* rtlanal.c (insn_dependant_p, insn_dependant_p_1): New.
[official-gcc.git] / gcc / loop.c
blob70c307ab82cbbbd74596c30ae9a30b78c64cf904
1 /* Perform various loop optimizations, including strength reduction.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* This is the loop optimization pass of the compiler.
24 It finds invariant computations within loops and moves them
25 to the beginning of the loop. Then it identifies basic and
26 general induction variables. Strength reduction is applied to the general
27 induction variables, and induction variable elimination is applied to
28 the basic induction variables.
30 It also finds cases where
31 a register is set within the loop by zero-extending a narrower value
32 and changes these to zero the entire register once before the loop
33 and merely copy the low part within the loop.
35 Most of the complexity is in heuristics to decide when it is worth
36 while to do these things. */
38 #include "config.h"
39 #include "system.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "obstack.h"
43 #include "function.h"
44 #include "expr.h"
45 #include "basic-block.h"
46 #include "insn-config.h"
47 #include "insn-flags.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "recog.h"
51 #include "flags.h"
52 #include "real.h"
53 #include "loop.h"
54 #include "cselib.h"
55 #include "except.h"
56 #include "toplev.h"
58 /* Vector mapping INSN_UIDs to luids.
59 The luids are like uids but increase monotonically always.
60 We use them to see whether a jump comes from outside a given loop. */
62 int *uid_luid;
64 /* Indexed by INSN_UID, contains the ordinal giving the (innermost) loop
65 number the insn is contained in. */
67 struct loop **uid_loop;
69 /* 1 + largest uid of any insn. */
71 int max_uid_for_loop;
73 /* 1 + luid of last insn. */
75 static int max_luid;
77 /* Number of loops detected in current function. Used as index to the
78 next few tables. */
80 static int max_loop_num;
82 /* Indexed by register number, contains the number of times the reg
83 is set during the loop being scanned.
84 During code motion, a negative value indicates a reg that has been
85 made a candidate; in particular -2 means that it is an candidate that
86 we know is equal to a constant and -1 means that it is an candidate
87 not known equal to a constant.
88 After code motion, regs moved have 0 (which is accurate now)
89 while the failed candidates have the original number of times set.
91 Therefore, at all times, == 0 indicates an invariant register;
92 < 0 a conditionally invariant one. */
94 static varray_type set_in_loop;
96 /* Original value of set_in_loop; same except that this value
97 is not set negative for a reg whose sets have been made candidates
98 and not set to 0 for a reg that is moved. */
100 static varray_type n_times_set;
102 /* Index by register number, 1 indicates that the register
103 cannot be moved or strength reduced. */
105 static varray_type may_not_optimize;
107 /* Contains the insn in which a register was used if it was used
108 exactly once; contains const0_rtx if it was used more than once. */
110 static varray_type reg_single_usage;
112 /* Nonzero means reg N has already been moved out of one loop.
113 This reduces the desire to move it out of another. */
115 static char *moved_once;
117 /* List of MEMs that are stored in this loop. */
119 static rtx loop_store_mems;
121 /* The insn where the first of these was found. */
122 static rtx first_loop_store_insn;
124 typedef struct loop_mem_info {
125 rtx mem; /* The MEM itself. */
126 rtx reg; /* Corresponding pseudo, if any. */
127 int optimize; /* Nonzero if we can optimize access to this MEM. */
128 } loop_mem_info;
130 /* Array of MEMs that are used (read or written) in this loop, but
131 cannot be aliased by anything in this loop, except perhaps
132 themselves. In other words, if loop_mems[i] is altered during the
133 loop, it is altered by an expression that is rtx_equal_p to it. */
135 static loop_mem_info *loop_mems;
137 /* The index of the next available slot in LOOP_MEMS. */
139 static int loop_mems_idx;
141 /* The number of elements allocated in LOOP_MEMs. */
143 static int loop_mems_allocated;
145 /* Nonzero if we don't know what MEMs were changed in the current
146 loop. This happens if the loop contains a call (in which case
147 `loop_info->has_call' will also be set) or if we store into more
148 than NUM_STORES MEMs. */
150 static int unknown_address_altered;
152 /* The above doesn't count any readonly memory locations that are stored.
153 This does. */
155 static int unknown_constant_address_altered;
157 /* Count of movable (i.e. invariant) instructions discovered in the loop. */
158 static int num_movables;
160 /* Count of memory write instructions discovered in the loop. */
161 static int num_mem_sets;
163 /* Bound on pseudo register number before loop optimization.
164 A pseudo has valid regscan info if its number is < max_reg_before_loop. */
165 unsigned int max_reg_before_loop;
167 /* The value to pass to the next call of reg_scan_update. */
168 static int loop_max_reg;
170 /* This obstack is used in product_cheap_p to allocate its rtl. It
171 may call gen_reg_rtx which, in turn, may reallocate regno_reg_rtx.
172 If we used the same obstack that it did, we would be deallocating
173 that array. */
175 static struct obstack temp_obstack;
177 /* This is where the pointer to the obstack being used for RTL is stored. */
179 extern struct obstack *rtl_obstack;
181 #define obstack_chunk_alloc xmalloc
182 #define obstack_chunk_free free
184 /* During the analysis of a loop, a chain of `struct movable's
185 is made to record all the movable insns found.
186 Then the entire chain can be scanned to decide which to move. */
188 struct movable
190 rtx insn; /* A movable insn */
191 rtx set_src; /* The expression this reg is set from. */
192 rtx set_dest; /* The destination of this SET. */
193 rtx dependencies; /* When INSN is libcall, this is an EXPR_LIST
194 of any registers used within the LIBCALL. */
195 int consec; /* Number of consecutive following insns
196 that must be moved with this one. */
197 unsigned int regno; /* The register it sets */
198 short lifetime; /* lifetime of that register;
199 may be adjusted when matching movables
200 that load the same value are found. */
201 short savings; /* Number of insns we can move for this reg,
202 including other movables that force this
203 or match this one. */
204 unsigned int cond : 1; /* 1 if only conditionally movable */
205 unsigned int force : 1; /* 1 means MUST move this insn */
206 unsigned int global : 1; /* 1 means reg is live outside this loop */
207 /* If PARTIAL is 1, GLOBAL means something different:
208 that the reg is live outside the range from where it is set
209 to the following label. */
210 unsigned int done : 1; /* 1 inhibits further processing of this */
212 unsigned int partial : 1; /* 1 means this reg is used for zero-extending.
213 In particular, moving it does not make it
214 invariant. */
215 unsigned int move_insn : 1; /* 1 means that we call emit_move_insn to
216 load SRC, rather than copying INSN. */
217 unsigned int move_insn_first:1;/* Same as above, if this is necessary for the
218 first insn of a consecutive sets group. */
219 unsigned int is_equiv : 1; /* 1 means a REG_EQUIV is present on INSN. */
220 enum machine_mode savemode; /* Nonzero means it is a mode for a low part
221 that we should avoid changing when clearing
222 the rest of the reg. */
223 struct movable *match; /* First entry for same value */
224 struct movable *forces; /* An insn that must be moved if this is */
225 struct movable *next;
228 static struct movable *the_movables;
230 FILE *loop_dump_stream;
232 /* Forward declarations. */
234 static void verify_dominator PARAMS ((struct loop *));
235 static void find_and_verify_loops PARAMS ((rtx, struct loops *));
236 static void mark_loop_jump PARAMS ((rtx, struct loop *));
237 static void prescan_loop PARAMS ((struct loop *));
238 static int reg_in_basic_block_p PARAMS ((rtx, rtx));
239 static int consec_sets_invariant_p PARAMS ((const struct loop *,
240 rtx, int, rtx));
241 static int labels_in_range_p PARAMS ((rtx, int));
242 static void count_one_set PARAMS ((rtx, rtx, varray_type, rtx *));
244 static void count_loop_regs_set PARAMS ((rtx, rtx, varray_type, varray_type,
245 int *, int));
246 static void note_addr_stored PARAMS ((rtx, rtx, void *));
247 static void note_set_pseudo_multiple_uses PARAMS ((rtx, rtx, void *));
248 static int loop_reg_used_before_p PARAMS ((const struct loop *, rtx, rtx));
249 static void scan_loop PARAMS ((struct loop*, int));
250 #if 0
251 static void replace_call_address PARAMS ((rtx, rtx, rtx));
252 #endif
253 static rtx skip_consec_insns PARAMS ((rtx, int));
254 static int libcall_benefit PARAMS ((rtx));
255 static void ignore_some_movables PARAMS ((struct movable *));
256 static void force_movables PARAMS ((struct movable *));
257 static void combine_movables PARAMS ((struct movable *, int));
258 static int regs_match_p PARAMS ((rtx, rtx, struct movable *));
259 static int rtx_equal_for_loop_p PARAMS ((rtx, rtx, struct movable *));
260 static void add_label_notes PARAMS ((rtx, rtx));
261 static void move_movables PARAMS ((struct loop *loop, struct movable *,
262 int, int, int));
263 static int count_nonfixed_reads PARAMS ((const struct loop *, rtx));
264 static void strength_reduce PARAMS ((struct loop *, int, int));
265 static void find_single_use_in_loop PARAMS ((rtx, rtx, varray_type));
266 static int valid_initial_value_p PARAMS ((rtx, rtx, int, rtx));
267 static void find_mem_givs PARAMS ((const struct loop *, rtx, rtx, int, int));
268 static void record_biv PARAMS ((struct induction *, rtx, rtx, rtx, rtx, rtx *,
269 int, int, int));
270 static void check_final_value PARAMS ((const struct loop *,
271 struct induction *));
272 static void record_giv PARAMS ((const struct loop *, struct induction *,
273 rtx, rtx, rtx, rtx, rtx, int, enum g_types,
274 int, int, rtx *));
275 static void update_giv_derive PARAMS ((const struct loop *, rtx));
276 static int basic_induction_var PARAMS ((const struct loop *, rtx,
277 enum machine_mode, rtx, rtx,
278 rtx *, rtx *, rtx **, int *));
279 static rtx simplify_giv_expr PARAMS ((const struct loop *, rtx, int *));
280 static int general_induction_var PARAMS ((const struct loop *loop, rtx, rtx *,
281 rtx *, rtx *, int, int *, enum machine_mode));
282 static int consec_sets_giv PARAMS ((const struct loop *, int, rtx,
283 rtx, rtx, rtx *, rtx *, rtx *));
284 static int check_dbra_loop PARAMS ((struct loop *, int));
285 static rtx express_from_1 PARAMS ((rtx, rtx, rtx));
286 static rtx combine_givs_p PARAMS ((struct induction *, struct induction *));
287 static void combine_givs PARAMS ((struct iv_class *));
288 struct recombine_givs_stats;
289 static int find_life_end PARAMS ((rtx, struct recombine_givs_stats *,
290 rtx, rtx));
291 static void recombine_givs PARAMS ((const struct loop *, struct iv_class *,
292 int));
293 static int product_cheap_p PARAMS ((rtx, rtx));
294 static int maybe_eliminate_biv PARAMS ((const struct loop *, struct iv_class *,
295 int, int, int));
296 static int maybe_eliminate_biv_1 PARAMS ((const struct loop *, rtx, rtx,
297 struct iv_class *, int, rtx));
298 static int last_use_this_basic_block PARAMS ((rtx, rtx));
299 static void record_initial PARAMS ((rtx, rtx, void *));
300 static void update_reg_last_use PARAMS ((rtx, rtx));
301 static rtx next_insn_in_loop PARAMS ((const struct loop *, rtx));
302 static void load_mems_and_recount_loop_regs_set PARAMS ((const struct loop*,
303 int *));
304 static void load_mems PARAMS ((const struct loop *));
305 static int insert_loop_mem PARAMS ((rtx *, void *));
306 static int replace_loop_mem PARAMS ((rtx *, void *));
307 static int replace_loop_reg PARAMS ((rtx *, void *));
308 static void note_reg_stored PARAMS ((rtx, rtx, void *));
309 static void try_copy_prop PARAMS ((const struct loop *, rtx, unsigned int));
310 static int replace_label PARAMS ((rtx *, void *));
311 static rtx check_insn_for_givs PARAMS((struct loop *, rtx, int, int));
312 static rtx check_insn_for_bivs PARAMS((struct loop *, rtx, int, int));
314 typedef struct rtx_and_int {
315 rtx r;
316 int i;
317 } rtx_and_int;
319 typedef struct rtx_pair {
320 rtx r1;
321 rtx r2;
322 } rtx_pair;
324 /* Nonzero iff INSN is between START and END, inclusive. */
325 #define INSN_IN_RANGE_P(INSN, START, END) \
326 (INSN_UID (INSN) < max_uid_for_loop \
327 && INSN_LUID (INSN) >= INSN_LUID (START) \
328 && INSN_LUID (INSN) <= INSN_LUID (END))
330 #ifdef HAVE_decrement_and_branch_on_count
331 /* Test whether BCT applicable and safe. */
332 static void insert_bct PARAMS ((struct loop *));
334 /* Auxiliary function that inserts the BCT pattern into the loop. */
335 static void instrument_loop_bct PARAMS ((rtx, rtx, rtx));
336 #endif /* HAVE_decrement_and_branch_on_count */
338 /* Indirect_jump_in_function is computed once per function. */
339 int indirect_jump_in_function = 0;
340 static int indirect_jump_in_function_p PARAMS ((rtx));
342 static int compute_luids PARAMS ((rtx, rtx, int));
344 static int biv_elimination_giv_has_0_offset PARAMS ((struct induction *,
345 struct induction *, rtx));
347 /* Relative gain of eliminating various kinds of operations. */
348 static int add_cost;
349 #if 0
350 static int shift_cost;
351 static int mult_cost;
352 #endif
354 /* Benefit penalty, if a giv is not replaceable, i.e. must emit an insn to
355 copy the value of the strength reduced giv to its original register. */
356 static int copy_cost;
358 /* Cost of using a register, to normalize the benefits of a giv. */
359 static int reg_address_cost;
362 void
363 init_loop ()
365 char *free_point = (char *) oballoc (1);
366 rtx reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
368 add_cost = rtx_cost (gen_rtx_PLUS (word_mode, reg, reg), SET);
370 reg_address_cost = address_cost (reg, SImode);
372 /* We multiply by 2 to reconcile the difference in scale between
373 these two ways of computing costs. Otherwise the cost of a copy
374 will be far less than the cost of an add. */
376 copy_cost = 2 * 2;
378 /* Free the objects we just allocated. */
379 obfree (free_point);
381 /* Initialize the obstack used for rtl in product_cheap_p. */
382 gcc_obstack_init (&temp_obstack);
385 /* Compute the mapping from uids to luids.
386 LUIDs are numbers assigned to insns, like uids,
387 except that luids increase monotonically through the code.
388 Start at insn START and stop just before END. Assign LUIDs
389 starting with PREV_LUID + 1. Return the last assigned LUID + 1. */
390 static int
391 compute_luids (start, end, prev_luid)
392 rtx start, end;
393 int prev_luid;
395 int i;
396 rtx insn;
398 for (insn = start, i = prev_luid; insn != end; insn = NEXT_INSN (insn))
400 if (INSN_UID (insn) >= max_uid_for_loop)
401 continue;
402 /* Don't assign luids to line-number NOTEs, so that the distance in
403 luids between two insns is not affected by -g. */
404 if (GET_CODE (insn) != NOTE
405 || NOTE_LINE_NUMBER (insn) <= 0)
406 uid_luid[INSN_UID (insn)] = ++i;
407 else
408 /* Give a line number note the same luid as preceding insn. */
409 uid_luid[INSN_UID (insn)] = i;
411 return i + 1;
414 /* Entry point of this file. Perform loop optimization
415 on the current function. F is the first insn of the function
416 and DUMPFILE is a stream for output of a trace of actions taken
417 (or 0 if none should be output). */
419 void
420 loop_optimize (f, dumpfile, flags)
421 /* f is the first instruction of a chain of insns for one function */
422 rtx f;
423 FILE *dumpfile;
424 int flags;
426 register rtx insn;
427 register int i;
428 struct loops loops_data;
429 struct loops *loops = &loops_data;
430 struct loop_info *loops_info;
432 loop_dump_stream = dumpfile;
434 init_recog_no_volatile ();
436 max_reg_before_loop = max_reg_num ();
437 loop_max_reg = max_reg_before_loop;
439 regs_may_share = 0;
441 /* Count the number of loops. */
443 max_loop_num = 0;
444 for (insn = f; insn; insn = NEXT_INSN (insn))
446 if (GET_CODE (insn) == NOTE
447 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
448 max_loop_num++;
451 /* Don't waste time if no loops. */
452 if (max_loop_num == 0)
453 return;
455 loops->num = max_loop_num;
457 moved_once = (char *) xcalloc (max_reg_before_loop, sizeof (char));
459 /* Get size to use for tables indexed by uids.
460 Leave some space for labels allocated by find_and_verify_loops. */
461 max_uid_for_loop = get_max_uid () + 1 + max_loop_num * 32;
463 uid_luid = (int *) xcalloc (max_uid_for_loop, sizeof (int));
464 uid_loop = (struct loop **) xcalloc (max_uid_for_loop,
465 sizeof (struct loop *));
467 /* Allocate storage for array of loops. */
468 loops->array = (struct loop *)
469 xcalloc (loops->num, sizeof (struct loop));
471 /* Find and process each loop.
472 First, find them, and record them in order of their beginnings. */
473 find_and_verify_loops (f, loops);
475 /* Allocate and initialize auxiliary loop information. */
476 loops_info = xcalloc (loops->num, sizeof (struct loop_info));
477 for (i = 0; i < loops->num; i++)
478 loops->array[i].aux = loops_info + i;
480 /* Now find all register lifetimes. This must be done after
481 find_and_verify_loops, because it might reorder the insns in the
482 function. */
483 reg_scan (f, max_reg_before_loop, 1);
485 /* This must occur after reg_scan so that registers created by gcse
486 will have entries in the register tables.
488 We could have added a call to reg_scan after gcse_main in toplev.c,
489 but moving this call to init_alias_analysis is more efficient. */
490 init_alias_analysis ();
492 /* See if we went too far. Note that get_max_uid already returns
493 one more that the maximum uid of all insn. */
494 if (get_max_uid () > max_uid_for_loop)
495 abort ();
496 /* Now reset it to the actual size we need. See above. */
497 max_uid_for_loop = get_max_uid ();
499 /* find_and_verify_loops has already called compute_luids, but it
500 might have rearranged code afterwards, so we need to recompute
501 the luids now. */
502 max_luid = compute_luids (f, NULL_RTX, 0);
504 /* Don't leave gaps in uid_luid for insns that have been
505 deleted. It is possible that the first or last insn
506 using some register has been deleted by cross-jumping.
507 Make sure that uid_luid for that former insn's uid
508 points to the general area where that insn used to be. */
509 for (i = 0; i < max_uid_for_loop; i++)
511 uid_luid[0] = uid_luid[i];
512 if (uid_luid[0] != 0)
513 break;
515 for (i = 0; i < max_uid_for_loop; i++)
516 if (uid_luid[i] == 0)
517 uid_luid[i] = uid_luid[i - 1];
519 /* Determine if the function has indirect jump. On some systems
520 this prevents low overhead loop instructions from being used. */
521 indirect_jump_in_function = indirect_jump_in_function_p (f);
523 /* Now scan the loops, last ones first, since this means inner ones are done
524 before outer ones. */
525 for (i = max_loop_num - 1; i >= 0; i--)
527 struct loop *loop = &loops->array[i];
529 if (! loop->invalid && loop->end)
530 scan_loop (loop, flags);
533 /* If there were lexical blocks inside the loop, they have been
534 replicated. We will now have more than one NOTE_INSN_BLOCK_BEG
535 and NOTE_INSN_BLOCK_END for each such block. We must duplicate
536 the BLOCKs as well. */
537 if (write_symbols != NO_DEBUG)
538 reorder_blocks ();
540 end_alias_analysis ();
542 /* Clean up. */
543 free (moved_once);
544 free (uid_luid);
545 free (uid_loop);
546 free (loops_info);
547 free (loops->array);
550 /* Returns the next insn, in execution order, after INSN. START and
551 END are the NOTE_INSN_LOOP_BEG and NOTE_INSN_LOOP_END for the loop,
552 respectively. LOOP->TOP, if non-NULL, is the top of the loop in the
553 insn-stream; it is used with loops that are entered near the
554 bottom. */
556 static rtx
557 next_insn_in_loop (loop, insn)
558 const struct loop *loop;
559 rtx insn;
561 insn = NEXT_INSN (insn);
563 if (insn == loop->end)
565 if (loop->top)
566 /* Go to the top of the loop, and continue there. */
567 insn = loop->top;
568 else
569 /* We're done. */
570 insn = NULL_RTX;
573 if (insn == loop->scan_start)
574 /* We're done. */
575 insn = NULL_RTX;
577 return insn;
580 /* Optimize one loop described by LOOP. */
582 /* ??? Could also move memory writes out of loops if the destination address
583 is invariant, the source is invariant, the memory write is not volatile,
584 and if we can prove that no read inside the loop can read this address
585 before the write occurs. If there is a read of this address after the
586 write, then we can also mark the memory read as invariant. */
588 static void
589 scan_loop (loop, flags)
590 struct loop *loop;
591 int flags;
593 register int i;
594 rtx loop_start = loop->start;
595 rtx loop_end = loop->end;
596 /* Additional information about the current loop being processed
597 that is used to compute the number of loop iterations for loop
598 unrolling and doloop optimization. */
599 struct loop_info *loop_info = LOOP_INFO (loop);
600 rtx p;
601 /* 1 if we are scanning insns that could be executed zero times. */
602 int maybe_never = 0;
603 /* 1 if we are scanning insns that might never be executed
604 due to a subroutine call which might exit before they are reached. */
605 int call_passed = 0;
606 /* Jump insn that enters the loop, or 0 if control drops in. */
607 rtx loop_entry_jump = 0;
608 /* Number of insns in the loop. */
609 int insn_count;
610 int in_libcall = 0;
611 int tem;
612 rtx temp, update_start, update_end;
613 /* The SET from an insn, if it is the only SET in the insn. */
614 rtx set, set1;
615 /* Chain describing insns movable in current loop. */
616 struct movable *movables = 0;
617 /* Last element in `movables' -- so we can add elements at the end. */
618 struct movable *last_movable = 0;
619 /* Ratio of extra register life span we can justify
620 for saving an instruction. More if loop doesn't call subroutines
621 since in that case saving an insn makes more difference
622 and more registers are available. */
623 int threshold;
624 /* Nonzero if we are scanning instructions in a sub-loop. */
625 int loop_depth = 0;
626 int nregs;
628 loop->top = 0;
630 /* Determine whether this loop starts with a jump down to a test at
631 the end. This will occur for a small number of loops with a test
632 that is too complex to duplicate in front of the loop.
634 We search for the first insn or label in the loop, skipping NOTEs.
635 However, we must be careful not to skip past a NOTE_INSN_LOOP_BEG
636 (because we might have a loop executed only once that contains a
637 loop which starts with a jump to its exit test) or a NOTE_INSN_LOOP_END
638 (in case we have a degenerate loop).
640 Note that if we mistakenly think that a loop is entered at the top
641 when, in fact, it is entered at the exit test, the only effect will be
642 slightly poorer optimization. Making the opposite error can generate
643 incorrect code. Since very few loops now start with a jump to the
644 exit test, the code here to detect that case is very conservative. */
646 for (p = NEXT_INSN (loop_start);
647 p != loop_end
648 && GET_CODE (p) != CODE_LABEL && GET_RTX_CLASS (GET_CODE (p)) != 'i'
649 && (GET_CODE (p) != NOTE
650 || (NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_BEG
651 && NOTE_LINE_NUMBER (p) != NOTE_INSN_LOOP_END));
652 p = NEXT_INSN (p))
655 loop->scan_start = p;
657 /* Set up variables describing this loop. */
658 prescan_loop (loop);
659 threshold = (loop_info->has_call ? 1 : 2) * (1 + n_non_fixed_regs);
661 /* If loop has a jump before the first label,
662 the true entry is the target of that jump.
663 Start scan from there.
664 But record in LOOP->TOP the place where the end-test jumps
665 back to so we can scan that after the end of the loop. */
666 if (GET_CODE (p) == JUMP_INSN)
668 loop_entry_jump = p;
670 /* Loop entry must be unconditional jump (and not a RETURN) */
671 if (simplejump_p (p)
672 && JUMP_LABEL (p) != 0
673 /* Check to see whether the jump actually
674 jumps out of the loop (meaning it's no loop).
675 This case can happen for things like
676 do {..} while (0). If this label was generated previously
677 by loop, we can't tell anything about it and have to reject
678 the loop. */
679 && INSN_IN_RANGE_P (JUMP_LABEL (p), loop_start, loop_end))
681 loop->top = next_label (loop->scan_start);
682 loop->scan_start = JUMP_LABEL (p);
686 /* If LOOP->SCAN_START was an insn created by loop, we don't know its luid
687 as required by loop_reg_used_before_p. So skip such loops. (This
688 test may never be true, but it's best to play it safe.)
690 Also, skip loops where we do not start scanning at a label. This
691 test also rejects loops starting with a JUMP_INSN that failed the
692 test above. */
694 if (INSN_UID (loop->scan_start) >= max_uid_for_loop
695 || GET_CODE (loop->scan_start) != CODE_LABEL)
697 if (loop_dump_stream)
698 fprintf (loop_dump_stream, "\nLoop from %d to %d is phony.\n\n",
699 INSN_UID (loop_start), INSN_UID (loop_end));
700 return;
703 /* Count number of times each reg is set during this loop.
704 Set VARRAY_CHAR (may_not_optimize, I) if it is not safe to move out
705 the setting of register I. Set VARRAY_RTX (reg_single_usage, I). */
707 /* Allocate extra space for REGS that might be created by
708 load_mems. We allocate a little extra slop as well, in the hopes
709 that even after the moving of movables creates some new registers
710 we won't have to reallocate these arrays. However, we do grow
711 the arrays, if necessary, in load_mems_recount_loop_regs_set. */
712 nregs = max_reg_num () + loop_mems_idx + 16;
713 VARRAY_INT_INIT (set_in_loop, nregs, "set_in_loop");
714 VARRAY_INT_INIT (n_times_set, nregs, "n_times_set");
715 VARRAY_CHAR_INIT (may_not_optimize, nregs, "may_not_optimize");
716 VARRAY_RTX_INIT (reg_single_usage, nregs, "reg_single_usage");
718 count_loop_regs_set (loop->top ? loop->top : loop->start, loop->end,
719 may_not_optimize, reg_single_usage, &insn_count, nregs);
721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
723 VARRAY_CHAR (may_not_optimize, i) = 1;
724 VARRAY_INT (set_in_loop, i) = 1;
727 #ifdef AVOID_CCMODE_COPIES
728 /* Don't try to move insns which set CC registers if we should not
729 create CCmode register copies. */
730 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
731 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
732 VARRAY_CHAR (may_not_optimize, i) = 1;
733 #endif
735 bcopy ((char *) &set_in_loop->data,
736 (char *) &n_times_set->data, nregs * sizeof (int));
738 if (loop_dump_stream)
740 fprintf (loop_dump_stream, "\nLoop from %d to %d: %d real insns.\n",
741 INSN_UID (loop_start), INSN_UID (loop_end), insn_count);
742 if (loop->cont)
743 fprintf (loop_dump_stream, "Continue at insn %d.\n",
744 INSN_UID (loop->cont));
747 /* Scan through the loop finding insns that are safe to move.
748 Set set_in_loop negative for the reg being set, so that
749 this reg will be considered invariant for subsequent insns.
750 We consider whether subsequent insns use the reg
751 in deciding whether it is worth actually moving.
753 MAYBE_NEVER is nonzero if we have passed a conditional jump insn
754 and therefore it is possible that the insns we are scanning
755 would never be executed. At such times, we must make sure
756 that it is safe to execute the insn once instead of zero times.
757 When MAYBE_NEVER is 0, all insns will be executed at least once
758 so that is not a problem. */
760 for (p = next_insn_in_loop (loop, loop->scan_start);
761 p != NULL_RTX;
762 p = next_insn_in_loop (loop, p))
764 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
765 && find_reg_note (p, REG_LIBCALL, NULL_RTX))
766 in_libcall = 1;
767 else if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
768 && find_reg_note (p, REG_RETVAL, NULL_RTX))
769 in_libcall = 0;
771 if (GET_CODE (p) == INSN
772 && (set = single_set (p))
773 && GET_CODE (SET_DEST (set)) == REG
774 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
776 int tem1 = 0;
777 int tem2 = 0;
778 int move_insn = 0;
779 rtx src = SET_SRC (set);
780 rtx dependencies = 0;
782 /* Figure out what to use as a source of this insn. If a REG_EQUIV
783 note is given or if a REG_EQUAL note with a constant operand is
784 specified, use it as the source and mark that we should move
785 this insn by calling emit_move_insn rather that duplicating the
786 insn.
788 Otherwise, only use the REG_EQUAL contents if a REG_RETVAL note
789 is present. */
790 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
791 if (temp)
792 src = XEXP (temp, 0), move_insn = 1;
793 else
795 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
796 if (temp && CONSTANT_P (XEXP (temp, 0)))
797 src = XEXP (temp, 0), move_insn = 1;
798 if (temp && find_reg_note (p, REG_RETVAL, NULL_RTX))
800 src = XEXP (temp, 0);
801 /* A libcall block can use regs that don't appear in
802 the equivalent expression. To move the libcall,
803 we must move those regs too. */
804 dependencies = libcall_other_reg (p, src);
808 /* Don't try to optimize a register that was made
809 by loop-optimization for an inner loop.
810 We don't know its life-span, so we can't compute the benefit. */
811 if (REGNO (SET_DEST (set)) >= max_reg_before_loop)
813 else if (/* The register is used in basic blocks other
814 than the one where it is set (meaning that
815 something after this point in the loop might
816 depend on its value before the set). */
817 ! reg_in_basic_block_p (p, SET_DEST (set))
818 /* And the set is not guaranteed to be executed one
819 the loop starts, or the value before the set is
820 needed before the set occurs...
822 ??? Note we have quadratic behaviour here, mitigated
823 by the fact that the previous test will often fail for
824 large loops. Rather than re-scanning the entire loop
825 each time for register usage, we should build tables
826 of the register usage and use them here instead. */
827 && (maybe_never
828 || loop_reg_used_before_p (loop, set, p)))
829 /* It is unsafe to move the set.
831 This code used to consider it OK to move a set of a variable
832 which was not created by the user and not used in an exit test.
833 That behavior is incorrect and was removed. */
835 else if ((tem = loop_invariant_p (loop, src))
836 && (dependencies == 0
837 || (tem2 = loop_invariant_p (loop, dependencies)) != 0)
838 && (VARRAY_INT (set_in_loop,
839 REGNO (SET_DEST (set))) == 1
840 || (tem1
841 = consec_sets_invariant_p
842 (loop, SET_DEST (set),
843 VARRAY_INT (set_in_loop, REGNO (SET_DEST (set))),
844 p)))
845 /* If the insn can cause a trap (such as divide by zero),
846 can't move it unless it's guaranteed to be executed
847 once loop is entered. Even a function call might
848 prevent the trap insn from being reached
849 (since it might exit!) */
850 && ! ((maybe_never || call_passed)
851 && may_trap_p (src)))
853 register struct movable *m;
854 register int regno = REGNO (SET_DEST (set));
856 /* A potential lossage is where we have a case where two insns
857 can be combined as long as they are both in the loop, but
858 we move one of them outside the loop. For large loops,
859 this can lose. The most common case of this is the address
860 of a function being called.
862 Therefore, if this register is marked as being used exactly
863 once if we are in a loop with calls (a "large loop"), see if
864 we can replace the usage of this register with the source
865 of this SET. If we can, delete this insn.
867 Don't do this if P has a REG_RETVAL note or if we have
868 SMALL_REGISTER_CLASSES and SET_SRC is a hard register. */
870 if (loop_info->has_call
871 && VARRAY_RTX (reg_single_usage, regno) != 0
872 && VARRAY_RTX (reg_single_usage, regno) != const0_rtx
873 && REGNO_FIRST_UID (regno) == INSN_UID (p)
874 && (REGNO_LAST_UID (regno)
875 == INSN_UID (VARRAY_RTX (reg_single_usage, regno)))
876 && VARRAY_INT (set_in_loop, regno) == 1
877 && ! side_effects_p (SET_SRC (set))
878 && ! find_reg_note (p, REG_RETVAL, NULL_RTX)
879 && (! SMALL_REGISTER_CLASSES
880 || (! (GET_CODE (SET_SRC (set)) == REG
881 && REGNO (SET_SRC (set)) < FIRST_PSEUDO_REGISTER)))
882 /* This test is not redundant; SET_SRC (set) might be
883 a call-clobbered register and the life of REGNO
884 might span a call. */
885 && ! modified_between_p (SET_SRC (set), p,
886 VARRAY_RTX
887 (reg_single_usage, regno))
888 && no_labels_between_p (p, VARRAY_RTX (reg_single_usage, regno))
889 && validate_replace_rtx (SET_DEST (set), SET_SRC (set),
890 VARRAY_RTX
891 (reg_single_usage, regno)))
893 /* Replace any usage in a REG_EQUAL note. Must copy the
894 new source, so that we don't get rtx sharing between the
895 SET_SOURCE and REG_NOTES of insn p. */
896 REG_NOTES (VARRAY_RTX (reg_single_usage, regno))
897 = replace_rtx (REG_NOTES (VARRAY_RTX
898 (reg_single_usage, regno)),
899 SET_DEST (set), copy_rtx (SET_SRC (set)));
901 PUT_CODE (p, NOTE);
902 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
903 NOTE_SOURCE_FILE (p) = 0;
904 VARRAY_INT (set_in_loop, regno) = 0;
905 continue;
908 m = (struct movable *) alloca (sizeof (struct movable));
909 m->next = 0;
910 m->insn = p;
911 m->set_src = src;
912 m->dependencies = dependencies;
913 m->set_dest = SET_DEST (set);
914 m->force = 0;
915 m->consec = VARRAY_INT (set_in_loop,
916 REGNO (SET_DEST (set))) - 1;
917 m->done = 0;
918 m->forces = 0;
919 m->partial = 0;
920 m->move_insn = move_insn;
921 m->move_insn_first = 0;
922 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
923 m->savemode = VOIDmode;
924 m->regno = regno;
925 /* Set M->cond if either loop_invariant_p
926 or consec_sets_invariant_p returned 2
927 (only conditionally invariant). */
928 m->cond = ((tem | tem1 | tem2) > 1);
929 m->global = (uid_luid[REGNO_LAST_UID (regno)]
930 > INSN_LUID (loop_end)
931 || uid_luid[REGNO_FIRST_UID (regno)] < INSN_LUID (loop_start));
932 m->match = 0;
933 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
934 - uid_luid[REGNO_FIRST_UID (regno)]);
935 m->savings = VARRAY_INT (n_times_set, regno);
936 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
937 m->savings += libcall_benefit (p);
938 VARRAY_INT (set_in_loop, regno) = move_insn ? -2 : -1;
939 /* Add M to the end of the chain MOVABLES. */
940 if (movables == 0)
941 movables = m;
942 else
943 last_movable->next = m;
944 last_movable = m;
946 if (m->consec > 0)
948 /* It is possible for the first instruction to have a
949 REG_EQUAL note but a non-invariant SET_SRC, so we must
950 remember the status of the first instruction in case
951 the last instruction doesn't have a REG_EQUAL note. */
952 m->move_insn_first = m->move_insn;
954 /* Skip this insn, not checking REG_LIBCALL notes. */
955 p = next_nonnote_insn (p);
956 /* Skip the consecutive insns, if there are any. */
957 p = skip_consec_insns (p, m->consec);
958 /* Back up to the last insn of the consecutive group. */
959 p = prev_nonnote_insn (p);
961 /* We must now reset m->move_insn, m->is_equiv, and possibly
962 m->set_src to correspond to the effects of all the
963 insns. */
964 temp = find_reg_note (p, REG_EQUIV, NULL_RTX);
965 if (temp)
966 m->set_src = XEXP (temp, 0), m->move_insn = 1;
967 else
969 temp = find_reg_note (p, REG_EQUAL, NULL_RTX);
970 if (temp && CONSTANT_P (XEXP (temp, 0)))
971 m->set_src = XEXP (temp, 0), m->move_insn = 1;
972 else
973 m->move_insn = 0;
976 m->is_equiv = (find_reg_note (p, REG_EQUIV, NULL_RTX) != 0);
979 /* If this register is always set within a STRICT_LOW_PART
980 or set to zero, then its high bytes are constant.
981 So clear them outside the loop and within the loop
982 just load the low bytes.
983 We must check that the machine has an instruction to do so.
984 Also, if the value loaded into the register
985 depends on the same register, this cannot be done. */
986 else if (SET_SRC (set) == const0_rtx
987 && GET_CODE (NEXT_INSN (p)) == INSN
988 && (set1 = single_set (NEXT_INSN (p)))
989 && GET_CODE (set1) == SET
990 && (GET_CODE (SET_DEST (set1)) == STRICT_LOW_PART)
991 && (GET_CODE (XEXP (SET_DEST (set1), 0)) == SUBREG)
992 && (SUBREG_REG (XEXP (SET_DEST (set1), 0))
993 == SET_DEST (set))
994 && !reg_mentioned_p (SET_DEST (set), SET_SRC (set1)))
996 register int regno = REGNO (SET_DEST (set));
997 if (VARRAY_INT (set_in_loop, regno) == 2)
999 register struct movable *m;
1000 m = (struct movable *) alloca (sizeof (struct movable));
1001 m->next = 0;
1002 m->insn = p;
1003 m->set_dest = SET_DEST (set);
1004 m->dependencies = 0;
1005 m->force = 0;
1006 m->consec = 0;
1007 m->done = 0;
1008 m->forces = 0;
1009 m->move_insn = 0;
1010 m->move_insn_first = 0;
1011 m->partial = 1;
1012 /* If the insn may not be executed on some cycles,
1013 we can't clear the whole reg; clear just high part.
1014 Not even if the reg is used only within this loop.
1015 Consider this:
1016 while (1)
1017 while (s != t) {
1018 if (foo ()) x = *s;
1019 use (x);
1021 Clearing x before the inner loop could clobber a value
1022 being saved from the last time around the outer loop.
1023 However, if the reg is not used outside this loop
1024 and all uses of the register are in the same
1025 basic block as the store, there is no problem.
1027 If this insn was made by loop, we don't know its
1028 INSN_LUID and hence must make a conservative
1029 assumption. */
1030 m->global = (INSN_UID (p) >= max_uid_for_loop
1031 || (uid_luid[REGNO_LAST_UID (regno)]
1032 > INSN_LUID (loop_end))
1033 || (uid_luid[REGNO_FIRST_UID (regno)]
1034 < INSN_LUID (p))
1035 || (labels_in_range_p
1036 (p, uid_luid[REGNO_FIRST_UID (regno)])));
1037 if (maybe_never && m->global)
1038 m->savemode = GET_MODE (SET_SRC (set1));
1039 else
1040 m->savemode = VOIDmode;
1041 m->regno = regno;
1042 m->cond = 0;
1043 m->match = 0;
1044 m->lifetime = (uid_luid[REGNO_LAST_UID (regno)]
1045 - uid_luid[REGNO_FIRST_UID (regno)]);
1046 m->savings = 1;
1047 VARRAY_INT (set_in_loop, regno) = -1;
1048 /* Add M to the end of the chain MOVABLES. */
1049 if (movables == 0)
1050 movables = m;
1051 else
1052 last_movable->next = m;
1053 last_movable = m;
1057 /* Past a call insn, we get to insns which might not be executed
1058 because the call might exit. This matters for insns that trap.
1059 Call insns inside a REG_LIBCALL/REG_RETVAL block always return,
1060 so they don't count. */
1061 else if (GET_CODE (p) == CALL_INSN && ! in_libcall)
1062 call_passed = 1;
1063 /* Past a label or a jump, we get to insns for which we
1064 can't count on whether or how many times they will be
1065 executed during each iteration. Therefore, we can
1066 only move out sets of trivial variables
1067 (those not used after the loop). */
1068 /* Similar code appears twice in strength_reduce. */
1069 else if ((GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN)
1070 /* If we enter the loop in the middle, and scan around to the
1071 beginning, don't set maybe_never for that. This must be an
1072 unconditional jump, otherwise the code at the top of the
1073 loop might never be executed. Unconditional jumps are
1074 followed a by barrier then loop end. */
1075 && ! (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == loop->top
1076 && NEXT_INSN (NEXT_INSN (p)) == loop_end
1077 && simplejump_p (p)))
1078 maybe_never = 1;
1079 else if (GET_CODE (p) == NOTE)
1081 /* At the virtual top of a converted loop, insns are again known to
1082 be executed: logically, the loop begins here even though the exit
1083 code has been duplicated. */
1084 if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP && loop_depth == 0)
1085 maybe_never = call_passed = 0;
1086 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
1087 loop_depth++;
1088 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
1089 loop_depth--;
1093 /* If one movable subsumes another, ignore that other. */
1095 ignore_some_movables (movables);
1097 /* For each movable insn, see if the reg that it loads
1098 leads when it dies right into another conditionally movable insn.
1099 If so, record that the second insn "forces" the first one,
1100 since the second can be moved only if the first is. */
1102 force_movables (movables);
1104 /* See if there are multiple movable insns that load the same value.
1105 If there are, make all but the first point at the first one
1106 through the `match' field, and add the priorities of them
1107 all together as the priority of the first. */
1109 combine_movables (movables, nregs);
1111 /* Now consider each movable insn to decide whether it is worth moving.
1112 Store 0 in set_in_loop for each reg that is moved.
1114 Generally this increases code size, so do not move moveables when
1115 optimizing for code size. */
1117 if (! optimize_size)
1118 move_movables (loop, movables, threshold, insn_count, nregs);
1120 /* Now candidates that still are negative are those not moved.
1121 Change set_in_loop to indicate that those are not actually invariant. */
1122 for (i = 0; i < nregs; i++)
1123 if (VARRAY_INT (set_in_loop, i) < 0)
1124 VARRAY_INT (set_in_loop, i) = VARRAY_INT (n_times_set, i);
1126 /* Now that we've moved some things out of the loop, we might be able to
1127 hoist even more memory references. */
1128 load_mems_and_recount_loop_regs_set (loop, &insn_count);
1130 for (update_start = loop_start;
1131 PREV_INSN (update_start)
1132 && GET_CODE (PREV_INSN (update_start)) != CODE_LABEL;
1133 update_start = PREV_INSN (update_start))
1135 update_end = NEXT_INSN (loop_end);
1137 reg_scan_update (update_start, update_end, loop_max_reg);
1138 loop_max_reg = max_reg_num ();
1140 if (flag_strength_reduce)
1142 the_movables = movables;
1143 strength_reduce (loop, insn_count, flags);
1145 reg_scan_update (update_start, update_end, loop_max_reg);
1146 loop_max_reg = max_reg_num ();
1149 VARRAY_FREE (reg_single_usage);
1150 VARRAY_FREE (set_in_loop);
1151 VARRAY_FREE (n_times_set);
1152 VARRAY_FREE (may_not_optimize);
1155 /* Add elements to *OUTPUT to record all the pseudo-regs
1156 mentioned in IN_THIS but not mentioned in NOT_IN_THIS. */
1158 void
1159 record_excess_regs (in_this, not_in_this, output)
1160 rtx in_this, not_in_this;
1161 rtx *output;
1163 enum rtx_code code;
1164 const char *fmt;
1165 int i;
1167 code = GET_CODE (in_this);
1169 switch (code)
1171 case PC:
1172 case CC0:
1173 case CONST_INT:
1174 case CONST_DOUBLE:
1175 case CONST:
1176 case SYMBOL_REF:
1177 case LABEL_REF:
1178 return;
1180 case REG:
1181 if (REGNO (in_this) >= FIRST_PSEUDO_REGISTER
1182 && ! reg_mentioned_p (in_this, not_in_this))
1183 *output = gen_rtx_EXPR_LIST (VOIDmode, in_this, *output);
1184 return;
1186 default:
1187 break;
1190 fmt = GET_RTX_FORMAT (code);
1191 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1193 int j;
1195 switch (fmt[i])
1197 case 'E':
1198 for (j = 0; j < XVECLEN (in_this, i); j++)
1199 record_excess_regs (XVECEXP (in_this, i, j), not_in_this, output);
1200 break;
1202 case 'e':
1203 record_excess_regs (XEXP (in_this, i), not_in_this, output);
1204 break;
1209 /* Check what regs are referred to in the libcall block ending with INSN,
1210 aside from those mentioned in the equivalent value.
1211 If there are none, return 0.
1212 If there are one or more, return an EXPR_LIST containing all of them. */
1215 libcall_other_reg (insn, equiv)
1216 rtx insn, equiv;
1218 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1219 rtx p = XEXP (note, 0);
1220 rtx output = 0;
1222 /* First, find all the regs used in the libcall block
1223 that are not mentioned as inputs to the result. */
1225 while (p != insn)
1227 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
1228 || GET_CODE (p) == CALL_INSN)
1229 record_excess_regs (PATTERN (p), equiv, &output);
1230 p = NEXT_INSN (p);
1233 return output;
1236 /* Return 1 if all uses of REG
1237 are between INSN and the end of the basic block. */
1239 static int
1240 reg_in_basic_block_p (insn, reg)
1241 rtx insn, reg;
1243 int regno = REGNO (reg);
1244 rtx p;
1246 if (REGNO_FIRST_UID (regno) != INSN_UID (insn))
1247 return 0;
1249 /* Search this basic block for the already recorded last use of the reg. */
1250 for (p = insn; p; p = NEXT_INSN (p))
1252 switch (GET_CODE (p))
1254 case NOTE:
1255 break;
1257 case INSN:
1258 case CALL_INSN:
1259 /* Ordinary insn: if this is the last use, we win. */
1260 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1261 return 1;
1262 break;
1264 case JUMP_INSN:
1265 /* Jump insn: if this is the last use, we win. */
1266 if (REGNO_LAST_UID (regno) == INSN_UID (p))
1267 return 1;
1268 /* Otherwise, it's the end of the basic block, so we lose. */
1269 return 0;
1271 case CODE_LABEL:
1272 case BARRIER:
1273 /* It's the end of the basic block, so we lose. */
1274 return 0;
1276 default:
1277 break;
1281 /* The "last use" that was recorded can't be found after the first
1282 use. This can happen when the last use was deleted while
1283 processing an inner loop, this inner loop was then completely
1284 unrolled, and the outer loop is always exited after the inner loop,
1285 so that everything after the first use becomes a single basic block. */
1286 return 1;
1289 /* Compute the benefit of eliminating the insns in the block whose
1290 last insn is LAST. This may be a group of insns used to compute a
1291 value directly or can contain a library call. */
1293 static int
1294 libcall_benefit (last)
1295 rtx last;
1297 rtx insn;
1298 int benefit = 0;
1300 for (insn = XEXP (find_reg_note (last, REG_RETVAL, NULL_RTX), 0);
1301 insn != last; insn = NEXT_INSN (insn))
1303 if (GET_CODE (insn) == CALL_INSN)
1304 benefit += 10; /* Assume at least this many insns in a library
1305 routine. */
1306 else if (GET_CODE (insn) == INSN
1307 && GET_CODE (PATTERN (insn)) != USE
1308 && GET_CODE (PATTERN (insn)) != CLOBBER)
1309 benefit++;
1312 return benefit;
1315 /* Skip COUNT insns from INSN, counting library calls as 1 insn. */
1317 static rtx
1318 skip_consec_insns (insn, count)
1319 rtx insn;
1320 int count;
1322 for (; count > 0; count--)
1324 rtx temp;
1326 /* If first insn of libcall sequence, skip to end. */
1327 /* Do this at start of loop, since INSN is guaranteed to
1328 be an insn here. */
1329 if (GET_CODE (insn) != NOTE
1330 && (temp = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
1331 insn = XEXP (temp, 0);
1333 do insn = NEXT_INSN (insn);
1334 while (GET_CODE (insn) == NOTE);
1337 return insn;
1340 /* Ignore any movable whose insn falls within a libcall
1341 which is part of another movable.
1342 We make use of the fact that the movable for the libcall value
1343 was made later and so appears later on the chain. */
1345 static void
1346 ignore_some_movables (movables)
1347 struct movable *movables;
1349 register struct movable *m, *m1;
1351 for (m = movables; m; m = m->next)
1353 /* Is this a movable for the value of a libcall? */
1354 rtx note = find_reg_note (m->insn, REG_RETVAL, NULL_RTX);
1355 if (note)
1357 rtx insn;
1358 /* Check for earlier movables inside that range,
1359 and mark them invalid. We cannot use LUIDs here because
1360 insns created by loop.c for prior loops don't have LUIDs.
1361 Rather than reject all such insns from movables, we just
1362 explicitly check each insn in the libcall (since invariant
1363 libcalls aren't that common). */
1364 for (insn = XEXP (note, 0); insn != m->insn; insn = NEXT_INSN (insn))
1365 for (m1 = movables; m1 != m; m1 = m1->next)
1366 if (m1->insn == insn)
1367 m1->done = 1;
1372 /* For each movable insn, see if the reg that it loads
1373 leads when it dies right into another conditionally movable insn.
1374 If so, record that the second insn "forces" the first one,
1375 since the second can be moved only if the first is. */
1377 static void
1378 force_movables (movables)
1379 struct movable *movables;
1381 register struct movable *m, *m1;
1382 for (m1 = movables; m1; m1 = m1->next)
1383 /* Omit this if moving just the (SET (REG) 0) of a zero-extend. */
1384 if (!m1->partial && !m1->done)
1386 int regno = m1->regno;
1387 for (m = m1->next; m; m = m->next)
1388 /* ??? Could this be a bug? What if CSE caused the
1389 register of M1 to be used after this insn?
1390 Since CSE does not update regno_last_uid,
1391 this insn M->insn might not be where it dies.
1392 But very likely this doesn't matter; what matters is
1393 that M's reg is computed from M1's reg. */
1394 if (INSN_UID (m->insn) == REGNO_LAST_UID (regno)
1395 && !m->done)
1396 break;
1397 if (m != 0 && m->set_src == m1->set_dest
1398 /* If m->consec, m->set_src isn't valid. */
1399 && m->consec == 0)
1400 m = 0;
1402 /* Increase the priority of the moving the first insn
1403 since it permits the second to be moved as well. */
1404 if (m != 0)
1406 m->forces = m1;
1407 m1->lifetime += m->lifetime;
1408 m1->savings += m->savings;
1413 /* Find invariant expressions that are equal and can be combined into
1414 one register. */
1416 static void
1417 combine_movables (movables, nregs)
1418 struct movable *movables;
1419 int nregs;
1421 register struct movable *m;
1422 char *matched_regs = (char *) xmalloc (nregs);
1423 enum machine_mode mode;
1425 /* Regs that are set more than once are not allowed to match
1426 or be matched. I'm no longer sure why not. */
1427 /* Perhaps testing m->consec_sets would be more appropriate here? */
1429 for (m = movables; m; m = m->next)
1430 if (m->match == 0 && VARRAY_INT (n_times_set, m->regno) == 1 && !m->partial)
1432 register struct movable *m1;
1433 int regno = m->regno;
1435 bzero (matched_regs, nregs);
1436 matched_regs[regno] = 1;
1438 /* We want later insns to match the first one. Don't make the first
1439 one match any later ones. So start this loop at m->next. */
1440 for (m1 = m->next; m1; m1 = m1->next)
1441 if (m != m1 && m1->match == 0 && VARRAY_INT (n_times_set, m1->regno) == 1
1442 /* A reg used outside the loop mustn't be eliminated. */
1443 && !m1->global
1444 /* A reg used for zero-extending mustn't be eliminated. */
1445 && !m1->partial
1446 && (matched_regs[m1->regno]
1449 /* Can combine regs with different modes loaded from the
1450 same constant only if the modes are the same or
1451 if both are integer modes with M wider or the same
1452 width as M1. The check for integer is redundant, but
1453 safe, since the only case of differing destination
1454 modes with equal sources is when both sources are
1455 VOIDmode, i.e., CONST_INT. */
1456 (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest)
1457 || (GET_MODE_CLASS (GET_MODE (m->set_dest)) == MODE_INT
1458 && GET_MODE_CLASS (GET_MODE (m1->set_dest)) == MODE_INT
1459 && (GET_MODE_BITSIZE (GET_MODE (m->set_dest))
1460 >= GET_MODE_BITSIZE (GET_MODE (m1->set_dest)))))
1461 /* See if the source of M1 says it matches M. */
1462 && ((GET_CODE (m1->set_src) == REG
1463 && matched_regs[REGNO (m1->set_src)])
1464 || rtx_equal_for_loop_p (m->set_src, m1->set_src,
1465 movables))))
1466 && ((m->dependencies == m1->dependencies)
1467 || rtx_equal_p (m->dependencies, m1->dependencies)))
1469 m->lifetime += m1->lifetime;
1470 m->savings += m1->savings;
1471 m1->done = 1;
1472 m1->match = m;
1473 matched_regs[m1->regno] = 1;
1477 /* Now combine the regs used for zero-extension.
1478 This can be done for those not marked `global'
1479 provided their lives don't overlap. */
1481 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1482 mode = GET_MODE_WIDER_MODE (mode))
1484 register struct movable *m0 = 0;
1486 /* Combine all the registers for extension from mode MODE.
1487 Don't combine any that are used outside this loop. */
1488 for (m = movables; m; m = m->next)
1489 if (m->partial && ! m->global
1490 && mode == GET_MODE (SET_SRC (PATTERN (NEXT_INSN (m->insn)))))
1492 register struct movable *m1;
1493 int first = uid_luid[REGNO_FIRST_UID (m->regno)];
1494 int last = uid_luid[REGNO_LAST_UID (m->regno)];
1496 if (m0 == 0)
1498 /* First one: don't check for overlap, just record it. */
1499 m0 = m;
1500 continue;
1503 /* Make sure they extend to the same mode.
1504 (Almost always true.) */
1505 if (GET_MODE (m->set_dest) != GET_MODE (m0->set_dest))
1506 continue;
1508 /* We already have one: check for overlap with those
1509 already combined together. */
1510 for (m1 = movables; m1 != m; m1 = m1->next)
1511 if (m1 == m0 || (m1->partial && m1->match == m0))
1512 if (! (uid_luid[REGNO_FIRST_UID (m1->regno)] > last
1513 || uid_luid[REGNO_LAST_UID (m1->regno)] < first))
1514 goto overlap;
1516 /* No overlap: we can combine this with the others. */
1517 m0->lifetime += m->lifetime;
1518 m0->savings += m->savings;
1519 m->done = 1;
1520 m->match = m0;
1522 overlap: ;
1526 /* Clean up. */
1527 free (matched_regs);
1530 /* Return 1 if regs X and Y will become the same if moved. */
1532 static int
1533 regs_match_p (x, y, movables)
1534 rtx x, y;
1535 struct movable *movables;
1537 unsigned int xn = REGNO (x);
1538 unsigned int yn = REGNO (y);
1539 struct movable *mx, *my;
1541 for (mx = movables; mx; mx = mx->next)
1542 if (mx->regno == xn)
1543 break;
1545 for (my = movables; my; my = my->next)
1546 if (my->regno == yn)
1547 break;
1549 return (mx && my
1550 && ((mx->match == my->match && mx->match != 0)
1551 || mx->match == my
1552 || mx == my->match));
1555 /* Return 1 if X and Y are identical-looking rtx's.
1556 This is the Lisp function EQUAL for rtx arguments.
1558 If two registers are matching movables or a movable register and an
1559 equivalent constant, consider them equal. */
1561 static int
1562 rtx_equal_for_loop_p (x, y, movables)
1563 rtx x, y;
1564 struct movable *movables;
1566 register int i;
1567 register int j;
1568 register struct movable *m;
1569 register enum rtx_code code;
1570 register const char *fmt;
1572 if (x == y)
1573 return 1;
1574 if (x == 0 || y == 0)
1575 return 0;
1577 code = GET_CODE (x);
1579 /* If we have a register and a constant, they may sometimes be
1580 equal. */
1581 if (GET_CODE (x) == REG && VARRAY_INT (set_in_loop, REGNO (x)) == -2
1582 && CONSTANT_P (y))
1584 for (m = movables; m; m = m->next)
1585 if (m->move_insn && m->regno == REGNO (x)
1586 && rtx_equal_p (m->set_src, y))
1587 return 1;
1589 else if (GET_CODE (y) == REG && VARRAY_INT (set_in_loop, REGNO (y)) == -2
1590 && CONSTANT_P (x))
1592 for (m = movables; m; m = m->next)
1593 if (m->move_insn && m->regno == REGNO (y)
1594 && rtx_equal_p (m->set_src, x))
1595 return 1;
1598 /* Otherwise, rtx's of different codes cannot be equal. */
1599 if (code != GET_CODE (y))
1600 return 0;
1602 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1603 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1605 if (GET_MODE (x) != GET_MODE (y))
1606 return 0;
1608 /* These three types of rtx's can be compared nonrecursively. */
1609 if (code == REG)
1610 return (REGNO (x) == REGNO (y) || regs_match_p (x, y, movables));
1612 if (code == LABEL_REF)
1613 return XEXP (x, 0) == XEXP (y, 0);
1614 if (code == SYMBOL_REF)
1615 return XSTR (x, 0) == XSTR (y, 0);
1617 /* Compare the elements. If any pair of corresponding elements
1618 fail to match, return 0 for the whole things. */
1620 fmt = GET_RTX_FORMAT (code);
1621 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1623 switch (fmt[i])
1625 case 'w':
1626 if (XWINT (x, i) != XWINT (y, i))
1627 return 0;
1628 break;
1630 case 'i':
1631 if (XINT (x, i) != XINT (y, i))
1632 return 0;
1633 break;
1635 case 'E':
1636 /* Two vectors must have the same length. */
1637 if (XVECLEN (x, i) != XVECLEN (y, i))
1638 return 0;
1640 /* And the corresponding elements must match. */
1641 for (j = 0; j < XVECLEN (x, i); j++)
1642 if (rtx_equal_for_loop_p (XVECEXP (x, i, j), XVECEXP (y, i, j), movables) == 0)
1643 return 0;
1644 break;
1646 case 'e':
1647 if (rtx_equal_for_loop_p (XEXP (x, i), XEXP (y, i), movables) == 0)
1648 return 0;
1649 break;
1651 case 's':
1652 if (strcmp (XSTR (x, i), XSTR (y, i)))
1653 return 0;
1654 break;
1656 case 'u':
1657 /* These are just backpointers, so they don't matter. */
1658 break;
1660 case '0':
1661 break;
1663 /* It is believed that rtx's at this level will never
1664 contain anything but integers and other rtx's,
1665 except for within LABEL_REFs and SYMBOL_REFs. */
1666 default:
1667 abort ();
1670 return 1;
1673 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to all
1674 insns in INSNS which use the reference. */
1676 static void
1677 add_label_notes (x, insns)
1678 rtx x;
1679 rtx insns;
1681 enum rtx_code code = GET_CODE (x);
1682 int i, j;
1683 const char *fmt;
1684 rtx insn;
1686 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
1688 /* This code used to ignore labels that referred to dispatch tables to
1689 avoid flow generating (slighly) worse code.
1691 We no longer ignore such label references (see LABEL_REF handling in
1692 mark_jump_label for additional information). */
1693 for (insn = insns; insn; insn = NEXT_INSN (insn))
1694 if (reg_mentioned_p (XEXP (x, 0), insn))
1695 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
1696 REG_NOTES (insn));
1699 fmt = GET_RTX_FORMAT (code);
1700 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1702 if (fmt[i] == 'e')
1703 add_label_notes (XEXP (x, i), insns);
1704 else if (fmt[i] == 'E')
1705 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1706 add_label_notes (XVECEXP (x, i, j), insns);
1710 /* Scan MOVABLES, and move the insns that deserve to be moved.
1711 If two matching movables are combined, replace one reg with the
1712 other throughout. */
1714 static void
1715 move_movables (loop, movables, threshold, insn_count, nregs)
1716 struct loop *loop;
1717 struct movable *movables;
1718 int threshold;
1719 int insn_count;
1720 int nregs;
1722 rtx new_start = 0;
1723 register struct movable *m;
1724 register rtx p;
1725 rtx loop_start = loop->start;
1726 rtx loop_end = loop->end;
1727 /* Map of pseudo-register replacements to handle combining
1728 when we move several insns that load the same value
1729 into different pseudo-registers. */
1730 rtx *reg_map = (rtx *) xcalloc (nregs, sizeof (rtx));
1731 char *already_moved = (char *) xcalloc (nregs, sizeof (char));
1733 num_movables = 0;
1735 for (m = movables; m; m = m->next)
1737 /* Describe this movable insn. */
1739 if (loop_dump_stream)
1741 fprintf (loop_dump_stream, "Insn %d: regno %d (life %d), ",
1742 INSN_UID (m->insn), m->regno, m->lifetime);
1743 if (m->consec > 0)
1744 fprintf (loop_dump_stream, "consec %d, ", m->consec);
1745 if (m->cond)
1746 fprintf (loop_dump_stream, "cond ");
1747 if (m->force)
1748 fprintf (loop_dump_stream, "force ");
1749 if (m->global)
1750 fprintf (loop_dump_stream, "global ");
1751 if (m->done)
1752 fprintf (loop_dump_stream, "done ");
1753 if (m->move_insn)
1754 fprintf (loop_dump_stream, "move-insn ");
1755 if (m->match)
1756 fprintf (loop_dump_stream, "matches %d ",
1757 INSN_UID (m->match->insn));
1758 if (m->forces)
1759 fprintf (loop_dump_stream, "forces %d ",
1760 INSN_UID (m->forces->insn));
1763 /* Count movables. Value used in heuristics in strength_reduce. */
1764 num_movables++;
1766 /* Ignore the insn if it's already done (it matched something else).
1767 Otherwise, see if it is now safe to move. */
1769 if (!m->done
1770 && (! m->cond
1771 || (1 == loop_invariant_p (loop, m->set_src)
1772 && (m->dependencies == 0
1773 || 1 == loop_invariant_p (loop, m->dependencies))
1774 && (m->consec == 0
1775 || 1 == consec_sets_invariant_p (loop, m->set_dest,
1776 m->consec + 1,
1777 m->insn))))
1778 && (! m->forces || m->forces->done))
1780 register int regno;
1781 register rtx p;
1782 int savings = m->savings;
1784 /* We have an insn that is safe to move.
1785 Compute its desirability. */
1787 p = m->insn;
1788 regno = m->regno;
1790 if (loop_dump_stream)
1791 fprintf (loop_dump_stream, "savings %d ", savings);
1793 if (moved_once[regno] && loop_dump_stream)
1794 fprintf (loop_dump_stream, "halved since already moved ");
1796 /* An insn MUST be moved if we already moved something else
1797 which is safe only if this one is moved too: that is,
1798 if already_moved[REGNO] is nonzero. */
1800 /* An insn is desirable to move if the new lifetime of the
1801 register is no more than THRESHOLD times the old lifetime.
1802 If it's not desirable, it means the loop is so big
1803 that moving won't speed things up much,
1804 and it is liable to make register usage worse. */
1806 /* It is also desirable to move if it can be moved at no
1807 extra cost because something else was already moved. */
1809 if (already_moved[regno]
1810 || flag_move_all_movables
1811 || (threshold * savings * m->lifetime) >=
1812 (moved_once[regno] ? insn_count * 2 : insn_count)
1813 || (m->forces && m->forces->done
1814 && VARRAY_INT (n_times_set, m->forces->regno) == 1))
1816 int count;
1817 register struct movable *m1;
1818 rtx first = NULL_RTX;
1820 /* Now move the insns that set the reg. */
1822 if (m->partial && m->match)
1824 rtx newpat, i1;
1825 rtx r1, r2;
1826 /* Find the end of this chain of matching regs.
1827 Thus, we load each reg in the chain from that one reg.
1828 And that reg is loaded with 0 directly,
1829 since it has ->match == 0. */
1830 for (m1 = m; m1->match; m1 = m1->match);
1831 newpat = gen_move_insn (SET_DEST (PATTERN (m->insn)),
1832 SET_DEST (PATTERN (m1->insn)));
1833 i1 = emit_insn_before (newpat, loop_start);
1835 /* Mark the moved, invariant reg as being allowed to
1836 share a hard reg with the other matching invariant. */
1837 REG_NOTES (i1) = REG_NOTES (m->insn);
1838 r1 = SET_DEST (PATTERN (m->insn));
1839 r2 = SET_DEST (PATTERN (m1->insn));
1840 regs_may_share
1841 = gen_rtx_EXPR_LIST (VOIDmode, r1,
1842 gen_rtx_EXPR_LIST (VOIDmode, r2,
1843 regs_may_share));
1844 delete_insn (m->insn);
1846 if (new_start == 0)
1847 new_start = i1;
1849 if (loop_dump_stream)
1850 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1852 /* If we are to re-generate the item being moved with a
1853 new move insn, first delete what we have and then emit
1854 the move insn before the loop. */
1855 else if (m->move_insn)
1857 rtx i1, temp;
1859 for (count = m->consec; count >= 0; count--)
1861 /* If this is the first insn of a library call sequence,
1862 skip to the end. */
1863 if (GET_CODE (p) != NOTE
1864 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1865 p = XEXP (temp, 0);
1867 /* If this is the last insn of a libcall sequence, then
1868 delete every insn in the sequence except the last.
1869 The last insn is handled in the normal manner. */
1870 if (GET_CODE (p) != NOTE
1871 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1873 temp = XEXP (temp, 0);
1874 while (temp != p)
1875 temp = delete_insn (temp);
1878 temp = p;
1879 p = delete_insn (p);
1881 /* simplify_giv_expr expects that it can walk the insns
1882 at m->insn forwards and see this old sequence we are
1883 tossing here. delete_insn does preserve the next
1884 pointers, but when we skip over a NOTE we must fix
1885 it up. Otherwise that code walks into the non-deleted
1886 insn stream. */
1887 while (p && GET_CODE (p) == NOTE)
1888 p = NEXT_INSN (temp) = NEXT_INSN (p);
1891 start_sequence ();
1892 emit_move_insn (m->set_dest, m->set_src);
1893 temp = get_insns ();
1894 end_sequence ();
1896 add_label_notes (m->set_src, temp);
1898 i1 = emit_insns_before (temp, loop_start);
1899 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
1900 REG_NOTES (i1)
1901 = gen_rtx_EXPR_LIST (m->is_equiv ? REG_EQUIV : REG_EQUAL,
1902 m->set_src, REG_NOTES (i1));
1904 if (loop_dump_stream)
1905 fprintf (loop_dump_stream, " moved to %d", INSN_UID (i1));
1907 /* The more regs we move, the less we like moving them. */
1908 threshold -= 3;
1910 else
1912 for (count = m->consec; count >= 0; count--)
1914 rtx i1, temp;
1916 /* If first insn of libcall sequence, skip to end. */
1917 /* Do this at start of loop, since p is guaranteed to
1918 be an insn here. */
1919 if (GET_CODE (p) != NOTE
1920 && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
1921 p = XEXP (temp, 0);
1923 /* If last insn of libcall sequence, move all
1924 insns except the last before the loop. The last
1925 insn is handled in the normal manner. */
1926 if (GET_CODE (p) != NOTE
1927 && (temp = find_reg_note (p, REG_RETVAL, NULL_RTX)))
1929 rtx fn_address = 0;
1930 rtx fn_reg = 0;
1931 rtx fn_address_insn = 0;
1933 first = 0;
1934 for (temp = XEXP (temp, 0); temp != p;
1935 temp = NEXT_INSN (temp))
1937 rtx body;
1938 rtx n;
1939 rtx next;
1941 if (GET_CODE (temp) == NOTE)
1942 continue;
1944 body = PATTERN (temp);
1946 /* Find the next insn after TEMP,
1947 not counting USE or NOTE insns. */
1948 for (next = NEXT_INSN (temp); next != p;
1949 next = NEXT_INSN (next))
1950 if (! (GET_CODE (next) == INSN
1951 && GET_CODE (PATTERN (next)) == USE)
1952 && GET_CODE (next) != NOTE)
1953 break;
1955 /* If that is the call, this may be the insn
1956 that loads the function address.
1958 Extract the function address from the insn
1959 that loads it into a register.
1960 If this insn was cse'd, we get incorrect code.
1962 So emit a new move insn that copies the
1963 function address into the register that the
1964 call insn will use. flow.c will delete any
1965 redundant stores that we have created. */
1966 if (GET_CODE (next) == CALL_INSN
1967 && GET_CODE (body) == SET
1968 && GET_CODE (SET_DEST (body)) == REG
1969 && (n = find_reg_note (temp, REG_EQUAL,
1970 NULL_RTX)))
1972 fn_reg = SET_SRC (body);
1973 if (GET_CODE (fn_reg) != REG)
1974 fn_reg = SET_DEST (body);
1975 fn_address = XEXP (n, 0);
1976 fn_address_insn = temp;
1978 /* We have the call insn.
1979 If it uses the register we suspect it might,
1980 load it with the correct address directly. */
1981 if (GET_CODE (temp) == CALL_INSN
1982 && fn_address != 0
1983 && reg_referenced_p (fn_reg, body))
1984 emit_insn_after (gen_move_insn (fn_reg,
1985 fn_address),
1986 fn_address_insn);
1988 if (GET_CODE (temp) == CALL_INSN)
1990 i1 = emit_call_insn_before (body, loop_start);
1991 /* Because the USAGE information potentially
1992 contains objects other than hard registers
1993 we need to copy it. */
1994 if (CALL_INSN_FUNCTION_USAGE (temp))
1995 CALL_INSN_FUNCTION_USAGE (i1)
1996 = copy_rtx (CALL_INSN_FUNCTION_USAGE (temp));
1998 else
1999 i1 = emit_insn_before (body, loop_start);
2000 if (first == 0)
2001 first = i1;
2002 if (temp == fn_address_insn)
2003 fn_address_insn = i1;
2004 REG_NOTES (i1) = REG_NOTES (temp);
2005 delete_insn (temp);
2007 if (new_start == 0)
2008 new_start = first;
2010 if (m->savemode != VOIDmode)
2012 /* P sets REG to zero; but we should clear only
2013 the bits that are not covered by the mode
2014 m->savemode. */
2015 rtx reg = m->set_dest;
2016 rtx sequence;
2017 rtx tem;
2019 start_sequence ();
2020 tem = expand_binop
2021 (GET_MODE (reg), and_optab, reg,
2022 GEN_INT ((((HOST_WIDE_INT) 1
2023 << GET_MODE_BITSIZE (m->savemode)))
2024 - 1),
2025 reg, 1, OPTAB_LIB_WIDEN);
2026 if (tem == 0)
2027 abort ();
2028 if (tem != reg)
2029 emit_move_insn (reg, tem);
2030 sequence = gen_sequence ();
2031 end_sequence ();
2032 i1 = emit_insn_before (sequence, loop_start);
2034 else if (GET_CODE (p) == CALL_INSN)
2036 i1 = emit_call_insn_before (PATTERN (p), loop_start);
2037 /* Because the USAGE information potentially
2038 contains objects other than hard registers
2039 we need to copy it. */
2040 if (CALL_INSN_FUNCTION_USAGE (p))
2041 CALL_INSN_FUNCTION_USAGE (i1)
2042 = copy_rtx (CALL_INSN_FUNCTION_USAGE (p));
2044 else if (count == m->consec && m->move_insn_first)
2046 /* The SET_SRC might not be invariant, so we must
2047 use the REG_EQUAL note. */
2048 start_sequence ();
2049 emit_move_insn (m->set_dest, m->set_src);
2050 temp = get_insns ();
2051 end_sequence ();
2053 add_label_notes (m->set_src, temp);
2055 i1 = emit_insns_before (temp, loop_start);
2056 if (! find_reg_note (i1, REG_EQUAL, NULL_RTX))
2057 REG_NOTES (i1)
2058 = gen_rtx_EXPR_LIST ((m->is_equiv ? REG_EQUIV
2059 : REG_EQUAL),
2060 m->set_src, REG_NOTES (i1));
2062 else
2063 i1 = emit_insn_before (PATTERN (p), loop_start);
2065 if (REG_NOTES (i1) == 0)
2067 REG_NOTES (i1) = REG_NOTES (p);
2069 /* If there is a REG_EQUAL note present whose value
2070 is not loop invariant, then delete it, since it
2071 may cause problems with later optimization passes.
2072 It is possible for cse to create such notes
2073 like this as a result of record_jump_cond. */
2075 if ((temp = find_reg_note (i1, REG_EQUAL, NULL_RTX))
2076 && ! loop_invariant_p (loop, XEXP (temp, 0)))
2077 remove_note (i1, temp);
2080 if (new_start == 0)
2081 new_start = i1;
2083 if (loop_dump_stream)
2084 fprintf (loop_dump_stream, " moved to %d",
2085 INSN_UID (i1));
2087 /* If library call, now fix the REG_NOTES that contain
2088 insn pointers, namely REG_LIBCALL on FIRST
2089 and REG_RETVAL on I1. */
2090 if ((temp = find_reg_note (i1, REG_RETVAL, NULL_RTX)))
2092 XEXP (temp, 0) = first;
2093 temp = find_reg_note (first, REG_LIBCALL, NULL_RTX);
2094 XEXP (temp, 0) = i1;
2097 temp = p;
2098 delete_insn (p);
2099 p = NEXT_INSN (p);
2101 /* simplify_giv_expr expects that it can walk the insns
2102 at m->insn forwards and see this old sequence we are
2103 tossing here. delete_insn does preserve the next
2104 pointers, but when we skip over a NOTE we must fix
2105 it up. Otherwise that code walks into the non-deleted
2106 insn stream. */
2107 while (p && GET_CODE (p) == NOTE)
2108 p = NEXT_INSN (temp) = NEXT_INSN (p);
2111 /* The more regs we move, the less we like moving them. */
2112 threshold -= 3;
2115 /* Any other movable that loads the same register
2116 MUST be moved. */
2117 already_moved[regno] = 1;
2119 /* This reg has been moved out of one loop. */
2120 moved_once[regno] = 1;
2122 /* The reg set here is now invariant. */
2123 if (! m->partial)
2124 VARRAY_INT (set_in_loop, regno) = 0;
2126 m->done = 1;
2128 /* Change the length-of-life info for the register
2129 to say it lives at least the full length of this loop.
2130 This will help guide optimizations in outer loops. */
2132 if (uid_luid[REGNO_FIRST_UID (regno)] > INSN_LUID (loop_start))
2133 /* This is the old insn before all the moved insns.
2134 We can't use the moved insn because it is out of range
2135 in uid_luid. Only the old insns have luids. */
2136 REGNO_FIRST_UID (regno) = INSN_UID (loop_start);
2137 if (uid_luid[REGNO_LAST_UID (regno)] < INSN_LUID (loop_end))
2138 REGNO_LAST_UID (regno) = INSN_UID (loop_end);
2140 /* Combine with this moved insn any other matching movables. */
2142 if (! m->partial)
2143 for (m1 = movables; m1; m1 = m1->next)
2144 if (m1->match == m)
2146 rtx temp;
2148 /* Schedule the reg loaded by M1
2149 for replacement so that shares the reg of M.
2150 If the modes differ (only possible in restricted
2151 circumstances, make a SUBREG.
2153 Note this assumes that the target dependent files
2154 treat REG and SUBREG equally, including within
2155 GO_IF_LEGITIMATE_ADDRESS and in all the
2156 predicates since we never verify that replacing the
2157 original register with a SUBREG results in a
2158 recognizable insn. */
2159 if (GET_MODE (m->set_dest) == GET_MODE (m1->set_dest))
2160 reg_map[m1->regno] = m->set_dest;
2161 else
2162 reg_map[m1->regno]
2163 = gen_lowpart_common (GET_MODE (m1->set_dest),
2164 m->set_dest);
2166 /* Get rid of the matching insn
2167 and prevent further processing of it. */
2168 m1->done = 1;
2170 /* if library call, delete all insn except last, which
2171 is deleted below */
2172 if ((temp = find_reg_note (m1->insn, REG_RETVAL,
2173 NULL_RTX)))
2175 for (temp = XEXP (temp, 0); temp != m1->insn;
2176 temp = NEXT_INSN (temp))
2177 delete_insn (temp);
2179 delete_insn (m1->insn);
2181 /* Any other movable that loads the same register
2182 MUST be moved. */
2183 already_moved[m1->regno] = 1;
2185 /* The reg merged here is now invariant,
2186 if the reg it matches is invariant. */
2187 if (! m->partial)
2188 VARRAY_INT (set_in_loop, m1->regno) = 0;
2191 else if (loop_dump_stream)
2192 fprintf (loop_dump_stream, "not desirable");
2194 else if (loop_dump_stream && !m->match)
2195 fprintf (loop_dump_stream, "not safe");
2197 if (loop_dump_stream)
2198 fprintf (loop_dump_stream, "\n");
2201 if (new_start == 0)
2202 new_start = loop_start;
2204 /* Go through all the instructions in the loop, making
2205 all the register substitutions scheduled in REG_MAP. */
2206 for (p = new_start; p != loop_end; p = NEXT_INSN (p))
2207 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
2208 || GET_CODE (p) == CALL_INSN)
2210 replace_regs (PATTERN (p), reg_map, nregs, 0);
2211 replace_regs (REG_NOTES (p), reg_map, nregs, 0);
2212 INSN_CODE (p) = -1;
2215 /* Clean up. */
2216 free (reg_map);
2217 free (already_moved);
2220 #if 0
2221 /* Scan X and replace the address of any MEM in it with ADDR.
2222 REG is the address that MEM should have before the replacement. */
2224 static void
2225 replace_call_address (x, reg, addr)
2226 rtx x, reg, addr;
2228 register enum rtx_code code;
2229 register int i;
2230 register const char *fmt;
2232 if (x == 0)
2233 return;
2234 code = GET_CODE (x);
2235 switch (code)
2237 case PC:
2238 case CC0:
2239 case CONST_INT:
2240 case CONST_DOUBLE:
2241 case CONST:
2242 case SYMBOL_REF:
2243 case LABEL_REF:
2244 case REG:
2245 return;
2247 case SET:
2248 /* Short cut for very common case. */
2249 replace_call_address (XEXP (x, 1), reg, addr);
2250 return;
2252 case CALL:
2253 /* Short cut for very common case. */
2254 replace_call_address (XEXP (x, 0), reg, addr);
2255 return;
2257 case MEM:
2258 /* If this MEM uses a reg other than the one we expected,
2259 something is wrong. */
2260 if (XEXP (x, 0) != reg)
2261 abort ();
2262 XEXP (x, 0) = addr;
2263 return;
2265 default:
2266 break;
2269 fmt = GET_RTX_FORMAT (code);
2270 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2272 if (fmt[i] == 'e')
2273 replace_call_address (XEXP (x, i), reg, addr);
2274 else if (fmt[i] == 'E')
2276 register int j;
2277 for (j = 0; j < XVECLEN (x, i); j++)
2278 replace_call_address (XVECEXP (x, i, j), reg, addr);
2282 #endif
2284 /* Return the number of memory refs to addresses that vary
2285 in the rtx X. */
2287 static int
2288 count_nonfixed_reads (loop, x)
2289 const struct loop *loop;
2290 rtx x;
2292 register enum rtx_code code;
2293 register int i;
2294 register const char *fmt;
2295 int value;
2297 if (x == 0)
2298 return 0;
2300 code = GET_CODE (x);
2301 switch (code)
2303 case PC:
2304 case CC0:
2305 case CONST_INT:
2306 case CONST_DOUBLE:
2307 case CONST:
2308 case SYMBOL_REF:
2309 case LABEL_REF:
2310 case REG:
2311 return 0;
2313 case MEM:
2314 return ((loop_invariant_p (loop, XEXP (x, 0)) != 1)
2315 + count_nonfixed_reads (loop, XEXP (x, 0)));
2317 default:
2318 break;
2321 value = 0;
2322 fmt = GET_RTX_FORMAT (code);
2323 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2325 if (fmt[i] == 'e')
2326 value += count_nonfixed_reads (loop, XEXP (x, i));
2327 if (fmt[i] == 'E')
2329 register int j;
2330 for (j = 0; j < XVECLEN (x, i); j++)
2331 value += count_nonfixed_reads (loop, XVECEXP (x, i, j));
2334 return value;
2338 #if 0
2339 /* P is an instruction that sets a register to the result of a ZERO_EXTEND.
2340 Replace it with an instruction to load just the low bytes
2341 if the machine supports such an instruction,
2342 and insert above LOOP_START an instruction to clear the register. */
2344 static void
2345 constant_high_bytes (p, loop_start)
2346 rtx p, loop_start;
2348 register rtx new;
2349 register int insn_code_number;
2351 /* Try to change (SET (REG ...) (ZERO_EXTEND (..:B ...)))
2352 to (SET (STRICT_LOW_PART (SUBREG:B (REG...))) ...). */
2355 = gen_rtx_SET
2356 (VOIDmode,
2357 gen_rtx_STRICT_LOW_PART
2358 (VOIDmode,
2359 gen_rtx_SUBREG (GET_MODE (XEXP (SET_SRC (PATTERN (p)), 0)),
2360 SET_DEST (PATTERN (p)), 0)),
2361 XEXP (SET_SRC (PATTERN (p)), 0));
2363 insn_code_number = recog (new, p);
2365 if (insn_code_number)
2367 register int i;
2369 /* Clear destination register before the loop. */
2370 emit_insn_before (gen_rtx_SET (VOIDmode,
2371 SET_DEST (PATTERN (p)), const0_rtx),
2372 loop_start);
2374 /* Inside the loop, just load the low part. */
2375 PATTERN (p) = new;
2378 #endif
2380 /* Scan a loop setting the elements `cont', `vtop', `loops_enclosed',
2381 `has_call', `has_volatile', and `has_tablejump' within LOOP.
2382 Set the global variables `unknown_address_altered',
2383 `unknown_constant_address_altered', and `num_mem_sets'. Also, fill
2384 in the array `loop_mems' and the list `loop_store_mems'. */
2386 static void
2387 prescan_loop (loop)
2388 struct loop *loop;
2390 register int level = 1;
2391 rtx insn;
2392 struct loop_info *loop_info = LOOP_INFO (loop);
2393 rtx start = loop->start;
2394 rtx end = loop->end;
2395 /* The label after END. Jumping here is just like falling off the
2396 end of the loop. We use next_nonnote_insn instead of next_label
2397 as a hedge against the (pathological) case where some actual insn
2398 might end up between the two. */
2399 rtx exit_target = next_nonnote_insn (end);
2401 loop_info->has_indirect_jump = indirect_jump_in_function;
2402 loop_info->has_call = 0;
2403 loop_info->has_volatile = 0;
2404 loop_info->has_tablejump = 0;
2405 loop_info->has_multiple_exit_targets = 0;
2406 loop->cont = 0;
2407 loop->vtop = 0;
2408 loop->level = 1;
2410 unknown_address_altered = 0;
2411 unknown_constant_address_altered = 0;
2412 loop_store_mems = NULL_RTX;
2413 first_loop_store_insn = NULL_RTX;
2414 loop_mems_idx = 0;
2415 num_mem_sets = 0;
2417 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2418 insn = NEXT_INSN (insn))
2420 if (GET_CODE (insn) == NOTE)
2422 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
2424 ++level;
2425 /* Count number of loops contained in this one. */
2426 loop->level++;
2428 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
2430 --level;
2431 if (level == 0)
2433 end = insn;
2434 break;
2437 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
2439 if (level == 1)
2440 loop->cont = insn;
2442 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP)
2444 /* If there is a NOTE_INSN_LOOP_VTOP, then this is a for
2445 or while style loop, with a loop exit test at the
2446 start. Thus, we can assume that the loop condition
2447 was true when the loop was entered. */
2448 if (level == 1)
2449 loop->vtop = insn;
2452 else if (GET_CODE (insn) == CALL_INSN)
2454 if (! CONST_CALL_P (insn))
2455 unknown_address_altered = 1;
2456 loop_info->has_call = 1;
2458 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
2460 rtx label1 = NULL_RTX;
2461 rtx label2 = NULL_RTX;
2463 if (volatile_refs_p (PATTERN (insn)))
2464 loop_info->has_volatile = 1;
2466 if (GET_CODE (insn) == JUMP_INSN
2467 && (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2468 || GET_CODE (PATTERN (insn)) == ADDR_VEC))
2469 loop_info->has_tablejump = 1;
2471 note_stores (PATTERN (insn), note_addr_stored, NULL);
2472 if (! first_loop_store_insn && loop_store_mems)
2473 first_loop_store_insn = insn;
2475 if (! loop_info->has_multiple_exit_targets
2476 && GET_CODE (insn) == JUMP_INSN
2477 && GET_CODE (PATTERN (insn)) == SET
2478 && SET_DEST (PATTERN (insn)) == pc_rtx)
2480 if (GET_CODE (SET_SRC (PATTERN (insn))) == IF_THEN_ELSE)
2482 label1 = XEXP (SET_SRC (PATTERN (insn)), 1);
2483 label2 = XEXP (SET_SRC (PATTERN (insn)), 2);
2485 else
2487 label1 = SET_SRC (PATTERN (insn));
2490 do {
2491 if (label1 && label1 != pc_rtx)
2493 if (GET_CODE (label1) != LABEL_REF)
2495 /* Something tricky. */
2496 loop_info->has_multiple_exit_targets = 1;
2497 break;
2499 else if (XEXP (label1, 0) != exit_target
2500 && LABEL_OUTSIDE_LOOP_P (label1))
2502 /* A jump outside the current loop. */
2503 loop_info->has_multiple_exit_targets = 1;
2504 break;
2508 label1 = label2;
2509 label2 = NULL_RTX;
2510 } while (label1);
2513 else if (GET_CODE (insn) == RETURN)
2514 loop_info->has_multiple_exit_targets = 1;
2517 /* Now, rescan the loop, setting up the LOOP_MEMS array. */
2518 if (/* We can't tell what MEMs are aliased by what. */
2519 ! unknown_address_altered
2520 /* An exception thrown by a called function might land us
2521 anywhere. */
2522 && ! loop_info->has_call
2523 /* We don't want loads for MEMs moved to a location before the
2524 one at which their stack memory becomes allocated. (Note
2525 that this is not a problem for malloc, etc., since those
2526 require actual function calls. */
2527 && ! current_function_calls_alloca
2528 /* There are ways to leave the loop other than falling off the
2529 end. */
2530 && ! loop_info->has_multiple_exit_targets)
2531 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2532 insn = NEXT_INSN (insn))
2533 for_each_rtx (&insn, insert_loop_mem, 0);
2536 /* LOOP->CONT_DOMINATOR is now the last label between the loop start
2537 and the continue note that is a the destination of a (cond)jump after
2538 the continue note. If there is any (cond)jump between the loop start
2539 and what we have so far as LOOP->CONT_DOMINATOR that has a
2540 target between LOOP->DOMINATOR and the continue note, move
2541 LOOP->CONT_DOMINATOR forward to that label; if a jump's
2542 destination cannot be determined, clear LOOP->CONT_DOMINATOR. */
2544 static void
2545 verify_dominator (loop)
2546 struct loop *loop;
2548 rtx insn;
2550 if (! loop->cont_dominator)
2551 /* This can happen for an empty loop, e.g. in
2552 gcc.c-torture/compile/920410-2.c */
2553 return;
2554 if (loop->cont_dominator == const0_rtx)
2556 loop->cont_dominator = 0;
2557 return;
2559 for (insn = loop->start; insn != loop->cont_dominator;
2560 insn = NEXT_INSN (insn))
2562 if (GET_CODE (insn) == JUMP_INSN
2563 && GET_CODE (PATTERN (insn)) != RETURN)
2565 rtx label = JUMP_LABEL (insn);
2566 int label_luid;
2568 /* If it is not a jump we can easily understand or for
2569 which we do not have jump target information in the JUMP_LABEL
2570 field (consider ADDR_VEC and ADDR_DIFF_VEC insns), then clear
2571 LOOP->CONT_DOMINATOR. */
2572 if ((! condjump_p (insn)
2573 && ! condjump_in_parallel_p (insn))
2574 || label == NULL_RTX)
2576 loop->cont_dominator = NULL_RTX;
2577 return;
2580 label_luid = INSN_LUID (label);
2581 if (label_luid < INSN_LUID (loop->cont)
2582 && (label_luid
2583 > INSN_LUID (loop->cont)))
2584 loop->cont_dominator = label;
2589 /* Scan the function looking for loops. Record the start and end of each loop.
2590 Also mark as invalid loops any loops that contain a setjmp or are branched
2591 to from outside the loop. */
2593 static void
2594 find_and_verify_loops (f, loops)
2595 rtx f;
2596 struct loops *loops;
2598 rtx insn;
2599 rtx label;
2600 int num_loops;
2601 struct loop *current_loop;
2602 struct loop *next_loop;
2603 struct loop *loop;
2605 num_loops = loops->num;
2607 compute_luids (f, NULL_RTX, 0);
2609 /* If there are jumps to undefined labels,
2610 treat them as jumps out of any/all loops.
2611 This also avoids writing past end of tables when there are no loops. */
2612 uid_loop[0] = NULL;
2614 /* Find boundaries of loops, mark which loops are contained within
2615 loops, and invalidate loops that have setjmp. */
2617 num_loops = 0;
2618 current_loop = NULL;
2619 for (insn = f; insn; insn = NEXT_INSN (insn))
2621 if (GET_CODE (insn) == NOTE)
2622 switch (NOTE_LINE_NUMBER (insn))
2624 case NOTE_INSN_LOOP_BEG:
2625 next_loop = loops->array + num_loops;
2626 next_loop->num = num_loops;
2627 num_loops++;
2628 next_loop->start = insn;
2629 next_loop->outer = current_loop;
2630 current_loop = next_loop;
2631 break;
2633 case NOTE_INSN_SETJMP:
2634 /* In this case, we must invalidate our current loop and any
2635 enclosing loop. */
2636 for (loop = current_loop; loop; loop = loop->outer)
2638 loop->invalid = 1;
2639 if (loop_dump_stream)
2640 fprintf (loop_dump_stream,
2641 "\nLoop at %d ignored due to setjmp.\n",
2642 INSN_UID (loop->start));
2644 break;
2646 case NOTE_INSN_LOOP_CONT:
2647 current_loop->cont = insn;
2648 break;
2649 case NOTE_INSN_LOOP_END:
2650 if (! current_loop)
2651 abort ();
2653 current_loop->end = insn;
2654 verify_dominator (current_loop);
2655 current_loop = current_loop->outer;
2656 break;
2658 default:
2659 break;
2661 /* If for any loop, this is a jump insn between the NOTE_INSN_LOOP_CONT
2662 and NOTE_INSN_LOOP_END notes, update loop->dominator. */
2663 else if (GET_CODE (insn) == JUMP_INSN
2664 && GET_CODE (PATTERN (insn)) != RETURN
2665 && current_loop)
2667 rtx label = JUMP_LABEL (insn);
2669 if (! condjump_p (insn) && ! condjump_in_parallel_p (insn))
2670 label = NULL_RTX;
2672 loop = current_loop;
2675 /* First see if we care about this loop. */
2676 if (loop->cont && loop->cont_dominator != const0_rtx)
2678 /* If the jump destination is not known, invalidate
2679 loop->const_dominator. */
2680 if (! label)
2681 loop->cont_dominator = const0_rtx;
2682 else
2683 /* Check if the destination is between loop start and
2684 cont. */
2685 if ((INSN_LUID (label)
2686 < INSN_LUID (loop->cont))
2687 && (INSN_LUID (label)
2688 > INSN_LUID (loop->start))
2689 /* And if there is no later destination already
2690 recorded. */
2691 && (! loop->cont_dominator
2692 || (INSN_LUID (label)
2693 > INSN_LUID (loop->cont_dominator))))
2694 loop->cont_dominator = label;
2696 loop = loop->outer;
2698 while (loop);
2701 /* Note that this will mark the NOTE_INSN_LOOP_END note as being in the
2702 enclosing loop, but this doesn't matter. */
2703 uid_loop[INSN_UID (insn)] = current_loop;
2706 /* Any loop containing a label used in an initializer must be invalidated,
2707 because it can be jumped into from anywhere. */
2709 for (label = forced_labels; label; label = XEXP (label, 1))
2711 for (loop = uid_loop[INSN_UID (XEXP (label, 0))];
2712 loop; loop = loop->outer)
2713 loop->invalid = 1;
2716 /* Any loop containing a label used for an exception handler must be
2717 invalidated, because it can be jumped into from anywhere. */
2719 for (label = exception_handler_labels; label; label = XEXP (label, 1))
2721 for (loop = uid_loop[INSN_UID (XEXP (label, 0))];
2722 loop; loop = loop->outer)
2723 loop->invalid = 1;
2726 /* Now scan all insn's in the function. If any JUMP_INSN branches into a
2727 loop that it is not contained within, that loop is marked invalid.
2728 If any INSN or CALL_INSN uses a label's address, then the loop containing
2729 that label is marked invalid, because it could be jumped into from
2730 anywhere.
2732 Also look for blocks of code ending in an unconditional branch that
2733 exits the loop. If such a block is surrounded by a conditional
2734 branch around the block, move the block elsewhere (see below) and
2735 invert the jump to point to the code block. This may eliminate a
2736 label in our loop and will simplify processing by both us and a
2737 possible second cse pass. */
2739 for (insn = f; insn; insn = NEXT_INSN (insn))
2740 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2742 struct loop *this_loop = uid_loop[INSN_UID (insn)];
2744 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2746 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
2747 if (note)
2749 for (loop = uid_loop[INSN_UID (XEXP (note, 0))];
2750 loop; loop = loop->outer)
2751 loop->invalid = 1;
2755 if (GET_CODE (insn) != JUMP_INSN)
2756 continue;
2758 mark_loop_jump (PATTERN (insn), this_loop);
2760 /* See if this is an unconditional branch outside the loop. */
2761 if (this_loop
2762 && (GET_CODE (PATTERN (insn)) == RETURN
2763 || (simplejump_p (insn)
2764 && (uid_loop[INSN_UID (JUMP_LABEL (insn))]
2765 != this_loop)))
2766 && get_max_uid () < max_uid_for_loop)
2768 rtx p;
2769 rtx our_next = next_real_insn (insn);
2770 rtx last_insn_to_move = NEXT_INSN (insn);
2771 struct loop *dest_loop;
2772 struct loop *outer_loop = NULL;
2774 /* Go backwards until we reach the start of the loop, a label,
2775 or a JUMP_INSN. */
2776 for (p = PREV_INSN (insn);
2777 GET_CODE (p) != CODE_LABEL
2778 && ! (GET_CODE (p) == NOTE
2779 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
2780 && GET_CODE (p) != JUMP_INSN;
2781 p = PREV_INSN (p))
2784 /* Check for the case where we have a jump to an inner nested
2785 loop, and do not perform the optimization in that case. */
2787 if (JUMP_LABEL (insn))
2789 dest_loop = uid_loop[INSN_UID (JUMP_LABEL (insn))];
2790 if (dest_loop)
2792 for (outer_loop = dest_loop; outer_loop;
2793 outer_loop = outer_loop->outer)
2794 if (outer_loop == this_loop)
2795 break;
2799 /* Make sure that the target of P is within the current loop. */
2801 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
2802 && uid_loop[INSN_UID (JUMP_LABEL (p))] != this_loop)
2803 outer_loop = this_loop;
2805 /* If we stopped on a JUMP_INSN to the next insn after INSN,
2806 we have a block of code to try to move.
2808 We look backward and then forward from the target of INSN
2809 to find a BARRIER at the same loop depth as the target.
2810 If we find such a BARRIER, we make a new label for the start
2811 of the block, invert the jump in P and point it to that label,
2812 and move the block of code to the spot we found. */
2814 if (! outer_loop
2815 && GET_CODE (p) == JUMP_INSN
2816 && JUMP_LABEL (p) != 0
2817 /* Just ignore jumps to labels that were never emitted.
2818 These always indicate compilation errors. */
2819 && INSN_UID (JUMP_LABEL (p)) != 0
2820 && condjump_p (p)
2821 && ! simplejump_p (p)
2822 && next_real_insn (JUMP_LABEL (p)) == our_next
2823 /* If it's not safe to move the sequence, then we
2824 mustn't try. */
2825 && insns_safe_to_move_p (p, NEXT_INSN (insn),
2826 &last_insn_to_move))
2828 rtx target
2829 = JUMP_LABEL (insn) ? JUMP_LABEL (insn) : get_last_insn ();
2830 struct loop *target_loop = uid_loop[INSN_UID (target)];
2831 rtx loc, loc2;
2833 for (loc = target; loc; loc = PREV_INSN (loc))
2834 if (GET_CODE (loc) == BARRIER
2835 /* Don't move things inside a tablejump. */
2836 && ((loc2 = next_nonnote_insn (loc)) == 0
2837 || GET_CODE (loc2) != CODE_LABEL
2838 || (loc2 = next_nonnote_insn (loc2)) == 0
2839 || GET_CODE (loc2) != JUMP_INSN
2840 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2841 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2842 && uid_loop[INSN_UID (loc)] == target_loop)
2843 break;
2845 if (loc == 0)
2846 for (loc = target; loc; loc = NEXT_INSN (loc))
2847 if (GET_CODE (loc) == BARRIER
2848 /* Don't move things inside a tablejump. */
2849 && ((loc2 = next_nonnote_insn (loc)) == 0
2850 || GET_CODE (loc2) != CODE_LABEL
2851 || (loc2 = next_nonnote_insn (loc2)) == 0
2852 || GET_CODE (loc2) != JUMP_INSN
2853 || (GET_CODE (PATTERN (loc2)) != ADDR_VEC
2854 && GET_CODE (PATTERN (loc2)) != ADDR_DIFF_VEC))
2855 && uid_loop[INSN_UID (loc)] == target_loop)
2856 break;
2858 if (loc)
2860 rtx cond_label = JUMP_LABEL (p);
2861 rtx new_label = get_label_after (p);
2863 /* Ensure our label doesn't go away. */
2864 LABEL_NUSES (cond_label)++;
2866 /* Verify that uid_loop is large enough and that
2867 we can invert P. */
2868 if (invert_jump (p, new_label))
2870 rtx q, r;
2872 /* If no suitable BARRIER was found, create a suitable
2873 one before TARGET. Since TARGET is a fall through
2874 path, we'll need to insert an jump around our block
2875 and a add a BARRIER before TARGET.
2877 This creates an extra unconditional jump outside
2878 the loop. However, the benefits of removing rarely
2879 executed instructions from inside the loop usually
2880 outweighs the cost of the extra unconditional jump
2881 outside the loop. */
2882 if (loc == 0)
2884 rtx temp;
2886 temp = gen_jump (JUMP_LABEL (insn));
2887 temp = emit_jump_insn_before (temp, target);
2888 JUMP_LABEL (temp) = JUMP_LABEL (insn);
2889 LABEL_NUSES (JUMP_LABEL (insn))++;
2890 loc = emit_barrier_before (target);
2893 /* Include the BARRIER after INSN and copy the
2894 block after LOC. */
2895 new_label = squeeze_notes (new_label,
2896 last_insn_to_move);
2897 reorder_insns (new_label, last_insn_to_move, loc);
2899 /* All those insns are now in TARGET_LOOP. */
2900 for (q = new_label;
2901 q != NEXT_INSN (last_insn_to_move);
2902 q = NEXT_INSN (q))
2903 uid_loop[INSN_UID (q)] = target_loop;
2905 /* The label jumped to by INSN is no longer a loop exit.
2906 Unless INSN does not have a label (e.g., it is a
2907 RETURN insn), search loop->exit_labels to find
2908 its label_ref, and remove it. Also turn off
2909 LABEL_OUTSIDE_LOOP_P bit. */
2910 if (JUMP_LABEL (insn))
2912 for (q = 0,
2913 r = this_loop->exit_labels;
2914 r; q = r, r = LABEL_NEXTREF (r))
2915 if (XEXP (r, 0) == JUMP_LABEL (insn))
2917 LABEL_OUTSIDE_LOOP_P (r) = 0;
2918 if (q)
2919 LABEL_NEXTREF (q) = LABEL_NEXTREF (r);
2920 else
2921 this_loop->exit_labels = LABEL_NEXTREF (r);
2922 break;
2925 for (loop = this_loop; loop && loop != target_loop;
2926 loop = loop->outer)
2927 loop->exit_count--;
2929 /* If we didn't find it, then something is
2930 wrong. */
2931 if (! r)
2932 abort ();
2935 /* P is now a jump outside the loop, so it must be put
2936 in loop->exit_labels, and marked as such.
2937 The easiest way to do this is to just call
2938 mark_loop_jump again for P. */
2939 mark_loop_jump (PATTERN (p), this_loop);
2941 /* If INSN now jumps to the insn after it,
2942 delete INSN. */
2943 if (JUMP_LABEL (insn) != 0
2944 && (next_real_insn (JUMP_LABEL (insn))
2945 == next_real_insn (insn)))
2946 delete_insn (insn);
2949 /* Continue the loop after where the conditional
2950 branch used to jump, since the only branch insn
2951 in the block (if it still remains) is an inter-loop
2952 branch and hence needs no processing. */
2953 insn = NEXT_INSN (cond_label);
2955 if (--LABEL_NUSES (cond_label) == 0)
2956 delete_insn (cond_label);
2958 /* This loop will be continued with NEXT_INSN (insn). */
2959 insn = PREV_INSN (insn);
2966 /* If any label in X jumps to a loop different from LOOP_NUM and any of the
2967 loops it is contained in, mark the target loop invalid.
2969 For speed, we assume that X is part of a pattern of a JUMP_INSN. */
2971 static void
2972 mark_loop_jump (x, loop)
2973 rtx x;
2974 struct loop *loop;
2976 struct loop *dest_loop;
2977 struct loop *outer_loop;
2978 int i;
2980 switch (GET_CODE (x))
2982 case PC:
2983 case USE:
2984 case CLOBBER:
2985 case REG:
2986 case MEM:
2987 case CONST_INT:
2988 case CONST_DOUBLE:
2989 case RETURN:
2990 return;
2992 case CONST:
2993 /* There could be a label reference in here. */
2994 mark_loop_jump (XEXP (x, 0), loop);
2995 return;
2997 case PLUS:
2998 case MINUS:
2999 case MULT:
3000 mark_loop_jump (XEXP (x, 0), loop);
3001 mark_loop_jump (XEXP (x, 1), loop);
3002 return;
3004 case LO_SUM:
3005 /* This may refer to a LABEL_REF or SYMBOL_REF. */
3006 mark_loop_jump (XEXP (x, 1), loop);
3007 return;
3009 case SIGN_EXTEND:
3010 case ZERO_EXTEND:
3011 mark_loop_jump (XEXP (x, 0), loop);
3012 return;
3014 case LABEL_REF:
3015 dest_loop = uid_loop[INSN_UID (XEXP (x, 0))];
3017 /* Link together all labels that branch outside the loop. This
3018 is used by final_[bg]iv_value and the loop unrolling code. Also
3019 mark this LABEL_REF so we know that this branch should predict
3020 false. */
3022 /* A check to make sure the label is not in an inner nested loop,
3023 since this does not count as a loop exit. */
3024 if (dest_loop)
3026 for (outer_loop = dest_loop; outer_loop;
3027 outer_loop = outer_loop->outer)
3028 if (outer_loop == loop)
3029 break;
3031 else
3032 outer_loop = NULL;
3034 if (loop && ! outer_loop)
3036 LABEL_OUTSIDE_LOOP_P (x) = 1;
3037 LABEL_NEXTREF (x) = loop->exit_labels;
3038 loop->exit_labels = x;
3040 for (outer_loop = loop;
3041 outer_loop && outer_loop != dest_loop;
3042 outer_loop = outer_loop->outer)
3043 outer_loop->exit_count++;
3046 /* If this is inside a loop, but not in the current loop or one enclosed
3047 by it, it invalidates at least one loop. */
3049 if (! dest_loop)
3050 return;
3052 /* We must invalidate every nested loop containing the target of this
3053 label, except those that also contain the jump insn. */
3055 for (; dest_loop; dest_loop = dest_loop->outer)
3057 /* Stop when we reach a loop that also contains the jump insn. */
3058 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3059 if (dest_loop == outer_loop)
3060 return;
3062 /* If we get here, we know we need to invalidate a loop. */
3063 if (loop_dump_stream && ! dest_loop->invalid)
3064 fprintf (loop_dump_stream,
3065 "\nLoop at %d ignored due to multiple entry points.\n",
3066 INSN_UID (dest_loop->start));
3068 dest_loop->invalid = 1;
3070 return;
3072 case SET:
3073 /* If this is not setting pc, ignore. */
3074 if (SET_DEST (x) == pc_rtx)
3075 mark_loop_jump (SET_SRC (x), loop);
3076 return;
3078 case IF_THEN_ELSE:
3079 mark_loop_jump (XEXP (x, 1), loop);
3080 mark_loop_jump (XEXP (x, 2), loop);
3081 return;
3083 case PARALLEL:
3084 case ADDR_VEC:
3085 for (i = 0; i < XVECLEN (x, 0); i++)
3086 mark_loop_jump (XVECEXP (x, 0, i), loop);
3087 return;
3089 case ADDR_DIFF_VEC:
3090 for (i = 0; i < XVECLEN (x, 1); i++)
3091 mark_loop_jump (XVECEXP (x, 1, i), loop);
3092 return;
3094 default:
3095 /* Strictly speaking this is not a jump into the loop, only a possible
3096 jump out of the loop. However, we have no way to link the destination
3097 of this jump onto the list of exit labels. To be safe we mark this
3098 loop and any containing loops as invalid. */
3099 if (loop)
3101 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
3103 if (loop_dump_stream && ! outer_loop->invalid)
3104 fprintf (loop_dump_stream,
3105 "\nLoop at %d ignored due to unknown exit jump.\n",
3106 INSN_UID (outer_loop->start));
3107 outer_loop->invalid = 1;
3110 return;
3114 /* Return nonzero if there is a label in the range from
3115 insn INSN to and including the insn whose luid is END
3116 INSN must have an assigned luid (i.e., it must not have
3117 been previously created by loop.c). */
3119 static int
3120 labels_in_range_p (insn, end)
3121 rtx insn;
3122 int end;
3124 while (insn && INSN_LUID (insn) <= end)
3126 if (GET_CODE (insn) == CODE_LABEL)
3127 return 1;
3128 insn = NEXT_INSN (insn);
3131 return 0;
3134 /* Record that a memory reference X is being set. */
3136 static void
3137 note_addr_stored (x, y, data)
3138 rtx x;
3139 rtx y ATTRIBUTE_UNUSED;
3140 void *data ATTRIBUTE_UNUSED;
3142 if (x == 0 || GET_CODE (x) != MEM)
3143 return;
3145 /* Count number of memory writes.
3146 This affects heuristics in strength_reduce. */
3147 num_mem_sets++;
3149 /* BLKmode MEM means all memory is clobbered. */
3150 if (GET_MODE (x) == BLKmode)
3152 if (RTX_UNCHANGING_P (x))
3153 unknown_constant_address_altered = 1;
3154 else
3155 unknown_address_altered = 1;
3157 return;
3160 loop_store_mems = gen_rtx_EXPR_LIST (VOIDmode, x, loop_store_mems);
3163 /* X is a value modified by an INSN that references a biv inside a loop
3164 exit test (ie, X is somehow related to the value of the biv). If X
3165 is a pseudo that is used more than once, then the biv is (effectively)
3166 used more than once. DATA is really an `int *', and is set if the
3167 biv is used more than once. */
3169 static void
3170 note_set_pseudo_multiple_uses (x, y, data)
3171 rtx x;
3172 rtx y ATTRIBUTE_UNUSED;
3173 void *data;
3175 if (x == 0)
3176 return;
3178 while (GET_CODE (x) == STRICT_LOW_PART
3179 || GET_CODE (x) == SIGN_EXTRACT
3180 || GET_CODE (x) == ZERO_EXTRACT
3181 || GET_CODE (x) == SUBREG)
3182 x = XEXP (x, 0);
3184 if (GET_CODE (x) != REG || REGNO (x) < FIRST_PSEUDO_REGISTER)
3185 return;
3187 /* If we do not have usage information, or if we know the register
3188 is used more than once, note that fact for check_dbra_loop. */
3189 if (REGNO (x) >= max_reg_before_loop
3190 || ! VARRAY_RTX (reg_single_usage, REGNO (x))
3191 || VARRAY_RTX (reg_single_usage, REGNO (x)) == const0_rtx)
3192 *((int *) data) = 1;
3195 /* Return nonzero if the rtx X is invariant over the current loop.
3197 The value is 2 if we refer to something only conditionally invariant.
3199 If `unknown_address_altered' is nonzero, no memory ref is invariant.
3200 Otherwise, a memory ref is invariant if it does not conflict with
3201 anything stored in `loop_store_mems'. */
3204 loop_invariant_p (loop, x)
3205 const struct loop *loop;
3206 register rtx x;
3208 register int i;
3209 register enum rtx_code code;
3210 register const char *fmt;
3211 int conditional = 0;
3212 rtx mem_list_entry;
3214 if (x == 0)
3215 return 1;
3216 code = GET_CODE (x);
3217 switch (code)
3219 case CONST_INT:
3220 case CONST_DOUBLE:
3221 case SYMBOL_REF:
3222 case CONST:
3223 return 1;
3225 case LABEL_REF:
3226 /* A LABEL_REF is normally invariant, however, if we are unrolling
3227 loops, and this label is inside the loop, then it isn't invariant.
3228 This is because each unrolled copy of the loop body will have
3229 a copy of this label. If this was invariant, then an insn loading
3230 the address of this label into a register might get moved outside
3231 the loop, and then each loop body would end up using the same label.
3233 We don't know the loop bounds here though, so just fail for all
3234 labels. */
3235 if (flag_unroll_loops)
3236 return 0;
3237 else
3238 return 1;
3240 case PC:
3241 case CC0:
3242 case UNSPEC_VOLATILE:
3243 return 0;
3245 case REG:
3246 /* We used to check RTX_UNCHANGING_P (x) here, but that is invalid
3247 since the reg might be set by initialization within the loop. */
3249 if ((x == frame_pointer_rtx || x == hard_frame_pointer_rtx
3250 || x == arg_pointer_rtx)
3251 && ! current_function_has_nonlocal_goto)
3252 return 1;
3254 if (LOOP_INFO (loop)->has_call
3255 && REGNO (x) < FIRST_PSEUDO_REGISTER && call_used_regs[REGNO (x)])
3256 return 0;
3258 if (VARRAY_INT (set_in_loop, REGNO (x)) < 0)
3259 return 2;
3261 return VARRAY_INT (set_in_loop, REGNO (x)) == 0;
3263 case MEM:
3264 /* Volatile memory references must be rejected. Do this before
3265 checking for read-only items, so that volatile read-only items
3266 will be rejected also. */
3267 if (MEM_VOLATILE_P (x))
3268 return 0;
3270 /* If we had a subroutine call, any location in memory could
3271 have been clobbered. We used to test here for volatile and
3272 readonly, but true_dependence knows how to do that better
3273 than we do. */
3274 if (RTX_UNCHANGING_P (x)
3275 ? unknown_constant_address_altered : unknown_address_altered)
3276 return 0;
3278 /* See if there is any dependence between a store and this load. */
3279 mem_list_entry = loop_store_mems;
3280 while (mem_list_entry)
3282 if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
3283 x, rtx_varies_p))
3284 return 0;
3286 mem_list_entry = XEXP (mem_list_entry, 1);
3289 /* It's not invalidated by a store in memory
3290 but we must still verify the address is invariant. */
3291 break;
3293 case ASM_OPERANDS:
3294 /* Don't mess with insns declared volatile. */
3295 if (MEM_VOLATILE_P (x))
3296 return 0;
3297 break;
3299 default:
3300 break;
3303 fmt = GET_RTX_FORMAT (code);
3304 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3306 if (fmt[i] == 'e')
3308 int tem = loop_invariant_p (loop, XEXP (x, i));
3309 if (tem == 0)
3310 return 0;
3311 if (tem == 2)
3312 conditional = 1;
3314 else if (fmt[i] == 'E')
3316 register int j;
3317 for (j = 0; j < XVECLEN (x, i); j++)
3319 int tem = loop_invariant_p (loop, XVECEXP (x, i, j));
3320 if (tem == 0)
3321 return 0;
3322 if (tem == 2)
3323 conditional = 1;
3329 return 1 + conditional;
3333 /* Return nonzero if all the insns in the loop that set REG
3334 are INSN and the immediately following insns,
3335 and if each of those insns sets REG in an invariant way
3336 (not counting uses of REG in them).
3338 The value is 2 if some of these insns are only conditionally invariant.
3340 We assume that INSN itself is the first set of REG
3341 and that its source is invariant. */
3343 static int
3344 consec_sets_invariant_p (loop, reg, n_sets, insn)
3345 const struct loop *loop;
3346 int n_sets;
3347 rtx reg, insn;
3349 rtx p = insn;
3350 unsigned int regno = REGNO (reg);
3351 rtx temp;
3352 /* Number of sets we have to insist on finding after INSN. */
3353 int count = n_sets - 1;
3354 int old = VARRAY_INT (set_in_loop, regno);
3355 int value = 0;
3356 int this;
3358 /* If N_SETS hit the limit, we can't rely on its value. */
3359 if (n_sets == 127)
3360 return 0;
3362 VARRAY_INT (set_in_loop, regno) = 0;
3364 while (count > 0)
3366 register enum rtx_code code;
3367 rtx set;
3369 p = NEXT_INSN (p);
3370 code = GET_CODE (p);
3372 /* If library call, skip to end of it. */
3373 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
3374 p = XEXP (temp, 0);
3376 this = 0;
3377 if (code == INSN
3378 && (set = single_set (p))
3379 && GET_CODE (SET_DEST (set)) == REG
3380 && REGNO (SET_DEST (set)) == regno)
3382 this = loop_invariant_p (loop, SET_SRC (set));
3383 if (this != 0)
3384 value |= this;
3385 else if ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX)))
3387 /* If this is a libcall, then any invariant REG_EQUAL note is OK.
3388 If this is an ordinary insn, then only CONSTANT_P REG_EQUAL
3389 notes are OK. */
3390 this = (CONSTANT_P (XEXP (temp, 0))
3391 || (find_reg_note (p, REG_RETVAL, NULL_RTX)
3392 && loop_invariant_p (loop, XEXP (temp, 0))));
3393 if (this != 0)
3394 value |= this;
3397 if (this != 0)
3398 count--;
3399 else if (code != NOTE)
3401 VARRAY_INT (set_in_loop, regno) = old;
3402 return 0;
3406 VARRAY_INT (set_in_loop, regno) = old;
3407 /* If loop_invariant_p ever returned 2, we return 2. */
3408 return 1 + (value & 2);
3411 #if 0
3412 /* I don't think this condition is sufficient to allow INSN
3413 to be moved, so we no longer test it. */
3415 /* Return 1 if all insns in the basic block of INSN and following INSN
3416 that set REG are invariant according to TABLE. */
3418 static int
3419 all_sets_invariant_p (reg, insn, table)
3420 rtx reg, insn;
3421 short *table;
3423 register rtx p = insn;
3424 register int regno = REGNO (reg);
3426 while (1)
3428 register enum rtx_code code;
3429 p = NEXT_INSN (p);
3430 code = GET_CODE (p);
3431 if (code == CODE_LABEL || code == JUMP_INSN)
3432 return 1;
3433 if (code == INSN && GET_CODE (PATTERN (p)) == SET
3434 && GET_CODE (SET_DEST (PATTERN (p))) == REG
3435 && REGNO (SET_DEST (PATTERN (p))) == regno)
3437 if (! loop_invariant_p (loop, SET_SRC (PATTERN (p)), table))
3438 return 0;
3442 #endif /* 0 */
3444 /* Look at all uses (not sets) of registers in X. For each, if it is
3445 the single use, set USAGE[REGNO] to INSN; if there was a previous use in
3446 a different insn, set USAGE[REGNO] to const0_rtx. */
3448 static void
3449 find_single_use_in_loop (insn, x, usage)
3450 rtx insn;
3451 rtx x;
3452 varray_type usage;
3454 enum rtx_code code = GET_CODE (x);
3455 const char *fmt = GET_RTX_FORMAT (code);
3456 int i, j;
3458 if (code == REG)
3459 VARRAY_RTX (usage, REGNO (x))
3460 = (VARRAY_RTX (usage, REGNO (x)) != 0
3461 && VARRAY_RTX (usage, REGNO (x)) != insn)
3462 ? const0_rtx : insn;
3464 else if (code == SET)
3466 /* Don't count SET_DEST if it is a REG; otherwise count things
3467 in SET_DEST because if a register is partially modified, it won't
3468 show up as a potential movable so we don't care how USAGE is set
3469 for it. */
3470 if (GET_CODE (SET_DEST (x)) != REG)
3471 find_single_use_in_loop (insn, SET_DEST (x), usage);
3472 find_single_use_in_loop (insn, SET_SRC (x), usage);
3474 else
3475 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3477 if (fmt[i] == 'e' && XEXP (x, i) != 0)
3478 find_single_use_in_loop (insn, XEXP (x, i), usage);
3479 else if (fmt[i] == 'E')
3480 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3481 find_single_use_in_loop (insn, XVECEXP (x, i, j), usage);
3485 /* Count and record any set in X which is contained in INSN. Update
3486 MAY_NOT_MOVE and LAST_SET for any register set in X. */
3488 static void
3489 count_one_set (insn, x, may_not_move, last_set)
3490 rtx insn, x;
3491 varray_type may_not_move;
3492 rtx *last_set;
3494 if (GET_CODE (x) == CLOBBER && GET_CODE (XEXP (x, 0)) == REG)
3495 /* Don't move a reg that has an explicit clobber.
3496 It's not worth the pain to try to do it correctly. */
3497 VARRAY_CHAR (may_not_move, REGNO (XEXP (x, 0))) = 1;
3499 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
3501 rtx dest = SET_DEST (x);
3502 while (GET_CODE (dest) == SUBREG
3503 || GET_CODE (dest) == ZERO_EXTRACT
3504 || GET_CODE (dest) == SIGN_EXTRACT
3505 || GET_CODE (dest) == STRICT_LOW_PART)
3506 dest = XEXP (dest, 0);
3507 if (GET_CODE (dest) == REG)
3509 register int regno = REGNO (dest);
3510 /* If this is the first setting of this reg
3511 in current basic block, and it was set before,
3512 it must be set in two basic blocks, so it cannot
3513 be moved out of the loop. */
3514 if (VARRAY_INT (set_in_loop, regno) > 0
3515 && last_set[regno] == 0)
3516 VARRAY_CHAR (may_not_move, regno) = 1;
3517 /* If this is not first setting in current basic block,
3518 see if reg was used in between previous one and this.
3519 If so, neither one can be moved. */
3520 if (last_set[regno] != 0
3521 && reg_used_between_p (dest, last_set[regno], insn))
3522 VARRAY_CHAR (may_not_move, regno) = 1;
3523 if (VARRAY_INT (set_in_loop, regno) < 127)
3524 ++VARRAY_INT (set_in_loop, regno);
3525 last_set[regno] = insn;
3530 /* Increment SET_IN_LOOP at the index of each register
3531 that is modified by an insn between FROM and TO.
3532 If the value of an element of SET_IN_LOOP becomes 127 or more,
3533 stop incrementing it, to avoid overflow.
3535 Store in SINGLE_USAGE[I] the single insn in which register I is
3536 used, if it is only used once. Otherwise, it is set to 0 (for no
3537 uses) or const0_rtx for more than one use. This parameter may be zero,
3538 in which case this processing is not done.
3540 Store in *COUNT_PTR the number of actual instruction
3541 in the loop. We use this to decide what is worth moving out. */
3543 /* last_set[n] is nonzero iff reg n has been set in the current basic block.
3544 In that case, it is the insn that last set reg n. */
3546 static void
3547 count_loop_regs_set (from, to, may_not_move, single_usage, count_ptr, nregs)
3548 register rtx from, to;
3549 varray_type may_not_move;
3550 varray_type single_usage;
3551 int *count_ptr;
3552 int nregs;
3554 register rtx *last_set = (rtx *) xcalloc (nregs, sizeof (rtx));
3555 register rtx insn;
3556 register int count = 0;
3558 for (insn = from; insn != to; insn = NEXT_INSN (insn))
3560 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3562 ++count;
3564 /* Record registers that have exactly one use. */
3565 find_single_use_in_loop (insn, PATTERN (insn), single_usage);
3567 /* Include uses in REG_EQUAL notes. */
3568 if (REG_NOTES (insn))
3569 find_single_use_in_loop (insn, REG_NOTES (insn), single_usage);
3571 if (GET_CODE (PATTERN (insn)) == SET
3572 || GET_CODE (PATTERN (insn)) == CLOBBER)
3573 count_one_set (insn, PATTERN (insn), may_not_move, last_set);
3574 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3576 register int i;
3577 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3578 count_one_set (insn, XVECEXP (PATTERN (insn), 0, i),
3579 may_not_move, last_set);
3583 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN)
3584 bzero ((char *) last_set, nregs * sizeof (rtx));
3586 *count_ptr = count;
3588 /* Clean up. */
3589 free (last_set);
3592 /* Given a loop that is bounded by LOOP->START and LOOP->END and that
3593 is entered at LOOP->SCAN_START, return 1 if the register set in SET
3594 contained in insn INSN is used by any insn that precedes INSN in
3595 cyclic order starting from the loop entry point.
3597 We don't want to use INSN_LUID here because if we restrict INSN to those
3598 that have a valid INSN_LUID, it means we cannot move an invariant out
3599 from an inner loop past two loops. */
3601 static int
3602 loop_reg_used_before_p (loop, set, insn)
3603 const struct loop *loop;
3604 rtx set, insn;
3606 rtx reg = SET_DEST (set);
3607 rtx p;
3609 /* Scan forward checking for register usage. If we hit INSN, we
3610 are done. Otherwise, if we hit LOOP->END, wrap around to LOOP->START. */
3611 for (p = loop->scan_start; p != insn; p = NEXT_INSN (p))
3613 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
3614 && reg_overlap_mentioned_p (reg, PATTERN (p)))
3615 return 1;
3617 if (p == loop->end)
3618 p = loop->start;
3621 return 0;
3624 /* A "basic induction variable" or biv is a pseudo reg that is set
3625 (within this loop) only by incrementing or decrementing it. */
3626 /* A "general induction variable" or giv is a pseudo reg whose
3627 value is a linear function of a biv. */
3629 /* Bivs are recognized by `basic_induction_var';
3630 Givs by `general_induction_var'. */
3632 /* Indexed by register number, indicates whether or not register is an
3633 induction variable, and if so what type. */
3635 varray_type reg_iv_type;
3637 /* Indexed by register number, contains pointer to `struct induction'
3638 if register is an induction variable. This holds general info for
3639 all induction variables. */
3641 varray_type reg_iv_info;
3643 /* Indexed by register number, contains pointer to `struct iv_class'
3644 if register is a basic induction variable. This holds info describing
3645 the class (a related group) of induction variables that the biv belongs
3646 to. */
3648 struct iv_class **reg_biv_class;
3650 /* The head of a list which links together (via the next field)
3651 every iv class for the current loop. */
3653 struct iv_class *loop_iv_list;
3655 /* Givs made from biv increments are always splittable for loop unrolling.
3656 Since there is no regscan info for them, we have to keep track of them
3657 separately. */
3658 unsigned int first_increment_giv, last_increment_giv;
3660 /* Communication with routines called via `note_stores'. */
3662 static rtx note_insn;
3664 /* Dummy register to have non-zero DEST_REG for DEST_ADDR type givs. */
3666 static rtx addr_placeholder;
3668 /* ??? Unfinished optimizations, and possible future optimizations,
3669 for the strength reduction code. */
3671 /* ??? The interaction of biv elimination, and recognition of 'constant'
3672 bivs, may cause problems. */
3674 /* ??? Add heuristics so that DEST_ADDR strength reduction does not cause
3675 performance problems.
3677 Perhaps don't eliminate things that can be combined with an addressing
3678 mode. Find all givs that have the same biv, mult_val, and add_val;
3679 then for each giv, check to see if its only use dies in a following
3680 memory address. If so, generate a new memory address and check to see
3681 if it is valid. If it is valid, then store the modified memory address,
3682 otherwise, mark the giv as not done so that it will get its own iv. */
3684 /* ??? Could try to optimize branches when it is known that a biv is always
3685 positive. */
3687 /* ??? When replace a biv in a compare insn, we should replace with closest
3688 giv so that an optimized branch can still be recognized by the combiner,
3689 e.g. the VAX acb insn. */
3691 /* ??? Many of the checks involving uid_luid could be simplified if regscan
3692 was rerun in loop_optimize whenever a register was added or moved.
3693 Also, some of the optimizations could be a little less conservative. */
3695 /* Scan the loop body and call FNCALL for each insn. In the addition to the
3696 LOOP and INSN parameters pass MAYBE_MULTIPLE and NOT_EVERY_ITERATION to the
3697 callback.
3699 NOT_EVERY_ITERATION if current insn is not executed at least once for every
3700 loop iteration except for the last one.
3702 MAYBE_MULTIPLE is 1 if current insn may be executed more than once for every
3703 loop iteration.
3705 void
3706 for_each_insn_in_loop (loop, fncall)
3707 struct loop *loop;
3708 loop_insn_callback fncall;
3710 /* This is 1 if current insn is not executed at least once for every loop
3711 iteration. */
3712 int not_every_iteration = 0;
3713 int maybe_multiple = 0;
3714 int past_loop_latch = 0;
3715 int loop_depth = 0;
3716 rtx p;
3718 /* If loop_scan_start points to the loop exit test, we have to be wary of
3719 subversive use of gotos inside expression statements. */
3720 if (prev_nonnote_insn (loop->scan_start) != prev_nonnote_insn (loop->start))
3721 maybe_multiple = back_branch_in_range_p (loop, loop->scan_start);
3723 /* Scan through loop to find all possible bivs. */
3725 for (p = next_insn_in_loop (loop, loop->scan_start);
3726 p != NULL_RTX;
3727 p = next_insn_in_loop (loop, p))
3729 p = fncall (loop, p, not_every_iteration, maybe_multiple);
3731 /* Past CODE_LABEL, we get to insns that may be executed multiple
3732 times. The only way we can be sure that they can't is if every
3733 jump insn between here and the end of the loop either
3734 returns, exits the loop, is a jump to a location that is still
3735 behind the label, or is a jump to the loop start. */
3737 if (GET_CODE (p) == CODE_LABEL)
3739 rtx insn = p;
3741 maybe_multiple = 0;
3743 while (1)
3745 insn = NEXT_INSN (insn);
3746 if (insn == loop->scan_start)
3747 break;
3748 if (insn == loop->end)
3750 if (loop->top != 0)
3751 insn = loop->top;
3752 else
3753 break;
3754 if (insn == loop->scan_start)
3755 break;
3758 if (GET_CODE (insn) == JUMP_INSN
3759 && GET_CODE (PATTERN (insn)) != RETURN
3760 && (!condjump_p (insn)
3761 || (JUMP_LABEL (insn) != 0
3762 && JUMP_LABEL (insn) != loop->scan_start
3763 && !loop_insn_first_p (p, JUMP_LABEL (insn)))))
3765 maybe_multiple = 1;
3766 break;
3771 /* Past a jump, we get to insns for which we can't count
3772 on whether they will be executed during each iteration. */
3773 /* This code appears twice in strength_reduce. There is also similar
3774 code in scan_loop. */
3775 if (GET_CODE (p) == JUMP_INSN
3776 /* If we enter the loop in the middle, and scan around to the
3777 beginning, don't set not_every_iteration for that.
3778 This can be any kind of jump, since we want to know if insns
3779 will be executed if the loop is executed. */
3780 && !(JUMP_LABEL (p) == loop->top
3781 && ((NEXT_INSN (NEXT_INSN (p)) == loop->end && simplejump_p (p))
3782 || (NEXT_INSN (p) == loop->end && condjump_p (p)))))
3784 rtx label = 0;
3786 /* If this is a jump outside the loop, then it also doesn't
3787 matter. Check to see if the target of this branch is on the
3788 loop->exits_labels list. */
3790 for (label = loop->exit_labels; label; label = LABEL_NEXTREF (label))
3791 if (XEXP (label, 0) == JUMP_LABEL (p))
3792 break;
3794 if (!label)
3795 not_every_iteration = 1;
3798 else if (GET_CODE (p) == NOTE)
3800 /* At the virtual top of a converted loop, insns are again known to
3801 be executed each iteration: logically, the loop begins here
3802 even though the exit code has been duplicated.
3804 Insns are also again known to be executed each iteration at
3805 the LOOP_CONT note. */
3806 if ((NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_VTOP
3807 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_CONT)
3808 && loop_depth == 0)
3809 not_every_iteration = 0;
3810 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG)
3811 loop_depth++;
3812 else if (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
3813 loop_depth--;
3816 /* Note if we pass a loop latch. If we do, then we can not clear
3817 NOT_EVERY_ITERATION below when we pass the last CODE_LABEL in
3818 a loop since a jump before the last CODE_LABEL may have started
3819 a new loop iteration.
3821 Note that LOOP_TOP is only set for rotated loops and we need
3822 this check for all loops, so compare against the CODE_LABEL
3823 which immediately follows LOOP_START. */
3824 if (GET_CODE (p) == JUMP_INSN
3825 && JUMP_LABEL (p) == NEXT_INSN (loop->start))
3826 past_loop_latch = 1;
3828 /* Unlike in the code motion pass where MAYBE_NEVER indicates that
3829 an insn may never be executed, NOT_EVERY_ITERATION indicates whether
3830 or not an insn is known to be executed each iteration of the
3831 loop, whether or not any iterations are known to occur.
3833 Therefore, if we have just passed a label and have no more labels
3834 between here and the test insn of the loop, and we have not passed
3835 a jump to the top of the loop, then we know these insns will be
3836 executed each iteration. */
3838 if (not_every_iteration
3839 && !past_loop_latch
3840 && GET_CODE (p) == CODE_LABEL
3841 && no_labels_between_p (p, loop->end)
3842 && loop_insn_first_p (p, loop->cont))
3843 not_every_iteration = 0;
3847 /* Perform strength reduction and induction variable elimination.
3849 Pseudo registers created during this function will be beyond the last
3850 valid index in several tables including n_times_set and regno_last_uid.
3851 This does not cause a problem here, because the added registers cannot be
3852 givs outside of their loop, and hence will never be reconsidered.
3853 But scan_loop must check regnos to make sure they are in bounds. */
3855 static void
3856 strength_reduce (loop, insn_count, flags)
3857 struct loop *loop;
3858 int insn_count;
3859 int flags;
3861 rtx p;
3862 /* Temporary list pointers for traversing loop_iv_list. */
3863 struct iv_class *bl, **backbl;
3864 struct loop_info *loop_info = LOOP_INFO (loop);
3865 /* Ratio of extra register life span we can justify
3866 for saving an instruction. More if loop doesn't call subroutines
3867 since in that case saving an insn makes more difference
3868 and more registers are available. */
3869 /* ??? could set this to last value of threshold in move_movables */
3870 int threshold = (loop_info->has_call ? 1 : 2) * (3 + n_non_fixed_regs);
3871 /* Map of pseudo-register replacements. */
3872 rtx *reg_map = NULL;
3873 int reg_map_size;
3874 int call_seen;
3875 rtx test;
3876 rtx end_insert_before;
3877 int n_extra_increment;
3878 int unrolled_insn_copies = 0;
3879 rtx loop_start = loop->start;
3880 rtx loop_end = loop->end;
3881 rtx loop_scan_start = loop->scan_start;
3883 VARRAY_INT_INIT (reg_iv_type, max_reg_before_loop, "reg_iv_type");
3884 VARRAY_GENERIC_PTR_INIT (reg_iv_info, max_reg_before_loop, "reg_iv_info");
3885 reg_biv_class = (struct iv_class **)
3886 xcalloc (max_reg_before_loop, sizeof (struct iv_class *));
3888 loop_iv_list = 0;
3889 addr_placeholder = gen_reg_rtx (Pmode);
3891 /* Save insn immediately after the loop_end. Insns inserted after loop_end
3892 must be put before this insn, so that they will appear in the right
3893 order (i.e. loop order).
3895 If loop_end is the end of the current function, then emit a
3896 NOTE_INSN_DELETED after loop_end and set end_insert_before to the
3897 dummy note insn. */
3898 if (NEXT_INSN (loop_end) != 0)
3899 end_insert_before = NEXT_INSN (loop_end);
3900 else
3901 end_insert_before = emit_note_after (NOTE_INSN_DELETED, loop_end);
3903 for_each_insn_in_loop (loop, check_insn_for_bivs);
3905 /* Scan loop_iv_list to remove all regs that proved not to be bivs.
3906 Make a sanity check against n_times_set. */
3907 for (backbl = &loop_iv_list, bl = *backbl; bl; bl = bl->next)
3909 int fail = 0;
3911 if (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
3912 /* Above happens if register modified by subreg, etc. */
3913 /* Make sure it is not recognized as a basic induction var: */
3914 || VARRAY_INT (n_times_set, bl->regno) != bl->biv_count
3915 /* If never incremented, it is invariant that we decided not to
3916 move. So leave it alone. */
3917 || ! bl->incremented)
3918 fail = 1;
3919 else if (bl->biv_count > 1)
3921 /* ??? If we have multiple increments for this BIV, and any of
3922 them take multiple insns to perform the increment, drop the
3923 BIV, since the bit below that converts the extra increments
3924 into GIVs can't handle the multiple insn increment. */
3926 struct induction *v;
3927 for (v = bl->biv; v ; v = v->next_iv)
3928 if (v->multi_insn_incr)
3929 fail = 1;
3932 if (fail)
3934 if (loop_dump_stream)
3935 fprintf (loop_dump_stream, "Reg %d: biv discarded, %s\n",
3936 bl->regno,
3937 (REG_IV_TYPE (bl->regno) != BASIC_INDUCT
3938 ? "not induction variable"
3939 : (! bl->incremented ? "never incremented"
3940 : "count error")));
3942 REG_IV_TYPE (bl->regno) = NOT_BASIC_INDUCT;
3943 *backbl = bl->next;
3945 else
3947 backbl = &bl->next;
3949 if (loop_dump_stream)
3950 fprintf (loop_dump_stream, "Reg %d: biv verified\n", bl->regno);
3954 /* Exit if there are no bivs. */
3955 if (! loop_iv_list)
3957 /* Can still unroll the loop anyways, but indicate that there is no
3958 strength reduction info available. */
3959 if (flags & LOOP_UNROLL)
3960 unroll_loop (loop, insn_count, end_insert_before, 0);
3962 goto egress;
3965 /* Find initial value for each biv by searching backwards from loop_start,
3966 halting at first label. Also record any test condition. */
3968 call_seen = 0;
3969 for (p = loop_start; p && GET_CODE (p) != CODE_LABEL; p = PREV_INSN (p))
3971 note_insn = p;
3973 if (GET_CODE (p) == CALL_INSN)
3974 call_seen = 1;
3976 if (INSN_P (p))
3977 note_stores (PATTERN (p), record_initial, NULL);
3979 /* Record any test of a biv that branches around the loop if no store
3980 between it and the start of loop. We only care about tests with
3981 constants and registers and only certain of those. */
3982 if (GET_CODE (p) == JUMP_INSN
3983 && JUMP_LABEL (p) != 0
3984 && next_real_insn (JUMP_LABEL (p)) == next_real_insn (loop_end)
3985 && (test = get_condition_for_loop (loop, p)) != 0
3986 && GET_CODE (XEXP (test, 0)) == REG
3987 && REGNO (XEXP (test, 0)) < max_reg_before_loop
3988 && (bl = reg_biv_class[REGNO (XEXP (test, 0))]) != 0
3989 && valid_initial_value_p (XEXP (test, 1), p, call_seen, loop_start)
3990 && bl->init_insn == 0)
3992 /* If an NE test, we have an initial value! */
3993 if (GET_CODE (test) == NE)
3995 bl->init_insn = p;
3996 bl->init_set = gen_rtx_SET (VOIDmode,
3997 XEXP (test, 0), XEXP (test, 1));
3999 else
4000 bl->initial_test = test;
4004 /* Look at the each biv and see if we can say anything better about its
4005 initial value from any initializing insns set up above. (This is done
4006 in two passes to avoid missing SETs in a PARALLEL.) */
4007 for (backbl = &loop_iv_list; (bl = *backbl); backbl = &bl->next)
4009 rtx src;
4010 rtx note;
4012 if (! bl->init_insn)
4013 continue;
4015 /* IF INIT_INSN has a REG_EQUAL or REG_EQUIV note and the value
4016 is a constant, use the value of that. */
4017 if (((note = find_reg_note (bl->init_insn, REG_EQUAL, 0)) != NULL
4018 && CONSTANT_P (XEXP (note, 0)))
4019 || ((note = find_reg_note (bl->init_insn, REG_EQUIV, 0)) != NULL
4020 && CONSTANT_P (XEXP (note, 0))))
4021 src = XEXP (note, 0);
4022 else
4023 src = SET_SRC (bl->init_set);
4025 if (loop_dump_stream)
4026 fprintf (loop_dump_stream,
4027 "Biv %d initialized at insn %d: initial value ",
4028 bl->regno, INSN_UID (bl->init_insn));
4030 if ((GET_MODE (src) == GET_MODE (regno_reg_rtx[bl->regno])
4031 || GET_MODE (src) == VOIDmode)
4032 && valid_initial_value_p (src, bl->init_insn, call_seen, loop_start))
4034 bl->initial_value = src;
4036 if (loop_dump_stream)
4038 if (GET_CODE (src) == CONST_INT)
4040 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (src));
4041 fputc ('\n', loop_dump_stream);
4043 else
4045 print_rtl (loop_dump_stream, src);
4046 fprintf (loop_dump_stream, "\n");
4050 else
4052 struct iv_class *bl2 = 0;
4053 rtx increment = NULL_RTX;
4055 /* Biv initial value is not a simple move. If it is the sum of
4056 another biv and a constant, check if both bivs are incremented
4057 in lockstep. Then we are actually looking at a giv.
4058 For simplicity, we only handle the case where there is but a
4059 single increment, and the register is not used elsewhere. */
4060 if (bl->biv_count == 1
4061 && bl->regno < max_reg_before_loop
4062 && uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4063 && GET_CODE (src) == PLUS
4064 && GET_CODE (XEXP (src, 0)) == REG
4065 && CONSTANT_P (XEXP (src, 1))
4066 && ((increment = biv_total_increment (bl)) != NULL_RTX))
4068 unsigned int regno = REGNO (XEXP (src, 0));
4070 for (bl2 = loop_iv_list; bl2; bl2 = bl2->next)
4071 if (bl2->regno == regno)
4072 break;
4075 /* Now, can we transform this biv into a giv? */
4076 if (bl2
4077 && bl2->biv_count == 1
4078 && rtx_equal_p (increment, biv_total_increment (bl2))
4079 /* init_insn is only set to insns that are before loop_start
4080 without any intervening labels. */
4081 && ! reg_set_between_p (bl2->biv->src_reg,
4082 PREV_INSN (bl->init_insn), loop_start)
4083 /* The register from BL2 must be set before the register from
4084 BL is set, or we must be able to move the latter set after
4085 the former set. Currently there can't be any labels
4086 in-between when biv_total_increment returns nonzero both times
4087 but we test it here in case some day some real cfg analysis
4088 gets used to set always_computable. */
4089 && (loop_insn_first_p (bl2->biv->insn, bl->biv->insn)
4090 ? no_labels_between_p (bl2->biv->insn, bl->biv->insn)
4091 : (! reg_used_between_p (bl->biv->src_reg, bl->biv->insn,
4092 bl2->biv->insn)
4093 && no_jumps_between_p (bl->biv->insn, bl2->biv->insn)))
4094 && validate_change (bl->biv->insn,
4095 &SET_SRC (single_set (bl->biv->insn)),
4096 copy_rtx (src), 0))
4098 rtx dominator = loop->cont_dominator;
4099 rtx giv = bl->biv->src_reg;
4100 rtx giv_insn = bl->biv->insn;
4101 rtx after_giv = NEXT_INSN (giv_insn);
4103 if (loop_dump_stream)
4104 fprintf (loop_dump_stream, "is giv of biv %d\n", bl2->regno);
4105 /* Let this giv be discovered by the generic code. */
4106 REG_IV_TYPE (bl->regno) = UNKNOWN_INDUCT;
4107 reg_biv_class[bl->regno] = (struct iv_class *) NULL_PTR;
4108 /* We can get better optimization if we can move the giv setting
4109 before the first giv use. */
4110 if (dominator
4111 && ! loop_insn_first_p (dominator, loop_scan_start)
4112 && ! reg_set_between_p (bl2->biv->src_reg, loop_start,
4113 dominator)
4114 && ! reg_used_between_p (giv, loop_start, dominator)
4115 && ! reg_used_between_p (giv, giv_insn, loop_end))
4117 rtx p;
4118 rtx next;
4120 for (next = NEXT_INSN (dominator); ; next = NEXT_INSN (next))
4122 if (GET_CODE (next) == JUMP_INSN
4123 || (INSN_P (next)
4124 && insn_dependant_p (giv_insn, next)))
4125 break;
4126 #ifdef HAVE_cc0
4127 if (! INSN_P (next)
4128 || ! sets_cc0_p (PATTERN (next)))
4129 #endif
4130 dominator = next;
4132 if (loop_dump_stream)
4133 fprintf (loop_dump_stream, "move after insn %d\n",
4134 INSN_UID (dominator));
4135 /* Avoid problems with luids by actually moving the insn
4136 and adjusting all luids in the range. */
4137 reorder_insns (giv_insn, giv_insn, dominator);
4138 for (p = dominator; INSN_UID (p) >= max_uid_for_loop; )
4139 p = PREV_INSN (p);
4140 compute_luids (giv_insn, after_giv, INSN_LUID (p));
4141 /* If the only purpose of the init insn is to initialize
4142 this giv, delete it. */
4143 if (single_set (bl->init_insn)
4144 && ! reg_used_between_p (giv, bl->init_insn, loop_start))
4145 delete_insn (bl->init_insn);
4147 else if (! loop_insn_first_p (bl2->biv->insn, bl->biv->insn))
4149 rtx p = PREV_INSN (giv_insn);
4150 while (INSN_UID (p) >= max_uid_for_loop)
4151 p = PREV_INSN (p);
4152 reorder_insns (giv_insn, giv_insn, bl2->biv->insn);
4153 compute_luids (after_giv, NEXT_INSN (giv_insn),
4154 INSN_LUID (p));
4156 /* Remove this biv from the chain. */
4157 *backbl = bl->next;
4160 /* If we can't make it a giv,
4161 let biv keep initial value of "itself". */
4162 else if (loop_dump_stream)
4163 fprintf (loop_dump_stream, "is complex\n");
4167 /* If a biv is unconditionally incremented several times in a row, convert
4168 all but the last increment into a giv. */
4170 /* Get an upper bound for the number of registers
4171 we might have after all bivs have been processed. */
4172 first_increment_giv = max_reg_num ();
4173 for (n_extra_increment = 0, bl = loop_iv_list; bl; bl = bl->next)
4174 n_extra_increment += bl->biv_count - 1;
4176 /* If the loop contains volatile memory references do not allow any
4177 replacements to take place, since this could loose the volatile
4178 markers. */
4179 if (n_extra_increment && ! loop_info->has_volatile)
4181 unsigned int nregs = first_increment_giv + n_extra_increment;
4183 /* Reallocate reg_iv_type and reg_iv_info. */
4184 VARRAY_GROW (reg_iv_type, nregs);
4185 VARRAY_GROW (reg_iv_info, nregs);
4187 for (bl = loop_iv_list; bl; bl = bl->next)
4189 struct induction **vp, *v, *next;
4190 int biv_dead_after_loop = 0;
4192 /* The biv increments lists are in reverse order. Fix this
4193 first. */
4194 for (v = bl->biv, bl->biv = 0; v; v = next)
4196 next = v->next_iv;
4197 v->next_iv = bl->biv;
4198 bl->biv = v;
4201 /* We must guard against the case that an early exit between v->insn
4202 and next->insn leaves the biv live after the loop, since that
4203 would mean that we'd be missing an increment for the final
4204 value. The following test to set biv_dead_after_loop is like
4205 the first part of the test to set bl->eliminable.
4206 We don't check here if we can calculate the final value, since
4207 this can't succeed if we already know that there is a jump
4208 between v->insn and next->insn, yet next->always_executed is
4209 set and next->maybe_multiple is cleared. Such a combination
4210 implies that the jump destination is outside the loop.
4211 If we want to make this check more sophisticated, we should
4212 check each branch between v->insn and next->insn individually
4213 to see if the biv is dead at its destination. */
4215 if (uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4216 && bl->init_insn
4217 && INSN_UID (bl->init_insn) < max_uid_for_loop
4218 && (uid_luid[REGNO_FIRST_UID (bl->regno)]
4219 >= INSN_LUID (bl->init_insn))
4220 #ifdef HAVE_decrement_and_branch_until_zero
4221 && ! bl->nonneg
4222 #endif
4223 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4224 biv_dead_after_loop = 1;
4226 for (vp = &bl->biv, next = *vp; v = next, next = v->next_iv;)
4228 HOST_WIDE_INT offset;
4229 rtx set, add_val, old_reg, dest_reg, last_use_insn, note;
4230 int old_regno, new_regno;
4232 if (! v->always_executed
4233 || v->maybe_multiple
4234 || GET_CODE (v->add_val) != CONST_INT
4235 || ! next->always_executed
4236 || next->maybe_multiple
4237 || ! CONSTANT_P (next->add_val)
4238 || v->mult_val != const1_rtx
4239 || next->mult_val != const1_rtx
4240 || ! (biv_dead_after_loop
4241 || no_jumps_between_p (v->insn, next->insn)))
4243 vp = &v->next_iv;
4244 continue;
4246 offset = INTVAL (v->add_val);
4247 set = single_set (v->insn);
4248 add_val = plus_constant (next->add_val, offset);
4249 old_reg = v->dest_reg;
4250 dest_reg = gen_reg_rtx (v->mode);
4252 /* Unlike reg_iv_type / reg_iv_info, the other three arrays
4253 have been allocated with some slop space, so we may not
4254 actually need to reallocate them. If we do, the following
4255 if statement will be executed just once in this loop. */
4256 if ((unsigned) max_reg_num () > n_times_set->num_elements)
4258 /* Grow all the remaining arrays. */
4259 VARRAY_GROW (set_in_loop, nregs);
4260 VARRAY_GROW (n_times_set, nregs);
4261 VARRAY_GROW (may_not_optimize, nregs);
4262 VARRAY_GROW (reg_single_usage, nregs);
4265 if (! validate_change (next->insn, next->location, add_val, 0))
4267 vp = &v->next_iv;
4268 continue;
4271 /* Here we can try to eliminate the increment by combining
4272 it into the uses. */
4274 /* Set last_use_insn so that we can check against it. */
4276 for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
4277 p != next->insn;
4278 p = next_insn_in_loop (loop, p))
4280 if (!INSN_P (p))
4281 continue;
4282 if (reg_mentioned_p (old_reg, PATTERN (p)))
4284 last_use_insn = p;
4288 /* If we can't get the LUIDs for the insns, we can't
4289 calculate the lifetime. This is likely from unrolling
4290 of an inner loop, so there is little point in making this
4291 a DEST_REG giv anyways. */
4292 if (INSN_UID (v->insn) >= max_uid_for_loop
4293 || INSN_UID (last_use_insn) >= max_uid_for_loop
4294 || ! validate_change (v->insn, &SET_DEST (set), dest_reg, 0))
4296 /* Change the increment at NEXT back to what it was. */
4297 if (! validate_change (next->insn, next->location,
4298 next->add_val, 0))
4299 abort ();
4300 vp = &v->next_iv;
4301 continue;
4303 next->add_val = add_val;
4304 v->dest_reg = dest_reg;
4305 v->giv_type = DEST_REG;
4306 v->location = &SET_SRC (set);
4307 v->cant_derive = 0;
4308 v->combined_with = 0;
4309 v->maybe_dead = 0;
4310 v->derive_adjustment = 0;
4311 v->same = 0;
4312 v->ignore = 0;
4313 v->new_reg = 0;
4314 v->final_value = 0;
4315 v->same_insn = 0;
4316 v->auto_inc_opt = 0;
4317 v->unrolled = 0;
4318 v->shared = 0;
4319 v->derived_from = 0;
4320 v->always_computable = 1;
4321 v->always_executed = 1;
4322 v->replaceable = 1;
4323 v->no_const_addval = 0;
4325 old_regno = REGNO (old_reg);
4326 new_regno = REGNO (dest_reg);
4327 VARRAY_INT (set_in_loop, old_regno)--;
4328 VARRAY_INT (set_in_loop, new_regno) = 1;
4329 VARRAY_INT (n_times_set, old_regno)--;
4330 VARRAY_INT (n_times_set, new_regno) = 1;
4331 VARRAY_CHAR (may_not_optimize, new_regno) = 0;
4333 REG_IV_TYPE (new_regno) = GENERAL_INDUCT;
4334 REG_IV_INFO (new_regno) = v;
4336 /* If next_insn has a REG_EQUAL note that mentiones OLD_REG,
4337 it must be replaced. */
4338 note = find_reg_note (next->insn, REG_EQUAL, NULL_RTX);
4339 if (note && reg_mentioned_p (old_reg, XEXP (note, 0)))
4340 XEXP (note, 0) = copy_rtx (SET_SRC (single_set (next->insn)));
4342 /* Remove the increment from the list of biv increments,
4343 and record it as a giv. */
4344 *vp = next;
4345 bl->biv_count--;
4346 v->next_iv = bl->giv;
4347 bl->giv = v;
4348 bl->giv_count++;
4349 v->benefit = rtx_cost (SET_SRC (set), SET);
4350 bl->total_benefit += v->benefit;
4352 /* Now replace the biv with DEST_REG in all insns between
4353 the replaced increment and the next increment, and
4354 remember the last insn that needed a replacement. */
4355 for (last_use_insn = v->insn, p = NEXT_INSN (v->insn);
4356 p != next->insn;
4357 p = next_insn_in_loop (loop, p))
4359 rtx note;
4361 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
4362 continue;
4363 if (reg_mentioned_p (old_reg, PATTERN (p)))
4365 last_use_insn = p;
4366 if (! validate_replace_rtx (old_reg, dest_reg, p))
4367 abort ();
4369 for (note = REG_NOTES (p); note; note = XEXP (note, 1))
4371 if (GET_CODE (note) == EXPR_LIST)
4372 XEXP (note, 0)
4373 = replace_rtx (XEXP (note, 0), old_reg, dest_reg);
4377 v->last_use = last_use_insn;
4378 v->lifetime = INSN_LUID (last_use_insn) - INSN_LUID (v->insn);
4379 /* If the lifetime is zero, it means that this register is really
4380 a dead store. So mark this as a giv that can be ignored.
4381 This will not prevent the biv from being eliminated. */
4382 if (v->lifetime == 0)
4383 v->ignore = 1;
4385 if (loop_dump_stream)
4386 fprintf (loop_dump_stream,
4387 "Increment %d of biv %d converted to giv %d.\n",
4388 INSN_UID (v->insn), old_regno, new_regno);
4392 last_increment_giv = max_reg_num () - 1;
4394 /* Search the loop for general induction variables. */
4396 for_each_insn_in_loop (loop, check_insn_for_givs);
4398 /* Try to calculate and save the number of loop iterations. This is
4399 set to zero if the actual number can not be calculated. This must
4400 be called after all giv's have been identified, since otherwise it may
4401 fail if the iteration variable is a giv. */
4403 loop_iterations (loop);
4405 /* Now for each giv for which we still don't know whether or not it is
4406 replaceable, check to see if it is replaceable because its final value
4407 can be calculated. This must be done after loop_iterations is called,
4408 so that final_giv_value will work correctly. */
4410 for (bl = loop_iv_list; bl; bl = bl->next)
4412 struct induction *v;
4414 for (v = bl->giv; v; v = v->next_iv)
4415 if (! v->replaceable && ! v->not_replaceable)
4416 check_final_value (loop, v);
4419 /* Try to prove that the loop counter variable (if any) is always
4420 nonnegative; if so, record that fact with a REG_NONNEG note
4421 so that "decrement and branch until zero" insn can be used. */
4422 check_dbra_loop (loop, insn_count);
4424 /* Create reg_map to hold substitutions for replaceable giv regs.
4425 Some givs might have been made from biv increments, so look at
4426 reg_iv_type for a suitable size. */
4427 reg_map_size = reg_iv_type->num_elements;
4428 reg_map = (rtx *) xcalloc (reg_map_size, sizeof (rtx));
4430 /* Examine each iv class for feasibility of strength reduction/induction
4431 variable elimination. */
4433 for (bl = loop_iv_list; bl; bl = bl->next)
4435 struct induction *v;
4436 int benefit;
4437 int all_reduced;
4438 rtx final_value = 0;
4439 unsigned int nregs;
4441 /* Test whether it will be possible to eliminate this biv
4442 provided all givs are reduced. This is possible if either
4443 the reg is not used outside the loop, or we can compute
4444 what its final value will be.
4446 For architectures with a decrement_and_branch_until_zero insn,
4447 don't do this if we put a REG_NONNEG note on the endtest for
4448 this biv. */
4450 /* Compare against bl->init_insn rather than loop_start.
4451 We aren't concerned with any uses of the biv between
4452 init_insn and loop_start since these won't be affected
4453 by the value of the biv elsewhere in the function, so
4454 long as init_insn doesn't use the biv itself.
4455 March 14, 1989 -- self@bayes.arc.nasa.gov */
4457 if ((uid_luid[REGNO_LAST_UID (bl->regno)] < INSN_LUID (loop_end)
4458 && bl->init_insn
4459 && INSN_UID (bl->init_insn) < max_uid_for_loop
4460 && uid_luid[REGNO_FIRST_UID (bl->regno)] >= INSN_LUID (bl->init_insn)
4461 #ifdef HAVE_decrement_and_branch_until_zero
4462 && ! bl->nonneg
4463 #endif
4464 && ! reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
4465 || ((final_value = final_biv_value (loop, bl))
4466 #ifdef HAVE_decrement_and_branch_until_zero
4467 && ! bl->nonneg
4468 #endif
4470 bl->eliminable = maybe_eliminate_biv (loop, bl, 0, threshold,
4471 insn_count);
4472 else
4474 if (loop_dump_stream)
4476 fprintf (loop_dump_stream,
4477 "Cannot eliminate biv %d.\n",
4478 bl->regno);
4479 fprintf (loop_dump_stream,
4480 "First use: insn %d, last use: insn %d.\n",
4481 REGNO_FIRST_UID (bl->regno),
4482 REGNO_LAST_UID (bl->regno));
4486 /* Combine all giv's for this iv_class. */
4487 combine_givs (bl);
4489 /* This will be true at the end, if all givs which depend on this
4490 biv have been strength reduced.
4491 We can't (currently) eliminate the biv unless this is so. */
4492 all_reduced = 1;
4494 /* Check each giv in this class to see if we will benefit by reducing
4495 it. Skip giv's combined with others. */
4496 for (v = bl->giv; v; v = v->next_iv)
4498 struct induction *tv;
4500 if (v->ignore || v->same)
4501 continue;
4503 benefit = v->benefit;
4505 /* Reduce benefit if not replaceable, since we will insert
4506 a move-insn to replace the insn that calculates this giv.
4507 Don't do this unless the giv is a user variable, since it
4508 will often be marked non-replaceable because of the duplication
4509 of the exit code outside the loop. In such a case, the copies
4510 we insert are dead and will be deleted. So they don't have
4511 a cost. Similar situations exist. */
4512 /* ??? The new final_[bg]iv_value code does a much better job
4513 of finding replaceable giv's, and hence this code may no longer
4514 be necessary. */
4515 if (! v->replaceable && ! bl->eliminable
4516 && REG_USERVAR_P (v->dest_reg))
4517 benefit -= copy_cost;
4519 /* Decrease the benefit to count the add-insns that we will
4520 insert to increment the reduced reg for the giv. */
4521 benefit -= add_cost * bl->biv_count;
4523 /* Decide whether to strength-reduce this giv or to leave the code
4524 unchanged (recompute it from the biv each time it is used).
4525 This decision can be made independently for each giv. */
4527 #ifdef AUTO_INC_DEC
4528 /* Attempt to guess whether autoincrement will handle some of the
4529 new add insns; if so, increase BENEFIT (undo the subtraction of
4530 add_cost that was done above). */
4531 if (v->giv_type == DEST_ADDR
4532 && GET_CODE (v->mult_val) == CONST_INT)
4534 if (HAVE_POST_INCREMENT
4535 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4536 benefit += add_cost * bl->biv_count;
4537 else if (HAVE_PRE_INCREMENT
4538 && INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4539 benefit += add_cost * bl->biv_count;
4540 else if (HAVE_POST_DECREMENT
4541 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4542 benefit += add_cost * bl->biv_count;
4543 else if (HAVE_PRE_DECREMENT
4544 && -INTVAL (v->mult_val) == GET_MODE_SIZE (v->mem_mode))
4545 benefit += add_cost * bl->biv_count;
4547 #endif
4549 /* If an insn is not to be strength reduced, then set its ignore
4550 flag, and clear all_reduced. */
4552 /* A giv that depends on a reversed biv must be reduced if it is
4553 used after the loop exit, otherwise, it would have the wrong
4554 value after the loop exit. To make it simple, just reduce all
4555 of such giv's whether or not we know they are used after the loop
4556 exit. */
4558 if ( ! flag_reduce_all_givs && v->lifetime * threshold * benefit < insn_count
4559 && ! bl->reversed )
4561 if (loop_dump_stream)
4562 fprintf (loop_dump_stream,
4563 "giv of insn %d not worth while, %d vs %d.\n",
4564 INSN_UID (v->insn),
4565 v->lifetime * threshold * benefit, insn_count);
4566 v->ignore = 1;
4567 all_reduced = 0;
4569 else
4571 /* Check that we can increment the reduced giv without a
4572 multiply insn. If not, reject it. */
4574 for (tv = bl->biv; tv; tv = tv->next_iv)
4575 if (tv->mult_val == const1_rtx
4576 && ! product_cheap_p (tv->add_val, v->mult_val))
4578 if (loop_dump_stream)
4579 fprintf (loop_dump_stream,
4580 "giv of insn %d: would need a multiply.\n",
4581 INSN_UID (v->insn));
4582 v->ignore = 1;
4583 all_reduced = 0;
4584 break;
4589 /* Check for givs whose first use is their definition and whose
4590 last use is the definition of another giv. If so, it is likely
4591 dead and should not be used to derive another giv nor to
4592 eliminate a biv. */
4593 for (v = bl->giv; v; v = v->next_iv)
4595 if (v->ignore
4596 || (v->same && v->same->ignore))
4597 continue;
4599 if (v->last_use)
4601 struct induction *v1;
4603 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4604 if (v->last_use == v1->insn)
4605 v->maybe_dead = 1;
4607 else if (v->giv_type == DEST_REG
4608 && REGNO_FIRST_UID (REGNO (v->dest_reg)) == INSN_UID (v->insn))
4610 struct induction *v1;
4612 for (v1 = bl->giv; v1; v1 = v1->next_iv)
4613 if (REGNO_LAST_UID (REGNO (v->dest_reg)) == INSN_UID (v1->insn))
4614 v->maybe_dead = 1;
4618 /* Now that we know which givs will be reduced, try to rearrange the
4619 combinations to reduce register pressure.
4620 recombine_givs calls find_life_end, which needs reg_iv_type and
4621 reg_iv_info to be valid for all pseudos. We do the necessary
4622 reallocation here since it allows to check if there are still
4623 more bivs to process. */
4624 nregs = max_reg_num ();
4625 if (nregs > reg_iv_type->num_elements)
4627 /* If there are still more bivs to process, allocate some slack
4628 space so that we're not constantly reallocating these arrays. */
4629 if (bl->next)
4630 nregs += nregs / 4;
4631 /* Reallocate reg_iv_type and reg_iv_info. */
4632 VARRAY_GROW (reg_iv_type, nregs);
4633 VARRAY_GROW (reg_iv_info, nregs);
4635 recombine_givs (loop, bl, flags & LOOP_UNROLL);
4637 /* Reduce each giv that we decided to reduce. */
4639 for (v = bl->giv; v; v = v->next_iv)
4641 struct induction *tv;
4642 if (! v->ignore && v->same == 0)
4644 int auto_inc_opt = 0;
4646 /* If the code for derived givs immediately below has already
4647 allocated a new_reg, we must keep it. */
4648 if (! v->new_reg)
4649 v->new_reg = gen_reg_rtx (v->mode);
4651 if (v->derived_from)
4653 struct induction *d = v->derived_from;
4655 /* In case d->dest_reg is not replaceable, we have
4656 to replace it in v->insn now. */
4657 if (! d->new_reg)
4658 d->new_reg = gen_reg_rtx (d->mode);
4659 PATTERN (v->insn)
4660 = replace_rtx (PATTERN (v->insn), d->dest_reg, d->new_reg);
4661 PATTERN (v->insn)
4662 = replace_rtx (PATTERN (v->insn), v->dest_reg, v->new_reg);
4663 /* For each place where the biv is incremented, add an
4664 insn to set the new, reduced reg for the giv.
4665 We used to do this only for biv_count != 1, but
4666 this fails when there is a giv after a single biv
4667 increment, e.g. when the last giv was expressed as
4668 pre-decrement. */
4669 for (tv = bl->biv; tv; tv = tv->next_iv)
4671 /* We always emit reduced giv increments before the
4672 biv increment when bl->biv_count != 1. So by
4673 emitting the add insns for derived givs after the
4674 biv increment, they pick up the updated value of
4675 the reduced giv.
4676 If the reduced giv is processed with
4677 auto_inc_opt == 1, then it is incremented earlier
4678 than the biv, hence we'll still pick up the right
4679 value.
4680 If it's processed with auto_inc_opt == -1,
4681 that implies that the biv increment is before the
4682 first reduced giv's use. The derived giv's lifetime
4683 is after the reduced giv's lifetime, hence in this
4684 case, the biv increment doesn't matter. */
4685 emit_insn_after (copy_rtx (PATTERN (v->insn)), tv->insn);
4687 continue;
4690 #ifdef AUTO_INC_DEC
4691 /* If the target has auto-increment addressing modes, and
4692 this is an address giv, then try to put the increment
4693 immediately after its use, so that flow can create an
4694 auto-increment addressing mode. */
4695 if (v->giv_type == DEST_ADDR && bl->biv_count == 1
4696 && bl->biv->always_executed && ! bl->biv->maybe_multiple
4697 /* We don't handle reversed biv's because bl->biv->insn
4698 does not have a valid INSN_LUID. */
4699 && ! bl->reversed
4700 && v->always_executed && ! v->maybe_multiple
4701 && INSN_UID (v->insn) < max_uid_for_loop)
4703 /* If other giv's have been combined with this one, then
4704 this will work only if all uses of the other giv's occur
4705 before this giv's insn. This is difficult to check.
4707 We simplify this by looking for the common case where
4708 there is one DEST_REG giv, and this giv's insn is the
4709 last use of the dest_reg of that DEST_REG giv. If the
4710 increment occurs after the address giv, then we can
4711 perform the optimization. (Otherwise, the increment
4712 would have to go before other_giv, and we would not be
4713 able to combine it with the address giv to get an
4714 auto-inc address.) */
4715 if (v->combined_with)
4717 struct induction *other_giv = 0;
4719 for (tv = bl->giv; tv; tv = tv->next_iv)
4720 if (tv->same == v)
4722 if (other_giv)
4723 break;
4724 else
4725 other_giv = tv;
4727 if (! tv && other_giv
4728 && REGNO (other_giv->dest_reg) < max_reg_before_loop
4729 && (REGNO_LAST_UID (REGNO (other_giv->dest_reg))
4730 == INSN_UID (v->insn))
4731 && INSN_LUID (v->insn) < INSN_LUID (bl->biv->insn))
4732 auto_inc_opt = 1;
4734 /* Check for case where increment is before the address
4735 giv. Do this test in "loop order". */
4736 else if ((INSN_LUID (v->insn) > INSN_LUID (bl->biv->insn)
4737 && (INSN_LUID (v->insn) < INSN_LUID (loop_scan_start)
4738 || (INSN_LUID (bl->biv->insn)
4739 > INSN_LUID (loop_scan_start))))
4740 || (INSN_LUID (v->insn) < INSN_LUID (loop_scan_start)
4741 && (INSN_LUID (loop_scan_start)
4742 < INSN_LUID (bl->biv->insn))))
4743 auto_inc_opt = -1;
4744 else
4745 auto_inc_opt = 1;
4747 #ifdef HAVE_cc0
4749 rtx prev;
4751 /* We can't put an insn immediately after one setting
4752 cc0, or immediately before one using cc0. */
4753 if ((auto_inc_opt == 1 && sets_cc0_p (PATTERN (v->insn)))
4754 || (auto_inc_opt == -1
4755 && (prev = prev_nonnote_insn (v->insn)) != 0
4756 && GET_RTX_CLASS (GET_CODE (prev)) == 'i'
4757 && sets_cc0_p (PATTERN (prev))))
4758 auto_inc_opt = 0;
4760 #endif
4762 if (auto_inc_opt)
4763 v->auto_inc_opt = 1;
4765 #endif
4767 /* For each place where the biv is incremented, add an insn
4768 to increment the new, reduced reg for the giv. */
4769 for (tv = bl->biv; tv; tv = tv->next_iv)
4771 rtx insert_before;
4773 if (! auto_inc_opt)
4774 insert_before = tv->insn;
4775 else if (auto_inc_opt == 1)
4776 insert_before = NEXT_INSN (v->insn);
4777 else
4778 insert_before = v->insn;
4780 if (tv->mult_val == const1_rtx)
4781 emit_iv_add_mult (tv->add_val, v->mult_val,
4782 v->new_reg, v->new_reg, insert_before);
4783 else /* tv->mult_val == const0_rtx */
4784 /* A multiply is acceptable here
4785 since this is presumed to be seldom executed. */
4786 emit_iv_add_mult (tv->add_val, v->mult_val,
4787 v->add_val, v->new_reg, insert_before);
4790 /* Add code at loop start to initialize giv's reduced reg. */
4792 emit_iv_add_mult (bl->initial_value, v->mult_val,
4793 v->add_val, v->new_reg, loop_start);
4797 /* Rescan all givs. If a giv is the same as a giv not reduced, mark it
4798 as not reduced.
4800 For each giv register that can be reduced now: if replaceable,
4801 substitute reduced reg wherever the old giv occurs;
4802 else add new move insn "giv_reg = reduced_reg". */
4804 for (v = bl->giv; v; v = v->next_iv)
4806 if (v->same && v->same->ignore)
4807 v->ignore = 1;
4809 if (v->ignore)
4810 continue;
4812 /* Update expression if this was combined, in case other giv was
4813 replaced. */
4814 if (v->same)
4815 v->new_reg = replace_rtx (v->new_reg,
4816 v->same->dest_reg, v->same->new_reg);
4818 if (v->giv_type == DEST_ADDR)
4819 /* Store reduced reg as the address in the memref where we found
4820 this giv. */
4821 validate_change (v->insn, v->location, v->new_reg, 0);
4822 else if (v->replaceable)
4824 reg_map[REGNO (v->dest_reg)] = v->new_reg;
4826 #if 0
4827 /* I can no longer duplicate the original problem. Perhaps
4828 this is unnecessary now? */
4830 /* Replaceable; it isn't strictly necessary to delete the old
4831 insn and emit a new one, because v->dest_reg is now dead.
4833 However, especially when unrolling loops, the special
4834 handling for (set REG0 REG1) in the second cse pass may
4835 make v->dest_reg live again. To avoid this problem, emit
4836 an insn to set the original giv reg from the reduced giv.
4837 We can not delete the original insn, since it may be part
4838 of a LIBCALL, and the code in flow that eliminates dead
4839 libcalls will fail if it is deleted. */
4840 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4841 v->insn);
4842 #endif
4844 else
4846 /* Not replaceable; emit an insn to set the original giv reg from
4847 the reduced giv, same as above. */
4848 emit_insn_after (gen_move_insn (v->dest_reg, v->new_reg),
4849 v->insn);
4852 /* When a loop is reversed, givs which depend on the reversed
4853 biv, and which are live outside the loop, must be set to their
4854 correct final value. This insn is only needed if the giv is
4855 not replaceable. The correct final value is the same as the
4856 value that the giv starts the reversed loop with. */
4857 if (bl->reversed && ! v->replaceable)
4858 emit_iv_add_mult (bl->initial_value, v->mult_val,
4859 v->add_val, v->dest_reg, end_insert_before);
4860 else if (v->final_value)
4862 rtx insert_before;
4864 /* If the loop has multiple exits, emit the insn before the
4865 loop to ensure that it will always be executed no matter
4866 how the loop exits. Otherwise, emit the insn after the loop,
4867 since this is slightly more efficient. */
4868 if (loop->exit_count)
4869 insert_before = loop_start;
4870 else
4871 insert_before = end_insert_before;
4872 emit_insn_before (gen_move_insn (v->dest_reg, v->final_value),
4873 insert_before);
4875 #if 0
4876 /* If the insn to set the final value of the giv was emitted
4877 before the loop, then we must delete the insn inside the loop
4878 that sets it. If this is a LIBCALL, then we must delete
4879 every insn in the libcall. Note, however, that
4880 final_giv_value will only succeed when there are multiple
4881 exits if the giv is dead at each exit, hence it does not
4882 matter that the original insn remains because it is dead
4883 anyways. */
4884 /* Delete the insn inside the loop that sets the giv since
4885 the giv is now set before (or after) the loop. */
4886 delete_insn (v->insn);
4887 #endif
4890 if (loop_dump_stream)
4892 fprintf (loop_dump_stream, "giv at %d reduced to ",
4893 INSN_UID (v->insn));
4894 print_rtl (loop_dump_stream, v->new_reg);
4895 fprintf (loop_dump_stream, "\n");
4899 /* All the givs based on the biv bl have been reduced if they
4900 merit it. */
4902 /* For each giv not marked as maybe dead that has been combined with a
4903 second giv, clear any "maybe dead" mark on that second giv.
4904 v->new_reg will either be or refer to the register of the giv it
4905 combined with.
4907 Doing this clearing avoids problems in biv elimination where a
4908 giv's new_reg is a complex value that can't be put in the insn but
4909 the giv combined with (with a reg as new_reg) is marked maybe_dead.
4910 Since the register will be used in either case, we'd prefer it be
4911 used from the simpler giv. */
4913 for (v = bl->giv; v; v = v->next_iv)
4914 if (! v->maybe_dead && v->same)
4915 v->same->maybe_dead = 0;
4917 /* Try to eliminate the biv, if it is a candidate.
4918 This won't work if ! all_reduced,
4919 since the givs we planned to use might not have been reduced.
4921 We have to be careful that we didn't initially think we could eliminate
4922 this biv because of a giv that we now think may be dead and shouldn't
4923 be used as a biv replacement.
4925 Also, there is the possibility that we may have a giv that looks
4926 like it can be used to eliminate a biv, but the resulting insn
4927 isn't valid. This can happen, for example, on the 88k, where a
4928 JUMP_INSN can compare a register only with zero. Attempts to
4929 replace it with a compare with a constant will fail.
4931 Note that in cases where this call fails, we may have replaced some
4932 of the occurrences of the biv with a giv, but no harm was done in
4933 doing so in the rare cases where it can occur. */
4935 if (all_reduced == 1 && bl->eliminable
4936 && maybe_eliminate_biv (loop, bl, 1, threshold, insn_count))
4938 /* ?? If we created a new test to bypass the loop entirely,
4939 or otherwise drop straight in, based on this test, then
4940 we might want to rewrite it also. This way some later
4941 pass has more hope of removing the initialization of this
4942 biv entirely. */
4944 /* If final_value != 0, then the biv may be used after loop end
4945 and we must emit an insn to set it just in case.
4947 Reversed bivs already have an insn after the loop setting their
4948 value, so we don't need another one. We can't calculate the
4949 proper final value for such a biv here anyways. */
4950 if (final_value != 0 && ! bl->reversed)
4952 rtx insert_before;
4954 /* If the loop has multiple exits, emit the insn before the
4955 loop to ensure that it will always be executed no matter
4956 how the loop exits. Otherwise, emit the insn after the
4957 loop, since this is slightly more efficient. */
4958 if (loop->exit_count)
4959 insert_before = loop_start;
4960 else
4961 insert_before = end_insert_before;
4963 emit_insn_before (gen_move_insn (bl->biv->dest_reg, final_value),
4964 end_insert_before);
4967 #if 0
4968 /* Delete all of the instructions inside the loop which set
4969 the biv, as they are all dead. If is safe to delete them,
4970 because an insn setting a biv will never be part of a libcall. */
4971 /* However, deleting them will invalidate the regno_last_uid info,
4972 so keeping them around is more convenient. Final_biv_value
4973 will only succeed when there are multiple exits if the biv
4974 is dead at each exit, hence it does not matter that the original
4975 insn remains, because it is dead anyways. */
4976 for (v = bl->biv; v; v = v->next_iv)
4977 delete_insn (v->insn);
4978 #endif
4980 if (loop_dump_stream)
4981 fprintf (loop_dump_stream, "Reg %d: biv eliminated\n",
4982 bl->regno);
4986 /* Go through all the instructions in the loop, making all the
4987 register substitutions scheduled in REG_MAP. */
4989 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
4990 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
4991 || GET_CODE (p) == CALL_INSN)
4993 replace_regs (PATTERN (p), reg_map, reg_map_size, 0);
4994 replace_regs (REG_NOTES (p), reg_map, reg_map_size, 0);
4995 INSN_CODE (p) = -1;
4998 if (loop_info->n_iterations > 0)
5000 /* When we completely unroll a loop we will likely not need the increment
5001 of the loop BIV and we will not need the conditional branch at the
5002 end of the loop. */
5003 unrolled_insn_copies = insn_count - 2;
5005 #ifdef HAVE_cc0
5006 /* When we completely unroll a loop on a HAVE_cc0 machine we will not
5007 need the comparison before the conditional branch at the end of the
5008 loop. */
5009 unrolled_insn_copies -= 1;
5010 #endif
5012 /* We'll need one copy for each loop iteration. */
5013 unrolled_insn_copies *= loop_info->n_iterations;
5015 /* A little slop to account for the ability to remove initialization
5016 code, better CSE, and other secondary benefits of completely
5017 unrolling some loops. */
5018 unrolled_insn_copies -= 1;
5020 /* Clamp the value. */
5021 if (unrolled_insn_copies < 0)
5022 unrolled_insn_copies = 0;
5025 /* Unroll loops from within strength reduction so that we can use the
5026 induction variable information that strength_reduce has already
5027 collected. Always unroll loops that would be as small or smaller
5028 unrolled than when rolled. */
5029 if ((flags & LOOP_UNROLL)
5030 || (loop_info->n_iterations > 0
5031 && unrolled_insn_copies <= insn_count))
5032 unroll_loop (loop, insn_count, end_insert_before, 1);
5034 #ifdef HAVE_decrement_and_branch_on_count
5035 /* Instrument the loop with BCT insn. */
5036 if (HAVE_decrement_and_branch_on_count && (flags & LOOP_BCT)
5037 && flag_branch_on_count_reg)
5038 insert_bct (loop);
5039 #endif /* HAVE_decrement_and_branch_on_count */
5041 if (loop_dump_stream)
5042 fprintf (loop_dump_stream, "\n");
5044 egress:
5045 VARRAY_FREE (reg_iv_type);
5046 VARRAY_FREE (reg_iv_info);
5047 free (reg_biv_class);
5048 if (reg_map)
5049 free (reg_map);
5052 /*Record all basic induction variables calculated in the insn. */
5053 static rtx
5054 check_insn_for_bivs (loop, p, not_every_iteration, maybe_multiple)
5055 struct loop *loop;
5056 rtx p;
5057 int not_every_iteration;
5058 int maybe_multiple;
5060 rtx set;
5061 rtx dest_reg;
5062 rtx inc_val;
5063 rtx mult_val;
5064 rtx *location;
5066 if (GET_CODE (p) == INSN
5067 && (set = single_set (p))
5068 && GET_CODE (SET_DEST (set)) == REG)
5070 dest_reg = SET_DEST (set);
5071 if (REGNO (dest_reg) < max_reg_before_loop
5072 && REGNO (dest_reg) >= FIRST_PSEUDO_REGISTER
5073 && REG_IV_TYPE (REGNO (dest_reg)) != NOT_BASIC_INDUCT)
5075 int multi_insn_incr = 0;
5077 if (basic_induction_var (loop, SET_SRC (set),
5078 GET_MODE (SET_SRC (set)),
5079 dest_reg, p, &inc_val, &mult_val,
5080 &location, &multi_insn_incr))
5082 /* It is a possible basic induction variable.
5083 Create and initialize an induction structure for it. */
5085 struct induction *v
5086 = (struct induction *) oballoc (sizeof (struct induction));
5088 record_biv (v, p, dest_reg, inc_val, mult_val, location,
5089 not_every_iteration, maybe_multiple,
5090 multi_insn_incr);
5091 REG_IV_TYPE (REGNO (dest_reg)) = BASIC_INDUCT;
5093 else if (REGNO (dest_reg) < max_reg_before_loop)
5094 REG_IV_TYPE (REGNO (dest_reg)) = NOT_BASIC_INDUCT;
5097 return p;
5100 /* Record all givs calculated in the insn.
5101 A register is a giv if: it is only set once, it is a function of a
5102 biv and a constant (or invariant), and it is not a biv. */
5103 static rtx
5104 check_insn_for_givs (loop, p, not_every_iteration, maybe_multiple)
5105 struct loop *loop;
5106 rtx p;
5107 int not_every_iteration;
5108 int maybe_multiple;
5110 rtx set;
5111 /* Look for a general induction variable in a register. */
5112 if (GET_CODE (p) == INSN
5113 && (set = single_set (p))
5114 && GET_CODE (SET_DEST (set)) == REG
5115 && ! VARRAY_CHAR (may_not_optimize, REGNO (SET_DEST (set))))
5117 rtx src_reg;
5118 rtx dest_reg;
5119 rtx add_val;
5120 rtx mult_val;
5121 int benefit;
5122 rtx regnote = 0;
5123 rtx last_consec_insn;
5125 dest_reg = SET_DEST (set);
5126 if (REGNO (dest_reg) < FIRST_PSEUDO_REGISTER)
5127 return p;
5129 if (/* SET_SRC is a giv. */
5130 (general_induction_var (loop, SET_SRC (set), &src_reg, &add_val,
5131 &mult_val, 0, &benefit, VOIDmode)
5132 /* Equivalent expression is a giv. */
5133 || ((regnote = find_reg_note (p, REG_EQUAL, NULL_RTX))
5134 && general_induction_var (loop, XEXP (regnote, 0), &src_reg,
5135 &add_val, &mult_val, 0,
5136 &benefit, VOIDmode)))
5137 /* Don't try to handle any regs made by loop optimization.
5138 We have nothing on them in regno_first_uid, etc. */
5139 && REGNO (dest_reg) < max_reg_before_loop
5140 /* Don't recognize a BASIC_INDUCT_VAR here. */
5141 && dest_reg != src_reg
5142 /* This must be the only place where the register is set. */
5143 && (VARRAY_INT (n_times_set, REGNO (dest_reg)) == 1
5144 /* or all sets must be consecutive and make a giv. */
5145 || (benefit = consec_sets_giv (loop, benefit, p,
5146 src_reg, dest_reg,
5147 &add_val, &mult_val,
5148 &last_consec_insn))))
5150 struct induction *v
5151 = (struct induction *) oballoc (sizeof (struct induction));
5153 /* If this is a library call, increase benefit. */
5154 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
5155 benefit += libcall_benefit (p);
5157 /* Skip the consecutive insns, if there are any. */
5158 if (VARRAY_INT (n_times_set, REGNO (dest_reg)) != 1)
5159 p = last_consec_insn;
5161 record_giv (loop, v, p, src_reg, dest_reg, mult_val, add_val,
5162 benefit, DEST_REG, not_every_iteration,
5163 maybe_multiple, NULL_PTR);
5168 #ifndef DONT_REDUCE_ADDR
5169 /* Look for givs which are memory addresses. */
5170 /* This resulted in worse code on a VAX 8600. I wonder if it
5171 still does. */
5172 if (GET_CODE (p) == INSN)
5173 find_mem_givs (loop, PATTERN (p), p, not_every_iteration,
5174 maybe_multiple);
5175 #endif
5177 /* Update the status of whether giv can derive other givs. This can
5178 change when we pass a label or an insn that updates a biv. */
5179 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5180 || GET_CODE (p) == CODE_LABEL)
5181 update_giv_derive (loop, p);
5182 return p;
5185 /* Return 1 if X is a valid source for an initial value (or as value being
5186 compared against in an initial test).
5188 X must be either a register or constant and must not be clobbered between
5189 the current insn and the start of the loop.
5191 INSN is the insn containing X. */
5193 static int
5194 valid_initial_value_p (x, insn, call_seen, loop_start)
5195 rtx x;
5196 rtx insn;
5197 int call_seen;
5198 rtx loop_start;
5200 if (CONSTANT_P (x))
5201 return 1;
5203 /* Only consider pseudos we know about initialized in insns whose luids
5204 we know. */
5205 if (GET_CODE (x) != REG
5206 || REGNO (x) >= max_reg_before_loop)
5207 return 0;
5209 /* Don't use call-clobbered registers across a call which clobbers it. On
5210 some machines, don't use any hard registers at all. */
5211 if (REGNO (x) < FIRST_PSEUDO_REGISTER
5212 && (SMALL_REGISTER_CLASSES
5213 || (call_used_regs[REGNO (x)] && call_seen)))
5214 return 0;
5216 /* Don't use registers that have been clobbered before the start of the
5217 loop. */
5218 if (reg_set_between_p (x, insn, loop_start))
5219 return 0;
5221 return 1;
5224 /* Scan X for memory refs and check each memory address
5225 as a possible giv. INSN is the insn whose pattern X comes from.
5226 NOT_EVERY_ITERATION is 1 if the insn might not be executed during
5227 every loop iteration. MAYBE_MULTIPLE is 1 if the insn might be executed
5228 more thanonce in each loop iteration. */
5230 static void
5231 find_mem_givs (loop, x, insn, not_every_iteration, maybe_multiple)
5232 const struct loop *loop;
5233 rtx x;
5234 rtx insn;
5235 int not_every_iteration, maybe_multiple;
5237 register int i, j;
5238 register enum rtx_code code;
5239 register const char *fmt;
5241 if (x == 0)
5242 return;
5244 code = GET_CODE (x);
5245 switch (code)
5247 case REG:
5248 case CONST_INT:
5249 case CONST:
5250 case CONST_DOUBLE:
5251 case SYMBOL_REF:
5252 case LABEL_REF:
5253 case PC:
5254 case CC0:
5255 case ADDR_VEC:
5256 case ADDR_DIFF_VEC:
5257 case USE:
5258 case CLOBBER:
5259 return;
5261 case MEM:
5263 rtx src_reg;
5264 rtx add_val;
5265 rtx mult_val;
5266 int benefit;
5268 /* This code used to disable creating GIVs with mult_val == 1 and
5269 add_val == 0. However, this leads to lost optimizations when
5270 it comes time to combine a set of related DEST_ADDR GIVs, since
5271 this one would not be seen. */
5273 if (general_induction_var (loop, XEXP (x, 0), &src_reg, &add_val,
5274 &mult_val, 1, &benefit, GET_MODE (x)))
5276 /* Found one; record it. */
5277 struct induction *v
5278 = (struct induction *) oballoc (sizeof (struct induction));
5280 record_giv (loop, v, insn, src_reg, addr_placeholder, mult_val,
5281 add_val, benefit, DEST_ADDR, not_every_iteration,
5282 maybe_multiple, &XEXP (x, 0));
5284 v->mem_mode = GET_MODE (x);
5287 return;
5289 default:
5290 break;
5293 /* Recursively scan the subexpressions for other mem refs. */
5295 fmt = GET_RTX_FORMAT (code);
5296 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5297 if (fmt[i] == 'e')
5298 find_mem_givs (loop, XEXP (x, i), insn, not_every_iteration,
5299 maybe_multiple);
5300 else if (fmt[i] == 'E')
5301 for (j = 0; j < XVECLEN (x, i); j++)
5302 find_mem_givs (loop, XVECEXP (x, i, j), insn, not_every_iteration,
5303 maybe_multiple);
5306 /* Fill in the data about one biv update.
5307 V is the `struct induction' in which we record the biv. (It is
5308 allocated by the caller, with alloca.)
5309 INSN is the insn that sets it.
5310 DEST_REG is the biv's reg.
5312 MULT_VAL is const1_rtx if the biv is being incremented here, in which case
5313 INC_VAL is the increment. Otherwise, MULT_VAL is const0_rtx and the biv is
5314 being set to INC_VAL.
5316 NOT_EVERY_ITERATION is nonzero if this biv update is not know to be
5317 executed every iteration; MAYBE_MULTIPLE is nonzero if this biv update
5318 can be executed more than once per iteration. If MAYBE_MULTIPLE
5319 and NOT_EVERY_ITERATION are both zero, we know that the biv update is
5320 executed exactly once per iteration. */
5322 static void
5323 record_biv (v, insn, dest_reg, inc_val, mult_val, location,
5324 not_every_iteration, maybe_multiple, multi_insn_incr)
5325 struct induction *v;
5326 rtx insn;
5327 rtx dest_reg;
5328 rtx inc_val;
5329 rtx mult_val;
5330 rtx *location;
5331 int not_every_iteration;
5332 int maybe_multiple;
5333 int multi_insn_incr;
5335 struct iv_class *bl;
5337 v->insn = insn;
5338 v->src_reg = dest_reg;
5339 v->dest_reg = dest_reg;
5340 v->mult_val = mult_val;
5341 v->add_val = inc_val;
5342 v->location = location;
5343 v->mode = GET_MODE (dest_reg);
5344 v->always_computable = ! not_every_iteration;
5345 v->always_executed = ! not_every_iteration;
5346 v->maybe_multiple = maybe_multiple;
5347 v->multi_insn_incr = multi_insn_incr;
5349 /* Add this to the reg's iv_class, creating a class
5350 if this is the first incrementation of the reg. */
5352 bl = reg_biv_class[REGNO (dest_reg)];
5353 if (bl == 0)
5355 /* Create and initialize new iv_class. */
5357 bl = (struct iv_class *) oballoc (sizeof (struct iv_class));
5359 bl->regno = REGNO (dest_reg);
5360 bl->biv = 0;
5361 bl->giv = 0;
5362 bl->biv_count = 0;
5363 bl->giv_count = 0;
5365 /* Set initial value to the reg itself. */
5366 bl->initial_value = dest_reg;
5367 /* We haven't seen the initializing insn yet */
5368 bl->init_insn = 0;
5369 bl->init_set = 0;
5370 bl->initial_test = 0;
5371 bl->incremented = 0;
5372 bl->eliminable = 0;
5373 bl->nonneg = 0;
5374 bl->reversed = 0;
5375 bl->total_benefit = 0;
5377 /* Add this class to loop_iv_list. */
5378 bl->next = loop_iv_list;
5379 loop_iv_list = bl;
5381 /* Put it in the array of biv register classes. */
5382 reg_biv_class[REGNO (dest_reg)] = bl;
5385 /* Update IV_CLASS entry for this biv. */
5386 v->next_iv = bl->biv;
5387 bl->biv = v;
5388 bl->biv_count++;
5389 if (mult_val == const1_rtx)
5390 bl->incremented = 1;
5392 if (loop_dump_stream)
5394 fprintf (loop_dump_stream,
5395 "Insn %d: possible biv, reg %d,",
5396 INSN_UID (insn), REGNO (dest_reg));
5397 if (GET_CODE (inc_val) == CONST_INT)
5399 fprintf (loop_dump_stream, " const =");
5400 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (inc_val));
5401 fputc ('\n', loop_dump_stream);
5403 else
5405 fprintf (loop_dump_stream, " const = ");
5406 print_rtl (loop_dump_stream, inc_val);
5407 fprintf (loop_dump_stream, "\n");
5412 /* Fill in the data about one giv.
5413 V is the `struct induction' in which we record the giv. (It is
5414 allocated by the caller, with alloca.)
5415 INSN is the insn that sets it.
5416 BENEFIT estimates the savings from deleting this insn.
5417 TYPE is DEST_REG or DEST_ADDR; it says whether the giv is computed
5418 into a register or is used as a memory address.
5420 SRC_REG is the biv reg which the giv is computed from.
5421 DEST_REG is the giv's reg (if the giv is stored in a reg).
5422 MULT_VAL and ADD_VAL are the coefficients used to compute the giv.
5423 LOCATION points to the place where this giv's value appears in INSN. */
5425 static void
5426 record_giv (loop, v, insn, src_reg, dest_reg, mult_val, add_val, benefit,
5427 type, not_every_iteration, maybe_multiple, location)
5428 const struct loop *loop;
5429 struct induction *v;
5430 rtx insn;
5431 rtx src_reg;
5432 rtx dest_reg;
5433 rtx mult_val, add_val;
5434 int benefit;
5435 enum g_types type;
5436 int not_every_iteration, maybe_multiple;
5437 rtx *location;
5439 struct induction *b;
5440 struct iv_class *bl;
5441 rtx set = single_set (insn);
5442 rtx temp;
5444 /* Attempt to prove constantness of the values. */
5445 temp = simplify_rtx (add_val);
5446 if (temp)
5447 add_val = temp;
5449 v->insn = insn;
5450 v->src_reg = src_reg;
5451 v->giv_type = type;
5452 v->dest_reg = dest_reg;
5453 v->mult_val = mult_val;
5454 v->add_val = add_val;
5455 v->benefit = benefit;
5456 v->location = location;
5457 v->cant_derive = 0;
5458 v->combined_with = 0;
5459 v->maybe_multiple = maybe_multiple;
5460 v->multi_insn_incr = 0;
5461 v->maybe_dead = 0;
5462 v->derive_adjustment = 0;
5463 v->same = 0;
5464 v->ignore = 0;
5465 v->new_reg = 0;
5466 v->final_value = 0;
5467 v->same_insn = 0;
5468 v->auto_inc_opt = 0;
5469 v->unrolled = 0;
5470 v->shared = 0;
5471 v->derived_from = 0;
5472 v->last_use = 0;
5474 /* The v->always_computable field is used in update_giv_derive, to
5475 determine whether a giv can be used to derive another giv. For a
5476 DEST_REG giv, INSN computes a new value for the giv, so its value
5477 isn't computable if INSN insn't executed every iteration.
5478 However, for a DEST_ADDR giv, INSN merely uses the value of the giv;
5479 it does not compute a new value. Hence the value is always computable
5480 regardless of whether INSN is executed each iteration. */
5482 if (type == DEST_ADDR)
5483 v->always_computable = 1;
5484 else
5485 v->always_computable = ! not_every_iteration;
5487 v->always_executed = ! not_every_iteration;
5489 if (type == DEST_ADDR)
5491 v->mode = GET_MODE (*location);
5492 v->lifetime = 1;
5494 else /* type == DEST_REG */
5496 v->mode = GET_MODE (SET_DEST (set));
5498 v->lifetime = (uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
5499 - uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))]);
5501 /* If the lifetime is zero, it means that this register is
5502 really a dead store. So mark this as a giv that can be
5503 ignored. This will not prevent the biv from being eliminated. */
5504 if (v->lifetime == 0)
5505 v->ignore = 1;
5507 REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
5508 REG_IV_INFO (REGNO (dest_reg)) = v;
5511 /* Add the giv to the class of givs computed from one biv. */
5513 bl = reg_biv_class[REGNO (src_reg)];
5514 if (bl)
5516 v->next_iv = bl->giv;
5517 bl->giv = v;
5518 /* Don't count DEST_ADDR. This is supposed to count the number of
5519 insns that calculate givs. */
5520 if (type == DEST_REG)
5521 bl->giv_count++;
5522 bl->total_benefit += benefit;
5524 else
5525 /* Fatal error, biv missing for this giv? */
5526 abort ();
5528 if (type == DEST_ADDR)
5529 v->replaceable = 1;
5530 else
5532 /* The giv can be replaced outright by the reduced register only if all
5533 of the following conditions are true:
5534 - the insn that sets the giv is always executed on any iteration
5535 on which the giv is used at all
5536 (there are two ways to deduce this:
5537 either the insn is executed on every iteration,
5538 or all uses follow that insn in the same basic block),
5539 - the giv is not used outside the loop
5540 - no assignments to the biv occur during the giv's lifetime. */
5542 if (REGNO_FIRST_UID (REGNO (dest_reg)) == INSN_UID (insn)
5543 /* Previous line always fails if INSN was moved by loop opt. */
5544 && uid_luid[REGNO_LAST_UID (REGNO (dest_reg))]
5545 < INSN_LUID (loop->end)
5546 && (! not_every_iteration
5547 || last_use_this_basic_block (dest_reg, insn)))
5549 /* Now check that there are no assignments to the biv within the
5550 giv's lifetime. This requires two separate checks. */
5552 /* Check each biv update, and fail if any are between the first
5553 and last use of the giv.
5555 If this loop contains an inner loop that was unrolled, then
5556 the insn modifying the biv may have been emitted by the loop
5557 unrolling code, and hence does not have a valid luid. Just
5558 mark the biv as not replaceable in this case. It is not very
5559 useful as a biv, because it is used in two different loops.
5560 It is very unlikely that we would be able to optimize the giv
5561 using this biv anyways. */
5563 v->replaceable = 1;
5564 for (b = bl->biv; b; b = b->next_iv)
5566 if (INSN_UID (b->insn) >= max_uid_for_loop
5567 || ((uid_luid[INSN_UID (b->insn)]
5568 >= uid_luid[REGNO_FIRST_UID (REGNO (dest_reg))])
5569 && (uid_luid[INSN_UID (b->insn)]
5570 <= uid_luid[REGNO_LAST_UID (REGNO (dest_reg))])))
5572 v->replaceable = 0;
5573 v->not_replaceable = 1;
5574 break;
5578 /* If there are any backwards branches that go from after the
5579 biv update to before it, then this giv is not replaceable. */
5580 if (v->replaceable)
5581 for (b = bl->biv; b; b = b->next_iv)
5582 if (back_branch_in_range_p (loop, b->insn))
5584 v->replaceable = 0;
5585 v->not_replaceable = 1;
5586 break;
5589 else
5591 /* May still be replaceable, we don't have enough info here to
5592 decide. */
5593 v->replaceable = 0;
5594 v->not_replaceable = 0;
5598 /* Record whether the add_val contains a const_int, for later use by
5599 combine_givs. */
5601 rtx tem = add_val;
5603 v->no_const_addval = 1;
5604 if (tem == const0_rtx)
5606 else if (CONSTANT_P (add_val))
5607 v->no_const_addval = 0;
5608 if (GET_CODE (tem) == PLUS)
5610 while (1)
5612 if (GET_CODE (XEXP (tem, 0)) == PLUS)
5613 tem = XEXP (tem, 0);
5614 else if (GET_CODE (XEXP (tem, 1)) == PLUS)
5615 tem = XEXP (tem, 1);
5616 else
5617 break;
5619 if (CONSTANT_P (XEXP (tem, 1)))
5620 v->no_const_addval = 0;
5624 if (loop_dump_stream)
5626 if (type == DEST_REG)
5627 fprintf (loop_dump_stream, "Insn %d: giv reg %d",
5628 INSN_UID (insn), REGNO (dest_reg));
5629 else
5630 fprintf (loop_dump_stream, "Insn %d: dest address",
5631 INSN_UID (insn));
5633 fprintf (loop_dump_stream, " src reg %d benefit %d",
5634 REGNO (src_reg), v->benefit);
5635 fprintf (loop_dump_stream, " lifetime %d",
5636 v->lifetime);
5638 if (v->replaceable)
5639 fprintf (loop_dump_stream, " replaceable");
5641 if (v->no_const_addval)
5642 fprintf (loop_dump_stream, " ncav");
5644 if (GET_CODE (mult_val) == CONST_INT)
5646 fprintf (loop_dump_stream, " mult ");
5647 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (mult_val));
5649 else
5651 fprintf (loop_dump_stream, " mult ");
5652 print_rtl (loop_dump_stream, mult_val);
5655 if (GET_CODE (add_val) == CONST_INT)
5657 fprintf (loop_dump_stream, " add ");
5658 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (add_val));
5660 else
5662 fprintf (loop_dump_stream, " add ");
5663 print_rtl (loop_dump_stream, add_val);
5667 if (loop_dump_stream)
5668 fprintf (loop_dump_stream, "\n");
5673 /* All this does is determine whether a giv can be made replaceable because
5674 its final value can be calculated. This code can not be part of record_giv
5675 above, because final_giv_value requires that the number of loop iterations
5676 be known, and that can not be accurately calculated until after all givs
5677 have been identified. */
5679 static void
5680 check_final_value (loop, v)
5681 const struct loop *loop;
5682 struct induction *v;
5684 struct iv_class *bl;
5685 rtx final_value = 0;
5687 bl = reg_biv_class[REGNO (v->src_reg)];
5689 /* DEST_ADDR givs will never reach here, because they are always marked
5690 replaceable above in record_giv. */
5692 /* The giv can be replaced outright by the reduced register only if all
5693 of the following conditions are true:
5694 - the insn that sets the giv is always executed on any iteration
5695 on which the giv is used at all
5696 (there are two ways to deduce this:
5697 either the insn is executed on every iteration,
5698 or all uses follow that insn in the same basic block),
5699 - its final value can be calculated (this condition is different
5700 than the one above in record_giv)
5701 - no assignments to the biv occur during the giv's lifetime. */
5703 #if 0
5704 /* This is only called now when replaceable is known to be false. */
5705 /* Clear replaceable, so that it won't confuse final_giv_value. */
5706 v->replaceable = 0;
5707 #endif
5709 if ((final_value = final_giv_value (loop, v))
5710 && (v->always_computable || last_use_this_basic_block (v->dest_reg, v->insn)))
5712 int biv_increment_seen = 0;
5713 rtx p = v->insn;
5714 rtx last_giv_use;
5716 v->replaceable = 1;
5718 /* When trying to determine whether or not a biv increment occurs
5719 during the lifetime of the giv, we can ignore uses of the variable
5720 outside the loop because final_value is true. Hence we can not
5721 use regno_last_uid and regno_first_uid as above in record_giv. */
5723 /* Search the loop to determine whether any assignments to the
5724 biv occur during the giv's lifetime. Start with the insn
5725 that sets the giv, and search around the loop until we come
5726 back to that insn again.
5728 Also fail if there is a jump within the giv's lifetime that jumps
5729 to somewhere outside the lifetime but still within the loop. This
5730 catches spaghetti code where the execution order is not linear, and
5731 hence the above test fails. Here we assume that the giv lifetime
5732 does not extend from one iteration of the loop to the next, so as
5733 to make the test easier. Since the lifetime isn't known yet,
5734 this requires two loops. See also record_giv above. */
5736 last_giv_use = v->insn;
5738 while (1)
5740 p = NEXT_INSN (p);
5741 if (p == loop->end)
5742 p = NEXT_INSN (loop->start);
5743 if (p == v->insn)
5744 break;
5746 if (GET_CODE (p) == INSN || GET_CODE (p) == JUMP_INSN
5747 || GET_CODE (p) == CALL_INSN)
5749 if (biv_increment_seen)
5751 if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5753 v->replaceable = 0;
5754 v->not_replaceable = 1;
5755 break;
5758 else if (reg_set_p (v->src_reg, PATTERN (p)))
5759 biv_increment_seen = 1;
5760 else if (reg_mentioned_p (v->dest_reg, PATTERN (p)))
5761 last_giv_use = p;
5765 /* Now that the lifetime of the giv is known, check for branches
5766 from within the lifetime to outside the lifetime if it is still
5767 replaceable. */
5769 if (v->replaceable)
5771 p = v->insn;
5772 while (1)
5774 p = NEXT_INSN (p);
5775 if (p == loop->end)
5776 p = NEXT_INSN (loop->start);
5777 if (p == last_giv_use)
5778 break;
5780 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p)
5781 && LABEL_NAME (JUMP_LABEL (p))
5782 && ((loop_insn_first_p (JUMP_LABEL (p), v->insn)
5783 && loop_insn_first_p (loop->start, JUMP_LABEL (p)))
5784 || (loop_insn_first_p (last_giv_use, JUMP_LABEL (p))
5785 && loop_insn_first_p (JUMP_LABEL (p), loop->end))))
5787 v->replaceable = 0;
5788 v->not_replaceable = 1;
5790 if (loop_dump_stream)
5791 fprintf (loop_dump_stream,
5792 "Found branch outside giv lifetime.\n");
5794 break;
5799 /* If it is replaceable, then save the final value. */
5800 if (v->replaceable)
5801 v->final_value = final_value;
5804 if (loop_dump_stream && v->replaceable)
5805 fprintf (loop_dump_stream, "Insn %d: giv reg %d final_value replaceable\n",
5806 INSN_UID (v->insn), REGNO (v->dest_reg));
5809 /* Update the status of whether a giv can derive other givs.
5811 We need to do something special if there is or may be an update to the biv
5812 between the time the giv is defined and the time it is used to derive
5813 another giv.
5815 In addition, a giv that is only conditionally set is not allowed to
5816 derive another giv once a label has been passed.
5818 The cases we look at are when a label or an update to a biv is passed. */
5820 static void
5821 update_giv_derive (loop, p)
5822 const struct loop *loop;
5823 rtx p;
5825 struct iv_class *bl;
5826 struct induction *biv, *giv;
5827 rtx tem;
5828 int dummy;
5830 /* Search all IV classes, then all bivs, and finally all givs.
5832 There are three cases we are concerned with. First we have the situation
5833 of a giv that is only updated conditionally. In that case, it may not
5834 derive any givs after a label is passed.
5836 The second case is when a biv update occurs, or may occur, after the
5837 definition of a giv. For certain biv updates (see below) that are
5838 known to occur between the giv definition and use, we can adjust the
5839 giv definition. For others, or when the biv update is conditional,
5840 we must prevent the giv from deriving any other givs. There are two
5841 sub-cases within this case.
5843 If this is a label, we are concerned with any biv update that is done
5844 conditionally, since it may be done after the giv is defined followed by
5845 a branch here (actually, we need to pass both a jump and a label, but
5846 this extra tracking doesn't seem worth it).
5848 If this is a jump, we are concerned about any biv update that may be
5849 executed multiple times. We are actually only concerned about
5850 backward jumps, but it is probably not worth performing the test
5851 on the jump again here.
5853 If this is a biv update, we must adjust the giv status to show that a
5854 subsequent biv update was performed. If this adjustment cannot be done,
5855 the giv cannot derive further givs. */
5857 for (bl = loop_iv_list; bl; bl = bl->next)
5858 for (biv = bl->biv; biv; biv = biv->next_iv)
5859 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
5860 || biv->insn == p)
5862 for (giv = bl->giv; giv; giv = giv->next_iv)
5864 /* If cant_derive is already true, there is no point in
5865 checking all of these conditions again. */
5866 if (giv->cant_derive)
5867 continue;
5869 /* If this giv is conditionally set and we have passed a label,
5870 it cannot derive anything. */
5871 if (GET_CODE (p) == CODE_LABEL && ! giv->always_computable)
5872 giv->cant_derive = 1;
5874 /* Skip givs that have mult_val == 0, since
5875 they are really invariants. Also skip those that are
5876 replaceable, since we know their lifetime doesn't contain
5877 any biv update. */
5878 else if (giv->mult_val == const0_rtx || giv->replaceable)
5879 continue;
5881 /* The only way we can allow this giv to derive another
5882 is if this is a biv increment and we can form the product
5883 of biv->add_val and giv->mult_val. In this case, we will
5884 be able to compute a compensation. */
5885 else if (biv->insn == p)
5887 tem = 0;
5889 if (biv->mult_val == const1_rtx)
5890 tem = simplify_giv_expr (loop,
5891 gen_rtx_MULT (giv->mode,
5892 biv->add_val,
5893 giv->mult_val),
5894 &dummy);
5896 if (tem && giv->derive_adjustment)
5897 tem = simplify_giv_expr
5898 (loop,
5899 gen_rtx_PLUS (giv->mode, tem, giv->derive_adjustment),
5900 &dummy);
5902 if (tem)
5903 giv->derive_adjustment = tem;
5904 else
5905 giv->cant_derive = 1;
5907 else if ((GET_CODE (p) == CODE_LABEL && ! biv->always_computable)
5908 || (GET_CODE (p) == JUMP_INSN && biv->maybe_multiple))
5909 giv->cant_derive = 1;
5914 /* Check whether an insn is an increment legitimate for a basic induction var.
5915 X is the source of insn P, or a part of it.
5916 MODE is the mode in which X should be interpreted.
5918 DEST_REG is the putative biv, also the destination of the insn.
5919 We accept patterns of these forms:
5920 REG = REG + INVARIANT (includes REG = REG - CONSTANT)
5921 REG = INVARIANT + REG
5923 If X is suitable, we return 1, set *MULT_VAL to CONST1_RTX,
5924 store the additive term into *INC_VAL, and store the place where
5925 we found the additive term into *LOCATION.
5927 If X is an assignment of an invariant into DEST_REG, we set
5928 *MULT_VAL to CONST0_RTX, and store the invariant into *INC_VAL.
5930 We also want to detect a BIV when it corresponds to a variable
5931 whose mode was promoted via PROMOTED_MODE. In that case, an increment
5932 of the variable may be a PLUS that adds a SUBREG of that variable to
5933 an invariant and then sign- or zero-extends the result of the PLUS
5934 into the variable.
5936 Most GIVs in such cases will be in the promoted mode, since that is the
5937 probably the natural computation mode (and almost certainly the mode
5938 used for addresses) on the machine. So we view the pseudo-reg containing
5939 the variable as the BIV, as if it were simply incremented.
5941 Note that treating the entire pseudo as a BIV will result in making
5942 simple increments to any GIVs based on it. However, if the variable
5943 overflows in its declared mode but not its promoted mode, the result will
5944 be incorrect. This is acceptable if the variable is signed, since
5945 overflows in such cases are undefined, but not if it is unsigned, since
5946 those overflows are defined. So we only check for SIGN_EXTEND and
5947 not ZERO_EXTEND.
5949 If we cannot find a biv, we return 0. */
5951 static int
5952 basic_induction_var (loop, x, mode, dest_reg, p, inc_val, mult_val,
5953 location, multi_insn_incr)
5954 const struct loop *loop;
5955 register rtx x;
5956 enum machine_mode mode;
5957 rtx dest_reg;
5958 rtx p;
5959 rtx *inc_val;
5960 rtx *mult_val;
5961 rtx **location;
5962 int *multi_insn_incr;
5964 register enum rtx_code code;
5965 rtx *argp, arg;
5966 rtx insn, set = 0;
5968 code = GET_CODE (x);
5969 *location = NULL;
5970 switch (code)
5972 case PLUS:
5973 if (rtx_equal_p (XEXP (x, 0), dest_reg)
5974 || (GET_CODE (XEXP (x, 0)) == SUBREG
5975 && SUBREG_PROMOTED_VAR_P (XEXP (x, 0))
5976 && SUBREG_REG (XEXP (x, 0)) == dest_reg))
5978 argp = &XEXP (x, 1);
5980 else if (rtx_equal_p (XEXP (x, 1), dest_reg)
5981 || (GET_CODE (XEXP (x, 1)) == SUBREG
5982 && SUBREG_PROMOTED_VAR_P (XEXP (x, 1))
5983 && SUBREG_REG (XEXP (x, 1)) == dest_reg))
5985 argp = &XEXP (x, 0);
5987 else
5988 return 0;
5990 arg = *argp;
5991 if (loop_invariant_p (loop, arg) != 1)
5992 return 0;
5994 *inc_val = convert_modes (GET_MODE (dest_reg), GET_MODE (x), arg, 0);
5995 *mult_val = const1_rtx;
5996 *location = argp;
5997 return 1;
5999 case SUBREG:
6000 /* If this is a SUBREG for a promoted variable, check the inner
6001 value. */
6002 if (SUBREG_PROMOTED_VAR_P (x))
6003 return basic_induction_var (loop, SUBREG_REG (x),
6004 GET_MODE (SUBREG_REG (x)),
6005 dest_reg, p, inc_val, mult_val, location,
6006 multi_insn_incr);
6007 return 0;
6009 case REG:
6010 /* If this register is assigned in a previous insn, look at its
6011 source, but don't go outside the loop or past a label. */
6013 insn = p;
6014 while (1)
6016 do {
6017 insn = PREV_INSN (insn);
6018 } while (insn && GET_CODE (insn) == NOTE
6019 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6021 if (!insn)
6022 break;
6023 set = single_set (insn);
6024 if (set == 0)
6025 break;
6027 if ((SET_DEST (set) == x
6028 || (GET_CODE (SET_DEST (set)) == SUBREG
6029 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
6030 <= UNITS_PER_WORD)
6031 && (GET_MODE_CLASS (GET_MODE (SET_DEST (set)))
6032 == MODE_INT)
6033 && SUBREG_REG (SET_DEST (set)) == x))
6034 && basic_induction_var (loop, SET_SRC (set),
6035 (GET_MODE (SET_SRC (set)) == VOIDmode
6036 ? GET_MODE (x)
6037 : GET_MODE (SET_SRC (set))),
6038 dest_reg, insn,
6039 inc_val, mult_val, location,
6040 multi_insn_incr))
6042 *multi_insn_incr = 1;
6043 return 1;
6046 /* ... fall through ... */
6048 /* Can accept constant setting of biv only when inside inner most loop.
6049 Otherwise, a biv of an inner loop may be incorrectly recognized
6050 as a biv of the outer loop,
6051 causing code to be moved INTO the inner loop. */
6052 case MEM:
6053 if (loop_invariant_p (loop, x) != 1)
6054 return 0;
6055 case CONST_INT:
6056 case SYMBOL_REF:
6057 case CONST:
6058 /* convert_modes aborts if we try to convert to or from CCmode, so just
6059 exclude that case. It is very unlikely that a condition code value
6060 would be a useful iterator anyways. */
6061 if (loop->level == 1
6062 && GET_MODE_CLASS (mode) != MODE_CC
6063 && GET_MODE_CLASS (GET_MODE (dest_reg)) != MODE_CC)
6065 /* Possible bug here? Perhaps we don't know the mode of X. */
6066 *inc_val = convert_modes (GET_MODE (dest_reg), mode, x, 0);
6067 *mult_val = const0_rtx;
6068 return 1;
6070 else
6071 return 0;
6073 case SIGN_EXTEND:
6074 return basic_induction_var (loop, XEXP (x, 0), GET_MODE (XEXP (x, 0)),
6075 dest_reg, p, inc_val, mult_val, location,
6076 multi_insn_incr);
6078 case ASHIFTRT:
6079 /* Similar, since this can be a sign extension. */
6080 for (insn = PREV_INSN (p);
6081 (insn && GET_CODE (insn) == NOTE
6082 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG);
6083 insn = PREV_INSN (insn))
6086 if (insn)
6087 set = single_set (insn);
6089 if (set && SET_DEST (set) == XEXP (x, 0)
6090 && GET_CODE (XEXP (x, 1)) == CONST_INT
6091 && INTVAL (XEXP (x, 1)) >= 0
6092 && GET_CODE (SET_SRC (set)) == ASHIFT
6093 && XEXP (x, 1) == XEXP (SET_SRC (set), 1)
6094 && basic_induction_var (loop, XEXP (SET_SRC (set), 0),
6095 GET_MODE (XEXP (x, 0)),
6096 dest_reg, insn, inc_val, mult_val,
6097 location, multi_insn_incr))
6099 *multi_insn_incr = 1;
6100 return 1;
6102 return 0;
6104 default:
6105 return 0;
6109 /* A general induction variable (giv) is any quantity that is a linear
6110 function of a basic induction variable,
6111 i.e. giv = biv * mult_val + add_val.
6112 The coefficients can be any loop invariant quantity.
6113 A giv need not be computed directly from the biv;
6114 it can be computed by way of other givs. */
6116 /* Determine whether X computes a giv.
6117 If it does, return a nonzero value
6118 which is the benefit from eliminating the computation of X;
6119 set *SRC_REG to the register of the biv that it is computed from;
6120 set *ADD_VAL and *MULT_VAL to the coefficients,
6121 such that the value of X is biv * mult + add; */
6123 static int
6124 general_induction_var (loop, x, src_reg, add_val, mult_val, is_addr,
6125 pbenefit, addr_mode)
6126 const struct loop *loop;
6127 rtx x;
6128 rtx *src_reg;
6129 rtx *add_val;
6130 rtx *mult_val;
6131 int is_addr;
6132 int *pbenefit;
6133 enum machine_mode addr_mode;
6135 rtx orig_x = x;
6136 char *storage;
6138 /* If this is an invariant, forget it, it isn't a giv. */
6139 if (loop_invariant_p (loop, x) == 1)
6140 return 0;
6142 /* See if the expression could be a giv and get its form.
6143 Mark our place on the obstack in case we don't find a giv. */
6144 storage = (char *) oballoc (0);
6145 *pbenefit = 0;
6146 x = simplify_giv_expr (loop, x, pbenefit);
6147 if (x == 0)
6149 obfree (storage);
6150 return 0;
6153 switch (GET_CODE (x))
6155 case USE:
6156 case CONST_INT:
6157 /* Since this is now an invariant and wasn't before, it must be a giv
6158 with MULT_VAL == 0. It doesn't matter which BIV we associate this
6159 with. */
6160 *src_reg = loop_iv_list->biv->dest_reg;
6161 *mult_val = const0_rtx;
6162 *add_val = x;
6163 break;
6165 case REG:
6166 /* This is equivalent to a BIV. */
6167 *src_reg = x;
6168 *mult_val = const1_rtx;
6169 *add_val = const0_rtx;
6170 break;
6172 case PLUS:
6173 /* Either (plus (biv) (invar)) or
6174 (plus (mult (biv) (invar_1)) (invar_2)). */
6175 if (GET_CODE (XEXP (x, 0)) == MULT)
6177 *src_reg = XEXP (XEXP (x, 0), 0);
6178 *mult_val = XEXP (XEXP (x, 0), 1);
6180 else
6182 *src_reg = XEXP (x, 0);
6183 *mult_val = const1_rtx;
6185 *add_val = XEXP (x, 1);
6186 break;
6188 case MULT:
6189 /* ADD_VAL is zero. */
6190 *src_reg = XEXP (x, 0);
6191 *mult_val = XEXP (x, 1);
6192 *add_val = const0_rtx;
6193 break;
6195 default:
6196 abort ();
6199 /* Remove any enclosing USE from ADD_VAL and MULT_VAL (there will be
6200 unless they are CONST_INT). */
6201 if (GET_CODE (*add_val) == USE)
6202 *add_val = XEXP (*add_val, 0);
6203 if (GET_CODE (*mult_val) == USE)
6204 *mult_val = XEXP (*mult_val, 0);
6206 if (is_addr)
6207 *pbenefit += address_cost (orig_x, addr_mode) - reg_address_cost;
6208 else
6209 *pbenefit += rtx_cost (orig_x, SET);
6211 /* Always return true if this is a giv so it will be detected as such,
6212 even if the benefit is zero or negative. This allows elimination
6213 of bivs that might otherwise not be eliminated. */
6214 return 1;
6217 /* Given an expression, X, try to form it as a linear function of a biv.
6218 We will canonicalize it to be of the form
6219 (plus (mult (BIV) (invar_1))
6220 (invar_2))
6221 with possible degeneracies.
6223 The invariant expressions must each be of a form that can be used as a
6224 machine operand. We surround then with a USE rtx (a hack, but localized
6225 and certainly unambiguous!) if not a CONST_INT for simplicity in this
6226 routine; it is the caller's responsibility to strip them.
6228 If no such canonicalization is possible (i.e., two biv's are used or an
6229 expression that is neither invariant nor a biv or giv), this routine
6230 returns 0.
6232 For a non-zero return, the result will have a code of CONST_INT, USE,
6233 REG (for a BIV), PLUS, or MULT. No other codes will occur.
6235 *BENEFIT will be incremented by the benefit of any sub-giv encountered. */
6237 static rtx sge_plus PARAMS ((enum machine_mode, rtx, rtx));
6238 static rtx sge_plus_constant PARAMS ((rtx, rtx));
6239 static int cmp_combine_givs_stats PARAMS ((const PTR, const PTR));
6240 static int cmp_recombine_givs_stats PARAMS ((const PTR, const PTR));
6242 static rtx
6243 simplify_giv_expr (loop, x, benefit)
6244 const struct loop *loop;
6245 rtx x;
6246 int *benefit;
6248 enum machine_mode mode = GET_MODE (x);
6249 rtx arg0, arg1;
6250 rtx tem;
6252 /* If this is not an integer mode, or if we cannot do arithmetic in this
6253 mode, this can't be a giv. */
6254 if (mode != VOIDmode
6255 && (GET_MODE_CLASS (mode) != MODE_INT
6256 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT))
6257 return NULL_RTX;
6259 switch (GET_CODE (x))
6261 case PLUS:
6262 arg0 = simplify_giv_expr (loop, XEXP (x, 0), benefit);
6263 arg1 = simplify_giv_expr (loop, XEXP (x, 1), benefit);
6264 if (arg0 == 0 || arg1 == 0)
6265 return NULL_RTX;
6267 /* Put constant last, CONST_INT last if both constant. */
6268 if ((GET_CODE (arg0) == USE
6269 || GET_CODE (arg0) == CONST_INT)
6270 && ! ((GET_CODE (arg0) == USE
6271 && GET_CODE (arg1) == USE)
6272 || GET_CODE (arg1) == CONST_INT))
6273 tem = arg0, arg0 = arg1, arg1 = tem;
6275 /* Handle addition of zero, then addition of an invariant. */
6276 if (arg1 == const0_rtx)
6277 return arg0;
6278 else if (GET_CODE (arg1) == CONST_INT || GET_CODE (arg1) == USE)
6279 switch (GET_CODE (arg0))
6281 case CONST_INT:
6282 case USE:
6283 /* Adding two invariants must result in an invariant, so enclose
6284 addition operation inside a USE and return it. */
6285 if (GET_CODE (arg0) == USE)
6286 arg0 = XEXP (arg0, 0);
6287 if (GET_CODE (arg1) == USE)
6288 arg1 = XEXP (arg1, 0);
6290 if (GET_CODE (arg0) == CONST_INT)
6291 tem = arg0, arg0 = arg1, arg1 = tem;
6292 if (GET_CODE (arg1) == CONST_INT)
6293 tem = sge_plus_constant (arg0, arg1);
6294 else
6295 tem = sge_plus (mode, arg0, arg1);
6297 if (GET_CODE (tem) != CONST_INT)
6298 tem = gen_rtx_USE (mode, tem);
6299 return tem;
6301 case REG:
6302 case MULT:
6303 /* biv + invar or mult + invar. Return sum. */
6304 return gen_rtx_PLUS (mode, arg0, arg1);
6306 case PLUS:
6307 /* (a + invar_1) + invar_2. Associate. */
6308 return
6309 simplify_giv_expr (loop,
6310 gen_rtx_PLUS (mode,
6311 XEXP (arg0, 0),
6312 gen_rtx_PLUS (mode,
6313 XEXP (arg0, 1),
6314 arg1)),
6315 benefit);
6317 default:
6318 abort ();
6321 /* Each argument must be either REG, PLUS, or MULT. Convert REG to
6322 MULT to reduce cases. */
6323 if (GET_CODE (arg0) == REG)
6324 arg0 = gen_rtx_MULT (mode, arg0, const1_rtx);
6325 if (GET_CODE (arg1) == REG)
6326 arg1 = gen_rtx_MULT (mode, arg1, const1_rtx);
6328 /* Now have PLUS + PLUS, PLUS + MULT, MULT + PLUS, or MULT + MULT.
6329 Put a MULT first, leaving PLUS + PLUS, MULT + PLUS, or MULT + MULT.
6330 Recurse to associate the second PLUS. */
6331 if (GET_CODE (arg1) == MULT)
6332 tem = arg0, arg0 = arg1, arg1 = tem;
6334 if (GET_CODE (arg1) == PLUS)
6335 return
6336 simplify_giv_expr (loop,
6337 gen_rtx_PLUS (mode,
6338 gen_rtx_PLUS (mode, arg0,
6339 XEXP (arg1, 0)),
6340 XEXP (arg1, 1)),
6341 benefit);
6343 /* Now must have MULT + MULT. Distribute if same biv, else not giv. */
6344 if (GET_CODE (arg0) != MULT || GET_CODE (arg1) != MULT)
6345 return NULL_RTX;
6347 if (!rtx_equal_p (arg0, arg1))
6348 return NULL_RTX;
6350 return simplify_giv_expr (loop,
6351 gen_rtx_MULT (mode,
6352 XEXP (arg0, 0),
6353 gen_rtx_PLUS (mode,
6354 XEXP (arg0, 1),
6355 XEXP (arg1, 1))),
6356 benefit);
6358 case MINUS:
6359 /* Handle "a - b" as "a + b * (-1)". */
6360 return simplify_giv_expr (loop,
6361 gen_rtx_PLUS (mode,
6362 XEXP (x, 0),
6363 gen_rtx_MULT (mode,
6364 XEXP (x, 1),
6365 constm1_rtx)),
6366 benefit);
6368 case MULT:
6369 arg0 = simplify_giv_expr (loop, XEXP (x, 0), benefit);
6370 arg1 = simplify_giv_expr (loop, XEXP (x, 1), benefit);
6371 if (arg0 == 0 || arg1 == 0)
6372 return NULL_RTX;
6374 /* Put constant last, CONST_INT last if both constant. */
6375 if ((GET_CODE (arg0) == USE || GET_CODE (arg0) == CONST_INT)
6376 && GET_CODE (arg1) != CONST_INT)
6377 tem = arg0, arg0 = arg1, arg1 = tem;
6379 /* If second argument is not now constant, not giv. */
6380 if (GET_CODE (arg1) != USE && GET_CODE (arg1) != CONST_INT)
6381 return NULL_RTX;
6383 /* Handle multiply by 0 or 1. */
6384 if (arg1 == const0_rtx)
6385 return const0_rtx;
6387 else if (arg1 == const1_rtx)
6388 return arg0;
6390 switch (GET_CODE (arg0))
6392 case REG:
6393 /* biv * invar. Done. */
6394 return gen_rtx_MULT (mode, arg0, arg1);
6396 case CONST_INT:
6397 /* Product of two constants. */
6398 return GEN_INT (INTVAL (arg0) * INTVAL (arg1));
6400 case USE:
6401 /* invar * invar is a giv, but attempt to simplify it somehow. */
6402 if (GET_CODE (arg1) != CONST_INT)
6403 return NULL_RTX;
6405 arg0 = XEXP (arg0, 0);
6406 if (GET_CODE (arg0) == MULT)
6408 /* (invar_0 * invar_1) * invar_2. Associate. */
6409 return simplify_giv_expr (loop,
6410 gen_rtx_MULT (mode,
6411 XEXP (arg0, 0),
6412 gen_rtx_MULT (mode,
6413 XEXP (arg0,
6415 arg1)),
6416 benefit);
6418 /* Porpagate the MULT expressions to the intermost nodes. */
6419 else if (GET_CODE (arg0) == PLUS)
6421 /* (invar_0 + invar_1) * invar_2. Distribute. */
6422 return simplify_giv_expr (loop,
6423 gen_rtx_PLUS (mode,
6424 gen_rtx_MULT (mode,
6425 XEXP (arg0,
6427 arg1),
6428 gen_rtx_MULT (mode,
6429 XEXP (arg0,
6431 arg1)),
6432 benefit);
6434 return gen_rtx_USE (mode, gen_rtx_MULT (mode, arg0, arg1));
6436 case MULT:
6437 /* (a * invar_1) * invar_2. Associate. */
6438 return simplify_giv_expr (loop,
6439 gen_rtx_MULT (mode,
6440 XEXP (arg0, 0),
6441 gen_rtx_MULT (mode,
6442 XEXP (arg0, 1),
6443 arg1)),
6444 benefit);
6446 case PLUS:
6447 /* (a + invar_1) * invar_2. Distribute. */
6448 return simplify_giv_expr (loop,
6449 gen_rtx_PLUS (mode,
6450 gen_rtx_MULT (mode,
6451 XEXP (arg0, 0),
6452 arg1),
6453 gen_rtx_MULT (mode,
6454 XEXP (arg0, 1),
6455 arg1)),
6456 benefit);
6458 default:
6459 abort ();
6462 case ASHIFT:
6463 /* Shift by constant is multiply by power of two. */
6464 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6465 return 0;
6467 return
6468 simplify_giv_expr (loop,
6469 gen_rtx_MULT (mode,
6470 XEXP (x, 0),
6471 GEN_INT ((HOST_WIDE_INT) 1
6472 << INTVAL (XEXP (x, 1)))),
6473 benefit);
6475 case NEG:
6476 /* "-a" is "a * (-1)" */
6477 return simplify_giv_expr (loop,
6478 gen_rtx_MULT (mode, XEXP (x, 0), constm1_rtx),
6479 benefit);
6481 case NOT:
6482 /* "~a" is "-a - 1". Silly, but easy. */
6483 return simplify_giv_expr (loop,
6484 gen_rtx_MINUS (mode,
6485 gen_rtx_NEG (mode, XEXP (x, 0)),
6486 const1_rtx),
6487 benefit);
6489 case USE:
6490 /* Already in proper form for invariant. */
6491 return x;
6493 case REG:
6494 /* If this is a new register, we can't deal with it. */
6495 if (REGNO (x) >= max_reg_before_loop)
6496 return 0;
6498 /* Check for biv or giv. */
6499 switch (REG_IV_TYPE (REGNO (x)))
6501 case BASIC_INDUCT:
6502 return x;
6503 case GENERAL_INDUCT:
6505 struct induction *v = REG_IV_INFO (REGNO (x));
6507 /* Form expression from giv and add benefit. Ensure this giv
6508 can derive another and subtract any needed adjustment if so. */
6509 *benefit += v->benefit;
6510 if (v->cant_derive)
6511 return 0;
6513 tem = gen_rtx_PLUS (mode, gen_rtx_MULT (mode,
6514 v->src_reg, v->mult_val),
6515 v->add_val);
6517 if (v->derive_adjustment)
6518 tem = gen_rtx_MINUS (mode, tem, v->derive_adjustment);
6519 return simplify_giv_expr (loop, tem, benefit);
6522 default:
6523 /* If it isn't an induction variable, and it is invariant, we
6524 may be able to simplify things further by looking through
6525 the bits we just moved outside the loop. */
6526 if (loop_invariant_p (loop, x) == 1)
6528 struct movable *m;
6530 for (m = the_movables; m ; m = m->next)
6531 if (rtx_equal_p (x, m->set_dest))
6533 /* Ok, we found a match. Substitute and simplify. */
6535 /* If we match another movable, we must use that, as
6536 this one is going away. */
6537 if (m->match)
6538 return simplify_giv_expr (loop, m->match->set_dest,
6539 benefit);
6541 /* If consec is non-zero, this is a member of a group of
6542 instructions that were moved together. We handle this
6543 case only to the point of seeking to the last insn and
6544 looking for a REG_EQUAL. Fail if we don't find one. */
6545 if (m->consec != 0)
6547 int i = m->consec;
6548 tem = m->insn;
6549 do { tem = NEXT_INSN (tem); } while (--i > 0);
6551 tem = find_reg_note (tem, REG_EQUAL, NULL_RTX);
6552 if (tem)
6553 tem = XEXP (tem, 0);
6555 else
6557 tem = single_set (m->insn);
6558 if (tem)
6559 tem = SET_SRC (tem);
6562 if (tem)
6564 /* What we are most interested in is pointer
6565 arithmetic on invariants -- only take
6566 patterns we may be able to do something with. */
6567 if (GET_CODE (tem) == PLUS
6568 || GET_CODE (tem) == MULT
6569 || GET_CODE (tem) == ASHIFT
6570 || GET_CODE (tem) == CONST_INT
6571 || GET_CODE (tem) == SYMBOL_REF)
6573 tem = simplify_giv_expr (loop, tem, benefit);
6574 if (tem)
6575 return tem;
6577 else if (GET_CODE (tem) == CONST
6578 && GET_CODE (XEXP (tem, 0)) == PLUS
6579 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == SYMBOL_REF
6580 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)
6582 tem = simplify_giv_expr (loop, XEXP (tem, 0),
6583 benefit);
6584 if (tem)
6585 return tem;
6588 break;
6591 break;
6594 /* Fall through to general case. */
6595 default:
6596 /* If invariant, return as USE (unless CONST_INT).
6597 Otherwise, not giv. */
6598 if (GET_CODE (x) == USE)
6599 x = XEXP (x, 0);
6601 if (loop_invariant_p (loop, x) == 1)
6603 if (GET_CODE (x) == CONST_INT)
6604 return x;
6605 if (GET_CODE (x) == CONST
6606 && GET_CODE (XEXP (x, 0)) == PLUS
6607 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
6608 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
6609 x = XEXP (x, 0);
6610 return gen_rtx_USE (mode, x);
6612 else
6613 return 0;
6617 /* This routine folds invariants such that there is only ever one
6618 CONST_INT in the summation. It is only used by simplify_giv_expr. */
6620 static rtx
6621 sge_plus_constant (x, c)
6622 rtx x, c;
6624 if (GET_CODE (x) == CONST_INT)
6625 return GEN_INT (INTVAL (x) + INTVAL (c));
6626 else if (GET_CODE (x) != PLUS)
6627 return gen_rtx_PLUS (GET_MODE (x), x, c);
6628 else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6630 return gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0),
6631 GEN_INT (INTVAL (XEXP (x, 1)) + INTVAL (c)));
6633 else if (GET_CODE (XEXP (x, 0)) == PLUS
6634 || GET_CODE (XEXP (x, 1)) != PLUS)
6636 return gen_rtx_PLUS (GET_MODE (x),
6637 sge_plus_constant (XEXP (x, 0), c), XEXP (x, 1));
6639 else
6641 return gen_rtx_PLUS (GET_MODE (x),
6642 sge_plus_constant (XEXP (x, 1), c), XEXP (x, 0));
6646 static rtx
6647 sge_plus (mode, x, y)
6648 enum machine_mode mode;
6649 rtx x, y;
6651 while (GET_CODE (y) == PLUS)
6653 rtx a = XEXP (y, 0);
6654 if (GET_CODE (a) == CONST_INT)
6655 x = sge_plus_constant (x, a);
6656 else
6657 x = gen_rtx_PLUS (mode, x, a);
6658 y = XEXP (y, 1);
6660 if (GET_CODE (y) == CONST_INT)
6661 x = sge_plus_constant (x, y);
6662 else
6663 x = gen_rtx_PLUS (mode, x, y);
6664 return x;
6667 /* Help detect a giv that is calculated by several consecutive insns;
6668 for example,
6669 giv = biv * M
6670 giv = giv + A
6671 The caller has already identified the first insn P as having a giv as dest;
6672 we check that all other insns that set the same register follow
6673 immediately after P, that they alter nothing else,
6674 and that the result of the last is still a giv.
6676 The value is 0 if the reg set in P is not really a giv.
6677 Otherwise, the value is the amount gained by eliminating
6678 all the consecutive insns that compute the value.
6680 FIRST_BENEFIT is the amount gained by eliminating the first insn, P.
6681 SRC_REG is the reg of the biv; DEST_REG is the reg of the giv.
6683 The coefficients of the ultimate giv value are stored in
6684 *MULT_VAL and *ADD_VAL. */
6686 static int
6687 consec_sets_giv (loop, first_benefit, p, src_reg, dest_reg,
6688 add_val, mult_val, last_consec_insn)
6689 const struct loop *loop;
6690 int first_benefit;
6691 rtx p;
6692 rtx src_reg;
6693 rtx dest_reg;
6694 rtx *add_val;
6695 rtx *mult_val;
6696 rtx *last_consec_insn;
6698 int count;
6699 enum rtx_code code;
6700 int benefit;
6701 rtx temp;
6702 rtx set;
6704 /* Indicate that this is a giv so that we can update the value produced in
6705 each insn of the multi-insn sequence.
6707 This induction structure will be used only by the call to
6708 general_induction_var below, so we can allocate it on our stack.
6709 If this is a giv, our caller will replace the induct var entry with
6710 a new induction structure. */
6711 struct induction *v
6712 = (struct induction *) alloca (sizeof (struct induction));
6713 v->src_reg = src_reg;
6714 v->mult_val = *mult_val;
6715 v->add_val = *add_val;
6716 v->benefit = first_benefit;
6717 v->cant_derive = 0;
6718 v->derive_adjustment = 0;
6720 REG_IV_TYPE (REGNO (dest_reg)) = GENERAL_INDUCT;
6721 REG_IV_INFO (REGNO (dest_reg)) = v;
6723 count = VARRAY_INT (n_times_set, REGNO (dest_reg)) - 1;
6725 while (count > 0)
6727 p = NEXT_INSN (p);
6728 code = GET_CODE (p);
6730 /* If libcall, skip to end of call sequence. */
6731 if (code == INSN && (temp = find_reg_note (p, REG_LIBCALL, NULL_RTX)))
6732 p = XEXP (temp, 0);
6734 if (code == INSN
6735 && (set = single_set (p))
6736 && GET_CODE (SET_DEST (set)) == REG
6737 && SET_DEST (set) == dest_reg
6738 && (general_induction_var (loop, SET_SRC (set), &src_reg,
6739 add_val, mult_val, 0, &benefit, VOIDmode)
6740 /* Giv created by equivalent expression. */
6741 || ((temp = find_reg_note (p, REG_EQUAL, NULL_RTX))
6742 && general_induction_var (loop, XEXP (temp, 0), &src_reg,
6743 add_val, mult_val, 0, &benefit,
6744 VOIDmode)))
6745 && src_reg == v->src_reg)
6747 if (find_reg_note (p, REG_RETVAL, NULL_RTX))
6748 benefit += libcall_benefit (p);
6750 count--;
6751 v->mult_val = *mult_val;
6752 v->add_val = *add_val;
6753 v->benefit = benefit;
6755 else if (code != NOTE)
6757 /* Allow insns that set something other than this giv to a
6758 constant. Such insns are needed on machines which cannot
6759 include long constants and should not disqualify a giv. */
6760 if (code == INSN
6761 && (set = single_set (p))
6762 && SET_DEST (set) != dest_reg
6763 && CONSTANT_P (SET_SRC (set)))
6764 continue;
6766 REG_IV_TYPE (REGNO (dest_reg)) = UNKNOWN_INDUCT;
6767 return 0;
6771 *last_consec_insn = p;
6772 return v->benefit;
6775 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6776 represented by G1. If no such expression can be found, or it is clear that
6777 it cannot possibly be a valid address, 0 is returned.
6779 To perform the computation, we note that
6780 G1 = x * v + a and
6781 G2 = y * v + b
6782 where `v' is the biv.
6784 So G2 = (y/b) * G1 + (b - a*y/x).
6786 Note that MULT = y/x.
6788 Update: A and B are now allowed to be additive expressions such that
6789 B contains all variables in A. That is, computing B-A will not require
6790 subtracting variables. */
6792 static rtx
6793 express_from_1 (a, b, mult)
6794 rtx a, b, mult;
6796 /* If MULT is zero, then A*MULT is zero, and our expression is B. */
6798 if (mult == const0_rtx)
6799 return b;
6801 /* If MULT is not 1, we cannot handle A with non-constants, since we
6802 would then be required to subtract multiples of the registers in A.
6803 This is theoretically possible, and may even apply to some Fortran
6804 constructs, but it is a lot of work and we do not attempt it here. */
6806 if (mult != const1_rtx && GET_CODE (a) != CONST_INT)
6807 return NULL_RTX;
6809 /* In general these structures are sorted top to bottom (down the PLUS
6810 chain), but not left to right across the PLUS. If B is a higher
6811 order giv than A, we can strip one level and recurse. If A is higher
6812 order, we'll eventually bail out, but won't know that until the end.
6813 If they are the same, we'll strip one level around this loop. */
6815 while (GET_CODE (a) == PLUS && GET_CODE (b) == PLUS)
6817 rtx ra, rb, oa, ob, tmp;
6819 ra = XEXP (a, 0), oa = XEXP (a, 1);
6820 if (GET_CODE (ra) == PLUS)
6821 tmp = ra, ra = oa, oa = tmp;
6823 rb = XEXP (b, 0), ob = XEXP (b, 1);
6824 if (GET_CODE (rb) == PLUS)
6825 tmp = rb, rb = ob, ob = tmp;
6827 if (rtx_equal_p (ra, rb))
6828 /* We matched: remove one reg completely. */
6829 a = oa, b = ob;
6830 else if (GET_CODE (ob) != PLUS && rtx_equal_p (ra, ob))
6831 /* An alternate match. */
6832 a = oa, b = rb;
6833 else if (GET_CODE (oa) != PLUS && rtx_equal_p (oa, rb))
6834 /* An alternate match. */
6835 a = ra, b = ob;
6836 else
6838 /* Indicates an extra register in B. Strip one level from B and
6839 recurse, hoping B was the higher order expression. */
6840 ob = express_from_1 (a, ob, mult);
6841 if (ob == NULL_RTX)
6842 return NULL_RTX;
6843 return gen_rtx_PLUS (GET_MODE (b), rb, ob);
6847 /* Here we are at the last level of A, go through the cases hoping to
6848 get rid of everything but a constant. */
6850 if (GET_CODE (a) == PLUS)
6852 rtx ra, oa;
6854 ra = XEXP (a, 0), oa = XEXP (a, 1);
6855 if (rtx_equal_p (oa, b))
6856 oa = ra;
6857 else if (!rtx_equal_p (ra, b))
6858 return NULL_RTX;
6860 if (GET_CODE (oa) != CONST_INT)
6861 return NULL_RTX;
6863 return GEN_INT (-INTVAL (oa) * INTVAL (mult));
6865 else if (GET_CODE (a) == CONST_INT)
6867 return plus_constant (b, -INTVAL (a) * INTVAL (mult));
6869 else if (CONSTANT_P (a))
6871 return simplify_gen_binary (MINUS, GET_MODE (b), const0_rtx, a);
6873 else if (GET_CODE (b) == PLUS)
6875 if (rtx_equal_p (a, XEXP (b, 0)))
6876 return XEXP (b, 1);
6877 else if (rtx_equal_p (a, XEXP (b, 1)))
6878 return XEXP (b, 0);
6879 else
6880 return NULL_RTX;
6882 else if (rtx_equal_p (a, b))
6883 return const0_rtx;
6885 return NULL_RTX;
6889 express_from (g1, g2)
6890 struct induction *g1, *g2;
6892 rtx mult, add;
6894 /* The value that G1 will be multiplied by must be a constant integer. Also,
6895 the only chance we have of getting a valid address is if b*c/a (see above
6896 for notation) is also an integer. */
6897 if (GET_CODE (g1->mult_val) == CONST_INT
6898 && GET_CODE (g2->mult_val) == CONST_INT)
6900 if (g1->mult_val == const0_rtx
6901 || INTVAL (g2->mult_val) % INTVAL (g1->mult_val) != 0)
6902 return NULL_RTX;
6903 mult = GEN_INT (INTVAL (g2->mult_val) / INTVAL (g1->mult_val));
6905 else if (rtx_equal_p (g1->mult_val, g2->mult_val))
6906 mult = const1_rtx;
6907 else
6909 /* ??? Find out if the one is a multiple of the other? */
6910 return NULL_RTX;
6913 add = express_from_1 (g1->add_val, g2->add_val, mult);
6914 if (add == NULL_RTX)
6916 /* Failed. If we've got a multiplication factor between G1 and G2,
6917 scale G1's addend and try again. */
6918 if (INTVAL (mult) > 1)
6920 rtx g1_add_val = g1->add_val;
6921 if (GET_CODE (g1_add_val) == MULT
6922 && GET_CODE (XEXP (g1_add_val, 1)) == CONST_INT)
6924 HOST_WIDE_INT m;
6925 m = INTVAL (mult) * INTVAL (XEXP (g1_add_val, 1));
6926 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val),
6927 XEXP (g1_add_val, 0), GEN_INT (m));
6929 else
6931 g1_add_val = gen_rtx_MULT (GET_MODE (g1_add_val), g1_add_val,
6932 mult);
6935 add = express_from_1 (g1_add_val, g2->add_val, const1_rtx);
6938 if (add == NULL_RTX)
6939 return NULL_RTX;
6941 /* Form simplified final result. */
6942 if (mult == const0_rtx)
6943 return add;
6944 else if (mult == const1_rtx)
6945 mult = g1->dest_reg;
6946 else
6947 mult = gen_rtx_MULT (g2->mode, g1->dest_reg, mult);
6949 if (add == const0_rtx)
6950 return mult;
6951 else
6953 if (GET_CODE (add) == PLUS
6954 && CONSTANT_P (XEXP (add, 1)))
6956 rtx tem = XEXP (add, 1);
6957 mult = gen_rtx_PLUS (g2->mode, mult, XEXP (add, 0));
6958 add = tem;
6961 return gen_rtx_PLUS (g2->mode, mult, add);
6966 /* Return an rtx, if any, that expresses giv G2 as a function of the register
6967 represented by G1. This indicates that G2 should be combined with G1 and
6968 that G2 can use (either directly or via an address expression) a register
6969 used to represent G1. */
6971 static rtx
6972 combine_givs_p (g1, g2)
6973 struct induction *g1, *g2;
6975 rtx tem = express_from (g1, g2);
6977 /* If these givs are identical, they can be combined. We use the results
6978 of express_from because the addends are not in a canonical form, so
6979 rtx_equal_p is a weaker test. */
6980 /* But don't combine a DEST_REG giv with a DEST_ADDR giv; we want the
6981 combination to be the other way round. */
6982 if (tem == g1->dest_reg
6983 && (g1->giv_type == DEST_REG || g2->giv_type == DEST_ADDR))
6985 return g1->dest_reg;
6988 /* If G2 can be expressed as a function of G1 and that function is valid
6989 as an address and no more expensive than using a register for G2,
6990 the expression of G2 in terms of G1 can be used. */
6991 if (tem != NULL_RTX
6992 && g2->giv_type == DEST_ADDR
6993 && memory_address_p (g2->mem_mode, tem)
6994 /* ??? Looses, especially with -fforce-addr, where *g2->location
6995 will always be a register, and so anything more complicated
6996 gets discarded. */
6997 #if 0
6998 #ifdef ADDRESS_COST
6999 && ADDRESS_COST (tem) <= ADDRESS_COST (*g2->location)
7000 #else
7001 && rtx_cost (tem, MEM) <= rtx_cost (*g2->location, MEM)
7002 #endif
7003 #endif
7006 return tem;
7009 return NULL_RTX;
7012 struct combine_givs_stats
7014 int giv_number;
7015 int total_benefit;
7018 static int
7019 cmp_combine_givs_stats (xp, yp)
7020 const PTR xp;
7021 const PTR yp;
7023 const struct combine_givs_stats * const x =
7024 (const struct combine_givs_stats *) xp;
7025 const struct combine_givs_stats * const y =
7026 (const struct combine_givs_stats *) yp;
7027 int d;
7028 d = y->total_benefit - x->total_benefit;
7029 /* Stabilize the sort. */
7030 if (!d)
7031 d = x->giv_number - y->giv_number;
7032 return d;
7035 /* Check all pairs of givs for iv_class BL and see if any can be combined with
7036 any other. If so, point SAME to the giv combined with and set NEW_REG to
7037 be an expression (in terms of the other giv's DEST_REG) equivalent to the
7038 giv. Also, update BENEFIT and related fields for cost/benefit analysis. */
7040 static void
7041 combine_givs (bl)
7042 struct iv_class *bl;
7044 /* Additional benefit to add for being combined multiple times. */
7045 const int extra_benefit = 3;
7047 struct induction *g1, *g2, **giv_array;
7048 int i, j, k, giv_count;
7049 struct combine_givs_stats *stats;
7050 rtx *can_combine;
7052 /* Count givs, because bl->giv_count is incorrect here. */
7053 giv_count = 0;
7054 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7055 if (!g1->ignore)
7056 giv_count++;
7058 giv_array
7059 = (struct induction **) alloca (giv_count * sizeof (struct induction *));
7060 i = 0;
7061 for (g1 = bl->giv; g1; g1 = g1->next_iv)
7062 if (!g1->ignore)
7063 giv_array[i++] = g1;
7065 stats = (struct combine_givs_stats *) xcalloc (giv_count, sizeof (*stats));
7066 can_combine = (rtx *) xcalloc (giv_count, giv_count * sizeof(rtx));
7068 for (i = 0; i < giv_count; i++)
7070 int this_benefit;
7071 rtx single_use;
7073 g1 = giv_array[i];
7074 stats[i].giv_number = i;
7076 /* If a DEST_REG GIV is used only once, do not allow it to combine
7077 with anything, for in doing so we will gain nothing that cannot
7078 be had by simply letting the GIV with which we would have combined
7079 to be reduced on its own. The losage shows up in particular with
7080 DEST_ADDR targets on hosts with reg+reg addressing, though it can
7081 be seen elsewhere as well. */
7082 if (g1->giv_type == DEST_REG
7083 && (single_use = VARRAY_RTX (reg_single_usage, REGNO (g1->dest_reg)))
7084 && single_use != const0_rtx)
7085 continue;
7087 this_benefit = g1->benefit;
7088 /* Add an additional weight for zero addends. */
7089 if (g1->no_const_addval)
7090 this_benefit += 1;
7092 for (j = 0; j < giv_count; j++)
7094 rtx this_combine;
7096 g2 = giv_array[j];
7097 if (g1 != g2
7098 && (this_combine = combine_givs_p (g1, g2)) != NULL_RTX)
7100 can_combine[i*giv_count + j] = this_combine;
7101 this_benefit += g2->benefit + extra_benefit;
7104 stats[i].total_benefit = this_benefit;
7107 /* Iterate, combining until we can't. */
7108 restart:
7109 qsort (stats, giv_count, sizeof(*stats), cmp_combine_givs_stats);
7111 if (loop_dump_stream)
7113 fprintf (loop_dump_stream, "Sorted combine statistics:\n");
7114 for (k = 0; k < giv_count; k++)
7116 g1 = giv_array[stats[k].giv_number];
7117 if (!g1->combined_with && !g1->same)
7118 fprintf (loop_dump_stream, " {%d, %d}",
7119 INSN_UID (giv_array[stats[k].giv_number]->insn),
7120 stats[k].total_benefit);
7122 putc ('\n', loop_dump_stream);
7125 for (k = 0; k < giv_count; k++)
7127 int g1_add_benefit = 0;
7129 i = stats[k].giv_number;
7130 g1 = giv_array[i];
7132 /* If it has already been combined, skip. */
7133 if (g1->combined_with || g1->same)
7134 continue;
7136 for (j = 0; j < giv_count; j++)
7138 g2 = giv_array[j];
7139 if (g1 != g2 && can_combine[i*giv_count + j]
7140 /* If it has already been combined, skip. */
7141 && ! g2->same && ! g2->combined_with)
7143 int l;
7145 g2->new_reg = can_combine[i*giv_count + j];
7146 g2->same = g1;
7147 g1->combined_with++;
7148 g1->lifetime += g2->lifetime;
7150 g1_add_benefit += g2->benefit;
7152 /* ??? The new final_[bg]iv_value code does a much better job
7153 of finding replaceable giv's, and hence this code may no
7154 longer be necessary. */
7155 if (! g2->replaceable && REG_USERVAR_P (g2->dest_reg))
7156 g1_add_benefit -= copy_cost;
7158 /* To help optimize the next set of combinations, remove
7159 this giv from the benefits of other potential mates. */
7160 for (l = 0; l < giv_count; ++l)
7162 int m = stats[l].giv_number;
7163 if (can_combine[m*giv_count + j])
7164 stats[l].total_benefit -= g2->benefit + extra_benefit;
7167 if (loop_dump_stream)
7168 fprintf (loop_dump_stream,
7169 "giv at %d combined with giv at %d\n",
7170 INSN_UID (g2->insn), INSN_UID (g1->insn));
7174 /* To help optimize the next set of combinations, remove
7175 this giv from the benefits of other potential mates. */
7176 if (g1->combined_with)
7178 for (j = 0; j < giv_count; ++j)
7180 int m = stats[j].giv_number;
7181 if (can_combine[m*giv_count + i])
7182 stats[j].total_benefit -= g1->benefit + extra_benefit;
7185 g1->benefit += g1_add_benefit;
7187 /* We've finished with this giv, and everything it touched.
7188 Restart the combination so that proper weights for the
7189 rest of the givs are properly taken into account. */
7190 /* ??? Ideally we would compact the arrays at this point, so
7191 as to not cover old ground. But sanely compacting
7192 can_combine is tricky. */
7193 goto restart;
7197 /* Clean up. */
7198 free (stats);
7199 free (can_combine);
7202 struct recombine_givs_stats
7204 int giv_number;
7205 int start_luid, end_luid;
7208 /* Used below as comparison function for qsort. We want a ascending luid
7209 when scanning the array starting at the end, thus the arguments are
7210 used in reverse. */
7211 static int
7212 cmp_recombine_givs_stats (xp, yp)
7213 const PTR xp;
7214 const PTR yp;
7216 const struct recombine_givs_stats * const x =
7217 (const struct recombine_givs_stats *) xp;
7218 const struct recombine_givs_stats * const y =
7219 (const struct recombine_givs_stats *) yp;
7220 int d;
7221 d = y->start_luid - x->start_luid;
7222 /* Stabilize the sort. */
7223 if (!d)
7224 d = y->giv_number - x->giv_number;
7225 return d;
7228 /* Scan X, which is a part of INSN, for the end of life of a giv. Also
7229 look for the start of life of a giv where the start has not been seen
7230 yet to unlock the search for the end of its life.
7231 Only consider givs that belong to BIV.
7232 Return the total number of lifetime ends that have been found. */
7233 static int
7234 find_life_end (x, stats, insn, biv)
7235 rtx x, insn, biv;
7236 struct recombine_givs_stats *stats;
7238 enum rtx_code code;
7239 const char *fmt;
7240 int i, j;
7241 int retval;
7243 code = GET_CODE (x);
7244 switch (code)
7246 case SET:
7248 rtx reg = SET_DEST (x);
7249 if (GET_CODE (reg) == REG)
7251 int regno = REGNO (reg);
7252 struct induction *v = REG_IV_INFO (regno);
7254 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
7255 && ! v->ignore
7256 && v->src_reg == biv
7257 && stats[v->ix].end_luid <= 0)
7259 /* If we see a 0 here for end_luid, it means that we have
7260 scanned the entire loop without finding any use at all.
7261 We must not predicate this code on a start_luid match
7262 since that would make the test fail for givs that have
7263 been hoisted out of inner loops. */
7264 if (stats[v->ix].end_luid == 0)
7266 stats[v->ix].end_luid = stats[v->ix].start_luid;
7267 return 1 + find_life_end (SET_SRC (x), stats, insn, biv);
7269 else if (stats[v->ix].start_luid == INSN_LUID (insn))
7270 stats[v->ix].end_luid = 0;
7272 return find_life_end (SET_SRC (x), stats, insn, biv);
7274 break;
7276 case REG:
7278 int regno = REGNO (x);
7279 struct induction *v = REG_IV_INFO (regno);
7281 if (REG_IV_TYPE (regno) == GENERAL_INDUCT
7282 && ! v->ignore
7283 && v->src_reg == biv
7284 && stats[v->ix].end_luid == 0)
7286 while (INSN_UID (insn) >= max_uid_for_loop)
7287 insn = NEXT_INSN (insn);
7288 stats[v->ix].end_luid = INSN_LUID (insn);
7289 return 1;
7291 return 0;
7293 case LABEL_REF:
7294 case CONST_DOUBLE:
7295 case CONST_INT:
7296 case CONST:
7297 return 0;
7298 default:
7299 break;
7301 fmt = GET_RTX_FORMAT (code);
7302 retval = 0;
7303 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7305 if (fmt[i] == 'e')
7306 retval += find_life_end (XEXP (x, i), stats, insn, biv);
7308 else if (fmt[i] == 'E')
7309 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7310 retval += find_life_end (XVECEXP (x, i, j), stats, insn, biv);
7312 return retval;
7315 /* For each giv that has been combined with another, look if
7316 we can combine it with the most recently used one instead.
7317 This tends to shorten giv lifetimes, and helps the next step:
7318 try to derive givs from other givs. */
7319 static void
7320 recombine_givs (loop, bl, unroll_p)
7321 const struct loop *loop;
7322 struct iv_class *bl;
7323 int unroll_p;
7325 struct induction *v, **giv_array, *last_giv;
7326 struct recombine_givs_stats *stats;
7327 int giv_count;
7328 int i, rescan;
7329 int ends_need_computing;
7331 for (giv_count = 0, v = bl->giv; v; v = v->next_iv)
7333 if (! v->ignore)
7334 giv_count++;
7336 giv_array
7337 = (struct induction **) xmalloc (giv_count * sizeof (struct induction *));
7338 stats = (struct recombine_givs_stats *) xmalloc (giv_count * sizeof *stats);
7340 /* Initialize stats and set up the ix field for each giv in stats to name
7341 the corresponding index into stats. */
7342 for (i = 0, v = bl->giv; v; v = v->next_iv)
7344 rtx p;
7346 if (v->ignore)
7347 continue;
7348 giv_array[i] = v;
7349 stats[i].giv_number = i;
7350 /* If this giv has been hoisted out of an inner loop, use the luid of
7351 the previous insn. */
7352 for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
7353 p = PREV_INSN (p);
7354 stats[i].start_luid = INSN_LUID (p);
7355 i++;
7358 qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
7360 /* Set up the ix field for each giv in stats to name
7361 the corresponding index into stats, and
7362 do the actual most-recently-used recombination. */
7363 for (last_giv = 0, i = giv_count - 1; i >= 0; i--)
7365 v = giv_array[stats[i].giv_number];
7366 v->ix = i;
7367 if (v->same)
7369 struct induction *old_same = v->same;
7370 rtx new_combine;
7372 /* combine_givs_p actually says if we can make this transformation.
7373 The other tests are here only to avoid keeping a giv alive
7374 that could otherwise be eliminated. */
7375 if (last_giv
7376 && ((old_same->maybe_dead && ! old_same->combined_with)
7377 || ! last_giv->maybe_dead
7378 || last_giv->combined_with)
7379 && (new_combine = combine_givs_p (last_giv, v)))
7381 old_same->combined_with--;
7382 v->new_reg = new_combine;
7383 v->same = last_giv;
7384 last_giv->combined_with++;
7385 /* No need to update lifetimes / benefits here since we have
7386 already decided what to reduce. */
7388 if (loop_dump_stream)
7390 fprintf (loop_dump_stream,
7391 "giv at %d recombined with giv at %d as ",
7392 INSN_UID (v->insn), INSN_UID (last_giv->insn));
7393 print_rtl (loop_dump_stream, v->new_reg);
7394 putc ('\n', loop_dump_stream);
7396 continue;
7398 v = v->same;
7400 else if (v->giv_type != DEST_REG)
7401 continue;
7402 if (! last_giv
7403 || (last_giv->maybe_dead && ! last_giv->combined_with)
7404 || ! v->maybe_dead
7405 || v->combined_with)
7406 last_giv = v;
7409 ends_need_computing = 0;
7410 /* For each DEST_REG giv, compute lifetime starts, and try to compute
7411 lifetime ends from regscan info. */
7412 for (i = giv_count - 1; i >= 0; i--)
7414 v = giv_array[stats[i].giv_number];
7415 if (v->ignore)
7416 continue;
7417 if (v->giv_type == DEST_ADDR)
7419 /* Loop unrolling of an inner loop can even create new DEST_REG
7420 givs. */
7421 rtx p;
7422 for (p = v->insn; INSN_UID (p) >= max_uid_for_loop; )
7423 p = PREV_INSN (p);
7424 stats[i].start_luid = stats[i].end_luid = INSN_LUID (p);
7425 if (p != v->insn)
7426 stats[i].end_luid++;
7428 else /* v->giv_type == DEST_REG */
7430 if (v->last_use)
7432 stats[i].start_luid = INSN_LUID (v->insn);
7433 stats[i].end_luid = INSN_LUID (v->last_use);
7435 else if (INSN_UID (v->insn) >= max_uid_for_loop)
7437 rtx p;
7438 /* This insn has been created by loop optimization on an inner
7439 loop. We don't have a proper start_luid that will match
7440 when we see the first set. But we do know that there will
7441 be no use before the set, so we can set end_luid to 0 so that
7442 we'll start looking for the last use right away. */
7443 for (p = PREV_INSN (v->insn); INSN_UID (p) >= max_uid_for_loop; )
7444 p = PREV_INSN (p);
7445 stats[i].start_luid = INSN_LUID (p);
7446 stats[i].end_luid = 0;
7447 ends_need_computing++;
7449 else
7451 int regno = REGNO (v->dest_reg);
7452 int count = VARRAY_INT (n_times_set, regno) - 1;
7453 rtx p = v->insn;
7455 /* Find the first insn that sets the giv, so that we can verify
7456 if this giv's lifetime wraps around the loop. We also need
7457 the luid of the first setting insn in order to detect the
7458 last use properly. */
7459 while (count)
7461 p = prev_nonnote_insn (p);
7462 if (reg_set_p (v->dest_reg, p))
7463 count--;
7466 stats[i].start_luid = INSN_LUID (p);
7467 if (stats[i].start_luid > uid_luid[REGNO_FIRST_UID (regno)])
7469 stats[i].end_luid = -1;
7470 ends_need_computing++;
7472 else
7474 stats[i].end_luid = uid_luid[REGNO_LAST_UID (regno)];
7475 if (stats[i].end_luid > INSN_LUID (loop->end))
7477 stats[i].end_luid = -1;
7478 ends_need_computing++;
7485 /* If the regscan information was unconclusive for one or more DEST_REG
7486 givs, scan the all insn in the loop to find out lifetime ends. */
7487 if (ends_need_computing)
7489 rtx biv = bl->biv->src_reg;
7490 rtx p = loop->end;
7494 if (p == loop->start)
7495 p = loop->end;
7496 p = PREV_INSN (p);
7497 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
7498 continue;
7499 ends_need_computing -= find_life_end (PATTERN (p), stats, p, biv);
7501 while (ends_need_computing);
7504 /* Set start_luid back to the last insn that sets the giv. This allows
7505 more combinations. */
7506 for (i = giv_count - 1; i >= 0; i--)
7508 v = giv_array[stats[i].giv_number];
7509 if (v->ignore)
7510 continue;
7511 if (INSN_UID (v->insn) < max_uid_for_loop)
7512 stats[i].start_luid = INSN_LUID (v->insn);
7515 /* Now adjust lifetime ends by taking combined givs into account. */
7516 for (i = giv_count - 1; i >= 0; i--)
7518 unsigned luid;
7519 int j;
7521 v = giv_array[stats[i].giv_number];
7522 if (v->ignore)
7523 continue;
7524 if (v->same && ! v->same->ignore)
7526 j = v->same->ix;
7527 luid = stats[i].start_luid;
7528 /* Use unsigned arithmetic to model loop wrap-around. */
7529 if (luid - stats[j].start_luid
7530 > (unsigned) stats[j].end_luid - stats[j].start_luid)
7531 stats[j].end_luid = luid;
7535 qsort (stats, giv_count, sizeof(*stats), cmp_recombine_givs_stats);
7537 /* Try to derive DEST_REG givs from previous DEST_REG givs with the
7538 same mult_val and non-overlapping lifetime. This reduces register
7539 pressure.
7540 Once we find a DEST_REG giv that is suitable to derive others from,
7541 we set last_giv to this giv, and try to derive as many other DEST_REG
7542 givs from it without joining overlapping lifetimes. If we then
7543 encounter a DEST_REG giv that we can't derive, we set rescan to the
7544 index for this giv (unless rescan is already set).
7545 When we are finished with the current LAST_GIV (i.e. the inner loop
7546 terminates), we start again with rescan, which then becomes the new
7547 LAST_GIV. */
7548 for (i = giv_count - 1; i >= 0; i = rescan)
7550 int life_start = 0, life_end = 0;
7552 for (last_giv = 0, rescan = -1; i >= 0; i--)
7554 rtx sum;
7556 v = giv_array[stats[i].giv_number];
7557 if (v->giv_type != DEST_REG || v->derived_from || v->same)
7558 continue;
7559 if (! last_giv)
7561 /* Don't use a giv that's likely to be dead to derive
7562 others - that would be likely to keep that giv alive. */
7563 if (! v->maybe_dead || v->combined_with)
7565 last_giv = v;
7566 life_start = stats[i].start_luid;
7567 life_end = stats[i].end_luid;
7569 continue;
7571 /* Use unsigned arithmetic to model loop wrap around. */
7572 if (((unsigned) stats[i].start_luid - life_start
7573 >= (unsigned) life_end - life_start)
7574 && ((unsigned) stats[i].end_luid - life_start
7575 > (unsigned) life_end - life_start)
7576 /* Check that the giv insn we're about to use for deriving
7577 precedes all uses of that giv. Note that initializing the
7578 derived giv would defeat the purpose of reducing register
7579 pressure.
7580 ??? We could arrange to move the insn. */
7581 && ((unsigned) stats[i].end_luid - INSN_LUID (loop->start)
7582 > (unsigned) stats[i].start_luid - INSN_LUID (loop->start))
7583 && rtx_equal_p (last_giv->mult_val, v->mult_val)
7584 /* ??? Could handle libcalls, but would need more logic. */
7585 && ! find_reg_note (v->insn, REG_RETVAL, NULL_RTX)
7586 /* We would really like to know if for any giv that v
7587 is combined with, v->insn or any intervening biv increment
7588 dominates that combined giv. However, we
7589 don't have this detailed control flow information.
7590 N.B. since last_giv will be reduced, it is valid
7591 anywhere in the loop, so we don't need to check the
7592 validity of last_giv.
7593 We rely here on the fact that v->always_executed implies that
7594 there is no jump to someplace else in the loop before the
7595 giv insn, and hence any insn that is executed before the
7596 giv insn in the loop will have a lower luid. */
7597 && (v->always_executed || ! v->combined_with)
7598 && (sum = express_from (last_giv, v))
7599 /* Make sure we don't make the add more expensive. ADD_COST
7600 doesn't take different costs of registers and constants into
7601 account, so compare the cost of the actual SET_SRCs. */
7602 && (rtx_cost (sum, SET)
7603 <= rtx_cost (SET_SRC (single_set (v->insn)), SET))
7604 /* ??? unroll can't understand anything but reg + const_int
7605 sums. It would be cleaner to fix unroll. */
7606 && ((GET_CODE (sum) == PLUS
7607 && GET_CODE (XEXP (sum, 0)) == REG
7608 && GET_CODE (XEXP (sum, 1)) == CONST_INT)
7609 || ! unroll_p)
7610 && validate_change (v->insn, &PATTERN (v->insn),
7611 gen_rtx_SET (VOIDmode, v->dest_reg, sum), 0))
7613 v->derived_from = last_giv;
7614 life_end = stats[i].end_luid;
7616 if (loop_dump_stream)
7618 fprintf (loop_dump_stream,
7619 "giv at %d derived from %d as ",
7620 INSN_UID (v->insn), INSN_UID (last_giv->insn));
7621 print_rtl (loop_dump_stream, sum);
7622 putc ('\n', loop_dump_stream);
7625 else if (rescan < 0)
7626 rescan = i;
7630 /* Clean up. */
7631 free (giv_array);
7632 free (stats);
7635 /* EMIT code before INSERT_BEFORE to set REG = B * M + A. */
7637 void
7638 emit_iv_add_mult (b, m, a, reg, insert_before)
7639 rtx b; /* initial value of basic induction variable */
7640 rtx m; /* multiplicative constant */
7641 rtx a; /* additive constant */
7642 rtx reg; /* destination register */
7643 rtx insert_before;
7645 rtx seq;
7646 rtx result;
7648 /* Prevent unexpected sharing of these rtx. */
7649 a = copy_rtx (a);
7650 b = copy_rtx (b);
7652 /* Increase the lifetime of any invariants moved further in code. */
7653 update_reg_last_use (a, insert_before);
7654 update_reg_last_use (b, insert_before);
7655 update_reg_last_use (m, insert_before);
7657 start_sequence ();
7658 result = expand_mult_add (b, reg, m, a, GET_MODE (reg), 0);
7659 if (reg != result)
7660 emit_move_insn (reg, result);
7661 seq = gen_sequence ();
7662 end_sequence ();
7664 emit_insn_before (seq, insert_before);
7666 /* It is entirely possible that the expansion created lots of new
7667 registers. Iterate over the sequence we just created and
7668 record them all. */
7670 if (GET_CODE (seq) == SEQUENCE)
7672 int i;
7673 for (i = 0; i < XVECLEN (seq, 0); ++i)
7675 rtx set = single_set (XVECEXP (seq, 0, i));
7676 if (set && GET_CODE (SET_DEST (set)) == REG)
7677 record_base_value (REGNO (SET_DEST (set)), SET_SRC (set), 0);
7680 else if (GET_CODE (seq) == SET
7681 && GET_CODE (SET_DEST (seq)) == REG)
7682 record_base_value (REGNO (SET_DEST (seq)), SET_SRC (seq), 0);
7685 /* Test whether A * B can be computed without
7686 an actual multiply insn. Value is 1 if so. */
7688 static int
7689 product_cheap_p (a, b)
7690 rtx a;
7691 rtx b;
7693 int i;
7694 rtx tmp;
7695 struct obstack *old_rtl_obstack = rtl_obstack;
7696 char *storage = (char *) obstack_alloc (&temp_obstack, 0);
7697 int win = 1;
7699 /* If only one is constant, make it B. */
7700 if (GET_CODE (a) == CONST_INT)
7701 tmp = a, a = b, b = tmp;
7703 /* If first constant, both constant, so don't need multiply. */
7704 if (GET_CODE (a) == CONST_INT)
7705 return 1;
7707 /* If second not constant, neither is constant, so would need multiply. */
7708 if (GET_CODE (b) != CONST_INT)
7709 return 0;
7711 /* One operand is constant, so might not need multiply insn. Generate the
7712 code for the multiply and see if a call or multiply, or long sequence
7713 of insns is generated. */
7715 rtl_obstack = &temp_obstack;
7716 start_sequence ();
7717 expand_mult (GET_MODE (a), a, b, NULL_RTX, 0);
7718 tmp = gen_sequence ();
7719 end_sequence ();
7721 if (GET_CODE (tmp) == SEQUENCE)
7723 if (XVEC (tmp, 0) == 0)
7724 win = 1;
7725 else if (XVECLEN (tmp, 0) > 3)
7726 win = 0;
7727 else
7728 for (i = 0; i < XVECLEN (tmp, 0); i++)
7730 rtx insn = XVECEXP (tmp, 0, i);
7732 if (GET_CODE (insn) != INSN
7733 || (GET_CODE (PATTERN (insn)) == SET
7734 && GET_CODE (SET_SRC (PATTERN (insn))) == MULT)
7735 || (GET_CODE (PATTERN (insn)) == PARALLEL
7736 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET
7737 && GET_CODE (SET_SRC (XVECEXP (PATTERN (insn), 0, 0))) == MULT))
7739 win = 0;
7740 break;
7744 else if (GET_CODE (tmp) == SET
7745 && GET_CODE (SET_SRC (tmp)) == MULT)
7746 win = 0;
7747 else if (GET_CODE (tmp) == PARALLEL
7748 && GET_CODE (XVECEXP (tmp, 0, 0)) == SET
7749 && GET_CODE (SET_SRC (XVECEXP (tmp, 0, 0))) == MULT)
7750 win = 0;
7752 /* Free any storage we obtained in generating this multiply and restore rtl
7753 allocation to its normal obstack. */
7754 obstack_free (&temp_obstack, storage);
7755 rtl_obstack = old_rtl_obstack;
7757 return win;
7760 /* Check to see if loop can be terminated by a "decrement and branch until
7761 zero" instruction. If so, add a REG_NONNEG note to the branch insn if so.
7762 Also try reversing an increment loop to a decrement loop
7763 to see if the optimization can be performed.
7764 Value is nonzero if optimization was performed. */
7766 /* This is useful even if the architecture doesn't have such an insn,
7767 because it might change a loops which increments from 0 to n to a loop
7768 which decrements from n to 0. A loop that decrements to zero is usually
7769 faster than one that increments from zero. */
7771 /* ??? This could be rewritten to use some of the loop unrolling procedures,
7772 such as approx_final_value, biv_total_increment, loop_iterations, and
7773 final_[bg]iv_value. */
7775 static int
7776 check_dbra_loop (loop, insn_count)
7777 struct loop *loop;
7778 int insn_count;
7780 struct iv_class *bl;
7781 rtx reg;
7782 rtx jump_label;
7783 rtx final_value;
7784 rtx start_value;
7785 rtx new_add_val;
7786 rtx comparison;
7787 rtx before_comparison;
7788 rtx p;
7789 rtx jump;
7790 rtx first_compare;
7791 int compare_and_branch;
7792 rtx loop_start = loop->start;
7793 rtx loop_end = loop->end;
7794 struct loop_info *loop_info = LOOP_INFO (loop);
7796 /* If last insn is a conditional branch, and the insn before tests a
7797 register value, try to optimize it. Otherwise, we can't do anything. */
7799 jump = PREV_INSN (loop_end);
7800 comparison = get_condition_for_loop (loop, jump);
7801 if (comparison == 0)
7802 return 0;
7804 /* Try to compute whether the compare/branch at the loop end is one or
7805 two instructions. */
7806 get_condition (jump, &first_compare);
7807 if (first_compare == jump)
7808 compare_and_branch = 1;
7809 else if (first_compare == prev_nonnote_insn (jump))
7810 compare_and_branch = 2;
7811 else
7812 return 0;
7814 /* Check all of the bivs to see if the compare uses one of them.
7815 Skip biv's set more than once because we can't guarantee that
7816 it will be zero on the last iteration. Also skip if the biv is
7817 used between its update and the test insn. */
7819 for (bl = loop_iv_list; bl; bl = bl->next)
7821 if (bl->biv_count == 1
7822 && ! bl->biv->maybe_multiple
7823 && bl->biv->dest_reg == XEXP (comparison, 0)
7824 && ! reg_used_between_p (regno_reg_rtx[bl->regno], bl->biv->insn,
7825 first_compare))
7826 break;
7829 if (! bl)
7830 return 0;
7832 /* Look for the case where the basic induction variable is always
7833 nonnegative, and equals zero on the last iteration.
7834 In this case, add a reg_note REG_NONNEG, which allows the
7835 m68k DBRA instruction to be used. */
7837 if (((GET_CODE (comparison) == GT
7838 && GET_CODE (XEXP (comparison, 1)) == CONST_INT
7839 && INTVAL (XEXP (comparison, 1)) == -1)
7840 || (GET_CODE (comparison) == NE && XEXP (comparison, 1) == const0_rtx))
7841 && GET_CODE (bl->biv->add_val) == CONST_INT
7842 && INTVAL (bl->biv->add_val) < 0)
7844 /* Initial value must be greater than 0,
7845 init_val % -dec_value == 0 to ensure that it equals zero on
7846 the last iteration */
7848 if (GET_CODE (bl->initial_value) == CONST_INT
7849 && INTVAL (bl->initial_value) > 0
7850 && (INTVAL (bl->initial_value)
7851 % (-INTVAL (bl->biv->add_val))) == 0)
7853 /* register always nonnegative, add REG_NOTE to branch */
7854 REG_NOTES (PREV_INSN (loop_end))
7855 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7856 REG_NOTES (PREV_INSN (loop_end)));
7857 bl->nonneg = 1;
7859 return 1;
7862 /* If the decrement is 1 and the value was tested as >= 0 before
7863 the loop, then we can safely optimize. */
7864 for (p = loop_start; p; p = PREV_INSN (p))
7866 if (GET_CODE (p) == CODE_LABEL)
7867 break;
7868 if (GET_CODE (p) != JUMP_INSN)
7869 continue;
7871 before_comparison = get_condition_for_loop (loop, p);
7872 if (before_comparison
7873 && XEXP (before_comparison, 0) == bl->biv->dest_reg
7874 && GET_CODE (before_comparison) == LT
7875 && XEXP (before_comparison, 1) == const0_rtx
7876 && ! reg_set_between_p (bl->biv->dest_reg, p, loop_start)
7877 && INTVAL (bl->biv->add_val) == -1)
7879 REG_NOTES (PREV_INSN (loop_end))
7880 = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
7881 REG_NOTES (PREV_INSN (loop_end)));
7882 bl->nonneg = 1;
7884 return 1;
7888 else if (GET_CODE (bl->biv->add_val) == CONST_INT
7889 && INTVAL (bl->biv->add_val) > 0)
7891 /* Try to change inc to dec, so can apply above optimization. */
7892 /* Can do this if:
7893 all registers modified are induction variables or invariant,
7894 all memory references have non-overlapping addresses
7895 (obviously true if only one write)
7896 allow 2 insns for the compare/jump at the end of the loop. */
7897 /* Also, we must avoid any instructions which use both the reversed
7898 biv and another biv. Such instructions will fail if the loop is
7899 reversed. We meet this condition by requiring that either
7900 no_use_except_counting is true, or else that there is only
7901 one biv. */
7902 int num_nonfixed_reads = 0;
7903 /* 1 if the iteration var is used only to count iterations. */
7904 int no_use_except_counting = 0;
7905 /* 1 if the loop has no memory store, or it has a single memory store
7906 which is reversible. */
7907 int reversible_mem_store = 1;
7909 if (bl->giv_count == 0 && ! loop->exit_count)
7911 rtx bivreg = regno_reg_rtx[bl->regno];
7913 /* If there are no givs for this biv, and the only exit is the
7914 fall through at the end of the loop, then
7915 see if perhaps there are no uses except to count. */
7916 no_use_except_counting = 1;
7917 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7918 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
7920 rtx set = single_set (p);
7922 if (set && GET_CODE (SET_DEST (set)) == REG
7923 && REGNO (SET_DEST (set)) == bl->regno)
7924 /* An insn that sets the biv is okay. */
7926 else if ((p == prev_nonnote_insn (prev_nonnote_insn (loop_end))
7927 || p == prev_nonnote_insn (loop_end))
7928 && reg_mentioned_p (bivreg, PATTERN (p)))
7930 /* If either of these insns uses the biv and sets a pseudo
7931 that has more than one usage, then the biv has uses
7932 other than counting since it's used to derive a value
7933 that is used more than one time. */
7934 int note_set_pseudo_multiple_uses_retval = 0;
7935 note_stores (PATTERN (p), note_set_pseudo_multiple_uses,
7936 &note_set_pseudo_multiple_uses_retval);
7937 if (note_set_pseudo_multiple_uses_retval)
7939 no_use_except_counting = 0;
7940 break;
7943 else if (reg_mentioned_p (bivreg, PATTERN (p)))
7945 no_use_except_counting = 0;
7946 break;
7951 if (no_use_except_counting)
7952 ; /* no need to worry about MEMs. */
7953 else if (num_mem_sets <= 1)
7955 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
7956 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
7957 num_nonfixed_reads += count_nonfixed_reads (loop, PATTERN (p));
7959 /* If the loop has a single store, and the destination address is
7960 invariant, then we can't reverse the loop, because this address
7961 might then have the wrong value at loop exit.
7962 This would work if the source was invariant also, however, in that
7963 case, the insn should have been moved out of the loop. */
7965 if (num_mem_sets == 1)
7967 struct induction *v;
7969 reversible_mem_store
7970 = (! unknown_address_altered
7971 && ! unknown_constant_address_altered
7972 && ! loop_invariant_p (loop,
7973 XEXP (XEXP (loop_store_mems, 0),
7974 0)));
7976 /* If the store depends on a register that is set after the
7977 store, it depends on the initial value, and is thus not
7978 reversible. */
7979 for (v = bl->giv; reversible_mem_store && v; v = v->next_iv)
7981 if (v->giv_type == DEST_REG
7982 && reg_mentioned_p (v->dest_reg,
7983 PATTERN (first_loop_store_insn))
7984 && loop_insn_first_p (first_loop_store_insn, v->insn))
7985 reversible_mem_store = 0;
7989 else
7990 return 0;
7992 /* This code only acts for innermost loops. Also it simplifies
7993 the memory address check by only reversing loops with
7994 zero or one memory access.
7995 Two memory accesses could involve parts of the same array,
7996 and that can't be reversed.
7997 If the biv is used only for counting, than we don't need to worry
7998 about all these things. */
8000 if ((num_nonfixed_reads <= 1
8001 && ! loop_info->has_call
8002 && ! loop_info->has_volatile
8003 && reversible_mem_store
8004 && (bl->giv_count + bl->biv_count + num_mem_sets
8005 + num_movables + compare_and_branch == insn_count)
8006 && (bl == loop_iv_list && bl->next == 0))
8007 || no_use_except_counting)
8009 rtx tem;
8011 /* Loop can be reversed. */
8012 if (loop_dump_stream)
8013 fprintf (loop_dump_stream, "Can reverse loop\n");
8015 /* Now check other conditions:
8017 The increment must be a constant, as must the initial value,
8018 and the comparison code must be LT.
8020 This test can probably be improved since +/- 1 in the constant
8021 can be obtained by changing LT to LE and vice versa; this is
8022 confusing. */
8024 if (comparison
8025 /* for constants, LE gets turned into LT */
8026 && (GET_CODE (comparison) == LT
8027 || (GET_CODE (comparison) == LE
8028 && no_use_except_counting)))
8030 HOST_WIDE_INT add_val, add_adjust, comparison_val = 0;
8031 rtx initial_value, comparison_value;
8032 int nonneg = 0;
8033 enum rtx_code cmp_code;
8034 int comparison_const_width;
8035 unsigned HOST_WIDE_INT comparison_sign_mask;
8037 add_val = INTVAL (bl->biv->add_val);
8038 comparison_value = XEXP (comparison, 1);
8039 if (GET_MODE (comparison_value) == VOIDmode)
8040 comparison_const_width
8041 = GET_MODE_BITSIZE (GET_MODE (XEXP (comparison, 0)));
8042 else
8043 comparison_const_width
8044 = GET_MODE_BITSIZE (GET_MODE (comparison_value));
8045 if (comparison_const_width > HOST_BITS_PER_WIDE_INT)
8046 comparison_const_width = HOST_BITS_PER_WIDE_INT;
8047 comparison_sign_mask
8048 = (unsigned HOST_WIDE_INT)1 << (comparison_const_width - 1);
8050 /* If the comparison value is not a loop invariant, then we
8051 can not reverse this loop.
8053 ??? If the insns which initialize the comparison value as
8054 a whole compute an invariant result, then we could move
8055 them out of the loop and proceed with loop reversal. */
8056 if (! loop_invariant_p (loop, comparison_value))
8057 return 0;
8059 if (GET_CODE (comparison_value) == CONST_INT)
8060 comparison_val = INTVAL (comparison_value);
8061 initial_value = bl->initial_value;
8063 /* Normalize the initial value if it is an integer and
8064 has no other use except as a counter. This will allow
8065 a few more loops to be reversed. */
8066 if (no_use_except_counting
8067 && GET_CODE (comparison_value) == CONST_INT
8068 && GET_CODE (initial_value) == CONST_INT)
8070 comparison_val = comparison_val - INTVAL (bl->initial_value);
8071 /* The code below requires comparison_val to be a multiple
8072 of add_val in order to do the loop reversal, so
8073 round up comparison_val to a multiple of add_val.
8074 Since comparison_value is constant, we know that the
8075 current comparison code is LT. */
8076 comparison_val = comparison_val + add_val - 1;
8077 comparison_val
8078 -= (unsigned HOST_WIDE_INT) comparison_val % add_val;
8079 /* We postpone overflow checks for COMPARISON_VAL here;
8080 even if there is an overflow, we might still be able to
8081 reverse the loop, if converting the loop exit test to
8082 NE is possible. */
8083 initial_value = const0_rtx;
8086 /* First check if we can do a vanilla loop reversal. */
8087 if (initial_value == const0_rtx
8088 /* If we have a decrement_and_branch_on_count,
8089 prefer the NE test, since this will allow that
8090 instruction to be generated. Note that we must
8091 use a vanilla loop reversal if the biv is used to
8092 calculate a giv or has a non-counting use. */
8093 #if ! defined (HAVE_decrement_and_branch_until_zero) \
8094 && defined (HAVE_decrement_and_branch_on_count)
8095 && (! (add_val == 1 && loop->vtop
8096 && (bl->biv_count == 0
8097 || no_use_except_counting)))
8098 #endif
8099 && GET_CODE (comparison_value) == CONST_INT
8100 /* Now do postponed overflow checks on COMPARISON_VAL. */
8101 && ! (((comparison_val - add_val) ^ INTVAL (comparison_value))
8102 & comparison_sign_mask))
8104 /* Register will always be nonnegative, with value
8105 0 on last iteration */
8106 add_adjust = add_val;
8107 nonneg = 1;
8108 cmp_code = GE;
8110 else if (add_val == 1 && loop->vtop
8111 && (bl->biv_count == 0
8112 || no_use_except_counting))
8114 add_adjust = 0;
8115 cmp_code = NE;
8117 else
8118 return 0;
8120 if (GET_CODE (comparison) == LE)
8121 add_adjust -= add_val;
8123 /* If the initial value is not zero, or if the comparison
8124 value is not an exact multiple of the increment, then we
8125 can not reverse this loop. */
8126 if (initial_value == const0_rtx
8127 && GET_CODE (comparison_value) == CONST_INT)
8129 if (((unsigned HOST_WIDE_INT) comparison_val % add_val) != 0)
8130 return 0;
8132 else
8134 if (! no_use_except_counting || add_val != 1)
8135 return 0;
8138 final_value = comparison_value;
8140 /* Reset these in case we normalized the initial value
8141 and comparison value above. */
8142 if (GET_CODE (comparison_value) == CONST_INT
8143 && GET_CODE (initial_value) == CONST_INT)
8145 comparison_value = GEN_INT (comparison_val);
8146 final_value
8147 = GEN_INT (comparison_val + INTVAL (bl->initial_value));
8149 bl->initial_value = initial_value;
8151 /* Save some info needed to produce the new insns. */
8152 reg = bl->biv->dest_reg;
8153 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 1);
8154 if (jump_label == pc_rtx)
8155 jump_label = XEXP (SET_SRC (PATTERN (PREV_INSN (loop_end))), 2);
8156 new_add_val = GEN_INT (- INTVAL (bl->biv->add_val));
8158 /* Set start_value; if this is not a CONST_INT, we need
8159 to generate a SUB.
8160 Initialize biv to start_value before loop start.
8161 The old initializing insn will be deleted as a
8162 dead store by flow.c. */
8163 if (initial_value == const0_rtx
8164 && GET_CODE (comparison_value) == CONST_INT)
8166 start_value = GEN_INT (comparison_val - add_adjust);
8167 emit_insn_before (gen_move_insn (reg, start_value),
8168 loop_start);
8170 else if (GET_CODE (initial_value) == CONST_INT)
8172 rtx offset = GEN_INT (-INTVAL (initial_value) - add_adjust);
8173 enum machine_mode mode = GET_MODE (reg);
8174 enum insn_code icode
8175 = add_optab->handlers[(int) mode].insn_code;
8177 if (! (*insn_data[icode].operand[0].predicate) (reg, mode)
8178 || ! ((*insn_data[icode].operand[1].predicate)
8179 (comparison_value, mode))
8180 || ! ((*insn_data[icode].operand[2].predicate)
8181 (offset, mode)))
8182 return 0;
8183 start_value
8184 = gen_rtx_PLUS (mode, comparison_value, offset);
8185 emit_insn_before ((GEN_FCN (icode)
8186 (reg, comparison_value, offset)),
8187 loop_start);
8188 if (GET_CODE (comparison) == LE)
8189 final_value = gen_rtx_PLUS (mode, comparison_value,
8190 GEN_INT (add_val));
8192 else if (! add_adjust)
8194 enum machine_mode mode = GET_MODE (reg);
8195 enum insn_code icode
8196 = sub_optab->handlers[(int) mode].insn_code;
8197 if (! (*insn_data[icode].operand[0].predicate) (reg, mode)
8198 || ! ((*insn_data[icode].operand[1].predicate)
8199 (comparison_value, mode))
8200 || ! ((*insn_data[icode].operand[2].predicate)
8201 (initial_value, mode)))
8202 return 0;
8203 start_value
8204 = gen_rtx_MINUS (mode, comparison_value, initial_value);
8205 emit_insn_before ((GEN_FCN (icode)
8206 (reg, comparison_value, initial_value)),
8207 loop_start);
8209 else
8210 /* We could handle the other cases too, but it'll be
8211 better to have a testcase first. */
8212 return 0;
8214 /* We may not have a single insn which can increment a reg, so
8215 create a sequence to hold all the insns from expand_inc. */
8216 start_sequence ();
8217 expand_inc (reg, new_add_val);
8218 tem = gen_sequence ();
8219 end_sequence ();
8221 p = emit_insn_before (tem, bl->biv->insn);
8222 delete_insn (bl->biv->insn);
8224 /* Update biv info to reflect its new status. */
8225 bl->biv->insn = p;
8226 bl->initial_value = start_value;
8227 bl->biv->add_val = new_add_val;
8229 /* Update loop info. */
8230 loop_info->initial_value = reg;
8231 loop_info->initial_equiv_value = reg;
8232 loop_info->final_value = const0_rtx;
8233 loop_info->final_equiv_value = const0_rtx;
8234 loop_info->comparison_value = const0_rtx;
8235 loop_info->comparison_code = cmp_code;
8236 loop_info->increment = new_add_val;
8238 /* Inc LABEL_NUSES so that delete_insn will
8239 not delete the label. */
8240 LABEL_NUSES (XEXP (jump_label, 0)) ++;
8242 /* Emit an insn after the end of the loop to set the biv's
8243 proper exit value if it is used anywhere outside the loop. */
8244 if ((REGNO_LAST_UID (bl->regno) != INSN_UID (first_compare))
8245 || ! bl->init_insn
8246 || REGNO_FIRST_UID (bl->regno) != INSN_UID (bl->init_insn))
8247 emit_insn_after (gen_move_insn (reg, final_value),
8248 loop_end);
8250 /* Delete compare/branch at end of loop. */
8251 delete_insn (PREV_INSN (loop_end));
8252 if (compare_and_branch == 2)
8253 delete_insn (first_compare);
8255 /* Add new compare/branch insn at end of loop. */
8256 start_sequence ();
8257 emit_cmp_and_jump_insns (reg, const0_rtx, cmp_code, NULL_RTX,
8258 GET_MODE (reg), 0, 0,
8259 XEXP (jump_label, 0));
8260 tem = gen_sequence ();
8261 end_sequence ();
8262 emit_jump_insn_before (tem, loop_end);
8264 for (tem = PREV_INSN (loop_end);
8265 tem && GET_CODE (tem) != JUMP_INSN;
8266 tem = PREV_INSN (tem))
8269 if (tem)
8270 JUMP_LABEL (tem) = XEXP (jump_label, 0);
8272 if (nonneg)
8274 if (tem)
8276 /* Increment of LABEL_NUSES done above. */
8277 /* Register is now always nonnegative,
8278 so add REG_NONNEG note to the branch. */
8279 REG_NOTES (tem) = gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX,
8280 REG_NOTES (tem));
8282 bl->nonneg = 1;
8285 /* No insn may reference both the reversed and another biv or it
8286 will fail (see comment near the top of the loop reversal
8287 code).
8288 Earlier on, we have verified that the biv has no use except
8289 counting, or it is the only biv in this function.
8290 However, the code that computes no_use_except_counting does
8291 not verify reg notes. It's possible to have an insn that
8292 references another biv, and has a REG_EQUAL note with an
8293 expression based on the reversed biv. To avoid this case,
8294 remove all REG_EQUAL notes based on the reversed biv
8295 here. */
8296 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8297 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
8299 rtx *pnote;
8300 rtx set = single_set (p);
8301 /* If this is a set of a GIV based on the reversed biv, any
8302 REG_EQUAL notes should still be correct. */
8303 if (! set
8304 || GET_CODE (SET_DEST (set)) != REG
8305 || (size_t) REGNO (SET_DEST (set)) >= reg_iv_type->num_elements
8306 || REG_IV_TYPE (REGNO (SET_DEST (set))) != GENERAL_INDUCT
8307 || REG_IV_INFO (REGNO (SET_DEST (set)))->src_reg != bl->biv->src_reg)
8308 for (pnote = &REG_NOTES (p); *pnote;)
8310 if (REG_NOTE_KIND (*pnote) == REG_EQUAL
8311 && reg_mentioned_p (regno_reg_rtx[bl->regno],
8312 XEXP (*pnote, 0)))
8313 *pnote = XEXP (*pnote, 1);
8314 else
8315 pnote = &XEXP (*pnote, 1);
8319 /* Mark that this biv has been reversed. Each giv which depends
8320 on this biv, and which is also live past the end of the loop
8321 will have to be fixed up. */
8323 bl->reversed = 1;
8325 if (loop_dump_stream)
8327 fprintf (loop_dump_stream, "Reversed loop");
8328 if (bl->nonneg)
8329 fprintf (loop_dump_stream, " and added reg_nonneg\n");
8330 else
8331 fprintf (loop_dump_stream, "\n");
8334 return 1;
8339 return 0;
8342 /* Verify whether the biv BL appears to be eliminable,
8343 based on the insns in the loop that refer to it.
8345 If ELIMINATE_P is non-zero, actually do the elimination.
8347 THRESHOLD and INSN_COUNT are from loop_optimize and are used to
8348 determine whether invariant insns should be placed inside or at the
8349 start of the loop. */
8351 static int
8352 maybe_eliminate_biv (loop, bl, eliminate_p, threshold, insn_count)
8353 const struct loop *loop;
8354 struct iv_class *bl;
8355 int eliminate_p;
8356 int threshold, insn_count;
8358 rtx reg = bl->biv->dest_reg;
8359 rtx loop_start = loop->start;
8360 rtx loop_end = loop->end;
8361 rtx p;
8363 /* Scan all insns in the loop, stopping if we find one that uses the
8364 biv in a way that we cannot eliminate. */
8366 for (p = loop_start; p != loop_end; p = NEXT_INSN (p))
8368 enum rtx_code code = GET_CODE (p);
8369 rtx where = threshold >= insn_count ? loop_start : p;
8371 /* If this is a libcall that sets a giv, skip ahead to its end. */
8372 if (GET_RTX_CLASS (code) == 'i')
8374 rtx note = find_reg_note (p, REG_LIBCALL, NULL_RTX);
8376 if (note)
8378 rtx last = XEXP (note, 0);
8379 rtx set = single_set (last);
8381 if (set && GET_CODE (SET_DEST (set)) == REG)
8383 unsigned int regno = REGNO (SET_DEST (set));
8385 if (regno < max_reg_before_loop
8386 && REG_IV_TYPE (regno) == GENERAL_INDUCT
8387 && REG_IV_INFO (regno)->src_reg == bl->biv->src_reg)
8388 p = last;
8392 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
8393 && reg_mentioned_p (reg, PATTERN (p))
8394 && ! maybe_eliminate_biv_1 (loop, PATTERN (p), p, bl,
8395 eliminate_p, where))
8397 if (loop_dump_stream)
8398 fprintf (loop_dump_stream,
8399 "Cannot eliminate biv %d: biv used in insn %d.\n",
8400 bl->regno, INSN_UID (p));
8401 break;
8405 if (p == loop_end)
8407 if (loop_dump_stream)
8408 fprintf (loop_dump_stream, "biv %d %s eliminated.\n",
8409 bl->regno, eliminate_p ? "was" : "can be");
8410 return 1;
8413 return 0;
8416 /* INSN and REFERENCE are instructions in the same insn chain.
8417 Return non-zero if INSN is first. */
8420 loop_insn_first_p (insn, reference)
8421 rtx insn, reference;
8423 rtx p, q;
8425 for (p = insn, q = reference; ;)
8427 /* Start with test for not first so that INSN == REFERENCE yields not
8428 first. */
8429 if (q == insn || ! p)
8430 return 0;
8431 if (p == reference || ! q)
8432 return 1;
8434 /* Either of P or Q might be a NOTE. Notes have the same LUID as the
8435 previous insn, hence the <= comparison below does not work if
8436 P is a note. */
8437 if (INSN_UID (p) < max_uid_for_loop
8438 && INSN_UID (q) < max_uid_for_loop
8439 && GET_CODE (p) != NOTE)
8440 return INSN_LUID (p) <= INSN_LUID (q);
8442 if (INSN_UID (p) >= max_uid_for_loop
8443 || GET_CODE (p) == NOTE)
8444 p = NEXT_INSN (p);
8445 if (INSN_UID (q) >= max_uid_for_loop)
8446 q = NEXT_INSN (q);
8450 /* We are trying to eliminate BIV in INSN using GIV. Return non-zero if
8451 the offset that we have to take into account due to auto-increment /
8452 div derivation is zero. */
8453 static int
8454 biv_elimination_giv_has_0_offset (biv, giv, insn)
8455 struct induction *biv, *giv;
8456 rtx insn;
8458 /* If the giv V had the auto-inc address optimization applied
8459 to it, and INSN occurs between the giv insn and the biv
8460 insn, then we'd have to adjust the value used here.
8461 This is rare, so we don't bother to make this possible. */
8462 if (giv->auto_inc_opt
8463 && ((loop_insn_first_p (giv->insn, insn)
8464 && loop_insn_first_p (insn, biv->insn))
8465 || (loop_insn_first_p (biv->insn, insn)
8466 && loop_insn_first_p (insn, giv->insn))))
8467 return 0;
8469 /* If the giv V was derived from another giv, and INSN does
8470 not occur between the giv insn and the biv insn, then we'd
8471 have to adjust the value used here. This is rare, so we don't
8472 bother to make this possible. */
8473 if (giv->derived_from
8474 && ! (giv->always_executed
8475 && loop_insn_first_p (giv->insn, insn)
8476 && loop_insn_first_p (insn, biv->insn)))
8477 return 0;
8478 if (giv->same
8479 && giv->same->derived_from
8480 && ! (giv->same->always_executed
8481 && loop_insn_first_p (giv->same->insn, insn)
8482 && loop_insn_first_p (insn, biv->insn)))
8483 return 0;
8485 return 1;
8488 /* If BL appears in X (part of the pattern of INSN), see if we can
8489 eliminate its use. If so, return 1. If not, return 0.
8491 If BIV does not appear in X, return 1.
8493 If ELIMINATE_P is non-zero, actually do the elimination. WHERE indicates
8494 where extra insns should be added. Depending on how many items have been
8495 moved out of the loop, it will either be before INSN or at the start of
8496 the loop. */
8498 static int
8499 maybe_eliminate_biv_1 (loop, x, insn, bl, eliminate_p, where)
8500 const struct loop *loop;
8501 rtx x, insn;
8502 struct iv_class *bl;
8503 int eliminate_p;
8504 rtx where;
8506 enum rtx_code code = GET_CODE (x);
8507 rtx reg = bl->biv->dest_reg;
8508 enum machine_mode mode = GET_MODE (reg);
8509 struct induction *v;
8510 rtx arg, tem;
8511 #ifdef HAVE_cc0
8512 rtx new;
8513 #endif
8514 int arg_operand;
8515 const char *fmt;
8516 int i, j;
8518 switch (code)
8520 case REG:
8521 /* If we haven't already been able to do something with this BIV,
8522 we can't eliminate it. */
8523 if (x == reg)
8524 return 0;
8525 return 1;
8527 case SET:
8528 /* If this sets the BIV, it is not a problem. */
8529 if (SET_DEST (x) == reg)
8530 return 1;
8532 /* If this is an insn that defines a giv, it is also ok because
8533 it will go away when the giv is reduced. */
8534 for (v = bl->giv; v; v = v->next_iv)
8535 if (v->giv_type == DEST_REG && SET_DEST (x) == v->dest_reg)
8536 return 1;
8538 #ifdef HAVE_cc0
8539 if (SET_DEST (x) == cc0_rtx && SET_SRC (x) == reg)
8541 /* Can replace with any giv that was reduced and
8542 that has (MULT_VAL != 0) and (ADD_VAL == 0).
8543 Require a constant for MULT_VAL, so we know it's nonzero.
8544 ??? We disable this optimization to avoid potential
8545 overflows. */
8547 for (v = bl->giv; v; v = v->next_iv)
8548 if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
8549 && v->add_val == const0_rtx
8550 && ! v->ignore && ! v->maybe_dead && v->always_computable
8551 && v->mode == mode
8552 && 0)
8554 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8555 continue;
8557 if (! eliminate_p)
8558 return 1;
8560 /* If the giv has the opposite direction of change,
8561 then reverse the comparison. */
8562 if (INTVAL (v->mult_val) < 0)
8563 new = gen_rtx_COMPARE (GET_MODE (v->new_reg),
8564 const0_rtx, v->new_reg);
8565 else
8566 new = v->new_reg;
8568 /* We can probably test that giv's reduced reg. */
8569 if (validate_change (insn, &SET_SRC (x), new, 0))
8570 return 1;
8573 /* Look for a giv with (MULT_VAL != 0) and (ADD_VAL != 0);
8574 replace test insn with a compare insn (cmp REDUCED_GIV ADD_VAL).
8575 Require a constant for MULT_VAL, so we know it's nonzero.
8576 ??? Do this only if ADD_VAL is a pointer to avoid a potential
8577 overflow problem. */
8579 for (v = bl->giv; v; v = v->next_iv)
8580 if (GET_CODE (v->mult_val) == CONST_INT && v->mult_val != const0_rtx
8581 && ! v->ignore && ! v->maybe_dead && v->always_computable
8582 && v->mode == mode
8583 && (GET_CODE (v->add_val) == SYMBOL_REF
8584 || GET_CODE (v->add_val) == LABEL_REF
8585 || GET_CODE (v->add_val) == CONST
8586 || (GET_CODE (v->add_val) == REG
8587 && REGNO_POINTER_FLAG (REGNO (v->add_val)))))
8589 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8590 continue;
8592 if (! eliminate_p)
8593 return 1;
8595 /* If the giv has the opposite direction of change,
8596 then reverse the comparison. */
8597 if (INTVAL (v->mult_val) < 0)
8598 new = gen_rtx_COMPARE (VOIDmode, copy_rtx (v->add_val),
8599 v->new_reg);
8600 else
8601 new = gen_rtx_COMPARE (VOIDmode, v->new_reg,
8602 copy_rtx (v->add_val));
8604 /* Replace biv with the giv's reduced register. */
8605 update_reg_last_use (v->add_val, insn);
8606 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8607 return 1;
8609 /* Insn doesn't support that constant or invariant. Copy it
8610 into a register (it will be a loop invariant.) */
8611 tem = gen_reg_rtx (GET_MODE (v->new_reg));
8613 emit_insn_before (gen_move_insn (tem, copy_rtx (v->add_val)),
8614 where);
8616 /* Substitute the new register for its invariant value in
8617 the compare expression. */
8618 XEXP (new, (INTVAL (v->mult_val) < 0) ? 0 : 1) = tem;
8619 if (validate_change (insn, &SET_SRC (PATTERN (insn)), new, 0))
8620 return 1;
8623 #endif
8624 break;
8626 case COMPARE:
8627 case EQ: case NE:
8628 case GT: case GE: case GTU: case GEU:
8629 case LT: case LE: case LTU: case LEU:
8630 /* See if either argument is the biv. */
8631 if (XEXP (x, 0) == reg)
8632 arg = XEXP (x, 1), arg_operand = 1;
8633 else if (XEXP (x, 1) == reg)
8634 arg = XEXP (x, 0), arg_operand = 0;
8635 else
8636 break;
8638 if (CONSTANT_P (arg))
8640 /* First try to replace with any giv that has constant positive
8641 mult_val and constant add_val. We might be able to support
8642 negative mult_val, but it seems complex to do it in general. */
8644 for (v = bl->giv; v; v = v->next_iv)
8645 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8646 && (GET_CODE (v->add_val) == SYMBOL_REF
8647 || GET_CODE (v->add_val) == LABEL_REF
8648 || GET_CODE (v->add_val) == CONST
8649 || (GET_CODE (v->add_val) == REG
8650 && REGNO_POINTER_FLAG (REGNO (v->add_val))))
8651 && ! v->ignore && ! v->maybe_dead && v->always_computable
8652 && v->mode == mode)
8654 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8655 continue;
8657 if (! eliminate_p)
8658 return 1;
8660 /* Replace biv with the giv's reduced reg. */
8661 validate_change (insn, &XEXP (x, 1-arg_operand), v->new_reg, 1);
8663 /* If all constants are actually constant integers and
8664 the derived constant can be directly placed in the COMPARE,
8665 do so. */
8666 if (GET_CODE (arg) == CONST_INT
8667 && GET_CODE (v->mult_val) == CONST_INT
8668 && GET_CODE (v->add_val) == CONST_INT)
8670 validate_change (insn, &XEXP (x, arg_operand),
8671 GEN_INT (INTVAL (arg)
8672 * INTVAL (v->mult_val)
8673 + INTVAL (v->add_val)), 1);
8675 else
8677 /* Otherwise, load it into a register. */
8678 tem = gen_reg_rtx (mode);
8679 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
8680 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8682 if (apply_change_group ())
8683 return 1;
8686 /* Look for giv with positive constant mult_val and nonconst add_val.
8687 Insert insns to calculate new compare value.
8688 ??? Turn this off due to possible overflow. */
8690 for (v = bl->giv; v; v = v->next_iv)
8691 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8692 && ! v->ignore && ! v->maybe_dead && v->always_computable
8693 && v->mode == mode
8694 && 0)
8696 rtx tem;
8698 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8699 continue;
8701 if (! eliminate_p)
8702 return 1;
8704 tem = gen_reg_rtx (mode);
8706 /* Replace biv with giv's reduced register. */
8707 validate_change (insn, &XEXP (x, 1 - arg_operand),
8708 v->new_reg, 1);
8710 /* Compute value to compare against. */
8711 emit_iv_add_mult (arg, v->mult_val, v->add_val, tem, where);
8712 /* Use it in this insn. */
8713 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8714 if (apply_change_group ())
8715 return 1;
8718 else if (GET_CODE (arg) == REG || GET_CODE (arg) == MEM)
8720 if (loop_invariant_p (loop, arg) == 1)
8722 /* Look for giv with constant positive mult_val and nonconst
8723 add_val. Insert insns to compute new compare value.
8724 ??? Turn this off due to possible overflow. */
8726 for (v = bl->giv; v; v = v->next_iv)
8727 if (GET_CODE (v->mult_val) == CONST_INT && INTVAL (v->mult_val) > 0
8728 && ! v->ignore && ! v->maybe_dead && v->always_computable
8729 && v->mode == mode
8730 && 0)
8732 rtx tem;
8734 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8735 continue;
8737 if (! eliminate_p)
8738 return 1;
8740 tem = gen_reg_rtx (mode);
8742 /* Replace biv with giv's reduced register. */
8743 validate_change (insn, &XEXP (x, 1 - arg_operand),
8744 v->new_reg, 1);
8746 /* Compute value to compare against. */
8747 emit_iv_add_mult (arg, v->mult_val, v->add_val,
8748 tem, where);
8749 validate_change (insn, &XEXP (x, arg_operand), tem, 1);
8750 if (apply_change_group ())
8751 return 1;
8755 /* This code has problems. Basically, you can't know when
8756 seeing if we will eliminate BL, whether a particular giv
8757 of ARG will be reduced. If it isn't going to be reduced,
8758 we can't eliminate BL. We can try forcing it to be reduced,
8759 but that can generate poor code.
8761 The problem is that the benefit of reducing TV, below should
8762 be increased if BL can actually be eliminated, but this means
8763 we might have to do a topological sort of the order in which
8764 we try to process biv. It doesn't seem worthwhile to do
8765 this sort of thing now. */
8767 #if 0
8768 /* Otherwise the reg compared with had better be a biv. */
8769 if (GET_CODE (arg) != REG
8770 || REG_IV_TYPE (REGNO (arg)) != BASIC_INDUCT)
8771 return 0;
8773 /* Look for a pair of givs, one for each biv,
8774 with identical coefficients. */
8775 for (v = bl->giv; v; v = v->next_iv)
8777 struct induction *tv;
8779 if (v->ignore || v->maybe_dead || v->mode != mode)
8780 continue;
8782 for (tv = reg_biv_class[REGNO (arg)]->giv; tv; tv = tv->next_iv)
8783 if (! tv->ignore && ! tv->maybe_dead
8784 && rtx_equal_p (tv->mult_val, v->mult_val)
8785 && rtx_equal_p (tv->add_val, v->add_val)
8786 && tv->mode == mode)
8788 if (! biv_elimination_giv_has_0_offset (bl->biv, v, insn))
8789 continue;
8791 if (! eliminate_p)
8792 return 1;
8794 /* Replace biv with its giv's reduced reg. */
8795 XEXP (x, 1-arg_operand) = v->new_reg;
8796 /* Replace other operand with the other giv's
8797 reduced reg. */
8798 XEXP (x, arg_operand) = tv->new_reg;
8799 return 1;
8802 #endif
8805 /* If we get here, the biv can't be eliminated. */
8806 return 0;
8808 case MEM:
8809 /* If this address is a DEST_ADDR giv, it doesn't matter if the
8810 biv is used in it, since it will be replaced. */
8811 for (v = bl->giv; v; v = v->next_iv)
8812 if (v->giv_type == DEST_ADDR && v->location == &XEXP (x, 0))
8813 return 1;
8814 break;
8816 default:
8817 break;
8820 /* See if any subexpression fails elimination. */
8821 fmt = GET_RTX_FORMAT (code);
8822 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8824 switch (fmt[i])
8826 case 'e':
8827 if (! maybe_eliminate_biv_1 (loop, XEXP (x, i), insn, bl,
8828 eliminate_p, where))
8829 return 0;
8830 break;
8832 case 'E':
8833 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8834 if (! maybe_eliminate_biv_1 (loop, XVECEXP (x, i, j), insn, bl,
8835 eliminate_p, where))
8836 return 0;
8837 break;
8841 return 1;
8844 /* Return nonzero if the last use of REG
8845 is in an insn following INSN in the same basic block. */
8847 static int
8848 last_use_this_basic_block (reg, insn)
8849 rtx reg;
8850 rtx insn;
8852 rtx n;
8853 for (n = insn;
8854 n && GET_CODE (n) != CODE_LABEL && GET_CODE (n) != JUMP_INSN;
8855 n = NEXT_INSN (n))
8857 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (n))
8858 return 1;
8860 return 0;
8863 /* Called via `note_stores' to record the initial value of a biv. Here we
8864 just record the location of the set and process it later. */
8866 static void
8867 record_initial (dest, set, data)
8868 rtx dest;
8869 rtx set;
8870 void *data ATTRIBUTE_UNUSED;
8872 struct iv_class *bl;
8874 if (GET_CODE (dest) != REG
8875 || REGNO (dest) >= max_reg_before_loop
8876 || REG_IV_TYPE (REGNO (dest)) != BASIC_INDUCT)
8877 return;
8879 bl = reg_biv_class[REGNO (dest)];
8881 /* If this is the first set found, record it. */
8882 if (bl->init_insn == 0)
8884 bl->init_insn = note_insn;
8885 bl->init_set = set;
8889 /* If any of the registers in X are "old" and currently have a last use earlier
8890 than INSN, update them to have a last use of INSN. Their actual last use
8891 will be the previous insn but it will not have a valid uid_luid so we can't
8892 use it. */
8894 static void
8895 update_reg_last_use (x, insn)
8896 rtx x;
8897 rtx insn;
8899 /* Check for the case where INSN does not have a valid luid. In this case,
8900 there is no need to modify the regno_last_uid, as this can only happen
8901 when code is inserted after the loop_end to set a pseudo's final value,
8902 and hence this insn will never be the last use of x. */
8903 if (GET_CODE (x) == REG && REGNO (x) < max_reg_before_loop
8904 && INSN_UID (insn) < max_uid_for_loop
8905 && uid_luid[REGNO_LAST_UID (REGNO (x))] < uid_luid[INSN_UID (insn)])
8906 REGNO_LAST_UID (REGNO (x)) = INSN_UID (insn);
8907 else
8909 register int i, j;
8910 register const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
8911 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
8913 if (fmt[i] == 'e')
8914 update_reg_last_use (XEXP (x, i), insn);
8915 else if (fmt[i] == 'E')
8916 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8917 update_reg_last_use (XVECEXP (x, i, j), insn);
8922 /* Given an insn INSN and condition COND, return the condition in a
8923 canonical form to simplify testing by callers. Specifically:
8925 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
8926 (2) Both operands will be machine operands; (cc0) will have been replaced.
8927 (3) If an operand is a constant, it will be the second operand.
8928 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
8929 for GE, GEU, and LEU.
8931 If the condition cannot be understood, or is an inequality floating-point
8932 comparison which needs to be reversed, 0 will be returned.
8934 If REVERSE is non-zero, then reverse the condition prior to canonizing it.
8936 If EARLIEST is non-zero, it is a pointer to a place where the earliest
8937 insn used in locating the condition was found. If a replacement test
8938 of the condition is desired, it should be placed in front of that
8939 insn and we will be sure that the inputs are still valid.
8941 If WANT_REG is non-zero, we wish the condition to be relative to that
8942 register, if possible. Therefore, do not canonicalize the condition
8943 further. */
8946 canonicalize_condition (insn, cond, reverse, earliest, want_reg)
8947 rtx insn;
8948 rtx cond;
8949 int reverse;
8950 rtx *earliest;
8951 rtx want_reg;
8953 enum rtx_code code;
8954 rtx prev = insn;
8955 rtx set;
8956 rtx tem;
8957 rtx op0, op1;
8958 int reverse_code = 0;
8959 int did_reverse_condition = 0;
8960 enum machine_mode mode;
8962 code = GET_CODE (cond);
8963 mode = GET_MODE (cond);
8964 op0 = XEXP (cond, 0);
8965 op1 = XEXP (cond, 1);
8967 if (reverse)
8969 code = reverse_condition (code);
8970 did_reverse_condition ^= 1;
8973 if (earliest)
8974 *earliest = insn;
8976 /* If we are comparing a register with zero, see if the register is set
8977 in the previous insn to a COMPARE or a comparison operation. Perform
8978 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
8979 in cse.c */
8981 while (GET_RTX_CLASS (code) == '<'
8982 && op1 == CONST0_RTX (GET_MODE (op0))
8983 && op0 != want_reg)
8985 /* Set non-zero when we find something of interest. */
8986 rtx x = 0;
8988 #ifdef HAVE_cc0
8989 /* If comparison with cc0, import actual comparison from compare
8990 insn. */
8991 if (op0 == cc0_rtx)
8993 if ((prev = prev_nonnote_insn (prev)) == 0
8994 || GET_CODE (prev) != INSN
8995 || (set = single_set (prev)) == 0
8996 || SET_DEST (set) != cc0_rtx)
8997 return 0;
8999 op0 = SET_SRC (set);
9000 op1 = CONST0_RTX (GET_MODE (op0));
9001 if (earliest)
9002 *earliest = prev;
9004 #endif
9006 /* If this is a COMPARE, pick up the two things being compared. */
9007 if (GET_CODE (op0) == COMPARE)
9009 op1 = XEXP (op0, 1);
9010 op0 = XEXP (op0, 0);
9011 continue;
9013 else if (GET_CODE (op0) != REG)
9014 break;
9016 /* Go back to the previous insn. Stop if it is not an INSN. We also
9017 stop if it isn't a single set or if it has a REG_INC note because
9018 we don't want to bother dealing with it. */
9020 if ((prev = prev_nonnote_insn (prev)) == 0
9021 || GET_CODE (prev) != INSN
9022 || FIND_REG_INC_NOTE (prev, 0)
9023 || (set = single_set (prev)) == 0)
9024 break;
9026 /* If this is setting OP0, get what it sets it to if it looks
9027 relevant. */
9028 if (rtx_equal_p (SET_DEST (set), op0))
9030 enum machine_mode inner_mode = GET_MODE (SET_SRC (set));
9032 /* ??? We may not combine comparisons done in a CCmode with
9033 comparisons not done in a CCmode. This is to aid targets
9034 like Alpha that have an IEEE compliant EQ instruction, and
9035 a non-IEEE compliant BEQ instruction. The use of CCmode is
9036 actually artificial, simply to prevent the combination, but
9037 should not affect other platforms.
9039 However, we must allow VOIDmode comparisons to match either
9040 CCmode or non-CCmode comparison, because some ports have
9041 modeless comparisons inside branch patterns.
9043 ??? This mode check should perhaps look more like the mode check
9044 in simplify_comparison in combine. */
9046 if ((GET_CODE (SET_SRC (set)) == COMPARE
9047 || (((code == NE
9048 || (code == LT
9049 && GET_MODE_CLASS (inner_mode) == MODE_INT
9050 && (GET_MODE_BITSIZE (inner_mode)
9051 <= HOST_BITS_PER_WIDE_INT)
9052 && (STORE_FLAG_VALUE
9053 & ((HOST_WIDE_INT) 1
9054 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9055 #ifdef FLOAT_STORE_FLAG_VALUE
9056 || (code == LT
9057 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9058 && (REAL_VALUE_NEGATIVE
9059 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
9060 #endif
9062 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'))
9063 && (((GET_MODE_CLASS (mode) == MODE_CC)
9064 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9065 || mode == VOIDmode || inner_mode == VOIDmode))
9066 x = SET_SRC (set);
9067 else if (((code == EQ
9068 || (code == GE
9069 && (GET_MODE_BITSIZE (inner_mode)
9070 <= HOST_BITS_PER_WIDE_INT)
9071 && GET_MODE_CLASS (inner_mode) == MODE_INT
9072 && (STORE_FLAG_VALUE
9073 & ((HOST_WIDE_INT) 1
9074 << (GET_MODE_BITSIZE (inner_mode) - 1))))
9075 #ifdef FLOAT_STORE_FLAG_VALUE
9076 || (code == GE
9077 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
9078 && (REAL_VALUE_NEGATIVE
9079 (FLOAT_STORE_FLAG_VALUE (inner_mode))))
9080 #endif
9082 && GET_RTX_CLASS (GET_CODE (SET_SRC (set))) == '<'
9083 && (((GET_MODE_CLASS (mode) == MODE_CC)
9084 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
9085 || mode == VOIDmode || inner_mode == VOIDmode))
9088 /* We might have reversed a LT to get a GE here. But this wasn't
9089 actually the comparison of data, so we don't flag that we
9090 have had to reverse the condition. */
9091 did_reverse_condition ^= 1;
9092 reverse_code = 1;
9093 x = SET_SRC (set);
9095 else
9096 break;
9099 else if (reg_set_p (op0, prev))
9100 /* If this sets OP0, but not directly, we have to give up. */
9101 break;
9103 if (x)
9105 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
9106 code = GET_CODE (x);
9107 if (reverse_code)
9109 code = reverse_condition (code);
9110 if (code == UNKNOWN)
9111 return 0;
9112 did_reverse_condition ^= 1;
9113 reverse_code = 0;
9116 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
9117 if (earliest)
9118 *earliest = prev;
9122 /* If constant is first, put it last. */
9123 if (CONSTANT_P (op0))
9124 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
9126 /* If OP0 is the result of a comparison, we weren't able to find what
9127 was really being compared, so fail. */
9128 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
9129 return 0;
9131 /* Canonicalize any ordered comparison with integers involving equality
9132 if we can do computations in the relevant mode and we do not
9133 overflow. */
9135 if (GET_CODE (op1) == CONST_INT
9136 && GET_MODE (op0) != VOIDmode
9137 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
9139 HOST_WIDE_INT const_val = INTVAL (op1);
9140 unsigned HOST_WIDE_INT uconst_val = const_val;
9141 unsigned HOST_WIDE_INT max_val
9142 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
9144 switch (code)
9146 case LE:
9147 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
9148 code = LT, op1 = GEN_INT (const_val + 1);
9149 break;
9151 /* When cross-compiling, const_val might be sign-extended from
9152 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
9153 case GE:
9154 if ((HOST_WIDE_INT) (const_val & max_val)
9155 != (((HOST_WIDE_INT) 1
9156 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
9157 code = GT, op1 = GEN_INT (const_val - 1);
9158 break;
9160 case LEU:
9161 if (uconst_val < max_val)
9162 code = LTU, op1 = GEN_INT (uconst_val + 1);
9163 break;
9165 case GEU:
9166 if (uconst_val != 0)
9167 code = GTU, op1 = GEN_INT (uconst_val - 1);
9168 break;
9170 default:
9171 break;
9175 /* If this was floating-point and we reversed anything other than an
9176 EQ or NE or (UN)ORDERED, return zero. */
9177 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
9178 && did_reverse_condition
9179 && code != NE && code != EQ && code != UNORDERED && code != ORDERED
9180 && ! flag_fast_math
9181 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
9182 return 0;
9184 #ifdef HAVE_cc0
9185 /* Never return CC0; return zero instead. */
9186 if (op0 == cc0_rtx)
9187 return 0;
9188 #endif
9190 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
9193 /* Given a jump insn JUMP, return the condition that will cause it to branch
9194 to its JUMP_LABEL. If the condition cannot be understood, or is an
9195 inequality floating-point comparison which needs to be reversed, 0 will
9196 be returned.
9198 If EARLIEST is non-zero, it is a pointer to a place where the earliest
9199 insn used in locating the condition was found. If a replacement test
9200 of the condition is desired, it should be placed in front of that
9201 insn and we will be sure that the inputs are still valid. */
9204 get_condition (jump, earliest)
9205 rtx jump;
9206 rtx *earliest;
9208 rtx cond;
9209 int reverse;
9211 /* If this is not a standard conditional jump, we can't parse it. */
9212 if (GET_CODE (jump) != JUMP_INSN
9213 || ! condjump_p (jump) || simplejump_p (jump))
9214 return 0;
9216 cond = XEXP (SET_SRC (PATTERN (jump)), 0);
9218 /* If this branches to JUMP_LABEL when the condition is false, reverse
9219 the condition. */
9220 reverse
9221 = GET_CODE (XEXP (SET_SRC (PATTERN (jump)), 2)) == LABEL_REF
9222 && XEXP (XEXP (SET_SRC (PATTERN (jump)), 2), 0) == JUMP_LABEL (jump);
9224 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX);
9227 /* Similar to above routine, except that we also put an invariant last
9228 unless both operands are invariants. */
9231 get_condition_for_loop (loop, x)
9232 const struct loop *loop;
9233 rtx x;
9235 rtx comparison = get_condition (x, NULL_PTR);
9237 if (comparison == 0
9238 || ! loop_invariant_p (loop, XEXP (comparison, 0))
9239 || loop_invariant_p (loop, XEXP (comparison, 1)))
9240 return comparison;
9242 return gen_rtx_fmt_ee (swap_condition (GET_CODE (comparison)), VOIDmode,
9243 XEXP (comparison, 1), XEXP (comparison, 0));
9246 #ifdef HAVE_decrement_and_branch_on_count
9247 /* Instrument loop for insertion of bct instruction. We distinguish between
9248 loops with compile-time bounds and those with run-time bounds.
9249 Information from loop_iterations() is used to compute compile-time bounds.
9250 Run-time bounds should use loop preconditioning, but currently ignored.
9253 static void
9254 insert_bct (loop)
9255 struct loop *loop;
9257 unsigned HOST_WIDE_INT n_iterations;
9258 rtx loop_start = loop->start;
9259 rtx loop_end = loop->end;
9260 struct loop_info *loop_info = LOOP_INFO (loop);
9261 int loop_num = loop->num;
9263 #if 0
9264 int increment_direction, compare_direction;
9265 /* If the loop condition is <= or >=, the number of iteration
9266 is 1 more than the range of the bounds of the loop. */
9267 int add_iteration = 0;
9268 enum machine_mode loop_var_mode = word_mode;
9269 #endif
9271 /* It's impossible to instrument a competely unrolled loop. */
9272 if (loop_info->unroll_number == loop_info->n_iterations)
9273 return;
9275 /* Make sure that the count register is not in use. */
9276 if (loop_info->used_count_register)
9278 if (loop_dump_stream)
9279 fprintf (loop_dump_stream,
9280 "insert_bct %d: BCT instrumentation failed: count register already in use\n",
9281 loop_num);
9282 return;
9285 /* Make sure that the function has no indirect jumps. */
9286 if (indirect_jump_in_function)
9288 if (loop_dump_stream)
9289 fprintf (loop_dump_stream,
9290 "insert_bct %d: BCT instrumentation failed: indirect jump in function\n",
9291 loop_num);
9292 return;
9295 /* Make sure that the last loop insn is a conditional jump. */
9296 if (GET_CODE (PREV_INSN (loop_end)) != JUMP_INSN
9297 || ! condjump_p (PREV_INSN (loop_end))
9298 || simplejump_p (PREV_INSN (loop_end)))
9300 if (loop_dump_stream)
9301 fprintf (loop_dump_stream,
9302 "insert_bct %d: BCT instrumentation failed: invalid jump at loop end\n",
9303 loop_num);
9304 return;
9307 /* Make sure that the loop does not contain a function call
9308 (the count register might be altered by the called function). */
9309 if (loop_info->has_call)
9311 if (loop_dump_stream)
9312 fprintf (loop_dump_stream,
9313 "insert_bct %d: BCT instrumentation failed: function call in loop\n",
9314 loop_num);
9315 return;
9318 /* Make sure that the loop does not jump via a table.
9319 (the count register might be used to perform the branch on table). */
9320 if (loop_info->has_tablejump)
9322 if (loop_dump_stream)
9323 fprintf (loop_dump_stream,
9324 "insert_bct %d: BCT instrumentation failed: computed branch in the loop\n",
9325 loop_num);
9326 return;
9329 /* Account for loop unrolling in instrumented iteration count. */
9330 if (loop_info->unroll_number > 1)
9331 n_iterations = loop_info->n_iterations / loop_info->unroll_number;
9332 else
9333 n_iterations = loop_info->n_iterations;
9335 if (n_iterations != 0 && n_iterations < 3)
9337 /* Allow an enclosing outer loop to benefit if possible. */
9338 if (loop_dump_stream)
9339 fprintf (loop_dump_stream,
9340 "insert_bct %d: Too few iterations to benefit from BCT optimization\n",
9341 loop_num);
9342 return;
9345 /* Try to instrument the loop. */
9347 /* Handle the simpler case, where the bounds are known at compile time. */
9348 if (n_iterations > 0)
9350 struct loop *outer_loop;
9351 struct loop_info *outer_loop_info;
9353 /* Mark all enclosing loops that they cannot use count register. */
9354 for (outer_loop = loop; outer_loop; outer_loop = outer_loop->outer)
9356 outer_loop_info = LOOP_INFO (outer_loop);
9357 outer_loop_info->used_count_register = 1;
9359 instrument_loop_bct (loop_start, loop_end, GEN_INT (n_iterations));
9360 return;
9363 /* Handle the more complex case, that the bounds are NOT known
9364 at compile time. In this case we generate run_time calculation
9365 of the number of iterations. */
9367 if (loop_info->iteration_var == 0)
9369 if (loop_dump_stream)
9370 fprintf (loop_dump_stream,
9371 "insert_bct %d: BCT Runtime Instrumentation failed: no loop iteration variable found\n",
9372 loop_num);
9373 return;
9376 if (GET_MODE_CLASS (GET_MODE (loop_info->iteration_var)) != MODE_INT
9377 || GET_MODE_SIZE (GET_MODE (loop_info->iteration_var)) != UNITS_PER_WORD)
9379 if (loop_dump_stream)
9380 fprintf (loop_dump_stream,
9381 "insert_bct %d: BCT Runtime Instrumentation failed: loop variable not integer\n",
9382 loop_num);
9383 return;
9386 /* With runtime bounds, if the compare is of the form '!=' we give up */
9387 if (loop_info->comparison_code == NE)
9389 if (loop_dump_stream)
9390 fprintf (loop_dump_stream,
9391 "insert_bct %d: BCT Runtime Instrumentation failed: runtime bounds with != comparison\n",
9392 loop_num);
9393 return;
9395 /* Use common loop preconditioning code instead. */
9396 #if 0
9397 else
9399 /* We rely on the existence of run-time guard to ensure that the
9400 loop executes at least once. */
9401 rtx sequence;
9402 rtx iterations_num_reg;
9404 unsigned HOST_WIDE_INT increment_value_abs
9405 = INTVAL (increment) * increment_direction;
9407 /* make sure that the increment is a power of two, otherwise (an
9408 expensive) divide is needed. */
9409 if (exact_log2 (increment_value_abs) == -1)
9411 if (loop_dump_stream)
9412 fprintf (loop_dump_stream,
9413 "insert_bct: not instrumenting BCT because the increment is not power of 2\n");
9414 return;
9417 /* compute the number of iterations */
9418 start_sequence ();
9420 rtx temp_reg;
9422 /* Again, the number of iterations is calculated by:
9424 ; compare-val - initial-val + (increment -1) + additional-iteration
9425 ; num_iterations = -----------------------------------------------------------------
9426 ; increment
9428 /* ??? Do we have to call copy_rtx here before passing rtx to
9429 expand_binop? */
9430 if (compare_direction > 0)
9432 /* <, <= :the loop variable is increasing */
9433 temp_reg = expand_binop (loop_var_mode, sub_optab,
9434 comparison_value, initial_value,
9435 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9437 else
9439 temp_reg = expand_binop (loop_var_mode, sub_optab,
9440 initial_value, comparison_value,
9441 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9444 if (increment_value_abs - 1 + add_iteration != 0)
9445 temp_reg = expand_binop (loop_var_mode, add_optab, temp_reg,
9446 GEN_INT (increment_value_abs - 1
9447 + add_iteration),
9448 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9450 if (increment_value_abs != 1)
9451 iterations_num_reg = expand_binop (loop_var_mode, asr_optab,
9452 temp_reg,
9453 GEN_INT (exact_log2 (increment_value_abs)),
9454 NULL_RTX, 0, OPTAB_LIB_WIDEN);
9455 else
9456 iterations_num_reg = temp_reg;
9458 sequence = gen_sequence ();
9459 end_sequence ();
9460 emit_insn_before (sequence, loop_start);
9461 instrument_loop_bct (loop_start, loop_end, iterations_num_reg);
9464 return;
9465 #endif /* Complex case */
9468 /* Instrument loop by inserting a bct in it as follows:
9469 1. A new counter register is created.
9470 2. In the head of the loop the new variable is initialized to the value
9471 passed in the loop_num_iterations parameter.
9472 3. At the end of the loop, comparison of the register with 0 is generated.
9473 The created comparison follows the pattern defined for the
9474 decrement_and_branch_on_count insn, so this insn will be generated.
9475 4. The branch on the old variable are deleted. The compare must remain
9476 because it might be used elsewhere. If the loop-variable or condition
9477 register are used elsewhere, they will be eliminated by flow. */
9479 static void
9480 instrument_loop_bct (loop_start, loop_end, loop_num_iterations)
9481 rtx loop_start, loop_end;
9482 rtx loop_num_iterations;
9484 rtx counter_reg;
9485 rtx start_label;
9486 rtx sequence;
9488 if (HAVE_decrement_and_branch_on_count)
9490 if (loop_dump_stream)
9492 fputs ("instrument_bct: Inserting BCT (", loop_dump_stream);
9493 if (GET_CODE (loop_num_iterations) == CONST_INT)
9494 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
9495 INTVAL (loop_num_iterations));
9496 else
9497 fputs ("runtime", loop_dump_stream);
9498 fputs (" iterations)", loop_dump_stream);
9501 /* Discard original jump to continue loop. Original compare result
9502 may still be live, so it cannot be discarded explicitly. */
9503 delete_insn (PREV_INSN (loop_end));
9505 /* Insert the label which will delimit the start of the loop. */
9506 start_label = gen_label_rtx ();
9507 emit_label_after (start_label, loop_start);
9509 /* Insert initialization of the count register into the loop header. */
9510 start_sequence ();
9511 counter_reg = gen_reg_rtx (word_mode);
9512 emit_insn (gen_move_insn (counter_reg, loop_num_iterations));
9513 sequence = gen_sequence ();
9514 end_sequence ();
9515 emit_insn_before (sequence, loop_start);
9517 /* Insert new comparison on the count register instead of the
9518 old one, generating the needed BCT pattern (that will be
9519 later recognized by assembly generation phase). */
9520 emit_jump_insn_before (gen_decrement_and_branch_on_count (counter_reg,
9521 start_label),
9522 loop_end);
9523 LABEL_NUSES (start_label)++;
9527 #endif /* HAVE_decrement_and_branch_on_count */
9529 /* Scan the function and determine whether it has indirect (computed) jumps.
9531 This is taken mostly from flow.c; similar code exists elsewhere
9532 in the compiler. It may be useful to put this into rtlanal.c. */
9533 static int
9534 indirect_jump_in_function_p (start)
9535 rtx start;
9537 rtx insn;
9539 for (insn = start; insn; insn = NEXT_INSN (insn))
9540 if (computed_jump_p (insn))
9541 return 1;
9543 return 0;
9546 /* Add MEM to the LOOP_MEMS array, if appropriate. See the
9547 documentation for LOOP_MEMS for the definition of `appropriate'.
9548 This function is called from prescan_loop via for_each_rtx. */
9550 static int
9551 insert_loop_mem (mem, data)
9552 rtx *mem;
9553 void *data ATTRIBUTE_UNUSED;
9555 int i;
9556 rtx m = *mem;
9558 if (m == NULL_RTX)
9559 return 0;
9561 switch (GET_CODE (m))
9563 case MEM:
9564 break;
9566 case CLOBBER:
9567 /* We're not interested in MEMs that are only clobbered. */
9568 return -1;
9570 case CONST_DOUBLE:
9571 /* We're not interested in the MEM associated with a
9572 CONST_DOUBLE, so there's no need to traverse into this. */
9573 return -1;
9575 case EXPR_LIST:
9576 /* We're not interested in any MEMs that only appear in notes. */
9577 return -1;
9579 default:
9580 /* This is not a MEM. */
9581 return 0;
9584 /* See if we've already seen this MEM. */
9585 for (i = 0; i < loop_mems_idx; ++i)
9586 if (rtx_equal_p (m, loop_mems[i].mem))
9588 if (GET_MODE (m) != GET_MODE (loop_mems[i].mem))
9589 /* The modes of the two memory accesses are different. If
9590 this happens, something tricky is going on, and we just
9591 don't optimize accesses to this MEM. */
9592 loop_mems[i].optimize = 0;
9594 return 0;
9597 /* Resize the array, if necessary. */
9598 if (loop_mems_idx == loop_mems_allocated)
9600 if (loop_mems_allocated != 0)
9601 loop_mems_allocated *= 2;
9602 else
9603 loop_mems_allocated = 32;
9605 loop_mems = (loop_mem_info*)
9606 xrealloc (loop_mems,
9607 loop_mems_allocated * sizeof (loop_mem_info));
9610 /* Actually insert the MEM. */
9611 loop_mems[loop_mems_idx].mem = m;
9612 /* We can't hoist this MEM out of the loop if it's a BLKmode MEM
9613 because we can't put it in a register. We still store it in the
9614 table, though, so that if we see the same address later, but in a
9615 non-BLK mode, we'll not think we can optimize it at that point. */
9616 loop_mems[loop_mems_idx].optimize = (GET_MODE (m) != BLKmode);
9617 loop_mems[loop_mems_idx].reg = NULL_RTX;
9618 ++loop_mems_idx;
9620 return 0;
9623 /* Like load_mems, but also ensures that SET_IN_LOOP,
9624 MAY_NOT_OPTIMIZE, REG_SINGLE_USAGE, and INSN_COUNT have the correct
9625 values after load_mems. */
9627 static void
9628 load_mems_and_recount_loop_regs_set (loop, insn_count)
9629 const struct loop *loop;
9630 int *insn_count;
9632 int nregs = max_reg_num ();
9634 load_mems (loop);
9636 /* Recalculate set_in_loop and friends since load_mems may have
9637 created new registers. */
9638 if (max_reg_num () > nregs)
9640 int i;
9641 int old_nregs;
9643 old_nregs = nregs;
9644 nregs = max_reg_num ();
9646 if ((unsigned) nregs > set_in_loop->num_elements)
9648 /* Grow all the arrays. */
9649 VARRAY_GROW (set_in_loop, nregs);
9650 VARRAY_GROW (n_times_set, nregs);
9651 VARRAY_GROW (may_not_optimize, nregs);
9652 VARRAY_GROW (reg_single_usage, nregs);
9654 /* Clear the arrays */
9655 bzero ((char *) &set_in_loop->data, nregs * sizeof (int));
9656 bzero ((char *) &may_not_optimize->data, nregs * sizeof (char));
9657 bzero ((char *) &reg_single_usage->data, nregs * sizeof (rtx));
9659 count_loop_regs_set (loop->top ? loop->top : loop->start, loop->end,
9660 may_not_optimize, reg_single_usage,
9661 insn_count, nregs);
9663 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
9665 VARRAY_CHAR (may_not_optimize, i) = 1;
9666 VARRAY_INT (set_in_loop, i) = 1;
9669 #ifdef AVOID_CCMODE_COPIES
9670 /* Don't try to move insns which set CC registers if we should not
9671 create CCmode register copies. */
9672 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
9673 if (GET_MODE_CLASS (GET_MODE (regno_reg_rtx[i])) == MODE_CC)
9674 VARRAY_CHAR (may_not_optimize, i) = 1;
9675 #endif
9677 /* Set n_times_set for the new registers. */
9678 bcopy ((char *) (&set_in_loop->data.i[0] + old_nregs),
9679 (char *) (&n_times_set->data.i[0] + old_nregs),
9680 (nregs - old_nregs) * sizeof (int));
9684 /* Move MEMs into registers for the duration of the loop. */
9686 static void
9687 load_mems (loop)
9688 const struct loop *loop;
9690 int maybe_never = 0;
9691 int i;
9692 rtx p;
9693 rtx label = NULL_RTX;
9694 rtx end_label = NULL_RTX;
9695 /* Nonzero if the next instruction may never be executed. */
9696 int next_maybe_never = 0;
9697 int last_max_reg = max_reg_num ();
9699 if (loop_mems_idx == 0)
9700 return;
9702 /* Find start of the extended basic block that enters the loop. */
9703 for (p = loop->start;
9704 PREV_INSN (p) && GET_CODE (p) != CODE_LABEL;
9705 p = PREV_INSN (p))
9708 cselib_init ();
9710 /* Build table of mems that get set to constant values before the
9711 loop. */
9712 for (; p != loop->start; p = NEXT_INSN (p))
9713 cselib_process_insn (p);
9715 /* Check to see if it's possible that some instructions in the
9716 loop are never executed. */
9717 for (p = next_insn_in_loop (loop, loop->scan_start);
9718 p != NULL_RTX && ! maybe_never;
9719 p = next_insn_in_loop (loop, p))
9721 if (GET_CODE (p) == CODE_LABEL)
9722 maybe_never = 1;
9723 else if (GET_CODE (p) == JUMP_INSN
9724 /* If we enter the loop in the middle, and scan
9725 around to the beginning, don't set maybe_never
9726 for that. This must be an unconditional jump,
9727 otherwise the code at the top of the loop might
9728 never be executed. Unconditional jumps are
9729 followed a by barrier then loop end. */
9730 && ! (GET_CODE (p) == JUMP_INSN
9731 && JUMP_LABEL (p) == loop->top
9732 && NEXT_INSN (NEXT_INSN (p)) == loop->end
9733 && simplejump_p (p)))
9735 if (!condjump_p (p))
9736 /* Something complicated. */
9737 maybe_never = 1;
9738 else
9739 /* If there are any more instructions in the loop, they
9740 might not be reached. */
9741 next_maybe_never = 1;
9743 else if (next_maybe_never)
9744 maybe_never = 1;
9747 /* Actually move the MEMs. */
9748 for (i = 0; i < loop_mems_idx; ++i)
9750 regset_head copies;
9751 int written = 0;
9752 rtx reg;
9753 rtx mem = loop_mems[i].mem;
9754 rtx mem_list_entry;
9756 if (MEM_VOLATILE_P (mem)
9757 || loop_invariant_p (loop, XEXP (mem, 0)) != 1)
9758 /* There's no telling whether or not MEM is modified. */
9759 loop_mems[i].optimize = 0;
9761 /* Go through the MEMs written to in the loop to see if this
9762 one is aliased by one of them. */
9763 mem_list_entry = loop_store_mems;
9764 while (mem_list_entry)
9766 if (rtx_equal_p (mem, XEXP (mem_list_entry, 0)))
9767 written = 1;
9768 else if (true_dependence (XEXP (mem_list_entry, 0), VOIDmode,
9769 mem, rtx_varies_p))
9771 /* MEM is indeed aliased by this store. */
9772 loop_mems[i].optimize = 0;
9773 break;
9775 mem_list_entry = XEXP (mem_list_entry, 1);
9778 if (flag_float_store && written
9779 && GET_MODE_CLASS (GET_MODE (mem)) == MODE_FLOAT)
9780 loop_mems[i].optimize = 0;
9782 /* If this MEM is written to, we must be sure that there
9783 are no reads from another MEM that aliases this one. */
9784 if (loop_mems[i].optimize && written)
9786 int j;
9788 for (j = 0; j < loop_mems_idx; ++j)
9790 if (j == i)
9791 continue;
9792 else if (true_dependence (mem,
9793 VOIDmode,
9794 loop_mems[j].mem,
9795 rtx_varies_p))
9797 /* It's not safe to hoist loop_mems[i] out of
9798 the loop because writes to it might not be
9799 seen by reads from loop_mems[j]. */
9800 loop_mems[i].optimize = 0;
9801 break;
9806 if (maybe_never && may_trap_p (mem))
9807 /* We can't access the MEM outside the loop; it might
9808 cause a trap that wouldn't have happened otherwise. */
9809 loop_mems[i].optimize = 0;
9811 if (!loop_mems[i].optimize)
9812 /* We thought we were going to lift this MEM out of the
9813 loop, but later discovered that we could not. */
9814 continue;
9816 INIT_REG_SET (&copies);
9818 /* Allocate a pseudo for this MEM. We set REG_USERVAR_P in
9819 order to keep scan_loop from moving stores to this MEM
9820 out of the loop just because this REG is neither a
9821 user-variable nor used in the loop test. */
9822 reg = gen_reg_rtx (GET_MODE (mem));
9823 REG_USERVAR_P (reg) = 1;
9824 loop_mems[i].reg = reg;
9826 /* Now, replace all references to the MEM with the
9827 corresponding pesudos. */
9828 maybe_never = 0;
9829 for (p = next_insn_in_loop (loop, loop->scan_start);
9830 p != NULL_RTX;
9831 p = next_insn_in_loop (loop, p))
9833 rtx_and_int ri;
9834 rtx set;
9836 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
9838 /* See if this copies the mem into a register that isn't
9839 modified afterwards. We'll try to do copy propagation
9840 a little further on. */
9841 set = single_set (p);
9842 if (set
9843 /* @@@ This test is _way_ too conservative. */
9844 && ! maybe_never
9845 && GET_CODE (SET_DEST (set)) == REG
9846 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
9847 && REGNO (SET_DEST (set)) < last_max_reg
9848 && VARRAY_INT (n_times_set, REGNO (SET_DEST (set))) == 1
9849 && rtx_equal_p (SET_SRC (set), loop_mems[i].mem))
9850 SET_REGNO_REG_SET (&copies, REGNO (SET_DEST (set)));
9851 ri.r = p;
9852 ri.i = i;
9853 for_each_rtx (&p, replace_loop_mem, &ri);
9856 if (GET_CODE (p) == CODE_LABEL
9857 || GET_CODE (p) == JUMP_INSN)
9858 maybe_never = 1;
9861 if (! apply_change_group ())
9862 /* We couldn't replace all occurrences of the MEM. */
9863 loop_mems[i].optimize = 0;
9864 else
9866 /* Load the memory immediately before LOOP->START, which is
9867 the NOTE_LOOP_BEG. */
9868 cselib_val *e = cselib_lookup (mem, VOIDmode, 0);
9869 rtx set;
9870 rtx best = mem;
9871 int j;
9872 struct elt_loc_list *const_equiv = 0;
9874 if (e)
9876 struct elt_loc_list *equiv;
9877 struct elt_loc_list *best_equiv = 0;
9878 for (equiv = e->locs; equiv; equiv = equiv->next)
9880 if (CONSTANT_P (equiv->loc))
9881 const_equiv = equiv;
9882 else if (GET_CODE (equiv->loc) == REG
9883 /* Extending hard register lifetimes cuases crash
9884 on SRC targets. Doing so on non-SRC is
9885 probably also not good idea, since we most
9886 probably have pseudoregister equivalence as
9887 well. */
9888 && REGNO (equiv->loc) >= FIRST_PSEUDO_REGISTER)
9889 best_equiv = equiv;
9891 /* Use the constant equivalence if that is cheap enough. */
9892 if (! best_equiv)
9893 best_equiv = const_equiv;
9894 else if (const_equiv
9895 && (rtx_cost (const_equiv->loc, SET)
9896 <= rtx_cost (best_equiv->loc, SET)))
9898 best_equiv = const_equiv;
9899 const_equiv = 0;
9902 /* If best_equiv is nonzero, we know that MEM is set to a
9903 constant or register before the loop. We will use this
9904 knowledge to initialize the shadow register with that
9905 constant or reg rather than by loading from MEM. */
9906 if (best_equiv)
9907 best = copy_rtx (best_equiv->loc);
9909 set = gen_move_insn (reg, best);
9910 set = emit_insn_before (set, loop->start);
9911 if (const_equiv)
9912 REG_NOTES (set) = gen_rtx_EXPR_LIST (REG_EQUAL,
9913 copy_rtx (const_equiv->loc),
9914 REG_NOTES (set));
9916 if (written)
9918 if (label == NULL_RTX)
9920 /* We must compute the former
9921 right-after-the-end label before we insert
9922 the new one. */
9923 end_label = next_label (loop->end);
9924 label = gen_label_rtx ();
9925 emit_label_after (label, loop->end);
9928 /* Store the memory immediately after END, which is
9929 the NOTE_LOOP_END. */
9930 set = gen_move_insn (copy_rtx (mem), reg);
9931 emit_insn_after (set, label);
9934 if (loop_dump_stream)
9936 fprintf (loop_dump_stream, "Hoisted regno %d %s from ",
9937 REGNO (reg), (written ? "r/w" : "r/o"));
9938 print_rtl (loop_dump_stream, mem);
9939 fputc ('\n', loop_dump_stream);
9942 /* Attempt a bit of copy propagation. This helps untangle the
9943 data flow, and enables {basic,general}_induction_var to find
9944 more bivs/givs. */
9945 EXECUTE_IF_SET_IN_REG_SET
9946 (&copies, FIRST_PSEUDO_REGISTER, j,
9948 try_copy_prop (loop, loop_mems[i].reg, j);
9950 CLEAR_REG_SET (&copies);
9954 if (label != NULL_RTX)
9956 /* Now, we need to replace all references to the previous exit
9957 label with the new one. */
9958 rtx_pair rr;
9959 rr.r1 = end_label;
9960 rr.r2 = label;
9962 for (p = loop->start; p != loop->end; p = NEXT_INSN (p))
9964 for_each_rtx (&p, replace_label, &rr);
9966 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
9967 field. This is not handled by for_each_rtx because it doesn't
9968 handle unprinted ('0') fields. We need to update JUMP_LABEL
9969 because the immediately following unroll pass will use it.
9970 replace_label would not work anyways, because that only handles
9971 LABEL_REFs. */
9972 if (GET_CODE (p) == JUMP_INSN && JUMP_LABEL (p) == end_label)
9973 JUMP_LABEL (p) = label;
9977 cselib_finish ();
9980 /* For communication between note_reg_stored and its caller. */
9981 struct note_reg_stored_arg
9983 int set_seen;
9984 rtx reg;
9987 /* Called via note_stores, record in SET_SEEN whether X, which is written,
9988 is equal to ARG. */
9989 static void
9990 note_reg_stored (x, setter, arg)
9991 rtx x, setter ATTRIBUTE_UNUSED;
9992 void *arg;
9994 struct note_reg_stored_arg *t = (struct note_reg_stored_arg *)arg;
9995 if (t->reg == x)
9996 t->set_seen = 1;
9999 /* Try to replace every occurrence of pseudo REGNO with REPLACEMENT.
10000 There must be exactly one insn that sets this pseudo; it will be
10001 deleted if all replacements succeed and we can prove that the register
10002 is not used after the loop. */
10004 static void
10005 try_copy_prop (loop, replacement, regno)
10006 const struct loop *loop;
10007 rtx replacement;
10008 unsigned int regno;
10010 /* This is the reg that we are copying from. */
10011 rtx reg_rtx = regno_reg_rtx[regno];
10012 rtx init_insn = 0;
10013 rtx insn;
10014 /* These help keep track of whether we replaced all uses of the reg. */
10015 int replaced_last = 0;
10016 int store_is_first = 0;
10018 for (insn = next_insn_in_loop (loop, loop->scan_start);
10019 insn != NULL_RTX;
10020 insn = next_insn_in_loop (loop, insn))
10022 rtx set;
10024 /* Only substitute within one extended basic block from the initializing
10025 insn. */
10026 if (GET_CODE (insn) == CODE_LABEL && init_insn)
10027 break;
10029 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
10030 continue;
10032 /* Is this the initializing insn? */
10033 set = single_set (insn);
10034 if (set
10035 && GET_CODE (SET_DEST (set)) == REG
10036 && REGNO (SET_DEST (set)) == regno)
10038 if (init_insn)
10039 abort ();
10041 init_insn = insn;
10042 if (REGNO_FIRST_UID (regno) == INSN_UID (insn))
10043 store_is_first = 1;
10046 /* Only substitute after seeing the initializing insn. */
10047 if (init_insn && insn != init_insn)
10049 struct note_reg_stored_arg arg;
10050 rtx array[3];
10051 array[0] = reg_rtx;
10052 array[1] = replacement;
10053 array[2] = insn;
10055 for_each_rtx (&insn, replace_loop_reg, array);
10056 if (REGNO_LAST_UID (regno) == INSN_UID (insn))
10057 replaced_last = 1;
10059 /* Stop replacing when REPLACEMENT is modified. */
10060 arg.reg = replacement;
10061 arg.set_seen = 0;
10062 note_stores (PATTERN (insn), note_reg_stored, &arg);
10063 if (arg.set_seen)
10064 break;
10067 if (! init_insn)
10068 abort ();
10069 if (apply_change_group ())
10071 if (loop_dump_stream)
10072 fprintf (loop_dump_stream, " Replaced reg %d", regno);
10073 if (store_is_first && replaced_last)
10075 PUT_CODE (init_insn, NOTE);
10076 NOTE_LINE_NUMBER (init_insn) = NOTE_INSN_DELETED;
10077 if (loop_dump_stream)
10078 fprintf (loop_dump_stream, ", deleting init_insn (%d)",
10079 INSN_UID (init_insn));
10081 if (loop_dump_stream)
10082 fprintf (loop_dump_stream, ".\n");
10086 /* Replace MEM with its associated pseudo register. This function is
10087 called from load_mems via for_each_rtx. DATA is actually an
10088 rtx_and_int * describing the instruction currently being scanned
10089 and the MEM we are currently replacing. */
10091 static int
10092 replace_loop_mem (mem, data)
10093 rtx *mem;
10094 void *data;
10096 rtx_and_int *ri;
10097 rtx insn;
10098 int i;
10099 rtx m = *mem;
10101 if (m == NULL_RTX)
10102 return 0;
10104 switch (GET_CODE (m))
10106 case MEM:
10107 break;
10109 case CONST_DOUBLE:
10110 /* We're not interested in the MEM associated with a
10111 CONST_DOUBLE, so there's no need to traverse into one. */
10112 return -1;
10114 default:
10115 /* This is not a MEM. */
10116 return 0;
10119 ri = (rtx_and_int*) data;
10120 i = ri->i;
10122 if (!rtx_equal_p (loop_mems[i].mem, m))
10123 /* This is not the MEM we are currently replacing. */
10124 return 0;
10126 insn = ri->r;
10128 /* Actually replace the MEM. */
10129 validate_change (insn, mem, loop_mems[i].reg, 1);
10131 return 0;
10134 /* Replace one register with another. Called through for_each_rtx; PX points
10135 to the rtx being scanned. DATA is actually an array of three rtx's; the
10136 first one is the one to be replaced, and the second one the replacement.
10137 The third one is the current insn. */
10139 static int
10140 replace_loop_reg (px, data)
10141 rtx *px;
10142 void *data;
10144 rtx x = *px;
10145 rtx *array = (rtx *)data;
10147 if (x == NULL_RTX)
10148 return 0;
10150 if (x == array[0])
10151 validate_change (array[2], px, array[1], 1);
10153 return 0;
10156 /* Replace occurrences of the old exit label for the loop with the new
10157 one. DATA is an rtx_pair containing the old and new labels,
10158 respectively. */
10160 static int
10161 replace_label (x, data)
10162 rtx *x;
10163 void *data;
10165 rtx l = *x;
10166 rtx old_label = ((rtx_pair*) data)->r1;
10167 rtx new_label = ((rtx_pair*) data)->r2;
10169 if (l == NULL_RTX)
10170 return 0;
10172 if (GET_CODE (l) != LABEL_REF)
10173 return 0;
10175 if (XEXP (l, 0) != old_label)
10176 return 0;
10178 XEXP (l, 0) = new_label;
10179 ++LABEL_NUSES (new_label);
10180 --LABEL_NUSES (old_label);
10182 return 0;