298 or else Suppress_Value_Tracking_On_Call
6299 (Nearest_Dynamic_Scope (Current_Scope)))
6300 and then (Comes_From_Source (Nam)
6301 or else (Present (Alias (Nam))
6302 and then Comes_From_Source (Alias (Nam))))
6303 then
6304 Kill_Current_Values;
6305 end if;
6307 -- If we are warning about unread OUT parameters, this is the place to
6308 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6309 -- after the above call to Kill_Current_Values (since that call clears
6310 -- the Last_Assignment field of all local variables).
6312 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6313 and then Comes_From_Source (N)
6314 and then In_Extended_Main_Source_Unit (N)
6315 then
6316 declare
6317 F : Entity_Id;
6318 A : Node_Id;
6320 begin
6321 F := First_Formal (Nam);
6322 A := First_Actual (N);
6323 while Present (F) and then Present (A) loop
6324 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6325 and then Warn_On_Modified_As_Out_Parameter (F)
6326 and then Is_Entity_Name (A)
6327 and then Present (Entity (A))
6328 and then Comes_From_Source (N)
6329 and then Safe_To_Capture_Value (N, Entity (A))
6330 then
6331 Set_Last_Assignment (Entity (A), A);
6332 end if;
6334 Next_Formal (F);
6335 Next_Actual (A);
6336 end loop;
6337 end;
6338 end if;
6340 -- If the subprogram is a primitive operation, check whether or not
6341 -- it is a correct dispatching call.
6343 if Is_Overloadable (Nam)
6344 and then Is_Dispatching_Operation (Nam)
6345 then
6346 Check_Dispatching_Call (N);
6348 elsif Ekind (Nam) /= E_Subprogram_Type
6349 and then Is_Abstract_Subprogram (Nam)
6350 and then not In_Instance
6351 then
6352 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6353 end if;
6355 -- If this is a dispatching call, generate the appropriate reference,
6356 -- for better source navigation in GPS.
6358 if Is_Overloadable (Nam)
6359 and then Present (Controlling_Argument (N))
6360 then
6361 Generate_Reference (Nam, Subp, 'R');
6363 -- Normal case, not a dispatching call: generate a call reference
6365 else
6366 Generate_Reference (Nam, Subp, 's');
6367 end if;
6369 if Is_Intrinsic_Subprogram (Nam) then
6370 Check_Intrinsic_Call (N);
6371 end if;
6373 -- Check for violation of restriction No_Specific_Termination_Handlers
6374 -- and warn on a potentially blocking call to Abort_Task.
6376 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6377 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6378 or else
6379 Is_RTE (Nam, RE_Specific_Handler))
6380 then
6381 Check_Restriction (No_Specific_Termination_Handlers, N);
6383 elsif Is_RTE (Nam, RE_Abort_Task) then
6384 Check_Potentially_Blocking_Operation (N);
6385 end if;
6387 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6388 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6389 -- need to check the second argument to determine whether it is an
6390 -- absolute or relative timing event.
6392 if Restriction_Check_Required (No_Relative_Delay)
6393 and then Is_RTE (Nam, RE_Set_Handler)
6394 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6395 then
6396 Check_Restriction (No_Relative_Delay, N);
6397 end if;
6399 -- Issue an error for a call to an eliminated subprogram. This routine
6400 -- will not perform the check if the call appears within a default
6401 -- expression.
6403 Check_For_Eliminated_Subprogram (Subp, Nam);
6405 -- In formal mode, the primitive operations of a tagged type or type
6406 -- extension do not include functions that return the tagged type.
6408 if Nkind (N) = N_Function_Call
6409 and then Is_Tagged_Type (Etype (N))
6410 and then Is_Entity_Name (Name (N))
6411 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6412 then
6413 Check_SPARK_05_Restriction ("function not inherited", N);
6414 end if;
6416 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6417 -- class-wide and the call dispatches on result in a context that does
6418 -- not provide a tag, the call raises Program_Error.
6420 if Nkind (N) = N_Function_Call
6421 and then In_Instance
6422 and then Is_Generic_Actual_Type (Typ)
6423 and then Is_Class_Wide_Type (Typ)
6424 and then Has_Controlling_Result (Nam)
6425 and then Nkind (Parent (N)) = N_Object_Declaration
6426 then
6427 -- Verify that none of the formals are controlling
6429 declare
6430 Call_OK : Boolean := False;
6431 F : Entity_Id;
6433 begin
6434 F := First_Formal (Nam);
6435 while Present (F) loop
6436 if Is_Controlling_Formal (F) then
6437 Call_OK := True;
6438 exit;
6439 end if;
6441 Next_Formal (F);
6442 end loop;
6444 if not Call_OK then
6445 Error_Msg_Warn := SPARK_Mode /= On;
6446 Error_Msg_N ("!cannot determine tag of result<<", N);
6447 Error_Msg_N ("\Program_Error [<<!", N);
6448 Insert_Action (N,
6449 Make_Raise_Program_Error (Sloc (N),
6450 Reason => PE_Explicit_Raise));
6451 end if;
6452 end;
6453 end if;
6455 -- Check for calling a function with OUT or IN OUT parameter when the
6456 -- calling context (us right now) is not Ada 2012, so does not allow
6457 -- OUT or IN OUT parameters in function calls.
6459 if Ada_Version < Ada_2012
6460 and then Ekind (Nam) = E_Function
6461 and then Has_Out_Or_In_Out_Parameter (Nam)
6462 then
6463 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6464 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6465 end if;
6467 -- Check the dimensions of the actuals in the call. For function calls,
6468 -- propagate the dimensions from the returned type to N.
6470 Analyze_Dimension_Call (N, Nam);
6472 -- All done, evaluate call and deal with elaboration issues
6474 Eval_Call (N);
6475 Check_Elab_Call (N);
6477 -- In GNATprove mode, expansion is disabled, but we want to inline some
6478 -- subprograms to facilitate formal verification. Indirect calls through
6479 -- a subprogram type or within a generic cannot be inlined. Inlining is
6480 -- performed only for calls subject to SPARK_Mode on.
6482 if GNATprove_Mode
6483 and then SPARK_Mode = On
6484 and then Is_Overloadable (Nam)
6485 and then not Inside_A_Generic
6486 then
6487 Nam_UA := Ultimate_Alias (Nam);
6488 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6490 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6491 Body_Id := Corresponding_Body (Nam_Decl);
6493 -- Nothing to do if the subprogram is not eligible for inlining in
6494 -- GNATprove mode.
6496 if not Is_Inlined_Always (Nam_UA)
6497 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6498 then
6499 null;
6501 -- Calls cannot be inlined inside assertions, as GNATprove treats
6502 -- assertions as logic expressions.
6504 elsif In_Assertion_Expr /= 0 then
6505 Error_Msg_NE ("?no contextual analysis of &", N, Nam);
6506 Error_Msg_N ("\call appears in assertion expression", N);
6507 Set_Is_Inlined_Always (Nam_UA, False);
6509 -- Calls cannot be inlined inside default expressions
6511 elsif In_Default_Expr then
6512 Error_Msg_NE ("?no contextual analysis of &", N, Nam);
6513 Error_Msg_N ("\call appears in default expression", N);
6514 Set_Is_Inlined_Always (Nam_UA, False);
6516 -- Inlining should not be performed during pre-analysis
6518 elsif Full_Analysis then
6520 -- With the one-pass inlining technique, a call cannot be
6521 -- inlined if the corresponding body has not been seen yet.
6523 if No (Body_Id) then
6524 Error_Msg_NE
6525 ("?no contextual analysis of & (body not seen yet)",
6526 N, Nam);
6527 Set_Is_Inlined_Always (Nam_UA, False);
6529 -- Nothing to do if there is no body to inline, indicating that
6530 -- the subprogram is not suitable for inlining in GNATprove
6531 -- mode.
6533 elsif No (Body_To_Inline (Nam_Decl)) then
6534 null;
6536 -- Calls cannot be inlined inside potentially unevaluated
6537 -- expressions, as this would create complex actions inside
6538 -- expressions, that are not handled by GNATprove.
6540 elsif Is_Potentially_Unevaluated (N) then
6541 Error_Msg_NE ("?no contextual analysis of &", N, Nam);
6542 Error_Msg_N
6543 ("\call appears in potentially unevaluated context", N);
6544 Set_Is_Inlined_Always (Nam_UA, False);
6546 -- Otherwise, inline the call
6548 else
6549 Expand_Inlined_Call (N, Nam_UA, Nam);
6550 end if;
6551 end if;
6552 end if;
6553 end if;
6555 Warn_On_Overlapping_Actuals (Nam, N);
6556 end Resolve_Call;
6558 -----------------------------
6559 -- Resolve_Case_Expression --
6560 -----------------------------
6562 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6563 Alt : Node_Id;
6565 begin
6566 Alt := First (Alternatives (N));
6567 while Present (Alt) loop
6568 Resolve (Expression (Alt), Typ);
6569 Next (Alt);
6570 end loop;
6572 Set_Etype (N, Typ);
6573 Eval_Case_Expression (N);
6574 end Resolve_Case_Expression;
6576 -------------------------------
6577 -- Resolve_Character_Literal --
6578 -------------------------------
6580 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6581 B_Typ : constant Entity_Id := Base_Type (Typ);
6582 C : Entity_Id;
6584 begin
6585 -- Verify that the character does belong to the type of the context
6587 Set_Etype (N, B_Typ);
6588 Eval_Character_Literal (N);
6590 -- Wide_Wide_Character literals must always be defined, since the set
6591 -- of wide wide character literals is complete, i.e. if a character
6592 -- literal is accepted by the parser, then it is OK for wide wide
6593 -- character (out of range character literals are rejected).
6595 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6596 return;
6598 -- Always accept character literal for type Any_Character, which
6599 -- occurs in error situations and in comparisons of literals, both
6600 -- of which should accept all literals.
6602 elsif B_Typ = Any_Character then
6603 return;
6605 -- For Standard.Character or a type derived from it, check that the
6606 -- literal is in range.
6608 elsif Root_Type (B_Typ) = Standard_Character then
6609 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6610 return;
6611 end if;
6613 -- For Standard.Wide_Character or a type derived from it, check that the
6614 -- literal is in range.
6616 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6617 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6618 return;
6619 end if;
6621 -- For Standard.Wide_Wide_Character or a type derived from it, we
6622 -- know the literal is in range, since the parser checked.
6624 elsif Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6625 return;
6627 -- If the entity is already set, this has already been resolved in a
6628 -- generic context, or comes from expansion. Nothing else to do.
6630 elsif Present (Entity (N)) then
6631 return;
6633 -- Otherwise we have a user defined character type, and we can use the
6634 -- standard visibility mechanisms to locate the referenced entity.
6636 else
6637 C := Current_Entity (N);
6638 while Present (C) loop
6639 if Etype (C) = B_Typ then
6640 Set_Entity_With_Checks (N, C);
6641 Generate_Reference (C, N);
6642 return;
6643 end if;
6645 C := Homonym (C);
6646 end loop;
6647 end if;
6649 -- If we fall through, then the literal does not match any of the
6650 -- entries of the enumeration type. This isn't just a constraint error
6651 -- situation, it is an illegality (see RM 4.2).
6653 Error_Msg_NE
6654 ("character not defined for }", N, First_Subtype (B_Typ));
6655 end Resolve_Character_Literal;
6657 ---------------------------
6658 -- Resolve_Comparison_Op --
6659 ---------------------------
6661 -- Context requires a boolean type, and plays no role in resolution.
6662 -- Processing identical to that for equality operators. The result type is
6663 -- the base type, which matters when pathological subtypes of booleans with
6664 -- limited ranges are used.
6666 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6667 L : constant Node_Id := Left_Opnd (N);
6668 R : constant Node_Id := Right_Opnd (N);
6669 T : Entity_Id;
6671 begin
6672 -- If this is an intrinsic operation which is not predefined, use the
6673 -- types of its declared arguments to resolve the possibly overloaded
6674 -- operands. Otherwise the operands are unambiguous and specify the
6675 -- expected type.
6677 if Scope (Entity (N)) /= Standard_Standard then
6678 T := Etype (First_Entity (Entity (N)));
6680 else
6681 T := Find_Unique_Type (L, R);
6683 if T = Any_Fixed then
6684 T := Unique_Fixed_Point_Type (L);
6685 end if;
6686 end if;
6688 Set_Etype (N, Base_Type (Typ));
6689 Generate_Reference (T, N, ' ');
6691 -- Skip remaining processing if already set to Any_Type
6693 if T = Any_Type then
6694 return;
6695 end if;
6697 -- Deal with other error cases
6699 if T = Any_String or else
6700 T = Any_Composite or else
6701 T = Any_Character
6702 then
6703 if T = Any_Character then
6704 Ambiguous_Character (L);
6705 else
6706 Error_Msg_N ("ambiguous operands for comparison", N);
6707 end if;
6709 Set_Etype (N, Any_Type);
6710 return;
6711 end if;
6713 -- Resolve the operands if types OK
6715 Resolve (L, T);
6716 Resolve (R, T);
6717 Check_Unset_Reference (L);
6718 Check_Unset_Reference (R);
6719 Generate_Operator_Reference (N, T);
6720 Check_Low_Bound_Tested (N);
6722 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
6723 -- types or array types except String.
6725 if Is_Boolean_Type (T) then
6726 Check_SPARK_05_Restriction
6727 ("comparison is not defined on Boolean type", N);
6729 elsif Is_Array_Type (T)
6730 and then Base_Type (T) /= Standard_String
6731 then
6732 Check_SPARK_05_Restriction
6733 ("comparison is not defined on array types other than String", N);
6734 end if;
6736 -- Check comparison on unordered enumeration
6738 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
6739 Error_Msg_Sloc := Sloc (Etype (L));
6740 Error_Msg_NE
6741 ("comparison on unordered enumeration type& declared#?U?",
6742 N, Etype (L));
6743 end if;
6745 -- Evaluate the relation (note we do this after the above check since
6746 -- this Eval call may change N to True/False.
6748 Analyze_Dimension (N);
6749 Eval_Relational_Op (N);
6750 end Resolve_Comparison_Op;
6752 -----------------------------------------
6753 -- Resolve_Discrete_Subtype_Indication --
6754 -----------------------------------------
6756 procedure Resolve_Discrete_Subtype_Indication
6757 (N : Node_Id;
6758 Typ : Entity_Id)
6760 R : Node_Id;
6761 S : Entity_Id;
6763 begin
6764 Analyze (Subtype_Mark (N));
6765 S := Entity (Subtype_Mark (N));
6767 if Nkind (Constraint (N)) /= N_Range_Constraint then
6768 Error_Msg_N ("expect range constraint for discrete type", N);
6769 Set_Etype (N, Any_Type);
6771 else
6772 R := Range_Expression (Constraint (N));
6774 if R = Error then
6775 return;
6776 end if;
6778 Analyze (R);
6780 if Base_Type (S) /= Base_Type (Typ) then
6781 Error_Msg_NE
6782 ("expect subtype of }", N, First_Subtype (Typ));
6784 -- Rewrite the constraint as a range of Typ
6785 -- to allow compilation to proceed further.
6787 Set_Etype (N, Typ);
6788 Rewrite (Low_Bound (R),
6789 Make_Attribute_Reference (Sloc (Low_Bound (R)),
6790 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6791 Attribute_Name => Name_First));
6792 Rewrite (High_Bound (R),
6793 Make_Attribute_Reference (Sloc (High_Bound (R)),
6794 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
6795 Attribute_Name => Name_First));
6797 else
6798 Resolve (R, Typ);
6799 Set_Etype (N, Etype (R));
6801 -- Additionally, we must check that the bounds are compatible
6802 -- with the given subtype, which might be different from the
6803 -- type of the context.
6805 Apply_Range_Check (R, S);
6807 -- ??? If the above check statically detects a Constraint_Error
6808 -- it replaces the offending bound(s) of the range R with a
6809 -- Constraint_Error node. When the itype which uses these bounds
6810 -- is frozen the resulting call to Duplicate_Subexpr generates
6811 -- a new temporary for the bounds.
6813 -- Unfortunately there are other itypes that are also made depend
6814 -- on these bounds, so when Duplicate_Subexpr is called they get
6815 -- a forward reference to the newly created temporaries and Gigi
6816 -- aborts on such forward references. This is probably sign of a
6817 -- more fundamental problem somewhere else in either the order of
6818 -- itype freezing or the way certain itypes are constructed.
6820 -- To get around this problem we call Remove_Side_Effects right
6821 -- away if either bounds of R are a Constraint_Error.
6823 declare
6824 L : constant Node_Id := Low_Bound (R);
6825 H : constant Node_Id := High_Bound (R);
6827 begin
6828 if Nkind (L) = N_Raise_Constraint_Error then
6829 Remove_Side_Effects (L);
6830 end if;
6832 if Nkind (H) = N_Raise_Constraint_Error then
6833 Remove_Side_Effects (H);
6834 end if;
6835 end;
6837 Check_Unset_Reference (Low_Bound (R));
6838 Check_Unset_Reference (High_Bound (R));
6839 end if;
6840 end if;
6841 end Resolve_Discrete_Subtype_Indication;
6843 -------------------------
6844 -- Resolve_Entity_Name --
6845 -------------------------
6847 -- Used to resolve identifiers and expanded names
6849 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
6850 function Appears_In_Check (Nod : Node_Id) return Boolean;
6851 -- Denote whether an arbitrary node Nod appears in a check node
6853 function Is_OK_Volatile_Context
6854 (Context : Node_Id;
6855 Obj_Ref : Node_Id) return Boolean;
6856 -- Determine whether node Context denotes a "non-interfering context"
6857 -- (as defined in SPARK RM 7.1.3(13)) where volatile reference Obj_Ref
6858 -- can safely reside.
6860 ----------------------
6861 -- Appears_In_Check --
6862 ----------------------
6864 function Appears_In_Check (Nod : Node_Id) return Boolean is
6865 Par : Node_Id;
6867 begin
6868 -- Climb the parent chain looking for a check node
6870 Par := Nod;
6871 while Present (Par) loop
6872 if Nkind (Par) in N_Raise_xxx_Error then
6873 return True;
6875 -- Prevent the search from going too far
6877 elsif Is_Body_Or_Package_Declaration (Par) then
6878 exit;
6879 end if;
6881 Par := Parent (Par);
6882 end loop;
6884 return False;
6885 end Appears_In_Check;
6887 ----------------------------
6888 -- Is_OK_Volatile_Context --
6889 ----------------------------
6891 function Is_OK_Volatile_Context
6892 (Context : Node_Id;
6893 Obj_Ref : Node_Id) return Boolean
6895 begin
6896 -- The volatile object appears on either side of an assignment
6898 if Nkind (Context) = N_Assignment_Statement then
6899 return True;
6901 -- The volatile object is part of the initialization expression of
6902 -- another object. Ensure that the climb of the parent chain came
6903 -- from the expression side and not from the name side.
6905 elsif Nkind (Context) = N_Object_Declaration
6906 and then Present (Expression (Context))
6907 and then Expression (Context) = Obj_Ref
6908 then
6909 return True;
6911 -- The volatile object appears as an actual parameter in a call to an
6912 -- instance of Unchecked_Conversion whose result is renamed.
6914 elsif Nkind (Context) = N_Function_Call
6915 and then Is_Unchecked_Conversion_Instance (Entity (Name (Context)))
6916 and then Nkind (Parent (Context)) = N_Object_Renaming_Declaration
6917 then
6918 return True;
6920 -- The volatile object appears as the prefix of a name occurring
6921 -- in a non-interfering context.
6923 elsif Nkind_In (Context, N_Attribute_Reference,
6924 N_Indexed_Component,
6925 N_Selected_Component,
6926 N_Slice)
6927 and then Prefix (Context) = Obj_Ref
6928 and then Is_OK_Volatile_Context
6929 (Context => Parent (Context),
6930 Obj_Ref => Context)
6931 then
6932 return True;
6934 -- The volatile object appears as the expression of a type conversion
6935 -- occurring in a non-interfering context.
6937 elsif Nkind_In (Context, N_Type_Conversion,
6938 N_Unchecked_Type_Conversion)
6939 and then Expression (Context) = Obj_Ref
6940 and then Is_OK_Volatile_Context
6941 (Context => Parent (Context),
6942 Obj_Ref => Context)
6943 then
6944 return True;
6946 -- Allow references to volatile objects in various checks. This is
6947 -- not a direct SPARK 2014 requirement.
6949 elsif Appears_In_Check (Context) then
6950 return True;
6952 else
6953 return False;
6954 end if;
6955 end Is_OK_Volatile_Context;
6957 -- Local variables
6959 E : constant Entity_Id := Entity (N);
6960 Par : Node_Id;
6962 -- Start of processing for Resolve_Entity_Name
6964 begin
6965 -- If garbage from errors, set to Any_Type and return
6967 if No (E) and then Total_Errors_Detected /= 0 then
6968 Set_Etype (N, Any_Type);
6969 return;
6970 end if;
6972 -- Replace named numbers by corresponding literals. Note that this is
6973 -- the one case where Resolve_Entity_Name must reset the Etype, since
6974 -- it is currently marked as universal.
6976 if Ekind (E) = E_Named_Integer then
6977 Set_Etype (N, Typ);
6978 Eval_Named_Integer (N);
6980 elsif Ekind (E) = E_Named_Real then
6981 Set_Etype (N, Typ);
6982 Eval_Named_Real (N);
6984 -- For enumeration literals, we need to make sure that a proper style
6985 -- check is done, since such literals are overloaded, and thus we did
6986 -- not do a style check during the first phase of analysis.
6988 elsif Ekind (E) = E_Enumeration_Literal then
6989 Set_Entity_With_Checks (N, E);
6990 Eval_Entity_Name (N);
6992 -- Case of subtype name appearing as an operand in expression
6994 elsif Is_Type (E) then
6996 -- Allow use of subtype if it is a concurrent type where we are
6997 -- currently inside the body. This will eventually be expanded into a
6998 -- call to Self (for tasks) or _object (for protected objects). Any
6999 -- other use of a subtype is invalid.
7001 if Is_Concurrent_Type (E)
7002 and then In_Open_Scopes (E)
7003 then
7004 null;
7006 -- Any other use is an error
7008 else
7009 Error_Msg_N
7010 ("invalid use of subtype mark in expression or call", N);
7011 end if;
7013 -- Check discriminant use if entity is discriminant in current scope,
7014 -- i.e. discriminant of record or concurrent type currently being
7015 -- analyzed. Uses in corresponding body are unrestricted.
7017 elsif Ekind (E) = E_Discriminant
7018 and then Scope (E) = Current_Scope
7019 and then not Has_Completion (Current_Scope)
7020 then
7021 Check_Discriminant_Use (N);
7023 -- A parameterless generic function cannot appear in a context that
7024 -- requires resolution.
7026 elsif Ekind (E) = E_Generic_Function then
7027 Error_Msg_N ("illegal use of generic function", N);
7029 elsif Ekind (E) = E_Out_Parameter
7030 and then Ada_Version = Ada_83
7031 and then (Nkind (Parent (N)) in N_Op
7032 or else (Nkind (Parent (N)) = N_Assignment_Statement
7033 and then N = Expression (Parent (N)))
7034 or else Nkind (Parent (N)) = N_Explicit_Dereference)
7035 then
7036 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7038 -- In all other cases, just do the possible static evaluation
7040 else
7041 -- A deferred constant that appears in an expression must have a
7042 -- completion, unless it has been removed by in-place expansion of
7043 -- an aggregate.
7045 if Ekind (E) = E_Constant
7046 and then Comes_From_Source (E)
7047 and then No (Constant_Value (E))
7048 and then Is_Frozen (Etype (E))
7049 and then not In_Spec_Expression
7050 and then not Is_Imported (E)
7051 then
7052 if No_Initialization (Parent (E))
7053 or else (Present (Full_View (E))
7054 and then No_Initialization (Parent (Full_View (E))))
7055 then
7056 null;
7057 else
7058 Error_Msg_N (
7059 "deferred constant is frozen before completion", N);
7060 end if;
7061 end if;
7063 Eval_Entity_Name (N);
7064 end if;
7066 Par := Parent (N);
7068 -- When the entity appears in a parameter association, retrieve the
7069 -- related subprogram call.
7071 if Nkind (Par) = N_Parameter_Association then
7072 Par := Parent (Par);
7073 end if;
7075 -- The following checks are only relevant when SPARK_Mode is on as they
7076 -- are not standard Ada legality rules. An effectively volatile object
7077 -- subject to enabled properties Async_Writers or Effective_Reads must
7078 -- appear in a specific context.
7080 if SPARK_Mode = On
7081 and then Is_Object (E)
7082 and then Is_Effectively_Volatile (E)
7083 and then
7084 (Async_Writers_Enabled (E) or else Effective_Reads_Enabled (E))
7085 and then Comes_From_Source (N)
7086 then
7087 -- The effectively volatile objects appears in a "non-interfering
7088 -- context" as defined in SPARK RM 7.1.3(13).
7090 if Is_OK_Volatile_Context (Par, N) then
7091 null;
7093 -- Assume that references to effectively volatile objects that appear
7094 -- as actual parameters in a procedure call are always legal. A full
7095 -- legality check is done when the actuals are resolved.
7097 elsif Nkind (Par) = N_Procedure_Call_Statement then
7098 null;
7100 -- Otherwise the context causes a side effect with respect to the
7101 -- effectively volatile object.
7103 else
7104 SPARK_Msg_N
7105 ("volatile object cannot appear in this context "
7106 & "(SPARK RM 7.1.3(13))", N);
7107 end if;
7108 end if;
7110 -- A Ghost entity must appear in a specific context
7112 if Is_Ghost_Entity (E) and then Comes_From_Source (N) then
7113 Check_Ghost_Context (E, N);
7114 end if;
7115 end Resolve_Entity_Name;
7117 -------------------
7118 -- Resolve_Entry --
7119 -------------------
7121 procedure Resolve_Entry (Entry_Name : Node_Id) is
7122 Loc : constant Source_Ptr := Sloc (Entry_Name);
7123 Nam : Entity_Id;
7124 New_N : Node_Id;
7125 S : Entity_Id;
7126 Tsk : Entity_Id;
7127 E_Name : Node_Id;
7128 Index : Node_Id;
7130 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7131 -- If the bounds of the entry family being called depend on task
7132 -- discriminants, build a new index subtype where a discriminant is
7133 -- replaced with the value of the discriminant of the target task.
7134 -- The target task is the prefix of the entry name in the call.
7136 -----------------------
7137 -- Actual_Index_Type --
7138 -----------------------
7140 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7141 Typ : constant Entity_Id := Entry_Index_Type (E);
7142 Tsk : constant Entity_Id := Scope (E);
7143 Lo : constant Node_Id := Type_Low_Bound (Typ);
7144 Hi : constant Node_Id := Type_High_Bound (Typ);
7145 New_T : Entity_Id;
7147 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7148 -- If the bound is given by a discriminant, replace with a reference
7149 -- to the discriminant of the same name in the target task. If the
7150 -- entry name is the target of a requeue statement and the entry is
7151 -- in the current protected object, the bound to be used is the
7152 -- discriminal of the object (see Apply_Range_Checks for details of
7153 -- the transformation).
7155 -----------------------------
7156 -- Actual_Discriminant_Ref --
7157 -----------------------------
7159 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7160 Typ : constant Entity_Id := Etype (Bound);
7161 Ref : Node_Id;
7163 begin
7164 Remove_Side_Effects (Bound);
7166 if not Is_Entity_Name (Bound)
7167 or else Ekind (Entity (Bound)) /= E_Discriminant
7168 then
7169 return Bound;
7171 elsif Is_Protected_Type (Tsk)
7172 and then In_Open_Scopes (Tsk)
7173 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7174 then
7175 -- Note: here Bound denotes a discriminant of the corresponding
7176 -- record type tskV, whose discriminal is a formal of the
7177 -- init-proc tskVIP. What we want is the body discriminal,
7178 -- which is associated to the discriminant of the original
7179 -- concurrent type tsk.
7181 return New_Occurrence_Of
7182 (Find_Body_Discriminal (Entity (Bound)), Loc);
7184 else
7185 Ref :=
7186 Make_Selected_Component (Loc,
7187 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7188 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7189 Analyze (Ref);
7190 Resolve (Ref, Typ);
7191 return Ref;
7192 end if;
7193 end Actual_Discriminant_Ref;
7195 -- Start of processing for Actual_Index_Type
7197 begin
7198 if not Has_Discriminants (Tsk)
7199 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7200 then
7201 return Entry_Index_Type (E);
7203 else
7204 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7205 Set_Etype (New_T, Base_Type (Typ));
7206 Set_Size_Info (New_T, Typ);
7207 Set_RM_Size (New_T, RM_Size (Typ));
7208 Set_Scalar_Range (New_T,
7209 Make_Range (Sloc (Entry_Name),
7210 Low_Bound => Actual_Discriminant_Ref (Lo),
7211 High_Bound => Actual_Discriminant_Ref (Hi)));
7213 return New_T;
7214 end if;
7215 end Actual_Index_Type;
7217 -- Start of processing of Resolve_Entry
7219 begin
7220 -- Find name of entry being called, and resolve prefix of name with its
7221 -- own type. The prefix can be overloaded, and the name and signature of
7222 -- the entry must be taken into account.
7224 if Nkind (Entry_Name) = N_Indexed_Component then
7226 -- Case of dealing with entry family within the current tasks
7228 E_Name := Prefix (Entry_Name);
7230 else
7231 E_Name := Entry_Name;
7232 end if;
7234 if Is_Entity_Name (E_Name) then
7236 -- Entry call to an entry (or entry family) in the current task. This
7237 -- is legal even though the task will deadlock. Rewrite as call to
7238 -- current task.
7240 -- This can also be a call to an entry in an enclosing task. If this
7241 -- is a single task, we have to retrieve its name, because the scope
7242 -- of the entry is the task type, not the object. If the enclosing
7243 -- task is a task type, the identity of the task is given by its own
7244 -- self variable.
7246 -- Finally this can be a requeue on an entry of the same task or
7247 -- protected object.
7249 S := Scope (Entity (E_Name));
7251 for J in reverse 0 .. Scope_Stack.Last loop
7252 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7253 and then not Comes_From_Source (S)
7254 then
7255 -- S is an enclosing task or protected object. The concurrent
7256 -- declaration has been converted into a type declaration, and
7257 -- the object itself has an object declaration that follows
7258 -- the type in the same declarative part.
7260 Tsk := Next_Entity (S);
7261 while Etype (Tsk) /= S loop
7262 Next_Entity (Tsk);
7263 end loop;
7265 S := Tsk;
7266 exit;
7268 elsif S = Scope_Stack.Table (J).Entity then
7270 -- Call to current task. Will be transformed into call to Self
7272 exit;
7274 end if;
7275 end loop;
7277 New_N :=
7278 Make_Selected_Component (Loc,
7279 Prefix => New_Occurrence_Of (S, Loc),
7280 Selector_Name =>
7281 New_Occurrence_Of (Entity (E_Name), Loc));
7282 Rewrite (E_Name, New_N);
7283 Analyze (E_Name);
7285 elsif Nkind (Entry_Name) = N_Selected_Component
7286 and then Is_Overloaded (Prefix (Entry_Name))
7287 then
7288 -- Use the entry name (which must be unique at this point) to find
7289 -- the prefix that returns the corresponding task/protected type.
7291 declare
7292 Pref : constant Node_Id := Prefix (Entry_Name);
7293 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7294 I : Interp_Index;
7295 It : Interp;
7297 begin
7298 Get_First_Interp (Pref, I, It);
7299 while Present (It.Typ) loop
7300 if Scope (Ent) = It.Typ then
7301 Set_Etype (Pref, It.Typ);
7302 exit;
7303 end if;
7305 Get_Next_Interp (I, It);
7306 end loop;
7307 end;
7308 end if;
7310 if Nkind (Entry_Name) = N_Selected_Component then
7311 Resolve (Prefix (Entry_Name));
7313 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7314 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7315 Resolve (Prefix (Prefix (Entry_Name)));
7316 Index := First (Expressions (Entry_Name));
7317 Resolve (Index, Entry_Index_Type (Nam));
7319 -- Up to this point the expression could have been the actual in a
7320 -- simple entry call, and be given by a named association.
7322 if Nkind (Index) = N_Parameter_Association then
7323 Error_Msg_N ("expect expression for entry index", Index);
7324 else
7325 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7326 end if;
7327 end if;
7328 end Resolve_Entry;
7330 ------------------------
7331 -- Resolve_Entry_Call --
7332 ------------------------
7334 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7335 Entry_Name : constant Node_Id := Name (N);
7336 Loc : constant Source_Ptr := Sloc (Entry_Name);
7337 Actuals : List_Id;
7338 First_Named : Node_Id;
7339 Nam : Entity_Id;
7340 Norm_OK : Boolean;
7341 Obj : Node_Id;
7342 Was_Over : Boolean;
7344 begin
7345 -- We kill all checks here, because it does not seem worth the effort to
7346 -- do anything better, an entry call is a big operation.
7348 Kill_All_Checks;
7350 -- Processing of the name is similar for entry calls and protected
7351 -- operation calls. Once the entity is determined, we can complete
7352 -- the resolution of the actuals.
7354 -- The selector may be overloaded, in the case of a protected object
7355 -- with overloaded functions. The type of the context is used for
7356 -- resolution.
7358 if Nkind (Entry_Name) = N_Selected_Component
7359 and then Is_Overloaded (Selector_Name (Entry_Name))
7360 and then Typ /= Standard_Void_Type
7361 then
7362 declare
7363 I : Interp_Index;
7364 It : Interp;
7366 begin
7367 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7368 while Present (It.Typ) loop
7369 if Covers (Typ, It.Typ) then
7370 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7371 Set_Etype (Entry_Name, It.Typ);
7373 Generate_Reference (It.Typ, N, ' ');
7374 end if;
7376 Get_Next_Interp (I, It);
7377 end loop;
7378 end;
7379 end if;
7381 Resolve_Entry (Entry_Name);
7383 if Nkind (Entry_Name) = N_Selected_Component then
7385 -- Simple entry call
7387 Nam := Entity (Selector_Name (Entry_Name));
7388 Obj := Prefix (Entry_Name);
7389 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7391 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7393 -- Call to member of entry family
7395 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7396 Obj := Prefix (Prefix (Entry_Name));
7397 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7398 end if;
7400 -- We cannot in general check the maximum depth of protected entry calls
7401 -- at compile time. But we can tell that any protected entry call at all
7402 -- violates a specified nesting depth of zero.
7404 if Is_Protected_Type (Scope (Nam)) then
7405 Check_Restriction (Max_Entry_Queue_Length, N);
7406 end if;
7408 -- Use context type to disambiguate a protected function that can be
7409 -- called without actuals and that returns an array type, and where the
7410 -- argument list may be an indexing of the returned value.
7412 if Ekind (Nam) = E_Function
7413 and then Needs_No_Actuals (Nam)
7414 and then Present (Parameter_Associations (N))
7415 and then
7416 ((Is_Array_Type (Etype (Nam))
7417 and then Covers (Typ, Component_Type (Etype (Nam))))
7419 or else (Is_Access_Type (Etype (Nam))
7420 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7421 and then
7422 Covers
7423 (Typ,
7424 Component_Type (Designated_Type (Etype (Nam))))))
7425 then
7426 declare
7427 Index_Node : Node_Id;
7429 begin
7430 Index_Node :=
7431 Make_Indexed_Component (Loc,
7432 Prefix =>
7433 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7434 Expressions => Parameter_Associations (N));
7436 -- Since we are correcting a node classification error made by the
7437 -- parser, we call Replace rather than Rewrite.
7439 Replace (N, Index_Node);
7440 Set_Etype (Prefix (N), Etype (Nam));
7441 Set_Etype (N, Typ);
7442 Resolve_Indexed_Component (N, Typ);
7443 return;
7444 end;
7445 end if;
7447 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7448 and then Present (PPC_Wrapper (Nam))
7449 and then Current_Scope /= PPC_Wrapper (Nam)
7450 then
7451 -- Rewrite as call to the precondition wrapper, adding the task
7452 -- object to the list of actuals. If the call is to a member of an
7453 -- entry family, include the index as well.
7455 declare
7456 New_Call : Node_Id;
7457 New_Actuals : List_Id;
7459 begin
7460 New_Actuals := New_List (Obj);
7462 if Nkind (Entry_Name) = N_Indexed_Component then
7463 Append_To (New_Actuals,
7464 New_Copy_Tree (First (Expressions (Entry_Name))));
7465 end if;
7467 Append_List (Parameter_Associations (N), New_Actuals);
7468 New_Call :=
7469 Make_Procedure_Call_Statement (Loc,
7470 Name =>
7471 New_Occurrence_Of (PPC_Wrapper (Nam), Loc),
7472 Parameter_Associations => New_Actuals);
7473 Rewrite (N, New_Call);
7475 -- Preanalyze and resolve new call. Current procedure is called
7476 -- from Resolve_Call, after which expansion will take place.
7478 Preanalyze_And_Resolve (N);
7479 return;
7480 end;
7481 end if;
7483 -- The operation name may have been overloaded. Order the actuals
7484 -- according to the formals of the resolved entity, and set the return
7485 -- type to that of the operation.
7487 if Was_Over then
7488 Normalize_Actuals (N, Nam, False, Norm_OK);
7489 pragma Assert (Norm_OK);
7490 Set_Etype (N, Etype (Nam));
7491 end if;
7493 Resolve_Actuals (N, Nam);
7494 Check_Internal_Protected_Use (N, Nam);
7496 -- Create a call reference to the entry
7498 Generate_Reference (Nam, Entry_Name, 's');
7500 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7501 Check_Potentially_Blocking_Operation (N);
7502 end if;
7504 -- Verify that a procedure call cannot masquerade as an entry
7505 -- call where an entry call is expected.
7507 if Ekind (Nam) = E_Procedure then
7508 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7509 and then N = Entry_Call_Statement (Parent (N))
7510 then
7511 Error_Msg_N ("entry call required in select statement", N);
7513 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7514 and then N = Triggering_Statement (Parent (N))
7515 then
7516 Error_Msg_N ("triggering statement cannot be procedure call", N);
7518 elsif Ekind (Scope (Nam)) = E_Task_Type
7519 and then not In_Open_Scopes (Scope (Nam))
7520 then
7521 Error_Msg_N ("task has no entry with this name", Entry_Name);
7522 end if;
7523 end if;
7525 -- After resolution, entry calls and protected procedure calls are
7526 -- changed into entry calls, for expansion. The structure of the node
7527 -- does not change, so it can safely be done in place. Protected
7528 -- function calls must keep their structure because they are
7529 -- subexpressions.
7531 if Ekind (Nam) /= E_Function then
7533 -- A protected operation that is not a function may modify the
7534 -- corresponding object, and cannot apply to a constant. If this
7535 -- is an internal call, the prefix is the type itself.
7537 if Is_Protected_Type (Scope (Nam))
7538 and then not Is_Variable (Obj)
7539 and then (not Is_Entity_Name (Obj)
7540 or else not Is_Type (Entity (Obj)))
7541 then
7542 Error_Msg_N
7543 ("prefix of protected procedure or entry call must be variable",
7544 Entry_Name);
7545 end if;
7547 Actuals := Parameter_Associations (N);
7548 First_Named := First_Named_Actual (N);
7550 Rewrite (N,
7551 Make_Entry_Call_Statement (Loc,
7552 Name => Entry_Name,
7553 Parameter_Associations => Actuals));
7555 Set_First_Named_Actual (N, First_Named);
7556 Set_Analyzed (N, True);
7558 -- Protected functions can return on the secondary stack, in which
7559 -- case we must trigger the transient scope mechanism.
7561 elsif Expander_Active
7562 and then Requires_Transient_Scope (Etype (Nam))
7563 then
7564 Establish_Transient_Scope (N, Sec_Stack => True);
7565 end if;
7566 end Resolve_Entry_Call;
7568 -------------------------
7569 -- Resolve_Equality_Op --
7570 -------------------------
7572 -- Both arguments must have the same type, and the boolean context does
7573 -- not participate in the resolution. The first pass verifies that the
7574 -- interpretation is not ambiguous, and the type of the left argument is
7575 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7576 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7577 -- though they carry a single (universal) type. Diagnose this case here.
7579 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7580 L : constant Node_Id := Left_Opnd (N);
7581 R : constant Node_Id := Right_Opnd (N);
7582 T : Entity_Id := Find_Unique_Type (L, R);
7584 procedure Check_If_Expression (Cond : Node_Id);
7585 -- The resolution rule for if expressions requires that each such must
7586 -- have a unique type. This means that if several dependent expressions
7587 -- are of a non-null anonymous access type, and the context does not
7588 -- impose an expected type (as can be the case in an equality operation)
7589 -- the expression must be rejected.
7591 procedure Explain_Redundancy (N : Node_Id);
7592 -- Attempt to explain the nature of a redundant comparison with True. If
7593 -- the expression N is too complex, this routine issues a general error
7594 -- message.
7596 function Find_Unique_Access_Type return Entity_Id;
7597 -- In the case of allocators and access attributes, the context must
7598 -- provide an indication of the specific access type to be used. If
7599 -- one operand is of such a "generic" access type, check whether there
7600 -- is a specific visible access type that has the same designated type.
7601 -- This is semantically dubious, and of no interest to any real code,
7602 -- but c48008a makes it all worthwhile.
7604 -------------------------
7605 -- Check_If_Expression --
7606 -------------------------
7608 procedure Check_If_Expression (Cond : Node_Id) is
7609 Then_Expr : Node_Id;
7610 Else_Expr : Node_Id;
7612 begin
7613 if Nkind (Cond) = N_If_Expression then
7614 Then_Expr := Next (First (Expressions (Cond)));
7615 Else_Expr := Next (Then_Expr);
7617 if Nkind (Then_Expr) /= N_Null
7618 and then Nkind (Else_Expr) /= N_Null
7619 then
7620 Error_Msg_N ("cannot determine type of if expression", Cond);
7621 end if;
7622 end if;
7623 end Check_If_Expression;
7625 ------------------------
7626 -- Explain_Redundancy --
7627 ------------------------
7629 procedure Explain_Redundancy (N : Node_Id) is
7630 Error : Name_Id;
7631 Val : Node_Id;
7632 Val_Id : Entity_Id;
7634 begin
7635 Val := N;
7637 -- Strip the operand down to an entity
7639 loop
7640 if Nkind (Val) = N_Selected_Component then
7641 Val := Selector_Name (Val);
7642 else
7643 exit;
7644 end if;
7645 end loop;
7647 -- The construct denotes an entity
7649 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7650 Val_Id := Entity (Val);
7652 -- Do not generate an error message when the comparison is done
7653 -- against the enumeration literal Standard.True.
7655 if Ekind (Val_Id) /= E_Enumeration_Literal then
7657 -- Build a customized error message
7659 Name_Len := 0;
7660 Add_Str_To_Name_Buffer ("?r?");
7662 if Ekind (Val_Id) = E_Component then
7663 Add_Str_To_Name_Buffer ("component ");
7665 elsif Ekind (Val_Id) = E_Constant then
7666 Add_Str_To_Name_Buffer ("constant ");
7668 elsif Ekind (Val_Id) = E_Discriminant then
7669 Add_Str_To_Name_Buffer ("discriminant ");
7671 elsif Is_Formal (Val_Id) then
7672 Add_Str_To_Name_Buffer ("parameter ");
7674 elsif Ekind (Val_Id) = E_Variable then
7675 Add_Str_To_Name_Buffer ("variable ");
7676 end if;
7678 Add_Str_To_Name_Buffer ("& is always True!");
7679 Error := Name_Find;
7681 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7682 end if;
7684 -- The construct is too complex to disect, issue a general message
7686 else
7687 Error_Msg_N ("?r?expression is always True!", Val);
7688 end if;
7689 end Explain_Redundancy;
7691 -----------------------------
7692 -- Find_Unique_Access_Type --
7693 -----------------------------
7695 function Find_Unique_Access_Type return Entity_Id is
7696 Acc : Entity_Id;
7697 E : Entity_Id;
7698 S : Entity_Id;
7700 begin
7701 if Ekind_In (Etype (R), E_Allocator_Type,
7702 E_Access_Attribute_Type)
7703 then
7704 Acc := Designated_Type (Etype (R));
7706 elsif Ekind_In (Etype (L), E_Allocator_Type,
7707 E_Access_Attribute_Type)
7708 then
7709 Acc := Designated_Type (Etype (L));
7710 else
7711 return Empty;
7712 end if;
7714 S := Current_Scope;
7715 while S /= Standard_Standard loop
7716 E := First_Entity (S);
7717 while Present (E) loop
7718 if Is_Type (E)
7719 and then Is_Access_Type (E)
7720 and then Ekind (E) /= E_Allocator_Type
7721 and then Designated_Type (E) = Base_Type (Acc)
7722 then
7723 return E;
7724 end if;
7726 Next_Entity (E);
7727 end loop;
7729 S := Scope (S);
7730 end loop;
7732 return Empty;
7733 end Find_Unique_Access_Type;
7735 -- Start of processing for Resolve_Equality_Op
7737 begin
7738 Set_Etype (N, Base_Type (Typ));
7739 Generate_Reference (T, N, ' ');
7741 if T = Any_Fixed then
7742 T := Unique_Fixed_Point_Type (L);
7743 end if;
7745 if T /= Any_Type then
7746 if T = Any_String or else
7747 T = Any_Composite or else
7748 T = Any_Character
7749 then
7750 if T = Any_Character then
7751 Ambiguous_Character (L);
7752 else
7753 Error_Msg_N ("ambiguous operands for equality", N);
7754 end if;
7756 Set_Etype (N, Any_Type);
7757 return;
7759 elsif T = Any_Access
7760 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
7761 then
7762 T := Find_Unique_Access_Type;
7764 if No (T) then
7765 Error_Msg_N ("ambiguous operands for equality", N);
7766 Set_Etype (N, Any_Type);
7767 return;
7768 end if;
7770 -- If expressions must have a single type, and if the context does
7771 -- not impose one the dependent expressions cannot be anonymous
7772 -- access types.
7774 -- Why no similar processing for case expressions???
7776 elsif Ada_Version >= Ada_2012
7777 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
7778 E_Anonymous_Access_Subprogram_Type)
7779 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
7780 E_Anonymous_Access_Subprogram_Type)
7781 then
7782 Check_If_Expression (L);
7783 Check_If_Expression (R);
7784 end if;
7786 Resolve (L, T);
7787 Resolve (R, T);
7789 -- In SPARK, equality operators = and /= for array types other than
7790 -- String are only defined when, for each index position, the
7791 -- operands have equal static bounds.
7793 if Is_Array_Type (T) then
7795 -- Protect call to Matching_Static_Array_Bounds to avoid costly
7796 -- operation if not needed.
7798 if Restriction_Check_Required (SPARK_05)
7799 and then Base_Type (T) /= Standard_String
7800 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
7801 and then Etype (L) /= Any_Composite -- or else L in error
7802 and then Etype (R) /= Any_Composite -- or else R in error
7803 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
7804 then
7805 Check_SPARK_05_Restriction
7806 ("array types should have matching static bounds", N);
7807 end if;
7808 end if;
7810 -- If the unique type is a class-wide type then it will be expanded
7811 -- into a dispatching call to the predefined primitive. Therefore we
7812 -- check here for potential violation of such restriction.
7814 if Is_Class_Wide_Type (T) then
7815 Check_Restriction (No_Dispatching_Calls, N);
7816 end if;
7818 if Warn_On_Redundant_Constructs
7819 and then Comes_From_Source (N)
7820 and then Comes_From_Source (R)
7821 and then Is_Entity_Name (R)
7822 and then Entity (R) = Standard_True
7823 then
7824 Error_Msg_N -- CODEFIX
7825 ("?r?comparison with True is redundant!", N);
7826 Explain_Redundancy (Original_Node (R));
7827 end if;
7829 Check_Unset_Reference (L);
7830 Check_Unset_Reference (R);
7831 Generate_Operator_Reference (N, T);
7832 Check_Low_Bound_Tested (N);
7834 -- If this is an inequality, it may be the implicit inequality
7835 -- created for a user-defined operation, in which case the corres-
7836 -- ponding equality operation is not intrinsic, and the operation
7837 -- cannot be constant-folded. Else fold.
7839 if Nkind (N) = N_Op_Eq
7840 or else Comes_From_Source (Entity (N))
7841 or else Ekind (Entity (N)) = E_Operator
7842 or else Is_Intrinsic_Subprogram
7843 (Corresponding_Equality (Entity (N)))
7844 then
7845 Analyze_Dimension (N);
7846 Eval_Relational_Op (N);
7848 elsif Nkind (N) = N_Op_Ne
7849 and then Is_Abstract_Subprogram (Entity (N))
7850 then
7851 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
7852 end if;
7854 -- Ada 2005: If one operand is an anonymous access type, convert the
7855 -- other operand to it, to ensure that the underlying types match in
7856 -- the back-end. Same for access_to_subprogram, and the conversion
7857 -- verifies that the types are subtype conformant.
7859 -- We apply the same conversion in the case one of the operands is a
7860 -- private subtype of the type of the other.
7862 -- Why the Expander_Active test here ???
7864 if Expander_Active
7865 and then
7866 (Ekind_In (T, E_Anonymous_Access_Type,
7867 E_Anonymous_Access_Subprogram_Type)
7868 or else Is_Private_Type (T))
7869 then
7870 if Etype (L) /= T then
7871 Rewrite (L,
7872 Make_Unchecked_Type_Conversion (Sloc (L),
7873 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
7874 Expression => Relocate_Node (L)));
7875 Analyze_And_Resolve (L, T);
7876 end if;
7878 if (Etype (R)) /= T then
7879 Rewrite (R,
7880 Make_Unchecked_Type_Conversion (Sloc (R),
7881 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
7882 Expression => Relocate_Node (R)));
7883 Analyze_And_Resolve (R, T);
7884 end if;
7885 end if;
7886 end if;
7887 end Resolve_Equality_Op;
7889 ----------------------------------
7890 -- Resolve_Explicit_Dereference --
7891 ----------------------------------
7893 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
7894 Loc : constant Source_Ptr := Sloc (N);
7895 New_N : Node_Id;
7896 P : constant Node_Id := Prefix (N);
7898 P_Typ : Entity_Id;
7899 -- The candidate prefix type, if overloaded
7901 I : Interp_Index;
7902 It : Interp;
7904 begin
7905 Check_Fully_Declared_Prefix (Typ, P);
7906 P_Typ := Empty;
7908 -- A useful optimization: check whether the dereference denotes an
7909 -- element of a container, and if so rewrite it as a call to the
7910 -- corresponding Element function.
7912 -- Disabled for now, on advice of ARG. A more restricted form of the
7913 -- predicate might be acceptable ???
7915 -- if Is_Container_Element (N) then
7916 -- return;
7917 -- end if;
7919 if Is_Overloaded (P) then
7921 -- Use the context type to select the prefix that has the correct
7922 -- designated type. Keep the first match, which will be the inner-
7923 -- most.
7925 Get_First_Interp (P, I, It);
7927 while Present (It.Typ) loop
7928 if Is_Access_Type (It.Typ)
7929 and then Covers (Typ, Designated_Type (It.Typ))
7930 then
7931 if No (P_Typ) then
7932 P_Typ := It.Typ;
7933 end if;
7935 -- Remove access types that do not match, but preserve access
7936 -- to subprogram interpretations, in case a further dereference
7937 -- is needed (see below).
7939 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
7940 Remove_Interp (I);
7941 end if;
7943 Get_Next_Interp (I, It);
7944 end loop;
7946 if Present (P_Typ) then
7947 Resolve (P, P_Typ);
7948 Set_Etype (N, Designated_Type (P_Typ));
7950 else
7951 -- If no interpretation covers the designated type of the prefix,
7952 -- this is the pathological case where not all implementations of
7953 -- the prefix allow the interpretation of the node as a call. Now
7954 -- that the expected type is known, Remove other interpretations
7955 -- from prefix, rewrite it as a call, and resolve again, so that
7956 -- the proper call node is generated.
7958 Get_First_Interp (P, I, It);
7959 while Present (It.Typ) loop
7960 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
7961 Remove_Interp (I);
7962 end if;
7964 Get_Next_Interp (I, It);
7965 end loop;
7967 New_N :=
7968 Make_Function_Call (Loc,
7969 Name =>
7970 Make_Explicit_Dereference (Loc,
7971 Prefix => P),
7972 Parameter_Associations => New_List);
7974 Save_Interps (N, New_N);
7975 Rewrite (N, New_N);
7976 Analyze_And_Resolve (N, Typ);
7977 return;
7978 end if;
7980 -- If not overloaded, resolve P with its own type
7982 else
7983 Resolve (P);
7984 end if;
7986 if Is_Access_Type (Etype (P)) then
7987 Apply_Access_Check (N);
7988 end if;
7990 -- If the designated type is a packed unconstrained array type, and the
7991 -- explicit dereference is not in the context of an attribute reference,
7992 -- then we must compute and set the actual subtype, since it is needed
7993 -- by Gigi. The reason we exclude the attribute case is that this is
7994 -- handled fine by Gigi, and in fact we use such attributes to build the
7995 -- actual subtype. We also exclude generated code (which builds actual
7996 -- subtypes directly if they are needed).
7998 if Is_Array_Type (Etype (N))
7999 and then Is_Packed (Etype (N))
8000 and then not Is_Constrained (Etype (N))
8001 and then Nkind (Parent (N)) /= N_Attribute_Reference
8002 and then Comes_From_Source (N)
8003 then
8004 Set_Etype (N, Get_Actual_Subtype (N));
8005 end if;
8007 -- Note: No Eval processing is required for an explicit dereference,
8008 -- because such a name can never be static.
8010 end Resolve_Explicit_Dereference;
8012 -------------------------------------
8013 -- Resolve_Expression_With_Actions --
8014 -------------------------------------
8016 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8017 begin
8018 Set_Etype (N, Typ);
8020 -- If N has no actions, and its expression has been constant folded,
8021 -- then rewrite N as just its expression. Note, we can't do this in
8022 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8023 -- Expression (N) to be expanded again.
8025 if Is_Empty_List (Actions (N))
8026 and then Compile_Time_Known_Value (Expression (N))
8027 then
8028 Rewrite (N, Expression (N));
8029 end if;
8030 end Resolve_Expression_With_Actions;
8032 ----------------------------------
8033 -- Resolve_Generalized_Indexing --
8034 ----------------------------------
8036 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8037 Indexing : constant Node_Id := Generalized_Indexing (N);
8038 Call : Node_Id;
8039 Indices : List_Id;
8040 Pref : Node_Id;
8042 begin
8043 -- In ASIS mode, propagate the information about the indices back to
8044 -- to the original indexing node. The generalized indexing is either
8045 -- a function call, or a dereference of one. The actuals include the
8046 -- prefix of the original node, which is the container expression.
8048 if ASIS_Mode then
8049 Resolve (Indexing, Typ);
8050 Set_Etype (N, Etype (Indexing));
8051 Set_Is_Overloaded (N, False);
8053 Call := Indexing;
8054 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8055 loop
8056 Call := Prefix (Call);
8057 end loop;
8059 if Nkind (Call) = N_Function_Call then
8060 Indices := Parameter_Associations (Call);
8061 Pref := Remove_Head (Indices);
8062 Set_Expressions (N, Indices);
8063 Set_Prefix (N, Pref);
8064 end if;
8066 else
8067 Rewrite (N, Indexing);
8068 Resolve (N, Typ);
8069 end if;
8070 end Resolve_Generalized_Indexing;
8072 ---------------------------
8073 -- Resolve_If_Expression --
8074 ---------------------------
8076 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8077 Condition : constant Node_Id := First (Expressions (N));
8078 Then_Expr : constant Node_Id := Next (Condition);
8079 Else_Expr : Node_Id := Next (Then_Expr);
8080 Else_Typ : Entity_Id;
8081 Then_Typ : Entity_Id;
8083 begin
8084 Resolve (Condition, Any_Boolean);
8085 Resolve (Then_Expr, Typ);
8086 Then_Typ := Etype (Then_Expr);
8088 -- When the "then" expression is of a scalar subtype different from the
8089 -- result subtype, then insert a conversion to ensure the generation of
8090 -- a constraint check. The same is done for the else part below, again
8091 -- comparing subtypes rather than base types.
8093 if Is_Scalar_Type (Then_Typ)
8094 and then Then_Typ /= Typ
8095 then
8096 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8097 Analyze_And_Resolve (Then_Expr, Typ);
8098 end if;
8100 -- If ELSE expression present, just resolve using the determined type
8102 if Present (Else_Expr) then
8103 Resolve (Else_Expr, Typ);
8104 Else_Typ := Etype (Else_Expr);
8106 if Is_Scalar_Type (Else_Typ)
8107 and then Else_Typ /= Typ
8108 then
8109 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8110 Analyze_And_Resolve (Else_Expr, Typ);
8111 end if;
8113 -- If no ELSE expression is present, root type must be Standard.Boolean
8114 -- and we provide a Standard.True result converted to the appropriate
8115 -- Boolean type (in case it is a derived boolean type).
8117 elsif Root_Type (Typ) = Standard_Boolean then
8118 Else_Expr :=
8119 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8120 Analyze_And_Resolve (Else_Expr, Typ);
8121 Append_To (Expressions (N), Else_Expr);
8123 else
8124 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8125 Append_To (Expressions (N), Error);
8126 end if;
8128 Set_Etype (N, Typ);
8129 Eval_If_Expression (N);
8130 end Resolve_If_Expression;
8132 -------------------------------
8133 -- Resolve_Indexed_Component --
8134 -------------------------------
8136 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8137 Name : constant Node_Id := Prefix (N);
8138 Expr : Node_Id;
8139 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8140 Index : Node_Id;
8142 begin
8143 if Present (Generalized_Indexing (N)) then
8144 Resolve_Generalized_Indexing (N, Typ);
8145 return;
8146 end if;
8148 if Is_Overloaded (Name) then
8150 -- Use the context type to select the prefix that yields the correct
8151 -- component type.
8153 declare
8154 I : Interp_Index;
8155 It : Interp;
8156 I1 : Interp_Index := 0;
8157 P : constant Node_Id := Prefix (N);
8158 Found : Boolean := False;
8160 begin
8161 Get_First_Interp (P, I, It);
8162 while Present (It.Typ) loop
8163 if (Is_Array_Type (It.Typ)
8164 and then Covers (Typ, Component_Type (It.Typ)))
8165 or else (Is_Access_Type (It.Typ)
8166 and then Is_Array_Type (Designated_Type (It.Typ))
8167 and then
8168 Covers
8169 (Typ,
8170 Component_Type (Designated_Type (It.Typ))))
8171 then
8172 if Found then
8173 It := Disambiguate (P, I1, I, Any_Type);
8175 if It = No_Interp then
8176 Error_Msg_N ("ambiguous prefix for indexing", N);
8177 Set_Etype (N, Typ);
8178 return;
8180 else
8181 Found := True;
8182 Array_Type := It.Typ;
8183 I1 := I;
8184 end if;
8186 else
8187 Found := True;
8188 Array_Type := It.Typ;
8189 I1 := I;
8190 end if;
8191 end if;
8193 Get_Next_Interp (I, It);
8194 end loop;
8195 end;
8197 else
8198 Array_Type := Etype (Name);
8199 end if;
8201 Resolve (Name, Array_Type);
8202 Array_Type := Get_Actual_Subtype_If_Available (Name);
8204 -- If prefix is access type, dereference to get real array type.
8205 -- Note: we do not apply an access check because the expander always
8206 -- introduces an explicit dereference, and the check will happen there.
8208 if Is_Access_Type (Array_Type) then
8209 Array_Type := Designated_Type (Array_Type);
8210 end if;
8212 -- If name was overloaded, set component type correctly now
8213 -- If a misplaced call to an entry family (which has no index types)
8214 -- return. Error will be diagnosed from calling context.
8216 if Is_Array_Type (Array_Type) then
8217 Set_Etype (N, Component_Type (Array_Type));
8218 else
8219 return;
8220 end if;
8222 Index := First_Index (Array_Type);
8223 Expr := First (Expressions (N));
8225 -- The prefix may have resolved to a string literal, in which case its
8226 -- etype has a special representation. This is only possible currently
8227 -- if the prefix is a static concatenation, written in functional
8228 -- notation.
8230 if Ekind (Array_Type) = E_String_Literal_Subtype then
8231 Resolve (Expr, Standard_Positive);
8233 else
8234 while Present (Index) and Present (Expr) loop
8235 Resolve (Expr, Etype (Index));
8236 Check_Unset_Reference (Expr);
8238 if Is_Scalar_Type (Etype (Expr)) then
8239 Apply_Scalar_Range_Check (Expr, Etype (Index));
8240 else
8241 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8242 end if;
8244 Next_Index (Index);
8245 Next (Expr);
8246 end loop;
8247 end if;
8249 Analyze_Dimension (N);
8251 -- Do not generate the warning on suspicious index if we are analyzing
8252 -- package Ada.Tags; otherwise we will report the warning with the
8253 -- Prims_Ptr field of the dispatch table.
8255 if Scope (Etype (Prefix (N))) = Standard_Standard
8256 or else not
8257 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8258 Ada_Tags)
8259 then
8260 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8261 Eval_Indexed_Component (N);
8262 end if;
8264 -- If the array type is atomic, and the component is not atomic, then
8265 -- this is worth a warning, since we have a situation where the access
8266 -- to the component may cause extra read/writes of the atomic array
8267 -- object, or partial word accesses, which could be unexpected.
8269 if Nkind (N) = N_Indexed_Component
8270 and then Is_Atomic_Ref_With_Address (N)
8271 and then not (Has_Atomic_Components (Array_Type)
8272 or else (Is_Entity_Name (Prefix (N))
8273 and then Has_Atomic_Components
8274 (Entity (Prefix (N)))))
8275 and then not Is_Atomic (Component_Type (Array_Type))
8276 then
8277 Error_Msg_N ("??access to non-atomic component of atomic array",
8278 Prefix (N));
8279 Error_Msg_N ("??\may cause unexpected accesses to atomic object",
8280 Prefix (N));
8281 end if;
8282 end Resolve_Indexed_Component;
8284 -----------------------------
8285 -- Resolve_Integer_Literal --
8286 -----------------------------
8288 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8289 begin
8290 Set_Etype (N, Typ);
8291 Eval_Integer_Literal (N);
8292 end Resolve_Integer_Literal;
8294 --------------------------------
8295 -- Resolve_Intrinsic_Operator --
8296 --------------------------------
8298 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8299 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8300 Op : Entity_Id;
8301 Arg1 : Node_Id;
8302 Arg2 : Node_Id;
8304 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8305 -- If the operand is a literal, it cannot be the expression in a
8306 -- conversion. Use a qualified expression instead.
8308 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8309 Loc : constant Source_Ptr := Sloc (Opnd);
8310 Res : Node_Id;
8311 begin
8312 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8313 Res :=
8314 Make_Qualified_Expression (Loc,
8315 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8316 Expression => Relocate_Node (Opnd));
8317 Analyze (Res);
8319 else
8320 Res := Unchecked_Convert_To (Btyp, Opnd);
8321 end if;
8323 return Res;
8324 end Convert_Operand;
8326 -- Start of processing for Resolve_Intrinsic_Operator
8328 begin
8329 -- We must preserve the original entity in a generic setting, so that
8330 -- the legality of the operation can be verified in an instance.
8332 if not Expander_Active then
8333 return;
8334 end if;
8336 Op := Entity (N);
8337 while Scope (Op) /= Standard_Standard loop
8338 Op := Homonym (Op);
8339 pragma Assert (Present (Op));
8340 end loop;
8342 Set_Entity (N, Op);
8343 Set_Is_Overloaded (N, False);
8345 -- If the result or operand types are private, rewrite with unchecked
8346 -- conversions on the operands and the result, to expose the proper
8347 -- underlying numeric type.
8349 if Is_Private_Type (Typ)
8350 or else Is_Private_Type (Etype (Left_Opnd (N)))
8351 or else Is_Private_Type (Etype (Right_Opnd (N)))
8352 then
8353 Arg1 := Convert_Operand (Left_Opnd (N));
8354 -- Unchecked_Convert_To (Btyp, Left_Opnd (N));
8355 -- What on earth is this commented out fragment of code???
8357 if Nkind (N) = N_Op_Expon then
8358 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8359 else
8360 Arg2 := Convert_Operand (Right_Opnd (N));
8361 end if;
8363 if Nkind (Arg1) = N_Type_Conversion then
8364 Save_Interps (Left_Opnd (N), Expression (Arg1));
8365 end if;
8367 if Nkind (Arg2) = N_Type_Conversion then
8368 Save_Interps (Right_Opnd (N), Expression (Arg2));
8369 end if;
8371 Set_Left_Opnd (N, Arg1);
8372 Set_Right_Opnd (N, Arg2);
8374 Set_Etype (N, Btyp);
8375 Rewrite (N, Unchecked_Convert_To (Typ, N));
8376 Resolve (N, Typ);
8378 elsif Typ /= Etype (Left_Opnd (N))
8379 or else Typ /= Etype (Right_Opnd (N))
8380 then
8381 -- Add explicit conversion where needed, and save interpretations in
8382 -- case operands are overloaded.
8384 Arg1 := Convert_To (Typ, Left_Opnd (N));
8385 Arg2 := Convert_To (Typ, Right_Opnd (N));
8387 if Nkind (Arg1) = N_Type_Conversion then
8388 Save_Interps (Left_Opnd (N), Expression (Arg1));
8389 else
8390 Save_Interps (Left_Opnd (N), Arg1);
8391 end if;
8393 if Nkind (Arg2) = N_Type_Conversion then
8394 Save_Interps (Right_Opnd (N), Expression (Arg2));
8395 else
8396 Save_Interps (Right_Opnd (N), Arg2);
8397 end if;
8399 Rewrite (Left_Opnd (N), Arg1);
8400 Rewrite (Right_Opnd (N), Arg2);
8401 Analyze (Arg1);
8402 Analyze (Arg2);
8403 Resolve_Arithmetic_Op (N, Typ);
8405 else
8406 Resolve_Arithmetic_Op (N, Typ);
8407 end if;
8408 end Resolve_Intrinsic_Operator;
8410 --------------------------------------
8411 -- Resolve_Intrinsic_Unary_Operator --
8412 --------------------------------------
8414 procedure Resolve_Intrinsic_Unary_Operator
8415 (N : Node_Id;
8416 Typ : Entity_Id)
8418 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8419 Op : Entity_Id;
8420 Arg2 : Node_Id;
8422 begin
8423 Op := Entity (N);
8424 while Scope (Op) /= Standard_Standard loop
8425 Op := Homonym (Op);
8426 pragma Assert (Present (Op));
8427 end loop;
8429 Set_Entity (N, Op);
8431 if Is_Private_Type (Typ) then
8432 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8433 Save_Interps (Right_Opnd (N), Expression (Arg2));
8435 Set_Right_Opnd (N, Arg2);
8437 Set_Etype (N, Btyp);
8438 Rewrite (N, Unchecked_Convert_To (Typ, N));
8439 Resolve (N, Typ);
8441 else
8442 Resolve_Unary_Op (N, Typ);
8443 end if;
8444 end Resolve_Intrinsic_Unary_Operator;
8446 ------------------------
8447 -- Resolve_Logical_Op --
8448 ------------------------
8450 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8451 B_Typ : Entity_Id;
8453 begin
8454 Check_No_Direct_Boolean_Operators (N);
8456 -- Predefined operations on scalar types yield the base type. On the
8457 -- other hand, logical operations on arrays yield the type of the
8458 -- arguments (and the context).
8460 if Is_Array_Type (Typ) then
8461 B_Typ := Typ;
8462 else
8463 B_Typ := Base_Type (Typ);
8464 end if;
8466 -- The following test is required because the operands of the operation
8467 -- may be literals, in which case the resulting type appears to be
8468 -- compatible with a signed integer type, when in fact it is compatible
8469 -- only with modular types. If the context itself is universal, the
8470 -- operation is illegal.
8472 if not Valid_Boolean_Arg (Typ) then
8473 Error_Msg_N ("invalid context for logical operation", N);
8474 Set_Etype (N, Any_Type);
8475 return;
8477 elsif Typ = Any_Modular then
8478 Error_Msg_N
8479 ("no modular type available in this context", N);
8480 Set_Etype (N, Any_Type);
8481 return;
8483 elsif Is_Modular_Integer_Type (Typ)
8484 and then Etype (Left_Opnd (N)) = Universal_Integer
8485 and then Etype (Right_Opnd (N)) = Universal_Integer
8486 then
8487 Check_For_Visible_Operator (N, B_Typ);
8488 end if;
8490 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8491 -- is active and the result type is standard Boolean (do not mess with
8492 -- ops that return a nonstandard Boolean type, because something strange
8493 -- is going on).
8495 -- Note: you might expect this replacement to be done during expansion,
8496 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8497 -- is used, no part of the right operand of an "and" or "or" operator
8498 -- should be executed if the left operand would short-circuit the
8499 -- evaluation of the corresponding "and then" or "or else". If we left
8500 -- the replacement to expansion time, then run-time checks associated
8501 -- with such operands would be evaluated unconditionally, due to being
8502 -- before the condition prior to the rewriting as short-circuit forms
8503 -- during expansion.
8505 if Short_Circuit_And_Or
8506 and then B_Typ = Standard_Boolean
8507 and then Nkind_In (N, N_Op_And, N_Op_Or)
8508 then
8509 if Nkind (N) = N_Op_And then
8510 Rewrite (N,
8511 Make_And_Then (Sloc (N),
8512 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8513 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8514 Analyze_And_Resolve (N, B_Typ);
8516 -- Case of OR changed to OR ELSE
8518 else
8519 Rewrite (N,
8520 Make_Or_Else (Sloc (N),
8521 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8522 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8523 Analyze_And_Resolve (N, B_Typ);
8524 end if;
8526 -- Return now, since analysis of the rewritten ops will take care of
8527 -- other reference bookkeeping and expression folding.
8529 return;
8530 end if;
8532 Resolve (Left_Opnd (N), B_Typ);
8533 Resolve (Right_Opnd (N), B_Typ);
8535 Check_Unset_Reference (Left_Opnd (N));
8536 Check_Unset_Reference (Right_Opnd (N));
8538 Set_Etype (N, B_Typ);
8539 Generate_Operator_Reference (N, B_Typ);
8540 Eval_Logical_Op (N);
8542 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8543 -- only when both operands have same static lower and higher bounds. Of
8544 -- course the types have to match, so only check if operands are
8545 -- compatible and the node itself has no errors.
8547 if Is_Array_Type (B_Typ)
8548 and then Nkind (N) in N_Binary_Op
8549 then
8550 declare
8551 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8552 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8554 begin
8555 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8556 -- operation if not needed.
8558 if Restriction_Check_Required (SPARK_05)
8559 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8560 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8561 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8562 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8563 then
8564 Check_SPARK_05_Restriction
8565 ("array types should have matching static bounds", N);
8566 end if;
8567 end;
8568 end if;
8570 Check_Function_Writable_Actuals (N);
8571 end Resolve_Logical_Op;
8573 ---------------------------
8574 -- Resolve_Membership_Op --
8575 ---------------------------
8577 -- The context can only be a boolean type, and does not determine the
8578 -- arguments. Arguments should be unambiguous, but the preference rule for
8579 -- universal types applies.
8581 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8582 pragma Warnings (Off, Typ);
8584 L : constant Node_Id := Left_Opnd (N);
8585 R : constant Node_Id := Right_Opnd (N);
8586 T : Entity_Id;
8588 procedure Resolve_Set_Membership;
8589 -- Analysis has determined a unique type for the left operand. Use it to
8590 -- resolve the disjuncts.
8592 ----------------------------
8593 -- Resolve_Set_Membership --
8594 ----------------------------
8596 procedure Resolve_Set_Membership is
8597 Alt : Node_Id;
8598 Ltyp : constant Entity_Id := Etype (L);
8600 begin
8601 Resolve (L, Ltyp);
8603 Alt := First (Alternatives (N));
8604 while Present (Alt) loop
8606 -- Alternative is an expression, a range
8607 -- or a subtype mark.
8609 if not Is_Entity_Name (Alt)
8610 or else not Is_Type (Entity (Alt))
8611 then
8612 Resolve (Alt, Ltyp);
8613 end if;
8615 Next (Alt);
8616 end loop;
8618 -- Check for duplicates for discrete case
8620 if Is_Discrete_Type (Ltyp) then
8621 declare
8622 type Ent is record
8623 Alt : Node_Id;
8624 Val : Uint;
8625 end record;
8627 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
8628 Nalts : Nat;
8630 begin
8631 -- Loop checking duplicates. This is quadratic, but giant sets
8632 -- are unlikely in this context so it's a reasonable choice.
8634 Nalts := 0;
8635 Alt := First (Alternatives (N));
8636 while Present (Alt) loop
8637 if Is_OK_Static_Expression (Alt)
8638 and then (Nkind_In (Alt, N_Integer_Literal,
8639 N_Character_Literal)
8640 or else Nkind (Alt) in N_Has_Entity)
8641 then
8642 Nalts := Nalts + 1;
8643 Alts (Nalts) := (Alt, Expr_Value (Alt));
8645 for J in 1 .. Nalts - 1 loop
8646 if Alts (J).Val = Alts (Nalts).Val then
8647 Error_Msg_Sloc := Sloc (Alts (J).Alt);
8648 Error_Msg_N ("duplicate of value given#??", Alt);
8649 end if;
8650 end loop;
8651 end if;
8653 Alt := Next (Alt);
8654 end loop;
8655 end;
8656 end if;
8657 end Resolve_Set_Membership;
8659 -- Start of processing for Resolve_Membership_Op
8661 begin
8662 if L = Error or else R = Error then
8663 return;
8664 end if;
8666 if Present (Alternatives (N)) then
8667 Resolve_Set_Membership;
8668 goto SM_Exit;
8670 elsif not Is_Overloaded (R)
8671 and then
8672 (Etype (R) = Universal_Integer
8673 or else
8674 Etype (R) = Universal_Real)
8675 and then Is_Overloaded (L)
8676 then
8677 T := Etype (R);
8679 -- Ada 2005 (AI-251): Support the following case:
8681 -- type I is interface;
8682 -- type T is tagged ...
8684 -- function Test (O : I'Class) is
8685 -- begin
8686 -- return O in T'Class.
8687 -- end Test;
8689 -- In this case we have nothing else to do. The membership test will be
8690 -- done at run time.
8692 elsif Ada_Version >= Ada_2005
8693 and then Is_Class_Wide_Type (Etype (L))
8694 and then Is_Interface (Etype (L))
8695 and then Is_Class_Wide_Type (Etype (R))
8696 and then not Is_Interface (Etype (R))
8697 then
8698 return;
8699 else
8700 T := Intersect_Types (L, R);
8701 end if;
8703 -- If mixed-mode operations are present and operands are all literal,
8704 -- the only interpretation involves Duration, which is probably not
8705 -- the intention of the programmer.
8707 if T = Any_Fixed then
8708 T := Unique_Fixed_Point_Type (N);
8710 if T = Any_Type then
8711 return;
8712 end if;
8713 end if;
8715 Resolve (L, T);
8716 Check_Unset_Reference (L);
8718 if Nkind (R) = N_Range
8719 and then not Is_Scalar_Type (T)
8720 then
8721 Error_Msg_N ("scalar type required for range", R);
8722 end if;
8724 if Is_Entity_Name (R) then
8725 Freeze_Expression (R);
8726 else
8727 Resolve (R, T);
8728 Check_Unset_Reference (R);
8729 end if;
8731 -- Here after resolving membership operation
8733 <<SM_Exit>>
8735 Eval_Membership_Op (N);
8736 Check_Function_Writable_Actuals (N);
8737 end Resolve_Membership_Op;
8739 ------------------
8740 -- Resolve_Null --
8741 ------------------
8743 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
8744 Loc : constant Source_Ptr := Sloc (N);
8746 begin
8747 -- Handle restriction against anonymous null access values This
8748 -- restriction can be turned off using -gnatdj.
8750 -- Ada 2005 (AI-231): Remove restriction
8752 if Ada_Version < Ada_2005
8753 and then not Debug_Flag_J
8754 and then Ekind (Typ) = E_Anonymous_Access_Type
8755 and then Comes_From_Source (N)
8756 then
8757 -- In the common case of a call which uses an explicitly null value
8758 -- for an access parameter, give specialized error message.
8760 if Nkind (Parent (N)) in N_Subprogram_Call then
8761 Error_Msg_N
8762 ("null is not allowed as argument for an access parameter", N);
8764 -- Standard message for all other cases (are there any?)
8766 else
8767 Error_Msg_N
8768 ("null cannot be of an anonymous access type", N);
8769 end if;
8770 end if;
8772 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
8773 -- assignment to a null-excluding object
8775 if Ada_Version >= Ada_2005
8776 and then Can_Never_Be_Null (Typ)
8777 and then Nkind (Parent (N)) = N_Assignment_Statement
8778 then
8779 if not Inside_Init_Proc then
8780 Insert_Action
8781 (Compile_Time_Constraint_Error (N,
8782 "(Ada 2005) null not allowed in null-excluding objects??"),
8783 Make_Raise_Constraint_Error (Loc,
8784 Reason => CE_Access_Check_Failed));
8785 else
8786 Insert_Action (N,
8787 Make_Raise_Constraint_Error (Loc,
8788 Reason => CE_Access_Check_Failed));
8789 end if;
8790 end if;
8792 -- In a distributed context, null for a remote access to subprogram may
8793 -- need to be replaced with a special record aggregate. In this case,
8794 -- return after having done the transformation.
8796 if (Ekind (Typ) = E_Record_Type
8797 or else Is_Remote_Access_To_Subprogram_Type (Typ))
8798 and then Remote_AST_Null_Value (N, Typ)
8799 then
8800 return;
8801 end if;
8803 -- The null literal takes its type from the context
8805 Set_Etype (N, Typ);
8806 end Resolve_Null;
8808 -----------------------
8809 -- Resolve_Op_Concat --
8810 -----------------------
8812 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
8814 -- We wish to avoid deep recursion, because concatenations are often
8815 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
8816 -- operands nonrecursively until we find something that is not a simple
8817 -- concatenation (A in this case). We resolve that, and then walk back
8818 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
8819 -- to do the rest of the work at each level. The Parent pointers allow
8820 -- us to avoid recursion, and thus avoid running out of memory. See also
8821 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
8823 NN : Node_Id := N;
8824 Op1 : Node_Id;
8826 begin
8827 -- The following code is equivalent to:
8829 -- Resolve_Op_Concat_First (NN, Typ);
8830 -- Resolve_Op_Concat_Arg (N, ...);
8831 -- Resolve_Op_Concat_Rest (N, Typ);
8833 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
8834 -- operand is a concatenation.
8836 -- Walk down left operands
8838 loop
8839 Resolve_Op_Concat_First (NN, Typ);
8840 Op1 := Left_Opnd (NN);
8841 exit when not (Nkind (Op1) = N_Op_Concat
8842 and then not Is_Array_Type (Component_Type (Typ))
8843 and then Entity (Op1) = Entity (NN));
8844 NN := Op1;
8845 end loop;
8847 -- Now (given the above example) NN is A&B and Op1 is A
8849 -- First resolve Op1 ...
8851 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
8853 -- ... then walk NN back up until we reach N (where we started), calling
8854 -- Resolve_Op_Concat_Rest along the way.
8856 loop
8857 Resolve_Op_Concat_Rest (NN, Typ);
8858 exit when NN = N;
8859 NN := Parent (NN);
8860 end loop;
8862 if Base_Type (Etype (N)) /= Standard_String then
8863 Check_SPARK_05_Restriction
8864 ("result of concatenation should have type String", N);
8865 end if;
8866 end Resolve_Op_Concat;
8868 ---------------------------
8869 -- Resolve_Op_Concat_Arg --
8870 ---------------------------
8872 procedure Resolve_Op_Concat_Arg
8873 (N : Node_Id;
8874 Arg : Node_Id;
8875 Typ : Entity_Id;
8876 Is_Comp : Boolean)
8878 Btyp : constant Entity_Id := Base_Type (Typ);
8879 Ctyp : constant Entity_Id := Component_Type (Typ);
8881 begin
8882 if In_Instance then
8883 if Is_Comp
8884 or else (not Is_Overloaded (Arg)
8885 and then Etype (Arg) /= Any_Composite
8886 and then Covers (Ctyp, Etype (Arg)))
8887 then
8888 Resolve (Arg, Ctyp);
8889 else
8890 Resolve (Arg, Btyp);
8891 end if;
8893 -- If both Array & Array and Array & Component are visible, there is a
8894 -- potential ambiguity that must be reported.
8896 elsif Has_Compatible_Type (Arg, Ctyp) then
8897 if Nkind (Arg) = N_Aggregate
8898 and then Is_Composite_Type (Ctyp)
8899 then
8900 if Is_Private_Type (Ctyp) then
8901 Resolve (Arg, Btyp);
8903 -- If the operation is user-defined and not overloaded use its
8904 -- profile. The operation may be a renaming, in which case it has
8905 -- been rewritten, and we want the original profile.
8907 elsif not Is_Overloaded (N)
8908 and then Comes_From_Source (Entity (Original_Node (N)))
8909 and then Ekind (Entity (Original_Node (N))) = E_Function
8910 then
8911 Resolve (Arg,
8912 Etype
8913 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
8914 return;
8916 -- Otherwise an aggregate may match both the array type and the
8917 -- component type.
8919 else
8920 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
8921 Set_Etype (Arg, Any_Type);
8922 end if;
8924 else
8925 if Is_Overloaded (Arg)
8926 and then Has_Compatible_Type (Arg, Typ)
8927 and then Etype (Arg) /= Any_Type
8928 then
8929 declare
8930 I : Interp_Index;
8931 It : Interp;
8932 Func : Entity_Id;
8934 begin
8935 Get_First_Interp (Arg, I, It);
8936 Func := It.Nam;
8937 Get_Next_Interp (I, It);
8939 -- Special-case the error message when the overloading is
8940 -- caused by a function that yields an array and can be
8941 -- called without parameters.
8943 if It.Nam = Func then
8944 Error_Msg_Sloc := Sloc (Func);
8945 Error_Msg_N ("ambiguous call to function#", Arg);
8946 Error_Msg_NE
8947 ("\\interpretation as call yields&", Arg, Typ);
8948 Error_Msg_NE
8949 ("\\interpretation as indexing of call yields&",
8950 Arg, Component_Type (Typ));
8952 else
8953 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
8955 Get_First_Interp (Arg, I, It);
8956 while Present (It.Nam) loop
8957 Error_Msg_Sloc := Sloc (It.Nam);
8959 if Base_Type (It.Typ) = Btyp
8960 or else
8961 Base_Type (It.Typ) = Base_Type (Ctyp)
8962 then
8963 Error_Msg_N -- CODEFIX
8964 ("\\possible interpretation#", Arg);
8965 end if;
8967 Get_Next_Interp (I, It);
8968 end loop;
8969 end if;
8970 end;
8971 end if;
8973 Resolve (Arg, Component_Type (Typ));
8975 if Nkind (Arg) = N_String_Literal then
8976 Set_Etype (Arg, Component_Type (Typ));
8977 end if;
8979 if Arg = Left_Opnd (N) then
8980 Set_Is_Component_Left_Opnd (N);
8981 else
8982 Set_Is_Component_Right_Opnd (N);
8983 end if;
8984 end if;
8986 else
8987 Resolve (Arg, Btyp);
8988 end if;
8990 -- Concatenation is restricted in SPARK: each operand must be either a
8991 -- string literal, the name of a string constant, a static character or
8992 -- string expression, or another concatenation. Arg cannot be a
8993 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
8994 -- separately on each final operand, past concatenation operations.
8996 if Is_Character_Type (Etype (Arg)) then
8997 if not Is_OK_Static_Expression (Arg) then
8998 Check_SPARK_05_Restriction
8999 ("character operand for concatenation should be static", Arg);
9000 end if;
9002 elsif Is_String_Type (Etype (Arg)) then
9003 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9004 and then Is_Constant_Object (Entity (Arg)))
9005 and then not Is_OK_Static_Expression (Arg)
9006 then
9007 Check_SPARK_05_Restriction
9008 ("string operand for concatenation should be static", Arg);
9009 end if;
9011 -- Do not issue error on an operand that is neither a character nor a
9012 -- string, as the error is issued in Resolve_Op_Concat.
9014 else
9015 null;
9016 end if;
9018 Check_Unset_Reference (Arg);
9019 end Resolve_Op_Concat_Arg;
9021 -----------------------------
9022 -- Resolve_Op_Concat_First --
9023 -----------------------------
9025 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9026 Btyp : constant Entity_Id := Base_Type (Typ);
9027 Op1 : constant Node_Id := Left_Opnd (N);
9028 Op2 : constant Node_Id := Right_Opnd (N);
9030 begin
9031 -- The parser folds an enormous sequence of concatenations of string
9032 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9033 -- in the right operand. If the expression resolves to a predefined "&"
9034 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9035 -- we give an error. See P_Simple_Expression in Par.Ch4.
9037 if Nkind (Op2) = N_String_Literal
9038 and then Is_Folded_In_Parser (Op2)
9039 and then Ekind (Entity (N)) = E_Function
9040 then
9041 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9042 and then String_Length (Strval (Op1)) = 0);
9043 Error_Msg_N ("too many user-defined concatenations", N);
9044 return;
9045 end if;
9047 Set_Etype (N, Btyp);
9049 if Is_Limited_Composite (Btyp) then
9050 Error_Msg_N ("concatenation not available for limited array", N);
9051 Explain_Limited_Type (Btyp, N);
9052 end if;
9053 end Resolve_Op_Concat_First;
9055 ----------------------------
9056 -- Resolve_Op_Concat_Rest --
9057 ----------------------------
9059 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9060 Op1 : constant Node_Id := Left_Opnd (N);
9061 Op2 : constant Node_Id := Right_Opnd (N);
9063 begin
9064 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9066 Generate_Operator_Reference (N, Typ);
9068 if Is_String_Type (Typ) then
9069 Eval_Concatenation (N);
9070 end if;
9072 -- If this is not a static concatenation, but the result is a string
9073 -- type (and not an array of strings) ensure that static string operands
9074 -- have their subtypes properly constructed.
9076 if Nkind (N) /= N_String_Literal
9077 and then Is_Character_Type (Component_Type (Typ))
9078 then
9079 Set_String_Literal_Subtype (Op1, Typ);
9080 Set_String_Literal_Subtype (Op2, Typ);
9081 end if;
9082 end Resolve_Op_Concat_Rest;
9084 ----------------------
9085 -- Resolve_Op_Expon --
9086 ----------------------
9088 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9089 B_Typ : constant Entity_Id := Base_Type (Typ);
9091 begin
9092 -- Catch attempts to do fixed-point exponentiation with universal
9093 -- operands, which is a case where the illegality is not caught during
9094 -- normal operator analysis. This is not done in preanalysis mode
9095 -- since the tree is not fully decorated during preanalysis.
9097 if Full_Analysis then
9098 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9099 Error_Msg_N ("exponentiation not available for fixed point", N);
9100 return;
9102 elsif Nkind (Parent (N)) in N_Op
9103 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9104 and then Etype (N) = Universal_Real
9105 and then Comes_From_Source (N)
9106 then
9107 Error_Msg_N ("exponentiation not available for fixed point", N);
9108 return;
9109 end if;
9110 end if;
9112 if Comes_From_Source (N)
9113 and then Ekind (Entity (N)) = E_Function
9114 and then Is_Imported (Entity (N))
9115 and then Is_Intrinsic_Subprogram (Entity (N))
9116 then
9117 Resolve_Intrinsic_Operator (N, Typ);
9118 return;
9119 end if;
9121 if Etype (Left_Opnd (N)) = Universal_Integer
9122 or else Etype (Left_Opnd (N)) = Universal_Real
9123 then
9124 Check_For_Visible_Operator (N, B_Typ);
9125 end if;
9127 -- We do the resolution using the base type, because intermediate values
9128 -- in expressions are always of the base type, not a subtype of it.
9130 Resolve (Left_Opnd (N), B_Typ);
9131 Resolve (Right_Opnd (N), Standard_Integer);
9133 -- For integer types, right argument must be in Natural range
9135 if Is_Integer_Type (Typ) then
9136 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9137 end if;
9139 Check_Unset_Reference (Left_Opnd (N));
9140 Check_Unset_Reference (Right_Opnd (N));
9142 Set_Etype (N, B_Typ);
9143 Generate_Operator_Reference (N, B_Typ);
9145 Analyze_Dimension (N);
9147 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9148 -- Evaluate the exponentiation operator for dimensioned type
9150 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9151 else
9152 Eval_Op_Expon (N);
9153 end if;
9155 -- Set overflow checking bit. Much cleverer code needed here eventually
9156 -- and perhaps the Resolve routines should be separated for the various
9157 -- arithmetic operations, since they will need different processing. ???
9159 if Nkind (N) in N_Op then
9160 if not Overflow_Checks_Suppressed (Etype (N)) then
9161 Enable_Overflow_Check (N);
9162 end if;
9163 end if;
9164 end Resolve_Op_Expon;
9166 --------------------
9167 -- Resolve_Op_Not --
9168 --------------------
9170 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9171 B_Typ : Entity_Id;
9173 function Parent_Is_Boolean return Boolean;
9174 -- This function determines if the parent node is a boolean operator or
9175 -- operation (comparison op, membership test, or short circuit form) and
9176 -- the not in question is the left operand of this operation. Note that
9177 -- if the not is in parens, then false is returned.
9179 -----------------------
9180 -- Parent_Is_Boolean --
9181 -----------------------
9183 function Parent_Is_Boolean return Boolean is
9184 begin
9185 if Paren_Count (N) /= 0 then
9186 return False;
9188 else
9189 case Nkind (Parent (N)) is
9190 when N_Op_And |
9191 N_Op_Eq |
9192 N_Op_Ge |
9193 N_Op_Gt |
9194 N_Op_Le |
9195 N_Op_Lt |
9196 N_Op_Ne |
9197 N_Op_Or |
9198 N_Op_Xor |
9199 N_In |
9200 N_Not_In |
9201 N_And_Then |
9202 N_Or_Else =>
9204 return Left_Opnd (Parent (N)) = N;
9206 when others =>
9207 return False;
9208 end case;
9209 end if;
9210 end Parent_Is_Boolean;
9212 -- Start of processing for Resolve_Op_Not
9214 begin
9215 -- Predefined operations on scalar types yield the base type. On the
9216 -- other hand, logical operations on arrays yield the type of the
9217 -- arguments (and the context).
9219 if Is_Array_Type (Typ) then
9220 B_Typ := Typ;
9221 else
9222 B_Typ := Base_Type (Typ);
9223 end if;
9225 -- Straightforward case of incorrect arguments
9227 if not Valid_Boolean_Arg (Typ) then
9228 Error_Msg_N ("invalid operand type for operator&", N);
9229 Set_Etype (N, Any_Type);
9230 return;
9232 -- Special case of probable missing parens
9234 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9235 if Parent_Is_Boolean then
9236 Error_Msg_N
9237 ("operand of not must be enclosed in parentheses",
9238 Right_Opnd (N));
9239 else
9240 Error_Msg_N
9241 ("no modular type available in this context", N);
9242 end if;
9244 Set_Etype (N, Any_Type);
9245 return;
9247 -- OK resolution of NOT
9249 else
9250 -- Warn if non-boolean types involved. This is a case like not a < b
9251 -- where a and b are modular, where we will get (not a) < b and most
9252 -- likely not (a < b) was intended.
9254 if Warn_On_Questionable_Missing_Parens
9255 and then not Is_Boolean_Type (Typ)
9256 and then Parent_Is_Boolean
9257 then
9258 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9259 end if;
9261 -- Warn on double negation if checking redundant constructs
9263 if Warn_On_Redundant_Constructs
9264 and then Comes_From_Source (N)
9265 and then Comes_From_Source (Right_Opnd (N))
9266 and then Root_Type (Typ) = Standard_Boolean
9267 and then Nkind (Right_Opnd (N)) = N_Op_Not
9268 then
9269 Error_Msg_N ("redundant double negation?r?", N);
9270 end if;
9272 -- Complete resolution and evaluation of NOT
9274 Resolve (Right_Opnd (N), B_Typ);
9275 Check_Unset_Reference (Right_Opnd (N));
9276 Set_Etype (N, B_Typ);
9277 Generate_Operator_Reference (N, B_Typ);
9278 Eval_Op_Not (N);
9279 end if;
9280 end Resolve_Op_Not;
9282 -----------------------------
9283 -- Resolve_Operator_Symbol --
9284 -----------------------------
9286 -- Nothing to be done, all resolved already
9288 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9289 pragma Warnings (Off, N);
9290 pragma Warnings (Off, Typ);
9292 begin
9293 null;
9294 end Resolve_Operator_Symbol;
9296 ----------------------------------
9297 -- Resolve_Qualified_Expression --
9298 ----------------------------------
9300 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9301 pragma Warnings (Off, Typ);
9303 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9304 Expr : constant Node_Id := Expression (N);
9306 begin
9307 Resolve (Expr, Target_Typ);
9309 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9310 -- operation if not needed.
9312 if Restriction_Check_Required (SPARK_05)
9313 and then Is_Array_Type (Target_Typ)
9314 and then Is_Array_Type (Etype (Expr))
9315 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9316 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9317 then
9318 Check_SPARK_05_Restriction
9319 ("array types should have matching static bounds", N);
9320 end if;
9322 -- A qualified expression requires an exact match of the type, class-
9323 -- wide matching is not allowed. However, if the qualifying type is
9324 -- specific and the expression has a class-wide type, it may still be
9325 -- okay, since it can be the result of the expansion of a call to a
9326 -- dispatching function, so we also have to check class-wideness of the
9327 -- type of the expression's original node.
9329 if (Is_Class_Wide_Type (Target_Typ)
9330 or else
9331 (Is_Class_Wide_Type (Etype (Expr))
9332 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9333 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9334 then
9335 Wrong_Type (Expr, Target_Typ);
9336 end if;
9338 -- If the target type is unconstrained, then we reset the type of the
9339 -- result from the type of the expression. For other cases, the actual
9340 -- subtype of the expression is the target type.
9342 if Is_Composite_Type (Target_Typ)
9343 and then not Is_Constrained (Target_Typ)
9344 then
9345 Set_Etype (N, Etype (Expr));
9346 end if;
9348 Analyze_Dimension (N);
9349 Eval_Qualified_Expression (N);
9351 -- If we still have a qualified expression after the static evaluation,
9352 -- then apply a scalar range check if needed. The reason that we do this
9353 -- after the Eval call is that otherwise, the application of the range
9354 -- check may convert an illegal static expression and result in warning
9355 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9357 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9358 Apply_Scalar_Range_Check (Expr, Typ);
9359 end if;
9360 end Resolve_Qualified_Expression;
9362 ------------------------------
9363 -- Resolve_Raise_Expression --
9364 ------------------------------
9366 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9367 begin
9368 if Typ = Raise_Type then
9369 Error_Msg_N ("cannot find unique type for raise expression", N);
9370 Set_Etype (N, Any_Type);
9371 else
9372 Set_Etype (N, Typ);
9373 end if;
9374 end Resolve_Raise_Expression;
9376 -------------------
9377 -- Resolve_Range --
9378 -------------------
9380 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9381 L : constant Node_Id := Low_Bound (N);
9382 H : constant Node_Id := High_Bound (N);
9384 function First_Last_Ref return Boolean;
9385 -- Returns True if N is of the form X'First .. X'Last where X is the
9386 -- same entity for both attributes.
9388 --------------------
9389 -- First_Last_Ref --
9390 --------------------
9392 function First_Last_Ref return Boolean is
9393 Lorig : constant Node_Id := Original_Node (L);
9394 Horig : constant Node_Id := Original_Node (H);
9396 begin
9397 if Nkind (Lorig) = N_Attribute_Reference
9398 and then Nkind (Horig) = N_Attribute_Reference
9399 and then Attribute_Name (Lorig) = Name_First
9400 and then Attribute_Name (Horig) = Name_Last
9401 then
9402 declare
9403 PL : constant Node_Id := Prefix (Lorig);
9404 PH : constant Node_Id := Prefix (Horig);
9405 begin
9406 if Is_Entity_Name (PL)
9407 and then Is_Entity_Name (PH)
9408 and then Entity (PL) = Entity (PH)
9409 then
9410 return True;
9411 end if;
9412 end;
9413 end if;
9415 return False;
9416 end First_Last_Ref;
9418 -- Start of processing for Resolve_Range
9420 begin
9421 Set_Etype (N, Typ);
9422 Resolve (L, Typ);
9423 Resolve (H, Typ);
9425 -- Check for inappropriate range on unordered enumeration type
9427 if Bad_Unordered_Enumeration_Reference (N, Typ)
9429 -- Exclude X'First .. X'Last if X is the same entity for both
9431 and then not First_Last_Ref
9432 then
9433 Error_Msg_Sloc := Sloc (Typ);
9434 Error_Msg_NE
9435 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9436 end if;
9438 Check_Unset_Reference (L);
9439 Check_Unset_Reference (H);
9441 -- We have to check the bounds for being within the base range as
9442 -- required for a non-static context. Normally this is automatic and
9443 -- done as part of evaluating expressions, but the N_Range node is an
9444 -- exception, since in GNAT we consider this node to be a subexpression,
9445 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9446 -- this, but that would put the test on the main evaluation path for
9447 -- expressions.
9449 Check_Non_Static_Context (L);
9450 Check_Non_Static_Context (H);
9452 -- Check for an ambiguous range over character literals. This will
9453 -- happen with a membership test involving only literals.
9455 if Typ = Any_Character then
9456 Ambiguous_Character (L);
9457 Set_Etype (N, Any_Type);
9458 return;
9459 end if;
9461 -- If bounds are static, constant-fold them, so size computations are
9462 -- identical between front-end and back-end. Do not perform this
9463 -- transformation while analyzing generic units, as type information
9464 -- would be lost when reanalyzing the constant node in the instance.
9466 if Is_Discrete_Type (Typ) and then Expander_Active then
9467 if Is_OK_Static_Expression (L) then
9468 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9469 end if;
9471 if Is_OK_Static_Expression (H) then
9472 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9473 end if;
9474 end if;
9475 end Resolve_Range;
9477 --------------------------
9478 -- Resolve_Real_Literal --
9479 --------------------------
9481 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9482 Actual_Typ : constant Entity_Id := Etype (N);
9484 begin
9485 -- Special processing for fixed-point literals to make sure that the
9486 -- value is an exact multiple of small where this is required. We skip
9487 -- this for the universal real case, and also for generic types.
9489 if Is_Fixed_Point_Type (Typ)
9490 and then Typ /= Universal_Fixed
9491 and then Typ /= Any_Fixed
9492 and then not Is_Generic_Type (Typ)
9493 then
9494 declare
9495 Val : constant Ureal := Realval (N);
9496 Cintr : constant Ureal := Val / Small_Value (Typ);
9497 Cint : constant Uint := UR_Trunc (Cintr);
9498 Den : constant Uint := Norm_Den (Cintr);
9499 Stat : Boolean;
9501 begin
9502 -- Case of literal is not an exact multiple of the Small
9504 if Den /= 1 then
9506 -- For a source program literal for a decimal fixed-point type,
9507 -- this is statically illegal (RM 4.9(36)).
9509 if Is_Decimal_Fixed_Point_Type (Typ)
9510 and then Actual_Typ = Universal_Real
9511 and then Comes_From_Source (N)
9512 then
9513 Error_Msg_N ("value has extraneous low order digits", N);
9514 end if;
9516 -- Generate a warning if literal from source
9518 if Is_OK_Static_Expression (N)
9519 and then Warn_On_Bad_Fixed_Value
9520 then
9521 Error_Msg_N
9522 ("?b?static fixed-point value is not a multiple of Small!",
9524 end if;
9526 -- Replace literal by a value that is the exact representation
9527 -- of a value of the type, i.e. a multiple of the small value,
9528 -- by truncation, since Machine_Rounds is false for all GNAT
9529 -- fixed-point types (RM 4.9(38)).
9531 Stat := Is_OK_Static_Expression (N);
9532 Rewrite (N,
9533 Make_Real_Literal (Sloc (N),
9534 Realval => Small_Value (Typ) * Cint));
9536 Set_Is_Static_Expression (N, Stat);
9537 end if;
9539 -- In all cases, set the corresponding integer field
9541 Set_Corresponding_Integer_Value (N, Cint);
9542 end;
9543 end if;
9545 -- Now replace the actual type by the expected type as usual
9547 Set_Etype (N, Typ);
9548 Eval_Real_Literal (N);
9549 end Resolve_Real_Literal;
9551 -----------------------
9552 -- Resolve_Reference --
9553 -----------------------
9555 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9556 P : constant Node_Id := Prefix (N);
9558 begin
9559 -- Replace general access with specific type
9561 if Ekind (Etype (N)) = E_Allocator_Type then
9562 Set_Etype (N, Base_Type (Typ));
9563 end if;
9565 Resolve (P, Designated_Type (Etype (N)));
9567 -- If we are taking the reference of a volatile entity, then treat it as
9568 -- a potential modification of this entity. This is too conservative,
9569 -- but necessary because remove side effects can cause transformations
9570 -- of normal assignments into reference sequences that otherwise fail to
9571 -- notice the modification.
9573 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9574 Note_Possible_Modification (P, Sure => False);
9575 end if;
9576 end Resolve_Reference;
9578 --------------------------------
9579 -- Resolve_Selected_Component --
9580 --------------------------------
9582 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9583 Comp : Entity_Id;
9584 Comp1 : Entity_Id := Empty; -- prevent junk warning
9585 P : constant Node_Id := Prefix (N);
9586 S : constant Node_Id := Selector_Name (N);
9587 T : Entity_Id := Etype (P);
9588 I : Interp_Index;
9589 I1 : Interp_Index := 0; -- prevent junk warning
9590 It : Interp;
9591 It1 : Interp;
9592 Found : Boolean;
9594 function Init_Component return Boolean;
9595 -- Check whether this is the initialization of a component within an
9596 -- init proc (by assignment or call to another init proc). If true,
9597 -- there is no need for a discriminant check.
9599 --------------------
9600 -- Init_Component --
9601 --------------------
9603 function Init_Component return Boolean is
9604 begin
9605 return Inside_Init_Proc
9606 and then Nkind (Prefix (N)) = N_Identifier
9607 and then Chars (Prefix (N)) = Name_uInit
9608 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
9609 end Init_Component;
9611 -- Start of processing for Resolve_Selected_Component
9613 begin
9614 if Is_Overloaded (P) then
9616 -- Use the context type to select the prefix that has a selector
9617 -- of the correct name and type.
9619 Found := False;
9620 Get_First_Interp (P, I, It);
9622 Search : while Present (It.Typ) loop
9623 if Is_Access_Type (It.Typ) then
9624 T := Designated_Type (It.Typ);
9625 else
9626 T := It.Typ;
9627 end if;
9629 -- Locate selected component. For a private prefix the selector
9630 -- can denote a discriminant.
9632 if Is_Record_Type (T) or else Is_Private_Type (T) then
9634 -- The visible components of a class-wide type are those of
9635 -- the root type.
9637 if Is_Class_Wide_Type (T) then
9638 T := Etype (T);
9639 end if;
9641 Comp := First_Entity (T);
9642 while Present (Comp) loop
9643 if Chars (Comp) = Chars (S)
9644 and then Covers (Typ, Etype (Comp))
9645 then
9646 if not Found then
9647 Found := True;
9648 I1 := I;
9649 It1 := It;
9650 Comp1 := Comp;
9652 else
9653 It := Disambiguate (P, I1, I, Any_Type);
9655 if It = No_Interp then
9656 Error_Msg_N
9657 ("ambiguous prefix for selected component", N);
9658 Set_Etype (N, Typ);
9659 return;
9661 else
9662 It1 := It;
9664 -- There may be an implicit dereference. Retrieve
9665 -- designated record type.
9667 if Is_Access_Type (It1.Typ) then
9668 T := Designated_Type (It1.Typ);
9669 else
9670 T := It1.Typ;
9671 end if;
9673 if Scope (Comp1) /= T then
9675 -- Resolution chooses the new interpretation.
9676 -- Find the component with the right name.
9678 Comp1 := First_Entity (T);
9679 while Present (Comp1)
9680 and then Chars (Comp1) /= Chars (S)
9681 loop
9682 Comp1 := Next_Entity (Comp1);
9683 end loop;
9684 end if;
9686 exit Search;
9687 end if;
9688 end if;
9689 end if;
9691 Comp := Next_Entity (Comp);
9692 end loop;
9693 end if;
9695 Get_Next_Interp (I, It);
9696 end loop Search;
9698 -- There must be a legal interpretation at this point
9700 pragma Assert (Found);
9701 Resolve (P, It1.Typ);
9702 Set_Etype (N, Typ);
9703 Set_Entity_With_Checks (S, Comp1);
9705 else
9706 -- Resolve prefix with its type
9708 Resolve (P, T);
9709 end if;
9711 -- Generate cross-reference. We needed to wait until full overloading
9712 -- resolution was complete to do this, since otherwise we can't tell if
9713 -- we are an lvalue or not.
9715 if May_Be_Lvalue (N) then
9716 Generate_Reference (Entity (S), S, 'm');
9717 else
9718 Generate_Reference (Entity (S), S, 'r');
9719 end if;
9721 -- If prefix is an access type, the node will be transformed into an
9722 -- explicit dereference during expansion. The type of the node is the
9723 -- designated type of that of the prefix.
9725 if Is_Access_Type (Etype (P)) then
9726 T := Designated_Type (Etype (P));
9727 Check_Fully_Declared_Prefix (T, P);
9728 else
9729 T := Etype (P);
9730 end if;
9732 -- Set flag for expander if discriminant check required
9734 if Has_Discriminants (T)
9735 and then Ekind_In (Entity (S), E_Component, E_Discriminant)
9736 and then Present (Original_Record_Component (Entity (S)))
9737 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
9738 and then not Discriminant_Checks_Suppressed (T)
9739 and then not Init_Component
9740 then
9741 Set_Do_Discriminant_Check (N);
9742 end if;
9744 if Ekind (Entity (S)) = E_Void then
9745 Error_Msg_N ("premature use of component", S);
9746 end if;
9748 -- If the prefix is a record conversion, this may be a renamed
9749 -- discriminant whose bounds differ from those of the original
9750 -- one, so we must ensure that a range check is performed.
9752 if Nkind (P) = N_Type_Conversion
9753 and then Ekind (Entity (S)) = E_Discriminant
9754 and then Is_Discrete_Type (Typ)
9755 then
9756 Set_Etype (N, Base_Type (Typ));
9757 end if;
9759 -- Note: No Eval processing is required, because the prefix is of a
9760 -- record type, or protected type, and neither can possibly be static.
9762 -- If the record type is atomic, and the component is non-atomic, then
9763 -- this is worth a warning, since we have a situation where the access
9764 -- to the component may cause extra read/writes of the atomic array
9765 -- object, or partial word accesses, both of which may be unexpected.
9767 if Nkind (N) = N_Selected_Component
9768 and then Is_Atomic_Ref_With_Address (N)
9769 and then not Is_Atomic (Entity (S))
9770 and then not Is_Atomic (Etype (Entity (S)))
9771 then
9772 Error_Msg_N
9773 ("??access to non-atomic component of atomic record",
9774 Prefix (N));
9775 Error_Msg_N
9776 ("\??may cause unexpected accesses to atomic object",
9777 Prefix (N));
9778 end if;
9780 Analyze_Dimension (N);
9781 end Resolve_Selected_Component;
9783 -------------------
9784 -- Resolve_Shift --
9785 -------------------
9787 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
9788 B_Typ : constant Entity_Id := Base_Type (Typ);
9789 L : constant Node_Id := Left_Opnd (N);
9790 R : constant Node_Id := Right_Opnd (N);
9792 begin
9793 -- We do the resolution using the base type, because intermediate values
9794 -- in expressions always are of the base type, not a subtype of it.
9796 Resolve (L, B_Typ);
9797 Resolve (R, Standard_Natural);
9799 Check_Unset_Reference (L);
9800 Check_Unset_Reference (R);
9802 Set_Etype (N, B_Typ);
9803 Generate_Operator_Reference (N, B_Typ);
9804 Eval_Shift (N);
9805 end Resolve_Shift;
9807 ---------------------------
9808 -- Resolve_Short_Circuit --
9809 ---------------------------
9811 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
9812 B_Typ : constant Entity_Id := Base_Type (Typ);
9813 L : constant Node_Id := Left_Opnd (N);
9814 R : constant Node_Id := Right_Opnd (N);
9816 begin
9817 -- Ensure all actions associated with the left operand (e.g.
9818 -- finalization of transient controlled objects) are fully evaluated
9819 -- locally within an expression with actions. This is particularly
9820 -- helpful for coverage analysis. However this should not happen in
9821 -- generics.
9823 if Expander_Active then
9824 declare
9825 Reloc_L : constant Node_Id := Relocate_Node (L);
9826 begin
9827 Save_Interps (Old_N => L, New_N => Reloc_L);
9829 Rewrite (L,
9830 Make_Expression_With_Actions (Sloc (L),
9831 Actions => New_List,
9832 Expression => Reloc_L));
9834 -- Set Comes_From_Source on L to preserve warnings for unset
9835 -- reference.
9837 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
9838 end;
9839 end if;
9841 Resolve (L, B_Typ);
9842 Resolve (R, B_Typ);
9844 -- Check for issuing warning for always False assert/check, this happens
9845 -- when assertions are turned off, in which case the pragma Assert/Check
9846 -- was transformed into:
9848 -- if False and then <condition> then ...
9850 -- and we detect this pattern
9852 if Warn_On_Assertion_Failure
9853 and then Is_Entity_Name (R)
9854 and then Entity (R) = Standard_False
9855 and then Nkind (Parent (N)) = N_If_Statement
9856 and then Nkind (N) = N_And_Then
9857 and then Is_Entity_Name (L)
9858 and then Entity (L) = Standard_False
9859 then
9860 declare
9861 Orig : constant Node_Id := Original_Node (Parent (N));
9863 begin
9864 -- Special handling of Asssert pragma
9866 if Nkind (Orig) = N_Pragma
9867 and then Pragma_Name (Orig) = Name_Assert
9868 then
9869 declare
9870 Expr : constant Node_Id :=
9871 Original_Node
9872 (Expression
9873 (First (Pragma_Argument_Associations (Orig))));
9875 begin
9876 -- Don't warn if original condition is explicit False,
9877 -- since obviously the failure is expected in this case.
9879 if Is_Entity_Name (Expr)
9880 and then Entity (Expr) = Standard_False
9881 then
9882 null;
9884 -- Issue warning. We do not want the deletion of the
9885 -- IF/AND-THEN to take this message with it. We achieve this
9886 -- by making sure that the expanded code points to the Sloc
9887 -- of the expression, not the original pragma.
9889 else
9890 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
9891 -- The source location of the expression is not usually
9892 -- the best choice here. For example, it gets located on
9893 -- the last AND keyword in a chain of boolean expressiond
9894 -- AND'ed together. It is best to put the message on the
9895 -- first character of the assertion, which is the effect
9896 -- of the First_Node call here.
9898 Error_Msg_F
9899 ("?A?assertion would fail at run time!",
9900 Expression
9901 (First (Pragma_Argument_Associations (Orig))));
9902 end if;
9903 end;
9905 -- Similar processing for Check pragma
9907 elsif Nkind (Orig) = N_Pragma
9908 and then Pragma_Name (Orig) = Name_Check
9909 then
9910 -- Don't want to warn if original condition is explicit False
9912 declare
9913 Expr : constant Node_Id :=
9914 Original_Node
9915 (Expression
9916 (Next (First (Pragma_Argument_Associations (Orig)))));
9917 begin
9918 if Is_Entity_Name (Expr)
9919 and then Entity (Expr) = Standard_False
9920 then
9921 null;
9923 -- Post warning
9925 else
9926 -- Again use Error_Msg_F rather than Error_Msg_N, see
9927 -- comment above for an explanation of why we do this.
9929 Error_Msg_F
9930 ("?A?check would fail at run time!",
9931 Expression
9932 (Last (Pragma_Argument_Associations (Orig))));
9933 end if;
9934 end;
9935 end if;
9936 end;
9937 end if;
9939 -- Continue with processing of short circuit
9941 Check_Unset_Reference (L);
9942 Check_Unset_Reference (R);
9944 Set_Etype (N, B_Typ);
9945 Eval_Short_Circuit (N);
9946 end Resolve_Short_Circuit;
9948 -------------------
9949 -- Resolve_Slice --
9950 -------------------
9952 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
9953 Drange : constant Node_Id := Discrete_Range (N);
9954 Name : constant Node_Id := Prefix (N);
9955 Array_Type : Entity_Id := Empty;
9956 Dexpr : Node_Id := Empty;
9957 Index_Type : Entity_Id;
9959 begin
9960 if Is_Overloaded (Name) then
9962 -- Use the context type to select the prefix that yields the correct
9963 -- array type.
9965 declare
9966 I : Interp_Index;
9967 I1 : Interp_Index := 0;
9968 It : Interp;
9969 P : constant Node_Id := Prefix (N);
9970 Found : Boolean := False;
9972 begin
9973 Get_First_Interp (P, I, It);
9974 while Present (It.Typ) loop
9975 if (Is_Array_Type (It.Typ)
9976 and then Covers (Typ, It.Typ))
9977 or else (Is_Access_Type (It.Typ)
9978 and then Is_Array_Type (Designated_Type (It.Typ))
9979 and then Covers (Typ, Designated_Type (It.Typ)))
9980 then
9981 if Found then
9982 It := Disambiguate (P, I1, I, Any_Type);
9984 if It = No_Interp then
9985 Error_Msg_N ("ambiguous prefix for slicing", N);
9986 Set_Etype (N, Typ);
9987 return;
9988 else
9989 Found := True;
9990 Array_Type := It.Typ;
9991 I1 := I;
9992 end if;
9993 else
9994 Found := True;
9995 Array_Type := It.Typ;
9996 I1 := I;
9997 end if;
9998 end if;
10000 Get_Next_Interp (I, It);
10001 end loop;
10002 end;
10004 else
10005 Array_Type := Etype (Name);
10006 end if;
10008 Resolve (Name, Array_Type);
10010 if Is_Access_Type (Array_Type) then
10011 Apply_Access_Check (N);
10012 Array_Type := Designated_Type (Array_Type);
10014 -- If the prefix is an access to an unconstrained array, we must use
10015 -- the actual subtype of the object to perform the index checks. The
10016 -- object denoted by the prefix is implicit in the node, so we build
10017 -- an explicit representation for it in order to compute the actual
10018 -- subtype.
10020 if not Is_Constrained (Array_Type) then
10021 Remove_Side_Effects (Prefix (N));
10023 declare
10024 Obj : constant Node_Id :=
10025 Make_Explicit_Dereference (Sloc (N),
10026 Prefix => New_Copy_Tree (Prefix (N)));
10027 begin
10028 Set_Etype (Obj, Array_Type);
10029 Set_Parent (Obj, Parent (N));
10030 Array_Type := Get_Actual_Subtype (Obj);
10031 end;
10032 end if;
10034 elsif Is_Entity_Name (Name)
10035 or else Nkind (Name) = N_Explicit_Dereference
10036 or else (Nkind (Name) = N_Function_Call
10037 and then not Is_Constrained (Etype (Name)))
10038 then
10039 Array_Type := Get_Actual_Subtype (Name);
10041 -- If the name is a selected component that depends on discriminants,
10042 -- build an actual subtype for it. This can happen only when the name
10043 -- itself is overloaded; otherwise the actual subtype is created when
10044 -- the selected component is analyzed.
10046 elsif Nkind (Name) = N_Selected_Component
10047 and then Full_Analysis
10048 and then Depends_On_Discriminant (First_Index (Array_Type))
10049 then
10050 declare
10051 Act_Decl : constant Node_Id :=
10052 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10053 begin
10054 Insert_Action (N, Act_Decl);
10055 Array_Type := Defining_Identifier (Act_Decl);
10056 end;
10058 -- Maybe this should just be "else", instead of checking for the
10059 -- specific case of slice??? This is needed for the case where the
10060 -- prefix is an Image attribute, which gets expanded to a slice, and so
10061 -- has a constrained subtype which we want to use for the slice range
10062 -- check applied below (the range check won't get done if the
10063 -- unconstrained subtype of the 'Image is used).
10065 elsif Nkind (Name) = N_Slice then
10066 Array_Type := Etype (Name);
10067 end if;
10069 -- Obtain the type of the array index
10071 if Ekind (Array_Type) = E_String_Literal_Subtype then
10072 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10073 else
10074 Index_Type := Etype (First_Index (Array_Type));
10075 end if;
10077 -- If name was overloaded, set slice type correctly now
10079 Set_Etype (N, Array_Type);
10081 -- Handle the generation of a range check that compares the array index
10082 -- against the discrete_range. The check is not applied to internally
10083 -- built nodes associated with the expansion of dispatch tables. Check
10084 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10085 -- the unit.
10087 if Tagged_Type_Expansion
10088 and then RTU_Loaded (Ada_Tags)
10089 and then Nkind (Prefix (N)) = N_Selected_Component
10090 and then Present (Entity (Selector_Name (Prefix (N))))
10091 and then Entity (Selector_Name (Prefix (N))) =
10092 RTE_Record_Component (RE_Prims_Ptr)
10093 then
10094 null;
10096 -- The discrete_range is specified by a subtype indication. Create a
10097 -- shallow copy and inherit the type, parent and source location from
10098 -- the discrete_range. This ensures that the range check is inserted
10099 -- relative to the slice and that the runtime exception points to the
10100 -- proper construct.
10102 elsif Is_Entity_Name (Drange) then
10103 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10105 Set_Etype (Dexpr, Etype (Drange));
10106 Set_Parent (Dexpr, Parent (Drange));
10107 Set_Sloc (Dexpr, Sloc (Drange));
10109 -- The discrete_range is a regular range. Resolve the bounds and remove
10110 -- their side effects.
10112 else
10113 Resolve (Drange, Base_Type (Index_Type));
10115 if Nkind (Drange) = N_Range then
10116 Force_Evaluation (Low_Bound (Drange));
10117 Force_Evaluation (High_Bound (Drange));
10119 Dexpr := Drange;
10120 end if;
10121 end if;
10123 if Present (Dexpr) then
10124 Apply_Range_Check (Dexpr, Index_Type);
10125 end if;
10127 Set_Slice_Subtype (N);
10129 -- Check bad use of type with predicates
10131 declare
10132 Subt : Entity_Id;
10134 begin
10135 if Nkind (Drange) = N_Subtype_Indication
10136 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10137 then
10138 Subt := Entity (Subtype_Mark (Drange));
10139 else
10140 Subt := Etype (Drange);
10141 end if;
10143 if Has_Predicates (Subt) then
10144 Bad_Predicated_Subtype_Use
10145 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10146 end if;
10147 end;
10149 -- Otherwise here is where we check suspicious indexes
10151 if Nkind (Drange) = N_Range then
10152 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10153 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10154 end if;
10156 Analyze_Dimension (N);
10157 Eval_Slice (N);
10158 end Resolve_Slice;
10160 ----------------------------
10161 -- Resolve_String_Literal --
10162 ----------------------------
10164 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10165 C_Typ : constant Entity_Id := Component_Type (Typ);
10166 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10167 Loc : constant Source_Ptr := Sloc (N);
10168 Str : constant String_Id := Strval (N);
10169 Strlen : constant Nat := String_Length (Str);
10170 Subtype_Id : Entity_Id;
10171 Need_Check : Boolean;
10173 begin
10174 -- For a string appearing in a concatenation, defer creation of the
10175 -- string_literal_subtype until the end of the resolution of the
10176 -- concatenation, because the literal may be constant-folded away. This
10177 -- is a useful optimization for long concatenation expressions.
10179 -- If the string is an aggregate built for a single character (which
10180 -- happens in a non-static context) or a is null string to which special
10181 -- checks may apply, we build the subtype. Wide strings must also get a
10182 -- string subtype if they come from a one character aggregate. Strings
10183 -- generated by attributes might be static, but it is often hard to
10184 -- determine whether the enclosing context is static, so we generate
10185 -- subtypes for them as well, thus losing some rarer optimizations ???
10186 -- Same for strings that come from a static conversion.
10188 Need_Check :=
10189 (Strlen = 0 and then Typ /= Standard_String)
10190 or else Nkind (Parent (N)) /= N_Op_Concat
10191 or else (N /= Left_Opnd (Parent (N))
10192 and then N /= Right_Opnd (Parent (N)))
10193 or else ((Typ = Standard_Wide_String
10194 or else Typ = Standard_Wide_Wide_String)
10195 and then Nkind (Original_Node (N)) /= N_String_Literal);
10197 -- If the resolving type is itself a string literal subtype, we can just
10198 -- reuse it, since there is no point in creating another.
10200 if Ekind (Typ) = E_String_Literal_Subtype then
10201 Subtype_Id := Typ;
10203 elsif Nkind (Parent (N)) = N_Op_Concat
10204 and then not Need_Check
10205 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10206 N_Attribute_Reference,
10207 N_Qualified_Expression,
10208 N_Type_Conversion)
10209 then
10210 Subtype_Id := Typ;
10212 -- Do not generate a string literal subtype for the default expression
10213 -- of a formal parameter in GNATprove mode. This is because the string
10214 -- subtype is associated with the freezing actions of the subprogram,
10215 -- however freezing is disabled in GNATprove mode and as a result the
10216 -- subtype is unavailable.
10218 elsif GNATprove_Mode
10219 and then Nkind (Parent (N)) = N_Parameter_Specification
10220 then
10221 Subtype_Id := Typ;
10223 -- Otherwise we must create a string literal subtype. Note that the
10224 -- whole idea of string literal subtypes is simply to avoid the need
10225 -- for building a full fledged array subtype for each literal.
10227 else
10228 Set_String_Literal_Subtype (N, Typ);
10229 Subtype_Id := Etype (N);
10230 end if;
10232 if Nkind (Parent (N)) /= N_Op_Concat
10233 or else Need_Check
10234 then
10235 Set_Etype (N, Subtype_Id);
10236 Eval_String_Literal (N);
10237 end if;
10239 if Is_Limited_Composite (Typ)
10240 or else Is_Private_Composite (Typ)
10241 then
10242 Error_Msg_N ("string literal not available for private array", N);
10243 Set_Etype (N, Any_Type);
10244 return;
10245 end if;
10247 -- The validity of a null string has been checked in the call to
10248 -- Eval_String_Literal.
10250 if Strlen = 0 then
10251 return;
10253 -- Always accept string literal with component type Any_Character, which
10254 -- occurs in error situations and in comparisons of literals, both of
10255 -- which should accept all literals.
10257 elsif R_Typ = Any_Character then
10258 return;
10260 -- If the type is bit-packed, then we always transform the string
10261 -- literal into a full fledged aggregate.
10263 elsif Is_Bit_Packed_Array (Typ) then
10264 null;
10266 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10268 else
10269 -- For Standard.Wide_Wide_String, or any other type whose component
10270 -- type is Standard.Wide_Wide_Character, we know that all the
10271 -- characters in the string must be acceptable, since the parser
10272 -- accepted the characters as valid character literals.
10274 if R_Typ = Standard_Wide_Wide_Character then
10275 null;
10277 -- For the case of Standard.String, or any other type whose component
10278 -- type is Standard.Character, we must make sure that there are no
10279 -- wide characters in the string, i.e. that it is entirely composed
10280 -- of characters in range of type Character.
10282 -- If the string literal is the result of a static concatenation, the
10283 -- test has already been performed on the components, and need not be
10284 -- repeated.
10286 elsif R_Typ = Standard_Character
10287 and then Nkind (Original_Node (N)) /= N_Op_Concat
10288 then
10289 for J in 1 .. Strlen loop
10290 if not In_Character_Range (Get_String_Char (Str, J)) then
10292 -- If we are out of range, post error. This is one of the
10293 -- very few places that we place the flag in the middle of
10294 -- a token, right under the offending wide character. Not
10295 -- quite clear if this is right wrt wide character encoding
10296 -- sequences, but it's only an error message.
10298 Error_Msg
10299 ("literal out of range of type Standard.Character",
10300 Source_Ptr (Int (Loc) + J));
10301 return;
10302 end if;
10303 end loop;
10305 -- For the case of Standard.Wide_String, or any other type whose
10306 -- component type is Standard.Wide_Character, we must make sure that
10307 -- there are no wide characters in the string, i.e. that it is
10308 -- entirely composed of characters in range of type Wide_Character.
10310 -- If the string literal is the result of a static concatenation,
10311 -- the test has already been performed on the components, and need
10312 -- not be repeated.
10314 elsif R_Typ = Standard_Wide_Character
10315 and then Nkind (Original_Node (N)) /= N_Op_Concat
10316 then
10317 for J in 1 .. Strlen loop
10318 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10320 -- If we are out of range, post error. This is one of the
10321 -- very few places that we place the flag in the middle of
10322 -- a token, right under the offending wide character.
10324 -- This is not quite right, because characters in general
10325 -- will take more than one character position ???
10327 Error_Msg
10328 ("literal out of range of type Standard.Wide_Character",
10329 Source_Ptr (Int (Loc) + J));
10330 return;
10331 end if;
10332 end loop;
10334 -- If the root type is not a standard character, then we will convert
10335 -- the string into an aggregate and will let the aggregate code do
10336 -- the checking. Standard Wide_Wide_Character is also OK here.
10338 else
10339 null;
10340 end if;
10342 -- See if the component type of the array corresponding to the string
10343 -- has compile time known bounds. If yes we can directly check
10344 -- whether the evaluation of the string will raise constraint error.
10345 -- Otherwise we need to transform the string literal into the
10346 -- corresponding character aggregate and let the aggregate code do
10347 -- the checking.
10349 if Is_Standard_Character_Type (R_Typ) then
10351 -- Check for the case of full range, where we are definitely OK
10353 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10354 return;
10355 end if;
10357 -- Here the range is not the complete base type range, so check
10359 declare
10360 Comp_Typ_Lo : constant Node_Id :=
10361 Type_Low_Bound (Component_Type (Typ));
10362 Comp_Typ_Hi : constant Node_Id :=
10363 Type_High_Bound (Component_Type (Typ));
10365 Char_Val : Uint;
10367 begin
10368 if Compile_Time_Known_Value (Comp_Typ_Lo)
10369 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10370 then
10371 for J in 1 .. Strlen loop
10372 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10374 if Char_Val < Expr_Value (Comp_Typ_Lo)
10375 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10376 then
10377 Apply_Compile_Time_Constraint_Error
10378 (N, "character out of range??",
10379 CE_Range_Check_Failed,
10380 Loc => Source_Ptr (Int (Loc) + J));
10381 end if;
10382 end loop;
10384 return;
10385 end if;
10386 end;
10387 end if;
10388 end if;
10390 -- If we got here we meed to transform the string literal into the
10391 -- equivalent qualified positional array aggregate. This is rather
10392 -- heavy artillery for this situation, but it is hard work to avoid.
10394 declare
10395 Lits : constant List_Id := New_List;
10396 P : Source_Ptr := Loc + 1;
10397 C : Char_Code;
10399 begin
10400 -- Build the character literals, we give them source locations that
10401 -- correspond to the string positions, which is a bit tricky given
10402 -- the possible presence of wide character escape sequences.
10404 for J in 1 .. Strlen loop
10405 C := Get_String_Char (Str, J);
10406 Set_Character_Literal_Name (C);
10408 Append_To (Lits,
10409 Make_Character_Literal (P,
10410 Chars => Name_Find,
10411 Char_Literal_Value => UI_From_CC (C)));
10413 if In_Character_Range (C) then
10414 P := P + 1;
10416 -- Should we have a call to Skip_Wide here ???
10418 -- ??? else
10419 -- Skip_Wide (P);
10421 end if;
10422 end loop;
10424 Rewrite (N,
10425 Make_Qualified_Expression (Loc,
10426 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10427 Expression =>
10428 Make_Aggregate (Loc, Expressions => Lits)));
10430 Analyze_And_Resolve (N, Typ);
10431 end;
10432 end Resolve_String_Literal;
10434 -----------------------------
10435 -- Resolve_Type_Conversion --
10436 -----------------------------
10438 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10439 Conv_OK : constant Boolean := Conversion_OK (N);
10440 Operand : constant Node_Id := Expression (N);
10441 Operand_Typ : constant Entity_Id := Etype (Operand);
10442 Target_Typ : constant Entity_Id := Etype (N);
10443 Rop : Node_Id;
10444 Orig_N : Node_Id;
10445 Orig_T : Node_Id;
10447 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10448 -- Set to False to suppress cases where we want to suppress the test
10449 -- for redundancy to avoid possible false positives on this warning.
10451 begin
10452 if not Conv_OK
10453 and then not Valid_Conversion (N, Target_Typ, Operand)
10454 then
10455 return;
10456 end if;
10458 -- If the Operand Etype is Universal_Fixed, then the conversion is
10459 -- never redundant. We need this check because by the time we have
10460 -- finished the rather complex transformation, the conversion looks
10461 -- redundant when it is not.
10463 if Operand_Typ = Universal_Fixed then
10464 Test_Redundant := False;
10466 -- If the operand is marked as Any_Fixed, then special processing is
10467 -- required. This is also a case where we suppress the test for a
10468 -- redundant conversion, since most certainly it is not redundant.
10470 elsif Operand_Typ = Any_Fixed then
10471 Test_Redundant := False;
10473 -- Mixed-mode operation involving a literal. Context must be a fixed
10474 -- type which is applied to the literal subsequently.
10476 if Is_Fixed_Point_Type (Typ) then
10477 Set_Etype (Operand, Universal_Real);
10479 elsif Is_Numeric_Type (Typ)
10480 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10481 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10482 or else
10483 Etype (Left_Opnd (Operand)) = Universal_Real)
10484 then
10485 -- Return if expression is ambiguous
10487 if Unique_Fixed_Point_Type (N) = Any_Type then
10488 return;
10490 -- If nothing else, the available fixed type is Duration
10492 else
10493 Set_Etype (Operand, Standard_Duration);
10494 end if;
10496 -- Resolve the real operand with largest available precision
10498 if Etype (Right_Opnd (Operand)) = Universal_Real then
10499 Rop := New_Copy_Tree (Right_Opnd (Operand));
10500 else
10501 Rop := New_Copy_Tree (Left_Opnd (Operand));
10502 end if;
10504 Resolve (Rop, Universal_Real);
10506 -- If the operand is a literal (it could be a non-static and
10507 -- illegal exponentiation) check whether the use of Duration
10508 -- is potentially inaccurate.
10510 if Nkind (Rop) = N_Real_Literal
10511 and then Realval (Rop) /= Ureal_0
10512 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10513 then
10514 Error_Msg_N
10515 ("??universal real operand can only "
10516 & "be interpreted as Duration!", Rop);
10517 Error_Msg_N
10518 ("\??precision will be lost in the conversion!", Rop);
10519 end if;
10521 elsif Is_Numeric_Type (Typ)
10522 and then Nkind (Operand) in N_Op
10523 and then Unique_Fixed_Point_Type (N) /= Any_Type
10524 then
10525 Set_Etype (Operand, Standard_Duration);
10527 else
10528 Error_Msg_N ("invalid context for mixed mode operation", N);
10529 Set_Etype (Operand, Any_Type);
10530 return;
10531 end if;
10532 end if;
10534 Resolve (Operand);
10536 -- In SPARK, a type conversion between array types should be restricted
10537 -- to types which have matching static bounds.
10539 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10540 -- operation if not needed.
10542 if Restriction_Check_Required (SPARK_05)
10543 and then Is_Array_Type (Target_Typ)
10544 and then Is_Array_Type (Operand_Typ)
10545 and then Operand_Typ /= Any_Composite -- or else Operand in error
10546 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10547 then
10548 Check_SPARK_05_Restriction
10549 ("array types should have matching static bounds", N);
10550 end if;
10552 -- In formal mode, the operand of an ancestor type conversion must be an
10553 -- object (not an expression).
10555 if Is_Tagged_Type (Target_Typ)
10556 and then not Is_Class_Wide_Type (Target_Typ)
10557 and then Is_Tagged_Type (Operand_Typ)
10558 and then not Is_Class_Wide_Type (Operand_Typ)
10559 and then Is_Ancestor (Target_Typ, Operand_Typ)
10560 and then not Is_SPARK_05_Object_Reference (Operand)
10561 then
10562 Check_SPARK_05_Restriction ("object required", Operand);
10563 end if;
10565 Analyze_Dimension (N);
10567 -- Note: we do the Eval_Type_Conversion call before applying the
10568 -- required checks for a subtype conversion. This is important, since
10569 -- both are prepared under certain circumstances to change the type
10570 -- conversion to a constraint error node, but in the case of
10571 -- Eval_Type_Conversion this may reflect an illegality in the static
10572 -- case, and we would miss the illegality (getting only a warning
10573 -- message), if we applied the type conversion checks first.
10575 Eval_Type_Conversion (N);
10577 -- Even when evaluation is not possible, we may be able to simplify the
10578 -- conversion or its expression. This needs to be done before applying
10579 -- checks, since otherwise the checks may use the original expression
10580 -- and defeat the simplifications. This is specifically the case for
10581 -- elimination of the floating-point Truncation attribute in
10582 -- float-to-int conversions.
10584 Simplify_Type_Conversion (N);
10586 -- If after evaluation we still have a type conversion, then we may need
10587 -- to apply checks required for a subtype conversion.
10589 -- Skip these type conversion checks if universal fixed operands
10590 -- operands involved, since range checks are handled separately for
10591 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
10593 if Nkind (N) = N_Type_Conversion
10594 and then not Is_Generic_Type (Root_Type (Target_Typ))
10595 and then Target_Typ /= Universal_Fixed
10596 and then Operand_Typ /= Universal_Fixed
10597 then
10598 Apply_Type_Conversion_Checks (N);
10599 end if;
10601 -- Issue warning for conversion of simple object to its own type. We
10602 -- have to test the original nodes, since they may have been rewritten
10603 -- by various optimizations.
10605 Orig_N := Original_Node (N);
10607 -- Here we test for a redundant conversion if the warning mode is
10608 -- active (and was not locally reset), and we have a type conversion
10609 -- from source not appearing in a generic instance.
10611 if Test_Redundant
10612 and then Nkind (Orig_N) = N_Type_Conversion
10613 and then Comes_From_Source (Orig_N)
10614 and then not In_Instance
10615 then
10616 Orig_N := Original_Node (Expression (Orig_N));
10617 Orig_T := Target_Typ;
10619 -- If the node is part of a larger expression, the Target_Type
10620 -- may not be the original type of the node if the context is a
10621 -- condition. Recover original type to see if conversion is needed.
10623 if Is_Boolean_Type (Orig_T)
10624 and then Nkind (Parent (N)) in N_Op
10625 then
10626 Orig_T := Etype (Parent (N));
10627 end if;
10629 -- If we have an entity name, then give the warning if the entity
10630 -- is the right type, or if it is a loop parameter covered by the
10631 -- original type (that's needed because loop parameters have an
10632 -- odd subtype coming from the bounds).
10634 if (Is_Entity_Name (Orig_N)
10635 and then
10636 (Etype (Entity (Orig_N)) = Orig_T
10637 or else
10638 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
10639 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
10641 -- If not an entity, then type of expression must match
10643 or else Etype (Orig_N) = Orig_T
10644 then
10645 -- One more check, do not give warning if the analyzed conversion
10646 -- has an expression with non-static bounds, and the bounds of the
10647 -- target are static. This avoids junk warnings in cases where the
10648 -- conversion is necessary to establish staticness, for example in
10649 -- a case statement.
10651 if not Is_OK_Static_Subtype (Operand_Typ)
10652 and then Is_OK_Static_Subtype (Target_Typ)
10653 then
10654 null;
10656 -- Finally, if this type conversion occurs in a context requiring
10657 -- a prefix, and the expression is a qualified expression then the
10658 -- type conversion is not redundant, since a qualified expression
10659 -- is not a prefix, whereas a type conversion is. For example, "X
10660 -- := T'(Funx(...)).Y;" is illegal because a selected component
10661 -- requires a prefix, but a type conversion makes it legal: "X :=
10662 -- T(T'(Funx(...))).Y;"
10664 -- In Ada 2012, a qualified expression is a name, so this idiom is
10665 -- no longer needed, but we still suppress the warning because it
10666 -- seems unfriendly for warnings to pop up when you switch to the
10667 -- newer language version.
10669 elsif Nkind (Orig_N) = N_Qualified_Expression
10670 and then Nkind_In (Parent (N), N_Attribute_Reference,
10671 N_Indexed_Component,
10672 N_Selected_Component,
10673 N_Slice,
10674 N_Explicit_Dereference)
10675 then
10676 null;
10678 -- Never warn on conversion to Long_Long_Integer'Base since
10679 -- that is most likely an artifact of the extended overflow
10680 -- checking and comes from complex expanded code.
10682 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
10683 null;
10685 -- Here we give the redundant conversion warning. If it is an
10686 -- entity, give the name of the entity in the message. If not,
10687 -- just mention the expression.
10689 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
10691 else
10692 if Is_Entity_Name (Orig_N) then
10693 Error_Msg_Node_2 := Orig_T;
10694 Error_Msg_NE -- CODEFIX
10695 ("??redundant conversion, & is of type &!",
10696 N, Entity (Orig_N));
10697 else
10698 Error_Msg_NE
10699 ("??redundant conversion, expression is of type&!",
10700 N, Orig_T);
10701 end if;
10702 end if;
10703 end if;
10704 end if;
10706 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
10707 -- No need to perform any interface conversion if the type of the
10708 -- expression coincides with the target type.
10710 if Ada_Version >= Ada_2005
10711 and then Expander_Active
10712 and then Operand_Typ /= Target_Typ
10713 then
10714 declare
10715 Opnd : Entity_Id := Operand_Typ;
10716 Target : Entity_Id := Target_Typ;
10718 begin
10719 -- If the type of the operand is a limited view, use the non-
10720 -- limited view when available.
10722 if From_Limited_With (Opnd)
10723 and then Ekind (Opnd) in Incomplete_Kind
10724 and then Present (Non_Limited_View (Opnd))
10725 then
10726 Opnd := Non_Limited_View (Opnd);
10727 Set_Etype (Expression (N), Opnd);
10728 end if;
10730 if Is_Access_Type (Opnd) then
10731 Opnd := Designated_Type (Opnd);
10732 end if;
10734 if Is_Access_Type (Target_Typ) then
10735 Target := Designated_Type (Target);
10736 end if;
10738 if Opnd = Target then
10739 null;
10741 -- Conversion from interface type
10743 elsif Is_Interface (Opnd) then
10745 -- Ada 2005 (AI-217): Handle entities from limited views
10747 if From_Limited_With (Opnd) then
10748 Error_Msg_Qual_Level := 99;
10749 Error_Msg_NE -- CODEFIX
10750 ("missing WITH clause on package &", N,
10751 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
10752 Error_Msg_N
10753 ("type conversions require visibility of the full view",
10756 elsif From_Limited_With (Target)
10757 and then not
10758 (Is_Access_Type (Target_Typ)
10759 and then Present (Non_Limited_View (Etype (Target))))
10760 then
10761 Error_Msg_Qual_Level := 99;
10762 Error_Msg_NE -- CODEFIX
10763 ("missing WITH clause on package &", N,
10764 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
10765 Error_Msg_N
10766 ("type conversions require visibility of the full view",
10769 else
10770 Expand_Interface_Conversion (N);
10771 end if;
10773 -- Conversion to interface type
10775 elsif Is_Interface (Target) then
10777 -- Handle subtypes
10779 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
10780 Opnd := Etype (Opnd);
10781 end if;
10783 if Is_Class_Wide_Type (Opnd)
10784 or else Interface_Present_In_Ancestor
10785 (Typ => Opnd,
10786 Iface => Target)
10787 then
10788 Expand_Interface_Conversion (N);
10789 else
10790 Error_Msg_Name_1 := Chars (Etype (Target));
10791 Error_Msg_Name_2 := Chars (Opnd);
10792 Error_Msg_N
10793 ("wrong interface conversion (% is not a progenitor "
10794 & "of %)", N);
10795 end if;
10796 end if;
10797 end;
10798 end if;
10800 -- Ada 2012: if target type has predicates, the result requires a
10801 -- predicate check. If the context is a call to another predicate
10802 -- check we must prevent infinite recursion.
10804 if Has_Predicates (Target_Typ) then
10805 if Nkind (Parent (N)) = N_Function_Call
10806 and then Present (Name (Parent (N)))
10807 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
10808 or else
10809 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
10810 then
10811 null;
10813 else
10814 Apply_Predicate_Check (N, Target_Typ);
10815 end if;
10816 end if;
10818 -- If at this stage we have a real to integer conversion, make sure
10819 -- that the Do_Range_Check flag is set, because such conversions in
10820 -- general need a range check. We only need this if expansion is off
10821 -- or we are in GNATProve mode.
10823 if Nkind (N) = N_Type_Conversion
10824 and then (GNATprove_Mode or not Expander_Active)
10825 and then Is_Integer_Type (Target_Typ)
10826 and then Is_Real_Type (Operand_Typ)
10827 then
10828 Set_Do_Range_Check (Operand);
10829 end if;
10830 end Resolve_Type_Conversion;
10832 ----------------------
10833 -- Resolve_Unary_Op --
10834 ----------------------
10836 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
10837 B_Typ : constant Entity_Id := Base_Type (Typ);
10838 R : constant Node_Id := Right_Opnd (N);
10839 OK : Boolean;
10840 Lo : Uint;
10841 Hi : Uint;
10843 begin
10844 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
10845 Error_Msg_Name_1 := Chars (Typ);
10846 Check_SPARK_05_Restriction
10847 ("unary operator not defined for modular type%", N);
10848 end if;
10850 -- Deal with intrinsic unary operators
10852 if Comes_From_Source (N)
10853 and then Ekind (Entity (N)) = E_Function
10854 and then Is_Imported (Entity (N))
10855 and then Is_Intrinsic_Subprogram (Entity (N))
10856 then
10857 Resolve_Intrinsic_Unary_Operator (N, Typ);
10858 return;
10859 end if;
10861 -- Deal with universal cases
10863 if Etype (R) = Universal_Integer
10864 or else
10865 Etype (R) = Universal_Real
10866 then
10867 Check_For_Visible_Operator (N, B_Typ);
10868 end if;
10870 Set_Etype (N, B_Typ);
10871 Resolve (R, B_Typ);
10873 -- Generate warning for expressions like abs (x mod 2)
10875 if Warn_On_Redundant_Constructs
10876 and then Nkind (N) = N_Op_Abs
10877 then
10878 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
10880 if OK and then Hi >= Lo and then Lo >= 0 then
10881 Error_Msg_N -- CODEFIX
10882 ("?r?abs applied to known non-negative value has no effect", N);
10883 end if;
10884 end if;
10886 -- Deal with reference generation
10888 Check_Unset_Reference (R);
10889 Generate_Operator_Reference (N, B_Typ);
10890 Analyze_Dimension (N);
10891 Eval_Unary_Op (N);
10893 -- Set overflow checking bit. Much cleverer code needed here eventually
10894 -- and perhaps the Resolve routines should be separated for the various
10895 -- arithmetic operations, since they will need different processing ???
10897 if Nkind (N) in N_Op then
10898 if not Overflow_Checks_Suppressed (Etype (N)) then
10899 Enable_Overflow_Check (N);
10900 end if;
10901 end if;
10903 -- Generate warning for expressions like -5 mod 3 for integers. No need
10904 -- to worry in the floating-point case, since parens do not affect the
10905 -- result so there is no point in giving in a warning.
10907 declare
10908 Norig : constant Node_Id := Original_Node (N);
10909 Rorig : Node_Id;
10910 Val : Uint;
10911 HB : Uint;
10912 LB : Uint;
10913 Lval : Uint;
10914 Opnd : Node_Id;
10916 begin
10917 if Warn_On_Questionable_Missing_Parens
10918 and then Comes_From_Source (Norig)
10919 and then Is_Integer_Type (Typ)
10920 and then Nkind (Norig) = N_Op_Minus
10921 then
10922 Rorig := Original_Node (Right_Opnd (Norig));
10924 -- We are looking for cases where the right operand is not
10925 -- parenthesized, and is a binary operator, multiply, divide, or
10926 -- mod. These are the cases where the grouping can affect results.
10928 if Paren_Count (Rorig) = 0
10929 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
10930 then
10931 -- For mod, we always give the warning, since the value is
10932 -- affected by the parenthesization (e.g. (-5) mod 315 /=
10933 -- -(5 mod 315)). But for the other cases, the only concern is
10934 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
10935 -- overflows, but (-2) * 64 does not). So we try to give the
10936 -- message only when overflow is possible.
10938 if Nkind (Rorig) /= N_Op_Mod
10939 and then Compile_Time_Known_Value (R)
10940 then
10941 Val := Expr_Value (R);
10943 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
10944 HB := Expr_Value (Type_High_Bound (Typ));
10945 else
10946 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
10947 end if;
10949 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
10950 LB := Expr_Value (Type_Low_Bound (Typ));
10951 else
10952 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
10953 end if;
10955 -- Note that the test below is deliberately excluding the
10956 -- largest negative number, since that is a potentially
10957 -- troublesome case (e.g. -2 * x, where the result is the
10958 -- largest negative integer has an overflow with 2 * x).
10960 if Val > LB and then Val <= HB then
10961 return;
10962 end if;
10963 end if;
10965 -- For the multiplication case, the only case we have to worry
10966 -- about is when (-a)*b is exactly the largest negative number
10967 -- so that -(a*b) can cause overflow. This can only happen if
10968 -- a is a power of 2, and more generally if any operand is a
10969 -- constant that is not a power of 2, then the parentheses
10970 -- cannot affect whether overflow occurs. We only bother to
10971 -- test the left most operand
10973 -- Loop looking at left operands for one that has known value
10975 Opnd := Rorig;
10976 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
10977 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
10978 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
10980 -- Operand value of 0 or 1 skips warning
10982 if Lval <= 1 then
10983 return;
10985 -- Otherwise check power of 2, if power of 2, warn, if
10986 -- anything else, skip warning.
10988 else
10989 while Lval /= 2 loop
10990 if Lval mod 2 = 1 then
10991 return;
10992 else
10993 Lval := Lval / 2;
10994 end if;
10995 end loop;
10997 exit Opnd_Loop;
10998 end if;
10999 end if;
11001 -- Keep looking at left operands
11003 Opnd := Left_Opnd (Opnd);
11004 end loop Opnd_Loop;
11006 -- For rem or "/" we can only have a problematic situation
11007 -- if the divisor has a value of minus one or one. Otherwise
11008 -- overflow is impossible (divisor > 1) or we have a case of
11009 -- division by zero in any case.
11011 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11012 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11013 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11014 then
11015 return;
11016 end if;
11018 -- If we fall through warning should be issued
11020 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11022 Error_Msg_N
11023 ("??unary minus expression should be parenthesized here!", N);
11024 end if;
11025 end if;
11026 end;
11027 end Resolve_Unary_Op;
11029 ----------------------------------
11030 -- Resolve_Unchecked_Expression --
11031 ----------------------------------
11033 procedure Resolve_Unchecked_Expression
11034 (N : Node_Id;
11035 Typ : Entity_Id)
11037 begin
11038 Resolve (Expression (N), Typ, Suppress => All_Checks);
11039 Set_Etype (N, Typ);
11040 end Resolve_Unchecked_Expression;
11042 ---------------------------------------
11043 -- Resolve_Unchecked_Type_Conversion --
11044 ---------------------------------------
11046 procedure Resolve_Unchecked_Type_Conversion
11047 (N : Node_Id;
11048 Typ : Entity_Id)
11050 pragma Warnings (Off, Typ);
11052 Operand : constant Node_Id := Expression (N);
11053 Opnd_Type : constant Entity_Id := Etype (Operand);
11055 begin
11056 -- Resolve operand using its own type
11058 Resolve (Operand, Opnd_Type);
11060 -- In an inlined context, the unchecked conversion may be applied
11061 -- to a literal, in which case its type is the type of the context.
11062 -- (In other contexts conversions cannot apply to literals).
11064 if In_Inlined_Body
11065 and then (Opnd_Type = Any_Character or else
11066 Opnd_Type = Any_Integer or else
11067 Opnd_Type = Any_Real)
11068 then
11069 Set_Etype (Operand, Typ);
11070 end if;
11072 Analyze_Dimension (N);
11073 Eval_Unchecked_Conversion (N);
11074 end Resolve_Unchecked_Type_Conversion;
11076 ------------------------------
11077 -- Rewrite_Operator_As_Call --
11078 ------------------------------
11080 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11081 Loc : constant Source_Ptr := Sloc (N);
11082 Actuals : constant List_Id := New_List;
11083 New_N : Node_Id;
11085 begin
11086 if Nkind (N) in N_Binary_Op then
11087 Append (Left_Opnd (N), Actuals);
11088 end if;
11090 Append (Right_Opnd (N), Actuals);
11092 New_N :=
11093 Make_Function_Call (Sloc => Loc,
11094 Name => New_Occurrence_Of (Nam, Loc),
11095 Parameter_Associations => Actuals);
11097 Preserve_Comes_From_Source (New_N, N);
11098 Preserve_Comes_From_Source (Name (New_N), N);
11099 Rewrite (N, New_N);
11100 Set_Etype (N, Etype (Nam));
11101 end Rewrite_Operator_As_Call;
11103 ------------------------------
11104 -- Rewrite_Renamed_Operator --
11105 ------------------------------
11107 procedure Rewrite_Renamed_Operator
11108 (N : Node_Id;
11109 Op : Entity_Id;
11110 Typ : Entity_Id)
11112 Nam : constant Name_Id := Chars (Op);
11113 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11114 Op_Node : Node_Id;
11116 begin
11117 -- Do not perform this transformation within a pre/postcondition,
11118 -- because the expression will be re-analyzed, and the transformation
11119 -- might affect the visibility of the operator, e.g. in an instance.
11121 if In_Assertion_Expr > 0 then
11122 return;
11123 end if;
11125 -- Rewrite the operator node using the real operator, not its renaming.
11126 -- Exclude user-defined intrinsic operations of the same name, which are
11127 -- treated separately and rewritten as calls.
11129 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11130 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11131 Set_Chars (Op_Node, Nam);
11132 Set_Etype (Op_Node, Etype (N));
11133 Set_Entity (Op_Node, Op);
11134 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11136 -- Indicate that both the original entity and its renaming are
11137 -- referenced at this point.
11139 Generate_Reference (Entity (N), N);
11140 Generate_Reference (Op, N);
11142 if Is_Binary then
11143 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11144 end if;
11146 Rewrite (N, Op_Node);
11148 -- If the context type is private, add the appropriate conversions so
11149 -- that the operator is applied to the full view. This is done in the
11150 -- routines that resolve intrinsic operators.
11152 if Is_Intrinsic_Subprogram (Op)
11153 and then Is_Private_Type (Typ)
11154 then
11155 case Nkind (N) is
11156 when N_Op_Add | N_Op_Subtract | N_Op_Multiply | N_Op_Divide |
11157 N_Op_Expon | N_Op_Mod | N_Op_Rem =>
11158 Resolve_Intrinsic_Operator (N, Typ);
11160 when N_Op_Plus | N_Op_Minus | N_Op_Abs =>
11161 Resolve_Intrinsic_Unary_Operator (N, Typ);
11163 when others =>
11164 Resolve (N, Typ);
11165 end case;
11166 end if;
11168 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11170 -- Operator renames a user-defined operator of the same name. Use the
11171 -- original operator in the node, which is the one Gigi knows about.
11173 Set_Entity (N, Op);
11174 Set_Is_Overloaded (N, False);
11175 end if;
11176 end Rewrite_Renamed_Operator;
11178 -----------------------
11179 -- Set_Slice_Subtype --
11180 -----------------------
11182 -- Build an implicit subtype declaration to represent the type delivered by
11183 -- the slice. This is an abbreviated version of an array subtype. We define
11184 -- an index subtype for the slice, using either the subtype name or the
11185 -- discrete range of the slice. To be consistent with index usage elsewhere
11186 -- we create a list header to hold the single index. This list is not
11187 -- otherwise attached to the syntax tree.
11189 procedure Set_Slice_Subtype (N : Node_Id) is
11190 Loc : constant Source_Ptr := Sloc (N);
11191 Index_List : constant List_Id := New_List;
11192 Index : Node_Id;
11193 Index_Subtype : Entity_Id;
11194 Index_Type : Entity_Id;
11195 Slice_Subtype : Entity_Id;
11196 Drange : constant Node_Id := Discrete_Range (N);
11198 begin
11199 Index_Type := Base_Type (Etype (Drange));
11201 if Is_Entity_Name (Drange) then
11202 Index_Subtype := Entity (Drange);
11204 else
11205 -- We force the evaluation of a range. This is definitely needed in
11206 -- the renamed case, and seems safer to do unconditionally. Note in
11207 -- any case that since we will create and insert an Itype referring
11208 -- to this range, we must make sure any side effect removal actions
11209 -- are inserted before the Itype definition.
11211 if Nkind (Drange) = N_Range then
11212 Force_Evaluation (Low_Bound (Drange));
11213 Force_Evaluation (High_Bound (Drange));
11215 -- If the discrete range is given by a subtype indication, the
11216 -- type of the slice is the base of the subtype mark.
11218 elsif Nkind (Drange) = N_Subtype_Indication then
11219 declare
11220 R : constant Node_Id := Range_Expression (Constraint (Drange));
11221 begin
11222 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11223 Force_Evaluation (Low_Bound (R));
11224 Force_Evaluation (High_Bound (R));
11225 end;
11226 end if;
11228 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11230 -- Take a new copy of Drange (where bounds have been rewritten to
11231 -- reference side-effect-free names). Using a separate tree ensures
11232 -- that further expansion (e.g. while rewriting a slice assignment
11233 -- into a FOR loop) does not attempt to remove side effects on the
11234 -- bounds again (which would cause the bounds in the index subtype
11235 -- definition to refer to temporaries before they are defined) (the
11236 -- reason is that some names are considered side effect free here
11237 -- for the subtype, but not in the context of a loop iteration
11238 -- scheme).
11240 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11241 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11242 Set_Etype (Index_Subtype, Index_Type);
11243 Set_Size_Info (Index_Subtype, Index_Type);
11244 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11245 end if;
11247 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11249 Index := New_Occurrence_Of (Index_Subtype, Loc);
11250 Set_Etype (Index, Index_Subtype);
11251 Append (Index, Index_List);
11253 Set_First_Index (Slice_Subtype, Index);
11254 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11255 Set_Is_Constrained (Slice_Subtype, True);
11257 Check_Compile_Time_Size (Slice_Subtype);
11259 -- The Etype of the existing Slice node is reset to this slice subtype.
11260 -- Its bounds are obtained from its first index.
11262 Set_Etype (N, Slice_Subtype);
11264 -- For packed slice subtypes, freeze immediately (except in the case of
11265 -- being in a "spec expression" where we never freeze when we first see
11266 -- the expression).
11268 if Is_Packed (Slice_Subtype) and not In_Spec_Expression then
11269 Freeze_Itype (Slice_Subtype, N);
11271 -- For all other cases insert an itype reference in the slice's actions
11272 -- so that the itype is frozen at the proper place in the tree (i.e. at
11273 -- the point where actions for the slice are analyzed). Note that this
11274 -- is different from freezing the itype immediately, which might be
11275 -- premature (e.g. if the slice is within a transient scope). This needs
11276 -- to be done only if expansion is enabled.
11278 elsif Expander_Active then
11279 Ensure_Defined (Typ => Slice_Subtype, N => N);
11280 end if;
11281 end Set_Slice_Subtype;
11283 --------------------------------
11284 -- Set_String_Literal_Subtype --
11285 --------------------------------
11287 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11288 Loc : constant Source_Ptr := Sloc (N);
11289 Low_Bound : constant Node_Id :=
11290 Type_Low_Bound (Etype (First_Index (Typ)));
11291 Subtype_Id : Entity_Id;
11293 begin
11294 if Nkind (N) /= N_String_Literal then
11295 return;
11296 end if;
11298 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11299 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11300 (String_Length (Strval (N))));
11301 Set_Etype (Subtype_Id, Base_Type (Typ));
11302 Set_Is_Constrained (Subtype_Id);
11303 Set_Etype (N, Subtype_Id);
11305 -- The low bound is set from the low bound of the corresponding index
11306 -- type. Note that we do not store the high bound in the string literal
11307 -- subtype, but it can be deduced if necessary from the length and the
11308 -- low bound.
11310 if Is_OK_Static_Expression (Low_Bound) then
11311 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11313 -- If the lower bound is not static we create a range for the string
11314 -- literal, using the index type and the known length of the literal.
11315 -- The index type is not necessarily Positive, so the upper bound is
11316 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11318 else
11319 declare
11320 Index_List : constant List_Id := New_List;
11321 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11322 High_Bound : constant Node_Id :=
11323 Make_Attribute_Reference (Loc,
11324 Attribute_Name => Name_Val,
11325 Prefix =>
11326 New_Occurrence_Of (Index_Type, Loc),
11327 Expressions => New_List (
11328 Make_Op_Add (Loc,
11329 Left_Opnd =>
11330 Make_Attribute_Reference (Loc,
11331 Attribute_Name => Name_Pos,
11332 Prefix =>
11333 New_Occurrence_Of (Index_Type, Loc),
11334 Expressions =>
11335 New_List (New_Copy_Tree (Low_Bound))),
11336 Right_Opnd =>
11337 Make_Integer_Literal (Loc,
11338 String_Length (Strval (N)) - 1))));
11340 Array_Subtype : Entity_Id;
11341 Drange : Node_Id;
11342 Index : Node_Id;
11343 Index_Subtype : Entity_Id;
11345 begin
11346 if Is_Integer_Type (Index_Type) then
11347 Set_String_Literal_Low_Bound
11348 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11350 else
11351 -- If the index type is an enumeration type, build bounds
11352 -- expression with attributes.
11354 Set_String_Literal_Low_Bound
11355 (Subtype_Id,
11356 Make_Attribute_Reference (Loc,
11357 Attribute_Name => Name_First,
11358 Prefix =>
11359 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11360 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11361 end if;
11363 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11365 -- Build bona fide subtype for the string, and wrap it in an
11366 -- unchecked conversion, because the backend expects the
11367 -- String_Literal_Subtype to have a static lower bound.
11369 Index_Subtype :=
11370 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11371 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11372 Set_Scalar_Range (Index_Subtype, Drange);
11373 Set_Parent (Drange, N);
11374 Analyze_And_Resolve (Drange, Index_Type);
11376 -- In the context, the Index_Type may already have a constraint,
11377 -- so use common base type on string subtype. The base type may
11378 -- be used when generating attributes of the string, for example
11379 -- in the context of a slice assignment.
11381 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11382 Set_Size_Info (Index_Subtype, Index_Type);
11383 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11385 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11387 Index := New_Occurrence_Of (Index_Subtype, Loc);
11388 Set_Etype (Index, Index_Subtype);
11389 Append (Index, Index_List);
11391 Set_First_Index (Array_Subtype, Index);
11392 Set_Etype (Array_Subtype, Base_Type (Typ));
11393 Set_Is_Constrained (Array_Subtype, True);
11395 Rewrite (N,
11396 Make_Unchecked_Type_Conversion (Loc,
11397 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11398 Expression => Relocate_Node (N)));
11399 Set_Etype (N, Array_Subtype);
11400 end;
11401 end if;
11402 end Set_String_Literal_Subtype;
11404 ------------------------------
11405 -- Simplify_Type_Conversion --
11406 ------------------------------
11408 procedure Simplify_Type_Conversion (N : Node_Id) is
11409 begin
11410 if Nkind (N) = N_Type_Conversion then
11411 declare
11412 Operand : constant Node_Id := Expression (N);
11413 Target_Typ : constant Entity_Id := Etype (N);
11414 Opnd_Typ : constant Entity_Id := Etype (Operand);
11416 begin
11417 -- Special processing if the conversion is the expression of a
11418 -- Rounding or Truncation attribute reference. In this case we
11419 -- replace:
11421 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11423 -- by
11425 -- ityp (x)
11427 -- with the Float_Truncate flag set to False or True respectively,
11428 -- which is more efficient.
11430 if Is_Floating_Point_Type (Opnd_Typ)
11431 and then
11432 (Is_Integer_Type (Target_Typ)
11433 or else (Is_Fixed_Point_Type (Target_Typ)
11434 and then Conversion_OK (N)))
11435 and then Nkind (Operand) = N_Attribute_Reference
11436 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11437 Name_Truncation)
11438 then
11439 declare
11440 Truncate : constant Boolean :=
11441 Attribute_Name (Operand) = Name_Truncation;
11442 begin
11443 Rewrite (Operand,
11444 Relocate_Node (First (Expressions (Operand))));
11445 Set_Float_Truncate (N, Truncate);
11446 end;
11447 end if;
11448 end;
11449 end if;
11450 end Simplify_Type_Conversion;
11452 -----------------------------
11453 -- Unique_Fixed_Point_Type --
11454 -----------------------------
11456 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11457 T1 : Entity_Id := Empty;
11458 T2 : Entity_Id;
11459 Item : Node_Id;
11460 Scop : Entity_Id;
11462 procedure Fixed_Point_Error;
11463 -- Give error messages for true ambiguity. Messages are posted on node
11464 -- N, and entities T1, T2 are the possible interpretations.
11466 -----------------------
11467 -- Fixed_Point_Error --
11468 -----------------------
11470 procedure Fixed_Point_Error is
11471 begin
11472 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11473 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11474 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11475 end Fixed_Point_Error;
11477 -- Start of processing for Unique_Fixed_Point_Type
11479 begin
11480 -- The operations on Duration are visible, so Duration is always a
11481 -- possible interpretation.
11483 T1 := Standard_Duration;
11485 -- Look for fixed-point types in enclosing scopes
11487 Scop := Current_Scope;
11488 while Scop /= Standard_Standard loop
11489 T2 := First_Entity (Scop);
11490 while Present (T2) loop
11491 if Is_Fixed_Point_Type (T2)
11492 and then Current_Entity (T2) = T2
11493 and then Scope (Base_Type (T2)) = Scop
11494 then
11495 if Present (T1) then
11496 Fixed_Point_Error;
11497 return Any_Type;
11498 else
11499 T1 := T2;
11500 end if;
11501 end if;
11503 Next_Entity (T2);
11504 end loop;
11506 Scop := Scope (Scop);
11507 end loop;
11509 -- Look for visible fixed type declarations in the context
11511 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11512 while Present (Item) loop
11513 if Nkind (Item) = N_With_Clause then
11514 Scop := Entity (Name (Item));
11515 T2 := First_Entity (Scop);
11516 while Present (T2) loop
11517 if Is_Fixed_Point_Type (T2)
11518 and then Scope (Base_Type (T2)) = Scop
11519 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11520 then
11521 if Present (T1) then
11522 Fixed_Point_Error;
11523 return Any_Type;
11524 else
11525 T1 := T2;
11526 end if;
11527 end if;
11529 Next_Entity (T2);
11530 end loop;
11531 end if;
11533 Next (Item);
11534 end loop;
11536 if Nkind (N) = N_Real_Literal then
11537 Error_Msg_NE
11538 ("??real literal interpreted as }!", N, T1);
11539 else
11540 Error_Msg_NE
11541 ("??universal_fixed expression interpreted as }!", N, T1);
11542 end if;
11544 return T1;
11545 end Unique_Fixed_Point_Type;
11547 ----------------------
11548 -- Valid_Conversion --
11549 ----------------------
11551 function Valid_Conversion
11552 (N : Node_Id;
11553 Target : Entity_Id;
11554 Operand : Node_Id;
11555 Report_Errs : Boolean := True) return Boolean
11557 Target_Type : constant Entity_Id := Base_Type (Target);
11558 Opnd_Type : Entity_Id := Etype (Operand);
11559 Inc_Ancestor : Entity_Id;
11561 function Conversion_Check
11562 (Valid : Boolean;
11563 Msg : String) return Boolean;
11564 -- Little routine to post Msg if Valid is False, returns Valid value
11566 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
11567 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
11569 procedure Conversion_Error_NE
11570 (Msg : String;
11571 N : Node_Or_Entity_Id;
11572 E : Node_Or_Entity_Id);
11573 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
11575 function Valid_Tagged_Conversion
11576 (Target_Type : Entity_Id;
11577 Opnd_Type : Entity_Id) return Boolean;
11578 -- Specifically test for validity of tagged conversions
11580 function Valid_Array_Conversion return Boolean;
11581 -- Check index and component conformance, and accessibility levels if
11582 -- the component types are anonymous access types (Ada 2005).
11584 ----------------------
11585 -- Conversion_Check --
11586 ----------------------
11588 function Conversion_Check
11589 (Valid : Boolean;
11590 Msg : String) return Boolean
11592 begin
11593 if not Valid
11595 -- A generic unit has already been analyzed and we have verified
11596 -- that a particular conversion is OK in that context. Since the
11597 -- instance is reanalyzed without relying on the relationships
11598 -- established during the analysis of the generic, it is possible
11599 -- to end up with inconsistent views of private types. Do not emit
11600 -- the error message in such cases. The rest of the machinery in
11601 -- Valid_Conversion still ensures the proper compatibility of
11602 -- target and operand types.
11604 and then not In_Instance
11605 then
11606 Conversion_Error_N (Msg, Operand);
11607 end if;
11609 return Valid;
11610 end Conversion_Check;
11612 ------------------------
11613 -- Conversion_Error_N --
11614 ------------------------
11616 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
11617 begin
11618 if Report_Errs then
11619 Error_Msg_N (Msg, N);
11620 end if;
11621 end Conversion_Error_N;
11623 -------------------------
11624 -- Conversion_Error_NE --
11625 -------------------------
11627 procedure Conversion_Error_NE
11628 (Msg : String;
11629 N : Node_Or_Entity_Id;
11630 E : Node_Or_Entity_Id)
11632 begin
11633 if Report_Errs then
11634 Error_Msg_NE (Msg, N, E);
11635 end if;
11636 end Conversion_Error_NE;
11638 ----------------------------
11639 -- Valid_Array_Conversion --
11640 ----------------------------
11642 function Valid_Array_Conversion return Boolean
11644 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
11645 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
11647 Opnd_Index : Node_Id;
11648 Opnd_Index_Type : Entity_Id;
11650 Target_Comp_Type : constant Entity_Id :=
11651 Component_Type (Target_Type);
11652 Target_Comp_Base : constant Entity_Id :=
11653 Base_Type (Target_Comp_Type);
11655 Target_Index : Node_Id;
11656 Target_Index_Type : Entity_Id;
11658 begin
11659 -- Error if wrong number of dimensions
11662 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
11663 then
11664 Conversion_Error_N
11665 ("incompatible number of dimensions for conversion", Operand);
11666 return False;
11668 -- Number of dimensions matches
11670 else
11671 -- Loop through indexes of the two arrays
11673 Target_Index := First_Index (Target_Type);
11674 Opnd_Index := First_Index (Opnd_Type);
11675 while Present (Target_Index) and then Present (Opnd_Index) loop
11676 Target_Index_Type := Etype (Target_Index);
11677 Opnd_Index_Type := Etype (Opnd_Index);
11679 -- Error if index types are incompatible
11681 if not (Is_Integer_Type (Target_Index_Type)
11682 and then Is_Integer_Type (Opnd_Index_Type))
11683 and then (Root_Type (Target_Index_Type)
11684 /= Root_Type (Opnd_Index_Type))
11685 then
11686 Conversion_Error_N
11687 ("incompatible index types for array conversion",
11688 Operand);
11689 return False;
11690 end if;
11692 Next_Index (Target_Index);
11693 Next_Index (Opnd_Index);
11694 end loop;
11696 -- If component types have same base type, all set
11698 if Target_Comp_Base = Opnd_Comp_Base then
11699 null;
11701 -- Here if base types of components are not the same. The only
11702 -- time this is allowed is if we have anonymous access types.
11704 -- The conversion of arrays of anonymous access types can lead
11705 -- to dangling pointers. AI-392 formalizes the accessibility
11706 -- checks that must be applied to such conversions to prevent
11707 -- out-of-scope references.
11709 elsif Ekind_In
11710 (Target_Comp_Base, E_Anonymous_Access_Type,
11711 E_Anonymous_Access_Subprogram_Type)
11712 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
11713 and then
11714 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
11715 then
11716 if Type_Access_Level (Target_Type) <
11717 Deepest_Type_Access_Level (Opnd_Type)
11718 then
11719 if In_Instance_Body then
11720 Error_Msg_Warn := SPARK_Mode /= On;
11721 Conversion_Error_N
11722 ("source array type has deeper accessibility "
11723 & "level than target<<", Operand);
11724 Conversion_Error_N ("\Program_Error [<<", Operand);
11725 Rewrite (N,
11726 Make_Raise_Program_Error (Sloc (N),
11727 Reason => PE_Accessibility_Check_Failed));
11728 Set_Etype (N, Target_Type);
11729 return False;
11731 -- Conversion not allowed because of accessibility levels
11733 else
11734 Conversion_Error_N
11735 ("source array type has deeper accessibility "
11736 & "level than target", Operand);
11737 return False;
11738 end if;
11740 else
11741 null;
11742 end if;
11744 -- All other cases where component base types do not match
11746 else
11747 Conversion_Error_N
11748 ("incompatible component types for array conversion",
11749 Operand);
11750 return False;
11751 end if;
11753 -- Check that component subtypes statically match. For numeric
11754 -- types this means that both must be either constrained or
11755 -- unconstrained. For enumeration types the bounds must match.
11756 -- All of this is checked in Subtypes_Statically_Match.
11758 if not Subtypes_Statically_Match
11759 (Target_Comp_Type, Opnd_Comp_Type)
11760 then
11761 Conversion_Error_N
11762 ("component subtypes must statically match", Operand);
11763 return False;
11764 end if;
11765 end if;
11767 return True;
11768 end Valid_Array_Conversion;
11770 -----------------------------
11771 -- Valid_Tagged_Conversion --
11772 -----------------------------
11774 function Valid_Tagged_Conversion
11775 (Target_Type : Entity_Id;
11776 Opnd_Type : Entity_Id) return Boolean
11778 begin
11779 -- Upward conversions are allowed (RM 4.6(22))
11781 if Covers (Target_Type, Opnd_Type)
11782 or else Is_Ancestor (Target_Type, Opnd_Type)
11783 then
11784 return True;
11786 -- Downward conversion are allowed if the operand is class-wide
11787 -- (RM 4.6(23)).
11789 elsif Is_Class_Wide_Type (Opnd_Type)
11790 and then Covers (Opnd_Type, Target_Type)
11791 then
11792 return True;
11794 elsif Covers (Opnd_Type, Target_Type)
11795 or else Is_Ancestor (Opnd_Type, Target_Type)
11796 then
11797 return
11798 Conversion_Check (False,
11799 "downward conversion of tagged objects not allowed");
11801 -- Ada 2005 (AI-251): The conversion to/from interface types is
11802 -- always valid
11804 elsif Is_Interface (Target_Type) or else Is_Interface (Opnd_Type) then
11805 return True;
11807 -- If the operand is a class-wide type obtained through a limited_
11808 -- with clause, and the context includes the non-limited view, use
11809 -- it to determine whether the conversion is legal.
11811 elsif Is_Class_Wide_Type (Opnd_Type)
11812 and then From_Limited_With (Opnd_Type)
11813 and then Present (Non_Limited_View (Etype (Opnd_Type)))
11814 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
11815 then
11816 return True;
11818 elsif Is_Access_Type (Opnd_Type)
11819 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
11820 then
11821 return True;
11823 else
11824 Conversion_Error_NE
11825 ("invalid tagged conversion, not compatible with}",
11826 N, First_Subtype (Opnd_Type));
11827 return False;
11828 end if;
11829 end Valid_Tagged_Conversion;
11831 -- Start of processing for Valid_Conversion
11833 begin
11834 Check_Parameterless_Call (Operand);
11836 if Is_Overloaded (Operand) then
11837 declare
11838 I : Interp_Index;
11839 I1 : Interp_Index;
11840 It : Interp;
11841 It1 : Interp;
11842 N1 : Entity_Id;
11843 T1 : Entity_Id;
11845 begin
11846 -- Remove procedure calls, which syntactically cannot appear in
11847 -- this context, but which cannot be removed by type checking,
11848 -- because the context does not impose a type.
11850 -- The node may be labelled overloaded, but still contain only one
11851 -- interpretation because others were discarded earlier. If this
11852 -- is the case, retain the single interpretation if legal.
11854 Get_First_Interp (Operand, I, It);
11855 Opnd_Type := It.Typ;
11856 Get_Next_Interp (I, It);
11858 if Present (It.Typ)
11859 and then Opnd_Type /= Standard_Void_Type
11860 then
11861 -- More than one candidate interpretation is available
11863 Get_First_Interp (Operand, I, It);
11864 while Present (It.Typ) loop
11865 if It.Typ = Standard_Void_Type then
11866 Remove_Interp (I);
11867 end if;
11869 -- When compiling for a system where Address is of a visible
11870 -- integer type, spurious ambiguities can be produced when
11871 -- arithmetic operations have a literal operand and return
11872 -- System.Address or a descendant of it. These ambiguities
11873 -- are usually resolved by the context, but for conversions
11874 -- there is no context type and the removal of the spurious
11875 -- operations must be done explicitly here.
11877 if not Address_Is_Private
11878 and then Is_Descendent_Of_Address (It.Typ)
11879 then
11880 Remove_Interp (I);
11881 end if;
11883 Get_Next_Interp (I, It);
11884 end loop;
11885 end if;
11887 Get_First_Interp (Operand, I, It);
11888 I1 := I;
11889 It1 := It;
11891 if No (It.Typ) then
11892 Conversion_Error_N ("illegal operand in conversion", Operand);
11893 return False;
11894 end if;
11896 Get_Next_Interp (I, It);
11898 if Present (It.Typ) then
11899 N1 := It1.Nam;
11900 T1 := It1.Typ;
11901 It1 := Disambiguate (Operand, I1, I, Any_Type);
11903 if It1 = No_Interp then
11904 Conversion_Error_N
11905 ("ambiguous operand in conversion", Operand);
11907 -- If the interpretation involves a standard operator, use
11908 -- the location of the type, which may be user-defined.
11910 if Sloc (It.Nam) = Standard_Location then
11911 Error_Msg_Sloc := Sloc (It.Typ);
11912 else
11913 Error_Msg_Sloc := Sloc (It.Nam);
11914 end if;
11916 Conversion_Error_N -- CODEFIX
11917 ("\\possible interpretation#!", Operand);
11919 if Sloc (N1) = Standard_Location then
11920 Error_Msg_Sloc := Sloc (T1);
11921 else
11922 Error_Msg_Sloc := Sloc (N1);
11923 end if;
11925 Conversion_Error_N -- CODEFIX
11926 ("\\possible interpretation#!", Operand);
11928 return False;
11929 end if;
11930 end if;
11932 Set_Etype (Operand, It1.Typ);
11933 Opnd_Type := It1.Typ;
11934 end;
11935 end if;
11937 -- Deal with conversion of integer type to address if the pragma
11938 -- Allow_Integer_Address is in effect. We convert the conversion to
11939 -- an unchecked conversion in this case and we are all done.
11941 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
11942 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
11943 Analyze_And_Resolve (N, Target_Type);
11944 return True;
11945 end if;
11947 -- If we are within a child unit, check whether the type of the
11948 -- expression has an ancestor in a parent unit, in which case it
11949 -- belongs to its derivation class even if the ancestor is private.
11950 -- See RM 7.3.1 (5.2/3).
11952 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
11954 -- Numeric types
11956 if Is_Numeric_Type (Target_Type) then
11958 -- A universal fixed expression can be converted to any numeric type
11960 if Opnd_Type = Universal_Fixed then
11961 return True;
11963 -- Also no need to check when in an instance or inlined body, because
11964 -- the legality has been established when the template was analyzed.
11965 -- Furthermore, numeric conversions may occur where only a private
11966 -- view of the operand type is visible at the instantiation point.
11967 -- This results in a spurious error if we check that the operand type
11968 -- is a numeric type.
11970 -- Note: in a previous version of this unit, the following tests were
11971 -- applied only for generated code (Comes_From_Source set to False),
11972 -- but in fact the test is required for source code as well, since
11973 -- this situation can arise in source code.
11975 elsif In_Instance or else In_Inlined_Body then
11976 return True;
11978 -- Otherwise we need the conversion check
11980 else
11981 return Conversion_Check
11982 (Is_Numeric_Type (Opnd_Type)
11983 or else
11984 (Present (Inc_Ancestor)
11985 and then Is_Numeric_Type (Inc_Ancestor)),
11986 "illegal operand for numeric conversion");
11987 end if;
11989 -- Array types
11991 elsif Is_Array_Type (Target_Type) then
11992 if not Is_Array_Type (Opnd_Type)
11993 or else Opnd_Type = Any_Composite
11994 or else Opnd_Type = Any_String
11995 then
11996 Conversion_Error_N
11997 ("illegal operand for array conversion", Operand);
11998 return False;
12000 else
12001 return Valid_Array_Conversion;
12002 end if;
12004 -- Ada 2005 (AI-251): Anonymous access types where target references an
12005 -- interface type.
12007 elsif Ekind_In (Target_Type, E_General_Access_Type,
12008 E_Anonymous_Access_Type)
12009 and then Is_Interface (Directly_Designated_Type (Target_Type))
12010 then
12011 -- Check the static accessibility rule of 4.6(17). Note that the
12012 -- check is not enforced when within an instance body, since the
12013 -- RM requires such cases to be caught at run time.
12015 -- If the operand is a rewriting of an allocator no check is needed
12016 -- because there are no accessibility issues.
12018 if Nkind (Original_Node (N)) = N_Allocator then
12019 null;
12021 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12022 if Type_Access_Level (Opnd_Type) >
12023 Deepest_Type_Access_Level (Target_Type)
12024 then
12025 -- In an instance, this is a run-time check, but one we know
12026 -- will fail, so generate an appropriate warning. The raise
12027 -- will be generated by Expand_N_Type_Conversion.
12029 if In_Instance_Body then
12030 Error_Msg_Warn := SPARK_Mode /= On;
12031 Conversion_Error_N
12032 ("cannot convert local pointer to non-local access type<<",
12033 Operand);
12034 Conversion_Error_N ("\Program_Error [<<", Operand);
12036 else
12037 Conversion_Error_N
12038 ("cannot convert local pointer to non-local access type",
12039 Operand);
12040 return False;
12041 end if;
12043 -- Special accessibility checks are needed in the case of access
12044 -- discriminants declared for a limited type.
12046 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12047 and then not Is_Local_Anonymous_Access (Opnd_Type)
12048 then
12049 -- When the operand is a selected access discriminant the check
12050 -- needs to be made against the level of the object denoted by
12051 -- the prefix of the selected name (Object_Access_Level handles
12052 -- checking the prefix of the operand for this case).
12054 if Nkind (Operand) = N_Selected_Component
12055 and then Object_Access_Level (Operand) >
12056 Deepest_Type_Access_Level (Target_Type)
12057 then
12058 -- In an instance, this is a run-time check, but one we know
12059 -- will fail, so generate an appropriate warning. The raise
12060 -- will be generated by Expand_N_Type_Conversion.
12062 if In_Instance_Body then
12063 Error_Msg_Warn := SPARK_Mode /= On;
12064 Conversion_Error_N
12065 ("cannot convert access discriminant to non-local "
12066 & "access type<<", Operand);
12067 Conversion_Error_N ("\Program_Error [<<", Operand);
12069 -- Real error if not in instance body
12071 else
12072 Conversion_Error_N
12073 ("cannot convert access discriminant to non-local "
12074 & "access type", Operand);
12075 return False;
12076 end if;
12077 end if;
12079 -- The case of a reference to an access discriminant from
12080 -- within a limited type declaration (which will appear as
12081 -- a discriminal) is always illegal because the level of the
12082 -- discriminant is considered to be deeper than any (nameable)
12083 -- access type.
12085 if Is_Entity_Name (Operand)
12086 and then not Is_Local_Anonymous_Access (Opnd_Type)
12087 and then
12088 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12089 and then Present (Discriminal_Link (Entity (Operand)))
12090 then
12091 Conversion_Error_N
12092 ("discriminant has deeper accessibility level than target",
12093 Operand);
12094 return False;
12095 end if;
12096 end if;
12097 end if;
12099 return True;
12101 -- General and anonymous access types
12103 elsif Ekind_In (Target_Type, E_General_Access_Type,
12104 E_Anonymous_Access_Type)
12105 and then
12106 Conversion_Check
12107 (Is_Access_Type (Opnd_Type)
12108 and then not
12109 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12110 E_Access_Protected_Subprogram_Type),
12111 "must be an access-to-object type")
12112 then
12113 if Is_Access_Constant (Opnd_Type)
12114 and then not Is_Access_Constant (Target_Type)
12115 then
12116 Conversion_Error_N
12117 ("access-to-constant operand type not allowed", Operand);
12118 return False;
12119 end if;
12121 -- Check the static accessibility rule of 4.6(17). Note that the
12122 -- check is not enforced when within an instance body, since the RM
12123 -- requires such cases to be caught at run time.
12125 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12126 or else Is_Local_Anonymous_Access (Target_Type)
12127 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12128 N_Object_Declaration
12129 then
12130 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12131 -- conversions from an anonymous access type to a named general
12132 -- access type. Such conversions are not allowed in the case of
12133 -- access parameters and stand-alone objects of an anonymous
12134 -- access type. The implicit conversion case is recognized by
12135 -- testing that Comes_From_Source is False and that it's been
12136 -- rewritten. The Comes_From_Source test isn't sufficient because
12137 -- nodes in inlined calls to predefined library routines can have
12138 -- Comes_From_Source set to False. (Is there a better way to test
12139 -- for implicit conversions???)
12141 if Ada_Version >= Ada_2012
12142 and then not Comes_From_Source (N)
12143 and then N /= Original_Node (N)
12144 and then Ekind (Target_Type) = E_General_Access_Type
12145 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12146 then
12147 if Is_Itype (Opnd_Type) then
12149 -- Implicit conversions aren't allowed for objects of an
12150 -- anonymous access type, since such objects have nonstatic
12151 -- levels in Ada 2012.
12153 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12154 N_Object_Declaration
12155 then
12156 Conversion_Error_N
12157 ("implicit conversion of stand-alone anonymous "
12158 & "access object not allowed", Operand);
12159 return False;
12161 -- Implicit conversions aren't allowed for anonymous access
12162 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12163 -- is done to exclude anonymous access results.
12165 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12166 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12167 N_Function_Specification,
12168 N_Procedure_Specification)
12169 then
12170 Conversion_Error_N
12171 ("implicit conversion of anonymous access formal "
12172 & "not allowed", Operand);
12173 return False;
12175 -- This is a case where there's an enclosing object whose
12176 -- to which the "statically deeper than" relationship does
12177 -- not apply (such as an access discriminant selected from
12178 -- a dereference of an access parameter).
12180 elsif Object_Access_Level (Operand)
12181 = Scope_Depth (Standard_Standard)
12182 then
12183 Conversion_Error_N
12184 ("implicit conversion of anonymous access value "
12185 & "not allowed", Operand);
12186 return False;
12188 -- In other cases, the level of the operand's type must be
12189 -- statically less deep than that of the target type, else
12190 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12192 elsif Type_Access_Level (Opnd_Type) >
12193 Deepest_Type_Access_Level (Target_Type)
12194 then
12195 Conversion_Error_N
12196 ("implicit conversion of anonymous access value "
12197 & "violates accessibility", Operand);
12198 return False;
12199 end if;
12200 end if;
12202 elsif Type_Access_Level (Opnd_Type) >
12203 Deepest_Type_Access_Level (Target_Type)
12204 then
12205 -- In an instance, this is a run-time check, but one we know
12206 -- will fail, so generate an appropriate warning. The raise
12207 -- will be generated by Expand_N_Type_Conversion.
12209 if In_Instance_Body then
12210 Error_Msg_Warn := SPARK_Mode /= On;
12211 Conversion_Error_N
12212 ("cannot convert local pointer to non-local access type<<",
12213 Operand);
12214 Conversion_Error_N ("\Program_Error [<<", Operand);
12216 -- If not in an instance body, this is a real error
12218 else
12219 -- Avoid generation of spurious error message
12221 if not Error_Posted (N) then
12222 Conversion_Error_N
12223 ("cannot convert local pointer to non-local access type",
12224 Operand);
12225 end if;
12227 return False;
12228 end if;
12230 -- Special accessibility checks are needed in the case of access
12231 -- discriminants declared for a limited type.
12233 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12234 and then not Is_Local_Anonymous_Access (Opnd_Type)
12235 then
12236 -- When the operand is a selected access discriminant the check
12237 -- needs to be made against the level of the object denoted by
12238 -- the prefix of the selected name (Object_Access_Level handles
12239 -- checking the prefix of the operand for this case).
12241 if Nkind (Operand) = N_Selected_Component
12242 and then Object_Access_Level (Operand) >
12243 Deepest_Type_Access_Level (Target_Type)
12244 then
12245 -- In an instance, this is a run-time check, but one we know
12246 -- will fail, so generate an appropriate warning. The raise
12247 -- will be generated by Expand_N_Type_Conversion.
12249 if In_Instance_Body then
12250 Error_Msg_Warn := SPARK_Mode /= On;
12251 Conversion_Error_N
12252 ("cannot convert access discriminant to non-local "
12253 & "access type<<", Operand);
12254 Conversion_Error_N ("\Program_Error [<<", Operand);
12256 -- If not in an instance body, this is a real error
12258 else
12259 Conversion_Error_N
12260 ("cannot convert access discriminant to non-local "
12261 & "access type", Operand);
12262 return False;
12263 end if;
12264 end if;
12266 -- The case of a reference to an access discriminant from
12267 -- within a limited type declaration (which will appear as
12268 -- a discriminal) is always illegal because the level of the
12269 -- discriminant is considered to be deeper than any (nameable)
12270 -- access type.
12272 if Is_Entity_Name (Operand)
12273 and then
12274 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12275 and then Present (Discriminal_Link (Entity (Operand)))
12276 then
12277 Conversion_Error_N
12278 ("discriminant has deeper accessibility level than target",
12279 Operand);
12280 return False;
12281 end if;
12282 end if;
12283 end if;
12285 -- In the presence of limited_with clauses we have to use non-limited
12286 -- views, if available.
12288 Check_Limited : declare
12289 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12290 -- Helper function to handle limited views
12292 --------------------------
12293 -- Full_Designated_Type --
12294 --------------------------
12296 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12297 Desig : constant Entity_Id := Designated_Type (T);
12299 begin
12300 -- Handle the limited view of a type
12302 if Is_Incomplete_Type (Desig)
12303 and then From_Limited_With (Desig)
12304 and then Present (Non_Limited_View (Desig))
12305 then
12306 return Available_View (Desig);
12307 else
12308 return Desig;
12309 end if;
12310 end Full_Designated_Type;
12312 -- Local Declarations
12314 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12315 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12317 Same_Base : constant Boolean :=
12318 Base_Type (Target) = Base_Type (Opnd);
12320 -- Start of processing for Check_Limited
12322 begin
12323 if Is_Tagged_Type (Target) then
12324 return Valid_Tagged_Conversion (Target, Opnd);
12326 else
12327 if not Same_Base then
12328 Conversion_Error_NE
12329 ("target designated type not compatible with }",
12330 N, Base_Type (Opnd));
12331 return False;
12333 -- Ada 2005 AI-384: legality rule is symmetric in both
12334 -- designated types. The conversion is legal (with possible
12335 -- constraint check) if either designated type is
12336 -- unconstrained.
12338 elsif Subtypes_Statically_Match (Target, Opnd)
12339 or else
12340 (Has_Discriminants (Target)
12341 and then
12342 (not Is_Constrained (Opnd)
12343 or else not Is_Constrained (Target)))
12344 then
12345 -- Special case, if Value_Size has been used to make the
12346 -- sizes different, the conversion is not allowed even
12347 -- though the subtypes statically match.
12349 if Known_Static_RM_Size (Target)
12350 and then Known_Static_RM_Size (Opnd)
12351 and then RM_Size (Target) /= RM_Size (Opnd)
12352 then
12353 Conversion_Error_NE
12354 ("target designated subtype not compatible with }",
12355 N, Opnd);
12356 Conversion_Error_NE
12357 ("\because sizes of the two designated subtypes differ",
12358 N, Opnd);
12359 return False;
12361 -- Normal case where conversion is allowed
12363 else
12364 return True;
12365 end if;
12367 else
12368 Error_Msg_NE
12369 ("target designated subtype not compatible with }",
12370 N, Opnd);
12371 return False;
12372 end if;
12373 end if;
12374 end Check_Limited;
12376 -- Access to subprogram types. If the operand is an access parameter,
12377 -- the type has a deeper accessibility that any master, and cannot be
12378 -- assigned. We must make an exception if the conversion is part of an
12379 -- assignment and the target is the return object of an extended return
12380 -- statement, because in that case the accessibility check takes place
12381 -- after the return.
12383 elsif Is_Access_Subprogram_Type (Target_Type)
12385 -- Note: this test of Opnd_Type is there to prevent entering this
12386 -- branch in the case of a remote access to subprogram type, which
12387 -- is internally represented as an E_Record_Type.
12389 and then Is_Access_Type (Opnd_Type)
12390 then
12391 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12392 and then Is_Entity_Name (Operand)
12393 and then Ekind (Entity (Operand)) = E_In_Parameter
12394 and then
12395 (Nkind (Parent (N)) /= N_Assignment_Statement
12396 or else not Is_Entity_Name (Name (Parent (N)))
12397 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12398 then
12399 Conversion_Error_N
12400 ("illegal attempt to store anonymous access to subprogram",
12401 Operand);
12402 Conversion_Error_N
12403 ("\value has deeper accessibility than any master "
12404 & "(RM 3.10.2 (13))",
12405 Operand);
12407 Error_Msg_NE
12408 ("\use named access type for& instead of access parameter",
12409 Operand, Entity (Operand));
12410 end if;
12412 -- Check that the designated types are subtype conformant
12414 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12415 Old_Id => Designated_Type (Opnd_Type),
12416 Err_Loc => N);
12418 -- Check the static accessibility rule of 4.6(20)
12420 if Type_Access_Level (Opnd_Type) >
12421 Deepest_Type_Access_Level (Target_Type)
12422 then
12423 Conversion_Error_N
12424 ("operand type has deeper accessibility level than target",
12425 Operand);
12427 -- Check that if the operand type is declared in a generic body,
12428 -- then the target type must be declared within that same body
12429 -- (enforces last sentence of 4.6(20)).
12431 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12432 declare
12433 O_Gen : constant Node_Id :=
12434 Enclosing_Generic_Body (Opnd_Type);
12436 T_Gen : Node_Id;
12438 begin
12439 T_Gen := Enclosing_Generic_Body (Target_Type);
12440 while Present (T_Gen) and then T_Gen /= O_Gen loop
12441 T_Gen := Enclosing_Generic_Body (T_Gen);
12442 end loop;
12444 if T_Gen /= O_Gen then
12445 Conversion_Error_N
12446 ("target type must be declared in same generic body "
12447 & "as operand type", N);
12448 end if;
12449 end;
12450 end if;
12452 return True;
12454 -- Remote access to subprogram types
12456 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12457 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12458 then
12459 -- It is valid to convert from one RAS type to another provided
12460 -- that their specification statically match.
12462 -- Note: at this point, remote access to subprogram types have been
12463 -- expanded to their E_Record_Type representation, and we need to
12464 -- go back to the original access type definition using the
12465 -- Corresponding_Remote_Type attribute in order to check that the
12466 -- designated profiles match.
12468 pragma Assert (Ekind (Target_Type) = E_Record_Type);
12469 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
12471 Check_Subtype_Conformant
12472 (New_Id =>
12473 Designated_Type (Corresponding_Remote_Type (Target_Type)),
12474 Old_Id =>
12475 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
12476 Err_Loc =>
12478 return True;
12480 -- If it was legal in the generic, it's legal in the instance
12482 elsif In_Instance_Body then
12483 return True;
12485 -- If both are tagged types, check legality of view conversions
12487 elsif Is_Tagged_Type (Target_Type)
12488 and then
12489 Is_Tagged_Type (Opnd_Type)
12490 then
12491 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
12493 -- Types derived from the same root type are convertible
12495 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
12496 return True;
12498 -- In an instance or an inlined body, there may be inconsistent views of
12499 -- the same type, or of types derived from a common root.
12501 elsif (In_Instance or In_Inlined_Body)
12502 and then
12503 Root_Type (Underlying_Type (Target_Type)) =
12504 Root_Type (Underlying_Type (Opnd_Type))
12505 then
12506 return True;
12508 -- Special check for common access type error case
12510 elsif Ekind (Target_Type) = E_Access_Type
12511 and then Is_Access_Type (Opnd_Type)
12512 then
12513 Conversion_Error_N ("target type must be general access type!", N);
12514 Conversion_Error_NE -- CODEFIX
12515 ("add ALL to }!", N, Target_Type);
12516 return False;
12518 -- Here we have a real conversion error
12520 else
12521 Conversion_Error_NE
12522 ("invalid conversion, not compatible with }", N, Opnd_Type);
12523 return False;
12524 end if;
12525 end Valid_Conversion;
12527 end Sem_Res;