[ARM] PR target/79911: Invalid vec_select arguments
[official-gcc.git] / gcc / ipa-inline-analysis.c
blob611faab570f67b83e88f890a9cdb7ec311a0726f
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Analysis used by the inliner and other passes limiting code size growth.
23 We estimate for each function
24 - function body size
25 - average function execution time
26 - inlining size benefit (that is how much of function body size
27 and its call sequence is expected to disappear by inlining)
28 - inlining time benefit
29 - function frame size
30 For each call
31 - call statement size and time
33 inlinie_summary datastructures store above information locally (i.e.
34 parameters of the function itself) and globally (i.e. parameters of
35 the function created by applying all the inline decisions already
36 present in the callgraph).
38 We provide accestor to the inline_summary datastructure and
39 basic logic updating the parameters when inlining is performed.
41 The summaries are context sensitive. Context means
42 1) partial assignment of known constant values of operands
43 2) whether function is inlined into the call or not.
44 It is easy to add more variants. To represent function size and time
45 that depends on context (i.e. it is known to be optimized away when
46 context is known either by inlining or from IP-CP and clonning),
47 we use predicates. Predicates are logical formulas in
48 conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
49 specifying what conditions must be true. Conditions are simple test
50 of the form described above.
52 In order to make predicate (possibly) true, all of its clauses must
53 be (possibly) true. To make clause (possibly) true, one of conditions
54 it mentions must be (possibly) true. There are fixed bounds on
55 number of clauses and conditions and all the manipulation functions
56 are conservative in positive direction. I.e. we may lose precision
57 by thinking that predicate may be true even when it is not.
59 estimate_edge_size and estimate_edge_growth can be used to query
60 function size/time in the given context. inline_merge_summary merges
61 properties of caller and callee after inlining.
63 Finally pass_inline_parameters is exported. This is used to drive
64 computation of function parameters used by the early inliner. IPA
65 inlined performs analysis via its analyze_function method. */
67 #include "config.h"
68 #include "system.h"
69 #include "coretypes.h"
70 #include "backend.h"
71 #include "tree.h"
72 #include "gimple.h"
73 #include "alloc-pool.h"
74 #include "tree-pass.h"
75 #include "ssa.h"
76 #include "tree-streamer.h"
77 #include "cgraph.h"
78 #include "diagnostic.h"
79 #include "fold-const.h"
80 #include "print-tree.h"
81 #include "tree-inline.h"
82 #include "gimple-pretty-print.h"
83 #include "params.h"
84 #include "cfganal.h"
85 #include "gimple-iterator.h"
86 #include "tree-cfg.h"
87 #include "tree-ssa-loop-niter.h"
88 #include "tree-ssa-loop.h"
89 #include "symbol-summary.h"
90 #include "ipa-prop.h"
91 #include "ipa-inline.h"
92 #include "cfgloop.h"
93 #include "tree-scalar-evolution.h"
94 #include "ipa-utils.h"
95 #include "cilk.h"
96 #include "cfgexpand.h"
97 #include "gimplify.h"
99 /* Estimate runtime of function can easilly run into huge numbers with many
100 nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
101 integer. For anything larger we use gcov_type. */
102 #define MAX_TIME 500000
104 /* Number of bits in integer, but we really want to be stable across different
105 hosts. */
106 #define NUM_CONDITIONS 32
108 enum predicate_conditions
110 predicate_false_condition = 0,
111 predicate_not_inlined_condition = 1,
112 predicate_first_dynamic_condition = 2
115 /* Special condition code we use to represent test that operand is compile time
116 constant. */
117 #define IS_NOT_CONSTANT ERROR_MARK
118 /* Special condition code we use to represent test that operand is not changed
119 across invocation of the function. When operand IS_NOT_CONSTANT it is always
120 CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
121 of executions even when they are not compile time constants. */
122 #define CHANGED IDENTIFIER_NODE
124 /* Holders of ipa cgraph hooks: */
125 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
126 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
127 static void inline_edge_removal_hook (struct cgraph_edge *, void *);
128 static void inline_edge_duplication_hook (struct cgraph_edge *,
129 struct cgraph_edge *, void *);
131 /* VECtor holding inline summaries.
132 In GGC memory because conditions might point to constant trees. */
133 function_summary <inline_summary *> *inline_summaries;
134 vec<inline_edge_summary_t> inline_edge_summary_vec;
136 /* Cached node/edge growths. */
137 vec<edge_growth_cache_entry> edge_growth_cache;
139 /* Edge predicates goes here. */
140 static object_allocator<predicate> edge_predicate_pool ("edge predicates");
142 /* Return true predicate (tautology).
143 We represent it by empty list of clauses. */
145 static inline struct predicate
146 true_predicate (void)
148 struct predicate p;
149 p.clause[0] = 0;
150 return p;
154 /* Return predicate testing single condition number COND. */
156 static inline struct predicate
157 single_cond_predicate (int cond)
159 struct predicate p;
160 p.clause[0] = 1 << cond;
161 p.clause[1] = 0;
162 return p;
166 /* Return false predicate. First clause require false condition. */
168 static inline struct predicate
169 false_predicate (void)
171 return single_cond_predicate (predicate_false_condition);
175 /* Return true if P is (true). */
177 static inline bool
178 true_predicate_p (struct predicate *p)
180 return !p->clause[0];
184 /* Return true if P is (false). */
186 static inline bool
187 false_predicate_p (struct predicate *p)
189 if (p->clause[0] == (1 << predicate_false_condition))
191 gcc_checking_assert (!p->clause[1]
192 && p->clause[0] == 1 << predicate_false_condition);
193 return true;
195 return false;
199 /* Return predicate that is set true when function is not inlined. */
201 static inline struct predicate
202 not_inlined_predicate (void)
204 return single_cond_predicate (predicate_not_inlined_condition);
207 /* Simple description of whether a memory load or a condition refers to a load
208 from an aggregate and if so, how and where from in the aggregate.
209 Individual fields have the same meaning like fields with the same name in
210 struct condition. */
212 struct agg_position_info
214 HOST_WIDE_INT offset;
215 bool agg_contents;
216 bool by_ref;
219 /* Add condition to condition list SUMMARY. OPERAND_NUM, SIZE, CODE and VAL
220 correspond to fields of condition structure. AGGPOS describes whether the
221 used operand is loaded from an aggregate and where in the aggregate it is.
222 It can be NULL, which means this not a load from an aggregate. */
224 static struct predicate
225 add_condition (struct inline_summary *summary, int operand_num,
226 HOST_WIDE_INT size, struct agg_position_info *aggpos,
227 enum tree_code code, tree val)
229 int i;
230 struct condition *c;
231 struct condition new_cond;
232 HOST_WIDE_INT offset;
233 bool agg_contents, by_ref;
235 if (aggpos)
237 offset = aggpos->offset;
238 agg_contents = aggpos->agg_contents;
239 by_ref = aggpos->by_ref;
241 else
243 offset = 0;
244 agg_contents = false;
245 by_ref = false;
248 gcc_checking_assert (operand_num >= 0);
249 for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
251 if (c->operand_num == operand_num
252 && c->size == size
253 && c->code == code
254 && c->val == val
255 && c->agg_contents == agg_contents
256 && (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
257 return single_cond_predicate (i + predicate_first_dynamic_condition);
259 /* Too many conditions. Give up and return constant true. */
260 if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
261 return true_predicate ();
263 new_cond.operand_num = operand_num;
264 new_cond.code = code;
265 new_cond.val = val;
266 new_cond.agg_contents = agg_contents;
267 new_cond.by_ref = by_ref;
268 new_cond.offset = offset;
269 new_cond.size = size;
270 vec_safe_push (summary->conds, new_cond);
271 return single_cond_predicate (i + predicate_first_dynamic_condition);
275 /* Add clause CLAUSE into the predicate P. */
277 static inline void
278 add_clause (conditions conditions, struct predicate *p, clause_t clause)
280 int i;
281 int i2;
282 int insert_here = -1;
283 int c1, c2;
285 /* True clause. */
286 if (!clause)
287 return;
289 /* False clause makes the whole predicate false. Kill the other variants. */
290 if (clause == (1 << predicate_false_condition))
292 p->clause[0] = (1 << predicate_false_condition);
293 p->clause[1] = 0;
294 return;
296 if (false_predicate_p (p))
297 return;
299 /* No one should be silly enough to add false into nontrivial clauses. */
300 gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
302 /* Look where to insert the clause. At the same time prune out
303 clauses of P that are implied by the new clause and thus
304 redundant. */
305 for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
307 p->clause[i2] = p->clause[i];
309 if (!p->clause[i])
310 break;
312 /* If p->clause[i] implies clause, there is nothing to add. */
313 if ((p->clause[i] & clause) == p->clause[i])
315 /* We had nothing to add, none of clauses should've become
316 redundant. */
317 gcc_checking_assert (i == i2);
318 return;
321 if (p->clause[i] < clause && insert_here < 0)
322 insert_here = i2;
324 /* If clause implies p->clause[i], then p->clause[i] becomes redundant.
325 Otherwise the p->clause[i] has to stay. */
326 if ((p->clause[i] & clause) != clause)
327 i2++;
330 /* Look for clauses that are obviously true. I.e.
331 op0 == 5 || op0 != 5. */
332 for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
334 condition *cc1;
335 if (!(clause & (1 << c1)))
336 continue;
337 cc1 = &(*conditions)[c1 - predicate_first_dynamic_condition];
338 /* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
339 and thus there is no point for looking for them. */
340 if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
341 continue;
342 for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
343 if (clause & (1 << c2))
345 condition *cc1 =
346 &(*conditions)[c1 - predicate_first_dynamic_condition];
347 condition *cc2 =
348 &(*conditions)[c2 - predicate_first_dynamic_condition];
349 if (cc1->operand_num == cc2->operand_num
350 && cc1->val == cc2->val
351 && cc2->code != IS_NOT_CONSTANT
352 && cc2->code != CHANGED
353 && cc1->code == invert_tree_comparison (cc2->code,
354 HONOR_NANS (cc1->val)))
355 return;
360 /* We run out of variants. Be conservative in positive direction. */
361 if (i2 == MAX_CLAUSES)
362 return;
363 /* Keep clauses in decreasing order. This makes equivalence testing easy. */
364 p->clause[i2 + 1] = 0;
365 if (insert_here >= 0)
366 for (; i2 > insert_here; i2--)
367 p->clause[i2] = p->clause[i2 - 1];
368 else
369 insert_here = i2;
370 p->clause[insert_here] = clause;
374 /* Return P & P2. */
376 static struct predicate
377 and_predicates (conditions conditions,
378 struct predicate *p, struct predicate *p2)
380 struct predicate out = *p;
381 int i;
383 /* Avoid busy work. */
384 if (false_predicate_p (p2) || true_predicate_p (p))
385 return *p2;
386 if (false_predicate_p (p) || true_predicate_p (p2))
387 return *p;
389 /* See how far predicates match. */
390 for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
392 gcc_checking_assert (i < MAX_CLAUSES);
395 /* Combine the predicates rest. */
396 for (; p2->clause[i]; i++)
398 gcc_checking_assert (i < MAX_CLAUSES);
399 add_clause (conditions, &out, p2->clause[i]);
401 return out;
405 /* Return true if predicates are obviously equal. */
407 static inline bool
408 predicates_equal_p (struct predicate *p, struct predicate *p2)
410 int i;
411 for (i = 0; p->clause[i]; i++)
413 gcc_checking_assert (i < MAX_CLAUSES);
414 gcc_checking_assert (p->clause[i] > p->clause[i + 1]);
415 gcc_checking_assert (!p2->clause[i]
416 || p2->clause[i] > p2->clause[i + 1]);
417 if (p->clause[i] != p2->clause[i])
418 return false;
420 return !p2->clause[i];
424 /* Return P | P2. */
426 static struct predicate
427 or_predicates (conditions conditions,
428 struct predicate *p, struct predicate *p2)
430 struct predicate out = true_predicate ();
431 int i, j;
433 /* Avoid busy work. */
434 if (false_predicate_p (p2) || true_predicate_p (p))
435 return *p;
436 if (false_predicate_p (p) || true_predicate_p (p2))
437 return *p2;
438 if (predicates_equal_p (p, p2))
439 return *p;
441 /* OK, combine the predicates. */
442 for (i = 0; p->clause[i]; i++)
443 for (j = 0; p2->clause[j]; j++)
445 gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
446 add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
448 return out;
452 /* Having partial truth assignment in POSSIBLE_TRUTHS, return false
453 if predicate P is known to be false. */
455 static bool
456 evaluate_predicate (struct predicate *p, clause_t possible_truths)
458 int i;
460 /* True remains true. */
461 if (true_predicate_p (p))
462 return true;
464 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
466 /* See if we can find clause we can disprove. */
467 for (i = 0; p->clause[i]; i++)
469 gcc_checking_assert (i < MAX_CLAUSES);
470 if (!(p->clause[i] & possible_truths))
471 return false;
473 return true;
476 /* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
477 instruction will be recomputed per invocation of the inlined call. */
479 static int
480 predicate_probability (conditions conds,
481 struct predicate *p, clause_t possible_truths,
482 vec<inline_param_summary> inline_param_summary)
484 int i;
485 int combined_prob = REG_BR_PROB_BASE;
487 /* True remains true. */
488 if (true_predicate_p (p))
489 return REG_BR_PROB_BASE;
491 if (false_predicate_p (p))
492 return 0;
494 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
496 /* See if we can find clause we can disprove. */
497 for (i = 0; p->clause[i]; i++)
499 gcc_checking_assert (i < MAX_CLAUSES);
500 if (!(p->clause[i] & possible_truths))
501 return 0;
502 else
504 int this_prob = 0;
505 int i2;
506 if (!inline_param_summary.exists ())
507 return REG_BR_PROB_BASE;
508 for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
509 if ((p->clause[i] & possible_truths) & (1 << i2))
511 if (i2 >= predicate_first_dynamic_condition)
513 condition *c =
514 &(*conds)[i2 - predicate_first_dynamic_condition];
515 if (c->code == CHANGED
516 && (c->operand_num <
517 (int) inline_param_summary.length ()))
519 int iprob =
520 inline_param_summary[c->operand_num].change_prob;
521 this_prob = MAX (this_prob, iprob);
523 else
524 this_prob = REG_BR_PROB_BASE;
526 else
527 this_prob = REG_BR_PROB_BASE;
529 combined_prob = MIN (this_prob, combined_prob);
530 if (!combined_prob)
531 return 0;
534 return combined_prob;
538 /* Dump conditional COND. */
540 static void
541 dump_condition (FILE *f, conditions conditions, int cond)
543 condition *c;
544 if (cond == predicate_false_condition)
545 fprintf (f, "false");
546 else if (cond == predicate_not_inlined_condition)
547 fprintf (f, "not inlined");
548 else
550 c = &(*conditions)[cond - predicate_first_dynamic_condition];
551 fprintf (f, "op%i", c->operand_num);
552 if (c->agg_contents)
553 fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
554 c->by_ref ? "ref " : "", c->offset);
555 if (c->code == IS_NOT_CONSTANT)
557 fprintf (f, " not constant");
558 return;
560 if (c->code == CHANGED)
562 fprintf (f, " changed");
563 return;
565 fprintf (f, " %s ", op_symbol_code (c->code));
566 print_generic_expr (f, c->val, 1);
571 /* Dump clause CLAUSE. */
573 static void
574 dump_clause (FILE *f, conditions conds, clause_t clause)
576 int i;
577 bool found = false;
578 fprintf (f, "(");
579 if (!clause)
580 fprintf (f, "true");
581 for (i = 0; i < NUM_CONDITIONS; i++)
582 if (clause & (1 << i))
584 if (found)
585 fprintf (f, " || ");
586 found = true;
587 dump_condition (f, conds, i);
589 fprintf (f, ")");
593 /* Dump predicate PREDICATE. */
595 static void
596 dump_predicate (FILE *f, conditions conds, struct predicate *pred)
598 int i;
599 if (true_predicate_p (pred))
600 dump_clause (f, conds, 0);
601 else
602 for (i = 0; pred->clause[i]; i++)
604 if (i)
605 fprintf (f, " && ");
606 dump_clause (f, conds, pred->clause[i]);
608 fprintf (f, "\n");
612 /* Dump inline hints. */
613 void
614 dump_inline_hints (FILE *f, inline_hints hints)
616 if (!hints)
617 return;
618 fprintf (f, "inline hints:");
619 if (hints & INLINE_HINT_indirect_call)
621 hints &= ~INLINE_HINT_indirect_call;
622 fprintf (f, " indirect_call");
624 if (hints & INLINE_HINT_loop_iterations)
626 hints &= ~INLINE_HINT_loop_iterations;
627 fprintf (f, " loop_iterations");
629 if (hints & INLINE_HINT_loop_stride)
631 hints &= ~INLINE_HINT_loop_stride;
632 fprintf (f, " loop_stride");
634 if (hints & INLINE_HINT_same_scc)
636 hints &= ~INLINE_HINT_same_scc;
637 fprintf (f, " same_scc");
639 if (hints & INLINE_HINT_in_scc)
641 hints &= ~INLINE_HINT_in_scc;
642 fprintf (f, " in_scc");
644 if (hints & INLINE_HINT_cross_module)
646 hints &= ~INLINE_HINT_cross_module;
647 fprintf (f, " cross_module");
649 if (hints & INLINE_HINT_declared_inline)
651 hints &= ~INLINE_HINT_declared_inline;
652 fprintf (f, " declared_inline");
654 if (hints & INLINE_HINT_array_index)
656 hints &= ~INLINE_HINT_array_index;
657 fprintf (f, " array_index");
659 if (hints & INLINE_HINT_known_hot)
661 hints &= ~INLINE_HINT_known_hot;
662 fprintf (f, " known_hot");
664 gcc_assert (!hints);
668 /* Record SIZE and TIME under condition PRED into the inline summary. */
670 static void
671 account_size_time (struct inline_summary *summary, int size, int time,
672 struct predicate *pred)
674 size_time_entry *e;
675 bool found = false;
676 int i;
678 if (false_predicate_p (pred))
679 return;
681 /* We need to create initial empty unconitional clause, but otherwie
682 we don't need to account empty times and sizes. */
683 if (!size && !time && summary->entry)
684 return;
686 /* Watch overflow that might result from insane profiles. */
687 if (time > MAX_TIME * INLINE_TIME_SCALE)
688 time = MAX_TIME * INLINE_TIME_SCALE;
689 gcc_assert (time >= 0);
691 for (i = 0; vec_safe_iterate (summary->entry, i, &e); i++)
692 if (predicates_equal_p (&e->predicate, pred))
694 found = true;
695 break;
697 if (i == 256)
699 i = 0;
700 found = true;
701 e = &(*summary->entry)[0];
702 gcc_assert (!e->predicate.clause[0]);
703 if (dump_file && (dump_flags & TDF_DETAILS))
704 fprintf (dump_file,
705 "\t\tReached limit on number of entries, "
706 "ignoring the predicate.");
708 if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
710 fprintf (dump_file,
711 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
712 ((double) size) / INLINE_SIZE_SCALE,
713 ((double) time) / INLINE_TIME_SCALE, found ? "" : "new ");
714 dump_predicate (dump_file, summary->conds, pred);
716 if (!found)
718 struct size_time_entry new_entry;
719 new_entry.size = size;
720 new_entry.time = time;
721 new_entry.predicate = *pred;
722 vec_safe_push (summary->entry, new_entry);
724 else
726 e->size += size;
727 e->time += time;
728 if (e->time > MAX_TIME * INLINE_TIME_SCALE)
729 e->time = MAX_TIME * INLINE_TIME_SCALE;
733 /* We proved E to be unreachable, redirect it to __bultin_unreachable. */
735 static struct cgraph_edge *
736 redirect_to_unreachable (struct cgraph_edge *e)
738 struct cgraph_node *callee = !e->inline_failed ? e->callee : NULL;
739 struct cgraph_node *target = cgraph_node::get_create
740 (builtin_decl_implicit (BUILT_IN_UNREACHABLE));
742 if (e->speculative)
743 e = e->resolve_speculation (target->decl);
744 else if (!e->callee)
745 e->make_direct (target);
746 else
747 e->redirect_callee (target);
748 struct inline_edge_summary *es = inline_edge_summary (e);
749 e->inline_failed = CIF_UNREACHABLE;
750 e->frequency = 0;
751 e->count = 0;
752 es->call_stmt_size = 0;
753 es->call_stmt_time = 0;
754 if (callee)
755 callee->remove_symbol_and_inline_clones ();
756 return e;
759 /* Set predicate for edge E. */
761 static void
762 edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
764 /* If the edge is determined to be never executed, redirect it
765 to BUILTIN_UNREACHABLE to save inliner from inlining into it. */
766 if (predicate && false_predicate_p (predicate)
767 /* When handling speculative edges, we need to do the redirection
768 just once. Do it always on the direct edge, so we do not
769 attempt to resolve speculation while duplicating the edge. */
770 && (!e->speculative || e->callee))
771 e = redirect_to_unreachable (e);
773 struct inline_edge_summary *es = inline_edge_summary (e);
774 if (predicate && !true_predicate_p (predicate))
776 if (!es->predicate)
777 es->predicate = edge_predicate_pool.allocate ();
778 *es->predicate = *predicate;
780 else
782 if (es->predicate)
783 edge_predicate_pool.remove (es->predicate);
784 es->predicate = NULL;
788 /* Set predicate for hint *P. */
790 static void
791 set_hint_predicate (struct predicate **p, struct predicate new_predicate)
793 if (false_predicate_p (&new_predicate) || true_predicate_p (&new_predicate))
795 if (*p)
796 edge_predicate_pool.remove (*p);
797 *p = NULL;
799 else
801 if (!*p)
802 *p = edge_predicate_pool.allocate ();
803 **p = new_predicate;
808 /* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
809 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
810 Return clause of possible truths. When INLINE_P is true, assume that we are
811 inlining.
813 ERROR_MARK means compile time invariant. */
815 static clause_t
816 evaluate_conditions_for_known_args (struct cgraph_node *node,
817 bool inline_p,
818 vec<tree> known_vals,
819 vec<ipa_agg_jump_function_p>
820 known_aggs)
822 clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
823 struct inline_summary *info = inline_summaries->get (node);
824 int i;
825 struct condition *c;
827 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
829 tree val;
830 tree res;
832 /* We allow call stmt to have fewer arguments than the callee function
833 (especially for K&R style programs). So bound check here (we assume
834 known_aggs vector, if non-NULL, has the same length as
835 known_vals). */
836 gcc_checking_assert (!known_aggs.exists ()
837 || (known_vals.length () == known_aggs.length ()));
838 if (c->operand_num >= (int) known_vals.length ())
840 clause |= 1 << (i + predicate_first_dynamic_condition);
841 continue;
844 if (c->agg_contents)
846 struct ipa_agg_jump_function *agg;
848 if (c->code == CHANGED
849 && !c->by_ref
850 && (known_vals[c->operand_num] == error_mark_node))
851 continue;
853 if (known_aggs.exists ())
855 agg = known_aggs[c->operand_num];
856 val = ipa_find_agg_cst_for_param (agg, known_vals[c->operand_num],
857 c->offset, c->by_ref);
859 else
860 val = NULL_TREE;
862 else
864 val = known_vals[c->operand_num];
865 if (val == error_mark_node && c->code != CHANGED)
866 val = NULL_TREE;
869 if (!val)
871 clause |= 1 << (i + predicate_first_dynamic_condition);
872 continue;
874 if (c->code == CHANGED)
875 continue;
877 if (tree_to_shwi (TYPE_SIZE (TREE_TYPE (val))) != c->size)
879 clause |= 1 << (i + predicate_first_dynamic_condition);
880 continue;
882 if (c->code == IS_NOT_CONSTANT)
883 continue;
885 val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (c->val), val);
886 res = val
887 ? fold_binary_to_constant (c->code, boolean_type_node, val, c->val)
888 : NULL;
890 if (res && integer_zerop (res))
891 continue;
893 clause |= 1 << (i + predicate_first_dynamic_condition);
895 return clause;
899 /* Work out what conditions might be true at invocation of E. */
901 static void
902 evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
903 clause_t *clause_ptr,
904 vec<tree> *known_vals_ptr,
905 vec<ipa_polymorphic_call_context>
906 *known_contexts_ptr,
907 vec<ipa_agg_jump_function_p> *known_aggs_ptr)
909 struct cgraph_node *callee = e->callee->ultimate_alias_target ();
910 struct inline_summary *info = inline_summaries->get (callee);
911 vec<tree> known_vals = vNULL;
912 vec<ipa_agg_jump_function_p> known_aggs = vNULL;
914 if (clause_ptr)
915 *clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
916 if (known_vals_ptr)
917 known_vals_ptr->create (0);
918 if (known_contexts_ptr)
919 known_contexts_ptr->create (0);
921 if (ipa_node_params_sum
922 && !e->call_stmt_cannot_inline_p
923 && ((clause_ptr && info->conds) || known_vals_ptr || known_contexts_ptr))
925 struct ipa_node_params *parms_info;
926 struct ipa_edge_args *args = IPA_EDGE_REF (e);
927 struct inline_edge_summary *es = inline_edge_summary (e);
928 int i, count = ipa_get_cs_argument_count (args);
930 if (e->caller->global.inlined_to)
931 parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
932 else
933 parms_info = IPA_NODE_REF (e->caller);
935 if (count && (info->conds || known_vals_ptr))
936 known_vals.safe_grow_cleared (count);
937 if (count && (info->conds || known_aggs_ptr))
938 known_aggs.safe_grow_cleared (count);
939 if (count && known_contexts_ptr)
940 known_contexts_ptr->safe_grow_cleared (count);
942 for (i = 0; i < count; i++)
944 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
945 tree cst = ipa_value_from_jfunc (parms_info, jf);
947 if (!cst && e->call_stmt
948 && i < (int)gimple_call_num_args (e->call_stmt))
950 cst = gimple_call_arg (e->call_stmt, i);
951 if (!is_gimple_min_invariant (cst))
952 cst = NULL;
954 if (cst)
956 gcc_checking_assert (TREE_CODE (cst) != TREE_BINFO);
957 if (known_vals.exists ())
958 known_vals[i] = cst;
960 else if (inline_p && !es->param[i].change_prob)
961 known_vals[i] = error_mark_node;
963 if (known_contexts_ptr)
964 (*known_contexts_ptr)[i] = ipa_context_from_jfunc (parms_info, e,
965 i, jf);
966 /* TODO: When IPA-CP starts propagating and merging aggregate jump
967 functions, use its knowledge of the caller too, just like the
968 scalar case above. */
969 known_aggs[i] = &jf->agg;
972 else if (e->call_stmt && !e->call_stmt_cannot_inline_p
973 && ((clause_ptr && info->conds) || known_vals_ptr))
975 int i, count = (int)gimple_call_num_args (e->call_stmt);
977 if (count && (info->conds || known_vals_ptr))
978 known_vals.safe_grow_cleared (count);
979 for (i = 0; i < count; i++)
981 tree cst = gimple_call_arg (e->call_stmt, i);
982 if (!is_gimple_min_invariant (cst))
983 cst = NULL;
984 if (cst)
985 known_vals[i] = cst;
989 if (clause_ptr)
990 *clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
991 known_vals, known_aggs);
993 if (known_vals_ptr)
994 *known_vals_ptr = known_vals;
995 else
996 known_vals.release ();
998 if (known_aggs_ptr)
999 *known_aggs_ptr = known_aggs;
1000 else
1001 known_aggs.release ();
1005 /* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
1007 static void
1008 inline_summary_alloc (void)
1010 if (!edge_removal_hook_holder)
1011 edge_removal_hook_holder =
1012 symtab->add_edge_removal_hook (&inline_edge_removal_hook, NULL);
1013 if (!edge_duplication_hook_holder)
1014 edge_duplication_hook_holder =
1015 symtab->add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
1017 if (!inline_summaries)
1018 inline_summaries = (inline_summary_t*) inline_summary_t::create_ggc (symtab);
1020 if (inline_edge_summary_vec.length () <= (unsigned) symtab->edges_max_uid)
1021 inline_edge_summary_vec.safe_grow_cleared (symtab->edges_max_uid + 1);
1024 /* We are called multiple time for given function; clear
1025 data from previous run so they are not cumulated. */
1027 static void
1028 reset_inline_edge_summary (struct cgraph_edge *e)
1030 if (e->uid < (int) inline_edge_summary_vec.length ())
1032 struct inline_edge_summary *es = inline_edge_summary (e);
1034 es->call_stmt_size = es->call_stmt_time = 0;
1035 if (es->predicate)
1036 edge_predicate_pool.remove (es->predicate);
1037 es->predicate = NULL;
1038 es->param.release ();
1042 /* We are called multiple time for given function; clear
1043 data from previous run so they are not cumulated. */
1045 static void
1046 reset_inline_summary (struct cgraph_node *node,
1047 inline_summary *info)
1049 struct cgraph_edge *e;
1051 info->self_size = info->self_time = 0;
1052 info->estimated_stack_size = 0;
1053 info->estimated_self_stack_size = 0;
1054 info->stack_frame_offset = 0;
1055 info->size = 0;
1056 info->time = 0;
1057 info->growth = 0;
1058 info->scc_no = 0;
1059 if (info->loop_iterations)
1061 edge_predicate_pool.remove (info->loop_iterations);
1062 info->loop_iterations = NULL;
1064 if (info->loop_stride)
1066 edge_predicate_pool.remove (info->loop_stride);
1067 info->loop_stride = NULL;
1069 if (info->array_index)
1071 edge_predicate_pool.remove (info->array_index);
1072 info->array_index = NULL;
1074 vec_free (info->conds);
1075 vec_free (info->entry);
1076 for (e = node->callees; e; e = e->next_callee)
1077 reset_inline_edge_summary (e);
1078 for (e = node->indirect_calls; e; e = e->next_callee)
1079 reset_inline_edge_summary (e);
1080 info->fp_expressions = false;
1083 /* Hook that is called by cgraph.c when a node is removed. */
1085 void
1086 inline_summary_t::remove (cgraph_node *node, inline_summary *info)
1088 reset_inline_summary (node, info);
1091 /* Remap predicate P of former function to be predicate of duplicated function.
1092 POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
1093 INFO is inline summary of the duplicated node. */
1095 static struct predicate
1096 remap_predicate_after_duplication (struct predicate *p,
1097 clause_t possible_truths,
1098 struct inline_summary *info)
1100 struct predicate new_predicate = true_predicate ();
1101 int j;
1102 for (j = 0; p->clause[j]; j++)
1103 if (!(possible_truths & p->clause[j]))
1105 new_predicate = false_predicate ();
1106 break;
1108 else
1109 add_clause (info->conds, &new_predicate,
1110 possible_truths & p->clause[j]);
1111 return new_predicate;
1114 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
1115 Additionally care about allocating new memory slot for updated predicate
1116 and set it to NULL when it becomes true or false (and thus uninteresting).
1119 static void
1120 remap_hint_predicate_after_duplication (struct predicate **p,
1121 clause_t possible_truths,
1122 struct inline_summary *info)
1124 struct predicate new_predicate;
1126 if (!*p)
1127 return;
1129 new_predicate = remap_predicate_after_duplication (*p,
1130 possible_truths, info);
1131 /* We do not want to free previous predicate; it is used by node origin. */
1132 *p = NULL;
1133 set_hint_predicate (p, new_predicate);
1137 /* Hook that is called by cgraph.c when a node is duplicated. */
1138 void
1139 inline_summary_t::duplicate (cgraph_node *src,
1140 cgraph_node *dst,
1141 inline_summary *,
1142 inline_summary *info)
1144 inline_summary_alloc ();
1145 memcpy (info, inline_summaries->get (src), sizeof (inline_summary));
1146 /* TODO: as an optimization, we may avoid copying conditions
1147 that are known to be false or true. */
1148 info->conds = vec_safe_copy (info->conds);
1150 /* When there are any replacements in the function body, see if we can figure
1151 out that something was optimized out. */
1152 if (ipa_node_params_sum && dst->clone.tree_map)
1154 vec<size_time_entry, va_gc> *entry = info->entry;
1155 /* Use SRC parm info since it may not be copied yet. */
1156 struct ipa_node_params *parms_info = IPA_NODE_REF (src);
1157 vec<tree> known_vals = vNULL;
1158 int count = ipa_get_param_count (parms_info);
1159 int i, j;
1160 clause_t possible_truths;
1161 struct predicate true_pred = true_predicate ();
1162 size_time_entry *e;
1163 int optimized_out_size = 0;
1164 bool inlined_to_p = false;
1165 struct cgraph_edge *edge, *next;
1167 info->entry = 0;
1168 known_vals.safe_grow_cleared (count);
1169 for (i = 0; i < count; i++)
1171 struct ipa_replace_map *r;
1173 for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
1175 if (((!r->old_tree && r->parm_num == i)
1176 || (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
1177 && r->replace_p && !r->ref_p)
1179 known_vals[i] = r->new_tree;
1180 break;
1184 possible_truths = evaluate_conditions_for_known_args (dst, false,
1185 known_vals,
1186 vNULL);
1187 known_vals.release ();
1189 account_size_time (info, 0, 0, &true_pred);
1191 /* Remap size_time vectors.
1192 Simplify the predicate by prunning out alternatives that are known
1193 to be false.
1194 TODO: as on optimization, we can also eliminate conditions known
1195 to be true. */
1196 for (i = 0; vec_safe_iterate (entry, i, &e); i++)
1198 struct predicate new_predicate;
1199 new_predicate = remap_predicate_after_duplication (&e->predicate,
1200 possible_truths,
1201 info);
1202 if (false_predicate_p (&new_predicate))
1203 optimized_out_size += e->size;
1204 else
1205 account_size_time (info, e->size, e->time, &new_predicate);
1208 /* Remap edge predicates with the same simplification as above.
1209 Also copy constantness arrays. */
1210 for (edge = dst->callees; edge; edge = next)
1212 struct predicate new_predicate;
1213 struct inline_edge_summary *es = inline_edge_summary (edge);
1214 next = edge->next_callee;
1216 if (!edge->inline_failed)
1217 inlined_to_p = true;
1218 if (!es->predicate)
1219 continue;
1220 new_predicate = remap_predicate_after_duplication (es->predicate,
1221 possible_truths,
1222 info);
1223 if (false_predicate_p (&new_predicate)
1224 && !false_predicate_p (es->predicate))
1225 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1226 edge_set_predicate (edge, &new_predicate);
1229 /* Remap indirect edge predicates with the same simplificaiton as above.
1230 Also copy constantness arrays. */
1231 for (edge = dst->indirect_calls; edge; edge = next)
1233 struct predicate new_predicate;
1234 struct inline_edge_summary *es = inline_edge_summary (edge);
1235 next = edge->next_callee;
1237 gcc_checking_assert (edge->inline_failed);
1238 if (!es->predicate)
1239 continue;
1240 new_predicate = remap_predicate_after_duplication (es->predicate,
1241 possible_truths,
1242 info);
1243 if (false_predicate_p (&new_predicate)
1244 && !false_predicate_p (es->predicate))
1245 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1246 edge_set_predicate (edge, &new_predicate);
1248 remap_hint_predicate_after_duplication (&info->loop_iterations,
1249 possible_truths, info);
1250 remap_hint_predicate_after_duplication (&info->loop_stride,
1251 possible_truths, info);
1252 remap_hint_predicate_after_duplication (&info->array_index,
1253 possible_truths, info);
1255 /* If inliner or someone after inliner will ever start producing
1256 non-trivial clones, we will get trouble with lack of information
1257 about updating self sizes, because size vectors already contains
1258 sizes of the calees. */
1259 gcc_assert (!inlined_to_p || !optimized_out_size);
1261 else
1263 info->entry = vec_safe_copy (info->entry);
1264 if (info->loop_iterations)
1266 predicate p = *info->loop_iterations;
1267 info->loop_iterations = NULL;
1268 set_hint_predicate (&info->loop_iterations, p);
1270 if (info->loop_stride)
1272 predicate p = *info->loop_stride;
1273 info->loop_stride = NULL;
1274 set_hint_predicate (&info->loop_stride, p);
1276 if (info->array_index)
1278 predicate p = *info->array_index;
1279 info->array_index = NULL;
1280 set_hint_predicate (&info->array_index, p);
1283 if (!dst->global.inlined_to)
1284 inline_update_overall_summary (dst);
1288 /* Hook that is called by cgraph.c when a node is duplicated. */
1290 static void
1291 inline_edge_duplication_hook (struct cgraph_edge *src,
1292 struct cgraph_edge *dst,
1293 ATTRIBUTE_UNUSED void *data)
1295 struct inline_edge_summary *info;
1296 struct inline_edge_summary *srcinfo;
1297 inline_summary_alloc ();
1298 info = inline_edge_summary (dst);
1299 srcinfo = inline_edge_summary (src);
1300 memcpy (info, srcinfo, sizeof (struct inline_edge_summary));
1301 info->predicate = NULL;
1302 edge_set_predicate (dst, srcinfo->predicate);
1303 info->param = srcinfo->param.copy ();
1304 if (!dst->indirect_unknown_callee && src->indirect_unknown_callee)
1306 info->call_stmt_size -= (eni_size_weights.indirect_call_cost
1307 - eni_size_weights.call_cost);
1308 info->call_stmt_time -= (eni_time_weights.indirect_call_cost
1309 - eni_time_weights.call_cost);
1314 /* Keep edge cache consistent across edge removal. */
1316 static void
1317 inline_edge_removal_hook (struct cgraph_edge *edge,
1318 void *data ATTRIBUTE_UNUSED)
1320 if (edge_growth_cache.exists ())
1321 reset_edge_growth_cache (edge);
1322 reset_inline_edge_summary (edge);
1326 /* Initialize growth caches. */
1328 void
1329 initialize_growth_caches (void)
1331 if (symtab->edges_max_uid)
1332 edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
1336 /* Free growth caches. */
1338 void
1339 free_growth_caches (void)
1341 edge_growth_cache.release ();
1345 /* Dump edge summaries associated to NODE and recursively to all clones.
1346 Indent by INDENT. */
1348 static void
1349 dump_inline_edge_summary (FILE *f, int indent, struct cgraph_node *node,
1350 struct inline_summary *info)
1352 struct cgraph_edge *edge;
1353 for (edge = node->callees; edge; edge = edge->next_callee)
1355 struct inline_edge_summary *es = inline_edge_summary (edge);
1356 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
1357 int i;
1359 fprintf (f,
1360 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
1361 " time: %2i callee size:%2i stack:%2i",
1362 indent, "", callee->name (), callee->order,
1363 !edge->inline_failed
1364 ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
1365 indent, "", es->loop_depth, edge->frequency,
1366 es->call_stmt_size, es->call_stmt_time,
1367 (int) inline_summaries->get (callee)->size / INLINE_SIZE_SCALE,
1368 (int) inline_summaries->get (callee)->estimated_stack_size);
1370 if (es->predicate)
1372 fprintf (f, " predicate: ");
1373 dump_predicate (f, info->conds, es->predicate);
1375 else
1376 fprintf (f, "\n");
1377 if (es->param.exists ())
1378 for (i = 0; i < (int) es->param.length (); i++)
1380 int prob = es->param[i].change_prob;
1382 if (!prob)
1383 fprintf (f, "%*s op%i is compile time invariant\n",
1384 indent + 2, "", i);
1385 else if (prob != REG_BR_PROB_BASE)
1386 fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
1387 prob * 100.0 / REG_BR_PROB_BASE);
1389 if (!edge->inline_failed)
1391 fprintf (f, "%*sStack frame offset %i, callee self size %i,"
1392 " callee size %i\n",
1393 indent + 2, "",
1394 (int) inline_summaries->get (callee)->stack_frame_offset,
1395 (int) inline_summaries->get (callee)->estimated_self_stack_size,
1396 (int) inline_summaries->get (callee)->estimated_stack_size);
1397 dump_inline_edge_summary (f, indent + 2, callee, info);
1400 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
1402 struct inline_edge_summary *es = inline_edge_summary (edge);
1403 fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
1404 " time: %2i",
1405 indent, "",
1406 es->loop_depth,
1407 edge->frequency, es->call_stmt_size, es->call_stmt_time);
1408 if (es->predicate)
1410 fprintf (f, "predicate: ");
1411 dump_predicate (f, info->conds, es->predicate);
1413 else
1414 fprintf (f, "\n");
1419 void
1420 dump_inline_summary (FILE *f, struct cgraph_node *node)
1422 if (node->definition)
1424 struct inline_summary *s = inline_summaries->get (node);
1425 size_time_entry *e;
1426 int i;
1427 fprintf (f, "Inline summary for %s/%i", node->name (),
1428 node->order);
1429 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
1430 fprintf (f, " always_inline");
1431 if (s->inlinable)
1432 fprintf (f, " inlinable");
1433 if (s->contains_cilk_spawn)
1434 fprintf (f, " contains_cilk_spawn");
1435 if (s->fp_expressions)
1436 fprintf (f, " fp_expression");
1437 fprintf (f, "\n self time: %i\n", s->self_time);
1438 fprintf (f, " global time: %i\n", s->time);
1439 fprintf (f, " self size: %i\n", s->self_size);
1440 fprintf (f, " global size: %i\n", s->size);
1441 fprintf (f, " min size: %i\n", s->min_size);
1442 fprintf (f, " self stack: %i\n",
1443 (int) s->estimated_self_stack_size);
1444 fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
1445 if (s->growth)
1446 fprintf (f, " estimated growth:%i\n", (int) s->growth);
1447 if (s->scc_no)
1448 fprintf (f, " In SCC: %i\n", (int) s->scc_no);
1449 for (i = 0; vec_safe_iterate (s->entry, i, &e); i++)
1451 fprintf (f, " size:%f, time:%f, predicate:",
1452 (double) e->size / INLINE_SIZE_SCALE,
1453 (double) e->time / INLINE_TIME_SCALE);
1454 dump_predicate (f, s->conds, &e->predicate);
1456 if (s->loop_iterations)
1458 fprintf (f, " loop iterations:");
1459 dump_predicate (f, s->conds, s->loop_iterations);
1461 if (s->loop_stride)
1463 fprintf (f, " loop stride:");
1464 dump_predicate (f, s->conds, s->loop_stride);
1466 if (s->array_index)
1468 fprintf (f, " array index:");
1469 dump_predicate (f, s->conds, s->array_index);
1471 fprintf (f, " calls:\n");
1472 dump_inline_edge_summary (f, 4, node, s);
1473 fprintf (f, "\n");
1477 DEBUG_FUNCTION void
1478 debug_inline_summary (struct cgraph_node *node)
1480 dump_inline_summary (stderr, node);
1483 void
1484 dump_inline_summaries (FILE *f)
1486 struct cgraph_node *node;
1488 FOR_EACH_DEFINED_FUNCTION (node)
1489 if (!node->global.inlined_to)
1490 dump_inline_summary (f, node);
1493 /* Give initial reasons why inlining would fail on EDGE. This gets either
1494 nullified or usually overwritten by more precise reasons later. */
1496 void
1497 initialize_inline_failed (struct cgraph_edge *e)
1499 struct cgraph_node *callee = e->callee;
1501 if (e->inline_failed && e->inline_failed != CIF_BODY_NOT_AVAILABLE
1502 && cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
1504 else if (e->indirect_unknown_callee)
1505 e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
1506 else if (!callee->definition)
1507 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
1508 else if (callee->local.redefined_extern_inline)
1509 e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
1510 else
1511 e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
1512 gcc_checking_assert (!e->call_stmt_cannot_inline_p
1513 || cgraph_inline_failed_type (e->inline_failed)
1514 == CIF_FINAL_ERROR);
1517 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
1518 boolean variable pointed to by DATA. */
1520 static bool
1521 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
1522 void *data)
1524 bool *b = (bool *) data;
1525 *b = true;
1526 return true;
1529 /* If OP refers to value of function parameter, return the corresponding
1530 parameter. If non-NULL, the size of the memory load (or the SSA_NAME of the
1531 PARM_DECL) will be stored to *SIZE_P in that case too. */
1533 static tree
1534 unmodified_parm_1 (gimple *stmt, tree op, HOST_WIDE_INT *size_p)
1536 /* SSA_NAME referring to parm default def? */
1537 if (TREE_CODE (op) == SSA_NAME
1538 && SSA_NAME_IS_DEFAULT_DEF (op)
1539 && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
1541 if (size_p)
1542 *size_p = tree_to_shwi (TYPE_SIZE (TREE_TYPE (op)));
1543 return SSA_NAME_VAR (op);
1545 /* Non-SSA parm reference? */
1546 if (TREE_CODE (op) == PARM_DECL)
1548 bool modified = false;
1550 ao_ref refd;
1551 ao_ref_init (&refd, op);
1552 walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
1553 NULL);
1554 if (!modified)
1556 if (size_p)
1557 *size_p = tree_to_shwi (TYPE_SIZE (TREE_TYPE (op)));
1558 return op;
1561 return NULL_TREE;
1564 /* If OP refers to value of function parameter, return the corresponding
1565 parameter. Also traverse chains of SSA register assignments. If non-NULL,
1566 the size of the memory load (or the SSA_NAME of the PARM_DECL) will be
1567 stored to *SIZE_P in that case too. */
1569 static tree
1570 unmodified_parm (gimple *stmt, tree op, HOST_WIDE_INT *size_p)
1572 tree res = unmodified_parm_1 (stmt, op, size_p);
1573 if (res)
1574 return res;
1576 if (TREE_CODE (op) == SSA_NAME
1577 && !SSA_NAME_IS_DEFAULT_DEF (op)
1578 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1579 return unmodified_parm (SSA_NAME_DEF_STMT (op),
1580 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)),
1581 size_p);
1582 return NULL_TREE;
1585 /* If OP refers to a value of a function parameter or value loaded from an
1586 aggregate passed to a parameter (either by value or reference), return TRUE
1587 and store the number of the parameter to *INDEX_P, the access size into
1588 *SIZE_P, and information whether and how it has been loaded from an
1589 aggregate into *AGGPOS. INFO describes the function parameters, STMT is the
1590 statement in which OP is used or loaded. */
1592 static bool
1593 unmodified_parm_or_parm_agg_item (struct ipa_func_body_info *fbi,
1594 gimple *stmt, tree op, int *index_p,
1595 HOST_WIDE_INT *size_p,
1596 struct agg_position_info *aggpos)
1598 tree res = unmodified_parm_1 (stmt, op, size_p);
1600 gcc_checking_assert (aggpos);
1601 if (res)
1603 *index_p = ipa_get_param_decl_index (fbi->info, res);
1604 if (*index_p < 0)
1605 return false;
1606 aggpos->agg_contents = false;
1607 aggpos->by_ref = false;
1608 return true;
1611 if (TREE_CODE (op) == SSA_NAME)
1613 if (SSA_NAME_IS_DEFAULT_DEF (op)
1614 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1615 return false;
1616 stmt = SSA_NAME_DEF_STMT (op);
1617 op = gimple_assign_rhs1 (stmt);
1618 if (!REFERENCE_CLASS_P (op))
1619 return unmodified_parm_or_parm_agg_item (fbi, stmt, op, index_p, size_p,
1620 aggpos);
1623 aggpos->agg_contents = true;
1624 return ipa_load_from_parm_agg (fbi, fbi->info->descriptors,
1625 stmt, op, index_p, &aggpos->offset,
1626 size_p, &aggpos->by_ref);
1629 /* See if statement might disappear after inlining.
1630 0 - means not eliminated
1631 1 - half of statements goes away
1632 2 - for sure it is eliminated.
1633 We are not terribly sophisticated, basically looking for simple abstraction
1634 penalty wrappers. */
1636 static int
1637 eliminated_by_inlining_prob (gimple *stmt)
1639 enum gimple_code code = gimple_code (stmt);
1640 enum tree_code rhs_code;
1642 if (!optimize)
1643 return 0;
1645 switch (code)
1647 case GIMPLE_RETURN:
1648 return 2;
1649 case GIMPLE_ASSIGN:
1650 if (gimple_num_ops (stmt) != 2)
1651 return 0;
1653 rhs_code = gimple_assign_rhs_code (stmt);
1655 /* Casts of parameters, loads from parameters passed by reference
1656 and stores to return value or parameters are often free after
1657 inlining dua to SRA and further combining.
1658 Assume that half of statements goes away. */
1659 if (CONVERT_EXPR_CODE_P (rhs_code)
1660 || rhs_code == VIEW_CONVERT_EXPR
1661 || rhs_code == ADDR_EXPR
1662 || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
1664 tree rhs = gimple_assign_rhs1 (stmt);
1665 tree lhs = gimple_assign_lhs (stmt);
1666 tree inner_rhs = get_base_address (rhs);
1667 tree inner_lhs = get_base_address (lhs);
1668 bool rhs_free = false;
1669 bool lhs_free = false;
1671 if (!inner_rhs)
1672 inner_rhs = rhs;
1673 if (!inner_lhs)
1674 inner_lhs = lhs;
1676 /* Reads of parameter are expected to be free. */
1677 if (unmodified_parm (stmt, inner_rhs, NULL))
1678 rhs_free = true;
1679 /* Match expressions of form &this->field. Those will most likely
1680 combine with something upstream after inlining. */
1681 else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
1683 tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
1684 if (TREE_CODE (op) == PARM_DECL)
1685 rhs_free = true;
1686 else if (TREE_CODE (op) == MEM_REF
1687 && unmodified_parm (stmt, TREE_OPERAND (op, 0), NULL))
1688 rhs_free = true;
1691 /* When parameter is not SSA register because its address is taken
1692 and it is just copied into one, the statement will be completely
1693 free after inlining (we will copy propagate backward). */
1694 if (rhs_free && is_gimple_reg (lhs))
1695 return 2;
1697 /* Reads of parameters passed by reference
1698 expected to be free (i.e. optimized out after inlining). */
1699 if (TREE_CODE (inner_rhs) == MEM_REF
1700 && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0), NULL))
1701 rhs_free = true;
1703 /* Copying parameter passed by reference into gimple register is
1704 probably also going to copy propagate, but we can't be quite
1705 sure. */
1706 if (rhs_free && is_gimple_reg (lhs))
1707 lhs_free = true;
1709 /* Writes to parameters, parameters passed by value and return value
1710 (either dirrectly or passed via invisible reference) are free.
1712 TODO: We ought to handle testcase like
1713 struct a {int a,b;};
1714 struct a
1715 retrurnsturct (void)
1717 struct a a ={1,2};
1718 return a;
1721 This translate into:
1723 retrurnsturct ()
1725 int a$b;
1726 int a$a;
1727 struct a a;
1728 struct a D.2739;
1730 <bb 2>:
1731 D.2739.a = 1;
1732 D.2739.b = 2;
1733 return D.2739;
1736 For that we either need to copy ipa-split logic detecting writes
1737 to return value. */
1738 if (TREE_CODE (inner_lhs) == PARM_DECL
1739 || TREE_CODE (inner_lhs) == RESULT_DECL
1740 || (TREE_CODE (inner_lhs) == MEM_REF
1741 && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0), NULL)
1742 || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
1743 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
1744 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1745 (inner_lhs,
1746 0))) == RESULT_DECL))))
1747 lhs_free = true;
1748 if (lhs_free
1749 && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
1750 rhs_free = true;
1751 if (lhs_free && rhs_free)
1752 return 1;
1754 return 0;
1755 default:
1756 return 0;
1761 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1762 predicates to the CFG edges. */
1764 static void
1765 set_cond_stmt_execution_predicate (struct ipa_func_body_info *fbi,
1766 struct inline_summary *summary,
1767 basic_block bb)
1769 gimple *last;
1770 tree op;
1771 int index;
1772 HOST_WIDE_INT size;
1773 struct agg_position_info aggpos;
1774 enum tree_code code, inverted_code;
1775 edge e;
1776 edge_iterator ei;
1777 gimple *set_stmt;
1778 tree op2;
1780 last = last_stmt (bb);
1781 if (!last || gimple_code (last) != GIMPLE_COND)
1782 return;
1783 if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
1784 return;
1785 op = gimple_cond_lhs (last);
1786 /* TODO: handle conditionals like
1787 var = op0 < 4;
1788 if (var != 0). */
1789 if (unmodified_parm_or_parm_agg_item (fbi, last, op, &index, &size, &aggpos))
1791 code = gimple_cond_code (last);
1792 inverted_code = invert_tree_comparison (code, HONOR_NANS (op));
1794 FOR_EACH_EDGE (e, ei, bb->succs)
1796 enum tree_code this_code = (e->flags & EDGE_TRUE_VALUE
1797 ? code : inverted_code);
1798 /* invert_tree_comparison will return ERROR_MARK on FP
1799 comparsions that are not EQ/NE instead of returning proper
1800 unordered one. Be sure it is not confused with NON_CONSTANT. */
1801 if (this_code != ERROR_MARK)
1803 struct predicate p
1804 = add_condition (summary, index, size, &aggpos, this_code,
1805 unshare_expr_without_location
1806 (gimple_cond_rhs (last)));
1807 e->aux = edge_predicate_pool.allocate ();
1808 *(struct predicate *) e->aux = p;
1813 if (TREE_CODE (op) != SSA_NAME)
1814 return;
1815 /* Special case
1816 if (builtin_constant_p (op))
1817 constant_code
1818 else
1819 nonconstant_code.
1820 Here we can predicate nonconstant_code. We can't
1821 really handle constant_code since we have no predicate
1822 for this and also the constant code is not known to be
1823 optimized away when inliner doen't see operand is constant.
1824 Other optimizers might think otherwise. */
1825 if (gimple_cond_code (last) != NE_EXPR
1826 || !integer_zerop (gimple_cond_rhs (last)))
1827 return;
1828 set_stmt = SSA_NAME_DEF_STMT (op);
1829 if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
1830 || gimple_call_num_args (set_stmt) != 1)
1831 return;
1832 op2 = gimple_call_arg (set_stmt, 0);
1833 if (!unmodified_parm_or_parm_agg_item (fbi, set_stmt, op2, &index, &size,
1834 &aggpos))
1835 return;
1836 FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
1838 struct predicate p = add_condition (summary, index, size, &aggpos,
1839 IS_NOT_CONSTANT, NULL_TREE);
1840 e->aux = edge_predicate_pool.allocate ();
1841 *(struct predicate *) e->aux = p;
1846 /* If BB ends by a switch we can turn into predicates, attach corresponding
1847 predicates to the CFG edges. */
1849 static void
1850 set_switch_stmt_execution_predicate (struct ipa_func_body_info *fbi,
1851 struct inline_summary *summary,
1852 basic_block bb)
1854 gimple *lastg;
1855 tree op;
1856 int index;
1857 HOST_WIDE_INT size;
1858 struct agg_position_info aggpos;
1859 edge e;
1860 edge_iterator ei;
1861 size_t n;
1862 size_t case_idx;
1864 lastg = last_stmt (bb);
1865 if (!lastg || gimple_code (lastg) != GIMPLE_SWITCH)
1866 return;
1867 gswitch *last = as_a <gswitch *> (lastg);
1868 op = gimple_switch_index (last);
1869 if (!unmodified_parm_or_parm_agg_item (fbi, last, op, &index, &size, &aggpos))
1870 return;
1872 FOR_EACH_EDGE (e, ei, bb->succs)
1874 e->aux = edge_predicate_pool.allocate ();
1875 *(struct predicate *) e->aux = false_predicate ();
1877 n = gimple_switch_num_labels (last);
1878 for (case_idx = 0; case_idx < n; ++case_idx)
1880 tree cl = gimple_switch_label (last, case_idx);
1881 tree min, max;
1882 struct predicate p;
1884 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
1885 min = CASE_LOW (cl);
1886 max = CASE_HIGH (cl);
1888 /* For default we might want to construct predicate that none
1889 of cases is met, but it is bit hard to do not having negations
1890 of conditionals handy. */
1891 if (!min && !max)
1892 p = true_predicate ();
1893 else if (!max)
1894 p = add_condition (summary, index, size, &aggpos, EQ_EXPR,
1895 unshare_expr_without_location (min));
1896 else
1898 struct predicate p1, p2;
1899 p1 = add_condition (summary, index, size, &aggpos, GE_EXPR,
1900 unshare_expr_without_location (min));
1901 p2 = add_condition (summary, index, size, &aggpos, LE_EXPR,
1902 unshare_expr_without_location (max));
1903 p = and_predicates (summary->conds, &p1, &p2);
1905 *(struct predicate *) e->aux
1906 = or_predicates (summary->conds, &p, (struct predicate *) e->aux);
1911 /* For each BB in NODE attach to its AUX pointer predicate under
1912 which it is executable. */
1914 static void
1915 compute_bb_predicates (struct ipa_func_body_info *fbi,
1916 struct cgraph_node *node,
1917 struct inline_summary *summary)
1919 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
1920 bool done = false;
1921 basic_block bb;
1923 FOR_EACH_BB_FN (bb, my_function)
1925 set_cond_stmt_execution_predicate (fbi, summary, bb);
1926 set_switch_stmt_execution_predicate (fbi, summary, bb);
1929 /* Entry block is always executable. */
1930 ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1931 = edge_predicate_pool.allocate ();
1932 *(struct predicate *) ENTRY_BLOCK_PTR_FOR_FN (my_function)->aux
1933 = true_predicate ();
1935 /* A simple dataflow propagation of predicates forward in the CFG.
1936 TODO: work in reverse postorder. */
1937 while (!done)
1939 done = true;
1940 FOR_EACH_BB_FN (bb, my_function)
1942 struct predicate p = false_predicate ();
1943 edge e;
1944 edge_iterator ei;
1945 FOR_EACH_EDGE (e, ei, bb->preds)
1947 if (e->src->aux)
1949 struct predicate this_bb_predicate
1950 = *(struct predicate *) e->src->aux;
1951 if (e->aux)
1952 this_bb_predicate
1953 = and_predicates (summary->conds, &this_bb_predicate,
1954 (struct predicate *) e->aux);
1955 p = or_predicates (summary->conds, &p, &this_bb_predicate);
1956 if (true_predicate_p (&p))
1957 break;
1960 if (false_predicate_p (&p))
1961 gcc_assert (!bb->aux);
1962 else
1964 if (!bb->aux)
1966 done = false;
1967 bb->aux = edge_predicate_pool.allocate ();
1968 *((struct predicate *) bb->aux) = p;
1970 else if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1972 /* This OR operation is needed to ensure monotonous data flow
1973 in the case we hit the limit on number of clauses and the
1974 and/or operations above give approximate answers. */
1975 p = or_predicates (summary->conds, &p, (struct predicate *)bb->aux);
1976 if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1978 done = false;
1979 *((struct predicate *) bb->aux) = p;
1988 /* We keep info about constantness of SSA names. */
1990 typedef struct predicate predicate_t;
1991 /* Return predicate specifying when the STMT might have result that is not
1992 a compile time constant. */
1994 static struct predicate
1995 will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
1996 struct inline_summary *summary,
1997 tree expr,
1998 vec<predicate_t> nonconstant_names)
2000 tree parm;
2001 int index;
2002 HOST_WIDE_INT size;
2004 while (UNARY_CLASS_P (expr))
2005 expr = TREE_OPERAND (expr, 0);
2007 parm = unmodified_parm (NULL, expr, &size);
2008 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
2009 return add_condition (summary, index, size, NULL, CHANGED, NULL_TREE);
2010 if (is_gimple_min_invariant (expr))
2011 return false_predicate ();
2012 if (TREE_CODE (expr) == SSA_NAME)
2013 return nonconstant_names[SSA_NAME_VERSION (expr)];
2014 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
2016 struct predicate p1 = will_be_nonconstant_expr_predicate
2017 (info, summary, TREE_OPERAND (expr, 0),
2018 nonconstant_names);
2019 struct predicate p2;
2020 if (true_predicate_p (&p1))
2021 return p1;
2022 p2 = will_be_nonconstant_expr_predicate (info, summary,
2023 TREE_OPERAND (expr, 1),
2024 nonconstant_names);
2025 return or_predicates (summary->conds, &p1, &p2);
2027 else if (TREE_CODE (expr) == COND_EXPR)
2029 struct predicate p1 = will_be_nonconstant_expr_predicate
2030 (info, summary, TREE_OPERAND (expr, 0),
2031 nonconstant_names);
2032 struct predicate p2;
2033 if (true_predicate_p (&p1))
2034 return p1;
2035 p2 = will_be_nonconstant_expr_predicate (info, summary,
2036 TREE_OPERAND (expr, 1),
2037 nonconstant_names);
2038 if (true_predicate_p (&p2))
2039 return p2;
2040 p1 = or_predicates (summary->conds, &p1, &p2);
2041 p2 = will_be_nonconstant_expr_predicate (info, summary,
2042 TREE_OPERAND (expr, 2),
2043 nonconstant_names);
2044 return or_predicates (summary->conds, &p1, &p2);
2046 else
2048 debug_tree (expr);
2049 gcc_unreachable ();
2051 return false_predicate ();
2055 /* Return predicate specifying when the STMT might have result that is not
2056 a compile time constant. */
2058 static struct predicate
2059 will_be_nonconstant_predicate (struct ipa_func_body_info *fbi,
2060 struct inline_summary *summary,
2061 gimple *stmt,
2062 vec<predicate_t> nonconstant_names)
2064 struct predicate p = true_predicate ();
2065 ssa_op_iter iter;
2066 tree use;
2067 struct predicate op_non_const;
2068 bool is_load;
2069 int base_index;
2070 HOST_WIDE_INT size;
2071 struct agg_position_info aggpos;
2073 /* What statments might be optimized away
2074 when their arguments are constant. */
2075 if (gimple_code (stmt) != GIMPLE_ASSIGN
2076 && gimple_code (stmt) != GIMPLE_COND
2077 && gimple_code (stmt) != GIMPLE_SWITCH
2078 && (gimple_code (stmt) != GIMPLE_CALL
2079 || !(gimple_call_flags (stmt) & ECF_CONST)))
2080 return p;
2082 /* Stores will stay anyway. */
2083 if (gimple_store_p (stmt))
2084 return p;
2086 is_load = gimple_assign_load_p (stmt);
2088 /* Loads can be optimized when the value is known. */
2089 if (is_load)
2091 tree op;
2092 gcc_assert (gimple_assign_single_p (stmt));
2093 op = gimple_assign_rhs1 (stmt);
2094 if (!unmodified_parm_or_parm_agg_item (fbi, stmt, op, &base_index, &size,
2095 &aggpos))
2096 return p;
2098 else
2099 base_index = -1;
2101 /* See if we understand all operands before we start
2102 adding conditionals. */
2103 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2105 tree parm = unmodified_parm (stmt, use, NULL);
2106 /* For arguments we can build a condition. */
2107 if (parm && ipa_get_param_decl_index (fbi->info, parm) >= 0)
2108 continue;
2109 if (TREE_CODE (use) != SSA_NAME)
2110 return p;
2111 /* If we know when operand is constant,
2112 we still can say something useful. */
2113 if (!true_predicate_p (&nonconstant_names[SSA_NAME_VERSION (use)]))
2114 continue;
2115 return p;
2118 if (is_load)
2119 op_non_const =
2120 add_condition (summary, base_index, size, &aggpos, CHANGED, NULL);
2121 else
2122 op_non_const = false_predicate ();
2123 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2125 HOST_WIDE_INT size;
2126 tree parm = unmodified_parm (stmt, use, &size);
2127 int index;
2129 if (parm && (index = ipa_get_param_decl_index (fbi->info, parm)) >= 0)
2131 if (index != base_index)
2132 p = add_condition (summary, index, size, NULL, CHANGED, NULL_TREE);
2133 else
2134 continue;
2136 else
2137 p = nonconstant_names[SSA_NAME_VERSION (use)];
2138 op_non_const = or_predicates (summary->conds, &p, &op_non_const);
2140 if ((gimple_code (stmt) == GIMPLE_ASSIGN || gimple_code (stmt) == GIMPLE_CALL)
2141 && gimple_op (stmt, 0)
2142 && TREE_CODE (gimple_op (stmt, 0)) == SSA_NAME)
2143 nonconstant_names[SSA_NAME_VERSION (gimple_op (stmt, 0))]
2144 = op_non_const;
2145 return op_non_const;
2148 struct record_modified_bb_info
2150 bitmap bb_set;
2151 gimple *stmt;
2154 /* Value is initialized in INIT_BB and used in USE_BB. We want to copute
2155 probability how often it changes between USE_BB.
2156 INIT_BB->frequency/USE_BB->frequency is an estimate, but if INIT_BB
2157 is in different loop nest, we can do better.
2158 This is all just estimate. In theory we look for minimal cut separating
2159 INIT_BB and USE_BB, but we only want to anticipate loop invariant motion
2160 anyway. */
2162 static basic_block
2163 get_minimal_bb (basic_block init_bb, basic_block use_bb)
2165 struct loop *l = find_common_loop (init_bb->loop_father, use_bb->loop_father);
2166 if (l && l->header->frequency < init_bb->frequency)
2167 return l->header;
2168 return init_bb;
2171 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
2172 set except for info->stmt. */
2174 static bool
2175 record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
2177 struct record_modified_bb_info *info =
2178 (struct record_modified_bb_info *) data;
2179 if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
2180 return false;
2181 bitmap_set_bit (info->bb_set,
2182 SSA_NAME_IS_DEFAULT_DEF (vdef)
2183 ? ENTRY_BLOCK_PTR_FOR_FN (cfun)->index
2184 : get_minimal_bb
2185 (gimple_bb (SSA_NAME_DEF_STMT (vdef)),
2186 gimple_bb (info->stmt))->index);
2187 return false;
2190 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
2191 will change since last invocation of STMT.
2193 Value 0 is reserved for compile time invariants.
2194 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
2195 ought to be REG_BR_PROB_BASE / estimated_iters. */
2197 static int
2198 param_change_prob (gimple *stmt, int i)
2200 tree op = gimple_call_arg (stmt, i);
2201 basic_block bb = gimple_bb (stmt);
2203 if (TREE_CODE (op) == WITH_SIZE_EXPR)
2204 op = TREE_OPERAND (op, 0);
2206 tree base = get_base_address (op);
2208 /* Global invariants never change. */
2209 if (is_gimple_min_invariant (base))
2210 return 0;
2212 /* We would have to do non-trivial analysis to really work out what
2213 is the probability of value to change (i.e. when init statement
2214 is in a sibling loop of the call).
2216 We do an conservative estimate: when call is executed N times more often
2217 than the statement defining value, we take the frequency 1/N. */
2218 if (TREE_CODE (base) == SSA_NAME)
2220 int init_freq;
2222 if (!bb->frequency)
2223 return REG_BR_PROB_BASE;
2225 if (SSA_NAME_IS_DEFAULT_DEF (base))
2226 init_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2227 else
2228 init_freq = get_minimal_bb
2229 (gimple_bb (SSA_NAME_DEF_STMT (base)),
2230 gimple_bb (stmt))->frequency;
2232 if (!init_freq)
2233 init_freq = 1;
2234 if (init_freq < bb->frequency)
2235 return MAX (GCOV_COMPUTE_SCALE (init_freq, bb->frequency), 1);
2236 else
2237 return REG_BR_PROB_BASE;
2239 else
2241 ao_ref refd;
2242 int max;
2243 struct record_modified_bb_info info;
2244 bitmap_iterator bi;
2245 unsigned index;
2246 tree init = ctor_for_folding (base);
2248 if (init != error_mark_node)
2249 return 0;
2250 if (!bb->frequency)
2251 return REG_BR_PROB_BASE;
2252 ao_ref_init (&refd, op);
2253 info.stmt = stmt;
2254 info.bb_set = BITMAP_ALLOC (NULL);
2255 walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
2256 NULL);
2257 if (bitmap_bit_p (info.bb_set, bb->index))
2259 BITMAP_FREE (info.bb_set);
2260 return REG_BR_PROB_BASE;
2263 /* Assume that every memory is initialized at entry.
2264 TODO: Can we easilly determine if value is always defined
2265 and thus we may skip entry block? */
2266 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency)
2267 max = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency;
2268 else
2269 max = 1;
2271 EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
2272 max = MIN (max, BASIC_BLOCK_FOR_FN (cfun, index)->frequency);
2274 BITMAP_FREE (info.bb_set);
2275 if (max < bb->frequency)
2276 return MAX (GCOV_COMPUTE_SCALE (max, bb->frequency), 1);
2277 else
2278 return REG_BR_PROB_BASE;
2282 /* Find whether a basic block BB is the final block of a (half) diamond CFG
2283 sub-graph and if the predicate the condition depends on is known. If so,
2284 return true and store the pointer the predicate in *P. */
2286 static bool
2287 phi_result_unknown_predicate (struct ipa_node_params *info,
2288 inline_summary *summary, basic_block bb,
2289 struct predicate *p,
2290 vec<predicate_t> nonconstant_names)
2292 edge e;
2293 edge_iterator ei;
2294 basic_block first_bb = NULL;
2295 gimple *stmt;
2297 if (single_pred_p (bb))
2299 *p = false_predicate ();
2300 return true;
2303 FOR_EACH_EDGE (e, ei, bb->preds)
2305 if (single_succ_p (e->src))
2307 if (!single_pred_p (e->src))
2308 return false;
2309 if (!first_bb)
2310 first_bb = single_pred (e->src);
2311 else if (single_pred (e->src) != first_bb)
2312 return false;
2314 else
2316 if (!first_bb)
2317 first_bb = e->src;
2318 else if (e->src != first_bb)
2319 return false;
2323 if (!first_bb)
2324 return false;
2326 stmt = last_stmt (first_bb);
2327 if (!stmt
2328 || gimple_code (stmt) != GIMPLE_COND
2329 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
2330 return false;
2332 *p = will_be_nonconstant_expr_predicate (info, summary,
2333 gimple_cond_lhs (stmt),
2334 nonconstant_names);
2335 if (true_predicate_p (p))
2336 return false;
2337 else
2338 return true;
2341 /* Given a PHI statement in a function described by inline properties SUMMARY
2342 and *P being the predicate describing whether the selected PHI argument is
2343 known, store a predicate for the result of the PHI statement into
2344 NONCONSTANT_NAMES, if possible. */
2346 static void
2347 predicate_for_phi_result (struct inline_summary *summary, gphi *phi,
2348 struct predicate *p,
2349 vec<predicate_t> nonconstant_names)
2351 unsigned i;
2353 for (i = 0; i < gimple_phi_num_args (phi); i++)
2355 tree arg = gimple_phi_arg (phi, i)->def;
2356 if (!is_gimple_min_invariant (arg))
2358 gcc_assert (TREE_CODE (arg) == SSA_NAME);
2359 *p = or_predicates (summary->conds, p,
2360 &nonconstant_names[SSA_NAME_VERSION (arg)]);
2361 if (true_predicate_p (p))
2362 return;
2366 if (dump_file && (dump_flags & TDF_DETAILS))
2368 fprintf (dump_file, "\t\tphi predicate: ");
2369 dump_predicate (dump_file, summary->conds, p);
2371 nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
2374 /* Return predicate specifying when array index in access OP becomes non-constant. */
2376 static struct predicate
2377 array_index_predicate (inline_summary *info,
2378 vec< predicate_t> nonconstant_names, tree op)
2380 struct predicate p = false_predicate ();
2381 while (handled_component_p (op))
2383 if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
2385 if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
2386 p = or_predicates (info->conds, &p,
2387 &nonconstant_names[SSA_NAME_VERSION
2388 (TREE_OPERAND (op, 1))]);
2390 op = TREE_OPERAND (op, 0);
2392 return p;
2395 /* For a typical usage of __builtin_expect (a<b, 1), we
2396 may introduce an extra relation stmt:
2397 With the builtin, we have
2398 t1 = a <= b;
2399 t2 = (long int) t1;
2400 t3 = __builtin_expect (t2, 1);
2401 if (t3 != 0)
2402 goto ...
2403 Without the builtin, we have
2404 if (a<=b)
2405 goto...
2406 This affects the size/time estimation and may have
2407 an impact on the earlier inlining.
2408 Here find this pattern and fix it up later. */
2410 static gimple *
2411 find_foldable_builtin_expect (basic_block bb)
2413 gimple_stmt_iterator bsi;
2415 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2417 gimple *stmt = gsi_stmt (bsi);
2418 if (gimple_call_builtin_p (stmt, BUILT_IN_EXPECT)
2419 || gimple_call_internal_p (stmt, IFN_BUILTIN_EXPECT))
2421 tree var = gimple_call_lhs (stmt);
2422 tree arg = gimple_call_arg (stmt, 0);
2423 use_operand_p use_p;
2424 gimple *use_stmt;
2425 bool match = false;
2426 bool done = false;
2428 if (!var || !arg)
2429 continue;
2430 gcc_assert (TREE_CODE (var) == SSA_NAME);
2432 while (TREE_CODE (arg) == SSA_NAME)
2434 gimple *stmt_tmp = SSA_NAME_DEF_STMT (arg);
2435 if (!is_gimple_assign (stmt_tmp))
2436 break;
2437 switch (gimple_assign_rhs_code (stmt_tmp))
2439 case LT_EXPR:
2440 case LE_EXPR:
2441 case GT_EXPR:
2442 case GE_EXPR:
2443 case EQ_EXPR:
2444 case NE_EXPR:
2445 match = true;
2446 done = true;
2447 break;
2448 CASE_CONVERT:
2449 break;
2450 default:
2451 done = true;
2452 break;
2454 if (done)
2455 break;
2456 arg = gimple_assign_rhs1 (stmt_tmp);
2459 if (match && single_imm_use (var, &use_p, &use_stmt)
2460 && gimple_code (use_stmt) == GIMPLE_COND)
2461 return use_stmt;
2464 return NULL;
2467 /* Return true when the basic blocks contains only clobbers followed by RESX.
2468 Such BBs are kept around to make removal of dead stores possible with
2469 presence of EH and will be optimized out by optimize_clobbers later in the
2470 game.
2472 NEED_EH is used to recurse in case the clobber has non-EH predecestors
2473 that can be clobber only, too.. When it is false, the RESX is not necessary
2474 on the end of basic block. */
2476 static bool
2477 clobber_only_eh_bb_p (basic_block bb, bool need_eh = true)
2479 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2480 edge_iterator ei;
2481 edge e;
2483 if (need_eh)
2485 if (gsi_end_p (gsi))
2486 return false;
2487 if (gimple_code (gsi_stmt (gsi)) != GIMPLE_RESX)
2488 return false;
2489 gsi_prev (&gsi);
2491 else if (!single_succ_p (bb))
2492 return false;
2494 for (; !gsi_end_p (gsi); gsi_prev (&gsi))
2496 gimple *stmt = gsi_stmt (gsi);
2497 if (is_gimple_debug (stmt))
2498 continue;
2499 if (gimple_clobber_p (stmt))
2500 continue;
2501 if (gimple_code (stmt) == GIMPLE_LABEL)
2502 break;
2503 return false;
2506 /* See if all predecestors are either throws or clobber only BBs. */
2507 FOR_EACH_EDGE (e, ei, bb->preds)
2508 if (!(e->flags & EDGE_EH)
2509 && !clobber_only_eh_bb_p (e->src, false))
2510 return false;
2512 return true;
2515 /* Return true if STMT compute a floating point expression that may be affected
2516 by -ffast-math and similar flags. */
2518 static bool
2519 fp_expression_p (gimple *stmt)
2521 ssa_op_iter i;
2522 tree op;
2524 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF|SSA_OP_USE)
2525 if (FLOAT_TYPE_P (TREE_TYPE (op)))
2526 return true;
2527 return false;
2530 /* Compute function body size parameters for NODE.
2531 When EARLY is true, we compute only simple summaries without
2532 non-trivial predicates to drive the early inliner. */
2534 static void
2535 estimate_function_body_sizes (struct cgraph_node *node, bool early)
2537 gcov_type time = 0;
2538 /* Estimate static overhead for function prologue/epilogue and alignment. */
2539 int size = 2;
2540 /* Benefits are scaled by probability of elimination that is in range
2541 <0,2>. */
2542 basic_block bb;
2543 struct function *my_function = DECL_STRUCT_FUNCTION (node->decl);
2544 int freq;
2545 struct inline_summary *info = inline_summaries->get (node);
2546 struct predicate bb_predicate;
2547 struct ipa_func_body_info fbi;
2548 vec<predicate_t> nonconstant_names = vNULL;
2549 int nblocks, n;
2550 int *order;
2551 predicate array_index = true_predicate ();
2552 gimple *fix_builtin_expect_stmt;
2554 gcc_assert (my_function && my_function->cfg);
2555 gcc_assert (cfun == my_function);
2557 memset(&fbi, 0, sizeof(fbi));
2558 info->conds = NULL;
2559 info->entry = NULL;
2561 /* When optimizing and analyzing for IPA inliner, initialize loop optimizer
2562 so we can produce proper inline hints.
2564 When optimizing and analyzing for early inliner, initialize node params
2565 so we can produce correct BB predicates. */
2567 if (opt_for_fn (node->decl, optimize))
2569 calculate_dominance_info (CDI_DOMINATORS);
2570 if (!early)
2571 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2572 else
2574 ipa_check_create_node_params ();
2575 ipa_initialize_node_params (node);
2578 if (ipa_node_params_sum)
2580 fbi.node = node;
2581 fbi.info = IPA_NODE_REF (node);
2582 fbi.bb_infos = vNULL;
2583 fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
2584 fbi.param_count = count_formal_params(node->decl);
2585 nonconstant_names.safe_grow_cleared
2586 (SSANAMES (my_function)->length ());
2590 if (dump_file)
2591 fprintf (dump_file, "\nAnalyzing function body size: %s\n",
2592 node->name ());
2594 /* When we run into maximal number of entries, we assign everything to the
2595 constant truth case. Be sure to have it in list. */
2596 bb_predicate = true_predicate ();
2597 account_size_time (info, 0, 0, &bb_predicate);
2599 bb_predicate = not_inlined_predicate ();
2600 account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
2602 if (fbi.info)
2603 compute_bb_predicates (&fbi, node, info);
2604 order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
2605 nblocks = pre_and_rev_post_order_compute (NULL, order, false);
2606 for (n = 0; n < nblocks; n++)
2608 bb = BASIC_BLOCK_FOR_FN (cfun, order[n]);
2609 freq = compute_call_stmt_bb_frequency (node->decl, bb);
2610 if (clobber_only_eh_bb_p (bb))
2612 if (dump_file && (dump_flags & TDF_DETAILS))
2613 fprintf (dump_file, "\n Ignoring BB %i;"
2614 " it will be optimized away by cleanup_clobbers\n",
2615 bb->index);
2616 continue;
2619 /* TODO: Obviously predicates can be propagated down across CFG. */
2620 if (fbi.info)
2622 if (bb->aux)
2623 bb_predicate = *(struct predicate *) bb->aux;
2624 else
2625 bb_predicate = false_predicate ();
2627 else
2628 bb_predicate = true_predicate ();
2630 if (dump_file && (dump_flags & TDF_DETAILS))
2632 fprintf (dump_file, "\n BB %i predicate:", bb->index);
2633 dump_predicate (dump_file, info->conds, &bb_predicate);
2636 if (fbi.info && nonconstant_names.exists ())
2638 struct predicate phi_predicate;
2639 bool first_phi = true;
2641 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi);
2642 gsi_next (&bsi))
2644 if (first_phi
2645 && !phi_result_unknown_predicate (fbi.info, info, bb,
2646 &phi_predicate,
2647 nonconstant_names))
2648 break;
2649 first_phi = false;
2650 if (dump_file && (dump_flags & TDF_DETAILS))
2652 fprintf (dump_file, " ");
2653 print_gimple_stmt (dump_file, gsi_stmt (bsi), 0, 0);
2655 predicate_for_phi_result (info, bsi.phi (), &phi_predicate,
2656 nonconstant_names);
2660 fix_builtin_expect_stmt = find_foldable_builtin_expect (bb);
2662 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi);
2663 gsi_next (&bsi))
2665 gimple *stmt = gsi_stmt (bsi);
2666 int this_size = estimate_num_insns (stmt, &eni_size_weights);
2667 int this_time = estimate_num_insns (stmt, &eni_time_weights);
2668 int prob;
2669 struct predicate will_be_nonconstant;
2671 /* This relation stmt should be folded after we remove
2672 buildin_expect call. Adjust the cost here. */
2673 if (stmt == fix_builtin_expect_stmt)
2675 this_size--;
2676 this_time--;
2679 if (dump_file && (dump_flags & TDF_DETAILS))
2681 fprintf (dump_file, " ");
2682 print_gimple_stmt (dump_file, stmt, 0, 0);
2683 fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2684 ((double) freq) / CGRAPH_FREQ_BASE, this_size,
2685 this_time);
2688 if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
2690 struct predicate this_array_index;
2691 this_array_index =
2692 array_index_predicate (info, nonconstant_names,
2693 gimple_assign_rhs1 (stmt));
2694 if (!false_predicate_p (&this_array_index))
2695 array_index =
2696 and_predicates (info->conds, &array_index,
2697 &this_array_index);
2699 if (gimple_store_p (stmt) && nonconstant_names.exists ())
2701 struct predicate this_array_index;
2702 this_array_index =
2703 array_index_predicate (info, nonconstant_names,
2704 gimple_get_lhs (stmt));
2705 if (!false_predicate_p (&this_array_index))
2706 array_index =
2707 and_predicates (info->conds, &array_index,
2708 &this_array_index);
2712 if (is_gimple_call (stmt)
2713 && !gimple_call_internal_p (stmt))
2715 struct cgraph_edge *edge = node->get_edge (stmt);
2716 struct inline_edge_summary *es = inline_edge_summary (edge);
2718 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2719 resolved as constant. We however don't want to optimize
2720 out the cgraph edges. */
2721 if (nonconstant_names.exists ()
2722 && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
2723 && gimple_call_lhs (stmt)
2724 && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
2726 struct predicate false_p = false_predicate ();
2727 nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
2728 = false_p;
2730 if (ipa_node_params_sum)
2732 int count = gimple_call_num_args (stmt);
2733 int i;
2735 if (count)
2736 es->param.safe_grow_cleared (count);
2737 for (i = 0; i < count; i++)
2739 int prob = param_change_prob (stmt, i);
2740 gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
2741 es->param[i].change_prob = prob;
2745 es->call_stmt_size = this_size;
2746 es->call_stmt_time = this_time;
2747 es->loop_depth = bb_loop_depth (bb);
2748 edge_set_predicate (edge, &bb_predicate);
2751 /* TODO: When conditional jump or swithc is known to be constant, but
2752 we did not translate it into the predicates, we really can account
2753 just maximum of the possible paths. */
2754 if (fbi.info)
2755 will_be_nonconstant
2756 = will_be_nonconstant_predicate (&fbi, info,
2757 stmt, nonconstant_names);
2758 if (this_time || this_size)
2760 struct predicate p;
2762 this_time *= freq;
2764 prob = eliminated_by_inlining_prob (stmt);
2765 if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
2766 fprintf (dump_file,
2767 "\t\t50%% will be eliminated by inlining\n");
2768 if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
2769 fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
2771 if (fbi.info)
2772 p = and_predicates (info->conds, &bb_predicate,
2773 &will_be_nonconstant);
2774 else
2775 p = true_predicate ();
2777 if (!false_predicate_p (&p)
2778 || (is_gimple_call (stmt)
2779 && !false_predicate_p (&bb_predicate)))
2781 time += this_time;
2782 size += this_size;
2783 if (time > MAX_TIME * INLINE_TIME_SCALE)
2784 time = MAX_TIME * INLINE_TIME_SCALE;
2787 /* We account everything but the calls. Calls have their own
2788 size/time info attached to cgraph edges. This is necessary
2789 in order to make the cost disappear after inlining. */
2790 if (!is_gimple_call (stmt))
2792 if (prob)
2794 struct predicate ip = not_inlined_predicate ();
2795 ip = and_predicates (info->conds, &ip, &p);
2796 account_size_time (info, this_size * prob,
2797 this_time * prob, &ip);
2799 if (prob != 2)
2800 account_size_time (info, this_size * (2 - prob),
2801 this_time * (2 - prob), &p);
2804 if (!info->fp_expressions && fp_expression_p (stmt))
2806 info->fp_expressions = true;
2807 if (dump_file)
2808 fprintf (dump_file, " fp_expression set\n");
2811 gcc_assert (time >= 0);
2812 gcc_assert (size >= 0);
2816 set_hint_predicate (&inline_summaries->get (node)->array_index, array_index);
2817 time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
2818 if (time > MAX_TIME)
2819 time = MAX_TIME;
2820 free (order);
2822 if (nonconstant_names.exists () && !early)
2824 struct loop *loop;
2825 predicate loop_iterations = true_predicate ();
2826 predicate loop_stride = true_predicate ();
2828 if (dump_file && (dump_flags & TDF_DETAILS))
2829 flow_loops_dump (dump_file, NULL, 0);
2830 scev_initialize ();
2831 FOR_EACH_LOOP (loop, 0)
2833 vec<edge> exits;
2834 edge ex;
2835 unsigned int j;
2836 struct tree_niter_desc niter_desc;
2837 bb_predicate = *(struct predicate *) loop->header->aux;
2839 exits = get_loop_exit_edges (loop);
2840 FOR_EACH_VEC_ELT (exits, j, ex)
2841 if (number_of_iterations_exit (loop, ex, &niter_desc, false)
2842 && !is_gimple_min_invariant (niter_desc.niter))
2844 predicate will_be_nonconstant
2845 = will_be_nonconstant_expr_predicate (fbi.info, info,
2846 niter_desc.niter,
2847 nonconstant_names);
2848 if (!true_predicate_p (&will_be_nonconstant))
2849 will_be_nonconstant = and_predicates (info->conds,
2850 &bb_predicate,
2851 &will_be_nonconstant);
2852 if (!true_predicate_p (&will_be_nonconstant)
2853 && !false_predicate_p (&will_be_nonconstant))
2854 /* This is slightly inprecise. We may want to represent each
2855 loop with independent predicate. */
2856 loop_iterations =
2857 and_predicates (info->conds, &loop_iterations,
2858 &will_be_nonconstant);
2860 exits.release ();
2863 /* To avoid quadratic behavior we analyze stride predicates only
2864 with respect to the containing loop. Thus we simply iterate
2865 over all defs in the outermost loop body. */
2866 for (loop = loops_for_fn (cfun)->tree_root->inner;
2867 loop != NULL; loop = loop->next)
2869 basic_block *body = get_loop_body (loop);
2870 for (unsigned i = 0; i < loop->num_nodes; i++)
2872 gimple_stmt_iterator gsi;
2873 bb_predicate = *(struct predicate *) body[i]->aux;
2874 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
2875 gsi_next (&gsi))
2877 gimple *stmt = gsi_stmt (gsi);
2879 if (!is_gimple_assign (stmt))
2880 continue;
2882 tree def = gimple_assign_lhs (stmt);
2883 if (TREE_CODE (def) != SSA_NAME)
2884 continue;
2886 affine_iv iv;
2887 if (!simple_iv (loop_containing_stmt (stmt),
2888 loop_containing_stmt (stmt),
2889 def, &iv, true)
2890 || is_gimple_min_invariant (iv.step))
2891 continue;
2893 predicate will_be_nonconstant
2894 = will_be_nonconstant_expr_predicate (fbi.info, info,
2895 iv.step,
2896 nonconstant_names);
2897 if (!true_predicate_p (&will_be_nonconstant))
2898 will_be_nonconstant
2899 = and_predicates (info->conds, &bb_predicate,
2900 &will_be_nonconstant);
2901 if (!true_predicate_p (&will_be_nonconstant)
2902 && !false_predicate_p (&will_be_nonconstant))
2903 /* This is slightly inprecise. We may want to represent
2904 each loop with independent predicate. */
2905 loop_stride = and_predicates (info->conds, &loop_stride,
2906 &will_be_nonconstant);
2909 free (body);
2911 set_hint_predicate (&inline_summaries->get (node)->loop_iterations,
2912 loop_iterations);
2913 set_hint_predicate (&inline_summaries->get (node)->loop_stride,
2914 loop_stride);
2915 scev_finalize ();
2917 FOR_ALL_BB_FN (bb, my_function)
2919 edge e;
2920 edge_iterator ei;
2922 if (bb->aux)
2923 edge_predicate_pool.remove ((predicate *)bb->aux);
2924 bb->aux = NULL;
2925 FOR_EACH_EDGE (e, ei, bb->succs)
2927 if (e->aux)
2928 edge_predicate_pool.remove ((predicate *) e->aux);
2929 e->aux = NULL;
2932 inline_summaries->get (node)->self_time = time;
2933 inline_summaries->get (node)->self_size = size;
2934 nonconstant_names.release ();
2935 ipa_release_body_info (&fbi);
2936 if (opt_for_fn (node->decl, optimize))
2938 if (!early)
2939 loop_optimizer_finalize ();
2940 else if (!ipa_edge_args_vector)
2941 ipa_free_all_node_params ();
2942 free_dominance_info (CDI_DOMINATORS);
2944 if (dump_file)
2946 fprintf (dump_file, "\n");
2947 dump_inline_summary (dump_file, node);
2952 /* Compute parameters of functions used by inliner.
2953 EARLY is true when we compute parameters for the early inliner */
2955 void
2956 compute_inline_parameters (struct cgraph_node *node, bool early)
2958 HOST_WIDE_INT self_stack_size;
2959 struct cgraph_edge *e;
2960 struct inline_summary *info;
2962 gcc_assert (!node->global.inlined_to);
2964 inline_summary_alloc ();
2966 info = inline_summaries->get (node);
2967 reset_inline_summary (node, info);
2969 /* Estimate the stack size for the function if we're optimizing. */
2970 self_stack_size = optimize && !node->thunk.thunk_p
2971 ? estimated_stack_frame_size (node) : 0;
2972 info->estimated_self_stack_size = self_stack_size;
2973 info->estimated_stack_size = self_stack_size;
2974 info->stack_frame_offset = 0;
2976 if (node->thunk.thunk_p)
2978 struct inline_edge_summary *es = inline_edge_summary (node->callees);
2979 struct predicate t = true_predicate ();
2981 node->local.can_change_signature = false;
2982 es->call_stmt_size = eni_size_weights.call_cost;
2983 es->call_stmt_time = eni_time_weights.call_cost;
2984 account_size_time (info, INLINE_SIZE_SCALE * 2,
2985 INLINE_TIME_SCALE * 2, &t);
2986 t = not_inlined_predicate ();
2987 account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &t);
2988 inline_update_overall_summary (node);
2989 info->self_size = info->size;
2990 info->self_time = info->time;
2991 /* We can not inline instrumentation clones. */
2992 if (node->thunk.add_pointer_bounds_args)
2994 info->inlinable = false;
2995 node->callees->inline_failed = CIF_CHKP;
2997 else
2998 info->inlinable = true;
3000 else
3002 /* Even is_gimple_min_invariant rely on current_function_decl. */
3003 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3005 /* Can this function be inlined at all? */
3006 if (!opt_for_fn (node->decl, optimize)
3007 && !lookup_attribute ("always_inline",
3008 DECL_ATTRIBUTES (node->decl)))
3009 info->inlinable = false;
3010 else
3011 info->inlinable = tree_inlinable_function_p (node->decl);
3013 info->contains_cilk_spawn = fn_contains_cilk_spawn_p (cfun);
3015 /* Type attributes can use parameter indices to describe them. */
3016 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
3017 node->local.can_change_signature = false;
3018 else
3020 /* Otherwise, inlinable functions always can change signature. */
3021 if (info->inlinable)
3022 node->local.can_change_signature = true;
3023 else
3025 /* Functions calling builtin_apply can not change signature. */
3026 for (e = node->callees; e; e = e->next_callee)
3028 tree cdecl = e->callee->decl;
3029 if (DECL_BUILT_IN (cdecl)
3030 && DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
3031 && (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
3032 || DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
3033 break;
3035 node->local.can_change_signature = !e;
3038 /* Functions called by instrumentation thunk can't change signature
3039 because instrumentation thunk modification is not supported. */
3040 if (node->local.can_change_signature)
3041 for (e = node->callers; e; e = e->next_caller)
3042 if (e->caller->thunk.thunk_p
3043 && e->caller->thunk.add_pointer_bounds_args)
3045 node->local.can_change_signature = false;
3046 break;
3048 estimate_function_body_sizes (node, early);
3049 pop_cfun ();
3051 for (e = node->callees; e; e = e->next_callee)
3052 if (e->callee->comdat_local_p ())
3053 break;
3054 node->calls_comdat_local = (e != NULL);
3056 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
3057 info->time = info->self_time;
3058 info->size = info->self_size;
3059 info->stack_frame_offset = 0;
3060 info->estimated_stack_size = info->estimated_self_stack_size;
3061 if (flag_checking)
3063 inline_update_overall_summary (node);
3064 gcc_assert (info->time == info->self_time
3065 && info->size == info->self_size);
3070 /* Compute parameters of functions used by inliner using
3071 current_function_decl. */
3073 static unsigned int
3074 compute_inline_parameters_for_current (void)
3076 compute_inline_parameters (cgraph_node::get (current_function_decl), true);
3077 return 0;
3080 namespace {
3082 const pass_data pass_data_inline_parameters =
3084 GIMPLE_PASS, /* type */
3085 "inline_param", /* name */
3086 OPTGROUP_INLINE, /* optinfo_flags */
3087 TV_INLINE_PARAMETERS, /* tv_id */
3088 0, /* properties_required */
3089 0, /* properties_provided */
3090 0, /* properties_destroyed */
3091 0, /* todo_flags_start */
3092 0, /* todo_flags_finish */
3095 class pass_inline_parameters : public gimple_opt_pass
3097 public:
3098 pass_inline_parameters (gcc::context *ctxt)
3099 : gimple_opt_pass (pass_data_inline_parameters, ctxt)
3102 /* opt_pass methods: */
3103 opt_pass * clone () { return new pass_inline_parameters (m_ctxt); }
3104 virtual unsigned int execute (function *)
3106 return compute_inline_parameters_for_current ();
3109 }; // class pass_inline_parameters
3111 } // anon namespace
3113 gimple_opt_pass *
3114 make_pass_inline_parameters (gcc::context *ctxt)
3116 return new pass_inline_parameters (ctxt);
3120 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS,
3121 KNOWN_CONTEXTS and KNOWN_AGGS. */
3123 static bool
3124 estimate_edge_devirt_benefit (struct cgraph_edge *ie,
3125 int *size, int *time,
3126 vec<tree> known_vals,
3127 vec<ipa_polymorphic_call_context> known_contexts,
3128 vec<ipa_agg_jump_function_p> known_aggs)
3130 tree target;
3131 struct cgraph_node *callee;
3132 struct inline_summary *isummary;
3133 enum availability avail;
3134 bool speculative;
3136 if (!known_vals.exists () && !known_contexts.exists ())
3137 return false;
3138 if (!opt_for_fn (ie->caller->decl, flag_indirect_inlining))
3139 return false;
3141 target = ipa_get_indirect_edge_target (ie, known_vals, known_contexts,
3142 known_aggs, &speculative);
3143 if (!target || speculative)
3144 return false;
3146 /* Account for difference in cost between indirect and direct calls. */
3147 *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
3148 *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
3149 gcc_checking_assert (*time >= 0);
3150 gcc_checking_assert (*size >= 0);
3152 callee = cgraph_node::get (target);
3153 if (!callee || !callee->definition)
3154 return false;
3155 callee = callee->function_symbol (&avail);
3156 if (avail < AVAIL_AVAILABLE)
3157 return false;
3158 isummary = inline_summaries->get (callee);
3159 return isummary->inlinable;
3162 /* Increase SIZE, MIN_SIZE (if non-NULL) and TIME for size and time needed to
3163 handle edge E with probability PROB.
3164 Set HINTS if edge may be devirtualized.
3165 KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS describe context of the call
3166 site. */
3168 static inline void
3169 estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *min_size,
3170 int *time,
3171 int prob,
3172 vec<tree> known_vals,
3173 vec<ipa_polymorphic_call_context> known_contexts,
3174 vec<ipa_agg_jump_function_p> known_aggs,
3175 inline_hints *hints)
3177 struct inline_edge_summary *es = inline_edge_summary (e);
3178 int call_size = es->call_stmt_size;
3179 int call_time = es->call_stmt_time;
3180 int cur_size;
3181 if (!e->callee
3182 && estimate_edge_devirt_benefit (e, &call_size, &call_time,
3183 known_vals, known_contexts, known_aggs)
3184 && hints && e->maybe_hot_p ())
3185 *hints |= INLINE_HINT_indirect_call;
3186 cur_size = call_size * INLINE_SIZE_SCALE;
3187 *size += cur_size;
3188 if (min_size)
3189 *min_size += cur_size;
3190 *time += apply_probability ((gcov_type) call_time, prob)
3191 * e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE);
3192 if (*time > MAX_TIME * INLINE_TIME_SCALE)
3193 *time = MAX_TIME * INLINE_TIME_SCALE;
3198 /* Increase SIZE, MIN_SIZE and TIME for size and time needed to handle all
3199 calls in NODE. POSSIBLE_TRUTHS, KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
3200 describe context of the call site. */
3202 static void
3203 estimate_calls_size_and_time (struct cgraph_node *node, int *size,
3204 int *min_size, int *time,
3205 inline_hints *hints,
3206 clause_t possible_truths,
3207 vec<tree> known_vals,
3208 vec<ipa_polymorphic_call_context> known_contexts,
3209 vec<ipa_agg_jump_function_p> known_aggs)
3211 struct cgraph_edge *e;
3212 for (e = node->callees; e; e = e->next_callee)
3214 if (inline_edge_summary_vec.length () <= (unsigned) e->uid)
3215 continue;
3217 struct inline_edge_summary *es = inline_edge_summary (e);
3219 /* Do not care about zero sized builtins. */
3220 if (e->inline_failed && !es->call_stmt_size)
3222 gcc_checking_assert (!es->call_stmt_time);
3223 continue;
3225 if (!es->predicate
3226 || evaluate_predicate (es->predicate, possible_truths))
3228 if (e->inline_failed)
3230 /* Predicates of calls shall not use NOT_CHANGED codes,
3231 sowe do not need to compute probabilities. */
3232 estimate_edge_size_and_time (e, size,
3233 es->predicate ? NULL : min_size,
3234 time, REG_BR_PROB_BASE,
3235 known_vals, known_contexts,
3236 known_aggs, hints);
3238 else
3239 estimate_calls_size_and_time (e->callee, size, min_size, time,
3240 hints,
3241 possible_truths,
3242 known_vals, known_contexts,
3243 known_aggs);
3246 for (e = node->indirect_calls; e; e = e->next_callee)
3248 if (inline_edge_summary_vec.length () <= (unsigned) e->uid)
3249 continue;
3251 struct inline_edge_summary *es = inline_edge_summary (e);
3252 if (!es->predicate
3253 || evaluate_predicate (es->predicate, possible_truths))
3254 estimate_edge_size_and_time (e, size,
3255 es->predicate ? NULL : min_size,
3256 time, REG_BR_PROB_BASE,
3257 known_vals, known_contexts, known_aggs,
3258 hints);
3263 /* Estimate size and time needed to execute NODE assuming
3264 POSSIBLE_TRUTHS clause, and KNOWN_VALS, KNOWN_AGGS and KNOWN_CONTEXTS
3265 information about NODE's arguments. If non-NULL use also probability
3266 information present in INLINE_PARAM_SUMMARY vector.
3267 Additionally detemine hints determined by the context. Finally compute
3268 minimal size needed for the call that is independent on the call context and
3269 can be used for fast estimates. Return the values in RET_SIZE,
3270 RET_MIN_SIZE, RET_TIME and RET_HINTS. */
3272 static void
3273 estimate_node_size_and_time (struct cgraph_node *node,
3274 clause_t possible_truths,
3275 vec<tree> known_vals,
3276 vec<ipa_polymorphic_call_context> known_contexts,
3277 vec<ipa_agg_jump_function_p> known_aggs,
3278 int *ret_size, int *ret_min_size, int *ret_time,
3279 inline_hints *ret_hints,
3280 vec<inline_param_summary>
3281 inline_param_summary)
3283 struct inline_summary *info = inline_summaries->get (node);
3284 size_time_entry *e;
3285 int size = 0;
3286 int time = 0;
3287 int min_size = 0;
3288 inline_hints hints = 0;
3289 int i;
3291 if (dump_file && (dump_flags & TDF_DETAILS))
3293 bool found = false;
3294 fprintf (dump_file, " Estimating body: %s/%i\n"
3295 " Known to be false: ", node->name (),
3296 node->order);
3298 for (i = predicate_not_inlined_condition;
3299 i < (predicate_first_dynamic_condition
3300 + (int) vec_safe_length (info->conds)); i++)
3301 if (!(possible_truths & (1 << i)))
3303 if (found)
3304 fprintf (dump_file, ", ");
3305 found = true;
3306 dump_condition (dump_file, info->conds, i);
3310 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3311 if (evaluate_predicate (&e->predicate, possible_truths))
3313 size += e->size;
3314 gcc_checking_assert (e->time >= 0);
3315 gcc_checking_assert (time >= 0);
3316 if (!inline_param_summary.exists ())
3317 time += e->time;
3318 else
3320 int prob = predicate_probability (info->conds,
3321 &e->predicate,
3322 possible_truths,
3323 inline_param_summary);
3324 gcc_checking_assert (prob >= 0);
3325 gcc_checking_assert (prob <= REG_BR_PROB_BASE);
3326 time += apply_probability ((gcov_type) e->time, prob);
3328 if (time > MAX_TIME * INLINE_TIME_SCALE)
3329 time = MAX_TIME * INLINE_TIME_SCALE;
3330 gcc_checking_assert (time >= 0);
3333 gcc_checking_assert (true_predicate_p (&(*info->entry)[0].predicate));
3334 min_size = (*info->entry)[0].size;
3335 gcc_checking_assert (size >= 0);
3336 gcc_checking_assert (time >= 0);
3338 if (info->loop_iterations
3339 && !evaluate_predicate (info->loop_iterations, possible_truths))
3340 hints |= INLINE_HINT_loop_iterations;
3341 if (info->loop_stride
3342 && !evaluate_predicate (info->loop_stride, possible_truths))
3343 hints |= INLINE_HINT_loop_stride;
3344 if (info->array_index
3345 && !evaluate_predicate (info->array_index, possible_truths))
3346 hints |= INLINE_HINT_array_index;
3347 if (info->scc_no)
3348 hints |= INLINE_HINT_in_scc;
3349 if (DECL_DECLARED_INLINE_P (node->decl))
3350 hints |= INLINE_HINT_declared_inline;
3352 estimate_calls_size_and_time (node, &size, &min_size, &time, &hints, possible_truths,
3353 known_vals, known_contexts, known_aggs);
3354 gcc_checking_assert (size >= 0);
3355 gcc_checking_assert (time >= 0);
3356 time = RDIV (time, INLINE_TIME_SCALE);
3357 size = RDIV (size, INLINE_SIZE_SCALE);
3358 min_size = RDIV (min_size, INLINE_SIZE_SCALE);
3360 if (dump_file && (dump_flags & TDF_DETAILS))
3361 fprintf (dump_file, "\n size:%i time:%i\n", (int) size, (int) time);
3362 if (ret_time)
3363 *ret_time = time;
3364 if (ret_size)
3365 *ret_size = size;
3366 if (ret_min_size)
3367 *ret_min_size = min_size;
3368 if (ret_hints)
3369 *ret_hints = hints;
3370 return;
3374 /* Estimate size and time needed to execute callee of EDGE assuming that
3375 parameters known to be constant at caller of EDGE are propagated.
3376 KNOWN_VALS and KNOWN_CONTEXTS are vectors of assumed known constant values
3377 and types for parameters. */
3379 void
3380 estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
3381 vec<tree> known_vals,
3382 vec<ipa_polymorphic_call_context>
3383 known_contexts,
3384 vec<ipa_agg_jump_function_p> known_aggs,
3385 int *ret_size, int *ret_time,
3386 inline_hints *hints)
3388 clause_t clause;
3390 clause = evaluate_conditions_for_known_args (node, false, known_vals,
3391 known_aggs);
3392 estimate_node_size_and_time (node, clause, known_vals, known_contexts,
3393 known_aggs, ret_size, NULL, ret_time, hints, vNULL);
3396 /* Translate all conditions from callee representation into caller
3397 representation and symbolically evaluate predicate P into new predicate.
3399 INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
3400 is summary of function predicate P is from. OPERAND_MAP is array giving
3401 callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
3402 callee conditions that may be true in caller context. TOPLEV_PREDICATE is
3403 predicate under which callee is executed. OFFSET_MAP is an array of of
3404 offsets that need to be added to conditions, negative offset means that
3405 conditions relying on values passed by reference have to be discarded
3406 because they might not be preserved (and should be considered offset zero
3407 for other purposes). */
3409 static struct predicate
3410 remap_predicate (struct inline_summary *info,
3411 struct inline_summary *callee_info,
3412 struct predicate *p,
3413 vec<int> operand_map,
3414 vec<int> offset_map,
3415 clause_t possible_truths, struct predicate *toplev_predicate)
3417 int i;
3418 struct predicate out = true_predicate ();
3420 /* True predicate is easy. */
3421 if (true_predicate_p (p))
3422 return *toplev_predicate;
3423 for (i = 0; p->clause[i]; i++)
3425 clause_t clause = p->clause[i];
3426 int cond;
3427 struct predicate clause_predicate = false_predicate ();
3429 gcc_assert (i < MAX_CLAUSES);
3431 for (cond = 0; cond < NUM_CONDITIONS; cond++)
3432 /* Do we have condition we can't disprove? */
3433 if (clause & possible_truths & (1 << cond))
3435 struct predicate cond_predicate;
3436 /* Work out if the condition can translate to predicate in the
3437 inlined function. */
3438 if (cond >= predicate_first_dynamic_condition)
3440 struct condition *c;
3442 c = &(*callee_info->conds)[cond
3444 predicate_first_dynamic_condition];
3445 /* See if we can remap condition operand to caller's operand.
3446 Otherwise give up. */
3447 if (!operand_map.exists ()
3448 || (int) operand_map.length () <= c->operand_num
3449 || operand_map[c->operand_num] == -1
3450 /* TODO: For non-aggregate conditions, adding an offset is
3451 basically an arithmetic jump function processing which
3452 we should support in future. */
3453 || ((!c->agg_contents || !c->by_ref)
3454 && offset_map[c->operand_num] > 0)
3455 || (c->agg_contents && c->by_ref
3456 && offset_map[c->operand_num] < 0))
3457 cond_predicate = true_predicate ();
3458 else
3460 struct agg_position_info ap;
3461 HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
3462 if (offset_delta < 0)
3464 gcc_checking_assert (!c->agg_contents || !c->by_ref);
3465 offset_delta = 0;
3467 gcc_assert (!c->agg_contents
3468 || c->by_ref || offset_delta == 0);
3469 ap.offset = c->offset + offset_delta;
3470 ap.agg_contents = c->agg_contents;
3471 ap.by_ref = c->by_ref;
3472 cond_predicate = add_condition (info,
3473 operand_map[c->operand_num],
3474 c->size, &ap, c->code,
3475 c->val);
3478 /* Fixed conditions remains same, construct single
3479 condition predicate. */
3480 else
3482 cond_predicate.clause[0] = 1 << cond;
3483 cond_predicate.clause[1] = 0;
3485 clause_predicate = or_predicates (info->conds, &clause_predicate,
3486 &cond_predicate);
3488 out = and_predicates (info->conds, &out, &clause_predicate);
3490 return and_predicates (info->conds, &out, toplev_predicate);
3494 /* Update summary information of inline clones after inlining.
3495 Compute peak stack usage. */
3497 static void
3498 inline_update_callee_summaries (struct cgraph_node *node, int depth)
3500 struct cgraph_edge *e;
3501 struct inline_summary *callee_info = inline_summaries->get (node);
3502 struct inline_summary *caller_info = inline_summaries->get (node->callers->caller);
3503 HOST_WIDE_INT peak;
3505 callee_info->stack_frame_offset
3506 = caller_info->stack_frame_offset
3507 + caller_info->estimated_self_stack_size;
3508 peak = callee_info->stack_frame_offset
3509 + callee_info->estimated_self_stack_size;
3510 if (inline_summaries->get (node->global.inlined_to)->estimated_stack_size < peak)
3511 inline_summaries->get (node->global.inlined_to)->estimated_stack_size = peak;
3512 ipa_propagate_frequency (node);
3513 for (e = node->callees; e; e = e->next_callee)
3515 if (!e->inline_failed)
3516 inline_update_callee_summaries (e->callee, depth);
3517 inline_edge_summary (e)->loop_depth += depth;
3519 for (e = node->indirect_calls; e; e = e->next_callee)
3520 inline_edge_summary (e)->loop_depth += depth;
3523 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
3524 When functoin A is inlined in B and A calls C with parameter that
3525 changes with probability PROB1 and C is known to be passthroug
3526 of argument if B that change with probability PROB2, the probability
3527 of change is now PROB1*PROB2. */
3529 static void
3530 remap_edge_change_prob (struct cgraph_edge *inlined_edge,
3531 struct cgraph_edge *edge)
3533 if (ipa_node_params_sum)
3535 int i;
3536 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3537 struct inline_edge_summary *es = inline_edge_summary (edge);
3538 struct inline_edge_summary *inlined_es
3539 = inline_edge_summary (inlined_edge);
3541 for (i = 0; i < ipa_get_cs_argument_count (args); i++)
3543 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3544 if (jfunc->type == IPA_JF_PASS_THROUGH
3545 || jfunc->type == IPA_JF_ANCESTOR)
3547 int id = jfunc->type == IPA_JF_PASS_THROUGH
3548 ? ipa_get_jf_pass_through_formal_id (jfunc)
3549 : ipa_get_jf_ancestor_formal_id (jfunc);
3550 if (id < (int) inlined_es->param.length ())
3552 int prob1 = es->param[i].change_prob;
3553 int prob2 = inlined_es->param[id].change_prob;
3554 int prob = combine_probabilities (prob1, prob2);
3556 if (prob1 && prob2 && !prob)
3557 prob = 1;
3559 es->param[i].change_prob = prob;
3566 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
3568 Remap predicates of callees of NODE. Rest of arguments match
3569 remap_predicate.
3571 Also update change probabilities. */
3573 static void
3574 remap_edge_summaries (struct cgraph_edge *inlined_edge,
3575 struct cgraph_node *node,
3576 struct inline_summary *info,
3577 struct inline_summary *callee_info,
3578 vec<int> operand_map,
3579 vec<int> offset_map,
3580 clause_t possible_truths,
3581 struct predicate *toplev_predicate)
3583 struct cgraph_edge *e, *next;
3584 for (e = node->callees; e; e = next)
3586 struct inline_edge_summary *es = inline_edge_summary (e);
3587 struct predicate p;
3588 next = e->next_callee;
3590 if (e->inline_failed)
3592 remap_edge_change_prob (inlined_edge, e);
3594 if (es->predicate)
3596 p = remap_predicate (info, callee_info,
3597 es->predicate, operand_map, offset_map,
3598 possible_truths, toplev_predicate);
3599 edge_set_predicate (e, &p);
3601 else
3602 edge_set_predicate (e, toplev_predicate);
3604 else
3605 remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
3606 operand_map, offset_map, possible_truths,
3607 toplev_predicate);
3609 for (e = node->indirect_calls; e; e = next)
3611 struct inline_edge_summary *es = inline_edge_summary (e);
3612 struct predicate p;
3613 next = e->next_callee;
3615 remap_edge_change_prob (inlined_edge, e);
3616 if (es->predicate)
3618 p = remap_predicate (info, callee_info,
3619 es->predicate, operand_map, offset_map,
3620 possible_truths, toplev_predicate);
3621 edge_set_predicate (e, &p);
3623 else
3624 edge_set_predicate (e, toplev_predicate);
3628 /* Same as remap_predicate, but set result into hint *HINT. */
3630 static void
3631 remap_hint_predicate (struct inline_summary *info,
3632 struct inline_summary *callee_info,
3633 struct predicate **hint,
3634 vec<int> operand_map,
3635 vec<int> offset_map,
3636 clause_t possible_truths,
3637 struct predicate *toplev_predicate)
3639 predicate p;
3641 if (!*hint)
3642 return;
3643 p = remap_predicate (info, callee_info,
3644 *hint,
3645 operand_map, offset_map,
3646 possible_truths, toplev_predicate);
3647 if (!false_predicate_p (&p) && !true_predicate_p (&p))
3649 if (!*hint)
3650 set_hint_predicate (hint, p);
3651 else
3652 **hint = and_predicates (info->conds, *hint, &p);
3656 /* We inlined EDGE. Update summary of the function we inlined into. */
3658 void
3659 inline_merge_summary (struct cgraph_edge *edge)
3661 struct inline_summary *callee_info = inline_summaries->get (edge->callee);
3662 struct cgraph_node *to = (edge->caller->global.inlined_to
3663 ? edge->caller->global.inlined_to : edge->caller);
3664 struct inline_summary *info = inline_summaries->get (to);
3665 clause_t clause = 0; /* not_inline is known to be false. */
3666 size_time_entry *e;
3667 vec<int> operand_map = vNULL;
3668 vec<int> offset_map = vNULL;
3669 int i;
3670 struct predicate toplev_predicate;
3671 struct predicate true_p = true_predicate ();
3672 struct inline_edge_summary *es = inline_edge_summary (edge);
3674 if (es->predicate)
3675 toplev_predicate = *es->predicate;
3676 else
3677 toplev_predicate = true_predicate ();
3679 info->fp_expressions |= callee_info->fp_expressions;
3681 if (callee_info->conds)
3682 evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL);
3683 if (ipa_node_params_sum && callee_info->conds)
3685 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3686 int count = ipa_get_cs_argument_count (args);
3687 int i;
3689 if (count)
3691 operand_map.safe_grow_cleared (count);
3692 offset_map.safe_grow_cleared (count);
3694 for (i = 0; i < count; i++)
3696 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3697 int map = -1;
3699 /* TODO: handle non-NOPs when merging. */
3700 if (jfunc->type == IPA_JF_PASS_THROUGH)
3702 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3703 map = ipa_get_jf_pass_through_formal_id (jfunc);
3704 if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
3705 offset_map[i] = -1;
3707 else if (jfunc->type == IPA_JF_ANCESTOR)
3709 HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
3710 if (offset >= 0 && offset < INT_MAX)
3712 map = ipa_get_jf_ancestor_formal_id (jfunc);
3713 if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
3714 offset = -1;
3715 offset_map[i] = offset;
3718 operand_map[i] = map;
3719 gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
3722 for (i = 0; vec_safe_iterate (callee_info->entry, i, &e); i++)
3724 struct predicate p = remap_predicate (info, callee_info,
3725 &e->predicate, operand_map,
3726 offset_map, clause,
3727 &toplev_predicate);
3728 if (!false_predicate_p (&p))
3730 gcov_type add_time = ((gcov_type) e->time * edge->frequency
3731 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
3732 int prob = predicate_probability (callee_info->conds,
3733 &e->predicate,
3734 clause, es->param);
3735 add_time = apply_probability ((gcov_type) add_time, prob);
3736 if (add_time > MAX_TIME * INLINE_TIME_SCALE)
3737 add_time = MAX_TIME * INLINE_TIME_SCALE;
3738 if (prob != REG_BR_PROB_BASE
3739 && dump_file && (dump_flags & TDF_DETAILS))
3741 fprintf (dump_file, "\t\tScaling time by probability:%f\n",
3742 (double) prob / REG_BR_PROB_BASE);
3744 account_size_time (info, e->size, add_time, &p);
3747 remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
3748 offset_map, clause, &toplev_predicate);
3749 remap_hint_predicate (info, callee_info,
3750 &callee_info->loop_iterations,
3751 operand_map, offset_map, clause, &toplev_predicate);
3752 remap_hint_predicate (info, callee_info,
3753 &callee_info->loop_stride,
3754 operand_map, offset_map, clause, &toplev_predicate);
3755 remap_hint_predicate (info, callee_info,
3756 &callee_info->array_index,
3757 operand_map, offset_map, clause, &toplev_predicate);
3759 inline_update_callee_summaries (edge->callee,
3760 inline_edge_summary (edge)->loop_depth);
3762 /* We do not maintain predicates of inlined edges, free it. */
3763 edge_set_predicate (edge, &true_p);
3764 /* Similarly remove param summaries. */
3765 es->param.release ();
3766 operand_map.release ();
3767 offset_map.release ();
3770 /* For performance reasons inline_merge_summary is not updating overall size
3771 and time. Recompute it. */
3773 void
3774 inline_update_overall_summary (struct cgraph_node *node)
3776 struct inline_summary *info = inline_summaries->get (node);
3777 size_time_entry *e;
3778 int i;
3780 info->size = 0;
3781 info->time = 0;
3782 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3784 info->size += e->size, info->time += e->time;
3785 if (info->time > MAX_TIME * INLINE_TIME_SCALE)
3786 info->time = MAX_TIME * INLINE_TIME_SCALE;
3788 estimate_calls_size_and_time (node, &info->size, &info->min_size,
3789 &info->time, NULL,
3790 ~(clause_t) (1 << predicate_false_condition),
3791 vNULL, vNULL, vNULL);
3792 info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
3793 info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
3796 /* Return hints derrived from EDGE. */
3798 simple_edge_hints (struct cgraph_edge *edge)
3800 int hints = 0;
3801 struct cgraph_node *to = (edge->caller->global.inlined_to
3802 ? edge->caller->global.inlined_to : edge->caller);
3803 struct cgraph_node *callee = edge->callee->ultimate_alias_target ();
3804 if (inline_summaries->get (to)->scc_no
3805 && inline_summaries->get (to)->scc_no
3806 == inline_summaries->get (callee)->scc_no
3807 && !edge->recursive_p ())
3808 hints |= INLINE_HINT_same_scc;
3810 if (callee->lto_file_data && edge->caller->lto_file_data
3811 && edge->caller->lto_file_data != callee->lto_file_data
3812 && !callee->merged_comdat && !callee->icf_merged)
3813 hints |= INLINE_HINT_cross_module;
3815 return hints;
3818 /* Estimate the time cost for the caller when inlining EDGE.
3819 Only to be called via estimate_edge_time, that handles the
3820 caching mechanism.
3822 When caching, also update the cache entry. Compute both time and
3823 size, since we always need both metrics eventually. */
3826 do_estimate_edge_time (struct cgraph_edge *edge)
3828 int time;
3829 int size;
3830 inline_hints hints;
3831 struct cgraph_node *callee;
3832 clause_t clause;
3833 vec<tree> known_vals;
3834 vec<ipa_polymorphic_call_context> known_contexts;
3835 vec<ipa_agg_jump_function_p> known_aggs;
3836 struct inline_edge_summary *es = inline_edge_summary (edge);
3837 int min_size;
3839 callee = edge->callee->ultimate_alias_target ();
3841 gcc_checking_assert (edge->inline_failed);
3842 evaluate_properties_for_edge (edge, true,
3843 &clause, &known_vals, &known_contexts,
3844 &known_aggs);
3845 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3846 known_aggs, &size, &min_size, &time, &hints, es->param);
3848 /* When we have profile feedback, we can quite safely identify hot
3849 edges and for those we disable size limits. Don't do that when
3850 probability that caller will call the callee is low however, since it
3851 may hurt optimization of the caller's hot path. */
3852 if (edge->count && edge->maybe_hot_p ()
3853 && (edge->count * 2
3854 > (edge->caller->global.inlined_to
3855 ? edge->caller->global.inlined_to->count : edge->caller->count)))
3856 hints |= INLINE_HINT_known_hot;
3858 known_vals.release ();
3859 known_contexts.release ();
3860 known_aggs.release ();
3861 gcc_checking_assert (size >= 0);
3862 gcc_checking_assert (time >= 0);
3864 /* When caching, update the cache entry. */
3865 if (edge_growth_cache.exists ())
3867 inline_summaries->get (edge->callee)->min_size = min_size;
3868 if ((int) edge_growth_cache.length () <= edge->uid)
3869 edge_growth_cache.safe_grow_cleared (symtab->edges_max_uid);
3870 edge_growth_cache[edge->uid].time = time + (time >= 0);
3872 edge_growth_cache[edge->uid].size = size + (size >= 0);
3873 hints |= simple_edge_hints (edge);
3874 edge_growth_cache[edge->uid].hints = hints + 1;
3876 return time;
3880 /* Return estimated callee growth after inlining EDGE.
3881 Only to be called via estimate_edge_size. */
3884 do_estimate_edge_size (struct cgraph_edge *edge)
3886 int size;
3887 struct cgraph_node *callee;
3888 clause_t clause;
3889 vec<tree> known_vals;
3890 vec<ipa_polymorphic_call_context> known_contexts;
3891 vec<ipa_agg_jump_function_p> known_aggs;
3893 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3895 if (edge_growth_cache.exists ())
3897 do_estimate_edge_time (edge);
3898 size = edge_growth_cache[edge->uid].size;
3899 gcc_checking_assert (size);
3900 return size - (size > 0);
3903 callee = edge->callee->ultimate_alias_target ();
3905 /* Early inliner runs without caching, go ahead and do the dirty work. */
3906 gcc_checking_assert (edge->inline_failed);
3907 evaluate_properties_for_edge (edge, true,
3908 &clause, &known_vals, &known_contexts,
3909 &known_aggs);
3910 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3911 known_aggs, &size, NULL, NULL, NULL, vNULL);
3912 known_vals.release ();
3913 known_contexts.release ();
3914 known_aggs.release ();
3915 return size;
3919 /* Estimate the growth of the caller when inlining EDGE.
3920 Only to be called via estimate_edge_size. */
3922 inline_hints
3923 do_estimate_edge_hints (struct cgraph_edge *edge)
3925 inline_hints hints;
3926 struct cgraph_node *callee;
3927 clause_t clause;
3928 vec<tree> known_vals;
3929 vec<ipa_polymorphic_call_context> known_contexts;
3930 vec<ipa_agg_jump_function_p> known_aggs;
3932 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3934 if (edge_growth_cache.exists ())
3936 do_estimate_edge_time (edge);
3937 hints = edge_growth_cache[edge->uid].hints;
3938 gcc_checking_assert (hints);
3939 return hints - 1;
3942 callee = edge->callee->ultimate_alias_target ();
3944 /* Early inliner runs without caching, go ahead and do the dirty work. */
3945 gcc_checking_assert (edge->inline_failed);
3946 evaluate_properties_for_edge (edge, true,
3947 &clause, &known_vals, &known_contexts,
3948 &known_aggs);
3949 estimate_node_size_and_time (callee, clause, known_vals, known_contexts,
3950 known_aggs, NULL, NULL, NULL, &hints, vNULL);
3951 known_vals.release ();
3952 known_contexts.release ();
3953 known_aggs.release ();
3954 hints |= simple_edge_hints (edge);
3955 return hints;
3959 /* Estimate self time of the function NODE after inlining EDGE. */
3962 estimate_time_after_inlining (struct cgraph_node *node,
3963 struct cgraph_edge *edge)
3965 struct inline_edge_summary *es = inline_edge_summary (edge);
3966 if (!es->predicate || !false_predicate_p (es->predicate))
3968 gcov_type time =
3969 inline_summaries->get (node)->time + estimate_edge_time (edge);
3970 if (time < 0)
3971 time = 0;
3972 if (time > MAX_TIME)
3973 time = MAX_TIME;
3974 return time;
3976 return inline_summaries->get (node)->time;
3980 /* Estimate the size of NODE after inlining EDGE which should be an
3981 edge to either NODE or a call inlined into NODE. */
3984 estimate_size_after_inlining (struct cgraph_node *node,
3985 struct cgraph_edge *edge)
3987 struct inline_edge_summary *es = inline_edge_summary (edge);
3988 if (!es->predicate || !false_predicate_p (es->predicate))
3990 int size = inline_summaries->get (node)->size + estimate_edge_growth (edge);
3991 gcc_assert (size >= 0);
3992 return size;
3994 return inline_summaries->get (node)->size;
3998 struct growth_data
4000 struct cgraph_node *node;
4001 bool self_recursive;
4002 bool uninlinable;
4003 int growth;
4007 /* Worker for do_estimate_growth. Collect growth for all callers. */
4009 static bool
4010 do_estimate_growth_1 (struct cgraph_node *node, void *data)
4012 struct cgraph_edge *e;
4013 struct growth_data *d = (struct growth_data *) data;
4015 for (e = node->callers; e; e = e->next_caller)
4017 gcc_checking_assert (e->inline_failed);
4019 if (cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
4021 d->uninlinable = true;
4022 continue;
4025 if (e->recursive_p ())
4027 d->self_recursive = true;
4028 continue;
4030 d->growth += estimate_edge_growth (e);
4032 return false;
4036 /* Estimate the growth caused by inlining NODE into all callees. */
4039 estimate_growth (struct cgraph_node *node)
4041 struct growth_data d = { node, false, false, 0 };
4042 struct inline_summary *info = inline_summaries->get (node);
4044 node->call_for_symbol_and_aliases (do_estimate_growth_1, &d, true);
4046 /* For self recursive functions the growth estimation really should be
4047 infinity. We don't want to return very large values because the growth
4048 plays various roles in badness computation fractions. Be sure to not
4049 return zero or negative growths. */
4050 if (d.self_recursive)
4051 d.growth = d.growth < info->size ? info->size : d.growth;
4052 else if (DECL_EXTERNAL (node->decl) || d.uninlinable)
4054 else
4056 if (node->will_be_removed_from_program_if_no_direct_calls_p ())
4057 d.growth -= info->size;
4058 /* COMDAT functions are very often not shared across multiple units
4059 since they come from various template instantiations.
4060 Take this into account. */
4061 else if (DECL_COMDAT (node->decl)
4062 && node->can_remove_if_no_direct_calls_p ())
4063 d.growth -= (info->size
4064 * (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
4065 + 50) / 100;
4068 return d.growth;
4071 /* Verify if there are fewer than MAX_CALLERS. */
4073 static bool
4074 check_callers (cgraph_node *node, int *max_callers)
4076 ipa_ref *ref;
4078 if (!node->can_remove_if_no_direct_calls_and_refs_p ())
4079 return true;
4081 for (cgraph_edge *e = node->callers; e; e = e->next_caller)
4083 (*max_callers)--;
4084 if (!*max_callers
4085 || cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
4086 return true;
4089 FOR_EACH_ALIAS (node, ref)
4090 if (check_callers (dyn_cast <cgraph_node *> (ref->referring), max_callers))
4091 return true;
4093 return false;
4097 /* Make cheap estimation if growth of NODE is likely positive knowing
4098 EDGE_GROWTH of one particular edge.
4099 We assume that most of other edges will have similar growth
4100 and skip computation if there are too many callers. */
4102 bool
4103 growth_likely_positive (struct cgraph_node *node,
4104 int edge_growth)
4106 int max_callers;
4107 struct cgraph_edge *e;
4108 gcc_checking_assert (edge_growth > 0);
4110 /* First quickly check if NODE is removable at all. */
4111 if (DECL_EXTERNAL (node->decl))
4112 return true;
4113 if (!node->can_remove_if_no_direct_calls_and_refs_p ()
4114 || node->address_taken)
4115 return true;
4117 max_callers = inline_summaries->get (node)->size * 4 / edge_growth + 2;
4119 for (e = node->callers; e; e = e->next_caller)
4121 max_callers--;
4122 if (!max_callers
4123 || cgraph_inline_failed_type (e->inline_failed) == CIF_FINAL_ERROR)
4124 return true;
4127 ipa_ref *ref;
4128 FOR_EACH_ALIAS (node, ref)
4129 if (check_callers (dyn_cast <cgraph_node *> (ref->referring), &max_callers))
4130 return true;
4132 /* Unlike for functions called once, we play unsafe with
4133 COMDATs. We can allow that since we know functions
4134 in consideration are small (and thus risk is small) and
4135 moreover grow estimates already accounts that COMDAT
4136 functions may or may not disappear when eliminated from
4137 current unit. With good probability making aggressive
4138 choice in all units is going to make overall program
4139 smaller. */
4140 if (DECL_COMDAT (node->decl))
4142 if (!node->can_remove_if_no_direct_calls_p ())
4143 return true;
4145 else if (!node->will_be_removed_from_program_if_no_direct_calls_p ())
4146 return true;
4148 return estimate_growth (node) > 0;
4152 /* This function performs intraprocedural analysis in NODE that is required to
4153 inline indirect calls. */
4155 static void
4156 inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
4158 ipa_analyze_node (node);
4159 if (dump_file && (dump_flags & TDF_DETAILS))
4161 ipa_print_node_params (dump_file, node);
4162 ipa_print_node_jump_functions (dump_file, node);
4167 /* Note function body size. */
4169 void
4170 inline_analyze_function (struct cgraph_node *node)
4172 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4174 if (dump_file)
4175 fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
4176 node->name (), node->order);
4177 if (opt_for_fn (node->decl, optimize) && !node->thunk.thunk_p)
4178 inline_indirect_intraprocedural_analysis (node);
4179 compute_inline_parameters (node, false);
4180 if (!optimize)
4182 struct cgraph_edge *e;
4183 for (e = node->callees; e; e = e->next_callee)
4184 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
4185 for (e = node->indirect_calls; e; e = e->next_callee)
4186 e->inline_failed = CIF_FUNCTION_NOT_OPTIMIZED;
4189 pop_cfun ();
4193 /* Called when new function is inserted to callgraph late. */
4195 void
4196 inline_summary_t::insert (struct cgraph_node *node, inline_summary *)
4198 inline_analyze_function (node);
4201 /* Note function body size. */
4203 void
4204 inline_generate_summary (void)
4206 struct cgraph_node *node;
4208 FOR_EACH_DEFINED_FUNCTION (node)
4209 if (DECL_STRUCT_FUNCTION (node->decl))
4210 node->local.versionable = tree_versionable_function_p (node->decl);
4212 /* When not optimizing, do not bother to analyze. Inlining is still done
4213 because edge redirection needs to happen there. */
4214 if (!optimize && !flag_generate_lto && !flag_generate_offload && !flag_wpa)
4215 return;
4217 if (!inline_summaries)
4218 inline_summaries = (inline_summary_t*) inline_summary_t::create_ggc (symtab);
4220 inline_summaries->enable_insertion_hook ();
4222 ipa_register_cgraph_hooks ();
4223 inline_free_summary ();
4225 FOR_EACH_DEFINED_FUNCTION (node)
4226 if (!node->alias)
4227 inline_analyze_function (node);
4231 /* Read predicate from IB. */
4233 static struct predicate
4234 read_predicate (struct lto_input_block *ib)
4236 struct predicate out;
4237 clause_t clause;
4238 int k = 0;
4242 gcc_assert (k <= MAX_CLAUSES);
4243 clause = out.clause[k++] = streamer_read_uhwi (ib);
4245 while (clause);
4247 /* Zero-initialize the remaining clauses in OUT. */
4248 while (k <= MAX_CLAUSES)
4249 out.clause[k++] = 0;
4251 return out;
4255 /* Write inline summary for edge E to OB. */
4257 static void
4258 read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
4260 struct inline_edge_summary *es = inline_edge_summary (e);
4261 struct predicate p;
4262 int length, i;
4264 es->call_stmt_size = streamer_read_uhwi (ib);
4265 es->call_stmt_time = streamer_read_uhwi (ib);
4266 es->loop_depth = streamer_read_uhwi (ib);
4267 p = read_predicate (ib);
4268 edge_set_predicate (e, &p);
4269 length = streamer_read_uhwi (ib);
4270 if (length)
4272 es->param.safe_grow_cleared (length);
4273 for (i = 0; i < length; i++)
4274 es->param[i].change_prob = streamer_read_uhwi (ib);
4279 /* Stream in inline summaries from the section. */
4281 static void
4282 inline_read_section (struct lto_file_decl_data *file_data, const char *data,
4283 size_t len)
4285 const struct lto_function_header *header =
4286 (const struct lto_function_header *) data;
4287 const int cfg_offset = sizeof (struct lto_function_header);
4288 const int main_offset = cfg_offset + header->cfg_size;
4289 const int string_offset = main_offset + header->main_size;
4290 struct data_in *data_in;
4291 unsigned int i, count2, j;
4292 unsigned int f_count;
4294 lto_input_block ib ((const char *) data + main_offset, header->main_size,
4295 file_data->mode_table);
4297 data_in =
4298 lto_data_in_create (file_data, (const char *) data + string_offset,
4299 header->string_size, vNULL);
4300 f_count = streamer_read_uhwi (&ib);
4301 for (i = 0; i < f_count; i++)
4303 unsigned int index;
4304 struct cgraph_node *node;
4305 struct inline_summary *info;
4306 lto_symtab_encoder_t encoder;
4307 struct bitpack_d bp;
4308 struct cgraph_edge *e;
4309 predicate p;
4311 index = streamer_read_uhwi (&ib);
4312 encoder = file_data->symtab_node_encoder;
4313 node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
4314 index));
4315 info = inline_summaries->get (node);
4317 info->estimated_stack_size
4318 = info->estimated_self_stack_size = streamer_read_uhwi (&ib);
4319 info->size = info->self_size = streamer_read_uhwi (&ib);
4320 info->time = info->self_time = streamer_read_uhwi (&ib);
4322 bp = streamer_read_bitpack (&ib);
4323 info->inlinable = bp_unpack_value (&bp, 1);
4324 info->contains_cilk_spawn = bp_unpack_value (&bp, 1);
4325 info->fp_expressions = bp_unpack_value (&bp, 1);
4327 count2 = streamer_read_uhwi (&ib);
4328 gcc_assert (!info->conds);
4329 for (j = 0; j < count2; j++)
4331 struct condition c;
4332 c.operand_num = streamer_read_uhwi (&ib);
4333 c.size = streamer_read_uhwi (&ib);
4334 c.code = (enum tree_code) streamer_read_uhwi (&ib);
4335 c.val = stream_read_tree (&ib, data_in);
4336 bp = streamer_read_bitpack (&ib);
4337 c.agg_contents = bp_unpack_value (&bp, 1);
4338 c.by_ref = bp_unpack_value (&bp, 1);
4339 if (c.agg_contents)
4340 c.offset = streamer_read_uhwi (&ib);
4341 vec_safe_push (info->conds, c);
4343 count2 = streamer_read_uhwi (&ib);
4344 gcc_assert (!info->entry);
4345 for (j = 0; j < count2; j++)
4347 struct size_time_entry e;
4349 e.size = streamer_read_uhwi (&ib);
4350 e.time = streamer_read_uhwi (&ib);
4351 e.predicate = read_predicate (&ib);
4353 vec_safe_push (info->entry, e);
4356 p = read_predicate (&ib);
4357 set_hint_predicate (&info->loop_iterations, p);
4358 p = read_predicate (&ib);
4359 set_hint_predicate (&info->loop_stride, p);
4360 p = read_predicate (&ib);
4361 set_hint_predicate (&info->array_index, p);
4362 for (e = node->callees; e; e = e->next_callee)
4363 read_inline_edge_summary (&ib, e);
4364 for (e = node->indirect_calls; e; e = e->next_callee)
4365 read_inline_edge_summary (&ib, e);
4368 lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
4369 len);
4370 lto_data_in_delete (data_in);
4374 /* Read inline summary. Jump functions are shared among ipa-cp
4375 and inliner, so when ipa-cp is active, we don't need to write them
4376 twice. */
4378 void
4379 inline_read_summary (void)
4381 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
4382 struct lto_file_decl_data *file_data;
4383 unsigned int j = 0;
4385 inline_summary_alloc ();
4387 while ((file_data = file_data_vec[j++]))
4389 size_t len;
4390 const char *data = lto_get_section_data (file_data,
4391 LTO_section_inline_summary,
4392 NULL, &len);
4393 if (data)
4394 inline_read_section (file_data, data, len);
4395 else
4396 /* Fatal error here. We do not want to support compiling ltrans units
4397 with different version of compiler or different flags than the WPA
4398 unit, so this should never happen. */
4399 fatal_error (input_location,
4400 "ipa inline summary is missing in input file");
4402 if (optimize)
4404 ipa_register_cgraph_hooks ();
4405 if (!flag_ipa_cp)
4406 ipa_prop_read_jump_functions ();
4409 gcc_assert (inline_summaries);
4410 inline_summaries->enable_insertion_hook ();
4414 /* Write predicate P to OB. */
4416 static void
4417 write_predicate (struct output_block *ob, struct predicate *p)
4419 int j;
4420 if (p)
4421 for (j = 0; p->clause[j]; j++)
4423 gcc_assert (j < MAX_CLAUSES);
4424 streamer_write_uhwi (ob, p->clause[j]);
4426 streamer_write_uhwi (ob, 0);
4430 /* Write inline summary for edge E to OB. */
4432 static void
4433 write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
4435 struct inline_edge_summary *es = inline_edge_summary (e);
4436 int i;
4438 streamer_write_uhwi (ob, es->call_stmt_size);
4439 streamer_write_uhwi (ob, es->call_stmt_time);
4440 streamer_write_uhwi (ob, es->loop_depth);
4441 write_predicate (ob, es->predicate);
4442 streamer_write_uhwi (ob, es->param.length ());
4443 for (i = 0; i < (int) es->param.length (); i++)
4444 streamer_write_uhwi (ob, es->param[i].change_prob);
4448 /* Write inline summary for node in SET.
4449 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
4450 active, we don't need to write them twice. */
4452 void
4453 inline_write_summary (void)
4455 struct output_block *ob = create_output_block (LTO_section_inline_summary);
4456 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
4457 unsigned int count = 0;
4458 int i;
4460 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4462 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4463 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
4464 if (cnode && cnode->definition && !cnode->alias)
4465 count++;
4467 streamer_write_uhwi (ob, count);
4469 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
4471 symtab_node *snode = lto_symtab_encoder_deref (encoder, i);
4472 cgraph_node *cnode = dyn_cast <cgraph_node *> (snode);
4473 if (cnode && cnode->definition && !cnode->alias)
4475 struct inline_summary *info = inline_summaries->get (cnode);
4476 struct bitpack_d bp;
4477 struct cgraph_edge *edge;
4478 int i;
4479 size_time_entry *e;
4480 struct condition *c;
4482 streamer_write_uhwi (ob, lto_symtab_encoder_encode (encoder, cnode));
4483 streamer_write_hwi (ob, info->estimated_self_stack_size);
4484 streamer_write_hwi (ob, info->self_size);
4485 streamer_write_hwi (ob, info->self_time);
4486 bp = bitpack_create (ob->main_stream);
4487 bp_pack_value (&bp, info->inlinable, 1);
4488 bp_pack_value (&bp, info->contains_cilk_spawn, 1);
4489 bp_pack_value (&bp, info->fp_expressions, 1);
4490 streamer_write_bitpack (&bp);
4491 streamer_write_uhwi (ob, vec_safe_length (info->conds));
4492 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
4494 streamer_write_uhwi (ob, c->operand_num);
4495 streamer_write_uhwi (ob, c->size);
4496 streamer_write_uhwi (ob, c->code);
4497 stream_write_tree (ob, c->val, true);
4498 bp = bitpack_create (ob->main_stream);
4499 bp_pack_value (&bp, c->agg_contents, 1);
4500 bp_pack_value (&bp, c->by_ref, 1);
4501 streamer_write_bitpack (&bp);
4502 if (c->agg_contents)
4503 streamer_write_uhwi (ob, c->offset);
4505 streamer_write_uhwi (ob, vec_safe_length (info->entry));
4506 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
4508 streamer_write_uhwi (ob, e->size);
4509 streamer_write_uhwi (ob, e->time);
4510 write_predicate (ob, &e->predicate);
4512 write_predicate (ob, info->loop_iterations);
4513 write_predicate (ob, info->loop_stride);
4514 write_predicate (ob, info->array_index);
4515 for (edge = cnode->callees; edge; edge = edge->next_callee)
4516 write_inline_edge_summary (ob, edge);
4517 for (edge = cnode->indirect_calls; edge; edge = edge->next_callee)
4518 write_inline_edge_summary (ob, edge);
4521 streamer_write_char_stream (ob->main_stream, 0);
4522 produce_asm (ob, NULL);
4523 destroy_output_block (ob);
4525 if (optimize && !flag_ipa_cp)
4526 ipa_prop_write_jump_functions ();
4530 /* Release inline summary. */
4532 void
4533 inline_free_summary (void)
4535 struct cgraph_node *node;
4536 if (edge_removal_hook_holder)
4537 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
4538 edge_removal_hook_holder = NULL;
4539 if (edge_duplication_hook_holder)
4540 symtab->remove_edge_duplication_hook (edge_duplication_hook_holder);
4541 edge_duplication_hook_holder = NULL;
4542 if (!inline_edge_summary_vec.exists ())
4543 return;
4544 FOR_EACH_DEFINED_FUNCTION (node)
4545 if (!node->alias)
4546 reset_inline_summary (node, inline_summaries->get (node));
4547 inline_summaries->release ();
4548 inline_summaries = NULL;
4549 inline_edge_summary_vec.release ();
4550 edge_predicate_pool.release ();