2014-11-18 Christophe Lyon <christophe.lyon@linaro.org>
[official-gcc.git] / gcc / ada / sem_ch8.adb
blob21d9e73d425f6894b8654d6f7c8590ce3c5a9c49
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Tss; use Exp_Tss;
32 with Exp_Util; use Exp_Util;
33 with Fname; use Fname;
34 with Freeze; use Freeze;
35 with Impunit; use Impunit;
36 with Lib; use Lib;
37 with Lib.Load; use Lib.Load;
38 with Lib.Xref; use Lib.Xref;
39 with Namet; use Namet;
40 with Namet.Sp; use Namet.Sp;
41 with Nlists; use Nlists;
42 with Nmake; use Nmake;
43 with Opt; use Opt;
44 with Output; use Output;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Aux; use Sem_Aux;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch3; use Sem_Ch3;
52 with Sem_Ch4; use Sem_Ch4;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch12; use Sem_Ch12;
55 with Sem_Ch13; use Sem_Ch13;
56 with Sem_Dim; use Sem_Dim;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Dist; use Sem_Dist;
59 with Sem_Eval; use Sem_Eval;
60 with Sem_Res; use Sem_Res;
61 with Sem_Util; use Sem_Util;
62 with Sem_Type; use Sem_Type;
63 with Stand; use Stand;
64 with Sinfo; use Sinfo;
65 with Sinfo.CN; use Sinfo.CN;
66 with Snames; use Snames;
67 with Style; use Style;
68 with Table;
69 with Targparm; use Targparm;
70 with Tbuild; use Tbuild;
71 with Uintp; use Uintp;
73 package body Sem_Ch8 is
75 ------------------------------------
76 -- Visibility and Name Resolution --
77 ------------------------------------
79 -- This package handles name resolution and the collection of possible
80 -- interpretations for overloaded names, prior to overload resolution.
82 -- Name resolution is the process that establishes a mapping between source
83 -- identifiers and the entities they denote at each point in the program.
84 -- Each entity is represented by a defining occurrence. Each identifier
85 -- that denotes an entity points to the corresponding defining occurrence.
86 -- This is the entity of the applied occurrence. Each occurrence holds
87 -- an index into the names table, where source identifiers are stored.
89 -- Each entry in the names table for an identifier or designator uses the
90 -- Info pointer to hold a link to the currently visible entity that has
91 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
92 -- in package Sem_Util). The visibility is initialized at the beginning of
93 -- semantic processing to make entities in package Standard immediately
94 -- visible. The visibility table is used in a more subtle way when
95 -- compiling subunits (see below).
97 -- Entities that have the same name (i.e. homonyms) are chained. In the
98 -- case of overloaded entities, this chain holds all the possible meanings
99 -- of a given identifier. The process of overload resolution uses type
100 -- information to select from this chain the unique meaning of a given
101 -- identifier.
103 -- Entities are also chained in their scope, through the Next_Entity link.
104 -- As a consequence, the name space is organized as a sparse matrix, where
105 -- each row corresponds to a scope, and each column to a source identifier.
106 -- Open scopes, that is to say scopes currently being compiled, have their
107 -- corresponding rows of entities in order, innermost scope first.
109 -- The scopes of packages that are mentioned in context clauses appear in
110 -- no particular order, interspersed among open scopes. This is because
111 -- in the course of analyzing the context of a compilation, a package
112 -- declaration is first an open scope, and subsequently an element of the
113 -- context. If subunits or child units are present, a parent unit may
114 -- appear under various guises at various times in the compilation.
116 -- When the compilation of the innermost scope is complete, the entities
117 -- defined therein are no longer visible. If the scope is not a package
118 -- declaration, these entities are never visible subsequently, and can be
119 -- removed from visibility chains. If the scope is a package declaration,
120 -- its visible declarations may still be accessible. Therefore the entities
121 -- defined in such a scope are left on the visibility chains, and only
122 -- their visibility (immediately visibility or potential use-visibility)
123 -- is affected.
125 -- The ordering of homonyms on their chain does not necessarily follow
126 -- the order of their corresponding scopes on the scope stack. For
127 -- example, if package P and the enclosing scope both contain entities
128 -- named E, then when compiling the package body the chain for E will
129 -- hold the global entity first, and the local one (corresponding to
130 -- the current inner scope) next. As a result, name resolution routines
131 -- do not assume any relative ordering of the homonym chains, either
132 -- for scope nesting or to order of appearance of context clauses.
134 -- When compiling a child unit, entities in the parent scope are always
135 -- immediately visible. When compiling the body of a child unit, private
136 -- entities in the parent must also be made immediately visible. There
137 -- are separate routines to make the visible and private declarations
138 -- visible at various times (see package Sem_Ch7).
140 -- +--------+ +-----+
141 -- | In use |-------->| EU1 |-------------------------->
142 -- +--------+ +-----+
143 -- | |
144 -- +--------+ +-----+ +-----+
145 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
146 -- +--------+ +-----+ +-----+
147 -- | |
148 -- +---------+ | +-----+
149 -- | with'ed |------------------------------>| EW2 |--->
150 -- +---------+ | +-----+
151 -- | |
152 -- +--------+ +-----+ +-----+
153 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
154 -- +--------+ +-----+ +-----+
155 -- | |
156 -- +--------+ +-----+ +-----+
157 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
158 -- +--------+ +-----+ +-----+
159 -- ^ | |
160 -- | | |
161 -- | +---------+ | |
162 -- | | with'ed |----------------------------------------->
163 -- | +---------+ | |
164 -- | | |
165 -- Scope stack | |
166 -- (innermost first) | |
167 -- +----------------------------+
168 -- Names table => | Id1 | | | | Id2 |
169 -- +----------------------------+
171 -- Name resolution must deal with several syntactic forms: simple names,
172 -- qualified names, indexed names, and various forms of calls.
174 -- Each identifier points to an entry in the names table. The resolution
175 -- of a simple name consists in traversing the homonym chain, starting
176 -- from the names table. If an entry is immediately visible, it is the one
177 -- designated by the identifier. If only potentially use-visible entities
178 -- are on the chain, we must verify that they do not hide each other. If
179 -- the entity we find is overloadable, we collect all other overloadable
180 -- entities on the chain as long as they are not hidden.
182 -- To resolve expanded names, we must find the entity at the intersection
183 -- of the entity chain for the scope (the prefix) and the homonym chain
184 -- for the selector. In general, homonym chains will be much shorter than
185 -- entity chains, so it is preferable to start from the names table as
186 -- well. If the entity found is overloadable, we must collect all other
187 -- interpretations that are defined in the scope denoted by the prefix.
189 -- For records, protected types, and tasks, their local entities are
190 -- removed from visibility chains on exit from the corresponding scope.
191 -- From the outside, these entities are always accessed by selected
192 -- notation, and the entity chain for the record type, protected type,
193 -- etc. is traversed sequentially in order to find the designated entity.
195 -- The discriminants of a type and the operations of a protected type or
196 -- task are unchained on exit from the first view of the type, (such as
197 -- a private or incomplete type declaration, or a protected type speci-
198 -- fication) and re-chained when compiling the second view.
200 -- In the case of operators, we do not make operators on derived types
201 -- explicit. As a result, the notation P."+" may denote either a user-
202 -- defined function with name "+", or else an implicit declaration of the
203 -- operator "+" in package P. The resolution of expanded names always
204 -- tries to resolve an operator name as such an implicitly defined entity,
205 -- in addition to looking for explicit declarations.
207 -- All forms of names that denote entities (simple names, expanded names,
208 -- character literals in some cases) have a Entity attribute, which
209 -- identifies the entity denoted by the name.
211 ---------------------
212 -- The Scope Stack --
213 ---------------------
215 -- The Scope stack keeps track of the scopes currently been compiled.
216 -- Every entity that contains declarations (including records) is placed
217 -- on the scope stack while it is being processed, and removed at the end.
218 -- Whenever a non-package scope is exited, the entities defined therein
219 -- are removed from the visibility table, so that entities in outer scopes
220 -- become visible (see previous description). On entry to Sem, the scope
221 -- stack only contains the package Standard. As usual, subunits complicate
222 -- this picture ever so slightly.
224 -- The Rtsfind mechanism can force a call to Semantics while another
225 -- compilation is in progress. The unit retrieved by Rtsfind must be
226 -- compiled in its own context, and has no access to the visibility of
227 -- the unit currently being compiled. The procedures Save_Scope_Stack and
228 -- Restore_Scope_Stack make entities in current open scopes invisible
229 -- before compiling the retrieved unit, and restore the compilation
230 -- environment afterwards.
232 ------------------------
233 -- Compiling subunits --
234 ------------------------
236 -- Subunits must be compiled in the environment of the corresponding stub,
237 -- that is to say with the same visibility into the parent (and its
238 -- context) that is available at the point of the stub declaration, but
239 -- with the additional visibility provided by the context clause of the
240 -- subunit itself. As a result, compilation of a subunit forces compilation
241 -- of the parent (see description in lib-). At the point of the stub
242 -- declaration, Analyze is called recursively to compile the proper body of
243 -- the subunit, but without reinitializing the names table, nor the scope
244 -- stack (i.e. standard is not pushed on the stack). In this fashion the
245 -- context of the subunit is added to the context of the parent, and the
246 -- subunit is compiled in the correct environment. Note that in the course
247 -- of processing the context of a subunit, Standard will appear twice on
248 -- the scope stack: once for the parent of the subunit, and once for the
249 -- unit in the context clause being compiled. However, the two sets of
250 -- entities are not linked by homonym chains, so that the compilation of
251 -- any context unit happens in a fresh visibility environment.
253 -------------------------------
254 -- Processing of USE Clauses --
255 -------------------------------
257 -- Every defining occurrence has a flag indicating if it is potentially use
258 -- visible. Resolution of simple names examines this flag. The processing
259 -- of use clauses consists in setting this flag on all visible entities
260 -- defined in the corresponding package. On exit from the scope of the use
261 -- clause, the corresponding flag must be reset. However, a package may
262 -- appear in several nested use clauses (pathological but legal, alas)
263 -- which forces us to use a slightly more involved scheme:
265 -- a) The defining occurrence for a package holds a flag -In_Use- to
266 -- indicate that it is currently in the scope of a use clause. If a
267 -- redundant use clause is encountered, then the corresponding occurrence
268 -- of the package name is flagged -Redundant_Use-.
270 -- b) On exit from a scope, the use clauses in its declarative part are
271 -- scanned. The visibility flag is reset in all entities declared in
272 -- package named in a use clause, as long as the package is not flagged
273 -- as being in a redundant use clause (in which case the outer use
274 -- clause is still in effect, and the direct visibility of its entities
275 -- must be retained).
277 -- Note that entities are not removed from their homonym chains on exit
278 -- from the package specification. A subsequent use clause does not need
279 -- to rechain the visible entities, but only to establish their direct
280 -- visibility.
282 -----------------------------------
283 -- Handling private declarations --
284 -----------------------------------
286 -- The principle that each entity has a single defining occurrence clashes
287 -- with the presence of two separate definitions for private types: the
288 -- first is the private type declaration, and second is the full type
289 -- declaration. It is important that all references to the type point to
290 -- the same defining occurrence, namely the first one. To enforce the two
291 -- separate views of the entity, the corresponding information is swapped
292 -- between the two declarations. Outside of the package, the defining
293 -- occurrence only contains the private declaration information, while in
294 -- the private part and the body of the package the defining occurrence
295 -- contains the full declaration. To simplify the swap, the defining
296 -- occurrence that currently holds the private declaration points to the
297 -- full declaration. During semantic processing the defining occurrence
298 -- also points to a list of private dependents, that is to say access types
299 -- or composite types whose designated types or component types are
300 -- subtypes or derived types of the private type in question. After the
301 -- full declaration has been seen, the private dependents are updated to
302 -- indicate that they have full definitions.
304 ------------------------------------
305 -- Handling of Undefined Messages --
306 ------------------------------------
308 -- In normal mode, only the first use of an undefined identifier generates
309 -- a message. The table Urefs is used to record error messages that have
310 -- been issued so that second and subsequent ones do not generate further
311 -- messages. However, the second reference causes text to be added to the
312 -- original undefined message noting "(more references follow)". The
313 -- full error list option (-gnatf) forces messages to be generated for
314 -- every reference and disconnects the use of this table.
316 type Uref_Entry is record
317 Node : Node_Id;
318 -- Node for identifier for which original message was posted. The
319 -- Chars field of this identifier is used to detect later references
320 -- to the same identifier.
322 Err : Error_Msg_Id;
323 -- Records error message Id of original undefined message. Reset to
324 -- No_Error_Msg after the second occurrence, where it is used to add
325 -- text to the original message as described above.
327 Nvis : Boolean;
328 -- Set if the message is not visible rather than undefined
330 Loc : Source_Ptr;
331 -- Records location of error message. Used to make sure that we do
332 -- not consider a, b : undefined as two separate instances, which
333 -- would otherwise happen, since the parser converts this sequence
334 -- to a : undefined; b : undefined.
336 end record;
338 package Urefs is new Table.Table (
339 Table_Component_Type => Uref_Entry,
340 Table_Index_Type => Nat,
341 Table_Low_Bound => 1,
342 Table_Initial => 10,
343 Table_Increment => 100,
344 Table_Name => "Urefs");
346 Candidate_Renaming : Entity_Id;
347 -- Holds a candidate interpretation that appears in a subprogram renaming
348 -- declaration and does not match the given specification, but matches at
349 -- least on the first formal. Allows better error message when given
350 -- specification omits defaulted parameters, a common error.
352 -----------------------
353 -- Local Subprograms --
354 -----------------------
356 procedure Analyze_Generic_Renaming
357 (N : Node_Id;
358 K : Entity_Kind);
359 -- Common processing for all three kinds of generic renaming declarations.
360 -- Enter new name and indicate that it renames the generic unit.
362 procedure Analyze_Renamed_Character
363 (N : Node_Id;
364 New_S : Entity_Id;
365 Is_Body : Boolean);
366 -- Renamed entity is given by a character literal, which must belong
367 -- to the return type of the new entity. Is_Body indicates whether the
368 -- declaration is a renaming_as_body. If the original declaration has
369 -- already been frozen (because of an intervening body, e.g.) the body of
370 -- the function must be built now. The same applies to the following
371 -- various renaming procedures.
373 procedure Analyze_Renamed_Dereference
374 (N : Node_Id;
375 New_S : Entity_Id;
376 Is_Body : Boolean);
377 -- Renamed entity is given by an explicit dereference. Prefix must be a
378 -- conformant access_to_subprogram type.
380 procedure Analyze_Renamed_Entry
381 (N : Node_Id;
382 New_S : Entity_Id;
383 Is_Body : Boolean);
384 -- If the renamed entity in a subprogram renaming is an entry or protected
385 -- subprogram, build a body for the new entity whose only statement is a
386 -- call to the renamed entity.
388 procedure Analyze_Renamed_Family_Member
389 (N : Node_Id;
390 New_S : Entity_Id;
391 Is_Body : Boolean);
392 -- Used when the renamed entity is an indexed component. The prefix must
393 -- denote an entry family.
395 procedure Analyze_Renamed_Primitive_Operation
396 (N : Node_Id;
397 New_S : Entity_Id;
398 Is_Body : Boolean);
399 -- If the renamed entity in a subprogram renaming is a primitive operation
400 -- or a class-wide operation in prefix form, save the target object,
401 -- which must be added to the list of actuals in any subsequent call.
402 -- The renaming operation is intrinsic because the compiler must in
403 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
405 function Applicable_Use (Pack_Name : Node_Id) return Boolean;
406 -- Common code to Use_One_Package and Set_Use, to determine whether use
407 -- clause must be processed. Pack_Name is an entity name that references
408 -- the package in question.
410 procedure Attribute_Renaming (N : Node_Id);
411 -- Analyze renaming of attribute as subprogram. The renaming declaration N
412 -- is rewritten as a subprogram body that returns the attribute reference
413 -- applied to the formals of the function.
415 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
416 -- Set Entity, with style check if need be. For a discriminant reference,
417 -- replace by the corresponding discriminal, i.e. the parameter of the
418 -- initialization procedure that corresponds to the discriminant.
420 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
421 -- A renaming_as_body may occur after the entity of the original decla-
422 -- ration has been frozen. In that case, the body of the new entity must
423 -- be built now, because the usual mechanism of building the renamed
424 -- body at the point of freezing will not work. Subp is the subprogram
425 -- for which N provides the Renaming_As_Body.
427 procedure Check_In_Previous_With_Clause
428 (N : Node_Id;
429 Nam : Node_Id);
430 -- N is a use_package clause and Nam the package name, or N is a use_type
431 -- clause and Nam is the prefix of the type name. In either case, verify
432 -- that the package is visible at that point in the context: either it
433 -- appears in a previous with_clause, or because it is a fully qualified
434 -- name and the root ancestor appears in a previous with_clause.
436 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
437 -- Verify that the entity in a renaming declaration that is a library unit
438 -- is itself a library unit and not a nested unit or subunit. Also check
439 -- that if the renaming is a child unit of a generic parent, then the
440 -- renamed unit must also be a child unit of that parent. Finally, verify
441 -- that a renamed generic unit is not an implicit child declared within
442 -- an instance of the parent.
444 procedure Chain_Use_Clause (N : Node_Id);
445 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
446 -- the proper scope table entry. This is usually the current scope, but it
447 -- will be an inner scope when installing the use clauses of the private
448 -- declarations of a parent unit prior to compiling the private part of a
449 -- child unit. This chain is traversed when installing/removing use clauses
450 -- when compiling a subunit or instantiating a generic body on the fly,
451 -- when it is necessary to save and restore full environments.
453 function Enclosing_Instance return Entity_Id;
454 -- In an instance nested within another one, several semantic checks are
455 -- unnecessary because the legality of the nested instance has been checked
456 -- in the enclosing generic unit. This applies in particular to legality
457 -- checks on actuals for formal subprograms of the inner instance, which
458 -- are checked as subprogram renamings, and may be complicated by confusion
459 -- in private/full views. This function returns the instance enclosing the
460 -- current one if there is such, else it returns Empty.
462 -- If the renaming determines the entity for the default of a formal
463 -- subprogram nested within another instance, choose the innermost
464 -- candidate. This is because if the formal has a box, and we are within
465 -- an enclosing instance where some candidate interpretations are local
466 -- to this enclosing instance, we know that the default was properly
467 -- resolved when analyzing the generic, so we prefer the local
468 -- candidates to those that are external. This is not always the case
469 -- but is a reasonable heuristic on the use of nested generics. The
470 -- proper solution requires a full renaming model.
472 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
473 -- Find a type derived from Character or Wide_Character in the prefix of N.
474 -- Used to resolved qualified names whose selector is a character literal.
476 function Has_Private_With (E : Entity_Id) return Boolean;
477 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
478 -- private with on E.
480 procedure Find_Expanded_Name (N : Node_Id);
481 -- The input is a selected component known to be an expanded name. Verify
482 -- legality of selector given the scope denoted by prefix, and change node
483 -- N into a expanded name with a properly set Entity field.
485 function Find_Renamed_Entity
486 (N : Node_Id;
487 Nam : Node_Id;
488 New_S : Entity_Id;
489 Is_Actual : Boolean := False) return Entity_Id;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
496 function Has_Implicit_Operator (N : Node_Id) return Boolean;
497 -- N is an expanded name whose selector is an operator name (e.g. P."+").
498 -- declarative part contains an implicit declaration of an operator if it
499 -- has a declaration of a type to which one of the predefined operators
500 -- apply. The existence of this routine is an implementation artifact. A
501 -- more straightforward but more space-consuming choice would be to make
502 -- all inherited operators explicit in the symbol table.
504 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
505 -- A subprogram defined by a renaming declaration inherits the parameter
506 -- profile of the renamed entity. The subtypes given in the subprogram
507 -- specification are discarded and replaced with those of the renamed
508 -- subprogram, which are then used to recheck the default values.
510 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
511 -- Prefix is appropriate for record if it is of a record type, or an access
512 -- to such.
514 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
515 -- True if it is of a task type, a protected type, or else an access to one
516 -- of these types.
518 procedure Note_Redundant_Use (Clause : Node_Id);
519 -- Mark the name in a use clause as redundant if the corresponding entity
520 -- is already use-visible. Emit a warning if the use clause comes from
521 -- source and the proper warnings are enabled.
523 procedure Premature_Usage (N : Node_Id);
524 -- Diagnose usage of an entity before it is visible
526 procedure Use_One_Package (P : Entity_Id; N : Node_Id);
527 -- Make visible entities declared in package P potentially use-visible
528 -- in the current context. Also used in the analysis of subunits, when
529 -- re-installing use clauses of parent units. N is the use_clause that
530 -- names P (and possibly other packages).
532 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False);
533 -- Id is the subtype mark from a use type clause. This procedure makes
534 -- the primitive operators of the type potentially use-visible. The
535 -- boolean flag Installed indicates that the clause is being reinstalled
536 -- after previous analysis, and primitive operations are already chained
537 -- on the Used_Operations list of the clause.
539 procedure Write_Info;
540 -- Write debugging information on entities declared in current scope
542 --------------------------------
543 -- Analyze_Exception_Renaming --
544 --------------------------------
546 -- The language only allows a single identifier, but the tree holds an
547 -- identifier list. The parser has already issued an error message if
548 -- there is more than one element in the list.
550 procedure Analyze_Exception_Renaming (N : Node_Id) is
551 Id : constant Node_Id := Defining_Identifier (N);
552 Nam : constant Node_Id := Name (N);
554 begin
555 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
557 Enter_Name (Id);
558 Analyze (Nam);
560 Set_Ekind (Id, E_Exception);
561 Set_Etype (Id, Standard_Exception_Type);
562 Set_Is_Pure (Id, Is_Pure (Current_Scope));
564 if not Is_Entity_Name (Nam)
565 or else Ekind (Entity (Nam)) /= E_Exception
566 then
567 Error_Msg_N ("invalid exception name in renaming", Nam);
568 else
569 if Present (Renamed_Object (Entity (Nam))) then
570 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
571 else
572 Set_Renamed_Object (Id, Entity (Nam));
573 end if;
575 -- An exception renaming is Ghost if the renamed entity is Ghost or
576 -- the construct appears within a Ghost scope.
578 if Is_Ghost_Entity (Entity (Nam)) or else Within_Ghost_Scope then
579 Set_Is_Ghost_Entity (Id);
580 end if;
581 end if;
583 -- Implementation-defined aspect specifications can appear in a renaming
584 -- declaration, but not language-defined ones. The call to procedure
585 -- Analyze_Aspect_Specifications will take care of this error check.
587 if Has_Aspects (N) then
588 Analyze_Aspect_Specifications (N, Id);
589 end if;
590 end Analyze_Exception_Renaming;
592 ---------------------------
593 -- Analyze_Expanded_Name --
594 ---------------------------
596 procedure Analyze_Expanded_Name (N : Node_Id) is
597 begin
598 -- If the entity pointer is already set, this is an internal node, or a
599 -- node that is analyzed more than once, after a tree modification. In
600 -- such a case there is no resolution to perform, just set the type. For
601 -- completeness, analyze prefix as well.
603 if Present (Entity (N)) then
604 if Is_Type (Entity (N)) then
605 Set_Etype (N, Entity (N));
606 else
607 Set_Etype (N, Etype (Entity (N)));
608 end if;
610 Analyze (Prefix (N));
611 return;
612 else
613 Find_Expanded_Name (N);
614 end if;
616 Analyze_Dimension (N);
617 end Analyze_Expanded_Name;
619 ---------------------------------------
620 -- Analyze_Generic_Function_Renaming --
621 ---------------------------------------
623 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
624 begin
625 Analyze_Generic_Renaming (N, E_Generic_Function);
626 end Analyze_Generic_Function_Renaming;
628 --------------------------------------
629 -- Analyze_Generic_Package_Renaming --
630 --------------------------------------
632 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
633 begin
634 -- Test for the Text_IO special unit case here, since we may be renaming
635 -- one of the subpackages of Text_IO, then join common routine.
637 Check_Text_IO_Special_Unit (Name (N));
639 Analyze_Generic_Renaming (N, E_Generic_Package);
640 end Analyze_Generic_Package_Renaming;
642 ----------------------------------------
643 -- Analyze_Generic_Procedure_Renaming --
644 ----------------------------------------
646 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
647 begin
648 Analyze_Generic_Renaming (N, E_Generic_Procedure);
649 end Analyze_Generic_Procedure_Renaming;
651 ------------------------------
652 -- Analyze_Generic_Renaming --
653 ------------------------------
655 procedure Analyze_Generic_Renaming
656 (N : Node_Id;
657 K : Entity_Kind)
659 New_P : constant Entity_Id := Defining_Entity (N);
660 Old_P : Entity_Id;
661 Inst : Boolean := False; -- prevent junk warning
663 begin
664 if Name (N) = Error then
665 return;
666 end if;
668 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
670 Generate_Definition (New_P);
672 if Current_Scope /= Standard_Standard then
673 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
674 end if;
676 if Nkind (Name (N)) = N_Selected_Component then
677 Check_Generic_Child_Unit (Name (N), Inst);
678 else
679 Analyze (Name (N));
680 end if;
682 if not Is_Entity_Name (Name (N)) then
683 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
684 Old_P := Any_Id;
685 else
686 Old_P := Entity (Name (N));
687 end if;
689 Enter_Name (New_P);
690 Set_Ekind (New_P, K);
692 if Etype (Old_P) = Any_Type then
693 null;
695 elsif Ekind (Old_P) /= K then
696 Error_Msg_N ("invalid generic unit name", Name (N));
698 else
699 if Present (Renamed_Object (Old_P)) then
700 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
701 else
702 Set_Renamed_Object (New_P, Old_P);
703 end if;
705 Set_Is_Pure (New_P, Is_Pure (Old_P));
706 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
708 Set_Etype (New_P, Etype (Old_P));
709 Set_Has_Completion (New_P);
711 -- An generic renaming is Ghost if the renamed entity is Ghost or the
712 -- construct appears within a Ghost scope.
714 if Is_Ghost_Entity (Old_P) or else Within_Ghost_Scope then
715 Set_Is_Ghost_Entity (New_P);
716 end if;
718 if In_Open_Scopes (Old_P) then
719 Error_Msg_N ("within its scope, generic denotes its instance", N);
720 end if;
722 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
723 -- renamings and subsequent instantiations of Unchecked_Conversion.
725 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
726 Set_Is_Intrinsic_Subprogram
727 (New_P, Is_Intrinsic_Subprogram (Old_P));
728 end if;
730 Check_Library_Unit_Renaming (N, Old_P);
731 end if;
733 -- Implementation-defined aspect specifications can appear in a renaming
734 -- declaration, but not language-defined ones. The call to procedure
735 -- Analyze_Aspect_Specifications will take care of this error check.
737 if Has_Aspects (N) then
738 Analyze_Aspect_Specifications (N, New_P);
739 end if;
740 end Analyze_Generic_Renaming;
742 -----------------------------
743 -- Analyze_Object_Renaming --
744 -----------------------------
746 procedure Analyze_Object_Renaming (N : Node_Id) is
747 Loc : constant Source_Ptr := Sloc (N);
748 Id : constant Entity_Id := Defining_Identifier (N);
749 Dec : Node_Id;
750 Nam : constant Node_Id := Name (N);
751 T : Entity_Id;
752 T2 : Entity_Id;
754 procedure Check_Constrained_Object;
755 -- If the nominal type is unconstrained but the renamed object is
756 -- constrained, as can happen with renaming an explicit dereference or
757 -- a function return, build a constrained subtype from the object. If
758 -- the renaming is for a formal in an accept statement, the analysis
759 -- has already established its actual subtype. This is only relevant
760 -- if the renamed object is an explicit dereference.
762 function In_Generic_Scope (E : Entity_Id) return Boolean;
763 -- Determine whether entity E is inside a generic cope
765 ------------------------------
766 -- Check_Constrained_Object --
767 ------------------------------
769 procedure Check_Constrained_Object is
770 Typ : constant Entity_Id := Etype (Nam);
771 Subt : Entity_Id;
773 begin
774 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
775 and then Is_Composite_Type (Etype (Nam))
776 and then not Is_Constrained (Etype (Nam))
777 and then not Has_Unknown_Discriminants (Etype (Nam))
778 and then Expander_Active
779 then
780 -- If Actual_Subtype is already set, nothing to do
782 if Ekind_In (Id, E_Variable, E_Constant)
783 and then Present (Actual_Subtype (Id))
784 then
785 null;
787 -- A renaming of an unchecked union has no actual subtype
789 elsif Is_Unchecked_Union (Typ) then
790 null;
792 -- If a record is limited its size is invariant. This is the case
793 -- in particular with record types with an access discirminant
794 -- that are used in iterators. This is an optimization, but it
795 -- also prevents typing anomalies when the prefix is further
796 -- expanded. Limited types with discriminants are included.
798 elsif Is_Limited_Record (Typ)
799 or else
800 (Ekind (Typ) = E_Limited_Private_Type
801 and then Has_Discriminants (Typ)
802 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
803 then
804 null;
806 else
807 Subt := Make_Temporary (Loc, 'T');
808 Remove_Side_Effects (Nam);
809 Insert_Action (N,
810 Make_Subtype_Declaration (Loc,
811 Defining_Identifier => Subt,
812 Subtype_Indication =>
813 Make_Subtype_From_Expr (Nam, Typ)));
814 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
815 Set_Etype (Nam, Subt);
817 -- Freeze subtype at once, to prevent order of elaboration
818 -- issues in the backend. The renamed object exists, so its
819 -- type is already frozen in any case.
821 Freeze_Before (N, Subt);
822 end if;
823 end if;
824 end Check_Constrained_Object;
826 ----------------------
827 -- In_Generic_Scope --
828 ----------------------
830 function In_Generic_Scope (E : Entity_Id) return Boolean is
831 S : Entity_Id;
833 begin
834 S := Scope (E);
835 while Present (S) and then S /= Standard_Standard loop
836 if Is_Generic_Unit (S) then
837 return True;
838 end if;
840 S := Scope (S);
841 end loop;
843 return False;
844 end In_Generic_Scope;
846 -- Start of processing for Analyze_Object_Renaming
848 begin
849 if Nam = Error then
850 return;
851 end if;
853 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
855 Set_Is_Pure (Id, Is_Pure (Current_Scope));
856 Enter_Name (Id);
858 -- The renaming of a component that depends on a discriminant requires
859 -- an actual subtype, because in subsequent use of the object Gigi will
860 -- be unable to locate the actual bounds. This explicit step is required
861 -- when the renaming is generated in removing side effects of an
862 -- already-analyzed expression.
864 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
865 T := Etype (Nam);
866 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
868 if Present (Dec) then
869 Insert_Action (N, Dec);
870 T := Defining_Identifier (Dec);
871 Set_Etype (Nam, T);
872 end if;
874 -- Complete analysis of the subtype mark in any case, for ASIS use
876 if Present (Subtype_Mark (N)) then
877 Find_Type (Subtype_Mark (N));
878 end if;
880 elsif Present (Subtype_Mark (N)) then
881 Find_Type (Subtype_Mark (N));
882 T := Entity (Subtype_Mark (N));
883 Analyze (Nam);
885 -- Reject renamings of conversions unless the type is tagged, or
886 -- the conversion is implicit (which can occur for cases of anonymous
887 -- access types in Ada 2012).
889 if Nkind (Nam) = N_Type_Conversion
890 and then Comes_From_Source (Nam)
891 and then not Is_Tagged_Type (T)
892 then
893 Error_Msg_N
894 ("renaming of conversion only allowed for tagged types", Nam);
895 end if;
897 Resolve (Nam, T);
899 -- If the renamed object is a function call of a limited type,
900 -- the expansion of the renaming is complicated by the presence
901 -- of various temporaries and subtypes that capture constraints
902 -- of the renamed object. Rewrite node as an object declaration,
903 -- whose expansion is simpler. Given that the object is limited
904 -- there is no copy involved and no performance hit.
906 if Nkind (Nam) = N_Function_Call
907 and then Is_Limited_View (Etype (Nam))
908 and then not Is_Constrained (Etype (Nam))
909 and then Comes_From_Source (N)
910 then
911 Set_Etype (Id, T);
912 Set_Ekind (Id, E_Constant);
913 Rewrite (N,
914 Make_Object_Declaration (Loc,
915 Defining_Identifier => Id,
916 Constant_Present => True,
917 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
918 Expression => Relocate_Node (Nam)));
919 return;
920 end if;
922 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
923 -- when renaming declaration has a named access type. The Ada 2012
924 -- coverage rules allow an anonymous access type in the context of
925 -- an expected named general access type, but the renaming rules
926 -- require the types to be the same. (An exception is when the type
927 -- of the renaming is also an anonymous access type, which can only
928 -- happen due to a renaming created by the expander.)
930 if Nkind (Nam) = N_Type_Conversion
931 and then not Comes_From_Source (Nam)
932 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
933 and then Ekind (T) /= E_Anonymous_Access_Type
934 then
935 Wrong_Type (Expression (Nam), T); -- Should we give better error???
936 end if;
938 -- Check that a class-wide object is not being renamed as an object
939 -- of a specific type. The test for access types is needed to exclude
940 -- cases where the renamed object is a dynamically tagged access
941 -- result, such as occurs in certain expansions.
943 if Is_Tagged_Type (T) then
944 Check_Dynamically_Tagged_Expression
945 (Expr => Nam,
946 Typ => T,
947 Related_Nod => N);
948 end if;
950 -- Ada 2005 (AI-230/AI-254): Access renaming
952 else pragma Assert (Present (Access_Definition (N)));
953 T := Access_Definition
954 (Related_Nod => N,
955 N => Access_Definition (N));
957 Analyze (Nam);
959 -- Ada 2005 AI05-105: if the declaration has an anonymous access
960 -- type, the renamed object must also have an anonymous type, and
961 -- this is a name resolution rule. This was implicit in the last part
962 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
963 -- recent AI.
965 if not Is_Overloaded (Nam) then
966 if Ekind (Etype (Nam)) /= Ekind (T) then
967 Error_Msg_N
968 ("expect anonymous access type in object renaming", N);
969 end if;
971 else
972 declare
973 I : Interp_Index;
974 It : Interp;
975 Typ : Entity_Id := Empty;
976 Seen : Boolean := False;
978 begin
979 Get_First_Interp (Nam, I, It);
980 while Present (It.Typ) loop
982 -- Renaming is ambiguous if more than one candidate
983 -- interpretation is type-conformant with the context.
985 if Ekind (It.Typ) = Ekind (T) then
986 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
987 and then
988 Type_Conformant
989 (Designated_Type (T), Designated_Type (It.Typ))
990 then
991 if not Seen then
992 Seen := True;
993 else
994 Error_Msg_N
995 ("ambiguous expression in renaming", Nam);
996 end if;
998 elsif Ekind (T) = E_Anonymous_Access_Type
999 and then
1000 Covers (Designated_Type (T), Designated_Type (It.Typ))
1001 then
1002 if not Seen then
1003 Seen := True;
1004 else
1005 Error_Msg_N
1006 ("ambiguous expression in renaming", Nam);
1007 end if;
1008 end if;
1010 if Covers (T, It.Typ) then
1011 Typ := It.Typ;
1012 Set_Etype (Nam, Typ);
1013 Set_Is_Overloaded (Nam, False);
1014 end if;
1015 end if;
1017 Get_Next_Interp (I, It);
1018 end loop;
1019 end;
1020 end if;
1022 Resolve (Nam, T);
1024 -- Ada 2005 (AI-231): In the case where the type is defined by an
1025 -- access_definition, the renamed entity shall be of an access-to-
1026 -- constant type if and only if the access_definition defines an
1027 -- access-to-constant type. ARM 8.5.1(4)
1029 if Constant_Present (Access_Definition (N))
1030 and then not Is_Access_Constant (Etype (Nam))
1031 then
1032 Error_Msg_N ("(Ada 2005): the renamed object is not "
1033 & "access-to-constant (RM 8.5.1(6))", N);
1035 elsif not Constant_Present (Access_Definition (N))
1036 and then Is_Access_Constant (Etype (Nam))
1037 then
1038 Error_Msg_N ("(Ada 2005): the renamed object is not "
1039 & "access-to-variable (RM 8.5.1(6))", N);
1040 end if;
1042 if Is_Access_Subprogram_Type (Etype (Nam)) then
1043 Check_Subtype_Conformant
1044 (Designated_Type (T), Designated_Type (Etype (Nam)));
1046 elsif not Subtypes_Statically_Match
1047 (Designated_Type (T),
1048 Available_View (Designated_Type (Etype (Nam))))
1049 then
1050 Error_Msg_N
1051 ("subtype of renamed object does not statically match", N);
1052 end if;
1053 end if;
1055 -- Special processing for renaming function return object. Some errors
1056 -- and warnings are produced only for calls that come from source.
1058 if Nkind (Nam) = N_Function_Call then
1059 case Ada_Version is
1061 -- Usage is illegal in Ada 83
1063 when Ada_83 =>
1064 if Comes_From_Source (Nam) then
1065 Error_Msg_N
1066 ("(Ada 83) cannot rename function return object", Nam);
1067 end if;
1069 -- In Ada 95, warn for odd case of renaming parameterless function
1070 -- call if this is not a limited type (where this is useful).
1072 when others =>
1073 if Warn_On_Object_Renames_Function
1074 and then No (Parameter_Associations (Nam))
1075 and then not Is_Limited_Type (Etype (Nam))
1076 and then Comes_From_Source (Nam)
1077 then
1078 Error_Msg_N
1079 ("renaming function result object is suspicious?R?", Nam);
1080 Error_Msg_NE
1081 ("\function & will be called only once?R?", Nam,
1082 Entity (Name (Nam)));
1083 Error_Msg_N -- CODEFIX
1084 ("\suggest using an initialized constant "
1085 & "object instead?R?", Nam);
1086 end if;
1088 end case;
1089 end if;
1091 Check_Constrained_Object;
1093 -- An object renaming requires an exact match of the type. Class-wide
1094 -- matching is not allowed.
1096 if Is_Class_Wide_Type (T)
1097 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1098 then
1099 Wrong_Type (Nam, T);
1100 end if;
1102 T2 := Etype (Nam);
1104 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1106 if Nkind (Nam) = N_Explicit_Dereference
1107 and then Ekind (Etype (T2)) = E_Incomplete_Type
1108 then
1109 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1110 return;
1112 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1113 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1114 return;
1115 end if;
1117 -- Ada 2005 (AI-327)
1119 if Ada_Version >= Ada_2005
1120 and then Nkind (Nam) = N_Attribute_Reference
1121 and then Attribute_Name (Nam) = Name_Priority
1122 then
1123 null;
1125 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1126 declare
1127 Nam_Decl : Node_Id;
1128 Nam_Ent : Entity_Id;
1130 begin
1131 if Nkind (Nam) = N_Attribute_Reference then
1132 Nam_Ent := Entity (Prefix (Nam));
1133 else
1134 Nam_Ent := Entity (Nam);
1135 end if;
1137 Nam_Decl := Parent (Nam_Ent);
1139 if Has_Null_Exclusion (N)
1140 and then not Has_Null_Exclusion (Nam_Decl)
1141 then
1142 -- Ada 2005 (AI-423): If the object name denotes a generic
1143 -- formal object of a generic unit G, and the object renaming
1144 -- declaration occurs within the body of G or within the body
1145 -- of a generic unit declared within the declarative region
1146 -- of G, then the declaration of the formal object of G must
1147 -- have a null exclusion or a null-excluding subtype.
1149 if Is_Formal_Object (Nam_Ent)
1150 and then In_Generic_Scope (Id)
1151 then
1152 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1153 Error_Msg_N
1154 ("renamed formal does not exclude `NULL` "
1155 & "(RM 8.5.1(4.6/2))", N);
1157 elsif In_Package_Body (Scope (Id)) then
1158 Error_Msg_N
1159 ("formal object does not have a null exclusion"
1160 & "(RM 8.5.1(4.6/2))", N);
1161 end if;
1163 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1164 -- shall exclude null.
1166 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1167 Error_Msg_N
1168 ("renamed object does not exclude `NULL` "
1169 & "(RM 8.5.1(4.6/2))", N);
1171 -- An instance is illegal if it contains a renaming that
1172 -- excludes null, and the actual does not. The renaming
1173 -- declaration has already indicated that the declaration
1174 -- of the renamed actual in the instance will raise
1175 -- constraint_error.
1177 elsif Nkind (Nam_Decl) = N_Object_Declaration
1178 and then In_Instance
1179 and then
1180 Present (Corresponding_Generic_Association (Nam_Decl))
1181 and then Nkind (Expression (Nam_Decl)) =
1182 N_Raise_Constraint_Error
1183 then
1184 Error_Msg_N
1185 ("renamed actual does not exclude `NULL` "
1186 & "(RM 8.5.1(4.6/2))", N);
1188 -- Finally, if there is a null exclusion, the subtype mark
1189 -- must not be null-excluding.
1191 elsif No (Access_Definition (N))
1192 and then Can_Never_Be_Null (T)
1193 then
1194 Error_Msg_NE
1195 ("`NOT NULL` not allowed (& already excludes null)",
1196 N, T);
1198 end if;
1200 elsif Can_Never_Be_Null (T)
1201 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1202 then
1203 Error_Msg_N
1204 ("renamed object does not exclude `NULL` "
1205 & "(RM 8.5.1(4.6/2))", N);
1207 elsif Has_Null_Exclusion (N)
1208 and then No (Access_Definition (N))
1209 and then Can_Never_Be_Null (T)
1210 then
1211 Error_Msg_NE
1212 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1213 end if;
1214 end;
1215 end if;
1217 -- Set the Ekind of the entity, unless it has been set already, as is
1218 -- the case for the iteration object over a container with no variable
1219 -- indexing. In that case it's been marked as a constant, and we do not
1220 -- want to change it to a variable.
1222 if Ekind (Id) /= E_Constant then
1223 Set_Ekind (Id, E_Variable);
1224 end if;
1226 -- Initialize the object size and alignment. Note that we used to call
1227 -- Init_Size_Align here, but that's wrong for objects which have only
1228 -- an Esize, not an RM_Size field.
1230 Init_Object_Size_Align (Id);
1232 if T = Any_Type or else Etype (Nam) = Any_Type then
1233 return;
1235 -- Verify that the renamed entity is an object or a function call. It
1236 -- may have been rewritten in several ways.
1238 elsif Is_Object_Reference (Nam) then
1239 if Comes_From_Source (N) then
1240 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1241 Error_Msg_N
1242 ("illegal renaming of discriminant-dependent component", Nam);
1243 end if;
1245 -- If the renaming comes from source and the renamed object is a
1246 -- dereference, then mark the prefix as needing debug information,
1247 -- since it might have been rewritten hence internally generated
1248 -- and Debug_Renaming_Declaration will link the renaming to it.
1250 if Nkind (Nam) = N_Explicit_Dereference
1251 and then Is_Entity_Name (Prefix (Nam))
1252 then
1253 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1254 end if;
1255 end if;
1257 -- A static function call may have been folded into a literal
1259 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1261 -- When expansion is disabled, attribute reference is not rewritten
1262 -- as function call. Otherwise it may be rewritten as a conversion,
1263 -- so check original node.
1265 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1266 and then Is_Function_Attribute_Name
1267 (Attribute_Name (Original_Node (Nam))))
1269 -- Weird but legal, equivalent to renaming a function call. Illegal
1270 -- if the literal is the result of constant-folding an attribute
1271 -- reference that is not a function.
1273 or else (Is_Entity_Name (Nam)
1274 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1275 and then
1276 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1278 or else (Nkind (Nam) = N_Type_Conversion
1279 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1280 then
1281 null;
1283 elsif Nkind (Nam) = N_Type_Conversion then
1284 Error_Msg_N
1285 ("renaming of conversion only allowed for tagged types", Nam);
1287 -- Ada 2005 (AI-327)
1289 elsif Ada_Version >= Ada_2005
1290 and then Nkind (Nam) = N_Attribute_Reference
1291 and then Attribute_Name (Nam) = Name_Priority
1292 then
1293 null;
1295 -- Allow internally generated x'Reference expression
1297 elsif Nkind (Nam) = N_Reference then
1298 null;
1300 else
1301 Error_Msg_N ("expect object name in renaming", Nam);
1302 end if;
1304 Set_Etype (Id, T2);
1306 if not Is_Variable (Nam) then
1307 Set_Ekind (Id, E_Constant);
1308 Set_Never_Set_In_Source (Id, True);
1309 Set_Is_True_Constant (Id, True);
1310 end if;
1312 -- An object renaming is Ghost if the renamed entity is Ghost or the
1313 -- construct appears within a Ghost scope.
1315 if (Is_Entity_Name (Nam)
1316 and then Is_Ghost_Entity (Entity (Nam)))
1317 or else Within_Ghost_Scope
1318 then
1319 Set_Is_Ghost_Entity (Id);
1320 end if;
1322 -- The entity of the renaming declaration needs to reflect whether the
1323 -- renamed object is volatile. Is_Volatile is set if the renamed object
1324 -- is volatile in the RM legality sense.
1326 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1328 -- Treat as volatile if we just set the Volatile flag
1330 if Is_Volatile (Id)
1332 -- Or if we are renaming an entity which was marked this way
1334 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1336 or else (Is_Entity_Name (Nam)
1337 and then Treat_As_Volatile (Entity (Nam)))
1338 then
1339 Set_Treat_As_Volatile (Id, True);
1340 end if;
1342 -- Now make the link to the renamed object
1344 Set_Renamed_Object (Id, Nam);
1346 -- Implementation-defined aspect specifications can appear in a renaming
1347 -- declaration, but not language-defined ones. The call to procedure
1348 -- Analyze_Aspect_Specifications will take care of this error check.
1350 if Has_Aspects (N) then
1351 Analyze_Aspect_Specifications (N, Id);
1352 end if;
1354 -- Deal with dimensions
1356 Analyze_Dimension (N);
1357 end Analyze_Object_Renaming;
1359 ------------------------------
1360 -- Analyze_Package_Renaming --
1361 ------------------------------
1363 procedure Analyze_Package_Renaming (N : Node_Id) is
1364 New_P : constant Entity_Id := Defining_Entity (N);
1365 Old_P : Entity_Id;
1366 Spec : Node_Id;
1368 begin
1369 if Name (N) = Error then
1370 return;
1371 end if;
1373 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1375 Check_Text_IO_Special_Unit (Name (N));
1377 if Current_Scope /= Standard_Standard then
1378 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1379 end if;
1381 Enter_Name (New_P);
1382 Analyze (Name (N));
1384 if Is_Entity_Name (Name (N)) then
1385 Old_P := Entity (Name (N));
1386 else
1387 Old_P := Any_Id;
1388 end if;
1390 if Etype (Old_P) = Any_Type then
1391 Error_Msg_N ("expect package name in renaming", Name (N));
1393 elsif Ekind (Old_P) /= E_Package
1394 and then not (Ekind (Old_P) = E_Generic_Package
1395 and then In_Open_Scopes (Old_P))
1396 then
1397 if Ekind (Old_P) = E_Generic_Package then
1398 Error_Msg_N
1399 ("generic package cannot be renamed as a package", Name (N));
1400 else
1401 Error_Msg_Sloc := Sloc (Old_P);
1402 Error_Msg_NE
1403 ("expect package name in renaming, found& declared#",
1404 Name (N), Old_P);
1405 end if;
1407 -- Set basic attributes to minimize cascaded errors
1409 Set_Ekind (New_P, E_Package);
1410 Set_Etype (New_P, Standard_Void_Type);
1412 -- Here for OK package renaming
1414 else
1415 -- Entities in the old package are accessible through the renaming
1416 -- entity. The simplest implementation is to have both packages share
1417 -- the entity list.
1419 Set_Ekind (New_P, E_Package);
1420 Set_Etype (New_P, Standard_Void_Type);
1422 if Present (Renamed_Object (Old_P)) then
1423 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1424 else
1425 Set_Renamed_Object (New_P, Old_P);
1426 end if;
1428 Set_Has_Completion (New_P);
1430 Set_First_Entity (New_P, First_Entity (Old_P));
1431 Set_Last_Entity (New_P, Last_Entity (Old_P));
1432 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1433 Check_Library_Unit_Renaming (N, Old_P);
1434 Generate_Reference (Old_P, Name (N));
1436 -- A package renaming is Ghost if the renamed entity is Ghost or
1437 -- the construct appears within a Ghost scope.
1439 if Is_Ghost_Entity (Old_P) or else Within_Ghost_Scope then
1440 Set_Is_Ghost_Entity (New_P);
1441 end if;
1443 -- If the renaming is in the visible part of a package, then we set
1444 -- Renamed_In_Spec for the renamed package, to prevent giving
1445 -- warnings about no entities referenced. Such a warning would be
1446 -- overenthusiastic, since clients can see entities in the renamed
1447 -- package via the visible package renaming.
1449 declare
1450 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1451 begin
1452 if Ekind (Ent) = E_Package
1453 and then not In_Private_Part (Ent)
1454 and then In_Extended_Main_Source_Unit (N)
1455 and then Ekind (Old_P) = E_Package
1456 then
1457 Set_Renamed_In_Spec (Old_P);
1458 end if;
1459 end;
1461 -- If this is the renaming declaration of a package instantiation
1462 -- within itself, it is the declaration that ends the list of actuals
1463 -- for the instantiation. At this point, the subtypes that rename
1464 -- the actuals are flagged as generic, to avoid spurious ambiguities
1465 -- if the actuals for two distinct formals happen to coincide. If
1466 -- the actual is a private type, the subtype has a private completion
1467 -- that is flagged in the same fashion.
1469 -- Resolution is identical to what is was in the original generic.
1470 -- On exit from the generic instance, these are turned into regular
1471 -- subtypes again, so they are compatible with types in their class.
1473 if not Is_Generic_Instance (Old_P) then
1474 return;
1475 else
1476 Spec := Specification (Unit_Declaration_Node (Old_P));
1477 end if;
1479 if Nkind (Spec) = N_Package_Specification
1480 and then Present (Generic_Parent (Spec))
1481 and then Old_P = Current_Scope
1482 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1483 then
1484 declare
1485 E : Entity_Id;
1487 begin
1488 E := First_Entity (Old_P);
1489 while Present (E) and then E /= New_P loop
1490 if Is_Type (E)
1491 and then Nkind (Parent (E)) = N_Subtype_Declaration
1492 then
1493 Set_Is_Generic_Actual_Type (E);
1495 if Is_Private_Type (E)
1496 and then Present (Full_View (E))
1497 then
1498 Set_Is_Generic_Actual_Type (Full_View (E));
1499 end if;
1500 end if;
1502 Next_Entity (E);
1503 end loop;
1504 end;
1505 end if;
1506 end if;
1508 -- Implementation-defined aspect specifications can appear in a renaming
1509 -- declaration, but not language-defined ones. The call to procedure
1510 -- Analyze_Aspect_Specifications will take care of this error check.
1512 if Has_Aspects (N) then
1513 Analyze_Aspect_Specifications (N, New_P);
1514 end if;
1515 end Analyze_Package_Renaming;
1517 -------------------------------
1518 -- Analyze_Renamed_Character --
1519 -------------------------------
1521 procedure Analyze_Renamed_Character
1522 (N : Node_Id;
1523 New_S : Entity_Id;
1524 Is_Body : Boolean)
1526 C : constant Node_Id := Name (N);
1528 begin
1529 if Ekind (New_S) = E_Function then
1530 Resolve (C, Etype (New_S));
1532 if Is_Body then
1533 Check_Frozen_Renaming (N, New_S);
1534 end if;
1536 else
1537 Error_Msg_N ("character literal can only be renamed as function", N);
1538 end if;
1539 end Analyze_Renamed_Character;
1541 ---------------------------------
1542 -- Analyze_Renamed_Dereference --
1543 ---------------------------------
1545 procedure Analyze_Renamed_Dereference
1546 (N : Node_Id;
1547 New_S : Entity_Id;
1548 Is_Body : Boolean)
1550 Nam : constant Node_Id := Name (N);
1551 P : constant Node_Id := Prefix (Nam);
1552 Typ : Entity_Id;
1553 Ind : Interp_Index;
1554 It : Interp;
1556 begin
1557 if not Is_Overloaded (P) then
1558 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1559 or else not Type_Conformant (Etype (Nam), New_S)
1560 then
1561 Error_Msg_N ("designated type does not match specification", P);
1562 else
1563 Resolve (P);
1564 end if;
1566 return;
1568 else
1569 Typ := Any_Type;
1570 Get_First_Interp (Nam, Ind, It);
1572 while Present (It.Nam) loop
1574 if Ekind (It.Nam) = E_Subprogram_Type
1575 and then Type_Conformant (It.Nam, New_S)
1576 then
1577 if Typ /= Any_Id then
1578 Error_Msg_N ("ambiguous renaming", P);
1579 return;
1580 else
1581 Typ := It.Nam;
1582 end if;
1583 end if;
1585 Get_Next_Interp (Ind, It);
1586 end loop;
1588 if Typ = Any_Type then
1589 Error_Msg_N ("designated type does not match specification", P);
1590 else
1591 Resolve (N, Typ);
1593 if Is_Body then
1594 Check_Frozen_Renaming (N, New_S);
1595 end if;
1596 end if;
1597 end if;
1598 end Analyze_Renamed_Dereference;
1600 ---------------------------
1601 -- Analyze_Renamed_Entry --
1602 ---------------------------
1604 procedure Analyze_Renamed_Entry
1605 (N : Node_Id;
1606 New_S : Entity_Id;
1607 Is_Body : Boolean)
1609 Nam : constant Node_Id := Name (N);
1610 Sel : constant Node_Id := Selector_Name (Nam);
1611 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1612 Old_S : Entity_Id;
1614 begin
1615 if Entity (Sel) = Any_Id then
1617 -- Selector is undefined on prefix. Error emitted already
1619 Set_Has_Completion (New_S);
1620 return;
1621 end if;
1623 -- Otherwise find renamed entity and build body of New_S as a call to it
1625 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1627 if Old_S = Any_Id then
1628 Error_Msg_N (" no subprogram or entry matches specification", N);
1629 else
1630 if Is_Body then
1631 Check_Subtype_Conformant (New_S, Old_S, N);
1632 Generate_Reference (New_S, Defining_Entity (N), 'b');
1633 Style.Check_Identifier (Defining_Entity (N), New_S);
1635 else
1636 -- Only mode conformance required for a renaming_as_declaration
1638 Check_Mode_Conformant (New_S, Old_S, N);
1639 end if;
1641 Inherit_Renamed_Profile (New_S, Old_S);
1643 -- The prefix can be an arbitrary expression that yields a task or
1644 -- protected object, so it must be resolved.
1646 Resolve (Prefix (Nam), Scope (Old_S));
1647 end if;
1649 Set_Convention (New_S, Convention (Old_S));
1650 Set_Has_Completion (New_S, Inside_A_Generic);
1652 -- AI05-0225: If the renamed entity is a procedure or entry of a
1653 -- protected object, the target object must be a variable.
1655 if Ekind (Scope (Old_S)) in Protected_Kind
1656 and then Ekind (New_S) = E_Procedure
1657 and then not Is_Variable (Prefix (Nam))
1658 then
1659 if Is_Actual then
1660 Error_Msg_N
1661 ("target object of protected operation used as actual for "
1662 & "formal procedure must be a variable", Nam);
1663 else
1664 Error_Msg_N
1665 ("target object of protected operation renamed as procedure, "
1666 & "must be a variable", Nam);
1667 end if;
1668 end if;
1670 if Is_Body then
1671 Check_Frozen_Renaming (N, New_S);
1672 end if;
1673 end Analyze_Renamed_Entry;
1675 -----------------------------------
1676 -- Analyze_Renamed_Family_Member --
1677 -----------------------------------
1679 procedure Analyze_Renamed_Family_Member
1680 (N : Node_Id;
1681 New_S : Entity_Id;
1682 Is_Body : Boolean)
1684 Nam : constant Node_Id := Name (N);
1685 P : constant Node_Id := Prefix (Nam);
1686 Old_S : Entity_Id;
1688 begin
1689 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1690 or else (Nkind (P) = N_Selected_Component
1691 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1692 then
1693 if Is_Entity_Name (P) then
1694 Old_S := Entity (P);
1695 else
1696 Old_S := Entity (Selector_Name (P));
1697 end if;
1699 if not Entity_Matches_Spec (Old_S, New_S) then
1700 Error_Msg_N ("entry family does not match specification", N);
1702 elsif Is_Body then
1703 Check_Subtype_Conformant (New_S, Old_S, N);
1704 Generate_Reference (New_S, Defining_Entity (N), 'b');
1705 Style.Check_Identifier (Defining_Entity (N), New_S);
1706 end if;
1708 else
1709 Error_Msg_N ("no entry family matches specification", N);
1710 end if;
1712 Set_Has_Completion (New_S, Inside_A_Generic);
1714 if Is_Body then
1715 Check_Frozen_Renaming (N, New_S);
1716 end if;
1717 end Analyze_Renamed_Family_Member;
1719 -----------------------------------------
1720 -- Analyze_Renamed_Primitive_Operation --
1721 -----------------------------------------
1723 procedure Analyze_Renamed_Primitive_Operation
1724 (N : Node_Id;
1725 New_S : Entity_Id;
1726 Is_Body : Boolean)
1728 Old_S : Entity_Id;
1730 function Conforms
1731 (Subp : Entity_Id;
1732 Ctyp : Conformance_Type) return Boolean;
1733 -- Verify that the signatures of the renamed entity and the new entity
1734 -- match. The first formal of the renamed entity is skipped because it
1735 -- is the target object in any subsequent call.
1737 --------------
1738 -- Conforms --
1739 --------------
1741 function Conforms
1742 (Subp : Entity_Id;
1743 Ctyp : Conformance_Type) return Boolean
1745 Old_F : Entity_Id;
1746 New_F : Entity_Id;
1748 begin
1749 if Ekind (Subp) /= Ekind (New_S) then
1750 return False;
1751 end if;
1753 Old_F := Next_Formal (First_Formal (Subp));
1754 New_F := First_Formal (New_S);
1755 while Present (Old_F) and then Present (New_F) loop
1756 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1757 return False;
1758 end if;
1760 if Ctyp >= Mode_Conformant
1761 and then Ekind (Old_F) /= Ekind (New_F)
1762 then
1763 return False;
1764 end if;
1766 Next_Formal (New_F);
1767 Next_Formal (Old_F);
1768 end loop;
1770 return True;
1771 end Conforms;
1773 -- Start of processing for Analyze_Renamed_Primitive_Operation
1775 begin
1776 if not Is_Overloaded (Selector_Name (Name (N))) then
1777 Old_S := Entity (Selector_Name (Name (N)));
1779 if not Conforms (Old_S, Type_Conformant) then
1780 Old_S := Any_Id;
1781 end if;
1783 else
1784 -- Find the operation that matches the given signature
1786 declare
1787 It : Interp;
1788 Ind : Interp_Index;
1790 begin
1791 Old_S := Any_Id;
1792 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1794 while Present (It.Nam) loop
1795 if Conforms (It.Nam, Type_Conformant) then
1796 Old_S := It.Nam;
1797 end if;
1799 Get_Next_Interp (Ind, It);
1800 end loop;
1801 end;
1802 end if;
1804 if Old_S = Any_Id then
1805 Error_Msg_N (" no subprogram or entry matches specification", N);
1807 else
1808 if Is_Body then
1809 if not Conforms (Old_S, Subtype_Conformant) then
1810 Error_Msg_N ("subtype conformance error in renaming", N);
1811 end if;
1813 Generate_Reference (New_S, Defining_Entity (N), 'b');
1814 Style.Check_Identifier (Defining_Entity (N), New_S);
1816 else
1817 -- Only mode conformance required for a renaming_as_declaration
1819 if not Conforms (Old_S, Mode_Conformant) then
1820 Error_Msg_N ("mode conformance error in renaming", N);
1821 end if;
1823 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1824 -- view of a subprogram is intrinsic, because the compiler has
1825 -- to generate a wrapper for any call to it. If the name in a
1826 -- subprogram renaming is a prefixed view, the entity is thus
1827 -- intrinsic, and 'Access cannot be applied to it.
1829 Set_Convention (New_S, Convention_Intrinsic);
1830 end if;
1832 -- Inherit_Renamed_Profile (New_S, Old_S);
1834 -- The prefix can be an arbitrary expression that yields an
1835 -- object, so it must be resolved.
1837 Resolve (Prefix (Name (N)));
1838 end if;
1839 end Analyze_Renamed_Primitive_Operation;
1841 ---------------------------------
1842 -- Analyze_Subprogram_Renaming --
1843 ---------------------------------
1845 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1846 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1847 Is_Actual : constant Boolean := Present (Formal_Spec);
1848 Nam : constant Node_Id := Name (N);
1849 Save_AV : constant Ada_Version_Type := Ada_Version;
1850 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1851 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1852 Spec : constant Node_Id := Specification (N);
1854 Old_S : Entity_Id := Empty;
1855 Rename_Spec : Entity_Id;
1857 procedure Build_Class_Wide_Wrapper
1858 (Ren_Id : out Entity_Id;
1859 Wrap_Id : out Entity_Id);
1860 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1861 -- type with unknown discriminants and a generic primitive operation of
1862 -- the said type with a box require special processing when the actual
1863 -- is a class-wide type:
1865 -- generic
1866 -- type Formal_Typ (<>) is private;
1867 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1868 -- package Gen is ...
1870 -- package Inst is new Gen (Actual_Typ'Class);
1872 -- In this case the general renaming mechanism used in the prologue of
1873 -- an instance no longer applies:
1875 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1877 -- The above is replaced the following wrapper/renaming combination:
1879 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1880 -- begin
1881 -- Prim_Op (Param); -- primitive
1882 -- end Wrapper;
1884 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1886 -- This transformation applies only if there is no explicit visible
1887 -- class-wide operation at the point of the instantiation. Ren_Id is
1888 -- the entity of the renaming declaration. Wrap_Id is the entity of
1889 -- the generated class-wide wrapper (or Any_Id).
1891 procedure Check_Null_Exclusion
1892 (Ren : Entity_Id;
1893 Sub : Entity_Id);
1894 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1895 -- following AI rules:
1897 -- If Ren is a renaming of a formal subprogram and one of its
1898 -- parameters has a null exclusion, then the corresponding formal
1899 -- in Sub must also have one. Otherwise the subtype of the Sub's
1900 -- formal parameter must exclude null.
1902 -- If Ren is a renaming of a formal function and its return
1903 -- profile has a null exclusion, then Sub's return profile must
1904 -- have one. Otherwise the subtype of Sub's return profile must
1905 -- exclude null.
1907 procedure Freeze_Actual_Profile;
1908 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1909 -- types: a callable entity freezes its profile, unless it has an
1910 -- incomplete untagged formal (RM 13.14(10.2/3)).
1912 function Has_Class_Wide_Actual return Boolean;
1913 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1914 -- defaulted formal subprogram where the actual for the controlling
1915 -- formal type is class-wide.
1917 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1918 -- Find renamed entity when the declaration is a renaming_as_body and
1919 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1920 -- rule that a renaming_as_body is illegal if the declaration occurs
1921 -- before the subprogram it completes is frozen, and renaming indirectly
1922 -- renames the subprogram itself.(Defect Report 8652/0027).
1924 ------------------------------
1925 -- Build_Class_Wide_Wrapper --
1926 ------------------------------
1928 procedure Build_Class_Wide_Wrapper
1929 (Ren_Id : out Entity_Id;
1930 Wrap_Id : out Entity_Id)
1932 Loc : constant Source_Ptr := Sloc (N);
1934 function Build_Call
1935 (Subp_Id : Entity_Id;
1936 Params : List_Id) return Node_Id;
1937 -- Create a dispatching call to invoke routine Subp_Id with actuals
1938 -- built from the parameter specifications of list Params.
1940 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1941 -- Create a subprogram specification based on the subprogram profile
1942 -- of Subp_Id.
1944 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1945 -- Find a primitive subprogram of type Typ which matches the profile
1946 -- of the renaming declaration.
1948 procedure Interpretation_Error (Subp_Id : Entity_Id);
1949 -- Emit a continuation error message suggesting subprogram Subp_Id as
1950 -- a possible interpretation.
1952 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
1953 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1954 -- operator.
1956 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
1957 -- Determine whether subprogram Subp_Id is a suitable candidate for
1958 -- the role of a wrapped subprogram.
1960 ----------------
1961 -- Build_Call --
1962 ----------------
1964 function Build_Call
1965 (Subp_Id : Entity_Id;
1966 Params : List_Id) return Node_Id
1968 Actuals : constant List_Id := New_List;
1969 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
1970 Formal : Node_Id;
1972 begin
1973 -- Build the actual parameters of the call
1975 Formal := First (Params);
1976 while Present (Formal) loop
1977 Append_To (Actuals,
1978 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
1979 Next (Formal);
1980 end loop;
1982 -- Generate:
1983 -- return Subp_Id (Actuals);
1985 if Ekind_In (Subp_Id, E_Function, E_Operator) then
1986 return
1987 Make_Simple_Return_Statement (Loc,
1988 Expression =>
1989 Make_Function_Call (Loc,
1990 Name => Call_Ref,
1991 Parameter_Associations => Actuals));
1993 -- Generate:
1994 -- Subp_Id (Actuals);
1996 else
1997 return
1998 Make_Procedure_Call_Statement (Loc,
1999 Name => Call_Ref,
2000 Parameter_Associations => Actuals);
2001 end if;
2002 end Build_Call;
2004 ----------------
2005 -- Build_Spec --
2006 ----------------
2008 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2009 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2010 Spec_Id : constant Entity_Id :=
2011 Make_Defining_Identifier (Loc,
2012 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2014 begin
2015 if Ekind (Formal_Spec) = E_Procedure then
2016 return
2017 Make_Procedure_Specification (Loc,
2018 Defining_Unit_Name => Spec_Id,
2019 Parameter_Specifications => Params);
2020 else
2021 return
2022 Make_Function_Specification (Loc,
2023 Defining_Unit_Name => Spec_Id,
2024 Parameter_Specifications => Params,
2025 Result_Definition =>
2026 New_Copy_Tree (Result_Definition (Spec)));
2027 end if;
2028 end Build_Spec;
2030 --------------------
2031 -- Find_Primitive --
2032 --------------------
2034 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2035 procedure Replace_Parameter_Types (Spec : Node_Id);
2036 -- Given a specification Spec, replace all class-wide parameter
2037 -- types with reference to type Typ.
2039 -----------------------------
2040 -- Replace_Parameter_Types --
2041 -----------------------------
2043 procedure Replace_Parameter_Types (Spec : Node_Id) is
2044 Formal : Node_Id;
2045 Formal_Id : Entity_Id;
2046 Formal_Typ : Node_Id;
2048 begin
2049 Formal := First (Parameter_Specifications (Spec));
2050 while Present (Formal) loop
2051 Formal_Id := Defining_Identifier (Formal);
2052 Formal_Typ := Parameter_Type (Formal);
2054 -- Create a new entity for each class-wide formal to prevent
2055 -- aliasing with the original renaming. Replace the type of
2056 -- such a parameter with the candidate type.
2058 if Nkind (Formal_Typ) = N_Identifier
2059 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2060 then
2061 Set_Defining_Identifier (Formal,
2062 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2064 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2065 end if;
2067 Next (Formal);
2068 end loop;
2069 end Replace_Parameter_Types;
2071 -- Local variables
2073 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2074 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2075 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2076 Subp_Id : Entity_Id;
2078 -- Start of processing for Find_Primitive
2080 begin
2081 -- Each attempt to find a suitable primitive of a particular type
2082 -- operates on its own copy of the original renaming. As a result
2083 -- the original renaming is kept decoration and side-effect free.
2085 -- Inherit the overloaded status of the renamed subprogram name
2087 if Is_Overloaded (Nam) then
2088 Set_Is_Overloaded (Alt_Nam);
2089 Save_Interps (Nam, Alt_Nam);
2090 end if;
2092 -- The copied renaming is hidden from visibility to prevent the
2093 -- pollution of the enclosing context.
2095 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2097 -- The types of all class-wide parameters must be changed to the
2098 -- candidate type.
2100 Replace_Parameter_Types (Alt_Spec);
2102 -- Try to find a suitable primitive which matches the altered
2103 -- profile of the renaming specification.
2105 Subp_Id :=
2106 Find_Renamed_Entity
2107 (N => Alt_Ren,
2108 Nam => Name (Alt_Ren),
2109 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2110 Is_Actual => Is_Actual);
2112 -- Do not return Any_Id if the resolion of the altered profile
2113 -- failed as this complicates further checks on the caller side,
2114 -- return Empty instead.
2116 if Subp_Id = Any_Id then
2117 return Empty;
2118 else
2119 return Subp_Id;
2120 end if;
2121 end Find_Primitive;
2123 --------------------------
2124 -- Interpretation_Error --
2125 --------------------------
2127 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2128 begin
2129 Error_Msg_Sloc := Sloc (Subp_Id);
2131 if Is_Internal (Subp_Id) then
2132 Error_Msg_NE
2133 ("\\possible interpretation: predefined & #",
2134 Spec, Formal_Spec);
2135 else
2136 Error_Msg_NE
2137 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2138 end if;
2139 end Interpretation_Error;
2141 ---------------------------
2142 -- Is_Intrinsic_Equality --
2143 ---------------------------
2145 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2146 begin
2147 return
2148 Ekind (Subp_Id) = E_Operator
2149 and then Chars (Subp_Id) = Name_Op_Eq
2150 and then Is_Intrinsic_Subprogram (Subp_Id);
2151 end Is_Intrinsic_Equality;
2153 ---------------------------
2154 -- Is_Suitable_Candidate --
2155 ---------------------------
2157 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2158 begin
2159 if No (Subp_Id) then
2160 return False;
2162 -- An intrinsic subprogram is never a good candidate. This is an
2163 -- indication of a missing primitive, either defined directly or
2164 -- inherited from a parent tagged type.
2166 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2167 return False;
2169 else
2170 return True;
2171 end if;
2172 end Is_Suitable_Candidate;
2174 -- Local variables
2176 Actual_Typ : Entity_Id := Empty;
2177 -- The actual class-wide type for Formal_Typ
2179 CW_Prim_OK : Boolean;
2180 CW_Prim_Op : Entity_Id;
2181 -- The class-wide subprogram (if available) which corresponds to the
2182 -- renamed generic formal subprogram.
2184 Formal_Typ : Entity_Id := Empty;
2185 -- The generic formal type with unknown discriminants
2187 Root_Prim_OK : Boolean;
2188 Root_Prim_Op : Entity_Id;
2189 -- The root type primitive (if available) which corresponds to the
2190 -- renamed generic formal subprogram.
2192 Root_Typ : Entity_Id := Empty;
2193 -- The root type of Actual_Typ
2195 Body_Decl : Node_Id;
2196 Formal : Node_Id;
2197 Prim_Op : Entity_Id;
2198 Spec_Decl : Node_Id;
2200 -- Start of processing for Build_Class_Wide_Wrapper
2202 begin
2203 -- Analyze the specification of the renaming in case the generation
2204 -- of the class-wide wrapper fails.
2206 Ren_Id := Analyze_Subprogram_Specification (Spec);
2207 Wrap_Id := Any_Id;
2209 -- Do not attempt to build a wrapper if the renaming is in error
2211 if Error_Posted (Nam) then
2212 return;
2213 end if;
2215 -- Analyze the renamed name, but do not resolve it. The resolution is
2216 -- completed once a suitable subprogram is found.
2218 Analyze (Nam);
2220 -- When the renamed name denotes the intrinsic operator equals, the
2221 -- name must be treated as overloaded. This allows for a potential
2222 -- match against the root type's predefined equality function.
2224 if Is_Intrinsic_Equality (Entity (Nam)) then
2225 Set_Is_Overloaded (Nam);
2226 Collect_Interps (Nam);
2227 end if;
2229 -- Step 1: Find the generic formal type with unknown discriminants
2230 -- and its corresponding class-wide actual type from the renamed
2231 -- generic formal subprogram.
2233 Formal := First_Formal (Formal_Spec);
2234 while Present (Formal) loop
2235 if Has_Unknown_Discriminants (Etype (Formal))
2236 and then not Is_Class_Wide_Type (Etype (Formal))
2237 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2238 then
2239 Formal_Typ := Etype (Formal);
2240 Actual_Typ := Get_Instance_Of (Formal_Typ);
2241 Root_Typ := Etype (Actual_Typ);
2242 exit;
2243 end if;
2245 Next_Formal (Formal);
2246 end loop;
2248 -- The specification of the generic formal subprogram should always
2249 -- contain a formal type with unknown discriminants whose actual is
2250 -- a class-wide type, otherwise this indicates a failure in routine
2251 -- Has_Class_Wide_Actual.
2253 pragma Assert (Present (Formal_Typ));
2255 -- Step 2: Find the proper class-wide subprogram or primitive which
2256 -- corresponds to the renamed generic formal subprogram.
2258 CW_Prim_Op := Find_Primitive (Actual_Typ);
2259 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2260 Root_Prim_Op := Find_Primitive (Root_Typ);
2261 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2263 -- The class-wide actual type has two subprograms which correspond to
2264 -- the renamed generic formal subprogram:
2266 -- with procedure Prim_Op (Param : Formal_Typ);
2268 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2269 -- procedure Prim_Op (Param : Actual_Typ'Class);
2271 -- Even though the declaration of the two subprograms is legal, a
2272 -- call to either one is ambiguous and therefore illegal.
2274 if CW_Prim_OK and Root_Prim_OK then
2276 -- A user-defined primitive has precedence over a predefined one
2278 if Is_Internal (CW_Prim_Op)
2279 and then not Is_Internal (Root_Prim_Op)
2280 then
2281 Prim_Op := Root_Prim_Op;
2283 elsif Is_Internal (Root_Prim_Op)
2284 and then not Is_Internal (CW_Prim_Op)
2285 then
2286 Prim_Op := CW_Prim_Op;
2288 elsif CW_Prim_Op = Root_Prim_Op then
2289 Prim_Op := Root_Prim_Op;
2291 -- Otherwise both candidate subprograms are user-defined and
2292 -- ambiguous.
2294 else
2295 Error_Msg_NE
2296 ("ambiguous actual for generic subprogram &",
2297 Spec, Formal_Spec);
2298 Interpretation_Error (Root_Prim_Op);
2299 Interpretation_Error (CW_Prim_Op);
2300 return;
2301 end if;
2303 elsif CW_Prim_OK and not Root_Prim_OK then
2304 Prim_Op := CW_Prim_Op;
2306 elsif not CW_Prim_OK and Root_Prim_OK then
2307 Prim_Op := Root_Prim_Op;
2309 -- An intrinsic equality may act as a suitable candidate in the case
2310 -- of a null type extension where the parent's equality is hidden. A
2311 -- call to an intrinsic equality is expanded as dispatching.
2313 elsif Present (Root_Prim_Op)
2314 and then Is_Intrinsic_Equality (Root_Prim_Op)
2315 then
2316 Prim_Op := Root_Prim_Op;
2318 -- Otherwise there are no candidate subprograms. Let the caller
2319 -- diagnose the error.
2321 else
2322 return;
2323 end if;
2325 -- At this point resolution has taken place and the name is no longer
2326 -- overloaded. Mark the primitive as referenced.
2328 Set_Is_Overloaded (Name (N), False);
2329 Set_Referenced (Prim_Op);
2331 -- Step 3: Create the declaration and the body of the wrapper, insert
2332 -- all the pieces into the tree.
2334 Spec_Decl :=
2335 Make_Subprogram_Declaration (Loc,
2336 Specification => Build_Spec (Ren_Id));
2337 Insert_Before_And_Analyze (N, Spec_Decl);
2339 -- If the operator carries an Eliminated pragma, indicate that the
2340 -- wrapper is also to be eliminated, to prevent spurious error when
2341 -- using gnatelim on programs that include box-initialization of
2342 -- equality operators.
2344 Wrap_Id := Defining_Entity (Spec_Decl);
2345 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2347 Body_Decl :=
2348 Make_Subprogram_Body (Loc,
2349 Specification => Build_Spec (Ren_Id),
2350 Declarations => New_List,
2351 Handled_Statement_Sequence =>
2352 Make_Handled_Sequence_Of_Statements (Loc,
2353 Statements => New_List (
2354 Build_Call
2355 (Subp_Id => Prim_Op,
2356 Params =>
2357 Parameter_Specifications
2358 (Specification (Spec_Decl))))));
2360 -- The generated body does not freeze and must be analyzed when the
2361 -- class-wide wrapper is frozen. The body is only needed if expansion
2362 -- is enabled.
2364 if Expander_Active then
2365 Append_Freeze_Action (Wrap_Id, Body_Decl);
2366 end if;
2368 -- Step 4: The subprogram renaming aliases the wrapper
2370 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2371 end Build_Class_Wide_Wrapper;
2373 --------------------------
2374 -- Check_Null_Exclusion --
2375 --------------------------
2377 procedure Check_Null_Exclusion
2378 (Ren : Entity_Id;
2379 Sub : Entity_Id)
2381 Ren_Formal : Entity_Id;
2382 Sub_Formal : Entity_Id;
2384 begin
2385 -- Parameter check
2387 Ren_Formal := First_Formal (Ren);
2388 Sub_Formal := First_Formal (Sub);
2389 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2390 if Has_Null_Exclusion (Parent (Ren_Formal))
2391 and then
2392 not (Has_Null_Exclusion (Parent (Sub_Formal))
2393 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2394 then
2395 Error_Msg_NE
2396 ("`NOT NULL` required for parameter &",
2397 Parent (Sub_Formal), Sub_Formal);
2398 end if;
2400 Next_Formal (Ren_Formal);
2401 Next_Formal (Sub_Formal);
2402 end loop;
2404 -- Return profile check
2406 if Nkind (Parent (Ren)) = N_Function_Specification
2407 and then Nkind (Parent (Sub)) = N_Function_Specification
2408 and then Has_Null_Exclusion (Parent (Ren))
2409 and then not (Has_Null_Exclusion (Parent (Sub))
2410 or else Can_Never_Be_Null (Etype (Sub)))
2411 then
2412 Error_Msg_N
2413 ("return must specify `NOT NULL`",
2414 Result_Definition (Parent (Sub)));
2415 end if;
2416 end Check_Null_Exclusion;
2418 ---------------------------
2419 -- Freeze_Actual_Profile --
2420 ---------------------------
2422 procedure Freeze_Actual_Profile is
2423 F : Entity_Id;
2424 Has_Untagged_Inc : Boolean;
2425 Instantiation_Node : constant Node_Id := Parent (N);
2427 begin
2428 if Ada_Version >= Ada_2012 then
2429 F := First_Formal (Formal_Spec);
2430 Has_Untagged_Inc := False;
2431 while Present (F) loop
2432 if Ekind (Etype (F)) = E_Incomplete_Type
2433 and then not Is_Tagged_Type (Etype (F))
2434 then
2435 Has_Untagged_Inc := True;
2436 exit;
2437 end if;
2439 F := Next_Formal (F);
2440 end loop;
2442 if Ekind (Formal_Spec) = E_Function
2443 and then Ekind (Etype (Formal_Spec)) = E_Incomplete_Type
2444 and then not Is_Tagged_Type (Etype (F))
2445 then
2446 Has_Untagged_Inc := True;
2447 end if;
2449 if not Has_Untagged_Inc then
2450 F := First_Formal (Old_S);
2451 while Present (F) loop
2452 Freeze_Before (Instantiation_Node, Etype (F));
2454 if Is_Incomplete_Or_Private_Type (Etype (F))
2455 and then No (Underlying_Type (Etype (F)))
2456 then
2457 -- Exclude generic types, or types derived from them.
2458 -- They will be frozen in the enclosing instance.
2460 if Is_Generic_Type (Etype (F))
2461 or else Is_Generic_Type (Root_Type (Etype (F)))
2462 then
2463 null;
2464 else
2465 Error_Msg_NE
2466 ("type& must be frozen before this point",
2467 Instantiation_Node, Etype (F));
2468 end if;
2469 end if;
2471 F := Next_Formal (F);
2472 end loop;
2473 end if;
2474 end if;
2475 end Freeze_Actual_Profile;
2477 ---------------------------
2478 -- Has_Class_Wide_Actual --
2479 ---------------------------
2481 function Has_Class_Wide_Actual return Boolean is
2482 Formal : Entity_Id;
2483 Formal_Typ : Entity_Id;
2485 begin
2486 if Is_Actual then
2487 Formal := First_Formal (Formal_Spec);
2488 while Present (Formal) loop
2489 Formal_Typ := Etype (Formal);
2491 if Has_Unknown_Discriminants (Formal_Typ)
2492 and then not Is_Class_Wide_Type (Formal_Typ)
2493 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2494 then
2495 return True;
2496 end if;
2498 Next_Formal (Formal);
2499 end loop;
2500 end if;
2502 return False;
2503 end Has_Class_Wide_Actual;
2505 -------------------------
2506 -- Original_Subprogram --
2507 -------------------------
2509 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2510 Orig_Decl : Node_Id;
2511 Orig_Subp : Entity_Id;
2513 begin
2514 -- First case: renamed entity is itself a renaming
2516 if Present (Alias (Subp)) then
2517 return Alias (Subp);
2519 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2520 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2521 then
2522 -- Check if renamed entity is a renaming_as_body
2524 Orig_Decl :=
2525 Unit_Declaration_Node
2526 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2528 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2529 Orig_Subp := Entity (Name (Orig_Decl));
2531 if Orig_Subp = Rename_Spec then
2533 -- Circularity detected
2535 return Orig_Subp;
2537 else
2538 return (Original_Subprogram (Orig_Subp));
2539 end if;
2540 else
2541 return Subp;
2542 end if;
2543 else
2544 return Subp;
2545 end if;
2546 end Original_Subprogram;
2548 -- Local variables
2550 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2551 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2552 -- defaulted formal subprogram when the actual for a related formal
2553 -- type is class-wide.
2555 Inst_Node : Node_Id := Empty;
2556 New_S : Entity_Id;
2558 -- Start of processing for Analyze_Subprogram_Renaming
2560 begin
2561 -- We must test for the attribute renaming case before the Analyze
2562 -- call because otherwise Sem_Attr will complain that the attribute
2563 -- is missing an argument when it is analyzed.
2565 if Nkind (Nam) = N_Attribute_Reference then
2567 -- In the case of an abstract formal subprogram association, rewrite
2568 -- an actual given by a stream attribute as the name of the
2569 -- corresponding stream primitive of the type.
2571 -- In a generic context the stream operations are not generated, and
2572 -- this must be treated as a normal attribute reference, to be
2573 -- expanded in subsequent instantiations.
2575 if Is_Actual
2576 and then Is_Abstract_Subprogram (Formal_Spec)
2577 and then Expander_Active
2578 then
2579 declare
2580 Stream_Prim : Entity_Id;
2581 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2583 begin
2584 -- The class-wide forms of the stream attributes are not
2585 -- primitive dispatching operations (even though they
2586 -- internally dispatch to a stream attribute).
2588 if Is_Class_Wide_Type (Prefix_Type) then
2589 Error_Msg_N
2590 ("attribute must be a primitive dispatching operation",
2591 Nam);
2592 return;
2593 end if;
2595 -- Retrieve the primitive subprogram associated with the
2596 -- attribute. This can only be a stream attribute, since those
2597 -- are the only ones that are dispatching (and the actual for
2598 -- an abstract formal subprogram must be dispatching
2599 -- operation).
2601 begin
2602 case Attribute_Name (Nam) is
2603 when Name_Input =>
2604 Stream_Prim :=
2605 Find_Prim_Op (Prefix_Type, TSS_Stream_Input);
2606 when Name_Output =>
2607 Stream_Prim :=
2608 Find_Prim_Op (Prefix_Type, TSS_Stream_Output);
2609 when Name_Read =>
2610 Stream_Prim :=
2611 Find_Prim_Op (Prefix_Type, TSS_Stream_Read);
2612 when Name_Write =>
2613 Stream_Prim :=
2614 Find_Prim_Op (Prefix_Type, TSS_Stream_Write);
2615 when others =>
2616 Error_Msg_N
2617 ("attribute must be a primitive"
2618 & " dispatching operation", Nam);
2619 return;
2620 end case;
2622 exception
2624 -- If no operation was found, and the type is limited,
2625 -- the user should have defined one.
2627 when Program_Error =>
2628 if Is_Limited_Type (Prefix_Type) then
2629 Error_Msg_NE
2630 ("stream operation not defined for type&",
2631 N, Prefix_Type);
2632 return;
2634 -- Otherwise, compiler should have generated default
2636 else
2637 raise;
2638 end if;
2639 end;
2641 -- Rewrite the attribute into the name of its corresponding
2642 -- primitive dispatching subprogram. We can then proceed with
2643 -- the usual processing for subprogram renamings.
2645 declare
2646 Prim_Name : constant Node_Id :=
2647 Make_Identifier (Sloc (Nam),
2648 Chars => Chars (Stream_Prim));
2649 begin
2650 Set_Entity (Prim_Name, Stream_Prim);
2651 Rewrite (Nam, Prim_Name);
2652 Analyze (Nam);
2653 end;
2654 end;
2656 -- Normal processing for a renaming of an attribute
2658 else
2659 Attribute_Renaming (N);
2660 return;
2661 end if;
2662 end if;
2664 -- Check whether this declaration corresponds to the instantiation
2665 -- of a formal subprogram.
2667 -- If this is an instantiation, the corresponding actual is frozen and
2668 -- error messages can be made more precise. If this is a default
2669 -- subprogram, the entity is already established in the generic, and is
2670 -- not retrieved by visibility. If it is a default with a box, the
2671 -- candidate interpretations, if any, have been collected when building
2672 -- the renaming declaration. If overloaded, the proper interpretation is
2673 -- determined in Find_Renamed_Entity. If the entity is an operator,
2674 -- Find_Renamed_Entity applies additional visibility checks.
2676 if Is_Actual then
2677 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2679 -- Check whether the renaming is for a defaulted actual subprogram
2680 -- with a class-wide actual.
2682 if CW_Actual and then Box_Present (Inst_Node) then
2683 Build_Class_Wide_Wrapper (New_S, Old_S);
2685 elsif Is_Entity_Name (Nam)
2686 and then Present (Entity (Nam))
2687 and then not Comes_From_Source (Nam)
2688 and then not Is_Overloaded (Nam)
2689 then
2690 Old_S := Entity (Nam);
2691 New_S := Analyze_Subprogram_Specification (Spec);
2693 -- Operator case
2695 if Ekind (Entity (Nam)) = E_Operator then
2697 -- Box present
2699 if Box_Present (Inst_Node) then
2700 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2702 -- If there is an immediately visible homonym of the operator
2703 -- and the declaration has a default, this is worth a warning
2704 -- because the user probably did not intend to get the pre-
2705 -- defined operator, visible in the generic declaration. To
2706 -- find if there is an intended candidate, analyze the renaming
2707 -- again in the current context.
2709 elsif Scope (Old_S) = Standard_Standard
2710 and then Present (Default_Name (Inst_Node))
2711 then
2712 declare
2713 Decl : constant Node_Id := New_Copy_Tree (N);
2714 Hidden : Entity_Id;
2716 begin
2717 Set_Entity (Name (Decl), Empty);
2718 Analyze (Name (Decl));
2719 Hidden :=
2720 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2722 if Present (Hidden)
2723 and then In_Open_Scopes (Scope (Hidden))
2724 and then Is_Immediately_Visible (Hidden)
2725 and then Comes_From_Source (Hidden)
2726 and then Hidden /= Old_S
2727 then
2728 Error_Msg_Sloc := Sloc (Hidden);
2729 Error_Msg_N ("default subprogram is resolved " &
2730 "in the generic declaration " &
2731 "(RM 12.6(17))??", N);
2732 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2733 end if;
2734 end;
2735 end if;
2736 end if;
2738 else
2739 Analyze (Nam);
2740 New_S := Analyze_Subprogram_Specification (Spec);
2741 end if;
2743 else
2744 -- Renamed entity must be analyzed first, to avoid being hidden by
2745 -- new name (which might be the same in a generic instance).
2747 Analyze (Nam);
2749 -- The renaming defines a new overloaded entity, which is analyzed
2750 -- like a subprogram declaration.
2752 New_S := Analyze_Subprogram_Specification (Spec);
2753 end if;
2755 if Current_Scope /= Standard_Standard then
2756 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2757 end if;
2759 -- Set SPARK mode from current context
2761 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2762 Set_SPARK_Pragma_Inherited (New_S, True);
2764 Rename_Spec := Find_Corresponding_Spec (N);
2766 -- Case of Renaming_As_Body
2768 if Present (Rename_Spec) then
2770 -- Renaming declaration is the completion of the declaration of
2771 -- Rename_Spec. We build an actual body for it at the freezing point.
2773 Set_Corresponding_Spec (N, Rename_Spec);
2775 -- Deal with special case of stream functions of abstract types
2776 -- and interfaces.
2778 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2779 N_Abstract_Subprogram_Declaration
2780 then
2781 -- Input stream functions are abstract if the object type is
2782 -- abstract. Similarly, all default stream functions for an
2783 -- interface type are abstract. However, these subprograms may
2784 -- receive explicit declarations in representation clauses, making
2785 -- the attribute subprograms usable as defaults in subsequent
2786 -- type extensions.
2787 -- In this case we rewrite the declaration to make the subprogram
2788 -- non-abstract. We remove the previous declaration, and insert
2789 -- the new one at the point of the renaming, to prevent premature
2790 -- access to unfrozen types. The new declaration reuses the
2791 -- specification of the previous one, and must not be analyzed.
2793 pragma Assert
2794 (Is_Primitive (Entity (Nam))
2795 and then
2796 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2797 declare
2798 Old_Decl : constant Node_Id :=
2799 Unit_Declaration_Node (Rename_Spec);
2800 New_Decl : constant Node_Id :=
2801 Make_Subprogram_Declaration (Sloc (N),
2802 Specification =>
2803 Relocate_Node (Specification (Old_Decl)));
2804 begin
2805 Remove (Old_Decl);
2806 Insert_After (N, New_Decl);
2807 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2808 Set_Analyzed (New_Decl);
2809 end;
2810 end if;
2812 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
2814 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2815 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
2816 end if;
2818 Set_Convention (New_S, Convention (Rename_Spec));
2819 Check_Fully_Conformant (New_S, Rename_Spec);
2820 Set_Public_Status (New_S);
2822 -- The specification does not introduce new formals, but only
2823 -- repeats the formals of the original subprogram declaration.
2824 -- For cross-reference purposes, and for refactoring tools, we
2825 -- treat the formals of the renaming declaration as body formals.
2827 Reference_Body_Formals (Rename_Spec, New_S);
2829 -- Indicate that the entity in the declaration functions like the
2830 -- corresponding body, and is not a new entity. The body will be
2831 -- constructed later at the freeze point, so indicate that the
2832 -- completion has not been seen yet.
2834 Set_Contract (New_S, Empty);
2835 Set_Ekind (New_S, E_Subprogram_Body);
2836 New_S := Rename_Spec;
2837 Set_Has_Completion (Rename_Spec, False);
2839 -- Ada 2005: check overriding indicator
2841 if Present (Overridden_Operation (Rename_Spec)) then
2842 if Must_Not_Override (Specification (N)) then
2843 Error_Msg_NE
2844 ("subprogram& overrides inherited operation",
2845 N, Rename_Spec);
2846 elsif
2847 Style_Check and then not Must_Override (Specification (N))
2848 then
2849 Style.Missing_Overriding (N, Rename_Spec);
2850 end if;
2852 elsif Must_Override (Specification (N)) then
2853 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
2854 end if;
2856 -- Normal subprogram renaming (not renaming as body)
2858 else
2859 Generate_Definition (New_S);
2860 New_Overloaded_Entity (New_S);
2862 if Is_Entity_Name (Nam)
2863 and then Is_Intrinsic_Subprogram (Entity (Nam))
2864 then
2865 null;
2866 else
2867 Check_Delayed_Subprogram (New_S);
2868 end if;
2869 end if;
2871 -- There is no need for elaboration checks on the new entity, which may
2872 -- be called before the next freezing point where the body will appear.
2873 -- Elaboration checks refer to the real entity, not the one created by
2874 -- the renaming declaration.
2876 Set_Kill_Elaboration_Checks (New_S, True);
2878 -- If we had a previous error, indicate a completely is present to stop
2879 -- junk cascaded messages, but don't take any further action.
2881 if Etype (Nam) = Any_Type then
2882 Set_Has_Completion (New_S);
2883 return;
2885 -- Case where name has the form of a selected component
2887 elsif Nkind (Nam) = N_Selected_Component then
2889 -- A name which has the form A.B can designate an entry of task A, a
2890 -- protected operation of protected object A, or finally a primitive
2891 -- operation of object A. In the later case, A is an object of some
2892 -- tagged type, or an access type that denotes one such. To further
2893 -- distinguish these cases, note that the scope of a task entry or
2894 -- protected operation is type of the prefix.
2896 -- The prefix could be an overloaded function call that returns both
2897 -- kinds of operations. This overloading pathology is left to the
2898 -- dedicated reader ???
2900 declare
2901 T : constant Entity_Id := Etype (Prefix (Nam));
2903 begin
2904 if Present (T)
2905 and then
2906 (Is_Tagged_Type (T)
2907 or else
2908 (Is_Access_Type (T)
2909 and then Is_Tagged_Type (Designated_Type (T))))
2910 and then Scope (Entity (Selector_Name (Nam))) /= T
2911 then
2912 Analyze_Renamed_Primitive_Operation
2913 (N, New_S, Present (Rename_Spec));
2914 return;
2916 else
2917 -- Renamed entity is an entry or protected operation. For those
2918 -- cases an explicit body is built (at the point of freezing of
2919 -- this entity) that contains a call to the renamed entity.
2921 -- This is not allowed for renaming as body if the renamed
2922 -- spec is already frozen (see RM 8.5.4(5) for details).
2924 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
2925 Error_Msg_N
2926 ("renaming-as-body cannot rename entry as subprogram", N);
2927 Error_Msg_NE
2928 ("\since & is already frozen (RM 8.5.4(5))",
2929 N, Rename_Spec);
2930 else
2931 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
2932 end if;
2934 return;
2935 end if;
2936 end;
2938 -- Case where name is an explicit dereference X.all
2940 elsif Nkind (Nam) = N_Explicit_Dereference then
2942 -- Renamed entity is designated by access_to_subprogram expression.
2943 -- Must build body to encapsulate call, as in the entry case.
2945 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
2946 return;
2948 -- Indexed component
2950 elsif Nkind (Nam) = N_Indexed_Component then
2951 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
2952 return;
2954 -- Character literal
2956 elsif Nkind (Nam) = N_Character_Literal then
2957 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
2958 return;
2960 -- Only remaining case is where we have a non-entity name, or a renaming
2961 -- of some other non-overloadable entity.
2963 elsif not Is_Entity_Name (Nam)
2964 or else not Is_Overloadable (Entity (Nam))
2965 then
2966 -- Do not mention the renaming if it comes from an instance
2968 if not Is_Actual then
2969 Error_Msg_N ("expect valid subprogram name in renaming", N);
2970 else
2971 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
2972 end if;
2974 return;
2975 end if;
2977 -- Find the renamed entity that matches the given specification. Disable
2978 -- Ada_83 because there is no requirement of full conformance between
2979 -- renamed entity and new entity, even though the same circuit is used.
2981 -- This is a bit of an odd case, which introduces a really irregular use
2982 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
2983 -- this. ???
2985 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
2986 Ada_Version_Pragma := Empty;
2987 Ada_Version_Explicit := Ada_Version;
2989 if No (Old_S) then
2990 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2992 -- The visible operation may be an inherited abstract operation that
2993 -- was overridden in the private part, in which case a call will
2994 -- dispatch to the overriding operation. Use the overriding one in
2995 -- the renaming declaration, to prevent spurious errors below.
2997 if Is_Overloadable (Old_S)
2998 and then Is_Abstract_Subprogram (Old_S)
2999 and then No (DTC_Entity (Old_S))
3000 and then Present (Alias (Old_S))
3001 and then not Is_Abstract_Subprogram (Alias (Old_S))
3002 and then Present (Overridden_Operation (Alias (Old_S)))
3003 then
3004 Old_S := Alias (Old_S);
3005 end if;
3007 -- When the renamed subprogram is overloaded and used as an actual
3008 -- of a generic, its entity is set to the first available homonym.
3009 -- We must first disambiguate the name, then set the proper entity.
3011 if Is_Actual and then Is_Overloaded (Nam) then
3012 Set_Entity (Nam, Old_S);
3013 end if;
3014 end if;
3016 -- Most common case: subprogram renames subprogram. No body is generated
3017 -- in this case, so we must indicate the declaration is complete as is.
3018 -- and inherit various attributes of the renamed subprogram.
3020 if No (Rename_Spec) then
3021 Set_Has_Completion (New_S);
3022 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3023 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3024 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3026 -- A subprogram renaming is Ghost if the renamed entity is Ghost or
3027 -- the construct appears within a Ghost scope.
3029 if Is_Ghost_Entity (Entity (Nam)) or else Within_Ghost_Scope then
3030 Set_Is_Ghost_Entity (New_S);
3031 end if;
3033 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3034 -- between a subprogram and its correct renaming.
3036 -- Note: the Any_Id check is a guard that prevents compiler crashes
3037 -- when performing a null exclusion check between a renaming and a
3038 -- renamed subprogram that has been found to be illegal.
3040 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3041 Check_Null_Exclusion
3042 (Ren => New_S,
3043 Sub => Entity (Nam));
3044 end if;
3046 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3047 -- overriding. The flag Requires_Overriding is set very selectively
3048 -- and misses some other illegal cases. The additional conditions
3049 -- checked below are sufficient but not necessary ???
3051 -- The rule does not apply to the renaming generated for an actual
3052 -- subprogram in an instance.
3054 if Is_Actual then
3055 null;
3057 -- Guard against previous errors, and omit renamings of predefined
3058 -- operators.
3060 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3061 null;
3063 elsif Requires_Overriding (Old_S)
3064 or else
3065 (Is_Abstract_Subprogram (Old_S)
3066 and then Present (Find_Dispatching_Type (Old_S))
3067 and then
3068 not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3069 then
3070 Error_Msg_N
3071 ("renamed entity cannot be "
3072 & "subprogram that requires overriding (RM 8.5.4 (5.1))", N);
3073 end if;
3074 end if;
3076 if Old_S /= Any_Id then
3077 if Is_Actual and then From_Default (N) then
3079 -- This is an implicit reference to the default actual
3081 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3083 else
3084 Generate_Reference (Old_S, Nam);
3085 end if;
3087 Check_Internal_Protected_Use (N, Old_S);
3089 -- For a renaming-as-body, require subtype conformance, but if the
3090 -- declaration being completed has not been frozen, then inherit the
3091 -- convention of the renamed subprogram prior to checking conformance
3092 -- (unless the renaming has an explicit convention established; the
3093 -- rule stated in the RM doesn't seem to address this ???).
3095 if Present (Rename_Spec) then
3096 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3097 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3099 if not Is_Frozen (Rename_Spec) then
3100 if not Has_Convention_Pragma (Rename_Spec) then
3101 Set_Convention (New_S, Convention (Old_S));
3102 end if;
3104 if Ekind (Old_S) /= E_Operator then
3105 Check_Mode_Conformant (New_S, Old_S, Spec);
3106 end if;
3108 if Original_Subprogram (Old_S) = Rename_Spec then
3109 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3110 end if;
3111 else
3112 Check_Subtype_Conformant (New_S, Old_S, Spec);
3113 end if;
3115 Check_Frozen_Renaming (N, Rename_Spec);
3117 -- Check explicitly that renamed entity is not intrinsic, because
3118 -- in a generic the renamed body is not built. In this case,
3119 -- the renaming_as_body is a completion.
3121 if Inside_A_Generic then
3122 if Is_Frozen (Rename_Spec)
3123 and then Is_Intrinsic_Subprogram (Old_S)
3124 then
3125 Error_Msg_N
3126 ("subprogram in renaming_as_body cannot be intrinsic",
3127 Name (N));
3128 end if;
3130 Set_Has_Completion (Rename_Spec);
3131 end if;
3133 elsif Ekind (Old_S) /= E_Operator then
3135 -- If this a defaulted subprogram for a class-wide actual there is
3136 -- no check for mode conformance, given that the signatures don't
3137 -- match (the source mentions T but the actual mentions T'Class).
3139 if CW_Actual then
3140 null;
3141 elsif not Is_Actual or else No (Enclosing_Instance) then
3142 Check_Mode_Conformant (New_S, Old_S);
3143 end if;
3145 if Is_Actual and then Error_Posted (New_S) then
3146 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3147 end if;
3148 end if;
3150 if No (Rename_Spec) then
3152 -- The parameter profile of the new entity is that of the renamed
3153 -- entity: the subtypes given in the specification are irrelevant.
3155 Inherit_Renamed_Profile (New_S, Old_S);
3157 -- A call to the subprogram is transformed into a call to the
3158 -- renamed entity. This is transitive if the renamed entity is
3159 -- itself a renaming.
3161 if Present (Alias (Old_S)) then
3162 Set_Alias (New_S, Alias (Old_S));
3163 else
3164 Set_Alias (New_S, Old_S);
3165 end if;
3167 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3168 -- renaming as body, since the entity in this case is not an
3169 -- intrinsic (it calls an intrinsic, but we have a real body for
3170 -- this call, and it is in this body that the required intrinsic
3171 -- processing will take place).
3173 -- Also, if this is a renaming of inequality, the renamed operator
3174 -- is intrinsic, but what matters is the corresponding equality
3175 -- operator, which may be user-defined.
3177 Set_Is_Intrinsic_Subprogram
3178 (New_S,
3179 Is_Intrinsic_Subprogram (Old_S)
3180 and then
3181 (Chars (Old_S) /= Name_Op_Ne
3182 or else Ekind (Old_S) = E_Operator
3183 or else Is_Intrinsic_Subprogram
3184 (Corresponding_Equality (Old_S))));
3186 if Ekind (Alias (New_S)) = E_Operator then
3187 Set_Has_Delayed_Freeze (New_S, False);
3188 end if;
3190 -- If the renaming corresponds to an association for an abstract
3191 -- formal subprogram, then various attributes must be set to
3192 -- indicate that the renaming is an abstract dispatching operation
3193 -- with a controlling type.
3195 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3197 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3198 -- see it as corresponding to a generic association for a
3199 -- formal abstract subprogram
3201 Set_Is_Abstract_Subprogram (New_S);
3203 declare
3204 New_S_Ctrl_Type : constant Entity_Id :=
3205 Find_Dispatching_Type (New_S);
3206 Old_S_Ctrl_Type : constant Entity_Id :=
3207 Find_Dispatching_Type (Old_S);
3209 begin
3210 if Old_S_Ctrl_Type /= New_S_Ctrl_Type then
3211 Error_Msg_NE
3212 ("actual must be dispatching subprogram for type&",
3213 Nam, New_S_Ctrl_Type);
3215 else
3216 Set_Is_Dispatching_Operation (New_S);
3217 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3219 -- If the actual in the formal subprogram is itself a
3220 -- formal abstract subprogram association, there's no
3221 -- dispatch table component or position to inherit.
3223 if Present (DTC_Entity (Old_S)) then
3224 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3225 Set_DT_Position (New_S, DT_Position (Old_S));
3226 end if;
3227 end if;
3228 end;
3229 end if;
3230 end if;
3232 if Is_Actual then
3233 null;
3235 -- The following is illegal, because F hides whatever other F may
3236 -- be around:
3237 -- function F (...) renames F;
3239 elsif Old_S = New_S
3240 or else (Nkind (Nam) /= N_Expanded_Name
3241 and then Chars (Old_S) = Chars (New_S))
3242 then
3243 Error_Msg_N ("subprogram cannot rename itself", N);
3245 -- This is illegal even if we use a selector:
3246 -- function F (...) renames Pkg.F;
3247 -- because F is still hidden.
3249 elsif Nkind (Nam) = N_Expanded_Name
3250 and then Entity (Prefix (Nam)) = Current_Scope
3251 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3252 then
3253 -- This is an error, but we overlook the error and accept the
3254 -- renaming if the special Overriding_Renamings mode is in effect.
3256 if not Overriding_Renamings then
3257 Error_Msg_NE
3258 ("implicit operation& is not visible (RM 8.3 (15))",
3259 Nam, Old_S);
3260 end if;
3261 end if;
3263 Set_Convention (New_S, Convention (Old_S));
3265 if Is_Abstract_Subprogram (Old_S) then
3266 if Present (Rename_Spec) then
3267 Error_Msg_N
3268 ("a renaming-as-body cannot rename an abstract subprogram",
3270 Set_Has_Completion (Rename_Spec);
3271 else
3272 Set_Is_Abstract_Subprogram (New_S);
3273 end if;
3274 end if;
3276 Check_Library_Unit_Renaming (N, Old_S);
3278 -- Pathological case: procedure renames entry in the scope of its
3279 -- task. Entry is given by simple name, but body must be built for
3280 -- procedure. Of course if called it will deadlock.
3282 if Ekind (Old_S) = E_Entry then
3283 Set_Has_Completion (New_S, False);
3284 Set_Alias (New_S, Empty);
3285 end if;
3287 if Is_Actual then
3288 Freeze_Before (N, Old_S);
3289 Freeze_Actual_Profile;
3290 Set_Has_Delayed_Freeze (New_S, False);
3291 Freeze_Before (N, New_S);
3293 -- An abstract subprogram is only allowed as an actual in the case
3294 -- where the formal subprogram is also abstract.
3296 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3297 and then Is_Abstract_Subprogram (Old_S)
3298 and then not Is_Abstract_Subprogram (Formal_Spec)
3299 then
3300 Error_Msg_N
3301 ("abstract subprogram not allowed as generic actual", Nam);
3302 end if;
3303 end if;
3305 else
3306 -- A common error is to assume that implicit operators for types are
3307 -- defined in Standard, or in the scope of a subtype. In those cases
3308 -- where the renamed entity is given with an expanded name, it is
3309 -- worth mentioning that operators for the type are not declared in
3310 -- the scope given by the prefix.
3312 if Nkind (Nam) = N_Expanded_Name
3313 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3314 and then Scope (Entity (Nam)) = Standard_Standard
3315 then
3316 declare
3317 T : constant Entity_Id :=
3318 Base_Type (Etype (First_Formal (New_S)));
3319 begin
3320 Error_Msg_Node_2 := Prefix (Nam);
3321 Error_Msg_NE
3322 ("operator for type& is not declared in&", Prefix (Nam), T);
3323 end;
3325 else
3326 Error_Msg_NE
3327 ("no visible subprogram matches the specification for&",
3328 Spec, New_S);
3329 end if;
3331 if Present (Candidate_Renaming) then
3332 declare
3333 F1 : Entity_Id;
3334 F2 : Entity_Id;
3335 T1 : Entity_Id;
3337 begin
3338 F1 := First_Formal (Candidate_Renaming);
3339 F2 := First_Formal (New_S);
3340 T1 := First_Subtype (Etype (F1));
3341 while Present (F1) and then Present (F2) loop
3342 Next_Formal (F1);
3343 Next_Formal (F2);
3344 end loop;
3346 if Present (F1) and then Present (Default_Value (F1)) then
3347 if Present (Next_Formal (F1)) then
3348 Error_Msg_NE
3349 ("\missing specification for &" &
3350 " and other formals with defaults", Spec, F1);
3351 else
3352 Error_Msg_NE
3353 ("\missing specification for &", Spec, F1);
3354 end if;
3355 end if;
3357 if Nkind (Nam) = N_Operator_Symbol
3358 and then From_Default (N)
3359 then
3360 Error_Msg_Node_2 := T1;
3361 Error_Msg_NE
3362 ("default & on & is not directly visible",
3363 Nam, Nam);
3364 end if;
3365 end;
3366 end if;
3367 end if;
3369 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3370 -- controlling access parameters are known non-null for the renamed
3371 -- subprogram. Test also applies to a subprogram instantiation that
3372 -- is dispatching. Test is skipped if some previous error was detected
3373 -- that set Old_S to Any_Id.
3375 if Ada_Version >= Ada_2005
3376 and then Old_S /= Any_Id
3377 and then not Is_Dispatching_Operation (Old_S)
3378 and then Is_Dispatching_Operation (New_S)
3379 then
3380 declare
3381 Old_F : Entity_Id;
3382 New_F : Entity_Id;
3384 begin
3385 Old_F := First_Formal (Old_S);
3386 New_F := First_Formal (New_S);
3387 while Present (Old_F) loop
3388 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3389 and then Is_Controlling_Formal (New_F)
3390 and then not Can_Never_Be_Null (Old_F)
3391 then
3392 Error_Msg_N ("access parameter is controlling,", New_F);
3393 Error_Msg_NE
3394 ("\corresponding parameter of& "
3395 & "must be explicitly null excluding", New_F, Old_S);
3396 end if;
3398 Next_Formal (Old_F);
3399 Next_Formal (New_F);
3400 end loop;
3401 end;
3402 end if;
3404 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3405 -- is to warn if an operator is being renamed as a different operator.
3406 -- If the operator is predefined, examine the kind of the entity, not
3407 -- the abbreviated declaration in Standard.
3409 if Comes_From_Source (N)
3410 and then Present (Old_S)
3411 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3412 or else Ekind (Old_S) = E_Operator)
3413 and then Nkind (New_S) = N_Defining_Operator_Symbol
3414 and then Chars (Old_S) /= Chars (New_S)
3415 then
3416 Error_Msg_NE
3417 ("& is being renamed as a different operator??", N, Old_S);
3418 end if;
3420 -- Check for renaming of obsolescent subprogram
3422 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3424 -- Another warning or some utility: if the new subprogram as the same
3425 -- name as the old one, the old one is not hidden by an outer homograph,
3426 -- the new one is not a public symbol, and the old one is otherwise
3427 -- directly visible, the renaming is superfluous.
3429 if Chars (Old_S) = Chars (New_S)
3430 and then Comes_From_Source (N)
3431 and then Scope (Old_S) /= Standard_Standard
3432 and then Warn_On_Redundant_Constructs
3433 and then (Is_Immediately_Visible (Old_S)
3434 or else Is_Potentially_Use_Visible (Old_S))
3435 and then Is_Overloadable (Current_Scope)
3436 and then Chars (Current_Scope) /= Chars (Old_S)
3437 then
3438 Error_Msg_N
3439 ("redundant renaming, entity is directly visible?r?", Name (N));
3440 end if;
3442 -- Implementation-defined aspect specifications can appear in a renaming
3443 -- declaration, but not language-defined ones. The call to procedure
3444 -- Analyze_Aspect_Specifications will take care of this error check.
3446 if Has_Aspects (N) then
3447 Analyze_Aspect_Specifications (N, New_S);
3448 end if;
3450 Ada_Version := Save_AV;
3451 Ada_Version_Pragma := Save_AVP;
3452 Ada_Version_Explicit := Save_AV_Exp;
3453 end Analyze_Subprogram_Renaming;
3455 -------------------------
3456 -- Analyze_Use_Package --
3457 -------------------------
3459 -- Resolve the package names in the use clause, and make all the visible
3460 -- entities defined in the package potentially use-visible. If the package
3461 -- is already in use from a previous use clause, its visible entities are
3462 -- already use-visible. In that case, mark the occurrence as a redundant
3463 -- use. If the package is an open scope, i.e. if the use clause occurs
3464 -- within the package itself, ignore it.
3466 procedure Analyze_Use_Package (N : Node_Id) is
3467 Pack_Name : Node_Id;
3468 Pack : Entity_Id;
3470 -- Start of processing for Analyze_Use_Package
3472 begin
3473 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3475 Set_Hidden_By_Use_Clause (N, No_Elist);
3477 -- Use clause not allowed in a spec of a predefined package declaration
3478 -- except that packages whose file name starts a-n are OK (these are
3479 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3481 if Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
3482 and then Name_Buffer (1 .. 3) /= "a-n"
3483 and then
3484 Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
3485 then
3486 Error_Msg_N ("use clause not allowed in predefined spec", N);
3487 end if;
3489 -- Chain clause to list of use clauses in current scope
3491 if Nkind (Parent (N)) /= N_Compilation_Unit then
3492 Chain_Use_Clause (N);
3493 end if;
3495 -- Loop through package names to identify referenced packages
3497 Pack_Name := First (Names (N));
3498 while Present (Pack_Name) loop
3499 Analyze (Pack_Name);
3501 if Nkind (Parent (N)) = N_Compilation_Unit
3502 and then Nkind (Pack_Name) = N_Expanded_Name
3503 then
3504 declare
3505 Pref : Node_Id;
3507 begin
3508 Pref := Prefix (Pack_Name);
3509 while Nkind (Pref) = N_Expanded_Name loop
3510 Pref := Prefix (Pref);
3511 end loop;
3513 if Entity (Pref) = Standard_Standard then
3514 Error_Msg_N
3515 ("predefined package Standard cannot appear"
3516 & " in a context clause", Pref);
3517 end if;
3518 end;
3519 end if;
3521 Next (Pack_Name);
3522 end loop;
3524 -- Loop through package names to mark all entities as potentially
3525 -- use visible.
3527 Pack_Name := First (Names (N));
3528 while Present (Pack_Name) loop
3529 if Is_Entity_Name (Pack_Name) then
3530 Pack := Entity (Pack_Name);
3532 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3533 if Ekind (Pack) = E_Generic_Package then
3534 Error_Msg_N -- CODEFIX
3535 ("a generic package is not allowed in a use clause",
3536 Pack_Name);
3537 else
3538 Error_Msg_N ("& is not a usable package", Pack_Name);
3539 end if;
3541 else
3542 if Nkind (Parent (N)) = N_Compilation_Unit then
3543 Check_In_Previous_With_Clause (N, Pack_Name);
3544 end if;
3546 if Applicable_Use (Pack_Name) then
3547 Use_One_Package (Pack, N);
3548 end if;
3549 end if;
3551 -- Report error because name denotes something other than a package
3553 else
3554 Error_Msg_N ("& is not a package", Pack_Name);
3555 end if;
3557 Next (Pack_Name);
3558 end loop;
3559 end Analyze_Use_Package;
3561 ----------------------
3562 -- Analyze_Use_Type --
3563 ----------------------
3565 procedure Analyze_Use_Type (N : Node_Id) is
3566 E : Entity_Id;
3567 Id : Node_Id;
3569 begin
3570 Set_Hidden_By_Use_Clause (N, No_Elist);
3572 -- Chain clause to list of use clauses in current scope
3574 if Nkind (Parent (N)) /= N_Compilation_Unit then
3575 Chain_Use_Clause (N);
3576 end if;
3578 -- If the Used_Operations list is already initialized, the clause has
3579 -- been analyzed previously, and it is begin reinstalled, for example
3580 -- when the clause appears in a package spec and we are compiling the
3581 -- corresponding package body. In that case, make the entities on the
3582 -- existing list use_visible, and mark the corresponding types In_Use.
3584 if Present (Used_Operations (N)) then
3585 declare
3586 Mark : Node_Id;
3587 Elmt : Elmt_Id;
3589 begin
3590 Mark := First (Subtype_Marks (N));
3591 while Present (Mark) loop
3592 Use_One_Type (Mark, Installed => True);
3593 Next (Mark);
3594 end loop;
3596 Elmt := First_Elmt (Used_Operations (N));
3597 while Present (Elmt) loop
3598 Set_Is_Potentially_Use_Visible (Node (Elmt));
3599 Next_Elmt (Elmt);
3600 end loop;
3601 end;
3603 return;
3604 end if;
3606 -- Otherwise, create new list and attach to it the operations that
3607 -- are made use-visible by the clause.
3609 Set_Used_Operations (N, New_Elmt_List);
3610 Id := First (Subtype_Marks (N));
3611 while Present (Id) loop
3612 Find_Type (Id);
3613 E := Entity (Id);
3615 if E /= Any_Type then
3616 Use_One_Type (Id);
3618 if Nkind (Parent (N)) = N_Compilation_Unit then
3619 if Nkind (Id) = N_Identifier then
3620 Error_Msg_N ("type is not directly visible", Id);
3622 elsif Is_Child_Unit (Scope (E))
3623 and then Scope (E) /= System_Aux_Id
3624 then
3625 Check_In_Previous_With_Clause (N, Prefix (Id));
3626 end if;
3627 end if;
3629 else
3630 -- If the use_type_clause appears in a compilation unit context,
3631 -- check whether it comes from a unit that may appear in a
3632 -- limited_with_clause, for a better error message.
3634 if Nkind (Parent (N)) = N_Compilation_Unit
3635 and then Nkind (Id) /= N_Identifier
3636 then
3637 declare
3638 Item : Node_Id;
3639 Pref : Node_Id;
3641 function Mentioned (Nam : Node_Id) return Boolean;
3642 -- Check whether the prefix of expanded name for the type
3643 -- appears in the prefix of some limited_with_clause.
3645 ---------------
3646 -- Mentioned --
3647 ---------------
3649 function Mentioned (Nam : Node_Id) return Boolean is
3650 begin
3651 return Nkind (Name (Item)) = N_Selected_Component
3652 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3653 end Mentioned;
3655 begin
3656 Pref := Prefix (Id);
3657 Item := First (Context_Items (Parent (N)));
3658 while Present (Item) and then Item /= N loop
3659 if Nkind (Item) = N_With_Clause
3660 and then Limited_Present (Item)
3661 and then Mentioned (Pref)
3662 then
3663 Change_Error_Text
3664 (Get_Msg_Id, "premature usage of incomplete type");
3665 end if;
3667 Next (Item);
3668 end loop;
3669 end;
3670 end if;
3671 end if;
3673 Next (Id);
3674 end loop;
3675 end Analyze_Use_Type;
3677 --------------------
3678 -- Applicable_Use --
3679 --------------------
3681 function Applicable_Use (Pack_Name : Node_Id) return Boolean is
3682 Pack : constant Entity_Id := Entity (Pack_Name);
3684 begin
3685 if In_Open_Scopes (Pack) then
3686 if Warn_On_Redundant_Constructs and then Pack = Current_Scope then
3687 Error_Msg_NE -- CODEFIX
3688 ("& is already use-visible within itself?r?", Pack_Name, Pack);
3689 end if;
3691 return False;
3693 elsif In_Use (Pack) then
3694 Note_Redundant_Use (Pack_Name);
3695 return False;
3697 elsif Present (Renamed_Object (Pack))
3698 and then In_Use (Renamed_Object (Pack))
3699 then
3700 Note_Redundant_Use (Pack_Name);
3701 return False;
3703 else
3704 return True;
3705 end if;
3706 end Applicable_Use;
3708 ------------------------
3709 -- Attribute_Renaming --
3710 ------------------------
3712 procedure Attribute_Renaming (N : Node_Id) is
3713 Loc : constant Source_Ptr := Sloc (N);
3714 Nam : constant Node_Id := Name (N);
3715 Spec : constant Node_Id := Specification (N);
3716 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
3717 Aname : constant Name_Id := Attribute_Name (Nam);
3719 Form_Num : Nat := 0;
3720 Expr_List : List_Id := No_List;
3722 Attr_Node : Node_Id;
3723 Body_Node : Node_Id;
3724 Param_Spec : Node_Id;
3726 begin
3727 Generate_Definition (New_S);
3729 -- This procedure is called in the context of subprogram renaming, and
3730 -- thus the attribute must be one that is a subprogram. All of those
3731 -- have at least one formal parameter, with the exceptions of the GNAT
3732 -- attribute 'Img, which GNAT treats as renameable.
3734 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
3735 if Aname /= Name_Img then
3736 Error_Msg_N
3737 ("subprogram renaming an attribute must have formals", N);
3738 return;
3739 end if;
3741 else
3742 Param_Spec := First (Parameter_Specifications (Spec));
3743 while Present (Param_Spec) loop
3744 Form_Num := Form_Num + 1;
3746 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
3747 Find_Type (Parameter_Type (Param_Spec));
3749 -- The profile of the new entity denotes the base type (s) of
3750 -- the types given in the specification. For access parameters
3751 -- there are no subtypes involved.
3753 Rewrite (Parameter_Type (Param_Spec),
3754 New_Occurrence_Of
3755 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
3756 end if;
3758 if No (Expr_List) then
3759 Expr_List := New_List;
3760 end if;
3762 Append_To (Expr_List,
3763 Make_Identifier (Loc,
3764 Chars => Chars (Defining_Identifier (Param_Spec))));
3766 -- The expressions in the attribute reference are not freeze
3767 -- points. Neither is the attribute as a whole, see below.
3769 Set_Must_Not_Freeze (Last (Expr_List));
3770 Next (Param_Spec);
3771 end loop;
3772 end if;
3774 -- Immediate error if too many formals. Other mismatches in number or
3775 -- types of parameters are detected when we analyze the body of the
3776 -- subprogram that we construct.
3778 if Form_Num > 2 then
3779 Error_Msg_N ("too many formals for attribute", N);
3781 -- Error if the attribute reference has expressions that look like
3782 -- formal parameters.
3784 elsif Present (Expressions (Nam)) then
3785 Error_Msg_N ("illegal expressions in attribute reference", Nam);
3787 elsif
3788 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
3789 Name_Pos, Name_Round, Name_Scaling,
3790 Name_Val)
3791 then
3792 if Nkind (N) = N_Subprogram_Renaming_Declaration
3793 and then Present (Corresponding_Formal_Spec (N))
3794 then
3795 Error_Msg_N
3796 ("generic actual cannot be attribute involving universal type",
3797 Nam);
3798 else
3799 Error_Msg_N
3800 ("attribute involving a universal type cannot be renamed",
3801 Nam);
3802 end if;
3803 end if;
3805 -- Rewrite attribute node to have a list of expressions corresponding to
3806 -- the subprogram formals. A renaming declaration is not a freeze point,
3807 -- and the analysis of the attribute reference should not freeze the
3808 -- type of the prefix. We use the original node in the renaming so that
3809 -- its source location is preserved, and checks on stream attributes are
3810 -- properly applied.
3812 Attr_Node := Relocate_Node (Nam);
3813 Set_Expressions (Attr_Node, Expr_List);
3815 Set_Must_Not_Freeze (Attr_Node);
3816 Set_Must_Not_Freeze (Prefix (Nam));
3818 -- Case of renaming a function
3820 if Nkind (Spec) = N_Function_Specification then
3821 if Is_Procedure_Attribute_Name (Aname) then
3822 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
3823 return;
3824 end if;
3826 Find_Type (Result_Definition (Spec));
3827 Rewrite (Result_Definition (Spec),
3828 New_Occurrence_Of
3829 (Base_Type (Entity (Result_Definition (Spec))), Loc));
3831 Body_Node :=
3832 Make_Subprogram_Body (Loc,
3833 Specification => Spec,
3834 Declarations => New_List,
3835 Handled_Statement_Sequence =>
3836 Make_Handled_Sequence_Of_Statements (Loc,
3837 Statements => New_List (
3838 Make_Simple_Return_Statement (Loc,
3839 Expression => Attr_Node))));
3841 -- Case of renaming a procedure
3843 else
3844 if not Is_Procedure_Attribute_Name (Aname) then
3845 Error_Msg_N ("attribute can only be renamed as function", Nam);
3846 return;
3847 end if;
3849 Body_Node :=
3850 Make_Subprogram_Body (Loc,
3851 Specification => Spec,
3852 Declarations => New_List,
3853 Handled_Statement_Sequence =>
3854 Make_Handled_Sequence_Of_Statements (Loc,
3855 Statements => New_List (Attr_Node)));
3856 end if;
3858 -- In case of tagged types we add the body of the generated function to
3859 -- the freezing actions of the type (because in the general case such
3860 -- type is still not frozen). We exclude from this processing generic
3861 -- formal subprograms found in instantiations.
3863 -- We must exclude VM targets and restricted run-time libraries because
3864 -- entity AST_Handler is defined in package System.Aux_Dec which is not
3865 -- available in those platforms. Note that we cannot use the function
3866 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
3867 -- the ZFP run-time library is not defined as a profile, and we do not
3868 -- want to deal with AST_Handler in ZFP mode.
3870 if VM_Target = No_VM
3871 and then not Configurable_Run_Time_Mode
3872 and then not Present (Corresponding_Formal_Spec (N))
3873 and then Etype (Nam) /= RTE (RE_AST_Handler)
3874 then
3875 declare
3876 P : constant Node_Id := Prefix (Nam);
3878 begin
3879 -- The prefix of 'Img is an object that is evaluated for each call
3880 -- of the function that renames it.
3882 if Aname = Name_Img then
3883 Preanalyze_And_Resolve (P);
3885 -- For all other attribute renamings, the prefix is a subtype
3887 else
3888 Find_Type (P);
3889 end if;
3891 -- If the target type is not yet frozen, add the body to the
3892 -- actions to be elaborated at freeze time.
3894 if Is_Tagged_Type (Etype (P))
3895 and then In_Open_Scopes (Scope (Etype (P)))
3896 then
3897 Ensure_Freeze_Node (Etype (P));
3898 Append_Freeze_Action (Etype (P), Body_Node);
3899 else
3900 Rewrite (N, Body_Node);
3901 Analyze (N);
3902 Set_Etype (New_S, Base_Type (Etype (New_S)));
3903 end if;
3904 end;
3906 -- Generic formal subprograms or AST_Handler renaming
3908 else
3909 Rewrite (N, Body_Node);
3910 Analyze (N);
3911 Set_Etype (New_S, Base_Type (Etype (New_S)));
3912 end if;
3914 if Is_Compilation_Unit (New_S) then
3915 Error_Msg_N
3916 ("a library unit can only rename another library unit", N);
3917 end if;
3919 -- We suppress elaboration warnings for the resulting entity, since
3920 -- clearly they are not needed, and more particularly, in the case
3921 -- of a generic formal subprogram, the resulting entity can appear
3922 -- after the instantiation itself, and thus look like a bogus case
3923 -- of access before elaboration.
3925 Set_Suppress_Elaboration_Warnings (New_S);
3927 end Attribute_Renaming;
3929 ----------------------
3930 -- Chain_Use_Clause --
3931 ----------------------
3933 procedure Chain_Use_Clause (N : Node_Id) is
3934 Pack : Entity_Id;
3935 Level : Int := Scope_Stack.Last;
3937 begin
3938 if not Is_Compilation_Unit (Current_Scope)
3939 or else not Is_Child_Unit (Current_Scope)
3940 then
3941 null; -- Common case
3943 elsif Defining_Entity (Parent (N)) = Current_Scope then
3944 null; -- Common case for compilation unit
3946 else
3947 -- If declaration appears in some other scope, it must be in some
3948 -- parent unit when compiling a child.
3950 Pack := Defining_Entity (Parent (N));
3951 if not In_Open_Scopes (Pack) then
3952 null; -- default as well
3954 else
3955 -- Find entry for parent unit in scope stack
3957 while Scope_Stack.Table (Level).Entity /= Pack loop
3958 Level := Level - 1;
3959 end loop;
3960 end if;
3961 end if;
3963 Set_Next_Use_Clause (N,
3964 Scope_Stack.Table (Level).First_Use_Clause);
3965 Scope_Stack.Table (Level).First_Use_Clause := N;
3966 end Chain_Use_Clause;
3968 ---------------------------
3969 -- Check_Frozen_Renaming --
3970 ---------------------------
3972 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
3973 B_Node : Node_Id;
3974 Old_S : Entity_Id;
3976 begin
3977 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
3978 B_Node :=
3979 Build_Renamed_Body
3980 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
3982 if Is_Entity_Name (Name (N)) then
3983 Old_S := Entity (Name (N));
3985 if not Is_Frozen (Old_S)
3986 and then Operating_Mode /= Check_Semantics
3987 then
3988 Append_Freeze_Action (Old_S, B_Node);
3989 else
3990 Insert_After (N, B_Node);
3991 Analyze (B_Node);
3992 end if;
3994 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
3995 Error_Msg_N
3996 ("subprogram used in renaming_as_body cannot be intrinsic",
3997 Name (N));
3998 end if;
4000 else
4001 Insert_After (N, B_Node);
4002 Analyze (B_Node);
4003 end if;
4004 end if;
4005 end Check_Frozen_Renaming;
4007 -------------------------------
4008 -- Set_Entity_Or_Discriminal --
4009 -------------------------------
4011 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4012 P : Node_Id;
4014 begin
4015 -- If the entity is not a discriminant, or else expansion is disabled,
4016 -- simply set the entity.
4018 if not In_Spec_Expression
4019 or else Ekind (E) /= E_Discriminant
4020 or else Inside_A_Generic
4021 then
4022 Set_Entity_With_Checks (N, E);
4024 -- The replacement of a discriminant by the corresponding discriminal
4025 -- is not done for a task discriminant that appears in a default
4026 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4027 -- for details on their handling.
4029 elsif Is_Concurrent_Type (Scope (E)) then
4030 P := Parent (N);
4031 while Present (P)
4032 and then not Nkind_In (P, N_Parameter_Specification,
4033 N_Component_Declaration)
4034 loop
4035 P := Parent (P);
4036 end loop;
4038 if Present (P)
4039 and then Nkind (P) = N_Parameter_Specification
4040 then
4041 null;
4043 else
4044 Set_Entity (N, Discriminal (E));
4045 end if;
4047 -- Otherwise, this is a discriminant in a context in which
4048 -- it is a reference to the corresponding parameter of the
4049 -- init proc for the enclosing type.
4051 else
4052 Set_Entity (N, Discriminal (E));
4053 end if;
4054 end Set_Entity_Or_Discriminal;
4056 -----------------------------------
4057 -- Check_In_Previous_With_Clause --
4058 -----------------------------------
4060 procedure Check_In_Previous_With_Clause
4061 (N : Node_Id;
4062 Nam : Entity_Id)
4064 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4065 Item : Node_Id;
4066 Par : Node_Id;
4068 begin
4069 Item := First (Context_Items (Parent (N)));
4070 while Present (Item) and then Item /= N loop
4071 if Nkind (Item) = N_With_Clause
4073 -- Protect the frontend against previous critical errors
4075 and then Nkind (Name (Item)) /= N_Selected_Component
4076 and then Entity (Name (Item)) = Pack
4077 then
4078 Par := Nam;
4080 -- Find root library unit in with_clause
4082 while Nkind (Par) = N_Expanded_Name loop
4083 Par := Prefix (Par);
4084 end loop;
4086 if Is_Child_Unit (Entity (Original_Node (Par))) then
4087 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4088 else
4089 return;
4090 end if;
4091 end if;
4093 Next (Item);
4094 end loop;
4096 -- On exit, package is not mentioned in a previous with_clause.
4097 -- Check if its prefix is.
4099 if Nkind (Nam) = N_Expanded_Name then
4100 Check_In_Previous_With_Clause (N, Prefix (Nam));
4102 elsif Pack /= Any_Id then
4103 Error_Msg_NE ("& is not visible", Nam, Pack);
4104 end if;
4105 end Check_In_Previous_With_Clause;
4107 ---------------------------------
4108 -- Check_Library_Unit_Renaming --
4109 ---------------------------------
4111 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4112 New_E : Entity_Id;
4114 begin
4115 if Nkind (Parent (N)) /= N_Compilation_Unit then
4116 return;
4118 -- Check for library unit. Note that we used to check for the scope
4119 -- being Standard here, but that was wrong for Standard itself.
4121 elsif not Is_Compilation_Unit (Old_E)
4122 and then not Is_Child_Unit (Old_E)
4123 then
4124 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4126 -- Entities defined in Standard (operators and boolean literals) cannot
4127 -- be renamed as library units.
4129 elsif Scope (Old_E) = Standard_Standard
4130 and then Sloc (Old_E) = Standard_Location
4131 then
4132 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4134 elsif Present (Parent_Spec (N))
4135 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4136 and then not Is_Child_Unit (Old_E)
4137 then
4138 Error_Msg_N
4139 ("renamed unit must be a child unit of generic parent", Name (N));
4141 elsif Nkind (N) in N_Generic_Renaming_Declaration
4142 and then Nkind (Name (N)) = N_Expanded_Name
4143 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4144 and then Is_Generic_Unit (Old_E)
4145 then
4146 Error_Msg_N
4147 ("renamed generic unit must be a library unit", Name (N));
4149 elsif Is_Package_Or_Generic_Package (Old_E) then
4151 -- Inherit categorization flags
4153 New_E := Defining_Entity (N);
4154 Set_Is_Pure (New_E, Is_Pure (Old_E));
4155 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4156 Set_Is_Remote_Call_Interface (New_E,
4157 Is_Remote_Call_Interface (Old_E));
4158 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4159 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4160 end if;
4161 end Check_Library_Unit_Renaming;
4163 ------------------------
4164 -- Enclosing_Instance --
4165 ------------------------
4167 function Enclosing_Instance return Entity_Id is
4168 S : Entity_Id;
4170 begin
4171 if not Is_Generic_Instance (Current_Scope) then
4172 return Empty;
4173 end if;
4175 S := Scope (Current_Scope);
4176 while S /= Standard_Standard loop
4177 if Is_Generic_Instance (S) then
4178 return S;
4179 end if;
4181 S := Scope (S);
4182 end loop;
4184 return Empty;
4185 end Enclosing_Instance;
4187 ---------------
4188 -- End_Scope --
4189 ---------------
4191 procedure End_Scope is
4192 Id : Entity_Id;
4193 Prev : Entity_Id;
4194 Outer : Entity_Id;
4196 begin
4197 Id := First_Entity (Current_Scope);
4198 while Present (Id) loop
4199 -- An entity in the current scope is not necessarily the first one
4200 -- on its homonym chain. Find its predecessor if any,
4201 -- If it is an internal entity, it will not be in the visibility
4202 -- chain altogether, and there is nothing to unchain.
4204 if Id /= Current_Entity (Id) then
4205 Prev := Current_Entity (Id);
4206 while Present (Prev)
4207 and then Present (Homonym (Prev))
4208 and then Homonym (Prev) /= Id
4209 loop
4210 Prev := Homonym (Prev);
4211 end loop;
4213 -- Skip to end of loop if Id is not in the visibility chain
4215 if No (Prev) or else Homonym (Prev) /= Id then
4216 goto Next_Ent;
4217 end if;
4219 else
4220 Prev := Empty;
4221 end if;
4223 Set_Is_Immediately_Visible (Id, False);
4225 Outer := Homonym (Id);
4226 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4227 Outer := Homonym (Outer);
4228 end loop;
4230 -- Reset homonym link of other entities, but do not modify link
4231 -- between entities in current scope, so that the back-end can have
4232 -- a proper count of local overloadings.
4234 if No (Prev) then
4235 Set_Name_Entity_Id (Chars (Id), Outer);
4237 elsif Scope (Prev) /= Scope (Id) then
4238 Set_Homonym (Prev, Outer);
4239 end if;
4241 <<Next_Ent>>
4242 Next_Entity (Id);
4243 end loop;
4245 -- If the scope generated freeze actions, place them before the
4246 -- current declaration and analyze them. Type declarations and
4247 -- the bodies of initialization procedures can generate such nodes.
4248 -- We follow the parent chain until we reach a list node, which is
4249 -- the enclosing list of declarations. If the list appears within
4250 -- a protected definition, move freeze nodes outside the protected
4251 -- type altogether.
4253 if Present
4254 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4255 then
4256 declare
4257 Decl : Node_Id;
4258 L : constant List_Id := Scope_Stack.Table
4259 (Scope_Stack.Last).Pending_Freeze_Actions;
4261 begin
4262 if Is_Itype (Current_Scope) then
4263 Decl := Associated_Node_For_Itype (Current_Scope);
4264 else
4265 Decl := Parent (Current_Scope);
4266 end if;
4268 Pop_Scope;
4270 while not (Is_List_Member (Decl))
4271 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4272 N_Task_Definition)
4273 loop
4274 Decl := Parent (Decl);
4275 end loop;
4277 Insert_List_Before_And_Analyze (Decl, L);
4278 end;
4280 else
4281 Pop_Scope;
4282 end if;
4283 end End_Scope;
4285 ---------------------
4286 -- End_Use_Clauses --
4287 ---------------------
4289 procedure End_Use_Clauses (Clause : Node_Id) is
4290 U : Node_Id;
4292 begin
4293 -- Remove Use_Type clauses first, because they affect the
4294 -- visibility of operators in subsequent used packages.
4296 U := Clause;
4297 while Present (U) loop
4298 if Nkind (U) = N_Use_Type_Clause then
4299 End_Use_Type (U);
4300 end if;
4302 Next_Use_Clause (U);
4303 end loop;
4305 U := Clause;
4306 while Present (U) loop
4307 if Nkind (U) = N_Use_Package_Clause then
4308 End_Use_Package (U);
4309 end if;
4311 Next_Use_Clause (U);
4312 end loop;
4313 end End_Use_Clauses;
4315 ---------------------
4316 -- End_Use_Package --
4317 ---------------------
4319 procedure End_Use_Package (N : Node_Id) is
4320 Pack_Name : Node_Id;
4321 Pack : Entity_Id;
4322 Id : Entity_Id;
4323 Elmt : Elmt_Id;
4325 function Is_Primitive_Operator_In_Use
4326 (Op : Entity_Id;
4327 F : Entity_Id) return Boolean;
4328 -- Check whether Op is a primitive operator of a use-visible type
4330 ----------------------------------
4331 -- Is_Primitive_Operator_In_Use --
4332 ----------------------------------
4334 function Is_Primitive_Operator_In_Use
4335 (Op : Entity_Id;
4336 F : Entity_Id) return Boolean
4338 T : constant Entity_Id := Base_Type (Etype (F));
4339 begin
4340 return In_Use (T) and then Scope (T) = Scope (Op);
4341 end Is_Primitive_Operator_In_Use;
4343 -- Start of processing for End_Use_Package
4345 begin
4346 Pack_Name := First (Names (N));
4347 while Present (Pack_Name) loop
4349 -- Test that Pack_Name actually denotes a package before processing
4351 if Is_Entity_Name (Pack_Name)
4352 and then Ekind (Entity (Pack_Name)) = E_Package
4353 then
4354 Pack := Entity (Pack_Name);
4356 if In_Open_Scopes (Pack) then
4357 null;
4359 elsif not Redundant_Use (Pack_Name) then
4360 Set_In_Use (Pack, False);
4361 Set_Current_Use_Clause (Pack, Empty);
4363 Id := First_Entity (Pack);
4364 while Present (Id) loop
4366 -- Preserve use-visibility of operators that are primitive
4367 -- operators of a type that is use-visible through an active
4368 -- use_type clause.
4370 if Nkind (Id) = N_Defining_Operator_Symbol
4371 and then
4372 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4373 or else
4374 (Present (Next_Formal (First_Formal (Id)))
4375 and then
4376 Is_Primitive_Operator_In_Use
4377 (Id, Next_Formal (First_Formal (Id)))))
4378 then
4379 null;
4380 else
4381 Set_Is_Potentially_Use_Visible (Id, False);
4382 end if;
4384 if Is_Private_Type (Id)
4385 and then Present (Full_View (Id))
4386 then
4387 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4388 end if;
4390 Next_Entity (Id);
4391 end loop;
4393 if Present (Renamed_Object (Pack)) then
4394 Set_In_Use (Renamed_Object (Pack), False);
4395 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4396 end if;
4398 if Chars (Pack) = Name_System
4399 and then Scope (Pack) = Standard_Standard
4400 and then Present_System_Aux
4401 then
4402 Id := First_Entity (System_Aux_Id);
4403 while Present (Id) loop
4404 Set_Is_Potentially_Use_Visible (Id, False);
4406 if Is_Private_Type (Id)
4407 and then Present (Full_View (Id))
4408 then
4409 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4410 end if;
4412 Next_Entity (Id);
4413 end loop;
4415 Set_In_Use (System_Aux_Id, False);
4416 end if;
4418 else
4419 Set_Redundant_Use (Pack_Name, False);
4420 end if;
4421 end if;
4423 Next (Pack_Name);
4424 end loop;
4426 if Present (Hidden_By_Use_Clause (N)) then
4427 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4428 while Present (Elmt) loop
4429 declare
4430 E : constant Entity_Id := Node (Elmt);
4432 begin
4433 -- Reset either Use_Visibility or Direct_Visibility, depending
4434 -- on how the entity was hidden by the use clause.
4436 if In_Use (Scope (E))
4437 and then Used_As_Generic_Actual (Scope (E))
4438 then
4439 Set_Is_Potentially_Use_Visible (Node (Elmt));
4440 else
4441 Set_Is_Immediately_Visible (Node (Elmt));
4442 end if;
4444 Next_Elmt (Elmt);
4445 end;
4446 end loop;
4448 Set_Hidden_By_Use_Clause (N, No_Elist);
4449 end if;
4450 end End_Use_Package;
4452 ------------------
4453 -- End_Use_Type --
4454 ------------------
4456 procedure End_Use_Type (N : Node_Id) is
4457 Elmt : Elmt_Id;
4458 Id : Entity_Id;
4459 T : Entity_Id;
4461 -- Start of processing for End_Use_Type
4463 begin
4464 Id := First (Subtype_Marks (N));
4465 while Present (Id) loop
4467 -- A call to Rtsfind may occur while analyzing a use_type clause,
4468 -- in which case the type marks are not resolved yet, and there is
4469 -- nothing to remove.
4471 if not Is_Entity_Name (Id) or else No (Entity (Id)) then
4472 goto Continue;
4473 end if;
4475 T := Entity (Id);
4477 if T = Any_Type or else From_Limited_With (T) then
4478 null;
4480 -- Note that the use_type clause may mention a subtype of the type
4481 -- whose primitive operations have been made visible. Here as
4482 -- elsewhere, it is the base type that matters for visibility.
4484 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4485 null;
4487 elsif not Redundant_Use (Id) then
4488 Set_In_Use (T, False);
4489 Set_In_Use (Base_Type (T), False);
4490 Set_Current_Use_Clause (T, Empty);
4491 Set_Current_Use_Clause (Base_Type (T), Empty);
4492 end if;
4494 <<Continue>>
4495 Next (Id);
4496 end loop;
4498 if Is_Empty_Elmt_List (Used_Operations (N)) then
4499 return;
4501 else
4502 Elmt := First_Elmt (Used_Operations (N));
4503 while Present (Elmt) loop
4504 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4505 Next_Elmt (Elmt);
4506 end loop;
4507 end if;
4508 end End_Use_Type;
4510 ----------------------
4511 -- Find_Direct_Name --
4512 ----------------------
4514 procedure Find_Direct_Name (N : Node_Id) is
4515 E : Entity_Id;
4516 E2 : Entity_Id;
4517 Msg : Boolean;
4519 Inst : Entity_Id := Empty;
4520 -- Enclosing instance, if any
4522 Homonyms : Entity_Id;
4523 -- Saves start of homonym chain
4525 Nvis_Entity : Boolean;
4526 -- Set True to indicate that there is at least one entity on the homonym
4527 -- chain which, while not visible, is visible enough from the user point
4528 -- of view to warrant an error message of "not visible" rather than
4529 -- undefined.
4531 Nvis_Is_Private_Subprg : Boolean := False;
4532 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4533 -- effect concerning library subprograms has been detected. Used to
4534 -- generate the precise error message.
4536 function From_Actual_Package (E : Entity_Id) return Boolean;
4537 -- Returns true if the entity is an actual for a package that is itself
4538 -- an actual for a formal package of the current instance. Such an
4539 -- entity requires special handling because it may be use-visible but
4540 -- hides directly visible entities defined outside the instance, because
4541 -- the corresponding formal did so in the generic.
4543 function Is_Actual_Parameter return Boolean;
4544 -- This function checks if the node N is an identifier that is an actual
4545 -- parameter of a procedure call. If so it returns True, otherwise it
4546 -- return False. The reason for this check is that at this stage we do
4547 -- not know what procedure is being called if the procedure might be
4548 -- overloaded, so it is premature to go setting referenced flags or
4549 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4550 -- for that processing
4552 function Known_But_Invisible (E : Entity_Id) return Boolean;
4553 -- This function determines whether a reference to the entity E, which
4554 -- is not visible, can reasonably be considered to be known to the
4555 -- writer of the reference. This is a heuristic test, used only for
4556 -- the purposes of figuring out whether we prefer to complain that an
4557 -- entity is undefined or invisible (and identify the declaration of
4558 -- the invisible entity in the latter case). The point here is that we
4559 -- don't want to complain that something is invisible and then point to
4560 -- something entirely mysterious to the writer.
4562 procedure Nvis_Messages;
4563 -- Called if there are no visible entries for N, but there is at least
4564 -- one non-directly visible, or hidden declaration. This procedure
4565 -- outputs an appropriate set of error messages.
4567 procedure Undefined (Nvis : Boolean);
4568 -- This function is called if the current node has no corresponding
4569 -- visible entity or entities. The value set in Msg indicates whether
4570 -- an error message was generated (multiple error messages for the
4571 -- same variable are generally suppressed, see body for details).
4572 -- Msg is True if an error message was generated, False if not. This
4573 -- value is used by the caller to determine whether or not to output
4574 -- additional messages where appropriate. The parameter is set False
4575 -- to get the message "X is undefined", and True to get the message
4576 -- "X is not visible".
4578 -------------------------
4579 -- From_Actual_Package --
4580 -------------------------
4582 function From_Actual_Package (E : Entity_Id) return Boolean is
4583 Scop : constant Entity_Id := Scope (E);
4584 -- Declared scope of candidate entity
4586 Act : Entity_Id;
4588 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4589 -- Recursive function that does the work and examines actuals of
4590 -- actual packages of current instance.
4592 ------------------------
4593 -- Declared_In_Actual --
4594 ------------------------
4596 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4597 Act : Entity_Id;
4599 begin
4600 if No (Associated_Formal_Package (Pack)) then
4601 return False;
4603 else
4604 Act := First_Entity (Pack);
4605 while Present (Act) loop
4606 if Renamed_Object (Pack) = Scop then
4607 return True;
4609 -- Check for end of list of actuals.
4611 elsif Ekind (Act) = E_Package
4612 and then Renamed_Object (Act) = Pack
4613 then
4614 return False;
4616 elsif Ekind (Act) = E_Package
4617 and then Declared_In_Actual (Act)
4618 then
4619 return True;
4620 end if;
4622 Next_Entity (Act);
4623 end loop;
4625 return False;
4626 end if;
4627 end Declared_In_Actual;
4629 -- Start of processing for From_Actual_Package
4631 begin
4632 if not In_Instance then
4633 return False;
4635 else
4636 Inst := Current_Scope;
4637 while Present (Inst)
4638 and then Ekind (Inst) /= E_Package
4639 and then not Is_Generic_Instance (Inst)
4640 loop
4641 Inst := Scope (Inst);
4642 end loop;
4644 if No (Inst) then
4645 return False;
4646 end if;
4648 Act := First_Entity (Inst);
4649 while Present (Act) loop
4650 if Ekind (Act) = E_Package
4651 and then Declared_In_Actual (Act)
4652 then
4653 return True;
4654 end if;
4656 Next_Entity (Act);
4657 end loop;
4659 return False;
4660 end if;
4661 end From_Actual_Package;
4663 -------------------------
4664 -- Is_Actual_Parameter --
4665 -------------------------
4667 function Is_Actual_Parameter return Boolean is
4668 begin
4669 return
4670 Nkind (N) = N_Identifier
4671 and then
4672 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4673 or else
4674 (Nkind (Parent (N)) = N_Parameter_Association
4675 and then N = Explicit_Actual_Parameter (Parent (N))
4676 and then Nkind (Parent (Parent (N))) =
4677 N_Procedure_Call_Statement));
4678 end Is_Actual_Parameter;
4680 -------------------------
4681 -- Known_But_Invisible --
4682 -------------------------
4684 function Known_But_Invisible (E : Entity_Id) return Boolean is
4685 Fname : File_Name_Type;
4687 begin
4688 -- Entities in Standard are always considered to be known
4690 if Sloc (E) <= Standard_Location then
4691 return True;
4693 -- An entity that does not come from source is always considered
4694 -- to be unknown, since it is an artifact of code expansion.
4696 elsif not Comes_From_Source (E) then
4697 return False;
4699 -- In gnat internal mode, we consider all entities known. The
4700 -- historical reason behind this discrepancy is not known??? But the
4701 -- only effect is to modify the error message given, so it is not
4702 -- critical. Since it only affects the exact wording of error
4703 -- messages in illegal programs, we do not mention this as an
4704 -- effect of -gnatg, since it is not a language modification.
4706 elsif GNAT_Mode then
4707 return True;
4708 end if;
4710 -- Here we have an entity that is not from package Standard, and
4711 -- which comes from Source. See if it comes from an internal file.
4713 Fname := Unit_File_Name (Get_Source_Unit (E));
4715 -- Case of from internal file
4717 if Is_Internal_File_Name (Fname) then
4719 -- Private part entities in internal files are never considered
4720 -- to be known to the writer of normal application code.
4722 if Is_Hidden (E) then
4723 return False;
4724 end if;
4726 -- Entities from System packages other than System and
4727 -- System.Storage_Elements are not considered to be known.
4728 -- System.Auxxxx files are also considered known to the user.
4730 -- Should refine this at some point to generally distinguish
4731 -- between known and unknown internal files ???
4733 Get_Name_String (Fname);
4735 return
4736 Name_Len < 2
4737 or else
4738 Name_Buffer (1 .. 2) /= "s-"
4739 or else
4740 Name_Buffer (3 .. 8) = "stoele"
4741 or else
4742 Name_Buffer (3 .. 5) = "aux";
4744 -- If not an internal file, then entity is definitely known,
4745 -- even if it is in a private part (the message generated will
4746 -- note that it is in a private part)
4748 else
4749 return True;
4750 end if;
4751 end Known_But_Invisible;
4753 -------------------
4754 -- Nvis_Messages --
4755 -------------------
4757 procedure Nvis_Messages is
4758 Comp_Unit : Node_Id;
4759 Ent : Entity_Id;
4760 Found : Boolean := False;
4761 Hidden : Boolean := False;
4762 Item : Node_Id;
4764 begin
4765 -- Ada 2005 (AI-262): Generate a precise error concerning the
4766 -- Beaujolais effect that was previously detected
4768 if Nvis_Is_Private_Subprg then
4770 pragma Assert (Nkind (E2) = N_Defining_Identifier
4771 and then Ekind (E2) = E_Function
4772 and then Scope (E2) = Standard_Standard
4773 and then Has_Private_With (E2));
4775 -- Find the sloc corresponding to the private with'ed unit
4777 Comp_Unit := Cunit (Current_Sem_Unit);
4778 Error_Msg_Sloc := No_Location;
4780 Item := First (Context_Items (Comp_Unit));
4781 while Present (Item) loop
4782 if Nkind (Item) = N_With_Clause
4783 and then Private_Present (Item)
4784 and then Entity (Name (Item)) = E2
4785 then
4786 Error_Msg_Sloc := Sloc (Item);
4787 exit;
4788 end if;
4790 Next (Item);
4791 end loop;
4793 pragma Assert (Error_Msg_Sloc /= No_Location);
4795 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
4796 return;
4797 end if;
4799 Undefined (Nvis => True);
4801 if Msg then
4803 -- First loop does hidden declarations
4805 Ent := Homonyms;
4806 while Present (Ent) loop
4807 if Is_Potentially_Use_Visible (Ent) then
4808 if not Hidden then
4809 Error_Msg_N -- CODEFIX
4810 ("multiple use clauses cause hiding!", N);
4811 Hidden := True;
4812 end if;
4814 Error_Msg_Sloc := Sloc (Ent);
4815 Error_Msg_N -- CODEFIX
4816 ("hidden declaration#!", N);
4817 end if;
4819 Ent := Homonym (Ent);
4820 end loop;
4822 -- If we found hidden declarations, then that's enough, don't
4823 -- bother looking for non-visible declarations as well.
4825 if Hidden then
4826 return;
4827 end if;
4829 -- Second loop does non-directly visible declarations
4831 Ent := Homonyms;
4832 while Present (Ent) loop
4833 if not Is_Potentially_Use_Visible (Ent) then
4835 -- Do not bother the user with unknown entities
4837 if not Known_But_Invisible (Ent) then
4838 goto Continue;
4839 end if;
4841 Error_Msg_Sloc := Sloc (Ent);
4843 -- Output message noting that there is a non-visible
4844 -- declaration, distinguishing the private part case.
4846 if Is_Hidden (Ent) then
4847 Error_Msg_N ("non-visible (private) declaration#!", N);
4849 -- If the entity is declared in a generic package, it
4850 -- cannot be visible, so there is no point in adding it
4851 -- to the list of candidates if another homograph from a
4852 -- non-generic package has been seen.
4854 elsif Ekind (Scope (Ent)) = E_Generic_Package
4855 and then Found
4856 then
4857 null;
4859 else
4860 Error_Msg_N -- CODEFIX
4861 ("non-visible declaration#!", N);
4863 if Ekind (Scope (Ent)) /= E_Generic_Package then
4864 Found := True;
4865 end if;
4867 if Is_Compilation_Unit (Ent)
4868 and then
4869 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
4870 then
4871 Error_Msg_Qual_Level := 99;
4872 Error_Msg_NE -- CODEFIX
4873 ("\\missing `WITH &;`", N, Ent);
4874 Error_Msg_Qual_Level := 0;
4875 end if;
4877 if Ekind (Ent) = E_Discriminant
4878 and then Present (Corresponding_Discriminant (Ent))
4879 and then Scope (Corresponding_Discriminant (Ent)) =
4880 Etype (Scope (Ent))
4881 then
4882 Error_Msg_N
4883 ("inherited discriminant not allowed here" &
4884 " (RM 3.8 (12), 3.8.1 (6))!", N);
4885 end if;
4886 end if;
4888 -- Set entity and its containing package as referenced. We
4889 -- can't be sure of this, but this seems a better choice
4890 -- to avoid unused entity messages.
4892 if Comes_From_Source (Ent) then
4893 Set_Referenced (Ent);
4894 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
4895 end if;
4896 end if;
4898 <<Continue>>
4899 Ent := Homonym (Ent);
4900 end loop;
4901 end if;
4902 end Nvis_Messages;
4904 ---------------
4905 -- Undefined --
4906 ---------------
4908 procedure Undefined (Nvis : Boolean) is
4909 Emsg : Error_Msg_Id;
4911 begin
4912 -- We should never find an undefined internal name. If we do, then
4913 -- see if we have previous errors. If so, ignore on the grounds that
4914 -- it is probably a cascaded message (e.g. a block label from a badly
4915 -- formed block). If no previous errors, then we have a real internal
4916 -- error of some kind so raise an exception.
4918 if Is_Internal_Name (Chars (N)) then
4919 if Total_Errors_Detected /= 0 then
4920 return;
4921 else
4922 raise Program_Error;
4923 end if;
4924 end if;
4926 -- A very specialized error check, if the undefined variable is
4927 -- a case tag, and the case type is an enumeration type, check
4928 -- for a possible misspelling, and if so, modify the identifier
4930 -- Named aggregate should also be handled similarly ???
4932 if Nkind (N) = N_Identifier
4933 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
4934 then
4935 declare
4936 Case_Stm : constant Node_Id := Parent (Parent (N));
4937 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
4939 Lit : Node_Id;
4941 begin
4942 if Is_Enumeration_Type (Case_Typ)
4943 and then not Is_Standard_Character_Type (Case_Typ)
4944 then
4945 Lit := First_Literal (Case_Typ);
4946 Get_Name_String (Chars (Lit));
4948 if Chars (Lit) /= Chars (N)
4949 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
4950 then
4951 Error_Msg_Node_2 := Lit;
4952 Error_Msg_N -- CODEFIX
4953 ("& is undefined, assume misspelling of &", N);
4954 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
4955 return;
4956 end if;
4958 Lit := Next_Literal (Lit);
4959 end if;
4960 end;
4961 end if;
4963 -- Normal processing
4965 Set_Entity (N, Any_Id);
4966 Set_Etype (N, Any_Type);
4968 -- We use the table Urefs to keep track of entities for which we
4969 -- have issued errors for undefined references. Multiple errors
4970 -- for a single name are normally suppressed, however we modify
4971 -- the error message to alert the programmer to this effect.
4973 for J in Urefs.First .. Urefs.Last loop
4974 if Chars (N) = Chars (Urefs.Table (J).Node) then
4975 if Urefs.Table (J).Err /= No_Error_Msg
4976 and then Sloc (N) /= Urefs.Table (J).Loc
4977 then
4978 Error_Msg_Node_1 := Urefs.Table (J).Node;
4980 if Urefs.Table (J).Nvis then
4981 Change_Error_Text (Urefs.Table (J).Err,
4982 "& is not visible (more references follow)");
4983 else
4984 Change_Error_Text (Urefs.Table (J).Err,
4985 "& is undefined (more references follow)");
4986 end if;
4988 Urefs.Table (J).Err := No_Error_Msg;
4989 end if;
4991 -- Although we will set Msg False, and thus suppress the
4992 -- message, we also set Error_Posted True, to avoid any
4993 -- cascaded messages resulting from the undefined reference.
4995 Msg := False;
4996 Set_Error_Posted (N, True);
4997 return;
4998 end if;
4999 end loop;
5001 -- If entry not found, this is first undefined occurrence
5003 if Nvis then
5004 Error_Msg_N ("& is not visible!", N);
5005 Emsg := Get_Msg_Id;
5007 else
5008 Error_Msg_N ("& is undefined!", N);
5009 Emsg := Get_Msg_Id;
5011 -- A very bizarre special check, if the undefined identifier
5012 -- is put or put_line, then add a special error message (since
5013 -- this is a very common error for beginners to make).
5015 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5016 Error_Msg_N -- CODEFIX
5017 ("\\possible missing `WITH Ada.Text_'I'O; " &
5018 "USE Ada.Text_'I'O`!", N);
5020 -- Another special check if N is the prefix of a selected
5021 -- component which is a known unit, add message complaining
5022 -- about missing with for this unit.
5024 elsif Nkind (Parent (N)) = N_Selected_Component
5025 and then N = Prefix (Parent (N))
5026 and then Is_Known_Unit (Parent (N))
5027 then
5028 Error_Msg_Node_2 := Selector_Name (Parent (N));
5029 Error_Msg_N -- CODEFIX
5030 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5031 end if;
5033 -- Now check for possible misspellings
5035 declare
5036 E : Entity_Id;
5037 Ematch : Entity_Id := Empty;
5039 Last_Name_Id : constant Name_Id :=
5040 Name_Id (Nat (First_Name_Id) +
5041 Name_Entries_Count - 1);
5043 begin
5044 for Nam in First_Name_Id .. Last_Name_Id loop
5045 E := Get_Name_Entity_Id (Nam);
5047 if Present (E)
5048 and then (Is_Immediately_Visible (E)
5049 or else
5050 Is_Potentially_Use_Visible (E))
5051 then
5052 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5053 Ematch := E;
5054 exit;
5055 end if;
5056 end if;
5057 end loop;
5059 if Present (Ematch) then
5060 Error_Msg_NE -- CODEFIX
5061 ("\possible misspelling of&", N, Ematch);
5062 end if;
5063 end;
5064 end if;
5066 -- Make entry in undefined references table unless the full errors
5067 -- switch is set, in which case by refraining from generating the
5068 -- table entry, we guarantee that we get an error message for every
5069 -- undefined reference.
5071 if not All_Errors_Mode then
5072 Urefs.Append (
5073 (Node => N,
5074 Err => Emsg,
5075 Nvis => Nvis,
5076 Loc => Sloc (N)));
5077 end if;
5079 Msg := True;
5080 end Undefined;
5082 -- Start of processing for Find_Direct_Name
5084 begin
5085 -- If the entity pointer is already set, this is an internal node, or
5086 -- a node that is analyzed more than once, after a tree modification.
5087 -- In such a case there is no resolution to perform, just set the type.
5089 if Present (Entity (N)) then
5090 if Is_Type (Entity (N)) then
5091 Set_Etype (N, Entity (N));
5093 else
5094 declare
5095 Entyp : constant Entity_Id := Etype (Entity (N));
5097 begin
5098 -- One special case here. If the Etype field is already set,
5099 -- and references the packed array type corresponding to the
5100 -- etype of the referenced entity, then leave it alone. This
5101 -- happens for trees generated from Exp_Pakd, where expressions
5102 -- can be deliberately "mis-typed" to the packed array type.
5104 if Is_Array_Type (Entyp)
5105 and then Is_Packed (Entyp)
5106 and then Present (Etype (N))
5107 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5108 then
5109 null;
5111 -- If not that special case, then just reset the Etype
5113 else
5114 Set_Etype (N, Etype (Entity (N)));
5115 end if;
5116 end;
5117 end if;
5119 return;
5120 end if;
5122 -- Here if Entity pointer was not set, we need full visibility analysis
5123 -- First we generate debugging output if the debug E flag is set.
5125 if Debug_Flag_E then
5126 Write_Str ("Looking for ");
5127 Write_Name (Chars (N));
5128 Write_Eol;
5129 end if;
5131 Homonyms := Current_Entity (N);
5132 Nvis_Entity := False;
5134 E := Homonyms;
5135 while Present (E) loop
5137 -- If entity is immediately visible or potentially use visible, then
5138 -- process the entity and we are done.
5140 if Is_Immediately_Visible (E) then
5141 goto Immediately_Visible_Entity;
5143 elsif Is_Potentially_Use_Visible (E) then
5144 goto Potentially_Use_Visible_Entity;
5146 -- Note if a known but invisible entity encountered
5148 elsif Known_But_Invisible (E) then
5149 Nvis_Entity := True;
5150 end if;
5152 -- Move to next entity in chain and continue search
5154 E := Homonym (E);
5155 end loop;
5157 -- If no entries on homonym chain that were potentially visible,
5158 -- and no entities reasonably considered as non-visible, then
5159 -- we have a plain undefined reference, with no additional
5160 -- explanation required.
5162 if not Nvis_Entity then
5163 Undefined (Nvis => False);
5165 -- Otherwise there is at least one entry on the homonym chain that
5166 -- is reasonably considered as being known and non-visible.
5168 else
5169 Nvis_Messages;
5170 end if;
5172 return;
5174 -- Processing for a potentially use visible entry found. We must search
5175 -- the rest of the homonym chain for two reasons. First, if there is a
5176 -- directly visible entry, then none of the potentially use-visible
5177 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5178 -- for the case of multiple potentially use-visible entries hiding one
5179 -- another and as a result being non-directly visible (RM 8.4(11)).
5181 <<Potentially_Use_Visible_Entity>> declare
5182 Only_One_Visible : Boolean := True;
5183 All_Overloadable : Boolean := Is_Overloadable (E);
5185 begin
5186 E2 := Homonym (E);
5187 while Present (E2) loop
5188 if Is_Immediately_Visible (E2) then
5190 -- If the use-visible entity comes from the actual for a
5191 -- formal package, it hides a directly visible entity from
5192 -- outside the instance.
5194 if From_Actual_Package (E)
5195 and then Scope_Depth (E2) < Scope_Depth (Inst)
5196 then
5197 goto Found;
5198 else
5199 E := E2;
5200 goto Immediately_Visible_Entity;
5201 end if;
5203 elsif Is_Potentially_Use_Visible (E2) then
5204 Only_One_Visible := False;
5205 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5207 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5208 -- that can occur in private_with clauses. Example:
5210 -- with A;
5211 -- private with B; package A is
5212 -- package C is function B return Integer;
5213 -- use A; end A;
5214 -- V1 : Integer := B;
5215 -- private function B return Integer;
5216 -- V2 : Integer := B;
5217 -- end C;
5219 -- V1 resolves to A.B, but V2 resolves to library unit B
5221 elsif Ekind (E2) = E_Function
5222 and then Scope (E2) = Standard_Standard
5223 and then Has_Private_With (E2)
5224 then
5225 Only_One_Visible := False;
5226 All_Overloadable := False;
5227 Nvis_Is_Private_Subprg := True;
5228 exit;
5229 end if;
5231 E2 := Homonym (E2);
5232 end loop;
5234 -- On falling through this loop, we have checked that there are no
5235 -- immediately visible entities. Only_One_Visible is set if exactly
5236 -- one potentially use visible entity exists. All_Overloadable is
5237 -- set if all the potentially use visible entities are overloadable.
5238 -- The condition for legality is that either there is one potentially
5239 -- use visible entity, or if there is more than one, then all of them
5240 -- are overloadable.
5242 if Only_One_Visible or All_Overloadable then
5243 goto Found;
5245 -- If there is more than one potentially use-visible entity and at
5246 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5247 -- Note that E points to the first such entity on the homonym list.
5248 -- Special case: if one of the entities is declared in an actual
5249 -- package, it was visible in the generic, and takes precedence over
5250 -- other entities that are potentially use-visible. Same if it is
5251 -- declared in a local instantiation of the current instance.
5253 else
5254 if In_Instance then
5256 -- Find current instance
5258 Inst := Current_Scope;
5259 while Present (Inst) and then Inst /= Standard_Standard loop
5260 if Is_Generic_Instance (Inst) then
5261 exit;
5262 end if;
5264 Inst := Scope (Inst);
5265 end loop;
5267 E2 := E;
5268 while Present (E2) loop
5269 if From_Actual_Package (E2)
5270 or else
5271 (Is_Generic_Instance (Scope (E2))
5272 and then Scope_Depth (Scope (E2)) > Scope_Depth (Inst))
5273 then
5274 E := E2;
5275 goto Found;
5276 end if;
5278 E2 := Homonym (E2);
5279 end loop;
5281 Nvis_Messages;
5282 return;
5284 elsif
5285 Is_Predefined_File_Name (Unit_File_Name (Current_Sem_Unit))
5286 then
5287 -- A use-clause in the body of a system file creates conflict
5288 -- with some entity in a user scope, while rtsfind is active.
5289 -- Keep only the entity coming from another predefined unit.
5291 E2 := E;
5292 while Present (E2) loop
5293 if Is_Predefined_File_Name
5294 (Unit_File_Name (Get_Source_Unit (Sloc (E2))))
5295 then
5296 E := E2;
5297 goto Found;
5298 end if;
5300 E2 := Homonym (E2);
5301 end loop;
5303 -- Entity must exist because predefined unit is correct
5305 raise Program_Error;
5307 else
5308 Nvis_Messages;
5309 return;
5310 end if;
5311 end if;
5312 end;
5314 -- Come here with E set to the first immediately visible entity on
5315 -- the homonym chain. This is the one we want unless there is another
5316 -- immediately visible entity further on in the chain for an inner
5317 -- scope (RM 8.3(8)).
5319 <<Immediately_Visible_Entity>> declare
5320 Level : Int;
5321 Scop : Entity_Id;
5323 begin
5324 -- Find scope level of initial entity. When compiling through
5325 -- Rtsfind, the previous context is not completely invisible, and
5326 -- an outer entity may appear on the chain, whose scope is below
5327 -- the entry for Standard that delimits the current scope stack.
5328 -- Indicate that the level for this spurious entry is outside of
5329 -- the current scope stack.
5331 Level := Scope_Stack.Last;
5332 loop
5333 Scop := Scope_Stack.Table (Level).Entity;
5334 exit when Scop = Scope (E);
5335 Level := Level - 1;
5336 exit when Scop = Standard_Standard;
5337 end loop;
5339 -- Now search remainder of homonym chain for more inner entry
5340 -- If the entity is Standard itself, it has no scope, and we
5341 -- compare it with the stack entry directly.
5343 E2 := Homonym (E);
5344 while Present (E2) loop
5345 if Is_Immediately_Visible (E2) then
5347 -- If a generic package contains a local declaration that
5348 -- has the same name as the generic, there may be a visibility
5349 -- conflict in an instance, where the local declaration must
5350 -- also hide the name of the corresponding package renaming.
5351 -- We check explicitly for a package declared by a renaming,
5352 -- whose renamed entity is an instance that is on the scope
5353 -- stack, and that contains a homonym in the same scope. Once
5354 -- we have found it, we know that the package renaming is not
5355 -- immediately visible, and that the identifier denotes the
5356 -- other entity (and its homonyms if overloaded).
5358 if Scope (E) = Scope (E2)
5359 and then Ekind (E) = E_Package
5360 and then Present (Renamed_Object (E))
5361 and then Is_Generic_Instance (Renamed_Object (E))
5362 and then In_Open_Scopes (Renamed_Object (E))
5363 and then Comes_From_Source (N)
5364 then
5365 Set_Is_Immediately_Visible (E, False);
5366 E := E2;
5368 else
5369 for J in Level + 1 .. Scope_Stack.Last loop
5370 if Scope_Stack.Table (J).Entity = Scope (E2)
5371 or else Scope_Stack.Table (J).Entity = E2
5372 then
5373 Level := J;
5374 E := E2;
5375 exit;
5376 end if;
5377 end loop;
5378 end if;
5379 end if;
5381 E2 := Homonym (E2);
5382 end loop;
5384 -- At the end of that loop, E is the innermost immediately
5385 -- visible entity, so we are all set.
5386 end;
5388 -- Come here with entity found, and stored in E
5390 <<Found>> begin
5392 -- Check violation of No_Wide_Characters restriction
5394 Check_Wide_Character_Restriction (E, N);
5396 -- When distribution features are available (Get_PCS_Name /=
5397 -- Name_No_DSA), a remote access-to-subprogram type is converted
5398 -- into a record type holding whatever information is needed to
5399 -- perform a remote call on an RCI subprogram. In that case we
5400 -- rewrite any occurrence of the RAS type into the equivalent record
5401 -- type here. 'Access attribute references and RAS dereferences are
5402 -- then implemented using specific TSSs. However when distribution is
5403 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5404 -- generation of these TSSs, and we must keep the RAS type in its
5405 -- original access-to-subprogram form (since all calls through a
5406 -- value of such type will be local anyway in the absence of a PCS).
5408 if Comes_From_Source (N)
5409 and then Is_Remote_Access_To_Subprogram_Type (E)
5410 and then Ekind (E) = E_Access_Subprogram_Type
5411 and then Expander_Active
5412 and then Get_PCS_Name /= Name_No_DSA
5413 then
5414 Rewrite (N,
5415 New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5416 return;
5417 end if;
5419 -- Set the entity. Note that the reason we call Set_Entity for the
5420 -- overloadable case, as opposed to Set_Entity_With_Checks is
5421 -- that in the overloaded case, the initial call can set the wrong
5422 -- homonym. The call that sets the right homonym is in Sem_Res and
5423 -- that call does use Set_Entity_With_Checks, so we don't miss
5424 -- a style check.
5426 if Is_Overloadable (E) then
5427 Set_Entity (N, E);
5428 else
5429 Set_Entity_With_Checks (N, E);
5430 end if;
5432 if Is_Type (E) then
5433 Set_Etype (N, E);
5434 else
5435 Set_Etype (N, Get_Full_View (Etype (E)));
5436 end if;
5438 if Debug_Flag_E then
5439 Write_Str (" found ");
5440 Write_Entity_Info (E, " ");
5441 end if;
5443 -- If the Ekind of the entity is Void, it means that all homonyms
5444 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5445 -- test is skipped if the current scope is a record and the name is
5446 -- a pragma argument expression (case of Atomic and Volatile pragmas
5447 -- and possibly other similar pragmas added later, which are allowed
5448 -- to reference components in the current record).
5450 if Ekind (E) = E_Void
5451 and then
5452 (not Is_Record_Type (Current_Scope)
5453 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5454 then
5455 Premature_Usage (N);
5457 -- If the entity is overloadable, collect all interpretations of the
5458 -- name for subsequent overload resolution. We optimize a bit here to
5459 -- do this only if we have an overloadable entity that is not on its
5460 -- own on the homonym chain.
5462 elsif Is_Overloadable (E)
5463 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5464 then
5465 Collect_Interps (N);
5467 -- If no homonyms were visible, the entity is unambiguous
5469 if not Is_Overloaded (N) then
5470 if not Is_Actual_Parameter then
5471 Generate_Reference (E, N);
5472 end if;
5473 end if;
5475 -- Case of non-overloadable entity, set the entity providing that
5476 -- we do not have the case of a discriminant reference within a
5477 -- default expression. Such references are replaced with the
5478 -- corresponding discriminal, which is the formal corresponding to
5479 -- to the discriminant in the initialization procedure.
5481 else
5482 -- Entity is unambiguous, indicate that it is referenced here
5484 -- For a renaming of an object, always generate simple reference,
5485 -- we don't try to keep track of assignments in this case, except
5486 -- in SPARK mode where renamings are traversed for generating
5487 -- local effects of subprograms.
5489 if Is_Object (E)
5490 and then Present (Renamed_Object (E))
5491 and then not GNATprove_Mode
5492 then
5493 Generate_Reference (E, N);
5495 -- If the renamed entity is a private protected component,
5496 -- reference the original component as well. This needs to be
5497 -- done because the private renamings are installed before any
5498 -- analysis has occurred. Reference to a private component will
5499 -- resolve to the renaming and the original component will be
5500 -- left unreferenced, hence the following.
5502 if Is_Prival (E) then
5503 Generate_Reference (Prival_Link (E), N);
5504 end if;
5506 -- One odd case is that we do not want to set the Referenced flag
5507 -- if the entity is a label, and the identifier is the label in
5508 -- the source, since this is not a reference from the point of
5509 -- view of the user.
5511 elsif Nkind (Parent (N)) = N_Label then
5512 declare
5513 R : constant Boolean := Referenced (E);
5515 begin
5516 -- Generate reference unless this is an actual parameter
5517 -- (see comment below)
5519 if Is_Actual_Parameter then
5520 Generate_Reference (E, N);
5521 Set_Referenced (E, R);
5522 end if;
5523 end;
5525 -- Normal case, not a label: generate reference
5527 else
5528 if not Is_Actual_Parameter then
5530 -- Package or generic package is always a simple reference
5532 if Ekind_In (E, E_Package, E_Generic_Package) then
5533 Generate_Reference (E, N, 'r');
5535 -- Else see if we have a left hand side
5537 else
5538 case Is_LHS (N) is
5539 when Yes =>
5540 Generate_Reference (E, N, 'm');
5542 when No =>
5543 Generate_Reference (E, N, 'r');
5545 -- If we don't know now, generate reference later
5547 when Unknown =>
5548 Deferred_References.Append ((E, N));
5549 end case;
5550 end if;
5551 end if;
5553 Check_Nested_Access (E);
5554 end if;
5556 Set_Entity_Or_Discriminal (N, E);
5558 -- The name may designate a generalized reference, in which case
5559 -- the dereference interpretation will be included.
5561 if Ada_Version >= Ada_2012
5562 and then
5563 (Nkind (Parent (N)) in N_Subexpr
5564 or else Nkind_In (Parent (N), N_Object_Declaration,
5565 N_Assignment_Statement))
5566 then
5567 Check_Implicit_Dereference (N, Etype (E));
5568 end if;
5569 end if;
5570 end;
5571 end Find_Direct_Name;
5573 ------------------------
5574 -- Find_Expanded_Name --
5575 ------------------------
5577 -- This routine searches the homonym chain of the entity until it finds
5578 -- an entity declared in the scope denoted by the prefix. If the entity
5579 -- is private, it may nevertheless be immediately visible, if we are in
5580 -- the scope of its declaration.
5582 procedure Find_Expanded_Name (N : Node_Id) is
5583 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean;
5584 -- Determine whether an arbitrary node N appears in pragmas [Refined_]
5585 -- Depends or [Refined_]Global.
5587 ----------------------------------
5588 -- In_Pragmas_Depends_Or_Global --
5589 ----------------------------------
5591 function In_Pragmas_Depends_Or_Global (N : Node_Id) return Boolean is
5592 Par : Node_Id;
5594 begin
5595 -- Climb the parent chain looking for a pragma
5597 Par := N;
5598 while Present (Par) loop
5599 if Nkind (Par) = N_Pragma
5600 and then Nam_In (Pragma_Name (Par), Name_Depends,
5601 Name_Global,
5602 Name_Refined_Depends,
5603 Name_Refined_Global)
5604 then
5605 return True;
5607 -- Prevent the search from going too far
5609 elsif Is_Body_Or_Package_Declaration (Par) then
5610 return False;
5611 end if;
5613 Par := Parent (Par);
5614 end loop;
5616 return False;
5617 end In_Pragmas_Depends_Or_Global;
5619 -- Local variables
5621 Selector : constant Node_Id := Selector_Name (N);
5622 Candidate : Entity_Id := Empty;
5623 P_Name : Entity_Id;
5624 Id : Entity_Id;
5626 -- Start of processing for Find_Expanded_Name
5628 begin
5629 P_Name := Entity (Prefix (N));
5631 -- If the prefix is a renamed package, look for the entity in the
5632 -- original package.
5634 if Ekind (P_Name) = E_Package
5635 and then Present (Renamed_Object (P_Name))
5636 then
5637 P_Name := Renamed_Object (P_Name);
5639 -- Rewrite node with entity field pointing to renamed object
5641 Rewrite (Prefix (N), New_Copy (Prefix (N)));
5642 Set_Entity (Prefix (N), P_Name);
5644 -- If the prefix is an object of a concurrent type, look for
5645 -- the entity in the associated task or protected type.
5647 elsif Is_Concurrent_Type (Etype (P_Name)) then
5648 P_Name := Etype (P_Name);
5649 end if;
5651 Id := Current_Entity (Selector);
5653 declare
5654 Is_New_Candidate : Boolean;
5656 begin
5657 while Present (Id) loop
5658 if Scope (Id) = P_Name then
5659 Candidate := Id;
5660 Is_New_Candidate := True;
5662 -- Handle abstract views of states and variables. These are
5663 -- acceptable only when the reference to the view appears in
5664 -- pragmas [Refined_]Depends and [Refined_]Global.
5666 if Ekind (Id) = E_Abstract_State
5667 and then From_Limited_With (Id)
5668 and then Present (Non_Limited_View (Id))
5669 then
5670 if In_Pragmas_Depends_Or_Global (N) then
5671 Candidate := Non_Limited_View (Id);
5672 Is_New_Candidate := True;
5674 -- Hide candidate because it is not used in a proper context
5676 else
5677 Candidate := Empty;
5678 Is_New_Candidate := False;
5679 end if;
5680 end if;
5682 -- Ada 2005 (AI-217): Handle shadow entities associated with types
5683 -- declared in limited-withed nested packages. We don't need to
5684 -- handle E_Incomplete_Subtype entities because the entities in
5685 -- the limited view are always E_Incomplete_Type entities (see
5686 -- Build_Limited_Views). Regarding the expression used to evaluate
5687 -- the scope, it is important to note that the limited view also
5688 -- has shadow entities associated nested packages. For this reason
5689 -- the correct scope of the entity is the scope of the real entity
5690 -- The non-limited view may itself be incomplete, in which case
5691 -- get the full view if available.
5693 elsif Ekind (Id) = E_Incomplete_Type
5694 and then From_Limited_With (Id)
5695 and then Present (Non_Limited_View (Id))
5696 and then Scope (Non_Limited_View (Id)) = P_Name
5697 then
5698 Candidate := Get_Full_View (Non_Limited_View (Id));
5699 Is_New_Candidate := True;
5701 else
5702 Is_New_Candidate := False;
5703 end if;
5705 if Is_New_Candidate then
5706 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
5707 exit when Is_Visible_Lib_Unit (Id);
5708 else
5709 exit when not Is_Hidden (Id);
5710 end if;
5712 exit when Is_Immediately_Visible (Id);
5713 end if;
5715 Id := Homonym (Id);
5716 end loop;
5717 end;
5719 if No (Id)
5720 and then Ekind_In (P_Name, E_Procedure, E_Function)
5721 and then Is_Generic_Instance (P_Name)
5722 then
5723 -- Expanded name denotes entity in (instance of) generic subprogram.
5724 -- The entity may be in the subprogram instance, or may denote one of
5725 -- the formals, which is declared in the enclosing wrapper package.
5727 P_Name := Scope (P_Name);
5729 Id := Current_Entity (Selector);
5730 while Present (Id) loop
5731 exit when Scope (Id) = P_Name;
5732 Id := Homonym (Id);
5733 end loop;
5734 end if;
5736 if No (Id) or else Chars (Id) /= Chars (Selector) then
5737 Set_Etype (N, Any_Type);
5739 -- If we are looking for an entity defined in System, try to find it
5740 -- in the child package that may have been provided as an extension
5741 -- to System. The Extend_System pragma will have supplied the name of
5742 -- the extension, which may have to be loaded.
5744 if Chars (P_Name) = Name_System
5745 and then Scope (P_Name) = Standard_Standard
5746 and then Present (System_Extend_Unit)
5747 and then Present_System_Aux (N)
5748 then
5749 Set_Entity (Prefix (N), System_Aux_Id);
5750 Find_Expanded_Name (N);
5751 return;
5753 elsif Nkind (Selector) = N_Operator_Symbol
5754 and then Has_Implicit_Operator (N)
5755 then
5756 -- There is an implicit instance of the predefined operator in
5757 -- the given scope. The operator entity is defined in Standard.
5758 -- Has_Implicit_Operator makes the node into an Expanded_Name.
5760 return;
5762 elsif Nkind (Selector) = N_Character_Literal
5763 and then Has_Implicit_Character_Literal (N)
5764 then
5765 -- If there is no literal defined in the scope denoted by the
5766 -- prefix, the literal may belong to (a type derived from)
5767 -- Standard_Character, for which we have no explicit literals.
5769 return;
5771 else
5772 -- If the prefix is a single concurrent object, use its name in
5773 -- the error message, rather than that of the anonymous type.
5775 if Is_Concurrent_Type (P_Name)
5776 and then Is_Internal_Name (Chars (P_Name))
5777 then
5778 Error_Msg_Node_2 := Entity (Prefix (N));
5779 else
5780 Error_Msg_Node_2 := P_Name;
5781 end if;
5783 if P_Name = System_Aux_Id then
5784 P_Name := Scope (P_Name);
5785 Set_Entity (Prefix (N), P_Name);
5786 end if;
5788 if Present (Candidate) then
5790 -- If we know that the unit is a child unit we can give a more
5791 -- accurate error message.
5793 if Is_Child_Unit (Candidate) then
5795 -- If the candidate is a private child unit and we are in
5796 -- the visible part of a public unit, specialize the error
5797 -- message. There might be a private with_clause for it,
5798 -- but it is not currently active.
5800 if Is_Private_Descendant (Candidate)
5801 and then Ekind (Current_Scope) = E_Package
5802 and then not In_Private_Part (Current_Scope)
5803 and then not Is_Private_Descendant (Current_Scope)
5804 then
5805 Error_Msg_N ("private child unit& is not visible here",
5806 Selector);
5808 -- Normal case where we have a missing with for a child unit
5810 else
5811 Error_Msg_Qual_Level := 99;
5812 Error_Msg_NE -- CODEFIX
5813 ("missing `WITH &;`", Selector, Candidate);
5814 Error_Msg_Qual_Level := 0;
5815 end if;
5817 -- Here we don't know that this is a child unit
5819 else
5820 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
5821 end if;
5823 else
5824 -- Within the instantiation of a child unit, the prefix may
5825 -- denote the parent instance, but the selector has the name
5826 -- of the original child. That is to say, when A.B appears
5827 -- within an instantiation of generic child unit B, the scope
5828 -- stack includes an instance of A (P_Name) and an instance
5829 -- of B under some other name. We scan the scope to find this
5830 -- child instance, which is the desired entity.
5831 -- Note that the parent may itself be a child instance, if
5832 -- the reference is of the form A.B.C, in which case A.B has
5833 -- already been rewritten with the proper entity.
5835 if In_Open_Scopes (P_Name)
5836 and then Is_Generic_Instance (P_Name)
5837 then
5838 declare
5839 Gen_Par : constant Entity_Id :=
5840 Generic_Parent (Specification
5841 (Unit_Declaration_Node (P_Name)));
5842 S : Entity_Id := Current_Scope;
5843 P : Entity_Id;
5845 begin
5846 for J in reverse 0 .. Scope_Stack.Last loop
5847 S := Scope_Stack.Table (J).Entity;
5849 exit when S = Standard_Standard;
5851 if Ekind_In (S, E_Function,
5852 E_Package,
5853 E_Procedure)
5854 then
5855 P := Generic_Parent (Specification
5856 (Unit_Declaration_Node (S)));
5858 -- Check that P is a generic child of the generic
5859 -- parent of the prefix.
5861 if Present (P)
5862 and then Chars (P) = Chars (Selector)
5863 and then Scope (P) = Gen_Par
5864 then
5865 Id := S;
5866 goto Found;
5867 end if;
5868 end if;
5870 end loop;
5871 end;
5872 end if;
5874 -- If this is a selection from Ada, System or Interfaces, then
5875 -- we assume a missing with for the corresponding package.
5877 if Is_Known_Unit (N) then
5878 if not Error_Posted (N) then
5879 Error_Msg_Node_2 := Selector;
5880 Error_Msg_N -- CODEFIX
5881 ("missing `WITH &.&;`", Prefix (N));
5882 end if;
5884 -- If this is a selection from a dummy package, then suppress
5885 -- the error message, of course the entity is missing if the
5886 -- package is missing.
5888 elsif Sloc (Error_Msg_Node_2) = No_Location then
5889 null;
5891 -- Here we have the case of an undefined component
5893 else
5895 -- The prefix may hide a homonym in the context that
5896 -- declares the desired entity. This error can use a
5897 -- specialized message.
5899 if In_Open_Scopes (P_Name) then
5900 declare
5901 H : constant Entity_Id := Homonym (P_Name);
5903 begin
5904 if Present (H)
5905 and then Is_Compilation_Unit (H)
5906 and then
5907 (Is_Immediately_Visible (H)
5908 or else Is_Visible_Lib_Unit (H))
5909 then
5910 Id := First_Entity (H);
5911 while Present (Id) loop
5912 if Chars (Id) = Chars (Selector) then
5913 Error_Msg_Qual_Level := 99;
5914 Error_Msg_Name_1 := Chars (Selector);
5915 Error_Msg_NE
5916 ("% not declared in&", N, P_Name);
5917 Error_Msg_NE
5918 ("\use fully qualified name starting with "
5919 & "Standard to make& visible", N, H);
5920 Error_Msg_Qual_Level := 0;
5921 goto Done;
5922 end if;
5924 Next_Entity (Id);
5925 end loop;
5926 end if;
5928 -- If not found, standard error message
5930 Error_Msg_NE ("& not declared in&", N, Selector);
5932 <<Done>> null;
5933 end;
5935 else
5936 Error_Msg_NE ("& not declared in&", N, Selector);
5937 end if;
5939 -- Check for misspelling of some entity in prefix
5941 Id := First_Entity (P_Name);
5942 while Present (Id) loop
5943 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
5944 and then not Is_Internal_Name (Chars (Id))
5945 then
5946 Error_Msg_NE -- CODEFIX
5947 ("possible misspelling of&", Selector, Id);
5948 exit;
5949 end if;
5951 Next_Entity (Id);
5952 end loop;
5954 -- Specialize the message if this may be an instantiation
5955 -- of a child unit that was not mentioned in the context.
5957 if Nkind (Parent (N)) = N_Package_Instantiation
5958 and then Is_Generic_Instance (Entity (Prefix (N)))
5959 and then Is_Compilation_Unit
5960 (Generic_Parent (Parent (Entity (Prefix (N)))))
5961 then
5962 Error_Msg_Node_2 := Selector;
5963 Error_Msg_N -- CODEFIX
5964 ("\missing `WITH &.&;`", Prefix (N));
5965 end if;
5966 end if;
5967 end if;
5969 Id := Any_Id;
5970 end if;
5971 end if;
5973 <<Found>>
5974 if Comes_From_Source (N)
5975 and then Is_Remote_Access_To_Subprogram_Type (Id)
5976 and then Ekind (Id) = E_Access_Subprogram_Type
5977 and then Present (Equivalent_Type (Id))
5978 then
5979 -- If we are not actually generating distribution code (i.e. the
5980 -- current PCS is the dummy non-distributed version), then the
5981 -- Equivalent_Type will be missing, and Id should be treated as
5982 -- a regular access-to-subprogram type.
5984 Id := Equivalent_Type (Id);
5985 Set_Chars (Selector, Chars (Id));
5986 end if;
5988 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
5990 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
5991 if From_Limited_With (Id)
5992 or else Is_Type (Id)
5993 or else Ekind (Id) = E_Package
5994 then
5995 null;
5996 else
5997 Error_Msg_N
5998 ("limited withed package can only be used to access "
5999 & "incomplete types", N);
6000 end if;
6001 end if;
6003 if Is_Task_Type (P_Name)
6004 and then ((Ekind (Id) = E_Entry
6005 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6006 or else
6007 (Ekind (Id) = E_Entry_Family
6008 and then
6009 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6010 then
6011 -- If both the task type and the entry are in scope, this may still
6012 -- be the expanded name of an entry formal.
6014 if In_Open_Scopes (Id)
6015 and then Nkind (Parent (N)) = N_Selected_Component
6016 then
6017 null;
6019 else
6020 -- It is an entry call after all, either to the current task
6021 -- (which will deadlock) or to an enclosing task.
6023 Analyze_Selected_Component (N);
6024 return;
6025 end if;
6026 end if;
6028 Change_Selected_Component_To_Expanded_Name (N);
6030 -- Set appropriate type
6032 if Is_Type (Id) then
6033 Set_Etype (N, Id);
6034 else
6035 Set_Etype (N, Get_Full_View (Etype (Id)));
6036 end if;
6038 -- Do style check and generate reference, but skip both steps if this
6039 -- entity has homonyms, since we may not have the right homonym set yet.
6040 -- The proper homonym will be set during the resolve phase.
6042 if Has_Homonym (Id) then
6043 Set_Entity (N, Id);
6045 else
6046 Set_Entity_Or_Discriminal (N, Id);
6048 case Is_LHS (N) is
6049 when Yes =>
6050 Generate_Reference (Id, N, 'm');
6051 when No =>
6052 Generate_Reference (Id, N, 'r');
6053 when Unknown =>
6054 Deferred_References.Append ((Id, N));
6055 end case;
6056 end if;
6058 -- Check for violation of No_Wide_Characters
6060 Check_Wide_Character_Restriction (Id, N);
6062 -- If the Ekind of the entity is Void, it means that all homonyms are
6063 -- hidden from all visibility (RM 8.3(5,14-20)).
6065 if Ekind (Id) = E_Void then
6066 Premature_Usage (N);
6068 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6069 declare
6070 H : Entity_Id := Homonym (Id);
6072 begin
6073 while Present (H) loop
6074 if Scope (H) = Scope (Id)
6075 and then (not Is_Hidden (H)
6076 or else Is_Immediately_Visible (H))
6077 then
6078 Collect_Interps (N);
6079 exit;
6080 end if;
6082 H := Homonym (H);
6083 end loop;
6085 -- If an extension of System is present, collect possible explicit
6086 -- overloadings declared in the extension.
6088 if Chars (P_Name) = Name_System
6089 and then Scope (P_Name) = Standard_Standard
6090 and then Present (System_Extend_Unit)
6091 and then Present_System_Aux (N)
6092 then
6093 H := Current_Entity (Id);
6095 while Present (H) loop
6096 if Scope (H) = System_Aux_Id then
6097 Add_One_Interp (N, H, Etype (H));
6098 end if;
6100 H := Homonym (H);
6101 end loop;
6102 end if;
6103 end;
6104 end if;
6106 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6107 and then Scope (Id) /= Standard_Standard
6108 then
6109 -- In addition to user-defined operators in the given scope, there
6110 -- may be an implicit instance of the predefined operator. The
6111 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6112 -- and added to the interpretations. Procedure Add_One_Interp will
6113 -- determine which hides which.
6115 if Has_Implicit_Operator (N) then
6116 null;
6117 end if;
6118 end if;
6120 -- If there is a single interpretation for N we can generate a
6121 -- reference to the unique entity found.
6123 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6124 Generate_Reference (Id, N);
6125 end if;
6126 end Find_Expanded_Name;
6128 -------------------------
6129 -- Find_Renamed_Entity --
6130 -------------------------
6132 function Find_Renamed_Entity
6133 (N : Node_Id;
6134 Nam : Node_Id;
6135 New_S : Entity_Id;
6136 Is_Actual : Boolean := False) return Entity_Id
6138 Ind : Interp_Index;
6139 I1 : Interp_Index := 0; -- Suppress junk warnings
6140 It : Interp;
6141 It1 : Interp;
6142 Old_S : Entity_Id;
6143 Inst : Entity_Id;
6145 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6146 -- If the renamed entity is an implicit operator, check whether it is
6147 -- visible because its operand type is properly visible. This check
6148 -- applies to explicit renamed entities that appear in the source in a
6149 -- renaming declaration or a formal subprogram instance, but not to
6150 -- default generic actuals with a name.
6152 function Report_Overload return Entity_Id;
6153 -- List possible interpretations, and specialize message in the
6154 -- case of a generic actual.
6156 function Within (Inner, Outer : Entity_Id) return Boolean;
6157 -- Determine whether a candidate subprogram is defined within the
6158 -- enclosing instance. If yes, it has precedence over outer candidates.
6160 --------------------------
6161 -- Is_Visible_Operation --
6162 --------------------------
6164 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6165 Scop : Entity_Id;
6166 Typ : Entity_Id;
6167 Btyp : Entity_Id;
6169 begin
6170 if Ekind (Op) /= E_Operator
6171 or else Scope (Op) /= Standard_Standard
6172 or else (In_Instance
6173 and then (not Is_Actual
6174 or else Present (Enclosing_Instance)))
6175 then
6176 return True;
6178 else
6179 -- For a fixed point type operator, check the resulting type,
6180 -- because it may be a mixed mode integer * fixed operation.
6182 if Present (Next_Formal (First_Formal (New_S)))
6183 and then Is_Fixed_Point_Type (Etype (New_S))
6184 then
6185 Typ := Etype (New_S);
6186 else
6187 Typ := Etype (First_Formal (New_S));
6188 end if;
6190 Btyp := Base_Type (Typ);
6192 if Nkind (Nam) /= N_Expanded_Name then
6193 return (In_Open_Scopes (Scope (Btyp))
6194 or else Is_Potentially_Use_Visible (Btyp)
6195 or else In_Use (Btyp)
6196 or else In_Use (Scope (Btyp)));
6198 else
6199 Scop := Entity (Prefix (Nam));
6201 if Ekind (Scop) = E_Package
6202 and then Present (Renamed_Object (Scop))
6203 then
6204 Scop := Renamed_Object (Scop);
6205 end if;
6207 -- Operator is visible if prefix of expanded name denotes
6208 -- scope of type, or else type is defined in System_Aux
6209 -- and the prefix denotes System.
6211 return Scope (Btyp) = Scop
6212 or else (Scope (Btyp) = System_Aux_Id
6213 and then Scope (Scope (Btyp)) = Scop);
6214 end if;
6215 end if;
6216 end Is_Visible_Operation;
6218 ------------
6219 -- Within --
6220 ------------
6222 function Within (Inner, Outer : Entity_Id) return Boolean is
6223 Sc : Entity_Id;
6225 begin
6226 Sc := Scope (Inner);
6227 while Sc /= Standard_Standard loop
6228 if Sc = Outer then
6229 return True;
6230 else
6231 Sc := Scope (Sc);
6232 end if;
6233 end loop;
6235 return False;
6236 end Within;
6238 ---------------------
6239 -- Report_Overload --
6240 ---------------------
6242 function Report_Overload return Entity_Id is
6243 begin
6244 if Is_Actual then
6245 Error_Msg_NE -- CODEFIX
6246 ("ambiguous actual subprogram&, " &
6247 "possible interpretations:", N, Nam);
6248 else
6249 Error_Msg_N -- CODEFIX
6250 ("ambiguous subprogram, " &
6251 "possible interpretations:", N);
6252 end if;
6254 List_Interps (Nam, N);
6255 return Old_S;
6256 end Report_Overload;
6258 -- Start of processing for Find_Renamed_Entity
6260 begin
6261 Old_S := Any_Id;
6262 Candidate_Renaming := Empty;
6264 if Is_Overloaded (Nam) then
6265 Get_First_Interp (Nam, Ind, It);
6266 while Present (It.Nam) loop
6267 if Entity_Matches_Spec (It.Nam, New_S)
6268 and then Is_Visible_Operation (It.Nam)
6269 then
6270 if Old_S /= Any_Id then
6272 -- Note: The call to Disambiguate only happens if a
6273 -- previous interpretation was found, in which case I1
6274 -- has received a value.
6276 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6278 if It1 = No_Interp then
6279 Inst := Enclosing_Instance;
6281 if Present (Inst) then
6282 if Within (It.Nam, Inst) then
6283 if Within (Old_S, Inst) then
6285 -- Choose the innermost subprogram, which would
6286 -- have hidden the outer one in the generic.
6288 if Scope_Depth (It.Nam) <
6289 Scope_Depth (Old_S)
6290 then
6291 return Old_S;
6292 else
6293 return It.Nam;
6294 end if;
6295 end if;
6297 elsif Within (Old_S, Inst) then
6298 return (Old_S);
6300 else
6301 return Report_Overload;
6302 end if;
6304 -- If not within an instance, ambiguity is real
6306 else
6307 return Report_Overload;
6308 end if;
6310 else
6311 Old_S := It1.Nam;
6312 exit;
6313 end if;
6315 else
6316 I1 := Ind;
6317 Old_S := It.Nam;
6318 end if;
6320 elsif
6321 Present (First_Formal (It.Nam))
6322 and then Present (First_Formal (New_S))
6323 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6324 Base_Type (Etype (First_Formal (New_S))))
6325 then
6326 Candidate_Renaming := It.Nam;
6327 end if;
6329 Get_Next_Interp (Ind, It);
6330 end loop;
6332 Set_Entity (Nam, Old_S);
6334 if Old_S /= Any_Id then
6335 Set_Is_Overloaded (Nam, False);
6336 end if;
6338 -- Non-overloaded case
6340 else
6341 if Is_Actual and then Present (Enclosing_Instance) then
6342 Old_S := Entity (Nam);
6344 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6345 Candidate_Renaming := New_S;
6347 if Is_Visible_Operation (Entity (Nam)) then
6348 Old_S := Entity (Nam);
6349 end if;
6351 elsif Present (First_Formal (Entity (Nam)))
6352 and then Present (First_Formal (New_S))
6353 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6354 Base_Type (Etype (First_Formal (New_S))))
6355 then
6356 Candidate_Renaming := Entity (Nam);
6357 end if;
6358 end if;
6360 return Old_S;
6361 end Find_Renamed_Entity;
6363 -----------------------------
6364 -- Find_Selected_Component --
6365 -----------------------------
6367 procedure Find_Selected_Component (N : Node_Id) is
6368 P : constant Node_Id := Prefix (N);
6370 P_Name : Entity_Id;
6371 -- Entity denoted by prefix
6373 P_Type : Entity_Id;
6374 -- and its type
6376 Nam : Node_Id;
6378 function Is_Reference_In_Subunit return Boolean;
6379 -- In a subunit, the scope depth is not a proper measure of hiding,
6380 -- because the context of the proper body may itself hide entities in
6381 -- parent units. This rare case requires inspecting the tree directly
6382 -- because the proper body is inserted in the main unit and its context
6383 -- is simply added to that of the parent.
6385 -----------------------------
6386 -- Is_Reference_In_Subunit --
6387 -----------------------------
6389 function Is_Reference_In_Subunit return Boolean is
6390 Clause : Node_Id;
6391 Comp_Unit : Node_Id;
6393 begin
6394 Comp_Unit := N;
6395 while Present (Comp_Unit)
6396 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6397 loop
6398 Comp_Unit := Parent (Comp_Unit);
6399 end loop;
6401 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6402 return False;
6403 end if;
6405 -- Now check whether the package is in the context of the subunit
6407 Clause := First (Context_Items (Comp_Unit));
6408 while Present (Clause) loop
6409 if Nkind (Clause) = N_With_Clause
6410 and then Entity (Name (Clause)) = P_Name
6411 then
6412 return True;
6413 end if;
6415 Clause := Next (Clause);
6416 end loop;
6418 return False;
6419 end Is_Reference_In_Subunit;
6421 -- Start of processing for Find_Selected_Component
6423 begin
6424 Analyze (P);
6426 if Nkind (P) = N_Error then
6427 return;
6428 end if;
6430 -- Selector name cannot be a character literal or an operator symbol in
6431 -- SPARK, except for the operator symbol in a renaming.
6433 if Restriction_Check_Required (SPARK_05) then
6434 if Nkind (Selector_Name (N)) = N_Character_Literal then
6435 Check_SPARK_05_Restriction
6436 ("character literal cannot be prefixed", N);
6437 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6438 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6439 then
6440 Check_SPARK_05_Restriction
6441 ("operator symbol cannot be prefixed", N);
6442 end if;
6443 end if;
6445 -- If the selector already has an entity, the node has been constructed
6446 -- in the course of expansion, and is known to be valid. Do not verify
6447 -- that it is defined for the type (it may be a private component used
6448 -- in the expansion of record equality).
6450 if Present (Entity (Selector_Name (N))) then
6451 if No (Etype (N)) or else Etype (N) = Any_Type then
6452 declare
6453 Sel_Name : constant Node_Id := Selector_Name (N);
6454 Selector : constant Entity_Id := Entity (Sel_Name);
6455 C_Etype : Node_Id;
6457 begin
6458 Set_Etype (Sel_Name, Etype (Selector));
6460 if not Is_Entity_Name (P) then
6461 Resolve (P);
6462 end if;
6464 -- Build an actual subtype except for the first parameter
6465 -- of an init proc, where this actual subtype is by
6466 -- definition incorrect, since the object is uninitialized
6467 -- (and does not even have defined discriminants etc.)
6469 if Is_Entity_Name (P)
6470 and then Ekind (Entity (P)) = E_Function
6471 then
6472 Nam := New_Copy (P);
6474 if Is_Overloaded (P) then
6475 Save_Interps (P, Nam);
6476 end if;
6478 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
6479 Analyze_Call (P);
6480 Analyze_Selected_Component (N);
6481 return;
6483 elsif Ekind (Selector) = E_Component
6484 and then (not Is_Entity_Name (P)
6485 or else Chars (Entity (P)) /= Name_uInit)
6486 then
6487 -- Do not build the subtype when referencing components of
6488 -- dispatch table wrappers. Required to avoid generating
6489 -- elaboration code with HI runtimes. JVM and .NET use a
6490 -- modified version of Ada.Tags which does not contain RE_
6491 -- Dispatch_Table_Wrapper and RE_No_Dispatch_Table_Wrapper.
6492 -- Avoid raising RE_Not_Available exception in those cases.
6494 if VM_Target = No_VM
6495 and then RTU_Loaded (Ada_Tags)
6496 and then
6497 ((RTE_Available (RE_Dispatch_Table_Wrapper)
6498 and then Scope (Selector) =
6499 RTE (RE_Dispatch_Table_Wrapper))
6500 or else
6501 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
6502 and then Scope (Selector) =
6503 RTE (RE_No_Dispatch_Table_Wrapper)))
6504 then
6505 C_Etype := Empty;
6506 else
6507 C_Etype :=
6508 Build_Actual_Subtype_Of_Component
6509 (Etype (Selector), N);
6510 end if;
6512 else
6513 C_Etype := Empty;
6514 end if;
6516 if No (C_Etype) then
6517 C_Etype := Etype (Selector);
6518 else
6519 Insert_Action (N, C_Etype);
6520 C_Etype := Defining_Identifier (C_Etype);
6521 end if;
6523 Set_Etype (N, C_Etype);
6524 end;
6526 -- If this is the name of an entry or protected operation, and
6527 -- the prefix is an access type, insert an explicit dereference,
6528 -- so that entry calls are treated uniformly.
6530 if Is_Access_Type (Etype (P))
6531 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
6532 then
6533 declare
6534 New_P : constant Node_Id :=
6535 Make_Explicit_Dereference (Sloc (P),
6536 Prefix => Relocate_Node (P));
6537 begin
6538 Rewrite (P, New_P);
6539 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
6540 end;
6541 end if;
6543 -- If the selected component appears within a default expression
6544 -- and it has an actual subtype, the pre-analysis has not yet
6545 -- completed its analysis, because Insert_Actions is disabled in
6546 -- that context. Within the init proc of the enclosing type we
6547 -- must complete this analysis, if an actual subtype was created.
6549 elsif Inside_Init_Proc then
6550 declare
6551 Typ : constant Entity_Id := Etype (N);
6552 Decl : constant Node_Id := Declaration_Node (Typ);
6553 begin
6554 if Nkind (Decl) = N_Subtype_Declaration
6555 and then not Analyzed (Decl)
6556 and then Is_List_Member (Decl)
6557 and then No (Parent (Decl))
6558 then
6559 Remove (Decl);
6560 Insert_Action (N, Decl);
6561 end if;
6562 end;
6563 end if;
6565 return;
6567 elsif Is_Entity_Name (P) then
6568 P_Name := Entity (P);
6570 -- The prefix may denote an enclosing type which is the completion
6571 -- of an incomplete type declaration.
6573 if Is_Type (P_Name) then
6574 Set_Entity (P, Get_Full_View (P_Name));
6575 Set_Etype (P, Entity (P));
6576 P_Name := Entity (P);
6577 end if;
6579 P_Type := Base_Type (Etype (P));
6581 if Debug_Flag_E then
6582 Write_Str ("Found prefix type to be ");
6583 Write_Entity_Info (P_Type, " "); Write_Eol;
6584 end if;
6586 -- The designated type may be a limited view with no components.
6587 -- Check whether the non-limited view is available, because in some
6588 -- cases this will not be set when instlling the context.
6590 if Is_Access_Type (P_Type) then
6591 declare
6592 D : constant Entity_Id := Directly_Designated_Type (P_Type);
6593 begin
6594 if Is_Incomplete_Type (D)
6595 and then not Is_Class_Wide_Type (D)
6596 and then From_Limited_With (D)
6597 and then Present (Non_Limited_View (D))
6598 and then not Is_Class_Wide_Type (Non_Limited_View (D))
6599 then
6600 Set_Directly_Designated_Type (P_Type, Non_Limited_View (D));
6601 end if;
6602 end;
6603 end if;
6605 -- First check for components of a record object (not the
6606 -- result of a call, which is handled below).
6608 if Is_Appropriate_For_Record (P_Type)
6609 and then not Is_Overloadable (P_Name)
6610 and then not Is_Type (P_Name)
6611 then
6612 -- Selected component of record. Type checking will validate
6613 -- name of selector.
6615 -- ??? Could we rewrite an implicit dereference into an explicit
6616 -- one here?
6618 Analyze_Selected_Component (N);
6620 -- Reference to type name in predicate/invariant expression
6622 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
6623 and then not In_Open_Scopes (P_Name)
6624 and then (not Is_Concurrent_Type (Etype (P_Name))
6625 or else not In_Open_Scopes (Etype (P_Name)))
6626 then
6627 -- Call to protected operation or entry. Type checking is
6628 -- needed on the prefix.
6630 Analyze_Selected_Component (N);
6632 elsif (In_Open_Scopes (P_Name)
6633 and then Ekind (P_Name) /= E_Void
6634 and then not Is_Overloadable (P_Name))
6635 or else (Is_Concurrent_Type (Etype (P_Name))
6636 and then In_Open_Scopes (Etype (P_Name)))
6637 then
6638 -- Prefix denotes an enclosing loop, block, or task, i.e. an
6639 -- enclosing construct that is not a subprogram or accept.
6641 Find_Expanded_Name (N);
6643 elsif Ekind (P_Name) = E_Package then
6644 Find_Expanded_Name (N);
6646 elsif Is_Overloadable (P_Name) then
6648 -- The subprogram may be a renaming (of an enclosing scope) as
6649 -- in the case of the name of the generic within an instantiation.
6651 if Ekind_In (P_Name, E_Procedure, E_Function)
6652 and then Present (Alias (P_Name))
6653 and then Is_Generic_Instance (Alias (P_Name))
6654 then
6655 P_Name := Alias (P_Name);
6656 end if;
6658 if Is_Overloaded (P) then
6660 -- The prefix must resolve to a unique enclosing construct
6662 declare
6663 Found : Boolean := False;
6664 Ind : Interp_Index;
6665 It : Interp;
6667 begin
6668 Get_First_Interp (P, Ind, It);
6669 while Present (It.Nam) loop
6670 if In_Open_Scopes (It.Nam) then
6671 if Found then
6672 Error_Msg_N (
6673 "prefix must be unique enclosing scope", N);
6674 Set_Entity (N, Any_Id);
6675 Set_Etype (N, Any_Type);
6676 return;
6678 else
6679 Found := True;
6680 P_Name := It.Nam;
6681 end if;
6682 end if;
6684 Get_Next_Interp (Ind, It);
6685 end loop;
6686 end;
6687 end if;
6689 if In_Open_Scopes (P_Name) then
6690 Set_Entity (P, P_Name);
6691 Set_Is_Overloaded (P, False);
6692 Find_Expanded_Name (N);
6694 else
6695 -- If no interpretation as an expanded name is possible, it
6696 -- must be a selected component of a record returned by a
6697 -- function call. Reformat prefix as a function call, the rest
6698 -- is done by type resolution.
6700 -- Error if the prefix is procedure or entry, as is P.X
6702 if Ekind (P_Name) /= E_Function
6703 and then
6704 (not Is_Overloaded (P)
6705 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
6706 then
6707 -- Prefix may mention a package that is hidden by a local
6708 -- declaration: let the user know. Scan the full homonym
6709 -- chain, the candidate package may be anywhere on it.
6711 if Present (Homonym (Current_Entity (P_Name))) then
6712 P_Name := Current_Entity (P_Name);
6714 while Present (P_Name) loop
6715 exit when Ekind (P_Name) = E_Package;
6716 P_Name := Homonym (P_Name);
6717 end loop;
6719 if Present (P_Name) then
6720 if not Is_Reference_In_Subunit then
6721 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
6722 Error_Msg_NE
6723 ("package& is hidden by declaration#", N, P_Name);
6724 end if;
6726 Set_Entity (Prefix (N), P_Name);
6727 Find_Expanded_Name (N);
6728 return;
6730 else
6731 P_Name := Entity (Prefix (N));
6732 end if;
6733 end if;
6735 Error_Msg_NE
6736 ("invalid prefix in selected component&", N, P_Name);
6737 Change_Selected_Component_To_Expanded_Name (N);
6738 Set_Entity (N, Any_Id);
6739 Set_Etype (N, Any_Type);
6741 -- Here we have a function call, so do the reformatting
6743 else
6744 Nam := New_Copy (P);
6745 Save_Interps (P, Nam);
6747 -- We use Replace here because this is one of those cases
6748 -- where the parser has missclassified the node, and we
6749 -- fix things up and then do the semantic analysis on the
6750 -- fixed up node. Normally we do this using one of the
6751 -- Sinfo.CN routines, but this is too tricky for that.
6753 -- Note that using Rewrite would be wrong, because we
6754 -- would have a tree where the original node is unanalyzed,
6755 -- and this violates the required interface for ASIS.
6757 Replace (P,
6758 Make_Function_Call (Sloc (P), Name => Nam));
6760 -- Now analyze the reformatted node
6762 Analyze_Call (P);
6763 Analyze_Selected_Component (N);
6764 end if;
6765 end if;
6767 -- Remaining cases generate various error messages
6769 else
6770 -- Format node as expanded name, to avoid cascaded errors
6772 Change_Selected_Component_To_Expanded_Name (N);
6773 Set_Entity (N, Any_Id);
6774 Set_Etype (N, Any_Type);
6776 -- Issue error message, but avoid this if error issued already.
6777 -- Use identifier of prefix if one is available.
6779 if P_Name = Any_Id then
6780 null;
6782 elsif Ekind (P_Name) = E_Void then
6783 Premature_Usage (P);
6785 elsif Nkind (P) /= N_Attribute_Reference then
6786 Error_Msg_N (
6787 "invalid prefix in selected component&", P);
6789 if Is_Access_Type (P_Type)
6790 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
6791 then
6792 Error_Msg_N
6793 ("\dereference must not be of an incomplete type " &
6794 "(RM 3.10.1)", P);
6795 end if;
6797 else
6798 Error_Msg_N (
6799 "invalid prefix in selected component", P);
6800 end if;
6801 end if;
6803 -- Selector name is restricted in SPARK
6805 if Nkind (N) = N_Expanded_Name
6806 and then Restriction_Check_Required (SPARK_05)
6807 then
6808 if Is_Subprogram (P_Name) then
6809 Check_SPARK_05_Restriction
6810 ("prefix of expanded name cannot be a subprogram", P);
6811 elsif Ekind (P_Name) = E_Loop then
6812 Check_SPARK_05_Restriction
6813 ("prefix of expanded name cannot be a loop statement", P);
6814 end if;
6815 end if;
6817 else
6818 -- If prefix is not the name of an entity, it must be an expression,
6819 -- whose type is appropriate for a record. This is determined by
6820 -- type resolution.
6822 Analyze_Selected_Component (N);
6823 end if;
6825 Analyze_Dimension (N);
6826 end Find_Selected_Component;
6828 ---------------
6829 -- Find_Type --
6830 ---------------
6832 procedure Find_Type (N : Node_Id) is
6833 C : Entity_Id;
6834 Typ : Entity_Id;
6835 T : Entity_Id;
6836 T_Name : Entity_Id;
6838 begin
6839 if N = Error then
6840 return;
6842 elsif Nkind (N) = N_Attribute_Reference then
6844 -- Class attribute. This is not valid in Ada 83 mode, but we do not
6845 -- need to enforce that at this point, since the declaration of the
6846 -- tagged type in the prefix would have been flagged already.
6848 if Attribute_Name (N) = Name_Class then
6849 Check_Restriction (No_Dispatch, N);
6850 Find_Type (Prefix (N));
6852 -- Propagate error from bad prefix
6854 if Etype (Prefix (N)) = Any_Type then
6855 Set_Entity (N, Any_Type);
6856 Set_Etype (N, Any_Type);
6857 return;
6858 end if;
6860 T := Base_Type (Entity (Prefix (N)));
6862 -- Case where type is not known to be tagged. Its appearance in
6863 -- the prefix of the 'Class attribute indicates that the full view
6864 -- will be tagged.
6866 if not Is_Tagged_Type (T) then
6867 if Ekind (T) = E_Incomplete_Type then
6869 -- It is legal to denote the class type of an incomplete
6870 -- type. The full type will have to be tagged, of course.
6871 -- In Ada 2005 this usage is declared obsolescent, so we
6872 -- warn accordingly. This usage is only legal if the type
6873 -- is completed in the current scope, and not for a limited
6874 -- view of a type.
6876 if Ada_Version >= Ada_2005 then
6878 -- Test whether the Available_View of a limited type view
6879 -- is tagged, since the limited view may not be marked as
6880 -- tagged if the type itself has an untagged incomplete
6881 -- type view in its package.
6883 if From_Limited_With (T)
6884 and then not Is_Tagged_Type (Available_View (T))
6885 then
6886 Error_Msg_N
6887 ("prefix of Class attribute must be tagged", N);
6888 Set_Etype (N, Any_Type);
6889 Set_Entity (N, Any_Type);
6890 return;
6892 -- ??? This test is temporarily disabled (always
6893 -- False) because it causes an unwanted warning on
6894 -- GNAT sources (built with -gnatg, which includes
6895 -- Warn_On_Obsolescent_ Feature). Once this issue
6896 -- is cleared in the sources, it can be enabled.
6898 elsif Warn_On_Obsolescent_Feature and then False then
6899 Error_Msg_N
6900 ("applying 'Class to an untagged incomplete type"
6901 & " is an obsolescent feature (RM J.11)?r?", N);
6902 end if;
6903 end if;
6905 Set_Is_Tagged_Type (T);
6906 Set_Direct_Primitive_Operations (T, New_Elmt_List);
6907 Make_Class_Wide_Type (T);
6908 Set_Entity (N, Class_Wide_Type (T));
6909 Set_Etype (N, Class_Wide_Type (T));
6911 elsif Ekind (T) = E_Private_Type
6912 and then not Is_Generic_Type (T)
6913 and then In_Private_Part (Scope (T))
6914 then
6915 -- The Class attribute can be applied to an untagged private
6916 -- type fulfilled by a tagged type prior to the full type
6917 -- declaration (but only within the parent package's private
6918 -- part). Create the class-wide type now and check that the
6919 -- full type is tagged later during its analysis. Note that
6920 -- we do not mark the private type as tagged, unlike the
6921 -- case of incomplete types, because the type must still
6922 -- appear untagged to outside units.
6924 if No (Class_Wide_Type (T)) then
6925 Make_Class_Wide_Type (T);
6926 end if;
6928 Set_Entity (N, Class_Wide_Type (T));
6929 Set_Etype (N, Class_Wide_Type (T));
6931 else
6932 -- Should we introduce a type Any_Tagged and use Wrong_Type
6933 -- here, it would be a bit more consistent???
6935 Error_Msg_NE
6936 ("tagged type required, found}",
6937 Prefix (N), First_Subtype (T));
6938 Set_Entity (N, Any_Type);
6939 return;
6940 end if;
6942 -- Case of tagged type
6944 else
6945 if Is_Concurrent_Type (T) then
6946 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
6948 -- Previous error. Use current type, which at least
6949 -- provides some operations.
6951 C := Entity (Prefix (N));
6953 else
6954 C := Class_Wide_Type
6955 (Corresponding_Record_Type (Entity (Prefix (N))));
6956 end if;
6958 else
6959 C := Class_Wide_Type (Entity (Prefix (N)));
6960 end if;
6962 Set_Entity_With_Checks (N, C);
6963 Generate_Reference (C, N);
6964 Set_Etype (N, C);
6965 end if;
6967 -- Base attribute, not allowed in Ada 83
6969 elsif Attribute_Name (N) = Name_Base then
6970 Error_Msg_Name_1 := Name_Base;
6971 Check_SPARK_05_Restriction
6972 ("attribute% is only allowed as prefix of another attribute", N);
6974 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
6975 Error_Msg_N
6976 ("(Ada 83) Base attribute not allowed in subtype mark", N);
6978 else
6979 Find_Type (Prefix (N));
6980 Typ := Entity (Prefix (N));
6982 if Ada_Version >= Ada_95
6983 and then not Is_Scalar_Type (Typ)
6984 and then not Is_Generic_Type (Typ)
6985 then
6986 Error_Msg_N
6987 ("prefix of Base attribute must be scalar type",
6988 Prefix (N));
6990 elsif Warn_On_Redundant_Constructs
6991 and then Base_Type (Typ) = Typ
6992 then
6993 Error_Msg_NE -- CODEFIX
6994 ("redundant attribute, & is its own base type?r?", N, Typ);
6995 end if;
6997 T := Base_Type (Typ);
6999 -- Rewrite attribute reference with type itself (see similar
7000 -- processing in Analyze_Attribute, case Base). Preserve prefix
7001 -- if present, for other legality checks.
7003 if Nkind (Prefix (N)) = N_Expanded_Name then
7004 Rewrite (N,
7005 Make_Expanded_Name (Sloc (N),
7006 Chars => Chars (T),
7007 Prefix => New_Copy (Prefix (Prefix (N))),
7008 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7010 else
7011 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7012 end if;
7014 Set_Entity (N, T);
7015 Set_Etype (N, T);
7016 end if;
7018 elsif Attribute_Name (N) = Name_Stub_Type then
7020 -- This is handled in Analyze_Attribute
7022 Analyze (N);
7024 -- All other attributes are invalid in a subtype mark
7026 else
7027 Error_Msg_N ("invalid attribute in subtype mark", N);
7028 end if;
7030 else
7031 Analyze (N);
7033 if Is_Entity_Name (N) then
7034 T_Name := Entity (N);
7035 else
7036 Error_Msg_N ("subtype mark required in this context", N);
7037 Set_Etype (N, Any_Type);
7038 return;
7039 end if;
7041 if T_Name = Any_Id or else Etype (N) = Any_Type then
7043 -- Undefined id. Make it into a valid type
7045 Set_Entity (N, Any_Type);
7047 elsif not Is_Type (T_Name)
7048 and then T_Name /= Standard_Void_Type
7049 then
7050 Error_Msg_Sloc := Sloc (T_Name);
7051 Error_Msg_N ("subtype mark required in this context", N);
7052 Error_Msg_NE ("\\found & declared#", N, T_Name);
7053 Set_Entity (N, Any_Type);
7055 else
7056 -- If the type is an incomplete type created to handle
7057 -- anonymous access components of a record type, then the
7058 -- incomplete type is the visible entity and subsequent
7059 -- references will point to it. Mark the original full
7060 -- type as referenced, to prevent spurious warnings.
7062 if Is_Incomplete_Type (T_Name)
7063 and then Present (Full_View (T_Name))
7064 and then not Comes_From_Source (T_Name)
7065 then
7066 Set_Referenced (Full_View (T_Name));
7067 end if;
7069 T_Name := Get_Full_View (T_Name);
7071 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7072 -- limited-with clauses
7074 if From_Limited_With (T_Name)
7075 and then Ekind (T_Name) in Incomplete_Kind
7076 and then Present (Non_Limited_View (T_Name))
7077 and then Is_Interface (Non_Limited_View (T_Name))
7078 then
7079 T_Name := Non_Limited_View (T_Name);
7080 end if;
7082 if In_Open_Scopes (T_Name) then
7083 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7085 -- In Ada 2005, a task name can be used in an access
7086 -- definition within its own body. It cannot be used
7087 -- in the discriminant part of the task declaration,
7088 -- nor anywhere else in the declaration because entries
7089 -- cannot have access parameters.
7091 if Ada_Version >= Ada_2005
7092 and then Nkind (Parent (N)) = N_Access_Definition
7093 then
7094 Set_Entity (N, T_Name);
7095 Set_Etype (N, T_Name);
7097 if Has_Completion (T_Name) then
7098 return;
7100 else
7101 Error_Msg_N
7102 ("task type cannot be used as type mark " &
7103 "within its own declaration", N);
7104 end if;
7106 else
7107 Error_Msg_N
7108 ("task type cannot be used as type mark " &
7109 "within its own spec or body", N);
7110 end if;
7112 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7114 -- In Ada 2005, a protected name can be used in an access
7115 -- definition within its own body.
7117 if Ada_Version >= Ada_2005
7118 and then Nkind (Parent (N)) = N_Access_Definition
7119 then
7120 Set_Entity (N, T_Name);
7121 Set_Etype (N, T_Name);
7122 return;
7124 else
7125 Error_Msg_N
7126 ("protected type cannot be used as type mark " &
7127 "within its own spec or body", N);
7128 end if;
7130 else
7131 Error_Msg_N ("type declaration cannot refer to itself", N);
7132 end if;
7134 Set_Etype (N, Any_Type);
7135 Set_Entity (N, Any_Type);
7136 Set_Error_Posted (T_Name);
7137 return;
7138 end if;
7140 Set_Entity (N, T_Name);
7141 Set_Etype (N, T_Name);
7142 end if;
7143 end if;
7145 if Present (Etype (N)) and then Comes_From_Source (N) then
7146 if Is_Fixed_Point_Type (Etype (N)) then
7147 Check_Restriction (No_Fixed_Point, N);
7148 elsif Is_Floating_Point_Type (Etype (N)) then
7149 Check_Restriction (No_Floating_Point, N);
7150 end if;
7151 end if;
7152 end Find_Type;
7154 ------------------------------------
7155 -- Has_Implicit_Character_Literal --
7156 ------------------------------------
7158 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7159 Id : Entity_Id;
7160 Found : Boolean := False;
7161 P : constant Entity_Id := Entity (Prefix (N));
7162 Priv_Id : Entity_Id := Empty;
7164 begin
7165 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7166 Priv_Id := First_Private_Entity (P);
7167 end if;
7169 if P = Standard_Standard then
7170 Change_Selected_Component_To_Expanded_Name (N);
7171 Rewrite (N, Selector_Name (N));
7172 Analyze (N);
7173 Set_Etype (Original_Node (N), Standard_Character);
7174 return True;
7175 end if;
7177 Id := First_Entity (P);
7178 while Present (Id) and then Id /= Priv_Id loop
7179 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7181 -- We replace the node with the literal itself, resolve as a
7182 -- character, and set the type correctly.
7184 if not Found then
7185 Change_Selected_Component_To_Expanded_Name (N);
7186 Rewrite (N, Selector_Name (N));
7187 Analyze (N);
7188 Set_Etype (N, Id);
7189 Set_Etype (Original_Node (N), Id);
7190 Found := True;
7192 else
7193 -- More than one type derived from Character in given scope.
7194 -- Collect all possible interpretations.
7196 Add_One_Interp (N, Id, Id);
7197 end if;
7198 end if;
7200 Next_Entity (Id);
7201 end loop;
7203 return Found;
7204 end Has_Implicit_Character_Literal;
7206 ----------------------
7207 -- Has_Private_With --
7208 ----------------------
7210 function Has_Private_With (E : Entity_Id) return Boolean is
7211 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7212 Item : Node_Id;
7214 begin
7215 Item := First (Context_Items (Comp_Unit));
7216 while Present (Item) loop
7217 if Nkind (Item) = N_With_Clause
7218 and then Private_Present (Item)
7219 and then Entity (Name (Item)) = E
7220 then
7221 return True;
7222 end if;
7224 Next (Item);
7225 end loop;
7227 return False;
7228 end Has_Private_With;
7230 ---------------------------
7231 -- Has_Implicit_Operator --
7232 ---------------------------
7234 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7235 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7236 P : constant Entity_Id := Entity (Prefix (N));
7237 Id : Entity_Id;
7238 Priv_Id : Entity_Id := Empty;
7240 procedure Add_Implicit_Operator
7241 (T : Entity_Id;
7242 Op_Type : Entity_Id := Empty);
7243 -- Add implicit interpretation to node N, using the type for which a
7244 -- predefined operator exists. If the operator yields a boolean type,
7245 -- the Operand_Type is implicitly referenced by the operator, and a
7246 -- reference to it must be generated.
7248 ---------------------------
7249 -- Add_Implicit_Operator --
7250 ---------------------------
7252 procedure Add_Implicit_Operator
7253 (T : Entity_Id;
7254 Op_Type : Entity_Id := Empty)
7256 Predef_Op : Entity_Id;
7258 begin
7259 Predef_Op := Current_Entity (Selector_Name (N));
7260 while Present (Predef_Op)
7261 and then Scope (Predef_Op) /= Standard_Standard
7262 loop
7263 Predef_Op := Homonym (Predef_Op);
7264 end loop;
7266 if Nkind (N) = N_Selected_Component then
7267 Change_Selected_Component_To_Expanded_Name (N);
7268 end if;
7270 -- If the context is an unanalyzed function call, determine whether
7271 -- a binary or unary interpretation is required.
7273 if Nkind (Parent (N)) = N_Indexed_Component then
7274 declare
7275 Is_Binary_Call : constant Boolean :=
7276 Present
7277 (Next (First (Expressions (Parent (N)))));
7278 Is_Binary_Op : constant Boolean :=
7279 First_Entity
7280 (Predef_Op) /= Last_Entity (Predef_Op);
7281 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7283 begin
7284 if Is_Binary_Call then
7285 if Is_Binary_Op then
7286 Add_One_Interp (N, Predef_Op, T);
7287 else
7288 Add_One_Interp (N, Predef_Op2, T);
7289 end if;
7291 else
7292 if not Is_Binary_Op then
7293 Add_One_Interp (N, Predef_Op, T);
7294 else
7295 Add_One_Interp (N, Predef_Op2, T);
7296 end if;
7297 end if;
7298 end;
7300 else
7301 Add_One_Interp (N, Predef_Op, T);
7303 -- For operators with unary and binary interpretations, if
7304 -- context is not a call, add both
7306 if Present (Homonym (Predef_Op)) then
7307 Add_One_Interp (N, Homonym (Predef_Op), T);
7308 end if;
7309 end if;
7311 -- The node is a reference to a predefined operator, and
7312 -- an implicit reference to the type of its operands.
7314 if Present (Op_Type) then
7315 Generate_Operator_Reference (N, Op_Type);
7316 else
7317 Generate_Operator_Reference (N, T);
7318 end if;
7319 end Add_Implicit_Operator;
7321 -- Start of processing for Has_Implicit_Operator
7323 begin
7324 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7325 Priv_Id := First_Private_Entity (P);
7326 end if;
7328 Id := First_Entity (P);
7330 case Op_Id is
7332 -- Boolean operators: an implicit declaration exists if the scope
7333 -- contains a declaration for a derived Boolean type, or for an
7334 -- array of Boolean type.
7336 when Name_Op_And | Name_Op_Not | Name_Op_Or | Name_Op_Xor =>
7337 while Id /= Priv_Id loop
7338 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
7339 Add_Implicit_Operator (Id);
7340 return True;
7341 end if;
7343 Next_Entity (Id);
7344 end loop;
7346 -- Equality: look for any non-limited type (result is Boolean)
7348 when Name_Op_Eq | Name_Op_Ne =>
7349 while Id /= Priv_Id loop
7350 if Is_Type (Id)
7351 and then not Is_Limited_Type (Id)
7352 and then Is_Base_Type (Id)
7353 then
7354 Add_Implicit_Operator (Standard_Boolean, Id);
7355 return True;
7356 end if;
7358 Next_Entity (Id);
7359 end loop;
7361 -- Comparison operators: scalar type, or array of scalar
7363 when Name_Op_Lt | Name_Op_Le | Name_Op_Gt | Name_Op_Ge =>
7364 while Id /= Priv_Id loop
7365 if (Is_Scalar_Type (Id)
7366 or else (Is_Array_Type (Id)
7367 and then Is_Scalar_Type (Component_Type (Id))))
7368 and then Is_Base_Type (Id)
7369 then
7370 Add_Implicit_Operator (Standard_Boolean, Id);
7371 return True;
7372 end if;
7374 Next_Entity (Id);
7375 end loop;
7377 -- Arithmetic operators: any numeric type
7379 when Name_Op_Abs |
7380 Name_Op_Add |
7381 Name_Op_Mod |
7382 Name_Op_Rem |
7383 Name_Op_Subtract |
7384 Name_Op_Multiply |
7385 Name_Op_Divide |
7386 Name_Op_Expon =>
7387 while Id /= Priv_Id loop
7388 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
7389 Add_Implicit_Operator (Id);
7390 return True;
7391 end if;
7393 Next_Entity (Id);
7394 end loop;
7396 -- Concatenation: any one-dimensional array type
7398 when Name_Op_Concat =>
7399 while Id /= Priv_Id loop
7400 if Is_Array_Type (Id)
7401 and then Number_Dimensions (Id) = 1
7402 and then Is_Base_Type (Id)
7403 then
7404 Add_Implicit_Operator (Id);
7405 return True;
7406 end if;
7408 Next_Entity (Id);
7409 end loop;
7411 -- What is the others condition here? Should we be using a
7412 -- subtype of Name_Id that would restrict to operators ???
7414 when others => null;
7415 end case;
7417 -- If we fall through, then we do not have an implicit operator
7419 return False;
7421 end Has_Implicit_Operator;
7423 -----------------------------------
7424 -- Has_Loop_In_Inner_Open_Scopes --
7425 -----------------------------------
7427 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
7428 begin
7429 -- Several scope stacks are maintained by Scope_Stack. The base of the
7430 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7431 -- flag in the scope stack entry. Note that the scope stacks used to
7432 -- simply be delimited implicitly by the presence of Standard_Standard
7433 -- at their base, but there now are cases where this is not sufficient
7434 -- because Standard_Standard actually may appear in the middle of the
7435 -- active set of scopes.
7437 for J in reverse 0 .. Scope_Stack.Last loop
7439 -- S was reached without seing a loop scope first
7441 if Scope_Stack.Table (J).Entity = S then
7442 return False;
7444 -- S was not yet reached, so it contains at least one inner loop
7446 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
7447 return True;
7448 end if;
7450 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7451 -- cases where Standard_Standard appears in the middle of the active
7452 -- set of scopes. This affects the declaration and overriding of
7453 -- private inherited operations in instantiations of generic child
7454 -- units.
7456 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
7457 end loop;
7459 raise Program_Error; -- unreachable
7460 end Has_Loop_In_Inner_Open_Scopes;
7462 --------------------
7463 -- In_Open_Scopes --
7464 --------------------
7466 function In_Open_Scopes (S : Entity_Id) return Boolean is
7467 begin
7468 -- Several scope stacks are maintained by Scope_Stack. The base of the
7469 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7470 -- flag in the scope stack entry. Note that the scope stacks used to
7471 -- simply be delimited implicitly by the presence of Standard_Standard
7472 -- at their base, but there now are cases where this is not sufficient
7473 -- because Standard_Standard actually may appear in the middle of the
7474 -- active set of scopes.
7476 for J in reverse 0 .. Scope_Stack.Last loop
7477 if Scope_Stack.Table (J).Entity = S then
7478 return True;
7479 end if;
7481 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7482 -- cases where Standard_Standard appears in the middle of the active
7483 -- set of scopes. This affects the declaration and overriding of
7484 -- private inherited operations in instantiations of generic child
7485 -- units.
7487 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
7488 end loop;
7490 return False;
7491 end In_Open_Scopes;
7493 -----------------------------
7494 -- Inherit_Renamed_Profile --
7495 -----------------------------
7497 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
7498 New_F : Entity_Id;
7499 Old_F : Entity_Id;
7500 Old_T : Entity_Id;
7501 New_T : Entity_Id;
7503 begin
7504 if Ekind (Old_S) = E_Operator then
7505 New_F := First_Formal (New_S);
7507 while Present (New_F) loop
7508 Set_Etype (New_F, Base_Type (Etype (New_F)));
7509 Next_Formal (New_F);
7510 end loop;
7512 Set_Etype (New_S, Base_Type (Etype (New_S)));
7514 else
7515 New_F := First_Formal (New_S);
7516 Old_F := First_Formal (Old_S);
7518 while Present (New_F) loop
7519 New_T := Etype (New_F);
7520 Old_T := Etype (Old_F);
7522 -- If the new type is a renaming of the old one, as is the
7523 -- case for actuals in instances, retain its name, to simplify
7524 -- later disambiguation.
7526 if Nkind (Parent (New_T)) = N_Subtype_Declaration
7527 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
7528 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
7529 then
7530 null;
7531 else
7532 Set_Etype (New_F, Old_T);
7533 end if;
7535 Next_Formal (New_F);
7536 Next_Formal (Old_F);
7537 end loop;
7539 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
7540 Set_Etype (New_S, Etype (Old_S));
7541 end if;
7542 end if;
7543 end Inherit_Renamed_Profile;
7545 ----------------
7546 -- Initialize --
7547 ----------------
7549 procedure Initialize is
7550 begin
7551 Urefs.Init;
7552 end Initialize;
7554 -------------------------
7555 -- Install_Use_Clauses --
7556 -------------------------
7558 procedure Install_Use_Clauses
7559 (Clause : Node_Id;
7560 Force_Installation : Boolean := False)
7562 U : Node_Id;
7563 P : Node_Id;
7564 Id : Entity_Id;
7566 begin
7567 U := Clause;
7568 while Present (U) loop
7570 -- Case of USE package
7572 if Nkind (U) = N_Use_Package_Clause then
7573 P := First (Names (U));
7574 while Present (P) loop
7575 Id := Entity (P);
7577 if Ekind (Id) = E_Package then
7578 if In_Use (Id) then
7579 Note_Redundant_Use (P);
7581 elsif Present (Renamed_Object (Id))
7582 and then In_Use (Renamed_Object (Id))
7583 then
7584 Note_Redundant_Use (P);
7586 elsif Force_Installation or else Applicable_Use (P) then
7587 Use_One_Package (Id, U);
7589 end if;
7590 end if;
7592 Next (P);
7593 end loop;
7595 -- Case of USE TYPE
7597 else
7598 P := First (Subtype_Marks (U));
7599 while Present (P) loop
7600 if not Is_Entity_Name (P)
7601 or else No (Entity (P))
7602 then
7603 null;
7605 elsif Entity (P) /= Any_Type then
7606 Use_One_Type (P);
7607 end if;
7609 Next (P);
7610 end loop;
7611 end if;
7613 Next_Use_Clause (U);
7614 end loop;
7615 end Install_Use_Clauses;
7617 -------------------------------------
7618 -- Is_Appropriate_For_Entry_Prefix --
7619 -------------------------------------
7621 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
7622 P_Type : Entity_Id := T;
7624 begin
7625 if Is_Access_Type (P_Type) then
7626 P_Type := Designated_Type (P_Type);
7627 end if;
7629 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
7630 end Is_Appropriate_For_Entry_Prefix;
7632 -------------------------------
7633 -- Is_Appropriate_For_Record --
7634 -------------------------------
7636 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
7638 function Has_Components (T1 : Entity_Id) return Boolean;
7639 -- Determine if given type has components (i.e. is either a record
7640 -- type or a type that has discriminants).
7642 --------------------
7643 -- Has_Components --
7644 --------------------
7646 function Has_Components (T1 : Entity_Id) return Boolean is
7647 begin
7648 return Is_Record_Type (T1)
7649 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
7650 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
7651 or else (Is_Incomplete_Type (T1)
7652 and then From_Limited_With (T1)
7653 and then Present (Non_Limited_View (T1))
7654 and then Is_Record_Type
7655 (Get_Full_View (Non_Limited_View (T1))));
7656 end Has_Components;
7658 -- Start of processing for Is_Appropriate_For_Record
7660 begin
7661 return
7662 Present (T)
7663 and then (Has_Components (T)
7664 or else (Is_Access_Type (T)
7665 and then Has_Components (Designated_Type (T))));
7666 end Is_Appropriate_For_Record;
7668 ------------------------
7669 -- Note_Redundant_Use --
7670 ------------------------
7672 procedure Note_Redundant_Use (Clause : Node_Id) is
7673 Pack_Name : constant Entity_Id := Entity (Clause);
7674 Cur_Use : constant Node_Id := Current_Use_Clause (Pack_Name);
7675 Decl : constant Node_Id := Parent (Clause);
7677 Prev_Use : Node_Id := Empty;
7678 Redundant : Node_Id := Empty;
7679 -- The Use_Clause which is actually redundant. In the simplest case it
7680 -- is Pack itself, but when we compile a body we install its context
7681 -- before that of its spec, in which case it is the use_clause in the
7682 -- spec that will appear to be redundant, and we want the warning to be
7683 -- placed on the body. Similar complications appear when the redundancy
7684 -- is between a child unit and one of its ancestors.
7686 begin
7687 Set_Redundant_Use (Clause, True);
7689 if not Comes_From_Source (Clause)
7690 or else In_Instance
7691 or else not Warn_On_Redundant_Constructs
7692 then
7693 return;
7694 end if;
7696 if not Is_Compilation_Unit (Current_Scope) then
7698 -- If the use_clause is in an inner scope, it is made redundant by
7699 -- some clause in the current context, with one exception: If we're
7700 -- compiling a nested package body, and the use_clause comes from the
7701 -- corresponding spec, the clause is not necessarily fully redundant,
7702 -- so we should not warn. If a warning was warranted, it would have
7703 -- been given when the spec was processed.
7705 if Nkind (Parent (Decl)) = N_Package_Specification then
7706 declare
7707 Package_Spec_Entity : constant Entity_Id :=
7708 Defining_Unit_Name (Parent (Decl));
7709 begin
7710 if In_Package_Body (Package_Spec_Entity) then
7711 return;
7712 end if;
7713 end;
7714 end if;
7716 Redundant := Clause;
7717 Prev_Use := Cur_Use;
7719 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
7720 declare
7721 Cur_Unit : constant Unit_Number_Type := Get_Source_Unit (Cur_Use);
7722 New_Unit : constant Unit_Number_Type := Get_Source_Unit (Clause);
7723 Scop : Entity_Id;
7725 begin
7726 if Cur_Unit = New_Unit then
7728 -- Redundant clause in same body
7730 Redundant := Clause;
7731 Prev_Use := Cur_Use;
7733 elsif Cur_Unit = Current_Sem_Unit then
7735 -- If the new clause is not in the current unit it has been
7736 -- analyzed first, and it makes the other one redundant.
7737 -- However, if the new clause appears in a subunit, Cur_Unit
7738 -- is still the parent, and in that case the redundant one
7739 -- is the one appearing in the subunit.
7741 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
7742 Redundant := Clause;
7743 Prev_Use := Cur_Use;
7745 -- Most common case: redundant clause in body,
7746 -- original clause in spec. Current scope is spec entity.
7748 elsif
7749 Current_Scope =
7750 Defining_Entity (
7751 Unit (Library_Unit (Cunit (Current_Sem_Unit))))
7752 then
7753 Redundant := Cur_Use;
7754 Prev_Use := Clause;
7756 else
7757 -- The new clause may appear in an unrelated unit, when
7758 -- the parents of a generic are being installed prior to
7759 -- instantiation. In this case there must be no warning.
7760 -- We detect this case by checking whether the current top
7761 -- of the stack is related to the current compilation.
7763 Scop := Current_Scope;
7764 while Present (Scop) and then Scop /= Standard_Standard loop
7765 if Is_Compilation_Unit (Scop)
7766 and then not Is_Child_Unit (Scop)
7767 then
7768 return;
7770 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
7771 exit;
7772 end if;
7774 Scop := Scope (Scop);
7775 end loop;
7777 Redundant := Cur_Use;
7778 Prev_Use := Clause;
7779 end if;
7781 elsif New_Unit = Current_Sem_Unit then
7782 Redundant := Clause;
7783 Prev_Use := Cur_Use;
7785 else
7786 -- Neither is the current unit, so they appear in parent or
7787 -- sibling units. Warning will be emitted elsewhere.
7789 return;
7790 end if;
7791 end;
7793 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
7794 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
7795 then
7796 -- Use_clause is in child unit of current unit, and the child unit
7797 -- appears in the context of the body of the parent, so it has been
7798 -- installed first, even though it is the redundant one. Depending on
7799 -- their placement in the context, the visible or the private parts
7800 -- of the two units, either might appear as redundant, but the
7801 -- message has to be on the current unit.
7803 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
7804 Redundant := Cur_Use;
7805 Prev_Use := Clause;
7806 else
7807 Redundant := Clause;
7808 Prev_Use := Cur_Use;
7809 end if;
7811 -- If the new use clause appears in the private part of a parent unit
7812 -- it may appear to be redundant w.r.t. a use clause in a child unit,
7813 -- but the previous use clause was needed in the visible part of the
7814 -- child, and no warning should be emitted.
7816 if Nkind (Parent (Decl)) = N_Package_Specification
7817 and then
7818 List_Containing (Decl) = Private_Declarations (Parent (Decl))
7819 then
7820 declare
7821 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
7822 Spec : constant Node_Id :=
7823 Specification (Unit (Cunit (Current_Sem_Unit)));
7825 begin
7826 if Is_Compilation_Unit (Par)
7827 and then Par /= Cunit_Entity (Current_Sem_Unit)
7828 and then Parent (Cur_Use) = Spec
7829 and then
7830 List_Containing (Cur_Use) = Visible_Declarations (Spec)
7831 then
7832 return;
7833 end if;
7834 end;
7835 end if;
7837 -- Finally, if the current use clause is in the context then
7838 -- the clause is redundant when it is nested within the unit.
7840 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
7841 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
7842 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
7843 then
7844 Redundant := Clause;
7845 Prev_Use := Cur_Use;
7847 else
7848 null;
7849 end if;
7851 if Present (Redundant) then
7852 Error_Msg_Sloc := Sloc (Prev_Use);
7853 Error_Msg_NE -- CODEFIX
7854 ("& is already use-visible through previous use clause #??",
7855 Redundant, Pack_Name);
7856 end if;
7857 end Note_Redundant_Use;
7859 ---------------
7860 -- Pop_Scope --
7861 ---------------
7863 procedure Pop_Scope is
7864 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
7865 S : constant Entity_Id := SST.Entity;
7867 begin
7868 if Debug_Flag_E then
7869 Write_Info;
7870 end if;
7872 -- Set Default_Storage_Pool field of the library unit if necessary
7874 if Ekind_In (S, E_Package, E_Generic_Package)
7875 and then
7876 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
7877 then
7878 declare
7879 Aux : constant Node_Id :=
7880 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
7881 begin
7882 if No (Default_Storage_Pool (Aux)) then
7883 Set_Default_Storage_Pool (Aux, Default_Pool);
7884 end if;
7885 end;
7886 end if;
7888 Scope_Suppress := SST.Save_Scope_Suppress;
7889 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
7890 Check_Policy_List := SST.Save_Check_Policy_List;
7891 Default_Pool := SST.Save_Default_Storage_Pool;
7892 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
7893 SPARK_Mode := SST.Save_SPARK_Mode;
7894 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
7895 Default_SSO := SST.Save_Default_SSO;
7896 Uneval_Old := SST.Save_Uneval_Old;
7898 if Debug_Flag_W then
7899 Write_Str ("<-- exiting scope: ");
7900 Write_Name (Chars (Current_Scope));
7901 Write_Str (", Depth=");
7902 Write_Int (Int (Scope_Stack.Last));
7903 Write_Eol;
7904 end if;
7906 End_Use_Clauses (SST.First_Use_Clause);
7908 -- If the actions to be wrapped are still there they will get lost
7909 -- causing incomplete code to be generated. It is better to abort in
7910 -- this case (and we do the abort even with assertions off since the
7911 -- penalty is incorrect code generation).
7913 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
7914 raise Program_Error;
7915 end if;
7917 -- Free last subprogram name if allocated, and pop scope
7919 Free (SST.Last_Subprogram_Name);
7920 Scope_Stack.Decrement_Last;
7921 end Pop_Scope;
7923 ---------------
7924 -- Push_Scope --
7925 ---------------
7927 procedure Push_Scope (S : Entity_Id) is
7928 E : constant Entity_Id := Scope (S);
7930 begin
7931 if Ekind (S) = E_Void then
7932 null;
7934 -- Set scope depth if not a non-concurrent type, and we have not yet set
7935 -- the scope depth. This means that we have the first occurrence of the
7936 -- scope, and this is where the depth is set.
7938 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
7939 and then not Scope_Depth_Set (S)
7940 then
7941 if S = Standard_Standard then
7942 Set_Scope_Depth_Value (S, Uint_0);
7944 elsif Is_Child_Unit (S) then
7945 Set_Scope_Depth_Value (S, Uint_1);
7947 elsif not Is_Record_Type (Current_Scope) then
7948 if Ekind (S) = E_Loop then
7949 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
7950 else
7951 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
7952 end if;
7953 end if;
7954 end if;
7956 Scope_Stack.Increment_Last;
7958 declare
7959 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
7961 begin
7962 SST.Entity := S;
7963 SST.Save_Scope_Suppress := Scope_Suppress;
7964 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
7965 SST.Save_Check_Policy_List := Check_Policy_List;
7966 SST.Save_Default_Storage_Pool := Default_Pool;
7967 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
7968 SST.Save_SPARK_Mode := SPARK_Mode;
7969 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
7970 SST.Save_Default_SSO := Default_SSO;
7971 SST.Save_Uneval_Old := Uneval_Old;
7973 if Scope_Stack.Last > Scope_Stack.First then
7974 SST.Component_Alignment_Default := Scope_Stack.Table
7975 (Scope_Stack.Last - 1).
7976 Component_Alignment_Default;
7977 end if;
7979 SST.Last_Subprogram_Name := null;
7980 SST.Is_Transient := False;
7981 SST.Node_To_Be_Wrapped := Empty;
7982 SST.Pending_Freeze_Actions := No_List;
7983 SST.Actions_To_Be_Wrapped := (others => No_List);
7984 SST.First_Use_Clause := Empty;
7985 SST.Is_Active_Stack_Base := False;
7986 SST.Previous_Visibility := False;
7987 SST.Locked_Shared_Objects := No_Elist;
7988 end;
7990 if Debug_Flag_W then
7991 Write_Str ("--> new scope: ");
7992 Write_Name (Chars (Current_Scope));
7993 Write_Str (", Id=");
7994 Write_Int (Int (Current_Scope));
7995 Write_Str (", Depth=");
7996 Write_Int (Int (Scope_Stack.Last));
7997 Write_Eol;
7998 end if;
8000 -- Deal with copying flags from the previous scope to this one. This is
8001 -- not necessary if either scope is standard, or if the new scope is a
8002 -- child unit.
8004 if S /= Standard_Standard
8005 and then Scope (S) /= Standard_Standard
8006 and then not Is_Child_Unit (S)
8007 then
8008 if Nkind (E) not in N_Entity then
8009 return;
8010 end if;
8012 -- Copy categorization flags from Scope (S) to S, this is not done
8013 -- when Scope (S) is Standard_Standard since propagation is from
8014 -- library unit entity inwards. Copy other relevant attributes as
8015 -- well (Discard_Names in particular).
8017 -- We only propagate inwards for library level entities,
8018 -- inner level subprograms do not inherit the categorization.
8020 if Is_Library_Level_Entity (S) then
8021 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8022 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8023 Set_Discard_Names (S, Discard_Names (E));
8024 Set_Suppress_Value_Tracking_On_Call
8025 (S, Suppress_Value_Tracking_On_Call (E));
8026 Set_Categorization_From_Scope (E => S, Scop => E);
8027 end if;
8028 end if;
8030 if Is_Child_Unit (S)
8031 and then Present (E)
8032 and then Ekind_In (E, E_Package, E_Generic_Package)
8033 and then
8034 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8035 then
8036 declare
8037 Aux : constant Node_Id :=
8038 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8039 begin
8040 if Present (Default_Storage_Pool (Aux)) then
8041 Default_Pool := Default_Storage_Pool (Aux);
8042 end if;
8043 end;
8044 end if;
8045 end Push_Scope;
8047 ---------------------
8048 -- Premature_Usage --
8049 ---------------------
8051 procedure Premature_Usage (N : Node_Id) is
8052 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8053 E : Entity_Id := Entity (N);
8055 begin
8056 -- Within an instance, the analysis of the actual for a formal object
8057 -- does not see the name of the object itself. This is significant only
8058 -- if the object is an aggregate, where its analysis does not do any
8059 -- name resolution on component associations. (see 4717-008). In such a
8060 -- case, look for the visible homonym on the chain.
8062 if In_Instance and then Present (Homonym (E)) then
8063 E := Homonym (E);
8064 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8065 E := Homonym (E);
8066 end loop;
8068 if Present (E) then
8069 Set_Entity (N, E);
8070 Set_Etype (N, Etype (E));
8071 return;
8072 end if;
8073 end if;
8075 if Kind = N_Component_Declaration then
8076 Error_Msg_N
8077 ("component&! cannot be used before end of record declaration", N);
8079 elsif Kind = N_Parameter_Specification then
8080 Error_Msg_N
8081 ("formal parameter&! cannot be used before end of specification",
8084 elsif Kind = N_Discriminant_Specification then
8085 Error_Msg_N
8086 ("discriminant&! cannot be used before end of discriminant part",
8089 elsif Kind = N_Procedure_Specification
8090 or else Kind = N_Function_Specification
8091 then
8092 Error_Msg_N
8093 ("subprogram&! cannot be used before end of its declaration",
8096 elsif Kind = N_Full_Type_Declaration then
8097 Error_Msg_N
8098 ("type& cannot be used before end of its declaration!", N);
8100 else
8101 Error_Msg_N
8102 ("object& cannot be used before end of its declaration!", N);
8103 end if;
8104 end Premature_Usage;
8106 ------------------------
8107 -- Present_System_Aux --
8108 ------------------------
8110 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8111 Loc : Source_Ptr;
8112 Aux_Name : Unit_Name_Type;
8113 Unum : Unit_Number_Type;
8114 Withn : Node_Id;
8115 With_Sys : Node_Id;
8116 The_Unit : Node_Id;
8118 function Find_System (C_Unit : Node_Id) return Entity_Id;
8119 -- Scan context clause of compilation unit to find with_clause
8120 -- for System.
8122 -----------------
8123 -- Find_System --
8124 -----------------
8126 function Find_System (C_Unit : Node_Id) return Entity_Id is
8127 With_Clause : Node_Id;
8129 begin
8130 With_Clause := First (Context_Items (C_Unit));
8131 while Present (With_Clause) loop
8132 if (Nkind (With_Clause) = N_With_Clause
8133 and then Chars (Name (With_Clause)) = Name_System)
8134 and then Comes_From_Source (With_Clause)
8135 then
8136 return With_Clause;
8137 end if;
8139 Next (With_Clause);
8140 end loop;
8142 return Empty;
8143 end Find_System;
8145 -- Start of processing for Present_System_Aux
8147 begin
8148 -- The child unit may have been loaded and analyzed already
8150 if Present (System_Aux_Id) then
8151 return True;
8153 -- If no previous pragma for System.Aux, nothing to load
8155 elsif No (System_Extend_Unit) then
8156 return False;
8158 -- Use the unit name given in the pragma to retrieve the unit.
8159 -- Verify that System itself appears in the context clause of the
8160 -- current compilation. If System is not present, an error will
8161 -- have been reported already.
8163 else
8164 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8166 The_Unit := Unit (Cunit (Current_Sem_Unit));
8168 if No (With_Sys)
8169 and then
8170 (Nkind (The_Unit) = N_Package_Body
8171 or else (Nkind (The_Unit) = N_Subprogram_Body
8172 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8173 then
8174 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8175 end if;
8177 if No (With_Sys) and then Present (N) then
8179 -- If we are compiling a subunit, we need to examine its
8180 -- context as well (Current_Sem_Unit is the parent unit);
8182 The_Unit := Parent (N);
8183 while Nkind (The_Unit) /= N_Compilation_Unit loop
8184 The_Unit := Parent (The_Unit);
8185 end loop;
8187 if Nkind (Unit (The_Unit)) = N_Subunit then
8188 With_Sys := Find_System (The_Unit);
8189 end if;
8190 end if;
8192 if No (With_Sys) then
8193 return False;
8194 end if;
8196 Loc := Sloc (With_Sys);
8197 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8198 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8199 Name_Buffer (1 .. 7) := "system.";
8200 Name_Buffer (Name_Len + 8) := '%';
8201 Name_Buffer (Name_Len + 9) := 's';
8202 Name_Len := Name_Len + 9;
8203 Aux_Name := Name_Find;
8205 Unum :=
8206 Load_Unit
8207 (Load_Name => Aux_Name,
8208 Required => False,
8209 Subunit => False,
8210 Error_Node => With_Sys);
8212 if Unum /= No_Unit then
8213 Semantics (Cunit (Unum));
8214 System_Aux_Id :=
8215 Defining_Entity (Specification (Unit (Cunit (Unum))));
8217 Withn :=
8218 Make_With_Clause (Loc,
8219 Name =>
8220 Make_Expanded_Name (Loc,
8221 Chars => Chars (System_Aux_Id),
8222 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8223 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8225 Set_Entity (Name (Withn), System_Aux_Id);
8227 Set_Library_Unit (Withn, Cunit (Unum));
8228 Set_Corresponding_Spec (Withn, System_Aux_Id);
8229 Set_First_Name (Withn, True);
8230 Set_Implicit_With (Withn, True);
8232 Insert_After (With_Sys, Withn);
8233 Mark_Rewrite_Insertion (Withn);
8234 Set_Context_Installed (Withn);
8236 return True;
8238 -- Here if unit load failed
8240 else
8241 Error_Msg_Name_1 := Name_System;
8242 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8243 Error_Msg_N
8244 ("extension package `%.%` does not exist",
8245 Opt.System_Extend_Unit);
8246 return False;
8247 end if;
8248 end if;
8249 end Present_System_Aux;
8251 -------------------------
8252 -- Restore_Scope_Stack --
8253 -------------------------
8255 procedure Restore_Scope_Stack
8256 (List : Elist_Id;
8257 Handle_Use : Boolean := True)
8259 SS_Last : constant Int := Scope_Stack.Last;
8260 Elmt : Elmt_Id;
8262 begin
8263 -- Restore visibility of previous scope stack, if any, using the list
8264 -- we saved (we use Remove, since this list will not be used again).
8266 loop
8267 Elmt := Last_Elmt (List);
8268 exit when Elmt = No_Elmt;
8269 Set_Is_Immediately_Visible (Node (Elmt));
8270 Remove_Last_Elmt (List);
8271 end loop;
8273 -- Restore use clauses
8275 if SS_Last >= Scope_Stack.First
8276 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8277 and then Handle_Use
8278 then
8279 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8280 end if;
8281 end Restore_Scope_Stack;
8283 ----------------------
8284 -- Save_Scope_Stack --
8285 ----------------------
8287 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8288 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8289 -- from immediate visibility entities and Restore_Scope_Stack took care
8290 -- of restoring their visibility analyzing the context of each entity. The
8291 -- problem of such approach is that it was fragile and caused unexpected
8292 -- visibility problems, and indeed one test was found where there was a
8293 -- real problem.
8295 -- Furthermore, the following experiment was carried out:
8297 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8298 -- entities whose attribute Is_Immediately_Visible is modified
8299 -- from True to False.
8301 -- - Restore_Scope_Stack was modified to store in another Elist2
8302 -- all the entities whose attribute Is_Immediately_Visible is
8303 -- modified from False to True.
8305 -- - Extra code was added to verify that all the elements of Elist1
8306 -- are found in Elist2
8308 -- This test shows that there may be more occurrences of this problem which
8309 -- have not yet been detected. As a result, we replaced that approach by
8310 -- the current one in which Save_Scope_Stack returns the list of entities
8311 -- whose visibility is changed, and that list is passed to Restore_Scope_
8312 -- Stack to undo that change. This approach is simpler and safer, although
8313 -- it consumes more memory.
8315 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8316 Result : constant Elist_Id := New_Elmt_List;
8317 E : Entity_Id;
8318 S : Entity_Id;
8319 SS_Last : constant Int := Scope_Stack.Last;
8321 procedure Remove_From_Visibility (E : Entity_Id);
8322 -- If E is immediately visible then append it to the result and remove
8323 -- it temporarily from visibility.
8325 ----------------------------
8326 -- Remove_From_Visibility --
8327 ----------------------------
8329 procedure Remove_From_Visibility (E : Entity_Id) is
8330 begin
8331 if Is_Immediately_Visible (E) then
8332 Append_Elmt (E, Result);
8333 Set_Is_Immediately_Visible (E, False);
8334 end if;
8335 end Remove_From_Visibility;
8337 -- Start of processing for Save_Scope_Stack
8339 begin
8340 if SS_Last >= Scope_Stack.First
8341 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8342 then
8343 if Handle_Use then
8344 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8345 end if;
8347 -- If the call is from within a compilation unit, as when called from
8348 -- Rtsfind, make current entries in scope stack invisible while we
8349 -- analyze the new unit.
8351 for J in reverse 0 .. SS_Last loop
8352 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8353 or else No (Scope_Stack.Table (J).Entity);
8355 S := Scope_Stack.Table (J).Entity;
8357 Remove_From_Visibility (S);
8359 E := First_Entity (S);
8360 while Present (E) loop
8361 Remove_From_Visibility (E);
8362 Next_Entity (E);
8363 end loop;
8364 end loop;
8366 end if;
8368 return Result;
8369 end Save_Scope_Stack;
8371 -------------
8372 -- Set_Use --
8373 -------------
8375 procedure Set_Use (L : List_Id) is
8376 Decl : Node_Id;
8377 Pack_Name : Node_Id;
8378 Pack : Entity_Id;
8379 Id : Entity_Id;
8381 begin
8382 if Present (L) then
8383 Decl := First (L);
8384 while Present (Decl) loop
8385 if Nkind (Decl) = N_Use_Package_Clause then
8386 Chain_Use_Clause (Decl);
8388 Pack_Name := First (Names (Decl));
8389 while Present (Pack_Name) loop
8390 Pack := Entity (Pack_Name);
8392 if Ekind (Pack) = E_Package
8393 and then Applicable_Use (Pack_Name)
8394 then
8395 Use_One_Package (Pack, Decl);
8396 end if;
8398 Next (Pack_Name);
8399 end loop;
8401 elsif Nkind (Decl) = N_Use_Type_Clause then
8402 Chain_Use_Clause (Decl);
8404 Id := First (Subtype_Marks (Decl));
8405 while Present (Id) loop
8406 if Entity (Id) /= Any_Type then
8407 Use_One_Type (Id);
8408 end if;
8410 Next (Id);
8411 end loop;
8412 end if;
8414 Next (Decl);
8415 end loop;
8416 end if;
8417 end Set_Use;
8419 ---------------------
8420 -- Use_One_Package --
8421 ---------------------
8423 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
8424 Id : Entity_Id;
8425 Prev : Entity_Id;
8426 Current_Instance : Entity_Id := Empty;
8427 Real_P : Entity_Id;
8428 Private_With_OK : Boolean := False;
8430 begin
8431 if Ekind (P) /= E_Package then
8432 return;
8433 end if;
8435 Set_In_Use (P);
8436 Set_Current_Use_Clause (P, N);
8438 -- Ada 2005 (AI-50217): Check restriction
8440 if From_Limited_With (P) then
8441 Error_Msg_N ("limited withed package cannot appear in use clause", N);
8442 end if;
8444 -- Find enclosing instance, if any
8446 if In_Instance then
8447 Current_Instance := Current_Scope;
8448 while not Is_Generic_Instance (Current_Instance) loop
8449 Current_Instance := Scope (Current_Instance);
8450 end loop;
8452 if No (Hidden_By_Use_Clause (N)) then
8453 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
8454 end if;
8455 end if;
8457 -- If unit is a package renaming, indicate that the renamed
8458 -- package is also in use (the flags on both entities must
8459 -- remain consistent, and a subsequent use of either of them
8460 -- should be recognized as redundant).
8462 if Present (Renamed_Object (P)) then
8463 Set_In_Use (Renamed_Object (P));
8464 Set_Current_Use_Clause (Renamed_Object (P), N);
8465 Real_P := Renamed_Object (P);
8466 else
8467 Real_P := P;
8468 end if;
8470 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
8471 -- found in the private part of a package specification
8473 if In_Private_Part (Current_Scope)
8474 and then Has_Private_With (P)
8475 and then Is_Child_Unit (Current_Scope)
8476 and then Is_Child_Unit (P)
8477 and then Is_Ancestor_Package (Scope (Current_Scope), P)
8478 then
8479 Private_With_OK := True;
8480 end if;
8482 -- Loop through entities in one package making them potentially
8483 -- use-visible.
8485 Id := First_Entity (P);
8486 while Present (Id)
8487 and then (Id /= First_Private_Entity (P)
8488 or else Private_With_OK) -- Ada 2005 (AI-262)
8489 loop
8490 Prev := Current_Entity (Id);
8491 while Present (Prev) loop
8492 if Is_Immediately_Visible (Prev)
8493 and then (not Is_Overloadable (Prev)
8494 or else not Is_Overloadable (Id)
8495 or else (Type_Conformant (Id, Prev)))
8496 then
8497 if No (Current_Instance) then
8499 -- Potentially use-visible entity remains hidden
8501 goto Next_Usable_Entity;
8503 -- A use clause within an instance hides outer global entities,
8504 -- which are not used to resolve local entities in the
8505 -- instance. Note that the predefined entities in Standard
8506 -- could not have been hidden in the generic by a use clause,
8507 -- and therefore remain visible. Other compilation units whose
8508 -- entities appear in Standard must be hidden in an instance.
8510 -- To determine whether an entity is external to the instance
8511 -- we compare the scope depth of its scope with that of the
8512 -- current instance. However, a generic actual of a subprogram
8513 -- instance is declared in the wrapper package but will not be
8514 -- hidden by a use-visible entity. similarly, an entity that is
8515 -- declared in an enclosing instance will not be hidden by an
8516 -- an entity declared in a generic actual, which can only have
8517 -- been use-visible in the generic and will not have hidden the
8518 -- entity in the generic parent.
8520 -- If Id is called Standard, the predefined package with the
8521 -- same name is in the homonym chain. It has to be ignored
8522 -- because it has no defined scope (being the only entity in
8523 -- the system with this mandated behavior).
8525 elsif not Is_Hidden (Id)
8526 and then Present (Scope (Prev))
8527 and then not Is_Wrapper_Package (Scope (Prev))
8528 and then Scope_Depth (Scope (Prev)) <
8529 Scope_Depth (Current_Instance)
8530 and then (Scope (Prev) /= Standard_Standard
8531 or else Sloc (Prev) > Standard_Location)
8532 then
8533 if In_Open_Scopes (Scope (Prev))
8534 and then Is_Generic_Instance (Scope (Prev))
8535 and then Present (Associated_Formal_Package (P))
8536 then
8537 null;
8539 else
8540 Set_Is_Potentially_Use_Visible (Id);
8541 Set_Is_Immediately_Visible (Prev, False);
8542 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8543 end if;
8544 end if;
8546 -- A user-defined operator is not use-visible if the predefined
8547 -- operator for the type is immediately visible, which is the case
8548 -- if the type of the operand is in an open scope. This does not
8549 -- apply to user-defined operators that have operands of different
8550 -- types, because the predefined mixed mode operations (multiply
8551 -- and divide) apply to universal types and do not hide anything.
8553 elsif Ekind (Prev) = E_Operator
8554 and then Operator_Matches_Spec (Prev, Id)
8555 and then In_Open_Scopes
8556 (Scope (Base_Type (Etype (First_Formal (Id)))))
8557 and then (No (Next_Formal (First_Formal (Id)))
8558 or else Etype (First_Formal (Id)) =
8559 Etype (Next_Formal (First_Formal (Id)))
8560 or else Chars (Prev) = Name_Op_Expon)
8561 then
8562 goto Next_Usable_Entity;
8564 -- In an instance, two homonyms may become use_visible through the
8565 -- actuals of distinct formal packages. In the generic, only the
8566 -- current one would have been visible, so make the other one
8567 -- not use_visible.
8569 elsif Present (Current_Instance)
8570 and then Is_Potentially_Use_Visible (Prev)
8571 and then not Is_Overloadable (Prev)
8572 and then Scope (Id) /= Scope (Prev)
8573 and then Used_As_Generic_Actual (Scope (Prev))
8574 and then Used_As_Generic_Actual (Scope (Id))
8575 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
8576 Current_Use_Clause (Scope (Id)))
8577 then
8578 Set_Is_Potentially_Use_Visible (Prev, False);
8579 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8580 end if;
8582 Prev := Homonym (Prev);
8583 end loop;
8585 -- On exit, we know entity is not hidden, unless it is private
8587 if not Is_Hidden (Id)
8588 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
8589 then
8590 Set_Is_Potentially_Use_Visible (Id);
8592 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
8593 Set_Is_Potentially_Use_Visible (Full_View (Id));
8594 end if;
8595 end if;
8597 <<Next_Usable_Entity>>
8598 Next_Entity (Id);
8599 end loop;
8601 -- Child units are also made use-visible by a use clause, but they may
8602 -- appear after all visible declarations in the parent entity list.
8604 while Present (Id) loop
8605 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
8606 Set_Is_Potentially_Use_Visible (Id);
8607 end if;
8609 Next_Entity (Id);
8610 end loop;
8612 if Chars (Real_P) = Name_System
8613 and then Scope (Real_P) = Standard_Standard
8614 and then Present_System_Aux (N)
8615 then
8616 Use_One_Package (System_Aux_Id, N);
8617 end if;
8619 end Use_One_Package;
8621 ------------------
8622 -- Use_One_Type --
8623 ------------------
8625 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
8626 Elmt : Elmt_Id;
8627 Is_Known_Used : Boolean;
8628 Op_List : Elist_Id;
8629 T : Entity_Id;
8631 function Spec_Reloaded_For_Body return Boolean;
8632 -- Determine whether the compilation unit is a package body and the use
8633 -- type clause is in the spec of the same package. Even though the spec
8634 -- was analyzed first, its context is reloaded when analysing the body.
8636 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
8637 -- AI05-150: if the use_type_clause carries the "all" qualifier,
8638 -- class-wide operations of ancestor types are use-visible if the
8639 -- ancestor type is visible.
8641 ----------------------------
8642 -- Spec_Reloaded_For_Body --
8643 ----------------------------
8645 function Spec_Reloaded_For_Body return Boolean is
8646 begin
8647 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
8648 declare
8649 Spec : constant Node_Id :=
8650 Parent (List_Containing (Parent (Id)));
8652 begin
8653 -- Check whether type is declared in a package specification,
8654 -- and current unit is the corresponding package body. The
8655 -- use clauses themselves may be within a nested package.
8657 return
8658 Nkind (Spec) = N_Package_Specification
8659 and then
8660 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
8661 Cunit_Entity (Current_Sem_Unit));
8662 end;
8663 end if;
8665 return False;
8666 end Spec_Reloaded_For_Body;
8668 -------------------------------
8669 -- Use_Class_Wide_Operations --
8670 -------------------------------
8672 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
8673 Scop : Entity_Id;
8674 Ent : Entity_Id;
8676 function Is_Class_Wide_Operation_Of
8677 (Op : Entity_Id;
8678 T : Entity_Id) return Boolean;
8679 -- Determine whether a subprogram has a class-wide parameter or
8680 -- result that is T'Class.
8682 ---------------------------------
8683 -- Is_Class_Wide_Operation_Of --
8684 ---------------------------------
8686 function Is_Class_Wide_Operation_Of
8687 (Op : Entity_Id;
8688 T : Entity_Id) return Boolean
8690 Formal : Entity_Id;
8692 begin
8693 Formal := First_Formal (Op);
8694 while Present (Formal) loop
8695 if Etype (Formal) = Class_Wide_Type (T) then
8696 return True;
8697 end if;
8698 Next_Formal (Formal);
8699 end loop;
8701 if Etype (Op) = Class_Wide_Type (T) then
8702 return True;
8703 end if;
8705 return False;
8706 end Is_Class_Wide_Operation_Of;
8708 -- Start of processing for Use_Class_Wide_Operations
8710 begin
8711 Scop := Scope (Typ);
8712 if not Is_Hidden (Scop) then
8713 Ent := First_Entity (Scop);
8714 while Present (Ent) loop
8715 if Is_Overloadable (Ent)
8716 and then Is_Class_Wide_Operation_Of (Ent, Typ)
8717 and then not Is_Potentially_Use_Visible (Ent)
8718 then
8719 Set_Is_Potentially_Use_Visible (Ent);
8720 Append_Elmt (Ent, Used_Operations (Parent (Id)));
8721 end if;
8723 Next_Entity (Ent);
8724 end loop;
8725 end if;
8727 if Is_Derived_Type (Typ) then
8728 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
8729 end if;
8730 end Use_Class_Wide_Operations;
8732 -- Start of processing for Use_One_Type
8734 begin
8735 -- It is the type determined by the subtype mark (8.4(8)) whose
8736 -- operations become potentially use-visible.
8738 T := Base_Type (Entity (Id));
8740 -- Either the type itself is used, the package where it is declared
8741 -- is in use or the entity is declared in the current package, thus
8742 -- use-visible.
8744 Is_Known_Used :=
8745 In_Use (T)
8746 or else In_Use (Scope (T))
8747 or else Scope (T) = Current_Scope;
8749 Set_Redundant_Use (Id,
8750 Is_Known_Used or else Is_Potentially_Use_Visible (T));
8752 if Ekind (T) = E_Incomplete_Type then
8753 Error_Msg_N ("premature usage of incomplete type", Id);
8755 elsif In_Open_Scopes (Scope (T)) then
8756 null;
8758 -- A limited view cannot appear in a use_type clause. However, an access
8759 -- type whose designated type is limited has the flag but is not itself
8760 -- a limited view unless we only have a limited view of its enclosing
8761 -- package.
8763 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
8764 Error_Msg_N
8765 ("incomplete type from limited view "
8766 & "cannot appear in use clause", Id);
8768 -- If the subtype mark designates a subtype in a different package,
8769 -- we have to check that the parent type is visible, otherwise the
8770 -- use type clause is a noop. Not clear how to do that???
8772 elsif not Redundant_Use (Id) then
8773 Set_In_Use (T);
8775 -- If T is tagged, primitive operators on class-wide operands
8776 -- are also available.
8778 if Is_Tagged_Type (T) then
8779 Set_In_Use (Class_Wide_Type (T));
8780 end if;
8782 Set_Current_Use_Clause (T, Parent (Id));
8784 -- Iterate over primitive operations of the type. If an operation is
8785 -- already use_visible, it is the result of a previous use_clause,
8786 -- and already appears on the corresponding entity chain. If the
8787 -- clause is being reinstalled, operations are already use-visible.
8789 if Installed then
8790 null;
8792 else
8793 Op_List := Collect_Primitive_Operations (T);
8794 Elmt := First_Elmt (Op_List);
8795 while Present (Elmt) loop
8796 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
8797 or else Chars (Node (Elmt)) in Any_Operator_Name)
8798 and then not Is_Hidden (Node (Elmt))
8799 and then not Is_Potentially_Use_Visible (Node (Elmt))
8800 then
8801 Set_Is_Potentially_Use_Visible (Node (Elmt));
8802 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8804 elsif Ada_Version >= Ada_2012
8805 and then All_Present (Parent (Id))
8806 and then not Is_Hidden (Node (Elmt))
8807 and then not Is_Potentially_Use_Visible (Node (Elmt))
8808 then
8809 Set_Is_Potentially_Use_Visible (Node (Elmt));
8810 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8811 end if;
8813 Next_Elmt (Elmt);
8814 end loop;
8815 end if;
8817 if Ada_Version >= Ada_2012
8818 and then All_Present (Parent (Id))
8819 and then Is_Tagged_Type (T)
8820 then
8821 Use_Class_Wide_Operations (T);
8822 end if;
8823 end if;
8825 -- If warning on redundant constructs, check for unnecessary WITH
8827 if Warn_On_Redundant_Constructs
8828 and then Is_Known_Used
8830 -- with P; with P; use P;
8831 -- package P is package X is package body X is
8832 -- type T ... use P.T;
8834 -- The compilation unit is the body of X. GNAT first compiles the
8835 -- spec of X, then proceeds to the body. At that point P is marked
8836 -- as use visible. The analysis then reinstalls the spec along with
8837 -- its context. The use clause P.T is now recognized as redundant,
8838 -- but in the wrong context. Do not emit a warning in such cases.
8839 -- Do not emit a warning either if we are in an instance, there is
8840 -- no redundancy between an outer use_clause and one that appears
8841 -- within the generic.
8843 and then not Spec_Reloaded_For_Body
8844 and then not In_Instance
8845 then
8846 -- The type already has a use clause
8848 if In_Use (T) then
8850 -- Case where we know the current use clause for the type
8852 if Present (Current_Use_Clause (T)) then
8853 Use_Clause_Known : declare
8854 Clause1 : constant Node_Id := Parent (Id);
8855 Clause2 : constant Node_Id := Current_Use_Clause (T);
8856 Ent1 : Entity_Id;
8857 Ent2 : Entity_Id;
8858 Err_No : Node_Id;
8859 Unit1 : Node_Id;
8860 Unit2 : Node_Id;
8862 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
8863 -- Return the appropriate entity for determining which unit
8864 -- has a deeper scope: the defining entity for U, unless U
8865 -- is a package instance, in which case we retrieve the
8866 -- entity of the instance spec.
8868 --------------------
8869 -- Entity_Of_Unit --
8870 --------------------
8872 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
8873 begin
8874 if Nkind (U) = N_Package_Instantiation
8875 and then Analyzed (U)
8876 then
8877 return Defining_Entity (Instance_Spec (U));
8878 else
8879 return Defining_Entity (U);
8880 end if;
8881 end Entity_Of_Unit;
8883 -- Start of processing for Use_Clause_Known
8885 begin
8886 -- If both current use type clause and the use type clause
8887 -- for the type are at the compilation unit level, one of
8888 -- the units must be an ancestor of the other, and the
8889 -- warning belongs on the descendant.
8891 if Nkind (Parent (Clause1)) = N_Compilation_Unit
8892 and then
8893 Nkind (Parent (Clause2)) = N_Compilation_Unit
8894 then
8895 -- If the unit is a subprogram body that acts as spec,
8896 -- the context clause is shared with the constructed
8897 -- subprogram spec. Clearly there is no redundancy.
8899 if Clause1 = Clause2 then
8900 return;
8901 end if;
8903 Unit1 := Unit (Parent (Clause1));
8904 Unit2 := Unit (Parent (Clause2));
8906 -- If both clauses are on same unit, or one is the body
8907 -- of the other, or one of them is in a subunit, report
8908 -- redundancy on the later one.
8910 if Unit1 = Unit2 then
8911 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8912 Error_Msg_NE -- CODEFIX
8913 ("& is already use-visible through previous "
8914 & "use_type_clause #??", Clause1, T);
8915 return;
8917 elsif Nkind (Unit1) = N_Subunit then
8918 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8919 Error_Msg_NE -- CODEFIX
8920 ("& is already use-visible through previous "
8921 & "use_type_clause #??", Clause1, T);
8922 return;
8924 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
8925 and then Nkind (Unit1) /= Nkind (Unit2)
8926 and then Nkind (Unit1) /= N_Subunit
8927 then
8928 Error_Msg_Sloc := Sloc (Clause1);
8929 Error_Msg_NE -- CODEFIX
8930 ("& is already use-visible through previous "
8931 & "use_type_clause #??", Current_Use_Clause (T), T);
8932 return;
8933 end if;
8935 -- There is a redundant use type clause in a child unit.
8936 -- Determine which of the units is more deeply nested.
8937 -- If a unit is a package instance, retrieve the entity
8938 -- and its scope from the instance spec.
8940 Ent1 := Entity_Of_Unit (Unit1);
8941 Ent2 := Entity_Of_Unit (Unit2);
8943 if Scope (Ent2) = Standard_Standard then
8944 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8945 Err_No := Clause1;
8947 elsif Scope (Ent1) = Standard_Standard then
8948 Error_Msg_Sloc := Sloc (Id);
8949 Err_No := Clause2;
8951 -- If both units are child units, we determine which one
8952 -- is the descendant by the scope distance to the
8953 -- ultimate parent unit.
8955 else
8956 declare
8957 S1, S2 : Entity_Id;
8959 begin
8960 S1 := Scope (Ent1);
8961 S2 := Scope (Ent2);
8962 while Present (S1)
8963 and then Present (S2)
8964 and then S1 /= Standard_Standard
8965 and then S2 /= Standard_Standard
8966 loop
8967 S1 := Scope (S1);
8968 S2 := Scope (S2);
8969 end loop;
8971 if S1 = Standard_Standard then
8972 Error_Msg_Sloc := Sloc (Id);
8973 Err_No := Clause2;
8974 else
8975 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8976 Err_No := Clause1;
8977 end if;
8978 end;
8979 end if;
8981 Error_Msg_NE -- CODEFIX
8982 ("& is already use-visible through previous "
8983 & "use_type_clause #??", Err_No, Id);
8985 -- Case where current use type clause and the use type
8986 -- clause for the type are not both at the compilation unit
8987 -- level. In this case we don't have location information.
8989 else
8990 Error_Msg_NE -- CODEFIX
8991 ("& is already use-visible through previous "
8992 & "use type clause??", Id, T);
8993 end if;
8994 end Use_Clause_Known;
8996 -- Here if Current_Use_Clause is not set for T, another case
8997 -- where we do not have the location information available.
8999 else
9000 Error_Msg_NE -- CODEFIX
9001 ("& is already use-visible through previous "
9002 & "use type clause??", Id, T);
9003 end if;
9005 -- The package where T is declared is already used
9007 elsif In_Use (Scope (T)) then
9008 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
9009 Error_Msg_NE -- CODEFIX
9010 ("& is already use-visible through package use clause #??",
9011 Id, T);
9013 -- The current scope is the package where T is declared
9015 else
9016 Error_Msg_Node_2 := Scope (T);
9017 Error_Msg_NE -- CODEFIX
9018 ("& is already use-visible inside package &??", Id, T);
9019 end if;
9020 end if;
9021 end Use_One_Type;
9023 ----------------
9024 -- Write_Info --
9025 ----------------
9027 procedure Write_Info is
9028 Id : Entity_Id := First_Entity (Current_Scope);
9030 begin
9031 -- No point in dumping standard entities
9033 if Current_Scope = Standard_Standard then
9034 return;
9035 end if;
9037 Write_Str ("========================================================");
9038 Write_Eol;
9039 Write_Str (" Defined Entities in ");
9040 Write_Name (Chars (Current_Scope));
9041 Write_Eol;
9042 Write_Str ("========================================================");
9043 Write_Eol;
9045 if No (Id) then
9046 Write_Str ("-- none --");
9047 Write_Eol;
9049 else
9050 while Present (Id) loop
9051 Write_Entity_Info (Id, " ");
9052 Next_Entity (Id);
9053 end loop;
9054 end if;
9056 if Scope (Current_Scope) = Standard_Standard then
9058 -- Print information on the current unit itself
9060 Write_Entity_Info (Current_Scope, " ");
9061 end if;
9063 Write_Eol;
9064 end Write_Info;
9066 --------
9067 -- ws --
9068 --------
9070 procedure ws is
9071 S : Entity_Id;
9072 begin
9073 for J in reverse 1 .. Scope_Stack.Last loop
9074 S := Scope_Stack.Table (J).Entity;
9075 Write_Int (Int (S));
9076 Write_Str (" === ");
9077 Write_Name (Chars (S));
9078 Write_Eol;
9079 end loop;
9080 end ws;
9082 --------
9083 -- we --
9084 --------
9086 procedure we (S : Entity_Id) is
9087 E : Entity_Id;
9088 begin
9089 E := First_Entity (S);
9090 while Present (E) loop
9091 Write_Int (Int (E));
9092 Write_Str (" === ");
9093 Write_Name (Chars (E));
9094 Write_Eol;
9095 Next_Entity (E);
9096 end loop;
9097 end we;
9098 end Sem_Ch8;