1 /* Definitions for the Blackfin port.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Analog Devices.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
25 #include "config/bfin/bfin-opts.h"
28 #define OBJECT_FORMAT_ELF
33 /* Predefinition in the preprocessor for this target machine */
34 #ifndef TARGET_CPU_CPP_BUILTINS
35 #define TARGET_CPU_CPP_BUILTINS() \
38 builtin_define_std ("bfin"); \
39 builtin_define_std ("BFIN"); \
40 builtin_define ("__ADSPBLACKFIN__"); \
41 builtin_define ("__ADSPLPBLACKFIN__"); \
43 switch (bfin_cpu_type) \
45 case BFIN_CPU_BF512: \
46 builtin_define ("__ADSPBF512__"); \
47 builtin_define ("__ADSPBF51x__"); \
49 case BFIN_CPU_BF514: \
50 builtin_define ("__ADSPBF514__"); \
51 builtin_define ("__ADSPBF51x__"); \
53 case BFIN_CPU_BF516: \
54 builtin_define ("__ADSPBF516__"); \
55 builtin_define ("__ADSPBF51x__"); \
57 case BFIN_CPU_BF518: \
58 builtin_define ("__ADSPBF518__"); \
59 builtin_define ("__ADSPBF51x__"); \
61 case BFIN_CPU_BF522: \
62 builtin_define ("__ADSPBF522__"); \
63 builtin_define ("__ADSPBF52x__"); \
65 case BFIN_CPU_BF523: \
66 builtin_define ("__ADSPBF523__"); \
67 builtin_define ("__ADSPBF52x__"); \
69 case BFIN_CPU_BF524: \
70 builtin_define ("__ADSPBF524__"); \
71 builtin_define ("__ADSPBF52x__"); \
73 case BFIN_CPU_BF525: \
74 builtin_define ("__ADSPBF525__"); \
75 builtin_define ("__ADSPBF52x__"); \
77 case BFIN_CPU_BF526: \
78 builtin_define ("__ADSPBF526__"); \
79 builtin_define ("__ADSPBF52x__"); \
81 case BFIN_CPU_BF527: \
82 builtin_define ("__ADSPBF527__"); \
83 builtin_define ("__ADSPBF52x__"); \
85 case BFIN_CPU_BF531: \
86 builtin_define ("__ADSPBF531__"); \
88 case BFIN_CPU_BF532: \
89 builtin_define ("__ADSPBF532__"); \
91 case BFIN_CPU_BF533: \
92 builtin_define ("__ADSPBF533__"); \
94 case BFIN_CPU_BF534: \
95 builtin_define ("__ADSPBF534__"); \
97 case BFIN_CPU_BF536: \
98 builtin_define ("__ADSPBF536__"); \
100 case BFIN_CPU_BF537: \
101 builtin_define ("__ADSPBF537__"); \
103 case BFIN_CPU_BF538: \
104 builtin_define ("__ADSPBF538__"); \
106 case BFIN_CPU_BF539: \
107 builtin_define ("__ADSPBF539__"); \
109 case BFIN_CPU_BF542M: \
110 builtin_define ("__ADSPBF542M__"); \
111 case BFIN_CPU_BF542: \
112 builtin_define ("__ADSPBF542__"); \
113 builtin_define ("__ADSPBF54x__"); \
115 case BFIN_CPU_BF544M: \
116 builtin_define ("__ADSPBF544M__"); \
117 case BFIN_CPU_BF544: \
118 builtin_define ("__ADSPBF544__"); \
119 builtin_define ("__ADSPBF54x__"); \
121 case BFIN_CPU_BF547M: \
122 builtin_define ("__ADSPBF547M__"); \
123 case BFIN_CPU_BF547: \
124 builtin_define ("__ADSPBF547__"); \
125 builtin_define ("__ADSPBF54x__"); \
127 case BFIN_CPU_BF548M: \
128 builtin_define ("__ADSPBF548M__"); \
129 case BFIN_CPU_BF548: \
130 builtin_define ("__ADSPBF548__"); \
131 builtin_define ("__ADSPBF54x__"); \
133 case BFIN_CPU_BF549M: \
134 builtin_define ("__ADSPBF549M__"); \
135 case BFIN_CPU_BF549: \
136 builtin_define ("__ADSPBF549__"); \
137 builtin_define ("__ADSPBF54x__"); \
139 case BFIN_CPU_BF561: \
140 builtin_define ("__ADSPBF561__"); \
142 case BFIN_CPU_BF592: \
143 builtin_define ("__ADSPBF592__"); \
144 builtin_define ("__ADSPBF59x__"); \
148 if (bfin_si_revision != -1) \
150 /* space of 0xnnnn and a NUL */ \
151 char *buf = XALLOCAVEC (char, 7); \
153 sprintf (buf, "0x%04x", bfin_si_revision); \
154 builtin_define_with_value ("__SILICON_REVISION__", buf, 0); \
157 if (bfin_workarounds) \
158 builtin_define ("__WORKAROUNDS_ENABLED"); \
159 if (ENABLE_WA_SPECULATIVE_LOADS) \
160 builtin_define ("__WORKAROUND_SPECULATIVE_LOADS"); \
161 if (ENABLE_WA_SPECULATIVE_SYNCS) \
162 builtin_define ("__WORKAROUND_SPECULATIVE_SYNCS"); \
163 if (ENABLE_WA_INDIRECT_CALLS) \
164 builtin_define ("__WORKAROUND_INDIRECT_CALLS"); \
165 if (ENABLE_WA_RETS) \
166 builtin_define ("__WORKAROUND_RETS"); \
170 builtin_define ("__BFIN_FDPIC__"); \
171 builtin_define ("__FDPIC__"); \
173 if (TARGET_ID_SHARED_LIBRARY \
174 && !TARGET_SEP_DATA) \
175 builtin_define ("__ID_SHARED_LIB__"); \
176 if (flag_no_builtin) \
177 builtin_define ("__NO_BUILTIN"); \
178 if (TARGET_MULTICORE) \
179 builtin_define ("__BFIN_MULTICORE"); \
181 builtin_define ("__BFIN_COREA"); \
183 builtin_define ("__BFIN_COREB"); \
185 builtin_define ("__BFIN_SDRAM"); \
190 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS "\
191 %{mleaf-id-shared-library:%{!mid-shared-library:-mid-shared-library}} \
192 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
193 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fpie}}}}}}}}} \
195 #ifndef SUBTARGET_DRIVER_SELF_SPECS
196 # define SUBTARGET_DRIVER_SELF_SPECS
199 #define LINK_GCC_C_SEQUENCE_SPEC "\
200 %{mfast-fp:-lbffastfp} %G %L %{mfast-fp:-lbffastfp} %G \
205 %{mno-fdpic:-mnopic} %{mfdpic}"
209 %{mfdpic:-melf32bfinfd -z text} \
210 %{static:-dn -Bstatic} \
211 %{shared:-G -Bdynamic} \
212 %{symbolic:-Bsymbolic} \
213 -init __init -fini __fini "
215 /* Generate DSP instructions, like DSP halfword loads */
216 #define TARGET_DSP (1)
218 #define TARGET_DEFAULT 0
220 /* Maximum number of library ids we permit */
221 #define MAX_LIBRARY_ID 255
223 extern const char *bfin_library_id_string
;
225 #define FUNCTION_MODE SImode
228 /* store-condition-codes instructions store 0 for false
229 This is the value stored for true. */
230 #define STORE_FLAG_VALUE 1
232 /* Define this if pushing a word on the stack
233 makes the stack pointer a smaller address. */
234 #define STACK_GROWS_DOWNWARD
236 #define STACK_PUSH_CODE PRE_DEC
238 /* Define this to nonzero if the nominal address of the stack frame
239 is at the high-address end of the local variables;
240 that is, each additional local variable allocated
241 goes at a more negative offset in the frame. */
242 #define FRAME_GROWS_DOWNWARD 1
244 /* We define a dummy ARGP register; the parameters start at offset 0 from
246 #define FIRST_PARM_OFFSET(DECL) 0
248 /* Offset within stack frame to start allocating local variables at.
249 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
250 first local allocated. Otherwise, it is the offset to the BEGINNING
251 of the first local allocated. */
252 #define STARTING_FRAME_OFFSET 0
254 /* Register to use for pushing function arguments. */
255 #define STACK_POINTER_REGNUM REG_P6
257 /* Base register for access to local variables of the function. */
258 #define FRAME_POINTER_REGNUM REG_P7
260 /* A dummy register that will be eliminated to either FP or SP. */
261 #define ARG_POINTER_REGNUM REG_ARGP
263 /* `PIC_OFFSET_TABLE_REGNUM'
264 The register number of the register used to address a table of
265 static data addresses in memory. In some cases this register is
266 defined by a processor's "application binary interface" (ABI).
267 When this macro is defined, RTL is generated for this register
268 once, as with the stack pointer and frame pointer registers. If
269 this macro is not defined, it is up to the machine-dependent files
270 to allocate such a register (if necessary). */
271 #define PIC_OFFSET_TABLE_REGNUM (REG_P5)
273 #define FDPIC_FPTR_REGNO REG_P1
274 #define FDPIC_REGNO REG_P3
275 #define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
277 /* A static chain register for nested functions. We need to use a
278 call-clobbered register for this. */
279 #define STATIC_CHAIN_REGNUM REG_P2
281 /* Define this if functions should assume that stack space has been
282 allocated for arguments even when their values are passed in
285 The value of this macro is the size, in bytes, of the area reserved for
286 arguments passed in registers.
288 This space can either be allocated by the caller or be a part of the
289 machine-dependent stack frame: `OUTGOING_REG_PARM_STACK_SPACE'
291 #define FIXED_STACK_AREA 12
292 #define REG_PARM_STACK_SPACE(FNDECL) FIXED_STACK_AREA
294 /* Define this if the above stack space is to be considered part of the
295 * space allocated by the caller. */
296 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
298 /* Define this if the maximum size of all the outgoing args is to be
299 accumulated and pushed during the prologue. The amount can be
300 found in the variable crtl->outgoing_args_size. */
301 #define ACCUMULATE_OUTGOING_ARGS 1
303 /*#define DATA_ALIGNMENT(TYPE, BASIC-ALIGN) for arrays.. */
305 /* If defined, a C expression to compute the alignment for a local
306 variable. TYPE is the data type, and ALIGN is the alignment that
307 the object would ordinarily have. The value of this macro is used
308 instead of that alignment to align the object.
310 If this macro is not defined, then ALIGN is used.
312 One use of this macro is to increase alignment of medium-size
313 data to make it all fit in fewer cache lines. */
315 #define LOCAL_ALIGNMENT(TYPE, ALIGN) bfin_local_alignment ((TYPE), (ALIGN))
317 /* Make strings word-aligned so strcpy from constants will be faster. */
318 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
319 (TREE_CODE (EXP) == STRING_CST \
320 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
322 #define TRAMPOLINE_SIZE (TARGET_FDPIC ? 30 : 18)
324 /* Definitions for register eliminations.
326 This is an array of structures. Each structure initializes one pair
327 of eliminable registers. The "from" register number is given first,
328 followed by "to". Eliminations of the same "from" register are listed
329 in order of preference.
331 There are two registers that can always be eliminated on the i386.
332 The frame pointer and the arg pointer can be replaced by either the
333 hard frame pointer or to the stack pointer, depending upon the
334 circumstances. The hard frame pointer is not used before reload and
335 so it is not eligible for elimination. */
337 #define ELIMINABLE_REGS \
338 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
339 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
340 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} \
342 /* Define the offset between two registers, one to be eliminated, and the other
343 its replacement, at the start of a routine. */
345 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
346 ((OFFSET) = bfin_initial_elimination_offset ((FROM), (TO)))
348 /* This processor has
349 8 data register for doing arithmetic
350 8 pointer register for doing addressing, including
353 4 sets of indexing registers (I0-3, B0-3, L0-3, M0-3)
354 1 condition code flag register CC
355 5 return address registers RETS/I/X/N/E
356 1 arithmetic status register (ASTAT). */
358 #define FIRST_PSEUDO_REGISTER 50
360 #define D_REGNO_P(X) ((X) <= REG_R7)
361 #define P_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_P7)
362 #define I_REGNO_P(X) ((X) >= REG_I0 && (X) <= REG_I3)
363 #define DP_REGNO_P(X) (D_REGNO_P (X) || P_REGNO_P (X))
364 #define ADDRESS_REGNO_P(X) ((X) >= REG_P0 && (X) <= REG_M3)
365 #define DREG_P(X) (REG_P (X) && D_REGNO_P (REGNO (X)))
366 #define PREG_P(X) (REG_P (X) && P_REGNO_P (REGNO (X)))
367 #define IREG_P(X) (REG_P (X) && I_REGNO_P (REGNO (X)))
368 #define DPREG_P(X) (REG_P (X) && DP_REGNO_P (REGNO (X)))
370 #define REGISTER_NAMES { \
371 "R0", "R1", "R2", "R3", "R4", "R5", "R6", "R7", \
372 "P0", "P1", "P2", "P3", "P4", "P5", "SP", "FP", \
373 "I0", "I1", "I2", "I3", "B0", "B1", "B2", "B3", \
374 "L0", "L1", "L2", "L3", "M0", "M1", "M2", "M3", \
377 "RETS", "RETI", "RETX", "RETN", "RETE", "ASTAT", "SEQSTAT", "USP", \
379 "LT0", "LT1", "LC0", "LC1", "LB0", "LB1" \
382 #define SHORT_REGISTER_NAMES { \
383 "R0.L", "R1.L", "R2.L", "R3.L", "R4.L", "R5.L", "R6.L", "R7.L", \
384 "P0.L", "P1.L", "P2.L", "P3.L", "P4.L", "P5.L", "SP.L", "FP.L", \
385 "I0.L", "I1.L", "I2.L", "I3.L", "B0.L", "B1.L", "B2.L", "B3.L", \
386 "L0.L", "L1.L", "L2.L", "L3.L", "M0.L", "M1.L", "M2.L", "M3.L", }
388 #define HIGH_REGISTER_NAMES { \
389 "R0.H", "R1.H", "R2.H", "R3.H", "R4.H", "R5.H", "R6.H", "R7.H", \
390 "P0.H", "P1.H", "P2.H", "P3.H", "P4.H", "P5.H", "SP.H", "FP.H", \
391 "I0.H", "I1.H", "I2.H", "I3.H", "B0.H", "B1.H", "B2.H", "B3.H", \
392 "L0.H", "L1.H", "L2.H", "L3.H", "M0.H", "M1.H", "M2.H", "M3.H", }
394 #define DREGS_PAIR_NAMES { \
395 "R1:0.p", 0, "R3:2.p", 0, "R5:4.p", 0, "R7:6.p", 0, }
397 #define BYTE_REGISTER_NAMES { \
398 "R0.B", "R1.B", "R2.B", "R3.B", "R4.B", "R5.B", "R6.B", "R7.B", }
401 /* 1 for registers that have pervasive standard uses
402 and are not available for the register allocator. */
404 #define FIXED_REGISTERS \
405 /*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
406 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, \
407 /*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
408 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, \
409 /*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
410 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
415 /* 1 for registers not available across function calls.
416 These must include the FIXED_REGISTERS and also any
417 registers that can be used without being saved.
418 The latter must include the registers where values are returned
419 and the register where structure-value addresses are passed.
420 Aside from that, you can include as many other registers as you like. */
422 #define CALL_USED_REGISTERS \
423 /*r0 r1 r2 r3 r4 r5 r6 r7 p0 p1 p2 p3 p4 p5 p6 p7 */ \
424 { 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, \
425 /*i0 i1 i2 i3 b0 b1 b2 b3 l0 l1 l2 l3 m0 m1 m2 m3 */ \
426 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
427 /*a0 a1 cc rets/i/x/n/e astat seqstat usp argp lt0/1 lc0/1 */ \
428 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
433 /* Order in which to allocate registers. Each register must be
434 listed once, even those in FIXED_REGISTERS. List frame pointer
435 late and fixed registers last. Note that, in general, we prefer
436 registers listed in CALL_USED_REGISTERS, keeping the others
437 available for storage of persistent values. */
439 #define REG_ALLOC_ORDER \
440 { REG_R0, REG_R1, REG_R2, REG_R3, REG_R7, REG_R6, REG_R5, REG_R4, \
441 REG_P2, REG_P1, REG_P0, REG_P5, REG_P4, REG_P3, REG_P6, REG_P7, \
443 REG_I0, REG_I1, REG_I2, REG_I3, REG_B0, REG_B1, REG_B2, REG_B3, \
444 REG_L0, REG_L1, REG_L2, REG_L3, REG_M0, REG_M1, REG_M2, REG_M3, \
445 REG_RETS, REG_RETI, REG_RETX, REG_RETN, REG_RETE, \
446 REG_ASTAT, REG_SEQSTAT, REG_USP, \
448 REG_LT0, REG_LT1, REG_LC0, REG_LC1, REG_LB0, REG_LB1 \
451 /* Define the classes of registers for register constraints in the
452 machine description. Also define ranges of constants.
454 One of the classes must always be named ALL_REGS and include all hard regs.
455 If there is more than one class, another class must be named NO_REGS
456 and contain no registers.
458 The name GENERAL_REGS must be the name of a class (or an alias for
459 another name such as ALL_REGS). This is the class of registers
460 that is allowed by "g" or "r" in a register constraint.
461 Also, registers outside this class are allocated only when
462 instructions express preferences for them.
464 The classes must be numbered in nondecreasing order; that is,
465 a larger-numbered class must never be contained completely
466 in a smaller-numbered class.
468 For any two classes, it is very desirable that there be another
469 class that represents their union. */
479 CIRCREGS
, /* Circular buffering registers, Ix, Bx, Lx together form. See Automatic Circular Buffering. */
509 ALL_REGS
, LIM_REG_CLASSES
512 #define N_REG_CLASSES ((int)LIM_REG_CLASSES)
514 #define GENERAL_REGS DPREGS
516 /* Give names of register classes as strings for dump file. */
518 #define REG_CLASS_NAMES \
556 /* An initializer containing the contents of the register classes, as integers
557 which are bit masks. The Nth integer specifies the contents of class N.
558 The way the integer MASK is interpreted is that register R is in the class
559 if `MASK & (1 << R)' is 1.
561 When the machine has more than 32 registers, an integer does not suffice.
562 Then the integers are replaced by sub-initializers, braced groupings
563 containing several integers. Each sub-initializer must be suitable as an
564 initializer for the type `HARD_REG_SET' which is defined in
567 /* NOTE: DSP registers, IREGS - AREGS, are not GENERAL_REGS. We use
568 MOST_REGS as the union of DPREGS and DAGREGS. */
570 #define REG_CLASS_CONTENTS \
572 { { 0x00000000, 0 }, /* NO_REGS */ \
573 { 0x000f0000, 0 }, /* IREGS */ \
574 { 0x00f00000, 0 }, /* BREGS */ \
575 { 0x0f000000, 0 }, /* LREGS */ \
576 { 0xf0000000, 0 }, /* MREGS */ \
577 { 0x0fff0000, 0 }, /* CIRCREGS */ \
578 { 0xffff0000, 0 }, /* DAGREGS */ \
579 { 0x00000000, 0x1 }, /* EVEN_AREGS */ \
580 { 0x00000000, 0x2 }, /* ODD_AREGS */ \
581 { 0x00000000, 0x3 }, /* AREGS */ \
582 { 0x00000000, 0x4 }, /* CCREGS */ \
583 { 0x00000055, 0 }, /* EVEN_DREGS */ \
584 { 0x000000aa, 0 }, /* ODD_DREGS */ \
585 { 0x00000001, 0 }, /* D0REGS */ \
586 { 0x00000002, 0 }, /* D1REGS */ \
587 { 0x00000004, 0 }, /* D2REGS */ \
588 { 0x00000008, 0 }, /* D3REGS */ \
589 { 0x00000010, 0 }, /* D4REGS */ \
590 { 0x00000020, 0 }, /* D5REGS */ \
591 { 0x00000040, 0 }, /* D6REGS */ \
592 { 0x00000080, 0 }, /* D7REGS */ \
593 { 0x000000ff, 0 }, /* DREGS */ \
594 { 0x00000100, 0x000 }, /* P0REGS */ \
595 { 0x00000800, 0x000 }, /* FDPIC_REGS */ \
596 { 0x00000200, 0x000 }, /* FDPIC_FPTR_REGS */ \
597 { 0x00004700, 0x800 }, /* PREGS_CLOBBERED */ \
598 { 0x0000ff00, 0x800 }, /* PREGS */ \
599 { 0x000fff00, 0x800 }, /* IPREGS */ \
600 { 0x0000ffff, 0x800 }, /* DPREGS */ \
601 { 0xffffffff, 0x800 }, /* MOST_REGS */\
602 { 0x00000000, 0x3000 }, /* LT_REGS */\
603 { 0x00000000, 0xc000 }, /* LC_REGS */\
604 { 0x00000000, 0x30000 }, /* LB_REGS */\
605 { 0x00000000, 0x3f7f8 }, /* PROLOGUE_REGS */\
606 { 0xffffffff, 0x3fff8 }, /* NON_A_CC_REGS */\
607 { 0xffffffff, 0x3ffff }} /* ALL_REGS */
609 #define IREG_POSSIBLE_P(OUTER) \
610 ((OUTER) == POST_INC || (OUTER) == PRE_INC \
611 || (OUTER) == POST_DEC || (OUTER) == PRE_DEC \
612 || (OUTER) == MEM || (OUTER) == ADDRESS)
614 #define MODE_CODE_BASE_REG_CLASS(MODE, AS, OUTER, INDEX) \
615 ((MODE) == HImode && IREG_POSSIBLE_P (OUTER) ? IPREGS : PREGS)
617 #define INDEX_REG_CLASS PREGS
619 #define REGNO_OK_FOR_BASE_STRICT_P(X, MODE, OUTER, INDEX) \
620 (P_REGNO_P (X) || (X) == REG_ARGP \
621 || (IREG_POSSIBLE_P (OUTER) && (MODE) == HImode \
624 #define REGNO_OK_FOR_BASE_NONSTRICT_P(X, MODE, OUTER, INDEX) \
625 ((X) >= FIRST_PSEUDO_REGISTER \
626 || REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX))
629 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, AS, OUTER, INDEX) \
630 REGNO_OK_FOR_BASE_STRICT_P (X, MODE, OUTER, INDEX)
632 #define REGNO_MODE_CODE_OK_FOR_BASE_P(X, MODE, AS, OUTER, INDEX) \
633 REGNO_OK_FOR_BASE_NONSTRICT_P (X, MODE, OUTER, INDEX)
636 #define REGNO_OK_FOR_INDEX_P(X) 0
638 /* The same information, inverted:
639 Return the class number of the smallest class containing
640 reg number REGNO. This could be a conditional expression
641 or could index an array. */
643 #define REGNO_REG_CLASS(REGNO) \
644 ((REGNO) == REG_R0 ? D0REGS \
645 : (REGNO) == REG_R1 ? D1REGS \
646 : (REGNO) == REG_R2 ? D2REGS \
647 : (REGNO) == REG_R3 ? D3REGS \
648 : (REGNO) == REG_R4 ? D4REGS \
649 : (REGNO) == REG_R5 ? D5REGS \
650 : (REGNO) == REG_R6 ? D6REGS \
651 : (REGNO) == REG_R7 ? D7REGS \
652 : (REGNO) == REG_P0 ? P0REGS \
653 : (REGNO) < REG_I0 ? PREGS \
654 : (REGNO) == REG_ARGP ? PREGS \
655 : (REGNO) >= REG_I0 && (REGNO) <= REG_I3 ? IREGS \
656 : (REGNO) >= REG_L0 && (REGNO) <= REG_L3 ? LREGS \
657 : (REGNO) >= REG_B0 && (REGNO) <= REG_B3 ? BREGS \
658 : (REGNO) >= REG_M0 && (REGNO) <= REG_M3 ? MREGS \
659 : (REGNO) == REG_A0 || (REGNO) == REG_A1 ? AREGS \
660 : (REGNO) == REG_LT0 || (REGNO) == REG_LT1 ? LT_REGS \
661 : (REGNO) == REG_LC0 || (REGNO) == REG_LC1 ? LC_REGS \
662 : (REGNO) == REG_LB0 || (REGNO) == REG_LB1 ? LB_REGS \
663 : (REGNO) == REG_CC ? CCREGS \
664 : (REGNO) >= REG_RETS ? PROLOGUE_REGS \
667 /* When this hook returns true for MODE, the compiler allows
668 registers explicitly used in the rtl to be used as spill registers
669 but prevents the compiler from extending the lifetime of these
671 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
673 /* Do not allow to store a value in REG_CC for any mode */
674 /* Do not allow to store value in pregs if mode is not SI*/
675 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok((REGNO), (MODE))
677 /* Return the maximum number of consecutive registers
678 needed to represent mode MODE in a register of class CLASS. */
679 #define CLASS_MAX_NREGS(CLASS, MODE) \
680 ((MODE) == V2PDImode && (CLASS) == AREGS ? 2 \
681 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
683 #define HARD_REGNO_NREGS(REGNO, MODE) \
684 ((MODE) == PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 1 \
685 : (MODE) == V2PDImode && ((REGNO) == REG_A0 || (REGNO) == REG_A1) ? 2 \
686 : CLASS_MAX_NREGS (GENERAL_REGS, MODE))
688 /* A C expression that is nonzero if hard register TO can be
689 considered for use as a rename register for FROM register */
690 #define HARD_REGNO_RENAME_OK(FROM, TO) bfin_hard_regno_rename_ok (FROM, TO)
692 /* A C expression that is nonzero if it is desirable to choose
693 register allocation so as to avoid move instructions between a
694 value of mode MODE1 and a value of mode MODE2.
696 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R,
697 MODE2)' are ever different for any R, then `MODES_TIEABLE_P (MODE1,
698 MODE2)' must be zero. */
699 #define MODES_TIEABLE_P(MODE1, MODE2) \
700 ((MODE1) == (MODE2) \
701 || ((GET_MODE_CLASS (MODE1) == MODE_INT \
702 || GET_MODE_CLASS (MODE1) == MODE_FLOAT) \
703 && (GET_MODE_CLASS (MODE2) == MODE_INT \
704 || GET_MODE_CLASS (MODE2) == MODE_FLOAT) \
705 && (MODE1) != BImode && (MODE2) != BImode \
706 && GET_MODE_SIZE (MODE1) <= UNITS_PER_WORD \
707 && GET_MODE_SIZE (MODE2) <= UNITS_PER_WORD))
709 /* `PREFERRED_RELOAD_CLASS (X, CLASS)'
710 A C expression that places additional restrictions on the register
711 class to use when it is necessary to copy value X into a register
712 in class CLASS. The value is a register class; perhaps CLASS, or
713 perhaps another, smaller class. */
714 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
715 (GET_CODE (X) == POST_INC \
716 || GET_CODE (X) == POST_DEC \
717 || GET_CODE (X) == PRE_DEC ? PREGS : (CLASS))
719 /* Function Calling Conventions. */
721 /* The type of the current function; normal functions are of type
724 SUBROUTINE
, INTERRUPT_HANDLER
, EXCPT_HANDLER
, NMI_HANDLER
726 #define FUNCTION_RETURN_REGISTERS { REG_RETS, REG_RETI, REG_RETX, REG_RETN }
728 #define FUNCTION_ARG_REGISTERS { REG_R0, REG_R1, REG_R2, -1 }
730 /* Flags for the call/call_value rtl operations set up by function_arg */
731 #define CALL_NORMAL 0x00000000 /* no special processing */
732 #define CALL_LONG 0x00000001 /* always call indirect */
733 #define CALL_SHORT 0x00000002 /* always call by symbol */
736 int words
; /* # words passed so far */
737 int nregs
; /* # registers available for passing */
738 int *arg_regs
; /* array of register -1 terminated */
739 int call_cookie
; /* Do special things for this call */
742 #define FUNCTION_ARG_REGNO_P(REGNO) function_arg_regno_p (REGNO)
745 /* Initialize a variable CUM of type CUMULATIVE_ARGS
746 for a call to a function whose data type is FNTYPE.
747 For a library call, FNTYPE is 0. */
748 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT, N_NAMED_ARGS) \
749 (init_cumulative_args (&CUM, FNTYPE, LIBNAME))
751 /* Define how to find the value returned by a function.
752 VALTYPE is the data type of the value (as a tree).
753 If the precise function being called is known, FUNC is its FUNCTION_DECL;
754 otherwise, FUNC is 0.
757 #define VALUE_REGNO(MODE) (REG_R0)
759 #define FUNCTION_VALUE(VALTYPE, FUNC) \
760 gen_rtx_REG (TYPE_MODE (VALTYPE), \
761 VALUE_REGNO(TYPE_MODE(VALTYPE)))
763 /* Define how to find the value returned by a library function
764 assuming the value has mode MODE. */
766 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, VALUE_REGNO(MODE))
768 #define FUNCTION_VALUE_REGNO_P(N) ((N) == REG_R0)
770 #define DEFAULT_PCC_STRUCT_RETURN 0
772 /* Before the prologue, the return address is in the RETS register. */
773 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, REG_RETS)
775 #define RETURN_ADDR_RTX(COUNT, FRAME) bfin_return_addr_rtx (COUNT)
777 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (REG_RETS)
779 /* Call instructions don't modify the stack pointer on the Blackfin. */
780 #define INCOMING_FRAME_SP_OFFSET 0
782 /* Describe how we implement __builtin_eh_return. */
783 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) : INVALID_REGNUM)
784 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, REG_P2)
785 #define EH_RETURN_HANDLER_RTX \
786 gen_frame_mem (Pmode, plus_constant (Pmode, frame_pointer_rtx, \
789 /* Addressing Modes */
791 /* A number, the maximum number of registers that can appear in a
792 valid memory address. Note that it is up to you to specify a
793 value equal to the maximum number that `TARGET_LEGITIMATE_ADDRESS_P'
794 would ever accept. */
795 #define MAX_REGS_PER_ADDRESS 1
797 #define LEGITIMATE_MODE_FOR_AUTOINC_P(MODE) \
798 (GET_MODE_SIZE (MODE) <= 4 || (MODE) == PDImode)
800 #define HAVE_POST_INCREMENT 1
801 #define HAVE_POST_DECREMENT 1
802 #define HAVE_PRE_DECREMENT 1
804 /* `LEGITIMATE_PIC_OPERAND_P (X)'
805 A C expression that is nonzero if X is a legitimate immediate
806 operand on the target machine when generating position independent
807 code. You can assume that X satisfies `CONSTANT_P', so you need
808 not check this. You can also assume FLAG_PIC is true, so you need
809 not check it either. You need not define this macro if all
810 constants (including `SYMBOL_REF') can be immediate operands when
811 generating position independent code. */
812 #define LEGITIMATE_PIC_OPERAND_P(X) ! SYMBOLIC_CONST (X)
814 #define SYMBOLIC_CONST(X) \
815 (GET_CODE (X) == SYMBOL_REF \
816 || GET_CODE (X) == LABEL_REF \
817 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
819 #define NOTICE_UPDATE_CC(EXPR, INSN) 0
821 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
822 is done just by pretending it is already truncated. */
823 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
825 /* Max number of bytes we can move from memory to memory
826 in one reasonably fast instruction. */
827 #define MOVE_MAX UNITS_PER_WORD
829 /* If a memory-to-memory move would take MOVE_RATIO or more simple
830 move-instruction pairs, we will do a movmem or libcall instead. */
832 #define MOVE_RATIO(speed) 5
834 /* STORAGE LAYOUT: target machine storage layout
835 Define this macro as a C expression which is nonzero if accessing
836 less than a word of memory (i.e. a `char' or a `short') is no
837 faster than accessing a word of memory, i.e., if such access
838 require more than one instruction or if there is no difference in
839 cost between byte and (aligned) word loads.
841 When this macro is not defined, the compiler will access a field by
842 finding the smallest containing object; when it is defined, a
843 fullword load will be used if alignment permits. Unless bytes
844 accesses are faster than word accesses, using word accesses is
845 preferable since it may eliminate subsequent memory access if
846 subsequent accesses occur to other fields in the same word of the
847 structure, but to different bytes. */
848 #define SLOW_BYTE_ACCESS 0
849 #define SLOW_SHORT_ACCESS 0
851 /* Define this if most significant bit is lowest numbered
852 in instructions that operate on numbered bit-fields. */
853 #define BITS_BIG_ENDIAN 0
855 /* Define this if most significant byte of a word is the lowest numbered.
856 We can't access bytes but if we could we would in the Big Endian order. */
857 #define BYTES_BIG_ENDIAN 0
859 /* Define this if most significant word of a multiword number is numbered. */
860 #define WORDS_BIG_ENDIAN 0
862 /* Width in bits of a "word", which is the contents of a machine register.
863 Note that this is not necessarily the width of data type `int';
864 if using 16-bit ints on a 68000, this would still be 32.
865 But on a machine with 16-bit registers, this would be 16. */
866 #define BITS_PER_WORD 32
868 /* Width of a word, in units (bytes). */
869 #define UNITS_PER_WORD 4
871 /* Width in bits of a pointer.
872 See also the macro `Pmode1' defined below. */
873 #define POINTER_SIZE 32
875 /* Allocation boundary (in *bits*) for storing pointers in memory. */
876 #define POINTER_BOUNDARY 32
878 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
879 #define PARM_BOUNDARY 32
881 /* Boundary (in *bits*) on which stack pointer should be aligned. */
882 #define STACK_BOUNDARY 32
884 /* Allocation boundary (in *bits*) for the code of a function. */
885 #define FUNCTION_BOUNDARY 32
887 /* Alignment of field after `int : 0' in a structure. */
888 #define EMPTY_FIELD_BOUNDARY BITS_PER_WORD
890 /* No data type wants to be aligned rounder than this. */
891 #define BIGGEST_ALIGNMENT 32
893 /* Define this if move instructions will actually fail to work
894 when given unaligned data. */
895 #define STRICT_ALIGNMENT 1
897 /* (shell-command "rm c-decl.o stor-layout.o")
898 * never define PCC_BITFIELD_TYPE_MATTERS
899 * really cause some alignment problem
902 #define UNITS_PER_FLOAT ((FLOAT_TYPE_SIZE + BITS_PER_UNIT - 1) / \
905 #define UNITS_PER_DOUBLE ((DOUBLE_TYPE_SIZE + BITS_PER_UNIT - 1) / \
909 /* what is the 'type' of size_t */
910 #define SIZE_TYPE "long unsigned int"
912 /* Define this as 1 if `char' should by default be signed; else as 0. */
913 #define DEFAULT_SIGNED_CHAR 1
914 #define FLOAT_TYPE_SIZE BITS_PER_WORD
915 #define SHORT_TYPE_SIZE 16
916 #define CHAR_TYPE_SIZE 8
917 #define INT_TYPE_SIZE 32
918 #define LONG_TYPE_SIZE 32
919 #define LONG_LONG_TYPE_SIZE 64
921 /* Note: Fix this to depend on target switch. -- lev */
923 /* Note: Try to implement double and force long double. -- tonyko
924 * #define __DOUBLES_ARE_FLOATS__
925 * #define DOUBLE_TYPE_SIZE FLOAT_TYPE_SIZE
926 * #define LONG_DOUBLE_TYPE_SIZE DOUBLE_TYPE_SIZE
927 * #define DOUBLES_ARE_FLOATS 1
930 #define DOUBLE_TYPE_SIZE 64
931 #define LONG_DOUBLE_TYPE_SIZE 64
933 /* `PROMOTE_MODE (M, UNSIGNEDP, TYPE)'
934 A macro to update M and UNSIGNEDP when an object whose type is
935 TYPE and which has the specified mode and signedness is to be
936 stored in a register. This macro is only called when TYPE is a
939 On most RISC machines, which only have operations that operate on
940 a full register, define this macro to set M to `word_mode' if M is
941 an integer mode narrower than `BITS_PER_WORD'. In most cases,
942 only integer modes should be widened because wider-precision
943 floating-point operations are usually more expensive than their
944 narrower counterparts.
946 For most machines, the macro definition does not change UNSIGNEDP.
947 However, some machines, have instructions that preferentially
948 handle either signed or unsigned quantities of certain modes. For
949 example, on the DEC Alpha, 32-bit loads from memory and 32-bit add
950 instructions sign-extend the result to 64 bits. On such machines,
951 set UNSIGNEDP according to which kind of extension is more
954 Do not define this macro if it would never modify M.*/
956 #define BFIN_PROMOTE_MODE_P(MODE) \
957 (!TARGET_DSP && GET_MODE_CLASS (MODE) == MODE_INT \
958 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD)
960 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
961 if (BFIN_PROMOTE_MODE_P(MODE)) \
963 if (MODE == QImode) \
965 else if (MODE == HImode) \
970 /* Describing Relative Costs of Operations */
972 /* Do not put function addr into constant pool */
973 #define NO_FUNCTION_CSE 1
975 /* Specify the machine mode that this machine uses
976 for the index in the tablejump instruction. */
977 #define CASE_VECTOR_MODE SImode
979 #define JUMP_TABLES_IN_TEXT_SECTION flag_pic
981 /* Define if operations between registers always perform the operation
982 on the full register even if a narrower mode is specified.
983 #define WORD_REGISTER_OPERATIONS
986 /* Evaluates to true if A and B are mac flags that can be used
987 together in a single multiply insn. That is the case if they are
988 both the same flag not involving M, or if one is a combination of
990 #define MACFLAGS_MATCH_P(A, B) \
992 || ((A) == MACFLAG_NONE && (B) == MACFLAG_M) \
993 || ((A) == MACFLAG_M && (B) == MACFLAG_NONE) \
994 || ((A) == MACFLAG_IS && (B) == MACFLAG_IS_M) \
995 || ((A) == MACFLAG_IS_M && (B) == MACFLAG_IS))
997 /* Switch into a generic section. */
998 #define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section
1000 #define PRINT_OPERAND(FILE, RTX, CODE) print_operand (FILE, RTX, CODE)
1001 #define PRINT_OPERAND_ADDRESS(FILE, RTX) print_address_operand (FILE, RTX)
1003 typedef enum sections
{
1009 typedef enum directives
{
1018 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) \
1020 || ((C) == '|' && (STR)[1] == '|'))
1022 #define TEXT_SECTION_ASM_OP ".text;"
1023 #define DATA_SECTION_ASM_OP ".data;"
1025 #define ASM_APP_ON ""
1026 #define ASM_APP_OFF ""
1028 #define ASM_GLOBALIZE_LABEL1(FILE, NAME) \
1029 do { fputs (".global ", FILE); \
1030 assemble_name (FILE, NAME); \
1032 fputc ('\n',FILE); \
1035 #define ASM_DECLARE_FUNCTION_NAME(FILE,NAME,DECL) \
1037 fputs (".type ", FILE); \
1038 assemble_name (FILE, NAME); \
1039 fputs (", STT_FUNC", FILE); \
1041 fputc ('\n',FILE); \
1042 ASM_OUTPUT_LABEL(FILE, NAME); \
1045 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1046 do { assemble_name (FILE, NAME); \
1047 fputs (":\n",FILE); \
1050 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1051 do { fprintf (FILE, "_%s", NAME); \
1054 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1055 do { char __buf[256]; \
1056 fprintf (FILE, "\t.dd\t"); \
1057 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1058 assemble_name (FILE, __buf); \
1059 fputc (';', FILE); \
1060 fputc ('\n', FILE); \
1063 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1064 MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL)
1066 #define MY_ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
1069 fprintf (FILE, "\t.dd\t"); \
1070 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", VALUE); \
1071 assemble_name (FILE, __buf); \
1072 fputs (" - ", FILE); \
1073 ASM_GENERATE_INTERNAL_LABEL (__buf, "L", REL); \
1074 assemble_name (FILE, __buf); \
1075 fputc (';', FILE); \
1076 fputc ('\n', FILE); \
1079 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1082 fprintf (FILE, "\t.align %d\n", 1 << (LOG)); \
1085 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1087 asm_output_skip (FILE, SIZE); \
1090 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1092 switch_to_section (data_section); \
1093 if ((SIZE) >= (unsigned int) 4 ) ASM_OUTPUT_ALIGN(FILE,2); \
1094 ASM_OUTPUT_SIZE_DIRECTIVE (FILE, NAME, SIZE); \
1095 ASM_OUTPUT_LABEL (FILE, NAME); \
1096 fprintf (FILE, "%s %ld;\n", ASM_SPACE, \
1097 (ROUNDED) > (unsigned int) 1 ? (ROUNDED) : 1); \
1100 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1102 ASM_GLOBALIZE_LABEL1(FILE,NAME); \
1103 ASM_OUTPUT_LOCAL (FILE, NAME, SIZE, ROUNDED); } while(0)
1105 #define ASM_COMMENT_START "//"
1107 #define PROFILE_BEFORE_PROLOGUE
1108 #define FUNCTION_PROFILER(FILE, LABELNO) \
1110 fprintf (FILE, "\t[--SP] = RETS;\n"); \
1111 if (TARGET_LONG_CALLS) \
1113 fprintf (FILE, "\tP2.h = __mcount;\n"); \
1114 fprintf (FILE, "\tP2.l = __mcount;\n"); \
1115 fprintf (FILE, "\tCALL (P2);\n"); \
1118 fprintf (FILE, "\tCALL __mcount;\n"); \
1119 fprintf (FILE, "\tRETS = [SP++];\n"); \
1122 #undef NO_PROFILE_COUNTERS
1123 #define NO_PROFILE_COUNTERS 1
1125 #define ASM_OUTPUT_REG_PUSH(FILE, REGNO) fprintf (FILE, "\t[--SP] = %s;\n", reg_names[REGNO])
1126 #define ASM_OUTPUT_REG_POP(FILE, REGNO) fprintf (FILE, "\t%s = [SP++];\n", reg_names[REGNO])
1128 extern rtx bfin_cc_rtx
, bfin_rets_rtx
;
1130 /* This works for GAS and some other assemblers. */
1131 #define SET_ASM_OP ".set "
1133 /* DBX register number for a given compiler register number */
1134 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
1136 #define SIZE_ASM_OP "\t.size\t"
1138 extern int splitting_for_sched
, splitting_loops
;
1140 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) ((CHAR) == '!')
1142 #ifndef TARGET_SUPPORTS_SYNC_CALLS
1143 #define TARGET_SUPPORTS_SYNC_CALLS 0
1151 unsigned int workarounds
;
1154 extern const struct bfin_cpu bfin_cpus
[];
1156 #endif /* _BFIN_CONFIG */