2014-11-18 Christophe Lyon <christophe.lyon@linaro.org>
[official-gcc.git] / gcc / ada / s-fatgen.adb
blobb5cd9f56266736477fca5d6420b6b2f7fb580a12
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S Y S T E M . F A T _ G E N --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- The implementation here is portable to any IEEE implementation. It does
33 -- not handle non-binary radix, and also assumes that model numbers and
34 -- machine numbers are basically identical, which is not true of all possible
35 -- floating-point implementations. On a non-IEEE machine, this body must be
36 -- specialized appropriately, or better still, its generic instantiations
37 -- should be replaced by efficient machine-specific code.
39 with Ada.Unchecked_Conversion;
40 with System;
41 package body System.Fat_Gen is
43 Float_Radix : constant T := T (T'Machine_Radix);
44 Radix_To_M_Minus_1 : constant T := Float_Radix ** (T'Machine_Mantissa - 1);
46 pragma Assert (T'Machine_Radix = 2);
47 -- This version does not handle radix 16
49 -- Constants for Decompose and Scaling
51 Rad : constant T := T (T'Machine_Radix);
52 Invrad : constant T := 1.0 / Rad;
54 subtype Expbits is Integer range 0 .. 6;
55 -- 2 ** (2 ** 7) might overflow. How big can radix-16 exponents get?
57 Log_Power : constant array (Expbits) of Integer := (1, 2, 4, 8, 16, 32, 64);
59 R_Power : constant array (Expbits) of T :=
60 (Rad ** 1,
61 Rad ** 2,
62 Rad ** 4,
63 Rad ** 8,
64 Rad ** 16,
65 Rad ** 32,
66 Rad ** 64);
68 R_Neg_Power : constant array (Expbits) of T :=
69 (Invrad ** 1,
70 Invrad ** 2,
71 Invrad ** 4,
72 Invrad ** 8,
73 Invrad ** 16,
74 Invrad ** 32,
75 Invrad ** 64);
77 -----------------------
78 -- Local Subprograms --
79 -----------------------
81 procedure Decompose (XX : T; Frac : out T; Expo : out UI);
82 -- Decomposes a floating-point number into fraction and exponent parts.
83 -- Both results are signed, with Frac having the sign of XX, and UI has
84 -- the sign of the exponent. The absolute value of Frac is in the range
85 -- 0.0 <= Frac < 1.0. If Frac = 0.0 or -0.0, then Expo is always zero.
87 function Gradual_Scaling (Adjustment : UI) return T;
88 -- Like Scaling with a first argument of 1.0, but returns the smallest
89 -- denormal rather than zero when the adjustment is smaller than
90 -- Machine_Emin. Used for Succ and Pred.
92 --------------
93 -- Adjacent --
94 --------------
96 function Adjacent (X, Towards : T) return T is
97 begin
98 if Towards = X then
99 return X;
100 elsif Towards > X then
101 return Succ (X);
102 else
103 return Pred (X);
104 end if;
105 end Adjacent;
107 -------------
108 -- Ceiling --
109 -------------
111 function Ceiling (X : T) return T is
112 XT : constant T := Truncation (X);
113 begin
114 if X <= 0.0 then
115 return XT;
116 elsif X = XT then
117 return X;
118 else
119 return XT + 1.0;
120 end if;
121 end Ceiling;
123 -------------
124 -- Compose --
125 -------------
127 function Compose (Fraction : T; Exponent : UI) return T is
128 Arg_Frac : T;
129 Arg_Exp : UI;
130 pragma Unreferenced (Arg_Exp);
131 begin
132 Decompose (Fraction, Arg_Frac, Arg_Exp);
133 return Scaling (Arg_Frac, Exponent);
134 end Compose;
136 ---------------
137 -- Copy_Sign --
138 ---------------
140 function Copy_Sign (Value, Sign : T) return T is
141 Result : T;
143 function Is_Negative (V : T) return Boolean;
144 pragma Import (Intrinsic, Is_Negative);
146 begin
147 Result := abs Value;
149 if Is_Negative (Sign) then
150 return -Result;
151 else
152 return Result;
153 end if;
154 end Copy_Sign;
156 ---------------
157 -- Decompose --
158 ---------------
160 procedure Decompose (XX : T; Frac : out T; Expo : out UI) is
161 X : constant T := T'Machine (XX);
163 begin
164 if X = 0.0 then
166 -- The normalized exponent of zero is zero, see RM A.5.2(15)
168 Frac := X;
169 Expo := 0;
171 -- Check for infinities, transfinites, whatnot
173 elsif X > T'Safe_Last then
174 Frac := Invrad;
175 Expo := T'Machine_Emax + 1;
177 elsif X < T'Safe_First then
178 Frac := -Invrad;
179 Expo := T'Machine_Emax + 2; -- how many extra negative values?
181 else
182 -- Case of nonzero finite x. Essentially, we just multiply
183 -- by Rad ** (+-2**N) to reduce the range.
185 declare
186 Ax : T := abs X;
187 Ex : UI := 0;
189 -- Ax * Rad ** Ex is invariant
191 begin
192 if Ax >= 1.0 then
193 while Ax >= R_Power (Expbits'Last) loop
194 Ax := Ax * R_Neg_Power (Expbits'Last);
195 Ex := Ex + Log_Power (Expbits'Last);
196 end loop;
198 -- Ax < Rad ** 64
200 for N in reverse Expbits'First .. Expbits'Last - 1 loop
201 if Ax >= R_Power (N) then
202 Ax := Ax * R_Neg_Power (N);
203 Ex := Ex + Log_Power (N);
204 end if;
206 -- Ax < R_Power (N)
208 end loop;
210 -- 1 <= Ax < Rad
212 Ax := Ax * Invrad;
213 Ex := Ex + 1;
215 else
216 -- 0 < ax < 1
218 while Ax < R_Neg_Power (Expbits'Last) loop
219 Ax := Ax * R_Power (Expbits'Last);
220 Ex := Ex - Log_Power (Expbits'Last);
221 end loop;
223 -- Rad ** -64 <= Ax < 1
225 for N in reverse Expbits'First .. Expbits'Last - 1 loop
226 if Ax < R_Neg_Power (N) then
227 Ax := Ax * R_Power (N);
228 Ex := Ex - Log_Power (N);
229 end if;
231 -- R_Neg_Power (N) <= Ax < 1
233 end loop;
234 end if;
236 Frac := (if X > 0.0 then Ax else -Ax);
237 Expo := Ex;
238 end;
239 end if;
240 end Decompose;
242 --------------
243 -- Exponent --
244 --------------
246 function Exponent (X : T) return UI is
247 X_Frac : T;
248 X_Exp : UI;
249 pragma Unreferenced (X_Frac);
250 begin
251 Decompose (X, X_Frac, X_Exp);
252 return X_Exp;
253 end Exponent;
255 -----------
256 -- Floor --
257 -----------
259 function Floor (X : T) return T is
260 XT : constant T := Truncation (X);
261 begin
262 if X >= 0.0 then
263 return XT;
264 elsif XT = X then
265 return X;
266 else
267 return XT - 1.0;
268 end if;
269 end Floor;
271 --------------
272 -- Fraction --
273 --------------
275 function Fraction (X : T) return T is
276 X_Frac : T;
277 X_Exp : UI;
278 pragma Unreferenced (X_Exp);
279 begin
280 Decompose (X, X_Frac, X_Exp);
281 return X_Frac;
282 end Fraction;
284 ---------------------
285 -- Gradual_Scaling --
286 ---------------------
288 function Gradual_Scaling (Adjustment : UI) return T is
289 Y : T;
290 Y1 : T;
291 Ex : UI := Adjustment;
293 begin
294 if Adjustment < T'Machine_Emin - 1 then
295 Y := 2.0 ** T'Machine_Emin;
296 Y1 := Y;
297 Ex := Ex - T'Machine_Emin;
298 while Ex < 0 loop
299 Y := T'Machine (Y / 2.0);
301 if Y = 0.0 then
302 return Y1;
303 end if;
305 Ex := Ex + 1;
306 Y1 := Y;
307 end loop;
309 return Y1;
311 else
312 return Scaling (1.0, Adjustment);
313 end if;
314 end Gradual_Scaling;
316 ------------------
317 -- Leading_Part --
318 ------------------
320 function Leading_Part (X : T; Radix_Digits : UI) return T is
321 L : UI;
322 Y, Z : T;
324 begin
325 if Radix_Digits >= T'Machine_Mantissa then
326 return X;
328 elsif Radix_Digits <= 0 then
329 raise Constraint_Error;
331 else
332 L := Exponent (X) - Radix_Digits;
333 Y := Truncation (Scaling (X, -L));
334 Z := Scaling (Y, L);
335 return Z;
336 end if;
337 end Leading_Part;
339 -------------
340 -- Machine --
341 -------------
343 -- The trick with Machine is to force the compiler to store the result
344 -- in memory so that we do not have extra precision used. The compiler
345 -- is clever, so we have to outwit its possible optimizations. We do
346 -- this by using an intermediate pragma Volatile location.
348 function Machine (X : T) return T is
349 Temp : T;
350 pragma Volatile (Temp);
351 begin
352 Temp := X;
353 return Temp;
354 end Machine;
356 ----------------------
357 -- Machine_Rounding --
358 ----------------------
360 -- For now, the implementation is identical to that of Rounding, which is
361 -- a permissible behavior, but is not the most efficient possible approach.
363 function Machine_Rounding (X : T) return T is
364 Result : T;
365 Tail : T;
367 begin
368 Result := Truncation (abs X);
369 Tail := abs X - Result;
371 if Tail >= 0.5 then
372 Result := Result + 1.0;
373 end if;
375 if X > 0.0 then
376 return Result;
378 elsif X < 0.0 then
379 return -Result;
381 -- For zero case, make sure sign of zero is preserved
383 else
384 return X;
385 end if;
386 end Machine_Rounding;
388 -----------
389 -- Model --
390 -----------
392 -- We treat Model as identical to Machine. This is true of IEEE and other
393 -- nice floating-point systems, but not necessarily true of all systems.
395 function Model (X : T) return T is
396 begin
397 return Machine (X);
398 end Model;
400 ----------
401 -- Pred --
402 ----------
404 function Pred (X : T) return T is
405 X_Frac : T;
406 X_Exp : UI;
408 begin
409 -- Zero has to be treated specially, since its exponent is zero
411 if X = 0.0 then
412 return -Succ (X);
414 -- Special treatment for most negative number
416 elsif X = T'First then
418 -- If not generating infinities, we raise a constraint error
420 if T'Machine_Overflows then
421 raise Constraint_Error with "Pred of largest negative number";
423 -- Otherwise generate a negative infinity
425 else
426 return X / (X - X);
427 end if;
429 -- For infinities, return unchanged
431 elsif X < T'First or else X > T'Last then
432 return X;
434 -- Subtract from the given number a number equivalent to the value
435 -- of its least significant bit. Given that the most significant bit
436 -- represents a value of 1.0 * radix ** (exp - 1), the value we want
437 -- is obtained by shifting this by (mantissa-1) bits to the right,
438 -- i.e. decreasing the exponent by that amount.
440 else
441 Decompose (X, X_Frac, X_Exp);
443 -- A special case, if the number we had was a positive power of
444 -- two, then we want to subtract half of what we would otherwise
445 -- subtract, since the exponent is going to be reduced.
447 -- Note that X_Frac has the same sign as X, so if X_Frac is 0.5,
448 -- then we know that we have a positive number (and hence a
449 -- positive power of 2).
451 if X_Frac = 0.5 then
452 return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
454 -- Otherwise the exponent is unchanged
456 else
457 return X - Gradual_Scaling (X_Exp - T'Machine_Mantissa);
458 end if;
459 end if;
460 end Pred;
462 ---------------
463 -- Remainder --
464 ---------------
466 function Remainder (X, Y : T) return T is
467 A : T;
468 B : T;
469 Arg : T;
470 P : T;
471 P_Frac : T;
472 Sign_X : T;
473 IEEE_Rem : T;
474 Arg_Exp : UI;
475 P_Exp : UI;
476 K : UI;
477 P_Even : Boolean;
479 Arg_Frac : T;
480 pragma Unreferenced (Arg_Frac);
482 begin
483 if Y = 0.0 then
484 raise Constraint_Error;
485 end if;
487 if X > 0.0 then
488 Sign_X := 1.0;
489 Arg := X;
490 else
491 Sign_X := -1.0;
492 Arg := -X;
493 end if;
495 P := abs Y;
497 if Arg < P then
498 P_Even := True;
499 IEEE_Rem := Arg;
500 P_Exp := Exponent (P);
502 else
503 Decompose (Arg, Arg_Frac, Arg_Exp);
504 Decompose (P, P_Frac, P_Exp);
506 P := Compose (P_Frac, Arg_Exp);
507 K := Arg_Exp - P_Exp;
508 P_Even := True;
509 IEEE_Rem := Arg;
511 for Cnt in reverse 0 .. K loop
512 if IEEE_Rem >= P then
513 P_Even := False;
514 IEEE_Rem := IEEE_Rem - P;
515 else
516 P_Even := True;
517 end if;
519 P := P * 0.5;
520 end loop;
521 end if;
523 -- That completes the calculation of modulus remainder. The final
524 -- step is get the IEEE remainder. Here we need to compare Rem with
525 -- (abs Y) / 2. We must be careful of unrepresentable Y/2 value
526 -- caused by subnormal numbers
528 if P_Exp >= 0 then
529 A := IEEE_Rem;
530 B := abs Y * 0.5;
532 else
533 A := IEEE_Rem * 2.0;
534 B := abs Y;
535 end if;
537 if A > B or else (A = B and then not P_Even) then
538 IEEE_Rem := IEEE_Rem - abs Y;
539 end if;
541 return Sign_X * IEEE_Rem;
542 end Remainder;
544 --------------
545 -- Rounding --
546 --------------
548 function Rounding (X : T) return T is
549 Result : T;
550 Tail : T;
552 begin
553 Result := Truncation (abs X);
554 Tail := abs X - Result;
556 if Tail >= 0.5 then
557 Result := Result + 1.0;
558 end if;
560 if X > 0.0 then
561 return Result;
563 elsif X < 0.0 then
564 return -Result;
566 -- For zero case, make sure sign of zero is preserved
568 else
569 return X;
570 end if;
571 end Rounding;
573 -------------
574 -- Scaling --
575 -------------
577 -- Return x * rad ** adjustment quickly, or quietly underflow to zero,
578 -- or overflow naturally.
580 function Scaling (X : T; Adjustment : UI) return T is
581 begin
582 if X = 0.0 or else Adjustment = 0 then
583 return X;
584 end if;
586 -- Nonzero x essentially, just multiply repeatedly by Rad ** (+-2**n)
588 declare
589 Y : T := X;
590 Ex : UI := Adjustment;
592 -- Y * Rad ** Ex is invariant
594 begin
595 if Ex < 0 then
596 while Ex <= -Log_Power (Expbits'Last) loop
597 Y := Y * R_Neg_Power (Expbits'Last);
598 Ex := Ex + Log_Power (Expbits'Last);
599 end loop;
601 -- -64 < Ex <= 0
603 for N in reverse Expbits'First .. Expbits'Last - 1 loop
604 if Ex <= -Log_Power (N) then
605 Y := Y * R_Neg_Power (N);
606 Ex := Ex + Log_Power (N);
607 end if;
609 -- -Log_Power (N) < Ex <= 0
611 end loop;
613 -- Ex = 0
615 else
616 -- Ex >= 0
618 while Ex >= Log_Power (Expbits'Last) loop
619 Y := Y * R_Power (Expbits'Last);
620 Ex := Ex - Log_Power (Expbits'Last);
621 end loop;
623 -- 0 <= Ex < 64
625 for N in reverse Expbits'First .. Expbits'Last - 1 loop
626 if Ex >= Log_Power (N) then
627 Y := Y * R_Power (N);
628 Ex := Ex - Log_Power (N);
629 end if;
631 -- 0 <= Ex < Log_Power (N)
633 end loop;
635 -- Ex = 0
637 end if;
639 return Y;
640 end;
641 end Scaling;
643 ----------
644 -- Succ --
645 ----------
647 function Succ (X : T) return T is
648 X_Frac : T;
649 X_Exp : UI;
650 X1, X2 : T;
652 begin
653 -- Treat zero specially since it has a zero exponent
655 if X = 0.0 then
656 X1 := 2.0 ** T'Machine_Emin;
658 -- Following loop generates smallest denormal
660 loop
661 X2 := T'Machine (X1 / 2.0);
662 exit when X2 = 0.0;
663 X1 := X2;
664 end loop;
666 return X1;
668 -- Special treatment for largest positive number
670 elsif X = T'Last then
672 -- If not generating infinities, we raise a constraint error
674 if T'Machine_Overflows then
675 raise Constraint_Error with "Succ of largest negative number";
677 -- Otherwise generate a positive infinity
679 else
680 return X / (X - X);
681 end if;
683 -- For infinities, return unchanged
685 elsif X < T'First or else X > T'Last then
686 return X;
688 -- Add to the given number a number equivalent to the value
689 -- of its least significant bit. Given that the most significant bit
690 -- represents a value of 1.0 * radix ** (exp - 1), the value we want
691 -- is obtained by shifting this by (mantissa-1) bits to the right,
692 -- i.e. decreasing the exponent by that amount.
694 else
695 Decompose (X, X_Frac, X_Exp);
697 -- A special case, if the number we had was a negative power of two,
698 -- then we want to add half of what we would otherwise add, since the
699 -- exponent is going to be reduced.
701 -- Note that X_Frac has the same sign as X, so if X_Frac is -0.5,
702 -- then we know that we have a negative number (and hence a negative
703 -- power of 2).
705 if X_Frac = -0.5 then
706 return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa - 1);
708 -- Otherwise the exponent is unchanged
710 else
711 return X + Gradual_Scaling (X_Exp - T'Machine_Mantissa);
712 end if;
713 end if;
714 end Succ;
716 ----------------
717 -- Truncation --
718 ----------------
720 -- The basic approach is to compute
722 -- T'Machine (RM1 + N) - RM1
724 -- where N >= 0.0 and RM1 = radix ** (mantissa - 1)
726 -- This works provided that the intermediate result (RM1 + N) does not
727 -- have extra precision (which is why we call Machine). When we compute
728 -- RM1 + N, the exponent of N will be normalized and the mantissa shifted
729 -- shifted appropriately so the lower order bits, which cannot contribute
730 -- to the integer part of N, fall off on the right. When we subtract RM1
731 -- again, the significant bits of N are shifted to the left, and what we
732 -- have is an integer, because only the first e bits are different from
733 -- zero (assuming binary radix here).
735 function Truncation (X : T) return T is
736 Result : T;
738 begin
739 Result := abs X;
741 if Result >= Radix_To_M_Minus_1 then
742 return Machine (X);
744 else
745 Result := Machine (Radix_To_M_Minus_1 + Result) - Radix_To_M_Minus_1;
747 if Result > abs X then
748 Result := Result - 1.0;
749 end if;
751 if X > 0.0 then
752 return Result;
754 elsif X < 0.0 then
755 return -Result;
757 -- For zero case, make sure sign of zero is preserved
759 else
760 return X;
761 end if;
762 end if;
763 end Truncation;
765 -----------------------
766 -- Unbiased_Rounding --
767 -----------------------
769 function Unbiased_Rounding (X : T) return T is
770 Abs_X : constant T := abs X;
771 Result : T;
772 Tail : T;
774 begin
775 Result := Truncation (Abs_X);
776 Tail := Abs_X - Result;
778 if Tail > 0.5 then
779 Result := Result + 1.0;
781 elsif Tail = 0.5 then
782 Result := 2.0 * Truncation ((Result / 2.0) + 0.5);
783 end if;
785 if X > 0.0 then
786 return Result;
788 elsif X < 0.0 then
789 return -Result;
791 -- For zero case, make sure sign of zero is preserved
793 else
794 return X;
795 end if;
796 end Unbiased_Rounding;
798 -----------
799 -- Valid --
800 -----------
802 function Valid (X : not null access T) return Boolean is
803 IEEE_Emin : constant Integer := T'Machine_Emin - 1;
804 IEEE_Emax : constant Integer := T'Machine_Emax - 1;
806 IEEE_Bias : constant Integer := -(IEEE_Emin - 1);
808 subtype IEEE_Exponent_Range is
809 Integer range IEEE_Emin - 1 .. IEEE_Emax + 1;
811 -- The implementation of this floating point attribute uses a
812 -- representation type Float_Rep that allows direct access to the
813 -- exponent and mantissa parts of a floating point number.
815 -- The Float_Rep type is an array of Float_Word elements. This
816 -- representation is chosen to make it possible to size the type based
817 -- on a generic parameter. Since the array size is known at compile
818 -- time, efficient code can still be generated. The size of Float_Word
819 -- elements should be large enough to allow accessing the exponent in
820 -- one read, but small enough so that all floating point object sizes
821 -- are a multiple of the Float_Word'Size.
823 -- The following conditions must be met for all possible instantiations
824 -- of the attributes package:
826 -- - T'Size is an integral multiple of Float_Word'Size
828 -- - The exponent and sign are completely contained in a single
829 -- component of Float_Rep, named Most_Significant_Word (MSW).
831 -- - The sign occupies the most significant bit of the MSW and the
832 -- exponent is in the following bits. Unused bits (if any) are in
833 -- the least significant part.
835 type Float_Word is mod 2**Positive'Min (System.Word_Size, 32);
836 type Rep_Index is range 0 .. 7;
838 Rep_Words : constant Positive :=
839 (T'Size + Float_Word'Size - 1) / Float_Word'Size;
840 Rep_Last : constant Rep_Index :=
841 Rep_Index'Min
842 (Rep_Index (Rep_Words - 1),
843 (T'Mantissa + 16) / Float_Word'Size);
844 -- Determine the number of Float_Words needed for representing the
845 -- entire floating-point value. Do not take into account excessive
846 -- padding, as occurs on IA-64 where 80 bits floats get padded to 128
847 -- bits. In general, the exponent field cannot be larger than 15 bits,
848 -- even for 128-bit floating-point types, so the final format size
849 -- won't be larger than T'Mantissa + 16.
851 type Float_Rep is
852 array (Rep_Index range 0 .. Rep_Index (Rep_Words - 1)) of Float_Word;
854 pragma Suppress_Initialization (Float_Rep);
855 -- This pragma suppresses the generation of an initialization procedure
856 -- for type Float_Rep when operating in Initialize/Normalize_Scalars
857 -- mode. This is not just a matter of efficiency, but of functionality,
858 -- since Valid has a pragma Inline_Always, which is not permitted if
859 -- there are nested subprograms present.
861 Most_Significant_Word : constant Rep_Index :=
862 Rep_Last * Standard'Default_Bit_Order;
863 -- Finding the location of the Exponent_Word is a bit tricky. In general
864 -- we assume Word_Order = Bit_Order.
866 Exponent_Factor : constant Float_Word :=
867 2**(Float_Word'Size - 1) /
868 Float_Word (IEEE_Emax - IEEE_Emin + 3) *
869 Boolean'Pos (Most_Significant_Word /= 2) +
870 Boolean'Pos (Most_Significant_Word = 2);
871 -- Factor that the extracted exponent needs to be divided by to be in
872 -- range 0 .. IEEE_Emax - IEEE_Emin + 2. Special case: Exponent_Factor
873 -- is 1 for x86/IA64 double extended (GCC adds unused bits to the type).
875 Exponent_Mask : constant Float_Word :=
876 Float_Word (IEEE_Emax - IEEE_Emin + 2) *
877 Exponent_Factor;
878 -- Value needed to mask out the exponent field. This assumes that the
879 -- range IEEE_Emin - 1 .. IEEE_Emax + contains 2**N values, for some N
880 -- in Natural.
882 function To_Float is new Ada.Unchecked_Conversion (Float_Rep, T);
884 type Float_Access is access all T;
885 function To_Address is
886 new Ada.Unchecked_Conversion (Float_Access, System.Address);
888 XA : constant System.Address := To_Address (Float_Access (X));
890 R : Float_Rep;
891 pragma Import (Ada, R);
892 for R'Address use XA;
893 -- R is a view of the input floating-point parameter. Note that we
894 -- must avoid copying the actual bits of this parameter in float
895 -- form (since it may be a signalling NaN).
897 E : constant IEEE_Exponent_Range :=
898 Integer ((R (Most_Significant_Word) and Exponent_Mask) /
899 Exponent_Factor)
900 - IEEE_Bias;
901 -- Mask/Shift T to only get bits from the exponent. Then convert biased
902 -- value to integer value.
904 SR : Float_Rep;
905 -- Float_Rep representation of significant of X.all
907 begin
908 if T'Denorm then
910 -- All denormalized numbers are valid, so the only invalid numbers
911 -- are overflows and NaNs, both with exponent = Emax + 1.
913 return E /= IEEE_Emax + 1;
915 end if;
917 -- All denormalized numbers except 0.0 are invalid
919 -- Set exponent of X to zero, so we end up with the significand, which
920 -- definitely is a valid number and can be converted back to a float.
922 SR := R;
923 SR (Most_Significant_Word) :=
924 (SR (Most_Significant_Word)
925 and not Exponent_Mask) + Float_Word (IEEE_Bias) * Exponent_Factor;
927 return (E in IEEE_Emin .. IEEE_Emax) or else
928 ((E = IEEE_Emin - 1) and then abs To_Float (SR) = 1.0);
929 end Valid;
931 end System.Fat_Gen;