1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Ch6
; use Exp_Ch6
;
34 with Exp_Ch7
; use Exp_Ch7
;
35 with Exp_Ch9
; use Exp_Ch9
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Tss
; use Exp_Tss
;
38 with Exp_Util
; use Exp_Util
;
39 with Fname
; use Fname
;
40 with Freeze
; use Freeze
;
41 with Itypes
; use Itypes
;
42 with Lib
.Xref
; use Lib
.Xref
;
43 with Layout
; use Layout
;
44 with Namet
; use Namet
;
46 with Nlists
; use Nlists
;
47 with Nmake
; use Nmake
;
49 with Output
; use Output
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Cat
; use Sem_Cat
;
56 with Sem_Ch3
; use Sem_Ch3
;
57 with Sem_Ch4
; use Sem_Ch4
;
58 with Sem_Ch5
; use Sem_Ch5
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Ch10
; use Sem_Ch10
;
61 with Sem_Ch12
; use Sem_Ch12
;
62 with Sem_Disp
; use Sem_Disp
;
63 with Sem_Dist
; use Sem_Dist
;
64 with Sem_Elim
; use Sem_Elim
;
65 with Sem_Eval
; use Sem_Eval
;
66 with Sem_Mech
; use Sem_Mech
;
67 with Sem_Prag
; use Sem_Prag
;
68 with Sem_Res
; use Sem_Res
;
69 with Sem_Util
; use Sem_Util
;
70 with Sem_Type
; use Sem_Type
;
71 with Sem_Warn
; use Sem_Warn
;
72 with Sinput
; use Sinput
;
73 with Stand
; use Stand
;
74 with Sinfo
; use Sinfo
;
75 with Sinfo
.CN
; use Sinfo
.CN
;
76 with Snames
; use Snames
;
77 with Stringt
; use Stringt
;
79 with Stylesw
; use Stylesw
;
80 with Tbuild
; use Tbuild
;
81 with Uintp
; use Uintp
;
82 with Urealp
; use Urealp
;
83 with Validsw
; use Validsw
;
85 package body Sem_Ch6
is
87 May_Hide_Profile
: Boolean := False;
88 -- This flag is used to indicate that two formals in two subprograms being
89 -- checked for conformance differ only in that one is an access parameter
90 -- while the other is of a general access type with the same designated
91 -- type. In this case, if the rest of the signatures match, a call to
92 -- either subprogram may be ambiguous, which is worth a warning. The flag
93 -- is set in Compatible_Types, and the warning emitted in
94 -- New_Overloaded_Entity.
96 -----------------------
97 -- Local Subprograms --
98 -----------------------
100 procedure Analyze_Return_Statement
(N
: Node_Id
);
101 -- Common processing for simple and extended return statements
103 procedure Analyze_Function_Return
(N
: Node_Id
);
104 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
105 -- applies to a [generic] function.
107 procedure Analyze_Return_Type
(N
: Node_Id
);
108 -- Subsidiary to Process_Formals: analyze subtype mark in function
109 -- specification in a context where the formals are visible and hide
112 procedure Analyze_Subprogram_Body_Helper
(N
: Node_Id
);
113 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
114 -- that we can use RETURN but not skip the debug output at the end.
116 procedure Analyze_Generic_Subprogram_Body
(N
: Node_Id
; Gen_Id
: Entity_Id
);
117 -- Analyze a generic subprogram body. N is the body to be analyzed, and
118 -- Gen_Id is the defining entity Id for the corresponding spec.
120 procedure Build_Body_To_Inline
(N
: Node_Id
; Subp
: Entity_Id
);
121 -- If a subprogram has pragma Inline and inlining is active, use generic
122 -- machinery to build an unexpanded body for the subprogram. This body is
123 -- subsequently used for inline expansions at call sites. If subprogram can
124 -- be inlined (depending on size and nature of local declarations) this
125 -- function returns true. Otherwise subprogram body is treated normally.
126 -- If proper warnings are enabled and the subprogram contains a construct
127 -- that cannot be inlined, the offending construct is flagged accordingly.
129 procedure Check_Conformance
132 Ctype
: Conformance_Type
;
134 Conforms
: out Boolean;
135 Err_Loc
: Node_Id
:= Empty
;
136 Get_Inst
: Boolean := False;
137 Skip_Controlling_Formals
: Boolean := False);
138 -- Given two entities, this procedure checks that the profiles associated
139 -- with these entities meet the conformance criterion given by the third
140 -- parameter. If they conform, Conforms is set True and control returns
141 -- to the caller. If they do not conform, Conforms is set to False, and
142 -- in addition, if Errmsg is True on the call, proper messages are output
143 -- to complain about the conformance failure. If Err_Loc is non_Empty
144 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
145 -- error messages are placed on the appropriate part of the construct
146 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
147 -- against a formal access-to-subprogram type so Get_Instance_Of must
150 procedure Check_Subprogram_Order
(N
: Node_Id
);
151 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
152 -- the alpha ordering rule for N if this ordering requirement applicable.
154 procedure Check_Returns
158 Proc
: Entity_Id
:= Empty
);
159 -- Called to check for missing return statements in a function body, or for
160 -- returns present in a procedure body which has No_Return set. HSS is the
161 -- handled statement sequence for the subprogram body. This procedure
162 -- checks all flow paths to make sure they either have return (Mode = 'F',
163 -- used for functions) or do not have a return (Mode = 'P', used for
164 -- No_Return procedures). The flag Err is set if there are any control
165 -- paths not explicitly terminated by a return in the function case, and is
166 -- True otherwise. Proc is the entity for the procedure case and is used
167 -- in posting the warning message.
169 procedure Check_Untagged_Equality
(Eq_Op
: Entity_Id
);
170 -- In Ada 2012, a primitive equality operator on an untagged record type
171 -- must appear before the type is frozen, and have the same visibility as
172 -- that of the type. This procedure checks that this rule is met, and
173 -- otherwise emits an error on the subprogram declaration and a warning
174 -- on the earlier freeze point if it is easy to locate.
176 procedure Enter_Overloaded_Entity
(S
: Entity_Id
);
177 -- This procedure makes S, a new overloaded entity, into the first visible
178 -- entity with that name.
180 procedure Install_Entity
(E
: Entity_Id
);
181 -- Make single entity visible. Used for generic formals as well
183 function Is_Non_Overriding_Operation
185 New_E
: Entity_Id
) return Boolean;
186 -- Enforce the rule given in 12.3(18): a private operation in an instance
187 -- overrides an inherited operation only if the corresponding operation
188 -- was overriding in the generic. This can happen for primitive operations
189 -- of types derived (in the generic unit) from formal private or formal
192 procedure Make_Inequality_Operator
(S
: Entity_Id
);
193 -- Create the declaration for an inequality operator that is implicitly
194 -- created by a user-defined equality operator that yields a boolean.
196 procedure May_Need_Actuals
(Fun
: Entity_Id
);
197 -- Flag functions that can be called without parameters, i.e. those that
198 -- have no parameters, or those for which defaults exist for all parameters
200 procedure Process_PPCs
203 Body_Id
: Entity_Id
);
204 -- Called from Analyze[_Generic]_Subprogram_Body to deal with scanning post
205 -- conditions for the body and assembling and inserting the _postconditions
206 -- procedure. N is the node for the subprogram body and Body_Id/Spec_Id are
207 -- the entities for the body and separate spec (if there is no separate
208 -- spec, Spec_Id is Empty).
210 procedure Set_Formal_Validity
(Formal_Id
: Entity_Id
);
211 -- Formal_Id is an formal parameter entity. This procedure deals with
212 -- setting the proper validity status for this entity, which depends on
213 -- the kind of parameter and the validity checking mode.
215 ------------------------------
216 -- Analyze_Return_Statement --
217 ------------------------------
219 procedure Analyze_Return_Statement
(N
: Node_Id
) is
221 pragma Assert
(Nkind_In
(N
, N_Simple_Return_Statement
,
222 N_Extended_Return_Statement
));
224 Returns_Object
: constant Boolean :=
225 Nkind
(N
) = N_Extended_Return_Statement
227 (Nkind
(N
) = N_Simple_Return_Statement
228 and then Present
(Expression
(N
)));
229 -- True if we're returning something; that is, "return <expression>;"
230 -- or "return Result : T [:= ...]". False for "return;". Used for error
231 -- checking: If Returns_Object is True, N should apply to a function
232 -- body; otherwise N should apply to a procedure body, entry body,
233 -- accept statement, or extended return statement.
235 function Find_What_It_Applies_To
return Entity_Id
;
236 -- Find the entity representing the innermost enclosing body, accept
237 -- statement, or extended return statement. If the result is a callable
238 -- construct or extended return statement, then this will be the value
239 -- of the Return_Applies_To attribute. Otherwise, the program is
240 -- illegal. See RM-6.5(4/2).
242 -----------------------------
243 -- Find_What_It_Applies_To --
244 -----------------------------
246 function Find_What_It_Applies_To
return Entity_Id
is
247 Result
: Entity_Id
:= Empty
;
250 -- Loop outward through the Scope_Stack, skipping blocks and loops
252 for J
in reverse 0 .. Scope_Stack
.Last
loop
253 Result
:= Scope_Stack
.Table
(J
).Entity
;
254 exit when Ekind
(Result
) /= E_Block
and then
255 Ekind
(Result
) /= E_Loop
;
258 pragma Assert
(Present
(Result
));
260 end Find_What_It_Applies_To
;
262 -- Local declarations
264 Scope_Id
: constant Entity_Id
:= Find_What_It_Applies_To
;
265 Kind
: constant Entity_Kind
:= Ekind
(Scope_Id
);
266 Loc
: constant Source_Ptr
:= Sloc
(N
);
267 Stm_Entity
: constant Entity_Id
:=
269 (E_Return_Statement
, Current_Scope
, Loc
, 'R');
271 -- Start of processing for Analyze_Return_Statement
274 Set_Return_Statement_Entity
(N
, Stm_Entity
);
276 Set_Etype
(Stm_Entity
, Standard_Void_Type
);
277 Set_Return_Applies_To
(Stm_Entity
, Scope_Id
);
279 -- Place Return entity on scope stack, to simplify enforcement of 6.5
280 -- (4/2): an inner return statement will apply to this extended return.
282 if Nkind
(N
) = N_Extended_Return_Statement
then
283 Push_Scope
(Stm_Entity
);
286 -- Check that pragma No_Return is obeyed. Don't complain about the
287 -- implicitly-generated return that is placed at the end.
289 if No_Return
(Scope_Id
) and then Comes_From_Source
(N
) then
290 Error_Msg_N
("RETURN statement not allowed (No_Return)", N
);
293 -- Warn on any unassigned OUT parameters if in procedure
295 if Ekind
(Scope_Id
) = E_Procedure
then
296 Warn_On_Unassigned_Out_Parameter
(N
, Scope_Id
);
299 -- Check that functions return objects, and other things do not
301 if Kind
= E_Function
or else Kind
= E_Generic_Function
then
302 if not Returns_Object
then
303 Error_Msg_N
("missing expression in return from function", N
);
306 elsif Kind
= E_Procedure
or else Kind
= E_Generic_Procedure
then
307 if Returns_Object
then
308 Error_Msg_N
("procedure cannot return value (use function)", N
);
311 elsif Kind
= E_Entry
or else Kind
= E_Entry_Family
then
312 if Returns_Object
then
313 if Is_Protected_Type
(Scope
(Scope_Id
)) then
314 Error_Msg_N
("entry body cannot return value", N
);
316 Error_Msg_N
("accept statement cannot return value", N
);
320 elsif Kind
= E_Return_Statement
then
322 -- We are nested within another return statement, which must be an
323 -- extended_return_statement.
325 if Returns_Object
then
327 ("extended_return_statement cannot return value; " &
328 "use `""RETURN;""`", N
);
332 Error_Msg_N
("illegal context for return statement", N
);
335 if Kind
= E_Function
or else Kind
= E_Generic_Function
then
336 Analyze_Function_Return
(N
);
339 if Nkind
(N
) = N_Extended_Return_Statement
then
343 Kill_Current_Values
(Last_Assignment_Only
=> True);
344 Check_Unreachable_Code
(N
);
345 end Analyze_Return_Statement
;
347 ---------------------------------------------
348 -- Analyze_Abstract_Subprogram_Declaration --
349 ---------------------------------------------
351 procedure Analyze_Abstract_Subprogram_Declaration
(N
: Node_Id
) is
352 Designator
: constant Entity_Id
:=
353 Analyze_Subprogram_Specification
(Specification
(N
));
354 Scop
: constant Entity_Id
:= Current_Scope
;
357 Generate_Definition
(Designator
);
358 Set_Is_Abstract_Subprogram
(Designator
);
359 New_Overloaded_Entity
(Designator
);
360 Check_Delayed_Subprogram
(Designator
);
362 Set_Categorization_From_Scope
(Designator
, Scop
);
364 if Ekind
(Scope
(Designator
)) = E_Protected_Type
then
366 ("abstract subprogram not allowed in protected type", N
);
368 -- Issue a warning if the abstract subprogram is neither a dispatching
369 -- operation nor an operation that overrides an inherited subprogram or
370 -- predefined operator, since this most likely indicates a mistake.
372 elsif Warn_On_Redundant_Constructs
373 and then not Is_Dispatching_Operation
(Designator
)
374 and then not Is_Overriding_Operation
(Designator
)
375 and then (not Is_Operator_Symbol_Name
(Chars
(Designator
))
376 or else Scop
/= Scope
(Etype
(First_Formal
(Designator
))))
379 ("?abstract subprogram is not dispatching or overriding", N
);
382 Generate_Reference_To_Formals
(Designator
);
383 Check_Eliminated
(Designator
);
384 end Analyze_Abstract_Subprogram_Declaration
;
386 ----------------------------------------
387 -- Analyze_Extended_Return_Statement --
388 ----------------------------------------
390 procedure Analyze_Extended_Return_Statement
(N
: Node_Id
) is
392 Analyze_Return_Statement
(N
);
393 end Analyze_Extended_Return_Statement
;
395 ----------------------------
396 -- Analyze_Function_Call --
397 ----------------------------
399 procedure Analyze_Function_Call
(N
: Node_Id
) is
400 P
: constant Node_Id
:= Name
(N
);
401 L
: constant List_Id
:= Parameter_Associations
(N
);
407 -- A call of the form A.B (X) may be an Ada05 call, which is rewritten
408 -- as B (A, X). If the rewriting is successful, the call has been
409 -- analyzed and we just return.
411 if Nkind
(P
) = N_Selected_Component
412 and then Name
(N
) /= P
413 and then Is_Rewrite_Substitution
(N
)
414 and then Present
(Etype
(N
))
419 -- If error analyzing name, then set Any_Type as result type and return
421 if Etype
(P
) = Any_Type
then
422 Set_Etype
(N
, Any_Type
);
426 -- Otherwise analyze the parameters
430 while Present
(Actual
) loop
432 Check_Parameterless_Call
(Actual
);
438 end Analyze_Function_Call
;
440 -----------------------------
441 -- Analyze_Function_Return --
442 -----------------------------
444 procedure Analyze_Function_Return
(N
: Node_Id
) is
445 Loc
: constant Source_Ptr
:= Sloc
(N
);
446 Stm_Entity
: constant Entity_Id
:= Return_Statement_Entity
(N
);
447 Scope_Id
: constant Entity_Id
:= Return_Applies_To
(Stm_Entity
);
449 R_Type
: constant Entity_Id
:= Etype
(Scope_Id
);
450 -- Function result subtype
452 procedure Check_Limited_Return
(Expr
: Node_Id
);
453 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning
454 -- limited types. Used only for simple return statements.
455 -- Expr is the expression returned.
457 procedure Check_Return_Subtype_Indication
(Obj_Decl
: Node_Id
);
458 -- Check that the return_subtype_indication properly matches the result
459 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
461 --------------------------
462 -- Check_Limited_Return --
463 --------------------------
465 procedure Check_Limited_Return
(Expr
: Node_Id
) is
467 -- Ada 2005 (AI-318-02): Return-by-reference types have been
468 -- removed and replaced by anonymous access results. This is an
469 -- incompatibility with Ada 95. Not clear whether this should be
470 -- enforced yet or perhaps controllable with special switch. ???
472 if Is_Limited_Type
(R_Type
)
473 and then Comes_From_Source
(N
)
474 and then not In_Instance_Body
475 and then not OK_For_Limited_Init_In_05
(R_Type
, Expr
)
479 if Ada_Version
>= Ada_05
480 and then not Debug_Flag_Dot_L
481 and then not GNAT_Mode
484 ("(Ada 2005) cannot copy object of a limited type " &
485 "(RM-2005 6.5(5.5/2))", Expr
);
486 if Is_Inherently_Limited_Type
(R_Type
) then
488 ("\return by reference not permitted in Ada 2005", Expr
);
491 -- Warn in Ada 95 mode, to give folks a heads up about this
494 -- In GNAT mode, this is just a warning, to allow it to be
495 -- evilly turned off. Otherwise it is a real error.
497 elsif Warn_On_Ada_2005_Compatibility
or GNAT_Mode
then
498 if Is_Inherently_Limited_Type
(R_Type
) then
500 ("return by reference not permitted in Ada 2005 " &
501 "(RM-2005 6.5(5.5/2))?", Expr
);
504 ("cannot copy object of a limited type in Ada 2005 " &
505 "(RM-2005 6.5(5.5/2))?", Expr
);
508 -- Ada 95 mode, compatibility warnings disabled
511 return; -- skip continuation messages below
515 ("\consider switching to return of access type", Expr
);
516 Explain_Limited_Type
(R_Type
, Expr
);
518 end Check_Limited_Return
;
520 -------------------------------------
521 -- Check_Return_Subtype_Indication --
522 -------------------------------------
524 procedure Check_Return_Subtype_Indication
(Obj_Decl
: Node_Id
) is
525 Return_Obj
: constant Node_Id
:= Defining_Identifier
(Obj_Decl
);
527 R_Stm_Type
: constant Entity_Id
:= Etype
(Return_Obj
);
528 -- Subtype given in the extended return statement (must match R_Type)
530 Subtype_Ind
: constant Node_Id
:=
531 Object_Definition
(Original_Node
(Obj_Decl
));
533 R_Type_Is_Anon_Access
:
535 Ekind
(R_Type
) = E_Anonymous_Access_Subprogram_Type
537 Ekind
(R_Type
) = E_Anonymous_Access_Protected_Subprogram_Type
539 Ekind
(R_Type
) = E_Anonymous_Access_Type
;
540 -- True if return type of the function is an anonymous access type
541 -- Can't we make Is_Anonymous_Access_Type in einfo ???
543 R_Stm_Type_Is_Anon_Access
:
545 Ekind
(R_Stm_Type
) = E_Anonymous_Access_Subprogram_Type
547 Ekind
(R_Stm_Type
) = E_Anonymous_Access_Protected_Subprogram_Type
549 Ekind
(R_Stm_Type
) = E_Anonymous_Access_Type
;
550 -- True if type of the return object is an anonymous access type
553 -- First, avoid cascaded errors
555 if Error_Posted
(Obj_Decl
) or else Error_Posted
(Subtype_Ind
) then
559 -- "return access T" case; check that the return statement also has
560 -- "access T", and that the subtypes statically match:
561 -- if this is an access to subprogram the signatures must match.
563 if R_Type_Is_Anon_Access
then
564 if R_Stm_Type_Is_Anon_Access
then
566 Ekind
(Designated_Type
(R_Stm_Type
)) /= E_Subprogram_Type
568 if Base_Type
(Designated_Type
(R_Stm_Type
)) /=
569 Base_Type
(Designated_Type
(R_Type
))
570 or else not Subtypes_Statically_Match
(R_Stm_Type
, R_Type
)
573 ("subtype must statically match function result subtype",
574 Subtype_Mark
(Subtype_Ind
));
578 -- For two anonymous access to subprogram types, the
579 -- types themselves must be type conformant.
581 if not Conforming_Types
582 (R_Stm_Type
, R_Type
, Fully_Conformant
)
585 ("subtype must statically match function result subtype",
591 Error_Msg_N
("must use anonymous access type", Subtype_Ind
);
594 -- Subtype indication case: check that the return object's type is
595 -- covered by the result type, and that the subtypes statically match
596 -- when the result subtype is constrained. Also handle record types
597 -- with unknown discriminants for which we have built the underlying
598 -- record view. Coverage is needed to allow specific-type return
599 -- objects when the result type is class-wide (see AI05-32).
601 elsif Covers
(Base_Type
(R_Type
), Base_Type
(R_Stm_Type
))
602 or else (Is_Underlying_Record_View
(Base_Type
(R_Stm_Type
))
606 Underlying_Record_View
(Base_Type
(R_Stm_Type
))))
608 -- A null exclusion may be present on the return type, on the
609 -- function specification, on the object declaration or on the
612 if Is_Access_Type
(R_Type
)
614 (Can_Never_Be_Null
(R_Type
)
615 or else Null_Exclusion_Present
(Parent
(Scope_Id
))) /=
616 Can_Never_Be_Null
(R_Stm_Type
)
619 ("subtype must statically match function result subtype",
623 if Is_Constrained
(R_Type
) then
624 if not Subtypes_Statically_Match
(R_Stm_Type
, R_Type
) then
626 ("subtype must statically match function result subtype",
631 elsif Etype
(Base_Type
(R_Type
)) = R_Stm_Type
632 and then Is_Null_Extension
(Base_Type
(R_Type
))
638 ("wrong type for return_subtype_indication", Subtype_Ind
);
640 end Check_Return_Subtype_Indication
;
642 ---------------------
643 -- Local Variables --
644 ---------------------
648 -- Start of processing for Analyze_Function_Return
651 Set_Return_Present
(Scope_Id
);
653 if Nkind
(N
) = N_Simple_Return_Statement
then
654 Expr
:= Expression
(N
);
655 Analyze_And_Resolve
(Expr
, R_Type
);
656 Check_Limited_Return
(Expr
);
659 -- Analyze parts specific to extended_return_statement:
662 Obj_Decl
: constant Node_Id
:=
663 Last
(Return_Object_Declarations
(N
));
665 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
668 Expr
:= Expression
(Obj_Decl
);
670 -- Note: The check for OK_For_Limited_Init will happen in
671 -- Analyze_Object_Declaration; we treat it as a normal
672 -- object declaration.
674 Set_Is_Return_Object
(Defining_Identifier
(Obj_Decl
));
677 Check_Return_Subtype_Indication
(Obj_Decl
);
679 if Present
(HSS
) then
682 if Present
(Exception_Handlers
(HSS
)) then
684 -- ???Has_Nested_Block_With_Handler needs to be set.
685 -- Probably by creating an actual N_Block_Statement.
686 -- Probably in Expand.
692 -- Mark the return object as referenced, since the return is an
693 -- implicit reference of the object.
695 Set_Referenced
(Defining_Identifier
(Obj_Decl
));
697 Check_References
(Stm_Entity
);
701 -- Case of Expr present
705 -- Defend against previous errors
707 and then Nkind
(Expr
) /= N_Empty
708 and then Present
(Etype
(Expr
))
710 -- Apply constraint check. Note that this is done before the implicit
711 -- conversion of the expression done for anonymous access types to
712 -- ensure correct generation of the null-excluding check associated
713 -- with null-excluding expressions found in return statements.
715 Apply_Constraint_Check
(Expr
, R_Type
);
717 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
718 -- type, apply an implicit conversion of the expression to that type
719 -- to force appropriate static and run-time accessibility checks.
721 if Ada_Version
>= Ada_05
722 and then Ekind
(R_Type
) = E_Anonymous_Access_Type
724 Rewrite
(Expr
, Convert_To
(R_Type
, Relocate_Node
(Expr
)));
725 Analyze_And_Resolve
(Expr
, R_Type
);
728 -- If the result type is class-wide, then check that the return
729 -- expression's type is not declared at a deeper level than the
730 -- function (RM05-6.5(5.6/2)).
732 if Ada_Version
>= Ada_05
733 and then Is_Class_Wide_Type
(R_Type
)
735 if Type_Access_Level
(Etype
(Expr
)) >
736 Subprogram_Access_Level
(Scope_Id
)
739 ("level of return expression type is deeper than " &
740 "class-wide function!", Expr
);
744 -- Check incorrect use of dynamically tagged expression
746 if Is_Tagged_Type
(R_Type
) then
747 Check_Dynamically_Tagged_Expression
753 -- ??? A real run-time accessibility check is needed in cases
754 -- involving dereferences of access parameters. For now we just
755 -- check the static cases.
757 if (Ada_Version
< Ada_05
or else Debug_Flag_Dot_L
)
758 and then Is_Inherently_Limited_Type
(Etype
(Scope_Id
))
759 and then Object_Access_Level
(Expr
) >
760 Subprogram_Access_Level
(Scope_Id
)
763 Make_Raise_Program_Error
(Loc
,
764 Reason
=> PE_Accessibility_Check_Failed
));
768 ("cannot return a local value by reference?", N
);
770 ("\& will be raised at run time?",
771 N
, Standard_Program_Error
);
775 and then Nkind
(Parent
(Scope_Id
)) = N_Function_Specification
776 and then Null_Exclusion_Present
(Parent
(Scope_Id
))
778 Apply_Compile_Time_Constraint_Error
780 Msg
=> "(Ada 2005) null not allowed for "
781 & "null-excluding return?",
782 Reason
=> CE_Null_Not_Allowed
);
785 -- Apply checks suggested by AI05-0144 (dangerous order dependence)
786 -- (Disabled for now)
788 -- Check_Order_Dependence;
790 end Analyze_Function_Return
;
792 -------------------------------------
793 -- Analyze_Generic_Subprogram_Body --
794 -------------------------------------
796 procedure Analyze_Generic_Subprogram_Body
800 Gen_Decl
: constant Node_Id
:= Unit_Declaration_Node
(Gen_Id
);
801 Kind
: constant Entity_Kind
:= Ekind
(Gen_Id
);
807 -- Copy body and disable expansion while analyzing the generic For a
808 -- stub, do not copy the stub (which would load the proper body), this
809 -- will be done when the proper body is analyzed.
811 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
812 New_N
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> False);
817 Spec
:= Specification
(N
);
819 -- Within the body of the generic, the subprogram is callable, and
820 -- behaves like the corresponding non-generic unit.
822 Body_Id
:= Defining_Entity
(Spec
);
824 if Kind
= E_Generic_Procedure
825 and then Nkind
(Spec
) /= N_Procedure_Specification
827 Error_Msg_N
("invalid body for generic procedure ", Body_Id
);
830 elsif Kind
= E_Generic_Function
831 and then Nkind
(Spec
) /= N_Function_Specification
833 Error_Msg_N
("invalid body for generic function ", Body_Id
);
837 Set_Corresponding_Body
(Gen_Decl
, Body_Id
);
839 if Has_Completion
(Gen_Id
)
840 and then Nkind
(Parent
(N
)) /= N_Subunit
842 Error_Msg_N
("duplicate generic body", N
);
845 Set_Has_Completion
(Gen_Id
);
848 if Nkind
(N
) = N_Subprogram_Body_Stub
then
849 Set_Ekind
(Defining_Entity
(Specification
(N
)), Kind
);
851 Set_Corresponding_Spec
(N
, Gen_Id
);
854 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
855 Set_Cunit_Entity
(Current_Sem_Unit
, Defining_Entity
(N
));
858 -- Make generic parameters immediately visible in the body. They are
859 -- needed to process the formals declarations. Then make the formals
860 -- visible in a separate step.
866 First_Ent
: Entity_Id
;
869 First_Ent
:= First_Entity
(Gen_Id
);
872 while Present
(E
) and then not Is_Formal
(E
) loop
877 Set_Use
(Generic_Formal_Declarations
(Gen_Decl
));
879 -- Now generic formals are visible, and the specification can be
880 -- analyzed, for subsequent conformance check.
882 Body_Id
:= Analyze_Subprogram_Specification
(Spec
);
884 -- Make formal parameters visible
888 -- E is the first formal parameter, we loop through the formals
889 -- installing them so that they will be visible.
891 Set_First_Entity
(Gen_Id
, E
);
892 while Present
(E
) loop
898 -- Visible generic entity is callable within its own body
900 Set_Ekind
(Gen_Id
, Ekind
(Body_Id
));
901 Set_Ekind
(Body_Id
, E_Subprogram_Body
);
902 Set_Convention
(Body_Id
, Convention
(Gen_Id
));
903 Set_Is_Obsolescent
(Body_Id
, Is_Obsolescent
(Gen_Id
));
904 Set_Scope
(Body_Id
, Scope
(Gen_Id
));
905 Check_Fully_Conformant
(Body_Id
, Gen_Id
, Body_Id
);
907 if Nkind
(N
) = N_Subprogram_Body_Stub
then
909 -- No body to analyze, so restore state of generic unit
911 Set_Ekind
(Gen_Id
, Kind
);
912 Set_Ekind
(Body_Id
, Kind
);
914 if Present
(First_Ent
) then
915 Set_First_Entity
(Gen_Id
, First_Ent
);
922 -- If this is a compilation unit, it must be made visible explicitly,
923 -- because the compilation of the declaration, unlike other library
924 -- unit declarations, does not. If it is not a unit, the following
925 -- is redundant but harmless.
927 Set_Is_Immediately_Visible
(Gen_Id
);
928 Reference_Body_Formals
(Gen_Id
, Body_Id
);
930 if Is_Child_Unit
(Gen_Id
) then
931 Generate_Reference
(Gen_Id
, Scope
(Gen_Id
), 'k', False);
934 Set_Actual_Subtypes
(N
, Current_Scope
);
935 Process_PPCs
(N
, Gen_Id
, Body_Id
);
937 -- If the generic unit carries pre- or post-conditions, copy them
938 -- to the original generic tree, so that they are properly added
939 -- to any instantiation.
942 Orig
: constant Node_Id
:= Original_Node
(N
);
946 Cond
:= First
(Declarations
(N
));
947 while Present
(Cond
) loop
948 if Nkind
(Cond
) = N_Pragma
949 and then Pragma_Name
(Cond
) = Name_Check
951 Prepend
(New_Copy_Tree
(Cond
), Declarations
(Orig
));
953 elsif Nkind
(Cond
) = N_Pragma
954 and then Pragma_Name
(Cond
) = Name_Postcondition
956 Set_Ekind
(Defining_Entity
(Orig
), Ekind
(Gen_Id
));
957 Prepend
(New_Copy_Tree
(Cond
), Declarations
(Orig
));
966 Analyze_Declarations
(Declarations
(N
));
968 Analyze
(Handled_Statement_Sequence
(N
));
970 Save_Global_References
(Original_Node
(N
));
972 -- Prior to exiting the scope, include generic formals again (if any
973 -- are present) in the set of local entities.
975 if Present
(First_Ent
) then
976 Set_First_Entity
(Gen_Id
, First_Ent
);
979 Check_References
(Gen_Id
);
982 Process_End_Label
(Handled_Statement_Sequence
(N
), 't', Current_Scope
);
984 Check_Subprogram_Order
(N
);
986 -- Outside of its body, unit is generic again
988 Set_Ekind
(Gen_Id
, Kind
);
989 Generate_Reference
(Gen_Id
, Body_Id
, 'b', Set_Ref
=> False);
992 Style
.Check_Identifier
(Body_Id
, Gen_Id
);
996 end Analyze_Generic_Subprogram_Body
;
998 -----------------------------
999 -- Analyze_Operator_Symbol --
1000 -----------------------------
1002 -- An operator symbol such as "+" or "and" may appear in context where the
1003 -- literal denotes an entity name, such as "+"(x, y) or in context when it
1004 -- is just a string, as in (conjunction = "or"). In these cases the parser
1005 -- generates this node, and the semantics does the disambiguation. Other
1006 -- such case are actuals in an instantiation, the generic unit in an
1007 -- instantiation, and pragma arguments.
1009 procedure Analyze_Operator_Symbol
(N
: Node_Id
) is
1010 Par
: constant Node_Id
:= Parent
(N
);
1013 if (Nkind
(Par
) = N_Function_Call
1014 and then N
= Name
(Par
))
1015 or else Nkind
(Par
) = N_Function_Instantiation
1016 or else (Nkind
(Par
) = N_Indexed_Component
1017 and then N
= Prefix
(Par
))
1018 or else (Nkind
(Par
) = N_Pragma_Argument_Association
1019 and then not Is_Pragma_String_Literal
(Par
))
1020 or else Nkind
(Par
) = N_Subprogram_Renaming_Declaration
1021 or else (Nkind
(Par
) = N_Attribute_Reference
1022 and then Attribute_Name
(Par
) /= Name_Value
)
1024 Find_Direct_Name
(N
);
1027 Change_Operator_Symbol_To_String_Literal
(N
);
1030 end Analyze_Operator_Symbol
;
1032 -----------------------------------
1033 -- Analyze_Parameter_Association --
1034 -----------------------------------
1036 procedure Analyze_Parameter_Association
(N
: Node_Id
) is
1038 Analyze
(Explicit_Actual_Parameter
(N
));
1039 end Analyze_Parameter_Association
;
1041 ----------------------------
1042 -- Analyze_Procedure_Call --
1043 ----------------------------
1045 procedure Analyze_Procedure_Call
(N
: Node_Id
) is
1046 Loc
: constant Source_Ptr
:= Sloc
(N
);
1047 P
: constant Node_Id
:= Name
(N
);
1048 Actuals
: constant List_Id
:= Parameter_Associations
(N
);
1052 procedure Analyze_Call_And_Resolve
;
1053 -- Do Analyze and Resolve calls for procedure call
1054 -- At end, check illegal order dependence.
1056 ------------------------------
1057 -- Analyze_Call_And_Resolve --
1058 ------------------------------
1060 procedure Analyze_Call_And_Resolve
is
1062 if Nkind
(N
) = N_Procedure_Call_Statement
then
1064 Resolve
(N
, Standard_Void_Type
);
1066 -- Apply checks suggested by AI05-0144 (Disabled for now)
1068 -- Check_Order_Dependence;
1073 end Analyze_Call_And_Resolve
;
1075 -- Start of processing for Analyze_Procedure_Call
1078 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
1079 -- a procedure call or an entry call. The prefix may denote an access
1080 -- to subprogram type, in which case an implicit dereference applies.
1081 -- If the prefix is an indexed component (without implicit dereference)
1082 -- then the construct denotes a call to a member of an entire family.
1083 -- If the prefix is a simple name, it may still denote a call to a
1084 -- parameterless member of an entry family. Resolution of these various
1085 -- interpretations is delicate.
1089 -- If this is a call of the form Obj.Op, the call may have been
1090 -- analyzed and possibly rewritten into a block, in which case
1093 if Analyzed
(N
) then
1097 -- If there is an error analyzing the name (which may have been
1098 -- rewritten if the original call was in prefix notation) then error
1099 -- has been emitted already, mark node and return.
1102 or else Etype
(Name
(N
)) = Any_Type
1104 Set_Etype
(N
, Any_Type
);
1108 -- Otherwise analyze the parameters
1110 if Present
(Actuals
) then
1111 Actual
:= First
(Actuals
);
1113 while Present
(Actual
) loop
1115 Check_Parameterless_Call
(Actual
);
1120 -- Special processing for Elab_Spec and Elab_Body calls
1122 if Nkind
(P
) = N_Attribute_Reference
1123 and then (Attribute_Name
(P
) = Name_Elab_Spec
1124 or else Attribute_Name
(P
) = Name_Elab_Body
)
1126 if Present
(Actuals
) then
1128 ("no parameters allowed for this call", First
(Actuals
));
1132 Set_Etype
(N
, Standard_Void_Type
);
1135 elsif Is_Entity_Name
(P
)
1136 and then Is_Record_Type
(Etype
(Entity
(P
)))
1137 and then Remote_AST_I_Dereference
(P
)
1141 elsif Is_Entity_Name
(P
)
1142 and then Ekind
(Entity
(P
)) /= E_Entry_Family
1144 if Is_Access_Type
(Etype
(P
))
1145 and then Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
1146 and then No
(Actuals
)
1147 and then Comes_From_Source
(N
)
1149 Error_Msg_N
("missing explicit dereference in call", N
);
1152 Analyze_Call_And_Resolve
;
1154 -- If the prefix is the simple name of an entry family, this is
1155 -- a parameterless call from within the task body itself.
1157 elsif Is_Entity_Name
(P
)
1158 and then Nkind
(P
) = N_Identifier
1159 and then Ekind
(Entity
(P
)) = E_Entry_Family
1160 and then Present
(Actuals
)
1161 and then No
(Next
(First
(Actuals
)))
1163 -- Can be call to parameterless entry family. What appears to be the
1164 -- sole argument is in fact the entry index. Rewrite prefix of node
1165 -- accordingly. Source representation is unchanged by this
1169 Make_Indexed_Component
(Loc
,
1171 Make_Selected_Component
(Loc
,
1172 Prefix
=> New_Occurrence_Of
(Scope
(Entity
(P
)), Loc
),
1173 Selector_Name
=> New_Occurrence_Of
(Entity
(P
), Loc
)),
1174 Expressions
=> Actuals
);
1175 Set_Name
(N
, New_N
);
1176 Set_Etype
(New_N
, Standard_Void_Type
);
1177 Set_Parameter_Associations
(N
, No_List
);
1178 Analyze_Call_And_Resolve
;
1180 elsif Nkind
(P
) = N_Explicit_Dereference
then
1181 if Ekind
(Etype
(P
)) = E_Subprogram_Type
then
1182 Analyze_Call_And_Resolve
;
1184 Error_Msg_N
("expect access to procedure in call", P
);
1187 -- The name can be a selected component or an indexed component that
1188 -- yields an access to subprogram. Such a prefix is legal if the call
1189 -- has parameter associations.
1191 elsif Is_Access_Type
(Etype
(P
))
1192 and then Ekind
(Designated_Type
(Etype
(P
))) = E_Subprogram_Type
1194 if Present
(Actuals
) then
1195 Analyze_Call_And_Resolve
;
1197 Error_Msg_N
("missing explicit dereference in call ", N
);
1200 -- If not an access to subprogram, then the prefix must resolve to the
1201 -- name of an entry, entry family, or protected operation.
1203 -- For the case of a simple entry call, P is a selected component where
1204 -- the prefix is the task and the selector name is the entry. A call to
1205 -- a protected procedure will have the same syntax. If the protected
1206 -- object contains overloaded operations, the entity may appear as a
1207 -- function, the context will select the operation whose type is Void.
1209 elsif Nkind
(P
) = N_Selected_Component
1210 and then (Ekind
(Entity
(Selector_Name
(P
))) = E_Entry
1212 Ekind
(Entity
(Selector_Name
(P
))) = E_Procedure
1214 Ekind
(Entity
(Selector_Name
(P
))) = E_Function
)
1216 Analyze_Call_And_Resolve
;
1218 elsif Nkind
(P
) = N_Selected_Component
1219 and then Ekind
(Entity
(Selector_Name
(P
))) = E_Entry_Family
1220 and then Present
(Actuals
)
1221 and then No
(Next
(First
(Actuals
)))
1223 -- Can be call to parameterless entry family. What appears to be the
1224 -- sole argument is in fact the entry index. Rewrite prefix of node
1225 -- accordingly. Source representation is unchanged by this
1229 Make_Indexed_Component
(Loc
,
1230 Prefix
=> New_Copy
(P
),
1231 Expressions
=> Actuals
);
1232 Set_Name
(N
, New_N
);
1233 Set_Etype
(New_N
, Standard_Void_Type
);
1234 Set_Parameter_Associations
(N
, No_List
);
1235 Analyze_Call_And_Resolve
;
1237 -- For the case of a reference to an element of an entry family, P is
1238 -- an indexed component whose prefix is a selected component (task and
1239 -- entry family), and whose index is the entry family index.
1241 elsif Nkind
(P
) = N_Indexed_Component
1242 and then Nkind
(Prefix
(P
)) = N_Selected_Component
1243 and then Ekind
(Entity
(Selector_Name
(Prefix
(P
)))) = E_Entry_Family
1245 Analyze_Call_And_Resolve
;
1247 -- If the prefix is the name of an entry family, it is a call from
1248 -- within the task body itself.
1250 elsif Nkind
(P
) = N_Indexed_Component
1251 and then Nkind
(Prefix
(P
)) = N_Identifier
1252 and then Ekind
(Entity
(Prefix
(P
))) = E_Entry_Family
1255 Make_Selected_Component
(Loc
,
1256 Prefix
=> New_Occurrence_Of
(Scope
(Entity
(Prefix
(P
))), Loc
),
1257 Selector_Name
=> New_Occurrence_Of
(Entity
(Prefix
(P
)), Loc
));
1258 Rewrite
(Prefix
(P
), New_N
);
1260 Analyze_Call_And_Resolve
;
1262 -- Anything else is an error
1265 Error_Msg_N
("invalid procedure or entry call", N
);
1267 end Analyze_Procedure_Call
;
1269 -------------------------------------
1270 -- Analyze_Simple_Return_Statement --
1271 -------------------------------------
1273 procedure Analyze_Simple_Return_Statement
(N
: Node_Id
) is
1275 if Present
(Expression
(N
)) then
1276 Mark_Coextensions
(N
, Expression
(N
));
1279 Analyze_Return_Statement
(N
);
1280 end Analyze_Simple_Return_Statement
;
1282 -------------------------
1283 -- Analyze_Return_Type --
1284 -------------------------
1286 procedure Analyze_Return_Type
(N
: Node_Id
) is
1287 Designator
: constant Entity_Id
:= Defining_Entity
(N
);
1288 Typ
: Entity_Id
:= Empty
;
1291 -- Normal case where result definition does not indicate an error
1293 if Result_Definition
(N
) /= Error
then
1294 if Nkind
(Result_Definition
(N
)) = N_Access_Definition
then
1296 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
1299 AD
: constant Node_Id
:=
1300 Access_To_Subprogram_Definition
(Result_Definition
(N
));
1302 if Present
(AD
) and then Protected_Present
(AD
) then
1303 Typ
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1305 Typ
:= Access_Definition
(N
, Result_Definition
(N
));
1309 Set_Parent
(Typ
, Result_Definition
(N
));
1310 Set_Is_Local_Anonymous_Access
(Typ
);
1311 Set_Etype
(Designator
, Typ
);
1313 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1315 Null_Exclusion_Static_Checks
(N
);
1317 -- Subtype_Mark case
1320 Find_Type
(Result_Definition
(N
));
1321 Typ
:= Entity
(Result_Definition
(N
));
1322 Set_Etype
(Designator
, Typ
);
1324 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
1326 Null_Exclusion_Static_Checks
(N
);
1328 -- If a null exclusion is imposed on the result type, then create
1329 -- a null-excluding itype (an access subtype) and use it as the
1330 -- function's Etype. Note that the null exclusion checks are done
1331 -- right before this, because they don't get applied to types that
1332 -- do not come from source.
1334 if Is_Access_Type
(Typ
)
1335 and then Null_Exclusion_Present
(N
)
1337 Set_Etype
(Designator
,
1338 Create_Null_Excluding_Itype
1341 Scope_Id
=> Scope
(Current_Scope
)));
1343 -- The new subtype must be elaborated before use because
1344 -- it is visible outside of the function. However its base
1345 -- type may not be frozen yet, so the reference that will
1346 -- force elaboration must be attached to the freezing of
1349 -- If the return specification appears on a proper body,
1350 -- the subtype will have been created already on the spec.
1352 if Is_Frozen
(Typ
) then
1353 if Nkind
(Parent
(N
)) = N_Subprogram_Body
1354 and then Nkind
(Parent
(Parent
(N
))) = N_Subunit
1358 Build_Itype_Reference
(Etype
(Designator
), Parent
(N
));
1362 Ensure_Freeze_Node
(Typ
);
1365 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(N
));
1367 Set_Itype
(IR
, Etype
(Designator
));
1368 Append_Freeze_Actions
(Typ
, New_List
(IR
));
1373 Set_Etype
(Designator
, Typ
);
1376 if Ekind
(Typ
) = E_Incomplete_Type
1377 and then Is_Value_Type
(Typ
)
1381 elsif Ekind
(Typ
) = E_Incomplete_Type
1382 or else (Is_Class_Wide_Type
(Typ
)
1384 Ekind
(Root_Type
(Typ
)) = E_Incomplete_Type
)
1387 ("invalid use of incomplete type&", Designator
, Typ
);
1391 -- Case where result definition does indicate an error
1394 Set_Etype
(Designator
, Any_Type
);
1396 end Analyze_Return_Type
;
1398 -----------------------------
1399 -- Analyze_Subprogram_Body --
1400 -----------------------------
1402 procedure Analyze_Subprogram_Body
(N
: Node_Id
) is
1403 Loc
: constant Source_Ptr
:= Sloc
(N
);
1404 Body_Spec
: constant Node_Id
:= Specification
(N
);
1405 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
1408 if Debug_Flag_C
then
1409 Write_Str
("==> subprogram body ");
1410 Write_Name
(Chars
(Body_Id
));
1411 Write_Str
(" from ");
1412 Write_Location
(Loc
);
1417 Trace_Scope
(N
, Body_Id
, " Analyze subprogram: ");
1419 -- The real work is split out into the helper, so it can do "return;"
1420 -- without skipping the debug output:
1422 Analyze_Subprogram_Body_Helper
(N
);
1424 if Debug_Flag_C
then
1426 Write_Str
("<== subprogram body ");
1427 Write_Name
(Chars
(Body_Id
));
1428 Write_Str
(" from ");
1429 Write_Location
(Loc
);
1432 end Analyze_Subprogram_Body
;
1434 ------------------------------------
1435 -- Analyze_Subprogram_Body_Helper --
1436 ------------------------------------
1438 -- This procedure is called for regular subprogram bodies, generic bodies,
1439 -- and for subprogram stubs of both kinds. In the case of stubs, only the
1440 -- specification matters, and is used to create a proper declaration for
1441 -- the subprogram, or to perform conformance checks.
1443 procedure Analyze_Subprogram_Body_Helper
(N
: Node_Id
) is
1444 Loc
: constant Source_Ptr
:= Sloc
(N
);
1445 Body_Deleted
: constant Boolean := False;
1446 Body_Spec
: constant Node_Id
:= Specification
(N
);
1447 Body_Id
: Entity_Id
:= Defining_Entity
(Body_Spec
);
1448 Prev_Id
: constant Entity_Id
:= Current_Entity_In_Scope
(Body_Id
);
1449 Conformant
: Boolean;
1452 Prot_Typ
: Entity_Id
:= Empty
;
1453 Spec_Id
: Entity_Id
;
1454 Spec_Decl
: Node_Id
:= Empty
;
1456 Last_Real_Spec_Entity
: Entity_Id
:= Empty
;
1457 -- When we analyze a separate spec, the entity chain ends up containing
1458 -- the formals, as well as any itypes generated during analysis of the
1459 -- default expressions for parameters, or the arguments of associated
1460 -- precondition/postcondition pragmas (which are analyzed in the context
1461 -- of the spec since they have visibility on formals).
1463 -- These entities belong with the spec and not the body. However we do
1464 -- the analysis of the body in the context of the spec (again to obtain
1465 -- visibility to the formals), and all the entities generated during
1466 -- this analysis end up also chained to the entity chain of the spec.
1467 -- But they really belong to the body, and there is circuitry to move
1468 -- them from the spec to the body.
1470 -- However, when we do this move, we don't want to move the real spec
1471 -- entities (first para above) to the body. The Last_Real_Spec_Entity
1472 -- variable points to the last real spec entity, so we only move those
1473 -- chained beyond that point. It is initialized to Empty to deal with
1474 -- the case where there is no separate spec.
1476 procedure Check_Anonymous_Return
;
1477 -- Ada 2005: if a function returns an access type that denotes a task,
1478 -- or a type that contains tasks, we must create a master entity for
1479 -- the anonymous type, which typically will be used in an allocator
1480 -- in the body of the function.
1482 procedure Check_Inline_Pragma
(Spec
: in out Node_Id
);
1483 -- Look ahead to recognize a pragma that may appear after the body.
1484 -- If there is a previous spec, check that it appears in the same
1485 -- declarative part. If the pragma is Inline_Always, perform inlining
1486 -- unconditionally, otherwise only if Front_End_Inlining is requested.
1487 -- If the body acts as a spec, and inlining is required, we create a
1488 -- subprogram declaration for it, in order to attach the body to inline.
1489 -- If pragma does not appear after the body, check whether there is
1490 -- an inline pragma before any local declarations.
1492 procedure Check_Missing_Return
;
1493 -- Checks for a function with a no return statements, and also performs
1494 -- the warning checks implemented by Check_Returns.
1496 function Disambiguate_Spec
return Entity_Id
;
1497 -- When a primitive is declared between the private view and the full
1498 -- view of a concurrent type which implements an interface, a special
1499 -- mechanism is used to find the corresponding spec of the primitive
1502 function Is_Private_Concurrent_Primitive
1503 (Subp_Id
: Entity_Id
) return Boolean;
1504 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
1505 -- type that implements an interface and has a private view.
1507 procedure Set_Trivial_Subprogram
(N
: Node_Id
);
1508 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
1509 -- subprogram whose body is being analyzed. N is the statement node
1510 -- causing the flag to be set, if the following statement is a return
1511 -- of an entity, we mark the entity as set in source to suppress any
1512 -- warning on the stylized use of function stubs with a dummy return.
1514 procedure Verify_Overriding_Indicator
;
1515 -- If there was a previous spec, the entity has been entered in the
1516 -- current scope previously. If the body itself carries an overriding
1517 -- indicator, check that it is consistent with the known status of the
1520 ----------------------------
1521 -- Check_Anonymous_Return --
1522 ----------------------------
1524 procedure Check_Anonymous_Return
is
1530 if Present
(Spec_Id
) then
1536 if Ekind
(Scop
) = E_Function
1537 and then Ekind
(Etype
(Scop
)) = E_Anonymous_Access_Type
1538 and then not Is_Thunk
(Scop
)
1539 and then (Has_Task
(Designated_Type
(Etype
(Scop
)))
1541 (Is_Class_Wide_Type
(Designated_Type
(Etype
(Scop
)))
1543 Is_Limited_Record
(Designated_Type
(Etype
(Scop
)))))
1544 and then Expander_Active
1546 -- Avoid cases with no tasking support
1548 and then RTE_Available
(RE_Current_Master
)
1549 and then not Restriction_Active
(No_Task_Hierarchy
)
1552 Make_Object_Declaration
(Loc
,
1553 Defining_Identifier
=>
1554 Make_Defining_Identifier
(Loc
, Name_uMaster
),
1555 Constant_Present
=> True,
1556 Object_Definition
=>
1557 New_Reference_To
(RTE
(RE_Master_Id
), Loc
),
1559 Make_Explicit_Dereference
(Loc
,
1560 New_Reference_To
(RTE
(RE_Current_Master
), Loc
)));
1562 if Present
(Declarations
(N
)) then
1563 Prepend
(Decl
, Declarations
(N
));
1565 Set_Declarations
(N
, New_List
(Decl
));
1568 Set_Master_Id
(Etype
(Scop
), Defining_Identifier
(Decl
));
1569 Set_Has_Master_Entity
(Scop
);
1571 -- Now mark the containing scope as a task master
1574 while Nkind
(Par
) /= N_Compilation_Unit
loop
1575 Par
:= Parent
(Par
);
1576 pragma Assert
(Present
(Par
));
1578 -- If we fall off the top, we are at the outer level, and
1579 -- the environment task is our effective master, so nothing
1583 (Par
, N_Task_Body
, N_Block_Statement
, N_Subprogram_Body
)
1585 Set_Is_Task_Master
(Par
, True);
1590 end Check_Anonymous_Return
;
1592 -------------------------
1593 -- Check_Inline_Pragma --
1594 -------------------------
1596 procedure Check_Inline_Pragma
(Spec
: in out Node_Id
) is
1600 function Is_Inline_Pragma
(N
: Node_Id
) return Boolean;
1601 -- True when N is a pragma Inline or Inline_Always that applies
1602 -- to this subprogram.
1604 -----------------------
1605 -- Is_Inline_Pragma --
1606 -----------------------
1608 function Is_Inline_Pragma
(N
: Node_Id
) return Boolean is
1611 Nkind
(N
) = N_Pragma
1613 (Pragma_Name
(N
) = Name_Inline_Always
1616 and then Pragma_Name
(N
) = Name_Inline
))
1619 (Expression
(First
(Pragma_Argument_Associations
(N
))))
1621 end Is_Inline_Pragma
;
1623 -- Start of processing for Check_Inline_Pragma
1626 if not Expander_Active
then
1630 if Is_List_Member
(N
)
1631 and then Present
(Next
(N
))
1632 and then Is_Inline_Pragma
(Next
(N
))
1636 elsif Nkind
(N
) /= N_Subprogram_Body_Stub
1637 and then Present
(Declarations
(N
))
1638 and then Is_Inline_Pragma
(First
(Declarations
(N
)))
1640 Prag
:= First
(Declarations
(N
));
1646 if Present
(Prag
) then
1647 if Present
(Spec_Id
) then
1648 if In_Same_List
(N
, Unit_Declaration_Node
(Spec_Id
)) then
1653 -- Create a subprogram declaration, to make treatment uniform
1656 Subp
: constant Entity_Id
:=
1657 Make_Defining_Identifier
(Loc
, Chars
(Body_Id
));
1658 Decl
: constant Node_Id
:=
1659 Make_Subprogram_Declaration
(Loc
,
1661 New_Copy_Tree
(Specification
(N
)));
1664 Set_Defining_Unit_Name
(Specification
(Decl
), Subp
);
1666 if Present
(First_Formal
(Body_Id
)) then
1667 Plist
:= Copy_Parameter_List
(Body_Id
);
1668 Set_Parameter_Specifications
1669 (Specification
(Decl
), Plist
);
1672 Insert_Before
(N
, Decl
);
1675 Set_Has_Pragma_Inline
(Subp
);
1677 if Pragma_Name
(Prag
) = Name_Inline_Always
then
1678 Set_Is_Inlined
(Subp
);
1679 Set_Has_Pragma_Inline_Always
(Subp
);
1686 end Check_Inline_Pragma
;
1688 --------------------------
1689 -- Check_Missing_Return --
1690 --------------------------
1692 procedure Check_Missing_Return
is
1694 Missing_Ret
: Boolean;
1697 if Nkind
(Body_Spec
) = N_Function_Specification
then
1698 if Present
(Spec_Id
) then
1704 if Return_Present
(Id
) then
1705 Check_Returns
(HSS
, 'F', Missing_Ret
);
1708 Set_Has_Missing_Return
(Id
);
1711 elsif (Is_Generic_Subprogram
(Id
)
1712 or else not Is_Machine_Code_Subprogram
(Id
))
1713 and then not Body_Deleted
1715 Error_Msg_N
("missing RETURN statement in function body", N
);
1718 -- If procedure with No_Return, check returns
1720 elsif Nkind
(Body_Spec
) = N_Procedure_Specification
1721 and then Present
(Spec_Id
)
1722 and then No_Return
(Spec_Id
)
1724 Check_Returns
(HSS
, 'P', Missing_Ret
, Spec_Id
);
1726 end Check_Missing_Return
;
1728 -----------------------
1729 -- Disambiguate_Spec --
1730 -----------------------
1732 function Disambiguate_Spec
return Entity_Id
is
1733 Priv_Spec
: Entity_Id
;
1736 procedure Replace_Types
(To_Corresponding
: Boolean);
1737 -- Depending on the flag, replace the type of formal parameters of
1738 -- Body_Id if it is a concurrent type implementing interfaces with
1739 -- the corresponding record type or the other way around.
1741 procedure Replace_Types
(To_Corresponding
: Boolean) is
1743 Formal_Typ
: Entity_Id
;
1746 Formal
:= First_Formal
(Body_Id
);
1747 while Present
(Formal
) loop
1748 Formal_Typ
:= Etype
(Formal
);
1750 -- From concurrent type to corresponding record
1752 if To_Corresponding
then
1753 if Is_Concurrent_Type
(Formal_Typ
)
1754 and then Present
(Corresponding_Record_Type
(Formal_Typ
))
1755 and then Present
(Interfaces
(
1756 Corresponding_Record_Type
(Formal_Typ
)))
1759 Corresponding_Record_Type
(Formal_Typ
));
1762 -- From corresponding record to concurrent type
1765 if Is_Concurrent_Record_Type
(Formal_Typ
)
1766 and then Present
(Interfaces
(Formal_Typ
))
1769 Corresponding_Concurrent_Type
(Formal_Typ
));
1773 Next_Formal
(Formal
);
1777 -- Start of processing for Disambiguate_Spec
1780 -- Try to retrieve the specification of the body as is. All error
1781 -- messages are suppressed because the body may not have a spec in
1782 -- its current state.
1784 Spec_N
:= Find_Corresponding_Spec
(N
, False);
1786 -- It is possible that this is the body of a primitive declared
1787 -- between a private and a full view of a concurrent type. The
1788 -- controlling parameter of the spec carries the concurrent type,
1789 -- not the corresponding record type as transformed by Analyze_
1790 -- Subprogram_Specification. In such cases, we undo the change
1791 -- made by the analysis of the specification and try to find the
1794 -- Note that wrappers already have their corresponding specs and
1795 -- bodies set during their creation, so if the candidate spec is
1796 -- a wrapper, then we definitely need to swap all types to their
1797 -- original concurrent status.
1800 or else Is_Primitive_Wrapper
(Spec_N
)
1802 -- Restore all references of corresponding record types to the
1803 -- original concurrent types.
1805 Replace_Types
(To_Corresponding
=> False);
1806 Priv_Spec
:= Find_Corresponding_Spec
(N
, False);
1808 -- The current body truly belongs to a primitive declared between
1809 -- a private and a full view. We leave the modified body as is,
1810 -- and return the true spec.
1812 if Present
(Priv_Spec
)
1813 and then Is_Private_Primitive
(Priv_Spec
)
1818 -- In case that this is some sort of error, restore the original
1819 -- state of the body.
1821 Replace_Types
(To_Corresponding
=> True);
1825 end Disambiguate_Spec
;
1827 -------------------------------------
1828 -- Is_Private_Concurrent_Primitive --
1829 -------------------------------------
1831 function Is_Private_Concurrent_Primitive
1832 (Subp_Id
: Entity_Id
) return Boolean
1834 Formal_Typ
: Entity_Id
;
1837 if Present
(First_Formal
(Subp_Id
)) then
1838 Formal_Typ
:= Etype
(First_Formal
(Subp_Id
));
1840 if Is_Concurrent_Record_Type
(Formal_Typ
) then
1841 Formal_Typ
:= Corresponding_Concurrent_Type
(Formal_Typ
);
1844 -- The type of the first formal is a concurrent tagged type with
1848 Is_Concurrent_Type
(Formal_Typ
)
1849 and then Is_Tagged_Type
(Formal_Typ
)
1850 and then Has_Private_Declaration
(Formal_Typ
);
1854 end Is_Private_Concurrent_Primitive
;
1856 ----------------------------
1857 -- Set_Trivial_Subprogram --
1858 ----------------------------
1860 procedure Set_Trivial_Subprogram
(N
: Node_Id
) is
1861 Nxt
: constant Node_Id
:= Next
(N
);
1864 Set_Is_Trivial_Subprogram
(Body_Id
);
1866 if Present
(Spec_Id
) then
1867 Set_Is_Trivial_Subprogram
(Spec_Id
);
1871 and then Nkind
(Nxt
) = N_Simple_Return_Statement
1872 and then No
(Next
(Nxt
))
1873 and then Present
(Expression
(Nxt
))
1874 and then Is_Entity_Name
(Expression
(Nxt
))
1876 Set_Never_Set_In_Source
(Entity
(Expression
(Nxt
)), False);
1878 end Set_Trivial_Subprogram
;
1880 ---------------------------------
1881 -- Verify_Overriding_Indicator --
1882 ---------------------------------
1884 procedure Verify_Overriding_Indicator
is
1886 if Must_Override
(Body_Spec
) then
1887 if Nkind
(Spec_Id
) = N_Defining_Operator_Symbol
1888 and then Operator_Matches_Spec
(Spec_Id
, Spec_Id
)
1892 elsif not Is_Overriding_Operation
(Spec_Id
) then
1894 ("subprogram& is not overriding", Body_Spec
, Spec_Id
);
1897 elsif Must_Not_Override
(Body_Spec
) then
1898 if Is_Overriding_Operation
(Spec_Id
) then
1900 ("subprogram& overrides inherited operation",
1901 Body_Spec
, Spec_Id
);
1903 elsif Nkind
(Spec_Id
) = N_Defining_Operator_Symbol
1904 and then Operator_Matches_Spec
(Spec_Id
, Spec_Id
)
1907 ("subprogram & overrides predefined operator ",
1908 Body_Spec
, Spec_Id
);
1910 -- If this is not a primitive operation or protected subprogram,
1911 -- then the overriding indicator is altogether illegal.
1913 elsif not Is_Primitive
(Spec_Id
)
1914 and then Ekind
(Scope
(Spec_Id
)) /= E_Protected_Type
1917 ("overriding indicator only allowed " &
1918 "if subprogram is primitive",
1922 elsif Style_Check
-- ??? incorrect use of Style_Check!
1923 and then Is_Overriding_Operation
(Spec_Id
)
1925 pragma Assert
(Unit_Declaration_Node
(Body_Id
) = N
);
1926 Style
.Missing_Overriding
(N
, Body_Id
);
1928 end Verify_Overriding_Indicator
;
1930 -- Start of processing for Analyze_Subprogram_Body_Helper
1933 -- Generic subprograms are handled separately. They always have a
1934 -- generic specification. Determine whether current scope has a
1935 -- previous declaration.
1937 -- If the subprogram body is defined within an instance of the same
1938 -- name, the instance appears as a package renaming, and will be hidden
1939 -- within the subprogram.
1941 if Present
(Prev_Id
)
1942 and then not Is_Overloadable
(Prev_Id
)
1943 and then (Nkind
(Parent
(Prev_Id
)) /= N_Package_Renaming_Declaration
1944 or else Comes_From_Source
(Prev_Id
))
1946 if Is_Generic_Subprogram
(Prev_Id
) then
1948 Set_Is_Compilation_Unit
(Body_Id
, Is_Compilation_Unit
(Spec_Id
));
1949 Set_Is_Child_Unit
(Body_Id
, Is_Child_Unit
(Spec_Id
));
1951 Analyze_Generic_Subprogram_Body
(N
, Spec_Id
);
1953 if Nkind
(N
) = N_Subprogram_Body
then
1954 HSS
:= Handled_Statement_Sequence
(N
);
1955 Check_Missing_Return
;
1961 -- Previous entity conflicts with subprogram name. Attempting to
1962 -- enter name will post error.
1964 Enter_Name
(Body_Id
);
1968 -- Non-generic case, find the subprogram declaration, if one was seen,
1969 -- or enter new overloaded entity in the current scope. If the
1970 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
1971 -- part of the context of one of its subunits. No need to redo the
1974 elsif Prev_Id
= Body_Id
1975 and then Has_Completion
(Body_Id
)
1980 Body_Id
:= Analyze_Subprogram_Specification
(Body_Spec
);
1982 if Nkind
(N
) = N_Subprogram_Body_Stub
1983 or else No
(Corresponding_Spec
(N
))
1985 if Is_Private_Concurrent_Primitive
(Body_Id
) then
1986 Spec_Id
:= Disambiguate_Spec
;
1988 Spec_Id
:= Find_Corresponding_Spec
(N
);
1991 -- If this is a duplicate body, no point in analyzing it
1993 if Error_Posted
(N
) then
1997 -- A subprogram body should cause freezing of its own declaration,
1998 -- but if there was no previous explicit declaration, then the
1999 -- subprogram will get frozen too late (there may be code within
2000 -- the body that depends on the subprogram having been frozen,
2001 -- such as uses of extra formals), so we force it to be frozen
2002 -- here. Same holds if the body and spec are compilation units.
2003 -- Finally, if the return type is an anonymous access to protected
2004 -- subprogram, it must be frozen before the body because its
2005 -- expansion has generated an equivalent type that is used when
2006 -- elaborating the body.
2008 if No
(Spec_Id
) then
2009 Freeze_Before
(N
, Body_Id
);
2011 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
2012 Freeze_Before
(N
, Spec_Id
);
2014 elsif Is_Access_Subprogram_Type
(Etype
(Body_Id
)) then
2015 Freeze_Before
(N
, Etype
(Body_Id
));
2019 Spec_Id
:= Corresponding_Spec
(N
);
2023 -- Do not inline any subprogram that contains nested subprograms, since
2024 -- the backend inlining circuit seems to generate uninitialized
2025 -- references in this case. We know this happens in the case of front
2026 -- end ZCX support, but it also appears it can happen in other cases as
2027 -- well. The backend often rejects attempts to inline in the case of
2028 -- nested procedures anyway, so little if anything is lost by this.
2029 -- Note that this is test is for the benefit of the back-end. There is
2030 -- a separate test for front-end inlining that also rejects nested
2033 -- Do not do this test if errors have been detected, because in some
2034 -- error cases, this code blows up, and we don't need it anyway if
2035 -- there have been errors, since we won't get to the linker anyway.
2037 if Comes_From_Source
(Body_Id
)
2038 and then Serious_Errors_Detected
= 0
2042 P_Ent
:= Scope
(P_Ent
);
2043 exit when No
(P_Ent
) or else P_Ent
= Standard_Standard
;
2045 if Is_Subprogram
(P_Ent
) then
2046 Set_Is_Inlined
(P_Ent
, False);
2048 if Comes_From_Source
(P_Ent
)
2049 and then Has_Pragma_Inline
(P_Ent
)
2052 ("cannot inline& (nested subprogram)?",
2059 Check_Inline_Pragma
(Spec_Id
);
2061 -- Deal with special case of a fully private operation in the body of
2062 -- the protected type. We must create a declaration for the subprogram,
2063 -- in order to attach the protected subprogram that will be used in
2064 -- internal calls. We exclude compiler generated bodies from the
2065 -- expander since the issue does not arise for those cases.
2068 and then Comes_From_Source
(N
)
2069 and then Is_Protected_Type
(Current_Scope
)
2071 Spec_Id
:= Build_Private_Protected_Declaration
(N
);
2074 -- If a separate spec is present, then deal with freezing issues
2076 if Present
(Spec_Id
) then
2077 Spec_Decl
:= Unit_Declaration_Node
(Spec_Id
);
2078 Verify_Overriding_Indicator
;
2080 -- In general, the spec will be frozen when we start analyzing the
2081 -- body. However, for internally generated operations, such as
2082 -- wrapper functions for inherited operations with controlling
2083 -- results, the spec may not have been frozen by the time we
2084 -- expand the freeze actions that include the bodies. In particular,
2085 -- extra formals for accessibility or for return-in-place may need
2086 -- to be generated. Freeze nodes, if any, are inserted before the
2089 if not Is_Frozen
(Spec_Id
)
2090 and then Expander_Active
2092 -- Force the generation of its freezing node to ensure proper
2093 -- management of access types in the backend.
2095 -- This is definitely needed for some cases, but it is not clear
2096 -- why, to be investigated further???
2098 Set_Has_Delayed_Freeze
(Spec_Id
);
2099 Insert_Actions
(N
, Freeze_Entity
(Spec_Id
, Loc
));
2103 -- Mark presence of postcondition procedure in current scope and mark
2104 -- the procedure itself as needing debug info. The latter is important
2105 -- when analyzing decision coverage (for example, for MC/DC coverage).
2107 if Chars
(Body_Id
) = Name_uPostconditions
then
2108 Set_Has_Postconditions
(Current_Scope
);
2109 Set_Debug_Info_Needed
(Body_Id
);
2112 -- Place subprogram on scope stack, and make formals visible. If there
2113 -- is a spec, the visible entity remains that of the spec.
2115 if Present
(Spec_Id
) then
2116 Generate_Reference
(Spec_Id
, Body_Id
, 'b', Set_Ref
=> False);
2118 if Is_Child_Unit
(Spec_Id
) then
2119 Generate_Reference
(Spec_Id
, Scope
(Spec_Id
), 'k', False);
2123 Style
.Check_Identifier
(Body_Id
, Spec_Id
);
2126 Set_Is_Compilation_Unit
(Body_Id
, Is_Compilation_Unit
(Spec_Id
));
2127 Set_Is_Child_Unit
(Body_Id
, Is_Child_Unit
(Spec_Id
));
2129 if Is_Abstract_Subprogram
(Spec_Id
) then
2130 Error_Msg_N
("an abstract subprogram cannot have a body", N
);
2134 Set_Convention
(Body_Id
, Convention
(Spec_Id
));
2135 Set_Has_Completion
(Spec_Id
);
2137 if Is_Protected_Type
(Scope
(Spec_Id
)) then
2138 Prot_Typ
:= Scope
(Spec_Id
);
2141 -- If this is a body generated for a renaming, do not check for
2142 -- full conformance. The check is redundant, because the spec of
2143 -- the body is a copy of the spec in the renaming declaration,
2144 -- and the test can lead to spurious errors on nested defaults.
2146 if Present
(Spec_Decl
)
2147 and then not Comes_From_Source
(N
)
2149 (Nkind
(Original_Node
(Spec_Decl
)) =
2150 N_Subprogram_Renaming_Declaration
2151 or else (Present
(Corresponding_Body
(Spec_Decl
))
2153 Nkind
(Unit_Declaration_Node
2154 (Corresponding_Body
(Spec_Decl
))) =
2155 N_Subprogram_Renaming_Declaration
))
2159 -- Conversely, the spec may have been generated for specless body
2160 -- with an inline pragma.
2162 elsif Comes_From_Source
(N
)
2163 and then not Comes_From_Source
(Spec_Id
)
2164 and then Has_Pragma_Inline
(Spec_Id
)
2171 Fully_Conformant
, True, Conformant
, Body_Id
);
2174 -- If the body is not fully conformant, we have to decide if we
2175 -- should analyze it or not. If it has a really messed up profile
2176 -- then we probably should not analyze it, since we will get too
2177 -- many bogus messages.
2179 -- Our decision is to go ahead in the non-fully conformant case
2180 -- only if it is at least mode conformant with the spec. Note
2181 -- that the call to Check_Fully_Conformant has issued the proper
2182 -- error messages to complain about the lack of conformance.
2185 and then not Mode_Conformant
(Body_Id
, Spec_Id
)
2191 if Spec_Id
/= Body_Id
then
2192 Reference_Body_Formals
(Spec_Id
, Body_Id
);
2195 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
2196 Set_Corresponding_Spec
(N
, Spec_Id
);
2198 -- Ada 2005 (AI-345): If the operation is a primitive operation
2199 -- of a concurrent type, the type of the first parameter has been
2200 -- replaced with the corresponding record, which is the proper
2201 -- run-time structure to use. However, within the body there may
2202 -- be uses of the formals that depend on primitive operations
2203 -- of the type (in particular calls in prefixed form) for which
2204 -- we need the original concurrent type. The operation may have
2205 -- several controlling formals, so the replacement must be done
2208 if Comes_From_Source
(Spec_Id
)
2209 and then Present
(First_Entity
(Spec_Id
))
2210 and then Ekind
(Etype
(First_Entity
(Spec_Id
))) = E_Record_Type
2211 and then Is_Tagged_Type
(Etype
(First_Entity
(Spec_Id
)))
2213 Present
(Interfaces
(Etype
(First_Entity
(Spec_Id
))))
2216 (Corresponding_Concurrent_Type
2217 (Etype
(First_Entity
(Spec_Id
))))
2220 Typ
: constant Entity_Id
:= Etype
(First_Entity
(Spec_Id
));
2224 Form
:= First_Formal
(Spec_Id
);
2225 while Present
(Form
) loop
2226 if Etype
(Form
) = Typ
then
2227 Set_Etype
(Form
, Corresponding_Concurrent_Type
(Typ
));
2235 -- Make the formals visible, and place subprogram on scope stack.
2236 -- This is also the point at which we set Last_Real_Spec_Entity
2237 -- to mark the entities which will not be moved to the body.
2239 Install_Formals
(Spec_Id
);
2240 Last_Real_Spec_Entity
:= Last_Entity
(Spec_Id
);
2241 Push_Scope
(Spec_Id
);
2243 -- Make sure that the subprogram is immediately visible. For
2244 -- child units that have no separate spec this is indispensable.
2245 -- Otherwise it is safe albeit redundant.
2247 Set_Is_Immediately_Visible
(Spec_Id
);
2250 Set_Corresponding_Body
(Unit_Declaration_Node
(Spec_Id
), Body_Id
);
2251 Set_Ekind
(Body_Id
, E_Subprogram_Body
);
2252 Set_Scope
(Body_Id
, Scope
(Spec_Id
));
2253 Set_Is_Obsolescent
(Body_Id
, Is_Obsolescent
(Spec_Id
));
2255 -- Case of subprogram body with no previous spec
2259 and then Comes_From_Source
(Body_Id
)
2260 and then not Suppress_Style_Checks
(Body_Id
)
2261 and then not In_Instance
2263 Style
.Body_With_No_Spec
(N
);
2266 New_Overloaded_Entity
(Body_Id
);
2268 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
2269 Set_Acts_As_Spec
(N
);
2270 Generate_Definition
(Body_Id
);
2272 (Body_Id
, Body_Id
, 'b', Set_Ref
=> False, Force
=> True);
2273 Generate_Reference_To_Formals
(Body_Id
);
2274 Install_Formals
(Body_Id
);
2275 Push_Scope
(Body_Id
);
2279 -- If the return type is an anonymous access type whose designated type
2280 -- is the limited view of a class-wide type and the non-limited view is
2281 -- available, update the return type accordingly.
2283 if Ada_Version
>= Ada_05
2284 and then Comes_From_Source
(N
)
2291 Rtyp
:= Etype
(Current_Scope
);
2293 if Ekind
(Rtyp
) = E_Anonymous_Access_Type
then
2294 Etyp
:= Directly_Designated_Type
(Rtyp
);
2296 if Is_Class_Wide_Type
(Etyp
)
2297 and then From_With_Type
(Etyp
)
2299 Set_Directly_Designated_Type
2300 (Etype
(Current_Scope
), Available_View
(Etyp
));
2306 -- If this is the proper body of a stub, we must verify that the stub
2307 -- conforms to the body, and to the previous spec if one was present.
2308 -- we know already that the body conforms to that spec. This test is
2309 -- only required for subprograms that come from source.
2311 if Nkind
(Parent
(N
)) = N_Subunit
2312 and then Comes_From_Source
(N
)
2313 and then not Error_Posted
(Body_Id
)
2314 and then Nkind
(Corresponding_Stub
(Parent
(N
))) =
2315 N_Subprogram_Body_Stub
2318 Old_Id
: constant Entity_Id
:=
2320 (Specification
(Corresponding_Stub
(Parent
(N
))));
2322 Conformant
: Boolean := False;
2325 if No
(Spec_Id
) then
2326 Check_Fully_Conformant
(Body_Id
, Old_Id
);
2330 (Body_Id
, Old_Id
, Fully_Conformant
, False, Conformant
);
2332 if not Conformant
then
2334 -- The stub was taken to be a new declaration. Indicate
2335 -- that it lacks a body.
2337 Set_Has_Completion
(Old_Id
, False);
2343 Set_Has_Completion
(Body_Id
);
2344 Check_Eliminated
(Body_Id
);
2346 if Nkind
(N
) = N_Subprogram_Body_Stub
then
2349 elsif Present
(Spec_Id
)
2350 and then Expander_Active
2352 (Has_Pragma_Inline_Always
(Spec_Id
)
2353 or else (Has_Pragma_Inline
(Spec_Id
) and Front_End_Inlining
))
2355 Build_Body_To_Inline
(N
, Spec_Id
);
2358 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
2359 -- if its specification we have to install the private withed units.
2360 -- This holds for child units as well.
2362 if Is_Compilation_Unit
(Body_Id
)
2363 or else Nkind
(Parent
(N
)) = N_Compilation_Unit
2365 Install_Private_With_Clauses
(Body_Id
);
2368 Check_Anonymous_Return
;
2370 -- Set the Protected_Formal field of each extra formal of the protected
2371 -- subprogram to reference the corresponding extra formal of the
2372 -- subprogram that implements it. For regular formals this occurs when
2373 -- the protected subprogram's declaration is expanded, but the extra
2374 -- formals don't get created until the subprogram is frozen. We need to
2375 -- do this before analyzing the protected subprogram's body so that any
2376 -- references to the original subprogram's extra formals will be changed
2377 -- refer to the implementing subprogram's formals (see Expand_Formal).
2379 if Present
(Spec_Id
)
2380 and then Is_Protected_Type
(Scope
(Spec_Id
))
2381 and then Present
(Protected_Body_Subprogram
(Spec_Id
))
2384 Impl_Subp
: constant Entity_Id
:=
2385 Protected_Body_Subprogram
(Spec_Id
);
2386 Prot_Ext_Formal
: Entity_Id
:= Extra_Formals
(Spec_Id
);
2387 Impl_Ext_Formal
: Entity_Id
:= Extra_Formals
(Impl_Subp
);
2389 while Present
(Prot_Ext_Formal
) loop
2390 pragma Assert
(Present
(Impl_Ext_Formal
));
2391 Set_Protected_Formal
(Prot_Ext_Formal
, Impl_Ext_Formal
);
2392 Next_Formal_With_Extras
(Prot_Ext_Formal
);
2393 Next_Formal_With_Extras
(Impl_Ext_Formal
);
2398 -- Now we can go on to analyze the body
2400 HSS
:= Handled_Statement_Sequence
(N
);
2401 Set_Actual_Subtypes
(N
, Current_Scope
);
2403 -- Deal with preconditions and postconditions
2405 Process_PPCs
(N
, Spec_Id
, Body_Id
);
2407 -- Add a declaration for the Protection object, renaming declarations
2408 -- for discriminals and privals and finally a declaration for the entry
2409 -- family index (if applicable). This form of early expansion is done
2410 -- when the Expander is active because Install_Private_Data_Declarations
2411 -- references entities which were created during regular expansion.
2414 and then Comes_From_Source
(N
)
2415 and then Present
(Prot_Typ
)
2416 and then Present
(Spec_Id
)
2417 and then not Is_Eliminated
(Spec_Id
)
2419 Install_Private_Data_Declarations
2420 (Sloc
(N
), Spec_Id
, Prot_Typ
, N
, Declarations
(N
));
2423 -- Analyze the declarations (this call will analyze the precondition
2424 -- Check pragmas we prepended to the list, as well as the declaration
2425 -- of the _Postconditions procedure).
2427 Analyze_Declarations
(Declarations
(N
));
2429 -- Check completion, and analyze the statements
2432 Inspect_Deferred_Constant_Completion
(Declarations
(N
));
2435 -- Deal with end of scope processing for the body
2437 Process_End_Label
(HSS
, 't', Current_Scope
);
2439 Check_Subprogram_Order
(N
);
2440 Set_Analyzed
(Body_Id
);
2442 -- If we have a separate spec, then the analysis of the declarations
2443 -- caused the entities in the body to be chained to the spec id, but
2444 -- we want them chained to the body id. Only the formal parameters
2445 -- end up chained to the spec id in this case.
2447 if Present
(Spec_Id
) then
2449 -- We must conform to the categorization of our spec
2451 Validate_Categorization_Dependency
(N
, Spec_Id
);
2453 -- And if this is a child unit, the parent units must conform
2455 if Is_Child_Unit
(Spec_Id
) then
2456 Validate_Categorization_Dependency
2457 (Unit_Declaration_Node
(Spec_Id
), Spec_Id
);
2460 -- Here is where we move entities from the spec to the body
2462 -- Case where there are entities that stay with the spec
2464 if Present
(Last_Real_Spec_Entity
) then
2466 -- No body entities (happens when the only real spec entities
2467 -- come from precondition and postcondition pragmas)
2469 if No
(Last_Entity
(Body_Id
)) then
2471 (Body_Id
, Next_Entity
(Last_Real_Spec_Entity
));
2473 -- Body entities present (formals), so chain stuff past them
2477 (Last_Entity
(Body_Id
), Next_Entity
(Last_Real_Spec_Entity
));
2480 Set_Next_Entity
(Last_Real_Spec_Entity
, Empty
);
2481 Set_Last_Entity
(Body_Id
, Last_Entity
(Spec_Id
));
2482 Set_Last_Entity
(Spec_Id
, Last_Real_Spec_Entity
);
2484 -- Case where there are no spec entities, in this case there can
2485 -- be no body entities either, so just move everything.
2488 pragma Assert
(No
(Last_Entity
(Body_Id
)));
2489 Set_First_Entity
(Body_Id
, First_Entity
(Spec_Id
));
2490 Set_Last_Entity
(Body_Id
, Last_Entity
(Spec_Id
));
2491 Set_First_Entity
(Spec_Id
, Empty
);
2492 Set_Last_Entity
(Spec_Id
, Empty
);
2496 Check_Missing_Return
;
2498 -- Now we are going to check for variables that are never modified in
2499 -- the body of the procedure. But first we deal with a special case
2500 -- where we want to modify this check. If the body of the subprogram
2501 -- starts with a raise statement or its equivalent, or if the body
2502 -- consists entirely of a null statement, then it is pretty obvious
2503 -- that it is OK to not reference the parameters. For example, this
2504 -- might be the following common idiom for a stubbed function:
2505 -- statement of the procedure raises an exception. In particular this
2506 -- deals with the common idiom of a stubbed function, which might
2507 -- appear as something like
2509 -- function F (A : Integer) return Some_Type;
2512 -- raise Program_Error;
2516 -- Here the purpose of X is simply to satisfy the annoying requirement
2517 -- in Ada that there be at least one return, and we certainly do not
2518 -- want to go posting warnings on X that it is not initialized! On
2519 -- the other hand, if X is entirely unreferenced that should still
2522 -- What we do is to detect these cases, and if we find them, flag the
2523 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
2524 -- suppress unwanted warnings. For the case of the function stub above
2525 -- we have a special test to set X as apparently assigned to suppress
2532 -- Skip initial labels (for one thing this occurs when we are in
2533 -- front end ZCX mode, but in any case it is irrelevant), and also
2534 -- initial Push_xxx_Error_Label nodes, which are also irrelevant.
2536 Stm
:= First
(Statements
(HSS
));
2537 while Nkind
(Stm
) = N_Label
2538 or else Nkind
(Stm
) in N_Push_xxx_Label
2543 -- Do the test on the original statement before expansion
2546 Ostm
: constant Node_Id
:= Original_Node
(Stm
);
2549 -- If explicit raise statement, turn on flag
2551 if Nkind
(Ostm
) = N_Raise_Statement
then
2552 Set_Trivial_Subprogram
(Stm
);
2554 -- If null statement, and no following statements, turn on flag
2556 elsif Nkind
(Stm
) = N_Null_Statement
2557 and then Comes_From_Source
(Stm
)
2558 and then No
(Next
(Stm
))
2560 Set_Trivial_Subprogram
(Stm
);
2562 -- Check for explicit call cases which likely raise an exception
2564 elsif Nkind
(Ostm
) = N_Procedure_Call_Statement
then
2565 if Is_Entity_Name
(Name
(Ostm
)) then
2567 Ent
: constant Entity_Id
:= Entity
(Name
(Ostm
));
2570 -- If the procedure is marked No_Return, then likely it
2571 -- raises an exception, but in any case it is not coming
2572 -- back here, so turn on the flag.
2574 if Ekind
(Ent
) = E_Procedure
2575 and then No_Return
(Ent
)
2577 Set_Trivial_Subprogram
(Stm
);
2585 -- Check for variables that are never modified
2591 -- If there is a separate spec, then transfer Never_Set_In_Source
2592 -- flags from out parameters to the corresponding entities in the
2593 -- body. The reason we do that is we want to post error flags on
2594 -- the body entities, not the spec entities.
2596 if Present
(Spec_Id
) then
2597 E1
:= First_Entity
(Spec_Id
);
2598 while Present
(E1
) loop
2599 if Ekind
(E1
) = E_Out_Parameter
then
2600 E2
:= First_Entity
(Body_Id
);
2601 while Present
(E2
) loop
2602 exit when Chars
(E1
) = Chars
(E2
);
2606 if Present
(E2
) then
2607 Set_Never_Set_In_Source
(E2
, Never_Set_In_Source
(E1
));
2615 -- Check references in body unless it was deleted. Note that the
2616 -- check of Body_Deleted here is not just for efficiency, it is
2617 -- necessary to avoid junk warnings on formal parameters.
2619 if not Body_Deleted
then
2620 Check_References
(Body_Id
);
2623 end Analyze_Subprogram_Body_Helper
;
2625 ------------------------------------
2626 -- Analyze_Subprogram_Declaration --
2627 ------------------------------------
2629 procedure Analyze_Subprogram_Declaration
(N
: Node_Id
) is
2630 Loc
: constant Source_Ptr
:= Sloc
(N
);
2631 Designator
: Entity_Id
;
2633 Scop
: constant Entity_Id
:= Current_Scope
;
2634 Null_Body
: Node_Id
:= Empty
;
2636 -- Start of processing for Analyze_Subprogram_Declaration
2639 -- For a null procedure, capture the profile before analysis, for
2640 -- expansion at the freeze point and at each point of call.
2641 -- The body will only be used if the procedure has preconditions.
2642 -- In that case the body is analyzed at the freeze point.
2644 if Nkind
(Specification
(N
)) = N_Procedure_Specification
2645 and then Null_Present
(Specification
(N
))
2646 and then Expander_Active
2649 Make_Subprogram_Body
(Loc
,
2651 New_Copy_Tree
(Specification
(N
)),
2654 Handled_Statement_Sequence
=>
2655 Make_Handled_Sequence_Of_Statements
(Loc
,
2656 Statements
=> New_List
(Make_Null_Statement
(Loc
))));
2658 -- Create new entities for body and formals
2660 Set_Defining_Unit_Name
(Specification
(Null_Body
),
2661 Make_Defining_Identifier
(Loc
, Chars
(Defining_Entity
(N
))));
2662 Set_Corresponding_Body
(N
, Defining_Entity
(Null_Body
));
2664 Form
:= First
(Parameter_Specifications
(Specification
(Null_Body
)));
2665 while Present
(Form
) loop
2666 Set_Defining_Identifier
(Form
,
2667 Make_Defining_Identifier
(Loc
,
2668 Chars
(Defining_Identifier
(Form
))));
2672 if Is_Protected_Type
(Current_Scope
) then
2673 Error_Msg_N
("protected operation cannot be a null procedure", N
);
2677 Designator
:= Analyze_Subprogram_Specification
(Specification
(N
));
2678 Generate_Definition
(Designator
);
2680 if Debug_Flag_C
then
2681 Write_Str
("==> subprogram spec ");
2682 Write_Name
(Chars
(Designator
));
2683 Write_Str
(" from ");
2684 Write_Location
(Sloc
(N
));
2689 if Nkind
(Specification
(N
)) = N_Procedure_Specification
2690 and then Null_Present
(Specification
(N
))
2692 Set_Has_Completion
(Designator
);
2694 if Present
(Null_Body
) then
2695 Set_Corresponding_Body
(N
, Defining_Entity
(Null_Body
));
2696 Set_Body_To_Inline
(N
, Null_Body
);
2697 Set_Is_Inlined
(Designator
);
2701 Validate_RCI_Subprogram_Declaration
(N
);
2702 New_Overloaded_Entity
(Designator
);
2703 Check_Delayed_Subprogram
(Designator
);
2705 -- If the type of the first formal of the current subprogram is a
2706 -- nongeneric tagged private type, mark the subprogram as being a
2707 -- private primitive. Ditto if this is a function with controlling
2708 -- result, and the return type is currently private. In both cases,
2709 -- the type of the controlling argument or result must be in the
2710 -- current scope for the operation to be primitive.
2712 if Has_Controlling_Result
(Designator
)
2713 and then Is_Private_Type
(Etype
(Designator
))
2714 and then Scope
(Etype
(Designator
)) = Current_Scope
2715 and then not Is_Generic_Actual_Type
(Etype
(Designator
))
2717 Set_Is_Private_Primitive
(Designator
);
2719 elsif Present
(First_Formal
(Designator
)) then
2721 Formal_Typ
: constant Entity_Id
:=
2722 Etype
(First_Formal
(Designator
));
2724 Set_Is_Private_Primitive
(Designator
,
2725 Is_Tagged_Type
(Formal_Typ
)
2726 and then Scope
(Formal_Typ
) = Current_Scope
2727 and then Is_Private_Type
(Formal_Typ
)
2728 and then not Is_Generic_Actual_Type
(Formal_Typ
));
2732 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
2735 if Ada_Version
>= Ada_05
2736 and then Comes_From_Source
(N
)
2737 and then Is_Dispatching_Operation
(Designator
)
2744 if Has_Controlling_Result
(Designator
) then
2745 Etyp
:= Etype
(Designator
);
2748 E
:= First_Entity
(Designator
);
2750 and then Is_Formal
(E
)
2751 and then not Is_Controlling_Formal
(E
)
2759 if Is_Access_Type
(Etyp
) then
2760 Etyp
:= Directly_Designated_Type
(Etyp
);
2763 if Is_Interface
(Etyp
)
2764 and then not Is_Abstract_Subprogram
(Designator
)
2765 and then not (Ekind
(Designator
) = E_Procedure
2766 and then Null_Present
(Specification
(N
)))
2768 Error_Msg_Name_1
:= Chars
(Defining_Entity
(N
));
2770 ("(Ada 2005) interface subprogram % must be abstract or null",
2776 -- What is the following code for, it used to be
2778 -- ??? Set_Suppress_Elaboration_Checks
2779 -- ??? (Designator, Elaboration_Checks_Suppressed (Designator));
2781 -- The following seems equivalent, but a bit dubious
2783 if Elaboration_Checks_Suppressed
(Designator
) then
2784 Set_Kill_Elaboration_Checks
(Designator
);
2787 if Scop
/= Standard_Standard
2788 and then not Is_Child_Unit
(Designator
)
2790 Set_Categorization_From_Scope
(Designator
, Scop
);
2792 -- For a compilation unit, check for library-unit pragmas
2794 Push_Scope
(Designator
);
2795 Set_Categorization_From_Pragmas
(N
);
2796 Validate_Categorization_Dependency
(N
, Designator
);
2800 -- For a compilation unit, set body required. This flag will only be
2801 -- reset if a valid Import or Interface pragma is processed later on.
2803 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
2804 Set_Body_Required
(Parent
(N
), True);
2806 if Ada_Version
>= Ada_05
2807 and then Nkind
(Specification
(N
)) = N_Procedure_Specification
2808 and then Null_Present
(Specification
(N
))
2811 ("null procedure cannot be declared at library level", N
);
2815 Generate_Reference_To_Formals
(Designator
);
2816 Check_Eliminated
(Designator
);
2818 if Debug_Flag_C
then
2820 Write_Str
("<== subprogram spec ");
2821 Write_Name
(Chars
(Designator
));
2822 Write_Str
(" from ");
2823 Write_Location
(Sloc
(N
));
2826 end Analyze_Subprogram_Declaration
;
2828 --------------------------------------
2829 -- Analyze_Subprogram_Specification --
2830 --------------------------------------
2832 -- Reminder: N here really is a subprogram specification (not a subprogram
2833 -- declaration). This procedure is called to analyze the specification in
2834 -- both subprogram bodies and subprogram declarations (specs).
2836 function Analyze_Subprogram_Specification
(N
: Node_Id
) return Entity_Id
is
2837 Designator
: constant Entity_Id
:= Defining_Entity
(N
);
2838 Formals
: constant List_Id
:= Parameter_Specifications
(N
);
2840 -- Start of processing for Analyze_Subprogram_Specification
2843 Generate_Definition
(Designator
);
2845 if Nkind
(N
) = N_Function_Specification
then
2846 Set_Ekind
(Designator
, E_Function
);
2847 Set_Mechanism
(Designator
, Default_Mechanism
);
2850 Set_Ekind
(Designator
, E_Procedure
);
2851 Set_Etype
(Designator
, Standard_Void_Type
);
2854 -- Introduce new scope for analysis of the formals and the return type
2856 Set_Scope
(Designator
, Current_Scope
);
2858 if Present
(Formals
) then
2859 Push_Scope
(Designator
);
2860 Process_Formals
(Formals
, N
);
2862 -- Ada 2005 (AI-345): If this is an overriding operation of an
2863 -- inherited interface operation, and the controlling type is
2864 -- a synchronized type, replace the type with its corresponding
2865 -- record, to match the proper signature of an overriding operation.
2866 -- Same processing for an access parameter whose designated type is
2867 -- derived from a synchronized interface.
2869 if Ada_Version
>= Ada_05
then
2872 Formal_Typ
: Entity_Id
;
2873 Rec_Typ
: Entity_Id
;
2874 Desig_Typ
: Entity_Id
;
2877 Formal
:= First_Formal
(Designator
);
2878 while Present
(Formal
) loop
2879 Formal_Typ
:= Etype
(Formal
);
2881 if Is_Concurrent_Type
(Formal_Typ
)
2882 and then Present
(Corresponding_Record_Type
(Formal_Typ
))
2884 Rec_Typ
:= Corresponding_Record_Type
(Formal_Typ
);
2886 if Present
(Interfaces
(Rec_Typ
)) then
2887 Set_Etype
(Formal
, Rec_Typ
);
2890 elsif Ekind
(Formal_Typ
) = E_Anonymous_Access_Type
then
2891 Desig_Typ
:= Designated_Type
(Formal_Typ
);
2893 if Is_Concurrent_Type
(Desig_Typ
)
2894 and then Present
(Corresponding_Record_Type
(Desig_Typ
))
2896 Rec_Typ
:= Corresponding_Record_Type
(Desig_Typ
);
2898 if Present
(Interfaces
(Rec_Typ
)) then
2899 Set_Directly_Designated_Type
(Formal_Typ
, Rec_Typ
);
2904 Next_Formal
(Formal
);
2911 -- The subprogram scope is pushed and popped around the processing of
2912 -- the return type for consistency with call above to Process_Formals
2913 -- (which itself can call Analyze_Return_Type), and to ensure that any
2914 -- itype created for the return type will be associated with the proper
2917 elsif Nkind
(N
) = N_Function_Specification
then
2918 Push_Scope
(Designator
);
2920 Analyze_Return_Type
(N
);
2925 if Nkind
(N
) = N_Function_Specification
then
2926 if Nkind
(Designator
) = N_Defining_Operator_Symbol
then
2927 Valid_Operator_Definition
(Designator
);
2930 May_Need_Actuals
(Designator
);
2932 -- Ada 2005 (AI-251): If the return type is abstract, verify that
2933 -- the subprogram is abstract also. This does not apply to renaming
2934 -- declarations, where abstractness is inherited.
2935 -- In case of primitives associated with abstract interface types
2936 -- the check is applied later (see Analyze_Subprogram_Declaration).
2938 if Is_Abstract_Type
(Etype
(Designator
))
2939 and then not Is_Interface
(Etype
(Designator
))
2940 and then Nkind
(Parent
(N
)) /= N_Subprogram_Renaming_Declaration
2941 and then Nkind
(Parent
(N
)) /=
2942 N_Abstract_Subprogram_Declaration
2944 (Nkind
(Parent
(N
))) /= N_Formal_Abstract_Subprogram_Declaration
2947 ("function that returns abstract type must be abstract", N
);
2952 end Analyze_Subprogram_Specification
;
2954 --------------------------
2955 -- Build_Body_To_Inline --
2956 --------------------------
2958 procedure Build_Body_To_Inline
(N
: Node_Id
; Subp
: Entity_Id
) is
2959 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Subp
);
2960 Original_Body
: Node_Id
;
2961 Body_To_Analyze
: Node_Id
;
2962 Max_Size
: constant := 10;
2963 Stat_Count
: Integer := 0;
2965 function Has_Excluded_Declaration
(Decls
: List_Id
) return Boolean;
2966 -- Check for declarations that make inlining not worthwhile
2968 function Has_Excluded_Statement
(Stats
: List_Id
) return Boolean;
2969 -- Check for statements that make inlining not worthwhile: any tasking
2970 -- statement, nested at any level. Keep track of total number of
2971 -- elementary statements, as a measure of acceptable size.
2973 function Has_Pending_Instantiation
return Boolean;
2974 -- If some enclosing body contains instantiations that appear before the
2975 -- corresponding generic body, the enclosing body has a freeze node so
2976 -- that it can be elaborated after the generic itself. This might
2977 -- conflict with subsequent inlinings, so that it is unsafe to try to
2978 -- inline in such a case.
2980 function Has_Single_Return
return Boolean;
2981 -- In general we cannot inline functions that return unconstrained type.
2982 -- However, we can handle such functions if all return statements return
2983 -- a local variable that is the only declaration in the body of the
2984 -- function. In that case the call can be replaced by that local
2985 -- variable as is done for other inlined calls.
2987 procedure Remove_Pragmas
;
2988 -- A pragma Unreferenced or pragma Unmodified that mentions a formal
2989 -- parameter has no meaning when the body is inlined and the formals
2990 -- are rewritten. Remove it from body to inline. The analysis of the
2991 -- non-inlined body will handle the pragma properly.
2993 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean;
2994 -- If the body of the subprogram includes a call that returns an
2995 -- unconstrained type, the secondary stack is involved, and it
2996 -- is not worth inlining.
2998 ------------------------------
2999 -- Has_Excluded_Declaration --
3000 ------------------------------
3002 function Has_Excluded_Declaration
(Decls
: List_Id
) return Boolean is
3005 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean;
3006 -- Nested subprograms make a given body ineligible for inlining, but
3007 -- we make an exception for instantiations of unchecked conversion.
3008 -- The body has not been analyzed yet, so check the name, and verify
3009 -- that the visible entity with that name is the predefined unit.
3011 -----------------------------
3012 -- Is_Unchecked_Conversion --
3013 -----------------------------
3015 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean is
3016 Id
: constant Node_Id
:= Name
(D
);
3020 if Nkind
(Id
) = N_Identifier
3021 and then Chars
(Id
) = Name_Unchecked_Conversion
3023 Conv
:= Current_Entity
(Id
);
3025 elsif Nkind_In
(Id
, N_Selected_Component
, N_Expanded_Name
)
3026 and then Chars
(Selector_Name
(Id
)) = Name_Unchecked_Conversion
3028 Conv
:= Current_Entity
(Selector_Name
(Id
));
3033 return Present
(Conv
)
3034 and then Is_Predefined_File_Name
3035 (Unit_File_Name
(Get_Source_Unit
(Conv
)))
3036 and then Is_Intrinsic_Subprogram
(Conv
);
3037 end Is_Unchecked_Conversion
;
3039 -- Start of processing for Has_Excluded_Declaration
3043 while Present
(D
) loop
3044 if (Nkind
(D
) = N_Function_Instantiation
3045 and then not Is_Unchecked_Conversion
(D
))
3046 or else Nkind_In
(D
, N_Protected_Type_Declaration
,
3047 N_Package_Declaration
,
3048 N_Package_Instantiation
,
3050 N_Procedure_Instantiation
,
3051 N_Task_Type_Declaration
)
3054 ("cannot inline & (non-allowed declaration)?", D
, Subp
);
3062 end Has_Excluded_Declaration
;
3064 ----------------------------
3065 -- Has_Excluded_Statement --
3066 ----------------------------
3068 function Has_Excluded_Statement
(Stats
: List_Id
) return Boolean is
3074 while Present
(S
) loop
3075 Stat_Count
:= Stat_Count
+ 1;
3077 if Nkind_In
(S
, N_Abort_Statement
,
3078 N_Asynchronous_Select
,
3079 N_Conditional_Entry_Call
,
3080 N_Delay_Relative_Statement
,
3081 N_Delay_Until_Statement
,
3086 ("cannot inline & (non-allowed statement)?", S
, Subp
);
3089 elsif Nkind
(S
) = N_Block_Statement
then
3090 if Present
(Declarations
(S
))
3091 and then Has_Excluded_Declaration
(Declarations
(S
))
3095 elsif Present
(Handled_Statement_Sequence
(S
))
3098 (Exception_Handlers
(Handled_Statement_Sequence
(S
)))
3100 Has_Excluded_Statement
3101 (Statements
(Handled_Statement_Sequence
(S
))))
3106 elsif Nkind
(S
) = N_Case_Statement
then
3107 E
:= First
(Alternatives
(S
));
3108 while Present
(E
) loop
3109 if Has_Excluded_Statement
(Statements
(E
)) then
3116 elsif Nkind
(S
) = N_If_Statement
then
3117 if Has_Excluded_Statement
(Then_Statements
(S
)) then
3121 if Present
(Elsif_Parts
(S
)) then
3122 E
:= First
(Elsif_Parts
(S
));
3123 while Present
(E
) loop
3124 if Has_Excluded_Statement
(Then_Statements
(E
)) then
3131 if Present
(Else_Statements
(S
))
3132 and then Has_Excluded_Statement
(Else_Statements
(S
))
3137 elsif Nkind
(S
) = N_Loop_Statement
3138 and then Has_Excluded_Statement
(Statements
(S
))
3142 elsif Nkind
(S
) = N_Extended_Return_Statement
then
3143 if Has_Excluded_Statement
3144 (Statements
(Handled_Statement_Sequence
(S
)))
3146 (Exception_Handlers
(Handled_Statement_Sequence
(S
)))
3156 end Has_Excluded_Statement
;
3158 -------------------------------
3159 -- Has_Pending_Instantiation --
3160 -------------------------------
3162 function Has_Pending_Instantiation
return Boolean is
3167 while Present
(S
) loop
3168 if Is_Compilation_Unit
(S
)
3169 or else Is_Child_Unit
(S
)
3173 elsif Ekind
(S
) = E_Package
3174 and then Has_Forward_Instantiation
(S
)
3183 end Has_Pending_Instantiation
;
3185 ------------------------
3186 -- Has_Single_Return --
3187 ------------------------
3189 function Has_Single_Return
return Boolean is
3190 Return_Statement
: Node_Id
:= Empty
;
3192 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
3198 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
3200 if Nkind
(N
) = N_Simple_Return_Statement
then
3201 if Present
(Expression
(N
))
3202 and then Is_Entity_Name
(Expression
(N
))
3204 if No
(Return_Statement
) then
3205 Return_Statement
:= N
;
3208 elsif Chars
(Expression
(N
)) =
3209 Chars
(Expression
(Return_Statement
))
3217 -- A return statement within an extended return is a noop
3220 elsif No
(Expression
(N
))
3221 and then Nkind
(Parent
(Parent
(N
))) =
3222 N_Extended_Return_Statement
3227 -- Expression has wrong form
3232 -- We can only inline a build-in-place function if
3233 -- it has a single extended return.
3235 elsif Nkind
(N
) = N_Extended_Return_Statement
then
3236 if No
(Return_Statement
) then
3237 Return_Statement
:= N
;
3249 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
3251 -- Start of processing for Has_Single_Return
3254 if Check_All_Returns
(N
) /= OK
then
3257 elsif Nkind
(Return_Statement
) = N_Extended_Return_Statement
then
3261 return Present
(Declarations
(N
))
3262 and then Present
(First
(Declarations
(N
)))
3263 and then Chars
(Expression
(Return_Statement
)) =
3264 Chars
(Defining_Identifier
(First
(Declarations
(N
))));
3266 end Has_Single_Return
;
3268 --------------------
3269 -- Remove_Pragmas --
3270 --------------------
3272 procedure Remove_Pragmas
is
3277 Decl
:= First
(Declarations
(Body_To_Analyze
));
3278 while Present
(Decl
) loop
3281 if Nkind
(Decl
) = N_Pragma
3282 and then (Pragma_Name
(Decl
) = Name_Unreferenced
3284 Pragma_Name
(Decl
) = Name_Unmodified
)
3293 --------------------------
3294 -- Uses_Secondary_Stack --
3295 --------------------------
3297 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean is
3298 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
3299 -- Look for function calls that return an unconstrained type
3305 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
3307 if Nkind
(N
) = N_Function_Call
3308 and then Is_Entity_Name
(Name
(N
))
3309 and then Is_Composite_Type
(Etype
(Entity
(Name
(N
))))
3310 and then not Is_Constrained
(Etype
(Entity
(Name
(N
))))
3313 ("cannot inline & (call returns unconstrained type)?",
3321 function Check_Calls
is new Traverse_Func
(Check_Call
);
3324 return Check_Calls
(Bod
) = Abandon
;
3325 end Uses_Secondary_Stack
;
3327 -- Start of processing for Build_Body_To_Inline
3330 -- Return immediately if done already
3332 if Nkind
(Decl
) = N_Subprogram_Declaration
3333 and then Present
(Body_To_Inline
(Decl
))
3337 -- Functions that return unconstrained composite types require
3338 -- secondary stack handling, and cannot currently be inlined, unless
3339 -- all return statements return a local variable that is the first
3340 -- local declaration in the body.
3342 elsif Ekind
(Subp
) = E_Function
3343 and then not Is_Scalar_Type
(Etype
(Subp
))
3344 and then not Is_Access_Type
(Etype
(Subp
))
3345 and then not Is_Constrained
(Etype
(Subp
))
3347 if not Has_Single_Return
then
3349 ("cannot inline & (unconstrained return type)?", N
, Subp
);
3353 -- Ditto for functions that return controlled types, where controlled
3354 -- actions interfere in complex ways with inlining.
3356 elsif Ekind
(Subp
) = E_Function
3357 and then Needs_Finalization
(Etype
(Subp
))
3360 ("cannot inline & (controlled return type)?", N
, Subp
);
3364 if Present
(Declarations
(N
))
3365 and then Has_Excluded_Declaration
(Declarations
(N
))
3370 if Present
(Handled_Statement_Sequence
(N
)) then
3371 if Present
(Exception_Handlers
(Handled_Statement_Sequence
(N
))) then
3373 ("cannot inline& (exception handler)?",
3374 First
(Exception_Handlers
(Handled_Statement_Sequence
(N
))),
3378 Has_Excluded_Statement
3379 (Statements
(Handled_Statement_Sequence
(N
)))
3385 -- We do not inline a subprogram that is too large, unless it is
3386 -- marked Inline_Always. This pragma does not suppress the other
3387 -- checks on inlining (forbidden declarations, handlers, etc).
3389 if Stat_Count
> Max_Size
3390 and then not Has_Pragma_Inline_Always
(Subp
)
3392 Cannot_Inline
("cannot inline& (body too large)?", N
, Subp
);
3396 if Has_Pending_Instantiation
then
3398 ("cannot inline& (forward instance within enclosing body)?",
3403 -- Within an instance, the body to inline must be treated as a nested
3404 -- generic, so that the proper global references are preserved.
3406 -- Note that we do not do this at the library level, because it is not
3407 -- needed, and furthermore this causes trouble if front end inlining
3408 -- is activated (-gnatN).
3410 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
3411 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
3412 Original_Body
:= Copy_Generic_Node
(N
, Empty
, True);
3414 Original_Body
:= Copy_Separate_Tree
(N
);
3417 -- We need to capture references to the formals in order to substitute
3418 -- the actuals at the point of inlining, i.e. instantiation. To treat
3419 -- the formals as globals to the body to inline, we nest it within
3420 -- a dummy parameterless subprogram, declared within the real one.
3421 -- To avoid generating an internal name (which is never public, and
3422 -- which affects serial numbers of other generated names), we use
3423 -- an internal symbol that cannot conflict with user declarations.
3425 Set_Parameter_Specifications
(Specification
(Original_Body
), No_List
);
3426 Set_Defining_Unit_Name
3427 (Specification
(Original_Body
),
3428 Make_Defining_Identifier
(Sloc
(N
), Name_uParent
));
3429 Set_Corresponding_Spec
(Original_Body
, Empty
);
3431 Body_To_Analyze
:= Copy_Generic_Node
(Original_Body
, Empty
, False);
3433 -- Set return type of function, which is also global and does not need
3436 if Ekind
(Subp
) = E_Function
then
3437 Set_Result_Definition
(Specification
(Body_To_Analyze
),
3438 New_Occurrence_Of
(Etype
(Subp
), Sloc
(N
)));
3441 if No
(Declarations
(N
)) then
3442 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
3444 Append
(Body_To_Analyze
, Declarations
(N
));
3447 Expander_Mode_Save_And_Set
(False);
3450 Analyze
(Body_To_Analyze
);
3451 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
3452 Save_Global_References
(Original_Body
);
3454 Remove
(Body_To_Analyze
);
3456 Expander_Mode_Restore
;
3458 -- Restore environment if previously saved
3460 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
3464 -- If secondary stk used there is no point in inlining. We have
3465 -- already issued the warning in this case, so nothing to do.
3467 if Uses_Secondary_Stack
(Body_To_Analyze
) then
3471 Set_Body_To_Inline
(Decl
, Original_Body
);
3472 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Subp
));
3473 Set_Is_Inlined
(Subp
);
3474 end Build_Body_To_Inline
;
3480 procedure Cannot_Inline
(Msg
: String; N
: Node_Id
; Subp
: Entity_Id
) is
3482 -- Do not emit warning if this is a predefined unit which is not the
3483 -- main unit. With validity checks enabled, some predefined subprograms
3484 -- may contain nested subprograms and become ineligible for inlining.
3486 if Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit
(Subp
)))
3487 and then not In_Extended_Main_Source_Unit
(Subp
)
3491 elsif Has_Pragma_Inline_Always
(Subp
) then
3493 -- Remove last character (question mark) to make this into an error,
3494 -- because the Inline_Always pragma cannot be obeyed.
3496 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
3498 elsif Ineffective_Inline_Warnings
then
3499 Error_Msg_NE
(Msg
, N
, Subp
);
3503 -----------------------
3504 -- Check_Conformance --
3505 -----------------------
3507 procedure Check_Conformance
3508 (New_Id
: Entity_Id
;
3510 Ctype
: Conformance_Type
;
3512 Conforms
: out Boolean;
3513 Err_Loc
: Node_Id
:= Empty
;
3514 Get_Inst
: Boolean := False;
3515 Skip_Controlling_Formals
: Boolean := False)
3517 procedure Conformance_Error
(Msg
: String; N
: Node_Id
:= New_Id
);
3518 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
3519 -- If Errmsg is True, then processing continues to post an error message
3520 -- for conformance error on given node. Two messages are output. The
3521 -- first message points to the previous declaration with a general "no
3522 -- conformance" message. The second is the detailed reason, supplied as
3523 -- Msg. The parameter N provide information for a possible & insertion
3524 -- in the message, and also provides the location for posting the
3525 -- message in the absence of a specified Err_Loc location.
3527 -----------------------
3528 -- Conformance_Error --
3529 -----------------------
3531 procedure Conformance_Error
(Msg
: String; N
: Node_Id
:= New_Id
) is
3538 if No
(Err_Loc
) then
3544 Error_Msg_Sloc
:= Sloc
(Old_Id
);
3547 when Type_Conformant
=>
3548 Error_Msg_N
-- CODEFIX
3549 ("not type conformant with declaration#!", Enode
);
3551 when Mode_Conformant
=>
3552 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
3554 ("not mode conformant with operation inherited#!",
3558 ("not mode conformant with declaration#!", Enode
);
3561 when Subtype_Conformant
=>
3562 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
3564 ("not subtype conformant with operation inherited#!",
3568 ("not subtype conformant with declaration#!", Enode
);
3571 when Fully_Conformant
=>
3572 if Nkind
(Parent
(Old_Id
)) = N_Full_Type_Declaration
then
3573 Error_Msg_N
-- CODEFIX
3574 ("not fully conformant with operation inherited#!",
3577 Error_Msg_N
-- CODEFIX
3578 ("not fully conformant with declaration#!", Enode
);
3582 Error_Msg_NE
(Msg
, Enode
, N
);
3584 end Conformance_Error
;
3588 Old_Type
: constant Entity_Id
:= Etype
(Old_Id
);
3589 New_Type
: constant Entity_Id
:= Etype
(New_Id
);
3590 Old_Formal
: Entity_Id
;
3591 New_Formal
: Entity_Id
;
3592 Access_Types_Match
: Boolean;
3593 Old_Formal_Base
: Entity_Id
;
3594 New_Formal_Base
: Entity_Id
;
3596 -- Start of processing for Check_Conformance
3601 -- We need a special case for operators, since they don't appear
3604 if Ctype
= Type_Conformant
then
3605 if Ekind
(New_Id
) = E_Operator
3606 and then Operator_Matches_Spec
(New_Id
, Old_Id
)
3612 -- If both are functions/operators, check return types conform
3614 if Old_Type
/= Standard_Void_Type
3615 and then New_Type
/= Standard_Void_Type
3618 -- If we are checking interface conformance we omit controlling
3619 -- arguments and result, because we are only checking the conformance
3620 -- of the remaining parameters.
3622 if Has_Controlling_Result
(Old_Id
)
3623 and then Has_Controlling_Result
(New_Id
)
3624 and then Skip_Controlling_Formals
3628 elsif not Conforming_Types
(Old_Type
, New_Type
, Ctype
, Get_Inst
) then
3629 Conformance_Error
("\return type does not match!", New_Id
);
3633 -- Ada 2005 (AI-231): In case of anonymous access types check the
3634 -- null-exclusion and access-to-constant attributes match.
3636 if Ada_Version
>= Ada_05
3637 and then Ekind
(Etype
(Old_Type
)) = E_Anonymous_Access_Type
3639 (Can_Never_Be_Null
(Old_Type
)
3640 /= Can_Never_Be_Null
(New_Type
)
3641 or else Is_Access_Constant
(Etype
(Old_Type
))
3642 /= Is_Access_Constant
(Etype
(New_Type
)))
3644 Conformance_Error
("\return type does not match!", New_Id
);
3648 -- If either is a function/operator and the other isn't, error
3650 elsif Old_Type
/= Standard_Void_Type
3651 or else New_Type
/= Standard_Void_Type
3653 Conformance_Error
("\functions can only match functions!", New_Id
);
3657 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
3658 -- If this is a renaming as body, refine error message to indicate that
3659 -- the conflict is with the original declaration. If the entity is not
3660 -- frozen, the conventions don't have to match, the one of the renamed
3661 -- entity is inherited.
3663 if Ctype
>= Subtype_Conformant
then
3664 if Convention
(Old_Id
) /= Convention
(New_Id
) then
3666 if not Is_Frozen
(New_Id
) then
3669 elsif Present
(Err_Loc
)
3670 and then Nkind
(Err_Loc
) = N_Subprogram_Renaming_Declaration
3671 and then Present
(Corresponding_Spec
(Err_Loc
))
3673 Error_Msg_Name_1
:= Chars
(New_Id
);
3675 Name_Ada
+ Convention_Id
'Pos (Convention
(New_Id
));
3677 Conformance_Error
("\prior declaration for% has convention %!");
3680 Conformance_Error
("\calling conventions do not match!");
3685 elsif Is_Formal_Subprogram
(Old_Id
)
3686 or else Is_Formal_Subprogram
(New_Id
)
3688 Conformance_Error
("\formal subprograms not allowed!");
3693 -- Deal with parameters
3695 -- Note: we use the entity information, rather than going directly
3696 -- to the specification in the tree. This is not only simpler, but
3697 -- absolutely necessary for some cases of conformance tests between
3698 -- operators, where the declaration tree simply does not exist!
3700 Old_Formal
:= First_Formal
(Old_Id
);
3701 New_Formal
:= First_Formal
(New_Id
);
3702 while Present
(Old_Formal
) and then Present
(New_Formal
) loop
3703 if Is_Controlling_Formal
(Old_Formal
)
3704 and then Is_Controlling_Formal
(New_Formal
)
3705 and then Skip_Controlling_Formals
3707 -- The controlling formals will have different types when
3708 -- comparing an interface operation with its match, but both
3709 -- or neither must be access parameters.
3711 if Is_Access_Type
(Etype
(Old_Formal
))
3713 Is_Access_Type
(Etype
(New_Formal
))
3715 goto Skip_Controlling_Formal
;
3718 ("\access parameter does not match!", New_Formal
);
3722 if Ctype
= Fully_Conformant
then
3724 -- Names must match. Error message is more accurate if we do
3725 -- this before checking that the types of the formals match.
3727 if Chars
(Old_Formal
) /= Chars
(New_Formal
) then
3728 Conformance_Error
("\name & does not match!", New_Formal
);
3730 -- Set error posted flag on new formal as well to stop
3731 -- junk cascaded messages in some cases.
3733 Set_Error_Posted
(New_Formal
);
3738 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
3739 -- case occurs whenever a subprogram is being renamed and one of its
3740 -- parameters imposes a null exclusion. For example:
3742 -- type T is null record;
3743 -- type Acc_T is access T;
3744 -- subtype Acc_T_Sub is Acc_T;
3746 -- procedure P (Obj : not null Acc_T_Sub); -- itype
3747 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
3750 Old_Formal_Base
:= Etype
(Old_Formal
);
3751 New_Formal_Base
:= Etype
(New_Formal
);
3754 Old_Formal_Base
:= Get_Instance_Of
(Old_Formal_Base
);
3755 New_Formal_Base
:= Get_Instance_Of
(New_Formal_Base
);
3758 Access_Types_Match
:= Ada_Version
>= Ada_05
3760 -- Ensure that this rule is only applied when New_Id is a
3761 -- renaming of Old_Id.
3763 and then Nkind
(Parent
(Parent
(New_Id
))) =
3764 N_Subprogram_Renaming_Declaration
3765 and then Nkind
(Name
(Parent
(Parent
(New_Id
)))) in N_Has_Entity
3766 and then Present
(Entity
(Name
(Parent
(Parent
(New_Id
)))))
3767 and then Entity
(Name
(Parent
(Parent
(New_Id
)))) = Old_Id
3769 -- Now handle the allowed access-type case
3771 and then Is_Access_Type
(Old_Formal_Base
)
3772 and then Is_Access_Type
(New_Formal_Base
)
3774 -- The type kinds must match. The only exception occurs with
3775 -- multiple generics of the form:
3778 -- type F is private; type A is private;
3779 -- type F_Ptr is access F; type A_Ptr is access A;
3780 -- with proc F_P (X : F_Ptr); with proc A_P (X : A_Ptr);
3781 -- package F_Pack is ... package A_Pack is
3782 -- package F_Inst is
3783 -- new F_Pack (A, A_Ptr, A_P);
3785 -- When checking for conformance between the parameters of A_P
3786 -- and F_P, the type kinds of F_Ptr and A_Ptr will not match
3787 -- because the compiler has transformed A_Ptr into a subtype of
3788 -- F_Ptr. We catch this case in the code below.
3790 and then (Ekind
(Old_Formal_Base
) = Ekind
(New_Formal_Base
)
3792 (Is_Generic_Type
(Old_Formal_Base
)
3793 and then Is_Generic_Type
(New_Formal_Base
)
3794 and then Is_Internal
(New_Formal_Base
)
3795 and then Etype
(Etype
(New_Formal_Base
)) =
3797 and then Directly_Designated_Type
(Old_Formal_Base
) =
3798 Directly_Designated_Type
(New_Formal_Base
)
3799 and then ((Is_Itype
(Old_Formal_Base
)
3800 and then Can_Never_Be_Null
(Old_Formal_Base
))
3802 (Is_Itype
(New_Formal_Base
)
3803 and then Can_Never_Be_Null
(New_Formal_Base
)));
3805 -- Types must always match. In the visible part of an instance,
3806 -- usual overloading rules for dispatching operations apply, and
3807 -- we check base types (not the actual subtypes).
3809 if In_Instance_Visible_Part
3810 and then Is_Dispatching_Operation
(New_Id
)
3812 if not Conforming_Types
3813 (T1
=> Base_Type
(Etype
(Old_Formal
)),
3814 T2
=> Base_Type
(Etype
(New_Formal
)),
3816 Get_Inst
=> Get_Inst
)
3817 and then not Access_Types_Match
3819 Conformance_Error
("\type of & does not match!", New_Formal
);
3823 elsif not Conforming_Types
3824 (T1
=> Old_Formal_Base
,
3825 T2
=> New_Formal_Base
,
3827 Get_Inst
=> Get_Inst
)
3828 and then not Access_Types_Match
3830 -- Don't give error message if old type is Any_Type. This test
3831 -- avoids some cascaded errors, e.g. in case of a bad spec.
3833 if Errmsg
and then Old_Formal_Base
= Any_Type
then
3836 Conformance_Error
("\type of & does not match!", New_Formal
);
3842 -- For mode conformance, mode must match
3844 if Ctype
>= Mode_Conformant
then
3845 if Parameter_Mode
(Old_Formal
) /= Parameter_Mode
(New_Formal
) then
3846 Conformance_Error
("\mode of & does not match!", New_Formal
);
3849 -- Part of mode conformance for access types is having the same
3850 -- constant modifier.
3852 elsif Access_Types_Match
3853 and then Is_Access_Constant
(Old_Formal_Base
) /=
3854 Is_Access_Constant
(New_Formal_Base
)
3857 ("\constant modifier does not match!", New_Formal
);
3862 if Ctype
>= Subtype_Conformant
then
3864 -- Ada 2005 (AI-231): In case of anonymous access types check
3865 -- the null-exclusion and access-to-constant attributes must
3868 if Ada_Version
>= Ada_05
3869 and then Ekind
(Etype
(Old_Formal
)) = E_Anonymous_Access_Type
3870 and then Ekind
(Etype
(New_Formal
)) = E_Anonymous_Access_Type
3872 (Can_Never_Be_Null
(Old_Formal
) /=
3873 Can_Never_Be_Null
(New_Formal
)
3875 Is_Access_Constant
(Etype
(Old_Formal
)) /=
3876 Is_Access_Constant
(Etype
(New_Formal
)))
3878 -- It is allowed to omit the null-exclusion in case of stream
3879 -- attribute subprograms. We recognize stream subprograms
3880 -- through their TSS-generated suffix.
3883 TSS_Name
: constant TSS_Name_Type
:= Get_TSS_Name
(New_Id
);
3885 if TSS_Name
/= TSS_Stream_Read
3886 and then TSS_Name
/= TSS_Stream_Write
3887 and then TSS_Name
/= TSS_Stream_Input
3888 and then TSS_Name
/= TSS_Stream_Output
3891 ("\type of & does not match!", New_Formal
);
3898 -- Full conformance checks
3900 if Ctype
= Fully_Conformant
then
3902 -- We have checked already that names match
3904 if Parameter_Mode
(Old_Formal
) = E_In_Parameter
then
3906 -- Check default expressions for in parameters
3909 NewD
: constant Boolean :=
3910 Present
(Default_Value
(New_Formal
));
3911 OldD
: constant Boolean :=
3912 Present
(Default_Value
(Old_Formal
));
3914 if NewD
or OldD
then
3916 -- The old default value has been analyzed because the
3917 -- current full declaration will have frozen everything
3918 -- before. The new default value has not been analyzed,
3919 -- so analyze it now before we check for conformance.
3922 Push_Scope
(New_Id
);
3923 Preanalyze_Spec_Expression
3924 (Default_Value
(New_Formal
), Etype
(New_Formal
));
3928 if not (NewD
and OldD
)
3929 or else not Fully_Conformant_Expressions
3930 (Default_Value
(Old_Formal
),
3931 Default_Value
(New_Formal
))
3934 ("\default expression for & does not match!",
3943 -- A couple of special checks for Ada 83 mode. These checks are
3944 -- skipped if either entity is an operator in package Standard,
3945 -- or if either old or new instance is not from the source program.
3947 if Ada_Version
= Ada_83
3948 and then Sloc
(Old_Id
) > Standard_Location
3949 and then Sloc
(New_Id
) > Standard_Location
3950 and then Comes_From_Source
(Old_Id
)
3951 and then Comes_From_Source
(New_Id
)
3954 Old_Param
: constant Node_Id
:= Declaration_Node
(Old_Formal
);
3955 New_Param
: constant Node_Id
:= Declaration_Node
(New_Formal
);
3958 -- Explicit IN must be present or absent in both cases. This
3959 -- test is required only in the full conformance case.
3961 if In_Present
(Old_Param
) /= In_Present
(New_Param
)
3962 and then Ctype
= Fully_Conformant
3965 ("\(Ada 83) IN must appear in both declarations",
3970 -- Grouping (use of comma in param lists) must be the same
3971 -- This is where we catch a misconformance like:
3974 -- A : Integer; B : Integer
3976 -- which are represented identically in the tree except
3977 -- for the setting of the flags More_Ids and Prev_Ids.
3979 if More_Ids
(Old_Param
) /= More_Ids
(New_Param
)
3980 or else Prev_Ids
(Old_Param
) /= Prev_Ids
(New_Param
)
3983 ("\grouping of & does not match!", New_Formal
);
3989 -- This label is required when skipping controlling formals
3991 <<Skip_Controlling_Formal
>>
3993 Next_Formal
(Old_Formal
);
3994 Next_Formal
(New_Formal
);
3997 if Present
(Old_Formal
) then
3998 Conformance_Error
("\too few parameters!");
4001 elsif Present
(New_Formal
) then
4002 Conformance_Error
("\too many parameters!", New_Formal
);
4005 end Check_Conformance
;
4007 -----------------------
4008 -- Check_Conventions --
4009 -----------------------
4011 procedure Check_Conventions
(Typ
: Entity_Id
) is
4012 Ifaces_List
: Elist_Id
;
4014 procedure Check_Convention
(Op
: Entity_Id
);
4015 -- Verify that the convention of inherited dispatching operation Op is
4016 -- consistent among all subprograms it overrides. In order to minimize
4017 -- the search, Search_From is utilized to designate a specific point in
4018 -- the list rather than iterating over the whole list once more.
4020 ----------------------
4021 -- Check_Convention --
4022 ----------------------
4024 procedure Check_Convention
(Op
: Entity_Id
) is
4025 Iface_Elmt
: Elmt_Id
;
4026 Iface_Prim_Elmt
: Elmt_Id
;
4027 Iface_Prim
: Entity_Id
;
4030 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
4031 while Present
(Iface_Elmt
) loop
4033 First_Elmt
(Primitive_Operations
(Node
(Iface_Elmt
)));
4034 while Present
(Iface_Prim_Elmt
) loop
4035 Iface_Prim
:= Node
(Iface_Prim_Elmt
);
4037 if Is_Interface_Conformant
(Typ
, Iface_Prim
, Op
)
4038 and then Convention
(Iface_Prim
) /= Convention
(Op
)
4041 ("inconsistent conventions in primitive operations", Typ
);
4043 Error_Msg_Name_1
:= Chars
(Op
);
4044 Error_Msg_Name_2
:= Get_Convention_Name
(Convention
(Op
));
4045 Error_Msg_Sloc
:= Sloc
(Op
);
4047 if Comes_From_Source
(Op
) or else No
(Alias
(Op
)) then
4048 if not Is_Overriding_Operation
(Op
) then
4049 Error_Msg_N
("\\primitive % defined #", Typ
);
4052 ("\\overriding operation % with " &
4053 "convention % defined #", Typ
);
4056 else pragma Assert
(Present
(Alias
(Op
)));
4057 Error_Msg_Sloc
:= Sloc
(Alias
(Op
));
4059 ("\\inherited operation % with " &
4060 "convention % defined #", Typ
);
4063 Error_Msg_Name_1
:= Chars
(Op
);
4065 Get_Convention_Name
(Convention
(Iface_Prim
));
4066 Error_Msg_Sloc
:= Sloc
(Iface_Prim
);
4068 ("\\overridden operation % with " &
4069 "convention % defined #", Typ
);
4071 -- Avoid cascading errors
4076 Next_Elmt
(Iface_Prim_Elmt
);
4079 Next_Elmt
(Iface_Elmt
);
4081 end Check_Convention
;
4085 Prim_Op
: Entity_Id
;
4086 Prim_Op_Elmt
: Elmt_Id
;
4088 -- Start of processing for Check_Conventions
4091 if not Has_Interfaces
(Typ
) then
4095 Collect_Interfaces
(Typ
, Ifaces_List
);
4097 -- The algorithm checks every overriding dispatching operation against
4098 -- all the corresponding overridden dispatching operations, detecting
4099 -- differences in conventions.
4101 Prim_Op_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
4102 while Present
(Prim_Op_Elmt
) loop
4103 Prim_Op
:= Node
(Prim_Op_Elmt
);
4105 -- A small optimization: skip the predefined dispatching operations
4106 -- since they always have the same convention.
4108 if not Is_Predefined_Dispatching_Operation
(Prim_Op
) then
4109 Check_Convention
(Prim_Op
);
4112 Next_Elmt
(Prim_Op_Elmt
);
4114 end Check_Conventions
;
4116 ------------------------------
4117 -- Check_Delayed_Subprogram --
4118 ------------------------------
4120 procedure Check_Delayed_Subprogram
(Designator
: Entity_Id
) is
4123 procedure Possible_Freeze
(T
: Entity_Id
);
4124 -- T is the type of either a formal parameter or of the return type.
4125 -- If T is not yet frozen and needs a delayed freeze, then the
4126 -- subprogram itself must be delayed. If T is the limited view of an
4127 -- incomplete type the subprogram must be frozen as well, because
4128 -- T may depend on local types that have not been frozen yet.
4130 ---------------------
4131 -- Possible_Freeze --
4132 ---------------------
4134 procedure Possible_Freeze
(T
: Entity_Id
) is
4136 if Has_Delayed_Freeze
(T
) and then not Is_Frozen
(T
) then
4137 Set_Has_Delayed_Freeze
(Designator
);
4139 elsif Is_Access_Type
(T
)
4140 and then Has_Delayed_Freeze
(Designated_Type
(T
))
4141 and then not Is_Frozen
(Designated_Type
(T
))
4143 Set_Has_Delayed_Freeze
(Designator
);
4145 elsif Ekind
(T
) = E_Incomplete_Type
and then From_With_Type
(T
) then
4146 Set_Has_Delayed_Freeze
(Designator
);
4149 end Possible_Freeze
;
4151 -- Start of processing for Check_Delayed_Subprogram
4154 -- Never need to freeze abstract subprogram
4156 if Ekind
(Designator
) /= E_Subprogram_Type
4157 and then Is_Abstract_Subprogram
(Designator
)
4161 -- Need delayed freeze if return type itself needs a delayed
4162 -- freeze and is not yet frozen.
4164 Possible_Freeze
(Etype
(Designator
));
4165 Possible_Freeze
(Base_Type
(Etype
(Designator
))); -- needed ???
4167 -- Need delayed freeze if any of the formal types themselves need
4168 -- a delayed freeze and are not yet frozen.
4170 F
:= First_Formal
(Designator
);
4171 while Present
(F
) loop
4172 Possible_Freeze
(Etype
(F
));
4173 Possible_Freeze
(Base_Type
(Etype
(F
))); -- needed ???
4178 -- Mark functions that return by reference. Note that it cannot be
4179 -- done for delayed_freeze subprograms because the underlying
4180 -- returned type may not be known yet (for private types)
4182 if not Has_Delayed_Freeze
(Designator
)
4183 and then Expander_Active
4186 Typ
: constant Entity_Id
:= Etype
(Designator
);
4187 Utyp
: constant Entity_Id
:= Underlying_Type
(Typ
);
4190 if Is_Inherently_Limited_Type
(Typ
) then
4191 Set_Returns_By_Ref
(Designator
);
4193 elsif Present
(Utyp
) and then CW_Or_Has_Controlled_Part
(Utyp
) then
4194 Set_Returns_By_Ref
(Designator
);
4198 end Check_Delayed_Subprogram
;
4200 ------------------------------------
4201 -- Check_Discriminant_Conformance --
4202 ------------------------------------
4204 procedure Check_Discriminant_Conformance
4209 Old_Discr
: Entity_Id
:= First_Discriminant
(Prev
);
4210 New_Discr
: Node_Id
:= First
(Discriminant_Specifications
(N
));
4211 New_Discr_Id
: Entity_Id
;
4212 New_Discr_Type
: Entity_Id
;
4214 procedure Conformance_Error
(Msg
: String; N
: Node_Id
);
4215 -- Post error message for conformance error on given node. Two messages
4216 -- are output. The first points to the previous declaration with a
4217 -- general "no conformance" message. The second is the detailed reason,
4218 -- supplied as Msg. The parameter N provide information for a possible
4219 -- & insertion in the message.
4221 -----------------------
4222 -- Conformance_Error --
4223 -----------------------
4225 procedure Conformance_Error
(Msg
: String; N
: Node_Id
) is
4227 Error_Msg_Sloc
:= Sloc
(Prev_Loc
);
4228 Error_Msg_N
-- CODEFIX
4229 ("not fully conformant with declaration#!", N
);
4230 Error_Msg_NE
(Msg
, N
, N
);
4231 end Conformance_Error
;
4233 -- Start of processing for Check_Discriminant_Conformance
4236 while Present
(Old_Discr
) and then Present
(New_Discr
) loop
4238 New_Discr_Id
:= Defining_Identifier
(New_Discr
);
4240 -- The subtype mark of the discriminant on the full type has not
4241 -- been analyzed so we do it here. For an access discriminant a new
4244 if Nkind
(Discriminant_Type
(New_Discr
)) = N_Access_Definition
then
4246 Access_Definition
(N
, Discriminant_Type
(New_Discr
));
4249 Analyze
(Discriminant_Type
(New_Discr
));
4250 New_Discr_Type
:= Etype
(Discriminant_Type
(New_Discr
));
4252 -- Ada 2005: if the discriminant definition carries a null
4253 -- exclusion, create an itype to check properly for consistency
4254 -- with partial declaration.
4256 if Is_Access_Type
(New_Discr_Type
)
4257 and then Null_Exclusion_Present
(New_Discr
)
4260 Create_Null_Excluding_Itype
4261 (T
=> New_Discr_Type
,
4262 Related_Nod
=> New_Discr
,
4263 Scope_Id
=> Current_Scope
);
4267 if not Conforming_Types
4268 (Etype
(Old_Discr
), New_Discr_Type
, Fully_Conformant
)
4270 Conformance_Error
("type of & does not match!", New_Discr_Id
);
4273 -- Treat the new discriminant as an occurrence of the old one,
4274 -- for navigation purposes, and fill in some semantic
4275 -- information, for completeness.
4277 Generate_Reference
(Old_Discr
, New_Discr_Id
, 'r');
4278 Set_Etype
(New_Discr_Id
, Etype
(Old_Discr
));
4279 Set_Scope
(New_Discr_Id
, Scope
(Old_Discr
));
4284 if Chars
(Old_Discr
) /= Chars
(Defining_Identifier
(New_Discr
)) then
4285 Conformance_Error
("name & does not match!", New_Discr_Id
);
4289 -- Default expressions must match
4292 NewD
: constant Boolean :=
4293 Present
(Expression
(New_Discr
));
4294 OldD
: constant Boolean :=
4295 Present
(Expression
(Parent
(Old_Discr
)));
4298 if NewD
or OldD
then
4300 -- The old default value has been analyzed and expanded,
4301 -- because the current full declaration will have frozen
4302 -- everything before. The new default values have not been
4303 -- expanded, so expand now to check conformance.
4306 Preanalyze_Spec_Expression
4307 (Expression
(New_Discr
), New_Discr_Type
);
4310 if not (NewD
and OldD
)
4311 or else not Fully_Conformant_Expressions
4312 (Expression
(Parent
(Old_Discr
)),
4313 Expression
(New_Discr
))
4317 ("default expression for & does not match!",
4324 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
4326 if Ada_Version
= Ada_83
then
4328 Old_Disc
: constant Node_Id
:= Declaration_Node
(Old_Discr
);
4331 -- Grouping (use of comma in param lists) must be the same
4332 -- This is where we catch a misconformance like:
4335 -- A : Integer; B : Integer
4337 -- which are represented identically in the tree except
4338 -- for the setting of the flags More_Ids and Prev_Ids.
4340 if More_Ids
(Old_Disc
) /= More_Ids
(New_Discr
)
4341 or else Prev_Ids
(Old_Disc
) /= Prev_Ids
(New_Discr
)
4344 ("grouping of & does not match!", New_Discr_Id
);
4350 Next_Discriminant
(Old_Discr
);
4354 if Present
(Old_Discr
) then
4355 Conformance_Error
("too few discriminants!", Defining_Identifier
(N
));
4358 elsif Present
(New_Discr
) then
4360 ("too many discriminants!", Defining_Identifier
(New_Discr
));
4363 end Check_Discriminant_Conformance
;
4365 ----------------------------
4366 -- Check_Fully_Conformant --
4367 ----------------------------
4369 procedure Check_Fully_Conformant
4370 (New_Id
: Entity_Id
;
4372 Err_Loc
: Node_Id
:= Empty
)
4375 pragma Warnings
(Off
, Result
);
4378 (New_Id
, Old_Id
, Fully_Conformant
, True, Result
, Err_Loc
);
4379 end Check_Fully_Conformant
;
4381 ---------------------------
4382 -- Check_Mode_Conformant --
4383 ---------------------------
4385 procedure Check_Mode_Conformant
4386 (New_Id
: Entity_Id
;
4388 Err_Loc
: Node_Id
:= Empty
;
4389 Get_Inst
: Boolean := False)
4392 pragma Warnings
(Off
, Result
);
4395 (New_Id
, Old_Id
, Mode_Conformant
, True, Result
, Err_Loc
, Get_Inst
);
4396 end Check_Mode_Conformant
;
4398 --------------------------------
4399 -- Check_Overriding_Indicator --
4400 --------------------------------
4402 procedure Check_Overriding_Indicator
4404 Overridden_Subp
: Entity_Id
;
4405 Is_Primitive
: Boolean)
4411 -- No overriding indicator for literals
4413 if Ekind
(Subp
) = E_Enumeration_Literal
then
4416 elsif Ekind
(Subp
) = E_Entry
then
4417 Decl
:= Parent
(Subp
);
4419 -- No point in analyzing a malformed operator
4421 elsif Nkind
(Subp
) = N_Defining_Operator_Symbol
4422 and then Error_Posted
(Subp
)
4427 Decl
:= Unit_Declaration_Node
(Subp
);
4430 if Nkind_In
(Decl
, N_Subprogram_Body
,
4431 N_Subprogram_Body_Stub
,
4432 N_Subprogram_Declaration
,
4433 N_Abstract_Subprogram_Declaration
,
4434 N_Subprogram_Renaming_Declaration
)
4436 Spec
:= Specification
(Decl
);
4438 elsif Nkind
(Decl
) = N_Entry_Declaration
then
4445 -- The overriding operation is type conformant with the overridden one,
4446 -- but the names of the formals are not required to match. If the names
4447 -- appear permuted in the overriding operation, this is a possible
4448 -- source of confusion that is worth diagnosing. Controlling formals
4449 -- often carry names that reflect the type, and it is not worthwhile
4450 -- requiring that their names match.
4452 if Present
(Overridden_Subp
)
4453 and then Nkind
(Subp
) /= N_Defining_Operator_Symbol
4460 Form1
:= First_Formal
(Subp
);
4461 Form2
:= First_Formal
(Overridden_Subp
);
4463 -- If the overriding operation is a synchronized operation, skip
4464 -- the first parameter of the overridden operation, which is
4465 -- implicit in the new one. If the operation is declared in the
4466 -- body it is not primitive and all formals must match.
4468 if Is_Concurrent_Type
(Scope
(Subp
))
4469 and then Is_Tagged_Type
(Scope
(Subp
))
4470 and then not Has_Completion
(Scope
(Subp
))
4472 Form2
:= Next_Formal
(Form2
);
4475 if Present
(Form1
) then
4476 Form1
:= Next_Formal
(Form1
);
4477 Form2
:= Next_Formal
(Form2
);
4480 while Present
(Form1
) loop
4481 if not Is_Controlling_Formal
(Form1
)
4482 and then Present
(Next_Formal
(Form2
))
4483 and then Chars
(Form1
) = Chars
(Next_Formal
(Form2
))
4485 Error_Msg_Node_2
:= Alias
(Overridden_Subp
);
4486 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
4488 ("& does not match corresponding formal of&#",
4493 Next_Formal
(Form1
);
4494 Next_Formal
(Form2
);
4499 -- If there is an overridden subprogram, then check that there is no
4500 -- "not overriding" indicator, and mark the subprogram as overriding.
4501 -- This is not done if the overridden subprogram is marked as hidden,
4502 -- which can occur for the case of inherited controlled operations
4503 -- (see Derive_Subprogram), unless the inherited subprogram's parent
4504 -- subprogram is not itself hidden. (Note: This condition could probably
4505 -- be simplified, leaving out the testing for the specific controlled
4506 -- cases, but it seems safer and clearer this way, and echoes similar
4507 -- special-case tests of this kind in other places.)
4509 if Present
(Overridden_Subp
)
4510 and then (not Is_Hidden
(Overridden_Subp
)
4512 ((Chars
(Overridden_Subp
) = Name_Initialize
4513 or else Chars
(Overridden_Subp
) = Name_Adjust
4514 or else Chars
(Overridden_Subp
) = Name_Finalize
)
4515 and then Present
(Alias
(Overridden_Subp
))
4516 and then not Is_Hidden
(Alias
(Overridden_Subp
))))
4518 if Must_Not_Override
(Spec
) then
4519 Error_Msg_Sloc
:= Sloc
(Overridden_Subp
);
4521 if Ekind
(Subp
) = E_Entry
then
4523 ("entry & overrides inherited operation #", Spec
, Subp
);
4526 ("subprogram & overrides inherited operation #", Spec
, Subp
);
4529 elsif Is_Subprogram
(Subp
) then
4530 Set_Is_Overriding_Operation
(Subp
);
4533 -- If primitive flag is set or this is a protected operation, then
4534 -- the operation is overriding at the point of its declaration, so
4535 -- warn if necessary. Otherwise it may have been declared before the
4536 -- operation it overrides and no check is required.
4539 and then not Must_Override
(Spec
)
4540 and then (Is_Primitive
4541 or else Ekind
(Scope
(Subp
)) = E_Protected_Type
)
4543 Style
.Missing_Overriding
(Decl
, Subp
);
4546 -- If Subp is an operator, it may override a predefined operation, if
4547 -- it is defined in the same scope as the type to which it applies.
4548 -- In that case Overridden_Subp is empty because of our implicit
4549 -- representation for predefined operators. We have to check whether the
4550 -- signature of Subp matches that of a predefined operator. Note that
4551 -- first argument provides the name of the operator, and the second
4552 -- argument the signature that may match that of a standard operation.
4553 -- If the indicator is overriding, then the operator must match a
4554 -- predefined signature, because we know already that there is no
4555 -- explicit overridden operation.
4557 elsif Nkind
(Subp
) = N_Defining_Operator_Symbol
then
4559 Typ
: constant Entity_Id
:=
4560 Base_Type
(Etype
(First_Formal
(Subp
)));
4562 Can_Override
: constant Boolean :=
4563 Operator_Matches_Spec
(Subp
, Subp
)
4564 and then Scope
(Subp
) = Scope
(Typ
)
4565 and then not Is_Class_Wide_Type
(Typ
);
4568 if Must_Not_Override
(Spec
) then
4570 -- If this is not a primitive or a protected subprogram, then
4571 -- "not overriding" is illegal.
4574 and then Ekind
(Scope
(Subp
)) /= E_Protected_Type
4577 ("overriding indicator only allowed "
4578 & "if subprogram is primitive", Subp
);
4580 elsif Can_Override
then
4582 ("subprogram& overrides predefined operator ", Spec
, Subp
);
4585 elsif Must_Override
(Spec
) then
4586 if Is_Overriding_Operation
(Subp
) then
4589 elsif not Can_Override
then
4590 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
4593 elsif not Error_Posted
(Subp
)
4594 and then Style_Check
4595 and then Can_Override
4597 not Is_Predefined_File_Name
4598 (Unit_File_Name
(Get_Source_Unit
(Subp
)))
4600 Set_Is_Overriding_Operation
(Subp
);
4602 -- If style checks are enabled, indicate that the indicator is
4603 -- missing. However, at the point of declaration, the type of
4604 -- which this is a primitive operation may be private, in which
4605 -- case the indicator would be premature.
4607 if Has_Private_Declaration
(Etype
(Subp
))
4608 or else Has_Private_Declaration
(Etype
(First_Formal
(Subp
)))
4612 Style
.Missing_Overriding
(Decl
, Subp
);
4617 elsif Must_Override
(Spec
) then
4618 if Ekind
(Subp
) = E_Entry
then
4619 Error_Msg_NE
("entry & is not overriding", Spec
, Subp
);
4621 Error_Msg_NE
("subprogram & is not overriding", Spec
, Subp
);
4624 -- If the operation is marked "not overriding" and it's not primitive
4625 -- then an error is issued, unless this is an operation of a task or
4626 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
4627 -- has been specified have already been checked above.
4629 elsif Must_Not_Override
(Spec
)
4630 and then not Is_Primitive
4631 and then Ekind
(Subp
) /= E_Entry
4632 and then Ekind
(Scope
(Subp
)) /= E_Protected_Type
4635 ("overriding indicator only allowed if subprogram is primitive",
4639 end Check_Overriding_Indicator
;
4645 -- Note: this procedure needs to know far too much about how the expander
4646 -- messes with exceptions. The use of the flag Exception_Junk and the
4647 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
4648 -- works, but is not very clean. It would be better if the expansion
4649 -- routines would leave Original_Node working nicely, and we could use
4650 -- Original_Node here to ignore all the peculiar expander messing ???
4652 procedure Check_Returns
4656 Proc
: Entity_Id
:= Empty
)
4660 procedure Check_Statement_Sequence
(L
: List_Id
);
4661 -- Internal recursive procedure to check a list of statements for proper
4662 -- termination by a return statement (or a transfer of control or a
4663 -- compound statement that is itself internally properly terminated).
4665 ------------------------------
4666 -- Check_Statement_Sequence --
4667 ------------------------------
4669 procedure Check_Statement_Sequence
(L
: List_Id
) is
4674 Raise_Exception_Call
: Boolean;
4675 -- Set True if statement sequence terminated by Raise_Exception call
4676 -- or a Reraise_Occurrence call.
4679 Raise_Exception_Call
:= False;
4681 -- Get last real statement
4683 Last_Stm
:= Last
(L
);
4685 -- Deal with digging out exception handler statement sequences that
4686 -- have been transformed by the local raise to goto optimization.
4687 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
4688 -- optimization has occurred, we are looking at something like:
4691 -- original stmts in block
4695 -- goto L1; | omitted if No_Exception_Propagation
4700 -- goto L3; -- skip handler when exception not raised
4702 -- <<L1>> -- target label for local exception
4716 -- and what we have to do is to dig out the estmts1 and estmts2
4717 -- sequences (which were the original sequences of statements in
4718 -- the exception handlers) and check them.
4720 if Nkind
(Last_Stm
) = N_Label
4721 and then Exception_Junk
(Last_Stm
)
4727 exit when Nkind
(Stm
) /= N_Block_Statement
;
4728 exit when not Exception_Junk
(Stm
);
4731 exit when Nkind
(Stm
) /= N_Label
;
4732 exit when not Exception_Junk
(Stm
);
4733 Check_Statement_Sequence
4734 (Statements
(Handled_Statement_Sequence
(Next
(Stm
))));
4739 exit when Nkind
(Stm
) /= N_Goto_Statement
;
4740 exit when not Exception_Junk
(Stm
);
4744 -- Don't count pragmas
4746 while Nkind
(Last_Stm
) = N_Pragma
4748 -- Don't count call to SS_Release (can happen after Raise_Exception)
4751 (Nkind
(Last_Stm
) = N_Procedure_Call_Statement
4753 Nkind
(Name
(Last_Stm
)) = N_Identifier
4755 Is_RTE
(Entity
(Name
(Last_Stm
)), RE_SS_Release
))
4757 -- Don't count exception junk
4760 (Nkind_In
(Last_Stm
, N_Goto_Statement
,
4762 N_Object_Declaration
)
4763 and then Exception_Junk
(Last_Stm
))
4764 or else Nkind
(Last_Stm
) in N_Push_xxx_Label
4765 or else Nkind
(Last_Stm
) in N_Pop_xxx_Label
4770 -- Here we have the "real" last statement
4772 Kind
:= Nkind
(Last_Stm
);
4774 -- Transfer of control, OK. Note that in the No_Return procedure
4775 -- case, we already diagnosed any explicit return statements, so
4776 -- we can treat them as OK in this context.
4778 if Is_Transfer
(Last_Stm
) then
4781 -- Check cases of explicit non-indirect procedure calls
4783 elsif Kind
= N_Procedure_Call_Statement
4784 and then Is_Entity_Name
(Name
(Last_Stm
))
4786 -- Check call to Raise_Exception procedure which is treated
4787 -- specially, as is a call to Reraise_Occurrence.
4789 -- We suppress the warning in these cases since it is likely that
4790 -- the programmer really does not expect to deal with the case
4791 -- of Null_Occurrence, and thus would find a warning about a
4792 -- missing return curious, and raising Program_Error does not
4793 -- seem such a bad behavior if this does occur.
4795 -- Note that in the Ada 2005 case for Raise_Exception, the actual
4796 -- behavior will be to raise Constraint_Error (see AI-329).
4798 if Is_RTE
(Entity
(Name
(Last_Stm
)), RE_Raise_Exception
)
4800 Is_RTE
(Entity
(Name
(Last_Stm
)), RE_Reraise_Occurrence
)
4802 Raise_Exception_Call
:= True;
4804 -- For Raise_Exception call, test first argument, if it is
4805 -- an attribute reference for a 'Identity call, then we know
4806 -- that the call cannot possibly return.
4809 Arg
: constant Node_Id
:=
4810 Original_Node
(First_Actual
(Last_Stm
));
4812 if Nkind
(Arg
) = N_Attribute_Reference
4813 and then Attribute_Name
(Arg
) = Name_Identity
4820 -- If statement, need to look inside if there is an else and check
4821 -- each constituent statement sequence for proper termination.
4823 elsif Kind
= N_If_Statement
4824 and then Present
(Else_Statements
(Last_Stm
))
4826 Check_Statement_Sequence
(Then_Statements
(Last_Stm
));
4827 Check_Statement_Sequence
(Else_Statements
(Last_Stm
));
4829 if Present
(Elsif_Parts
(Last_Stm
)) then
4831 Elsif_Part
: Node_Id
:= First
(Elsif_Parts
(Last_Stm
));
4834 while Present
(Elsif_Part
) loop
4835 Check_Statement_Sequence
(Then_Statements
(Elsif_Part
));
4843 -- Case statement, check each case for proper termination
4845 elsif Kind
= N_Case_Statement
then
4849 Case_Alt
:= First_Non_Pragma
(Alternatives
(Last_Stm
));
4850 while Present
(Case_Alt
) loop
4851 Check_Statement_Sequence
(Statements
(Case_Alt
));
4852 Next_Non_Pragma
(Case_Alt
);
4858 -- Block statement, check its handled sequence of statements
4860 elsif Kind
= N_Block_Statement
then
4866 (Handled_Statement_Sequence
(Last_Stm
), Mode
, Err1
);
4875 -- Loop statement. If there is an iteration scheme, we can definitely
4876 -- fall out of the loop. Similarly if there is an exit statement, we
4877 -- can fall out. In either case we need a following return.
4879 elsif Kind
= N_Loop_Statement
then
4880 if Present
(Iteration_Scheme
(Last_Stm
))
4881 or else Has_Exit
(Entity
(Identifier
(Last_Stm
)))
4885 -- A loop with no exit statement or iteration scheme is either
4886 -- an infinite loop, or it has some other exit (raise/return).
4887 -- In either case, no warning is required.
4893 -- Timed entry call, check entry call and delay alternatives
4895 -- Note: in expanded code, the timed entry call has been converted
4896 -- to a set of expanded statements on which the check will work
4897 -- correctly in any case.
4899 elsif Kind
= N_Timed_Entry_Call
then
4901 ECA
: constant Node_Id
:= Entry_Call_Alternative
(Last_Stm
);
4902 DCA
: constant Node_Id
:= Delay_Alternative
(Last_Stm
);
4905 -- If statement sequence of entry call alternative is missing,
4906 -- then we can definitely fall through, and we post the error
4907 -- message on the entry call alternative itself.
4909 if No
(Statements
(ECA
)) then
4912 -- If statement sequence of delay alternative is missing, then
4913 -- we can definitely fall through, and we post the error
4914 -- message on the delay alternative itself.
4916 -- Note: if both ECA and DCA are missing the return, then we
4917 -- post only one message, should be enough to fix the bugs.
4918 -- If not we will get a message next time on the DCA when the
4921 elsif No
(Statements
(DCA
)) then
4924 -- Else check both statement sequences
4927 Check_Statement_Sequence
(Statements
(ECA
));
4928 Check_Statement_Sequence
(Statements
(DCA
));
4933 -- Conditional entry call, check entry call and else part
4935 -- Note: in expanded code, the conditional entry call has been
4936 -- converted to a set of expanded statements on which the check
4937 -- will work correctly in any case.
4939 elsif Kind
= N_Conditional_Entry_Call
then
4941 ECA
: constant Node_Id
:= Entry_Call_Alternative
(Last_Stm
);
4944 -- If statement sequence of entry call alternative is missing,
4945 -- then we can definitely fall through, and we post the error
4946 -- message on the entry call alternative itself.
4948 if No
(Statements
(ECA
)) then
4951 -- Else check statement sequence and else part
4954 Check_Statement_Sequence
(Statements
(ECA
));
4955 Check_Statement_Sequence
(Else_Statements
(Last_Stm
));
4961 -- If we fall through, issue appropriate message
4964 if not Raise_Exception_Call
then
4966 ("?RETURN statement missing following this statement!",
4969 ("\?Program_Error may be raised at run time!",
4973 -- Note: we set Err even though we have not issued a warning
4974 -- because we still have a case of a missing return. This is
4975 -- an extremely marginal case, probably will never be noticed
4976 -- but we might as well get it right.
4980 -- Otherwise we have the case of a procedure marked No_Return
4983 if not Raise_Exception_Call
then
4985 ("?implied return after this statement " &
4986 "will raise Program_Error",
4989 ("\?procedure & is marked as No_Return!",
4994 RE
: constant Node_Id
:=
4995 Make_Raise_Program_Error
(Sloc
(Last_Stm
),
4996 Reason
=> PE_Implicit_Return
);
4998 Insert_After
(Last_Stm
, RE
);
5002 end Check_Statement_Sequence
;
5004 -- Start of processing for Check_Returns
5008 Check_Statement_Sequence
(Statements
(HSS
));
5010 if Present
(Exception_Handlers
(HSS
)) then
5011 Handler
:= First_Non_Pragma
(Exception_Handlers
(HSS
));
5012 while Present
(Handler
) loop
5013 Check_Statement_Sequence
(Statements
(Handler
));
5014 Next_Non_Pragma
(Handler
);
5019 ----------------------------
5020 -- Check_Subprogram_Order --
5021 ----------------------------
5023 procedure Check_Subprogram_Order
(N
: Node_Id
) is
5025 function Subprogram_Name_Greater
(S1
, S2
: String) return Boolean;
5026 -- This is used to check if S1 > S2 in the sense required by this
5027 -- test, for example nameab < namec, but name2 < name10.
5029 -----------------------------
5030 -- Subprogram_Name_Greater --
5031 -----------------------------
5033 function Subprogram_Name_Greater
(S1
, S2
: String) return Boolean is
5038 -- Remove trailing numeric parts
5041 while S1
(L1
) in '0' .. '9' loop
5046 while S2
(L2
) in '0' .. '9' loop
5050 -- If non-numeric parts non-equal, that's decisive
5052 if S1
(S1
'First .. L1
) < S2
(S2
'First .. L2
) then
5055 elsif S1
(S1
'First .. L1
) > S2
(S2
'First .. L2
) then
5058 -- If non-numeric parts equal, compare suffixed numeric parts. Note
5059 -- that a missing suffix is treated as numeric zero in this test.
5063 while L1
< S1
'Last loop
5065 N1
:= N1
* 10 + Character'Pos (S1
(L1
)) - Character'Pos ('0');
5069 while L2
< S2
'Last loop
5071 N2
:= N2
* 10 + Character'Pos (S2
(L2
)) - Character'Pos ('0');
5076 end Subprogram_Name_Greater
;
5078 -- Start of processing for Check_Subprogram_Order
5081 -- Check body in alpha order if this is option
5084 and then Style_Check_Order_Subprograms
5085 and then Nkind
(N
) = N_Subprogram_Body
5086 and then Comes_From_Source
(N
)
5087 and then In_Extended_Main_Source_Unit
(N
)
5091 renames Scope_Stack
.Table
5092 (Scope_Stack
.Last
).Last_Subprogram_Name
;
5094 Body_Id
: constant Entity_Id
:=
5095 Defining_Entity
(Specification
(N
));
5098 Get_Decoded_Name_String
(Chars
(Body_Id
));
5101 if Subprogram_Name_Greater
5102 (LSN
.all, Name_Buffer
(1 .. Name_Len
))
5104 Style
.Subprogram_Not_In_Alpha_Order
(Body_Id
);
5110 LSN
:= new String'(Name_Buffer (1 .. Name_Len));
5113 end Check_Subprogram_Order;
5115 ------------------------------
5116 -- Check_Subtype_Conformant --
5117 ------------------------------
5119 procedure Check_Subtype_Conformant
5120 (New_Id : Entity_Id;
5122 Err_Loc : Node_Id := Empty;
5123 Skip_Controlling_Formals : Boolean := False)
5126 pragma Warnings (Off, Result);
5129 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
5130 Skip_Controlling_Formals => Skip_Controlling_Formals);
5131 end Check_Subtype_Conformant;
5133 ---------------------------
5134 -- Check_Type_Conformant --
5135 ---------------------------
5137 procedure Check_Type_Conformant
5138 (New_Id : Entity_Id;
5140 Err_Loc : Node_Id := Empty)
5143 pragma Warnings (Off, Result);
5146 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
5147 end Check_Type_Conformant;
5149 ----------------------
5150 -- Conforming_Types --
5151 ----------------------
5153 function Conforming_Types
5156 Ctype : Conformance_Type;
5157 Get_Inst : Boolean := False) return Boolean
5159 Type_1 : Entity_Id := T1;
5160 Type_2 : Entity_Id := T2;
5161 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
5163 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean;
5164 -- If neither T1 nor T2 are generic actual types, or if they are in
5165 -- different scopes (e.g. parent and child instances), then verify that
5166 -- the base types are equal. Otherwise T1 and T2 must be on the same
5167 -- subtype chain. The whole purpose of this procedure is to prevent
5168 -- spurious ambiguities in an instantiation that may arise if two
5169 -- distinct generic types are instantiated with the same actual.
5171 function Find_Designated_Type (T : Entity_Id) return Entity_Id;
5172 -- An access parameter can designate an incomplete type. If the
5173 -- incomplete type is the limited view of a type from a limited_
5174 -- with_clause, check whether the non-limited view is available. If
5175 -- it is a (non-limited) incomplete type, get the full view.
5177 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean;
5178 -- Returns True if and only if either T1 denotes a limited view of T2
5179 -- or T2 denotes a limited view of T1. This can arise when the limited
5180 -- with view of a type is used in a subprogram declaration and the
5181 -- subprogram body is in the scope of a regular with clause for the
5182 -- same unit. In such a case, the two type entities can be considered
5183 -- identical for purposes of conformance checking.
5185 ----------------------
5186 -- Base_Types_Match --
5187 ----------------------
5189 function Base_Types_Match (T1, T2 : Entity_Id) return Boolean is
5194 elsif Base_Type (T1) = Base_Type (T2) then
5196 -- The following is too permissive. A more precise test should
5197 -- check that the generic actual is an ancestor subtype of the
5200 return not Is_Generic_Actual_Type (T1)
5201 or else not Is_Generic_Actual_Type (T2)
5202 or else Scope (T1) /= Scope (T2);
5207 end Base_Types_Match;
5209 --------------------------
5210 -- Find_Designated_Type --
5211 --------------------------
5213 function Find_Designated_Type (T : Entity_Id) return Entity_Id is
5217 Desig := Directly_Designated_Type (T);
5219 if Ekind (Desig) = E_Incomplete_Type then
5221 -- If regular incomplete type, get full view if available
5223 if Present (Full_View (Desig)) then
5224 Desig := Full_View (Desig);
5226 -- If limited view of a type, get non-limited view if available,
5227 -- and check again for a regular incomplete type.
5229 elsif Present (Non_Limited_View (Desig)) then
5230 Desig := Get_Full_View (Non_Limited_View (Desig));
5235 end Find_Designated_Type;
5237 -------------------------------
5238 -- Matches_Limited_With_View --
5239 -------------------------------
5241 function Matches_Limited_With_View (T1, T2 : Entity_Id) return Boolean is
5243 -- In some cases a type imported through a limited_with clause, and
5244 -- its nonlimited view are both visible, for example in an anonymous
5245 -- access-to-class-wide type in a formal. Both entities designate the
5248 if From_With_Type (T1)
5249 and then T2 = Available_View (T1)
5253 elsif From_With_Type (T2)
5254 and then T1 = Available_View (T2)
5261 end Matches_Limited_With_View;
5263 -- Start of processing for Conforming_Types
5266 -- The context is an instance association for a formal
5267 -- access-to-subprogram type; the formal parameter types require
5268 -- mapping because they may denote other formal parameters of the
5272 Type_1 := Get_Instance_Of (T1);
5273 Type_2 := Get_Instance_Of (T2);
5276 -- If one of the types is a view of the other introduced by a limited
5277 -- with clause, treat these as conforming for all purposes.
5279 if Matches_Limited_With_View (T1, T2) then
5282 elsif Base_Types_Match (Type_1, Type_2) then
5283 return Ctype <= Mode_Conformant
5284 or else Subtypes_Statically_Match (Type_1, Type_2);
5286 elsif Is_Incomplete_Or_Private_Type (Type_1)
5287 and then Present (Full_View (Type_1))
5288 and then Base_Types_Match (Full_View (Type_1), Type_2)
5290 return Ctype <= Mode_Conformant
5291 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
5293 elsif Ekind (Type_2) = E_Incomplete_Type
5294 and then Present (Full_View (Type_2))
5295 and then Base_Types_Match (Type_1, Full_View (Type_2))
5297 return Ctype <= Mode_Conformant
5298 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
5300 elsif Is_Private_Type (Type_2)
5301 and then In_Instance
5302 and then Present (Full_View (Type_2))
5303 and then Base_Types_Match (Type_1, Full_View (Type_2))
5305 return Ctype <= Mode_Conformant
5306 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
5309 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
5310 -- treated recursively because they carry a signature.
5312 Are_Anonymous_Access_To_Subprogram_Types :=
5313 Ekind (Type_1) = Ekind (Type_2)
5315 (Ekind (Type_1) = E_Anonymous_Access_Subprogram_Type
5317 Ekind (Type_1) = E_Anonymous_Access_Protected_Subprogram_Type);
5319 -- Test anonymous access type case. For this case, static subtype
5320 -- matching is required for mode conformance (RM 6.3.1(15)). We check
5321 -- the base types because we may have built internal subtype entities
5322 -- to handle null-excluding types (see Process_Formals).
5324 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
5326 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
5327 or else Are_Anonymous_Access_To_Subprogram_Types -- Ada 2005 (AI-254)
5330 Desig_1 : Entity_Id;
5331 Desig_2 : Entity_Id;
5334 -- In Ada2005, access constant indicators must match for
5335 -- subtype conformance.
5337 if Ada_Version >= Ada_05
5338 and then Ctype >= Subtype_Conformant
5340 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
5345 Desig_1 := Find_Designated_Type (Type_1);
5347 Desig_2 := Find_Designated_Type (Type_2);
5349 -- If the context is an instance association for a formal
5350 -- access-to-subprogram type; formal access parameter designated
5351 -- types require mapping because they may denote other formal
5352 -- parameters of the generic unit.
5355 Desig_1 := Get_Instance_Of (Desig_1);
5356 Desig_2 := Get_Instance_Of (Desig_2);
5359 -- It is possible for a Class_Wide_Type to be introduced for an
5360 -- incomplete type, in which case there is a separate class_ wide
5361 -- type for the full view. The types conform if their Etypes
5362 -- conform, i.e. one may be the full view of the other. This can
5363 -- only happen in the context of an access parameter, other uses
5364 -- of an incomplete Class_Wide_Type are illegal.
5366 if Is_Class_Wide_Type (Desig_1)
5367 and then Is_Class_Wide_Type (Desig_2)
5371 (Etype (Base_Type (Desig_1)),
5372 Etype (Base_Type (Desig_2)), Ctype);
5374 elsif Are_Anonymous_Access_To_Subprogram_Types then
5375 if Ada_Version < Ada_05 then
5376 return Ctype = Type_Conformant
5378 Subtypes_Statically_Match (Desig_1, Desig_2);
5380 -- We must check the conformance of the signatures themselves
5384 Conformant : Boolean;
5387 (Desig_1, Desig_2, Ctype, False, Conformant);
5393 return Base_Type (Desig_1) = Base_Type (Desig_2)
5394 and then (Ctype = Type_Conformant
5396 Subtypes_Statically_Match (Desig_1, Desig_2));
5400 -- Otherwise definitely no match
5403 if ((Ekind (Type_1) = E_Anonymous_Access_Type
5404 and then Is_Access_Type (Type_2))
5405 or else (Ekind (Type_2) = E_Anonymous_Access_Type
5406 and then Is_Access_Type (Type_1)))
5409 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
5411 May_Hide_Profile := True;
5416 end Conforming_Types;
5418 --------------------------
5419 -- Create_Extra_Formals --
5420 --------------------------
5422 procedure Create_Extra_Formals (E : Entity_Id) is
5424 First_Extra : Entity_Id := Empty;
5425 Last_Extra : Entity_Id;
5426 Formal_Type : Entity_Id;
5427 P_Formal : Entity_Id := Empty;
5429 function Add_Extra_Formal
5430 (Assoc_Entity : Entity_Id;
5433 Suffix : String) return Entity_Id;
5434 -- Add an extra formal to the current list of formals and extra formals.
5435 -- The extra formal is added to the end of the list of extra formals,
5436 -- and also returned as the result. These formals are always of mode IN.
5437 -- The new formal has the type Typ, is declared in Scope, and its name
5438 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
5439 -- The following suffixes are currently used. They should not be changed
5440 -- without coordinating with CodePeer, which makes use of these to
5441 -- provide better messages.
5443 -- O denotes the Constrained bit.
5444 -- L denotes the accessibility level.
5445 -- BIP_xxx denotes an extra formal for a build-in-place function. See
5446 -- the full list in exp_ch6.BIP_Formal_Kind.
5448 ----------------------
5449 -- Add_Extra_Formal --
5450 ----------------------
5452 function Add_Extra_Formal
5453 (Assoc_Entity : Entity_Id;
5456 Suffix : String) return Entity_Id
5458 EF : constant Entity_Id :=
5459 Make_Defining_Identifier (Sloc (Assoc_Entity),
5460 Chars => New_External_Name (Chars (Assoc_Entity),
5464 -- A little optimization. Never generate an extra formal for the
5465 -- _init operand of an initialization procedure, since it could
5468 if Chars (Formal) = Name_uInit then
5472 Set_Ekind (EF, E_In_Parameter);
5473 Set_Actual_Subtype (EF, Typ);
5474 Set_Etype (EF, Typ);
5475 Set_Scope (EF, Scope);
5476 Set_Mechanism (EF, Default_Mechanism);
5477 Set_Formal_Validity (EF);
5479 if No (First_Extra) then
5481 Set_Extra_Formals (Scope, First_Extra);
5484 if Present (Last_Extra) then
5485 Set_Extra_Formal (Last_Extra, EF);
5491 end Add_Extra_Formal;
5493 -- Start of processing for Create_Extra_Formals
5496 -- We never generate extra formals if expansion is not active
5497 -- because we don't need them unless we are generating code.
5499 if not Expander_Active then
5503 -- If this is a derived subprogram then the subtypes of the parent
5504 -- subprogram's formal parameters will be used to determine the need
5505 -- for extra formals.
5507 if Is_Overloadable (E) and then Present (Alias (E)) then
5508 P_Formal := First_Formal (Alias (E));
5511 Last_Extra := Empty;
5512 Formal := First_Formal (E);
5513 while Present (Formal) loop
5514 Last_Extra := Formal;
5515 Next_Formal (Formal);
5518 -- If Extra_formals were already created, don't do it again. This
5519 -- situation may arise for subprogram types created as part of
5520 -- dispatching calls (see Expand_Dispatching_Call)
5522 if Present (Last_Extra) and then
5523 Present (Extra_Formal (Last_Extra))
5528 -- If the subprogram is a predefined dispatching subprogram then don't
5529 -- generate any extra constrained or accessibility level formals. In
5530 -- general we suppress these for internal subprograms (by not calling
5531 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
5532 -- generated stream attributes do get passed through because extra
5533 -- build-in-place formals are needed in some cases (limited 'Input
).
5535 if Is_Predefined_Internal_Operation
(E
) then
5536 goto Test_For_BIP_Extras
;
5539 Formal
:= First_Formal
(E
);
5540 while Present
(Formal
) loop
5542 -- Create extra formal for supporting the attribute 'Constrained.
5543 -- The case of a private type view without discriminants also
5544 -- requires the extra formal if the underlying type has defaulted
5547 if Ekind
(Formal
) /= E_In_Parameter
then
5548 if Present
(P_Formal
) then
5549 Formal_Type
:= Etype
(P_Formal
);
5551 Formal_Type
:= Etype
(Formal
);
5554 -- Do not produce extra formals for Unchecked_Union parameters.
5555 -- Jump directly to the end of the loop.
5557 if Is_Unchecked_Union
(Base_Type
(Formal_Type
)) then
5558 goto Skip_Extra_Formal_Generation
;
5561 if not Has_Discriminants
(Formal_Type
)
5562 and then Ekind
(Formal_Type
) in Private_Kind
5563 and then Present
(Underlying_Type
(Formal_Type
))
5565 Formal_Type
:= Underlying_Type
(Formal_Type
);
5568 if Has_Discriminants
(Formal_Type
)
5569 and then not Is_Constrained
(Formal_Type
)
5570 and then not Is_Indefinite_Subtype
(Formal_Type
)
5572 Set_Extra_Constrained
5573 (Formal
, Add_Extra_Formal
(Formal
, Standard_Boolean
, E
, "O"));
5577 -- Create extra formal for supporting accessibility checking. This
5578 -- is done for both anonymous access formals and formals of named
5579 -- access types that are marked as controlling formals. The latter
5580 -- case can occur when Expand_Dispatching_Call creates a subprogram
5581 -- type and substitutes the types of access-to-class-wide actuals
5582 -- for the anonymous access-to-specific-type of controlling formals.
5583 -- Base_Type is applied because in cases where there is a null
5584 -- exclusion the formal may have an access subtype.
5586 -- This is suppressed if we specifically suppress accessibility
5587 -- checks at the package level for either the subprogram, or the
5588 -- package in which it resides. However, we do not suppress it
5589 -- simply if the scope has accessibility checks suppressed, since
5590 -- this could cause trouble when clients are compiled with a
5591 -- different suppression setting. The explicit checks at the
5592 -- package level are safe from this point of view.
5594 if (Ekind
(Base_Type
(Etype
(Formal
))) = E_Anonymous_Access_Type
5595 or else (Is_Controlling_Formal
(Formal
)
5596 and then Is_Access_Type
(Base_Type
(Etype
(Formal
)))))
5598 (Explicit_Suppress
(E
, Accessibility_Check
)
5600 Explicit_Suppress
(Scope
(E
), Accessibility_Check
))
5603 or else Present
(Extra_Accessibility
(P_Formal
)))
5605 Set_Extra_Accessibility
5606 (Formal
, Add_Extra_Formal
(Formal
, Standard_Natural
, E
, "L"));
5609 -- This label is required when skipping extra formal generation for
5610 -- Unchecked_Union parameters.
5612 <<Skip_Extra_Formal_Generation
>>
5614 if Present
(P_Formal
) then
5615 Next_Formal
(P_Formal
);
5618 Next_Formal
(Formal
);
5621 <<Test_For_BIP_Extras
>>
5623 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
5624 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
5626 if Ada_Version
>= Ada_05
and then Is_Build_In_Place_Function
(E
) then
5628 Result_Subt
: constant Entity_Id
:= Etype
(E
);
5630 Discard
: Entity_Id
;
5631 pragma Warnings
(Off
, Discard
);
5634 -- In the case of functions with unconstrained result subtypes,
5635 -- add a 4-state formal indicating whether the return object is
5636 -- allocated by the caller (1), or should be allocated by the
5637 -- callee on the secondary stack (2), in the global heap (3), or
5638 -- in a user-defined storage pool (4). For the moment we just use
5639 -- Natural for the type of this formal. Note that this formal
5640 -- isn't usually needed in the case where the result subtype is
5641 -- constrained, but it is needed when the function has a tagged
5642 -- result, because generally such functions can be called in a
5643 -- dispatching context and such calls must be handled like calls
5644 -- to a class-wide function.
5646 if not Is_Constrained
(Underlying_Type
(Result_Subt
))
5647 or else Is_Tagged_Type
(Underlying_Type
(Result_Subt
))
5651 (E
, Standard_Natural
,
5652 E
, BIP_Formal_Suffix
(BIP_Alloc_Form
));
5655 -- For functions whose result type has controlled parts, we have
5656 -- an extra formal of type System.Finalization_Implementation.
5657 -- Finalizable_Ptr_Ptr. That is, we are passing a pointer to a
5658 -- finalization list (which is itself a pointer). This extra
5659 -- formal is then passed along to Move_Final_List in case of
5660 -- successful completion of a return statement. We cannot pass an
5661 -- 'in out' parameter, because we need to update the finalization
5662 -- list during an abort-deferred region, rather than using
5663 -- copy-back after the function returns. This is true even if we
5664 -- are able to get away with having 'in out' parameters, which are
5665 -- normally illegal for functions. This formal is also needed when
5666 -- the function has a tagged result.
5668 if Needs_BIP_Final_List
(E
) then
5671 (E
, RTE
(RE_Finalizable_Ptr_Ptr
),
5672 E
, BIP_Formal_Suffix
(BIP_Final_List
));
5675 -- If the result type contains tasks, we have two extra formals:
5676 -- the master of the tasks to be created, and the caller's
5677 -- activation chain.
5679 if Has_Task
(Result_Subt
) then
5682 (E
, RTE
(RE_Master_Id
),
5683 E
, BIP_Formal_Suffix
(BIP_Master
));
5686 (E
, RTE
(RE_Activation_Chain_Access
),
5687 E
, BIP_Formal_Suffix
(BIP_Activation_Chain
));
5690 -- All build-in-place functions get an extra formal that will be
5691 -- passed the address of the return object within the caller.
5694 Formal_Type
: constant Entity_Id
:=
5696 (E_Anonymous_Access_Type
, E
,
5697 Scope_Id
=> Scope
(E
));
5699 Set_Directly_Designated_Type
(Formal_Type
, Result_Subt
);
5700 Set_Etype
(Formal_Type
, Formal_Type
);
5701 Set_Depends_On_Private
5702 (Formal_Type
, Has_Private_Component
(Formal_Type
));
5703 Set_Is_Public
(Formal_Type
, Is_Public
(Scope
(Formal_Type
)));
5704 Set_Is_Access_Constant
(Formal_Type
, False);
5706 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
5707 -- the designated type comes from the limited view (for
5708 -- back-end purposes).
5710 Set_From_With_Type
(Formal_Type
, From_With_Type
(Result_Subt
));
5712 Layout_Type
(Formal_Type
);
5716 (E
, Formal_Type
, E
, BIP_Formal_Suffix
(BIP_Object_Access
));
5720 end Create_Extra_Formals
;
5722 -----------------------------
5723 -- Enter_Overloaded_Entity --
5724 -----------------------------
5726 procedure Enter_Overloaded_Entity
(S
: Entity_Id
) is
5727 E
: Entity_Id
:= Current_Entity_In_Scope
(S
);
5728 C_E
: Entity_Id
:= Current_Entity
(S
);
5732 Set_Has_Homonym
(E
);
5733 Set_Has_Homonym
(S
);
5736 Set_Is_Immediately_Visible
(S
);
5737 Set_Scope
(S
, Current_Scope
);
5739 -- Chain new entity if front of homonym in current scope, so that
5740 -- homonyms are contiguous.
5745 while Homonym
(C_E
) /= E
loop
5746 C_E
:= Homonym
(C_E
);
5749 Set_Homonym
(C_E
, S
);
5753 Set_Current_Entity
(S
);
5758 Append_Entity
(S
, Current_Scope
);
5759 Set_Public_Status
(S
);
5761 if Debug_Flag_E
then
5762 Write_Str
("New overloaded entity chain: ");
5763 Write_Name
(Chars
(S
));
5766 while Present
(E
) loop
5767 Write_Str
(" "); Write_Int
(Int
(E
));
5774 -- Generate warning for hiding
5777 and then Comes_From_Source
(S
)
5778 and then In_Extended_Main_Source_Unit
(S
)
5785 -- Warn unless genuine overloading
5787 if (not Is_Overloadable
(E
) or else Subtype_Conformant
(E
, S
))
5788 and then (Is_Immediately_Visible
(E
)
5790 Is_Potentially_Use_Visible
(S
))
5792 Error_Msg_Sloc
:= Sloc
(E
);
5793 Error_Msg_N
("declaration of & hides one#?", S
);
5797 end Enter_Overloaded_Entity
;
5799 -----------------------------
5800 -- Check_Untagged_Equality --
5801 -----------------------------
5803 procedure Check_Untagged_Equality
(Eq_Op
: Entity_Id
) is
5804 Typ
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
5805 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Eq_Op
);
5809 if Nkind
(Decl
) = N_Subprogram_Declaration
5810 and then Is_Record_Type
(Typ
)
5811 and then not Is_Tagged_Type
(Typ
)
5813 if Is_Frozen
(Typ
) then
5815 ("equality operator must be declared "
5816 & "before type& is frozen", Eq_Op
, Typ
);
5818 Obj_Decl
:= Next
(Parent
(Typ
));
5819 while Present
(Obj_Decl
)
5820 and then Obj_Decl
/= Decl
5822 if Nkind
(Obj_Decl
) = N_Object_Declaration
5823 and then Etype
(Defining_Identifier
(Obj_Decl
)) = Typ
5825 Error_Msg_NE
("type& is frozen by declaration?",
5828 ("\an equality operator cannot be declared after this "
5829 & "point ('R'M 4.5.2 (9.8)) (Ada2012))?", Obj_Decl
);
5836 elsif not In_Same_List
(Parent
(Typ
), Decl
)
5837 and then not Is_Limited_Type
(Typ
)
5839 Error_Msg_N
("equality operator appears too late", Eq_Op
);
5842 end Check_Untagged_Equality
;
5844 -----------------------------
5845 -- Find_Corresponding_Spec --
5846 -----------------------------
5848 function Find_Corresponding_Spec
5850 Post_Error
: Boolean := True) return Entity_Id
5852 Spec
: constant Node_Id
:= Specification
(N
);
5853 Designator
: constant Entity_Id
:= Defining_Entity
(Spec
);
5858 E
:= Current_Entity
(Designator
);
5859 while Present
(E
) loop
5861 -- We are looking for a matching spec. It must have the same scope,
5862 -- and the same name, and either be type conformant, or be the case
5863 -- of a library procedure spec and its body (which belong to one
5864 -- another regardless of whether they are type conformant or not).
5866 if Scope
(E
) = Current_Scope
then
5867 if Current_Scope
= Standard_Standard
5868 or else (Ekind
(E
) = Ekind
(Designator
)
5869 and then Type_Conformant
(E
, Designator
))
5871 -- Within an instantiation, we know that spec and body are
5872 -- subtype conformant, because they were subtype conformant
5873 -- in the generic. We choose the subtype-conformant entity
5874 -- here as well, to resolve spurious ambiguities in the
5875 -- instance that were not present in the generic (i.e. when
5876 -- two different types are given the same actual). If we are
5877 -- looking for a spec to match a body, full conformance is
5881 Set_Convention
(Designator
, Convention
(E
));
5883 if Nkind
(N
) = N_Subprogram_Body
5884 and then Present
(Homonym
(E
))
5885 and then not Fully_Conformant
(E
, Designator
)
5889 elsif not Subtype_Conformant
(E
, Designator
) then
5894 if not Has_Completion
(E
) then
5895 if Nkind
(N
) /= N_Subprogram_Body_Stub
then
5896 Set_Corresponding_Spec
(N
, E
);
5899 Set_Has_Completion
(E
);
5902 elsif Nkind
(Parent
(N
)) = N_Subunit
then
5904 -- If this is the proper body of a subunit, the completion
5905 -- flag is set when analyzing the stub.
5909 -- If E is an internal function with a controlling result
5910 -- that was created for an operation inherited by a null
5911 -- extension, it may be overridden by a body without a previous
5912 -- spec (one more reason why these should be shunned). In that
5913 -- case remove the generated body, because the current one is
5914 -- the explicit overriding.
5916 elsif Ekind
(E
) = E_Function
5917 and then Ada_Version
>= Ada_05
5918 and then not Comes_From_Source
(E
)
5919 and then Has_Controlling_Result
(E
)
5920 and then Is_Null_Extension
(Etype
(E
))
5921 and then Comes_From_Source
(Spec
)
5923 Set_Has_Completion
(E
, False);
5925 if Expander_Active
then
5927 (Unit_Declaration_Node
5928 (Corresponding_Body
(Unit_Declaration_Node
(E
))));
5931 -- If expansion is disabled, the wrapper function has not
5932 -- been generated, and this is the standard case of a late
5933 -- body overriding an inherited operation.
5939 -- If the body already exists, then this is an error unless
5940 -- the previous declaration is the implicit declaration of a
5941 -- derived subprogram, or this is a spurious overloading in an
5944 elsif No
(Alias
(E
))
5945 and then not Is_Intrinsic_Subprogram
(E
)
5946 and then not In_Instance
5949 Error_Msg_Sloc
:= Sloc
(E
);
5951 if Is_Imported
(E
) then
5953 ("body not allowed for imported subprogram & declared#",
5956 Error_Msg_NE
("duplicate body for & declared#", N
, E
);
5960 -- Child units cannot be overloaded, so a conformance mismatch
5961 -- between body and a previous spec is an error.
5963 elsif Is_Child_Unit
(E
)
5965 Nkind
(Unit_Declaration_Node
(Designator
)) = N_Subprogram_Body
5967 Nkind
(Parent
(Unit_Declaration_Node
(Designator
))) =
5972 ("body of child unit does not match previous declaration", N
);
5980 -- On exit, we know that no previous declaration of subprogram exists
5983 end Find_Corresponding_Spec
;
5985 ----------------------
5986 -- Fully_Conformant --
5987 ----------------------
5989 function Fully_Conformant
(New_Id
, Old_Id
: Entity_Id
) return Boolean is
5992 Check_Conformance
(New_Id
, Old_Id
, Fully_Conformant
, False, Result
);
5994 end Fully_Conformant
;
5996 ----------------------------------
5997 -- Fully_Conformant_Expressions --
5998 ----------------------------------
6000 function Fully_Conformant_Expressions
6001 (Given_E1
: Node_Id
;
6002 Given_E2
: Node_Id
) return Boolean
6004 E1
: constant Node_Id
:= Original_Node
(Given_E1
);
6005 E2
: constant Node_Id
:= Original_Node
(Given_E2
);
6006 -- We always test conformance on original nodes, since it is possible
6007 -- for analysis and/or expansion to make things look as though they
6008 -- conform when they do not, e.g. by converting 1+2 into 3.
6010 function FCE
(Given_E1
, Given_E2
: Node_Id
) return Boolean
6011 renames Fully_Conformant_Expressions
;
6013 function FCL
(L1
, L2
: List_Id
) return Boolean;
6014 -- Compare elements of two lists for conformance. Elements have to
6015 -- be conformant, and actuals inserted as default parameters do not
6016 -- match explicit actuals with the same value.
6018 function FCO
(Op_Node
, Call_Node
: Node_Id
) return Boolean;
6019 -- Compare an operator node with a function call
6025 function FCL
(L1
, L2
: List_Id
) return Boolean is
6029 if L1
= No_List
then
6035 if L2
= No_List
then
6041 -- Compare two lists, skipping rewrite insertions (we want to
6042 -- compare the original trees, not the expanded versions!)
6045 if Is_Rewrite_Insertion
(N1
) then
6047 elsif Is_Rewrite_Insertion
(N2
) then
6053 elsif not FCE
(N1
, N2
) then
6066 function FCO
(Op_Node
, Call_Node
: Node_Id
) return Boolean is
6067 Actuals
: constant List_Id
:= Parameter_Associations
(Call_Node
);
6072 or else Entity
(Op_Node
) /= Entity
(Name
(Call_Node
))
6077 Act
:= First
(Actuals
);
6079 if Nkind
(Op_Node
) in N_Binary_Op
then
6080 if not FCE
(Left_Opnd
(Op_Node
), Act
) then
6087 return Present
(Act
)
6088 and then FCE
(Right_Opnd
(Op_Node
), Act
)
6089 and then No
(Next
(Act
));
6093 -- Start of processing for Fully_Conformant_Expressions
6096 -- Non-conformant if paren count does not match. Note: if some idiot
6097 -- complains that we don't do this right for more than 3 levels of
6098 -- parentheses, they will be treated with the respect they deserve!
6100 if Paren_Count
(E1
) /= Paren_Count
(E2
) then
6103 -- If same entities are referenced, then they are conformant even if
6104 -- they have different forms (RM 8.3.1(19-20)).
6106 elsif Is_Entity_Name
(E1
) and then Is_Entity_Name
(E2
) then
6107 if Present
(Entity
(E1
)) then
6108 return Entity
(E1
) = Entity
(E2
)
6109 or else (Chars
(Entity
(E1
)) = Chars
(Entity
(E2
))
6110 and then Ekind
(Entity
(E1
)) = E_Discriminant
6111 and then Ekind
(Entity
(E2
)) = E_In_Parameter
);
6113 elsif Nkind
(E1
) = N_Expanded_Name
6114 and then Nkind
(E2
) = N_Expanded_Name
6115 and then Nkind
(Selector_Name
(E1
)) = N_Character_Literal
6116 and then Nkind
(Selector_Name
(E2
)) = N_Character_Literal
6118 return Chars
(Selector_Name
(E1
)) = Chars
(Selector_Name
(E2
));
6121 -- Identifiers in component associations don't always have
6122 -- entities, but their names must conform.
6124 return Nkind
(E1
) = N_Identifier
6125 and then Nkind
(E2
) = N_Identifier
6126 and then Chars
(E1
) = Chars
(E2
);
6129 elsif Nkind
(E1
) = N_Character_Literal
6130 and then Nkind
(E2
) = N_Expanded_Name
6132 return Nkind
(Selector_Name
(E2
)) = N_Character_Literal
6133 and then Chars
(E1
) = Chars
(Selector_Name
(E2
));
6135 elsif Nkind
(E2
) = N_Character_Literal
6136 and then Nkind
(E1
) = N_Expanded_Name
6138 return Nkind
(Selector_Name
(E1
)) = N_Character_Literal
6139 and then Chars
(E2
) = Chars
(Selector_Name
(E1
));
6141 elsif Nkind
(E1
) in N_Op
6142 and then Nkind
(E2
) = N_Function_Call
6144 return FCO
(E1
, E2
);
6146 elsif Nkind
(E2
) in N_Op
6147 and then Nkind
(E1
) = N_Function_Call
6149 return FCO
(E2
, E1
);
6151 -- Otherwise we must have the same syntactic entity
6153 elsif Nkind
(E1
) /= Nkind
(E2
) then
6156 -- At this point, we specialize by node type
6163 FCL
(Expressions
(E1
), Expressions
(E2
))
6165 FCL
(Component_Associations
(E1
),
6166 Component_Associations
(E2
));
6169 if Nkind
(Expression
(E1
)) = N_Qualified_Expression
6171 Nkind
(Expression
(E2
)) = N_Qualified_Expression
6173 return FCE
(Expression
(E1
), Expression
(E2
));
6175 -- Check that the subtype marks and any constraints
6180 Indic1
: constant Node_Id
:= Expression
(E1
);
6181 Indic2
: constant Node_Id
:= Expression
(E2
);
6186 if Nkind
(Indic1
) /= N_Subtype_Indication
then
6188 Nkind
(Indic2
) /= N_Subtype_Indication
6189 and then Entity
(Indic1
) = Entity
(Indic2
);
6191 elsif Nkind
(Indic2
) /= N_Subtype_Indication
then
6193 Nkind
(Indic1
) /= N_Subtype_Indication
6194 and then Entity
(Indic1
) = Entity
(Indic2
);
6197 if Entity
(Subtype_Mark
(Indic1
)) /=
6198 Entity
(Subtype_Mark
(Indic2
))
6203 Elt1
:= First
(Constraints
(Constraint
(Indic1
)));
6204 Elt2
:= First
(Constraints
(Constraint
(Indic2
)));
6205 while Present
(Elt1
) and then Present
(Elt2
) loop
6206 if not FCE
(Elt1
, Elt2
) then
6219 when N_Attribute_Reference
=>
6221 Attribute_Name
(E1
) = Attribute_Name
(E2
)
6222 and then FCL
(Expressions
(E1
), Expressions
(E2
));
6226 Entity
(E1
) = Entity
(E2
)
6227 and then FCE
(Left_Opnd
(E1
), Left_Opnd
(E2
))
6228 and then FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
6230 when N_Short_Circuit | N_Membership_Test
=>
6232 FCE
(Left_Opnd
(E1
), Left_Opnd
(E2
))
6234 FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
6236 when N_Case_Expression
=>
6242 if not FCE
(Expression
(E1
), Expression
(E2
)) then
6246 Alt1
:= First
(Alternatives
(E1
));
6247 Alt2
:= First
(Alternatives
(E2
));
6249 if Present
(Alt1
) /= Present
(Alt2
) then
6251 elsif No
(Alt1
) then
6255 if not FCE
(Expression
(Alt1
), Expression
(Alt2
))
6256 or else not FCL
(Discrete_Choices
(Alt1
),
6257 Discrete_Choices
(Alt2
))
6268 when N_Character_Literal
=>
6270 Char_Literal_Value
(E1
) = Char_Literal_Value
(E2
);
6272 when N_Component_Association
=>
6274 FCL
(Choices
(E1
), Choices
(E2
))
6276 FCE
(Expression
(E1
), Expression
(E2
));
6278 when N_Conditional_Expression
=>
6280 FCL
(Expressions
(E1
), Expressions
(E2
));
6282 when N_Explicit_Dereference
=>
6284 FCE
(Prefix
(E1
), Prefix
(E2
));
6286 when N_Extension_Aggregate
=>
6288 FCL
(Expressions
(E1
), Expressions
(E2
))
6289 and then Null_Record_Present
(E1
) =
6290 Null_Record_Present
(E2
)
6291 and then FCL
(Component_Associations
(E1
),
6292 Component_Associations
(E2
));
6294 when N_Function_Call
=>
6296 FCE
(Name
(E1
), Name
(E2
))
6298 FCL
(Parameter_Associations
(E1
),
6299 Parameter_Associations
(E2
));
6301 when N_Indexed_Component
=>
6303 FCE
(Prefix
(E1
), Prefix
(E2
))
6305 FCL
(Expressions
(E1
), Expressions
(E2
));
6307 when N_Integer_Literal
=>
6308 return (Intval
(E1
) = Intval
(E2
));
6313 when N_Operator_Symbol
=>
6315 Chars
(E1
) = Chars
(E2
);
6317 when N_Others_Choice
=>
6320 when N_Parameter_Association
=>
6322 Chars
(Selector_Name
(E1
)) = Chars
(Selector_Name
(E2
))
6323 and then FCE
(Explicit_Actual_Parameter
(E1
),
6324 Explicit_Actual_Parameter
(E2
));
6326 when N_Qualified_Expression
=>
6328 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
6330 FCE
(Expression
(E1
), Expression
(E2
));
6334 FCE
(Low_Bound
(E1
), Low_Bound
(E2
))
6336 FCE
(High_Bound
(E1
), High_Bound
(E2
));
6338 when N_Real_Literal
=>
6339 return (Realval
(E1
) = Realval
(E2
));
6341 when N_Selected_Component
=>
6343 FCE
(Prefix
(E1
), Prefix
(E2
))
6345 FCE
(Selector_Name
(E1
), Selector_Name
(E2
));
6349 FCE
(Prefix
(E1
), Prefix
(E2
))
6351 FCE
(Discrete_Range
(E1
), Discrete_Range
(E2
));
6353 when N_String_Literal
=>
6355 S1
: constant String_Id
:= Strval
(E1
);
6356 S2
: constant String_Id
:= Strval
(E2
);
6357 L1
: constant Nat
:= String_Length
(S1
);
6358 L2
: constant Nat
:= String_Length
(S2
);
6365 for J
in 1 .. L1
loop
6366 if Get_String_Char
(S1
, J
) /=
6367 Get_String_Char
(S2
, J
)
6377 when N_Type_Conversion
=>
6379 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
6381 FCE
(Expression
(E1
), Expression
(E2
));
6385 Entity
(E1
) = Entity
(E2
)
6387 FCE
(Right_Opnd
(E1
), Right_Opnd
(E2
));
6389 when N_Unchecked_Type_Conversion
=>
6391 FCE
(Subtype_Mark
(E1
), Subtype_Mark
(E2
))
6393 FCE
(Expression
(E1
), Expression
(E2
));
6395 -- All other node types cannot appear in this context. Strictly
6396 -- we should raise a fatal internal error. Instead we just ignore
6397 -- the nodes. This means that if anyone makes a mistake in the
6398 -- expander and mucks an expression tree irretrievably, the
6399 -- result will be a failure to detect a (probably very obscure)
6400 -- case of non-conformance, which is better than bombing on some
6401 -- case where two expressions do in fact conform.
6408 end Fully_Conformant_Expressions
;
6410 ----------------------------------------
6411 -- Fully_Conformant_Discrete_Subtypes --
6412 ----------------------------------------
6414 function Fully_Conformant_Discrete_Subtypes
6415 (Given_S1
: Node_Id
;
6416 Given_S2
: Node_Id
) return Boolean
6418 S1
: constant Node_Id
:= Original_Node
(Given_S1
);
6419 S2
: constant Node_Id
:= Original_Node
(Given_S2
);
6421 function Conforming_Bounds
(B1
, B2
: Node_Id
) return Boolean;
6422 -- Special-case for a bound given by a discriminant, which in the body
6423 -- is replaced with the discriminal of the enclosing type.
6425 function Conforming_Ranges
(R1
, R2
: Node_Id
) return Boolean;
6426 -- Check both bounds
6428 -----------------------
6429 -- Conforming_Bounds --
6430 -----------------------
6432 function Conforming_Bounds
(B1
, B2
: Node_Id
) return Boolean is
6434 if Is_Entity_Name
(B1
)
6435 and then Is_Entity_Name
(B2
)
6436 and then Ekind
(Entity
(B1
)) = E_Discriminant
6438 return Chars
(B1
) = Chars
(B2
);
6441 return Fully_Conformant_Expressions
(B1
, B2
);
6443 end Conforming_Bounds
;
6445 -----------------------
6446 -- Conforming_Ranges --
6447 -----------------------
6449 function Conforming_Ranges
(R1
, R2
: Node_Id
) return Boolean is
6452 Conforming_Bounds
(Low_Bound
(R1
), Low_Bound
(R2
))
6454 Conforming_Bounds
(High_Bound
(R1
), High_Bound
(R2
));
6455 end Conforming_Ranges
;
6457 -- Start of processing for Fully_Conformant_Discrete_Subtypes
6460 if Nkind
(S1
) /= Nkind
(S2
) then
6463 elsif Is_Entity_Name
(S1
) then
6464 return Entity
(S1
) = Entity
(S2
);
6466 elsif Nkind
(S1
) = N_Range
then
6467 return Conforming_Ranges
(S1
, S2
);
6469 elsif Nkind
(S1
) = N_Subtype_Indication
then
6471 Entity
(Subtype_Mark
(S1
)) = Entity
(Subtype_Mark
(S2
))
6474 (Range_Expression
(Constraint
(S1
)),
6475 Range_Expression
(Constraint
(S2
)));
6479 end Fully_Conformant_Discrete_Subtypes
;
6481 --------------------
6482 -- Install_Entity --
6483 --------------------
6485 procedure Install_Entity
(E
: Entity_Id
) is
6486 Prev
: constant Entity_Id
:= Current_Entity
(E
);
6488 Set_Is_Immediately_Visible
(E
);
6489 Set_Current_Entity
(E
);
6490 Set_Homonym
(E
, Prev
);
6493 ---------------------
6494 -- Install_Formals --
6495 ---------------------
6497 procedure Install_Formals
(Id
: Entity_Id
) is
6500 F
:= First_Formal
(Id
);
6501 while Present
(F
) loop
6505 end Install_Formals
;
6507 -----------------------------
6508 -- Is_Interface_Conformant --
6509 -----------------------------
6511 function Is_Interface_Conformant
6512 (Tagged_Type
: Entity_Id
;
6513 Iface_Prim
: Entity_Id
;
6514 Prim
: Entity_Id
) return Boolean
6516 Iface
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Prim
);
6517 Typ
: constant Entity_Id
:= Find_Dispatching_Type
(Prim
);
6520 pragma Assert
(Is_Subprogram
(Iface_Prim
)
6521 and then Is_Subprogram
(Prim
)
6522 and then Is_Dispatching_Operation
(Iface_Prim
)
6523 and then Is_Dispatching_Operation
(Prim
));
6525 pragma Assert
(Is_Interface
(Iface
)
6526 or else (Present
(Alias
(Iface_Prim
))
6529 (Find_Dispatching_Type
(Ultimate_Alias
(Iface_Prim
)))));
6531 if Prim
= Iface_Prim
6532 or else not Is_Subprogram
(Prim
)
6533 or else Ekind
(Prim
) /= Ekind
(Iface_Prim
)
6534 or else not Is_Dispatching_Operation
(Prim
)
6535 or else Scope
(Prim
) /= Scope
(Tagged_Type
)
6537 or else Base_Type
(Typ
) /= Tagged_Type
6538 or else not Primitive_Names_Match
(Iface_Prim
, Prim
)
6542 -- Case of a procedure, or a function that does not have a controlling
6543 -- result (I or access I).
6545 elsif Ekind
(Iface_Prim
) = E_Procedure
6546 or else Etype
(Prim
) = Etype
(Iface_Prim
)
6547 or else not Has_Controlling_Result
(Prim
)
6549 return Type_Conformant
6550 (Iface_Prim
, Prim
, Skip_Controlling_Formals
=> True);
6552 -- Case of a function returning an interface, or an access to one.
6553 -- Check that the return types correspond.
6555 elsif Implements_Interface
(Typ
, Iface
) then
6556 if (Ekind
(Etype
(Prim
)) = E_Anonymous_Access_Type
)
6558 (Ekind
(Etype
(Iface_Prim
)) = E_Anonymous_Access_Type
)
6563 Type_Conformant
(Prim
, Iface_Prim
,
6564 Skip_Controlling_Formals
=> True);
6570 end Is_Interface_Conformant
;
6572 ---------------------------------
6573 -- Is_Non_Overriding_Operation --
6574 ---------------------------------
6576 function Is_Non_Overriding_Operation
6577 (Prev_E
: Entity_Id
;
6578 New_E
: Entity_Id
) return Boolean
6582 G_Typ
: Entity_Id
:= Empty
;
6584 function Get_Generic_Parent_Type
(F_Typ
: Entity_Id
) return Entity_Id
;
6585 -- If F_Type is a derived type associated with a generic actual subtype,
6586 -- then return its Generic_Parent_Type attribute, else return Empty.
6588 function Types_Correspond
6589 (P_Type
: Entity_Id
;
6590 N_Type
: Entity_Id
) return Boolean;
6591 -- Returns true if and only if the types (or designated types in the
6592 -- case of anonymous access types) are the same or N_Type is derived
6593 -- directly or indirectly from P_Type.
6595 -----------------------------
6596 -- Get_Generic_Parent_Type --
6597 -----------------------------
6599 function Get_Generic_Parent_Type
(F_Typ
: Entity_Id
) return Entity_Id
is
6604 if Is_Derived_Type
(F_Typ
)
6605 and then Nkind
(Parent
(F_Typ
)) = N_Full_Type_Declaration
6607 -- The tree must be traversed to determine the parent subtype in
6608 -- the generic unit, which unfortunately isn't always available
6609 -- via semantic attributes. ??? (Note: The use of Original_Node
6610 -- is needed for cases where a full derived type has been
6613 Indic
:= Subtype_Indication
6614 (Type_Definition
(Original_Node
(Parent
(F_Typ
))));
6616 if Nkind
(Indic
) = N_Subtype_Indication
then
6617 G_Typ
:= Entity
(Subtype_Mark
(Indic
));
6619 G_Typ
:= Entity
(Indic
);
6622 if Nkind
(Parent
(G_Typ
)) = N_Subtype_Declaration
6623 and then Present
(Generic_Parent_Type
(Parent
(G_Typ
)))
6625 return Generic_Parent_Type
(Parent
(G_Typ
));
6630 end Get_Generic_Parent_Type
;
6632 ----------------------
6633 -- Types_Correspond --
6634 ----------------------
6636 function Types_Correspond
6637 (P_Type
: Entity_Id
;
6638 N_Type
: Entity_Id
) return Boolean
6640 Prev_Type
: Entity_Id
:= Base_Type
(P_Type
);
6641 New_Type
: Entity_Id
:= Base_Type
(N_Type
);
6644 if Ekind
(Prev_Type
) = E_Anonymous_Access_Type
then
6645 Prev_Type
:= Designated_Type
(Prev_Type
);
6648 if Ekind
(New_Type
) = E_Anonymous_Access_Type
then
6649 New_Type
:= Designated_Type
(New_Type
);
6652 if Prev_Type
= New_Type
then
6655 elsif not Is_Class_Wide_Type
(New_Type
) then
6656 while Etype
(New_Type
) /= New_Type
loop
6657 New_Type
:= Etype
(New_Type
);
6658 if New_Type
= Prev_Type
then
6664 end Types_Correspond
;
6666 -- Start of processing for Is_Non_Overriding_Operation
6669 -- In the case where both operations are implicit derived subprograms
6670 -- then neither overrides the other. This can only occur in certain
6671 -- obscure cases (e.g., derivation from homographs created in a generic
6674 if Present
(Alias
(Prev_E
)) and then Present
(Alias
(New_E
)) then
6677 elsif Ekind
(Current_Scope
) = E_Package
6678 and then Is_Generic_Instance
(Current_Scope
)
6679 and then In_Private_Part
(Current_Scope
)
6680 and then Comes_From_Source
(New_E
)
6682 -- We examine the formals and result subtype of the inherited
6683 -- operation, to determine whether their type is derived from (the
6684 -- instance of) a generic type.
6686 Formal
:= First_Formal
(Prev_E
);
6687 while Present
(Formal
) loop
6688 F_Typ
:= Base_Type
(Etype
(Formal
));
6690 if Ekind
(F_Typ
) = E_Anonymous_Access_Type
then
6691 F_Typ
:= Designated_Type
(F_Typ
);
6694 G_Typ
:= Get_Generic_Parent_Type
(F_Typ
);
6696 Next_Formal
(Formal
);
6699 if No
(G_Typ
) and then Ekind
(Prev_E
) = E_Function
then
6700 G_Typ
:= Get_Generic_Parent_Type
(Base_Type
(Etype
(Prev_E
)));
6707 -- If the generic type is a private type, then the original operation
6708 -- was not overriding in the generic, because there was no primitive
6709 -- operation to override.
6711 if Nkind
(Parent
(G_Typ
)) = N_Formal_Type_Declaration
6712 and then Nkind
(Formal_Type_Definition
(Parent
(G_Typ
))) =
6713 N_Formal_Private_Type_Definition
6717 -- The generic parent type is the ancestor of a formal derived
6718 -- type declaration. We need to check whether it has a primitive
6719 -- operation that should be overridden by New_E in the generic.
6723 P_Formal
: Entity_Id
;
6724 N_Formal
: Entity_Id
;
6728 Prim_Elt
: Elmt_Id
:= First_Elmt
(Primitive_Operations
(G_Typ
));
6731 while Present
(Prim_Elt
) loop
6732 P_Prim
:= Node
(Prim_Elt
);
6734 if Chars
(P_Prim
) = Chars
(New_E
)
6735 and then Ekind
(P_Prim
) = Ekind
(New_E
)
6737 P_Formal
:= First_Formal
(P_Prim
);
6738 N_Formal
:= First_Formal
(New_E
);
6739 while Present
(P_Formal
) and then Present
(N_Formal
) loop
6740 P_Typ
:= Etype
(P_Formal
);
6741 N_Typ
:= Etype
(N_Formal
);
6743 if not Types_Correspond
(P_Typ
, N_Typ
) then
6747 Next_Entity
(P_Formal
);
6748 Next_Entity
(N_Formal
);
6751 -- Found a matching primitive operation belonging to the
6752 -- formal ancestor type, so the new subprogram is
6756 and then No
(N_Formal
)
6757 and then (Ekind
(New_E
) /= E_Function
6760 (Etype
(P_Prim
), Etype
(New_E
)))
6766 Next_Elmt
(Prim_Elt
);
6769 -- If no match found, then the new subprogram does not
6770 -- override in the generic (nor in the instance).
6778 end Is_Non_Overriding_Operation
;
6780 ------------------------------
6781 -- Make_Inequality_Operator --
6782 ------------------------------
6784 -- S is the defining identifier of an equality operator. We build a
6785 -- subprogram declaration with the right signature. This operation is
6786 -- intrinsic, because it is always expanded as the negation of the
6787 -- call to the equality function.
6789 procedure Make_Inequality_Operator
(S
: Entity_Id
) is
6790 Loc
: constant Source_Ptr
:= Sloc
(S
);
6793 Op_Name
: Entity_Id
;
6795 FF
: constant Entity_Id
:= First_Formal
(S
);
6796 NF
: constant Entity_Id
:= Next_Formal
(FF
);
6799 -- Check that equality was properly defined, ignore call if not
6806 A
: constant Entity_Id
:=
6807 Make_Defining_Identifier
(Sloc
(FF
),
6808 Chars
=> Chars
(FF
));
6810 B
: constant Entity_Id
:=
6811 Make_Defining_Identifier
(Sloc
(NF
),
6812 Chars
=> Chars
(NF
));
6815 Op_Name
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Ne
);
6817 Formals
:= New_List
(
6818 Make_Parameter_Specification
(Loc
,
6819 Defining_Identifier
=> A
,
6821 New_Reference_To
(Etype
(First_Formal
(S
)),
6822 Sloc
(Etype
(First_Formal
(S
))))),
6824 Make_Parameter_Specification
(Loc
,
6825 Defining_Identifier
=> B
,
6827 New_Reference_To
(Etype
(Next_Formal
(First_Formal
(S
))),
6828 Sloc
(Etype
(Next_Formal
(First_Formal
(S
)))))));
6831 Make_Subprogram_Declaration
(Loc
,
6833 Make_Function_Specification
(Loc
,
6834 Defining_Unit_Name
=> Op_Name
,
6835 Parameter_Specifications
=> Formals
,
6836 Result_Definition
=>
6837 New_Reference_To
(Standard_Boolean
, Loc
)));
6839 -- Insert inequality right after equality if it is explicit or after
6840 -- the derived type when implicit. These entities are created only
6841 -- for visibility purposes, and eventually replaced in the course of
6842 -- expansion, so they do not need to be attached to the tree and seen
6843 -- by the back-end. Keeping them internal also avoids spurious
6844 -- freezing problems. The declaration is inserted in the tree for
6845 -- analysis, and removed afterwards. If the equality operator comes
6846 -- from an explicit declaration, attach the inequality immediately
6847 -- after. Else the equality is inherited from a derived type
6848 -- declaration, so insert inequality after that declaration.
6850 if No
(Alias
(S
)) then
6851 Insert_After
(Unit_Declaration_Node
(S
), Decl
);
6852 elsif Is_List_Member
(Parent
(S
)) then
6853 Insert_After
(Parent
(S
), Decl
);
6855 Insert_After
(Parent
(Etype
(First_Formal
(S
))), Decl
);
6858 Mark_Rewrite_Insertion
(Decl
);
6859 Set_Is_Intrinsic_Subprogram
(Op_Name
);
6862 Set_Has_Completion
(Op_Name
);
6863 Set_Corresponding_Equality
(Op_Name
, S
);
6864 Set_Is_Abstract_Subprogram
(Op_Name
, Is_Abstract_Subprogram
(S
));
6866 end Make_Inequality_Operator
;
6868 ----------------------
6869 -- May_Need_Actuals --
6870 ----------------------
6872 procedure May_Need_Actuals
(Fun
: Entity_Id
) is
6877 F
:= First_Formal
(Fun
);
6879 while Present
(F
) loop
6880 if No
(Default_Value
(F
)) then
6888 Set_Needs_No_Actuals
(Fun
, B
);
6889 end May_Need_Actuals
;
6891 ---------------------
6892 -- Mode_Conformant --
6893 ---------------------
6895 function Mode_Conformant
(New_Id
, Old_Id
: Entity_Id
) return Boolean is
6898 Check_Conformance
(New_Id
, Old_Id
, Mode_Conformant
, False, Result
);
6900 end Mode_Conformant
;
6902 ---------------------------
6903 -- New_Overloaded_Entity --
6904 ---------------------------
6906 procedure New_Overloaded_Entity
6908 Derived_Type
: Entity_Id
:= Empty
)
6910 Overridden_Subp
: Entity_Id
:= Empty
;
6911 -- Set if the current scope has an operation that is type-conformant
6912 -- with S, and becomes hidden by S.
6914 Is_Primitive_Subp
: Boolean;
6915 -- Set to True if the new subprogram is primitive
6918 -- Entity that S overrides
6920 Prev_Vis
: Entity_Id
:= Empty
;
6921 -- Predecessor of E in Homonym chain
6923 procedure Check_For_Primitive_Subprogram
6924 (Is_Primitive
: out Boolean;
6925 Is_Overriding
: Boolean := False);
6926 -- If the subprogram being analyzed is a primitive operation of the type
6927 -- of a formal or result, set the Has_Primitive_Operations flag on the
6928 -- type, and set Is_Primitive to True (otherwise set to False). Set the
6929 -- corresponding flag on the entity itself for later use.
6931 procedure Check_Synchronized_Overriding
6932 (Def_Id
: Entity_Id
;
6933 Overridden_Subp
: out Entity_Id
);
6934 -- First determine if Def_Id is an entry or a subprogram either defined
6935 -- in the scope of a task or protected type, or is a primitive of such
6936 -- a type. Check whether Def_Id overrides a subprogram of an interface
6937 -- implemented by the synchronized type, return the overridden entity
6940 function Is_Private_Declaration
(E
: Entity_Id
) return Boolean;
6941 -- Check that E is declared in the private part of the current package,
6942 -- or in the package body, where it may hide a previous declaration.
6943 -- We can't use In_Private_Part by itself because this flag is also
6944 -- set when freezing entities, so we must examine the place of the
6945 -- declaration in the tree, and recognize wrapper packages as well.
6947 function Is_Overriding_Alias
6949 New_E
: Entity_Id
) return Boolean;
6950 -- Check whether new subprogram and old subprogram are both inherited
6951 -- from subprograms that have distinct dispatch table entries. This can
6952 -- occur with derivations from instances with accidental homonyms.
6953 -- The function is conservative given that the converse is only true
6954 -- within instances that contain accidental overloadings.
6956 ------------------------------------
6957 -- Check_For_Primitive_Subprogram --
6958 ------------------------------------
6960 procedure Check_For_Primitive_Subprogram
6961 (Is_Primitive
: out Boolean;
6962 Is_Overriding
: Boolean := False)
6968 function Visible_Part_Type
(T
: Entity_Id
) return Boolean;
6969 -- Returns true if T is declared in the visible part of the current
6970 -- package scope; otherwise returns false. Assumes that T is declared
6973 procedure Check_Private_Overriding
(T
: Entity_Id
);
6974 -- Checks that if a primitive abstract subprogram of a visible
6975 -- abstract type is declared in a private part, then it must override
6976 -- an abstract subprogram declared in the visible part. Also checks
6977 -- that if a primitive function with a controlling result is declared
6978 -- in a private part, then it must override a function declared in
6979 -- the visible part.
6981 ------------------------------
6982 -- Check_Private_Overriding --
6983 ------------------------------
6985 procedure Check_Private_Overriding
(T
: Entity_Id
) is
6987 if Is_Package_Or_Generic_Package
(Current_Scope
)
6988 and then In_Private_Part
(Current_Scope
)
6989 and then Visible_Part_Type
(T
)
6990 and then not In_Instance
6992 if Is_Abstract_Type
(T
)
6993 and then Is_Abstract_Subprogram
(S
)
6994 and then (not Is_Overriding
6995 or else not Is_Abstract_Subprogram
(E
))
6998 ("abstract subprograms must be visible "
6999 & "(RM 3.9.3(10))!", S
);
7001 elsif Ekind
(S
) = E_Function
7002 and then Is_Tagged_Type
(T
)
7003 and then T
= Base_Type
(Etype
(S
))
7004 and then not Is_Overriding
7007 ("private function with tagged result must"
7008 & " override visible-part function", S
);
7010 ("\move subprogram to the visible part"
7011 & " (RM 3.9.3(10))", S
);
7014 end Check_Private_Overriding
;
7016 -----------------------
7017 -- Visible_Part_Type --
7018 -----------------------
7020 function Visible_Part_Type
(T
: Entity_Id
) return Boolean is
7021 P
: constant Node_Id
:= Unit_Declaration_Node
(Scope
(T
));
7025 -- If the entity is a private type, then it must be declared in a
7028 if Ekind
(T
) in Private_Kind
then
7032 -- Otherwise, we traverse the visible part looking for its
7033 -- corresponding declaration. We cannot use the declaration
7034 -- node directly because in the private part the entity of a
7035 -- private type is the one in the full view, which does not
7036 -- indicate that it is the completion of something visible.
7038 N
:= First
(Visible_Declarations
(Specification
(P
)));
7039 while Present
(N
) loop
7040 if Nkind
(N
) = N_Full_Type_Declaration
7041 and then Present
(Defining_Identifier
(N
))
7042 and then T
= Defining_Identifier
(N
)
7046 elsif Nkind_In
(N
, N_Private_Type_Declaration
,
7047 N_Private_Extension_Declaration
)
7048 and then Present
(Defining_Identifier
(N
))
7049 and then T
= Full_View
(Defining_Identifier
(N
))
7058 end Visible_Part_Type
;
7060 -- Start of processing for Check_For_Primitive_Subprogram
7063 Is_Primitive
:= False;
7065 if not Comes_From_Source
(S
) then
7068 -- If subprogram is at library level, it is not primitive operation
7070 elsif Current_Scope
= Standard_Standard
then
7073 elsif (Is_Package_Or_Generic_Package
(Current_Scope
)
7074 and then not In_Package_Body
(Current_Scope
))
7075 or else Is_Overriding
7077 -- For function, check return type
7079 if Ekind
(S
) = E_Function
then
7080 if Ekind
(Etype
(S
)) = E_Anonymous_Access_Type
then
7081 F_Typ
:= Designated_Type
(Etype
(S
));
7086 B_Typ
:= Base_Type
(F_Typ
);
7088 if Scope
(B_Typ
) = Current_Scope
7089 and then not Is_Class_Wide_Type
(B_Typ
)
7090 and then not Is_Generic_Type
(B_Typ
)
7092 Is_Primitive
:= True;
7093 Set_Has_Primitive_Operations
(B_Typ
);
7094 Set_Is_Primitive
(S
);
7095 Check_Private_Overriding
(B_Typ
);
7099 -- For all subprograms, check formals
7101 Formal
:= First_Formal
(S
);
7102 while Present
(Formal
) loop
7103 if Ekind
(Etype
(Formal
)) = E_Anonymous_Access_Type
then
7104 F_Typ
:= Designated_Type
(Etype
(Formal
));
7106 F_Typ
:= Etype
(Formal
);
7109 B_Typ
:= Base_Type
(F_Typ
);
7111 if Ekind
(B_Typ
) = E_Access_Subtype
then
7112 B_Typ
:= Base_Type
(B_Typ
);
7115 if Scope
(B_Typ
) = Current_Scope
7116 and then not Is_Class_Wide_Type
(B_Typ
)
7117 and then not Is_Generic_Type
(B_Typ
)
7119 Is_Primitive
:= True;
7120 Set_Is_Primitive
(S
);
7121 Set_Has_Primitive_Operations
(B_Typ
);
7122 Check_Private_Overriding
(B_Typ
);
7125 Next_Formal
(Formal
);
7128 end Check_For_Primitive_Subprogram
;
7130 -----------------------------------
7131 -- Check_Synchronized_Overriding --
7132 -----------------------------------
7134 procedure Check_Synchronized_Overriding
7135 (Def_Id
: Entity_Id
;
7136 Overridden_Subp
: out Entity_Id
)
7138 Ifaces_List
: Elist_Id
;
7142 function Matches_Prefixed_View_Profile
7143 (Prim_Params
: List_Id
;
7144 Iface_Params
: List_Id
) return Boolean;
7145 -- Determine whether a subprogram's parameter profile Prim_Params
7146 -- matches that of a potentially overridden interface subprogram
7147 -- Iface_Params. Also determine if the type of first parameter of
7148 -- Iface_Params is an implemented interface.
7150 -----------------------------------
7151 -- Matches_Prefixed_View_Profile --
7152 -----------------------------------
7154 function Matches_Prefixed_View_Profile
7155 (Prim_Params
: List_Id
;
7156 Iface_Params
: List_Id
) return Boolean
7158 Iface_Id
: Entity_Id
;
7159 Iface_Param
: Node_Id
;
7160 Iface_Typ
: Entity_Id
;
7161 Prim_Id
: Entity_Id
;
7162 Prim_Param
: Node_Id
;
7163 Prim_Typ
: Entity_Id
;
7165 function Is_Implemented
7166 (Ifaces_List
: Elist_Id
;
7167 Iface
: Entity_Id
) return Boolean;
7168 -- Determine if Iface is implemented by the current task or
7171 --------------------
7172 -- Is_Implemented --
7173 --------------------
7175 function Is_Implemented
7176 (Ifaces_List
: Elist_Id
;
7177 Iface
: Entity_Id
) return Boolean
7179 Iface_Elmt
: Elmt_Id
;
7182 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
7183 while Present
(Iface_Elmt
) loop
7184 if Node
(Iface_Elmt
) = Iface
then
7188 Next_Elmt
(Iface_Elmt
);
7194 -- Start of processing for Matches_Prefixed_View_Profile
7197 Iface_Param
:= First
(Iface_Params
);
7198 Iface_Typ
:= Etype
(Defining_Identifier
(Iface_Param
));
7200 if Is_Access_Type
(Iface_Typ
) then
7201 Iface_Typ
:= Designated_Type
(Iface_Typ
);
7204 Prim_Param
:= First
(Prim_Params
);
7206 -- The first parameter of the potentially overridden subprogram
7207 -- must be an interface implemented by Prim.
7209 if not Is_Interface
(Iface_Typ
)
7210 or else not Is_Implemented
(Ifaces_List
, Iface_Typ
)
7215 -- The checks on the object parameters are done, move onto the
7216 -- rest of the parameters.
7218 if not In_Scope
then
7219 Prim_Param
:= Next
(Prim_Param
);
7222 Iface_Param
:= Next
(Iface_Param
);
7223 while Present
(Iface_Param
) and then Present
(Prim_Param
) loop
7224 Iface_Id
:= Defining_Identifier
(Iface_Param
);
7225 Iface_Typ
:= Find_Parameter_Type
(Iface_Param
);
7227 Prim_Id
:= Defining_Identifier
(Prim_Param
);
7228 Prim_Typ
:= Find_Parameter_Type
(Prim_Param
);
7230 if Ekind
(Iface_Typ
) = E_Anonymous_Access_Type
7231 and then Ekind
(Prim_Typ
) = E_Anonymous_Access_Type
7232 and then Is_Concurrent_Type
(Designated_Type
(Prim_Typ
))
7234 Iface_Typ
:= Designated_Type
(Iface_Typ
);
7235 Prim_Typ
:= Designated_Type
(Prim_Typ
);
7238 -- Case of multiple interface types inside a parameter profile
7240 -- (Obj_Param : in out Iface; ...; Param : Iface)
7242 -- If the interface type is implemented, then the matching type
7243 -- in the primitive should be the implementing record type.
7245 if Ekind
(Iface_Typ
) = E_Record_Type
7246 and then Is_Interface
(Iface_Typ
)
7247 and then Is_Implemented
(Ifaces_List
, Iface_Typ
)
7249 if Prim_Typ
/= Typ
then
7253 -- The two parameters must be both mode and subtype conformant
7255 elsif Ekind
(Iface_Id
) /= Ekind
(Prim_Id
)
7257 Conforming_Types
(Iface_Typ
, Prim_Typ
, Subtype_Conformant
)
7266 -- One of the two lists contains more parameters than the other
7268 if Present
(Iface_Param
) or else Present
(Prim_Param
) then
7273 end Matches_Prefixed_View_Profile
;
7275 -- Start of processing for Check_Synchronized_Overriding
7278 Overridden_Subp
:= Empty
;
7280 -- Def_Id must be an entry or a subprogram. We should skip predefined
7281 -- primitives internally generated by the frontend; however at this
7282 -- stage predefined primitives are still not fully decorated. As a
7283 -- minor optimization we skip here internally generated subprograms.
7285 if (Ekind
(Def_Id
) /= E_Entry
7286 and then Ekind
(Def_Id
) /= E_Function
7287 and then Ekind
(Def_Id
) /= E_Procedure
)
7288 or else not Comes_From_Source
(Def_Id
)
7293 -- Search for the concurrent declaration since it contains the list
7294 -- of all implemented interfaces. In this case, the subprogram is
7295 -- declared within the scope of a protected or a task type.
7297 if Present
(Scope
(Def_Id
))
7298 and then Is_Concurrent_Type
(Scope
(Def_Id
))
7299 and then not Is_Generic_Actual_Type
(Scope
(Def_Id
))
7301 Typ
:= Scope
(Def_Id
);
7304 -- The enclosing scope is not a synchronized type and the subprogram
7307 elsif No
(First_Formal
(Def_Id
)) then
7310 -- The subprogram has formals and hence it may be a primitive of a
7314 Typ
:= Etype
(First_Formal
(Def_Id
));
7316 if Is_Access_Type
(Typ
) then
7317 Typ
:= Directly_Designated_Type
(Typ
);
7320 if Is_Concurrent_Type
(Typ
)
7321 and then not Is_Generic_Actual_Type
(Typ
)
7325 -- This case occurs when the concurrent type is declared within
7326 -- a generic unit. As a result the corresponding record has been
7327 -- built and used as the type of the first formal, we just have
7328 -- to retrieve the corresponding concurrent type.
7330 elsif Is_Concurrent_Record_Type
(Typ
)
7331 and then Present
(Corresponding_Concurrent_Type
(Typ
))
7333 Typ
:= Corresponding_Concurrent_Type
(Typ
);
7341 -- There is no overriding to check if is an inherited operation in a
7342 -- type derivation on for a generic actual.
7344 Collect_Interfaces
(Typ
, Ifaces_List
);
7346 if Is_Empty_Elmt_List
(Ifaces_List
) then
7350 -- Determine whether entry or subprogram Def_Id overrides a primitive
7351 -- operation that belongs to one of the interfaces in Ifaces_List.
7354 Candidate
: Entity_Id
:= Empty
;
7355 Hom
: Entity_Id
:= Empty
;
7356 Iface_Typ
: Entity_Id
;
7357 Subp
: Entity_Id
:= Empty
;
7360 -- Traverse the homonym chain, looking at a potentially
7361 -- overridden subprogram that belongs to an implemented
7364 Hom
:= Current_Entity_In_Scope
(Def_Id
);
7365 while Present
(Hom
) loop
7369 or else not Is_Overloadable
(Subp
)
7370 or else not Is_Primitive
(Subp
)
7371 or else not Is_Dispatching_Operation
(Subp
)
7372 or else not Present
(Find_Dispatching_Type
(Subp
))
7373 or else not Is_Interface
(Find_Dispatching_Type
(Subp
))
7377 -- Entries and procedures can override abstract or null
7378 -- interface procedures
7380 elsif (Ekind
(Def_Id
) = E_Procedure
7381 or else Ekind
(Def_Id
) = E_Entry
)
7382 and then Ekind
(Subp
) = E_Procedure
7383 and then Matches_Prefixed_View_Profile
7384 (Parameter_Specifications
(Parent
(Def_Id
)),
7385 Parameter_Specifications
(Parent
(Subp
)))
7389 -- For an overridden subprogram Subp, check whether the mode
7390 -- of its first parameter is correct depending on the kind
7391 -- of synchronized type.
7394 Formal
: constant Node_Id
:= First_Formal
(Candidate
);
7397 -- In order for an entry or a protected procedure to
7398 -- override, the first parameter of the overridden
7399 -- routine must be of mode "out", "in out" or
7400 -- access-to-variable.
7402 if (Ekind
(Candidate
) = E_Entry
7403 or else Ekind
(Candidate
) = E_Procedure
)
7404 and then Is_Protected_Type
(Typ
)
7405 and then Ekind
(Formal
) /= E_In_Out_Parameter
7406 and then Ekind
(Formal
) /= E_Out_Parameter
7407 and then Nkind
(Parameter_Type
(Parent
(Formal
)))
7408 /= N_Access_Definition
7412 -- All other cases are OK since a task entry or routine
7413 -- does not have a restriction on the mode of the first
7414 -- parameter of the overridden interface routine.
7417 Overridden_Subp
:= Candidate
;
7422 -- Functions can override abstract interface functions
7424 elsif Ekind
(Def_Id
) = E_Function
7425 and then Ekind
(Subp
) = E_Function
7426 and then Matches_Prefixed_View_Profile
7427 (Parameter_Specifications
(Parent
(Def_Id
)),
7428 Parameter_Specifications
(Parent
(Subp
)))
7429 and then Etype
(Result_Definition
(Parent
(Def_Id
))) =
7430 Etype
(Result_Definition
(Parent
(Subp
)))
7432 Overridden_Subp
:= Subp
;
7436 Hom
:= Homonym
(Hom
);
7439 -- After examining all candidates for overriding, we are
7440 -- left with the best match which is a mode incompatible
7441 -- interface routine. Do not emit an error if the Expander
7442 -- is active since this error will be detected later on
7443 -- after all concurrent types are expanded and all wrappers
7444 -- are built. This check is meant for spec-only
7447 if Present
(Candidate
)
7448 and then not Expander_Active
7451 Find_Parameter_Type
(Parent
(First_Formal
(Candidate
)));
7453 -- Def_Id is primitive of a protected type, declared
7454 -- inside the type, and the candidate is primitive of a
7455 -- limited or synchronized interface.
7458 and then Is_Protected_Type
(Typ
)
7460 (Is_Limited_Interface
(Iface_Typ
)
7461 or else Is_Protected_Interface
(Iface_Typ
)
7462 or else Is_Synchronized_Interface
(Iface_Typ
)
7463 or else Is_Task_Interface
(Iface_Typ
))
7465 -- Must reword this message, comma before to in -gnatj
7469 ("first formal of & must be of mode `OUT`, `IN OUT`"
7470 & " or access-to-variable", Typ
, Candidate
);
7472 ("\to be overridden by protected procedure or entry "
7473 & "(RM 9.4(11.9/2))", Typ
);
7477 Overridden_Subp
:= Candidate
;
7480 end Check_Synchronized_Overriding
;
7482 ----------------------------
7483 -- Is_Private_Declaration --
7484 ----------------------------
7486 function Is_Private_Declaration
(E
: Entity_Id
) return Boolean is
7487 Priv_Decls
: List_Id
;
7488 Decl
: constant Node_Id
:= Unit_Declaration_Node
(E
);
7491 if Is_Package_Or_Generic_Package
(Current_Scope
)
7492 and then In_Private_Part
(Current_Scope
)
7495 Private_Declarations
(
7496 Specification
(Unit_Declaration_Node
(Current_Scope
)));
7498 return In_Package_Body
(Current_Scope
)
7500 (Is_List_Member
(Decl
)
7501 and then List_Containing
(Decl
) = Priv_Decls
)
7502 or else (Nkind
(Parent
(Decl
)) = N_Package_Specification
7505 (Defining_Entity
(Parent
(Decl
)))
7506 and then List_Containing
(Parent
(Parent
(Decl
)))
7511 end Is_Private_Declaration
;
7513 --------------------------
7514 -- Is_Overriding_Alias --
7515 --------------------------
7517 function Is_Overriding_Alias
7519 New_E
: Entity_Id
) return Boolean
7521 AO
: constant Entity_Id
:= Alias
(Old_E
);
7522 AN
: constant Entity_Id
:= Alias
(New_E
);
7525 return Scope
(AO
) /= Scope
(AN
)
7526 or else No
(DTC_Entity
(AO
))
7527 or else No
(DTC_Entity
(AN
))
7528 or else DT_Position
(AO
) = DT_Position
(AN
);
7529 end Is_Overriding_Alias
;
7531 -- Start of processing for New_Overloaded_Entity
7534 -- We need to look for an entity that S may override. This must be a
7535 -- homonym in the current scope, so we look for the first homonym of
7536 -- S in the current scope as the starting point for the search.
7538 E
:= Current_Entity_In_Scope
(S
);
7540 -- If there is no homonym then this is definitely not overriding
7543 Enter_Overloaded_Entity
(S
);
7544 Check_Dispatching_Operation
(S
, Empty
);
7545 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
7547 -- If subprogram has an explicit declaration, check whether it
7548 -- has an overriding indicator.
7550 if Comes_From_Source
(S
) then
7551 Check_Synchronized_Overriding
(S
, Overridden_Subp
);
7552 Check_Overriding_Indicator
7553 (S
, Overridden_Subp
, Is_Primitive
=> Is_Primitive_Subp
);
7556 -- If there is a homonym that is not overloadable, then we have an
7557 -- error, except for the special cases checked explicitly below.
7559 elsif not Is_Overloadable
(E
) then
7561 -- Check for spurious conflict produced by a subprogram that has the
7562 -- same name as that of the enclosing generic package. The conflict
7563 -- occurs within an instance, between the subprogram and the renaming
7564 -- declaration for the package. After the subprogram, the package
7565 -- renaming declaration becomes hidden.
7567 if Ekind
(E
) = E_Package
7568 and then Present
(Renamed_Object
(E
))
7569 and then Renamed_Object
(E
) = Current_Scope
7570 and then Nkind
(Parent
(Renamed_Object
(E
))) =
7571 N_Package_Specification
7572 and then Present
(Generic_Parent
(Parent
(Renamed_Object
(E
))))
7575 Set_Is_Immediately_Visible
(E
, False);
7576 Enter_Overloaded_Entity
(S
);
7577 Set_Homonym
(S
, Homonym
(E
));
7578 Check_Dispatching_Operation
(S
, Empty
);
7579 Check_Overriding_Indicator
(S
, Empty
, Is_Primitive
=> False);
7581 -- If the subprogram is implicit it is hidden by the previous
7582 -- declaration. However if it is dispatching, it must appear in the
7583 -- dispatch table anyway, because it can be dispatched to even if it
7584 -- cannot be called directly.
7586 elsif Present
(Alias
(S
))
7587 and then not Comes_From_Source
(S
)
7589 Set_Scope
(S
, Current_Scope
);
7591 if Is_Dispatching_Operation
(Alias
(S
)) then
7592 Check_Dispatching_Operation
(S
, Empty
);
7598 Error_Msg_Sloc
:= Sloc
(E
);
7600 -- Generate message, with useful additional warning if in generic
7602 if Is_Generic_Unit
(E
) then
7603 Error_Msg_N
("previous generic unit cannot be overloaded", S
);
7604 Error_Msg_N
("\& conflicts with declaration#", S
);
7606 Error_Msg_N
("& conflicts with declaration#", S
);
7612 -- E exists and is overloadable
7615 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
7616 -- They are directly added to the list of primitive operations of
7617 -- Derived_Type, unless this is a rederivation in the private part
7618 -- of an operation that was already derived in the visible part of
7619 -- the current package.
7621 if Ada_Version
>= Ada_05
7622 and then Present
(Derived_Type
)
7623 and then Is_Dispatching_Operation
(Alias
(S
))
7624 and then Present
(Find_Dispatching_Type
(Alias
(S
)))
7625 and then Is_Interface
(Find_Dispatching_Type
(Alias
(S
)))
7627 if Type_Conformant
(E
, S
)
7628 and then Is_Package_Or_Generic_Package
(Current_Scope
)
7629 and then In_Private_Part
(Current_Scope
)
7630 and then Parent
(E
) /= Parent
(S
)
7631 and then Alias
(E
) = Alias
(S
)
7633 Check_Operation_From_Private_View
(S
, E
);
7635 goto Add_New_Entity
;
7639 Check_Synchronized_Overriding
(S
, Overridden_Subp
);
7641 -- Loop through E and its homonyms to determine if any of them is
7642 -- the candidate for overriding by S.
7644 while Present
(E
) loop
7646 -- Definitely not interesting if not in the current scope
7648 if Scope
(E
) /= Current_Scope
then
7651 -- Check if we have type conformance
7653 elsif Type_Conformant
(E
, S
) then
7655 -- If the old and new entities have the same profile and one
7656 -- is not the body of the other, then this is an error, unless
7657 -- one of them is implicitly declared.
7659 -- There are some cases when both can be implicit, for example
7660 -- when both a literal and a function that overrides it are
7661 -- inherited in a derivation, or when an inherited operation
7662 -- of a tagged full type overrides the inherited operation of
7663 -- a private extension. Ada 83 had a special rule for the
7664 -- literal case. In Ada95, the later implicit operation hides
7665 -- the former, and the literal is always the former. In the
7666 -- odd case where both are derived operations declared at the
7667 -- same point, both operations should be declared, and in that
7668 -- case we bypass the following test and proceed to the next
7669 -- part. This can only occur for certain obscure cases in
7670 -- instances, when an operation on a type derived from a formal
7671 -- private type does not override a homograph inherited from
7672 -- the actual. In subsequent derivations of such a type, the
7673 -- DT positions of these operations remain distinct, if they
7676 if Present
(Alias
(S
))
7677 and then (No
(Alias
(E
))
7678 or else Comes_From_Source
(E
)
7679 or else Is_Abstract_Subprogram
(S
)
7681 (Is_Dispatching_Operation
(E
)
7682 and then Is_Overriding_Alias
(E
, S
)))
7683 and then Ekind
(E
) /= E_Enumeration_Literal
7685 -- When an derived operation is overloaded it may be due to
7686 -- the fact that the full view of a private extension
7687 -- re-inherits. It has to be dealt with.
7689 if Is_Package_Or_Generic_Package
(Current_Scope
)
7690 and then In_Private_Part
(Current_Scope
)
7692 Check_Operation_From_Private_View
(S
, E
);
7695 -- In any case the implicit operation remains hidden by
7696 -- the existing declaration, which is overriding.
7698 Set_Is_Overriding_Operation
(E
);
7700 if Comes_From_Source
(E
) then
7701 Check_Overriding_Indicator
(E
, S
, Is_Primitive
=> False);
7703 -- Indicate that E overrides the operation from which
7706 if Present
(Alias
(S
)) then
7707 Set_Overridden_Operation
(E
, Alias
(S
));
7709 Set_Overridden_Operation
(E
, S
);
7715 -- Within an instance, the renaming declarations for actual
7716 -- subprograms may become ambiguous, but they do not hide each
7719 elsif Ekind
(E
) /= E_Entry
7720 and then not Comes_From_Source
(E
)
7721 and then not Is_Generic_Instance
(E
)
7722 and then (Present
(Alias
(E
))
7723 or else Is_Intrinsic_Subprogram
(E
))
7724 and then (not In_Instance
7725 or else No
(Parent
(E
))
7726 or else Nkind
(Unit_Declaration_Node
(E
)) /=
7727 N_Subprogram_Renaming_Declaration
)
7729 -- A subprogram child unit is not allowed to override an
7730 -- inherited subprogram (10.1.1(20)).
7732 if Is_Child_Unit
(S
) then
7734 ("child unit overrides inherited subprogram in parent",
7739 if Is_Non_Overriding_Operation
(E
, S
) then
7740 Enter_Overloaded_Entity
(S
);
7742 if No
(Derived_Type
)
7743 or else Is_Tagged_Type
(Derived_Type
)
7745 Check_Dispatching_Operation
(S
, Empty
);
7751 -- E is a derived operation or an internal operator which
7752 -- is being overridden. Remove E from further visibility.
7753 -- Furthermore, if E is a dispatching operation, it must be
7754 -- replaced in the list of primitive operations of its type
7755 -- (see Override_Dispatching_Operation).
7757 Overridden_Subp
:= E
;
7763 Prev
:= First_Entity
(Current_Scope
);
7764 while Present
(Prev
)
7765 and then Next_Entity
(Prev
) /= E
7770 -- It is possible for E to be in the current scope and
7771 -- yet not in the entity chain. This can only occur in a
7772 -- generic context where E is an implicit concatenation
7773 -- in the formal part, because in a generic body the
7774 -- entity chain starts with the formals.
7777 (Present
(Prev
) or else Chars
(E
) = Name_Op_Concat
);
7779 -- E must be removed both from the entity_list of the
7780 -- current scope, and from the visibility chain
7782 if Debug_Flag_E
then
7783 Write_Str
("Override implicit operation ");
7784 Write_Int
(Int
(E
));
7788 -- If E is a predefined concatenation, it stands for four
7789 -- different operations. As a result, a single explicit
7790 -- declaration does not hide it. In a possible ambiguous
7791 -- situation, Disambiguate chooses the user-defined op,
7792 -- so it is correct to retain the previous internal one.
7794 if Chars
(E
) /= Name_Op_Concat
7795 or else Ekind
(E
) /= E_Operator
7797 -- For nondispatching derived operations that are
7798 -- overridden by a subprogram declared in the private
7799 -- part of a package, we retain the derived subprogram
7800 -- but mark it as not immediately visible. If the
7801 -- derived operation was declared in the visible part
7802 -- then this ensures that it will still be visible
7803 -- outside the package with the proper signature
7804 -- (calls from outside must also be directed to this
7805 -- version rather than the overriding one, unlike the
7806 -- dispatching case). Calls from inside the package
7807 -- will still resolve to the overriding subprogram
7808 -- since the derived one is marked as not visible
7809 -- within the package.
7811 -- If the private operation is dispatching, we achieve
7812 -- the overriding by keeping the implicit operation
7813 -- but setting its alias to be the overriding one. In
7814 -- this fashion the proper body is executed in all
7815 -- cases, but the original signature is used outside
7818 -- If the overriding is not in the private part, we
7819 -- remove the implicit operation altogether.
7821 if Is_Private_Declaration
(S
) then
7822 if not Is_Dispatching_Operation
(E
) then
7823 Set_Is_Immediately_Visible
(E
, False);
7825 -- Work done in Override_Dispatching_Operation,
7826 -- so nothing else need to be done here.
7832 -- Find predecessor of E in Homonym chain
7834 if E
= Current_Entity
(E
) then
7837 Prev_Vis
:= Current_Entity
(E
);
7838 while Homonym
(Prev_Vis
) /= E
loop
7839 Prev_Vis
:= Homonym
(Prev_Vis
);
7843 if Prev_Vis
/= Empty
then
7845 -- Skip E in the visibility chain
7847 Set_Homonym
(Prev_Vis
, Homonym
(E
));
7850 Set_Name_Entity_Id
(Chars
(E
), Homonym
(E
));
7853 Set_Next_Entity
(Prev
, Next_Entity
(E
));
7855 if No
(Next_Entity
(Prev
)) then
7856 Set_Last_Entity
(Current_Scope
, Prev
);
7862 Enter_Overloaded_Entity
(S
);
7863 Set_Is_Overriding_Operation
(S
);
7864 Check_Overriding_Indicator
(S
, E
, Is_Primitive
=> True);
7866 -- If S is a user-defined subprogram or a null procedure
7867 -- expanded to override an inherited null procedure, then
7868 -- indicate that E overrides the operation from which S
7869 -- is inherited. It seems odd that Overridden_Operation
7870 -- isn't set in all cases where Is_Overriding_Operation
7871 -- is true, but doing so causes infinite loops in the
7872 -- compiler for implicit overriding subprograms. ???
7874 if Comes_From_Source
(S
)
7876 (Present
(Parent
(S
))
7878 Nkind
(Parent
(S
)) = N_Procedure_Specification
7880 Null_Present
(Parent
(S
)))
7882 if Present
(Alias
(E
)) then
7883 Set_Overridden_Operation
(S
, Alias
(E
));
7885 Set_Overridden_Operation
(S
, E
);
7889 if Is_Dispatching_Operation
(E
) then
7891 -- An overriding dispatching subprogram inherits the
7892 -- convention of the overridden subprogram (by
7895 Set_Convention
(S
, Convention
(E
));
7896 Check_Dispatching_Operation
(S
, E
);
7899 Check_Dispatching_Operation
(S
, Empty
);
7902 Check_For_Primitive_Subprogram
7903 (Is_Primitive_Subp
, Is_Overriding
=> True);
7904 goto Check_Inequality
;
7907 -- Apparent redeclarations in instances can occur when two
7908 -- formal types get the same actual type. The subprograms in
7909 -- in the instance are legal, even if not callable from the
7910 -- outside. Calls from within are disambiguated elsewhere.
7911 -- For dispatching operations in the visible part, the usual
7912 -- rules apply, and operations with the same profile are not
7915 elsif (In_Instance_Visible_Part
7916 and then not Is_Dispatching_Operation
(E
))
7917 or else In_Instance_Not_Visible
7921 -- Here we have a real error (identical profile)
7924 Error_Msg_Sloc
:= Sloc
(E
);
7926 -- Avoid cascaded errors if the entity appears in
7927 -- subsequent calls.
7929 Set_Scope
(S
, Current_Scope
);
7931 -- Generate error, with extra useful warning for the case
7932 -- of a generic instance with no completion.
7934 if Is_Generic_Instance
(S
)
7935 and then not Has_Completion
(E
)
7938 ("instantiation cannot provide body for&", S
);
7939 Error_Msg_N
("\& conflicts with declaration#", S
);
7941 Error_Msg_N
("& conflicts with declaration#", S
);
7948 -- If one subprogram has an access parameter and the other
7949 -- a parameter of an access type, calls to either might be
7950 -- ambiguous. Verify that parameters match except for the
7951 -- access parameter.
7953 if May_Hide_Profile
then
7959 F1
:= First_Formal
(S
);
7960 F2
:= First_Formal
(E
);
7961 while Present
(F1
) and then Present
(F2
) loop
7962 if Is_Access_Type
(Etype
(F1
)) then
7963 if not Is_Access_Type
(Etype
(F2
))
7964 or else not Conforming_Types
7965 (Designated_Type
(Etype
(F1
)),
7966 Designated_Type
(Etype
(F2
)),
7969 May_Hide_Profile
:= False;
7973 not Conforming_Types
7974 (Etype
(F1
), Etype
(F2
), Type_Conformant
)
7976 May_Hide_Profile
:= False;
7987 Error_Msg_NE
("calls to& may be ambiguous?", S
, S
);
7998 -- On exit, we know that S is a new entity
8000 Enter_Overloaded_Entity
(S
);
8001 Check_For_Primitive_Subprogram
(Is_Primitive_Subp
);
8002 Check_Overriding_Indicator
8003 (S
, Overridden_Subp
, Is_Primitive
=> Is_Primitive_Subp
);
8005 -- If S is a derived operation for an untagged type then by
8006 -- definition it's not a dispatching operation (even if the parent
8007 -- operation was dispatching), so we don't call
8008 -- Check_Dispatching_Operation in that case.
8010 if No
(Derived_Type
)
8011 or else Is_Tagged_Type
(Derived_Type
)
8013 Check_Dispatching_Operation
(S
, Empty
);
8017 -- If this is a user-defined equality operator that is not a derived
8018 -- subprogram, create the corresponding inequality. If the operation is
8019 -- dispatching, the expansion is done elsewhere, and we do not create
8020 -- an explicit inequality operation.
8022 <<Check_Inequality
>>
8023 if Chars
(S
) = Name_Op_Eq
8024 and then Etype
(S
) = Standard_Boolean
8025 and then Present
(Parent
(S
))
8026 and then not Is_Dispatching_Operation
(S
)
8028 Make_Inequality_Operator
(S
);
8030 if Ada_Version
>= Ada_12
then
8031 Check_Untagged_Equality
(S
);
8034 end New_Overloaded_Entity
;
8036 ---------------------
8037 -- Process_Formals --
8038 ---------------------
8040 procedure Process_Formals
8042 Related_Nod
: Node_Id
)
8044 Param_Spec
: Node_Id
;
8046 Formal_Type
: Entity_Id
;
8050 Num_Out_Params
: Nat
:= 0;
8051 First_Out_Param
: Entity_Id
:= Empty
;
8052 -- Used for setting Is_Only_Out_Parameter
8054 function Designates_From_With_Type
(Typ
: Entity_Id
) return Boolean;
8055 -- Determine whether an access type designates a type coming from a
8058 function Is_Class_Wide_Default
(D
: Node_Id
) return Boolean;
8059 -- Check whether the default has a class-wide type. After analysis the
8060 -- default has the type of the formal, so we must also check explicitly
8061 -- for an access attribute.
8063 -------------------------------
8064 -- Designates_From_With_Type --
8065 -------------------------------
8067 function Designates_From_With_Type
(Typ
: Entity_Id
) return Boolean is
8068 Desig
: Entity_Id
:= Typ
;
8071 if Is_Access_Type
(Desig
) then
8072 Desig
:= Directly_Designated_Type
(Desig
);
8075 if Is_Class_Wide_Type
(Desig
) then
8076 Desig
:= Root_Type
(Desig
);
8080 Ekind
(Desig
) = E_Incomplete_Type
8081 and then From_With_Type
(Desig
);
8082 end Designates_From_With_Type
;
8084 ---------------------------
8085 -- Is_Class_Wide_Default --
8086 ---------------------------
8088 function Is_Class_Wide_Default
(D
: Node_Id
) return Boolean is
8090 return Is_Class_Wide_Type
(Designated_Type
(Etype
(D
)))
8091 or else (Nkind
(D
) = N_Attribute_Reference
8092 and then Attribute_Name
(D
) = Name_Access
8093 and then Is_Class_Wide_Type
(Etype
(Prefix
(D
))));
8094 end Is_Class_Wide_Default
;
8096 -- Start of processing for Process_Formals
8099 -- In order to prevent premature use of the formals in the same formal
8100 -- part, the Ekind is left undefined until all default expressions are
8101 -- analyzed. The Ekind is established in a separate loop at the end.
8103 Param_Spec
:= First
(T
);
8104 while Present
(Param_Spec
) loop
8105 Formal
:= Defining_Identifier
(Param_Spec
);
8106 Set_Never_Set_In_Source
(Formal
, True);
8107 Enter_Name
(Formal
);
8109 -- Case of ordinary parameters
8111 if Nkind
(Parameter_Type
(Param_Spec
)) /= N_Access_Definition
then
8112 Find_Type
(Parameter_Type
(Param_Spec
));
8113 Ptype
:= Parameter_Type
(Param_Spec
);
8115 if Ptype
= Error
then
8119 Formal_Type
:= Entity
(Ptype
);
8121 if Is_Incomplete_Type
(Formal_Type
)
8123 (Is_Class_Wide_Type
(Formal_Type
)
8124 and then Is_Incomplete_Type
(Root_Type
(Formal_Type
)))
8126 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
8127 -- primitive operations, as long as their completion is
8128 -- in the same declarative part. If in the private part
8129 -- this means that the type cannot be a Taft-amendment type.
8130 -- Check is done on package exit. For access to subprograms,
8131 -- the use is legal for Taft-amendment types.
8133 if Is_Tagged_Type
(Formal_Type
) then
8134 if Ekind
(Scope
(Current_Scope
)) = E_Package
8135 and then In_Private_Part
(Scope
(Current_Scope
))
8136 and then not From_With_Type
(Formal_Type
)
8137 and then not Is_Class_Wide_Type
(Formal_Type
)
8140 (Parent
(T
), N_Access_Function_Definition
,
8141 N_Access_Procedure_Definition
)
8145 Private_Dependents
(Base_Type
(Formal_Type
)));
8149 -- Special handling of Value_Type for CIL case
8151 elsif Is_Value_Type
(Formal_Type
) then
8154 elsif not Nkind_In
(Parent
(T
), N_Access_Function_Definition
,
8155 N_Access_Procedure_Definition
)
8158 ("invalid use of incomplete type&",
8159 Param_Spec
, Formal_Type
);
8161 -- Further checks on the legality of incomplete types
8162 -- in formal parts must be delayed until the freeze point
8163 -- of the enclosing subprogram or access to subprogram.
8166 elsif Ekind
(Formal_Type
) = E_Void
then
8167 Error_Msg_NE
("premature use of&",
8168 Parameter_Type
(Param_Spec
), Formal_Type
);
8171 -- Ada 2005 (AI-231): Create and decorate an internal subtype
8172 -- declaration corresponding to the null-excluding type of the
8173 -- formal in the enclosing scope. Finally, replace the parameter
8174 -- type of the formal with the internal subtype.
8176 if Ada_Version
>= Ada_05
8177 and then Null_Exclusion_Present
(Param_Spec
)
8179 if not Is_Access_Type
(Formal_Type
) then
8181 ("`NOT NULL` allowed only for an access type", Param_Spec
);
8184 if Can_Never_Be_Null
(Formal_Type
)
8185 and then Comes_From_Source
(Related_Nod
)
8188 ("`NOT NULL` not allowed (& already excludes null)",
8194 Create_Null_Excluding_Itype
8196 Related_Nod
=> Related_Nod
,
8197 Scope_Id
=> Scope
(Current_Scope
));
8199 -- If the designated type of the itype is an itype we
8200 -- decorate it with the Has_Delayed_Freeze attribute to
8201 -- avoid problems with the backend.
8204 -- type T is access procedure;
8205 -- procedure Op (O : not null T);
8207 if Is_Itype
(Directly_Designated_Type
(Formal_Type
)) then
8208 Set_Has_Delayed_Freeze
(Formal_Type
);
8213 -- An access formal type
8217 Access_Definition
(Related_Nod
, Parameter_Type
(Param_Spec
));
8219 -- No need to continue if we already notified errors
8221 if not Present
(Formal_Type
) then
8225 -- Ada 2005 (AI-254)
8228 AD
: constant Node_Id
:=
8229 Access_To_Subprogram_Definition
8230 (Parameter_Type
(Param_Spec
));
8232 if Present
(AD
) and then Protected_Present
(AD
) then
8234 Replace_Anonymous_Access_To_Protected_Subprogram
8240 Set_Etype
(Formal
, Formal_Type
);
8241 Default
:= Expression
(Param_Spec
);
8243 if Present
(Default
) then
8244 if Out_Present
(Param_Spec
) then
8246 ("default initialization only allowed for IN parameters",
8250 -- Do the special preanalysis of the expression (see section on
8251 -- "Handling of Default Expressions" in the spec of package Sem).
8253 Preanalyze_Spec_Expression
(Default
, Formal_Type
);
8255 -- An access to constant cannot be the default for
8256 -- an access parameter that is an access to variable.
8258 if Ekind
(Formal_Type
) = E_Anonymous_Access_Type
8259 and then not Is_Access_Constant
(Formal_Type
)
8260 and then Is_Access_Type
(Etype
(Default
))
8261 and then Is_Access_Constant
(Etype
(Default
))
8264 ("formal that is access to variable cannot be initialized " &
8265 "with an access-to-constant expression", Default
);
8268 -- Check that the designated type of an access parameter's default
8269 -- is not a class-wide type unless the parameter's designated type
8270 -- is also class-wide.
8272 if Ekind
(Formal_Type
) = E_Anonymous_Access_Type
8273 and then not Designates_From_With_Type
(Formal_Type
)
8274 and then Is_Class_Wide_Default
(Default
)
8275 and then not Is_Class_Wide_Type
(Designated_Type
(Formal_Type
))
8278 ("access to class-wide expression not allowed here", Default
);
8281 -- Check incorrect use of dynamically tagged expressions
8283 if Is_Tagged_Type
(Formal_Type
) then
8284 Check_Dynamically_Tagged_Expression
8287 Related_Nod
=> Default
);
8291 -- Ada 2005 (AI-231): Static checks
8293 if Ada_Version
>= Ada_05
8294 and then Is_Access_Type
(Etype
(Formal
))
8295 and then Can_Never_Be_Null
(Etype
(Formal
))
8297 Null_Exclusion_Static_Checks
(Param_Spec
);
8304 -- If this is the formal part of a function specification, analyze the
8305 -- subtype mark in the context where the formals are visible but not
8306 -- yet usable, and may hide outer homographs.
8308 if Nkind
(Related_Nod
) = N_Function_Specification
then
8309 Analyze_Return_Type
(Related_Nod
);
8312 -- Now set the kind (mode) of each formal
8314 Param_Spec
:= First
(T
);
8316 while Present
(Param_Spec
) loop
8317 Formal
:= Defining_Identifier
(Param_Spec
);
8318 Set_Formal_Mode
(Formal
);
8320 if Ekind
(Formal
) = E_In_Parameter
then
8321 Set_Default_Value
(Formal
, Expression
(Param_Spec
));
8323 if Present
(Expression
(Param_Spec
)) then
8324 Default
:= Expression
(Param_Spec
);
8326 if Is_Scalar_Type
(Etype
(Default
)) then
8328 (Parameter_Type
(Param_Spec
)) /= N_Access_Definition
8330 Formal_Type
:= Entity
(Parameter_Type
(Param_Spec
));
8333 Formal_Type
:= Access_Definition
8334 (Related_Nod
, Parameter_Type
(Param_Spec
));
8337 Apply_Scalar_Range_Check
(Default
, Formal_Type
);
8341 elsif Ekind
(Formal
) = E_Out_Parameter
then
8342 Num_Out_Params
:= Num_Out_Params
+ 1;
8344 if Num_Out_Params
= 1 then
8345 First_Out_Param
:= Formal
;
8348 elsif Ekind
(Formal
) = E_In_Out_Parameter
then
8349 Num_Out_Params
:= Num_Out_Params
+ 1;
8355 if Present
(First_Out_Param
) and then Num_Out_Params
= 1 then
8356 Set_Is_Only_Out_Parameter
(First_Out_Param
);
8358 end Process_Formals
;
8364 procedure Process_PPCs
8366 Spec_Id
: Entity_Id
;
8367 Body_Id
: Entity_Id
)
8369 Loc
: constant Source_Ptr
:= Sloc
(N
);
8371 Plist
: List_Id
:= No_List
;
8375 function Grab_PPC
(Nam
: Name_Id
) return Node_Id
;
8376 -- Prag contains an analyzed precondition or postcondition pragma.
8377 -- This function copies the pragma, changes it to the corresponding
8378 -- Check pragma and returns the Check pragma as the result. The
8379 -- argument Nam is either Name_Precondition or Name_Postcondition.
8385 function Grab_PPC
(Nam
: Name_Id
) return Node_Id
is
8386 CP
: constant Node_Id
:= New_Copy_Tree
(Prag
);
8389 -- Set Analyzed to false, since we want to reanalyze the check
8390 -- procedure. Note that it is only at the outer level that we
8391 -- do this fiddling, for the spec cases, the already preanalyzed
8392 -- parameters are not affected.
8394 -- For a postcondition pragma within a generic, preserve the pragma
8395 -- for later expansion.
8397 Set_Analyzed
(CP
, False);
8399 if Nam
= Name_Postcondition
8400 and then not Expander_Active
8405 -- Change pragma into corresponding pragma Check
8407 Prepend_To
(Pragma_Argument_Associations
(CP
),
8408 Make_Pragma_Argument_Association
(Sloc
(Prag
),
8410 Make_Identifier
(Loc
,
8412 Set_Pragma_Identifier
(CP
,
8413 Make_Identifier
(Sloc
(Prag
),
8414 Chars
=> Name_Check
));
8419 -- Start of processing for Process_PPCs
8422 -- Nothing to do if we are not generating code
8424 if Operating_Mode
/= Generate_Code
then
8428 -- Grab preconditions from spec
8430 if Present
(Spec_Id
) then
8432 -- Loop through PPC pragmas from spec. Note that preconditions from
8433 -- the body will be analyzed and converted when we scan the body
8434 -- declarations below.
8436 Prag
:= Spec_PPC_List
(Spec_Id
);
8437 while Present
(Prag
) loop
8438 if Pragma_Name
(Prag
) = Name_Precondition
8439 and then Pragma_Enabled
(Prag
)
8441 -- Add pragma Check at the start of the declarations of N.
8442 -- Note that this processing reverses the order of the list,
8443 -- which is what we want since new entries were chained to
8444 -- the head of the list.
8446 Prepend
(Grab_PPC
(Name_Precondition
), Declarations
(N
));
8449 Prag
:= Next_Pragma
(Prag
);
8453 -- Build postconditions procedure if needed and prepend the following
8454 -- declaration to the start of the declarations for the subprogram.
8456 -- procedure _postconditions [(_Result : resulttype)] is
8458 -- pragma Check (Postcondition, condition [,message]);
8459 -- pragma Check (Postcondition, condition [,message]);
8463 -- First we deal with the postconditions in the body
8465 if Is_Non_Empty_List
(Declarations
(N
)) then
8467 -- Loop through declarations
8469 Prag
:= First
(Declarations
(N
));
8470 while Present
(Prag
) loop
8471 if Nkind
(Prag
) = N_Pragma
then
8473 -- If pragma, capture if enabled postcondition, else ignore
8475 if Pragma_Name
(Prag
) = Name_Postcondition
8476 and then Check_Enabled
(Name_Postcondition
)
8478 if Plist
= No_List
then
8479 Plist
:= Empty_List
;
8484 -- If expansion is disabled, as in a generic unit,
8485 -- save pragma for later expansion.
8487 if not Expander_Active
then
8488 Prepend
(Grab_PPC
(Name_Postcondition
), Declarations
(N
));
8490 Append
(Grab_PPC
(Name_Postcondition
), Plist
);
8496 -- Not a pragma, if comes from source, then end scan
8498 elsif Comes_From_Source
(Prag
) then
8501 -- Skip stuff not coming from source
8509 -- Now deal with any postconditions from the spec
8511 if Present
(Spec_Id
) then
8513 -- Loop through PPC pragmas from spec
8515 Prag
:= Spec_PPC_List
(Spec_Id
);
8516 while Present
(Prag
) loop
8517 if Pragma_Name
(Prag
) = Name_Postcondition
8518 and then Pragma_Enabled
(Prag
)
8520 if Plist
= No_List
then
8521 Plist
:= Empty_List
;
8524 if not Expander_Active
then
8525 Prepend
(Grab_PPC
(Name_Postcondition
), Declarations
(N
));
8527 Append
(Grab_PPC
(Name_Postcondition
), Plist
);
8531 Prag
:= Next_Pragma
(Prag
);
8535 -- If we had any postconditions and expansion is enabled, build
8536 -- the _Postconditions procedure.
8539 and then Expander_Active
8541 Subp
:= Defining_Entity
(N
);
8543 if Etype
(Subp
) /= Standard_Void_Type
then
8545 Make_Parameter_Specification
(Loc
,
8546 Defining_Identifier
=>
8547 Make_Defining_Identifier
(Loc
,
8548 Chars
=> Name_uResult
),
8549 Parameter_Type
=> New_Occurrence_Of
(Etype
(Subp
), Loc
)));
8555 Post_Proc
: constant Entity_Id
:=
8556 Make_Defining_Identifier
(Loc
,
8557 Chars
=> Name_uPostconditions
);
8558 -- The entity for the _Postconditions procedure
8560 Prepend_To
(Declarations
(N
),
8561 Make_Subprogram_Body
(Loc
,
8563 Make_Procedure_Specification
(Loc
,
8564 Defining_Unit_Name
=> Post_Proc
,
8565 Parameter_Specifications
=> Parms
),
8567 Declarations
=> Empty_List
,
8569 Handled_Statement_Sequence
=>
8570 Make_Handled_Sequence_Of_Statements
(Loc
,
8571 Statements
=> Plist
)));
8573 -- If this is a procedure, set the Postcondition_Proc attribute on
8574 -- the proper defining entity for the subprogram.
8576 if Etype
(Subp
) = Standard_Void_Type
then
8577 if Present
(Spec_Id
) then
8578 Set_Postcondition_Proc
(Spec_Id
, Post_Proc
);
8580 Set_Postcondition_Proc
(Body_Id
, Post_Proc
);
8585 if Present
(Spec_Id
) then
8586 Set_Has_Postconditions
(Spec_Id
);
8588 Set_Has_Postconditions
(Body_Id
);
8593 ----------------------------
8594 -- Reference_Body_Formals --
8595 ----------------------------
8597 procedure Reference_Body_Formals
(Spec
: Entity_Id
; Bod
: Entity_Id
) is
8602 if Error_Posted
(Spec
) then
8606 -- Iterate over both lists. They may be of different lengths if the two
8607 -- specs are not conformant.
8609 Fs
:= First_Formal
(Spec
);
8610 Fb
:= First_Formal
(Bod
);
8611 while Present
(Fs
) and then Present
(Fb
) loop
8612 Generate_Reference
(Fs
, Fb
, 'b');
8615 Style
.Check_Identifier
(Fb
, Fs
);
8618 Set_Spec_Entity
(Fb
, Fs
);
8619 Set_Referenced
(Fs
, False);
8623 end Reference_Body_Formals
;
8625 -------------------------
8626 -- Set_Actual_Subtypes --
8627 -------------------------
8629 procedure Set_Actual_Subtypes
(N
: Node_Id
; Subp
: Entity_Id
) is
8630 Loc
: constant Source_Ptr
:= Sloc
(N
);
8634 First_Stmt
: Node_Id
:= Empty
;
8635 AS_Needed
: Boolean;
8638 -- If this is an empty initialization procedure, no need to create
8639 -- actual subtypes (small optimization).
8641 if Ekind
(Subp
) = E_Procedure
8642 and then Is_Null_Init_Proc
(Subp
)
8647 Formal
:= First_Formal
(Subp
);
8648 while Present
(Formal
) loop
8649 T
:= Etype
(Formal
);
8651 -- We never need an actual subtype for a constrained formal
8653 if Is_Constrained
(T
) then
8656 -- If we have unknown discriminants, then we do not need an actual
8657 -- subtype, or more accurately we cannot figure it out! Note that
8658 -- all class-wide types have unknown discriminants.
8660 elsif Has_Unknown_Discriminants
(T
) then
8663 -- At this stage we have an unconstrained type that may need an
8664 -- actual subtype. For sure the actual subtype is needed if we have
8665 -- an unconstrained array type.
8667 elsif Is_Array_Type
(T
) then
8670 -- The only other case needing an actual subtype is an unconstrained
8671 -- record type which is an IN parameter (we cannot generate actual
8672 -- subtypes for the OUT or IN OUT case, since an assignment can
8673 -- change the discriminant values. However we exclude the case of
8674 -- initialization procedures, since discriminants are handled very
8675 -- specially in this context, see the section entitled "Handling of
8676 -- Discriminants" in Einfo.
8678 -- We also exclude the case of Discrim_SO_Functions (functions used
8679 -- in front end layout mode for size/offset values), since in such
8680 -- functions only discriminants are referenced, and not only are such
8681 -- subtypes not needed, but they cannot always be generated, because
8682 -- of order of elaboration issues.
8684 elsif Is_Record_Type
(T
)
8685 and then Ekind
(Formal
) = E_In_Parameter
8686 and then Chars
(Formal
) /= Name_uInit
8687 and then not Is_Unchecked_Union
(T
)
8688 and then not Is_Discrim_SO_Function
(Subp
)
8692 -- All other cases do not need an actual subtype
8698 -- Generate actual subtypes for unconstrained arrays and
8699 -- unconstrained discriminated records.
8702 if Nkind
(N
) = N_Accept_Statement
then
8704 -- If expansion is active, The formal is replaced by a local
8705 -- variable that renames the corresponding entry of the
8706 -- parameter block, and it is this local variable that may
8707 -- require an actual subtype.
8709 if Expander_Active
then
8710 Decl
:= Build_Actual_Subtype
(T
, Renamed_Object
(Formal
));
8712 Decl
:= Build_Actual_Subtype
(T
, Formal
);
8715 if Present
(Handled_Statement_Sequence
(N
)) then
8717 First
(Statements
(Handled_Statement_Sequence
(N
)));
8718 Prepend
(Decl
, Statements
(Handled_Statement_Sequence
(N
)));
8719 Mark_Rewrite_Insertion
(Decl
);
8721 -- If the accept statement has no body, there will be no
8722 -- reference to the actuals, so no need to compute actual
8729 Decl
:= Build_Actual_Subtype
(T
, Formal
);
8730 Prepend
(Decl
, Declarations
(N
));
8731 Mark_Rewrite_Insertion
(Decl
);
8734 -- The declaration uses the bounds of an existing object, and
8735 -- therefore needs no constraint checks.
8737 Analyze
(Decl
, Suppress
=> All_Checks
);
8739 -- We need to freeze manually the generated type when it is
8740 -- inserted anywhere else than in a declarative part.
8742 if Present
(First_Stmt
) then
8743 Insert_List_Before_And_Analyze
(First_Stmt
,
8744 Freeze_Entity
(Defining_Identifier
(Decl
), Loc
));
8747 if Nkind
(N
) = N_Accept_Statement
8748 and then Expander_Active
8750 Set_Actual_Subtype
(Renamed_Object
(Formal
),
8751 Defining_Identifier
(Decl
));
8753 Set_Actual_Subtype
(Formal
, Defining_Identifier
(Decl
));
8757 Next_Formal
(Formal
);
8759 end Set_Actual_Subtypes
;
8761 ---------------------
8762 -- Set_Formal_Mode --
8763 ---------------------
8765 procedure Set_Formal_Mode
(Formal_Id
: Entity_Id
) is
8766 Spec
: constant Node_Id
:= Parent
(Formal_Id
);
8769 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
8770 -- since we ensure that corresponding actuals are always valid at the
8771 -- point of the call.
8773 if Out_Present
(Spec
) then
8774 if Ekind
(Scope
(Formal_Id
)) = E_Function
8775 or else Ekind
(Scope
(Formal_Id
)) = E_Generic_Function
8777 Error_Msg_N
("functions can only have IN parameters", Spec
);
8778 Set_Ekind
(Formal_Id
, E_In_Parameter
);
8780 elsif In_Present
(Spec
) then
8781 Set_Ekind
(Formal_Id
, E_In_Out_Parameter
);
8784 Set_Ekind
(Formal_Id
, E_Out_Parameter
);
8785 Set_Never_Set_In_Source
(Formal_Id
, True);
8786 Set_Is_True_Constant
(Formal_Id
, False);
8787 Set_Current_Value
(Formal_Id
, Empty
);
8791 Set_Ekind
(Formal_Id
, E_In_Parameter
);
8794 -- Set Is_Known_Non_Null for access parameters since the language
8795 -- guarantees that access parameters are always non-null. We also set
8796 -- Can_Never_Be_Null, since there is no way to change the value.
8798 if Nkind
(Parameter_Type
(Spec
)) = N_Access_Definition
then
8800 -- Ada 2005 (AI-231): In Ada95, access parameters are always non-
8801 -- null; In Ada 2005, only if then null_exclusion is explicit.
8803 if Ada_Version
< Ada_05
8804 or else Can_Never_Be_Null
(Etype
(Formal_Id
))
8806 Set_Is_Known_Non_Null
(Formal_Id
);
8807 Set_Can_Never_Be_Null
(Formal_Id
);
8810 -- Ada 2005 (AI-231): Null-exclusion access subtype
8812 elsif Is_Access_Type
(Etype
(Formal_Id
))
8813 and then Can_Never_Be_Null
(Etype
(Formal_Id
))
8815 Set_Is_Known_Non_Null
(Formal_Id
);
8818 Set_Mechanism
(Formal_Id
, Default_Mechanism
);
8819 Set_Formal_Validity
(Formal_Id
);
8820 end Set_Formal_Mode
;
8822 -------------------------
8823 -- Set_Formal_Validity --
8824 -------------------------
8826 procedure Set_Formal_Validity
(Formal_Id
: Entity_Id
) is
8828 -- If no validity checking, then we cannot assume anything about the
8829 -- validity of parameters, since we do not know there is any checking
8830 -- of the validity on the call side.
8832 if not Validity_Checks_On
then
8835 -- If validity checking for parameters is enabled, this means we are
8836 -- not supposed to make any assumptions about argument values.
8838 elsif Validity_Check_Parameters
then
8841 -- If we are checking in parameters, we will assume that the caller is
8842 -- also checking parameters, so we can assume the parameter is valid.
8844 elsif Ekind
(Formal_Id
) = E_In_Parameter
8845 and then Validity_Check_In_Params
8847 Set_Is_Known_Valid
(Formal_Id
, True);
8849 -- Similar treatment for IN OUT parameters
8851 elsif Ekind
(Formal_Id
) = E_In_Out_Parameter
8852 and then Validity_Check_In_Out_Params
8854 Set_Is_Known_Valid
(Formal_Id
, True);
8856 end Set_Formal_Validity
;
8858 ------------------------
8859 -- Subtype_Conformant --
8860 ------------------------
8862 function Subtype_Conformant
8863 (New_Id
: Entity_Id
;
8865 Skip_Controlling_Formals
: Boolean := False) return Boolean
8869 Check_Conformance
(New_Id
, Old_Id
, Subtype_Conformant
, False, Result
,
8870 Skip_Controlling_Formals
=> Skip_Controlling_Formals
);
8872 end Subtype_Conformant
;
8874 ---------------------
8875 -- Type_Conformant --
8876 ---------------------
8878 function Type_Conformant
8879 (New_Id
: Entity_Id
;
8881 Skip_Controlling_Formals
: Boolean := False) return Boolean
8885 May_Hide_Profile
:= False;
8888 (New_Id
, Old_Id
, Type_Conformant
, False, Result
,
8889 Skip_Controlling_Formals
=> Skip_Controlling_Formals
);
8891 end Type_Conformant
;
8893 -------------------------------
8894 -- Valid_Operator_Definition --
8895 -------------------------------
8897 procedure Valid_Operator_Definition
(Designator
: Entity_Id
) is
8900 Id
: constant Name_Id
:= Chars
(Designator
);
8904 F
:= First_Formal
(Designator
);
8905 while Present
(F
) loop
8908 if Present
(Default_Value
(F
)) then
8910 ("default values not allowed for operator parameters",
8917 -- Verify that user-defined operators have proper number of arguments
8918 -- First case of operators which can only be unary
8921 or else Id
= Name_Op_Abs
8925 -- Case of operators which can be unary or binary
8927 elsif Id
= Name_Op_Add
8928 or Id
= Name_Op_Subtract
8930 N_OK
:= (N
in 1 .. 2);
8932 -- All other operators can only be binary
8940 ("incorrect number of arguments for operator", Designator
);
8944 and then Base_Type
(Etype
(Designator
)) = Standard_Boolean
8945 and then not Is_Intrinsic_Subprogram
(Designator
)
8948 ("explicit definition of inequality not allowed", Designator
);
8950 end Valid_Operator_Definition
;