1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 Free Software Foundation, Inc.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
39 #include "coretypes.h"
41 #include "diagnostic-core.h"
50 #include "hard-reg-set.h"
52 #include "insn-config.h"
55 #include "basic-block.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
64 struct target_rtl default_target_rtl
;
66 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71 /* Commonly used modes. */
73 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
74 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
75 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
76 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
78 /* Datastructures maintained for currently processed function in RTL form. */
80 struct rtl_data x_rtl
;
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
92 static GTY(()) int label_num
= 1;
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
98 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
102 REAL_VALUE_TYPE dconst0
;
103 REAL_VALUE_TYPE dconst1
;
104 REAL_VALUE_TYPE dconst2
;
105 REAL_VALUE_TYPE dconstm1
;
106 REAL_VALUE_TYPE dconsthalf
;
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
110 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
117 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
119 /* A hash table storing CONST_INTs whose absolute value is greater
120 than MAX_SAVED_CONST_INT. */
122 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
123 htab_t const_int_htab
;
125 /* A hash table storing memory attribute structures. */
126 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
127 htab_t mem_attrs_htab
;
129 /* A hash table storing register attribute structures. */
130 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
131 htab_t reg_attrs_htab
;
133 /* A hash table storing all CONST_DOUBLEs. */
134 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
135 htab_t const_double_htab
;
137 /* A hash table storing all CONST_FIXEDs. */
138 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
139 htab_t const_fixed_htab
;
141 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
142 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
143 #define last_location (crtl->emit.x_last_location)
144 #define first_label_num (crtl->emit.x_first_label_num)
146 static rtx
make_call_insn_raw (rtx
);
147 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
148 static void set_used_decls (tree
);
149 static void mark_label_nuses (rtx
);
150 static hashval_t
const_int_htab_hash (const void *);
151 static int const_int_htab_eq (const void *, const void *);
152 static hashval_t
const_double_htab_hash (const void *);
153 static int const_double_htab_eq (const void *, const void *);
154 static rtx
lookup_const_double (rtx
);
155 static hashval_t
const_fixed_htab_hash (const void *);
156 static int const_fixed_htab_eq (const void *, const void *);
157 static rtx
lookup_const_fixed (rtx
);
158 static hashval_t
mem_attrs_htab_hash (const void *);
159 static int mem_attrs_htab_eq (const void *, const void *);
160 static mem_attrs
*get_mem_attrs (alias_set_type
, tree
, rtx
, rtx
, unsigned int,
161 addr_space_t
, enum machine_mode
);
162 static hashval_t
reg_attrs_htab_hash (const void *);
163 static int reg_attrs_htab_eq (const void *, const void *);
164 static reg_attrs
*get_reg_attrs (tree
, int);
165 static rtx
gen_const_vector (enum machine_mode
, int);
166 static void copy_rtx_if_shared_1 (rtx
*orig
);
168 /* Probability of the conditional branch currently proceeded by try_split.
169 Set to -1 otherwise. */
170 int split_branch_probability
= -1;
172 /* Returns a hash code for X (which is a really a CONST_INT). */
175 const_int_htab_hash (const void *x
)
177 return (hashval_t
) INTVAL ((const_rtx
) x
);
180 /* Returns nonzero if the value represented by X (which is really a
181 CONST_INT) is the same as that given by Y (which is really a
185 const_int_htab_eq (const void *x
, const void *y
)
187 return (INTVAL ((const_rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
190 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
192 const_double_htab_hash (const void *x
)
194 const_rtx
const value
= (const_rtx
) x
;
197 if (GET_MODE (value
) == VOIDmode
)
198 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
201 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
202 /* MODE is used in the comparison, so it should be in the hash. */
203 h
^= GET_MODE (value
);
208 /* Returns nonzero if the value represented by X (really a ...)
209 is the same as that represented by Y (really a ...) */
211 const_double_htab_eq (const void *x
, const void *y
)
213 const_rtx
const a
= (const_rtx
)x
, b
= (const_rtx
)y
;
215 if (GET_MODE (a
) != GET_MODE (b
))
217 if (GET_MODE (a
) == VOIDmode
)
218 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
219 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
221 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
222 CONST_DOUBLE_REAL_VALUE (b
));
225 /* Returns a hash code for X (which is really a CONST_FIXED). */
228 const_fixed_htab_hash (const void *x
)
230 const_rtx
const value
= (const_rtx
) x
;
233 h
= fixed_hash (CONST_FIXED_VALUE (value
));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h
^= GET_MODE (value
);
239 /* Returns nonzero if the value represented by X (really a ...)
240 is the same as that represented by Y (really a ...). */
243 const_fixed_htab_eq (const void *x
, const void *y
)
245 const_rtx
const a
= (const_rtx
) x
, b
= (const_rtx
) y
;
247 if (GET_MODE (a
) != GET_MODE (b
))
249 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
252 /* Returns a hash code for X (which is a really a mem_attrs *). */
255 mem_attrs_htab_hash (const void *x
)
257 const mem_attrs
*const p
= (const mem_attrs
*) x
;
259 return (p
->alias
^ (p
->align
* 1000)
260 ^ (p
->addrspace
* 4000)
261 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
262 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
263 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
266 /* Returns nonzero if the value represented by X (which is really a
267 mem_attrs *) is the same as that given by Y (which is also really a
271 mem_attrs_htab_eq (const void *x
, const void *y
)
273 const mem_attrs
*const p
= (const mem_attrs
*) x
;
274 const mem_attrs
*const q
= (const mem_attrs
*) y
;
276 return (p
->alias
== q
->alias
&& p
->offset
== q
->offset
277 && p
->size
== q
->size
&& p
->align
== q
->align
278 && p
->addrspace
== q
->addrspace
279 && (p
->expr
== q
->expr
280 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
281 && operand_equal_p (p
->expr
, q
->expr
, 0))));
284 /* Allocate a new mem_attrs structure and insert it into the hash table if
285 one identical to it is not already in the table. We are doing this for
289 get_mem_attrs (alias_set_type alias
, tree expr
, rtx offset
, rtx size
,
290 unsigned int align
, addr_space_t addrspace
, enum machine_mode mode
)
295 /* If everything is the default, we can just return zero.
296 This must match what the corresponding MEM_* macros return when the
297 field is not present. */
298 if (alias
== 0 && expr
== 0 && offset
== 0 && addrspace
== 0
300 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
301 && (STRICT_ALIGNMENT
&& mode
!= BLKmode
302 ? align
== GET_MODE_ALIGNMENT (mode
) : align
== BITS_PER_UNIT
))
307 attrs
.offset
= offset
;
310 attrs
.addrspace
= addrspace
;
312 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
315 *slot
= ggc_alloc_mem_attrs ();
316 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
319 return (mem_attrs
*) *slot
;
322 /* Returns a hash code for X (which is a really a reg_attrs *). */
325 reg_attrs_htab_hash (const void *x
)
327 const reg_attrs
*const p
= (const reg_attrs
*) x
;
329 return ((p
->offset
* 1000) ^ (long) p
->decl
);
332 /* Returns nonzero if the value represented by X (which is really a
333 reg_attrs *) is the same as that given by Y (which is also really a
337 reg_attrs_htab_eq (const void *x
, const void *y
)
339 const reg_attrs
*const p
= (const reg_attrs
*) x
;
340 const reg_attrs
*const q
= (const reg_attrs
*) y
;
342 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
344 /* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
349 get_reg_attrs (tree decl
, int offset
)
354 /* If everything is the default, we can just return zero. */
355 if (decl
== 0 && offset
== 0)
359 attrs
.offset
= offset
;
361 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
364 *slot
= ggc_alloc_reg_attrs ();
365 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
368 return (reg_attrs
*) *slot
;
373 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
379 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
380 MEM_VOLATILE_P (x
) = true;
386 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
387 don't attempt to share with the various global pieces of rtl (such as
388 frame_pointer_rtx). */
391 gen_raw_REG (enum machine_mode mode
, int regno
)
393 rtx x
= gen_rtx_raw_REG (mode
, regno
);
394 ORIGINAL_REGNO (x
) = regno
;
398 /* There are some RTL codes that require special attention; the generation
399 functions do the raw handling. If you add to this list, modify
400 special_rtx in gengenrtl.c as well. */
403 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
407 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
408 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
410 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
411 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
412 return const_true_rtx
;
415 /* Look up the CONST_INT in the hash table. */
416 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
417 (hashval_t
) arg
, INSERT
);
419 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
425 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
427 return GEN_INT (trunc_int_for_mode (c
, mode
));
430 /* CONST_DOUBLEs might be created from pairs of integers, or from
431 REAL_VALUE_TYPEs. Also, their length is known only at run time,
432 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
434 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
435 hash table. If so, return its counterpart; otherwise add it
436 to the hash table and return it. */
438 lookup_const_double (rtx real
)
440 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
447 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
448 VALUE in mode MODE. */
450 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
452 rtx real
= rtx_alloc (CONST_DOUBLE
);
453 PUT_MODE (real
, mode
);
457 return lookup_const_double (real
);
460 /* Determine whether FIXED, a CONST_FIXED, already exists in the
461 hash table. If so, return its counterpart; otherwise add it
462 to the hash table and return it. */
465 lookup_const_fixed (rtx fixed
)
467 void **slot
= htab_find_slot (const_fixed_htab
, fixed
, INSERT
);
474 /* Return a CONST_FIXED rtx for a fixed-point value specified by
475 VALUE in mode MODE. */
478 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, enum machine_mode mode
)
480 rtx fixed
= rtx_alloc (CONST_FIXED
);
481 PUT_MODE (fixed
, mode
);
485 return lookup_const_fixed (fixed
);
488 /* Constructs double_int from rtx CST. */
491 rtx_to_double_int (const_rtx cst
)
495 if (CONST_INT_P (cst
))
496 r
= shwi_to_double_int (INTVAL (cst
));
497 else if (CONST_DOUBLE_P (cst
) && GET_MODE (cst
) == VOIDmode
)
499 r
.low
= CONST_DOUBLE_LOW (cst
);
500 r
.high
= CONST_DOUBLE_HIGH (cst
);
509 /* Return a CONST_DOUBLE or CONST_INT for a value specified as
513 immed_double_int_const (double_int i
, enum machine_mode mode
)
515 return immed_double_const (i
.low
, i
.high
, mode
);
518 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
519 of ints: I0 is the low-order word and I1 is the high-order word.
520 Do not use this routine for non-integer modes; convert to
521 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
524 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
534 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
535 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
536 from copies of the sign bit, and sign of i0 and i1 are the same), then
537 we return a CONST_INT for i0.
538 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
539 if (mode
!= VOIDmode
)
541 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
542 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
543 /* We can get a 0 for an error mark. */
544 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
545 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
547 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
548 return gen_int_mode (i0
, mode
);
550 gcc_assert (GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
);
553 /* If this integer fits in one word, return a CONST_INT. */
554 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
557 /* We use VOIDmode for integers. */
558 value
= rtx_alloc (CONST_DOUBLE
);
559 PUT_MODE (value
, VOIDmode
);
561 CONST_DOUBLE_LOW (value
) = i0
;
562 CONST_DOUBLE_HIGH (value
) = i1
;
564 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
565 XWINT (value
, i
) = 0;
567 return lookup_const_double (value
);
571 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
573 /* In case the MD file explicitly references the frame pointer, have
574 all such references point to the same frame pointer. This is
575 used during frame pointer elimination to distinguish the explicit
576 references to these registers from pseudos that happened to be
579 If we have eliminated the frame pointer or arg pointer, we will
580 be using it as a normal register, for example as a spill
581 register. In such cases, we might be accessing it in a mode that
582 is not Pmode and therefore cannot use the pre-allocated rtx.
584 Also don't do this when we are making new REGs in reload, since
585 we don't want to get confused with the real pointers. */
587 if (mode
== Pmode
&& !reload_in_progress
)
589 if (regno
== FRAME_POINTER_REGNUM
590 && (!reload_completed
|| frame_pointer_needed
))
591 return frame_pointer_rtx
;
592 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
593 if (regno
== HARD_FRAME_POINTER_REGNUM
594 && (!reload_completed
|| frame_pointer_needed
))
595 return hard_frame_pointer_rtx
;
597 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
598 if (regno
== ARG_POINTER_REGNUM
)
599 return arg_pointer_rtx
;
601 #ifdef RETURN_ADDRESS_POINTER_REGNUM
602 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
603 return return_address_pointer_rtx
;
605 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
606 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
607 return pic_offset_table_rtx
;
608 if (regno
== STACK_POINTER_REGNUM
)
609 return stack_pointer_rtx
;
613 /* If the per-function register table has been set up, try to re-use
614 an existing entry in that table to avoid useless generation of RTL.
616 This code is disabled for now until we can fix the various backends
617 which depend on having non-shared hard registers in some cases. Long
618 term we want to re-enable this code as it can significantly cut down
619 on the amount of useless RTL that gets generated.
621 We'll also need to fix some code that runs after reload that wants to
622 set ORIGINAL_REGNO. */
627 && regno
< FIRST_PSEUDO_REGISTER
628 && reg_raw_mode
[regno
] == mode
)
629 return regno_reg_rtx
[regno
];
632 return gen_raw_REG (mode
, regno
);
636 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
638 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
640 /* This field is not cleared by the mere allocation of the rtx, so
647 /* Generate a memory referring to non-trapping constant memory. */
650 gen_const_mem (enum machine_mode mode
, rtx addr
)
652 rtx mem
= gen_rtx_MEM (mode
, addr
);
653 MEM_READONLY_P (mem
) = 1;
654 MEM_NOTRAP_P (mem
) = 1;
658 /* Generate a MEM referring to fixed portions of the frame, e.g., register
662 gen_frame_mem (enum machine_mode mode
, rtx addr
)
664 rtx mem
= gen_rtx_MEM (mode
, addr
);
665 MEM_NOTRAP_P (mem
) = 1;
666 set_mem_alias_set (mem
, get_frame_alias_set ());
670 /* Generate a MEM referring to a temporary use of the stack, not part
671 of the fixed stack frame. For example, something which is pushed
672 by a target splitter. */
674 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
676 rtx mem
= gen_rtx_MEM (mode
, addr
);
677 MEM_NOTRAP_P (mem
) = 1;
678 if (!cfun
->calls_alloca
)
679 set_mem_alias_set (mem
, get_frame_alias_set ());
683 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
684 this construct would be valid, and false otherwise. */
687 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
688 const_rtx reg
, unsigned int offset
)
690 unsigned int isize
= GET_MODE_SIZE (imode
);
691 unsigned int osize
= GET_MODE_SIZE (omode
);
693 /* All subregs must be aligned. */
694 if (offset
% osize
!= 0)
697 /* The subreg offset cannot be outside the inner object. */
701 /* ??? This should not be here. Temporarily continue to allow word_mode
702 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
703 Generally, backends are doing something sketchy but it'll take time to
705 if (omode
== word_mode
)
707 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
708 is the culprit here, and not the backends. */
709 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
711 /* Allow component subregs of complex and vector. Though given the below
712 extraction rules, it's not always clear what that means. */
713 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
714 && GET_MODE_INNER (imode
) == omode
)
716 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
717 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
718 represent this. It's questionable if this ought to be represented at
719 all -- why can't this all be hidden in post-reload splitters that make
720 arbitrarily mode changes to the registers themselves. */
721 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
723 /* Subregs involving floating point modes are not allowed to
724 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
725 (subreg:SI (reg:DF) 0) isn't. */
726 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
732 /* Paradoxical subregs must have offset zero. */
736 /* This is a normal subreg. Verify that the offset is representable. */
738 /* For hard registers, we already have most of these rules collected in
739 subreg_offset_representable_p. */
740 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
742 unsigned int regno
= REGNO (reg
);
744 #ifdef CANNOT_CHANGE_MODE_CLASS
745 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
746 && GET_MODE_INNER (imode
) == omode
)
748 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
752 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
755 /* For pseudo registers, we want most of the same checks. Namely:
756 If the register no larger than a word, the subreg must be lowpart.
757 If the register is larger than a word, the subreg must be the lowpart
758 of a subword. A subreg does *not* perform arbitrary bit extraction.
759 Given that we've already checked mode/offset alignment, we only have
760 to check subword subregs here. */
761 if (osize
< UNITS_PER_WORD
)
763 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
764 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
765 if (offset
% UNITS_PER_WORD
!= low_off
)
772 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
774 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
775 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
778 /* Generate a SUBREG representing the least-significant part of REG if MODE
779 is smaller than mode of REG, otherwise paradoxical SUBREG. */
782 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
784 enum machine_mode inmode
;
786 inmode
= GET_MODE (reg
);
787 if (inmode
== VOIDmode
)
789 return gen_rtx_SUBREG (mode
, reg
,
790 subreg_lowpart_offset (mode
, inmode
));
794 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
797 gen_rtvec (int n
, ...)
805 /* Don't allocate an empty rtvec... */
809 rt_val
= rtvec_alloc (n
);
811 for (i
= 0; i
< n
; i
++)
812 rt_val
->elem
[i
] = va_arg (p
, rtx
);
819 gen_rtvec_v (int n
, rtx
*argp
)
824 /* Don't allocate an empty rtvec... */
828 rt_val
= rtvec_alloc (n
);
830 for (i
= 0; i
< n
; i
++)
831 rt_val
->elem
[i
] = *argp
++;
836 /* Return the number of bytes between the start of an OUTER_MODE
837 in-memory value and the start of an INNER_MODE in-memory value,
838 given that the former is a lowpart of the latter. It may be a
839 paradoxical lowpart, in which case the offset will be negative
840 on big-endian targets. */
843 byte_lowpart_offset (enum machine_mode outer_mode
,
844 enum machine_mode inner_mode
)
846 if (GET_MODE_SIZE (outer_mode
) < GET_MODE_SIZE (inner_mode
))
847 return subreg_lowpart_offset (outer_mode
, inner_mode
);
849 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
852 /* Generate a REG rtx for a new pseudo register of mode MODE.
853 This pseudo is assigned the next sequential register number. */
856 gen_reg_rtx (enum machine_mode mode
)
859 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
861 gcc_assert (can_create_pseudo_p ());
863 /* If a virtual register with bigger mode alignment is generated,
864 increase stack alignment estimation because it might be spilled
866 if (SUPPORTS_STACK_ALIGNMENT
867 && crtl
->stack_alignment_estimated
< align
868 && !crtl
->stack_realign_processed
)
870 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
871 if (crtl
->stack_alignment_estimated
< min_align
)
872 crtl
->stack_alignment_estimated
= min_align
;
875 if (generating_concat_p
876 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
877 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
879 /* For complex modes, don't make a single pseudo.
880 Instead, make a CONCAT of two pseudos.
881 This allows noncontiguous allocation of the real and imaginary parts,
882 which makes much better code. Besides, allocating DCmode
883 pseudos overstrains reload on some machines like the 386. */
884 rtx realpart
, imagpart
;
885 enum machine_mode partmode
= GET_MODE_INNER (mode
);
887 realpart
= gen_reg_rtx (partmode
);
888 imagpart
= gen_reg_rtx (partmode
);
889 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
892 /* Make sure regno_pointer_align, and regno_reg_rtx are large
893 enough to have an element for this pseudo reg number. */
895 if (reg_rtx_no
== crtl
->emit
.regno_pointer_align_length
)
897 int old_size
= crtl
->emit
.regno_pointer_align_length
;
901 tmp
= XRESIZEVEC (char, crtl
->emit
.regno_pointer_align
, old_size
* 2);
902 memset (tmp
+ old_size
, 0, old_size
);
903 crtl
->emit
.regno_pointer_align
= (unsigned char *) tmp
;
905 new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, old_size
* 2);
906 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
907 regno_reg_rtx
= new1
;
909 crtl
->emit
.regno_pointer_align_length
= old_size
* 2;
912 val
= gen_raw_REG (mode
, reg_rtx_no
);
913 regno_reg_rtx
[reg_rtx_no
++] = val
;
917 /* Update NEW with the same attributes as REG, but with OFFSET added
918 to the REG_OFFSET. */
921 update_reg_offset (rtx new_rtx
, rtx reg
, int offset
)
923 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
924 REG_OFFSET (reg
) + offset
);
927 /* Generate a register with same attributes as REG, but with OFFSET
928 added to the REG_OFFSET. */
931 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
,
934 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
936 update_reg_offset (new_rtx
, reg
, offset
);
940 /* Generate a new pseudo-register with the same attributes as REG, but
941 with OFFSET added to the REG_OFFSET. */
944 gen_reg_rtx_offset (rtx reg
, enum machine_mode mode
, int offset
)
946 rtx new_rtx
= gen_reg_rtx (mode
);
948 update_reg_offset (new_rtx
, reg
, offset
);
952 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
953 new register is a (possibly paradoxical) lowpart of the old one. */
956 adjust_reg_mode (rtx reg
, enum machine_mode mode
)
958 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
959 PUT_MODE (reg
, mode
);
962 /* Copy REG's attributes from X, if X has any attributes. If REG and X
963 have different modes, REG is a (possibly paradoxical) lowpart of X. */
966 set_reg_attrs_from_value (rtx reg
, rtx x
)
970 /* Hard registers can be reused for multiple purposes within the same
971 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
973 if (HARD_REGISTER_P (reg
))
976 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
979 if (MEM_OFFSET (x
) && CONST_INT_P (MEM_OFFSET (x
)))
981 = get_reg_attrs (MEM_EXPR (x
), INTVAL (MEM_OFFSET (x
)) + offset
);
983 mark_reg_pointer (reg
, 0);
988 update_reg_offset (reg
, x
, offset
);
990 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
994 /* Generate a REG rtx for a new pseudo register, copying the mode
995 and attributes from X. */
998 gen_reg_rtx_and_attrs (rtx x
)
1000 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1001 set_reg_attrs_from_value (reg
, x
);
1005 /* Set the register attributes for registers contained in PARM_RTX.
1006 Use needed values from memory attributes of MEM. */
1009 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1011 if (REG_P (parm_rtx
))
1012 set_reg_attrs_from_value (parm_rtx
, mem
);
1013 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1015 /* Check for a NULL entry in the first slot, used to indicate that the
1016 parameter goes both on the stack and in registers. */
1017 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1018 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1020 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1021 if (REG_P (XEXP (x
, 0)))
1022 REG_ATTRS (XEXP (x
, 0))
1023 = get_reg_attrs (MEM_EXPR (mem
),
1024 INTVAL (XEXP (x
, 1)));
1029 /* Set the REG_ATTRS for registers in value X, given that X represents
1033 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1035 if (GET_CODE (x
) == SUBREG
)
1037 gcc_assert (subreg_lowpart_p (x
));
1042 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1044 if (GET_CODE (x
) == CONCAT
)
1046 if (REG_P (XEXP (x
, 0)))
1047 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1048 if (REG_P (XEXP (x
, 1)))
1049 REG_ATTRS (XEXP (x
, 1))
1050 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1052 if (GET_CODE (x
) == PARALLEL
)
1056 /* Check for a NULL entry, used to indicate that the parameter goes
1057 both on the stack and in registers. */
1058 if (XEXP (XVECEXP (x
, 0, 0), 0))
1063 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1065 rtx y
= XVECEXP (x
, 0, i
);
1066 if (REG_P (XEXP (y
, 0)))
1067 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1072 /* Assign the RTX X to declaration T. */
1075 set_decl_rtl (tree t
, rtx x
)
1077 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1079 set_reg_attrs_for_decl_rtl (t
, x
);
1082 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1083 if the ABI requires the parameter to be passed by reference. */
1086 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1088 DECL_INCOMING_RTL (t
) = x
;
1089 if (x
&& !by_reference_p
)
1090 set_reg_attrs_for_decl_rtl (t
, x
);
1093 /* Identify REG (which may be a CONCAT) as a user register. */
1096 mark_user_reg (rtx reg
)
1098 if (GET_CODE (reg
) == CONCAT
)
1100 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1101 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1105 gcc_assert (REG_P (reg
));
1106 REG_USERVAR_P (reg
) = 1;
1110 /* Identify REG as a probable pointer register and show its alignment
1111 as ALIGN, if nonzero. */
1114 mark_reg_pointer (rtx reg
, int align
)
1116 if (! REG_POINTER (reg
))
1118 REG_POINTER (reg
) = 1;
1121 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1123 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1124 /* We can no-longer be sure just how aligned this pointer is. */
1125 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1128 /* Return 1 plus largest pseudo reg number used in the current function. */
1136 /* Return 1 + the largest label number used so far in the current function. */
1139 max_label_num (void)
1144 /* Return first label number used in this function (if any were used). */
1147 get_first_label_num (void)
1149 return first_label_num
;
1152 /* If the rtx for label was created during the expansion of a nested
1153 function, then first_label_num won't include this label number.
1154 Fix this now so that array indices work later. */
1157 maybe_set_first_label_num (rtx x
)
1159 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1160 first_label_num
= CODE_LABEL_NUMBER (x
);
1163 /* Return a value representing some low-order bits of X, where the number
1164 of low-order bits is given by MODE. Note that no conversion is done
1165 between floating-point and fixed-point values, rather, the bit
1166 representation is returned.
1168 This function handles the cases in common between gen_lowpart, below,
1169 and two variants in cse.c and combine.c. These are the cases that can
1170 be safely handled at all points in the compilation.
1172 If this is not a case we can handle, return 0. */
1175 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1177 int msize
= GET_MODE_SIZE (mode
);
1180 enum machine_mode innermode
;
1182 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1183 so we have to make one up. Yuk. */
1184 innermode
= GET_MODE (x
);
1186 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1187 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1188 else if (innermode
== VOIDmode
)
1189 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
* 2, MODE_INT
, 0);
1191 xsize
= GET_MODE_SIZE (innermode
);
1193 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1195 if (innermode
== mode
)
1198 /* MODE must occupy no more words than the mode of X. */
1199 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1200 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1203 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1204 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1207 offset
= subreg_lowpart_offset (mode
, innermode
);
1209 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1210 && (GET_MODE_CLASS (mode
) == MODE_INT
1211 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1213 /* If we are getting the low-order part of something that has been
1214 sign- or zero-extended, we can either just use the object being
1215 extended or make a narrower extension. If we want an even smaller
1216 piece than the size of the object being extended, call ourselves
1219 This case is used mostly by combine and cse. */
1221 if (GET_MODE (XEXP (x
, 0)) == mode
)
1223 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1224 return gen_lowpart_common (mode
, XEXP (x
, 0));
1225 else if (msize
< xsize
)
1226 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1228 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1229 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1230 || GET_CODE (x
) == CONST_DOUBLE
|| CONST_INT_P (x
))
1231 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1233 /* Otherwise, we can't do this. */
1238 gen_highpart (enum machine_mode mode
, rtx x
)
1240 unsigned int msize
= GET_MODE_SIZE (mode
);
1243 /* This case loses if X is a subreg. To catch bugs early,
1244 complain if an invalid MODE is used even in other cases. */
1245 gcc_assert (msize
<= UNITS_PER_WORD
1246 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1248 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1249 subreg_highpart_offset (mode
, GET_MODE (x
)));
1250 gcc_assert (result
);
1252 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1253 the target if we have a MEM. gen_highpart must return a valid operand,
1254 emitting code if necessary to do so. */
1257 result
= validize_mem (result
);
1258 gcc_assert (result
);
1264 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1265 be VOIDmode constant. */
1267 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1269 if (GET_MODE (exp
) != VOIDmode
)
1271 gcc_assert (GET_MODE (exp
) == innermode
);
1272 return gen_highpart (outermode
, exp
);
1274 return simplify_gen_subreg (outermode
, exp
, innermode
,
1275 subreg_highpart_offset (outermode
, innermode
));
1278 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1281 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1283 unsigned int offset
= 0;
1284 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1288 if (WORDS_BIG_ENDIAN
)
1289 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1290 if (BYTES_BIG_ENDIAN
)
1291 offset
+= difference
% UNITS_PER_WORD
;
1297 /* Return offset in bytes to get OUTERMODE high part
1298 of the value in mode INNERMODE stored in memory in target format. */
1300 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1302 unsigned int offset
= 0;
1303 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1305 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1309 if (! WORDS_BIG_ENDIAN
)
1310 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1311 if (! BYTES_BIG_ENDIAN
)
1312 offset
+= difference
% UNITS_PER_WORD
;
1318 /* Return 1 iff X, assumed to be a SUBREG,
1319 refers to the least significant part of its containing reg.
1320 If X is not a SUBREG, always return 1 (it is its own low part!). */
1323 subreg_lowpart_p (const_rtx x
)
1325 if (GET_CODE (x
) != SUBREG
)
1327 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1330 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1331 == SUBREG_BYTE (x
));
1334 /* Return subword OFFSET of operand OP.
1335 The word number, OFFSET, is interpreted as the word number starting
1336 at the low-order address. OFFSET 0 is the low-order word if not
1337 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1339 If we cannot extract the required word, we return zero. Otherwise,
1340 an rtx corresponding to the requested word will be returned.
1342 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1343 reload has completed, a valid address will always be returned. After
1344 reload, if a valid address cannot be returned, we return zero.
1346 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1347 it is the responsibility of the caller.
1349 MODE is the mode of OP in case it is a CONST_INT.
1351 ??? This is still rather broken for some cases. The problem for the
1352 moment is that all callers of this thing provide no 'goal mode' to
1353 tell us to work with. This exists because all callers were written
1354 in a word based SUBREG world.
1355 Now use of this function can be deprecated by simplify_subreg in most
1360 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1362 if (mode
== VOIDmode
)
1363 mode
= GET_MODE (op
);
1365 gcc_assert (mode
!= VOIDmode
);
1367 /* If OP is narrower than a word, fail. */
1369 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1372 /* If we want a word outside OP, return zero. */
1374 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1377 /* Form a new MEM at the requested address. */
1380 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1382 if (! validate_address
)
1385 else if (reload_completed
)
1387 if (! strict_memory_address_addr_space_p (word_mode
,
1389 MEM_ADDR_SPACE (op
)))
1393 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1396 /* Rest can be handled by simplify_subreg. */
1397 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1400 /* Similar to `operand_subword', but never return 0. If we can't
1401 extract the required subword, put OP into a register and try again.
1402 The second attempt must succeed. We always validate the address in
1405 MODE is the mode of OP, in case it is CONST_INT. */
1408 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1410 rtx result
= operand_subword (op
, offset
, 1, mode
);
1415 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1417 /* If this is a register which can not be accessed by words, copy it
1418 to a pseudo register. */
1420 op
= copy_to_reg (op
);
1422 op
= force_reg (mode
, op
);
1425 result
= operand_subword (op
, offset
, 1, mode
);
1426 gcc_assert (result
);
1431 /* Returns 1 if both MEM_EXPR can be considered equal
1435 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1440 if (! expr1
|| ! expr2
)
1443 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1446 return operand_equal_p (expr1
, expr2
, 0);
1449 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1450 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1454 get_mem_align_offset (rtx mem
, unsigned int align
)
1457 unsigned HOST_WIDE_INT offset
;
1459 /* This function can't use
1460 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1461 || !CONST_INT_P (MEM_OFFSET (mem))
1462 || (MAX (MEM_ALIGN (mem),
1463 get_object_alignment (MEM_EXPR (mem), align))
1467 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1469 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1470 for <variable>. get_inner_reference doesn't handle it and
1471 even if it did, the alignment in that case needs to be determined
1472 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1473 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1474 isn't sufficiently aligned, the object it is in might be. */
1475 gcc_assert (MEM_P (mem
));
1476 expr
= MEM_EXPR (mem
);
1477 if (expr
== NULL_TREE
1478 || MEM_OFFSET (mem
) == NULL_RTX
1479 || !CONST_INT_P (MEM_OFFSET (mem
)))
1482 offset
= INTVAL (MEM_OFFSET (mem
));
1485 if (DECL_ALIGN (expr
) < align
)
1488 else if (INDIRECT_REF_P (expr
))
1490 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1493 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1497 tree inner
= TREE_OPERAND (expr
, 0);
1498 tree field
= TREE_OPERAND (expr
, 1);
1499 tree byte_offset
= component_ref_field_offset (expr
);
1500 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1503 || !host_integerp (byte_offset
, 1)
1504 || !host_integerp (bit_offset
, 1))
1507 offset
+= tree_low_cst (byte_offset
, 1);
1508 offset
+= tree_low_cst (bit_offset
, 1) / BITS_PER_UNIT
;
1510 if (inner
== NULL_TREE
)
1512 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1513 < (unsigned int) align
)
1517 else if (DECL_P (inner
))
1519 if (DECL_ALIGN (inner
) < align
)
1523 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1531 return offset
& ((align
/ BITS_PER_UNIT
) - 1);
1534 /* Given REF (a MEM) and T, either the type of X or the expression
1535 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1536 if we are making a new object of this type. BITPOS is nonzero if
1537 there is an offset outstanding on T that will be applied later. */
1540 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1541 HOST_WIDE_INT bitpos
)
1543 alias_set_type alias
= MEM_ALIAS_SET (ref
);
1544 tree expr
= MEM_EXPR (ref
);
1545 rtx offset
= MEM_OFFSET (ref
);
1546 rtx size
= MEM_SIZE (ref
);
1547 unsigned int align
= MEM_ALIGN (ref
);
1548 HOST_WIDE_INT apply_bitpos
= 0;
1551 /* It can happen that type_for_mode was given a mode for which there
1552 is no language-level type. In which case it returns NULL, which
1557 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1558 if (type
== error_mark_node
)
1561 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1562 wrong answer, as it assumes that DECL_RTL already has the right alias
1563 info. Callers should not set DECL_RTL until after the call to
1564 set_mem_attributes. */
1565 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1567 /* Get the alias set from the expression or type (perhaps using a
1568 front-end routine) and use it. */
1569 alias
= get_alias_set (t
);
1571 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1572 MEM_IN_STRUCT_P (ref
)
1573 = AGGREGATE_TYPE_P (type
) || TREE_CODE (type
) == COMPLEX_TYPE
;
1574 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1576 /* If we are making an object of this type, or if this is a DECL, we know
1577 that it is a scalar if the type is not an aggregate. */
1578 if ((objectp
|| DECL_P (t
))
1579 && ! AGGREGATE_TYPE_P (type
)
1580 && TREE_CODE (type
) != COMPLEX_TYPE
)
1581 MEM_SCALAR_P (ref
) = 1;
1583 /* We can set the alignment from the type if we are making an object,
1584 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1585 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1586 align
= MAX (align
, TYPE_ALIGN (type
));
1588 else if (TREE_CODE (t
) == MEM_REF
)
1590 tree op0
= TREE_OPERAND (t
, 0);
1591 if (TREE_CODE (op0
) == ADDR_EXPR
1592 && (DECL_P (TREE_OPERAND (op0
, 0))
1593 || CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0))))
1595 if (DECL_P (TREE_OPERAND (op0
, 0)))
1596 align
= DECL_ALIGN (TREE_OPERAND (op0
, 0));
1597 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0
, 0)))
1599 align
= TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0
, 0)));
1600 #ifdef CONSTANT_ALIGNMENT
1601 align
= CONSTANT_ALIGNMENT (TREE_OPERAND (op0
, 0), align
);
1604 if (TREE_INT_CST_LOW (TREE_OPERAND (t
, 1)) != 0)
1606 unsigned HOST_WIDE_INT ioff
1607 = TREE_INT_CST_LOW (TREE_OPERAND (t
, 1));
1608 unsigned HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1609 align
= MIN (aoff
, align
);
1613 /* ??? This isn't fully correct, we can't set the alignment from the
1614 type in all cases. */
1615 align
= MAX (align
, TYPE_ALIGN (type
));
1618 else if (TREE_CODE (t
) == TARGET_MEM_REF
)
1619 /* ??? This isn't fully correct, we can't set the alignment from the
1620 type in all cases. */
1621 align
= MAX (align
, TYPE_ALIGN (type
));
1623 /* If the size is known, we can set that. */
1624 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1625 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1627 /* If T is not a type, we may be able to deduce some more information about
1632 bool align_computed
= false;
1634 if (TREE_THIS_VOLATILE (t
))
1635 MEM_VOLATILE_P (ref
) = 1;
1637 /* Now remove any conversions: they don't change what the underlying
1638 object is. Likewise for SAVE_EXPR. */
1639 while (CONVERT_EXPR_P (t
)
1640 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1641 || TREE_CODE (t
) == SAVE_EXPR
)
1642 t
= TREE_OPERAND (t
, 0);
1644 /* We may look through structure-like accesses for the purposes of
1645 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1647 while (TREE_CODE (base
) == COMPONENT_REF
1648 || TREE_CODE (base
) == REALPART_EXPR
1649 || TREE_CODE (base
) == IMAGPART_EXPR
1650 || TREE_CODE (base
) == BIT_FIELD_REF
)
1651 base
= TREE_OPERAND (base
, 0);
1653 if (TREE_CODE (base
) == MEM_REF
1654 && TREE_CODE (TREE_OPERAND (base
, 0)) == ADDR_EXPR
)
1655 base
= TREE_OPERAND (TREE_OPERAND (base
, 0), 0);
1658 if (CODE_CONTAINS_STRUCT (TREE_CODE (base
), TS_DECL_WITH_VIS
))
1659 MEM_NOTRAP_P (ref
) = !DECL_WEAK (base
);
1661 MEM_NOTRAP_P (ref
) = 1;
1664 MEM_NOTRAP_P (ref
) = TREE_THIS_NOTRAP (base
);
1666 base
= get_base_address (base
);
1667 if (base
&& DECL_P (base
)
1668 && TREE_READONLY (base
)
1669 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
)))
1670 MEM_READONLY_P (ref
) = 1;
1672 /* If this expression uses it's parent's alias set, mark it such
1673 that we won't change it. */
1674 if (component_uses_parent_alias_set (t
))
1675 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1677 /* If this is a decl, set the attributes of the MEM from it. */
1681 offset
= const0_rtx
;
1682 apply_bitpos
= bitpos
;
1683 size
= (DECL_SIZE_UNIT (t
)
1684 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1685 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1686 align
= DECL_ALIGN (t
);
1687 align_computed
= true;
1690 /* If this is a constant, we know the alignment. */
1691 else if (CONSTANT_CLASS_P (t
))
1693 align
= TYPE_ALIGN (type
);
1694 #ifdef CONSTANT_ALIGNMENT
1695 align
= CONSTANT_ALIGNMENT (t
, align
);
1697 align_computed
= true;
1700 /* If this is a field reference and not a bit-field, record it. */
1701 /* ??? There is some information that can be gleaned from bit-fields,
1702 such as the word offset in the structure that might be modified.
1703 But skip it for now. */
1704 else if (TREE_CODE (t
) == COMPONENT_REF
1705 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1708 offset
= const0_rtx
;
1709 apply_bitpos
= bitpos
;
1710 /* ??? Any reason the field size would be different than
1711 the size we got from the type? */
1714 /* If this is an array reference, look for an outer field reference. */
1715 else if (TREE_CODE (t
) == ARRAY_REF
)
1717 tree off_tree
= size_zero_node
;
1718 /* We can't modify t, because we use it at the end of the
1724 tree index
= TREE_OPERAND (t2
, 1);
1725 tree low_bound
= array_ref_low_bound (t2
);
1726 tree unit_size
= array_ref_element_size (t2
);
1728 /* We assume all arrays have sizes that are a multiple of a byte.
1729 First subtract the lower bound, if any, in the type of the
1730 index, then convert to sizetype and multiply by the size of
1731 the array element. */
1732 if (! integer_zerop (low_bound
))
1733 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1736 off_tree
= size_binop (PLUS_EXPR
,
1737 size_binop (MULT_EXPR
,
1738 fold_convert (sizetype
,
1742 t2
= TREE_OPERAND (t2
, 0);
1744 while (TREE_CODE (t2
) == ARRAY_REF
);
1750 if (host_integerp (off_tree
, 1))
1752 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1753 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1754 align
= DECL_ALIGN (t2
);
1755 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< align
)
1757 align_computed
= true;
1758 offset
= GEN_INT (ioff
);
1759 apply_bitpos
= bitpos
;
1762 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1766 if (host_integerp (off_tree
, 1))
1768 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1769 apply_bitpos
= bitpos
;
1771 /* ??? Any reason the field size would be different than
1772 the size we got from the type? */
1775 /* If this is an indirect reference, record it. */
1776 else if (TREE_CODE (t
) == MEM_REF
)
1779 offset
= const0_rtx
;
1780 apply_bitpos
= bitpos
;
1784 /* If this is an indirect reference, record it. */
1785 else if (TREE_CODE (t
) == MEM_REF
1786 || TREE_CODE (t
) == TARGET_MEM_REF
)
1789 offset
= const0_rtx
;
1790 apply_bitpos
= bitpos
;
1793 if (!align_computed
&& !INDIRECT_REF_P (t
))
1795 unsigned int obj_align
= get_object_alignment (t
, BIGGEST_ALIGNMENT
);
1796 align
= MAX (align
, obj_align
);
1800 /* If we modified OFFSET based on T, then subtract the outstanding
1801 bit position offset. Similarly, increase the size of the accessed
1802 object to contain the negative offset. */
1805 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1807 size
= plus_constant (size
, apply_bitpos
/ BITS_PER_UNIT
);
1810 /* Now set the attributes we computed above. */
1812 = get_mem_attrs (alias
, expr
, offset
, size
, align
,
1813 TYPE_ADDR_SPACE (type
), GET_MODE (ref
));
1815 /* If this is already known to be a scalar or aggregate, we are done. */
1816 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1819 /* If it is a reference into an aggregate, this is part of an aggregate.
1820 Otherwise we don't know. */
1821 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1822 || TREE_CODE (t
) == ARRAY_RANGE_REF
1823 || TREE_CODE (t
) == BIT_FIELD_REF
)
1824 MEM_IN_STRUCT_P (ref
) = 1;
1828 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1830 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1833 /* Set the alias set of MEM to SET. */
1836 set_mem_alias_set (rtx mem
, alias_set_type set
)
1838 #ifdef ENABLE_CHECKING
1839 /* If the new and old alias sets don't conflict, something is wrong. */
1840 gcc_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1843 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1844 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1845 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1848 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1851 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
1853 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1854 MEM_OFFSET (mem
), MEM_SIZE (mem
),
1855 MEM_ALIGN (mem
), addrspace
, GET_MODE (mem
));
1858 /* Set the alignment of MEM to ALIGN bits. */
1861 set_mem_align (rtx mem
, unsigned int align
)
1863 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1864 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1865 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1868 /* Set the expr for MEM to EXPR. */
1871 set_mem_expr (rtx mem
, tree expr
)
1874 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1875 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1876 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1879 /* Set the offset of MEM to OFFSET. */
1882 set_mem_offset (rtx mem
, rtx offset
)
1884 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1885 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1886 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1889 /* Set the size of MEM to SIZE. */
1892 set_mem_size (rtx mem
, rtx size
)
1894 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1895 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1896 MEM_ADDR_SPACE (mem
), GET_MODE (mem
));
1899 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1900 and its address changed to ADDR. (VOIDmode means don't change the mode.
1901 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1902 returned memory location is required to be valid. The memory
1903 attributes are not changed. */
1906 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1911 gcc_assert (MEM_P (memref
));
1912 as
= MEM_ADDR_SPACE (memref
);
1913 if (mode
== VOIDmode
)
1914 mode
= GET_MODE (memref
);
1916 addr
= XEXP (memref
, 0);
1917 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1918 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
1923 if (reload_in_progress
|| reload_completed
)
1924 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
1926 addr
= memory_address_addr_space (mode
, addr
, as
);
1929 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1932 new_rtx
= gen_rtx_MEM (mode
, addr
);
1933 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1937 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1938 way we are changing MEMREF, so we only preserve the alias set. */
1941 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1943 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1), size
;
1944 enum machine_mode mmode
= GET_MODE (new_rtx
);
1947 size
= mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
));
1948 align
= mmode
== BLKmode
? BITS_PER_UNIT
: GET_MODE_ALIGNMENT (mmode
);
1950 /* If there are no changes, just return the original memory reference. */
1951 if (new_rtx
== memref
)
1953 if (MEM_ATTRS (memref
) == 0
1954 || (MEM_EXPR (memref
) == NULL
1955 && MEM_OFFSET (memref
) == NULL
1956 && MEM_SIZE (memref
) == size
1957 && MEM_ALIGN (memref
) == align
))
1960 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1961 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
1965 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0, size
, align
,
1966 MEM_ADDR_SPACE (memref
), mmode
);
1971 /* Return a memory reference like MEMREF, but with its mode changed
1972 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1973 nonzero, the memory address is forced to be valid.
1974 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1975 and caller is responsible for adjusting MEMREF base register. */
1978 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1979 int validate
, int adjust
)
1981 rtx addr
= XEXP (memref
, 0);
1983 rtx memoffset
= MEM_OFFSET (memref
);
1985 unsigned int memalign
= MEM_ALIGN (memref
);
1986 addr_space_t as
= MEM_ADDR_SPACE (memref
);
1987 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
1990 /* If there are no changes, just return the original memory reference. */
1991 if (mode
== GET_MODE (memref
) && !offset
1992 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
1995 /* ??? Prefer to create garbage instead of creating shared rtl.
1996 This may happen even if offset is nonzero -- consider
1997 (plus (plus reg reg) const_int) -- so do this always. */
1998 addr
= copy_rtx (addr
);
2000 /* Convert a possibly large offset to a signed value within the
2001 range of the target address space. */
2002 pbits
= GET_MODE_BITSIZE (address_mode
);
2003 if (HOST_BITS_PER_WIDE_INT
> pbits
)
2005 int shift
= HOST_BITS_PER_WIDE_INT
- pbits
;
2006 offset
= (((HOST_WIDE_INT
) ((unsigned HOST_WIDE_INT
) offset
<< shift
))
2012 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2013 object, we can merge it into the LO_SUM. */
2014 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
2016 && (unsigned HOST_WIDE_INT
) offset
2017 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
2018 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2019 plus_constant (XEXP (addr
, 1), offset
));
2021 addr
= plus_constant (addr
, offset
);
2024 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
);
2026 /* If the address is a REG, change_address_1 rightfully returns memref,
2027 but this would destroy memref's MEM_ATTRS. */
2028 if (new_rtx
== memref
&& offset
!= 0)
2029 new_rtx
= copy_rtx (new_rtx
);
2031 /* Compute the new values of the memory attributes due to this adjustment.
2032 We add the offsets and update the alignment. */
2034 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
2036 /* Compute the new alignment by taking the MIN of the alignment and the
2037 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2042 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
2044 /* We can compute the size in a number of ways. */
2045 if (GET_MODE (new_rtx
) != BLKmode
)
2046 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx
)));
2047 else if (MEM_SIZE (memref
))
2048 size
= plus_constant (MEM_SIZE (memref
), -offset
);
2050 MEM_ATTRS (new_rtx
) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
2051 memoffset
, size
, memalign
, as
,
2052 GET_MODE (new_rtx
));
2054 /* At some point, we should validate that this offset is within the object,
2055 if all the appropriate values are known. */
2059 /* Return a memory reference like MEMREF, but with its mode changed
2060 to MODE and its address changed to ADDR, which is assumed to be
2061 MEMREF offset by OFFSET bytes. If VALIDATE is
2062 nonzero, the memory address is forced to be valid. */
2065 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
2066 HOST_WIDE_INT offset
, int validate
)
2068 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2069 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
2072 /* Return a memory reference like MEMREF, but whose address is changed by
2073 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2074 known to be in OFFSET (possibly 1). */
2077 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2079 rtx new_rtx
, addr
= XEXP (memref
, 0);
2080 addr_space_t as
= MEM_ADDR_SPACE (memref
);
2081 enum machine_mode address_mode
= targetm
.addr_space
.address_mode (as
);
2083 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2085 /* At this point we don't know _why_ the address is invalid. It
2086 could have secondary memory references, multiplies or anything.
2088 However, if we did go and rearrange things, we can wind up not
2089 being able to recognize the magic around pic_offset_table_rtx.
2090 This stuff is fragile, and is yet another example of why it is
2091 bad to expose PIC machinery too early. */
2092 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
, as
)
2093 && GET_CODE (addr
) == PLUS
2094 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2096 addr
= force_reg (GET_MODE (addr
), addr
);
2097 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2100 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2101 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1);
2103 /* If there are no changes, just return the original memory reference. */
2104 if (new_rtx
== memref
)
2107 /* Update the alignment to reflect the offset. Reset the offset, which
2110 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
2111 MIN (MEM_ALIGN (memref
), pow2
* BITS_PER_UNIT
),
2112 as
, GET_MODE (new_rtx
));
2116 /* Return a memory reference like MEMREF, but with its address changed to
2117 ADDR. The caller is asserting that the actual piece of memory pointed
2118 to is the same, just the form of the address is being changed, such as
2119 by putting something into a register. */
2122 replace_equiv_address (rtx memref
, rtx addr
)
2124 /* change_address_1 copies the memory attribute structure without change
2125 and that's exactly what we want here. */
2126 update_temp_slot_address (XEXP (memref
, 0), addr
);
2127 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2130 /* Likewise, but the reference is not required to be valid. */
2133 replace_equiv_address_nv (rtx memref
, rtx addr
)
2135 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2138 /* Return a memory reference like MEMREF, but with its mode widened to
2139 MODE and offset by OFFSET. This would be used by targets that e.g.
2140 cannot issue QImode memory operations and have to use SImode memory
2141 operations plus masking logic. */
2144 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
2146 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1);
2147 tree expr
= MEM_EXPR (new_rtx
);
2148 rtx memoffset
= MEM_OFFSET (new_rtx
);
2149 unsigned int size
= GET_MODE_SIZE (mode
);
2151 /* If there are no changes, just return the original memory reference. */
2152 if (new_rtx
== memref
)
2155 /* If we don't know what offset we were at within the expression, then
2156 we can't know if we've overstepped the bounds. */
2162 if (TREE_CODE (expr
) == COMPONENT_REF
)
2164 tree field
= TREE_OPERAND (expr
, 1);
2165 tree offset
= component_ref_field_offset (expr
);
2167 if (! DECL_SIZE_UNIT (field
))
2173 /* Is the field at least as large as the access? If so, ok,
2174 otherwise strip back to the containing structure. */
2175 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2176 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2177 && INTVAL (memoffset
) >= 0)
2180 if (! host_integerp (offset
, 1))
2186 expr
= TREE_OPERAND (expr
, 0);
2188 = (GEN_INT (INTVAL (memoffset
)
2189 + tree_low_cst (offset
, 1)
2190 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2193 /* Similarly for the decl. */
2194 else if (DECL_P (expr
)
2195 && DECL_SIZE_UNIT (expr
)
2196 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2197 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2198 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2202 /* The widened memory access overflows the expression, which means
2203 that it could alias another expression. Zap it. */
2210 memoffset
= NULL_RTX
;
2212 /* The widened memory may alias other stuff, so zap the alias set. */
2213 /* ??? Maybe use get_alias_set on any remaining expression. */
2215 MEM_ATTRS (new_rtx
) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2216 MEM_ALIGN (new_rtx
),
2217 MEM_ADDR_SPACE (new_rtx
), mode
);
2222 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2223 static GTY(()) tree spill_slot_decl
;
2226 get_spill_slot_decl (bool force_build_p
)
2228 tree d
= spill_slot_decl
;
2231 if (d
|| !force_build_p
)
2234 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2235 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2236 DECL_ARTIFICIAL (d
) = 1;
2237 DECL_IGNORED_P (d
) = 1;
2239 TREE_THIS_NOTRAP (d
) = 1;
2240 spill_slot_decl
= d
;
2242 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2243 MEM_NOTRAP_P (rd
) = 1;
2244 MEM_ATTRS (rd
) = get_mem_attrs (new_alias_set (), d
, const0_rtx
,
2245 NULL_RTX
, 0, ADDR_SPACE_GENERIC
, BLKmode
);
2246 SET_DECL_RTL (d
, rd
);
2251 /* Given MEM, a result from assign_stack_local, fill in the memory
2252 attributes as appropriate for a register allocator spill slot.
2253 These slots are not aliasable by other memory. We arrange for
2254 them all to use a single MEM_EXPR, so that the aliasing code can
2255 work properly in the case of shared spill slots. */
2258 set_mem_attrs_for_spill (rtx mem
)
2260 alias_set_type alias
;
2264 expr
= get_spill_slot_decl (true);
2265 alias
= MEM_ALIAS_SET (DECL_RTL (expr
));
2267 /* We expect the incoming memory to be of the form:
2268 (mem:MODE (plus (reg sfp) (const_int offset)))
2269 with perhaps the plus missing for offset = 0. */
2270 addr
= XEXP (mem
, 0);
2271 offset
= const0_rtx
;
2272 if (GET_CODE (addr
) == PLUS
2273 && CONST_INT_P (XEXP (addr
, 1)))
2274 offset
= XEXP (addr
, 1);
2276 MEM_ATTRS (mem
) = get_mem_attrs (alias
, expr
, offset
,
2277 MEM_SIZE (mem
), MEM_ALIGN (mem
),
2278 ADDR_SPACE_GENERIC
, GET_MODE (mem
));
2279 MEM_NOTRAP_P (mem
) = 1;
2282 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2285 gen_label_rtx (void)
2287 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2288 NULL
, label_num
++, NULL
);
2291 /* For procedure integration. */
2293 /* Install new pointers to the first and last insns in the chain.
2294 Also, set cur_insn_uid to one higher than the last in use.
2295 Used for an inline-procedure after copying the insn chain. */
2298 set_new_first_and_last_insn (rtx first
, rtx last
)
2302 set_first_insn (first
);
2303 set_last_insn (last
);
2306 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2308 int debug_count
= 0;
2310 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2311 cur_debug_insn_uid
= 0;
2313 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2314 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2315 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2318 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2319 if (DEBUG_INSN_P (insn
))
2324 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2326 cur_debug_insn_uid
++;
2329 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2330 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2335 /* Go through all the RTL insn bodies and copy any invalid shared
2336 structure. This routine should only be called once. */
2339 unshare_all_rtl_1 (rtx insn
)
2341 /* Unshare just about everything else. */
2342 unshare_all_rtl_in_chain (insn
);
2344 /* Make sure the addresses of stack slots found outside the insn chain
2345 (such as, in DECL_RTL of a variable) are not shared
2346 with the insn chain.
2348 This special care is necessary when the stack slot MEM does not
2349 actually appear in the insn chain. If it does appear, its address
2350 is unshared from all else at that point. */
2351 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2354 /* Go through all the RTL insn bodies and copy any invalid shared
2355 structure, again. This is a fairly expensive thing to do so it
2356 should be done sparingly. */
2359 unshare_all_rtl_again (rtx insn
)
2364 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2367 reset_used_flags (PATTERN (p
));
2368 reset_used_flags (REG_NOTES (p
));
2371 /* Make sure that virtual stack slots are not shared. */
2372 set_used_decls (DECL_INITIAL (cfun
->decl
));
2374 /* Make sure that virtual parameters are not shared. */
2375 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2376 set_used_flags (DECL_RTL (decl
));
2378 reset_used_flags (stack_slot_list
);
2380 unshare_all_rtl_1 (insn
);
2384 unshare_all_rtl (void)
2386 unshare_all_rtl_1 (get_insns ());
2390 struct rtl_opt_pass pass_unshare_all_rtl
=
2394 "unshare", /* name */
2396 unshare_all_rtl
, /* execute */
2399 0, /* static_pass_number */
2400 TV_NONE
, /* tv_id */
2401 0, /* properties_required */
2402 0, /* properties_provided */
2403 0, /* properties_destroyed */
2404 0, /* todo_flags_start */
2405 TODO_dump_func
| TODO_verify_rtl_sharing
/* todo_flags_finish */
2410 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2411 Recursively does the same for subexpressions. */
2414 verify_rtx_sharing (rtx orig
, rtx insn
)
2419 const char *format_ptr
;
2424 code
= GET_CODE (x
);
2426 /* These types may be freely shared. */
2444 /* SCRATCH must be shared because they represent distinct values. */
2446 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2451 if (shared_const_p (orig
))
2456 /* A MEM is allowed to be shared if its address is constant. */
2457 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2458 || reload_completed
|| reload_in_progress
)
2467 /* This rtx may not be shared. If it has already been seen,
2468 replace it with a copy of itself. */
2469 #ifdef ENABLE_CHECKING
2470 if (RTX_FLAG (x
, used
))
2472 error ("invalid rtl sharing found in the insn");
2474 error ("shared rtx");
2476 internal_error ("internal consistency failure");
2479 gcc_assert (!RTX_FLAG (x
, used
));
2481 RTX_FLAG (x
, used
) = 1;
2483 /* Now scan the subexpressions recursively. */
2485 format_ptr
= GET_RTX_FORMAT (code
);
2487 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2489 switch (*format_ptr
++)
2492 verify_rtx_sharing (XEXP (x
, i
), insn
);
2496 if (XVEC (x
, i
) != NULL
)
2499 int len
= XVECLEN (x
, i
);
2501 for (j
= 0; j
< len
; j
++)
2503 /* We allow sharing of ASM_OPERANDS inside single
2505 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2506 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2508 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2510 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2519 /* Go through all the RTL insn bodies and check that there is no unexpected
2520 sharing in between the subexpressions. */
2523 verify_rtl_sharing (void)
2527 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2530 reset_used_flags (PATTERN (p
));
2531 reset_used_flags (REG_NOTES (p
));
2532 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2535 rtx q
, sequence
= PATTERN (p
);
2537 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2539 q
= XVECEXP (sequence
, 0, i
);
2540 gcc_assert (INSN_P (q
));
2541 reset_used_flags (PATTERN (q
));
2542 reset_used_flags (REG_NOTES (q
));
2547 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2550 verify_rtx_sharing (PATTERN (p
), p
);
2551 verify_rtx_sharing (REG_NOTES (p
), p
);
2555 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2556 Assumes the mark bits are cleared at entry. */
2559 unshare_all_rtl_in_chain (rtx insn
)
2561 for (; insn
; insn
= NEXT_INSN (insn
))
2564 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2565 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2569 /* Go through all virtual stack slots of a function and mark them as
2570 shared. We never replace the DECL_RTLs themselves with a copy,
2571 but expressions mentioned into a DECL_RTL cannot be shared with
2572 expressions in the instruction stream.
2574 Note that reload may convert pseudo registers into memories in-place.
2575 Pseudo registers are always shared, but MEMs never are. Thus if we
2576 reset the used flags on MEMs in the instruction stream, we must set
2577 them again on MEMs that appear in DECL_RTLs. */
2580 set_used_decls (tree blk
)
2585 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
2586 if (DECL_RTL_SET_P (t
))
2587 set_used_flags (DECL_RTL (t
));
2589 /* Now process sub-blocks. */
2590 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
2594 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2595 Recursively does the same for subexpressions. Uses
2596 copy_rtx_if_shared_1 to reduce stack space. */
2599 copy_rtx_if_shared (rtx orig
)
2601 copy_rtx_if_shared_1 (&orig
);
2605 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2606 use. Recursively does the same for subexpressions. */
2609 copy_rtx_if_shared_1 (rtx
*orig1
)
2615 const char *format_ptr
;
2619 /* Repeat is used to turn tail-recursion into iteration. */
2626 code
= GET_CODE (x
);
2628 /* These types may be freely shared. */
2645 /* SCRATCH must be shared because they represent distinct values. */
2648 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2653 if (shared_const_p (x
))
2663 /* The chain of insns is not being copied. */
2670 /* This rtx may not be shared. If it has already been seen,
2671 replace it with a copy of itself. */
2673 if (RTX_FLAG (x
, used
))
2675 x
= shallow_copy_rtx (x
);
2678 RTX_FLAG (x
, used
) = 1;
2680 /* Now scan the subexpressions recursively.
2681 We can store any replaced subexpressions directly into X
2682 since we know X is not shared! Any vectors in X
2683 must be copied if X was copied. */
2685 format_ptr
= GET_RTX_FORMAT (code
);
2686 length
= GET_RTX_LENGTH (code
);
2689 for (i
= 0; i
< length
; i
++)
2691 switch (*format_ptr
++)
2695 copy_rtx_if_shared_1 (last_ptr
);
2696 last_ptr
= &XEXP (x
, i
);
2700 if (XVEC (x
, i
) != NULL
)
2703 int len
= XVECLEN (x
, i
);
2705 /* Copy the vector iff I copied the rtx and the length
2707 if (copied
&& len
> 0)
2708 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2710 /* Call recursively on all inside the vector. */
2711 for (j
= 0; j
< len
; j
++)
2714 copy_rtx_if_shared_1 (last_ptr
);
2715 last_ptr
= &XVECEXP (x
, i
, j
);
2730 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2731 to look for shared sub-parts. */
2734 reset_used_flags (rtx x
)
2738 const char *format_ptr
;
2741 /* Repeat is used to turn tail-recursion into iteration. */
2746 code
= GET_CODE (x
);
2748 /* These types may be freely shared so we needn't do any resetting
2773 /* The chain of insns is not being copied. */
2780 RTX_FLAG (x
, used
) = 0;
2782 format_ptr
= GET_RTX_FORMAT (code
);
2783 length
= GET_RTX_LENGTH (code
);
2785 for (i
= 0; i
< length
; i
++)
2787 switch (*format_ptr
++)
2795 reset_used_flags (XEXP (x
, i
));
2799 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2800 reset_used_flags (XVECEXP (x
, i
, j
));
2806 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2807 to look for shared sub-parts. */
2810 set_used_flags (rtx x
)
2814 const char *format_ptr
;
2819 code
= GET_CODE (x
);
2821 /* These types may be freely shared so we needn't do any resetting
2846 /* The chain of insns is not being copied. */
2853 RTX_FLAG (x
, used
) = 1;
2855 format_ptr
= GET_RTX_FORMAT (code
);
2856 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2858 switch (*format_ptr
++)
2861 set_used_flags (XEXP (x
, i
));
2865 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2866 set_used_flags (XVECEXP (x
, i
, j
));
2872 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2873 Return X or the rtx for the pseudo reg the value of X was copied into.
2874 OTHER must be valid as a SET_DEST. */
2877 make_safe_from (rtx x
, rtx other
)
2880 switch (GET_CODE (other
))
2883 other
= SUBREG_REG (other
);
2885 case STRICT_LOW_PART
:
2888 other
= XEXP (other
, 0);
2897 && GET_CODE (x
) != SUBREG
)
2899 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2900 || reg_mentioned_p (other
, x
))))
2902 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2903 emit_move_insn (temp
, x
);
2909 /* Emission of insns (adding them to the doubly-linked list). */
2911 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2914 get_last_insn_anywhere (void)
2916 struct sequence_stack
*stack
;
2917 if (get_last_insn ())
2918 return get_last_insn ();
2919 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2920 if (stack
->last
!= 0)
2925 /* Return the first nonnote insn emitted in current sequence or current
2926 function. This routine looks inside SEQUENCEs. */
2929 get_first_nonnote_insn (void)
2931 rtx insn
= get_insns ();
2936 for (insn
= next_insn (insn
);
2937 insn
&& NOTE_P (insn
);
2938 insn
= next_insn (insn
))
2942 if (NONJUMP_INSN_P (insn
)
2943 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2944 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2951 /* Return the last nonnote insn emitted in current sequence or current
2952 function. This routine looks inside SEQUENCEs. */
2955 get_last_nonnote_insn (void)
2957 rtx insn
= get_last_insn ();
2962 for (insn
= previous_insn (insn
);
2963 insn
&& NOTE_P (insn
);
2964 insn
= previous_insn (insn
))
2968 if (NONJUMP_INSN_P (insn
)
2969 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2970 insn
= XVECEXP (PATTERN (insn
), 0,
2971 XVECLEN (PATTERN (insn
), 0) - 1);
2978 /* Return the number of actual (non-debug) insns emitted in this
2982 get_max_insn_count (void)
2984 int n
= cur_insn_uid
;
2986 /* The table size must be stable across -g, to avoid codegen
2987 differences due to debug insns, and not be affected by
2988 -fmin-insn-uid, to avoid excessive table size and to simplify
2989 debugging of -fcompare-debug failures. */
2990 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
2991 n
-= cur_debug_insn_uid
;
2993 n
-= MIN_NONDEBUG_INSN_UID
;
2999 /* Return the next insn. If it is a SEQUENCE, return the first insn
3003 next_insn (rtx insn
)
3007 insn
= NEXT_INSN (insn
);
3008 if (insn
&& NONJUMP_INSN_P (insn
)
3009 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3010 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3016 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3020 previous_insn (rtx insn
)
3024 insn
= PREV_INSN (insn
);
3025 if (insn
&& NONJUMP_INSN_P (insn
)
3026 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3027 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
3033 /* Return the next insn after INSN that is not a NOTE. This routine does not
3034 look inside SEQUENCEs. */
3037 next_nonnote_insn (rtx insn
)
3041 insn
= NEXT_INSN (insn
);
3042 if (insn
== 0 || !NOTE_P (insn
))
3049 /* Return the next insn after INSN that is not a NOTE, but stop the
3050 search before we enter another basic block. This routine does not
3051 look inside SEQUENCEs. */
3054 next_nonnote_insn_bb (rtx insn
)
3058 insn
= NEXT_INSN (insn
);
3059 if (insn
== 0 || !NOTE_P (insn
))
3061 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3068 /* Return the previous insn before INSN that is not a NOTE. This routine does
3069 not look inside SEQUENCEs. */
3072 prev_nonnote_insn (rtx insn
)
3076 insn
= PREV_INSN (insn
);
3077 if (insn
== 0 || !NOTE_P (insn
))
3084 /* Return the previous insn before INSN that is not a NOTE, but stop
3085 the search before we enter another basic block. This routine does
3086 not look inside SEQUENCEs. */
3089 prev_nonnote_insn_bb (rtx insn
)
3093 insn
= PREV_INSN (insn
);
3094 if (insn
== 0 || !NOTE_P (insn
))
3096 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3103 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3104 routine does not look inside SEQUENCEs. */
3107 next_nondebug_insn (rtx insn
)
3111 insn
= NEXT_INSN (insn
);
3112 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3119 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3120 This routine does not look inside SEQUENCEs. */
3123 prev_nondebug_insn (rtx insn
)
3127 insn
= PREV_INSN (insn
);
3128 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3135 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3136 This routine does not look inside SEQUENCEs. */
3139 next_nonnote_nondebug_insn (rtx insn
)
3143 insn
= NEXT_INSN (insn
);
3144 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3151 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3152 This routine does not look inside SEQUENCEs. */
3155 prev_nonnote_nondebug_insn (rtx insn
)
3159 insn
= PREV_INSN (insn
);
3160 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3167 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3168 or 0, if there is none. This routine does not look inside
3172 next_real_insn (rtx insn
)
3176 insn
= NEXT_INSN (insn
);
3177 if (insn
== 0 || INSN_P (insn
))
3184 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3185 or 0, if there is none. This routine does not look inside
3189 prev_real_insn (rtx insn
)
3193 insn
= PREV_INSN (insn
);
3194 if (insn
== 0 || INSN_P (insn
))
3201 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3202 This routine does not look inside SEQUENCEs. */
3205 last_call_insn (void)
3209 for (insn
= get_last_insn ();
3210 insn
&& !CALL_P (insn
);
3211 insn
= PREV_INSN (insn
))
3217 /* Find the next insn after INSN that really does something. This routine
3218 does not look inside SEQUENCEs. After reload this also skips over
3219 standalone USE and CLOBBER insn. */
3222 active_insn_p (const_rtx insn
)
3224 return (CALL_P (insn
) || JUMP_P (insn
)
3225 || (NONJUMP_INSN_P (insn
)
3226 && (! reload_completed
3227 || (GET_CODE (PATTERN (insn
)) != USE
3228 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3232 next_active_insn (rtx insn
)
3236 insn
= NEXT_INSN (insn
);
3237 if (insn
== 0 || active_insn_p (insn
))
3244 /* Find the last insn before INSN that really does something. This routine
3245 does not look inside SEQUENCEs. After reload this also skips over
3246 standalone USE and CLOBBER insn. */
3249 prev_active_insn (rtx insn
)
3253 insn
= PREV_INSN (insn
);
3254 if (insn
== 0 || active_insn_p (insn
))
3261 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3264 next_label (rtx insn
)
3268 insn
= NEXT_INSN (insn
);
3269 if (insn
== 0 || LABEL_P (insn
))
3276 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3279 prev_label (rtx insn
)
3283 insn
= PREV_INSN (insn
);
3284 if (insn
== 0 || LABEL_P (insn
))
3291 /* Return the last label to mark the same position as LABEL. Return null
3292 if LABEL itself is null. */
3295 skip_consecutive_labels (rtx label
)
3299 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3307 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3308 and REG_CC_USER notes so we can find it. */
3311 link_cc0_insns (rtx insn
)
3313 rtx user
= next_nonnote_insn (insn
);
3315 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3316 user
= XVECEXP (PATTERN (user
), 0, 0);
3318 add_reg_note (user
, REG_CC_SETTER
, insn
);
3319 add_reg_note (insn
, REG_CC_USER
, user
);
3322 /* Return the next insn that uses CC0 after INSN, which is assumed to
3323 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3324 applied to the result of this function should yield INSN).
3326 Normally, this is simply the next insn. However, if a REG_CC_USER note
3327 is present, it contains the insn that uses CC0.
3329 Return 0 if we can't find the insn. */
3332 next_cc0_user (rtx insn
)
3334 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3337 return XEXP (note
, 0);
3339 insn
= next_nonnote_insn (insn
);
3340 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3341 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3343 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3349 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3350 note, it is the previous insn. */
3353 prev_cc0_setter (rtx insn
)
3355 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3358 return XEXP (note
, 0);
3360 insn
= prev_nonnote_insn (insn
);
3361 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3368 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3371 find_auto_inc (rtx
*xp
, void *data
)
3374 rtx reg
= (rtx
) data
;
3376 if (GET_RTX_CLASS (GET_CODE (x
)) != RTX_AUTOINC
)
3379 switch (GET_CODE (x
))
3387 if (rtx_equal_p (reg
, XEXP (x
, 0)))
3398 /* Increment the label uses for all labels present in rtx. */
3401 mark_label_nuses (rtx x
)
3407 code
= GET_CODE (x
);
3408 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3409 LABEL_NUSES (XEXP (x
, 0))++;
3411 fmt
= GET_RTX_FORMAT (code
);
3412 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3415 mark_label_nuses (XEXP (x
, i
));
3416 else if (fmt
[i
] == 'E')
3417 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3418 mark_label_nuses (XVECEXP (x
, i
, j
));
3423 /* Try splitting insns that can be split for better scheduling.
3424 PAT is the pattern which might split.
3425 TRIAL is the insn providing PAT.
3426 LAST is nonzero if we should return the last insn of the sequence produced.
3428 If this routine succeeds in splitting, it returns the first or last
3429 replacement insn depending on the value of LAST. Otherwise, it
3430 returns TRIAL. If the insn to be returned can be split, it will be. */
3433 try_split (rtx pat
, rtx trial
, int last
)
3435 rtx before
= PREV_INSN (trial
);
3436 rtx after
= NEXT_INSN (trial
);
3437 int has_barrier
= 0;
3440 rtx insn_last
, insn
;
3443 /* We're not good at redistributing frame information. */
3444 if (RTX_FRAME_RELATED_P (trial
))
3447 if (any_condjump_p (trial
)
3448 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3449 split_branch_probability
= INTVAL (XEXP (note
, 0));
3450 probability
= split_branch_probability
;
3452 seq
= split_insns (pat
, trial
);
3454 split_branch_probability
= -1;
3456 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3457 We may need to handle this specially. */
3458 if (after
&& BARRIER_P (after
))
3461 after
= NEXT_INSN (after
);
3467 /* Avoid infinite loop if any insn of the result matches
3468 the original pattern. */
3472 if (INSN_P (insn_last
)
3473 && rtx_equal_p (PATTERN (insn_last
), pat
))
3475 if (!NEXT_INSN (insn_last
))
3477 insn_last
= NEXT_INSN (insn_last
);
3480 /* We will be adding the new sequence to the function. The splitters
3481 may have introduced invalid RTL sharing, so unshare the sequence now. */
3482 unshare_all_rtl_in_chain (seq
);
3485 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3489 mark_jump_label (PATTERN (insn
), insn
, 0);
3491 if (probability
!= -1
3492 && any_condjump_p (insn
)
3493 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3495 /* We can preserve the REG_BR_PROB notes only if exactly
3496 one jump is created, otherwise the machine description
3497 is responsible for this step using
3498 split_branch_probability variable. */
3499 gcc_assert (njumps
== 1);
3500 add_reg_note (insn
, REG_BR_PROB
, GEN_INT (probability
));
3505 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3506 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3509 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3512 rtx
*p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3515 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3516 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3518 /* Update the debug information for the CALL_INSN. */
3519 if (flag_enable_icf_debug
)
3520 (*debug_hooks
->copy_call_info
) (trial
, insn
);
3524 /* Copy notes, particularly those related to the CFG. */
3525 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3527 switch (REG_NOTE_KIND (note
))
3530 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3535 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3538 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3542 case REG_NON_LOCAL_GOTO
:
3543 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3546 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3552 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3554 rtx reg
= XEXP (note
, 0);
3555 if (!FIND_REG_INC_NOTE (insn
, reg
)
3556 && for_each_rtx (&PATTERN (insn
), find_auto_inc
, reg
) > 0)
3557 add_reg_note (insn
, REG_INC
, reg
);
3567 /* If there are LABELS inside the split insns increment the
3568 usage count so we don't delete the label. */
3572 while (insn
!= NULL_RTX
)
3574 /* JUMP_P insns have already been "marked" above. */
3575 if (NONJUMP_INSN_P (insn
))
3576 mark_label_nuses (PATTERN (insn
));
3578 insn
= PREV_INSN (insn
);
3582 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATOR (trial
));
3584 delete_insn (trial
);
3586 emit_barrier_after (tem
);
3588 /* Recursively call try_split for each new insn created; by the
3589 time control returns here that insn will be fully split, so
3590 set LAST and continue from the insn after the one returned.
3591 We can't use next_active_insn here since AFTER may be a note.
3592 Ignore deleted insns, which can be occur if not optimizing. */
3593 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3594 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3595 tem
= try_split (PATTERN (tem
), tem
, 1);
3597 /* Return either the first or the last insn, depending on which was
3600 ? (after
? PREV_INSN (after
) : get_last_insn ())
3601 : NEXT_INSN (before
);
3604 /* Make and return an INSN rtx, initializing all its slots.
3605 Store PATTERN in the pattern slots. */
3608 make_insn_raw (rtx pattern
)
3612 insn
= rtx_alloc (INSN
);
3614 INSN_UID (insn
) = cur_insn_uid
++;
3615 PATTERN (insn
) = pattern
;
3616 INSN_CODE (insn
) = -1;
3617 REG_NOTES (insn
) = NULL
;
3618 INSN_LOCATOR (insn
) = curr_insn_locator ();
3619 BLOCK_FOR_INSN (insn
) = NULL
;
3621 #ifdef ENABLE_RTL_CHECKING
3624 && (returnjump_p (insn
)
3625 || (GET_CODE (insn
) == SET
3626 && SET_DEST (insn
) == pc_rtx
)))
3628 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3636 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3639 make_debug_insn_raw (rtx pattern
)
3643 insn
= rtx_alloc (DEBUG_INSN
);
3644 INSN_UID (insn
) = cur_debug_insn_uid
++;
3645 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3646 INSN_UID (insn
) = cur_insn_uid
++;
3648 PATTERN (insn
) = pattern
;
3649 INSN_CODE (insn
) = -1;
3650 REG_NOTES (insn
) = NULL
;
3651 INSN_LOCATOR (insn
) = curr_insn_locator ();
3652 BLOCK_FOR_INSN (insn
) = NULL
;
3657 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3660 make_jump_insn_raw (rtx pattern
)
3664 insn
= rtx_alloc (JUMP_INSN
);
3665 INSN_UID (insn
) = cur_insn_uid
++;
3667 PATTERN (insn
) = pattern
;
3668 INSN_CODE (insn
) = -1;
3669 REG_NOTES (insn
) = NULL
;
3670 JUMP_LABEL (insn
) = NULL
;
3671 INSN_LOCATOR (insn
) = curr_insn_locator ();
3672 BLOCK_FOR_INSN (insn
) = NULL
;
3677 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3680 make_call_insn_raw (rtx pattern
)
3684 insn
= rtx_alloc (CALL_INSN
);
3685 INSN_UID (insn
) = cur_insn_uid
++;
3687 PATTERN (insn
) = pattern
;
3688 INSN_CODE (insn
) = -1;
3689 REG_NOTES (insn
) = NULL
;
3690 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3691 INSN_LOCATOR (insn
) = curr_insn_locator ();
3692 BLOCK_FOR_INSN (insn
) = NULL
;
3697 /* Add INSN to the end of the doubly-linked list.
3698 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3703 PREV_INSN (insn
) = get_last_insn();
3704 NEXT_INSN (insn
) = 0;
3706 if (NULL
!= get_last_insn())
3707 NEXT_INSN (get_last_insn ()) = insn
;
3709 if (NULL
== get_insns ())
3710 set_first_insn (insn
);
3712 set_last_insn (insn
);
3715 /* Add INSN into the doubly-linked list after insn AFTER. This and
3716 the next should be the only functions called to insert an insn once
3717 delay slots have been filled since only they know how to update a
3721 add_insn_after (rtx insn
, rtx after
, basic_block bb
)
3723 rtx next
= NEXT_INSN (after
);
3725 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3727 NEXT_INSN (insn
) = next
;
3728 PREV_INSN (insn
) = after
;
3732 PREV_INSN (next
) = insn
;
3733 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3734 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3736 else if (get_last_insn () == after
)
3737 set_last_insn (insn
);
3740 struct sequence_stack
*stack
= seq_stack
;
3741 /* Scan all pending sequences too. */
3742 for (; stack
; stack
= stack
->next
)
3743 if (after
== stack
->last
)
3752 if (!BARRIER_P (after
)
3753 && !BARRIER_P (insn
)
3754 && (bb
= BLOCK_FOR_INSN (after
)))
3756 set_block_for_insn (insn
, bb
);
3758 df_insn_rescan (insn
);
3759 /* Should not happen as first in the BB is always
3760 either NOTE or LABEL. */
3761 if (BB_END (bb
) == after
3762 /* Avoid clobbering of structure when creating new BB. */
3763 && !BARRIER_P (insn
)
3764 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
3768 NEXT_INSN (after
) = insn
;
3769 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3771 rtx sequence
= PATTERN (after
);
3772 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3776 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3777 the previous should be the only functions called to insert an insn
3778 once delay slots have been filled since only they know how to
3779 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3783 add_insn_before (rtx insn
, rtx before
, basic_block bb
)
3785 rtx prev
= PREV_INSN (before
);
3787 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3789 PREV_INSN (insn
) = prev
;
3790 NEXT_INSN (insn
) = before
;
3794 NEXT_INSN (prev
) = insn
;
3795 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3797 rtx sequence
= PATTERN (prev
);
3798 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3801 else if (get_insns () == before
)
3802 set_first_insn (insn
);
3805 struct sequence_stack
*stack
= seq_stack
;
3806 /* Scan all pending sequences too. */
3807 for (; stack
; stack
= stack
->next
)
3808 if (before
== stack
->first
)
3810 stack
->first
= insn
;
3818 && !BARRIER_P (before
)
3819 && !BARRIER_P (insn
))
3820 bb
= BLOCK_FOR_INSN (before
);
3824 set_block_for_insn (insn
, bb
);
3826 df_insn_rescan (insn
);
3827 /* Should not happen as first in the BB is always either NOTE or
3829 gcc_assert (BB_HEAD (bb
) != insn
3830 /* Avoid clobbering of structure when creating new BB. */
3832 || NOTE_INSN_BASIC_BLOCK_P (insn
));
3835 PREV_INSN (before
) = insn
;
3836 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3837 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3841 /* Replace insn with an deleted instruction note. */
3844 set_insn_deleted (rtx insn
)
3846 df_insn_delete (BLOCK_FOR_INSN (insn
), INSN_UID (insn
));
3847 PUT_CODE (insn
, NOTE
);
3848 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
3852 /* Remove an insn from its doubly-linked list. This function knows how
3853 to handle sequences. */
3855 remove_insn (rtx insn
)
3857 rtx next
= NEXT_INSN (insn
);
3858 rtx prev
= PREV_INSN (insn
);
3861 /* Later in the code, the block will be marked dirty. */
3862 df_insn_delete (NULL
, INSN_UID (insn
));
3866 NEXT_INSN (prev
) = next
;
3867 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3869 rtx sequence
= PATTERN (prev
);
3870 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3873 else if (get_insns () == insn
)
3876 PREV_INSN (next
) = NULL
;
3877 set_first_insn (next
);
3881 struct sequence_stack
*stack
= seq_stack
;
3882 /* Scan all pending sequences too. */
3883 for (; stack
; stack
= stack
->next
)
3884 if (insn
== stack
->first
)
3886 stack
->first
= next
;
3895 PREV_INSN (next
) = prev
;
3896 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3897 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3899 else if (get_last_insn () == insn
)
3900 set_last_insn (prev
);
3903 struct sequence_stack
*stack
= seq_stack
;
3904 /* Scan all pending sequences too. */
3905 for (; stack
; stack
= stack
->next
)
3906 if (insn
== stack
->last
)
3914 if (!BARRIER_P (insn
)
3915 && (bb
= BLOCK_FOR_INSN (insn
)))
3918 df_set_bb_dirty (bb
);
3919 if (BB_HEAD (bb
) == insn
)
3921 /* Never ever delete the basic block note without deleting whole
3923 gcc_assert (!NOTE_P (insn
));
3924 BB_HEAD (bb
) = next
;
3926 if (BB_END (bb
) == insn
)
3931 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3934 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3936 gcc_assert (call_insn
&& CALL_P (call_insn
));
3938 /* Put the register usage information on the CALL. If there is already
3939 some usage information, put ours at the end. */
3940 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
3944 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
3945 link
= XEXP (link
, 1))
3948 XEXP (link
, 1) = call_fusage
;
3951 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
3954 /* Delete all insns made since FROM.
3955 FROM becomes the new last instruction. */
3958 delete_insns_since (rtx from
)
3963 NEXT_INSN (from
) = 0;
3964 set_last_insn (from
);
3967 /* This function is deprecated, please use sequences instead.
3969 Move a consecutive bunch of insns to a different place in the chain.
3970 The insns to be moved are those between FROM and TO.
3971 They are moved to a new position after the insn AFTER.
3972 AFTER must not be FROM or TO or any insn in between.
3974 This function does not know about SEQUENCEs and hence should not be
3975 called after delay-slot filling has been done. */
3978 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
3980 #ifdef ENABLE_CHECKING
3982 for (x
= from
; x
!= to
; x
= NEXT_INSN (x
))
3983 gcc_assert (after
!= x
);
3984 gcc_assert (after
!= to
);
3987 /* Splice this bunch out of where it is now. */
3988 if (PREV_INSN (from
))
3989 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3991 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3992 if (get_last_insn () == to
)
3993 set_last_insn (PREV_INSN (from
));
3994 if (get_insns () == from
)
3995 set_first_insn (NEXT_INSN (to
));
3997 /* Make the new neighbors point to it and it to them. */
3998 if (NEXT_INSN (after
))
3999 PREV_INSN (NEXT_INSN (after
)) = to
;
4001 NEXT_INSN (to
) = NEXT_INSN (after
);
4002 PREV_INSN (from
) = after
;
4003 NEXT_INSN (after
) = from
;
4004 if (after
== get_last_insn())
4008 /* Same as function above, but take care to update BB boundaries. */
4010 reorder_insns (rtx from
, rtx to
, rtx after
)
4012 rtx prev
= PREV_INSN (from
);
4013 basic_block bb
, bb2
;
4015 reorder_insns_nobb (from
, to
, after
);
4017 if (!BARRIER_P (after
)
4018 && (bb
= BLOCK_FOR_INSN (after
)))
4021 df_set_bb_dirty (bb
);
4023 if (!BARRIER_P (from
)
4024 && (bb2
= BLOCK_FOR_INSN (from
)))
4026 if (BB_END (bb2
) == to
)
4027 BB_END (bb2
) = prev
;
4028 df_set_bb_dirty (bb2
);
4031 if (BB_END (bb
) == after
)
4034 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4036 df_insn_change_bb (x
, bb
);
4041 /* Emit insn(s) of given code and pattern
4042 at a specified place within the doubly-linked list.
4044 All of the emit_foo global entry points accept an object
4045 X which is either an insn list or a PATTERN of a single
4048 There are thus a few canonical ways to generate code and
4049 emit it at a specific place in the instruction stream. For
4050 example, consider the instruction named SPOT and the fact that
4051 we would like to emit some instructions before SPOT. We might
4055 ... emit the new instructions ...
4056 insns_head = get_insns ();
4059 emit_insn_before (insns_head, SPOT);
4061 It used to be common to generate SEQUENCE rtl instead, but that
4062 is a relic of the past which no longer occurs. The reason is that
4063 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4064 generated would almost certainly die right after it was created. */
4066 /* Make X be output before the instruction BEFORE. */
4069 emit_insn_before_noloc (rtx x
, rtx before
, basic_block bb
)
4074 gcc_assert (before
);
4079 switch (GET_CODE (x
))
4091 rtx next
= NEXT_INSN (insn
);
4092 add_insn_before (insn
, before
, bb
);
4098 #ifdef ENABLE_RTL_CHECKING
4105 last
= make_insn_raw (x
);
4106 add_insn_before (last
, before
, bb
);
4113 /* Make an instruction with body X and code JUMP_INSN
4114 and output it before the instruction BEFORE. */
4117 emit_jump_insn_before_noloc (rtx x
, rtx before
)
4119 rtx insn
, last
= NULL_RTX
;
4121 gcc_assert (before
);
4123 switch (GET_CODE (x
))
4135 rtx next
= NEXT_INSN (insn
);
4136 add_insn_before (insn
, before
, NULL
);
4142 #ifdef ENABLE_RTL_CHECKING
4149 last
= make_jump_insn_raw (x
);
4150 add_insn_before (last
, before
, NULL
);
4157 /* Make an instruction with body X and code CALL_INSN
4158 and output it before the instruction BEFORE. */
4161 emit_call_insn_before_noloc (rtx x
, rtx before
)
4163 rtx last
= NULL_RTX
, insn
;
4165 gcc_assert (before
);
4167 switch (GET_CODE (x
))
4179 rtx next
= NEXT_INSN (insn
);
4180 add_insn_before (insn
, before
, NULL
);
4186 #ifdef ENABLE_RTL_CHECKING
4193 last
= make_call_insn_raw (x
);
4194 add_insn_before (last
, before
, NULL
);
4201 /* Make an instruction with body X and code DEBUG_INSN
4202 and output it before the instruction BEFORE. */
4205 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4207 rtx last
= NULL_RTX
, insn
;
4209 gcc_assert (before
);
4211 switch (GET_CODE (x
))
4223 rtx next
= NEXT_INSN (insn
);
4224 add_insn_before (insn
, before
, NULL
);
4230 #ifdef ENABLE_RTL_CHECKING
4237 last
= make_debug_insn_raw (x
);
4238 add_insn_before (last
, before
, NULL
);
4245 /* Make an insn of code BARRIER
4246 and output it before the insn BEFORE. */
4249 emit_barrier_before (rtx before
)
4251 rtx insn
= rtx_alloc (BARRIER
);
4253 INSN_UID (insn
) = cur_insn_uid
++;
4255 add_insn_before (insn
, before
, NULL
);
4259 /* Emit the label LABEL before the insn BEFORE. */
4262 emit_label_before (rtx label
, rtx before
)
4264 /* This can be called twice for the same label as a result of the
4265 confusion that follows a syntax error! So make it harmless. */
4266 if (INSN_UID (label
) == 0)
4268 INSN_UID (label
) = cur_insn_uid
++;
4269 add_insn_before (label
, before
, NULL
);
4275 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4278 emit_note_before (enum insn_note subtype
, rtx before
)
4280 rtx note
= rtx_alloc (NOTE
);
4281 INSN_UID (note
) = cur_insn_uid
++;
4282 NOTE_KIND (note
) = subtype
;
4283 BLOCK_FOR_INSN (note
) = NULL
;
4284 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4286 add_insn_before (note
, before
, NULL
);
4290 /* Helper for emit_insn_after, handles lists of instructions
4294 emit_insn_after_1 (rtx first
, rtx after
, basic_block bb
)
4298 if (!bb
&& !BARRIER_P (after
))
4299 bb
= BLOCK_FOR_INSN (after
);
4303 df_set_bb_dirty (bb
);
4304 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4305 if (!BARRIER_P (last
))
4307 set_block_for_insn (last
, bb
);
4308 df_insn_rescan (last
);
4310 if (!BARRIER_P (last
))
4312 set_block_for_insn (last
, bb
);
4313 df_insn_rescan (last
);
4315 if (BB_END (bb
) == after
)
4319 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4322 after_after
= NEXT_INSN (after
);
4324 NEXT_INSN (after
) = first
;
4325 PREV_INSN (first
) = after
;
4326 NEXT_INSN (last
) = after_after
;
4328 PREV_INSN (after_after
) = last
;
4330 if (after
== get_last_insn())
4331 set_last_insn (last
);
4336 /* Make X be output after the insn AFTER and set the BB of insn. If
4337 BB is NULL, an attempt is made to infer the BB from AFTER. */
4340 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4349 switch (GET_CODE (x
))
4358 last
= emit_insn_after_1 (x
, after
, bb
);
4361 #ifdef ENABLE_RTL_CHECKING
4368 last
= make_insn_raw (x
);
4369 add_insn_after (last
, after
, bb
);
4377 /* Make an insn of code JUMP_INSN with body X
4378 and output it after the insn AFTER. */
4381 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4387 switch (GET_CODE (x
))
4396 last
= emit_insn_after_1 (x
, after
, NULL
);
4399 #ifdef ENABLE_RTL_CHECKING
4406 last
= make_jump_insn_raw (x
);
4407 add_insn_after (last
, after
, NULL
);
4414 /* Make an instruction with body X and code CALL_INSN
4415 and output it after the instruction AFTER. */
4418 emit_call_insn_after_noloc (rtx x
, rtx after
)
4424 switch (GET_CODE (x
))
4433 last
= emit_insn_after_1 (x
, after
, NULL
);
4436 #ifdef ENABLE_RTL_CHECKING
4443 last
= make_call_insn_raw (x
);
4444 add_insn_after (last
, after
, NULL
);
4451 /* Make an instruction with body X and code CALL_INSN
4452 and output it after the instruction AFTER. */
4455 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4461 switch (GET_CODE (x
))
4470 last
= emit_insn_after_1 (x
, after
, NULL
);
4473 #ifdef ENABLE_RTL_CHECKING
4480 last
= make_debug_insn_raw (x
);
4481 add_insn_after (last
, after
, NULL
);
4488 /* Make an insn of code BARRIER
4489 and output it after the insn AFTER. */
4492 emit_barrier_after (rtx after
)
4494 rtx insn
= rtx_alloc (BARRIER
);
4496 INSN_UID (insn
) = cur_insn_uid
++;
4498 add_insn_after (insn
, after
, NULL
);
4502 /* Emit the label LABEL after the insn AFTER. */
4505 emit_label_after (rtx label
, rtx after
)
4507 /* This can be called twice for the same label
4508 as a result of the confusion that follows a syntax error!
4509 So make it harmless. */
4510 if (INSN_UID (label
) == 0)
4512 INSN_UID (label
) = cur_insn_uid
++;
4513 add_insn_after (label
, after
, NULL
);
4519 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4522 emit_note_after (enum insn_note subtype
, rtx after
)
4524 rtx note
= rtx_alloc (NOTE
);
4525 INSN_UID (note
) = cur_insn_uid
++;
4526 NOTE_KIND (note
) = subtype
;
4527 BLOCK_FOR_INSN (note
) = NULL
;
4528 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4529 add_insn_after (note
, after
, NULL
);
4533 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4535 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4537 rtx last
= emit_insn_after_noloc (pattern
, after
, NULL
);
4539 if (pattern
== NULL_RTX
|| !loc
)
4542 after
= NEXT_INSN (after
);
4545 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4546 INSN_LOCATOR (after
) = loc
;
4549 after
= NEXT_INSN (after
);
4554 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4556 emit_insn_after (rtx pattern
, rtx after
)
4560 while (DEBUG_INSN_P (prev
))
4561 prev
= PREV_INSN (prev
);
4564 return emit_insn_after_setloc (pattern
, after
, INSN_LOCATOR (prev
));
4566 return emit_insn_after_noloc (pattern
, after
, NULL
);
4569 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4571 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4573 rtx last
= emit_jump_insn_after_noloc (pattern
, after
);
4575 if (pattern
== NULL_RTX
|| !loc
)
4578 after
= NEXT_INSN (after
);
4581 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4582 INSN_LOCATOR (after
) = loc
;
4585 after
= NEXT_INSN (after
);
4590 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4592 emit_jump_insn_after (rtx pattern
, rtx after
)
4596 while (DEBUG_INSN_P (prev
))
4597 prev
= PREV_INSN (prev
);
4600 return emit_jump_insn_after_setloc (pattern
, after
, INSN_LOCATOR (prev
));
4602 return emit_jump_insn_after_noloc (pattern
, after
);
4605 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4607 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4609 rtx last
= emit_call_insn_after_noloc (pattern
, after
);
4611 if (pattern
== NULL_RTX
|| !loc
)
4614 after
= NEXT_INSN (after
);
4617 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4618 INSN_LOCATOR (after
) = loc
;
4621 after
= NEXT_INSN (after
);
4626 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4628 emit_call_insn_after (rtx pattern
, rtx after
)
4632 while (DEBUG_INSN_P (prev
))
4633 prev
= PREV_INSN (prev
);
4636 return emit_call_insn_after_setloc (pattern
, after
, INSN_LOCATOR (prev
));
4638 return emit_call_insn_after_noloc (pattern
, after
);
4641 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4643 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4645 rtx last
= emit_debug_insn_after_noloc (pattern
, after
);
4647 if (pattern
== NULL_RTX
|| !loc
)
4650 after
= NEXT_INSN (after
);
4653 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4654 INSN_LOCATOR (after
) = loc
;
4657 after
= NEXT_INSN (after
);
4662 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4664 emit_debug_insn_after (rtx pattern
, rtx after
)
4667 return emit_debug_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4669 return emit_debug_insn_after_noloc (pattern
, after
);
4672 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4674 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4676 rtx first
= PREV_INSN (before
);
4677 rtx last
= emit_insn_before_noloc (pattern
, before
, NULL
);
4679 if (pattern
== NULL_RTX
|| !loc
)
4683 first
= get_insns ();
4685 first
= NEXT_INSN (first
);
4688 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4689 INSN_LOCATOR (first
) = loc
;
4692 first
= NEXT_INSN (first
);
4697 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4699 emit_insn_before (rtx pattern
, rtx before
)
4703 while (DEBUG_INSN_P (next
))
4704 next
= PREV_INSN (next
);
4707 return emit_insn_before_setloc (pattern
, before
, INSN_LOCATOR (next
));
4709 return emit_insn_before_noloc (pattern
, before
, NULL
);
4712 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4714 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4716 rtx first
= PREV_INSN (before
);
4717 rtx last
= emit_jump_insn_before_noloc (pattern
, before
);
4719 if (pattern
== NULL_RTX
)
4722 first
= NEXT_INSN (first
);
4725 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4726 INSN_LOCATOR (first
) = loc
;
4729 first
= NEXT_INSN (first
);
4734 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4736 emit_jump_insn_before (rtx pattern
, rtx before
)
4740 while (DEBUG_INSN_P (next
))
4741 next
= PREV_INSN (next
);
4744 return emit_jump_insn_before_setloc (pattern
, before
, INSN_LOCATOR (next
));
4746 return emit_jump_insn_before_noloc (pattern
, before
);
4749 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4751 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4753 rtx first
= PREV_INSN (before
);
4754 rtx last
= emit_call_insn_before_noloc (pattern
, before
);
4756 if (pattern
== NULL_RTX
)
4759 first
= NEXT_INSN (first
);
4762 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4763 INSN_LOCATOR (first
) = loc
;
4766 first
= NEXT_INSN (first
);
4771 /* like emit_call_insn_before_noloc,
4772 but set insn_locator according to before. */
4774 emit_call_insn_before (rtx pattern
, rtx before
)
4778 while (DEBUG_INSN_P (next
))
4779 next
= PREV_INSN (next
);
4782 return emit_call_insn_before_setloc (pattern
, before
, INSN_LOCATOR (next
));
4784 return emit_call_insn_before_noloc (pattern
, before
);
4787 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4789 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4791 rtx first
= PREV_INSN (before
);
4792 rtx last
= emit_debug_insn_before_noloc (pattern
, before
);
4794 if (pattern
== NULL_RTX
)
4797 first
= NEXT_INSN (first
);
4800 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4801 INSN_LOCATOR (first
) = loc
;
4804 first
= NEXT_INSN (first
);
4809 /* like emit_debug_insn_before_noloc,
4810 but set insn_locator according to before. */
4812 emit_debug_insn_before (rtx pattern
, rtx before
)
4814 if (INSN_P (before
))
4815 return emit_debug_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4817 return emit_debug_insn_before_noloc (pattern
, before
);
4820 /* Take X and emit it at the end of the doubly-linked
4823 Returns the last insn emitted. */
4828 rtx last
= get_last_insn();
4834 switch (GET_CODE (x
))
4846 rtx next
= NEXT_INSN (insn
);
4853 #ifdef ENABLE_RTL_CHECKING
4860 last
= make_insn_raw (x
);
4868 /* Make an insn of code DEBUG_INSN with pattern X
4869 and add it to the end of the doubly-linked list. */
4872 emit_debug_insn (rtx x
)
4874 rtx last
= get_last_insn();
4880 switch (GET_CODE (x
))
4892 rtx next
= NEXT_INSN (insn
);
4899 #ifdef ENABLE_RTL_CHECKING
4906 last
= make_debug_insn_raw (x
);
4914 /* Make an insn of code JUMP_INSN with pattern X
4915 and add it to the end of the doubly-linked list. */
4918 emit_jump_insn (rtx x
)
4920 rtx last
= NULL_RTX
, insn
;
4922 switch (GET_CODE (x
))
4934 rtx next
= NEXT_INSN (insn
);
4941 #ifdef ENABLE_RTL_CHECKING
4948 last
= make_jump_insn_raw (x
);
4956 /* Make an insn of code CALL_INSN with pattern X
4957 and add it to the end of the doubly-linked list. */
4960 emit_call_insn (rtx x
)
4964 switch (GET_CODE (x
))
4973 insn
= emit_insn (x
);
4976 #ifdef ENABLE_RTL_CHECKING
4983 insn
= make_call_insn_raw (x
);
4991 /* Add the label LABEL to the end of the doubly-linked list. */
4994 emit_label (rtx label
)
4996 /* This can be called twice for the same label
4997 as a result of the confusion that follows a syntax error!
4998 So make it harmless. */
4999 if (INSN_UID (label
) == 0)
5001 INSN_UID (label
) = cur_insn_uid
++;
5007 /* Make an insn of code BARRIER
5008 and add it to the end of the doubly-linked list. */
5013 rtx barrier
= rtx_alloc (BARRIER
);
5014 INSN_UID (barrier
) = cur_insn_uid
++;
5019 /* Emit a copy of note ORIG. */
5022 emit_note_copy (rtx orig
)
5026 note
= rtx_alloc (NOTE
);
5028 INSN_UID (note
) = cur_insn_uid
++;
5029 NOTE_DATA (note
) = NOTE_DATA (orig
);
5030 NOTE_KIND (note
) = NOTE_KIND (orig
);
5031 BLOCK_FOR_INSN (note
) = NULL
;
5037 /* Make an insn of code NOTE or type NOTE_NO
5038 and add it to the end of the doubly-linked list. */
5041 emit_note (enum insn_note kind
)
5045 note
= rtx_alloc (NOTE
);
5046 INSN_UID (note
) = cur_insn_uid
++;
5047 NOTE_KIND (note
) = kind
;
5048 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
5049 BLOCK_FOR_INSN (note
) = NULL
;
5054 /* Emit a clobber of lvalue X. */
5057 emit_clobber (rtx x
)
5059 /* CONCATs should not appear in the insn stream. */
5060 if (GET_CODE (x
) == CONCAT
)
5062 emit_clobber (XEXP (x
, 0));
5063 return emit_clobber (XEXP (x
, 1));
5065 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
5068 /* Return a sequence of insns to clobber lvalue X. */
5082 /* Emit a use of rvalue X. */
5087 /* CONCATs should not appear in the insn stream. */
5088 if (GET_CODE (x
) == CONCAT
)
5090 emit_use (XEXP (x
, 0));
5091 return emit_use (XEXP (x
, 1));
5093 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
5096 /* Return a sequence of insns to use rvalue X. */
5110 /* Cause next statement to emit a line note even if the line number
5114 force_next_line_note (void)
5119 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5120 note of this type already exists, remove it first. */
5123 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
5125 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
5131 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5132 has multiple sets (some callers assume single_set
5133 means the insn only has one set, when in fact it
5134 means the insn only has one * useful * set). */
5135 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
5141 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5142 It serves no useful purpose and breaks eliminate_regs. */
5143 if (GET_CODE (datum
) == ASM_OPERANDS
)
5148 XEXP (note
, 0) = datum
;
5149 df_notes_rescan (insn
);
5157 XEXP (note
, 0) = datum
;
5163 add_reg_note (insn
, kind
, datum
);
5169 df_notes_rescan (insn
);
5175 return REG_NOTES (insn
);
5178 /* Return an indication of which type of insn should have X as a body.
5179 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5181 static enum rtx_code
5182 classify_insn (rtx x
)
5186 if (GET_CODE (x
) == CALL
)
5188 if (GET_CODE (x
) == RETURN
)
5190 if (GET_CODE (x
) == SET
)
5192 if (SET_DEST (x
) == pc_rtx
)
5194 else if (GET_CODE (SET_SRC (x
)) == CALL
)
5199 if (GET_CODE (x
) == PARALLEL
)
5202 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
5203 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
5205 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5206 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
5208 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
5209 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
5215 /* Emit the rtl pattern X as an appropriate kind of insn.
5216 If X is a label, it is simply added into the insn chain. */
5221 enum rtx_code code
= classify_insn (x
);
5226 return emit_label (x
);
5228 return emit_insn (x
);
5231 rtx insn
= emit_jump_insn (x
);
5232 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
5233 return emit_barrier ();
5237 return emit_call_insn (x
);
5239 return emit_debug_insn (x
);
5245 /* Space for free sequence stack entries. */
5246 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5248 /* Begin emitting insns to a sequence. If this sequence will contain
5249 something that might cause the compiler to pop arguments to function
5250 calls (because those pops have previously been deferred; see
5251 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5252 before calling this function. That will ensure that the deferred
5253 pops are not accidentally emitted in the middle of this sequence. */
5256 start_sequence (void)
5258 struct sequence_stack
*tem
;
5260 if (free_sequence_stack
!= NULL
)
5262 tem
= free_sequence_stack
;
5263 free_sequence_stack
= tem
->next
;
5266 tem
= ggc_alloc_sequence_stack ();
5268 tem
->next
= seq_stack
;
5269 tem
->first
= get_insns ();
5270 tem
->last
= get_last_insn ();
5278 /* Set up the insn chain starting with FIRST as the current sequence,
5279 saving the previously current one. See the documentation for
5280 start_sequence for more information about how to use this function. */
5283 push_to_sequence (rtx first
)
5289 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
5291 set_first_insn (first
);
5292 set_last_insn (last
);
5295 /* Like push_to_sequence, but take the last insn as an argument to avoid
5296 looping through the list. */
5299 push_to_sequence2 (rtx first
, rtx last
)
5303 set_first_insn (first
);
5304 set_last_insn (last
);
5307 /* Set up the outer-level insn chain
5308 as the current sequence, saving the previously current one. */
5311 push_topmost_sequence (void)
5313 struct sequence_stack
*stack
, *top
= NULL
;
5317 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5320 set_first_insn (top
->first
);
5321 set_last_insn (top
->last
);
5324 /* After emitting to the outer-level insn chain, update the outer-level
5325 insn chain, and restore the previous saved state. */
5328 pop_topmost_sequence (void)
5330 struct sequence_stack
*stack
, *top
= NULL
;
5332 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
5335 top
->first
= get_insns ();
5336 top
->last
= get_last_insn ();
5341 /* After emitting to a sequence, restore previous saved state.
5343 To get the contents of the sequence just made, you must call
5344 `get_insns' *before* calling here.
5346 If the compiler might have deferred popping arguments while
5347 generating this sequence, and this sequence will not be immediately
5348 inserted into the instruction stream, use do_pending_stack_adjust
5349 before calling get_insns. That will ensure that the deferred
5350 pops are inserted into this sequence, and not into some random
5351 location in the instruction stream. See INHIBIT_DEFER_POP for more
5352 information about deferred popping of arguments. */
5357 struct sequence_stack
*tem
= seq_stack
;
5359 set_first_insn (tem
->first
);
5360 set_last_insn (tem
->last
);
5361 seq_stack
= tem
->next
;
5363 memset (tem
, 0, sizeof (*tem
));
5364 tem
->next
= free_sequence_stack
;
5365 free_sequence_stack
= tem
;
5368 /* Return 1 if currently emitting into a sequence. */
5371 in_sequence_p (void)
5373 return seq_stack
!= 0;
5376 /* Put the various virtual registers into REGNO_REG_RTX. */
5379 init_virtual_regs (void)
5381 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5382 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5383 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5384 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5385 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5386 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5387 = virtual_preferred_stack_boundary_rtx
;
5391 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5392 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5393 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5394 static int copy_insn_n_scratches
;
5396 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5397 copied an ASM_OPERANDS.
5398 In that case, it is the original input-operand vector. */
5399 static rtvec orig_asm_operands_vector
;
5401 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5402 copied an ASM_OPERANDS.
5403 In that case, it is the copied input-operand vector. */
5404 static rtvec copy_asm_operands_vector
;
5406 /* Likewise for the constraints vector. */
5407 static rtvec orig_asm_constraints_vector
;
5408 static rtvec copy_asm_constraints_vector
;
5410 /* Recursively create a new copy of an rtx for copy_insn.
5411 This function differs from copy_rtx in that it handles SCRATCHes and
5412 ASM_OPERANDs properly.
5413 Normally, this function is not used directly; use copy_insn as front end.
5414 However, you could first copy an insn pattern with copy_insn and then use
5415 this function afterwards to properly copy any REG_NOTEs containing
5419 copy_insn_1 (rtx orig
)
5424 const char *format_ptr
;
5429 code
= GET_CODE (orig
);
5444 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
5449 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5450 if (copy_insn_scratch_in
[i
] == orig
)
5451 return copy_insn_scratch_out
[i
];
5455 if (shared_const_p (orig
))
5459 /* A MEM with a constant address is not sharable. The problem is that
5460 the constant address may need to be reloaded. If the mem is shared,
5461 then reloading one copy of this mem will cause all copies to appear
5462 to have been reloaded. */
5468 /* Copy the various flags, fields, and other information. We assume
5469 that all fields need copying, and then clear the fields that should
5470 not be copied. That is the sensible default behavior, and forces
5471 us to explicitly document why we are *not* copying a flag. */
5472 copy
= shallow_copy_rtx (orig
);
5474 /* We do not copy the USED flag, which is used as a mark bit during
5475 walks over the RTL. */
5476 RTX_FLAG (copy
, used
) = 0;
5478 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5481 RTX_FLAG (copy
, jump
) = 0;
5482 RTX_FLAG (copy
, call
) = 0;
5483 RTX_FLAG (copy
, frame_related
) = 0;
5486 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5488 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5489 switch (*format_ptr
++)
5492 if (XEXP (orig
, i
) != NULL
)
5493 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5498 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5499 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5500 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5501 XVEC (copy
, i
) = copy_asm_operands_vector
;
5502 else if (XVEC (orig
, i
) != NULL
)
5504 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5505 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5506 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5517 /* These are left unchanged. */
5524 if (code
== SCRATCH
)
5526 i
= copy_insn_n_scratches
++;
5527 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5528 copy_insn_scratch_in
[i
] = orig
;
5529 copy_insn_scratch_out
[i
] = copy
;
5531 else if (code
== ASM_OPERANDS
)
5533 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5534 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5535 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5536 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5542 /* Create a new copy of an rtx.
5543 This function differs from copy_rtx in that it handles SCRATCHes and
5544 ASM_OPERANDs properly.
5545 INSN doesn't really have to be a full INSN; it could be just the
5548 copy_insn (rtx insn
)
5550 copy_insn_n_scratches
= 0;
5551 orig_asm_operands_vector
= 0;
5552 orig_asm_constraints_vector
= 0;
5553 copy_asm_operands_vector
= 0;
5554 copy_asm_constraints_vector
= 0;
5555 return copy_insn_1 (insn
);
5558 /* Initialize data structures and variables in this file
5559 before generating rtl for each function. */
5564 set_first_insn (NULL
);
5565 set_last_insn (NULL
);
5566 if (MIN_NONDEBUG_INSN_UID
)
5567 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5570 cur_debug_insn_uid
= 1;
5571 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5572 last_location
= UNKNOWN_LOCATION
;
5573 first_label_num
= label_num
;
5576 /* Init the tables that describe all the pseudo regs. */
5578 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5580 crtl
->emit
.regno_pointer_align
5581 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5583 regno_reg_rtx
= ggc_alloc_vec_rtx (crtl
->emit
.regno_pointer_align_length
);
5585 /* Put copies of all the hard registers into regno_reg_rtx. */
5586 memcpy (regno_reg_rtx
,
5587 initial_regno_reg_rtx
,
5588 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5590 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5591 init_virtual_regs ();
5593 /* Indicate that the virtual registers and stack locations are
5595 REG_POINTER (stack_pointer_rtx
) = 1;
5596 REG_POINTER (frame_pointer_rtx
) = 1;
5597 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5598 REG_POINTER (arg_pointer_rtx
) = 1;
5600 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5601 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5602 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5603 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5604 REG_POINTER (virtual_cfa_rtx
) = 1;
5606 #ifdef STACK_BOUNDARY
5607 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5608 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5609 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5610 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5612 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5613 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5614 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5615 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5616 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5619 #ifdef INIT_EXPANDERS
5624 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5627 gen_const_vector (enum machine_mode mode
, int constant
)
5632 enum machine_mode inner
;
5634 units
= GET_MODE_NUNITS (mode
);
5635 inner
= GET_MODE_INNER (mode
);
5637 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
5639 v
= rtvec_alloc (units
);
5641 /* We need to call this function after we set the scalar const_tiny_rtx
5643 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5645 for (i
= 0; i
< units
; ++i
)
5646 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5648 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5652 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5653 all elements are zero, and the one vector when all elements are one. */
5655 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5657 enum machine_mode inner
= GET_MODE_INNER (mode
);
5658 int nunits
= GET_MODE_NUNITS (mode
);
5662 /* Check to see if all of the elements have the same value. */
5663 x
= RTVEC_ELT (v
, nunits
- 1);
5664 for (i
= nunits
- 2; i
>= 0; i
--)
5665 if (RTVEC_ELT (v
, i
) != x
)
5668 /* If the values are all the same, check to see if we can use one of the
5669 standard constant vectors. */
5672 if (x
== CONST0_RTX (inner
))
5673 return CONST0_RTX (mode
);
5674 else if (x
== CONST1_RTX (inner
))
5675 return CONST1_RTX (mode
);
5678 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5681 /* Initialise global register information required by all functions. */
5684 init_emit_regs (void)
5688 /* Reset register attributes */
5689 htab_empty (reg_attrs_htab
);
5691 /* We need reg_raw_mode, so initialize the modes now. */
5692 init_reg_modes_target ();
5694 /* Assign register numbers to the globally defined register rtx. */
5695 pc_rtx
= gen_rtx_PC (VOIDmode
);
5696 cc0_rtx
= gen_rtx_CC0 (VOIDmode
);
5697 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5698 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5699 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
5700 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5701 virtual_incoming_args_rtx
=
5702 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5703 virtual_stack_vars_rtx
=
5704 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5705 virtual_stack_dynamic_rtx
=
5706 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5707 virtual_outgoing_args_rtx
=
5708 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5709 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5710 virtual_preferred_stack_boundary_rtx
=
5711 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
5713 /* Initialize RTL for commonly used hard registers. These are
5714 copied into regno_reg_rtx as we begin to compile each function. */
5715 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5716 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5718 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5719 return_address_pointer_rtx
5720 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5723 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5724 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5726 pic_offset_table_rtx
= NULL_RTX
;
5729 /* Create some permanent unique rtl objects shared between all functions. */
5732 init_emit_once (void)
5735 enum machine_mode mode
;
5736 enum machine_mode double_mode
;
5738 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5740 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5741 const_int_htab_eq
, NULL
);
5743 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5744 const_double_htab_eq
, NULL
);
5746 const_fixed_htab
= htab_create_ggc (37, const_fixed_htab_hash
,
5747 const_fixed_htab_eq
, NULL
);
5749 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5750 mem_attrs_htab_eq
, NULL
);
5751 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5752 reg_attrs_htab_eq
, NULL
);
5754 /* Compute the word and byte modes. */
5756 byte_mode
= VOIDmode
;
5757 word_mode
= VOIDmode
;
5758 double_mode
= VOIDmode
;
5760 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5762 mode
= GET_MODE_WIDER_MODE (mode
))
5764 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5765 && byte_mode
== VOIDmode
)
5768 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5769 && word_mode
== VOIDmode
)
5773 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5775 mode
= GET_MODE_WIDER_MODE (mode
))
5777 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5778 && double_mode
== VOIDmode
)
5782 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5784 #ifdef INIT_EXPANDERS
5785 /* This is to initialize {init|mark|free}_machine_status before the first
5786 call to push_function_context_to. This is needed by the Chill front
5787 end which calls push_function_context_to before the first call to
5788 init_function_start. */
5792 /* Create the unique rtx's for certain rtx codes and operand values. */
5794 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5795 tries to use these variables. */
5796 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5797 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5798 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5800 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5801 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5802 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5804 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5806 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5807 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5808 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5813 dconsthalf
= dconst1
;
5814 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5816 for (i
= 0; i
< (int) ARRAY_SIZE (const_tiny_rtx
); i
++)
5818 const REAL_VALUE_TYPE
*const r
=
5819 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5821 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5823 mode
= GET_MODE_WIDER_MODE (mode
))
5824 const_tiny_rtx
[i
][(int) mode
] =
5825 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5827 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5829 mode
= GET_MODE_WIDER_MODE (mode
))
5830 const_tiny_rtx
[i
][(int) mode
] =
5831 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5833 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5835 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5837 mode
= GET_MODE_WIDER_MODE (mode
))
5838 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5840 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5842 mode
= GET_MODE_WIDER_MODE (mode
))
5843 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5846 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT
);
5848 mode
= GET_MODE_WIDER_MODE (mode
))
5850 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5851 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5854 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT
);
5856 mode
= GET_MODE_WIDER_MODE (mode
))
5858 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
5859 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
5862 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5864 mode
= GET_MODE_WIDER_MODE (mode
))
5866 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5867 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5870 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5872 mode
= GET_MODE_WIDER_MODE (mode
))
5874 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5875 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5878 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FRACT
);
5880 mode
= GET_MODE_WIDER_MODE (mode
))
5882 FCONST0(mode
).data
.high
= 0;
5883 FCONST0(mode
).data
.low
= 0;
5884 FCONST0(mode
).mode
= mode
;
5885 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5886 FCONST0 (mode
), mode
);
5889 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UFRACT
);
5891 mode
= GET_MODE_WIDER_MODE (mode
))
5893 FCONST0(mode
).data
.high
= 0;
5894 FCONST0(mode
).data
.low
= 0;
5895 FCONST0(mode
).mode
= mode
;
5896 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5897 FCONST0 (mode
), mode
);
5900 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_ACCUM
);
5902 mode
= GET_MODE_WIDER_MODE (mode
))
5904 FCONST0(mode
).data
.high
= 0;
5905 FCONST0(mode
).data
.low
= 0;
5906 FCONST0(mode
).mode
= mode
;
5907 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5908 FCONST0 (mode
), mode
);
5910 /* We store the value 1. */
5911 FCONST1(mode
).data
.high
= 0;
5912 FCONST1(mode
).data
.low
= 0;
5913 FCONST1(mode
).mode
= mode
;
5914 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5915 2 * HOST_BITS_PER_WIDE_INT
,
5916 &FCONST1(mode
).data
.low
,
5917 &FCONST1(mode
).data
.high
,
5918 SIGNED_FIXED_POINT_MODE_P (mode
));
5919 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5920 FCONST1 (mode
), mode
);
5923 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_UACCUM
);
5925 mode
= GET_MODE_WIDER_MODE (mode
))
5927 FCONST0(mode
).data
.high
= 0;
5928 FCONST0(mode
).data
.low
= 0;
5929 FCONST0(mode
).mode
= mode
;
5930 const_tiny_rtx
[0][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5931 FCONST0 (mode
), mode
);
5933 /* We store the value 1. */
5934 FCONST1(mode
).data
.high
= 0;
5935 FCONST1(mode
).data
.low
= 0;
5936 FCONST1(mode
).mode
= mode
;
5937 lshift_double (1, 0, GET_MODE_FBIT (mode
),
5938 2 * HOST_BITS_PER_WIDE_INT
,
5939 &FCONST1(mode
).data
.low
,
5940 &FCONST1(mode
).data
.high
,
5941 SIGNED_FIXED_POINT_MODE_P (mode
));
5942 const_tiny_rtx
[1][(int) mode
] = CONST_FIXED_FROM_FIXED_VALUE (
5943 FCONST1 (mode
), mode
);
5946 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT
);
5948 mode
= GET_MODE_WIDER_MODE (mode
))
5950 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5953 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT
);
5955 mode
= GET_MODE_WIDER_MODE (mode
))
5957 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5960 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM
);
5962 mode
= GET_MODE_WIDER_MODE (mode
))
5964 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5965 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5968 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM
);
5970 mode
= GET_MODE_WIDER_MODE (mode
))
5972 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5973 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5976 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5977 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5978 const_tiny_rtx
[0][i
] = const0_rtx
;
5980 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5981 if (STORE_FLAG_VALUE
== 1)
5982 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5985 /* Produce exact duplicate of insn INSN after AFTER.
5986 Care updating of libcall regions if present. */
5989 emit_copy_of_insn_after (rtx insn
, rtx after
)
5993 switch (GET_CODE (insn
))
5996 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
6000 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
6004 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
6008 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
6009 if (CALL_INSN_FUNCTION_USAGE (insn
))
6010 CALL_INSN_FUNCTION_USAGE (new_rtx
)
6011 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
6012 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
6013 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
6014 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
6015 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
6016 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
6023 /* Update LABEL_NUSES. */
6024 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
6026 INSN_LOCATOR (new_rtx
) = INSN_LOCATOR (insn
);
6028 /* If the old insn is frame related, then so is the new one. This is
6029 primarily needed for IA-64 unwind info which marks epilogue insns,
6030 which may be duplicated by the basic block reordering code. */
6031 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
6033 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6034 will make them. REG_LABEL_TARGETs are created there too, but are
6035 supposed to be sticky, so we copy them. */
6036 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
6037 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
6039 if (GET_CODE (link
) == EXPR_LIST
)
6040 add_reg_note (new_rtx
, REG_NOTE_KIND (link
),
6041 copy_insn_1 (XEXP (link
, 0)));
6043 add_reg_note (new_rtx
, REG_NOTE_KIND (link
), XEXP (link
, 0));
6046 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
6050 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
6052 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
6054 if (hard_reg_clobbers
[mode
][regno
])
6055 return hard_reg_clobbers
[mode
][regno
];
6057 return (hard_reg_clobbers
[mode
][regno
] =
6058 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
6061 #include "gt-emit-rtl.h"