1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Debug
; use Debug
;
28 with Einfo
; use Einfo
;
29 with Elists
; use Elists
;
30 with Errout
; use Errout
;
31 with Exp_Tss
; use Exp_Tss
;
32 with Exp_Util
; use Exp_Util
;
33 with Fname
; use Fname
;
34 with Freeze
; use Freeze
;
35 with Impunit
; use Impunit
;
37 with Lib
.Load
; use Lib
.Load
;
38 with Lib
.Xref
; use Lib
.Xref
;
39 with Namet
; use Namet
;
40 with Namet
.Sp
; use Namet
.Sp
;
41 with Nlists
; use Nlists
;
42 with Nmake
; use Nmake
;
44 with Output
; use Output
;
45 with Restrict
; use Restrict
;
46 with Rident
; use Rident
;
47 with Rtsfind
; use Rtsfind
;
49 with Sem_Aux
; use Sem_Aux
;
50 with Sem_Cat
; use Sem_Cat
;
51 with Sem_Ch3
; use Sem_Ch3
;
52 with Sem_Ch4
; use Sem_Ch4
;
53 with Sem_Ch6
; use Sem_Ch6
;
54 with Sem_Ch12
; use Sem_Ch12
;
55 with Sem_Ch13
; use Sem_Ch13
;
56 with Sem_Dim
; use Sem_Dim
;
57 with Sem_Disp
; use Sem_Disp
;
58 with Sem_Dist
; use Sem_Dist
;
59 with Sem_Eval
; use Sem_Eval
;
60 with Sem_Res
; use Sem_Res
;
61 with Sem_Util
; use Sem_Util
;
62 with Sem_Type
; use Sem_Type
;
63 with Stand
; use Stand
;
64 with Sinfo
; use Sinfo
;
65 with Sinfo
.CN
; use Sinfo
.CN
;
66 with Snames
; use Snames
;
67 with Style
; use Style
;
69 with Targparm
; use Targparm
;
70 with Tbuild
; use Tbuild
;
71 with Uintp
; use Uintp
;
73 package body Sem_Ch8
is
75 ------------------------------------
76 -- Visibility and Name Resolution --
77 ------------------------------------
79 -- This package handles name resolution and the collection of possible
80 -- interpretations for overloaded names, prior to overload resolution.
82 -- Name resolution is the process that establishes a mapping between source
83 -- identifiers and the entities they denote at each point in the program.
84 -- Each entity is represented by a defining occurrence. Each identifier
85 -- that denotes an entity points to the corresponding defining occurrence.
86 -- This is the entity of the applied occurrence. Each occurrence holds
87 -- an index into the names table, where source identifiers are stored.
89 -- Each entry in the names table for an identifier or designator uses the
90 -- Info pointer to hold a link to the currently visible entity that has
91 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
92 -- in package Sem_Util). The visibility is initialized at the beginning of
93 -- semantic processing to make entities in package Standard immediately
94 -- visible. The visibility table is used in a more subtle way when
95 -- compiling subunits (see below).
97 -- Entities that have the same name (i.e. homonyms) are chained. In the
98 -- case of overloaded entities, this chain holds all the possible meanings
99 -- of a given identifier. The process of overload resolution uses type
100 -- information to select from this chain the unique meaning of a given
103 -- Entities are also chained in their scope, through the Next_Entity link.
104 -- As a consequence, the name space is organized as a sparse matrix, where
105 -- each row corresponds to a scope, and each column to a source identifier.
106 -- Open scopes, that is to say scopes currently being compiled, have their
107 -- corresponding rows of entities in order, innermost scope first.
109 -- The scopes of packages that are mentioned in context clauses appear in
110 -- no particular order, interspersed among open scopes. This is because
111 -- in the course of analyzing the context of a compilation, a package
112 -- declaration is first an open scope, and subsequently an element of the
113 -- context. If subunits or child units are present, a parent unit may
114 -- appear under various guises at various times in the compilation.
116 -- When the compilation of the innermost scope is complete, the entities
117 -- defined therein are no longer visible. If the scope is not a package
118 -- declaration, these entities are never visible subsequently, and can be
119 -- removed from visibility chains. If the scope is a package declaration,
120 -- its visible declarations may still be accessible. Therefore the entities
121 -- defined in such a scope are left on the visibility chains, and only
122 -- their visibility (immediately visibility or potential use-visibility)
125 -- The ordering of homonyms on their chain does not necessarily follow
126 -- the order of their corresponding scopes on the scope stack. For
127 -- example, if package P and the enclosing scope both contain entities
128 -- named E, then when compiling the package body the chain for E will
129 -- hold the global entity first, and the local one (corresponding to
130 -- the current inner scope) next. As a result, name resolution routines
131 -- do not assume any relative ordering of the homonym chains, either
132 -- for scope nesting or to order of appearance of context clauses.
134 -- When compiling a child unit, entities in the parent scope are always
135 -- immediately visible. When compiling the body of a child unit, private
136 -- entities in the parent must also be made immediately visible. There
137 -- are separate routines to make the visible and private declarations
138 -- visible at various times (see package Sem_Ch7).
140 -- +--------+ +-----+
141 -- | In use |-------->| EU1 |-------------------------->
142 -- +--------+ +-----+
144 -- +--------+ +-----+ +-----+
145 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
146 -- +--------+ +-----+ +-----+
148 -- +---------+ | +-----+
149 -- | with'ed |------------------------------>| EW2 |--->
150 -- +---------+ | +-----+
152 -- +--------+ +-----+ +-----+
153 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
154 -- +--------+ +-----+ +-----+
156 -- +--------+ +-----+ +-----+
157 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
158 -- +--------+ +-----+ +-----+
162 -- | | with'ed |----------------------------------------->
166 -- (innermost first) | |
167 -- +----------------------------+
168 -- Names table => | Id1 | | | | Id2 |
169 -- +----------------------------+
171 -- Name resolution must deal with several syntactic forms: simple names,
172 -- qualified names, indexed names, and various forms of calls.
174 -- Each identifier points to an entry in the names table. The resolution
175 -- of a simple name consists in traversing the homonym chain, starting
176 -- from the names table. If an entry is immediately visible, it is the one
177 -- designated by the identifier. If only potentially use-visible entities
178 -- are on the chain, we must verify that they do not hide each other. If
179 -- the entity we find is overloadable, we collect all other overloadable
180 -- entities on the chain as long as they are not hidden.
182 -- To resolve expanded names, we must find the entity at the intersection
183 -- of the entity chain for the scope (the prefix) and the homonym chain
184 -- for the selector. In general, homonym chains will be much shorter than
185 -- entity chains, so it is preferable to start from the names table as
186 -- well. If the entity found is overloadable, we must collect all other
187 -- interpretations that are defined in the scope denoted by the prefix.
189 -- For records, protected types, and tasks, their local entities are
190 -- removed from visibility chains on exit from the corresponding scope.
191 -- From the outside, these entities are always accessed by selected
192 -- notation, and the entity chain for the record type, protected type,
193 -- etc. is traversed sequentially in order to find the designated entity.
195 -- The discriminants of a type and the operations of a protected type or
196 -- task are unchained on exit from the first view of the type, (such as
197 -- a private or incomplete type declaration, or a protected type speci-
198 -- fication) and re-chained when compiling the second view.
200 -- In the case of operators, we do not make operators on derived types
201 -- explicit. As a result, the notation P."+" may denote either a user-
202 -- defined function with name "+", or else an implicit declaration of the
203 -- operator "+" in package P. The resolution of expanded names always
204 -- tries to resolve an operator name as such an implicitly defined entity,
205 -- in addition to looking for explicit declarations.
207 -- All forms of names that denote entities (simple names, expanded names,
208 -- character literals in some cases) have a Entity attribute, which
209 -- identifies the entity denoted by the name.
211 ---------------------
212 -- The Scope Stack --
213 ---------------------
215 -- The Scope stack keeps track of the scopes currently been compiled.
216 -- Every entity that contains declarations (including records) is placed
217 -- on the scope stack while it is being processed, and removed at the end.
218 -- Whenever a non-package scope is exited, the entities defined therein
219 -- are removed from the visibility table, so that entities in outer scopes
220 -- become visible (see previous description). On entry to Sem, the scope
221 -- stack only contains the package Standard. As usual, subunits complicate
222 -- this picture ever so slightly.
224 -- The Rtsfind mechanism can force a call to Semantics while another
225 -- compilation is in progress. The unit retrieved by Rtsfind must be
226 -- compiled in its own context, and has no access to the visibility of
227 -- the unit currently being compiled. The procedures Save_Scope_Stack and
228 -- Restore_Scope_Stack make entities in current open scopes invisible
229 -- before compiling the retrieved unit, and restore the compilation
230 -- environment afterwards.
232 ------------------------
233 -- Compiling subunits --
234 ------------------------
236 -- Subunits must be compiled in the environment of the corresponding stub,
237 -- that is to say with the same visibility into the parent (and its
238 -- context) that is available at the point of the stub declaration, but
239 -- with the additional visibility provided by the context clause of the
240 -- subunit itself. As a result, compilation of a subunit forces compilation
241 -- of the parent (see description in lib-). At the point of the stub
242 -- declaration, Analyze is called recursively to compile the proper body of
243 -- the subunit, but without reinitializing the names table, nor the scope
244 -- stack (i.e. standard is not pushed on the stack). In this fashion the
245 -- context of the subunit is added to the context of the parent, and the
246 -- subunit is compiled in the correct environment. Note that in the course
247 -- of processing the context of a subunit, Standard will appear twice on
248 -- the scope stack: once for the parent of the subunit, and once for the
249 -- unit in the context clause being compiled. However, the two sets of
250 -- entities are not linked by homonym chains, so that the compilation of
251 -- any context unit happens in a fresh visibility environment.
253 -------------------------------
254 -- Processing of USE Clauses --
255 -------------------------------
257 -- Every defining occurrence has a flag indicating if it is potentially use
258 -- visible. Resolution of simple names examines this flag. The processing
259 -- of use clauses consists in setting this flag on all visible entities
260 -- defined in the corresponding package. On exit from the scope of the use
261 -- clause, the corresponding flag must be reset. However, a package may
262 -- appear in several nested use clauses (pathological but legal, alas)
263 -- which forces us to use a slightly more involved scheme:
265 -- a) The defining occurrence for a package holds a flag -In_Use- to
266 -- indicate that it is currently in the scope of a use clause. If a
267 -- redundant use clause is encountered, then the corresponding occurrence
268 -- of the package name is flagged -Redundant_Use-.
270 -- b) On exit from a scope, the use clauses in its declarative part are
271 -- scanned. The visibility flag is reset in all entities declared in
272 -- package named in a use clause, as long as the package is not flagged
273 -- as being in a redundant use clause (in which case the outer use
274 -- clause is still in effect, and the direct visibility of its entities
275 -- must be retained).
277 -- Note that entities are not removed from their homonym chains on exit
278 -- from the package specification. A subsequent use clause does not need
279 -- to rechain the visible entities, but only to establish their direct
282 -----------------------------------
283 -- Handling private declarations --
284 -----------------------------------
286 -- The principle that each entity has a single defining occurrence clashes
287 -- with the presence of two separate definitions for private types: the
288 -- first is the private type declaration, and second is the full type
289 -- declaration. It is important that all references to the type point to
290 -- the same defining occurrence, namely the first one. To enforce the two
291 -- separate views of the entity, the corresponding information is swapped
292 -- between the two declarations. Outside of the package, the defining
293 -- occurrence only contains the private declaration information, while in
294 -- the private part and the body of the package the defining occurrence
295 -- contains the full declaration. To simplify the swap, the defining
296 -- occurrence that currently holds the private declaration points to the
297 -- full declaration. During semantic processing the defining occurrence
298 -- also points to a list of private dependents, that is to say access types
299 -- or composite types whose designated types or component types are
300 -- subtypes or derived types of the private type in question. After the
301 -- full declaration has been seen, the private dependents are updated to
302 -- indicate that they have full definitions.
304 ------------------------------------
305 -- Handling of Undefined Messages --
306 ------------------------------------
308 -- In normal mode, only the first use of an undefined identifier generates
309 -- a message. The table Urefs is used to record error messages that have
310 -- been issued so that second and subsequent ones do not generate further
311 -- messages. However, the second reference causes text to be added to the
312 -- original undefined message noting "(more references follow)". The
313 -- full error list option (-gnatf) forces messages to be generated for
314 -- every reference and disconnects the use of this table.
316 type Uref_Entry
is record
318 -- Node for identifier for which original message was posted. The
319 -- Chars field of this identifier is used to detect later references
320 -- to the same identifier.
323 -- Records error message Id of original undefined message. Reset to
324 -- No_Error_Msg after the second occurrence, where it is used to add
325 -- text to the original message as described above.
328 -- Set if the message is not visible rather than undefined
331 -- Records location of error message. Used to make sure that we do
332 -- not consider a, b : undefined as two separate instances, which
333 -- would otherwise happen, since the parser converts this sequence
334 -- to a : undefined; b : undefined.
338 package Urefs
is new Table
.Table
(
339 Table_Component_Type
=> Uref_Entry
,
340 Table_Index_Type
=> Nat
,
341 Table_Low_Bound
=> 1,
343 Table_Increment
=> 100,
344 Table_Name
=> "Urefs");
346 Candidate_Renaming
: Entity_Id
;
347 -- Holds a candidate interpretation that appears in a subprogram renaming
348 -- declaration and does not match the given specification, but matches at
349 -- least on the first formal. Allows better error message when given
350 -- specification omits defaulted parameters, a common error.
352 -----------------------
353 -- Local Subprograms --
354 -----------------------
356 procedure Analyze_Generic_Renaming
359 -- Common processing for all three kinds of generic renaming declarations.
360 -- Enter new name and indicate that it renames the generic unit.
362 procedure Analyze_Renamed_Character
366 -- Renamed entity is given by a character literal, which must belong
367 -- to the return type of the new entity. Is_Body indicates whether the
368 -- declaration is a renaming_as_body. If the original declaration has
369 -- already been frozen (because of an intervening body, e.g.) the body of
370 -- the function must be built now. The same applies to the following
371 -- various renaming procedures.
373 procedure Analyze_Renamed_Dereference
377 -- Renamed entity is given by an explicit dereference. Prefix must be a
378 -- conformant access_to_subprogram type.
380 procedure Analyze_Renamed_Entry
384 -- If the renamed entity in a subprogram renaming is an entry or protected
385 -- subprogram, build a body for the new entity whose only statement is a
386 -- call to the renamed entity.
388 procedure Analyze_Renamed_Family_Member
392 -- Used when the renamed entity is an indexed component. The prefix must
393 -- denote an entry family.
395 procedure Analyze_Renamed_Primitive_Operation
399 -- If the renamed entity in a subprogram renaming is a primitive operation
400 -- or a class-wide operation in prefix form, save the target object,
401 -- which must be added to the list of actuals in any subsequent call.
402 -- The renaming operation is intrinsic because the compiler must in
403 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
405 function Applicable_Use
(Pack_Name
: Node_Id
) return Boolean;
406 -- Common code to Use_One_Package and Set_Use, to determine whether use
407 -- clause must be processed. Pack_Name is an entity name that references
408 -- the package in question.
410 procedure Attribute_Renaming
(N
: Node_Id
);
411 -- Analyze renaming of attribute as subprogram. The renaming declaration N
412 -- is rewritten as a subprogram body that returns the attribute reference
413 -- applied to the formals of the function.
415 procedure Set_Entity_Or_Discriminal
(N
: Node_Id
; E
: Entity_Id
);
416 -- Set Entity, with style check if need be. For a discriminant reference,
417 -- replace by the corresponding discriminal, i.e. the parameter of the
418 -- initialization procedure that corresponds to the discriminant.
420 procedure Check_Frozen_Renaming
(N
: Node_Id
; Subp
: Entity_Id
);
421 -- A renaming_as_body may occur after the entity of the original decla-
422 -- ration has been frozen. In that case, the body of the new entity must
423 -- be built now, because the usual mechanism of building the renamed
424 -- body at the point of freezing will not work. Subp is the subprogram
425 -- for which N provides the Renaming_As_Body.
427 procedure Check_In_Previous_With_Clause
430 -- N is a use_package clause and Nam the package name, or N is a use_type
431 -- clause and Nam is the prefix of the type name. In either case, verify
432 -- that the package is visible at that point in the context: either it
433 -- appears in a previous with_clause, or because it is a fully qualified
434 -- name and the root ancestor appears in a previous with_clause.
436 procedure Check_Library_Unit_Renaming
(N
: Node_Id
; Old_E
: Entity_Id
);
437 -- Verify that the entity in a renaming declaration that is a library unit
438 -- is itself a library unit and not a nested unit or subunit. Also check
439 -- that if the renaming is a child unit of a generic parent, then the
440 -- renamed unit must also be a child unit of that parent. Finally, verify
441 -- that a renamed generic unit is not an implicit child declared within
442 -- an instance of the parent.
444 procedure Chain_Use_Clause
(N
: Node_Id
);
445 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
446 -- the proper scope table entry. This is usually the current scope, but it
447 -- will be an inner scope when installing the use clauses of the private
448 -- declarations of a parent unit prior to compiling the private part of a
449 -- child unit. This chain is traversed when installing/removing use clauses
450 -- when compiling a subunit or instantiating a generic body on the fly,
451 -- when it is necessary to save and restore full environments.
453 function Enclosing_Instance
return Entity_Id
;
454 -- In an instance nested within another one, several semantic checks are
455 -- unnecessary because the legality of the nested instance has been checked
456 -- in the enclosing generic unit. This applies in particular to legality
457 -- checks on actuals for formal subprograms of the inner instance, which
458 -- are checked as subprogram renamings, and may be complicated by confusion
459 -- in private/full views. This function returns the instance enclosing the
460 -- current one if there is such, else it returns Empty.
462 -- If the renaming determines the entity for the default of a formal
463 -- subprogram nested within another instance, choose the innermost
464 -- candidate. This is because if the formal has a box, and we are within
465 -- an enclosing instance where some candidate interpretations are local
466 -- to this enclosing instance, we know that the default was properly
467 -- resolved when analyzing the generic, so we prefer the local
468 -- candidates to those that are external. This is not always the case
469 -- but is a reasonable heuristic on the use of nested generics. The
470 -- proper solution requires a full renaming model.
472 function Has_Implicit_Character_Literal
(N
: Node_Id
) return Boolean;
473 -- Find a type derived from Character or Wide_Character in the prefix of N.
474 -- Used to resolved qualified names whose selector is a character literal.
476 function Has_Private_With
(E
: Entity_Id
) return Boolean;
477 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
478 -- private with on E.
480 procedure Find_Expanded_Name
(N
: Node_Id
);
481 -- The input is a selected component known to be an expanded name. Verify
482 -- legality of selector given the scope denoted by prefix, and change node
483 -- N into a expanded name with a properly set Entity field.
485 function Find_Renamed_Entity
489 Is_Actual
: Boolean := False) return Entity_Id
;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
496 function Has_Implicit_Operator
(N
: Node_Id
) return Boolean;
497 -- N is an expanded name whose selector is an operator name (e.g. P."+").
498 -- declarative part contains an implicit declaration of an operator if it
499 -- has a declaration of a type to which one of the predefined operators
500 -- apply. The existence of this routine is an implementation artifact. A
501 -- more straightforward but more space-consuming choice would be to make
502 -- all inherited operators explicit in the symbol table.
504 procedure Inherit_Renamed_Profile
(New_S
: Entity_Id
; Old_S
: Entity_Id
);
505 -- A subprogram defined by a renaming declaration inherits the parameter
506 -- profile of the renamed entity. The subtypes given in the subprogram
507 -- specification are discarded and replaced with those of the renamed
508 -- subprogram, which are then used to recheck the default values.
510 function Is_Appropriate_For_Record
(T
: Entity_Id
) return Boolean;
511 -- Prefix is appropriate for record if it is of a record type, or an access
514 function Is_Appropriate_For_Entry_Prefix
(T
: Entity_Id
) return Boolean;
515 -- True if it is of a task type, a protected type, or else an access to one
518 procedure Note_Redundant_Use
(Clause
: Node_Id
);
519 -- Mark the name in a use clause as redundant if the corresponding entity
520 -- is already use-visible. Emit a warning if the use clause comes from
521 -- source and the proper warnings are enabled.
523 procedure Premature_Usage
(N
: Node_Id
);
524 -- Diagnose usage of an entity before it is visible
526 procedure Use_One_Package
(P
: Entity_Id
; N
: Node_Id
);
527 -- Make visible entities declared in package P potentially use-visible
528 -- in the current context. Also used in the analysis of subunits, when
529 -- re-installing use clauses of parent units. N is the use_clause that
530 -- names P (and possibly other packages).
532 procedure Use_One_Type
(Id
: Node_Id
; Installed
: Boolean := False);
533 -- Id is the subtype mark from a use type clause. This procedure makes
534 -- the primitive operators of the type potentially use-visible. The
535 -- boolean flag Installed indicates that the clause is being reinstalled
536 -- after previous analysis, and primitive operations are already chained
537 -- on the Used_Operations list of the clause.
539 procedure Write_Info
;
540 -- Write debugging information on entities declared in current scope
542 --------------------------------
543 -- Analyze_Exception_Renaming --
544 --------------------------------
546 -- The language only allows a single identifier, but the tree holds an
547 -- identifier list. The parser has already issued an error message if
548 -- there is more than one element in the list.
550 procedure Analyze_Exception_Renaming
(N
: Node_Id
) is
551 Id
: constant Node_Id
:= Defining_Identifier
(N
);
552 Nam
: constant Node_Id
:= Name
(N
);
555 Check_SPARK_05_Restriction
("exception renaming is not allowed", N
);
560 Set_Ekind
(Id
, E_Exception
);
561 Set_Etype
(Id
, Standard_Exception_Type
);
562 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
564 if not Is_Entity_Name
(Nam
)
565 or else Ekind
(Entity
(Nam
)) /= E_Exception
567 Error_Msg_N
("invalid exception name in renaming", Nam
);
569 if Present
(Renamed_Object
(Entity
(Nam
))) then
570 Set_Renamed_Object
(Id
, Renamed_Object
(Entity
(Nam
)));
572 Set_Renamed_Object
(Id
, Entity
(Nam
));
575 -- An exception renaming is Ghost if the renamed entity is Ghost or
576 -- the construct appears within a Ghost scope.
578 if Is_Ghost_Entity
(Entity
(Nam
)) or else Within_Ghost_Scope
then
579 Set_Is_Ghost_Entity
(Id
);
583 -- Implementation-defined aspect specifications can appear in a renaming
584 -- declaration, but not language-defined ones. The call to procedure
585 -- Analyze_Aspect_Specifications will take care of this error check.
587 if Has_Aspects
(N
) then
588 Analyze_Aspect_Specifications
(N
, Id
);
590 end Analyze_Exception_Renaming
;
592 ---------------------------
593 -- Analyze_Expanded_Name --
594 ---------------------------
596 procedure Analyze_Expanded_Name
(N
: Node_Id
) is
598 -- If the entity pointer is already set, this is an internal node, or a
599 -- node that is analyzed more than once, after a tree modification. In
600 -- such a case there is no resolution to perform, just set the type. For
601 -- completeness, analyze prefix as well.
603 if Present
(Entity
(N
)) then
604 if Is_Type
(Entity
(N
)) then
605 Set_Etype
(N
, Entity
(N
));
607 Set_Etype
(N
, Etype
(Entity
(N
)));
610 Analyze
(Prefix
(N
));
613 Find_Expanded_Name
(N
);
616 Analyze_Dimension
(N
);
617 end Analyze_Expanded_Name
;
619 ---------------------------------------
620 -- Analyze_Generic_Function_Renaming --
621 ---------------------------------------
623 procedure Analyze_Generic_Function_Renaming
(N
: Node_Id
) is
625 Analyze_Generic_Renaming
(N
, E_Generic_Function
);
626 end Analyze_Generic_Function_Renaming
;
628 --------------------------------------
629 -- Analyze_Generic_Package_Renaming --
630 --------------------------------------
632 procedure Analyze_Generic_Package_Renaming
(N
: Node_Id
) is
634 -- Test for the Text_IO special unit case here, since we may be renaming
635 -- one of the subpackages of Text_IO, then join common routine.
637 Check_Text_IO_Special_Unit
(Name
(N
));
639 Analyze_Generic_Renaming
(N
, E_Generic_Package
);
640 end Analyze_Generic_Package_Renaming
;
642 ----------------------------------------
643 -- Analyze_Generic_Procedure_Renaming --
644 ----------------------------------------
646 procedure Analyze_Generic_Procedure_Renaming
(N
: Node_Id
) is
648 Analyze_Generic_Renaming
(N
, E_Generic_Procedure
);
649 end Analyze_Generic_Procedure_Renaming
;
651 ------------------------------
652 -- Analyze_Generic_Renaming --
653 ------------------------------
655 procedure Analyze_Generic_Renaming
659 New_P
: constant Entity_Id
:= Defining_Entity
(N
);
661 Inst
: Boolean := False; -- prevent junk warning
664 if Name
(N
) = Error
then
668 Check_SPARK_05_Restriction
("generic renaming is not allowed", N
);
670 Generate_Definition
(New_P
);
672 if Current_Scope
/= Standard_Standard
then
673 Set_Is_Pure
(New_P
, Is_Pure
(Current_Scope
));
676 if Nkind
(Name
(N
)) = N_Selected_Component
then
677 Check_Generic_Child_Unit
(Name
(N
), Inst
);
682 if not Is_Entity_Name
(Name
(N
)) then
683 Error_Msg_N
("expect entity name in renaming declaration", Name
(N
));
686 Old_P
:= Entity
(Name
(N
));
690 Set_Ekind
(New_P
, K
);
692 if Etype
(Old_P
) = Any_Type
then
695 elsif Ekind
(Old_P
) /= K
then
696 Error_Msg_N
("invalid generic unit name", Name
(N
));
699 if Present
(Renamed_Object
(Old_P
)) then
700 Set_Renamed_Object
(New_P
, Renamed_Object
(Old_P
));
702 Set_Renamed_Object
(New_P
, Old_P
);
705 Set_Is_Pure
(New_P
, Is_Pure
(Old_P
));
706 Set_Is_Preelaborated
(New_P
, Is_Preelaborated
(Old_P
));
708 Set_Etype
(New_P
, Etype
(Old_P
));
709 Set_Has_Completion
(New_P
);
711 -- An generic renaming is Ghost if the renamed entity is Ghost or the
712 -- construct appears within a Ghost scope.
714 if Is_Ghost_Entity
(Old_P
) or else Within_Ghost_Scope
then
715 Set_Is_Ghost_Entity
(New_P
);
718 if In_Open_Scopes
(Old_P
) then
719 Error_Msg_N
("within its scope, generic denotes its instance", N
);
722 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
723 -- renamings and subsequent instantiations of Unchecked_Conversion.
725 if Ekind_In
(Old_P
, E_Generic_Function
, E_Generic_Procedure
) then
726 Set_Is_Intrinsic_Subprogram
727 (New_P
, Is_Intrinsic_Subprogram
(Old_P
));
730 Check_Library_Unit_Renaming
(N
, Old_P
);
733 -- Implementation-defined aspect specifications can appear in a renaming
734 -- declaration, but not language-defined ones. The call to procedure
735 -- Analyze_Aspect_Specifications will take care of this error check.
737 if Has_Aspects
(N
) then
738 Analyze_Aspect_Specifications
(N
, New_P
);
740 end Analyze_Generic_Renaming
;
742 -----------------------------
743 -- Analyze_Object_Renaming --
744 -----------------------------
746 procedure Analyze_Object_Renaming
(N
: Node_Id
) is
747 Loc
: constant Source_Ptr
:= Sloc
(N
);
748 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
750 Nam
: constant Node_Id
:= Name
(N
);
754 procedure Check_Constrained_Object
;
755 -- If the nominal type is unconstrained but the renamed object is
756 -- constrained, as can happen with renaming an explicit dereference or
757 -- a function return, build a constrained subtype from the object. If
758 -- the renaming is for a formal in an accept statement, the analysis
759 -- has already established its actual subtype. This is only relevant
760 -- if the renamed object is an explicit dereference.
762 function In_Generic_Scope
(E
: Entity_Id
) return Boolean;
763 -- Determine whether entity E is inside a generic cope
765 ------------------------------
766 -- Check_Constrained_Object --
767 ------------------------------
769 procedure Check_Constrained_Object
is
770 Typ
: constant Entity_Id
:= Etype
(Nam
);
774 if Nkind_In
(Nam
, N_Function_Call
, N_Explicit_Dereference
)
775 and then Is_Composite_Type
(Etype
(Nam
))
776 and then not Is_Constrained
(Etype
(Nam
))
777 and then not Has_Unknown_Discriminants
(Etype
(Nam
))
778 and then Expander_Active
780 -- If Actual_Subtype is already set, nothing to do
782 if Ekind_In
(Id
, E_Variable
, E_Constant
)
783 and then Present
(Actual_Subtype
(Id
))
787 -- A renaming of an unchecked union has no actual subtype
789 elsif Is_Unchecked_Union
(Typ
) then
792 -- If a record is limited its size is invariant. This is the case
793 -- in particular with record types with an access discirminant
794 -- that are used in iterators. This is an optimization, but it
795 -- also prevents typing anomalies when the prefix is further
796 -- expanded. Limited types with discriminants are included.
798 elsif Is_Limited_Record
(Typ
)
800 (Ekind
(Typ
) = E_Limited_Private_Type
801 and then Has_Discriminants
(Typ
)
802 and then Is_Access_Type
(Etype
(First_Discriminant
(Typ
))))
807 Subt
:= Make_Temporary
(Loc
, 'T');
808 Remove_Side_Effects
(Nam
);
810 Make_Subtype_Declaration
(Loc
,
811 Defining_Identifier
=> Subt
,
812 Subtype_Indication
=>
813 Make_Subtype_From_Expr
(Nam
, Typ
)));
814 Rewrite
(Subtype_Mark
(N
), New_Occurrence_Of
(Subt
, Loc
));
815 Set_Etype
(Nam
, Subt
);
817 -- Freeze subtype at once, to prevent order of elaboration
818 -- issues in the backend. The renamed object exists, so its
819 -- type is already frozen in any case.
821 Freeze_Before
(N
, Subt
);
824 end Check_Constrained_Object
;
826 ----------------------
827 -- In_Generic_Scope --
828 ----------------------
830 function In_Generic_Scope
(E
: Entity_Id
) return Boolean is
835 while Present
(S
) and then S
/= Standard_Standard
loop
836 if Is_Generic_Unit
(S
) then
844 end In_Generic_Scope
;
846 -- Start of processing for Analyze_Object_Renaming
853 Check_SPARK_05_Restriction
("object renaming is not allowed", N
);
855 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
858 -- The renaming of a component that depends on a discriminant requires
859 -- an actual subtype, because in subsequent use of the object Gigi will
860 -- be unable to locate the actual bounds. This explicit step is required
861 -- when the renaming is generated in removing side effects of an
862 -- already-analyzed expression.
864 if Nkind
(Nam
) = N_Selected_Component
and then Analyzed
(Nam
) then
866 Dec
:= Build_Actual_Subtype_Of_Component
(Etype
(Nam
), Nam
);
868 if Present
(Dec
) then
869 Insert_Action
(N
, Dec
);
870 T
:= Defining_Identifier
(Dec
);
874 -- Complete analysis of the subtype mark in any case, for ASIS use
876 if Present
(Subtype_Mark
(N
)) then
877 Find_Type
(Subtype_Mark
(N
));
880 elsif Present
(Subtype_Mark
(N
)) then
881 Find_Type
(Subtype_Mark
(N
));
882 T
:= Entity
(Subtype_Mark
(N
));
885 -- Reject renamings of conversions unless the type is tagged, or
886 -- the conversion is implicit (which can occur for cases of anonymous
887 -- access types in Ada 2012).
889 if Nkind
(Nam
) = N_Type_Conversion
890 and then Comes_From_Source
(Nam
)
891 and then not Is_Tagged_Type
(T
)
894 ("renaming of conversion only allowed for tagged types", Nam
);
899 -- If the renamed object is a function call of a limited type,
900 -- the expansion of the renaming is complicated by the presence
901 -- of various temporaries and subtypes that capture constraints
902 -- of the renamed object. Rewrite node as an object declaration,
903 -- whose expansion is simpler. Given that the object is limited
904 -- there is no copy involved and no performance hit.
906 if Nkind
(Nam
) = N_Function_Call
907 and then Is_Limited_View
(Etype
(Nam
))
908 and then not Is_Constrained
(Etype
(Nam
))
909 and then Comes_From_Source
(N
)
912 Set_Ekind
(Id
, E_Constant
);
914 Make_Object_Declaration
(Loc
,
915 Defining_Identifier
=> Id
,
916 Constant_Present
=> True,
917 Object_Definition
=> New_Occurrence_Of
(Etype
(Nam
), Loc
),
918 Expression
=> Relocate_Node
(Nam
)));
922 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
923 -- when renaming declaration has a named access type. The Ada 2012
924 -- coverage rules allow an anonymous access type in the context of
925 -- an expected named general access type, but the renaming rules
926 -- require the types to be the same. (An exception is when the type
927 -- of the renaming is also an anonymous access type, which can only
928 -- happen due to a renaming created by the expander.)
930 if Nkind
(Nam
) = N_Type_Conversion
931 and then not Comes_From_Source
(Nam
)
932 and then Ekind
(Etype
(Expression
(Nam
))) = E_Anonymous_Access_Type
933 and then Ekind
(T
) /= E_Anonymous_Access_Type
935 Wrong_Type
(Expression
(Nam
), T
); -- Should we give better error???
938 -- Check that a class-wide object is not being renamed as an object
939 -- of a specific type. The test for access types is needed to exclude
940 -- cases where the renamed object is a dynamically tagged access
941 -- result, such as occurs in certain expansions.
943 if Is_Tagged_Type
(T
) then
944 Check_Dynamically_Tagged_Expression
950 -- Ada 2005 (AI-230/AI-254): Access renaming
952 else pragma Assert
(Present
(Access_Definition
(N
)));
953 T
:= Access_Definition
955 N
=> Access_Definition
(N
));
959 -- Ada 2005 AI05-105: if the declaration has an anonymous access
960 -- type, the renamed object must also have an anonymous type, and
961 -- this is a name resolution rule. This was implicit in the last part
962 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
965 if not Is_Overloaded
(Nam
) then
966 if Ekind
(Etype
(Nam
)) /= Ekind
(T
) then
968 ("expect anonymous access type in object renaming", N
);
975 Typ
: Entity_Id
:= Empty
;
976 Seen
: Boolean := False;
979 Get_First_Interp
(Nam
, I
, It
);
980 while Present
(It
.Typ
) loop
982 -- Renaming is ambiguous if more than one candidate
983 -- interpretation is type-conformant with the context.
985 if Ekind
(It
.Typ
) = Ekind
(T
) then
986 if Ekind
(T
) = E_Anonymous_Access_Subprogram_Type
989 (Designated_Type
(T
), Designated_Type
(It
.Typ
))
995 ("ambiguous expression in renaming", Nam
);
998 elsif Ekind
(T
) = E_Anonymous_Access_Type
1000 Covers
(Designated_Type
(T
), Designated_Type
(It
.Typ
))
1006 ("ambiguous expression in renaming", Nam
);
1010 if Covers
(T
, It
.Typ
) then
1012 Set_Etype
(Nam
, Typ
);
1013 Set_Is_Overloaded
(Nam
, False);
1017 Get_Next_Interp
(I
, It
);
1024 -- Ada 2005 (AI-231): In the case where the type is defined by an
1025 -- access_definition, the renamed entity shall be of an access-to-
1026 -- constant type if and only if the access_definition defines an
1027 -- access-to-constant type. ARM 8.5.1(4)
1029 if Constant_Present
(Access_Definition
(N
))
1030 and then not Is_Access_Constant
(Etype
(Nam
))
1032 Error_Msg_N
("(Ada 2005): the renamed object is not "
1033 & "access-to-constant (RM 8.5.1(6))", N
);
1035 elsif not Constant_Present
(Access_Definition
(N
))
1036 and then Is_Access_Constant
(Etype
(Nam
))
1038 Error_Msg_N
("(Ada 2005): the renamed object is not "
1039 & "access-to-variable (RM 8.5.1(6))", N
);
1042 if Is_Access_Subprogram_Type
(Etype
(Nam
)) then
1043 Check_Subtype_Conformant
1044 (Designated_Type
(T
), Designated_Type
(Etype
(Nam
)));
1046 elsif not Subtypes_Statically_Match
1047 (Designated_Type
(T
),
1048 Available_View
(Designated_Type
(Etype
(Nam
))))
1051 ("subtype of renamed object does not statically match", N
);
1055 -- Special processing for renaming function return object. Some errors
1056 -- and warnings are produced only for calls that come from source.
1058 if Nkind
(Nam
) = N_Function_Call
then
1061 -- Usage is illegal in Ada 83
1064 if Comes_From_Source
(Nam
) then
1066 ("(Ada 83) cannot rename function return object", Nam
);
1069 -- In Ada 95, warn for odd case of renaming parameterless function
1070 -- call if this is not a limited type (where this is useful).
1073 if Warn_On_Object_Renames_Function
1074 and then No
(Parameter_Associations
(Nam
))
1075 and then not Is_Limited_Type
(Etype
(Nam
))
1076 and then Comes_From_Source
(Nam
)
1079 ("renaming function result object is suspicious?R?", Nam
);
1081 ("\function & will be called only once?R?", Nam
,
1082 Entity
(Name
(Nam
)));
1083 Error_Msg_N
-- CODEFIX
1084 ("\suggest using an initialized constant "
1085 & "object instead?R?", Nam
);
1091 Check_Constrained_Object
;
1093 -- An object renaming requires an exact match of the type. Class-wide
1094 -- matching is not allowed.
1096 if Is_Class_Wide_Type
(T
)
1097 and then Base_Type
(Etype
(Nam
)) /= Base_Type
(T
)
1099 Wrong_Type
(Nam
, T
);
1104 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1106 if Nkind
(Nam
) = N_Explicit_Dereference
1107 and then Ekind
(Etype
(T2
)) = E_Incomplete_Type
1109 Error_Msg_NE
("invalid use of incomplete type&", Id
, T2
);
1112 elsif Ekind
(Etype
(T
)) = E_Incomplete_Type
then
1113 Error_Msg_NE
("invalid use of incomplete type&", Id
, T
);
1117 -- Ada 2005 (AI-327)
1119 if Ada_Version
>= Ada_2005
1120 and then Nkind
(Nam
) = N_Attribute_Reference
1121 and then Attribute_Name
(Nam
) = Name_Priority
1125 elsif Ada_Version
>= Ada_2005
and then Nkind
(Nam
) in N_Has_Entity
then
1128 Nam_Ent
: Entity_Id
;
1131 if Nkind
(Nam
) = N_Attribute_Reference
then
1132 Nam_Ent
:= Entity
(Prefix
(Nam
));
1134 Nam_Ent
:= Entity
(Nam
);
1137 Nam_Decl
:= Parent
(Nam_Ent
);
1139 if Has_Null_Exclusion
(N
)
1140 and then not Has_Null_Exclusion
(Nam_Decl
)
1142 -- Ada 2005 (AI-423): If the object name denotes a generic
1143 -- formal object of a generic unit G, and the object renaming
1144 -- declaration occurs within the body of G or within the body
1145 -- of a generic unit declared within the declarative region
1146 -- of G, then the declaration of the formal object of G must
1147 -- have a null exclusion or a null-excluding subtype.
1149 if Is_Formal_Object
(Nam_Ent
)
1150 and then In_Generic_Scope
(Id
)
1152 if not Can_Never_Be_Null
(Etype
(Nam_Ent
)) then
1154 ("renamed formal does not exclude `NULL` "
1155 & "(RM 8.5.1(4.6/2))", N
);
1157 elsif In_Package_Body
(Scope
(Id
)) then
1159 ("formal object does not have a null exclusion"
1160 & "(RM 8.5.1(4.6/2))", N
);
1163 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1164 -- shall exclude null.
1166 elsif not Can_Never_Be_Null
(Etype
(Nam_Ent
)) then
1168 ("renamed object does not exclude `NULL` "
1169 & "(RM 8.5.1(4.6/2))", N
);
1171 -- An instance is illegal if it contains a renaming that
1172 -- excludes null, and the actual does not. The renaming
1173 -- declaration has already indicated that the declaration
1174 -- of the renamed actual in the instance will raise
1175 -- constraint_error.
1177 elsif Nkind
(Nam_Decl
) = N_Object_Declaration
1178 and then In_Instance
1180 Present
(Corresponding_Generic_Association
(Nam_Decl
))
1181 and then Nkind
(Expression
(Nam_Decl
)) =
1182 N_Raise_Constraint_Error
1185 ("renamed actual does not exclude `NULL` "
1186 & "(RM 8.5.1(4.6/2))", N
);
1188 -- Finally, if there is a null exclusion, the subtype mark
1189 -- must not be null-excluding.
1191 elsif No
(Access_Definition
(N
))
1192 and then Can_Never_Be_Null
(T
)
1195 ("`NOT NULL` not allowed (& already excludes null)",
1200 elsif Can_Never_Be_Null
(T
)
1201 and then not Can_Never_Be_Null
(Etype
(Nam_Ent
))
1204 ("renamed object does not exclude `NULL` "
1205 & "(RM 8.5.1(4.6/2))", N
);
1207 elsif Has_Null_Exclusion
(N
)
1208 and then No
(Access_Definition
(N
))
1209 and then Can_Never_Be_Null
(T
)
1212 ("`NOT NULL` not allowed (& already excludes null)", N
, T
);
1217 -- Set the Ekind of the entity, unless it has been set already, as is
1218 -- the case for the iteration object over a container with no variable
1219 -- indexing. In that case it's been marked as a constant, and we do not
1220 -- want to change it to a variable.
1222 if Ekind
(Id
) /= E_Constant
then
1223 Set_Ekind
(Id
, E_Variable
);
1226 -- Initialize the object size and alignment. Note that we used to call
1227 -- Init_Size_Align here, but that's wrong for objects which have only
1228 -- an Esize, not an RM_Size field.
1230 Init_Object_Size_Align
(Id
);
1232 if T
= Any_Type
or else Etype
(Nam
) = Any_Type
then
1235 -- Verify that the renamed entity is an object or a function call. It
1236 -- may have been rewritten in several ways.
1238 elsif Is_Object_Reference
(Nam
) then
1239 if Comes_From_Source
(N
) then
1240 if Is_Dependent_Component_Of_Mutable_Object
(Nam
) then
1242 ("illegal renaming of discriminant-dependent component", Nam
);
1245 -- If the renaming comes from source and the renamed object is a
1246 -- dereference, then mark the prefix as needing debug information,
1247 -- since it might have been rewritten hence internally generated
1248 -- and Debug_Renaming_Declaration will link the renaming to it.
1250 if Nkind
(Nam
) = N_Explicit_Dereference
1251 and then Is_Entity_Name
(Prefix
(Nam
))
1253 Set_Debug_Info_Needed
(Entity
(Prefix
(Nam
)));
1257 -- A static function call may have been folded into a literal
1259 elsif Nkind
(Original_Node
(Nam
)) = N_Function_Call
1261 -- When expansion is disabled, attribute reference is not rewritten
1262 -- as function call. Otherwise it may be rewritten as a conversion,
1263 -- so check original node.
1265 or else (Nkind
(Original_Node
(Nam
)) = N_Attribute_Reference
1266 and then Is_Function_Attribute_Name
1267 (Attribute_Name
(Original_Node
(Nam
))))
1269 -- Weird but legal, equivalent to renaming a function call. Illegal
1270 -- if the literal is the result of constant-folding an attribute
1271 -- reference that is not a function.
1273 or else (Is_Entity_Name
(Nam
)
1274 and then Ekind
(Entity
(Nam
)) = E_Enumeration_Literal
1276 Nkind
(Original_Node
(Nam
)) /= N_Attribute_Reference
)
1278 or else (Nkind
(Nam
) = N_Type_Conversion
1279 and then Is_Tagged_Type
(Entity
(Subtype_Mark
(Nam
))))
1283 elsif Nkind
(Nam
) = N_Type_Conversion
then
1285 ("renaming of conversion only allowed for tagged types", Nam
);
1287 -- Ada 2005 (AI-327)
1289 elsif Ada_Version
>= Ada_2005
1290 and then Nkind
(Nam
) = N_Attribute_Reference
1291 and then Attribute_Name
(Nam
) = Name_Priority
1295 -- Allow internally generated x'Reference expression
1297 elsif Nkind
(Nam
) = N_Reference
then
1301 Error_Msg_N
("expect object name in renaming", Nam
);
1306 if not Is_Variable
(Nam
) then
1307 Set_Ekind
(Id
, E_Constant
);
1308 Set_Never_Set_In_Source
(Id
, True);
1309 Set_Is_True_Constant
(Id
, True);
1312 -- An object renaming is Ghost if the renamed entity is Ghost or the
1313 -- construct appears within a Ghost scope.
1315 if (Is_Entity_Name
(Nam
)
1316 and then Is_Ghost_Entity
(Entity
(Nam
)))
1317 or else Within_Ghost_Scope
1319 Set_Is_Ghost_Entity
(Id
);
1322 -- The entity of the renaming declaration needs to reflect whether the
1323 -- renamed object is volatile. Is_Volatile is set if the renamed object
1324 -- is volatile in the RM legality sense.
1326 Set_Is_Volatile
(Id
, Is_Volatile_Object
(Nam
));
1328 -- Treat as volatile if we just set the Volatile flag
1332 -- Or if we are renaming an entity which was marked this way
1334 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1336 or else (Is_Entity_Name
(Nam
)
1337 and then Treat_As_Volatile
(Entity
(Nam
)))
1339 Set_Treat_As_Volatile
(Id
, True);
1342 -- Now make the link to the renamed object
1344 Set_Renamed_Object
(Id
, Nam
);
1346 -- Implementation-defined aspect specifications can appear in a renaming
1347 -- declaration, but not language-defined ones. The call to procedure
1348 -- Analyze_Aspect_Specifications will take care of this error check.
1350 if Has_Aspects
(N
) then
1351 Analyze_Aspect_Specifications
(N
, Id
);
1354 -- Deal with dimensions
1356 Analyze_Dimension
(N
);
1357 end Analyze_Object_Renaming
;
1359 ------------------------------
1360 -- Analyze_Package_Renaming --
1361 ------------------------------
1363 procedure Analyze_Package_Renaming
(N
: Node_Id
) is
1364 New_P
: constant Entity_Id
:= Defining_Entity
(N
);
1369 if Name
(N
) = Error
then
1373 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1375 Check_Text_IO_Special_Unit
(Name
(N
));
1377 if Current_Scope
/= Standard_Standard
then
1378 Set_Is_Pure
(New_P
, Is_Pure
(Current_Scope
));
1384 if Is_Entity_Name
(Name
(N
)) then
1385 Old_P
:= Entity
(Name
(N
));
1390 if Etype
(Old_P
) = Any_Type
then
1391 Error_Msg_N
("expect package name in renaming", Name
(N
));
1393 elsif Ekind
(Old_P
) /= E_Package
1394 and then not (Ekind
(Old_P
) = E_Generic_Package
1395 and then In_Open_Scopes
(Old_P
))
1397 if Ekind
(Old_P
) = E_Generic_Package
then
1399 ("generic package cannot be renamed as a package", Name
(N
));
1401 Error_Msg_Sloc
:= Sloc
(Old_P
);
1403 ("expect package name in renaming, found& declared#",
1407 -- Set basic attributes to minimize cascaded errors
1409 Set_Ekind
(New_P
, E_Package
);
1410 Set_Etype
(New_P
, Standard_Void_Type
);
1412 -- Here for OK package renaming
1415 -- Entities in the old package are accessible through the renaming
1416 -- entity. The simplest implementation is to have both packages share
1419 Set_Ekind
(New_P
, E_Package
);
1420 Set_Etype
(New_P
, Standard_Void_Type
);
1422 if Present
(Renamed_Object
(Old_P
)) then
1423 Set_Renamed_Object
(New_P
, Renamed_Object
(Old_P
));
1425 Set_Renamed_Object
(New_P
, Old_P
);
1428 Set_Has_Completion
(New_P
);
1430 Set_First_Entity
(New_P
, First_Entity
(Old_P
));
1431 Set_Last_Entity
(New_P
, Last_Entity
(Old_P
));
1432 Set_First_Private_Entity
(New_P
, First_Private_Entity
(Old_P
));
1433 Check_Library_Unit_Renaming
(N
, Old_P
);
1434 Generate_Reference
(Old_P
, Name
(N
));
1436 -- A package renaming is Ghost if the renamed entity is Ghost or
1437 -- the construct appears within a Ghost scope.
1439 if Is_Ghost_Entity
(Old_P
) or else Within_Ghost_Scope
then
1440 Set_Is_Ghost_Entity
(New_P
);
1443 -- If the renaming is in the visible part of a package, then we set
1444 -- Renamed_In_Spec for the renamed package, to prevent giving
1445 -- warnings about no entities referenced. Such a warning would be
1446 -- overenthusiastic, since clients can see entities in the renamed
1447 -- package via the visible package renaming.
1450 Ent
: constant Entity_Id
:= Cunit_Entity
(Current_Sem_Unit
);
1452 if Ekind
(Ent
) = E_Package
1453 and then not In_Private_Part
(Ent
)
1454 and then In_Extended_Main_Source_Unit
(N
)
1455 and then Ekind
(Old_P
) = E_Package
1457 Set_Renamed_In_Spec
(Old_P
);
1461 -- If this is the renaming declaration of a package instantiation
1462 -- within itself, it is the declaration that ends the list of actuals
1463 -- for the instantiation. At this point, the subtypes that rename
1464 -- the actuals are flagged as generic, to avoid spurious ambiguities
1465 -- if the actuals for two distinct formals happen to coincide. If
1466 -- the actual is a private type, the subtype has a private completion
1467 -- that is flagged in the same fashion.
1469 -- Resolution is identical to what is was in the original generic.
1470 -- On exit from the generic instance, these are turned into regular
1471 -- subtypes again, so they are compatible with types in their class.
1473 if not Is_Generic_Instance
(Old_P
) then
1476 Spec
:= Specification
(Unit_Declaration_Node
(Old_P
));
1479 if Nkind
(Spec
) = N_Package_Specification
1480 and then Present
(Generic_Parent
(Spec
))
1481 and then Old_P
= Current_Scope
1482 and then Chars
(New_P
) = Chars
(Generic_Parent
(Spec
))
1488 E
:= First_Entity
(Old_P
);
1489 while Present
(E
) and then E
/= New_P
loop
1491 and then Nkind
(Parent
(E
)) = N_Subtype_Declaration
1493 Set_Is_Generic_Actual_Type
(E
);
1495 if Is_Private_Type
(E
)
1496 and then Present
(Full_View
(E
))
1498 Set_Is_Generic_Actual_Type
(Full_View
(E
));
1508 -- Implementation-defined aspect specifications can appear in a renaming
1509 -- declaration, but not language-defined ones. The call to procedure
1510 -- Analyze_Aspect_Specifications will take care of this error check.
1512 if Has_Aspects
(N
) then
1513 Analyze_Aspect_Specifications
(N
, New_P
);
1515 end Analyze_Package_Renaming
;
1517 -------------------------------
1518 -- Analyze_Renamed_Character --
1519 -------------------------------
1521 procedure Analyze_Renamed_Character
1526 C
: constant Node_Id
:= Name
(N
);
1529 if Ekind
(New_S
) = E_Function
then
1530 Resolve
(C
, Etype
(New_S
));
1533 Check_Frozen_Renaming
(N
, New_S
);
1537 Error_Msg_N
("character literal can only be renamed as function", N
);
1539 end Analyze_Renamed_Character
;
1541 ---------------------------------
1542 -- Analyze_Renamed_Dereference --
1543 ---------------------------------
1545 procedure Analyze_Renamed_Dereference
1550 Nam
: constant Node_Id
:= Name
(N
);
1551 P
: constant Node_Id
:= Prefix
(Nam
);
1557 if not Is_Overloaded
(P
) then
1558 if Ekind
(Etype
(Nam
)) /= E_Subprogram_Type
1559 or else not Type_Conformant
(Etype
(Nam
), New_S
)
1561 Error_Msg_N
("designated type does not match specification", P
);
1570 Get_First_Interp
(Nam
, Ind
, It
);
1572 while Present
(It
.Nam
) loop
1574 if Ekind
(It
.Nam
) = E_Subprogram_Type
1575 and then Type_Conformant
(It
.Nam
, New_S
)
1577 if Typ
/= Any_Id
then
1578 Error_Msg_N
("ambiguous renaming", P
);
1585 Get_Next_Interp
(Ind
, It
);
1588 if Typ
= Any_Type
then
1589 Error_Msg_N
("designated type does not match specification", P
);
1594 Check_Frozen_Renaming
(N
, New_S
);
1598 end Analyze_Renamed_Dereference
;
1600 ---------------------------
1601 -- Analyze_Renamed_Entry --
1602 ---------------------------
1604 procedure Analyze_Renamed_Entry
1609 Nam
: constant Node_Id
:= Name
(N
);
1610 Sel
: constant Node_Id
:= Selector_Name
(Nam
);
1611 Is_Actual
: constant Boolean := Present
(Corresponding_Formal_Spec
(N
));
1615 if Entity
(Sel
) = Any_Id
then
1617 -- Selector is undefined on prefix. Error emitted already
1619 Set_Has_Completion
(New_S
);
1623 -- Otherwise find renamed entity and build body of New_S as a call to it
1625 Old_S
:= Find_Renamed_Entity
(N
, Selector_Name
(Nam
), New_S
);
1627 if Old_S
= Any_Id
then
1628 Error_Msg_N
(" no subprogram or entry matches specification", N
);
1631 Check_Subtype_Conformant
(New_S
, Old_S
, N
);
1632 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1633 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1636 -- Only mode conformance required for a renaming_as_declaration
1638 Check_Mode_Conformant
(New_S
, Old_S
, N
);
1641 Inherit_Renamed_Profile
(New_S
, Old_S
);
1643 -- The prefix can be an arbitrary expression that yields a task or
1644 -- protected object, so it must be resolved.
1646 Resolve
(Prefix
(Nam
), Scope
(Old_S
));
1649 Set_Convention
(New_S
, Convention
(Old_S
));
1650 Set_Has_Completion
(New_S
, Inside_A_Generic
);
1652 -- AI05-0225: If the renamed entity is a procedure or entry of a
1653 -- protected object, the target object must be a variable.
1655 if Ekind
(Scope
(Old_S
)) in Protected_Kind
1656 and then Ekind
(New_S
) = E_Procedure
1657 and then not Is_Variable
(Prefix
(Nam
))
1661 ("target object of protected operation used as actual for "
1662 & "formal procedure must be a variable", Nam
);
1665 ("target object of protected operation renamed as procedure, "
1666 & "must be a variable", Nam
);
1671 Check_Frozen_Renaming
(N
, New_S
);
1673 end Analyze_Renamed_Entry
;
1675 -----------------------------------
1676 -- Analyze_Renamed_Family_Member --
1677 -----------------------------------
1679 procedure Analyze_Renamed_Family_Member
1684 Nam
: constant Node_Id
:= Name
(N
);
1685 P
: constant Node_Id
:= Prefix
(Nam
);
1689 if (Is_Entity_Name
(P
) and then Ekind
(Entity
(P
)) = E_Entry_Family
)
1690 or else (Nkind
(P
) = N_Selected_Component
1691 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry_Family
)
1693 if Is_Entity_Name
(P
) then
1694 Old_S
:= Entity
(P
);
1696 Old_S
:= Entity
(Selector_Name
(P
));
1699 if not Entity_Matches_Spec
(Old_S
, New_S
) then
1700 Error_Msg_N
("entry family does not match specification", N
);
1703 Check_Subtype_Conformant
(New_S
, Old_S
, N
);
1704 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1705 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1709 Error_Msg_N
("no entry family matches specification", N
);
1712 Set_Has_Completion
(New_S
, Inside_A_Generic
);
1715 Check_Frozen_Renaming
(N
, New_S
);
1717 end Analyze_Renamed_Family_Member
;
1719 -----------------------------------------
1720 -- Analyze_Renamed_Primitive_Operation --
1721 -----------------------------------------
1723 procedure Analyze_Renamed_Primitive_Operation
1732 Ctyp
: Conformance_Type
) return Boolean;
1733 -- Verify that the signatures of the renamed entity and the new entity
1734 -- match. The first formal of the renamed entity is skipped because it
1735 -- is the target object in any subsequent call.
1743 Ctyp
: Conformance_Type
) return Boolean
1749 if Ekind
(Subp
) /= Ekind
(New_S
) then
1753 Old_F
:= Next_Formal
(First_Formal
(Subp
));
1754 New_F
:= First_Formal
(New_S
);
1755 while Present
(Old_F
) and then Present
(New_F
) loop
1756 if not Conforming_Types
(Etype
(Old_F
), Etype
(New_F
), Ctyp
) then
1760 if Ctyp
>= Mode_Conformant
1761 and then Ekind
(Old_F
) /= Ekind
(New_F
)
1766 Next_Formal
(New_F
);
1767 Next_Formal
(Old_F
);
1773 -- Start of processing for Analyze_Renamed_Primitive_Operation
1776 if not Is_Overloaded
(Selector_Name
(Name
(N
))) then
1777 Old_S
:= Entity
(Selector_Name
(Name
(N
)));
1779 if not Conforms
(Old_S
, Type_Conformant
) then
1784 -- Find the operation that matches the given signature
1792 Get_First_Interp
(Selector_Name
(Name
(N
)), Ind
, It
);
1794 while Present
(It
.Nam
) loop
1795 if Conforms
(It
.Nam
, Type_Conformant
) then
1799 Get_Next_Interp
(Ind
, It
);
1804 if Old_S
= Any_Id
then
1805 Error_Msg_N
(" no subprogram or entry matches specification", N
);
1809 if not Conforms
(Old_S
, Subtype_Conformant
) then
1810 Error_Msg_N
("subtype conformance error in renaming", N
);
1813 Generate_Reference
(New_S
, Defining_Entity
(N
), 'b');
1814 Style
.Check_Identifier
(Defining_Entity
(N
), New_S
);
1817 -- Only mode conformance required for a renaming_as_declaration
1819 if not Conforms
(Old_S
, Mode_Conformant
) then
1820 Error_Msg_N
("mode conformance error in renaming", N
);
1823 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1824 -- view of a subprogram is intrinsic, because the compiler has
1825 -- to generate a wrapper for any call to it. If the name in a
1826 -- subprogram renaming is a prefixed view, the entity is thus
1827 -- intrinsic, and 'Access cannot be applied to it.
1829 Set_Convention
(New_S
, Convention_Intrinsic
);
1832 -- Inherit_Renamed_Profile (New_S, Old_S);
1834 -- The prefix can be an arbitrary expression that yields an
1835 -- object, so it must be resolved.
1837 Resolve
(Prefix
(Name
(N
)));
1839 end Analyze_Renamed_Primitive_Operation
;
1841 ---------------------------------
1842 -- Analyze_Subprogram_Renaming --
1843 ---------------------------------
1845 procedure Analyze_Subprogram_Renaming
(N
: Node_Id
) is
1846 Formal_Spec
: constant Entity_Id
:= Corresponding_Formal_Spec
(N
);
1847 Is_Actual
: constant Boolean := Present
(Formal_Spec
);
1848 Nam
: constant Node_Id
:= Name
(N
);
1849 Save_AV
: constant Ada_Version_Type
:= Ada_Version
;
1850 Save_AVP
: constant Node_Id
:= Ada_Version_Pragma
;
1851 Save_AV_Exp
: constant Ada_Version_Type
:= Ada_Version_Explicit
;
1852 Spec
: constant Node_Id
:= Specification
(N
);
1854 Old_S
: Entity_Id
:= Empty
;
1855 Rename_Spec
: Entity_Id
;
1857 procedure Build_Class_Wide_Wrapper
1858 (Ren_Id
: out Entity_Id
;
1859 Wrap_Id
: out Entity_Id
);
1860 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1861 -- type with unknown discriminants and a generic primitive operation of
1862 -- the said type with a box require special processing when the actual
1863 -- is a class-wide type:
1866 -- type Formal_Typ (<>) is private;
1867 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1868 -- package Gen is ...
1870 -- package Inst is new Gen (Actual_Typ'Class);
1872 -- In this case the general renaming mechanism used in the prologue of
1873 -- an instance no longer applies:
1875 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1877 -- The above is replaced the following wrapper/renaming combination:
1879 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1881 -- Prim_Op (Param); -- primitive
1884 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1886 -- This transformation applies only if there is no explicit visible
1887 -- class-wide operation at the point of the instantiation. Ren_Id is
1888 -- the entity of the renaming declaration. Wrap_Id is the entity of
1889 -- the generated class-wide wrapper (or Any_Id).
1891 procedure Check_Null_Exclusion
1894 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1895 -- following AI rules:
1897 -- If Ren is a renaming of a formal subprogram and one of its
1898 -- parameters has a null exclusion, then the corresponding formal
1899 -- in Sub must also have one. Otherwise the subtype of the Sub's
1900 -- formal parameter must exclude null.
1902 -- If Ren is a renaming of a formal function and its return
1903 -- profile has a null exclusion, then Sub's return profile must
1904 -- have one. Otherwise the subtype of Sub's return profile must
1907 procedure Freeze_Actual_Profile
;
1908 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1909 -- types: a callable entity freezes its profile, unless it has an
1910 -- incomplete untagged formal (RM 13.14(10.2/3)).
1912 function Has_Class_Wide_Actual
return Boolean;
1913 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1914 -- defaulted formal subprogram where the actual for the controlling
1915 -- formal type is class-wide.
1917 function Original_Subprogram
(Subp
: Entity_Id
) return Entity_Id
;
1918 -- Find renamed entity when the declaration is a renaming_as_body and
1919 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1920 -- rule that a renaming_as_body is illegal if the declaration occurs
1921 -- before the subprogram it completes is frozen, and renaming indirectly
1922 -- renames the subprogram itself.(Defect Report 8652/0027).
1924 ------------------------------
1925 -- Build_Class_Wide_Wrapper --
1926 ------------------------------
1928 procedure Build_Class_Wide_Wrapper
1929 (Ren_Id
: out Entity_Id
;
1930 Wrap_Id
: out Entity_Id
)
1932 Loc
: constant Source_Ptr
:= Sloc
(N
);
1935 (Subp_Id
: Entity_Id
;
1936 Params
: List_Id
) return Node_Id
;
1937 -- Create a dispatching call to invoke routine Subp_Id with actuals
1938 -- built from the parameter specifications of list Params.
1940 function Build_Spec
(Subp_Id
: Entity_Id
) return Node_Id
;
1941 -- Create a subprogram specification based on the subprogram profile
1944 function Find_Primitive
(Typ
: Entity_Id
) return Entity_Id
;
1945 -- Find a primitive subprogram of type Typ which matches the profile
1946 -- of the renaming declaration.
1948 procedure Interpretation_Error
(Subp_Id
: Entity_Id
);
1949 -- Emit a continuation error message suggesting subprogram Subp_Id as
1950 -- a possible interpretation.
1952 function Is_Intrinsic_Equality
(Subp_Id
: Entity_Id
) return Boolean;
1953 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1956 function Is_Suitable_Candidate
(Subp_Id
: Entity_Id
) return Boolean;
1957 -- Determine whether subprogram Subp_Id is a suitable candidate for
1958 -- the role of a wrapped subprogram.
1965 (Subp_Id
: Entity_Id
;
1966 Params
: List_Id
) return Node_Id
1968 Actuals
: constant List_Id
:= New_List
;
1969 Call_Ref
: constant Node_Id
:= New_Occurrence_Of
(Subp_Id
, Loc
);
1973 -- Build the actual parameters of the call
1975 Formal
:= First
(Params
);
1976 while Present
(Formal
) loop
1978 Make_Identifier
(Loc
, Chars
(Defining_Identifier
(Formal
))));
1983 -- return Subp_Id (Actuals);
1985 if Ekind_In
(Subp_Id
, E_Function
, E_Operator
) then
1987 Make_Simple_Return_Statement
(Loc
,
1989 Make_Function_Call
(Loc
,
1991 Parameter_Associations
=> Actuals
));
1994 -- Subp_Id (Actuals);
1998 Make_Procedure_Call_Statement
(Loc
,
2000 Parameter_Associations
=> Actuals
);
2008 function Build_Spec
(Subp_Id
: Entity_Id
) return Node_Id
is
2009 Params
: constant List_Id
:= Copy_Parameter_List
(Subp_Id
);
2010 Spec_Id
: constant Entity_Id
:=
2011 Make_Defining_Identifier
(Loc
,
2012 Chars
=> New_External_Name
(Chars
(Subp_Id
), 'R'));
2015 if Ekind
(Formal_Spec
) = E_Procedure
then
2017 Make_Procedure_Specification
(Loc
,
2018 Defining_Unit_Name
=> Spec_Id
,
2019 Parameter_Specifications
=> Params
);
2022 Make_Function_Specification
(Loc
,
2023 Defining_Unit_Name
=> Spec_Id
,
2024 Parameter_Specifications
=> Params
,
2025 Result_Definition
=>
2026 New_Copy_Tree
(Result_Definition
(Spec
)));
2030 --------------------
2031 -- Find_Primitive --
2032 --------------------
2034 function Find_Primitive
(Typ
: Entity_Id
) return Entity_Id
is
2035 procedure Replace_Parameter_Types
(Spec
: Node_Id
);
2036 -- Given a specification Spec, replace all class-wide parameter
2037 -- types with reference to type Typ.
2039 -----------------------------
2040 -- Replace_Parameter_Types --
2041 -----------------------------
2043 procedure Replace_Parameter_Types
(Spec
: Node_Id
) is
2045 Formal_Id
: Entity_Id
;
2046 Formal_Typ
: Node_Id
;
2049 Formal
:= First
(Parameter_Specifications
(Spec
));
2050 while Present
(Formal
) loop
2051 Formal_Id
:= Defining_Identifier
(Formal
);
2052 Formal_Typ
:= Parameter_Type
(Formal
);
2054 -- Create a new entity for each class-wide formal to prevent
2055 -- aliasing with the original renaming. Replace the type of
2056 -- such a parameter with the candidate type.
2058 if Nkind
(Formal_Typ
) = N_Identifier
2059 and then Is_Class_Wide_Type
(Etype
(Formal_Typ
))
2061 Set_Defining_Identifier
(Formal
,
2062 Make_Defining_Identifier
(Loc
, Chars
(Formal_Id
)));
2064 Set_Parameter_Type
(Formal
, New_Occurrence_Of
(Typ
, Loc
));
2069 end Replace_Parameter_Types
;
2073 Alt_Ren
: constant Node_Id
:= New_Copy_Tree
(N
);
2074 Alt_Nam
: constant Node_Id
:= Name
(Alt_Ren
);
2075 Alt_Spec
: constant Node_Id
:= Specification
(Alt_Ren
);
2076 Subp_Id
: Entity_Id
;
2078 -- Start of processing for Find_Primitive
2081 -- Each attempt to find a suitable primitive of a particular type
2082 -- operates on its own copy of the original renaming. As a result
2083 -- the original renaming is kept decoration and side-effect free.
2085 -- Inherit the overloaded status of the renamed subprogram name
2087 if Is_Overloaded
(Nam
) then
2088 Set_Is_Overloaded
(Alt_Nam
);
2089 Save_Interps
(Nam
, Alt_Nam
);
2092 -- The copied renaming is hidden from visibility to prevent the
2093 -- pollution of the enclosing context.
2095 Set_Defining_Unit_Name
(Alt_Spec
, Make_Temporary
(Loc
, 'R'));
2097 -- The types of all class-wide parameters must be changed to the
2100 Replace_Parameter_Types
(Alt_Spec
);
2102 -- Try to find a suitable primitive which matches the altered
2103 -- profile of the renaming specification.
2108 Nam
=> Name
(Alt_Ren
),
2109 New_S
=> Analyze_Subprogram_Specification
(Alt_Spec
),
2110 Is_Actual
=> Is_Actual
);
2112 -- Do not return Any_Id if the resolion of the altered profile
2113 -- failed as this complicates further checks on the caller side,
2114 -- return Empty instead.
2116 if Subp_Id
= Any_Id
then
2123 --------------------------
2124 -- Interpretation_Error --
2125 --------------------------
2127 procedure Interpretation_Error
(Subp_Id
: Entity_Id
) is
2129 Error_Msg_Sloc
:= Sloc
(Subp_Id
);
2131 if Is_Internal
(Subp_Id
) then
2133 ("\\possible interpretation: predefined & #",
2137 ("\\possible interpretation: & defined #", Spec
, Formal_Spec
);
2139 end Interpretation_Error
;
2141 ---------------------------
2142 -- Is_Intrinsic_Equality --
2143 ---------------------------
2145 function Is_Intrinsic_Equality
(Subp_Id
: Entity_Id
) return Boolean is
2148 Ekind
(Subp_Id
) = E_Operator
2149 and then Chars
(Subp_Id
) = Name_Op_Eq
2150 and then Is_Intrinsic_Subprogram
(Subp_Id
);
2151 end Is_Intrinsic_Equality
;
2153 ---------------------------
2154 -- Is_Suitable_Candidate --
2155 ---------------------------
2157 function Is_Suitable_Candidate
(Subp_Id
: Entity_Id
) return Boolean is
2159 if No
(Subp_Id
) then
2162 -- An intrinsic subprogram is never a good candidate. This is an
2163 -- indication of a missing primitive, either defined directly or
2164 -- inherited from a parent tagged type.
2166 elsif Is_Intrinsic_Subprogram
(Subp_Id
) then
2172 end Is_Suitable_Candidate
;
2176 Actual_Typ
: Entity_Id
:= Empty
;
2177 -- The actual class-wide type for Formal_Typ
2179 CW_Prim_OK
: Boolean;
2180 CW_Prim_Op
: Entity_Id
;
2181 -- The class-wide subprogram (if available) which corresponds to the
2182 -- renamed generic formal subprogram.
2184 Formal_Typ
: Entity_Id
:= Empty
;
2185 -- The generic formal type with unknown discriminants
2187 Root_Prim_OK
: Boolean;
2188 Root_Prim_Op
: Entity_Id
;
2189 -- The root type primitive (if available) which corresponds to the
2190 -- renamed generic formal subprogram.
2192 Root_Typ
: Entity_Id
:= Empty
;
2193 -- The root type of Actual_Typ
2195 Body_Decl
: Node_Id
;
2197 Prim_Op
: Entity_Id
;
2198 Spec_Decl
: Node_Id
;
2200 -- Start of processing for Build_Class_Wide_Wrapper
2203 -- Analyze the specification of the renaming in case the generation
2204 -- of the class-wide wrapper fails.
2206 Ren_Id
:= Analyze_Subprogram_Specification
(Spec
);
2209 -- Do not attempt to build a wrapper if the renaming is in error
2211 if Error_Posted
(Nam
) then
2215 -- Analyze the renamed name, but do not resolve it. The resolution is
2216 -- completed once a suitable subprogram is found.
2220 -- When the renamed name denotes the intrinsic operator equals, the
2221 -- name must be treated as overloaded. This allows for a potential
2222 -- match against the root type's predefined equality function.
2224 if Is_Intrinsic_Equality
(Entity
(Nam
)) then
2225 Set_Is_Overloaded
(Nam
);
2226 Collect_Interps
(Nam
);
2229 -- Step 1: Find the generic formal type with unknown discriminants
2230 -- and its corresponding class-wide actual type from the renamed
2231 -- generic formal subprogram.
2233 Formal
:= First_Formal
(Formal_Spec
);
2234 while Present
(Formal
) loop
2235 if Has_Unknown_Discriminants
(Etype
(Formal
))
2236 and then not Is_Class_Wide_Type
(Etype
(Formal
))
2237 and then Is_Class_Wide_Type
(Get_Instance_Of
(Etype
(Formal
)))
2239 Formal_Typ
:= Etype
(Formal
);
2240 Actual_Typ
:= Get_Instance_Of
(Formal_Typ
);
2241 Root_Typ
:= Etype
(Actual_Typ
);
2245 Next_Formal
(Formal
);
2248 -- The specification of the generic formal subprogram should always
2249 -- contain a formal type with unknown discriminants whose actual is
2250 -- a class-wide type, otherwise this indicates a failure in routine
2251 -- Has_Class_Wide_Actual.
2253 pragma Assert
(Present
(Formal_Typ
));
2255 -- Step 2: Find the proper class-wide subprogram or primitive which
2256 -- corresponds to the renamed generic formal subprogram.
2258 CW_Prim_Op
:= Find_Primitive
(Actual_Typ
);
2259 CW_Prim_OK
:= Is_Suitable_Candidate
(CW_Prim_Op
);
2260 Root_Prim_Op
:= Find_Primitive
(Root_Typ
);
2261 Root_Prim_OK
:= Is_Suitable_Candidate
(Root_Prim_Op
);
2263 -- The class-wide actual type has two subprograms which correspond to
2264 -- the renamed generic formal subprogram:
2266 -- with procedure Prim_Op (Param : Formal_Typ);
2268 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2269 -- procedure Prim_Op (Param : Actual_Typ'Class);
2271 -- Even though the declaration of the two subprograms is legal, a
2272 -- call to either one is ambiguous and therefore illegal.
2274 if CW_Prim_OK
and Root_Prim_OK
then
2276 -- A user-defined primitive has precedence over a predefined one
2278 if Is_Internal
(CW_Prim_Op
)
2279 and then not Is_Internal
(Root_Prim_Op
)
2281 Prim_Op
:= Root_Prim_Op
;
2283 elsif Is_Internal
(Root_Prim_Op
)
2284 and then not Is_Internal
(CW_Prim_Op
)
2286 Prim_Op
:= CW_Prim_Op
;
2288 elsif CW_Prim_Op
= Root_Prim_Op
then
2289 Prim_Op
:= Root_Prim_Op
;
2291 -- Otherwise both candidate subprograms are user-defined and
2296 ("ambiguous actual for generic subprogram &",
2298 Interpretation_Error
(Root_Prim_Op
);
2299 Interpretation_Error
(CW_Prim_Op
);
2303 elsif CW_Prim_OK
and not Root_Prim_OK
then
2304 Prim_Op
:= CW_Prim_Op
;
2306 elsif not CW_Prim_OK
and Root_Prim_OK
then
2307 Prim_Op
:= Root_Prim_Op
;
2309 -- An intrinsic equality may act as a suitable candidate in the case
2310 -- of a null type extension where the parent's equality is hidden. A
2311 -- call to an intrinsic equality is expanded as dispatching.
2313 elsif Present
(Root_Prim_Op
)
2314 and then Is_Intrinsic_Equality
(Root_Prim_Op
)
2316 Prim_Op
:= Root_Prim_Op
;
2318 -- Otherwise there are no candidate subprograms. Let the caller
2319 -- diagnose the error.
2325 -- At this point resolution has taken place and the name is no longer
2326 -- overloaded. Mark the primitive as referenced.
2328 Set_Is_Overloaded
(Name
(N
), False);
2329 Set_Referenced
(Prim_Op
);
2331 -- Step 3: Create the declaration and the body of the wrapper, insert
2332 -- all the pieces into the tree.
2335 Make_Subprogram_Declaration
(Loc
,
2336 Specification
=> Build_Spec
(Ren_Id
));
2337 Insert_Before_And_Analyze
(N
, Spec_Decl
);
2339 -- If the operator carries an Eliminated pragma, indicate that the
2340 -- wrapper is also to be eliminated, to prevent spurious error when
2341 -- using gnatelim on programs that include box-initialization of
2342 -- equality operators.
2344 Wrap_Id
:= Defining_Entity
(Spec_Decl
);
2345 Set_Is_Eliminated
(Wrap_Id
, Is_Eliminated
(Prim_Op
));
2348 Make_Subprogram_Body
(Loc
,
2349 Specification
=> Build_Spec
(Ren_Id
),
2350 Declarations
=> New_List
,
2351 Handled_Statement_Sequence
=>
2352 Make_Handled_Sequence_Of_Statements
(Loc
,
2353 Statements
=> New_List
(
2355 (Subp_Id
=> Prim_Op
,
2357 Parameter_Specifications
2358 (Specification
(Spec_Decl
))))));
2360 -- The generated body does not freeze and must be analyzed when the
2361 -- class-wide wrapper is frozen. The body is only needed if expansion
2364 if Expander_Active
then
2365 Append_Freeze_Action
(Wrap_Id
, Body_Decl
);
2368 -- Step 4: The subprogram renaming aliases the wrapper
2370 Rewrite
(Nam
, New_Occurrence_Of
(Wrap_Id
, Loc
));
2371 end Build_Class_Wide_Wrapper
;
2373 --------------------------
2374 -- Check_Null_Exclusion --
2375 --------------------------
2377 procedure Check_Null_Exclusion
2381 Ren_Formal
: Entity_Id
;
2382 Sub_Formal
: Entity_Id
;
2387 Ren_Formal
:= First_Formal
(Ren
);
2388 Sub_Formal
:= First_Formal
(Sub
);
2389 while Present
(Ren_Formal
) and then Present
(Sub_Formal
) loop
2390 if Has_Null_Exclusion
(Parent
(Ren_Formal
))
2392 not (Has_Null_Exclusion
(Parent
(Sub_Formal
))
2393 or else Can_Never_Be_Null
(Etype
(Sub_Formal
)))
2396 ("`NOT NULL` required for parameter &",
2397 Parent
(Sub_Formal
), Sub_Formal
);
2400 Next_Formal
(Ren_Formal
);
2401 Next_Formal
(Sub_Formal
);
2404 -- Return profile check
2406 if Nkind
(Parent
(Ren
)) = N_Function_Specification
2407 and then Nkind
(Parent
(Sub
)) = N_Function_Specification
2408 and then Has_Null_Exclusion
(Parent
(Ren
))
2409 and then not (Has_Null_Exclusion
(Parent
(Sub
))
2410 or else Can_Never_Be_Null
(Etype
(Sub
)))
2413 ("return must specify `NOT NULL`",
2414 Result_Definition
(Parent
(Sub
)));
2416 end Check_Null_Exclusion
;
2418 ---------------------------
2419 -- Freeze_Actual_Profile --
2420 ---------------------------
2422 procedure Freeze_Actual_Profile
is
2424 Has_Untagged_Inc
: Boolean;
2425 Instantiation_Node
: constant Node_Id
:= Parent
(N
);
2428 if Ada_Version
>= Ada_2012
then
2429 F
:= First_Formal
(Formal_Spec
);
2430 Has_Untagged_Inc
:= False;
2431 while Present
(F
) loop
2432 if Ekind
(Etype
(F
)) = E_Incomplete_Type
2433 and then not Is_Tagged_Type
(Etype
(F
))
2435 Has_Untagged_Inc
:= True;
2439 F
:= Next_Formal
(F
);
2442 if Ekind
(Formal_Spec
) = E_Function
2443 and then Ekind
(Etype
(Formal_Spec
)) = E_Incomplete_Type
2444 and then not Is_Tagged_Type
(Etype
(F
))
2446 Has_Untagged_Inc
:= True;
2449 if not Has_Untagged_Inc
then
2450 F
:= First_Formal
(Old_S
);
2451 while Present
(F
) loop
2452 Freeze_Before
(Instantiation_Node
, Etype
(F
));
2454 if Is_Incomplete_Or_Private_Type
(Etype
(F
))
2455 and then No
(Underlying_Type
(Etype
(F
)))
2457 -- Exclude generic types, or types derived from them.
2458 -- They will be frozen in the enclosing instance.
2460 if Is_Generic_Type
(Etype
(F
))
2461 or else Is_Generic_Type
(Root_Type
(Etype
(F
)))
2466 ("type& must be frozen before this point",
2467 Instantiation_Node
, Etype
(F
));
2471 F
:= Next_Formal
(F
);
2475 end Freeze_Actual_Profile
;
2477 ---------------------------
2478 -- Has_Class_Wide_Actual --
2479 ---------------------------
2481 function Has_Class_Wide_Actual
return Boolean is
2483 Formal_Typ
: Entity_Id
;
2487 Formal
:= First_Formal
(Formal_Spec
);
2488 while Present
(Formal
) loop
2489 Formal_Typ
:= Etype
(Formal
);
2491 if Has_Unknown_Discriminants
(Formal_Typ
)
2492 and then not Is_Class_Wide_Type
(Formal_Typ
)
2493 and then Is_Class_Wide_Type
(Get_Instance_Of
(Formal_Typ
))
2498 Next_Formal
(Formal
);
2503 end Has_Class_Wide_Actual
;
2505 -------------------------
2506 -- Original_Subprogram --
2507 -------------------------
2509 function Original_Subprogram
(Subp
: Entity_Id
) return Entity_Id
is
2510 Orig_Decl
: Node_Id
;
2511 Orig_Subp
: Entity_Id
;
2514 -- First case: renamed entity is itself a renaming
2516 if Present
(Alias
(Subp
)) then
2517 return Alias
(Subp
);
2519 elsif Nkind
(Unit_Declaration_Node
(Subp
)) = N_Subprogram_Declaration
2520 and then Present
(Corresponding_Body
(Unit_Declaration_Node
(Subp
)))
2522 -- Check if renamed entity is a renaming_as_body
2525 Unit_Declaration_Node
2526 (Corresponding_Body
(Unit_Declaration_Node
(Subp
)));
2528 if Nkind
(Orig_Decl
) = N_Subprogram_Renaming_Declaration
then
2529 Orig_Subp
:= Entity
(Name
(Orig_Decl
));
2531 if Orig_Subp
= Rename_Spec
then
2533 -- Circularity detected
2538 return (Original_Subprogram
(Orig_Subp
));
2546 end Original_Subprogram
;
2550 CW_Actual
: constant Boolean := Has_Class_Wide_Actual
;
2551 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2552 -- defaulted formal subprogram when the actual for a related formal
2553 -- type is class-wide.
2555 Inst_Node
: Node_Id
:= Empty
;
2558 -- Start of processing for Analyze_Subprogram_Renaming
2561 -- We must test for the attribute renaming case before the Analyze
2562 -- call because otherwise Sem_Attr will complain that the attribute
2563 -- is missing an argument when it is analyzed.
2565 if Nkind
(Nam
) = N_Attribute_Reference
then
2567 -- In the case of an abstract formal subprogram association, rewrite
2568 -- an actual given by a stream attribute as the name of the
2569 -- corresponding stream primitive of the type.
2571 -- In a generic context the stream operations are not generated, and
2572 -- this must be treated as a normal attribute reference, to be
2573 -- expanded in subsequent instantiations.
2576 and then Is_Abstract_Subprogram
(Formal_Spec
)
2577 and then Expander_Active
2580 Stream_Prim
: Entity_Id
;
2581 Prefix_Type
: constant Entity_Id
:= Entity
(Prefix
(Nam
));
2584 -- The class-wide forms of the stream attributes are not
2585 -- primitive dispatching operations (even though they
2586 -- internally dispatch to a stream attribute).
2588 if Is_Class_Wide_Type
(Prefix_Type
) then
2590 ("attribute must be a primitive dispatching operation",
2595 -- Retrieve the primitive subprogram associated with the
2596 -- attribute. This can only be a stream attribute, since those
2597 -- are the only ones that are dispatching (and the actual for
2598 -- an abstract formal subprogram must be dispatching
2602 case Attribute_Name
(Nam
) is
2605 Find_Prim_Op
(Prefix_Type
, TSS_Stream_Input
);
2608 Find_Prim_Op
(Prefix_Type
, TSS_Stream_Output
);
2611 Find_Prim_Op
(Prefix_Type
, TSS_Stream_Read
);
2614 Find_Prim_Op
(Prefix_Type
, TSS_Stream_Write
);
2617 ("attribute must be a primitive"
2618 & " dispatching operation", Nam
);
2624 -- If no operation was found, and the type is limited,
2625 -- the user should have defined one.
2627 when Program_Error
=>
2628 if Is_Limited_Type
(Prefix_Type
) then
2630 ("stream operation not defined for type&",
2634 -- Otherwise, compiler should have generated default
2641 -- Rewrite the attribute into the name of its corresponding
2642 -- primitive dispatching subprogram. We can then proceed with
2643 -- the usual processing for subprogram renamings.
2646 Prim_Name
: constant Node_Id
:=
2647 Make_Identifier
(Sloc
(Nam
),
2648 Chars
=> Chars
(Stream_Prim
));
2650 Set_Entity
(Prim_Name
, Stream_Prim
);
2651 Rewrite
(Nam
, Prim_Name
);
2656 -- Normal processing for a renaming of an attribute
2659 Attribute_Renaming
(N
);
2664 -- Check whether this declaration corresponds to the instantiation
2665 -- of a formal subprogram.
2667 -- If this is an instantiation, the corresponding actual is frozen and
2668 -- error messages can be made more precise. If this is a default
2669 -- subprogram, the entity is already established in the generic, and is
2670 -- not retrieved by visibility. If it is a default with a box, the
2671 -- candidate interpretations, if any, have been collected when building
2672 -- the renaming declaration. If overloaded, the proper interpretation is
2673 -- determined in Find_Renamed_Entity. If the entity is an operator,
2674 -- Find_Renamed_Entity applies additional visibility checks.
2677 Inst_Node
:= Unit_Declaration_Node
(Formal_Spec
);
2679 -- Check whether the renaming is for a defaulted actual subprogram
2680 -- with a class-wide actual.
2682 if CW_Actual
and then Box_Present
(Inst_Node
) then
2683 Build_Class_Wide_Wrapper
(New_S
, Old_S
);
2685 elsif Is_Entity_Name
(Nam
)
2686 and then Present
(Entity
(Nam
))
2687 and then not Comes_From_Source
(Nam
)
2688 and then not Is_Overloaded
(Nam
)
2690 Old_S
:= Entity
(Nam
);
2691 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2695 if Ekind
(Entity
(Nam
)) = E_Operator
then
2699 if Box_Present
(Inst_Node
) then
2700 Old_S
:= Find_Renamed_Entity
(N
, Name
(N
), New_S
, Is_Actual
);
2702 -- If there is an immediately visible homonym of the operator
2703 -- and the declaration has a default, this is worth a warning
2704 -- because the user probably did not intend to get the pre-
2705 -- defined operator, visible in the generic declaration. To
2706 -- find if there is an intended candidate, analyze the renaming
2707 -- again in the current context.
2709 elsif Scope
(Old_S
) = Standard_Standard
2710 and then Present
(Default_Name
(Inst_Node
))
2713 Decl
: constant Node_Id
:= New_Copy_Tree
(N
);
2717 Set_Entity
(Name
(Decl
), Empty
);
2718 Analyze
(Name
(Decl
));
2720 Find_Renamed_Entity
(Decl
, Name
(Decl
), New_S
, True);
2723 and then In_Open_Scopes
(Scope
(Hidden
))
2724 and then Is_Immediately_Visible
(Hidden
)
2725 and then Comes_From_Source
(Hidden
)
2726 and then Hidden
/= Old_S
2728 Error_Msg_Sloc
:= Sloc
(Hidden
);
2729 Error_Msg_N
("default subprogram is resolved " &
2730 "in the generic declaration " &
2731 "(RM 12.6(17))??", N
);
2732 Error_Msg_NE
("\and will not use & #??", N
, Hidden
);
2740 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2744 -- Renamed entity must be analyzed first, to avoid being hidden by
2745 -- new name (which might be the same in a generic instance).
2749 -- The renaming defines a new overloaded entity, which is analyzed
2750 -- like a subprogram declaration.
2752 New_S
:= Analyze_Subprogram_Specification
(Spec
);
2755 if Current_Scope
/= Standard_Standard
then
2756 Set_Is_Pure
(New_S
, Is_Pure
(Current_Scope
));
2759 -- Set SPARK mode from current context
2761 Set_SPARK_Pragma
(New_S
, SPARK_Mode_Pragma
);
2762 Set_SPARK_Pragma_Inherited
(New_S
, True);
2764 Rename_Spec
:= Find_Corresponding_Spec
(N
);
2766 -- Case of Renaming_As_Body
2768 if Present
(Rename_Spec
) then
2770 -- Renaming declaration is the completion of the declaration of
2771 -- Rename_Spec. We build an actual body for it at the freezing point.
2773 Set_Corresponding_Spec
(N
, Rename_Spec
);
2775 -- Deal with special case of stream functions of abstract types
2778 if Nkind
(Unit_Declaration_Node
(Rename_Spec
)) =
2779 N_Abstract_Subprogram_Declaration
2781 -- Input stream functions are abstract if the object type is
2782 -- abstract. Similarly, all default stream functions for an
2783 -- interface type are abstract. However, these subprograms may
2784 -- receive explicit declarations in representation clauses, making
2785 -- the attribute subprograms usable as defaults in subsequent
2787 -- In this case we rewrite the declaration to make the subprogram
2788 -- non-abstract. We remove the previous declaration, and insert
2789 -- the new one at the point of the renaming, to prevent premature
2790 -- access to unfrozen types. The new declaration reuses the
2791 -- specification of the previous one, and must not be analyzed.
2794 (Is_Primitive
(Entity
(Nam
))
2796 Is_Abstract_Type
(Find_Dispatching_Type
(Entity
(Nam
))));
2798 Old_Decl
: constant Node_Id
:=
2799 Unit_Declaration_Node
(Rename_Spec
);
2800 New_Decl
: constant Node_Id
:=
2801 Make_Subprogram_Declaration
(Sloc
(N
),
2803 Relocate_Node
(Specification
(Old_Decl
)));
2806 Insert_After
(N
, New_Decl
);
2807 Set_Is_Abstract_Subprogram
(Rename_Spec
, False);
2808 Set_Analyzed
(New_Decl
);
2812 Set_Corresponding_Body
(Unit_Declaration_Node
(Rename_Spec
), New_S
);
2814 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
2815 Error_Msg_N
("(Ada 83) renaming cannot serve as a body", N
);
2818 Set_Convention
(New_S
, Convention
(Rename_Spec
));
2819 Check_Fully_Conformant
(New_S
, Rename_Spec
);
2820 Set_Public_Status
(New_S
);
2822 -- The specification does not introduce new formals, but only
2823 -- repeats the formals of the original subprogram declaration.
2824 -- For cross-reference purposes, and for refactoring tools, we
2825 -- treat the formals of the renaming declaration as body formals.
2827 Reference_Body_Formals
(Rename_Spec
, New_S
);
2829 -- Indicate that the entity in the declaration functions like the
2830 -- corresponding body, and is not a new entity. The body will be
2831 -- constructed later at the freeze point, so indicate that the
2832 -- completion has not been seen yet.
2834 Set_Contract
(New_S
, Empty
);
2835 Set_Ekind
(New_S
, E_Subprogram_Body
);
2836 New_S
:= Rename_Spec
;
2837 Set_Has_Completion
(Rename_Spec
, False);
2839 -- Ada 2005: check overriding indicator
2841 if Present
(Overridden_Operation
(Rename_Spec
)) then
2842 if Must_Not_Override
(Specification
(N
)) then
2844 ("subprogram& overrides inherited operation",
2847 Style_Check
and then not Must_Override
(Specification
(N
))
2849 Style
.Missing_Overriding
(N
, Rename_Spec
);
2852 elsif Must_Override
(Specification
(N
)) then
2853 Error_Msg_NE
("subprogram& is not overriding", N
, Rename_Spec
);
2856 -- Normal subprogram renaming (not renaming as body)
2859 Generate_Definition
(New_S
);
2860 New_Overloaded_Entity
(New_S
);
2862 if Is_Entity_Name
(Nam
)
2863 and then Is_Intrinsic_Subprogram
(Entity
(Nam
))
2867 Check_Delayed_Subprogram
(New_S
);
2871 -- There is no need for elaboration checks on the new entity, which may
2872 -- be called before the next freezing point where the body will appear.
2873 -- Elaboration checks refer to the real entity, not the one created by
2874 -- the renaming declaration.
2876 Set_Kill_Elaboration_Checks
(New_S
, True);
2878 -- If we had a previous error, indicate a completely is present to stop
2879 -- junk cascaded messages, but don't take any further action.
2881 if Etype
(Nam
) = Any_Type
then
2882 Set_Has_Completion
(New_S
);
2885 -- Case where name has the form of a selected component
2887 elsif Nkind
(Nam
) = N_Selected_Component
then
2889 -- A name which has the form A.B can designate an entry of task A, a
2890 -- protected operation of protected object A, or finally a primitive
2891 -- operation of object A. In the later case, A is an object of some
2892 -- tagged type, or an access type that denotes one such. To further
2893 -- distinguish these cases, note that the scope of a task entry or
2894 -- protected operation is type of the prefix.
2896 -- The prefix could be an overloaded function call that returns both
2897 -- kinds of operations. This overloading pathology is left to the
2898 -- dedicated reader ???
2901 T
: constant Entity_Id
:= Etype
(Prefix
(Nam
));
2909 and then Is_Tagged_Type
(Designated_Type
(T
))))
2910 and then Scope
(Entity
(Selector_Name
(Nam
))) /= T
2912 Analyze_Renamed_Primitive_Operation
2913 (N
, New_S
, Present
(Rename_Spec
));
2917 -- Renamed entity is an entry or protected operation. For those
2918 -- cases an explicit body is built (at the point of freezing of
2919 -- this entity) that contains a call to the renamed entity.
2921 -- This is not allowed for renaming as body if the renamed
2922 -- spec is already frozen (see RM 8.5.4(5) for details).
2924 if Present
(Rename_Spec
) and then Is_Frozen
(Rename_Spec
) then
2926 ("renaming-as-body cannot rename entry as subprogram", N
);
2928 ("\since & is already frozen (RM 8.5.4(5))",
2931 Analyze_Renamed_Entry
(N
, New_S
, Present
(Rename_Spec
));
2938 -- Case where name is an explicit dereference X.all
2940 elsif Nkind
(Nam
) = N_Explicit_Dereference
then
2942 -- Renamed entity is designated by access_to_subprogram expression.
2943 -- Must build body to encapsulate call, as in the entry case.
2945 Analyze_Renamed_Dereference
(N
, New_S
, Present
(Rename_Spec
));
2948 -- Indexed component
2950 elsif Nkind
(Nam
) = N_Indexed_Component
then
2951 Analyze_Renamed_Family_Member
(N
, New_S
, Present
(Rename_Spec
));
2954 -- Character literal
2956 elsif Nkind
(Nam
) = N_Character_Literal
then
2957 Analyze_Renamed_Character
(N
, New_S
, Present
(Rename_Spec
));
2960 -- Only remaining case is where we have a non-entity name, or a renaming
2961 -- of some other non-overloadable entity.
2963 elsif not Is_Entity_Name
(Nam
)
2964 or else not Is_Overloadable
(Entity
(Nam
))
2966 -- Do not mention the renaming if it comes from an instance
2968 if not Is_Actual
then
2969 Error_Msg_N
("expect valid subprogram name in renaming", N
);
2971 Error_Msg_NE
("no visible subprogram for formal&", N
, Nam
);
2977 -- Find the renamed entity that matches the given specification. Disable
2978 -- Ada_83 because there is no requirement of full conformance between
2979 -- renamed entity and new entity, even though the same circuit is used.
2981 -- This is a bit of an odd case, which introduces a really irregular use
2982 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
2985 Ada_Version
:= Ada_Version_Type
'Max (Ada_Version
, Ada_95
);
2986 Ada_Version_Pragma
:= Empty
;
2987 Ada_Version_Explicit
:= Ada_Version
;
2990 Old_S
:= Find_Renamed_Entity
(N
, Name
(N
), New_S
, Is_Actual
);
2992 -- The visible operation may be an inherited abstract operation that
2993 -- was overridden in the private part, in which case a call will
2994 -- dispatch to the overriding operation. Use the overriding one in
2995 -- the renaming declaration, to prevent spurious errors below.
2997 if Is_Overloadable
(Old_S
)
2998 and then Is_Abstract_Subprogram
(Old_S
)
2999 and then No
(DTC_Entity
(Old_S
))
3000 and then Present
(Alias
(Old_S
))
3001 and then not Is_Abstract_Subprogram
(Alias
(Old_S
))
3002 and then Present
(Overridden_Operation
(Alias
(Old_S
)))
3004 Old_S
:= Alias
(Old_S
);
3007 -- When the renamed subprogram is overloaded and used as an actual
3008 -- of a generic, its entity is set to the first available homonym.
3009 -- We must first disambiguate the name, then set the proper entity.
3011 if Is_Actual
and then Is_Overloaded
(Nam
) then
3012 Set_Entity
(Nam
, Old_S
);
3016 -- Most common case: subprogram renames subprogram. No body is generated
3017 -- in this case, so we must indicate the declaration is complete as is.
3018 -- and inherit various attributes of the renamed subprogram.
3020 if No
(Rename_Spec
) then
3021 Set_Has_Completion
(New_S
);
3022 Set_Is_Imported
(New_S
, Is_Imported
(Entity
(Nam
)));
3023 Set_Is_Pure
(New_S
, Is_Pure
(Entity
(Nam
)));
3024 Set_Is_Preelaborated
(New_S
, Is_Preelaborated
(Entity
(Nam
)));
3026 -- A subprogram renaming is Ghost if the renamed entity is Ghost or
3027 -- the construct appears within a Ghost scope.
3029 if Is_Ghost_Entity
(Entity
(Nam
)) or else Within_Ghost_Scope
then
3030 Set_Is_Ghost_Entity
(New_S
);
3033 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3034 -- between a subprogram and its correct renaming.
3036 -- Note: the Any_Id check is a guard that prevents compiler crashes
3037 -- when performing a null exclusion check between a renaming and a
3038 -- renamed subprogram that has been found to be illegal.
3040 if Ada_Version
>= Ada_2005
and then Entity
(Nam
) /= Any_Id
then
3041 Check_Null_Exclusion
3043 Sub
=> Entity
(Nam
));
3046 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3047 -- overriding. The flag Requires_Overriding is set very selectively
3048 -- and misses some other illegal cases. The additional conditions
3049 -- checked below are sufficient but not necessary ???
3051 -- The rule does not apply to the renaming generated for an actual
3052 -- subprogram in an instance.
3057 -- Guard against previous errors, and omit renamings of predefined
3060 elsif not Ekind_In
(Old_S
, E_Function
, E_Procedure
) then
3063 elsif Requires_Overriding
(Old_S
)
3065 (Is_Abstract_Subprogram
(Old_S
)
3066 and then Present
(Find_Dispatching_Type
(Old_S
))
3068 not Is_Abstract_Type
(Find_Dispatching_Type
(Old_S
)))
3071 ("renamed entity cannot be "
3072 & "subprogram that requires overriding (RM 8.5.4 (5.1))", N
);
3076 if Old_S
/= Any_Id
then
3077 if Is_Actual
and then From_Default
(N
) then
3079 -- This is an implicit reference to the default actual
3081 Generate_Reference
(Old_S
, Nam
, Typ
=> 'i', Force
=> True);
3084 Generate_Reference
(Old_S
, Nam
);
3087 Check_Internal_Protected_Use
(N
, Old_S
);
3089 -- For a renaming-as-body, require subtype conformance, but if the
3090 -- declaration being completed has not been frozen, then inherit the
3091 -- convention of the renamed subprogram prior to checking conformance
3092 -- (unless the renaming has an explicit convention established; the
3093 -- rule stated in the RM doesn't seem to address this ???).
3095 if Present
(Rename_Spec
) then
3096 Generate_Reference
(Rename_Spec
, Defining_Entity
(Spec
), 'b');
3097 Style
.Check_Identifier
(Defining_Entity
(Spec
), Rename_Spec
);
3099 if not Is_Frozen
(Rename_Spec
) then
3100 if not Has_Convention_Pragma
(Rename_Spec
) then
3101 Set_Convention
(New_S
, Convention
(Old_S
));
3104 if Ekind
(Old_S
) /= E_Operator
then
3105 Check_Mode_Conformant
(New_S
, Old_S
, Spec
);
3108 if Original_Subprogram
(Old_S
) = Rename_Spec
then
3109 Error_Msg_N
("unfrozen subprogram cannot rename itself ", N
);
3112 Check_Subtype_Conformant
(New_S
, Old_S
, Spec
);
3115 Check_Frozen_Renaming
(N
, Rename_Spec
);
3117 -- Check explicitly that renamed entity is not intrinsic, because
3118 -- in a generic the renamed body is not built. In this case,
3119 -- the renaming_as_body is a completion.
3121 if Inside_A_Generic
then
3122 if Is_Frozen
(Rename_Spec
)
3123 and then Is_Intrinsic_Subprogram
(Old_S
)
3126 ("subprogram in renaming_as_body cannot be intrinsic",
3130 Set_Has_Completion
(Rename_Spec
);
3133 elsif Ekind
(Old_S
) /= E_Operator
then
3135 -- If this a defaulted subprogram for a class-wide actual there is
3136 -- no check for mode conformance, given that the signatures don't
3137 -- match (the source mentions T but the actual mentions T'Class).
3141 elsif not Is_Actual
or else No
(Enclosing_Instance
) then
3142 Check_Mode_Conformant
(New_S
, Old_S
);
3145 if Is_Actual
and then Error_Posted
(New_S
) then
3146 Error_Msg_NE
("invalid actual subprogram: & #!", N
, Old_S
);
3150 if No
(Rename_Spec
) then
3152 -- The parameter profile of the new entity is that of the renamed
3153 -- entity: the subtypes given in the specification are irrelevant.
3155 Inherit_Renamed_Profile
(New_S
, Old_S
);
3157 -- A call to the subprogram is transformed into a call to the
3158 -- renamed entity. This is transitive if the renamed entity is
3159 -- itself a renaming.
3161 if Present
(Alias
(Old_S
)) then
3162 Set_Alias
(New_S
, Alias
(Old_S
));
3164 Set_Alias
(New_S
, Old_S
);
3167 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3168 -- renaming as body, since the entity in this case is not an
3169 -- intrinsic (it calls an intrinsic, but we have a real body for
3170 -- this call, and it is in this body that the required intrinsic
3171 -- processing will take place).
3173 -- Also, if this is a renaming of inequality, the renamed operator
3174 -- is intrinsic, but what matters is the corresponding equality
3175 -- operator, which may be user-defined.
3177 Set_Is_Intrinsic_Subprogram
3179 Is_Intrinsic_Subprogram
(Old_S
)
3181 (Chars
(Old_S
) /= Name_Op_Ne
3182 or else Ekind
(Old_S
) = E_Operator
3183 or else Is_Intrinsic_Subprogram
3184 (Corresponding_Equality
(Old_S
))));
3186 if Ekind
(Alias
(New_S
)) = E_Operator
then
3187 Set_Has_Delayed_Freeze
(New_S
, False);
3190 -- If the renaming corresponds to an association for an abstract
3191 -- formal subprogram, then various attributes must be set to
3192 -- indicate that the renaming is an abstract dispatching operation
3193 -- with a controlling type.
3195 if Is_Actual
and then Is_Abstract_Subprogram
(Formal_Spec
) then
3197 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3198 -- see it as corresponding to a generic association for a
3199 -- formal abstract subprogram
3201 Set_Is_Abstract_Subprogram
(New_S
);
3204 New_S_Ctrl_Type
: constant Entity_Id
:=
3205 Find_Dispatching_Type
(New_S
);
3206 Old_S_Ctrl_Type
: constant Entity_Id
:=
3207 Find_Dispatching_Type
(Old_S
);
3210 if Old_S_Ctrl_Type
/= New_S_Ctrl_Type
then
3212 ("actual must be dispatching subprogram for type&",
3213 Nam
, New_S_Ctrl_Type
);
3216 Set_Is_Dispatching_Operation
(New_S
);
3217 Check_Controlling_Formals
(New_S_Ctrl_Type
, New_S
);
3219 -- If the actual in the formal subprogram is itself a
3220 -- formal abstract subprogram association, there's no
3221 -- dispatch table component or position to inherit.
3223 if Present
(DTC_Entity
(Old_S
)) then
3224 Set_DTC_Entity
(New_S
, DTC_Entity
(Old_S
));
3225 Set_DT_Position
(New_S
, DT_Position
(Old_S
));
3235 -- The following is illegal, because F hides whatever other F may
3237 -- function F (...) renames F;
3240 or else (Nkind
(Nam
) /= N_Expanded_Name
3241 and then Chars
(Old_S
) = Chars
(New_S
))
3243 Error_Msg_N
("subprogram cannot rename itself", N
);
3245 -- This is illegal even if we use a selector:
3246 -- function F (...) renames Pkg.F;
3247 -- because F is still hidden.
3249 elsif Nkind
(Nam
) = N_Expanded_Name
3250 and then Entity
(Prefix
(Nam
)) = Current_Scope
3251 and then Chars
(Selector_Name
(Nam
)) = Chars
(New_S
)
3253 -- This is an error, but we overlook the error and accept the
3254 -- renaming if the special Overriding_Renamings mode is in effect.
3256 if not Overriding_Renamings
then
3258 ("implicit operation& is not visible (RM 8.3 (15))",
3263 Set_Convention
(New_S
, Convention
(Old_S
));
3265 if Is_Abstract_Subprogram
(Old_S
) then
3266 if Present
(Rename_Spec
) then
3268 ("a renaming-as-body cannot rename an abstract subprogram",
3270 Set_Has_Completion
(Rename_Spec
);
3272 Set_Is_Abstract_Subprogram
(New_S
);
3276 Check_Library_Unit_Renaming
(N
, Old_S
);
3278 -- Pathological case: procedure renames entry in the scope of its
3279 -- task. Entry is given by simple name, but body must be built for
3280 -- procedure. Of course if called it will deadlock.
3282 if Ekind
(Old_S
) = E_Entry
then
3283 Set_Has_Completion
(New_S
, False);
3284 Set_Alias
(New_S
, Empty
);
3288 Freeze_Before
(N
, Old_S
);
3289 Freeze_Actual_Profile
;
3290 Set_Has_Delayed_Freeze
(New_S
, False);
3291 Freeze_Before
(N
, New_S
);
3293 -- An abstract subprogram is only allowed as an actual in the case
3294 -- where the formal subprogram is also abstract.
3296 if (Ekind
(Old_S
) = E_Procedure
or else Ekind
(Old_S
) = E_Function
)
3297 and then Is_Abstract_Subprogram
(Old_S
)
3298 and then not Is_Abstract_Subprogram
(Formal_Spec
)
3301 ("abstract subprogram not allowed as generic actual", Nam
);
3306 -- A common error is to assume that implicit operators for types are
3307 -- defined in Standard, or in the scope of a subtype. In those cases
3308 -- where the renamed entity is given with an expanded name, it is
3309 -- worth mentioning that operators for the type are not declared in
3310 -- the scope given by the prefix.
3312 if Nkind
(Nam
) = N_Expanded_Name
3313 and then Nkind
(Selector_Name
(Nam
)) = N_Operator_Symbol
3314 and then Scope
(Entity
(Nam
)) = Standard_Standard
3317 T
: constant Entity_Id
:=
3318 Base_Type
(Etype
(First_Formal
(New_S
)));
3320 Error_Msg_Node_2
:= Prefix
(Nam
);
3322 ("operator for type& is not declared in&", Prefix
(Nam
), T
);
3327 ("no visible subprogram matches the specification for&",
3331 if Present
(Candidate_Renaming
) then
3338 F1
:= First_Formal
(Candidate_Renaming
);
3339 F2
:= First_Formal
(New_S
);
3340 T1
:= First_Subtype
(Etype
(F1
));
3341 while Present
(F1
) and then Present
(F2
) loop
3346 if Present
(F1
) and then Present
(Default_Value
(F1
)) then
3347 if Present
(Next_Formal
(F1
)) then
3349 ("\missing specification for &" &
3350 " and other formals with defaults", Spec
, F1
);
3353 ("\missing specification for &", Spec
, F1
);
3357 if Nkind
(Nam
) = N_Operator_Symbol
3358 and then From_Default
(N
)
3360 Error_Msg_Node_2
:= T1
;
3362 ("default & on & is not directly visible",
3369 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3370 -- controlling access parameters are known non-null for the renamed
3371 -- subprogram. Test also applies to a subprogram instantiation that
3372 -- is dispatching. Test is skipped if some previous error was detected
3373 -- that set Old_S to Any_Id.
3375 if Ada_Version
>= Ada_2005
3376 and then Old_S
/= Any_Id
3377 and then not Is_Dispatching_Operation
(Old_S
)
3378 and then Is_Dispatching_Operation
(New_S
)
3385 Old_F
:= First_Formal
(Old_S
);
3386 New_F
:= First_Formal
(New_S
);
3387 while Present
(Old_F
) loop
3388 if Ekind
(Etype
(Old_F
)) = E_Anonymous_Access_Type
3389 and then Is_Controlling_Formal
(New_F
)
3390 and then not Can_Never_Be_Null
(Old_F
)
3392 Error_Msg_N
("access parameter is controlling,", New_F
);
3394 ("\corresponding parameter of& "
3395 & "must be explicitly null excluding", New_F
, Old_S
);
3398 Next_Formal
(Old_F
);
3399 Next_Formal
(New_F
);
3404 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3405 -- is to warn if an operator is being renamed as a different operator.
3406 -- If the operator is predefined, examine the kind of the entity, not
3407 -- the abbreviated declaration in Standard.
3409 if Comes_From_Source
(N
)
3410 and then Present
(Old_S
)
3411 and then (Nkind
(Old_S
) = N_Defining_Operator_Symbol
3412 or else Ekind
(Old_S
) = E_Operator
)
3413 and then Nkind
(New_S
) = N_Defining_Operator_Symbol
3414 and then Chars
(Old_S
) /= Chars
(New_S
)
3417 ("& is being renamed as a different operator??", N
, Old_S
);
3420 -- Check for renaming of obsolescent subprogram
3422 Check_Obsolescent_2005_Entity
(Entity
(Nam
), Nam
);
3424 -- Another warning or some utility: if the new subprogram as the same
3425 -- name as the old one, the old one is not hidden by an outer homograph,
3426 -- the new one is not a public symbol, and the old one is otherwise
3427 -- directly visible, the renaming is superfluous.
3429 if Chars
(Old_S
) = Chars
(New_S
)
3430 and then Comes_From_Source
(N
)
3431 and then Scope
(Old_S
) /= Standard_Standard
3432 and then Warn_On_Redundant_Constructs
3433 and then (Is_Immediately_Visible
(Old_S
)
3434 or else Is_Potentially_Use_Visible
(Old_S
))
3435 and then Is_Overloadable
(Current_Scope
)
3436 and then Chars
(Current_Scope
) /= Chars
(Old_S
)
3439 ("redundant renaming, entity is directly visible?r?", Name
(N
));
3442 -- Implementation-defined aspect specifications can appear in a renaming
3443 -- declaration, but not language-defined ones. The call to procedure
3444 -- Analyze_Aspect_Specifications will take care of this error check.
3446 if Has_Aspects
(N
) then
3447 Analyze_Aspect_Specifications
(N
, New_S
);
3450 Ada_Version
:= Save_AV
;
3451 Ada_Version_Pragma
:= Save_AVP
;
3452 Ada_Version_Explicit
:= Save_AV_Exp
;
3453 end Analyze_Subprogram_Renaming
;
3455 -------------------------
3456 -- Analyze_Use_Package --
3457 -------------------------
3459 -- Resolve the package names in the use clause, and make all the visible
3460 -- entities defined in the package potentially use-visible. If the package
3461 -- is already in use from a previous use clause, its visible entities are
3462 -- already use-visible. In that case, mark the occurrence as a redundant
3463 -- use. If the package is an open scope, i.e. if the use clause occurs
3464 -- within the package itself, ignore it.
3466 procedure Analyze_Use_Package
(N
: Node_Id
) is
3467 Pack_Name
: Node_Id
;
3470 -- Start of processing for Analyze_Use_Package
3473 Check_SPARK_05_Restriction
("use clause is not allowed", N
);
3475 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
3477 -- Use clause not allowed in a spec of a predefined package declaration
3478 -- except that packages whose file name starts a-n are OK (these are
3479 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3481 if Is_Predefined_File_Name
(Unit_File_Name
(Current_Sem_Unit
))
3482 and then Name_Buffer
(1 .. 3) /= "a-n"
3484 Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) = N_Package_Declaration
3486 Error_Msg_N
("use clause not allowed in predefined spec", N
);
3489 -- Chain clause to list of use clauses in current scope
3491 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
3492 Chain_Use_Clause
(N
);
3495 -- Loop through package names to identify referenced packages
3497 Pack_Name
:= First
(Names
(N
));
3498 while Present
(Pack_Name
) loop
3499 Analyze
(Pack_Name
);
3501 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3502 and then Nkind
(Pack_Name
) = N_Expanded_Name
3508 Pref
:= Prefix
(Pack_Name
);
3509 while Nkind
(Pref
) = N_Expanded_Name
loop
3510 Pref
:= Prefix
(Pref
);
3513 if Entity
(Pref
) = Standard_Standard
then
3515 ("predefined package Standard cannot appear"
3516 & " in a context clause", Pref
);
3524 -- Loop through package names to mark all entities as potentially
3527 Pack_Name
:= First
(Names
(N
));
3528 while Present
(Pack_Name
) loop
3529 if Is_Entity_Name
(Pack_Name
) then
3530 Pack
:= Entity
(Pack_Name
);
3532 if Ekind
(Pack
) /= E_Package
and then Etype
(Pack
) /= Any_Type
then
3533 if Ekind
(Pack
) = E_Generic_Package
then
3534 Error_Msg_N
-- CODEFIX
3535 ("a generic package is not allowed in a use clause",
3538 Error_Msg_N
("& is not a usable package", Pack_Name
);
3542 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3543 Check_In_Previous_With_Clause
(N
, Pack_Name
);
3546 if Applicable_Use
(Pack_Name
) then
3547 Use_One_Package
(Pack
, N
);
3551 -- Report error because name denotes something other than a package
3554 Error_Msg_N
("& is not a package", Pack_Name
);
3559 end Analyze_Use_Package
;
3561 ----------------------
3562 -- Analyze_Use_Type --
3563 ----------------------
3565 procedure Analyze_Use_Type
(N
: Node_Id
) is
3570 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
3572 -- Chain clause to list of use clauses in current scope
3574 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
3575 Chain_Use_Clause
(N
);
3578 -- If the Used_Operations list is already initialized, the clause has
3579 -- been analyzed previously, and it is begin reinstalled, for example
3580 -- when the clause appears in a package spec and we are compiling the
3581 -- corresponding package body. In that case, make the entities on the
3582 -- existing list use_visible, and mark the corresponding types In_Use.
3584 if Present
(Used_Operations
(N
)) then
3590 Mark
:= First
(Subtype_Marks
(N
));
3591 while Present
(Mark
) loop
3592 Use_One_Type
(Mark
, Installed
=> True);
3596 Elmt
:= First_Elmt
(Used_Operations
(N
));
3597 while Present
(Elmt
) loop
3598 Set_Is_Potentially_Use_Visible
(Node
(Elmt
));
3606 -- Otherwise, create new list and attach to it the operations that
3607 -- are made use-visible by the clause.
3609 Set_Used_Operations
(N
, New_Elmt_List
);
3610 Id
:= First
(Subtype_Marks
(N
));
3611 while Present
(Id
) loop
3615 if E
/= Any_Type
then
3618 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3619 if Nkind
(Id
) = N_Identifier
then
3620 Error_Msg_N
("type is not directly visible", Id
);
3622 elsif Is_Child_Unit
(Scope
(E
))
3623 and then Scope
(E
) /= System_Aux_Id
3625 Check_In_Previous_With_Clause
(N
, Prefix
(Id
));
3630 -- If the use_type_clause appears in a compilation unit context,
3631 -- check whether it comes from a unit that may appear in a
3632 -- limited_with_clause, for a better error message.
3634 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3635 and then Nkind
(Id
) /= N_Identifier
3641 function Mentioned
(Nam
: Node_Id
) return Boolean;
3642 -- Check whether the prefix of expanded name for the type
3643 -- appears in the prefix of some limited_with_clause.
3649 function Mentioned
(Nam
: Node_Id
) return Boolean is
3651 return Nkind
(Name
(Item
)) = N_Selected_Component
3652 and then Chars
(Prefix
(Name
(Item
))) = Chars
(Nam
);
3656 Pref
:= Prefix
(Id
);
3657 Item
:= First
(Context_Items
(Parent
(N
)));
3658 while Present
(Item
) and then Item
/= N
loop
3659 if Nkind
(Item
) = N_With_Clause
3660 and then Limited_Present
(Item
)
3661 and then Mentioned
(Pref
)
3664 (Get_Msg_Id
, "premature usage of incomplete type");
3675 end Analyze_Use_Type
;
3677 --------------------
3678 -- Applicable_Use --
3679 --------------------
3681 function Applicable_Use
(Pack_Name
: Node_Id
) return Boolean is
3682 Pack
: constant Entity_Id
:= Entity
(Pack_Name
);
3685 if In_Open_Scopes
(Pack
) then
3686 if Warn_On_Redundant_Constructs
and then Pack
= Current_Scope
then
3687 Error_Msg_NE
-- CODEFIX
3688 ("& is already use-visible within itself?r?", Pack_Name
, Pack
);
3693 elsif In_Use
(Pack
) then
3694 Note_Redundant_Use
(Pack_Name
);
3697 elsif Present
(Renamed_Object
(Pack
))
3698 and then In_Use
(Renamed_Object
(Pack
))
3700 Note_Redundant_Use
(Pack_Name
);
3708 ------------------------
3709 -- Attribute_Renaming --
3710 ------------------------
3712 procedure Attribute_Renaming
(N
: Node_Id
) is
3713 Loc
: constant Source_Ptr
:= Sloc
(N
);
3714 Nam
: constant Node_Id
:= Name
(N
);
3715 Spec
: constant Node_Id
:= Specification
(N
);
3716 New_S
: constant Entity_Id
:= Defining_Unit_Name
(Spec
);
3717 Aname
: constant Name_Id
:= Attribute_Name
(Nam
);
3719 Form_Num
: Nat
:= 0;
3720 Expr_List
: List_Id
:= No_List
;
3722 Attr_Node
: Node_Id
;
3723 Body_Node
: Node_Id
;
3724 Param_Spec
: Node_Id
;
3727 Generate_Definition
(New_S
);
3729 -- This procedure is called in the context of subprogram renaming, and
3730 -- thus the attribute must be one that is a subprogram. All of those
3731 -- have at least one formal parameter, with the exceptions of the GNAT
3732 -- attribute 'Img, which GNAT treats as renameable.
3734 if not Is_Non_Empty_List
(Parameter_Specifications
(Spec
)) then
3735 if Aname
/= Name_Img
then
3737 ("subprogram renaming an attribute must have formals", N
);
3742 Param_Spec
:= First
(Parameter_Specifications
(Spec
));
3743 while Present
(Param_Spec
) loop
3744 Form_Num
:= Form_Num
+ 1;
3746 if Nkind
(Parameter_Type
(Param_Spec
)) /= N_Access_Definition
then
3747 Find_Type
(Parameter_Type
(Param_Spec
));
3749 -- The profile of the new entity denotes the base type (s) of
3750 -- the types given in the specification. For access parameters
3751 -- there are no subtypes involved.
3753 Rewrite
(Parameter_Type
(Param_Spec
),
3755 (Base_Type
(Entity
(Parameter_Type
(Param_Spec
))), Loc
));
3758 if No
(Expr_List
) then
3759 Expr_List
:= New_List
;
3762 Append_To
(Expr_List
,
3763 Make_Identifier
(Loc
,
3764 Chars
=> Chars
(Defining_Identifier
(Param_Spec
))));
3766 -- The expressions in the attribute reference are not freeze
3767 -- points. Neither is the attribute as a whole, see below.
3769 Set_Must_Not_Freeze
(Last
(Expr_List
));
3774 -- Immediate error if too many formals. Other mismatches in number or
3775 -- types of parameters are detected when we analyze the body of the
3776 -- subprogram that we construct.
3778 if Form_Num
> 2 then
3779 Error_Msg_N
("too many formals for attribute", N
);
3781 -- Error if the attribute reference has expressions that look like
3782 -- formal parameters.
3784 elsif Present
(Expressions
(Nam
)) then
3785 Error_Msg_N
("illegal expressions in attribute reference", Nam
);
3788 Nam_In
(Aname
, Name_Compose
, Name_Exponent
, Name_Leading_Part
,
3789 Name_Pos
, Name_Round
, Name_Scaling
,
3792 if Nkind
(N
) = N_Subprogram_Renaming_Declaration
3793 and then Present
(Corresponding_Formal_Spec
(N
))
3796 ("generic actual cannot be attribute involving universal type",
3800 ("attribute involving a universal type cannot be renamed",
3805 -- Rewrite attribute node to have a list of expressions corresponding to
3806 -- the subprogram formals. A renaming declaration is not a freeze point,
3807 -- and the analysis of the attribute reference should not freeze the
3808 -- type of the prefix. We use the original node in the renaming so that
3809 -- its source location is preserved, and checks on stream attributes are
3810 -- properly applied.
3812 Attr_Node
:= Relocate_Node
(Nam
);
3813 Set_Expressions
(Attr_Node
, Expr_List
);
3815 Set_Must_Not_Freeze
(Attr_Node
);
3816 Set_Must_Not_Freeze
(Prefix
(Nam
));
3818 -- Case of renaming a function
3820 if Nkind
(Spec
) = N_Function_Specification
then
3821 if Is_Procedure_Attribute_Name
(Aname
) then
3822 Error_Msg_N
("attribute can only be renamed as procedure", Nam
);
3826 Find_Type
(Result_Definition
(Spec
));
3827 Rewrite
(Result_Definition
(Spec
),
3829 (Base_Type
(Entity
(Result_Definition
(Spec
))), Loc
));
3832 Make_Subprogram_Body
(Loc
,
3833 Specification
=> Spec
,
3834 Declarations
=> New_List
,
3835 Handled_Statement_Sequence
=>
3836 Make_Handled_Sequence_Of_Statements
(Loc
,
3837 Statements
=> New_List
(
3838 Make_Simple_Return_Statement
(Loc
,
3839 Expression
=> Attr_Node
))));
3841 -- Case of renaming a procedure
3844 if not Is_Procedure_Attribute_Name
(Aname
) then
3845 Error_Msg_N
("attribute can only be renamed as function", Nam
);
3850 Make_Subprogram_Body
(Loc
,
3851 Specification
=> Spec
,
3852 Declarations
=> New_List
,
3853 Handled_Statement_Sequence
=>
3854 Make_Handled_Sequence_Of_Statements
(Loc
,
3855 Statements
=> New_List
(Attr_Node
)));
3858 -- In case of tagged types we add the body of the generated function to
3859 -- the freezing actions of the type (because in the general case such
3860 -- type is still not frozen). We exclude from this processing generic
3861 -- formal subprograms found in instantiations.
3863 -- We must exclude VM targets and restricted run-time libraries because
3864 -- entity AST_Handler is defined in package System.Aux_Dec which is not
3865 -- available in those platforms. Note that we cannot use the function
3866 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
3867 -- the ZFP run-time library is not defined as a profile, and we do not
3868 -- want to deal with AST_Handler in ZFP mode.
3870 if VM_Target
= No_VM
3871 and then not Configurable_Run_Time_Mode
3872 and then not Present
(Corresponding_Formal_Spec
(N
))
3873 and then Etype
(Nam
) /= RTE
(RE_AST_Handler
)
3876 P
: constant Node_Id
:= Prefix
(Nam
);
3879 -- The prefix of 'Img is an object that is evaluated for each call
3880 -- of the function that renames it.
3882 if Aname
= Name_Img
then
3883 Preanalyze_And_Resolve
(P
);
3885 -- For all other attribute renamings, the prefix is a subtype
3891 -- If the target type is not yet frozen, add the body to the
3892 -- actions to be elaborated at freeze time.
3894 if Is_Tagged_Type
(Etype
(P
))
3895 and then In_Open_Scopes
(Scope
(Etype
(P
)))
3897 Ensure_Freeze_Node
(Etype
(P
));
3898 Append_Freeze_Action
(Etype
(P
), Body_Node
);
3900 Rewrite
(N
, Body_Node
);
3902 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
3906 -- Generic formal subprograms or AST_Handler renaming
3909 Rewrite
(N
, Body_Node
);
3911 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
3914 if Is_Compilation_Unit
(New_S
) then
3916 ("a library unit can only rename another library unit", N
);
3919 -- We suppress elaboration warnings for the resulting entity, since
3920 -- clearly they are not needed, and more particularly, in the case
3921 -- of a generic formal subprogram, the resulting entity can appear
3922 -- after the instantiation itself, and thus look like a bogus case
3923 -- of access before elaboration.
3925 Set_Suppress_Elaboration_Warnings
(New_S
);
3927 end Attribute_Renaming
;
3929 ----------------------
3930 -- Chain_Use_Clause --
3931 ----------------------
3933 procedure Chain_Use_Clause
(N
: Node_Id
) is
3935 Level
: Int
:= Scope_Stack
.Last
;
3938 if not Is_Compilation_Unit
(Current_Scope
)
3939 or else not Is_Child_Unit
(Current_Scope
)
3941 null; -- Common case
3943 elsif Defining_Entity
(Parent
(N
)) = Current_Scope
then
3944 null; -- Common case for compilation unit
3947 -- If declaration appears in some other scope, it must be in some
3948 -- parent unit when compiling a child.
3950 Pack
:= Defining_Entity
(Parent
(N
));
3951 if not In_Open_Scopes
(Pack
) then
3952 null; -- default as well
3955 -- Find entry for parent unit in scope stack
3957 while Scope_Stack
.Table
(Level
).Entity
/= Pack
loop
3963 Set_Next_Use_Clause
(N
,
3964 Scope_Stack
.Table
(Level
).First_Use_Clause
);
3965 Scope_Stack
.Table
(Level
).First_Use_Clause
:= N
;
3966 end Chain_Use_Clause
;
3968 ---------------------------
3969 -- Check_Frozen_Renaming --
3970 ---------------------------
3972 procedure Check_Frozen_Renaming
(N
: Node_Id
; Subp
: Entity_Id
) is
3977 if Is_Frozen
(Subp
) and then not Has_Completion
(Subp
) then
3980 (Parent
(Declaration_Node
(Subp
)), Defining_Entity
(N
));
3982 if Is_Entity_Name
(Name
(N
)) then
3983 Old_S
:= Entity
(Name
(N
));
3985 if not Is_Frozen
(Old_S
)
3986 and then Operating_Mode
/= Check_Semantics
3988 Append_Freeze_Action
(Old_S
, B_Node
);
3990 Insert_After
(N
, B_Node
);
3994 if Is_Intrinsic_Subprogram
(Old_S
) and then not In_Instance
then
3996 ("subprogram used in renaming_as_body cannot be intrinsic",
4001 Insert_After
(N
, B_Node
);
4005 end Check_Frozen_Renaming
;
4007 -------------------------------
4008 -- Set_Entity_Or_Discriminal --
4009 -------------------------------
4011 procedure Set_Entity_Or_Discriminal
(N
: Node_Id
; E
: Entity_Id
) is
4015 -- If the entity is not a discriminant, or else expansion is disabled,
4016 -- simply set the entity.
4018 if not In_Spec_Expression
4019 or else Ekind
(E
) /= E_Discriminant
4020 or else Inside_A_Generic
4022 Set_Entity_With_Checks
(N
, E
);
4024 -- The replacement of a discriminant by the corresponding discriminal
4025 -- is not done for a task discriminant that appears in a default
4026 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4027 -- for details on their handling.
4029 elsif Is_Concurrent_Type
(Scope
(E
)) then
4032 and then not Nkind_In
(P
, N_Parameter_Specification
,
4033 N_Component_Declaration
)
4039 and then Nkind
(P
) = N_Parameter_Specification
4044 Set_Entity
(N
, Discriminal
(E
));
4047 -- Otherwise, this is a discriminant in a context in which
4048 -- it is a reference to the corresponding parameter of the
4049 -- init proc for the enclosing type.
4052 Set_Entity
(N
, Discriminal
(E
));
4054 end Set_Entity_Or_Discriminal
;
4056 -----------------------------------
4057 -- Check_In_Previous_With_Clause --
4058 -----------------------------------
4060 procedure Check_In_Previous_With_Clause
4064 Pack
: constant Entity_Id
:= Entity
(Original_Node
(Nam
));
4069 Item
:= First
(Context_Items
(Parent
(N
)));
4070 while Present
(Item
) and then Item
/= N
loop
4071 if Nkind
(Item
) = N_With_Clause
4073 -- Protect the frontend against previous critical errors
4075 and then Nkind
(Name
(Item
)) /= N_Selected_Component
4076 and then Entity
(Name
(Item
)) = Pack
4080 -- Find root library unit in with_clause
4082 while Nkind
(Par
) = N_Expanded_Name
loop
4083 Par
:= Prefix
(Par
);
4086 if Is_Child_Unit
(Entity
(Original_Node
(Par
))) then
4087 Error_Msg_NE
("& is not directly visible", Par
, Entity
(Par
));
4096 -- On exit, package is not mentioned in a previous with_clause.
4097 -- Check if its prefix is.
4099 if Nkind
(Nam
) = N_Expanded_Name
then
4100 Check_In_Previous_With_Clause
(N
, Prefix
(Nam
));
4102 elsif Pack
/= Any_Id
then
4103 Error_Msg_NE
("& is not visible", Nam
, Pack
);
4105 end Check_In_Previous_With_Clause
;
4107 ---------------------------------
4108 -- Check_Library_Unit_Renaming --
4109 ---------------------------------
4111 procedure Check_Library_Unit_Renaming
(N
: Node_Id
; Old_E
: Entity_Id
) is
4115 if Nkind
(Parent
(N
)) /= N_Compilation_Unit
then
4118 -- Check for library unit. Note that we used to check for the scope
4119 -- being Standard here, but that was wrong for Standard itself.
4121 elsif not Is_Compilation_Unit
(Old_E
)
4122 and then not Is_Child_Unit
(Old_E
)
4124 Error_Msg_N
("renamed unit must be a library unit", Name
(N
));
4126 -- Entities defined in Standard (operators and boolean literals) cannot
4127 -- be renamed as library units.
4129 elsif Scope
(Old_E
) = Standard_Standard
4130 and then Sloc
(Old_E
) = Standard_Location
4132 Error_Msg_N
("renamed unit must be a library unit", Name
(N
));
4134 elsif Present
(Parent_Spec
(N
))
4135 and then Nkind
(Unit
(Parent_Spec
(N
))) = N_Generic_Package_Declaration
4136 and then not Is_Child_Unit
(Old_E
)
4139 ("renamed unit must be a child unit of generic parent", Name
(N
));
4141 elsif Nkind
(N
) in N_Generic_Renaming_Declaration
4142 and then Nkind
(Name
(N
)) = N_Expanded_Name
4143 and then Is_Generic_Instance
(Entity
(Prefix
(Name
(N
))))
4144 and then Is_Generic_Unit
(Old_E
)
4147 ("renamed generic unit must be a library unit", Name
(N
));
4149 elsif Is_Package_Or_Generic_Package
(Old_E
) then
4151 -- Inherit categorization flags
4153 New_E
:= Defining_Entity
(N
);
4154 Set_Is_Pure
(New_E
, Is_Pure
(Old_E
));
4155 Set_Is_Preelaborated
(New_E
, Is_Preelaborated
(Old_E
));
4156 Set_Is_Remote_Call_Interface
(New_E
,
4157 Is_Remote_Call_Interface
(Old_E
));
4158 Set_Is_Remote_Types
(New_E
, Is_Remote_Types
(Old_E
));
4159 Set_Is_Shared_Passive
(New_E
, Is_Shared_Passive
(Old_E
));
4161 end Check_Library_Unit_Renaming
;
4163 ------------------------
4164 -- Enclosing_Instance --
4165 ------------------------
4167 function Enclosing_Instance
return Entity_Id
is
4171 if not Is_Generic_Instance
(Current_Scope
) then
4175 S
:= Scope
(Current_Scope
);
4176 while S
/= Standard_Standard
loop
4177 if Is_Generic_Instance
(S
) then
4185 end Enclosing_Instance
;
4191 procedure End_Scope
is
4197 Id
:= First_Entity
(Current_Scope
);
4198 while Present
(Id
) loop
4199 -- An entity in the current scope is not necessarily the first one
4200 -- on its homonym chain. Find its predecessor if any,
4201 -- If it is an internal entity, it will not be in the visibility
4202 -- chain altogether, and there is nothing to unchain.
4204 if Id
/= Current_Entity
(Id
) then
4205 Prev
:= Current_Entity
(Id
);
4206 while Present
(Prev
)
4207 and then Present
(Homonym
(Prev
))
4208 and then Homonym
(Prev
) /= Id
4210 Prev
:= Homonym
(Prev
);
4213 -- Skip to end of loop if Id is not in the visibility chain
4215 if No
(Prev
) or else Homonym
(Prev
) /= Id
then
4223 Set_Is_Immediately_Visible
(Id
, False);
4225 Outer
:= Homonym
(Id
);
4226 while Present
(Outer
) and then Scope
(Outer
) = Current_Scope
loop
4227 Outer
:= Homonym
(Outer
);
4230 -- Reset homonym link of other entities, but do not modify link
4231 -- between entities in current scope, so that the back-end can have
4232 -- a proper count of local overloadings.
4235 Set_Name_Entity_Id
(Chars
(Id
), Outer
);
4237 elsif Scope
(Prev
) /= Scope
(Id
) then
4238 Set_Homonym
(Prev
, Outer
);
4245 -- If the scope generated freeze actions, place them before the
4246 -- current declaration and analyze them. Type declarations and
4247 -- the bodies of initialization procedures can generate such nodes.
4248 -- We follow the parent chain until we reach a list node, which is
4249 -- the enclosing list of declarations. If the list appears within
4250 -- a protected definition, move freeze nodes outside the protected
4254 (Scope_Stack
.Table
(Scope_Stack
.Last
).Pending_Freeze_Actions
)
4258 L
: constant List_Id
:= Scope_Stack
.Table
4259 (Scope_Stack
.Last
).Pending_Freeze_Actions
;
4262 if Is_Itype
(Current_Scope
) then
4263 Decl
:= Associated_Node_For_Itype
(Current_Scope
);
4265 Decl
:= Parent
(Current_Scope
);
4270 while not (Is_List_Member
(Decl
))
4271 or else Nkind_In
(Parent
(Decl
), N_Protected_Definition
,
4274 Decl
:= Parent
(Decl
);
4277 Insert_List_Before_And_Analyze
(Decl
, L
);
4285 ---------------------
4286 -- End_Use_Clauses --
4287 ---------------------
4289 procedure End_Use_Clauses
(Clause
: Node_Id
) is
4293 -- Remove Use_Type clauses first, because they affect the
4294 -- visibility of operators in subsequent used packages.
4297 while Present
(U
) loop
4298 if Nkind
(U
) = N_Use_Type_Clause
then
4302 Next_Use_Clause
(U
);
4306 while Present
(U
) loop
4307 if Nkind
(U
) = N_Use_Package_Clause
then
4308 End_Use_Package
(U
);
4311 Next_Use_Clause
(U
);
4313 end End_Use_Clauses
;
4315 ---------------------
4316 -- End_Use_Package --
4317 ---------------------
4319 procedure End_Use_Package
(N
: Node_Id
) is
4320 Pack_Name
: Node_Id
;
4325 function Is_Primitive_Operator_In_Use
4327 F
: Entity_Id
) return Boolean;
4328 -- Check whether Op is a primitive operator of a use-visible type
4330 ----------------------------------
4331 -- Is_Primitive_Operator_In_Use --
4332 ----------------------------------
4334 function Is_Primitive_Operator_In_Use
4336 F
: Entity_Id
) return Boolean
4338 T
: constant Entity_Id
:= Base_Type
(Etype
(F
));
4340 return In_Use
(T
) and then Scope
(T
) = Scope
(Op
);
4341 end Is_Primitive_Operator_In_Use
;
4343 -- Start of processing for End_Use_Package
4346 Pack_Name
:= First
(Names
(N
));
4347 while Present
(Pack_Name
) loop
4349 -- Test that Pack_Name actually denotes a package before processing
4351 if Is_Entity_Name
(Pack_Name
)
4352 and then Ekind
(Entity
(Pack_Name
)) = E_Package
4354 Pack
:= Entity
(Pack_Name
);
4356 if In_Open_Scopes
(Pack
) then
4359 elsif not Redundant_Use
(Pack_Name
) then
4360 Set_In_Use
(Pack
, False);
4361 Set_Current_Use_Clause
(Pack
, Empty
);
4363 Id
:= First_Entity
(Pack
);
4364 while Present
(Id
) loop
4366 -- Preserve use-visibility of operators that are primitive
4367 -- operators of a type that is use-visible through an active
4370 if Nkind
(Id
) = N_Defining_Operator_Symbol
4372 (Is_Primitive_Operator_In_Use
(Id
, First_Formal
(Id
))
4374 (Present
(Next_Formal
(First_Formal
(Id
)))
4376 Is_Primitive_Operator_In_Use
4377 (Id
, Next_Formal
(First_Formal
(Id
)))))
4381 Set_Is_Potentially_Use_Visible
(Id
, False);
4384 if Is_Private_Type
(Id
)
4385 and then Present
(Full_View
(Id
))
4387 Set_Is_Potentially_Use_Visible
(Full_View
(Id
), False);
4393 if Present
(Renamed_Object
(Pack
)) then
4394 Set_In_Use
(Renamed_Object
(Pack
), False);
4395 Set_Current_Use_Clause
(Renamed_Object
(Pack
), Empty
);
4398 if Chars
(Pack
) = Name_System
4399 and then Scope
(Pack
) = Standard_Standard
4400 and then Present_System_Aux
4402 Id
:= First_Entity
(System_Aux_Id
);
4403 while Present
(Id
) loop
4404 Set_Is_Potentially_Use_Visible
(Id
, False);
4406 if Is_Private_Type
(Id
)
4407 and then Present
(Full_View
(Id
))
4409 Set_Is_Potentially_Use_Visible
(Full_View
(Id
), False);
4415 Set_In_Use
(System_Aux_Id
, False);
4419 Set_Redundant_Use
(Pack_Name
, False);
4426 if Present
(Hidden_By_Use_Clause
(N
)) then
4427 Elmt
:= First_Elmt
(Hidden_By_Use_Clause
(N
));
4428 while Present
(Elmt
) loop
4430 E
: constant Entity_Id
:= Node
(Elmt
);
4433 -- Reset either Use_Visibility or Direct_Visibility, depending
4434 -- on how the entity was hidden by the use clause.
4436 if In_Use
(Scope
(E
))
4437 and then Used_As_Generic_Actual
(Scope
(E
))
4439 Set_Is_Potentially_Use_Visible
(Node
(Elmt
));
4441 Set_Is_Immediately_Visible
(Node
(Elmt
));
4448 Set_Hidden_By_Use_Clause
(N
, No_Elist
);
4450 end End_Use_Package
;
4456 procedure End_Use_Type
(N
: Node_Id
) is
4461 -- Start of processing for End_Use_Type
4464 Id
:= First
(Subtype_Marks
(N
));
4465 while Present
(Id
) loop
4467 -- A call to Rtsfind may occur while analyzing a use_type clause,
4468 -- in which case the type marks are not resolved yet, and there is
4469 -- nothing to remove.
4471 if not Is_Entity_Name
(Id
) or else No
(Entity
(Id
)) then
4477 if T
= Any_Type
or else From_Limited_With
(T
) then
4480 -- Note that the use_type clause may mention a subtype of the type
4481 -- whose primitive operations have been made visible. Here as
4482 -- elsewhere, it is the base type that matters for visibility.
4484 elsif In_Open_Scopes
(Scope
(Base_Type
(T
))) then
4487 elsif not Redundant_Use
(Id
) then
4488 Set_In_Use
(T
, False);
4489 Set_In_Use
(Base_Type
(T
), False);
4490 Set_Current_Use_Clause
(T
, Empty
);
4491 Set_Current_Use_Clause
(Base_Type
(T
), Empty
);
4498 if Is_Empty_Elmt_List
(Used_Operations
(N
)) then
4502 Elmt
:= First_Elmt
(Used_Operations
(N
));
4503 while Present
(Elmt
) loop
4504 Set_Is_Potentially_Use_Visible
(Node
(Elmt
), False);
4510 ----------------------
4511 -- Find_Direct_Name --
4512 ----------------------
4514 procedure Find_Direct_Name
(N
: Node_Id
) is
4519 Inst
: Entity_Id
:= Empty
;
4520 -- Enclosing instance, if any
4522 Homonyms
: Entity_Id
;
4523 -- Saves start of homonym chain
4525 Nvis_Entity
: Boolean;
4526 -- Set True to indicate that there is at least one entity on the homonym
4527 -- chain which, while not visible, is visible enough from the user point
4528 -- of view to warrant an error message of "not visible" rather than
4531 Nvis_Is_Private_Subprg
: Boolean := False;
4532 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4533 -- effect concerning library subprograms has been detected. Used to
4534 -- generate the precise error message.
4536 function From_Actual_Package
(E
: Entity_Id
) return Boolean;
4537 -- Returns true if the entity is an actual for a package that is itself
4538 -- an actual for a formal package of the current instance. Such an
4539 -- entity requires special handling because it may be use-visible but
4540 -- hides directly visible entities defined outside the instance, because
4541 -- the corresponding formal did so in the generic.
4543 function Is_Actual_Parameter
return Boolean;
4544 -- This function checks if the node N is an identifier that is an actual
4545 -- parameter of a procedure call. If so it returns True, otherwise it
4546 -- return False. The reason for this check is that at this stage we do
4547 -- not know what procedure is being called if the procedure might be
4548 -- overloaded, so it is premature to go setting referenced flags or
4549 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4550 -- for that processing
4552 function Known_But_Invisible
(E
: Entity_Id
) return Boolean;
4553 -- This function determines whether a reference to the entity E, which
4554 -- is not visible, can reasonably be considered to be known to the
4555 -- writer of the reference. This is a heuristic test, used only for
4556 -- the purposes of figuring out whether we prefer to complain that an
4557 -- entity is undefined or invisible (and identify the declaration of
4558 -- the invisible entity in the latter case). The point here is that we
4559 -- don't want to complain that something is invisible and then point to
4560 -- something entirely mysterious to the writer.
4562 procedure Nvis_Messages
;
4563 -- Called if there are no visible entries for N, but there is at least
4564 -- one non-directly visible, or hidden declaration. This procedure
4565 -- outputs an appropriate set of error messages.
4567 procedure Undefined
(Nvis
: Boolean);
4568 -- This function is called if the current node has no corresponding
4569 -- visible entity or entities. The value set in Msg indicates whether
4570 -- an error message was generated (multiple error messages for the
4571 -- same variable are generally suppressed, see body for details).
4572 -- Msg is True if an error message was generated, False if not. This
4573 -- value is used by the caller to determine whether or not to output
4574 -- additional messages where appropriate. The parameter is set False
4575 -- to get the message "X is undefined", and True to get the message
4576 -- "X is not visible".
4578 -------------------------
4579 -- From_Actual_Package --
4580 -------------------------
4582 function From_Actual_Package
(E
: Entity_Id
) return Boolean is
4583 Scop
: constant Entity_Id
:= Scope
(E
);
4584 -- Declared scope of candidate entity
4588 function Declared_In_Actual
(Pack
: Entity_Id
) return Boolean;
4589 -- Recursive function that does the work and examines actuals of
4590 -- actual packages of current instance.
4592 ------------------------
4593 -- Declared_In_Actual --
4594 ------------------------
4596 function Declared_In_Actual
(Pack
: Entity_Id
) return Boolean is
4600 if No
(Associated_Formal_Package
(Pack
)) then
4604 Act
:= First_Entity
(Pack
);
4605 while Present
(Act
) loop
4606 if Renamed_Object
(Pack
) = Scop
then
4609 -- Check for end of list of actuals.
4611 elsif Ekind
(Act
) = E_Package
4612 and then Renamed_Object
(Act
) = Pack
4616 elsif Ekind
(Act
) = E_Package
4617 and then Declared_In_Actual
(Act
)
4627 end Declared_In_Actual
;
4629 -- Start of processing for From_Actual_Package
4632 if not In_Instance
then
4636 Inst
:= Current_Scope
;
4637 while Present
(Inst
)
4638 and then Ekind
(Inst
) /= E_Package
4639 and then not Is_Generic_Instance
(Inst
)
4641 Inst
:= Scope
(Inst
);
4648 Act
:= First_Entity
(Inst
);
4649 while Present
(Act
) loop
4650 if Ekind
(Act
) = E_Package
4651 and then Declared_In_Actual
(Act
)
4661 end From_Actual_Package
;
4663 -------------------------
4664 -- Is_Actual_Parameter --
4665 -------------------------
4667 function Is_Actual_Parameter
return Boolean is
4670 Nkind
(N
) = N_Identifier
4672 (Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
4674 (Nkind
(Parent
(N
)) = N_Parameter_Association
4675 and then N
= Explicit_Actual_Parameter
(Parent
(N
))
4676 and then Nkind
(Parent
(Parent
(N
))) =
4677 N_Procedure_Call_Statement
));
4678 end Is_Actual_Parameter
;
4680 -------------------------
4681 -- Known_But_Invisible --
4682 -------------------------
4684 function Known_But_Invisible
(E
: Entity_Id
) return Boolean is
4685 Fname
: File_Name_Type
;
4688 -- Entities in Standard are always considered to be known
4690 if Sloc
(E
) <= Standard_Location
then
4693 -- An entity that does not come from source is always considered
4694 -- to be unknown, since it is an artifact of code expansion.
4696 elsif not Comes_From_Source
(E
) then
4699 -- In gnat internal mode, we consider all entities known. The
4700 -- historical reason behind this discrepancy is not known??? But the
4701 -- only effect is to modify the error message given, so it is not
4702 -- critical. Since it only affects the exact wording of error
4703 -- messages in illegal programs, we do not mention this as an
4704 -- effect of -gnatg, since it is not a language modification.
4706 elsif GNAT_Mode
then
4710 -- Here we have an entity that is not from package Standard, and
4711 -- which comes from Source. See if it comes from an internal file.
4713 Fname
:= Unit_File_Name
(Get_Source_Unit
(E
));
4715 -- Case of from internal file
4717 if Is_Internal_File_Name
(Fname
) then
4719 -- Private part entities in internal files are never considered
4720 -- to be known to the writer of normal application code.
4722 if Is_Hidden
(E
) then
4726 -- Entities from System packages other than System and
4727 -- System.Storage_Elements are not considered to be known.
4728 -- System.Auxxxx files are also considered known to the user.
4730 -- Should refine this at some point to generally distinguish
4731 -- between known and unknown internal files ???
4733 Get_Name_String
(Fname
);
4738 Name_Buffer
(1 .. 2) /= "s-"
4740 Name_Buffer
(3 .. 8) = "stoele"
4742 Name_Buffer
(3 .. 5) = "aux";
4744 -- If not an internal file, then entity is definitely known,
4745 -- even if it is in a private part (the message generated will
4746 -- note that it is in a private part)
4751 end Known_But_Invisible
;
4757 procedure Nvis_Messages
is
4758 Comp_Unit
: Node_Id
;
4760 Found
: Boolean := False;
4761 Hidden
: Boolean := False;
4765 -- Ada 2005 (AI-262): Generate a precise error concerning the
4766 -- Beaujolais effect that was previously detected
4768 if Nvis_Is_Private_Subprg
then
4770 pragma Assert
(Nkind
(E2
) = N_Defining_Identifier
4771 and then Ekind
(E2
) = E_Function
4772 and then Scope
(E2
) = Standard_Standard
4773 and then Has_Private_With
(E2
));
4775 -- Find the sloc corresponding to the private with'ed unit
4777 Comp_Unit
:= Cunit
(Current_Sem_Unit
);
4778 Error_Msg_Sloc
:= No_Location
;
4780 Item
:= First
(Context_Items
(Comp_Unit
));
4781 while Present
(Item
) loop
4782 if Nkind
(Item
) = N_With_Clause
4783 and then Private_Present
(Item
)
4784 and then Entity
(Name
(Item
)) = E2
4786 Error_Msg_Sloc
:= Sloc
(Item
);
4793 pragma Assert
(Error_Msg_Sloc
/= No_Location
);
4795 Error_Msg_N
("(Ada 2005): hidden by private with clause #", N
);
4799 Undefined
(Nvis
=> True);
4803 -- First loop does hidden declarations
4806 while Present
(Ent
) loop
4807 if Is_Potentially_Use_Visible
(Ent
) then
4809 Error_Msg_N
-- CODEFIX
4810 ("multiple use clauses cause hiding!", N
);
4814 Error_Msg_Sloc
:= Sloc
(Ent
);
4815 Error_Msg_N
-- CODEFIX
4816 ("hidden declaration#!", N
);
4819 Ent
:= Homonym
(Ent
);
4822 -- If we found hidden declarations, then that's enough, don't
4823 -- bother looking for non-visible declarations as well.
4829 -- Second loop does non-directly visible declarations
4832 while Present
(Ent
) loop
4833 if not Is_Potentially_Use_Visible
(Ent
) then
4835 -- Do not bother the user with unknown entities
4837 if not Known_But_Invisible
(Ent
) then
4841 Error_Msg_Sloc
:= Sloc
(Ent
);
4843 -- Output message noting that there is a non-visible
4844 -- declaration, distinguishing the private part case.
4846 if Is_Hidden
(Ent
) then
4847 Error_Msg_N
("non-visible (private) declaration#!", N
);
4849 -- If the entity is declared in a generic package, it
4850 -- cannot be visible, so there is no point in adding it
4851 -- to the list of candidates if another homograph from a
4852 -- non-generic package has been seen.
4854 elsif Ekind
(Scope
(Ent
)) = E_Generic_Package
4860 Error_Msg_N
-- CODEFIX
4861 ("non-visible declaration#!", N
);
4863 if Ekind
(Scope
(Ent
)) /= E_Generic_Package
then
4867 if Is_Compilation_Unit
(Ent
)
4869 Nkind
(Parent
(Parent
(N
))) = N_Use_Package_Clause
4871 Error_Msg_Qual_Level
:= 99;
4872 Error_Msg_NE
-- CODEFIX
4873 ("\\missing `WITH &;`", N
, Ent
);
4874 Error_Msg_Qual_Level
:= 0;
4877 if Ekind
(Ent
) = E_Discriminant
4878 and then Present
(Corresponding_Discriminant
(Ent
))
4879 and then Scope
(Corresponding_Discriminant
(Ent
)) =
4883 ("inherited discriminant not allowed here" &
4884 " (RM 3.8 (12), 3.8.1 (6))!", N
);
4888 -- Set entity and its containing package as referenced. We
4889 -- can't be sure of this, but this seems a better choice
4890 -- to avoid unused entity messages.
4892 if Comes_From_Source
(Ent
) then
4893 Set_Referenced
(Ent
);
4894 Set_Referenced
(Cunit_Entity
(Get_Source_Unit
(Ent
)));
4899 Ent
:= Homonym
(Ent
);
4908 procedure Undefined
(Nvis
: Boolean) is
4909 Emsg
: Error_Msg_Id
;
4912 -- We should never find an undefined internal name. If we do, then
4913 -- see if we have previous errors. If so, ignore on the grounds that
4914 -- it is probably a cascaded message (e.g. a block label from a badly
4915 -- formed block). If no previous errors, then we have a real internal
4916 -- error of some kind so raise an exception.
4918 if Is_Internal_Name
(Chars
(N
)) then
4919 if Total_Errors_Detected
/= 0 then
4922 raise Program_Error
;
4926 -- A very specialized error check, if the undefined variable is
4927 -- a case tag, and the case type is an enumeration type, check
4928 -- for a possible misspelling, and if so, modify the identifier
4930 -- Named aggregate should also be handled similarly ???
4932 if Nkind
(N
) = N_Identifier
4933 and then Nkind
(Parent
(N
)) = N_Case_Statement_Alternative
4936 Case_Stm
: constant Node_Id
:= Parent
(Parent
(N
));
4937 Case_Typ
: constant Entity_Id
:= Etype
(Expression
(Case_Stm
));
4942 if Is_Enumeration_Type
(Case_Typ
)
4943 and then not Is_Standard_Character_Type
(Case_Typ
)
4945 Lit
:= First_Literal
(Case_Typ
);
4946 Get_Name_String
(Chars
(Lit
));
4948 if Chars
(Lit
) /= Chars
(N
)
4949 and then Is_Bad_Spelling_Of
(Chars
(N
), Chars
(Lit
))
4951 Error_Msg_Node_2
:= Lit
;
4952 Error_Msg_N
-- CODEFIX
4953 ("& is undefined, assume misspelling of &", N
);
4954 Rewrite
(N
, New_Occurrence_Of
(Lit
, Sloc
(N
)));
4958 Lit
:= Next_Literal
(Lit
);
4963 -- Normal processing
4965 Set_Entity
(N
, Any_Id
);
4966 Set_Etype
(N
, Any_Type
);
4968 -- We use the table Urefs to keep track of entities for which we
4969 -- have issued errors for undefined references. Multiple errors
4970 -- for a single name are normally suppressed, however we modify
4971 -- the error message to alert the programmer to this effect.
4973 for J
in Urefs
.First
.. Urefs
.Last
loop
4974 if Chars
(N
) = Chars
(Urefs
.Table
(J
).Node
) then
4975 if Urefs
.Table
(J
).Err
/= No_Error_Msg
4976 and then Sloc
(N
) /= Urefs
.Table
(J
).Loc
4978 Error_Msg_Node_1
:= Urefs
.Table
(J
).Node
;
4980 if Urefs
.Table
(J
).Nvis
then
4981 Change_Error_Text
(Urefs
.Table
(J
).Err
,
4982 "& is not visible (more references follow)");
4984 Change_Error_Text
(Urefs
.Table
(J
).Err
,
4985 "& is undefined (more references follow)");
4988 Urefs
.Table
(J
).Err
:= No_Error_Msg
;
4991 -- Although we will set Msg False, and thus suppress the
4992 -- message, we also set Error_Posted True, to avoid any
4993 -- cascaded messages resulting from the undefined reference.
4996 Set_Error_Posted
(N
, True);
5001 -- If entry not found, this is first undefined occurrence
5004 Error_Msg_N
("& is not visible!", N
);
5008 Error_Msg_N
("& is undefined!", N
);
5011 -- A very bizarre special check, if the undefined identifier
5012 -- is put or put_line, then add a special error message (since
5013 -- this is a very common error for beginners to make).
5015 if Nam_In
(Chars
(N
), Name_Put
, Name_Put_Line
) then
5016 Error_Msg_N
-- CODEFIX
5017 ("\\possible missing `WITH Ada.Text_'I'O; " &
5018 "USE Ada.Text_'I'O`!", N
);
5020 -- Another special check if N is the prefix of a selected
5021 -- component which is a known unit, add message complaining
5022 -- about missing with for this unit.
5024 elsif Nkind
(Parent
(N
)) = N_Selected_Component
5025 and then N
= Prefix
(Parent
(N
))
5026 and then Is_Known_Unit
(Parent
(N
))
5028 Error_Msg_Node_2
:= Selector_Name
(Parent
(N
));
5029 Error_Msg_N
-- CODEFIX
5030 ("\\missing `WITH &.&;`", Prefix
(Parent
(N
)));
5033 -- Now check for possible misspellings
5037 Ematch
: Entity_Id
:= Empty
;
5039 Last_Name_Id
: constant Name_Id
:=
5040 Name_Id
(Nat
(First_Name_Id
) +
5041 Name_Entries_Count
- 1);
5044 for Nam
in First_Name_Id
.. Last_Name_Id
loop
5045 E
:= Get_Name_Entity_Id
(Nam
);
5048 and then (Is_Immediately_Visible
(E
)
5050 Is_Potentially_Use_Visible
(E
))
5052 if Is_Bad_Spelling_Of
(Chars
(N
), Nam
) then
5059 if Present
(Ematch
) then
5060 Error_Msg_NE
-- CODEFIX
5061 ("\possible misspelling of&", N
, Ematch
);
5066 -- Make entry in undefined references table unless the full errors
5067 -- switch is set, in which case by refraining from generating the
5068 -- table entry, we guarantee that we get an error message for every
5069 -- undefined reference.
5071 if not All_Errors_Mode
then
5082 -- Start of processing for Find_Direct_Name
5085 -- If the entity pointer is already set, this is an internal node, or
5086 -- a node that is analyzed more than once, after a tree modification.
5087 -- In such a case there is no resolution to perform, just set the type.
5089 if Present
(Entity
(N
)) then
5090 if Is_Type
(Entity
(N
)) then
5091 Set_Etype
(N
, Entity
(N
));
5095 Entyp
: constant Entity_Id
:= Etype
(Entity
(N
));
5098 -- One special case here. If the Etype field is already set,
5099 -- and references the packed array type corresponding to the
5100 -- etype of the referenced entity, then leave it alone. This
5101 -- happens for trees generated from Exp_Pakd, where expressions
5102 -- can be deliberately "mis-typed" to the packed array type.
5104 if Is_Array_Type
(Entyp
)
5105 and then Is_Packed
(Entyp
)
5106 and then Present
(Etype
(N
))
5107 and then Etype
(N
) = Packed_Array_Impl_Type
(Entyp
)
5111 -- If not that special case, then just reset the Etype
5114 Set_Etype
(N
, Etype
(Entity
(N
)));
5122 -- Here if Entity pointer was not set, we need full visibility analysis
5123 -- First we generate debugging output if the debug E flag is set.
5125 if Debug_Flag_E
then
5126 Write_Str
("Looking for ");
5127 Write_Name
(Chars
(N
));
5131 Homonyms
:= Current_Entity
(N
);
5132 Nvis_Entity
:= False;
5135 while Present
(E
) loop
5137 -- If entity is immediately visible or potentially use visible, then
5138 -- process the entity and we are done.
5140 if Is_Immediately_Visible
(E
) then
5141 goto Immediately_Visible_Entity
;
5143 elsif Is_Potentially_Use_Visible
(E
) then
5144 goto Potentially_Use_Visible_Entity
;
5146 -- Note if a known but invisible entity encountered
5148 elsif Known_But_Invisible
(E
) then
5149 Nvis_Entity
:= True;
5152 -- Move to next entity in chain and continue search
5157 -- If no entries on homonym chain that were potentially visible,
5158 -- and no entities reasonably considered as non-visible, then
5159 -- we have a plain undefined reference, with no additional
5160 -- explanation required.
5162 if not Nvis_Entity
then
5163 Undefined
(Nvis
=> False);
5165 -- Otherwise there is at least one entry on the homonym chain that
5166 -- is reasonably considered as being known and non-visible.
5174 -- Processing for a potentially use visible entry found. We must search
5175 -- the rest of the homonym chain for two reasons. First, if there is a
5176 -- directly visible entry, then none of the potentially use-visible
5177 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5178 -- for the case of multiple potentially use-visible entries hiding one
5179 -- another and as a result being non-directly visible (RM 8.4(11)).
5181 <<Potentially_Use_Visible_Entity
>> declare
5182 Only_One_Visible
: Boolean := True;
5183 All_Overloadable
: Boolean := Is_Overloadable
(E
);
5187 while Present
(E2
) loop
5188 if Is_Immediately_Visible
(E2
) then
5190 -- If the use-visible entity comes from the actual for a
5191 -- formal package, it hides a directly visible entity from
5192 -- outside the instance.
5194 if From_Actual_Package
(E
)
5195 and then Scope_Depth
(E2
) < Scope_Depth
(Inst
)
5200 goto Immediately_Visible_Entity
;
5203 elsif Is_Potentially_Use_Visible
(E2
) then
5204 Only_One_Visible
:= False;
5205 All_Overloadable
:= All_Overloadable
and Is_Overloadable
(E2
);
5207 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5208 -- that can occur in private_with clauses. Example:
5211 -- private with B; package A is
5212 -- package C is function B return Integer;
5214 -- V1 : Integer := B;
5215 -- private function B return Integer;
5216 -- V2 : Integer := B;
5219 -- V1 resolves to A.B, but V2 resolves to library unit B
5221 elsif Ekind
(E2
) = E_Function
5222 and then Scope
(E2
) = Standard_Standard
5223 and then Has_Private_With
(E2
)
5225 Only_One_Visible
:= False;
5226 All_Overloadable
:= False;
5227 Nvis_Is_Private_Subprg
:= True;
5234 -- On falling through this loop, we have checked that there are no
5235 -- immediately visible entities. Only_One_Visible is set if exactly
5236 -- one potentially use visible entity exists. All_Overloadable is
5237 -- set if all the potentially use visible entities are overloadable.
5238 -- The condition for legality is that either there is one potentially
5239 -- use visible entity, or if there is more than one, then all of them
5240 -- are overloadable.
5242 if Only_One_Visible
or All_Overloadable
then
5245 -- If there is more than one potentially use-visible entity and at
5246 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5247 -- Note that E points to the first such entity on the homonym list.
5248 -- Special case: if one of the entities is declared in an actual
5249 -- package, it was visible in the generic, and takes precedence over
5250 -- other entities that are potentially use-visible. Same if it is
5251 -- declared in a local instantiation of the current instance.
5256 -- Find current instance
5258 Inst
:= Current_Scope
;
5259 while Present
(Inst
) and then Inst
/= Standard_Standard
loop
5260 if Is_Generic_Instance
(Inst
) then
5264 Inst
:= Scope
(Inst
);
5268 while Present
(E2
) loop
5269 if From_Actual_Package
(E2
)
5271 (Is_Generic_Instance
(Scope
(E2
))
5272 and then Scope_Depth
(Scope
(E2
)) > Scope_Depth
(Inst
))
5285 Is_Predefined_File_Name
(Unit_File_Name
(Current_Sem_Unit
))
5287 -- A use-clause in the body of a system file creates conflict
5288 -- with some entity in a user scope, while rtsfind is active.
5289 -- Keep only the entity coming from another predefined unit.
5292 while Present
(E2
) loop
5293 if Is_Predefined_File_Name
5294 (Unit_File_Name
(Get_Source_Unit
(Sloc
(E2
))))
5303 -- Entity must exist because predefined unit is correct
5305 raise Program_Error
;
5314 -- Come here with E set to the first immediately visible entity on
5315 -- the homonym chain. This is the one we want unless there is another
5316 -- immediately visible entity further on in the chain for an inner
5317 -- scope (RM 8.3(8)).
5319 <<Immediately_Visible_Entity
>> declare
5324 -- Find scope level of initial entity. When compiling through
5325 -- Rtsfind, the previous context is not completely invisible, and
5326 -- an outer entity may appear on the chain, whose scope is below
5327 -- the entry for Standard that delimits the current scope stack.
5328 -- Indicate that the level for this spurious entry is outside of
5329 -- the current scope stack.
5331 Level
:= Scope_Stack
.Last
;
5333 Scop
:= Scope_Stack
.Table
(Level
).Entity
;
5334 exit when Scop
= Scope
(E
);
5336 exit when Scop
= Standard_Standard
;
5339 -- Now search remainder of homonym chain for more inner entry
5340 -- If the entity is Standard itself, it has no scope, and we
5341 -- compare it with the stack entry directly.
5344 while Present
(E2
) loop
5345 if Is_Immediately_Visible
(E2
) then
5347 -- If a generic package contains a local declaration that
5348 -- has the same name as the generic, there may be a visibility
5349 -- conflict in an instance, where the local declaration must
5350 -- also hide the name of the corresponding package renaming.
5351 -- We check explicitly for a package declared by a renaming,
5352 -- whose renamed entity is an instance that is on the scope
5353 -- stack, and that contains a homonym in the same scope. Once
5354 -- we have found it, we know that the package renaming is not
5355 -- immediately visible, and that the identifier denotes the
5356 -- other entity (and its homonyms if overloaded).
5358 if Scope
(E
) = Scope
(E2
)
5359 and then Ekind
(E
) = E_Package
5360 and then Present
(Renamed_Object
(E
))
5361 and then Is_Generic_Instance
(Renamed_Object
(E
))
5362 and then In_Open_Scopes
(Renamed_Object
(E
))
5363 and then Comes_From_Source
(N
)
5365 Set_Is_Immediately_Visible
(E
, False);
5369 for J
in Level
+ 1 .. Scope_Stack
.Last
loop
5370 if Scope_Stack
.Table
(J
).Entity
= Scope
(E2
)
5371 or else Scope_Stack
.Table
(J
).Entity
= E2
5384 -- At the end of that loop, E is the innermost immediately
5385 -- visible entity, so we are all set.
5388 -- Come here with entity found, and stored in E
5392 -- Check violation of No_Wide_Characters restriction
5394 Check_Wide_Character_Restriction
(E
, N
);
5396 -- When distribution features are available (Get_PCS_Name /=
5397 -- Name_No_DSA), a remote access-to-subprogram type is converted
5398 -- into a record type holding whatever information is needed to
5399 -- perform a remote call on an RCI subprogram. In that case we
5400 -- rewrite any occurrence of the RAS type into the equivalent record
5401 -- type here. 'Access attribute references and RAS dereferences are
5402 -- then implemented using specific TSSs. However when distribution is
5403 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5404 -- generation of these TSSs, and we must keep the RAS type in its
5405 -- original access-to-subprogram form (since all calls through a
5406 -- value of such type will be local anyway in the absence of a PCS).
5408 if Comes_From_Source
(N
)
5409 and then Is_Remote_Access_To_Subprogram_Type
(E
)
5410 and then Ekind
(E
) = E_Access_Subprogram_Type
5411 and then Expander_Active
5412 and then Get_PCS_Name
/= Name_No_DSA
5415 New_Occurrence_Of
(Equivalent_Type
(E
), Sloc
(N
)));
5419 -- Set the entity. Note that the reason we call Set_Entity for the
5420 -- overloadable case, as opposed to Set_Entity_With_Checks is
5421 -- that in the overloaded case, the initial call can set the wrong
5422 -- homonym. The call that sets the right homonym is in Sem_Res and
5423 -- that call does use Set_Entity_With_Checks, so we don't miss
5426 if Is_Overloadable
(E
) then
5429 Set_Entity_With_Checks
(N
, E
);
5435 Set_Etype
(N
, Get_Full_View
(Etype
(E
)));
5438 if Debug_Flag_E
then
5439 Write_Str
(" found ");
5440 Write_Entity_Info
(E
, " ");
5443 -- If the Ekind of the entity is Void, it means that all homonyms
5444 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5445 -- test is skipped if the current scope is a record and the name is
5446 -- a pragma argument expression (case of Atomic and Volatile pragmas
5447 -- and possibly other similar pragmas added later, which are allowed
5448 -- to reference components in the current record).
5450 if Ekind
(E
) = E_Void
5452 (not Is_Record_Type
(Current_Scope
)
5453 or else Nkind
(Parent
(N
)) /= N_Pragma_Argument_Association
)
5455 Premature_Usage
(N
);
5457 -- If the entity is overloadable, collect all interpretations of the
5458 -- name for subsequent overload resolution. We optimize a bit here to
5459 -- do this only if we have an overloadable entity that is not on its
5460 -- own on the homonym chain.
5462 elsif Is_Overloadable
(E
)
5463 and then (Present
(Homonym
(E
)) or else Current_Entity
(N
) /= E
)
5465 Collect_Interps
(N
);
5467 -- If no homonyms were visible, the entity is unambiguous
5469 if not Is_Overloaded
(N
) then
5470 if not Is_Actual_Parameter
then
5471 Generate_Reference
(E
, N
);
5475 -- Case of non-overloadable entity, set the entity providing that
5476 -- we do not have the case of a discriminant reference within a
5477 -- default expression. Such references are replaced with the
5478 -- corresponding discriminal, which is the formal corresponding to
5479 -- to the discriminant in the initialization procedure.
5482 -- Entity is unambiguous, indicate that it is referenced here
5484 -- For a renaming of an object, always generate simple reference,
5485 -- we don't try to keep track of assignments in this case, except
5486 -- in SPARK mode where renamings are traversed for generating
5487 -- local effects of subprograms.
5490 and then Present
(Renamed_Object
(E
))
5491 and then not GNATprove_Mode
5493 Generate_Reference
(E
, N
);
5495 -- If the renamed entity is a private protected component,
5496 -- reference the original component as well. This needs to be
5497 -- done because the private renamings are installed before any
5498 -- analysis has occurred. Reference to a private component will
5499 -- resolve to the renaming and the original component will be
5500 -- left unreferenced, hence the following.
5502 if Is_Prival
(E
) then
5503 Generate_Reference
(Prival_Link
(E
), N
);
5506 -- One odd case is that we do not want to set the Referenced flag
5507 -- if the entity is a label, and the identifier is the label in
5508 -- the source, since this is not a reference from the point of
5509 -- view of the user.
5511 elsif Nkind
(Parent
(N
)) = N_Label
then
5513 R
: constant Boolean := Referenced
(E
);
5516 -- Generate reference unless this is an actual parameter
5517 -- (see comment below)
5519 if Is_Actual_Parameter
then
5520 Generate_Reference
(E
, N
);
5521 Set_Referenced
(E
, R
);
5525 -- Normal case, not a label: generate reference
5528 if not Is_Actual_Parameter
then
5530 -- Package or generic package is always a simple reference
5532 if Ekind_In
(E
, E_Package
, E_Generic_Package
) then
5533 Generate_Reference
(E
, N
, 'r');
5535 -- Else see if we have a left hand side
5540 Generate_Reference
(E
, N
, 'm');
5543 Generate_Reference
(E
, N
, 'r');
5545 -- If we don't know now, generate reference later
5548 Deferred_References
.Append
((E
, N
));
5553 Check_Nested_Access
(E
);
5556 Set_Entity_Or_Discriminal
(N
, E
);
5558 -- The name may designate a generalized reference, in which case
5559 -- the dereference interpretation will be included.
5561 if Ada_Version
>= Ada_2012
5563 (Nkind
(Parent
(N
)) in N_Subexpr
5564 or else Nkind_In
(Parent
(N
), N_Object_Declaration
,
5565 N_Assignment_Statement
))
5567 Check_Implicit_Dereference
(N
, Etype
(E
));
5571 end Find_Direct_Name
;
5573 ------------------------
5574 -- Find_Expanded_Name --
5575 ------------------------
5577 -- This routine searches the homonym chain of the entity until it finds
5578 -- an entity declared in the scope denoted by the prefix. If the entity
5579 -- is private, it may nevertheless be immediately visible, if we are in
5580 -- the scope of its declaration.
5582 procedure Find_Expanded_Name
(N
: Node_Id
) is
5583 function In_Pragmas_Depends_Or_Global
(N
: Node_Id
) return Boolean;
5584 -- Determine whether an arbitrary node N appears in pragmas [Refined_]
5585 -- Depends or [Refined_]Global.
5587 ----------------------------------
5588 -- In_Pragmas_Depends_Or_Global --
5589 ----------------------------------
5591 function In_Pragmas_Depends_Or_Global
(N
: Node_Id
) return Boolean is
5595 -- Climb the parent chain looking for a pragma
5598 while Present
(Par
) loop
5599 if Nkind
(Par
) = N_Pragma
5600 and then Nam_In
(Pragma_Name
(Par
), Name_Depends
,
5602 Name_Refined_Depends
,
5603 Name_Refined_Global
)
5607 -- Prevent the search from going too far
5609 elsif Is_Body_Or_Package_Declaration
(Par
) then
5613 Par
:= Parent
(Par
);
5617 end In_Pragmas_Depends_Or_Global
;
5621 Selector
: constant Node_Id
:= Selector_Name
(N
);
5622 Candidate
: Entity_Id
:= Empty
;
5626 -- Start of processing for Find_Expanded_Name
5629 P_Name
:= Entity
(Prefix
(N
));
5631 -- If the prefix is a renamed package, look for the entity in the
5632 -- original package.
5634 if Ekind
(P_Name
) = E_Package
5635 and then Present
(Renamed_Object
(P_Name
))
5637 P_Name
:= Renamed_Object
(P_Name
);
5639 -- Rewrite node with entity field pointing to renamed object
5641 Rewrite
(Prefix
(N
), New_Copy
(Prefix
(N
)));
5642 Set_Entity
(Prefix
(N
), P_Name
);
5644 -- If the prefix is an object of a concurrent type, look for
5645 -- the entity in the associated task or protected type.
5647 elsif Is_Concurrent_Type
(Etype
(P_Name
)) then
5648 P_Name
:= Etype
(P_Name
);
5651 Id
:= Current_Entity
(Selector
);
5654 Is_New_Candidate
: Boolean;
5657 while Present
(Id
) loop
5658 if Scope
(Id
) = P_Name
then
5660 Is_New_Candidate
:= True;
5662 -- Handle abstract views of states and variables. These are
5663 -- acceptable only when the reference to the view appears in
5664 -- pragmas [Refined_]Depends and [Refined_]Global.
5666 if Ekind
(Id
) = E_Abstract_State
5667 and then From_Limited_With
(Id
)
5668 and then Present
(Non_Limited_View
(Id
))
5670 if In_Pragmas_Depends_Or_Global
(N
) then
5671 Candidate
:= Non_Limited_View
(Id
);
5672 Is_New_Candidate
:= True;
5674 -- Hide candidate because it is not used in a proper context
5678 Is_New_Candidate
:= False;
5682 -- Ada 2005 (AI-217): Handle shadow entities associated with types
5683 -- declared in limited-withed nested packages. We don't need to
5684 -- handle E_Incomplete_Subtype entities because the entities in
5685 -- the limited view are always E_Incomplete_Type entities (see
5686 -- Build_Limited_Views). Regarding the expression used to evaluate
5687 -- the scope, it is important to note that the limited view also
5688 -- has shadow entities associated nested packages. For this reason
5689 -- the correct scope of the entity is the scope of the real entity
5690 -- The non-limited view may itself be incomplete, in which case
5691 -- get the full view if available.
5693 elsif Ekind
(Id
) = E_Incomplete_Type
5694 and then From_Limited_With
(Id
)
5695 and then Present
(Non_Limited_View
(Id
))
5696 and then Scope
(Non_Limited_View
(Id
)) = P_Name
5698 Candidate
:= Get_Full_View
(Non_Limited_View
(Id
));
5699 Is_New_Candidate
:= True;
5702 Is_New_Candidate
:= False;
5705 if Is_New_Candidate
then
5706 if Is_Child_Unit
(Id
) or else P_Name
= Standard_Standard
then
5707 exit when Is_Visible_Lib_Unit
(Id
);
5709 exit when not Is_Hidden
(Id
);
5712 exit when Is_Immediately_Visible
(Id
);
5720 and then Ekind_In
(P_Name
, E_Procedure
, E_Function
)
5721 and then Is_Generic_Instance
(P_Name
)
5723 -- Expanded name denotes entity in (instance of) generic subprogram.
5724 -- The entity may be in the subprogram instance, or may denote one of
5725 -- the formals, which is declared in the enclosing wrapper package.
5727 P_Name
:= Scope
(P_Name
);
5729 Id
:= Current_Entity
(Selector
);
5730 while Present
(Id
) loop
5731 exit when Scope
(Id
) = P_Name
;
5736 if No
(Id
) or else Chars
(Id
) /= Chars
(Selector
) then
5737 Set_Etype
(N
, Any_Type
);
5739 -- If we are looking for an entity defined in System, try to find it
5740 -- in the child package that may have been provided as an extension
5741 -- to System. The Extend_System pragma will have supplied the name of
5742 -- the extension, which may have to be loaded.
5744 if Chars
(P_Name
) = Name_System
5745 and then Scope
(P_Name
) = Standard_Standard
5746 and then Present
(System_Extend_Unit
)
5747 and then Present_System_Aux
(N
)
5749 Set_Entity
(Prefix
(N
), System_Aux_Id
);
5750 Find_Expanded_Name
(N
);
5753 elsif Nkind
(Selector
) = N_Operator_Symbol
5754 and then Has_Implicit_Operator
(N
)
5756 -- There is an implicit instance of the predefined operator in
5757 -- the given scope. The operator entity is defined in Standard.
5758 -- Has_Implicit_Operator makes the node into an Expanded_Name.
5762 elsif Nkind
(Selector
) = N_Character_Literal
5763 and then Has_Implicit_Character_Literal
(N
)
5765 -- If there is no literal defined in the scope denoted by the
5766 -- prefix, the literal may belong to (a type derived from)
5767 -- Standard_Character, for which we have no explicit literals.
5772 -- If the prefix is a single concurrent object, use its name in
5773 -- the error message, rather than that of the anonymous type.
5775 if Is_Concurrent_Type
(P_Name
)
5776 and then Is_Internal_Name
(Chars
(P_Name
))
5778 Error_Msg_Node_2
:= Entity
(Prefix
(N
));
5780 Error_Msg_Node_2
:= P_Name
;
5783 if P_Name
= System_Aux_Id
then
5784 P_Name
:= Scope
(P_Name
);
5785 Set_Entity
(Prefix
(N
), P_Name
);
5788 if Present
(Candidate
) then
5790 -- If we know that the unit is a child unit we can give a more
5791 -- accurate error message.
5793 if Is_Child_Unit
(Candidate
) then
5795 -- If the candidate is a private child unit and we are in
5796 -- the visible part of a public unit, specialize the error
5797 -- message. There might be a private with_clause for it,
5798 -- but it is not currently active.
5800 if Is_Private_Descendant
(Candidate
)
5801 and then Ekind
(Current_Scope
) = E_Package
5802 and then not In_Private_Part
(Current_Scope
)
5803 and then not Is_Private_Descendant
(Current_Scope
)
5805 Error_Msg_N
("private child unit& is not visible here",
5808 -- Normal case where we have a missing with for a child unit
5811 Error_Msg_Qual_Level
:= 99;
5812 Error_Msg_NE
-- CODEFIX
5813 ("missing `WITH &;`", Selector
, Candidate
);
5814 Error_Msg_Qual_Level
:= 0;
5817 -- Here we don't know that this is a child unit
5820 Error_Msg_NE
("& is not a visible entity of&", N
, Selector
);
5824 -- Within the instantiation of a child unit, the prefix may
5825 -- denote the parent instance, but the selector has the name
5826 -- of the original child. That is to say, when A.B appears
5827 -- within an instantiation of generic child unit B, the scope
5828 -- stack includes an instance of A (P_Name) and an instance
5829 -- of B under some other name. We scan the scope to find this
5830 -- child instance, which is the desired entity.
5831 -- Note that the parent may itself be a child instance, if
5832 -- the reference is of the form A.B.C, in which case A.B has
5833 -- already been rewritten with the proper entity.
5835 if In_Open_Scopes
(P_Name
)
5836 and then Is_Generic_Instance
(P_Name
)
5839 Gen_Par
: constant Entity_Id
:=
5840 Generic_Parent
(Specification
5841 (Unit_Declaration_Node
(P_Name
)));
5842 S
: Entity_Id
:= Current_Scope
;
5846 for J
in reverse 0 .. Scope_Stack
.Last
loop
5847 S
:= Scope_Stack
.Table
(J
).Entity
;
5849 exit when S
= Standard_Standard
;
5851 if Ekind_In
(S
, E_Function
,
5855 P
:= Generic_Parent
(Specification
5856 (Unit_Declaration_Node
(S
)));
5858 -- Check that P is a generic child of the generic
5859 -- parent of the prefix.
5862 and then Chars
(P
) = Chars
(Selector
)
5863 and then Scope
(P
) = Gen_Par
5874 -- If this is a selection from Ada, System or Interfaces, then
5875 -- we assume a missing with for the corresponding package.
5877 if Is_Known_Unit
(N
) then
5878 if not Error_Posted
(N
) then
5879 Error_Msg_Node_2
:= Selector
;
5880 Error_Msg_N
-- CODEFIX
5881 ("missing `WITH &.&;`", Prefix
(N
));
5884 -- If this is a selection from a dummy package, then suppress
5885 -- the error message, of course the entity is missing if the
5886 -- package is missing.
5888 elsif Sloc
(Error_Msg_Node_2
) = No_Location
then
5891 -- Here we have the case of an undefined component
5895 -- The prefix may hide a homonym in the context that
5896 -- declares the desired entity. This error can use a
5897 -- specialized message.
5899 if In_Open_Scopes
(P_Name
) then
5901 H
: constant Entity_Id
:= Homonym
(P_Name
);
5905 and then Is_Compilation_Unit
(H
)
5907 (Is_Immediately_Visible
(H
)
5908 or else Is_Visible_Lib_Unit
(H
))
5910 Id
:= First_Entity
(H
);
5911 while Present
(Id
) loop
5912 if Chars
(Id
) = Chars
(Selector
) then
5913 Error_Msg_Qual_Level
:= 99;
5914 Error_Msg_Name_1
:= Chars
(Selector
);
5916 ("% not declared in&", N
, P_Name
);
5918 ("\use fully qualified name starting with "
5919 & "Standard to make& visible", N
, H
);
5920 Error_Msg_Qual_Level
:= 0;
5928 -- If not found, standard error message
5930 Error_Msg_NE
("& not declared in&", N
, Selector
);
5936 Error_Msg_NE
("& not declared in&", N
, Selector
);
5939 -- Check for misspelling of some entity in prefix
5941 Id
:= First_Entity
(P_Name
);
5942 while Present
(Id
) loop
5943 if Is_Bad_Spelling_Of
(Chars
(Id
), Chars
(Selector
))
5944 and then not Is_Internal_Name
(Chars
(Id
))
5946 Error_Msg_NE
-- CODEFIX
5947 ("possible misspelling of&", Selector
, Id
);
5954 -- Specialize the message if this may be an instantiation
5955 -- of a child unit that was not mentioned in the context.
5957 if Nkind
(Parent
(N
)) = N_Package_Instantiation
5958 and then Is_Generic_Instance
(Entity
(Prefix
(N
)))
5959 and then Is_Compilation_Unit
5960 (Generic_Parent
(Parent
(Entity
(Prefix
(N
)))))
5962 Error_Msg_Node_2
:= Selector
;
5963 Error_Msg_N
-- CODEFIX
5964 ("\missing `WITH &.&;`", Prefix
(N
));
5974 if Comes_From_Source
(N
)
5975 and then Is_Remote_Access_To_Subprogram_Type
(Id
)
5976 and then Ekind
(Id
) = E_Access_Subprogram_Type
5977 and then Present
(Equivalent_Type
(Id
))
5979 -- If we are not actually generating distribution code (i.e. the
5980 -- current PCS is the dummy non-distributed version), then the
5981 -- Equivalent_Type will be missing, and Id should be treated as
5982 -- a regular access-to-subprogram type.
5984 Id
:= Equivalent_Type
(Id
);
5985 Set_Chars
(Selector
, Chars
(Id
));
5988 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
5990 if Ekind
(P_Name
) = E_Package
and then From_Limited_With
(P_Name
) then
5991 if From_Limited_With
(Id
)
5992 or else Is_Type
(Id
)
5993 or else Ekind
(Id
) = E_Package
5998 ("limited withed package can only be used to access "
5999 & "incomplete types", N
);
6003 if Is_Task_Type
(P_Name
)
6004 and then ((Ekind
(Id
) = E_Entry
6005 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
)
6007 (Ekind
(Id
) = E_Entry_Family
6009 Nkind
(Parent
(Parent
(N
))) /= N_Attribute_Reference
))
6011 -- If both the task type and the entry are in scope, this may still
6012 -- be the expanded name of an entry formal.
6014 if In_Open_Scopes
(Id
)
6015 and then Nkind
(Parent
(N
)) = N_Selected_Component
6020 -- It is an entry call after all, either to the current task
6021 -- (which will deadlock) or to an enclosing task.
6023 Analyze_Selected_Component
(N
);
6028 Change_Selected_Component_To_Expanded_Name
(N
);
6030 -- Set appropriate type
6032 if Is_Type
(Id
) then
6035 Set_Etype
(N
, Get_Full_View
(Etype
(Id
)));
6038 -- Do style check and generate reference, but skip both steps if this
6039 -- entity has homonyms, since we may not have the right homonym set yet.
6040 -- The proper homonym will be set during the resolve phase.
6042 if Has_Homonym
(Id
) then
6046 Set_Entity_Or_Discriminal
(N
, Id
);
6050 Generate_Reference
(Id
, N
, 'm');
6052 Generate_Reference
(Id
, N
, 'r');
6054 Deferred_References
.Append
((Id
, N
));
6058 -- Check for violation of No_Wide_Characters
6060 Check_Wide_Character_Restriction
(Id
, N
);
6062 -- If the Ekind of the entity is Void, it means that all homonyms are
6063 -- hidden from all visibility (RM 8.3(5,14-20)).
6065 if Ekind
(Id
) = E_Void
then
6066 Premature_Usage
(N
);
6068 elsif Is_Overloadable
(Id
) and then Present
(Homonym
(Id
)) then
6070 H
: Entity_Id
:= Homonym
(Id
);
6073 while Present
(H
) loop
6074 if Scope
(H
) = Scope
(Id
)
6075 and then (not Is_Hidden
(H
)
6076 or else Is_Immediately_Visible
(H
))
6078 Collect_Interps
(N
);
6085 -- If an extension of System is present, collect possible explicit
6086 -- overloadings declared in the extension.
6088 if Chars
(P_Name
) = Name_System
6089 and then Scope
(P_Name
) = Standard_Standard
6090 and then Present
(System_Extend_Unit
)
6091 and then Present_System_Aux
(N
)
6093 H
:= Current_Entity
(Id
);
6095 while Present
(H
) loop
6096 if Scope
(H
) = System_Aux_Id
then
6097 Add_One_Interp
(N
, H
, Etype
(H
));
6106 if Nkind
(Selector_Name
(N
)) = N_Operator_Symbol
6107 and then Scope
(Id
) /= Standard_Standard
6109 -- In addition to user-defined operators in the given scope, there
6110 -- may be an implicit instance of the predefined operator. The
6111 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6112 -- and added to the interpretations. Procedure Add_One_Interp will
6113 -- determine which hides which.
6115 if Has_Implicit_Operator
(N
) then
6120 -- If there is a single interpretation for N we can generate a
6121 -- reference to the unique entity found.
6123 if Is_Overloadable
(Id
) and then not Is_Overloaded
(N
) then
6124 Generate_Reference
(Id
, N
);
6126 end Find_Expanded_Name
;
6128 -------------------------
6129 -- Find_Renamed_Entity --
6130 -------------------------
6132 function Find_Renamed_Entity
6136 Is_Actual
: Boolean := False) return Entity_Id
6139 I1
: Interp_Index
:= 0; -- Suppress junk warnings
6145 function Is_Visible_Operation
(Op
: Entity_Id
) return Boolean;
6146 -- If the renamed entity is an implicit operator, check whether it is
6147 -- visible because its operand type is properly visible. This check
6148 -- applies to explicit renamed entities that appear in the source in a
6149 -- renaming declaration or a formal subprogram instance, but not to
6150 -- default generic actuals with a name.
6152 function Report_Overload
return Entity_Id
;
6153 -- List possible interpretations, and specialize message in the
6154 -- case of a generic actual.
6156 function Within
(Inner
, Outer
: Entity_Id
) return Boolean;
6157 -- Determine whether a candidate subprogram is defined within the
6158 -- enclosing instance. If yes, it has precedence over outer candidates.
6160 --------------------------
6161 -- Is_Visible_Operation --
6162 --------------------------
6164 function Is_Visible_Operation
(Op
: Entity_Id
) return Boolean is
6170 if Ekind
(Op
) /= E_Operator
6171 or else Scope
(Op
) /= Standard_Standard
6172 or else (In_Instance
6173 and then (not Is_Actual
6174 or else Present
(Enclosing_Instance
)))
6179 -- For a fixed point type operator, check the resulting type,
6180 -- because it may be a mixed mode integer * fixed operation.
6182 if Present
(Next_Formal
(First_Formal
(New_S
)))
6183 and then Is_Fixed_Point_Type
(Etype
(New_S
))
6185 Typ
:= Etype
(New_S
);
6187 Typ
:= Etype
(First_Formal
(New_S
));
6190 Btyp
:= Base_Type
(Typ
);
6192 if Nkind
(Nam
) /= N_Expanded_Name
then
6193 return (In_Open_Scopes
(Scope
(Btyp
))
6194 or else Is_Potentially_Use_Visible
(Btyp
)
6195 or else In_Use
(Btyp
)
6196 or else In_Use
(Scope
(Btyp
)));
6199 Scop
:= Entity
(Prefix
(Nam
));
6201 if Ekind
(Scop
) = E_Package
6202 and then Present
(Renamed_Object
(Scop
))
6204 Scop
:= Renamed_Object
(Scop
);
6207 -- Operator is visible if prefix of expanded name denotes
6208 -- scope of type, or else type is defined in System_Aux
6209 -- and the prefix denotes System.
6211 return Scope
(Btyp
) = Scop
6212 or else (Scope
(Btyp
) = System_Aux_Id
6213 and then Scope
(Scope
(Btyp
)) = Scop
);
6216 end Is_Visible_Operation
;
6222 function Within
(Inner
, Outer
: Entity_Id
) return Boolean is
6226 Sc
:= Scope
(Inner
);
6227 while Sc
/= Standard_Standard
loop
6238 ---------------------
6239 -- Report_Overload --
6240 ---------------------
6242 function Report_Overload
return Entity_Id
is
6245 Error_Msg_NE
-- CODEFIX
6246 ("ambiguous actual subprogram&, " &
6247 "possible interpretations:", N
, Nam
);
6249 Error_Msg_N
-- CODEFIX
6250 ("ambiguous subprogram, " &
6251 "possible interpretations:", N
);
6254 List_Interps
(Nam
, N
);
6256 end Report_Overload
;
6258 -- Start of processing for Find_Renamed_Entity
6262 Candidate_Renaming
:= Empty
;
6264 if Is_Overloaded
(Nam
) then
6265 Get_First_Interp
(Nam
, Ind
, It
);
6266 while Present
(It
.Nam
) loop
6267 if Entity_Matches_Spec
(It
.Nam
, New_S
)
6268 and then Is_Visible_Operation
(It
.Nam
)
6270 if Old_S
/= Any_Id
then
6272 -- Note: The call to Disambiguate only happens if a
6273 -- previous interpretation was found, in which case I1
6274 -- has received a value.
6276 It1
:= Disambiguate
(Nam
, I1
, Ind
, Etype
(Old_S
));
6278 if It1
= No_Interp
then
6279 Inst
:= Enclosing_Instance
;
6281 if Present
(Inst
) then
6282 if Within
(It
.Nam
, Inst
) then
6283 if Within
(Old_S
, Inst
) then
6285 -- Choose the innermost subprogram, which would
6286 -- have hidden the outer one in the generic.
6288 if Scope_Depth
(It
.Nam
) <
6297 elsif Within
(Old_S
, Inst
) then
6301 return Report_Overload
;
6304 -- If not within an instance, ambiguity is real
6307 return Report_Overload
;
6321 Present
(First_Formal
(It
.Nam
))
6322 and then Present
(First_Formal
(New_S
))
6323 and then (Base_Type
(Etype
(First_Formal
(It
.Nam
))) =
6324 Base_Type
(Etype
(First_Formal
(New_S
))))
6326 Candidate_Renaming
:= It
.Nam
;
6329 Get_Next_Interp
(Ind
, It
);
6332 Set_Entity
(Nam
, Old_S
);
6334 if Old_S
/= Any_Id
then
6335 Set_Is_Overloaded
(Nam
, False);
6338 -- Non-overloaded case
6341 if Is_Actual
and then Present
(Enclosing_Instance
) then
6342 Old_S
:= Entity
(Nam
);
6344 elsif Entity_Matches_Spec
(Entity
(Nam
), New_S
) then
6345 Candidate_Renaming
:= New_S
;
6347 if Is_Visible_Operation
(Entity
(Nam
)) then
6348 Old_S
:= Entity
(Nam
);
6351 elsif Present
(First_Formal
(Entity
(Nam
)))
6352 and then Present
(First_Formal
(New_S
))
6353 and then (Base_Type
(Etype
(First_Formal
(Entity
(Nam
)))) =
6354 Base_Type
(Etype
(First_Formal
(New_S
))))
6356 Candidate_Renaming
:= Entity
(Nam
);
6361 end Find_Renamed_Entity
;
6363 -----------------------------
6364 -- Find_Selected_Component --
6365 -----------------------------
6367 procedure Find_Selected_Component
(N
: Node_Id
) is
6368 P
: constant Node_Id
:= Prefix
(N
);
6371 -- Entity denoted by prefix
6378 function Is_Reference_In_Subunit
return Boolean;
6379 -- In a subunit, the scope depth is not a proper measure of hiding,
6380 -- because the context of the proper body may itself hide entities in
6381 -- parent units. This rare case requires inspecting the tree directly
6382 -- because the proper body is inserted in the main unit and its context
6383 -- is simply added to that of the parent.
6385 -----------------------------
6386 -- Is_Reference_In_Subunit --
6387 -----------------------------
6389 function Is_Reference_In_Subunit
return Boolean is
6391 Comp_Unit
: Node_Id
;
6395 while Present
(Comp_Unit
)
6396 and then Nkind
(Comp_Unit
) /= N_Compilation_Unit
6398 Comp_Unit
:= Parent
(Comp_Unit
);
6401 if No
(Comp_Unit
) or else Nkind
(Unit
(Comp_Unit
)) /= N_Subunit
then
6405 -- Now check whether the package is in the context of the subunit
6407 Clause
:= First
(Context_Items
(Comp_Unit
));
6408 while Present
(Clause
) loop
6409 if Nkind
(Clause
) = N_With_Clause
6410 and then Entity
(Name
(Clause
)) = P_Name
6415 Clause
:= Next
(Clause
);
6419 end Is_Reference_In_Subunit
;
6421 -- Start of processing for Find_Selected_Component
6426 if Nkind
(P
) = N_Error
then
6430 -- Selector name cannot be a character literal or an operator symbol in
6431 -- SPARK, except for the operator symbol in a renaming.
6433 if Restriction_Check_Required
(SPARK_05
) then
6434 if Nkind
(Selector_Name
(N
)) = N_Character_Literal
then
6435 Check_SPARK_05_Restriction
6436 ("character literal cannot be prefixed", N
);
6437 elsif Nkind
(Selector_Name
(N
)) = N_Operator_Symbol
6438 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
6440 Check_SPARK_05_Restriction
6441 ("operator symbol cannot be prefixed", N
);
6445 -- If the selector already has an entity, the node has been constructed
6446 -- in the course of expansion, and is known to be valid. Do not verify
6447 -- that it is defined for the type (it may be a private component used
6448 -- in the expansion of record equality).
6450 if Present
(Entity
(Selector_Name
(N
))) then
6451 if No
(Etype
(N
)) or else Etype
(N
) = Any_Type
then
6453 Sel_Name
: constant Node_Id
:= Selector_Name
(N
);
6454 Selector
: constant Entity_Id
:= Entity
(Sel_Name
);
6458 Set_Etype
(Sel_Name
, Etype
(Selector
));
6460 if not Is_Entity_Name
(P
) then
6464 -- Build an actual subtype except for the first parameter
6465 -- of an init proc, where this actual subtype is by
6466 -- definition incorrect, since the object is uninitialized
6467 -- (and does not even have defined discriminants etc.)
6469 if Is_Entity_Name
(P
)
6470 and then Ekind
(Entity
(P
)) = E_Function
6472 Nam
:= New_Copy
(P
);
6474 if Is_Overloaded
(P
) then
6475 Save_Interps
(P
, Nam
);
6478 Rewrite
(P
, Make_Function_Call
(Sloc
(P
), Name
=> Nam
));
6480 Analyze_Selected_Component
(N
);
6483 elsif Ekind
(Selector
) = E_Component
6484 and then (not Is_Entity_Name
(P
)
6485 or else Chars
(Entity
(P
)) /= Name_uInit
)
6487 -- Do not build the subtype when referencing components of
6488 -- dispatch table wrappers. Required to avoid generating
6489 -- elaboration code with HI runtimes. JVM and .NET use a
6490 -- modified version of Ada.Tags which does not contain RE_
6491 -- Dispatch_Table_Wrapper and RE_No_Dispatch_Table_Wrapper.
6492 -- Avoid raising RE_Not_Available exception in those cases.
6494 if VM_Target
= No_VM
6495 and then RTU_Loaded
(Ada_Tags
)
6497 ((RTE_Available
(RE_Dispatch_Table_Wrapper
)
6498 and then Scope
(Selector
) =
6499 RTE
(RE_Dispatch_Table_Wrapper
))
6501 (RTE_Available
(RE_No_Dispatch_Table_Wrapper
)
6502 and then Scope
(Selector
) =
6503 RTE
(RE_No_Dispatch_Table_Wrapper
)))
6508 Build_Actual_Subtype_Of_Component
6509 (Etype
(Selector
), N
);
6516 if No
(C_Etype
) then
6517 C_Etype
:= Etype
(Selector
);
6519 Insert_Action
(N
, C_Etype
);
6520 C_Etype
:= Defining_Identifier
(C_Etype
);
6523 Set_Etype
(N
, C_Etype
);
6526 -- If this is the name of an entry or protected operation, and
6527 -- the prefix is an access type, insert an explicit dereference,
6528 -- so that entry calls are treated uniformly.
6530 if Is_Access_Type
(Etype
(P
))
6531 and then Is_Concurrent_Type
(Designated_Type
(Etype
(P
)))
6534 New_P
: constant Node_Id
:=
6535 Make_Explicit_Dereference
(Sloc
(P
),
6536 Prefix
=> Relocate_Node
(P
));
6539 Set_Etype
(P
, Designated_Type
(Etype
(Prefix
(P
))));
6543 -- If the selected component appears within a default expression
6544 -- and it has an actual subtype, the pre-analysis has not yet
6545 -- completed its analysis, because Insert_Actions is disabled in
6546 -- that context. Within the init proc of the enclosing type we
6547 -- must complete this analysis, if an actual subtype was created.
6549 elsif Inside_Init_Proc
then
6551 Typ
: constant Entity_Id
:= Etype
(N
);
6552 Decl
: constant Node_Id
:= Declaration_Node
(Typ
);
6554 if Nkind
(Decl
) = N_Subtype_Declaration
6555 and then not Analyzed
(Decl
)
6556 and then Is_List_Member
(Decl
)
6557 and then No
(Parent
(Decl
))
6560 Insert_Action
(N
, Decl
);
6567 elsif Is_Entity_Name
(P
) then
6568 P_Name
:= Entity
(P
);
6570 -- The prefix may denote an enclosing type which is the completion
6571 -- of an incomplete type declaration.
6573 if Is_Type
(P_Name
) then
6574 Set_Entity
(P
, Get_Full_View
(P_Name
));
6575 Set_Etype
(P
, Entity
(P
));
6576 P_Name
:= Entity
(P
);
6579 P_Type
:= Base_Type
(Etype
(P
));
6581 if Debug_Flag_E
then
6582 Write_Str
("Found prefix type to be ");
6583 Write_Entity_Info
(P_Type
, " "); Write_Eol
;
6586 -- The designated type may be a limited view with no components.
6587 -- Check whether the non-limited view is available, because in some
6588 -- cases this will not be set when instlling the context.
6590 if Is_Access_Type
(P_Type
) then
6592 D
: constant Entity_Id
:= Directly_Designated_Type
(P_Type
);
6594 if Is_Incomplete_Type
(D
)
6595 and then not Is_Class_Wide_Type
(D
)
6596 and then From_Limited_With
(D
)
6597 and then Present
(Non_Limited_View
(D
))
6598 and then not Is_Class_Wide_Type
(Non_Limited_View
(D
))
6600 Set_Directly_Designated_Type
(P_Type
, Non_Limited_View
(D
));
6605 -- First check for components of a record object (not the
6606 -- result of a call, which is handled below).
6608 if Is_Appropriate_For_Record
(P_Type
)
6609 and then not Is_Overloadable
(P_Name
)
6610 and then not Is_Type
(P_Name
)
6612 -- Selected component of record. Type checking will validate
6613 -- name of selector.
6615 -- ??? Could we rewrite an implicit dereference into an explicit
6618 Analyze_Selected_Component
(N
);
6620 -- Reference to type name in predicate/invariant expression
6622 elsif Is_Appropriate_For_Entry_Prefix
(P_Type
)
6623 and then not In_Open_Scopes
(P_Name
)
6624 and then (not Is_Concurrent_Type
(Etype
(P_Name
))
6625 or else not In_Open_Scopes
(Etype
(P_Name
)))
6627 -- Call to protected operation or entry. Type checking is
6628 -- needed on the prefix.
6630 Analyze_Selected_Component
(N
);
6632 elsif (In_Open_Scopes
(P_Name
)
6633 and then Ekind
(P_Name
) /= E_Void
6634 and then not Is_Overloadable
(P_Name
))
6635 or else (Is_Concurrent_Type
(Etype
(P_Name
))
6636 and then In_Open_Scopes
(Etype
(P_Name
)))
6638 -- Prefix denotes an enclosing loop, block, or task, i.e. an
6639 -- enclosing construct that is not a subprogram or accept.
6641 Find_Expanded_Name
(N
);
6643 elsif Ekind
(P_Name
) = E_Package
then
6644 Find_Expanded_Name
(N
);
6646 elsif Is_Overloadable
(P_Name
) then
6648 -- The subprogram may be a renaming (of an enclosing scope) as
6649 -- in the case of the name of the generic within an instantiation.
6651 if Ekind_In
(P_Name
, E_Procedure
, E_Function
)
6652 and then Present
(Alias
(P_Name
))
6653 and then Is_Generic_Instance
(Alias
(P_Name
))
6655 P_Name
:= Alias
(P_Name
);
6658 if Is_Overloaded
(P
) then
6660 -- The prefix must resolve to a unique enclosing construct
6663 Found
: Boolean := False;
6668 Get_First_Interp
(P
, Ind
, It
);
6669 while Present
(It
.Nam
) loop
6670 if In_Open_Scopes
(It
.Nam
) then
6673 "prefix must be unique enclosing scope", N
);
6674 Set_Entity
(N
, Any_Id
);
6675 Set_Etype
(N
, Any_Type
);
6684 Get_Next_Interp
(Ind
, It
);
6689 if In_Open_Scopes
(P_Name
) then
6690 Set_Entity
(P
, P_Name
);
6691 Set_Is_Overloaded
(P
, False);
6692 Find_Expanded_Name
(N
);
6695 -- If no interpretation as an expanded name is possible, it
6696 -- must be a selected component of a record returned by a
6697 -- function call. Reformat prefix as a function call, the rest
6698 -- is done by type resolution.
6700 -- Error if the prefix is procedure or entry, as is P.X
6702 if Ekind
(P_Name
) /= E_Function
6704 (not Is_Overloaded
(P
)
6705 or else Nkind
(Parent
(N
)) = N_Procedure_Call_Statement
)
6707 -- Prefix may mention a package that is hidden by a local
6708 -- declaration: let the user know. Scan the full homonym
6709 -- chain, the candidate package may be anywhere on it.
6711 if Present
(Homonym
(Current_Entity
(P_Name
))) then
6712 P_Name
:= Current_Entity
(P_Name
);
6714 while Present
(P_Name
) loop
6715 exit when Ekind
(P_Name
) = E_Package
;
6716 P_Name
:= Homonym
(P_Name
);
6719 if Present
(P_Name
) then
6720 if not Is_Reference_In_Subunit
then
6721 Error_Msg_Sloc
:= Sloc
(Entity
(Prefix
(N
)));
6723 ("package& is hidden by declaration#", N
, P_Name
);
6726 Set_Entity
(Prefix
(N
), P_Name
);
6727 Find_Expanded_Name
(N
);
6731 P_Name
:= Entity
(Prefix
(N
));
6736 ("invalid prefix in selected component&", N
, P_Name
);
6737 Change_Selected_Component_To_Expanded_Name
(N
);
6738 Set_Entity
(N
, Any_Id
);
6739 Set_Etype
(N
, Any_Type
);
6741 -- Here we have a function call, so do the reformatting
6744 Nam
:= New_Copy
(P
);
6745 Save_Interps
(P
, Nam
);
6747 -- We use Replace here because this is one of those cases
6748 -- where the parser has missclassified the node, and we
6749 -- fix things up and then do the semantic analysis on the
6750 -- fixed up node. Normally we do this using one of the
6751 -- Sinfo.CN routines, but this is too tricky for that.
6753 -- Note that using Rewrite would be wrong, because we
6754 -- would have a tree where the original node is unanalyzed,
6755 -- and this violates the required interface for ASIS.
6758 Make_Function_Call
(Sloc
(P
), Name
=> Nam
));
6760 -- Now analyze the reformatted node
6763 Analyze_Selected_Component
(N
);
6767 -- Remaining cases generate various error messages
6770 -- Format node as expanded name, to avoid cascaded errors
6772 Change_Selected_Component_To_Expanded_Name
(N
);
6773 Set_Entity
(N
, Any_Id
);
6774 Set_Etype
(N
, Any_Type
);
6776 -- Issue error message, but avoid this if error issued already.
6777 -- Use identifier of prefix if one is available.
6779 if P_Name
= Any_Id
then
6782 elsif Ekind
(P_Name
) = E_Void
then
6783 Premature_Usage
(P
);
6785 elsif Nkind
(P
) /= N_Attribute_Reference
then
6787 "invalid prefix in selected component&", P
);
6789 if Is_Access_Type
(P_Type
)
6790 and then Ekind
(Designated_Type
(P_Type
)) = E_Incomplete_Type
6793 ("\dereference must not be of an incomplete type " &
6799 "invalid prefix in selected component", P
);
6803 -- Selector name is restricted in SPARK
6805 if Nkind
(N
) = N_Expanded_Name
6806 and then Restriction_Check_Required
(SPARK_05
)
6808 if Is_Subprogram
(P_Name
) then
6809 Check_SPARK_05_Restriction
6810 ("prefix of expanded name cannot be a subprogram", P
);
6811 elsif Ekind
(P_Name
) = E_Loop
then
6812 Check_SPARK_05_Restriction
6813 ("prefix of expanded name cannot be a loop statement", P
);
6818 -- If prefix is not the name of an entity, it must be an expression,
6819 -- whose type is appropriate for a record. This is determined by
6822 Analyze_Selected_Component
(N
);
6825 Analyze_Dimension
(N
);
6826 end Find_Selected_Component
;
6832 procedure Find_Type
(N
: Node_Id
) is
6842 elsif Nkind
(N
) = N_Attribute_Reference
then
6844 -- Class attribute. This is not valid in Ada 83 mode, but we do not
6845 -- need to enforce that at this point, since the declaration of the
6846 -- tagged type in the prefix would have been flagged already.
6848 if Attribute_Name
(N
) = Name_Class
then
6849 Check_Restriction
(No_Dispatch
, N
);
6850 Find_Type
(Prefix
(N
));
6852 -- Propagate error from bad prefix
6854 if Etype
(Prefix
(N
)) = Any_Type
then
6855 Set_Entity
(N
, Any_Type
);
6856 Set_Etype
(N
, Any_Type
);
6860 T
:= Base_Type
(Entity
(Prefix
(N
)));
6862 -- Case where type is not known to be tagged. Its appearance in
6863 -- the prefix of the 'Class attribute indicates that the full view
6866 if not Is_Tagged_Type
(T
) then
6867 if Ekind
(T
) = E_Incomplete_Type
then
6869 -- It is legal to denote the class type of an incomplete
6870 -- type. The full type will have to be tagged, of course.
6871 -- In Ada 2005 this usage is declared obsolescent, so we
6872 -- warn accordingly. This usage is only legal if the type
6873 -- is completed in the current scope, and not for a limited
6876 if Ada_Version
>= Ada_2005
then
6878 -- Test whether the Available_View of a limited type view
6879 -- is tagged, since the limited view may not be marked as
6880 -- tagged if the type itself has an untagged incomplete
6881 -- type view in its package.
6883 if From_Limited_With
(T
)
6884 and then not Is_Tagged_Type
(Available_View
(T
))
6887 ("prefix of Class attribute must be tagged", N
);
6888 Set_Etype
(N
, Any_Type
);
6889 Set_Entity
(N
, Any_Type
);
6892 -- ??? This test is temporarily disabled (always
6893 -- False) because it causes an unwanted warning on
6894 -- GNAT sources (built with -gnatg, which includes
6895 -- Warn_On_Obsolescent_ Feature). Once this issue
6896 -- is cleared in the sources, it can be enabled.
6898 elsif Warn_On_Obsolescent_Feature
and then False then
6900 ("applying 'Class to an untagged incomplete type"
6901 & " is an obsolescent feature (RM J.11)?r?", N
);
6905 Set_Is_Tagged_Type
(T
);
6906 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
6907 Make_Class_Wide_Type
(T
);
6908 Set_Entity
(N
, Class_Wide_Type
(T
));
6909 Set_Etype
(N
, Class_Wide_Type
(T
));
6911 elsif Ekind
(T
) = E_Private_Type
6912 and then not Is_Generic_Type
(T
)
6913 and then In_Private_Part
(Scope
(T
))
6915 -- The Class attribute can be applied to an untagged private
6916 -- type fulfilled by a tagged type prior to the full type
6917 -- declaration (but only within the parent package's private
6918 -- part). Create the class-wide type now and check that the
6919 -- full type is tagged later during its analysis. Note that
6920 -- we do not mark the private type as tagged, unlike the
6921 -- case of incomplete types, because the type must still
6922 -- appear untagged to outside units.
6924 if No
(Class_Wide_Type
(T
)) then
6925 Make_Class_Wide_Type
(T
);
6928 Set_Entity
(N
, Class_Wide_Type
(T
));
6929 Set_Etype
(N
, Class_Wide_Type
(T
));
6932 -- Should we introduce a type Any_Tagged and use Wrong_Type
6933 -- here, it would be a bit more consistent???
6936 ("tagged type required, found}",
6937 Prefix
(N
), First_Subtype
(T
));
6938 Set_Entity
(N
, Any_Type
);
6942 -- Case of tagged type
6945 if Is_Concurrent_Type
(T
) then
6946 if No
(Corresponding_Record_Type
(Entity
(Prefix
(N
)))) then
6948 -- Previous error. Use current type, which at least
6949 -- provides some operations.
6951 C
:= Entity
(Prefix
(N
));
6954 C
:= Class_Wide_Type
6955 (Corresponding_Record_Type
(Entity
(Prefix
(N
))));
6959 C
:= Class_Wide_Type
(Entity
(Prefix
(N
)));
6962 Set_Entity_With_Checks
(N
, C
);
6963 Generate_Reference
(C
, N
);
6967 -- Base attribute, not allowed in Ada 83
6969 elsif Attribute_Name
(N
) = Name_Base
then
6970 Error_Msg_Name_1
:= Name_Base
;
6971 Check_SPARK_05_Restriction
6972 ("attribute% is only allowed as prefix of another attribute", N
);
6974 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
6976 ("(Ada 83) Base attribute not allowed in subtype mark", N
);
6979 Find_Type
(Prefix
(N
));
6980 Typ
:= Entity
(Prefix
(N
));
6982 if Ada_Version
>= Ada_95
6983 and then not Is_Scalar_Type
(Typ
)
6984 and then not Is_Generic_Type
(Typ
)
6987 ("prefix of Base attribute must be scalar type",
6990 elsif Warn_On_Redundant_Constructs
6991 and then Base_Type
(Typ
) = Typ
6993 Error_Msg_NE
-- CODEFIX
6994 ("redundant attribute, & is its own base type?r?", N
, Typ
);
6997 T
:= Base_Type
(Typ
);
6999 -- Rewrite attribute reference with type itself (see similar
7000 -- processing in Analyze_Attribute, case Base). Preserve prefix
7001 -- if present, for other legality checks.
7003 if Nkind
(Prefix
(N
)) = N_Expanded_Name
then
7005 Make_Expanded_Name
(Sloc
(N
),
7007 Prefix
=> New_Copy
(Prefix
(Prefix
(N
))),
7008 Selector_Name
=> New_Occurrence_Of
(T
, Sloc
(N
))));
7011 Rewrite
(N
, New_Occurrence_Of
(T
, Sloc
(N
)));
7018 elsif Attribute_Name
(N
) = Name_Stub_Type
then
7020 -- This is handled in Analyze_Attribute
7024 -- All other attributes are invalid in a subtype mark
7027 Error_Msg_N
("invalid attribute in subtype mark", N
);
7033 if Is_Entity_Name
(N
) then
7034 T_Name
:= Entity
(N
);
7036 Error_Msg_N
("subtype mark required in this context", N
);
7037 Set_Etype
(N
, Any_Type
);
7041 if T_Name
= Any_Id
or else Etype
(N
) = Any_Type
then
7043 -- Undefined id. Make it into a valid type
7045 Set_Entity
(N
, Any_Type
);
7047 elsif not Is_Type
(T_Name
)
7048 and then T_Name
/= Standard_Void_Type
7050 Error_Msg_Sloc
:= Sloc
(T_Name
);
7051 Error_Msg_N
("subtype mark required in this context", N
);
7052 Error_Msg_NE
("\\found & declared#", N
, T_Name
);
7053 Set_Entity
(N
, Any_Type
);
7056 -- If the type is an incomplete type created to handle
7057 -- anonymous access components of a record type, then the
7058 -- incomplete type is the visible entity and subsequent
7059 -- references will point to it. Mark the original full
7060 -- type as referenced, to prevent spurious warnings.
7062 if Is_Incomplete_Type
(T_Name
)
7063 and then Present
(Full_View
(T_Name
))
7064 and then not Comes_From_Source
(T_Name
)
7066 Set_Referenced
(Full_View
(T_Name
));
7069 T_Name
:= Get_Full_View
(T_Name
);
7071 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7072 -- limited-with clauses
7074 if From_Limited_With
(T_Name
)
7075 and then Ekind
(T_Name
) in Incomplete_Kind
7076 and then Present
(Non_Limited_View
(T_Name
))
7077 and then Is_Interface
(Non_Limited_View
(T_Name
))
7079 T_Name
:= Non_Limited_View
(T_Name
);
7082 if In_Open_Scopes
(T_Name
) then
7083 if Ekind
(Base_Type
(T_Name
)) = E_Task_Type
then
7085 -- In Ada 2005, a task name can be used in an access
7086 -- definition within its own body. It cannot be used
7087 -- in the discriminant part of the task declaration,
7088 -- nor anywhere else in the declaration because entries
7089 -- cannot have access parameters.
7091 if Ada_Version
>= Ada_2005
7092 and then Nkind
(Parent
(N
)) = N_Access_Definition
7094 Set_Entity
(N
, T_Name
);
7095 Set_Etype
(N
, T_Name
);
7097 if Has_Completion
(T_Name
) then
7102 ("task type cannot be used as type mark " &
7103 "within its own declaration", N
);
7108 ("task type cannot be used as type mark " &
7109 "within its own spec or body", N
);
7112 elsif Ekind
(Base_Type
(T_Name
)) = E_Protected_Type
then
7114 -- In Ada 2005, a protected name can be used in an access
7115 -- definition within its own body.
7117 if Ada_Version
>= Ada_2005
7118 and then Nkind
(Parent
(N
)) = N_Access_Definition
7120 Set_Entity
(N
, T_Name
);
7121 Set_Etype
(N
, T_Name
);
7126 ("protected type cannot be used as type mark " &
7127 "within its own spec or body", N
);
7131 Error_Msg_N
("type declaration cannot refer to itself", N
);
7134 Set_Etype
(N
, Any_Type
);
7135 Set_Entity
(N
, Any_Type
);
7136 Set_Error_Posted
(T_Name
);
7140 Set_Entity
(N
, T_Name
);
7141 Set_Etype
(N
, T_Name
);
7145 if Present
(Etype
(N
)) and then Comes_From_Source
(N
) then
7146 if Is_Fixed_Point_Type
(Etype
(N
)) then
7147 Check_Restriction
(No_Fixed_Point
, N
);
7148 elsif Is_Floating_Point_Type
(Etype
(N
)) then
7149 Check_Restriction
(No_Floating_Point
, N
);
7154 ------------------------------------
7155 -- Has_Implicit_Character_Literal --
7156 ------------------------------------
7158 function Has_Implicit_Character_Literal
(N
: Node_Id
) return Boolean is
7160 Found
: Boolean := False;
7161 P
: constant Entity_Id
:= Entity
(Prefix
(N
));
7162 Priv_Id
: Entity_Id
:= Empty
;
7165 if Ekind
(P
) = E_Package
and then not In_Open_Scopes
(P
) then
7166 Priv_Id
:= First_Private_Entity
(P
);
7169 if P
= Standard_Standard
then
7170 Change_Selected_Component_To_Expanded_Name
(N
);
7171 Rewrite
(N
, Selector_Name
(N
));
7173 Set_Etype
(Original_Node
(N
), Standard_Character
);
7177 Id
:= First_Entity
(P
);
7178 while Present
(Id
) and then Id
/= Priv_Id
loop
7179 if Is_Standard_Character_Type
(Id
) and then Is_Base_Type
(Id
) then
7181 -- We replace the node with the literal itself, resolve as a
7182 -- character, and set the type correctly.
7185 Change_Selected_Component_To_Expanded_Name
(N
);
7186 Rewrite
(N
, Selector_Name
(N
));
7189 Set_Etype
(Original_Node
(N
), Id
);
7193 -- More than one type derived from Character in given scope.
7194 -- Collect all possible interpretations.
7196 Add_One_Interp
(N
, Id
, Id
);
7204 end Has_Implicit_Character_Literal
;
7206 ----------------------
7207 -- Has_Private_With --
7208 ----------------------
7210 function Has_Private_With
(E
: Entity_Id
) return Boolean is
7211 Comp_Unit
: constant Node_Id
:= Cunit
(Current_Sem_Unit
);
7215 Item
:= First
(Context_Items
(Comp_Unit
));
7216 while Present
(Item
) loop
7217 if Nkind
(Item
) = N_With_Clause
7218 and then Private_Present
(Item
)
7219 and then Entity
(Name
(Item
)) = E
7228 end Has_Private_With
;
7230 ---------------------------
7231 -- Has_Implicit_Operator --
7232 ---------------------------
7234 function Has_Implicit_Operator
(N
: Node_Id
) return Boolean is
7235 Op_Id
: constant Name_Id
:= Chars
(Selector_Name
(N
));
7236 P
: constant Entity_Id
:= Entity
(Prefix
(N
));
7238 Priv_Id
: Entity_Id
:= Empty
;
7240 procedure Add_Implicit_Operator
7242 Op_Type
: Entity_Id
:= Empty
);
7243 -- Add implicit interpretation to node N, using the type for which a
7244 -- predefined operator exists. If the operator yields a boolean type,
7245 -- the Operand_Type is implicitly referenced by the operator, and a
7246 -- reference to it must be generated.
7248 ---------------------------
7249 -- Add_Implicit_Operator --
7250 ---------------------------
7252 procedure Add_Implicit_Operator
7254 Op_Type
: Entity_Id
:= Empty
)
7256 Predef_Op
: Entity_Id
;
7259 Predef_Op
:= Current_Entity
(Selector_Name
(N
));
7260 while Present
(Predef_Op
)
7261 and then Scope
(Predef_Op
) /= Standard_Standard
7263 Predef_Op
:= Homonym
(Predef_Op
);
7266 if Nkind
(N
) = N_Selected_Component
then
7267 Change_Selected_Component_To_Expanded_Name
(N
);
7270 -- If the context is an unanalyzed function call, determine whether
7271 -- a binary or unary interpretation is required.
7273 if Nkind
(Parent
(N
)) = N_Indexed_Component
then
7275 Is_Binary_Call
: constant Boolean :=
7277 (Next
(First
(Expressions
(Parent
(N
)))));
7278 Is_Binary_Op
: constant Boolean :=
7280 (Predef_Op
) /= Last_Entity
(Predef_Op
);
7281 Predef_Op2
: constant Entity_Id
:= Homonym
(Predef_Op
);
7284 if Is_Binary_Call
then
7285 if Is_Binary_Op
then
7286 Add_One_Interp
(N
, Predef_Op
, T
);
7288 Add_One_Interp
(N
, Predef_Op2
, T
);
7292 if not Is_Binary_Op
then
7293 Add_One_Interp
(N
, Predef_Op
, T
);
7295 Add_One_Interp
(N
, Predef_Op2
, T
);
7301 Add_One_Interp
(N
, Predef_Op
, T
);
7303 -- For operators with unary and binary interpretations, if
7304 -- context is not a call, add both
7306 if Present
(Homonym
(Predef_Op
)) then
7307 Add_One_Interp
(N
, Homonym
(Predef_Op
), T
);
7311 -- The node is a reference to a predefined operator, and
7312 -- an implicit reference to the type of its operands.
7314 if Present
(Op_Type
) then
7315 Generate_Operator_Reference
(N
, Op_Type
);
7317 Generate_Operator_Reference
(N
, T
);
7319 end Add_Implicit_Operator
;
7321 -- Start of processing for Has_Implicit_Operator
7324 if Ekind
(P
) = E_Package
and then not In_Open_Scopes
(P
) then
7325 Priv_Id
:= First_Private_Entity
(P
);
7328 Id
:= First_Entity
(P
);
7332 -- Boolean operators: an implicit declaration exists if the scope
7333 -- contains a declaration for a derived Boolean type, or for an
7334 -- array of Boolean type.
7336 when Name_Op_And | Name_Op_Not | Name_Op_Or | Name_Op_Xor
=>
7337 while Id
/= Priv_Id
loop
7338 if Valid_Boolean_Arg
(Id
) and then Is_Base_Type
(Id
) then
7339 Add_Implicit_Operator
(Id
);
7346 -- Equality: look for any non-limited type (result is Boolean)
7348 when Name_Op_Eq | Name_Op_Ne
=>
7349 while Id
/= Priv_Id
loop
7351 and then not Is_Limited_Type
(Id
)
7352 and then Is_Base_Type
(Id
)
7354 Add_Implicit_Operator
(Standard_Boolean
, Id
);
7361 -- Comparison operators: scalar type, or array of scalar
7363 when Name_Op_Lt | Name_Op_Le | Name_Op_Gt | Name_Op_Ge
=>
7364 while Id
/= Priv_Id
loop
7365 if (Is_Scalar_Type
(Id
)
7366 or else (Is_Array_Type
(Id
)
7367 and then Is_Scalar_Type
(Component_Type
(Id
))))
7368 and then Is_Base_Type
(Id
)
7370 Add_Implicit_Operator
(Standard_Boolean
, Id
);
7377 -- Arithmetic operators: any numeric type
7387 while Id
/= Priv_Id
loop
7388 if Is_Numeric_Type
(Id
) and then Is_Base_Type
(Id
) then
7389 Add_Implicit_Operator
(Id
);
7396 -- Concatenation: any one-dimensional array type
7398 when Name_Op_Concat
=>
7399 while Id
/= Priv_Id
loop
7400 if Is_Array_Type
(Id
)
7401 and then Number_Dimensions
(Id
) = 1
7402 and then Is_Base_Type
(Id
)
7404 Add_Implicit_Operator
(Id
);
7411 -- What is the others condition here? Should we be using a
7412 -- subtype of Name_Id that would restrict to operators ???
7414 when others => null;
7417 -- If we fall through, then we do not have an implicit operator
7421 end Has_Implicit_Operator
;
7423 -----------------------------------
7424 -- Has_Loop_In_Inner_Open_Scopes --
7425 -----------------------------------
7427 function Has_Loop_In_Inner_Open_Scopes
(S
: Entity_Id
) return Boolean is
7429 -- Several scope stacks are maintained by Scope_Stack. The base of the
7430 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7431 -- flag in the scope stack entry. Note that the scope stacks used to
7432 -- simply be delimited implicitly by the presence of Standard_Standard
7433 -- at their base, but there now are cases where this is not sufficient
7434 -- because Standard_Standard actually may appear in the middle of the
7435 -- active set of scopes.
7437 for J
in reverse 0 .. Scope_Stack
.Last
loop
7439 -- S was reached without seing a loop scope first
7441 if Scope_Stack
.Table
(J
).Entity
= S
then
7444 -- S was not yet reached, so it contains at least one inner loop
7446 elsif Ekind
(Scope_Stack
.Table
(J
).Entity
) = E_Loop
then
7450 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7451 -- cases where Standard_Standard appears in the middle of the active
7452 -- set of scopes. This affects the declaration and overriding of
7453 -- private inherited operations in instantiations of generic child
7456 pragma Assert
(not Scope_Stack
.Table
(J
).Is_Active_Stack_Base
);
7459 raise Program_Error
; -- unreachable
7460 end Has_Loop_In_Inner_Open_Scopes
;
7462 --------------------
7463 -- In_Open_Scopes --
7464 --------------------
7466 function In_Open_Scopes
(S
: Entity_Id
) return Boolean is
7468 -- Several scope stacks are maintained by Scope_Stack. The base of the
7469 -- currently active scope stack is denoted by the Is_Active_Stack_Base
7470 -- flag in the scope stack entry. Note that the scope stacks used to
7471 -- simply be delimited implicitly by the presence of Standard_Standard
7472 -- at their base, but there now are cases where this is not sufficient
7473 -- because Standard_Standard actually may appear in the middle of the
7474 -- active set of scopes.
7476 for J
in reverse 0 .. Scope_Stack
.Last
loop
7477 if Scope_Stack
.Table
(J
).Entity
= S
then
7481 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
7482 -- cases where Standard_Standard appears in the middle of the active
7483 -- set of scopes. This affects the declaration and overriding of
7484 -- private inherited operations in instantiations of generic child
7487 exit when Scope_Stack
.Table
(J
).Is_Active_Stack_Base
;
7493 -----------------------------
7494 -- Inherit_Renamed_Profile --
7495 -----------------------------
7497 procedure Inherit_Renamed_Profile
(New_S
: Entity_Id
; Old_S
: Entity_Id
) is
7504 if Ekind
(Old_S
) = E_Operator
then
7505 New_F
:= First_Formal
(New_S
);
7507 while Present
(New_F
) loop
7508 Set_Etype
(New_F
, Base_Type
(Etype
(New_F
)));
7509 Next_Formal
(New_F
);
7512 Set_Etype
(New_S
, Base_Type
(Etype
(New_S
)));
7515 New_F
:= First_Formal
(New_S
);
7516 Old_F
:= First_Formal
(Old_S
);
7518 while Present
(New_F
) loop
7519 New_T
:= Etype
(New_F
);
7520 Old_T
:= Etype
(Old_F
);
7522 -- If the new type is a renaming of the old one, as is the
7523 -- case for actuals in instances, retain its name, to simplify
7524 -- later disambiguation.
7526 if Nkind
(Parent
(New_T
)) = N_Subtype_Declaration
7527 and then Is_Entity_Name
(Subtype_Indication
(Parent
(New_T
)))
7528 and then Entity
(Subtype_Indication
(Parent
(New_T
))) = Old_T
7532 Set_Etype
(New_F
, Old_T
);
7535 Next_Formal
(New_F
);
7536 Next_Formal
(Old_F
);
7539 if Ekind_In
(Old_S
, E_Function
, E_Enumeration_Literal
) then
7540 Set_Etype
(New_S
, Etype
(Old_S
));
7543 end Inherit_Renamed_Profile
;
7549 procedure Initialize
is
7554 -------------------------
7555 -- Install_Use_Clauses --
7556 -------------------------
7558 procedure Install_Use_Clauses
7560 Force_Installation
: Boolean := False)
7568 while Present
(U
) loop
7570 -- Case of USE package
7572 if Nkind
(U
) = N_Use_Package_Clause
then
7573 P
:= First
(Names
(U
));
7574 while Present
(P
) loop
7577 if Ekind
(Id
) = E_Package
then
7579 Note_Redundant_Use
(P
);
7581 elsif Present
(Renamed_Object
(Id
))
7582 and then In_Use
(Renamed_Object
(Id
))
7584 Note_Redundant_Use
(P
);
7586 elsif Force_Installation
or else Applicable_Use
(P
) then
7587 Use_One_Package
(Id
, U
);
7598 P
:= First
(Subtype_Marks
(U
));
7599 while Present
(P
) loop
7600 if not Is_Entity_Name
(P
)
7601 or else No
(Entity
(P
))
7605 elsif Entity
(P
) /= Any_Type
then
7613 Next_Use_Clause
(U
);
7615 end Install_Use_Clauses
;
7617 -------------------------------------
7618 -- Is_Appropriate_For_Entry_Prefix --
7619 -------------------------------------
7621 function Is_Appropriate_For_Entry_Prefix
(T
: Entity_Id
) return Boolean is
7622 P_Type
: Entity_Id
:= T
;
7625 if Is_Access_Type
(P_Type
) then
7626 P_Type
:= Designated_Type
(P_Type
);
7629 return Is_Task_Type
(P_Type
) or else Is_Protected_Type
(P_Type
);
7630 end Is_Appropriate_For_Entry_Prefix
;
7632 -------------------------------
7633 -- Is_Appropriate_For_Record --
7634 -------------------------------
7636 function Is_Appropriate_For_Record
(T
: Entity_Id
) return Boolean is
7638 function Has_Components
(T1
: Entity_Id
) return Boolean;
7639 -- Determine if given type has components (i.e. is either a record
7640 -- type or a type that has discriminants).
7642 --------------------
7643 -- Has_Components --
7644 --------------------
7646 function Has_Components
(T1
: Entity_Id
) return Boolean is
7648 return Is_Record_Type
(T1
)
7649 or else (Is_Private_Type
(T1
) and then Has_Discriminants
(T1
))
7650 or else (Is_Task_Type
(T1
) and then Has_Discriminants
(T1
))
7651 or else (Is_Incomplete_Type
(T1
)
7652 and then From_Limited_With
(T1
)
7653 and then Present
(Non_Limited_View
(T1
))
7654 and then Is_Record_Type
7655 (Get_Full_View
(Non_Limited_View
(T1
))));
7658 -- Start of processing for Is_Appropriate_For_Record
7663 and then (Has_Components
(T
)
7664 or else (Is_Access_Type
(T
)
7665 and then Has_Components
(Designated_Type
(T
))));
7666 end Is_Appropriate_For_Record
;
7668 ------------------------
7669 -- Note_Redundant_Use --
7670 ------------------------
7672 procedure Note_Redundant_Use
(Clause
: Node_Id
) is
7673 Pack_Name
: constant Entity_Id
:= Entity
(Clause
);
7674 Cur_Use
: constant Node_Id
:= Current_Use_Clause
(Pack_Name
);
7675 Decl
: constant Node_Id
:= Parent
(Clause
);
7677 Prev_Use
: Node_Id
:= Empty
;
7678 Redundant
: Node_Id
:= Empty
;
7679 -- The Use_Clause which is actually redundant. In the simplest case it
7680 -- is Pack itself, but when we compile a body we install its context
7681 -- before that of its spec, in which case it is the use_clause in the
7682 -- spec that will appear to be redundant, and we want the warning to be
7683 -- placed on the body. Similar complications appear when the redundancy
7684 -- is between a child unit and one of its ancestors.
7687 Set_Redundant_Use
(Clause
, True);
7689 if not Comes_From_Source
(Clause
)
7691 or else not Warn_On_Redundant_Constructs
7696 if not Is_Compilation_Unit
(Current_Scope
) then
7698 -- If the use_clause is in an inner scope, it is made redundant by
7699 -- some clause in the current context, with one exception: If we're
7700 -- compiling a nested package body, and the use_clause comes from the
7701 -- corresponding spec, the clause is not necessarily fully redundant,
7702 -- so we should not warn. If a warning was warranted, it would have
7703 -- been given when the spec was processed.
7705 if Nkind
(Parent
(Decl
)) = N_Package_Specification
then
7707 Package_Spec_Entity
: constant Entity_Id
:=
7708 Defining_Unit_Name
(Parent
(Decl
));
7710 if In_Package_Body
(Package_Spec_Entity
) then
7716 Redundant
:= Clause
;
7717 Prev_Use
:= Cur_Use
;
7719 elsif Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) = N_Package_Body
then
7721 Cur_Unit
: constant Unit_Number_Type
:= Get_Source_Unit
(Cur_Use
);
7722 New_Unit
: constant Unit_Number_Type
:= Get_Source_Unit
(Clause
);
7726 if Cur_Unit
= New_Unit
then
7728 -- Redundant clause in same body
7730 Redundant
:= Clause
;
7731 Prev_Use
:= Cur_Use
;
7733 elsif Cur_Unit
= Current_Sem_Unit
then
7735 -- If the new clause is not in the current unit it has been
7736 -- analyzed first, and it makes the other one redundant.
7737 -- However, if the new clause appears in a subunit, Cur_Unit
7738 -- is still the parent, and in that case the redundant one
7739 -- is the one appearing in the subunit.
7741 if Nkind
(Unit
(Cunit
(New_Unit
))) = N_Subunit
then
7742 Redundant
:= Clause
;
7743 Prev_Use
:= Cur_Use
;
7745 -- Most common case: redundant clause in body,
7746 -- original clause in spec. Current scope is spec entity.
7751 Unit
(Library_Unit
(Cunit
(Current_Sem_Unit
))))
7753 Redundant
:= Cur_Use
;
7757 -- The new clause may appear in an unrelated unit, when
7758 -- the parents of a generic are being installed prior to
7759 -- instantiation. In this case there must be no warning.
7760 -- We detect this case by checking whether the current top
7761 -- of the stack is related to the current compilation.
7763 Scop
:= Current_Scope
;
7764 while Present
(Scop
) and then Scop
/= Standard_Standard
loop
7765 if Is_Compilation_Unit
(Scop
)
7766 and then not Is_Child_Unit
(Scop
)
7770 elsif Scop
= Cunit_Entity
(Current_Sem_Unit
) then
7774 Scop
:= Scope
(Scop
);
7777 Redundant
:= Cur_Use
;
7781 elsif New_Unit
= Current_Sem_Unit
then
7782 Redundant
:= Clause
;
7783 Prev_Use
:= Cur_Use
;
7786 -- Neither is the current unit, so they appear in parent or
7787 -- sibling units. Warning will be emitted elsewhere.
7793 elsif Nkind
(Unit
(Cunit
(Current_Sem_Unit
))) = N_Package_Declaration
7794 and then Present
(Parent_Spec
(Unit
(Cunit
(Current_Sem_Unit
))))
7796 -- Use_clause is in child unit of current unit, and the child unit
7797 -- appears in the context of the body of the parent, so it has been
7798 -- installed first, even though it is the redundant one. Depending on
7799 -- their placement in the context, the visible or the private parts
7800 -- of the two units, either might appear as redundant, but the
7801 -- message has to be on the current unit.
7803 if Get_Source_Unit
(Cur_Use
) = Current_Sem_Unit
then
7804 Redundant
:= Cur_Use
;
7807 Redundant
:= Clause
;
7808 Prev_Use
:= Cur_Use
;
7811 -- If the new use clause appears in the private part of a parent unit
7812 -- it may appear to be redundant w.r.t. a use clause in a child unit,
7813 -- but the previous use clause was needed in the visible part of the
7814 -- child, and no warning should be emitted.
7816 if Nkind
(Parent
(Decl
)) = N_Package_Specification
7818 List_Containing
(Decl
) = Private_Declarations
(Parent
(Decl
))
7821 Par
: constant Entity_Id
:= Defining_Entity
(Parent
(Decl
));
7822 Spec
: constant Node_Id
:=
7823 Specification
(Unit
(Cunit
(Current_Sem_Unit
)));
7826 if Is_Compilation_Unit
(Par
)
7827 and then Par
/= Cunit_Entity
(Current_Sem_Unit
)
7828 and then Parent
(Cur_Use
) = Spec
7830 List_Containing
(Cur_Use
) = Visible_Declarations
(Spec
)
7837 -- Finally, if the current use clause is in the context then
7838 -- the clause is redundant when it is nested within the unit.
7840 elsif Nkind
(Parent
(Cur_Use
)) = N_Compilation_Unit
7841 and then Nkind
(Parent
(Parent
(Clause
))) /= N_Compilation_Unit
7842 and then Get_Source_Unit
(Cur_Use
) = Get_Source_Unit
(Clause
)
7844 Redundant
:= Clause
;
7845 Prev_Use
:= Cur_Use
;
7851 if Present
(Redundant
) then
7852 Error_Msg_Sloc
:= Sloc
(Prev_Use
);
7853 Error_Msg_NE
-- CODEFIX
7854 ("& is already use-visible through previous use clause #??",
7855 Redundant
, Pack_Name
);
7857 end Note_Redundant_Use
;
7863 procedure Pop_Scope
is
7864 SST
: Scope_Stack_Entry
renames Scope_Stack
.Table
(Scope_Stack
.Last
);
7865 S
: constant Entity_Id
:= SST
.Entity
;
7868 if Debug_Flag_E
then
7872 -- Set Default_Storage_Pool field of the library unit if necessary
7874 if Ekind_In
(S
, E_Package
, E_Generic_Package
)
7876 Nkind
(Parent
(Unit_Declaration_Node
(S
))) = N_Compilation_Unit
7879 Aux
: constant Node_Id
:=
7880 Aux_Decls_Node
(Parent
(Unit_Declaration_Node
(S
)));
7882 if No
(Default_Storage_Pool
(Aux
)) then
7883 Set_Default_Storage_Pool
(Aux
, Default_Pool
);
7888 Scope_Suppress
:= SST
.Save_Scope_Suppress
;
7889 Local_Suppress_Stack_Top
:= SST
.Save_Local_Suppress_Stack_Top
;
7890 Check_Policy_List
:= SST
.Save_Check_Policy_List
;
7891 Default_Pool
:= SST
.Save_Default_Storage_Pool
;
7892 No_Tagged_Streams
:= SST
.Save_No_Tagged_Streams
;
7893 SPARK_Mode
:= SST
.Save_SPARK_Mode
;
7894 SPARK_Mode_Pragma
:= SST
.Save_SPARK_Mode_Pragma
;
7895 Default_SSO
:= SST
.Save_Default_SSO
;
7896 Uneval_Old
:= SST
.Save_Uneval_Old
;
7898 if Debug_Flag_W
then
7899 Write_Str
("<-- exiting scope: ");
7900 Write_Name
(Chars
(Current_Scope
));
7901 Write_Str
(", Depth=");
7902 Write_Int
(Int
(Scope_Stack
.Last
));
7906 End_Use_Clauses
(SST
.First_Use_Clause
);
7908 -- If the actions to be wrapped are still there they will get lost
7909 -- causing incomplete code to be generated. It is better to abort in
7910 -- this case (and we do the abort even with assertions off since the
7911 -- penalty is incorrect code generation).
7913 if SST
.Actions_To_Be_Wrapped
/= Scope_Actions
'(others => No_List) then
7914 raise Program_Error;
7917 -- Free last subprogram name if allocated, and pop scope
7919 Free (SST.Last_Subprogram_Name);
7920 Scope_Stack.Decrement_Last;
7927 procedure Push_Scope (S : Entity_Id) is
7928 E : constant Entity_Id := Scope (S);
7931 if Ekind (S) = E_Void then
7934 -- Set scope depth if not a non-concurrent type, and we have not yet set
7935 -- the scope depth. This means that we have the first occurrence of the
7936 -- scope, and this is where the depth is set.
7938 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
7939 and then not Scope_Depth_Set (S)
7941 if S = Standard_Standard then
7942 Set_Scope_Depth_Value (S, Uint_0);
7944 elsif Is_Child_Unit (S) then
7945 Set_Scope_Depth_Value (S, Uint_1);
7947 elsif not Is_Record_Type (Current_Scope) then
7948 if Ekind (S) = E_Loop then
7949 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
7951 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
7956 Scope_Stack.Increment_Last;
7959 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
7963 SST.Save_Scope_Suppress := Scope_Suppress;
7964 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
7965 SST.Save_Check_Policy_List := Check_Policy_List;
7966 SST.Save_Default_Storage_Pool := Default_Pool;
7967 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
7968 SST.Save_SPARK_Mode := SPARK_Mode;
7969 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
7970 SST.Save_Default_SSO := Default_SSO;
7971 SST.Save_Uneval_Old := Uneval_Old;
7973 if Scope_Stack.Last > Scope_Stack.First then
7974 SST.Component_Alignment_Default := Scope_Stack.Table
7975 (Scope_Stack.Last - 1).
7976 Component_Alignment_Default;
7979 SST.Last_Subprogram_Name := null;
7980 SST.Is_Transient := False;
7981 SST.Node_To_Be_Wrapped := Empty;
7982 SST.Pending_Freeze_Actions := No_List;
7983 SST.Actions_To_Be_Wrapped := (others => No_List);
7984 SST.First_Use_Clause := Empty;
7985 SST.Is_Active_Stack_Base := False;
7986 SST.Previous_Visibility := False;
7987 SST.Locked_Shared_Objects := No_Elist;
7990 if Debug_Flag_W then
7991 Write_Str ("--> new scope: ");
7992 Write_Name (Chars (Current_Scope));
7993 Write_Str (", Id=");
7994 Write_Int (Int (Current_Scope));
7995 Write_Str (", Depth=");
7996 Write_Int (Int (Scope_Stack.Last));
8000 -- Deal with copying flags from the previous scope to this one. This is
8001 -- not necessary if either scope is standard, or if the new scope is a
8004 if S /= Standard_Standard
8005 and then Scope (S) /= Standard_Standard
8006 and then not Is_Child_Unit (S)
8008 if Nkind (E) not in N_Entity then
8012 -- Copy categorization flags from Scope (S) to S, this is not done
8013 -- when Scope (S) is Standard_Standard since propagation is from
8014 -- library unit entity inwards. Copy other relevant attributes as
8015 -- well (Discard_Names in particular).
8017 -- We only propagate inwards for library level entities,
8018 -- inner level subprograms do not inherit the categorization.
8020 if Is_Library_Level_Entity (S) then
8021 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8022 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8023 Set_Discard_Names (S, Discard_Names (E));
8024 Set_Suppress_Value_Tracking_On_Call
8025 (S, Suppress_Value_Tracking_On_Call (E));
8026 Set_Categorization_From_Scope (E => S, Scop => E);
8030 if Is_Child_Unit (S)
8031 and then Present (E)
8032 and then Ekind_In (E, E_Package, E_Generic_Package)
8034 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8037 Aux : constant Node_Id :=
8038 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8040 if Present (Default_Storage_Pool (Aux)) then
8041 Default_Pool := Default_Storage_Pool (Aux);
8047 ---------------------
8048 -- Premature_Usage --
8049 ---------------------
8051 procedure Premature_Usage (N : Node_Id) is
8052 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8053 E : Entity_Id := Entity (N);
8056 -- Within an instance, the analysis of the actual for a formal object
8057 -- does not see the name of the object itself. This is significant only
8058 -- if the object is an aggregate, where its analysis does not do any
8059 -- name resolution on component associations. (see 4717-008). In such a
8060 -- case, look for the visible homonym on the chain.
8062 if In_Instance and then Present (Homonym (E)) then
8064 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8070 Set_Etype (N, Etype (E));
8075 if Kind = N_Component_Declaration then
8077 ("component&! cannot be used before end of record declaration", N);
8079 elsif Kind = N_Parameter_Specification then
8081 ("formal parameter&! cannot be used before end of specification",
8084 elsif Kind = N_Discriminant_Specification then
8086 ("discriminant&! cannot be used before end of discriminant part",
8089 elsif Kind = N_Procedure_Specification
8090 or else Kind = N_Function_Specification
8093 ("subprogram&! cannot be used before end of its declaration",
8096 elsif Kind = N_Full_Type_Declaration then
8098 ("type& cannot be used before end of its declaration!", N);
8102 ("object& cannot be used before end of its declaration!", N);
8104 end Premature_Usage;
8106 ------------------------
8107 -- Present_System_Aux --
8108 ------------------------
8110 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8112 Aux_Name : Unit_Name_Type;
8113 Unum : Unit_Number_Type;
8118 function Find_System (C_Unit : Node_Id) return Entity_Id;
8119 -- Scan context clause of compilation unit to find with_clause
8126 function Find_System (C_Unit : Node_Id) return Entity_Id is
8127 With_Clause : Node_Id;
8130 With_Clause := First (Context_Items (C_Unit));
8131 while Present (With_Clause) loop
8132 if (Nkind (With_Clause) = N_With_Clause
8133 and then Chars (Name (With_Clause)) = Name_System)
8134 and then Comes_From_Source (With_Clause)
8145 -- Start of processing for Present_System_Aux
8148 -- The child unit may have been loaded and analyzed already
8150 if Present (System_Aux_Id) then
8153 -- If no previous pragma for System.Aux, nothing to load
8155 elsif No (System_Extend_Unit) then
8158 -- Use the unit name given in the pragma to retrieve the unit.
8159 -- Verify that System itself appears in the context clause of the
8160 -- current compilation. If System is not present, an error will
8161 -- have been reported already.
8164 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8166 The_Unit := Unit (Cunit (Current_Sem_Unit));
8170 (Nkind (The_Unit) = N_Package_Body
8171 or else (Nkind (The_Unit) = N_Subprogram_Body
8172 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8174 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8177 if No (With_Sys) and then Present (N) then
8179 -- If we are compiling a subunit, we need to examine its
8180 -- context as well (Current_Sem_Unit is the parent unit);
8182 The_Unit := Parent (N);
8183 while Nkind (The_Unit) /= N_Compilation_Unit loop
8184 The_Unit := Parent (The_Unit);
8187 if Nkind (Unit (The_Unit)) = N_Subunit then
8188 With_Sys := Find_System (The_Unit);
8192 if No (With_Sys) then
8196 Loc := Sloc (With_Sys);
8197 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8198 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8199 Name_Buffer (1 .. 7) := "system.";
8200 Name_Buffer (Name_Len + 8) := '%';
8201 Name_Buffer (Name_Len + 9) := 's
';
8202 Name_Len := Name_Len + 9;
8203 Aux_Name := Name_Find;
8207 (Load_Name => Aux_Name,
8210 Error_Node => With_Sys);
8212 if Unum /= No_Unit then
8213 Semantics (Cunit (Unum));
8215 Defining_Entity (Specification (Unit (Cunit (Unum))));
8218 Make_With_Clause (Loc,
8220 Make_Expanded_Name (Loc,
8221 Chars => Chars (System_Aux_Id),
8222 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8223 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8225 Set_Entity (Name (Withn), System_Aux_Id);
8227 Set_Library_Unit (Withn, Cunit (Unum));
8228 Set_Corresponding_Spec (Withn, System_Aux_Id);
8229 Set_First_Name (Withn, True);
8230 Set_Implicit_With (Withn, True);
8232 Insert_After (With_Sys, Withn);
8233 Mark_Rewrite_Insertion (Withn);
8234 Set_Context_Installed (Withn);
8238 -- Here if unit load failed
8241 Error_Msg_Name_1 := Name_System;
8242 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8244 ("extension package `%.%` does not exist",
8245 Opt.System_Extend_Unit);
8249 end Present_System_Aux;
8251 -------------------------
8252 -- Restore_Scope_Stack --
8253 -------------------------
8255 procedure Restore_Scope_Stack
8257 Handle_Use : Boolean := True)
8259 SS_Last : constant Int := Scope_Stack.Last;
8263 -- Restore visibility of previous scope stack, if any, using the list
8264 -- we saved (we use Remove, since this list will not be used again).
8267 Elmt := Last_Elmt (List);
8268 exit when Elmt = No_Elmt;
8269 Set_Is_Immediately_Visible (Node (Elmt));
8270 Remove_Last_Elmt (List);
8273 -- Restore use clauses
8275 if SS_Last >= Scope_Stack.First
8276 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8279 Install_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8281 end Restore_Scope_Stack;
8283 ----------------------
8284 -- Save_Scope_Stack --
8285 ----------------------
8287 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8288 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8289 -- from immediate visibility entities and Restore_Scope_Stack took care
8290 -- of restoring their visibility analyzing the context of each entity. The
8291 -- problem of such approach is that it was fragile and caused unexpected
8292 -- visibility problems, and indeed one test was found where there was a
8295 -- Furthermore, the following experiment was carried out:
8297 -- - Save_Scope_Stack was modified to store in an Elist1 all those
8298 -- entities whose attribute Is_Immediately_Visible is modified
8299 -- from True to False.
8301 -- - Restore_Scope_Stack was modified to store in another Elist2
8302 -- all the entities whose attribute Is_Immediately_Visible is
8303 -- modified from False to True.
8305 -- - Extra code was added to verify that all the elements of Elist1
8306 -- are found in Elist2
8308 -- This test shows that there may be more occurrences of this problem which
8309 -- have not yet been detected. As a result, we replaced that approach by
8310 -- the current one in which Save_Scope_Stack returns the list of entities
8311 -- whose visibility is changed, and that list is passed to Restore_Scope_
8312 -- Stack to undo that change. This approach is simpler and safer, although
8313 -- it consumes more memory.
8315 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
8316 Result : constant Elist_Id := New_Elmt_List;
8319 SS_Last : constant Int := Scope_Stack.Last;
8321 procedure Remove_From_Visibility (E : Entity_Id);
8322 -- If E is immediately visible then append it to the result and remove
8323 -- it temporarily from visibility.
8325 ----------------------------
8326 -- Remove_From_Visibility --
8327 ----------------------------
8329 procedure Remove_From_Visibility (E : Entity_Id) is
8331 if Is_Immediately_Visible (E) then
8332 Append_Elmt (E, Result);
8333 Set_Is_Immediately_Visible (E, False);
8335 end Remove_From_Visibility;
8337 -- Start of processing for Save_Scope_Stack
8340 if SS_Last >= Scope_Stack.First
8341 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8344 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
8347 -- If the call is from within a compilation unit, as when called from
8348 -- Rtsfind, make current entries in scope stack invisible while we
8349 -- analyze the new unit.
8351 for J in reverse 0 .. SS_Last loop
8352 exit when Scope_Stack.Table (J).Entity = Standard_Standard
8353 or else No (Scope_Stack.Table (J).Entity);
8355 S := Scope_Stack.Table (J).Entity;
8357 Remove_From_Visibility (S);
8359 E := First_Entity (S);
8360 while Present (E) loop
8361 Remove_From_Visibility (E);
8369 end Save_Scope_Stack;
8375 procedure Set_Use (L : List_Id) is
8377 Pack_Name : Node_Id;
8384 while Present (Decl) loop
8385 if Nkind (Decl) = N_Use_Package_Clause then
8386 Chain_Use_Clause (Decl);
8388 Pack_Name := First (Names (Decl));
8389 while Present (Pack_Name) loop
8390 Pack := Entity (Pack_Name);
8392 if Ekind (Pack) = E_Package
8393 and then Applicable_Use (Pack_Name)
8395 Use_One_Package (Pack, Decl);
8401 elsif Nkind (Decl) = N_Use_Type_Clause then
8402 Chain_Use_Clause (Decl);
8404 Id := First (Subtype_Marks (Decl));
8405 while Present (Id) loop
8406 if Entity (Id) /= Any_Type then
8419 ---------------------
8420 -- Use_One_Package --
8421 ---------------------
8423 procedure Use_One_Package (P : Entity_Id; N : Node_Id) is
8426 Current_Instance : Entity_Id := Empty;
8428 Private_With_OK : Boolean := False;
8431 if Ekind (P) /= E_Package then
8436 Set_Current_Use_Clause (P, N);
8438 -- Ada 2005 (AI-50217): Check restriction
8440 if From_Limited_With (P) then
8441 Error_Msg_N ("limited withed package cannot appear in use clause", N);
8444 -- Find enclosing instance, if any
8447 Current_Instance := Current_Scope;
8448 while not Is_Generic_Instance (Current_Instance) loop
8449 Current_Instance := Scope (Current_Instance);
8452 if No (Hidden_By_Use_Clause (N)) then
8453 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
8457 -- If unit is a package renaming, indicate that the renamed
8458 -- package is also in use (the flags on both entities must
8459 -- remain consistent, and a subsequent use of either of them
8460 -- should be recognized as redundant).
8462 if Present (Renamed_Object (P)) then
8463 Set_In_Use (Renamed_Object (P));
8464 Set_Current_Use_Clause (Renamed_Object (P), N);
8465 Real_P := Renamed_Object (P);
8470 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
8471 -- found in the private part of a package specification
8473 if In_Private_Part (Current_Scope)
8474 and then Has_Private_With (P)
8475 and then Is_Child_Unit (Current_Scope)
8476 and then Is_Child_Unit (P)
8477 and then Is_Ancestor_Package (Scope (Current_Scope), P)
8479 Private_With_OK := True;
8482 -- Loop through entities in one package making them potentially
8485 Id := First_Entity (P);
8487 and then (Id /= First_Private_Entity (P)
8488 or else Private_With_OK) -- Ada 2005 (AI-262)
8490 Prev := Current_Entity (Id);
8491 while Present (Prev) loop
8492 if Is_Immediately_Visible (Prev)
8493 and then (not Is_Overloadable (Prev)
8494 or else not Is_Overloadable (Id)
8495 or else (Type_Conformant (Id, Prev)))
8497 if No (Current_Instance) then
8499 -- Potentially use-visible entity remains hidden
8501 goto Next_Usable_Entity;
8503 -- A use clause within an instance hides outer global entities,
8504 -- which are not used to resolve local entities in the
8505 -- instance. Note that the predefined entities in Standard
8506 -- could not have been hidden in the generic by a use clause,
8507 -- and therefore remain visible. Other compilation units whose
8508 -- entities appear in Standard must be hidden in an instance.
8510 -- To determine whether an entity is external to the instance
8511 -- we compare the scope depth of its scope with that of the
8512 -- current instance. However, a generic actual of a subprogram
8513 -- instance is declared in the wrapper package but will not be
8514 -- hidden by a use-visible entity. similarly, an entity that is
8515 -- declared in an enclosing instance will not be hidden by an
8516 -- an entity declared in a generic actual, which can only have
8517 -- been use-visible in the generic and will not have hidden the
8518 -- entity in the generic parent.
8520 -- If Id is called Standard, the predefined package with the
8521 -- same name is in the homonym chain. It has to be ignored
8522 -- because it has no defined scope (being the only entity in
8523 -- the system with this mandated behavior).
8525 elsif not Is_Hidden (Id)
8526 and then Present (Scope (Prev))
8527 and then not Is_Wrapper_Package (Scope (Prev))
8528 and then Scope_Depth (Scope (Prev)) <
8529 Scope_Depth (Current_Instance)
8530 and then (Scope (Prev) /= Standard_Standard
8531 or else Sloc (Prev) > Standard_Location)
8533 if In_Open_Scopes (Scope (Prev))
8534 and then Is_Generic_Instance (Scope (Prev))
8535 and then Present (Associated_Formal_Package (P))
8540 Set_Is_Potentially_Use_Visible (Id);
8541 Set_Is_Immediately_Visible (Prev, False);
8542 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8546 -- A user-defined operator is not use-visible if the predefined
8547 -- operator for the type is immediately visible, which is the case
8548 -- if the type of the operand is in an open scope. This does not
8549 -- apply to user-defined operators that have operands of different
8550 -- types, because the predefined mixed mode operations (multiply
8551 -- and divide) apply to universal types and do not hide anything.
8553 elsif Ekind (Prev) = E_Operator
8554 and then Operator_Matches_Spec (Prev, Id)
8555 and then In_Open_Scopes
8556 (Scope (Base_Type (Etype (First_Formal (Id)))))
8557 and then (No (Next_Formal (First_Formal (Id)))
8558 or else Etype (First_Formal (Id)) =
8559 Etype (Next_Formal (First_Formal (Id)))
8560 or else Chars (Prev) = Name_Op_Expon)
8562 goto Next_Usable_Entity;
8564 -- In an instance, two homonyms may become use_visible through the
8565 -- actuals of distinct formal packages. In the generic, only the
8566 -- current one would have been visible, so make the other one
8569 elsif Present (Current_Instance)
8570 and then Is_Potentially_Use_Visible (Prev)
8571 and then not Is_Overloadable (Prev)
8572 and then Scope (Id) /= Scope (Prev)
8573 and then Used_As_Generic_Actual (Scope (Prev))
8574 and then Used_As_Generic_Actual (Scope (Id))
8575 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
8576 Current_Use_Clause (Scope (Id)))
8578 Set_Is_Potentially_Use_Visible (Prev, False);
8579 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
8582 Prev := Homonym (Prev);
8585 -- On exit, we know entity is not hidden, unless it is private
8587 if not Is_Hidden (Id)
8588 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
8590 Set_Is_Potentially_Use_Visible (Id);
8592 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
8593 Set_Is_Potentially_Use_Visible (Full_View (Id));
8597 <<Next_Usable_Entity>>
8601 -- Child units are also made use-visible by a use clause, but they may
8602 -- appear after all visible declarations in the parent entity list.
8604 while Present (Id) loop
8605 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
8606 Set_Is_Potentially_Use_Visible (Id);
8612 if Chars (Real_P) = Name_System
8613 and then Scope (Real_P) = Standard_Standard
8614 and then Present_System_Aux (N)
8616 Use_One_Package (System_Aux_Id, N);
8619 end Use_One_Package;
8625 procedure Use_One_Type (Id : Node_Id; Installed : Boolean := False) is
8627 Is_Known_Used : Boolean;
8631 function Spec_Reloaded_For_Body return Boolean;
8632 -- Determine whether the compilation unit is a package body and the use
8633 -- type clause is in the spec of the same package. Even though the spec
8634 -- was analyzed first, its context is reloaded when analysing the body.
8636 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
8637 -- AI05-150: if the use_type_clause carries the "all" qualifier,
8638 -- class-wide operations of ancestor types are use-visible if the
8639 -- ancestor type is visible.
8641 ----------------------------
8642 -- Spec_Reloaded_For_Body --
8643 ----------------------------
8645 function Spec_Reloaded_For_Body return Boolean is
8647 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
8649 Spec : constant Node_Id :=
8650 Parent (List_Containing (Parent (Id)));
8653 -- Check whether type is declared in a package specification,
8654 -- and current unit is the corresponding package body. The
8655 -- use clauses themselves may be within a nested package.
8658 Nkind (Spec) = N_Package_Specification
8660 In_Same_Source_Unit (Corresponding_Body (Parent (Spec)),
8661 Cunit_Entity (Current_Sem_Unit));
8666 end Spec_Reloaded_For_Body;
8668 -------------------------------
8669 -- Use_Class_Wide_Operations --
8670 -------------------------------
8672 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
8676 function Is_Class_Wide_Operation_Of
8678 T : Entity_Id) return Boolean;
8679 -- Determine whether a subprogram has a class-wide parameter or
8680 -- result that is T'Class.
8682 ---------------------------------
8683 -- Is_Class_Wide_Operation_Of --
8684 ---------------------------------
8686 function Is_Class_Wide_Operation_Of
8688 T : Entity_Id) return Boolean
8693 Formal := First_Formal (Op);
8694 while Present (Formal) loop
8695 if Etype (Formal) = Class_Wide_Type (T) then
8698 Next_Formal (Formal);
8701 if Etype (Op) = Class_Wide_Type (T) then
8706 end Is_Class_Wide_Operation_Of;
8708 -- Start of processing for Use_Class_Wide_Operations
8711 Scop := Scope (Typ);
8712 if not Is_Hidden (Scop) then
8713 Ent := First_Entity (Scop);
8714 while Present (Ent) loop
8715 if Is_Overloadable (Ent)
8716 and then Is_Class_Wide_Operation_Of (Ent, Typ)
8717 and then not Is_Potentially_Use_Visible (Ent)
8719 Set_Is_Potentially_Use_Visible (Ent);
8720 Append_Elmt (Ent, Used_Operations (Parent (Id)));
8727 if Is_Derived_Type (Typ) then
8728 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
8730 end Use_Class_Wide_Operations;
8732 -- Start of processing for Use_One_Type
8735 -- It is the type determined by the subtype mark (8.4(8)) whose
8736 -- operations become potentially use-visible.
8738 T := Base_Type (Entity (Id));
8740 -- Either the type itself is used, the package where it is declared
8741 -- is in use or the entity is declared in the current package, thus
8746 or else In_Use (Scope (T))
8747 or else Scope (T) = Current_Scope;
8749 Set_Redundant_Use (Id,
8750 Is_Known_Used or else Is_Potentially_Use_Visible (T));
8752 if Ekind (T) = E_Incomplete_Type then
8753 Error_Msg_N ("premature usage of incomplete type", Id);
8755 elsif In_Open_Scopes (Scope (T)) then
8758 -- A limited view cannot appear in a use_type clause. However, an access
8759 -- type whose designated type is limited has the flag but is not itself
8760 -- a limited view unless we only have a limited view of its enclosing
8763 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
8765 ("incomplete type from limited view "
8766 & "cannot appear in use clause", Id);
8768 -- If the subtype mark designates a subtype in a different package,
8769 -- we have to check that the parent type is visible, otherwise the
8770 -- use type clause is a noop. Not clear how to do that???
8772 elsif not Redundant_Use (Id) then
8775 -- If T is tagged, primitive operators on class-wide operands
8776 -- are also available.
8778 if Is_Tagged_Type (T) then
8779 Set_In_Use (Class_Wide_Type (T));
8782 Set_Current_Use_Clause (T, Parent (Id));
8784 -- Iterate over primitive operations of the type. If an operation is
8785 -- already use_visible, it is the result of a previous use_clause,
8786 -- and already appears on the corresponding entity chain. If the
8787 -- clause is being reinstalled, operations are already use-visible.
8793 Op_List := Collect_Primitive_Operations (T);
8794 Elmt := First_Elmt (Op_List);
8795 while Present (Elmt) loop
8796 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
8797 or else Chars (Node (Elmt)) in Any_Operator_Name)
8798 and then not Is_Hidden (Node (Elmt))
8799 and then not Is_Potentially_Use_Visible (Node (Elmt))
8801 Set_Is_Potentially_Use_Visible (Node (Elmt));
8802 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8804 elsif Ada_Version >= Ada_2012
8805 and then All_Present (Parent (Id))
8806 and then not Is_Hidden (Node (Elmt))
8807 and then not Is_Potentially_Use_Visible (Node (Elmt))
8809 Set_Is_Potentially_Use_Visible (Node (Elmt));
8810 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
8817 if Ada_Version >= Ada_2012
8818 and then All_Present (Parent (Id))
8819 and then Is_Tagged_Type (T)
8821 Use_Class_Wide_Operations (T);
8825 -- If warning on redundant constructs, check for unnecessary WITH
8827 if Warn_On_Redundant_Constructs
8828 and then Is_Known_Used
8830 -- with P; with P; use P;
8831 -- package P is package X is package body X is
8832 -- type T ... use P.T;
8834 -- The compilation unit is the body of X. GNAT first compiles the
8835 -- spec of X, then proceeds to the body. At that point P is marked
8836 -- as use visible. The analysis then reinstalls the spec along with
8837 -- its context. The use clause P.T is now recognized as redundant,
8838 -- but in the wrong context. Do not emit a warning in such cases.
8839 -- Do not emit a warning either if we are in an instance, there is
8840 -- no redundancy between an outer use_clause and one that appears
8841 -- within the generic.
8843 and then not Spec_Reloaded_For_Body
8844 and then not In_Instance
8846 -- The type already has a use clause
8850 -- Case where we know the current use clause for the type
8852 if Present (Current_Use_Clause (T)) then
8853 Use_Clause_Known : declare
8854 Clause1 : constant Node_Id := Parent (Id);
8855 Clause2 : constant Node_Id := Current_Use_Clause (T);
8862 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
8863 -- Return the appropriate entity for determining which unit
8864 -- has a deeper scope: the defining entity for U, unless U
8865 -- is a package instance, in which case we retrieve the
8866 -- entity of the instance spec.
8868 --------------------
8869 -- Entity_Of_Unit --
8870 --------------------
8872 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
8874 if Nkind (U) = N_Package_Instantiation
8875 and then Analyzed (U)
8877 return Defining_Entity (Instance_Spec (U));
8879 return Defining_Entity (U);
8883 -- Start of processing for Use_Clause_Known
8886 -- If both current use type clause and the use type clause
8887 -- for the type are at the compilation unit level, one of
8888 -- the units must be an ancestor of the other, and the
8889 -- warning belongs on the descendant.
8891 if Nkind (Parent (Clause1)) = N_Compilation_Unit
8893 Nkind (Parent (Clause2)) = N_Compilation_Unit
8895 -- If the unit is a subprogram body that acts as spec,
8896 -- the context clause is shared with the constructed
8897 -- subprogram spec. Clearly there is no redundancy.
8899 if Clause1 = Clause2 then
8903 Unit1 := Unit (Parent (Clause1));
8904 Unit2 := Unit (Parent (Clause2));
8906 -- If both clauses are on same unit, or one is the body
8907 -- of the other, or one of them is in a subunit, report
8908 -- redundancy on the later one.
8910 if Unit1 = Unit2 then
8911 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8912 Error_Msg_NE -- CODEFIX
8913 ("& is already use-visible through previous "
8914 & "use_type_clause #??", Clause1, T);
8917 elsif Nkind (Unit1) = N_Subunit then
8918 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8919 Error_Msg_NE -- CODEFIX
8920 ("& is already use-visible through previous "
8921 & "use_type_clause #??", Clause1, T);
8924 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
8925 and then Nkind (Unit1) /= Nkind (Unit2)
8926 and then Nkind (Unit1) /= N_Subunit
8928 Error_Msg_Sloc := Sloc (Clause1);
8929 Error_Msg_NE -- CODEFIX
8930 ("& is already use-visible through previous "
8931 & "use_type_clause #??", Current_Use_Clause (T), T);
8935 -- There is a redundant use type clause in a child unit.
8936 -- Determine which of the units is more deeply nested.
8937 -- If a unit is a package instance, retrieve the entity
8938 -- and its scope from the instance spec.
8940 Ent1 := Entity_Of_Unit (Unit1);
8941 Ent2 := Entity_Of_Unit (Unit2);
8943 if Scope (Ent2) = Standard_Standard then
8944 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8947 elsif Scope (Ent1) = Standard_Standard then
8948 Error_Msg_Sloc := Sloc (Id);
8951 -- If both units are child units, we determine which one
8952 -- is the descendant by the scope distance to the
8953 -- ultimate parent unit.
8963 and then Present (S2)
8964 and then S1 /= Standard_Standard
8965 and then S2 /= Standard_Standard
8971 if S1 = Standard_Standard then
8972 Error_Msg_Sloc := Sloc (Id);
8975 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
8981 Error_Msg_NE -- CODEFIX
8982 ("& is already use-visible through previous "
8983 & "use_type_clause #??", Err_No, Id);
8985 -- Case where current use type clause and the use type
8986 -- clause for the type are not both at the compilation unit
8987 -- level. In this case we don't have location information.
8990 Error_Msg_NE -- CODEFIX
8991 ("& is already use-visible through previous "
8992 & "use type clause??", Id, T);
8994 end Use_Clause_Known;
8996 -- Here if Current_Use_Clause is not set for T, another case
8997 -- where we do not have the location information available.
9000 Error_Msg_NE -- CODEFIX
9001 ("& is already use-visible through previous "
9002 & "use type clause??", Id, T);
9005 -- The package where T is declared is already used
9007 elsif In_Use (Scope (T)) then
9008 Error_Msg_Sloc := Sloc (Current_Use_Clause (Scope (T)));
9009 Error_Msg_NE -- CODEFIX
9010 ("& is already use-visible through package use clause #??",
9013 -- The current scope is the package where T is declared
9016 Error_Msg_Node_2 := Scope (T);
9017 Error_Msg_NE -- CODEFIX
9018 ("& is already use-visible inside package &??", Id, T);
9027 procedure Write_Info is
9028 Id : Entity_Id := First_Entity (Current_Scope);
9031 -- No point in dumping standard entities
9033 if Current_Scope = Standard_Standard then
9037 Write_Str ("========================================================");
9039 Write_Str (" Defined Entities in ");
9040 Write_Name (Chars (Current_Scope));
9042 Write_Str ("========================================================");
9046 Write_Str ("-- none --");
9050 while Present (Id) loop
9051 Write_Entity_Info (Id, " ");
9056 if Scope (Current_Scope) = Standard_Standard then
9058 -- Print information on the current unit itself
9060 Write_Entity_Info (Current_Scope, " ");
9073 for J in reverse 1 .. Scope_Stack.Last loop
9074 S := Scope_Stack.Table (J).Entity;
9075 Write_Int (Int (S));
9076 Write_Str (" === ");
9077 Write_Name (Chars (S));
9086 procedure we (S : Entity_Id) is
9089 E := First_Entity (S);
9090 while Present (E) loop
9091 Write_Int (Int (E));
9092 Write_Str (" === ");
9093 Write_Name (Chars (E));