In gcc/testsuite/: 2010-09-30 Nicola Pero <nicola.pero@meta-innovation.com>
[official-gcc.git] / gcc / ada / sem_ch4.adb
blob4ba25d02936a357d0739f1ca459485aae6212959
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Util; use Exp_Util;
32 with Fname; use Fname;
33 with Itypes; use Itypes;
34 with Lib; use Lib;
35 with Lib.Xref; use Lib.Xref;
36 with Namet; use Namet;
37 with Namet.Sp; use Namet.Sp;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Output; use Output;
42 with Restrict; use Restrict;
43 with Rident; use Rident;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Cat; use Sem_Cat;
48 with Sem_Ch3; use Sem_Ch3;
49 with Sem_Ch6; use Sem_Ch6;
50 with Sem_Ch8; use Sem_Ch8;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Dist; use Sem_Dist;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Stand; use Stand;
59 with Sinfo; use Sinfo;
60 with Snames; use Snames;
61 with Tbuild; use Tbuild;
63 package body Sem_Ch4 is
65 -----------------------
66 -- Local Subprograms --
67 -----------------------
69 procedure Analyze_Concatenation_Rest (N : Node_Id);
70 -- Does the "rest" of the work of Analyze_Concatenation, after the left
71 -- operand has been analyzed. See Analyze_Concatenation for details.
73 procedure Analyze_Expression (N : Node_Id);
74 -- For expressions that are not names, this is just a call to analyze.
75 -- If the expression is a name, it may be a call to a parameterless
76 -- function, and if so must be converted into an explicit call node
77 -- and analyzed as such. This deproceduring must be done during the first
78 -- pass of overload resolution, because otherwise a procedure call with
79 -- overloaded actuals may fail to resolve.
81 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id);
82 -- Analyze a call of the form "+"(x, y), etc. The prefix of the call
83 -- is an operator name or an expanded name whose selector is an operator
84 -- name, and one possible interpretation is as a predefined operator.
86 procedure Analyze_Overloaded_Selected_Component (N : Node_Id);
87 -- If the prefix of a selected_component is overloaded, the proper
88 -- interpretation that yields a record type with the proper selector
89 -- name must be selected.
91 procedure Analyze_User_Defined_Binary_Op (N : Node_Id; Op_Id : Entity_Id);
92 -- Procedure to analyze a user defined binary operator, which is resolved
93 -- like a function, but instead of a list of actuals it is presented
94 -- with the left and right operands of an operator node.
96 procedure Analyze_User_Defined_Unary_Op (N : Node_Id; Op_Id : Entity_Id);
97 -- Procedure to analyze a user defined unary operator, which is resolved
98 -- like a function, but instead of a list of actuals, it is presented with
99 -- the operand of the operator node.
101 procedure Ambiguous_Operands (N : Node_Id);
102 -- for equality, membership, and comparison operators with overloaded
103 -- arguments, list possible interpretations.
105 procedure Analyze_One_Call
106 (N : Node_Id;
107 Nam : Entity_Id;
108 Report : Boolean;
109 Success : out Boolean;
110 Skip_First : Boolean := False);
111 -- Check one interpretation of an overloaded subprogram name for
112 -- compatibility with the types of the actuals in a call. If there is a
113 -- single interpretation which does not match, post error if Report is
114 -- set to True.
116 -- Nam is the entity that provides the formals against which the actuals
117 -- are checked. Nam is either the name of a subprogram, or the internal
118 -- subprogram type constructed for an access_to_subprogram. If the actuals
119 -- are compatible with Nam, then Nam is added to the list of candidate
120 -- interpretations for N, and Success is set to True.
122 -- The flag Skip_First is used when analyzing a call that was rewritten
123 -- from object notation. In this case the first actual may have to receive
124 -- an explicit dereference, depending on the first formal of the operation
125 -- being called. The caller will have verified that the object is legal
126 -- for the call. If the remaining parameters match, the first parameter
127 -- will rewritten as a dereference if needed, prior to completing analysis.
129 procedure Check_Misspelled_Selector
130 (Prefix : Entity_Id;
131 Sel : Node_Id);
132 -- Give possible misspelling diagnostic if Sel is likely to be a mis-
133 -- spelling of one of the selectors of the Prefix. This is called by
134 -- Analyze_Selected_Component after producing an invalid selector error
135 -- message.
137 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean;
138 -- Verify that type T is declared in scope S. Used to find interpretations
139 -- for operators given by expanded names. This is abstracted as a separate
140 -- function to handle extensions to System, where S is System, but T is
141 -- declared in the extension.
143 procedure Find_Arithmetic_Types
144 (L, R : Node_Id;
145 Op_Id : Entity_Id;
146 N : Node_Id);
147 -- L and R are the operands of an arithmetic operator. Find
148 -- consistent pairs of interpretations for L and R that have a
149 -- numeric type consistent with the semantics of the operator.
151 procedure Find_Comparison_Types
152 (L, R : Node_Id;
153 Op_Id : Entity_Id;
154 N : Node_Id);
155 -- L and R are operands of a comparison operator. Find consistent
156 -- pairs of interpretations for L and R.
158 procedure Find_Concatenation_Types
159 (L, R : Node_Id;
160 Op_Id : Entity_Id;
161 N : Node_Id);
162 -- For the four varieties of concatenation
164 procedure Find_Equality_Types
165 (L, R : Node_Id;
166 Op_Id : Entity_Id;
167 N : Node_Id);
168 -- Ditto for equality operators
170 procedure Find_Boolean_Types
171 (L, R : Node_Id;
172 Op_Id : Entity_Id;
173 N : Node_Id);
174 -- Ditto for binary logical operations
176 procedure Find_Negation_Types
177 (R : Node_Id;
178 Op_Id : Entity_Id;
179 N : Node_Id);
180 -- Find consistent interpretation for operand of negation operator
182 procedure Find_Non_Universal_Interpretations
183 (N : Node_Id;
184 R : Node_Id;
185 Op_Id : Entity_Id;
186 T1 : Entity_Id);
187 -- For equality and comparison operators, the result is always boolean,
188 -- and the legality of the operation is determined from the visibility
189 -- of the operand types. If one of the operands has a universal interpre-
190 -- tation, the legality check uses some compatible non-universal
191 -- interpretation of the other operand. N can be an operator node, or
192 -- a function call whose name is an operator designator.
194 function Find_Primitive_Operation (N : Node_Id) return Boolean;
195 -- Find candidate interpretations for the name Obj.Proc when it appears
196 -- in a subprogram renaming declaration.
198 procedure Find_Unary_Types
199 (R : Node_Id;
200 Op_Id : Entity_Id;
201 N : Node_Id);
202 -- Unary arithmetic types: plus, minus, abs
204 procedure Check_Arithmetic_Pair
205 (T1, T2 : Entity_Id;
206 Op_Id : Entity_Id;
207 N : Node_Id);
208 -- Subsidiary procedure to Find_Arithmetic_Types. T1 and T2 are valid
209 -- types for left and right operand. Determine whether they constitute
210 -- a valid pair for the given operator, and record the corresponding
211 -- interpretation of the operator node. The node N may be an operator
212 -- node (the usual case) or a function call whose prefix is an operator
213 -- designator. In both cases Op_Id is the operator name itself.
215 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id);
216 -- Give detailed information on overloaded call where none of the
217 -- interpretations match. N is the call node, Nam the designator for
218 -- the overloaded entity being called.
220 function Junk_Operand (N : Node_Id) return Boolean;
221 -- Test for an operand that is an inappropriate entity (e.g. a package
222 -- name or a label). If so, issue an error message and return True. If
223 -- the operand is not an inappropriate entity kind, return False.
225 procedure Operator_Check (N : Node_Id);
226 -- Verify that an operator has received some valid interpretation. If none
227 -- was found, determine whether a use clause would make the operation
228 -- legal. The variable Candidate_Type (defined in Sem_Type) is set for
229 -- every type compatible with the operator, even if the operator for the
230 -- type is not directly visible. The routine uses this type to emit a more
231 -- informative message.
233 function Process_Implicit_Dereference_Prefix
234 (E : Entity_Id;
235 P : Node_Id) return Entity_Id;
236 -- Called when P is the prefix of an implicit dereference, denoting an
237 -- object E. The function returns the designated type of the prefix, taking
238 -- into account that the designated type of an anonymous access type may be
239 -- a limited view, when the non-limited view is visible.
240 -- If in semantics only mode (-gnatc or generic), the function also records
241 -- that the prefix is a reference to E, if any. Normally, such a reference
242 -- is generated only when the implicit dereference is expanded into an
243 -- explicit one, but for consistency we must generate the reference when
244 -- expansion is disabled as well.
246 procedure Remove_Abstract_Operations (N : Node_Id);
247 -- Ada 2005: implementation of AI-310. An abstract non-dispatching
248 -- operation is not a candidate interpretation.
250 function Try_Indexed_Call
251 (N : Node_Id;
252 Nam : Entity_Id;
253 Typ : Entity_Id;
254 Skip_First : Boolean) return Boolean;
255 -- If a function has defaults for all its actuals, a call to it may in fact
256 -- be an indexing on the result of the call. Try_Indexed_Call attempts the
257 -- interpretation as an indexing, prior to analysis as a call. If both are
258 -- possible, the node is overloaded with both interpretations (same symbol
259 -- but two different types). If the call is written in prefix form, the
260 -- prefix becomes the first parameter in the call, and only the remaining
261 -- actuals must be checked for the presence of defaults.
263 function Try_Indirect_Call
264 (N : Node_Id;
265 Nam : Entity_Id;
266 Typ : Entity_Id) return Boolean;
267 -- Similarly, a function F that needs no actuals can return an access to a
268 -- subprogram, and the call F (X) interpreted as F.all (X). In this case
269 -- the call may be overloaded with both interpretations.
271 function Try_Object_Operation (N : Node_Id) return Boolean;
272 -- Ada 2005 (AI-252): Support the object.operation notation. If node N
273 -- is a call in this notation, it is transformed into a normal subprogram
274 -- call where the prefix is a parameter, and True is returned. If node
275 -- N is not of this form, it is unchanged, and False is returned.
277 procedure wpo (T : Entity_Id);
278 pragma Warnings (Off, wpo);
279 -- Used for debugging: obtain list of primitive operations even if
280 -- type is not frozen and dispatch table is not built yet.
282 ------------------------
283 -- Ambiguous_Operands --
284 ------------------------
286 procedure Ambiguous_Operands (N : Node_Id) is
287 procedure List_Operand_Interps (Opnd : Node_Id);
289 --------------------------
290 -- List_Operand_Interps --
291 --------------------------
293 procedure List_Operand_Interps (Opnd : Node_Id) is
294 Nam : Node_Id;
295 Err : Node_Id := N;
297 begin
298 if Is_Overloaded (Opnd) then
299 if Nkind (Opnd) in N_Op then
300 Nam := Opnd;
301 elsif Nkind (Opnd) = N_Function_Call then
302 Nam := Name (Opnd);
303 else
304 return;
305 end if;
307 else
308 return;
309 end if;
311 if Opnd = Left_Opnd (N) then
312 Error_Msg_N ("\left operand has the following interpretations", N);
313 else
314 Error_Msg_N
315 ("\right operand has the following interpretations", N);
316 Err := Opnd;
317 end if;
319 List_Interps (Nam, Err);
320 end List_Operand_Interps;
322 -- Start of processing for Ambiguous_Operands
324 begin
325 if Nkind (N) in N_Membership_Test then
326 Error_Msg_N ("ambiguous operands for membership", N);
328 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne) then
329 Error_Msg_N ("ambiguous operands for equality", N);
331 else
332 Error_Msg_N ("ambiguous operands for comparison", N);
333 end if;
335 if All_Errors_Mode then
336 List_Operand_Interps (Left_Opnd (N));
337 List_Operand_Interps (Right_Opnd (N));
338 else
339 Error_Msg_N ("\use -gnatf switch for details", N);
340 end if;
341 end Ambiguous_Operands;
343 -----------------------
344 -- Analyze_Aggregate --
345 -----------------------
347 -- Most of the analysis of Aggregates requires that the type be known,
348 -- and is therefore put off until resolution.
350 procedure Analyze_Aggregate (N : Node_Id) is
351 begin
352 if No (Etype (N)) then
353 Set_Etype (N, Any_Composite);
354 end if;
355 end Analyze_Aggregate;
357 -----------------------
358 -- Analyze_Allocator --
359 -----------------------
361 procedure Analyze_Allocator (N : Node_Id) is
362 Loc : constant Source_Ptr := Sloc (N);
363 Sav_Errs : constant Nat := Serious_Errors_Detected;
364 E : Node_Id := Expression (N);
365 Acc_Type : Entity_Id;
366 Type_Id : Entity_Id;
368 begin
369 -- In accordance with H.4(7), the No_Allocators restriction only applies
370 -- to user-written allocators.
372 if Comes_From_Source (N) then
373 Check_Restriction (No_Allocators, N);
374 end if;
376 if Nkind (E) = N_Qualified_Expression then
377 Acc_Type := Create_Itype (E_Allocator_Type, N);
378 Set_Etype (Acc_Type, Acc_Type);
379 Find_Type (Subtype_Mark (E));
381 -- Analyze the qualified expression, and apply the name resolution
382 -- rule given in 4.7 (3).
384 Analyze (E);
385 Type_Id := Etype (E);
386 Set_Directly_Designated_Type (Acc_Type, Type_Id);
388 Resolve (Expression (E), Type_Id);
390 if Is_Limited_Type (Type_Id)
391 and then Comes_From_Source (N)
392 and then not In_Instance_Body
393 then
394 if not OK_For_Limited_Init (Type_Id, Expression (E)) then
395 Error_Msg_N ("initialization not allowed for limited types", N);
396 Explain_Limited_Type (Type_Id, N);
397 end if;
398 end if;
400 -- A qualified expression requires an exact match of the type,
401 -- class-wide matching is not allowed.
403 -- if Is_Class_Wide_Type (Type_Id)
404 -- and then Base_Type
405 -- (Etype (Expression (E))) /= Base_Type (Type_Id)
406 -- then
407 -- Wrong_Type (Expression (E), Type_Id);
408 -- end if;
410 Check_Non_Static_Context (Expression (E));
412 -- We don't analyze the qualified expression itself because it's
413 -- part of the allocator
415 Set_Etype (E, Type_Id);
417 -- Case where allocator has a subtype indication
419 else
420 declare
421 Def_Id : Entity_Id;
422 Base_Typ : Entity_Id;
424 begin
425 -- If the allocator includes a N_Subtype_Indication then a
426 -- constraint is present, otherwise the node is a subtype mark.
427 -- Introduce an explicit subtype declaration into the tree
428 -- defining some anonymous subtype and rewrite the allocator to
429 -- use this subtype rather than the subtype indication.
431 -- It is important to introduce the explicit subtype declaration
432 -- so that the bounds of the subtype indication are attached to
433 -- the tree in case the allocator is inside a generic unit.
435 if Nkind (E) = N_Subtype_Indication then
437 -- A constraint is only allowed for a composite type in Ada
438 -- 95. In Ada 83, a constraint is also allowed for an
439 -- access-to-composite type, but the constraint is ignored.
441 Find_Type (Subtype_Mark (E));
442 Base_Typ := Entity (Subtype_Mark (E));
444 if Is_Elementary_Type (Base_Typ) then
445 if not (Ada_Version = Ada_83
446 and then Is_Access_Type (Base_Typ))
447 then
448 Error_Msg_N ("constraint not allowed here", E);
450 if Nkind (Constraint (E)) =
451 N_Index_Or_Discriminant_Constraint
452 then
453 Error_Msg_N -- CODEFIX
454 ("\if qualified expression was meant, " &
455 "use apostrophe", Constraint (E));
456 end if;
457 end if;
459 -- Get rid of the bogus constraint:
461 Rewrite (E, New_Copy_Tree (Subtype_Mark (E)));
462 Analyze_Allocator (N);
463 return;
465 -- Ada 2005, AI-363: if the designated type has a constrained
466 -- partial view, it cannot receive a discriminant constraint,
467 -- and the allocated object is unconstrained.
469 elsif Ada_Version >= Ada_05
470 and then Has_Constrained_Partial_View (Base_Typ)
471 then
472 Error_Msg_N
473 ("constraint no allowed when type " &
474 "has a constrained partial view", Constraint (E));
475 end if;
477 if Expander_Active then
478 Def_Id := Make_Temporary (Loc, 'S');
480 Insert_Action (E,
481 Make_Subtype_Declaration (Loc,
482 Defining_Identifier => Def_Id,
483 Subtype_Indication => Relocate_Node (E)));
485 if Sav_Errs /= Serious_Errors_Detected
486 and then Nkind (Constraint (E)) =
487 N_Index_Or_Discriminant_Constraint
488 then
489 Error_Msg_N -- CODEFIX
490 ("if qualified expression was meant, " &
491 "use apostrophe!", Constraint (E));
492 end if;
494 E := New_Occurrence_Of (Def_Id, Loc);
495 Rewrite (Expression (N), E);
496 end if;
497 end if;
499 Type_Id := Process_Subtype (E, N);
500 Acc_Type := Create_Itype (E_Allocator_Type, N);
501 Set_Etype (Acc_Type, Acc_Type);
502 Set_Directly_Designated_Type (Acc_Type, Type_Id);
503 Check_Fully_Declared (Type_Id, N);
505 -- Ada 2005 (AI-231): If the designated type is itself an access
506 -- type that excludes null, its default initialization will
507 -- be a null object, and we can insert an unconditional raise
508 -- before the allocator.
510 if Can_Never_Be_Null (Type_Id) then
511 declare
512 Not_Null_Check : constant Node_Id :=
513 Make_Raise_Constraint_Error (Sloc (E),
514 Reason => CE_Null_Not_Allowed);
515 begin
516 if Expander_Active then
517 Insert_Action (N, Not_Null_Check);
518 Analyze (Not_Null_Check);
519 else
520 Error_Msg_N ("null value not allowed here?", E);
521 end if;
522 end;
523 end if;
525 -- Check restriction against dynamically allocated protected
526 -- objects. Note that when limited aggregates are supported,
527 -- a similar test should be applied to an allocator with a
528 -- qualified expression ???
530 if Is_Protected_Type (Type_Id) then
531 Check_Restriction (No_Protected_Type_Allocators, N);
532 end if;
534 -- Check for missing initialization. Skip this check if we already
535 -- had errors on analyzing the allocator, since in that case these
536 -- are probably cascaded errors.
538 if Is_Indefinite_Subtype (Type_Id)
539 and then Serious_Errors_Detected = Sav_Errs
540 then
541 if Is_Class_Wide_Type (Type_Id) then
542 Error_Msg_N
543 ("initialization required in class-wide allocation", N);
544 else
545 if Ada_Version < Ada_05
546 and then Is_Limited_Type (Type_Id)
547 then
548 Error_Msg_N ("unconstrained allocation not allowed", N);
550 if Is_Array_Type (Type_Id) then
551 Error_Msg_N
552 ("\constraint with array bounds required", N);
554 elsif Has_Unknown_Discriminants (Type_Id) then
555 null;
557 else pragma Assert (Has_Discriminants (Type_Id));
558 Error_Msg_N
559 ("\constraint with discriminant values required", N);
560 end if;
562 -- Limited Ada 2005 and general non-limited case
564 else
565 Error_Msg_N
566 ("uninitialized unconstrained allocation not allowed",
569 if Is_Array_Type (Type_Id) then
570 Error_Msg_N
571 ("\qualified expression or constraint with " &
572 "array bounds required", N);
574 elsif Has_Unknown_Discriminants (Type_Id) then
575 Error_Msg_N ("\qualified expression required", N);
577 else pragma Assert (Has_Discriminants (Type_Id));
578 Error_Msg_N
579 ("\qualified expression or constraint with " &
580 "discriminant values required", N);
581 end if;
582 end if;
583 end if;
584 end if;
585 end;
586 end if;
588 if Is_Abstract_Type (Type_Id) then
589 Error_Msg_N ("cannot allocate abstract object", E);
590 end if;
592 if Has_Task (Designated_Type (Acc_Type)) then
593 Check_Restriction (No_Tasking, N);
594 Check_Restriction (Max_Tasks, N);
595 Check_Restriction (No_Task_Allocators, N);
597 -- Check that an allocator with task parts isn't for a nested access
598 -- type when restriction No_Task_Hierarchy applies.
600 if not Is_Library_Level_Entity (Acc_Type) then
601 Check_Restriction (No_Task_Hierarchy, N);
602 end if;
603 end if;
605 -- Check that an allocator of a nested access type doesn't create a
606 -- protected object when restriction No_Local_Protected_Objects applies.
607 -- We don't have an equivalent to Has_Task for protected types, so only
608 -- cases where the designated type itself is a protected type are
609 -- currently checked. ???
611 if Is_Protected_Type (Designated_Type (Acc_Type))
612 and then not Is_Library_Level_Entity (Acc_Type)
613 then
614 Check_Restriction (No_Local_Protected_Objects, N);
615 end if;
617 -- If the No_Streams restriction is set, check that the type of the
618 -- object is not, and does not contain, any subtype derived from
619 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
620 -- Has_Stream just for efficiency reasons. There is no point in
621 -- spending time on a Has_Stream check if the restriction is not set.
623 if Restriction_Check_Required (No_Streams) then
624 if Has_Stream (Designated_Type (Acc_Type)) then
625 Check_Restriction (No_Streams, N);
626 end if;
627 end if;
629 Set_Etype (N, Acc_Type);
631 if not Is_Library_Level_Entity (Acc_Type) then
632 Check_Restriction (No_Local_Allocators, N);
633 end if;
635 if Serious_Errors_Detected > Sav_Errs then
636 Set_Error_Posted (N);
637 Set_Etype (N, Any_Type);
638 end if;
639 end Analyze_Allocator;
641 ---------------------------
642 -- Analyze_Arithmetic_Op --
643 ---------------------------
645 procedure Analyze_Arithmetic_Op (N : Node_Id) is
646 L : constant Node_Id := Left_Opnd (N);
647 R : constant Node_Id := Right_Opnd (N);
648 Op_Id : Entity_Id;
650 begin
651 Candidate_Type := Empty;
652 Analyze_Expression (L);
653 Analyze_Expression (R);
655 -- If the entity is already set, the node is the instantiation of a
656 -- generic node with a non-local reference, or was manufactured by a
657 -- call to Make_Op_xxx. In either case the entity is known to be valid,
658 -- and we do not need to collect interpretations, instead we just get
659 -- the single possible interpretation.
661 Op_Id := Entity (N);
663 if Present (Op_Id) then
664 if Ekind (Op_Id) = E_Operator then
666 if Nkind_In (N, N_Op_Divide, N_Op_Mod, N_Op_Multiply, N_Op_Rem)
667 and then Treat_Fixed_As_Integer (N)
668 then
669 null;
670 else
671 Set_Etype (N, Any_Type);
672 Find_Arithmetic_Types (L, R, Op_Id, N);
673 end if;
675 else
676 Set_Etype (N, Any_Type);
677 Add_One_Interp (N, Op_Id, Etype (Op_Id));
678 end if;
680 -- Entity is not already set, so we do need to collect interpretations
682 else
683 Op_Id := Get_Name_Entity_Id (Chars (N));
684 Set_Etype (N, Any_Type);
686 while Present (Op_Id) loop
687 if Ekind (Op_Id) = E_Operator
688 and then Present (Next_Entity (First_Entity (Op_Id)))
689 then
690 Find_Arithmetic_Types (L, R, Op_Id, N);
692 -- The following may seem superfluous, because an operator cannot
693 -- be generic, but this ignores the cleverness of the author of
694 -- ACVC bc1013a.
696 elsif Is_Overloadable (Op_Id) then
697 Analyze_User_Defined_Binary_Op (N, Op_Id);
698 end if;
700 Op_Id := Homonym (Op_Id);
701 end loop;
702 end if;
704 Operator_Check (N);
705 end Analyze_Arithmetic_Op;
707 ------------------
708 -- Analyze_Call --
709 ------------------
711 -- Function, procedure, and entry calls are checked here. The Name in
712 -- the call may be overloaded. The actuals have been analyzed and may
713 -- themselves be overloaded. On exit from this procedure, the node N
714 -- may have zero, one or more interpretations. In the first case an
715 -- error message is produced. In the last case, the node is flagged
716 -- as overloaded and the interpretations are collected in All_Interp.
718 -- If the name is an Access_To_Subprogram, it cannot be overloaded, but
719 -- the type-checking is similar to that of other calls.
721 procedure Analyze_Call (N : Node_Id) is
722 Actuals : constant List_Id := Parameter_Associations (N);
723 Nam : Node_Id;
724 X : Interp_Index;
725 It : Interp;
726 Nam_Ent : Entity_Id;
727 Success : Boolean := False;
729 Deref : Boolean := False;
730 -- Flag indicates whether an interpretation of the prefix is a
731 -- parameterless call that returns an access_to_subprogram.
733 function Name_Denotes_Function return Boolean;
734 -- If the type of the name is an access to subprogram, this may be the
735 -- type of a name, or the return type of the function being called. If
736 -- the name is not an entity then it can denote a protected function.
737 -- Until we distinguish Etype from Return_Type, we must use this routine
738 -- to resolve the meaning of the name in the call.
740 procedure No_Interpretation;
741 -- Output error message when no valid interpretation exists
743 ---------------------------
744 -- Name_Denotes_Function --
745 ---------------------------
747 function Name_Denotes_Function return Boolean is
748 begin
749 if Is_Entity_Name (Nam) then
750 return Ekind (Entity (Nam)) = E_Function;
752 elsif Nkind (Nam) = N_Selected_Component then
753 return Ekind (Entity (Selector_Name (Nam))) = E_Function;
755 else
756 return False;
757 end if;
758 end Name_Denotes_Function;
760 -----------------------
761 -- No_Interpretation --
762 -----------------------
764 procedure No_Interpretation is
765 L : constant Boolean := Is_List_Member (N);
766 K : constant Node_Kind := Nkind (Parent (N));
768 begin
769 -- If the node is in a list whose parent is not an expression then it
770 -- must be an attempted procedure call.
772 if L and then K not in N_Subexpr then
773 if Ekind (Entity (Nam)) = E_Generic_Procedure then
774 Error_Msg_NE
775 ("must instantiate generic procedure& before call",
776 Nam, Entity (Nam));
777 else
778 Error_Msg_N
779 ("procedure or entry name expected", Nam);
780 end if;
782 -- Check for tasking cases where only an entry call will do
784 elsif not L
785 and then Nkind_In (K, N_Entry_Call_Alternative,
786 N_Triggering_Alternative)
787 then
788 Error_Msg_N ("entry name expected", Nam);
790 -- Otherwise give general error message
792 else
793 Error_Msg_N ("invalid prefix in call", Nam);
794 end if;
795 end No_Interpretation;
797 -- Start of processing for Analyze_Call
799 begin
800 -- Initialize the type of the result of the call to the error type,
801 -- which will be reset if the type is successfully resolved.
803 Set_Etype (N, Any_Type);
805 Nam := Name (N);
807 if not Is_Overloaded (Nam) then
809 -- Only one interpretation to check
811 if Ekind (Etype (Nam)) = E_Subprogram_Type then
812 Nam_Ent := Etype (Nam);
814 -- If the prefix is an access_to_subprogram, this may be an indirect
815 -- call. This is the case if the name in the call is not an entity
816 -- name, or if it is a function name in the context of a procedure
817 -- call. In this latter case, we have a call to a parameterless
818 -- function that returns a pointer_to_procedure which is the entity
819 -- being called. Finally, F (X) may be a call to a parameterless
820 -- function that returns a pointer to a function with parameters.
822 elsif Is_Access_Type (Etype (Nam))
823 and then Ekind (Designated_Type (Etype (Nam))) = E_Subprogram_Type
824 and then
825 (not Name_Denotes_Function
826 or else Nkind (N) = N_Procedure_Call_Statement
827 or else
828 (Nkind (Parent (N)) /= N_Explicit_Dereference
829 and then Is_Entity_Name (Nam)
830 and then No (First_Formal (Entity (Nam)))
831 and then Present (Actuals)))
832 then
833 Nam_Ent := Designated_Type (Etype (Nam));
834 Insert_Explicit_Dereference (Nam);
836 -- Selected component case. Simple entry or protected operation,
837 -- where the entry name is given by the selector name.
839 elsif Nkind (Nam) = N_Selected_Component then
840 Nam_Ent := Entity (Selector_Name (Nam));
842 if not Ekind_In (Nam_Ent, E_Entry,
843 E_Entry_Family,
844 E_Function,
845 E_Procedure)
846 then
847 Error_Msg_N ("name in call is not a callable entity", Nam);
848 Set_Etype (N, Any_Type);
849 return;
850 end if;
852 -- If the name is an Indexed component, it can be a call to a member
853 -- of an entry family. The prefix must be a selected component whose
854 -- selector is the entry. Analyze_Procedure_Call normalizes several
855 -- kinds of call into this form.
857 elsif Nkind (Nam) = N_Indexed_Component then
858 if Nkind (Prefix (Nam)) = N_Selected_Component then
859 Nam_Ent := Entity (Selector_Name (Prefix (Nam)));
860 else
861 Error_Msg_N ("name in call is not a callable entity", Nam);
862 Set_Etype (N, Any_Type);
863 return;
864 end if;
866 elsif not Is_Entity_Name (Nam) then
867 Error_Msg_N ("name in call is not a callable entity", Nam);
868 Set_Etype (N, Any_Type);
869 return;
871 else
872 Nam_Ent := Entity (Nam);
874 -- If no interpretations, give error message
876 if not Is_Overloadable (Nam_Ent) then
877 No_Interpretation;
878 return;
879 end if;
880 end if;
882 -- Operations generated for RACW stub types are called only through
883 -- dispatching, and can never be the static interpretation of a call.
885 if Is_RACW_Stub_Type_Operation (Nam_Ent) then
886 No_Interpretation;
887 return;
888 end if;
890 Analyze_One_Call (N, Nam_Ent, True, Success);
892 -- If this is an indirect call, the return type of the access_to
893 -- subprogram may be an incomplete type. At the point of the call,
894 -- use the full type if available, and at the same time update
895 -- the return type of the access_to_subprogram.
897 if Success
898 and then Nkind (Nam) = N_Explicit_Dereference
899 and then Ekind (Etype (N)) = E_Incomplete_Type
900 and then Present (Full_View (Etype (N)))
901 then
902 Set_Etype (N, Full_View (Etype (N)));
903 Set_Etype (Nam_Ent, Etype (N));
904 end if;
906 else
907 -- An overloaded selected component must denote overloaded operations
908 -- of a concurrent type. The interpretations are attached to the
909 -- simple name of those operations.
911 if Nkind (Nam) = N_Selected_Component then
912 Nam := Selector_Name (Nam);
913 end if;
915 Get_First_Interp (Nam, X, It);
917 while Present (It.Nam) loop
918 Nam_Ent := It.Nam;
919 Deref := False;
921 -- Name may be call that returns an access to subprogram, or more
922 -- generally an overloaded expression one of whose interpretations
923 -- yields an access to subprogram. If the name is an entity, we
924 -- do not dereference, because the node is a call that returns
925 -- the access type: note difference between f(x), where the call
926 -- may return an access subprogram type, and f(x)(y), where the
927 -- type returned by the call to f is implicitly dereferenced to
928 -- analyze the outer call.
930 if Is_Access_Type (Nam_Ent) then
931 Nam_Ent := Designated_Type (Nam_Ent);
933 elsif Is_Access_Type (Etype (Nam_Ent))
934 and then
935 (not Is_Entity_Name (Nam)
936 or else Nkind (N) = N_Procedure_Call_Statement)
937 and then Ekind (Designated_Type (Etype (Nam_Ent)))
938 = E_Subprogram_Type
939 then
940 Nam_Ent := Designated_Type (Etype (Nam_Ent));
942 if Is_Entity_Name (Nam) then
943 Deref := True;
944 end if;
945 end if;
947 -- If the call has been rewritten from a prefixed call, the first
948 -- parameter has been analyzed, but may need a subsequent
949 -- dereference, so skip its analysis now.
951 if N /= Original_Node (N)
952 and then Nkind (Original_Node (N)) = Nkind (N)
953 and then Nkind (Name (N)) /= Nkind (Name (Original_Node (N)))
954 and then Present (Parameter_Associations (N))
955 and then Present (Etype (First (Parameter_Associations (N))))
956 then
957 Analyze_One_Call
958 (N, Nam_Ent, False, Success, Skip_First => True);
959 else
960 Analyze_One_Call (N, Nam_Ent, False, Success);
961 end if;
963 -- If the interpretation succeeds, mark the proper type of the
964 -- prefix (any valid candidate will do). If not, remove the
965 -- candidate interpretation. This only needs to be done for
966 -- overloaded protected operations, for other entities disambi-
967 -- guation is done directly in Resolve.
969 if Success then
970 if Deref
971 and then Nkind (Parent (N)) /= N_Explicit_Dereference
972 then
973 Set_Entity (Nam, It.Nam);
974 Insert_Explicit_Dereference (Nam);
975 Set_Etype (Nam, Nam_Ent);
977 else
978 Set_Etype (Nam, It.Typ);
979 end if;
981 elsif Nkind_In (Name (N), N_Selected_Component,
982 N_Function_Call)
983 then
984 Remove_Interp (X);
985 end if;
987 Get_Next_Interp (X, It);
988 end loop;
990 -- If the name is the result of a function call, it can only
991 -- be a call to a function returning an access to subprogram.
992 -- Insert explicit dereference.
994 if Nkind (Nam) = N_Function_Call then
995 Insert_Explicit_Dereference (Nam);
996 end if;
998 if Etype (N) = Any_Type then
1000 -- None of the interpretations is compatible with the actuals
1002 Diagnose_Call (N, Nam);
1004 -- Special checks for uninstantiated put routines
1006 if Nkind (N) = N_Procedure_Call_Statement
1007 and then Is_Entity_Name (Nam)
1008 and then Chars (Nam) = Name_Put
1009 and then List_Length (Actuals) = 1
1010 then
1011 declare
1012 Arg : constant Node_Id := First (Actuals);
1013 Typ : Entity_Id;
1015 begin
1016 if Nkind (Arg) = N_Parameter_Association then
1017 Typ := Etype (Explicit_Actual_Parameter (Arg));
1018 else
1019 Typ := Etype (Arg);
1020 end if;
1022 if Is_Signed_Integer_Type (Typ) then
1023 Error_Msg_N
1024 ("possible missing instantiation of " &
1025 "'Text_'I'O.'Integer_'I'O!", Nam);
1027 elsif Is_Modular_Integer_Type (Typ) then
1028 Error_Msg_N
1029 ("possible missing instantiation of " &
1030 "'Text_'I'O.'Modular_'I'O!", Nam);
1032 elsif Is_Floating_Point_Type (Typ) then
1033 Error_Msg_N
1034 ("possible missing instantiation of " &
1035 "'Text_'I'O.'Float_'I'O!", Nam);
1037 elsif Is_Ordinary_Fixed_Point_Type (Typ) then
1038 Error_Msg_N
1039 ("possible missing instantiation of " &
1040 "'Text_'I'O.'Fixed_'I'O!", Nam);
1042 elsif Is_Decimal_Fixed_Point_Type (Typ) then
1043 Error_Msg_N
1044 ("possible missing instantiation of " &
1045 "'Text_'I'O.'Decimal_'I'O!", Nam);
1047 elsif Is_Enumeration_Type (Typ) then
1048 Error_Msg_N
1049 ("possible missing instantiation of " &
1050 "'Text_'I'O.'Enumeration_'I'O!", Nam);
1051 end if;
1052 end;
1053 end if;
1055 elsif not Is_Overloaded (N)
1056 and then Is_Entity_Name (Nam)
1057 then
1058 -- Resolution yields a single interpretation. Verify that the
1059 -- reference has capitalization consistent with the declaration.
1061 Set_Entity_With_Style_Check (Nam, Entity (Nam));
1062 Generate_Reference (Entity (Nam), Nam);
1064 Set_Etype (Nam, Etype (Entity (Nam)));
1065 else
1066 Remove_Abstract_Operations (N);
1067 end if;
1069 End_Interp_List;
1070 end if;
1071 end Analyze_Call;
1073 -----------------------------
1074 -- Analyze_Case_Expression --
1075 -----------------------------
1077 procedure Analyze_Case_Expression (N : Node_Id) is
1078 Expr : constant Node_Id := Expression (N);
1079 FirstX : constant Node_Id := Expression (First (Alternatives (N)));
1080 Alt : Node_Id;
1081 Exp_Type : Entity_Id;
1082 Exp_Btype : Entity_Id;
1084 Last_Choice : Nat;
1085 Dont_Care : Boolean;
1086 Others_Present : Boolean;
1088 procedure Non_Static_Choice_Error (Choice : Node_Id);
1089 -- Error routine invoked by the generic instantiation below when
1090 -- the case expression has a non static choice.
1092 package Case_Choices_Processing is new
1093 Generic_Choices_Processing
1094 (Get_Alternatives => Alternatives,
1095 Get_Choices => Discrete_Choices,
1096 Process_Empty_Choice => No_OP,
1097 Process_Non_Static_Choice => Non_Static_Choice_Error,
1098 Process_Associated_Node => No_OP);
1099 use Case_Choices_Processing;
1101 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
1103 -----------------------------
1104 -- Non_Static_Choice_Error --
1105 -----------------------------
1107 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1108 begin
1109 Flag_Non_Static_Expr
1110 ("choice given in case expression is not static!", Choice);
1111 end Non_Static_Choice_Error;
1113 -- Start of processing for Analyze_Case_Expression
1115 begin
1116 if Comes_From_Source (N) then
1117 Check_Compiler_Unit (N);
1118 end if;
1120 Analyze_And_Resolve (Expr, Any_Discrete);
1121 Check_Unset_Reference (Expr);
1122 Exp_Type := Etype (Expr);
1123 Exp_Btype := Base_Type (Exp_Type);
1125 Alt := First (Alternatives (N));
1126 while Present (Alt) loop
1127 Analyze (Expression (Alt));
1128 Next (Alt);
1129 end loop;
1131 if not Is_Overloaded (FirstX) then
1132 Set_Etype (N, Etype (FirstX));
1134 else
1135 declare
1136 I : Interp_Index;
1137 It : Interp;
1139 begin
1140 Set_Etype (N, Any_Type);
1142 Get_First_Interp (FirstX, I, It);
1143 while Present (It.Nam) loop
1145 -- For each intepretation of the first expression, we only
1146 -- add the intepretation if every other expression in the
1147 -- case expression alternatives has a compatible type.
1149 Alt := Next (First (Alternatives (N)));
1150 while Present (Alt) loop
1151 exit when not Has_Compatible_Type (Expression (Alt), It.Typ);
1152 Next (Alt);
1153 end loop;
1155 if No (Alt) then
1156 Add_One_Interp (N, It.Typ, It.Typ);
1157 end if;
1159 Get_Next_Interp (I, It);
1160 end loop;
1161 end;
1162 end if;
1164 Exp_Btype := Base_Type (Exp_Type);
1166 -- The expression must be of a discrete type which must be determinable
1167 -- independently of the context in which the expression occurs, but
1168 -- using the fact that the expression must be of a discrete type.
1169 -- Moreover, the type this expression must not be a character literal
1170 -- (which is always ambiguous).
1172 -- If error already reported by Resolve, nothing more to do
1174 if Exp_Btype = Any_Discrete
1175 or else Exp_Btype = Any_Type
1176 then
1177 return;
1179 elsif Exp_Btype = Any_Character then
1180 Error_Msg_N
1181 ("character literal as case expression is ambiguous", Expr);
1182 return;
1183 end if;
1185 -- If the case expression is a formal object of mode in out, then
1186 -- treat it as having a nonstatic subtype by forcing use of the base
1187 -- type (which has to get passed to Check_Case_Choices below). Also
1188 -- use base type when the case expression is parenthesized.
1190 if Paren_Count (Expr) > 0
1191 or else (Is_Entity_Name (Expr)
1192 and then Ekind (Entity (Expr)) = E_Generic_In_Out_Parameter)
1193 then
1194 Exp_Type := Exp_Btype;
1195 end if;
1197 -- Call instantiated Analyze_Choices which does the rest of the work
1199 Analyze_Choices
1200 (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
1202 if Exp_Type = Universal_Integer and then not Others_Present then
1203 Error_Msg_N
1204 ("case on universal integer requires OTHERS choice", Expr);
1205 end if;
1206 end Analyze_Case_Expression;
1208 ---------------------------
1209 -- Analyze_Comparison_Op --
1210 ---------------------------
1212 procedure Analyze_Comparison_Op (N : Node_Id) is
1213 L : constant Node_Id := Left_Opnd (N);
1214 R : constant Node_Id := Right_Opnd (N);
1215 Op_Id : Entity_Id := Entity (N);
1217 begin
1218 Set_Etype (N, Any_Type);
1219 Candidate_Type := Empty;
1221 Analyze_Expression (L);
1222 Analyze_Expression (R);
1224 if Present (Op_Id) then
1225 if Ekind (Op_Id) = E_Operator then
1226 Find_Comparison_Types (L, R, Op_Id, N);
1227 else
1228 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1229 end if;
1231 if Is_Overloaded (L) then
1232 Set_Etype (L, Intersect_Types (L, R));
1233 end if;
1235 else
1236 Op_Id := Get_Name_Entity_Id (Chars (N));
1237 while Present (Op_Id) loop
1238 if Ekind (Op_Id) = E_Operator then
1239 Find_Comparison_Types (L, R, Op_Id, N);
1240 else
1241 Analyze_User_Defined_Binary_Op (N, Op_Id);
1242 end if;
1244 Op_Id := Homonym (Op_Id);
1245 end loop;
1246 end if;
1248 Operator_Check (N);
1249 end Analyze_Comparison_Op;
1251 ---------------------------
1252 -- Analyze_Concatenation --
1253 ---------------------------
1255 procedure Analyze_Concatenation (N : Node_Id) is
1257 -- We wish to avoid deep recursion, because concatenations are often
1258 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
1259 -- operands nonrecursively until we find something that is not a
1260 -- concatenation (A in this case), or has already been analyzed. We
1261 -- analyze that, and then walk back up the tree following Parent
1262 -- pointers, calling Analyze_Concatenation_Rest to do the rest of the
1263 -- work at each level. The Parent pointers allow us to avoid recursion,
1264 -- and thus avoid running out of memory.
1266 NN : Node_Id := N;
1267 L : Node_Id;
1269 begin
1270 Candidate_Type := Empty;
1272 -- The following code is equivalent to:
1274 -- Set_Etype (N, Any_Type);
1275 -- Analyze_Expression (Left_Opnd (N));
1276 -- Analyze_Concatenation_Rest (N);
1278 -- where the Analyze_Expression call recurses back here if the left
1279 -- operand is a concatenation.
1281 -- Walk down left operands
1283 loop
1284 Set_Etype (NN, Any_Type);
1285 L := Left_Opnd (NN);
1286 exit when Nkind (L) /= N_Op_Concat or else Analyzed (L);
1287 NN := L;
1288 end loop;
1290 -- Now (given the above example) NN is A&B and L is A
1292 -- First analyze L ...
1294 Analyze_Expression (L);
1296 -- ... then walk NN back up until we reach N (where we started), calling
1297 -- Analyze_Concatenation_Rest along the way.
1299 loop
1300 Analyze_Concatenation_Rest (NN);
1301 exit when NN = N;
1302 NN := Parent (NN);
1303 end loop;
1304 end Analyze_Concatenation;
1306 --------------------------------
1307 -- Analyze_Concatenation_Rest --
1308 --------------------------------
1310 -- If the only one-dimensional array type in scope is String,
1311 -- this is the resulting type of the operation. Otherwise there
1312 -- will be a concatenation operation defined for each user-defined
1313 -- one-dimensional array.
1315 procedure Analyze_Concatenation_Rest (N : Node_Id) is
1316 L : constant Node_Id := Left_Opnd (N);
1317 R : constant Node_Id := Right_Opnd (N);
1318 Op_Id : Entity_Id := Entity (N);
1319 LT : Entity_Id;
1320 RT : Entity_Id;
1322 begin
1323 Analyze_Expression (R);
1325 -- If the entity is present, the node appears in an instance, and
1326 -- denotes a predefined concatenation operation. The resulting type is
1327 -- obtained from the arguments when possible. If the arguments are
1328 -- aggregates, the array type and the concatenation type must be
1329 -- visible.
1331 if Present (Op_Id) then
1332 if Ekind (Op_Id) = E_Operator then
1333 LT := Base_Type (Etype (L));
1334 RT := Base_Type (Etype (R));
1336 if Is_Array_Type (LT)
1337 and then (RT = LT or else RT = Base_Type (Component_Type (LT)))
1338 then
1339 Add_One_Interp (N, Op_Id, LT);
1341 elsif Is_Array_Type (RT)
1342 and then LT = Base_Type (Component_Type (RT))
1343 then
1344 Add_One_Interp (N, Op_Id, RT);
1346 -- If one operand is a string type or a user-defined array type,
1347 -- and the other is a literal, result is of the specific type.
1349 elsif
1350 (Root_Type (LT) = Standard_String
1351 or else Scope (LT) /= Standard_Standard)
1352 and then Etype (R) = Any_String
1353 then
1354 Add_One_Interp (N, Op_Id, LT);
1356 elsif
1357 (Root_Type (RT) = Standard_String
1358 or else Scope (RT) /= Standard_Standard)
1359 and then Etype (L) = Any_String
1360 then
1361 Add_One_Interp (N, Op_Id, RT);
1363 elsif not Is_Generic_Type (Etype (Op_Id)) then
1364 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1366 else
1367 -- Type and its operations must be visible
1369 Set_Entity (N, Empty);
1370 Analyze_Concatenation (N);
1371 end if;
1373 else
1374 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1375 end if;
1377 else
1378 Op_Id := Get_Name_Entity_Id (Name_Op_Concat);
1379 while Present (Op_Id) loop
1380 if Ekind (Op_Id) = E_Operator then
1382 -- Do not consider operators declared in dead code, they can
1383 -- not be part of the resolution.
1385 if Is_Eliminated (Op_Id) then
1386 null;
1387 else
1388 Find_Concatenation_Types (L, R, Op_Id, N);
1389 end if;
1391 else
1392 Analyze_User_Defined_Binary_Op (N, Op_Id);
1393 end if;
1395 Op_Id := Homonym (Op_Id);
1396 end loop;
1397 end if;
1399 Operator_Check (N);
1400 end Analyze_Concatenation_Rest;
1402 ------------------------------------
1403 -- Analyze_Conditional_Expression --
1404 ------------------------------------
1406 procedure Analyze_Conditional_Expression (N : Node_Id) is
1407 Condition : constant Node_Id := First (Expressions (N));
1408 Then_Expr : constant Node_Id := Next (Condition);
1409 Else_Expr : Node_Id;
1411 begin
1412 -- Defend against error of missing expressions from previous error
1414 if No (Then_Expr) then
1415 return;
1416 end if;
1418 Else_Expr := Next (Then_Expr);
1420 if Comes_From_Source (N) then
1421 Check_Compiler_Unit (N);
1422 end if;
1424 Analyze_Expression (Condition);
1425 Analyze_Expression (Then_Expr);
1427 if Present (Else_Expr) then
1428 Analyze_Expression (Else_Expr);
1429 end if;
1431 -- If then expression not overloaded, then that decides the type
1433 if not Is_Overloaded (Then_Expr) then
1434 Set_Etype (N, Etype (Then_Expr));
1436 -- Case where then expression is overloaded
1438 else
1439 declare
1440 I : Interp_Index;
1441 It : Interp;
1443 begin
1444 Set_Etype (N, Any_Type);
1445 Get_First_Interp (Then_Expr, I, It);
1446 while Present (It.Nam) loop
1448 -- For each possible intepretation of the Then Expression,
1449 -- add it only if the else expression has a compatible type.
1451 -- Is this right if Else_Expr is empty?
1453 if Has_Compatible_Type (Else_Expr, It.Typ) then
1454 Add_One_Interp (N, It.Typ, It.Typ);
1455 end if;
1457 Get_Next_Interp (I, It);
1458 end loop;
1459 end;
1460 end if;
1461 end Analyze_Conditional_Expression;
1463 -------------------------
1464 -- Analyze_Equality_Op --
1465 -------------------------
1467 procedure Analyze_Equality_Op (N : Node_Id) is
1468 Loc : constant Source_Ptr := Sloc (N);
1469 L : constant Node_Id := Left_Opnd (N);
1470 R : constant Node_Id := Right_Opnd (N);
1471 Op_Id : Entity_Id;
1473 begin
1474 Set_Etype (N, Any_Type);
1475 Candidate_Type := Empty;
1477 Analyze_Expression (L);
1478 Analyze_Expression (R);
1480 -- If the entity is set, the node is a generic instance with a non-local
1481 -- reference to the predefined operator or to a user-defined function.
1482 -- It can also be an inequality that is expanded into the negation of a
1483 -- call to a user-defined equality operator.
1485 -- For the predefined case, the result is Boolean, regardless of the
1486 -- type of the operands. The operands may even be limited, if they are
1487 -- generic actuals. If they are overloaded, label the left argument with
1488 -- the common type that must be present, or with the type of the formal
1489 -- of the user-defined function.
1491 if Present (Entity (N)) then
1492 Op_Id := Entity (N);
1494 if Ekind (Op_Id) = E_Operator then
1495 Add_One_Interp (N, Op_Id, Standard_Boolean);
1496 else
1497 Add_One_Interp (N, Op_Id, Etype (Op_Id));
1498 end if;
1500 if Is_Overloaded (L) then
1501 if Ekind (Op_Id) = E_Operator then
1502 Set_Etype (L, Intersect_Types (L, R));
1503 else
1504 Set_Etype (L, Etype (First_Formal (Op_Id)));
1505 end if;
1506 end if;
1508 else
1509 Op_Id := Get_Name_Entity_Id (Chars (N));
1510 while Present (Op_Id) loop
1511 if Ekind (Op_Id) = E_Operator then
1512 Find_Equality_Types (L, R, Op_Id, N);
1513 else
1514 Analyze_User_Defined_Binary_Op (N, Op_Id);
1515 end if;
1517 Op_Id := Homonym (Op_Id);
1518 end loop;
1519 end if;
1521 -- If there was no match, and the operator is inequality, this may
1522 -- be a case where inequality has not been made explicit, as for
1523 -- tagged types. Analyze the node as the negation of an equality
1524 -- operation. This cannot be done earlier, because before analysis
1525 -- we cannot rule out the presence of an explicit inequality.
1527 if Etype (N) = Any_Type
1528 and then Nkind (N) = N_Op_Ne
1529 then
1530 Op_Id := Get_Name_Entity_Id (Name_Op_Eq);
1531 while Present (Op_Id) loop
1532 if Ekind (Op_Id) = E_Operator then
1533 Find_Equality_Types (L, R, Op_Id, N);
1534 else
1535 Analyze_User_Defined_Binary_Op (N, Op_Id);
1536 end if;
1538 Op_Id := Homonym (Op_Id);
1539 end loop;
1541 if Etype (N) /= Any_Type then
1542 Op_Id := Entity (N);
1544 Rewrite (N,
1545 Make_Op_Not (Loc,
1546 Right_Opnd =>
1547 Make_Op_Eq (Loc,
1548 Left_Opnd => Left_Opnd (N),
1549 Right_Opnd => Right_Opnd (N))));
1551 Set_Entity (Right_Opnd (N), Op_Id);
1552 Analyze (N);
1553 end if;
1554 end if;
1556 Operator_Check (N);
1557 end Analyze_Equality_Op;
1559 ----------------------------------
1560 -- Analyze_Explicit_Dereference --
1561 ----------------------------------
1563 procedure Analyze_Explicit_Dereference (N : Node_Id) is
1564 Loc : constant Source_Ptr := Sloc (N);
1565 P : constant Node_Id := Prefix (N);
1566 T : Entity_Id;
1567 I : Interp_Index;
1568 It : Interp;
1569 New_N : Node_Id;
1571 function Is_Function_Type return Boolean;
1572 -- Check whether node may be interpreted as an implicit function call
1574 ----------------------
1575 -- Is_Function_Type --
1576 ----------------------
1578 function Is_Function_Type return Boolean is
1579 I : Interp_Index;
1580 It : Interp;
1582 begin
1583 if not Is_Overloaded (N) then
1584 return Ekind (Base_Type (Etype (N))) = E_Subprogram_Type
1585 and then Etype (Base_Type (Etype (N))) /= Standard_Void_Type;
1587 else
1588 Get_First_Interp (N, I, It);
1589 while Present (It.Nam) loop
1590 if Ekind (Base_Type (It.Typ)) /= E_Subprogram_Type
1591 or else Etype (Base_Type (It.Typ)) = Standard_Void_Type
1592 then
1593 return False;
1594 end if;
1596 Get_Next_Interp (I, It);
1597 end loop;
1599 return True;
1600 end if;
1601 end Is_Function_Type;
1603 -- Start of processing for Analyze_Explicit_Dereference
1605 begin
1606 Analyze (P);
1607 Set_Etype (N, Any_Type);
1609 -- Test for remote access to subprogram type, and if so return
1610 -- after rewriting the original tree.
1612 if Remote_AST_E_Dereference (P) then
1613 return;
1614 end if;
1616 -- Normal processing for other than remote access to subprogram type
1618 if not Is_Overloaded (P) then
1619 if Is_Access_Type (Etype (P)) then
1621 -- Set the Etype. We need to go through Is_For_Access_Subtypes to
1622 -- avoid other problems caused by the Private_Subtype and it is
1623 -- safe to go to the Base_Type because this is the same as
1624 -- converting the access value to its Base_Type.
1626 declare
1627 DT : Entity_Id := Designated_Type (Etype (P));
1629 begin
1630 if Ekind (DT) = E_Private_Subtype
1631 and then Is_For_Access_Subtype (DT)
1632 then
1633 DT := Base_Type (DT);
1634 end if;
1636 -- An explicit dereference is a legal occurrence of an
1637 -- incomplete type imported through a limited_with clause,
1638 -- if the full view is visible.
1640 if From_With_Type (DT)
1641 and then not From_With_Type (Scope (DT))
1642 and then
1643 (Is_Immediately_Visible (Scope (DT))
1644 or else
1645 (Is_Child_Unit (Scope (DT))
1646 and then Is_Visible_Child_Unit (Scope (DT))))
1647 then
1648 Set_Etype (N, Available_View (DT));
1650 else
1651 Set_Etype (N, DT);
1652 end if;
1653 end;
1655 elsif Etype (P) /= Any_Type then
1656 Error_Msg_N ("prefix of dereference must be an access type", N);
1657 return;
1658 end if;
1660 else
1661 Get_First_Interp (P, I, It);
1662 while Present (It.Nam) loop
1663 T := It.Typ;
1665 if Is_Access_Type (T) then
1666 Add_One_Interp (N, Designated_Type (T), Designated_Type (T));
1667 end if;
1669 Get_Next_Interp (I, It);
1670 end loop;
1672 -- Error if no interpretation of the prefix has an access type
1674 if Etype (N) = Any_Type then
1675 Error_Msg_N
1676 ("access type required in prefix of explicit dereference", P);
1677 Set_Etype (N, Any_Type);
1678 return;
1679 end if;
1680 end if;
1682 if Is_Function_Type
1683 and then Nkind (Parent (N)) /= N_Indexed_Component
1685 and then (Nkind (Parent (N)) /= N_Function_Call
1686 or else N /= Name (Parent (N)))
1688 and then (Nkind (Parent (N)) /= N_Procedure_Call_Statement
1689 or else N /= Name (Parent (N)))
1691 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
1692 and then (Nkind (Parent (N)) /= N_Attribute_Reference
1693 or else
1694 (Attribute_Name (Parent (N)) /= Name_Address
1695 and then
1696 Attribute_Name (Parent (N)) /= Name_Access))
1697 then
1698 -- Name is a function call with no actuals, in a context that
1699 -- requires deproceduring (including as an actual in an enclosing
1700 -- function or procedure call). There are some pathological cases
1701 -- where the prefix might include functions that return access to
1702 -- subprograms and others that return a regular type. Disambiguation
1703 -- of those has to take place in Resolve.
1705 New_N :=
1706 Make_Function_Call (Loc,
1707 Name => Make_Explicit_Dereference (Loc, P),
1708 Parameter_Associations => New_List);
1710 -- If the prefix is overloaded, remove operations that have formals,
1711 -- we know that this is a parameterless call.
1713 if Is_Overloaded (P) then
1714 Get_First_Interp (P, I, It);
1715 while Present (It.Nam) loop
1716 T := It.Typ;
1718 if No (First_Formal (Base_Type (Designated_Type (T)))) then
1719 Set_Etype (P, T);
1720 else
1721 Remove_Interp (I);
1722 end if;
1724 Get_Next_Interp (I, It);
1725 end loop;
1726 end if;
1728 Rewrite (N, New_N);
1729 Analyze (N);
1731 elsif not Is_Function_Type
1732 and then Is_Overloaded (N)
1733 then
1734 -- The prefix may include access to subprograms and other access
1735 -- types. If the context selects the interpretation that is a
1736 -- function call (not a procedure call) we cannot rewrite the node
1737 -- yet, but we include the result of the call interpretation.
1739 Get_First_Interp (N, I, It);
1740 while Present (It.Nam) loop
1741 if Ekind (Base_Type (It.Typ)) = E_Subprogram_Type
1742 and then Etype (Base_Type (It.Typ)) /= Standard_Void_Type
1743 and then Nkind (Parent (N)) /= N_Procedure_Call_Statement
1744 then
1745 Add_One_Interp (N, Etype (It.Typ), Etype (It.Typ));
1746 end if;
1748 Get_Next_Interp (I, It);
1749 end loop;
1750 end if;
1752 -- A value of remote access-to-class-wide must not be dereferenced
1753 -- (RM E.2.2(16)).
1755 Validate_Remote_Access_To_Class_Wide_Type (N);
1756 end Analyze_Explicit_Dereference;
1758 ------------------------
1759 -- Analyze_Expression --
1760 ------------------------
1762 procedure Analyze_Expression (N : Node_Id) is
1763 begin
1764 Analyze (N);
1765 Check_Parameterless_Call (N);
1766 end Analyze_Expression;
1768 -------------------------------------
1769 -- Analyze_Expression_With_Actions --
1770 -------------------------------------
1772 procedure Analyze_Expression_With_Actions (N : Node_Id) is
1773 A : Node_Id;
1775 begin
1776 A := First (Actions (N));
1777 loop
1778 Analyze (A);
1779 Next (A);
1780 exit when No (A);
1781 end loop;
1783 Analyze_Expression (Expression (N));
1784 Set_Etype (N, Etype (Expression (N)));
1785 end Analyze_Expression_With_Actions;
1787 ------------------------------------
1788 -- Analyze_Indexed_Component_Form --
1789 ------------------------------------
1791 procedure Analyze_Indexed_Component_Form (N : Node_Id) is
1792 P : constant Node_Id := Prefix (N);
1793 Exprs : constant List_Id := Expressions (N);
1794 Exp : Node_Id;
1795 P_T : Entity_Id;
1796 E : Node_Id;
1797 U_N : Entity_Id;
1799 procedure Process_Function_Call;
1800 -- Prefix in indexed component form is an overloadable entity,
1801 -- so the node is a function call. Reformat it as such.
1803 procedure Process_Indexed_Component;
1804 -- Prefix in indexed component form is actually an indexed component.
1805 -- This routine processes it, knowing that the prefix is already
1806 -- resolved.
1808 procedure Process_Indexed_Component_Or_Slice;
1809 -- An indexed component with a single index may designate a slice if
1810 -- the index is a subtype mark. This routine disambiguates these two
1811 -- cases by resolving the prefix to see if it is a subtype mark.
1813 procedure Process_Overloaded_Indexed_Component;
1814 -- If the prefix of an indexed component is overloaded, the proper
1815 -- interpretation is selected by the index types and the context.
1817 ---------------------------
1818 -- Process_Function_Call --
1819 ---------------------------
1821 procedure Process_Function_Call is
1822 Actual : Node_Id;
1824 begin
1825 Change_Node (N, N_Function_Call);
1826 Set_Name (N, P);
1827 Set_Parameter_Associations (N, Exprs);
1829 -- Analyze actuals prior to analyzing the call itself
1831 Actual := First (Parameter_Associations (N));
1832 while Present (Actual) loop
1833 Analyze (Actual);
1834 Check_Parameterless_Call (Actual);
1836 -- Move to next actual. Note that we use Next, not Next_Actual
1837 -- here. The reason for this is a bit subtle. If a function call
1838 -- includes named associations, the parser recognizes the node as
1839 -- a call, and it is analyzed as such. If all associations are
1840 -- positional, the parser builds an indexed_component node, and
1841 -- it is only after analysis of the prefix that the construct
1842 -- is recognized as a call, in which case Process_Function_Call
1843 -- rewrites the node and analyzes the actuals. If the list of
1844 -- actuals is malformed, the parser may leave the node as an
1845 -- indexed component (despite the presence of named associations).
1846 -- The iterator Next_Actual is equivalent to Next if the list is
1847 -- positional, but follows the normalized chain of actuals when
1848 -- named associations are present. In this case normalization has
1849 -- not taken place, and actuals remain unanalyzed, which leads to
1850 -- subsequent crashes or loops if there is an attempt to continue
1851 -- analysis of the program.
1853 Next (Actual);
1854 end loop;
1856 Analyze_Call (N);
1857 end Process_Function_Call;
1859 -------------------------------
1860 -- Process_Indexed_Component --
1861 -------------------------------
1863 procedure Process_Indexed_Component is
1864 Exp : Node_Id;
1865 Array_Type : Entity_Id;
1866 Index : Node_Id;
1867 Pent : Entity_Id := Empty;
1869 begin
1870 Exp := First (Exprs);
1872 if Is_Overloaded (P) then
1873 Process_Overloaded_Indexed_Component;
1875 else
1876 Array_Type := Etype (P);
1878 if Is_Entity_Name (P) then
1879 Pent := Entity (P);
1880 elsif Nkind (P) = N_Selected_Component
1881 and then Is_Entity_Name (Selector_Name (P))
1882 then
1883 Pent := Entity (Selector_Name (P));
1884 end if;
1886 -- Prefix must be appropriate for an array type, taking into
1887 -- account a possible implicit dereference.
1889 if Is_Access_Type (Array_Type) then
1890 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
1891 Array_Type := Process_Implicit_Dereference_Prefix (Pent, P);
1892 end if;
1894 if Is_Array_Type (Array_Type) then
1895 null;
1897 elsif Present (Pent) and then Ekind (Pent) = E_Entry_Family then
1898 Analyze (Exp);
1899 Set_Etype (N, Any_Type);
1901 if not Has_Compatible_Type
1902 (Exp, Entry_Index_Type (Pent))
1903 then
1904 Error_Msg_N ("invalid index type in entry name", N);
1906 elsif Present (Next (Exp)) then
1907 Error_Msg_N ("too many subscripts in entry reference", N);
1909 else
1910 Set_Etype (N, Etype (P));
1911 end if;
1913 return;
1915 elsif Is_Record_Type (Array_Type)
1916 and then Remote_AST_I_Dereference (P)
1917 then
1918 return;
1920 elsif Array_Type = Any_Type then
1921 Set_Etype (N, Any_Type);
1923 -- In most cases the analysis of the prefix will have emitted
1924 -- an error already, but if the prefix may be interpreted as a
1925 -- call in prefixed notation, the report is left to the caller.
1926 -- To prevent cascaded errors, report only if no previous ones.
1928 if Serious_Errors_Detected = 0 then
1929 Error_Msg_N ("invalid prefix in indexed component", P);
1931 if Nkind (P) = N_Expanded_Name then
1932 Error_Msg_NE ("\& is not visible", P, Selector_Name (P));
1933 end if;
1934 end if;
1936 return;
1938 -- Here we definitely have a bad indexing
1940 else
1941 if Nkind (Parent (N)) = N_Requeue_Statement
1942 and then Present (Pent) and then Ekind (Pent) = E_Entry
1943 then
1944 Error_Msg_N
1945 ("REQUEUE does not permit parameters", First (Exprs));
1947 elsif Is_Entity_Name (P)
1948 and then Etype (P) = Standard_Void_Type
1949 then
1950 Error_Msg_NE ("incorrect use of&", P, Entity (P));
1952 else
1953 Error_Msg_N ("array type required in indexed component", P);
1954 end if;
1956 Set_Etype (N, Any_Type);
1957 return;
1958 end if;
1960 Index := First_Index (Array_Type);
1961 while Present (Index) and then Present (Exp) loop
1962 if not Has_Compatible_Type (Exp, Etype (Index)) then
1963 Wrong_Type (Exp, Etype (Index));
1964 Set_Etype (N, Any_Type);
1965 return;
1966 end if;
1968 Next_Index (Index);
1969 Next (Exp);
1970 end loop;
1972 Set_Etype (N, Component_Type (Array_Type));
1974 if Present (Index) then
1975 Error_Msg_N
1976 ("too few subscripts in array reference", First (Exprs));
1978 elsif Present (Exp) then
1979 Error_Msg_N ("too many subscripts in array reference", Exp);
1980 end if;
1981 end if;
1982 end Process_Indexed_Component;
1984 ----------------------------------------
1985 -- Process_Indexed_Component_Or_Slice --
1986 ----------------------------------------
1988 procedure Process_Indexed_Component_Or_Slice is
1989 begin
1990 Exp := First (Exprs);
1991 while Present (Exp) loop
1992 Analyze_Expression (Exp);
1993 Next (Exp);
1994 end loop;
1996 Exp := First (Exprs);
1998 -- If one index is present, and it is a subtype name, then the
1999 -- node denotes a slice (note that the case of an explicit range
2000 -- for a slice was already built as an N_Slice node in the first
2001 -- place, so that case is not handled here).
2003 -- We use a replace rather than a rewrite here because this is one
2004 -- of the cases in which the tree built by the parser is plain wrong.
2006 if No (Next (Exp))
2007 and then Is_Entity_Name (Exp)
2008 and then Is_Type (Entity (Exp))
2009 then
2010 Replace (N,
2011 Make_Slice (Sloc (N),
2012 Prefix => P,
2013 Discrete_Range => New_Copy (Exp)));
2014 Analyze (N);
2016 -- Otherwise (more than one index present, or single index is not
2017 -- a subtype name), then we have the indexed component case.
2019 else
2020 Process_Indexed_Component;
2021 end if;
2022 end Process_Indexed_Component_Or_Slice;
2024 ------------------------------------------
2025 -- Process_Overloaded_Indexed_Component --
2026 ------------------------------------------
2028 procedure Process_Overloaded_Indexed_Component is
2029 Exp : Node_Id;
2030 I : Interp_Index;
2031 It : Interp;
2032 Typ : Entity_Id;
2033 Index : Node_Id;
2034 Found : Boolean;
2036 begin
2037 Set_Etype (N, Any_Type);
2039 Get_First_Interp (P, I, It);
2040 while Present (It.Nam) loop
2041 Typ := It.Typ;
2043 if Is_Access_Type (Typ) then
2044 Typ := Designated_Type (Typ);
2045 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
2046 end if;
2048 if Is_Array_Type (Typ) then
2050 -- Got a candidate: verify that index types are compatible
2052 Index := First_Index (Typ);
2053 Found := True;
2054 Exp := First (Exprs);
2055 while Present (Index) and then Present (Exp) loop
2056 if Has_Compatible_Type (Exp, Etype (Index)) then
2057 null;
2058 else
2059 Found := False;
2060 Remove_Interp (I);
2061 exit;
2062 end if;
2064 Next_Index (Index);
2065 Next (Exp);
2066 end loop;
2068 if Found and then No (Index) and then No (Exp) then
2069 Add_One_Interp (N,
2070 Etype (Component_Type (Typ)),
2071 Etype (Component_Type (Typ)));
2072 end if;
2073 end if;
2075 Get_Next_Interp (I, It);
2076 end loop;
2078 if Etype (N) = Any_Type then
2079 Error_Msg_N ("no legal interpretation for indexed component", N);
2080 Set_Is_Overloaded (N, False);
2081 end if;
2083 End_Interp_List;
2084 end Process_Overloaded_Indexed_Component;
2086 -- Start of processing for Analyze_Indexed_Component_Form
2088 begin
2089 -- Get name of array, function or type
2091 Analyze (P);
2093 if Nkind_In (N, N_Function_Call, N_Procedure_Call_Statement) then
2095 -- If P is an explicit dereference whose prefix is of a
2096 -- remote access-to-subprogram type, then N has already
2097 -- been rewritten as a subprogram call and analyzed.
2099 return;
2100 end if;
2102 pragma Assert (Nkind (N) = N_Indexed_Component);
2104 P_T := Base_Type (Etype (P));
2106 if Is_Entity_Name (P)
2107 or else Nkind (P) = N_Operator_Symbol
2108 then
2109 U_N := Entity (P);
2111 if Is_Type (U_N) then
2113 -- Reformat node as a type conversion
2115 E := Remove_Head (Exprs);
2117 if Present (First (Exprs)) then
2118 Error_Msg_N
2119 ("argument of type conversion must be single expression", N);
2120 end if;
2122 Change_Node (N, N_Type_Conversion);
2123 Set_Subtype_Mark (N, P);
2124 Set_Etype (N, U_N);
2125 Set_Expression (N, E);
2127 -- After changing the node, call for the specific Analysis
2128 -- routine directly, to avoid a double call to the expander.
2130 Analyze_Type_Conversion (N);
2131 return;
2132 end if;
2134 if Is_Overloadable (U_N) then
2135 Process_Function_Call;
2137 elsif Ekind (Etype (P)) = E_Subprogram_Type
2138 or else (Is_Access_Type (Etype (P))
2139 and then
2140 Ekind (Designated_Type (Etype (P))) =
2141 E_Subprogram_Type)
2142 then
2143 -- Call to access_to-subprogram with possible implicit dereference
2145 Process_Function_Call;
2147 elsif Is_Generic_Subprogram (U_N) then
2149 -- A common beginner's (or C++ templates fan) error
2151 Error_Msg_N ("generic subprogram cannot be called", N);
2152 Set_Etype (N, Any_Type);
2153 return;
2155 else
2156 Process_Indexed_Component_Or_Slice;
2157 end if;
2159 -- If not an entity name, prefix is an expression that may denote
2160 -- an array or an access-to-subprogram.
2162 else
2163 if Ekind (P_T) = E_Subprogram_Type
2164 or else (Is_Access_Type (P_T)
2165 and then
2166 Ekind (Designated_Type (P_T)) = E_Subprogram_Type)
2167 then
2168 Process_Function_Call;
2170 elsif Nkind (P) = N_Selected_Component
2171 and then Is_Overloadable (Entity (Selector_Name (P)))
2172 then
2173 Process_Function_Call;
2175 else
2176 -- Indexed component, slice, or a call to a member of a family
2177 -- entry, which will be converted to an entry call later.
2179 Process_Indexed_Component_Or_Slice;
2180 end if;
2181 end if;
2182 end Analyze_Indexed_Component_Form;
2184 ------------------------
2185 -- Analyze_Logical_Op --
2186 ------------------------
2188 procedure Analyze_Logical_Op (N : Node_Id) is
2189 L : constant Node_Id := Left_Opnd (N);
2190 R : constant Node_Id := Right_Opnd (N);
2191 Op_Id : Entity_Id := Entity (N);
2193 begin
2194 Set_Etype (N, Any_Type);
2195 Candidate_Type := Empty;
2197 Analyze_Expression (L);
2198 Analyze_Expression (R);
2200 if Present (Op_Id) then
2202 if Ekind (Op_Id) = E_Operator then
2203 Find_Boolean_Types (L, R, Op_Id, N);
2204 else
2205 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2206 end if;
2208 else
2209 Op_Id := Get_Name_Entity_Id (Chars (N));
2210 while Present (Op_Id) loop
2211 if Ekind (Op_Id) = E_Operator then
2212 Find_Boolean_Types (L, R, Op_Id, N);
2213 else
2214 Analyze_User_Defined_Binary_Op (N, Op_Id);
2215 end if;
2217 Op_Id := Homonym (Op_Id);
2218 end loop;
2219 end if;
2221 Operator_Check (N);
2222 end Analyze_Logical_Op;
2224 ---------------------------
2225 -- Analyze_Membership_Op --
2226 ---------------------------
2228 procedure Analyze_Membership_Op (N : Node_Id) is
2229 L : constant Node_Id := Left_Opnd (N);
2230 R : constant Node_Id := Right_Opnd (N);
2232 Index : Interp_Index;
2233 It : Interp;
2234 Found : Boolean := False;
2235 I_F : Interp_Index;
2236 T_F : Entity_Id;
2238 procedure Try_One_Interp (T1 : Entity_Id);
2239 -- Routine to try one proposed interpretation. Note that the context
2240 -- of the operation plays no role in resolving the arguments, so that
2241 -- if there is more than one interpretation of the operands that is
2242 -- compatible with a membership test, the operation is ambiguous.
2244 --------------------
2245 -- Try_One_Interp --
2246 --------------------
2248 procedure Try_One_Interp (T1 : Entity_Id) is
2249 begin
2250 if Has_Compatible_Type (R, T1) then
2251 if Found
2252 and then Base_Type (T1) /= Base_Type (T_F)
2253 then
2254 It := Disambiguate (L, I_F, Index, Any_Type);
2256 if It = No_Interp then
2257 Ambiguous_Operands (N);
2258 Set_Etype (L, Any_Type);
2259 return;
2261 else
2262 T_F := It.Typ;
2263 end if;
2265 else
2266 Found := True;
2267 T_F := T1;
2268 I_F := Index;
2269 end if;
2271 Set_Etype (L, T_F);
2272 end if;
2273 end Try_One_Interp;
2275 procedure Analyze_Set_Membership;
2276 -- If a set of alternatives is present, analyze each and find the
2277 -- common type to which they must all resolve.
2279 ----------------------------
2280 -- Analyze_Set_Membership --
2281 ----------------------------
2283 procedure Analyze_Set_Membership is
2284 Alt : Node_Id;
2285 Index : Interp_Index;
2286 It : Interp;
2287 Candidate_Interps : Node_Id;
2288 Common_Type : Entity_Id := Empty;
2290 begin
2291 Analyze (L);
2292 Candidate_Interps := L;
2294 if not Is_Overloaded (L) then
2295 Common_Type := Etype (L);
2297 Alt := First (Alternatives (N));
2298 while Present (Alt) loop
2299 Analyze (Alt);
2301 if not Has_Compatible_Type (Alt, Common_Type) then
2302 Wrong_Type (Alt, Common_Type);
2303 end if;
2305 Next (Alt);
2306 end loop;
2308 else
2309 Alt := First (Alternatives (N));
2310 while Present (Alt) loop
2311 Analyze (Alt);
2312 if not Is_Overloaded (Alt) then
2313 Common_Type := Etype (Alt);
2315 else
2316 Get_First_Interp (Alt, Index, It);
2317 while Present (It.Typ) loop
2318 if not
2319 Has_Compatible_Type (Candidate_Interps, It.Typ)
2320 then
2321 Remove_Interp (Index);
2322 end if;
2324 Get_Next_Interp (Index, It);
2325 end loop;
2327 Get_First_Interp (Alt, Index, It);
2329 if No (It.Typ) then
2330 Error_Msg_N ("alternative has no legal type", Alt);
2331 return;
2332 end if;
2334 -- If alternative is not overloaded, we have a unique type
2335 -- for all of them.
2337 Set_Etype (Alt, It.Typ);
2338 Get_Next_Interp (Index, It);
2340 if No (It.Typ) then
2341 Set_Is_Overloaded (Alt, False);
2342 Common_Type := Etype (Alt);
2343 end if;
2345 Candidate_Interps := Alt;
2346 end if;
2348 Next (Alt);
2349 end loop;
2350 end if;
2352 Set_Etype (N, Standard_Boolean);
2354 if Present (Common_Type) then
2355 Set_Etype (L, Common_Type);
2356 Set_Is_Overloaded (L, False);
2358 else
2359 Error_Msg_N ("cannot resolve membership operation", N);
2360 end if;
2361 end Analyze_Set_Membership;
2363 -- Start of processing for Analyze_Membership_Op
2365 begin
2366 Analyze_Expression (L);
2368 if No (R)
2369 and then Ada_Version >= Ada_12
2370 then
2371 Analyze_Set_Membership;
2372 return;
2373 end if;
2375 if Nkind (R) = N_Range
2376 or else (Nkind (R) = N_Attribute_Reference
2377 and then Attribute_Name (R) = Name_Range)
2378 then
2379 Analyze (R);
2381 if not Is_Overloaded (L) then
2382 Try_One_Interp (Etype (L));
2384 else
2385 Get_First_Interp (L, Index, It);
2386 while Present (It.Typ) loop
2387 Try_One_Interp (It.Typ);
2388 Get_Next_Interp (Index, It);
2389 end loop;
2390 end if;
2392 -- If not a range, it can only be a subtype mark, or else there
2393 -- is a more basic error, to be diagnosed in Find_Type.
2395 else
2396 Find_Type (R);
2398 if Is_Entity_Name (R) then
2399 Check_Fully_Declared (Entity (R), R);
2400 end if;
2401 end if;
2403 -- Compatibility between expression and subtype mark or range is
2404 -- checked during resolution. The result of the operation is Boolean
2405 -- in any case.
2407 Set_Etype (N, Standard_Boolean);
2409 if Comes_From_Source (N)
2410 and then Present (Right_Opnd (N))
2411 and then Is_CPP_Class (Etype (Etype (Right_Opnd (N))))
2412 then
2413 Error_Msg_N ("membership test not applicable to cpp-class types", N);
2414 end if;
2415 end Analyze_Membership_Op;
2417 ----------------------
2418 -- Analyze_Negation --
2419 ----------------------
2421 procedure Analyze_Negation (N : Node_Id) is
2422 R : constant Node_Id := Right_Opnd (N);
2423 Op_Id : Entity_Id := Entity (N);
2425 begin
2426 Set_Etype (N, Any_Type);
2427 Candidate_Type := Empty;
2429 Analyze_Expression (R);
2431 if Present (Op_Id) then
2432 if Ekind (Op_Id) = E_Operator then
2433 Find_Negation_Types (R, Op_Id, N);
2434 else
2435 Add_One_Interp (N, Op_Id, Etype (Op_Id));
2436 end if;
2438 else
2439 Op_Id := Get_Name_Entity_Id (Chars (N));
2440 while Present (Op_Id) loop
2441 if Ekind (Op_Id) = E_Operator then
2442 Find_Negation_Types (R, Op_Id, N);
2443 else
2444 Analyze_User_Defined_Unary_Op (N, Op_Id);
2445 end if;
2447 Op_Id := Homonym (Op_Id);
2448 end loop;
2449 end if;
2451 Operator_Check (N);
2452 end Analyze_Negation;
2454 ------------------
2455 -- Analyze_Null --
2456 ------------------
2458 procedure Analyze_Null (N : Node_Id) is
2459 begin
2460 Set_Etype (N, Any_Access);
2461 end Analyze_Null;
2463 ----------------------
2464 -- Analyze_One_Call --
2465 ----------------------
2467 procedure Analyze_One_Call
2468 (N : Node_Id;
2469 Nam : Entity_Id;
2470 Report : Boolean;
2471 Success : out Boolean;
2472 Skip_First : Boolean := False)
2474 Actuals : constant List_Id := Parameter_Associations (N);
2475 Prev_T : constant Entity_Id := Etype (N);
2477 Must_Skip : constant Boolean := Skip_First
2478 or else Nkind (Original_Node (N)) = N_Selected_Component
2479 or else
2480 (Nkind (Original_Node (N)) = N_Indexed_Component
2481 and then Nkind (Prefix (Original_Node (N)))
2482 = N_Selected_Component);
2483 -- The first formal must be omitted from the match when trying to find
2484 -- a primitive operation that is a possible interpretation, and also
2485 -- after the call has been rewritten, because the corresponding actual
2486 -- is already known to be compatible, and because this may be an
2487 -- indexing of a call with default parameters.
2489 Formal : Entity_Id;
2490 Actual : Node_Id;
2491 Is_Indexed : Boolean := False;
2492 Is_Indirect : Boolean := False;
2493 Subp_Type : constant Entity_Id := Etype (Nam);
2494 Norm_OK : Boolean;
2496 function Operator_Hidden_By (Fun : Entity_Id) return Boolean;
2497 -- There may be a user-defined operator that hides the current
2498 -- interpretation. We must check for this independently of the
2499 -- analysis of the call with the user-defined operation, because
2500 -- the parameter names may be wrong and yet the hiding takes place.
2501 -- This fixes a problem with ACATS test B34014O.
2503 -- When the type Address is a visible integer type, and the DEC
2504 -- system extension is visible, the predefined operator may be
2505 -- hidden as well, by one of the address operations in auxdec.
2506 -- Finally, The abstract operations on address do not hide the
2507 -- predefined operator (this is the purpose of making them abstract).
2509 procedure Indicate_Name_And_Type;
2510 -- If candidate interpretation matches, indicate name and type of
2511 -- result on call node.
2513 ----------------------------
2514 -- Indicate_Name_And_Type --
2515 ----------------------------
2517 procedure Indicate_Name_And_Type is
2518 begin
2519 Add_One_Interp (N, Nam, Etype (Nam));
2520 Success := True;
2522 -- If the prefix of the call is a name, indicate the entity
2523 -- being called. If it is not a name, it is an expression that
2524 -- denotes an access to subprogram or else an entry or family. In
2525 -- the latter case, the name is a selected component, and the entity
2526 -- being called is noted on the selector.
2528 if not Is_Type (Nam) then
2529 if Is_Entity_Name (Name (N))
2530 or else Nkind (Name (N)) = N_Operator_Symbol
2531 then
2532 Set_Entity (Name (N), Nam);
2534 elsif Nkind (Name (N)) = N_Selected_Component then
2535 Set_Entity (Selector_Name (Name (N)), Nam);
2536 end if;
2537 end if;
2539 if Debug_Flag_E and not Report then
2540 Write_Str (" Overloaded call ");
2541 Write_Int (Int (N));
2542 Write_Str (" compatible with ");
2543 Write_Int (Int (Nam));
2544 Write_Eol;
2545 end if;
2546 end Indicate_Name_And_Type;
2548 ------------------------
2549 -- Operator_Hidden_By --
2550 ------------------------
2552 function Operator_Hidden_By (Fun : Entity_Id) return Boolean is
2553 Act1 : constant Node_Id := First_Actual (N);
2554 Act2 : constant Node_Id := Next_Actual (Act1);
2555 Form1 : constant Entity_Id := First_Formal (Fun);
2556 Form2 : constant Entity_Id := Next_Formal (Form1);
2558 begin
2559 if Ekind (Fun) /= E_Function
2560 or else Is_Abstract_Subprogram (Fun)
2561 then
2562 return False;
2564 elsif not Has_Compatible_Type (Act1, Etype (Form1)) then
2565 return False;
2567 elsif Present (Form2) then
2569 No (Act2) or else not Has_Compatible_Type (Act2, Etype (Form2))
2570 then
2571 return False;
2572 end if;
2574 elsif Present (Act2) then
2575 return False;
2576 end if;
2578 -- Now we know that the arity of the operator matches the function,
2579 -- and the function call is a valid interpretation. The function
2580 -- hides the operator if it has the right signature, or if one of
2581 -- its operands is a non-abstract operation on Address when this is
2582 -- a visible integer type.
2584 return Hides_Op (Fun, Nam)
2585 or else Is_Descendent_Of_Address (Etype (Form1))
2586 or else
2587 (Present (Form2)
2588 and then Is_Descendent_Of_Address (Etype (Form2)));
2589 end Operator_Hidden_By;
2591 -- Start of processing for Analyze_One_Call
2593 begin
2594 Success := False;
2596 -- If the subprogram has no formals or if all the formals have defaults,
2597 -- and the return type is an array type, the node may denote an indexing
2598 -- of the result of a parameterless call. In Ada 2005, the subprogram
2599 -- may have one non-defaulted formal, and the call may have been written
2600 -- in prefix notation, so that the rebuilt parameter list has more than
2601 -- one actual.
2603 if not Is_Overloadable (Nam)
2604 and then Ekind (Nam) /= E_Subprogram_Type
2605 and then Ekind (Nam) /= E_Entry_Family
2606 then
2607 return;
2608 end if;
2610 -- An indexing requires at least one actual
2612 if not Is_Empty_List (Actuals)
2613 and then
2614 (Needs_No_Actuals (Nam)
2615 or else
2616 (Needs_One_Actual (Nam)
2617 and then Present (Next_Actual (First (Actuals)))))
2618 then
2619 if Is_Array_Type (Subp_Type) then
2620 Is_Indexed := Try_Indexed_Call (N, Nam, Subp_Type, Must_Skip);
2622 elsif Is_Access_Type (Subp_Type)
2623 and then Is_Array_Type (Designated_Type (Subp_Type))
2624 then
2625 Is_Indexed :=
2626 Try_Indexed_Call
2627 (N, Nam, Designated_Type (Subp_Type), Must_Skip);
2629 -- The prefix can also be a parameterless function that returns an
2630 -- access to subprogram, in which case this is an indirect call.
2631 -- If this succeeds, an explicit dereference is added later on,
2632 -- in Analyze_Call or Resolve_Call.
2634 elsif Is_Access_Type (Subp_Type)
2635 and then Ekind (Designated_Type (Subp_Type)) = E_Subprogram_Type
2636 then
2637 Is_Indirect := Try_Indirect_Call (N, Nam, Subp_Type);
2638 end if;
2640 end if;
2642 -- If the call has been transformed into a slice, it is of the form
2643 -- F (Subtype) where F is parameterless. The node has been rewritten in
2644 -- Try_Indexed_Call and there is nothing else to do.
2646 if Is_Indexed
2647 and then Nkind (N) = N_Slice
2648 then
2649 return;
2650 end if;
2652 Normalize_Actuals
2653 (N, Nam, (Report and not Is_Indexed and not Is_Indirect), Norm_OK);
2655 if not Norm_OK then
2657 -- If an indirect call is a possible interpretation, indicate
2658 -- success to the caller.
2660 if Is_Indirect then
2661 Success := True;
2662 return;
2664 -- Mismatch in number or names of parameters
2666 elsif Debug_Flag_E then
2667 Write_Str (" normalization fails in call ");
2668 Write_Int (Int (N));
2669 Write_Str (" with subprogram ");
2670 Write_Int (Int (Nam));
2671 Write_Eol;
2672 end if;
2674 -- If the context expects a function call, discard any interpretation
2675 -- that is a procedure. If the node is not overloaded, leave as is for
2676 -- better error reporting when type mismatch is found.
2678 elsif Nkind (N) = N_Function_Call
2679 and then Is_Overloaded (Name (N))
2680 and then Ekind (Nam) = E_Procedure
2681 then
2682 return;
2684 -- Ditto for function calls in a procedure context
2686 elsif Nkind (N) = N_Procedure_Call_Statement
2687 and then Is_Overloaded (Name (N))
2688 and then Etype (Nam) /= Standard_Void_Type
2689 then
2690 return;
2692 elsif No (Actuals) then
2694 -- If Normalize succeeds, then there are default parameters for
2695 -- all formals.
2697 Indicate_Name_And_Type;
2699 elsif Ekind (Nam) = E_Operator then
2700 if Nkind (N) = N_Procedure_Call_Statement then
2701 return;
2702 end if;
2704 -- This can occur when the prefix of the call is an operator
2705 -- name or an expanded name whose selector is an operator name.
2707 Analyze_Operator_Call (N, Nam);
2709 if Etype (N) /= Prev_T then
2711 -- Check that operator is not hidden by a function interpretation
2713 if Is_Overloaded (Name (N)) then
2714 declare
2715 I : Interp_Index;
2716 It : Interp;
2718 begin
2719 Get_First_Interp (Name (N), I, It);
2720 while Present (It.Nam) loop
2721 if Operator_Hidden_By (It.Nam) then
2722 Set_Etype (N, Prev_T);
2723 return;
2724 end if;
2726 Get_Next_Interp (I, It);
2727 end loop;
2728 end;
2729 end if;
2731 -- If operator matches formals, record its name on the call.
2732 -- If the operator is overloaded, Resolve will select the
2733 -- correct one from the list of interpretations. The call
2734 -- node itself carries the first candidate.
2736 Set_Entity (Name (N), Nam);
2737 Success := True;
2739 elsif Report and then Etype (N) = Any_Type then
2740 Error_Msg_N ("incompatible arguments for operator", N);
2741 end if;
2743 else
2744 -- Normalize_Actuals has chained the named associations in the
2745 -- correct order of the formals.
2747 Actual := First_Actual (N);
2748 Formal := First_Formal (Nam);
2750 -- If we are analyzing a call rewritten from object notation,
2751 -- skip first actual, which may be rewritten later as an
2752 -- explicit dereference.
2754 if Must_Skip then
2755 Next_Actual (Actual);
2756 Next_Formal (Formal);
2757 end if;
2759 while Present (Actual) and then Present (Formal) loop
2760 if Nkind (Parent (Actual)) /= N_Parameter_Association
2761 or else Chars (Selector_Name (Parent (Actual))) = Chars (Formal)
2762 then
2763 -- The actual can be compatible with the formal, but we must
2764 -- also check that the context is not an address type that is
2765 -- visibly an integer type, as is the case in VMS_64. In this
2766 -- case the use of literals is illegal, except in the body of
2767 -- descendents of system, where arithmetic operations on
2768 -- address are of course used.
2770 if Has_Compatible_Type (Actual, Etype (Formal))
2771 and then
2772 (Etype (Actual) /= Universal_Integer
2773 or else not Is_Descendent_Of_Address (Etype (Formal))
2774 or else
2775 Is_Predefined_File_Name
2776 (Unit_File_Name (Get_Source_Unit (N))))
2777 then
2778 Next_Actual (Actual);
2779 Next_Formal (Formal);
2781 else
2782 if Debug_Flag_E then
2783 Write_Str (" type checking fails in call ");
2784 Write_Int (Int (N));
2785 Write_Str (" with formal ");
2786 Write_Int (Int (Formal));
2787 Write_Str (" in subprogram ");
2788 Write_Int (Int (Nam));
2789 Write_Eol;
2790 end if;
2792 if Report and not Is_Indexed and not Is_Indirect then
2794 -- Ada 2005 (AI-251): Complete the error notification
2795 -- to help new Ada 2005 users.
2797 if Is_Class_Wide_Type (Etype (Formal))
2798 and then Is_Interface (Etype (Etype (Formal)))
2799 and then not Interface_Present_In_Ancestor
2800 (Typ => Etype (Actual),
2801 Iface => Etype (Etype (Formal)))
2802 then
2803 Error_Msg_NE
2804 ("(Ada 2005) does not implement interface }",
2805 Actual, Etype (Etype (Formal)));
2806 end if;
2808 Wrong_Type (Actual, Etype (Formal));
2810 if Nkind (Actual) = N_Op_Eq
2811 and then Nkind (Left_Opnd (Actual)) = N_Identifier
2812 then
2813 Formal := First_Formal (Nam);
2814 while Present (Formal) loop
2815 if Chars (Left_Opnd (Actual)) = Chars (Formal) then
2816 Error_Msg_N -- CODEFIX
2817 ("possible misspelling of `='>`!", Actual);
2818 exit;
2819 end if;
2821 Next_Formal (Formal);
2822 end loop;
2823 end if;
2825 if All_Errors_Mode then
2826 Error_Msg_Sloc := Sloc (Nam);
2828 if Is_Overloadable (Nam)
2829 and then Present (Alias (Nam))
2830 and then not Comes_From_Source (Nam)
2831 then
2832 Error_Msg_NE
2833 ("\\ =='> in call to inherited operation & #!",
2834 Actual, Nam);
2836 elsif Ekind (Nam) = E_Subprogram_Type then
2837 declare
2838 Access_To_Subprogram_Typ :
2839 constant Entity_Id :=
2840 Defining_Identifier
2841 (Associated_Node_For_Itype (Nam));
2842 begin
2843 Error_Msg_NE (
2844 "\\ =='> in call to dereference of &#!",
2845 Actual, Access_To_Subprogram_Typ);
2846 end;
2848 else
2849 Error_Msg_NE
2850 ("\\ =='> in call to &#!", Actual, Nam);
2852 end if;
2853 end if;
2854 end if;
2856 return;
2857 end if;
2859 else
2860 -- Normalize_Actuals has verified that a default value exists
2861 -- for this formal. Current actual names a subsequent formal.
2863 Next_Formal (Formal);
2864 end if;
2865 end loop;
2867 -- On exit, all actuals match
2869 Indicate_Name_And_Type;
2870 end if;
2871 end Analyze_One_Call;
2873 ---------------------------
2874 -- Analyze_Operator_Call --
2875 ---------------------------
2877 procedure Analyze_Operator_Call (N : Node_Id; Op_Id : Entity_Id) is
2878 Op_Name : constant Name_Id := Chars (Op_Id);
2879 Act1 : constant Node_Id := First_Actual (N);
2880 Act2 : constant Node_Id := Next_Actual (Act1);
2882 begin
2883 -- Binary operator case
2885 if Present (Act2) then
2887 -- If more than two operands, then not binary operator after all
2889 if Present (Next_Actual (Act2)) then
2890 return;
2892 elsif Op_Name = Name_Op_Add
2893 or else Op_Name = Name_Op_Subtract
2894 or else Op_Name = Name_Op_Multiply
2895 or else Op_Name = Name_Op_Divide
2896 or else Op_Name = Name_Op_Mod
2897 or else Op_Name = Name_Op_Rem
2898 or else Op_Name = Name_Op_Expon
2899 then
2900 Find_Arithmetic_Types (Act1, Act2, Op_Id, N);
2902 elsif Op_Name = Name_Op_And
2903 or else Op_Name = Name_Op_Or
2904 or else Op_Name = Name_Op_Xor
2905 then
2906 Find_Boolean_Types (Act1, Act2, Op_Id, N);
2908 elsif Op_Name = Name_Op_Lt
2909 or else Op_Name = Name_Op_Le
2910 or else Op_Name = Name_Op_Gt
2911 or else Op_Name = Name_Op_Ge
2912 then
2913 Find_Comparison_Types (Act1, Act2, Op_Id, N);
2915 elsif Op_Name = Name_Op_Eq
2916 or else Op_Name = Name_Op_Ne
2917 then
2918 Find_Equality_Types (Act1, Act2, Op_Id, N);
2920 elsif Op_Name = Name_Op_Concat then
2921 Find_Concatenation_Types (Act1, Act2, Op_Id, N);
2923 -- Is this else null correct, or should it be an abort???
2925 else
2926 null;
2927 end if;
2929 -- Unary operator case
2931 else
2932 if Op_Name = Name_Op_Subtract or else
2933 Op_Name = Name_Op_Add or else
2934 Op_Name = Name_Op_Abs
2935 then
2936 Find_Unary_Types (Act1, Op_Id, N);
2938 elsif
2939 Op_Name = Name_Op_Not
2940 then
2941 Find_Negation_Types (Act1, Op_Id, N);
2943 -- Is this else null correct, or should it be an abort???
2945 else
2946 null;
2947 end if;
2948 end if;
2949 end Analyze_Operator_Call;
2951 -------------------------------------------
2952 -- Analyze_Overloaded_Selected_Component --
2953 -------------------------------------------
2955 procedure Analyze_Overloaded_Selected_Component (N : Node_Id) is
2956 Nam : constant Node_Id := Prefix (N);
2957 Sel : constant Node_Id := Selector_Name (N);
2958 Comp : Entity_Id;
2959 I : Interp_Index;
2960 It : Interp;
2961 T : Entity_Id;
2963 begin
2964 Set_Etype (Sel, Any_Type);
2966 Get_First_Interp (Nam, I, It);
2967 while Present (It.Typ) loop
2968 if Is_Access_Type (It.Typ) then
2969 T := Designated_Type (It.Typ);
2970 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
2971 else
2972 T := It.Typ;
2973 end if;
2975 if Is_Record_Type (T) then
2977 -- If the prefix is a class-wide type, the visible components are
2978 -- those of the base type.
2980 if Is_Class_Wide_Type (T) then
2981 T := Etype (T);
2982 end if;
2984 Comp := First_Entity (T);
2985 while Present (Comp) loop
2986 if Chars (Comp) = Chars (Sel)
2987 and then Is_Visible_Component (Comp)
2988 then
2990 -- AI05-105: if the context is an object renaming with
2991 -- an anonymous access type, the expected type of the
2992 -- object must be anonymous. This is a name resolution rule.
2994 if Nkind (Parent (N)) /= N_Object_Renaming_Declaration
2995 or else No (Access_Definition (Parent (N)))
2996 or else Ekind (Etype (Comp)) = E_Anonymous_Access_Type
2997 or else
2998 Ekind (Etype (Comp)) = E_Anonymous_Access_Subprogram_Type
2999 then
3000 Set_Entity (Sel, Comp);
3001 Set_Etype (Sel, Etype (Comp));
3002 Add_One_Interp (N, Etype (Comp), Etype (Comp));
3004 -- This also specifies a candidate to resolve the name.
3005 -- Further overloading will be resolved from context.
3006 -- The selector name itself does not carry overloading
3007 -- information.
3009 Set_Etype (Nam, It.Typ);
3011 else
3012 -- Named access type in the context of a renaming
3013 -- declaration with an access definition. Remove
3014 -- inapplicable candidate.
3016 Remove_Interp (I);
3017 end if;
3018 end if;
3020 Next_Entity (Comp);
3021 end loop;
3023 elsif Is_Concurrent_Type (T) then
3024 Comp := First_Entity (T);
3025 while Present (Comp)
3026 and then Comp /= First_Private_Entity (T)
3027 loop
3028 if Chars (Comp) = Chars (Sel) then
3029 if Is_Overloadable (Comp) then
3030 Add_One_Interp (Sel, Comp, Etype (Comp));
3031 else
3032 Set_Entity_With_Style_Check (Sel, Comp);
3033 Generate_Reference (Comp, Sel);
3034 end if;
3036 Set_Etype (Sel, Etype (Comp));
3037 Set_Etype (N, Etype (Comp));
3038 Set_Etype (Nam, It.Typ);
3040 -- For access type case, introduce explicit dereference for
3041 -- more uniform treatment of entry calls. Do this only once
3042 -- if several interpretations yield an access type.
3044 if Is_Access_Type (Etype (Nam))
3045 and then Nkind (Nam) /= N_Explicit_Dereference
3046 then
3047 Insert_Explicit_Dereference (Nam);
3048 Error_Msg_NW
3049 (Warn_On_Dereference, "?implicit dereference", N);
3050 end if;
3051 end if;
3053 Next_Entity (Comp);
3054 end loop;
3056 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3057 end if;
3059 Get_Next_Interp (I, It);
3060 end loop;
3062 if Etype (N) = Any_Type
3063 and then not Try_Object_Operation (N)
3064 then
3065 Error_Msg_NE ("undefined selector& for overloaded prefix", N, Sel);
3066 Set_Entity (Sel, Any_Id);
3067 Set_Etype (Sel, Any_Type);
3068 end if;
3069 end Analyze_Overloaded_Selected_Component;
3071 ----------------------------------
3072 -- Analyze_Qualified_Expression --
3073 ----------------------------------
3075 procedure Analyze_Qualified_Expression (N : Node_Id) is
3076 Mark : constant Entity_Id := Subtype_Mark (N);
3077 Expr : constant Node_Id := Expression (N);
3078 I : Interp_Index;
3079 It : Interp;
3080 T : Entity_Id;
3082 begin
3083 Analyze_Expression (Expr);
3085 Set_Etype (N, Any_Type);
3086 Find_Type (Mark);
3087 T := Entity (Mark);
3088 Set_Etype (N, T);
3090 if T = Any_Type then
3091 return;
3092 end if;
3094 Check_Fully_Declared (T, N);
3096 -- If expected type is class-wide, check for exact match before
3097 -- expansion, because if the expression is a dispatching call it
3098 -- may be rewritten as explicit dereference with class-wide result.
3099 -- If expression is overloaded, retain only interpretations that
3100 -- will yield exact matches.
3102 if Is_Class_Wide_Type (T) then
3103 if not Is_Overloaded (Expr) then
3104 if Base_Type (Etype (Expr)) /= Base_Type (T) then
3105 if Nkind (Expr) = N_Aggregate then
3106 Error_Msg_N ("type of aggregate cannot be class-wide", Expr);
3107 else
3108 Wrong_Type (Expr, T);
3109 end if;
3110 end if;
3112 else
3113 Get_First_Interp (Expr, I, It);
3115 while Present (It.Nam) loop
3116 if Base_Type (It.Typ) /= Base_Type (T) then
3117 Remove_Interp (I);
3118 end if;
3120 Get_Next_Interp (I, It);
3121 end loop;
3122 end if;
3123 end if;
3125 Set_Etype (N, T);
3126 end Analyze_Qualified_Expression;
3128 -------------------
3129 -- Analyze_Range --
3130 -------------------
3132 procedure Analyze_Range (N : Node_Id) is
3133 L : constant Node_Id := Low_Bound (N);
3134 H : constant Node_Id := High_Bound (N);
3135 I1, I2 : Interp_Index;
3136 It1, It2 : Interp;
3138 procedure Check_Common_Type (T1, T2 : Entity_Id);
3139 -- Verify the compatibility of two types, and choose the
3140 -- non universal one if the other is universal.
3142 procedure Check_High_Bound (T : Entity_Id);
3143 -- Test one interpretation of the low bound against all those
3144 -- of the high bound.
3146 procedure Check_Universal_Expression (N : Node_Id);
3147 -- In Ada83, reject bounds of a universal range that are not
3148 -- literals or entity names.
3150 -----------------------
3151 -- Check_Common_Type --
3152 -----------------------
3154 procedure Check_Common_Type (T1, T2 : Entity_Id) is
3155 begin
3156 if Covers (T1 => T1, T2 => T2)
3157 or else
3158 Covers (T1 => T2, T2 => T1)
3159 then
3160 if T1 = Universal_Integer
3161 or else T1 = Universal_Real
3162 or else T1 = Any_Character
3163 then
3164 Add_One_Interp (N, Base_Type (T2), Base_Type (T2));
3166 elsif T1 = T2 then
3167 Add_One_Interp (N, T1, T1);
3169 else
3170 Add_One_Interp (N, Base_Type (T1), Base_Type (T1));
3171 end if;
3172 end if;
3173 end Check_Common_Type;
3175 ----------------------
3176 -- Check_High_Bound --
3177 ----------------------
3179 procedure Check_High_Bound (T : Entity_Id) is
3180 begin
3181 if not Is_Overloaded (H) then
3182 Check_Common_Type (T, Etype (H));
3183 else
3184 Get_First_Interp (H, I2, It2);
3185 while Present (It2.Typ) loop
3186 Check_Common_Type (T, It2.Typ);
3187 Get_Next_Interp (I2, It2);
3188 end loop;
3189 end if;
3190 end Check_High_Bound;
3192 -----------------------------
3193 -- Is_Universal_Expression --
3194 -----------------------------
3196 procedure Check_Universal_Expression (N : Node_Id) is
3197 begin
3198 if Etype (N) = Universal_Integer
3199 and then Nkind (N) /= N_Integer_Literal
3200 and then not Is_Entity_Name (N)
3201 and then Nkind (N) /= N_Attribute_Reference
3202 then
3203 Error_Msg_N ("illegal bound in discrete range", N);
3204 end if;
3205 end Check_Universal_Expression;
3207 -- Start of processing for Analyze_Range
3209 begin
3210 Set_Etype (N, Any_Type);
3211 Analyze_Expression (L);
3212 Analyze_Expression (H);
3214 if Etype (L) = Any_Type or else Etype (H) = Any_Type then
3215 return;
3217 else
3218 if not Is_Overloaded (L) then
3219 Check_High_Bound (Etype (L));
3220 else
3221 Get_First_Interp (L, I1, It1);
3222 while Present (It1.Typ) loop
3223 Check_High_Bound (It1.Typ);
3224 Get_Next_Interp (I1, It1);
3225 end loop;
3226 end if;
3228 -- If result is Any_Type, then we did not find a compatible pair
3230 if Etype (N) = Any_Type then
3231 Error_Msg_N ("incompatible types in range ", N);
3232 end if;
3233 end if;
3235 if Ada_Version = Ada_83
3236 and then
3237 (Nkind (Parent (N)) = N_Loop_Parameter_Specification
3238 or else Nkind (Parent (N)) = N_Constrained_Array_Definition)
3239 then
3240 Check_Universal_Expression (L);
3241 Check_Universal_Expression (H);
3242 end if;
3243 end Analyze_Range;
3245 -----------------------
3246 -- Analyze_Reference --
3247 -----------------------
3249 procedure Analyze_Reference (N : Node_Id) is
3250 P : constant Node_Id := Prefix (N);
3251 E : Entity_Id;
3252 T : Entity_Id;
3253 Acc_Type : Entity_Id;
3255 begin
3256 Analyze (P);
3258 -- An interesting error check, if we take the 'Reference of an object
3259 -- for which a pragma Atomic or Volatile has been given, and the type
3260 -- of the object is not Atomic or Volatile, then we are in trouble. The
3261 -- problem is that no trace of the atomic/volatile status will remain
3262 -- for the backend to respect when it deals with the resulting pointer,
3263 -- since the pointer type will not be marked atomic (it is a pointer to
3264 -- the base type of the object).
3266 -- It is not clear if that can ever occur, but in case it does, we will
3267 -- generate an error message. Not clear if this message can ever be
3268 -- generated, and pretty clear that it represents a bug if it is, still
3269 -- seems worth checking, except in CodePeer mode where we do not really
3270 -- care and don't want to bother the user.
3272 T := Etype (P);
3274 if Is_Entity_Name (P)
3275 and then Is_Object_Reference (P)
3276 and then not CodePeer_Mode
3277 then
3278 E := Entity (P);
3279 T := Etype (P);
3281 if (Has_Atomic_Components (E)
3282 and then not Has_Atomic_Components (T))
3283 or else
3284 (Has_Volatile_Components (E)
3285 and then not Has_Volatile_Components (T))
3286 or else (Is_Atomic (E) and then not Is_Atomic (T))
3287 or else (Is_Volatile (E) and then not Is_Volatile (T))
3288 then
3289 Error_Msg_N ("cannot take reference to Atomic/Volatile object", N);
3290 end if;
3291 end if;
3293 -- Carry on with normal processing
3295 Acc_Type := Create_Itype (E_Allocator_Type, N);
3296 Set_Etype (Acc_Type, Acc_Type);
3297 Set_Directly_Designated_Type (Acc_Type, Etype (P));
3298 Set_Etype (N, Acc_Type);
3299 end Analyze_Reference;
3301 --------------------------------
3302 -- Analyze_Selected_Component --
3303 --------------------------------
3305 -- Prefix is a record type or a task or protected type. In the latter case,
3306 -- the selector must denote a visible entry.
3308 procedure Analyze_Selected_Component (N : Node_Id) is
3309 Name : constant Node_Id := Prefix (N);
3310 Sel : constant Node_Id := Selector_Name (N);
3311 Act_Decl : Node_Id;
3312 Comp : Entity_Id;
3313 Has_Candidate : Boolean := False;
3314 In_Scope : Boolean;
3315 Parent_N : Node_Id;
3316 Pent : Entity_Id := Empty;
3317 Prefix_Type : Entity_Id;
3319 Type_To_Use : Entity_Id;
3320 -- In most cases this is the Prefix_Type, but if the Prefix_Type is
3321 -- a class-wide type, we use its root type, whose components are
3322 -- present in the class-wide type.
3324 Is_Single_Concurrent_Object : Boolean;
3325 -- Set True if the prefix is a single task or a single protected object
3327 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean;
3328 -- It is known that the parent of N denotes a subprogram call. Comp
3329 -- is an overloadable component of the concurrent type of the prefix.
3330 -- Determine whether all formals of the parent of N and Comp are mode
3331 -- conformant. If the parent node is not analyzed yet it may be an
3332 -- indexed component rather than a function call.
3334 ------------------------------
3335 -- Has_Mode_Conformant_Spec --
3336 ------------------------------
3338 function Has_Mode_Conformant_Spec (Comp : Entity_Id) return Boolean is
3339 Comp_Param : Entity_Id;
3340 Param : Node_Id;
3341 Param_Typ : Entity_Id;
3343 begin
3344 Comp_Param := First_Formal (Comp);
3346 if Nkind (Parent (N)) = N_Indexed_Component then
3347 Param := First (Expressions (Parent (N)));
3348 else
3349 Param := First (Parameter_Associations (Parent (N)));
3350 end if;
3352 while Present (Comp_Param)
3353 and then Present (Param)
3354 loop
3355 Param_Typ := Find_Parameter_Type (Param);
3357 if Present (Param_Typ)
3358 and then
3359 not Conforming_Types
3360 (Etype (Comp_Param), Param_Typ, Mode_Conformant)
3361 then
3362 return False;
3363 end if;
3365 Next_Formal (Comp_Param);
3366 Next (Param);
3367 end loop;
3369 -- One of the specs has additional formals
3371 if Present (Comp_Param) or else Present (Param) then
3372 return False;
3373 end if;
3375 return True;
3376 end Has_Mode_Conformant_Spec;
3378 -- Start of processing for Analyze_Selected_Component
3380 begin
3381 Set_Etype (N, Any_Type);
3383 if Is_Overloaded (Name) then
3384 Analyze_Overloaded_Selected_Component (N);
3385 return;
3387 elsif Etype (Name) = Any_Type then
3388 Set_Entity (Sel, Any_Id);
3389 Set_Etype (Sel, Any_Type);
3390 return;
3392 else
3393 Prefix_Type := Etype (Name);
3394 end if;
3396 if Is_Access_Type (Prefix_Type) then
3398 -- A RACW object can never be used as prefix of a selected component
3399 -- since that means it is dereferenced without being a controlling
3400 -- operand of a dispatching operation (RM E.2.2(16/1)). Before
3401 -- reporting an error, we must check whether this is actually a
3402 -- dispatching call in prefix form.
3404 if Is_Remote_Access_To_Class_Wide_Type (Prefix_Type)
3405 and then Comes_From_Source (N)
3406 then
3407 if Try_Object_Operation (N) then
3408 return;
3409 else
3410 Error_Msg_N
3411 ("invalid dereference of a remote access-to-class-wide value",
3413 end if;
3415 -- Normal case of selected component applied to access type
3417 else
3418 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3420 if Is_Entity_Name (Name) then
3421 Pent := Entity (Name);
3422 elsif Nkind (Name) = N_Selected_Component
3423 and then Is_Entity_Name (Selector_Name (Name))
3424 then
3425 Pent := Entity (Selector_Name (Name));
3426 end if;
3428 Prefix_Type := Process_Implicit_Dereference_Prefix (Pent, Name);
3429 end if;
3431 -- If we have an explicit dereference of a remote access-to-class-wide
3432 -- value, then issue an error (see RM-E.2.2(16/1)). However we first
3433 -- have to check for the case of a prefix that is a controlling operand
3434 -- of a prefixed dispatching call, as the dereference is legal in that
3435 -- case. Normally this condition is checked in Validate_Remote_Access_
3436 -- To_Class_Wide_Type, but we have to defer the checking for selected
3437 -- component prefixes because of the prefixed dispatching call case.
3438 -- Note that implicit dereferences are checked for this just above.
3440 elsif Nkind (Name) = N_Explicit_Dereference
3441 and then Is_Remote_Access_To_Class_Wide_Type (Etype (Prefix (Name)))
3442 and then Comes_From_Source (N)
3443 then
3444 if Try_Object_Operation (N) then
3445 return;
3446 else
3447 Error_Msg_N
3448 ("invalid dereference of a remote access-to-class-wide value",
3450 end if;
3451 end if;
3453 -- (Ada 2005): if the prefix is the limited view of a type, and
3454 -- the context already includes the full view, use the full view
3455 -- in what follows, either to retrieve a component of to find
3456 -- a primitive operation. If the prefix is an explicit dereference,
3457 -- set the type of the prefix to reflect this transformation.
3458 -- If the non-limited view is itself an incomplete type, get the
3459 -- full view if available.
3461 if Is_Incomplete_Type (Prefix_Type)
3462 and then From_With_Type (Prefix_Type)
3463 and then Present (Non_Limited_View (Prefix_Type))
3464 then
3465 Prefix_Type := Get_Full_View (Non_Limited_View (Prefix_Type));
3467 if Nkind (N) = N_Explicit_Dereference then
3468 Set_Etype (Prefix (N), Prefix_Type);
3469 end if;
3471 elsif Ekind (Prefix_Type) = E_Class_Wide_Type
3472 and then From_With_Type (Prefix_Type)
3473 and then Present (Non_Limited_View (Etype (Prefix_Type)))
3474 then
3475 Prefix_Type :=
3476 Class_Wide_Type (Non_Limited_View (Etype (Prefix_Type)));
3478 if Nkind (N) = N_Explicit_Dereference then
3479 Set_Etype (Prefix (N), Prefix_Type);
3480 end if;
3481 end if;
3483 if Ekind (Prefix_Type) = E_Private_Subtype then
3484 Prefix_Type := Base_Type (Prefix_Type);
3485 end if;
3487 Type_To_Use := Prefix_Type;
3489 -- For class-wide types, use the entity list of the root type. This
3490 -- indirection is specially important for private extensions because
3491 -- only the root type get switched (not the class-wide type).
3493 if Is_Class_Wide_Type (Prefix_Type) then
3494 Type_To_Use := Root_Type (Prefix_Type);
3495 end if;
3497 -- If the prefix is a single concurrent object, use its name in error
3498 -- messages, rather than that of its anonymous type.
3500 Is_Single_Concurrent_Object :=
3501 Is_Concurrent_Type (Prefix_Type)
3502 and then Is_Internal_Name (Chars (Prefix_Type))
3503 and then not Is_Derived_Type (Prefix_Type)
3504 and then Is_Entity_Name (Name);
3506 Comp := First_Entity (Type_To_Use);
3508 -- If the selector has an original discriminant, the node appears in
3509 -- an instance. Replace the discriminant with the corresponding one
3510 -- in the current discriminated type. For nested generics, this must
3511 -- be done transitively, so note the new original discriminant.
3513 if Nkind (Sel) = N_Identifier
3514 and then Present (Original_Discriminant (Sel))
3515 then
3516 Comp := Find_Corresponding_Discriminant (Sel, Prefix_Type);
3518 -- Mark entity before rewriting, for completeness and because
3519 -- subsequent semantic checks might examine the original node.
3521 Set_Entity (Sel, Comp);
3522 Rewrite (Selector_Name (N),
3523 New_Occurrence_Of (Comp, Sloc (N)));
3524 Set_Original_Discriminant (Selector_Name (N), Comp);
3525 Set_Etype (N, Etype (Comp));
3527 if Is_Access_Type (Etype (Name)) then
3528 Insert_Explicit_Dereference (Name);
3529 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
3530 end if;
3532 elsif Is_Record_Type (Prefix_Type) then
3534 -- Find component with given name
3536 while Present (Comp) loop
3537 if Chars (Comp) = Chars (Sel)
3538 and then Is_Visible_Component (Comp)
3539 then
3540 Set_Entity_With_Style_Check (Sel, Comp);
3541 Set_Etype (Sel, Etype (Comp));
3543 if Ekind (Comp) = E_Discriminant then
3544 if Is_Unchecked_Union (Base_Type (Prefix_Type)) then
3545 Error_Msg_N
3546 ("cannot reference discriminant of Unchecked_Union",
3547 Sel);
3548 end if;
3550 if Is_Generic_Type (Prefix_Type)
3551 or else
3552 Is_Generic_Type (Root_Type (Prefix_Type))
3553 then
3554 Set_Original_Discriminant (Sel, Comp);
3555 end if;
3556 end if;
3558 -- Resolve the prefix early otherwise it is not possible to
3559 -- build the actual subtype of the component: it may need
3560 -- to duplicate this prefix and duplication is only allowed
3561 -- on fully resolved expressions.
3563 Resolve (Name);
3565 -- Ada 2005 (AI-50217): Check wrong use of incomplete types or
3566 -- subtypes in a package specification.
3567 -- Example:
3569 -- limited with Pkg;
3570 -- package Pkg is
3571 -- type Acc_Inc is access Pkg.T;
3572 -- X : Acc_Inc;
3573 -- N : Natural := X.all.Comp; -- ERROR, limited view
3574 -- end Pkg; -- Comp is not visible
3576 if Nkind (Name) = N_Explicit_Dereference
3577 and then From_With_Type (Etype (Prefix (Name)))
3578 and then not Is_Potentially_Use_Visible (Etype (Name))
3579 and then Nkind (Parent (Cunit_Entity (Current_Sem_Unit))) =
3580 N_Package_Specification
3581 then
3582 Error_Msg_NE
3583 ("premature usage of incomplete}", Prefix (Name),
3584 Etype (Prefix (Name)));
3585 end if;
3587 -- We never need an actual subtype for the case of a selection
3588 -- for a indexed component of a non-packed array, since in
3589 -- this case gigi generates all the checks and can find the
3590 -- necessary bounds information.
3592 -- We also do not need an actual subtype for the case of a
3593 -- first, last, length, or range attribute applied to a
3594 -- non-packed array, since gigi can again get the bounds in
3595 -- these cases (gigi cannot handle the packed case, since it
3596 -- has the bounds of the packed array type, not the original
3597 -- bounds of the type). However, if the prefix is itself a
3598 -- selected component, as in a.b.c (i), gigi may regard a.b.c
3599 -- as a dynamic-sized temporary, so we do generate an actual
3600 -- subtype for this case.
3602 Parent_N := Parent (N);
3604 if not Is_Packed (Etype (Comp))
3605 and then
3606 ((Nkind (Parent_N) = N_Indexed_Component
3607 and then Nkind (Name) /= N_Selected_Component)
3608 or else
3609 (Nkind (Parent_N) = N_Attribute_Reference
3610 and then (Attribute_Name (Parent_N) = Name_First
3611 or else
3612 Attribute_Name (Parent_N) = Name_Last
3613 or else
3614 Attribute_Name (Parent_N) = Name_Length
3615 or else
3616 Attribute_Name (Parent_N) = Name_Range)))
3617 then
3618 Set_Etype (N, Etype (Comp));
3620 -- If full analysis is not enabled, we do not generate an
3621 -- actual subtype, because in the absence of expansion
3622 -- reference to a formal of a protected type, for example,
3623 -- will not be properly transformed, and will lead to
3624 -- out-of-scope references in gigi.
3626 -- In all other cases, we currently build an actual subtype.
3627 -- It seems likely that many of these cases can be avoided,
3628 -- but right now, the front end makes direct references to the
3629 -- bounds (e.g. in generating a length check), and if we do
3630 -- not make an actual subtype, we end up getting a direct
3631 -- reference to a discriminant, which will not do.
3633 elsif Full_Analysis then
3634 Act_Decl :=
3635 Build_Actual_Subtype_Of_Component (Etype (Comp), N);
3636 Insert_Action (N, Act_Decl);
3638 if No (Act_Decl) then
3639 Set_Etype (N, Etype (Comp));
3641 else
3642 -- Component type depends on discriminants. Enter the
3643 -- main attributes of the subtype.
3645 declare
3646 Subt : constant Entity_Id :=
3647 Defining_Identifier (Act_Decl);
3649 begin
3650 Set_Etype (Subt, Base_Type (Etype (Comp)));
3651 Set_Ekind (Subt, Ekind (Etype (Comp)));
3652 Set_Etype (N, Subt);
3653 end;
3654 end if;
3656 -- If Full_Analysis not enabled, just set the Etype
3658 else
3659 Set_Etype (N, Etype (Comp));
3660 end if;
3662 return;
3663 end if;
3665 -- If the prefix is a private extension, check only the visible
3666 -- components of the partial view. This must include the tag,
3667 -- which can appear in expanded code in a tag check.
3669 if Ekind (Type_To_Use) = E_Record_Type_With_Private
3670 and then Chars (Selector_Name (N)) /= Name_uTag
3671 then
3672 exit when Comp = Last_Entity (Type_To_Use);
3673 end if;
3675 Next_Entity (Comp);
3676 end loop;
3678 -- Ada 2005 (AI-252): The selected component can be interpreted as
3679 -- a prefixed view of a subprogram. Depending on the context, this is
3680 -- either a name that can appear in a renaming declaration, or part
3681 -- of an enclosing call given in prefix form.
3683 -- Ada 2005 (AI05-0030): In the case of dispatching requeue, the
3684 -- selected component should resolve to a name.
3686 if Ada_Version >= Ada_05
3687 and then Is_Tagged_Type (Prefix_Type)
3688 and then not Is_Concurrent_Type (Prefix_Type)
3689 then
3690 if Nkind (Parent (N)) = N_Generic_Association
3691 or else Nkind (Parent (N)) = N_Requeue_Statement
3692 or else Nkind (Parent (N)) = N_Subprogram_Renaming_Declaration
3693 then
3694 if Find_Primitive_Operation (N) then
3695 return;
3696 end if;
3698 elsif Try_Object_Operation (N) then
3699 return;
3700 end if;
3702 -- If the transformation fails, it will be necessary to redo the
3703 -- analysis with all errors enabled, to indicate candidate
3704 -- interpretations and reasons for each failure ???
3706 end if;
3708 elsif Is_Private_Type (Prefix_Type) then
3710 -- Allow access only to discriminants of the type. If the type has
3711 -- no full view, gigi uses the parent type for the components, so we
3712 -- do the same here.
3714 if No (Full_View (Prefix_Type)) then
3715 Type_To_Use := Root_Type (Base_Type (Prefix_Type));
3716 Comp := First_Entity (Type_To_Use);
3717 end if;
3719 while Present (Comp) loop
3720 if Chars (Comp) = Chars (Sel) then
3721 if Ekind (Comp) = E_Discriminant then
3722 Set_Entity_With_Style_Check (Sel, Comp);
3723 Generate_Reference (Comp, Sel);
3725 Set_Etype (Sel, Etype (Comp));
3726 Set_Etype (N, Etype (Comp));
3728 if Is_Generic_Type (Prefix_Type)
3729 or else Is_Generic_Type (Root_Type (Prefix_Type))
3730 then
3731 Set_Original_Discriminant (Sel, Comp);
3732 end if;
3734 -- Before declaring an error, check whether this is tagged
3735 -- private type and a call to a primitive operation.
3737 elsif Ada_Version >= Ada_05
3738 and then Is_Tagged_Type (Prefix_Type)
3739 and then Try_Object_Operation (N)
3740 then
3741 return;
3743 else
3744 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3745 Error_Msg_NE ("invisible selector& for }", N, Sel);
3746 Set_Entity (Sel, Any_Id);
3747 Set_Etype (N, Any_Type);
3748 end if;
3750 return;
3751 end if;
3753 Next_Entity (Comp);
3754 end loop;
3756 elsif Is_Concurrent_Type (Prefix_Type) then
3758 -- Find visible operation with given name. For a protected type,
3759 -- the possible candidates are discriminants, entries or protected
3760 -- procedures. For a task type, the set can only include entries or
3761 -- discriminants if the task type is not an enclosing scope. If it
3762 -- is an enclosing scope (e.g. in an inner task) then all entities
3763 -- are visible, but the prefix must denote the enclosing scope, i.e.
3764 -- can only be a direct name or an expanded name.
3766 Set_Etype (Sel, Any_Type);
3767 In_Scope := In_Open_Scopes (Prefix_Type);
3769 while Present (Comp) loop
3770 if Chars (Comp) = Chars (Sel) then
3771 if Is_Overloadable (Comp) then
3772 Add_One_Interp (Sel, Comp, Etype (Comp));
3774 -- If the prefix is tagged, the correct interpretation may
3775 -- lie in the primitive or class-wide operations of the
3776 -- type. Perform a simple conformance check to determine
3777 -- whether Try_Object_Operation should be invoked even if
3778 -- a visible entity is found.
3780 if Is_Tagged_Type (Prefix_Type)
3781 and then
3782 Nkind_In (Parent (N), N_Procedure_Call_Statement,
3783 N_Function_Call,
3784 N_Indexed_Component)
3785 and then Has_Mode_Conformant_Spec (Comp)
3786 then
3787 Has_Candidate := True;
3788 end if;
3790 -- Note: a selected component may not denote a component of a
3791 -- protected type (4.1.3(7)).
3793 elsif Ekind_In (Comp, E_Discriminant, E_Entry_Family)
3794 or else (In_Scope
3795 and then not Is_Protected_Type (Prefix_Type)
3796 and then Is_Entity_Name (Name))
3797 then
3798 Set_Entity_With_Style_Check (Sel, Comp);
3799 Generate_Reference (Comp, Sel);
3801 else
3802 goto Next_Comp;
3803 end if;
3805 Set_Etype (Sel, Etype (Comp));
3806 Set_Etype (N, Etype (Comp));
3808 if Ekind (Comp) = E_Discriminant then
3809 Set_Original_Discriminant (Sel, Comp);
3810 end if;
3812 -- For access type case, introduce explicit dereference for
3813 -- more uniform treatment of entry calls.
3815 if Is_Access_Type (Etype (Name)) then
3816 Insert_Explicit_Dereference (Name);
3817 Error_Msg_NW
3818 (Warn_On_Dereference, "?implicit dereference", N);
3819 end if;
3820 end if;
3822 <<Next_Comp>>
3823 Next_Entity (Comp);
3824 exit when not In_Scope
3825 and then
3826 Comp = First_Private_Entity (Base_Type (Prefix_Type));
3827 end loop;
3829 -- If there is no visible entity with the given name or none of the
3830 -- visible entities are plausible interpretations, check whether
3831 -- there is some other primitive operation with that name.
3833 if Ada_Version >= Ada_05
3834 and then Is_Tagged_Type (Prefix_Type)
3835 then
3836 if (Etype (N) = Any_Type
3837 or else not Has_Candidate)
3838 and then Try_Object_Operation (N)
3839 then
3840 return;
3842 -- If the context is not syntactically a procedure call, it
3843 -- may be a call to a primitive function declared outside of
3844 -- the synchronized type.
3846 -- If the context is a procedure call, there might still be
3847 -- an overloading between an entry and a primitive procedure
3848 -- declared outside of the synchronized type, called in prefix
3849 -- notation. This is harder to disambiguate because in one case
3850 -- the controlling formal is implicit ???
3852 elsif Nkind (Parent (N)) /= N_Procedure_Call_Statement
3853 and then Nkind (Parent (N)) /= N_Indexed_Component
3854 and then Try_Object_Operation (N)
3855 then
3856 return;
3857 end if;
3858 end if;
3860 if Etype (N) = Any_Type and then Is_Protected_Type (Prefix_Type) then
3861 -- Case of a prefix of a protected type: selector might denote
3862 -- an invisible private component.
3864 Comp := First_Private_Entity (Base_Type (Prefix_Type));
3865 while Present (Comp) and then Chars (Comp) /= Chars (Sel) loop
3866 Next_Entity (Comp);
3867 end loop;
3869 if Present (Comp) then
3870 if Is_Single_Concurrent_Object then
3871 Error_Msg_Node_2 := Entity (Name);
3872 Error_Msg_NE ("invisible selector& for &", N, Sel);
3874 else
3875 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3876 Error_Msg_NE ("invisible selector& for }", N, Sel);
3877 end if;
3878 return;
3879 end if;
3880 end if;
3882 Set_Is_Overloaded (N, Is_Overloaded (Sel));
3884 else
3885 -- Invalid prefix
3887 Error_Msg_NE ("invalid prefix in selected component&", N, Sel);
3888 end if;
3890 -- If N still has no type, the component is not defined in the prefix
3892 if Etype (N) = Any_Type then
3894 if Is_Single_Concurrent_Object then
3895 Error_Msg_Node_2 := Entity (Name);
3896 Error_Msg_NE ("no selector& for&", N, Sel);
3898 Check_Misspelled_Selector (Type_To_Use, Sel);
3900 elsif Is_Generic_Type (Prefix_Type)
3901 and then Ekind (Prefix_Type) = E_Record_Type_With_Private
3902 and then Prefix_Type /= Etype (Prefix_Type)
3903 and then Is_Record_Type (Etype (Prefix_Type))
3904 then
3905 -- If this is a derived formal type, the parent may have
3906 -- different visibility at this point. Try for an inherited
3907 -- component before reporting an error.
3909 Set_Etype (Prefix (N), Etype (Prefix_Type));
3910 Analyze_Selected_Component (N);
3911 return;
3913 elsif Ekind (Prefix_Type) = E_Record_Subtype_With_Private
3914 and then Is_Generic_Actual_Type (Prefix_Type)
3915 and then Present (Full_View (Prefix_Type))
3916 then
3917 -- Similarly, if this the actual for a formal derived type, the
3918 -- component inherited from the generic parent may not be visible
3919 -- in the actual, but the selected component is legal.
3921 declare
3922 Comp : Entity_Id;
3924 begin
3925 Comp :=
3926 First_Component (Generic_Parent_Type (Parent (Prefix_Type)));
3927 while Present (Comp) loop
3928 if Chars (Comp) = Chars (Sel) then
3929 Set_Entity_With_Style_Check (Sel, Comp);
3930 Set_Etype (Sel, Etype (Comp));
3931 Set_Etype (N, Etype (Comp));
3932 return;
3933 end if;
3935 Next_Component (Comp);
3936 end loop;
3938 pragma Assert (Etype (N) /= Any_Type);
3939 end;
3941 else
3942 if Ekind (Prefix_Type) = E_Record_Subtype then
3944 -- Check whether this is a component of the base type which
3945 -- is absent from a statically constrained subtype. This will
3946 -- raise constraint error at run time, but is not a compile-
3947 -- time error. When the selector is illegal for base type as
3948 -- well fall through and generate a compilation error anyway.
3950 Comp := First_Component (Base_Type (Prefix_Type));
3951 while Present (Comp) loop
3952 if Chars (Comp) = Chars (Sel)
3953 and then Is_Visible_Component (Comp)
3954 then
3955 Set_Entity_With_Style_Check (Sel, Comp);
3956 Generate_Reference (Comp, Sel);
3957 Set_Etype (Sel, Etype (Comp));
3958 Set_Etype (N, Etype (Comp));
3960 -- Emit appropriate message. Gigi will replace the
3961 -- node subsequently with the appropriate Raise.
3963 Apply_Compile_Time_Constraint_Error
3964 (N, "component not present in }?",
3965 CE_Discriminant_Check_Failed,
3966 Ent => Prefix_Type, Rep => False);
3967 Set_Raises_Constraint_Error (N);
3968 return;
3969 end if;
3971 Next_Component (Comp);
3972 end loop;
3974 end if;
3976 Error_Msg_Node_2 := First_Subtype (Prefix_Type);
3977 Error_Msg_NE ("no selector& for}", N, Sel);
3979 Check_Misspelled_Selector (Type_To_Use, Sel);
3980 end if;
3982 Set_Entity (Sel, Any_Id);
3983 Set_Etype (Sel, Any_Type);
3984 end if;
3985 end Analyze_Selected_Component;
3987 ---------------------------
3988 -- Analyze_Short_Circuit --
3989 ---------------------------
3991 procedure Analyze_Short_Circuit (N : Node_Id) is
3992 L : constant Node_Id := Left_Opnd (N);
3993 R : constant Node_Id := Right_Opnd (N);
3994 Ind : Interp_Index;
3995 It : Interp;
3997 begin
3998 Analyze_Expression (L);
3999 Analyze_Expression (R);
4000 Set_Etype (N, Any_Type);
4002 if not Is_Overloaded (L) then
4003 if Root_Type (Etype (L)) = Standard_Boolean
4004 and then Has_Compatible_Type (R, Etype (L))
4005 then
4006 Add_One_Interp (N, Etype (L), Etype (L));
4007 end if;
4009 else
4010 Get_First_Interp (L, Ind, It);
4011 while Present (It.Typ) loop
4012 if Root_Type (It.Typ) = Standard_Boolean
4013 and then Has_Compatible_Type (R, It.Typ)
4014 then
4015 Add_One_Interp (N, It.Typ, It.Typ);
4016 end if;
4018 Get_Next_Interp (Ind, It);
4019 end loop;
4020 end if;
4022 -- Here we have failed to find an interpretation. Clearly we know that
4023 -- it is not the case that both operands can have an interpretation of
4024 -- Boolean, but this is by far the most likely intended interpretation.
4025 -- So we simply resolve both operands as Booleans, and at least one of
4026 -- these resolutions will generate an error message, and we do not need
4027 -- to give another error message on the short circuit operation itself.
4029 if Etype (N) = Any_Type then
4030 Resolve (L, Standard_Boolean);
4031 Resolve (R, Standard_Boolean);
4032 Set_Etype (N, Standard_Boolean);
4033 end if;
4034 end Analyze_Short_Circuit;
4036 -------------------
4037 -- Analyze_Slice --
4038 -------------------
4040 procedure Analyze_Slice (N : Node_Id) is
4041 P : constant Node_Id := Prefix (N);
4042 D : constant Node_Id := Discrete_Range (N);
4043 Array_Type : Entity_Id;
4045 procedure Analyze_Overloaded_Slice;
4046 -- If the prefix is overloaded, select those interpretations that
4047 -- yield a one-dimensional array type.
4049 ------------------------------
4050 -- Analyze_Overloaded_Slice --
4051 ------------------------------
4053 procedure Analyze_Overloaded_Slice is
4054 I : Interp_Index;
4055 It : Interp;
4056 Typ : Entity_Id;
4058 begin
4059 Set_Etype (N, Any_Type);
4061 Get_First_Interp (P, I, It);
4062 while Present (It.Nam) loop
4063 Typ := It.Typ;
4065 if Is_Access_Type (Typ) then
4066 Typ := Designated_Type (Typ);
4067 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
4068 end if;
4070 if Is_Array_Type (Typ)
4071 and then Number_Dimensions (Typ) = 1
4072 and then Has_Compatible_Type (D, Etype (First_Index (Typ)))
4073 then
4074 Add_One_Interp (N, Typ, Typ);
4075 end if;
4077 Get_Next_Interp (I, It);
4078 end loop;
4080 if Etype (N) = Any_Type then
4081 Error_Msg_N ("expect array type in prefix of slice", N);
4082 end if;
4083 end Analyze_Overloaded_Slice;
4085 -- Start of processing for Analyze_Slice
4087 begin
4088 Analyze (P);
4089 Analyze (D);
4091 if Is_Overloaded (P) then
4092 Analyze_Overloaded_Slice;
4094 else
4095 Array_Type := Etype (P);
4096 Set_Etype (N, Any_Type);
4098 if Is_Access_Type (Array_Type) then
4099 Array_Type := Designated_Type (Array_Type);
4100 Error_Msg_NW (Warn_On_Dereference, "?implicit dereference", N);
4101 end if;
4103 if not Is_Array_Type (Array_Type) then
4104 Wrong_Type (P, Any_Array);
4106 elsif Number_Dimensions (Array_Type) > 1 then
4107 Error_Msg_N
4108 ("type is not one-dimensional array in slice prefix", N);
4110 elsif not
4111 Has_Compatible_Type (D, Etype (First_Index (Array_Type)))
4112 then
4113 Wrong_Type (D, Etype (First_Index (Array_Type)));
4115 else
4116 Set_Etype (N, Array_Type);
4117 end if;
4118 end if;
4119 end Analyze_Slice;
4121 -----------------------------
4122 -- Analyze_Type_Conversion --
4123 -----------------------------
4125 procedure Analyze_Type_Conversion (N : Node_Id) is
4126 Expr : constant Node_Id := Expression (N);
4127 T : Entity_Id;
4129 begin
4130 -- If Conversion_OK is set, then the Etype is already set, and the
4131 -- only processing required is to analyze the expression. This is
4132 -- used to construct certain "illegal" conversions which are not
4133 -- allowed by Ada semantics, but can be handled OK by Gigi, see
4134 -- Sinfo for further details.
4136 if Conversion_OK (N) then
4137 Analyze (Expr);
4138 return;
4139 end if;
4141 -- Otherwise full type analysis is required, as well as some semantic
4142 -- checks to make sure the argument of the conversion is appropriate.
4144 Find_Type (Subtype_Mark (N));
4145 T := Entity (Subtype_Mark (N));
4146 Set_Etype (N, T);
4147 Check_Fully_Declared (T, N);
4148 Analyze_Expression (Expr);
4149 Validate_Remote_Type_Type_Conversion (N);
4151 -- Only remaining step is validity checks on the argument. These
4152 -- are skipped if the conversion does not come from the source.
4154 if not Comes_From_Source (N) then
4155 return;
4157 -- If there was an error in a generic unit, no need to replicate the
4158 -- error message. Conversely, constant-folding in the generic may
4159 -- transform the argument of a conversion into a string literal, which
4160 -- is legal. Therefore the following tests are not performed in an
4161 -- instance.
4163 elsif In_Instance then
4164 return;
4166 elsif Nkind (Expr) = N_Null then
4167 Error_Msg_N ("argument of conversion cannot be null", N);
4168 Error_Msg_N ("\use qualified expression instead", N);
4169 Set_Etype (N, Any_Type);
4171 elsif Nkind (Expr) = N_Aggregate then
4172 Error_Msg_N ("argument of conversion cannot be aggregate", N);
4173 Error_Msg_N ("\use qualified expression instead", N);
4175 elsif Nkind (Expr) = N_Allocator then
4176 Error_Msg_N ("argument of conversion cannot be an allocator", N);
4177 Error_Msg_N ("\use qualified expression instead", N);
4179 elsif Nkind (Expr) = N_String_Literal then
4180 Error_Msg_N ("argument of conversion cannot be string literal", N);
4181 Error_Msg_N ("\use qualified expression instead", N);
4183 elsif Nkind (Expr) = N_Character_Literal then
4184 if Ada_Version = Ada_83 then
4185 Resolve (Expr, T);
4186 else
4187 Error_Msg_N ("argument of conversion cannot be character literal",
4189 Error_Msg_N ("\use qualified expression instead", N);
4190 end if;
4192 elsif Nkind (Expr) = N_Attribute_Reference
4193 and then
4194 (Attribute_Name (Expr) = Name_Access or else
4195 Attribute_Name (Expr) = Name_Unchecked_Access or else
4196 Attribute_Name (Expr) = Name_Unrestricted_Access)
4197 then
4198 Error_Msg_N ("argument of conversion cannot be access", N);
4199 Error_Msg_N ("\use qualified expression instead", N);
4200 end if;
4201 end Analyze_Type_Conversion;
4203 ----------------------
4204 -- Analyze_Unary_Op --
4205 ----------------------
4207 procedure Analyze_Unary_Op (N : Node_Id) is
4208 R : constant Node_Id := Right_Opnd (N);
4209 Op_Id : Entity_Id := Entity (N);
4211 begin
4212 Set_Etype (N, Any_Type);
4213 Candidate_Type := Empty;
4215 Analyze_Expression (R);
4217 if Present (Op_Id) then
4218 if Ekind (Op_Id) = E_Operator then
4219 Find_Unary_Types (R, Op_Id, N);
4220 else
4221 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4222 end if;
4224 else
4225 Op_Id := Get_Name_Entity_Id (Chars (N));
4226 while Present (Op_Id) loop
4227 if Ekind (Op_Id) = E_Operator then
4228 if No (Next_Entity (First_Entity (Op_Id))) then
4229 Find_Unary_Types (R, Op_Id, N);
4230 end if;
4232 elsif Is_Overloadable (Op_Id) then
4233 Analyze_User_Defined_Unary_Op (N, Op_Id);
4234 end if;
4236 Op_Id := Homonym (Op_Id);
4237 end loop;
4238 end if;
4240 Operator_Check (N);
4241 end Analyze_Unary_Op;
4243 ----------------------------------
4244 -- Analyze_Unchecked_Expression --
4245 ----------------------------------
4247 procedure Analyze_Unchecked_Expression (N : Node_Id) is
4248 begin
4249 Analyze (Expression (N), Suppress => All_Checks);
4250 Set_Etype (N, Etype (Expression (N)));
4251 Save_Interps (Expression (N), N);
4252 end Analyze_Unchecked_Expression;
4254 ---------------------------------------
4255 -- Analyze_Unchecked_Type_Conversion --
4256 ---------------------------------------
4258 procedure Analyze_Unchecked_Type_Conversion (N : Node_Id) is
4259 begin
4260 Find_Type (Subtype_Mark (N));
4261 Analyze_Expression (Expression (N));
4262 Set_Etype (N, Entity (Subtype_Mark (N)));
4263 end Analyze_Unchecked_Type_Conversion;
4265 ------------------------------------
4266 -- Analyze_User_Defined_Binary_Op --
4267 ------------------------------------
4269 procedure Analyze_User_Defined_Binary_Op
4270 (N : Node_Id;
4271 Op_Id : Entity_Id)
4273 begin
4274 -- Only do analysis if the operator Comes_From_Source, since otherwise
4275 -- the operator was generated by the expander, and all such operators
4276 -- always refer to the operators in package Standard.
4278 if Comes_From_Source (N) then
4279 declare
4280 F1 : constant Entity_Id := First_Formal (Op_Id);
4281 F2 : constant Entity_Id := Next_Formal (F1);
4283 begin
4284 -- Verify that Op_Id is a visible binary function. Note that since
4285 -- we know Op_Id is overloaded, potentially use visible means use
4286 -- visible for sure (RM 9.4(11)).
4288 if Ekind (Op_Id) = E_Function
4289 and then Present (F2)
4290 and then (Is_Immediately_Visible (Op_Id)
4291 or else Is_Potentially_Use_Visible (Op_Id))
4292 and then Has_Compatible_Type (Left_Opnd (N), Etype (F1))
4293 and then Has_Compatible_Type (Right_Opnd (N), Etype (F2))
4294 then
4295 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4297 -- If the left operand is overloaded, indicate that the
4298 -- current type is a viable candidate. This is redundant
4299 -- in most cases, but for equality and comparison operators
4300 -- where the context does not impose a type on the operands,
4301 -- setting the proper type is necessary to avoid subsequent
4302 -- ambiguities during resolution, when both user-defined and
4303 -- predefined operators may be candidates.
4305 if Is_Overloaded (Left_Opnd (N)) then
4306 Set_Etype (Left_Opnd (N), Etype (F1));
4307 end if;
4309 if Debug_Flag_E then
4310 Write_Str ("user defined operator ");
4311 Write_Name (Chars (Op_Id));
4312 Write_Str (" on node ");
4313 Write_Int (Int (N));
4314 Write_Eol;
4315 end if;
4316 end if;
4317 end;
4318 end if;
4319 end Analyze_User_Defined_Binary_Op;
4321 -----------------------------------
4322 -- Analyze_User_Defined_Unary_Op --
4323 -----------------------------------
4325 procedure Analyze_User_Defined_Unary_Op
4326 (N : Node_Id;
4327 Op_Id : Entity_Id)
4329 begin
4330 -- Only do analysis if the operator Comes_From_Source, since otherwise
4331 -- the operator was generated by the expander, and all such operators
4332 -- always refer to the operators in package Standard.
4334 if Comes_From_Source (N) then
4335 declare
4336 F : constant Entity_Id := First_Formal (Op_Id);
4338 begin
4339 -- Verify that Op_Id is a visible unary function. Note that since
4340 -- we know Op_Id is overloaded, potentially use visible means use
4341 -- visible for sure (RM 9.4(11)).
4343 if Ekind (Op_Id) = E_Function
4344 and then No (Next_Formal (F))
4345 and then (Is_Immediately_Visible (Op_Id)
4346 or else Is_Potentially_Use_Visible (Op_Id))
4347 and then Has_Compatible_Type (Right_Opnd (N), Etype (F))
4348 then
4349 Add_One_Interp (N, Op_Id, Etype (Op_Id));
4350 end if;
4351 end;
4352 end if;
4353 end Analyze_User_Defined_Unary_Op;
4355 ---------------------------
4356 -- Check_Arithmetic_Pair --
4357 ---------------------------
4359 procedure Check_Arithmetic_Pair
4360 (T1, T2 : Entity_Id;
4361 Op_Id : Entity_Id;
4362 N : Node_Id)
4364 Op_Name : constant Name_Id := Chars (Op_Id);
4366 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean;
4367 -- Check whether the fixed-point type Typ has a user-defined operator
4368 -- (multiplication or division) that should hide the corresponding
4369 -- predefined operator. Used to implement Ada 2005 AI-264, to make
4370 -- such operators more visible and therefore useful.
4372 -- If the name of the operation is an expanded name with prefix
4373 -- Standard, the predefined universal fixed operator is available,
4374 -- as specified by AI-420 (RM 4.5.5 (19.1/2)).
4376 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id;
4377 -- Get specific type (i.e. non-universal type if there is one)
4379 ------------------
4380 -- Has_Fixed_Op --
4381 ------------------
4383 function Has_Fixed_Op (Typ : Entity_Id; Op : Entity_Id) return Boolean is
4384 Bas : constant Entity_Id := Base_Type (Typ);
4385 Ent : Entity_Id;
4386 F1 : Entity_Id;
4387 F2 : Entity_Id;
4389 begin
4390 -- If the universal_fixed operation is given explicitly the rule
4391 -- concerning primitive operations of the type do not apply.
4393 if Nkind (N) = N_Function_Call
4394 and then Nkind (Name (N)) = N_Expanded_Name
4395 and then Entity (Prefix (Name (N))) = Standard_Standard
4396 then
4397 return False;
4398 end if;
4400 -- The operation is treated as primitive if it is declared in the
4401 -- same scope as the type, and therefore on the same entity chain.
4403 Ent := Next_Entity (Typ);
4404 while Present (Ent) loop
4405 if Chars (Ent) = Chars (Op) then
4406 F1 := First_Formal (Ent);
4407 F2 := Next_Formal (F1);
4409 -- The operation counts as primitive if either operand or
4410 -- result are of the given base type, and both operands are
4411 -- fixed point types.
4413 if (Base_Type (Etype (F1)) = Bas
4414 and then Is_Fixed_Point_Type (Etype (F2)))
4416 or else
4417 (Base_Type (Etype (F2)) = Bas
4418 and then Is_Fixed_Point_Type (Etype (F1)))
4420 or else
4421 (Base_Type (Etype (Ent)) = Bas
4422 and then Is_Fixed_Point_Type (Etype (F1))
4423 and then Is_Fixed_Point_Type (Etype (F2)))
4424 then
4425 return True;
4426 end if;
4427 end if;
4429 Next_Entity (Ent);
4430 end loop;
4432 return False;
4433 end Has_Fixed_Op;
4435 -------------------
4436 -- Specific_Type --
4437 -------------------
4439 function Specific_Type (T1, T2 : Entity_Id) return Entity_Id is
4440 begin
4441 if T1 = Universal_Integer or else T1 = Universal_Real then
4442 return Base_Type (T2);
4443 else
4444 return Base_Type (T1);
4445 end if;
4446 end Specific_Type;
4448 -- Start of processing for Check_Arithmetic_Pair
4450 begin
4451 if Op_Name = Name_Op_Add or else Op_Name = Name_Op_Subtract then
4453 if Is_Numeric_Type (T1)
4454 and then Is_Numeric_Type (T2)
4455 and then (Covers (T1 => T1, T2 => T2)
4456 or else
4457 Covers (T1 => T2, T2 => T1))
4458 then
4459 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4460 end if;
4462 elsif Op_Name = Name_Op_Multiply or else Op_Name = Name_Op_Divide then
4464 if Is_Fixed_Point_Type (T1)
4465 and then (Is_Fixed_Point_Type (T2)
4466 or else T2 = Universal_Real)
4467 then
4468 -- If Treat_Fixed_As_Integer is set then the Etype is already set
4469 -- and no further processing is required (this is the case of an
4470 -- operator constructed by Exp_Fixd for a fixed point operation)
4471 -- Otherwise add one interpretation with universal fixed result
4472 -- If the operator is given in functional notation, it comes
4473 -- from source and Fixed_As_Integer cannot apply.
4475 if (Nkind (N) not in N_Op
4476 or else not Treat_Fixed_As_Integer (N))
4477 and then
4478 (not Has_Fixed_Op (T1, Op_Id)
4479 or else Nkind (Parent (N)) = N_Type_Conversion)
4480 then
4481 Add_One_Interp (N, Op_Id, Universal_Fixed);
4482 end if;
4484 elsif Is_Fixed_Point_Type (T2)
4485 and then (Nkind (N) not in N_Op
4486 or else not Treat_Fixed_As_Integer (N))
4487 and then T1 = Universal_Real
4488 and then
4489 (not Has_Fixed_Op (T1, Op_Id)
4490 or else Nkind (Parent (N)) = N_Type_Conversion)
4491 then
4492 Add_One_Interp (N, Op_Id, Universal_Fixed);
4494 elsif Is_Numeric_Type (T1)
4495 and then Is_Numeric_Type (T2)
4496 and then (Covers (T1 => T1, T2 => T2)
4497 or else
4498 Covers (T1 => T2, T2 => T1))
4499 then
4500 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4502 elsif Is_Fixed_Point_Type (T1)
4503 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4504 or else T2 = Universal_Integer)
4505 then
4506 Add_One_Interp (N, Op_Id, T1);
4508 elsif T2 = Universal_Real
4509 and then Base_Type (T1) = Base_Type (Standard_Integer)
4510 and then Op_Name = Name_Op_Multiply
4511 then
4512 Add_One_Interp (N, Op_Id, Any_Fixed);
4514 elsif T1 = Universal_Real
4515 and then Base_Type (T2) = Base_Type (Standard_Integer)
4516 then
4517 Add_One_Interp (N, Op_Id, Any_Fixed);
4519 elsif Is_Fixed_Point_Type (T2)
4520 and then (Base_Type (T1) = Base_Type (Standard_Integer)
4521 or else T1 = Universal_Integer)
4522 and then Op_Name = Name_Op_Multiply
4523 then
4524 Add_One_Interp (N, Op_Id, T2);
4526 elsif T1 = Universal_Real and then T2 = Universal_Integer then
4527 Add_One_Interp (N, Op_Id, T1);
4529 elsif T2 = Universal_Real
4530 and then T1 = Universal_Integer
4531 and then Op_Name = Name_Op_Multiply
4532 then
4533 Add_One_Interp (N, Op_Id, T2);
4534 end if;
4536 elsif Op_Name = Name_Op_Mod or else Op_Name = Name_Op_Rem then
4538 -- Note: The fixed-point operands case with Treat_Fixed_As_Integer
4539 -- set does not require any special processing, since the Etype is
4540 -- already set (case of operation constructed by Exp_Fixed).
4542 if Is_Integer_Type (T1)
4543 and then (Covers (T1 => T1, T2 => T2)
4544 or else
4545 Covers (T1 => T2, T2 => T1))
4546 then
4547 Add_One_Interp (N, Op_Id, Specific_Type (T1, T2));
4548 end if;
4550 elsif Op_Name = Name_Op_Expon then
4551 if Is_Numeric_Type (T1)
4552 and then not Is_Fixed_Point_Type (T1)
4553 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4554 or else T2 = Universal_Integer)
4555 then
4556 Add_One_Interp (N, Op_Id, Base_Type (T1));
4557 end if;
4559 else pragma Assert (Nkind (N) in N_Op_Shift);
4561 -- If not one of the predefined operators, the node may be one
4562 -- of the intrinsic functions. Its kind is always specific, and
4563 -- we can use it directly, rather than the name of the operation.
4565 if Is_Integer_Type (T1)
4566 and then (Base_Type (T2) = Base_Type (Standard_Integer)
4567 or else T2 = Universal_Integer)
4568 then
4569 Add_One_Interp (N, Op_Id, Base_Type (T1));
4570 end if;
4571 end if;
4572 end Check_Arithmetic_Pair;
4574 -------------------------------
4575 -- Check_Misspelled_Selector --
4576 -------------------------------
4578 procedure Check_Misspelled_Selector
4579 (Prefix : Entity_Id;
4580 Sel : Node_Id)
4582 Max_Suggestions : constant := 2;
4583 Nr_Of_Suggestions : Natural := 0;
4585 Suggestion_1 : Entity_Id := Empty;
4586 Suggestion_2 : Entity_Id := Empty;
4588 Comp : Entity_Id;
4590 begin
4591 -- All the components of the prefix of selector Sel are matched
4592 -- against Sel and a count is maintained of possible misspellings.
4593 -- When at the end of the analysis there are one or two (not more!)
4594 -- possible misspellings, these misspellings will be suggested as
4595 -- possible correction.
4597 if not (Is_Private_Type (Prefix) or else Is_Record_Type (Prefix)) then
4599 -- Concurrent types should be handled as well ???
4601 return;
4602 end if;
4604 Comp := First_Entity (Prefix);
4605 while Nr_Of_Suggestions <= Max_Suggestions and then Present (Comp) loop
4606 if Is_Visible_Component (Comp) then
4607 if Is_Bad_Spelling_Of (Chars (Comp), Chars (Sel)) then
4608 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
4610 case Nr_Of_Suggestions is
4611 when 1 => Suggestion_1 := Comp;
4612 when 2 => Suggestion_2 := Comp;
4613 when others => exit;
4614 end case;
4615 end if;
4616 end if;
4618 Comp := Next_Entity (Comp);
4619 end loop;
4621 -- Report at most two suggestions
4623 if Nr_Of_Suggestions = 1 then
4624 Error_Msg_NE -- CODEFIX
4625 ("\possible misspelling of&", Sel, Suggestion_1);
4627 elsif Nr_Of_Suggestions = 2 then
4628 Error_Msg_Node_2 := Suggestion_2;
4629 Error_Msg_NE -- CODEFIX
4630 ("\possible misspelling of& or&", Sel, Suggestion_1);
4631 end if;
4632 end Check_Misspelled_Selector;
4634 ----------------------
4635 -- Defined_In_Scope --
4636 ----------------------
4638 function Defined_In_Scope (T : Entity_Id; S : Entity_Id) return Boolean
4640 S1 : constant Entity_Id := Scope (Base_Type (T));
4641 begin
4642 return S1 = S
4643 or else (S1 = System_Aux_Id and then S = Scope (S1));
4644 end Defined_In_Scope;
4646 -------------------
4647 -- Diagnose_Call --
4648 -------------------
4650 procedure Diagnose_Call (N : Node_Id; Nam : Node_Id) is
4651 Actual : Node_Id;
4652 X : Interp_Index;
4653 It : Interp;
4654 Err_Mode : Boolean;
4655 New_Nam : Node_Id;
4656 Void_Interp_Seen : Boolean := False;
4658 Success : Boolean;
4659 pragma Warnings (Off, Boolean);
4661 begin
4662 if Ada_Version >= Ada_05 then
4663 Actual := First_Actual (N);
4664 while Present (Actual) loop
4666 -- Ada 2005 (AI-50217): Post an error in case of premature
4667 -- usage of an entity from the limited view.
4669 if not Analyzed (Etype (Actual))
4670 and then From_With_Type (Etype (Actual))
4671 then
4672 Error_Msg_Qual_Level := 1;
4673 Error_Msg_NE
4674 ("missing with_clause for scope of imported type&",
4675 Actual, Etype (Actual));
4676 Error_Msg_Qual_Level := 0;
4677 end if;
4679 Next_Actual (Actual);
4680 end loop;
4681 end if;
4683 -- Analyze each candidate call again, with full error reporting
4684 -- for each.
4686 Error_Msg_N
4687 ("no candidate interpretations match the actuals:!", Nam);
4688 Err_Mode := All_Errors_Mode;
4689 All_Errors_Mode := True;
4691 -- If this is a call to an operation of a concurrent type,
4692 -- the failed interpretations have been removed from the
4693 -- name. Recover them to provide full diagnostics.
4695 if Nkind (Parent (Nam)) = N_Selected_Component then
4696 Set_Entity (Nam, Empty);
4697 New_Nam := New_Copy_Tree (Parent (Nam));
4698 Set_Is_Overloaded (New_Nam, False);
4699 Set_Is_Overloaded (Selector_Name (New_Nam), False);
4700 Set_Parent (New_Nam, Parent (Parent (Nam)));
4701 Analyze_Selected_Component (New_Nam);
4702 Get_First_Interp (Selector_Name (New_Nam), X, It);
4703 else
4704 Get_First_Interp (Nam, X, It);
4705 end if;
4707 while Present (It.Nam) loop
4708 if Etype (It.Nam) = Standard_Void_Type then
4709 Void_Interp_Seen := True;
4710 end if;
4712 Analyze_One_Call (N, It.Nam, True, Success);
4713 Get_Next_Interp (X, It);
4714 end loop;
4716 if Nkind (N) = N_Function_Call then
4717 Get_First_Interp (Nam, X, It);
4718 while Present (It.Nam) loop
4719 if Ekind_In (It.Nam, E_Function, E_Operator) then
4720 return;
4721 else
4722 Get_Next_Interp (X, It);
4723 end if;
4724 end loop;
4726 -- If all interpretations are procedures, this deserves a
4727 -- more precise message. Ditto if this appears as the prefix
4728 -- of a selected component, which may be a lexical error.
4730 Error_Msg_N
4731 ("\context requires function call, found procedure name", Nam);
4733 if Nkind (Parent (N)) = N_Selected_Component
4734 and then N = Prefix (Parent (N))
4735 then
4736 Error_Msg_N -- CODEFIX
4737 ("\period should probably be semicolon", Parent (N));
4738 end if;
4740 elsif Nkind (N) = N_Procedure_Call_Statement
4741 and then not Void_Interp_Seen
4742 then
4743 Error_Msg_N (
4744 "\function name found in procedure call", Nam);
4745 end if;
4747 All_Errors_Mode := Err_Mode;
4748 end Diagnose_Call;
4750 ---------------------------
4751 -- Find_Arithmetic_Types --
4752 ---------------------------
4754 procedure Find_Arithmetic_Types
4755 (L, R : Node_Id;
4756 Op_Id : Entity_Id;
4757 N : Node_Id)
4759 Index1 : Interp_Index;
4760 Index2 : Interp_Index;
4761 It1 : Interp;
4762 It2 : Interp;
4764 procedure Check_Right_Argument (T : Entity_Id);
4765 -- Check right operand of operator
4767 --------------------------
4768 -- Check_Right_Argument --
4769 --------------------------
4771 procedure Check_Right_Argument (T : Entity_Id) is
4772 begin
4773 if not Is_Overloaded (R) then
4774 Check_Arithmetic_Pair (T, Etype (R), Op_Id, N);
4775 else
4776 Get_First_Interp (R, Index2, It2);
4777 while Present (It2.Typ) loop
4778 Check_Arithmetic_Pair (T, It2.Typ, Op_Id, N);
4779 Get_Next_Interp (Index2, It2);
4780 end loop;
4781 end if;
4782 end Check_Right_Argument;
4784 -- Start of processing for Find_Arithmetic_Types
4786 begin
4787 if not Is_Overloaded (L) then
4788 Check_Right_Argument (Etype (L));
4790 else
4791 Get_First_Interp (L, Index1, It1);
4792 while Present (It1.Typ) loop
4793 Check_Right_Argument (It1.Typ);
4794 Get_Next_Interp (Index1, It1);
4795 end loop;
4796 end if;
4798 end Find_Arithmetic_Types;
4800 ------------------------
4801 -- Find_Boolean_Types --
4802 ------------------------
4804 procedure Find_Boolean_Types
4805 (L, R : Node_Id;
4806 Op_Id : Entity_Id;
4807 N : Node_Id)
4809 Index : Interp_Index;
4810 It : Interp;
4812 procedure Check_Numeric_Argument (T : Entity_Id);
4813 -- Special case for logical operations one of whose operands is an
4814 -- integer literal. If both are literal the result is any modular type.
4816 ----------------------------
4817 -- Check_Numeric_Argument --
4818 ----------------------------
4820 procedure Check_Numeric_Argument (T : Entity_Id) is
4821 begin
4822 if T = Universal_Integer then
4823 Add_One_Interp (N, Op_Id, Any_Modular);
4825 elsif Is_Modular_Integer_Type (T) then
4826 Add_One_Interp (N, Op_Id, T);
4827 end if;
4828 end Check_Numeric_Argument;
4830 -- Start of processing for Find_Boolean_Types
4832 begin
4833 if not Is_Overloaded (L) then
4834 if Etype (L) = Universal_Integer
4835 or else Etype (L) = Any_Modular
4836 then
4837 if not Is_Overloaded (R) then
4838 Check_Numeric_Argument (Etype (R));
4840 else
4841 Get_First_Interp (R, Index, It);
4842 while Present (It.Typ) loop
4843 Check_Numeric_Argument (It.Typ);
4844 Get_Next_Interp (Index, It);
4845 end loop;
4846 end if;
4848 -- If operands are aggregates, we must assume that they may be
4849 -- boolean arrays, and leave disambiguation for the second pass.
4850 -- If only one is an aggregate, verify that the other one has an
4851 -- interpretation as a boolean array
4853 elsif Nkind (L) = N_Aggregate then
4854 if Nkind (R) = N_Aggregate then
4855 Add_One_Interp (N, Op_Id, Etype (L));
4857 elsif not Is_Overloaded (R) then
4858 if Valid_Boolean_Arg (Etype (R)) then
4859 Add_One_Interp (N, Op_Id, Etype (R));
4860 end if;
4862 else
4863 Get_First_Interp (R, Index, It);
4864 while Present (It.Typ) loop
4865 if Valid_Boolean_Arg (It.Typ) then
4866 Add_One_Interp (N, Op_Id, It.Typ);
4867 end if;
4869 Get_Next_Interp (Index, It);
4870 end loop;
4871 end if;
4873 elsif Valid_Boolean_Arg (Etype (L))
4874 and then Has_Compatible_Type (R, Etype (L))
4875 then
4876 Add_One_Interp (N, Op_Id, Etype (L));
4877 end if;
4879 else
4880 Get_First_Interp (L, Index, It);
4881 while Present (It.Typ) loop
4882 if Valid_Boolean_Arg (It.Typ)
4883 and then Has_Compatible_Type (R, It.Typ)
4884 then
4885 Add_One_Interp (N, Op_Id, It.Typ);
4886 end if;
4888 Get_Next_Interp (Index, It);
4889 end loop;
4890 end if;
4891 end Find_Boolean_Types;
4893 ---------------------------
4894 -- Find_Comparison_Types --
4895 ---------------------------
4897 procedure Find_Comparison_Types
4898 (L, R : Node_Id;
4899 Op_Id : Entity_Id;
4900 N : Node_Id)
4902 Index : Interp_Index;
4903 It : Interp;
4904 Found : Boolean := False;
4905 I_F : Interp_Index;
4906 T_F : Entity_Id;
4907 Scop : Entity_Id := Empty;
4909 procedure Try_One_Interp (T1 : Entity_Id);
4910 -- Routine to try one proposed interpretation. Note that the context
4911 -- of the operator plays no role in resolving the arguments, so that
4912 -- if there is more than one interpretation of the operands that is
4913 -- compatible with comparison, the operation is ambiguous.
4915 --------------------
4916 -- Try_One_Interp --
4917 --------------------
4919 procedure Try_One_Interp (T1 : Entity_Id) is
4920 begin
4922 -- If the operator is an expanded name, then the type of the operand
4923 -- must be defined in the corresponding scope. If the type is
4924 -- universal, the context will impose the correct type.
4926 if Present (Scop)
4927 and then not Defined_In_Scope (T1, Scop)
4928 and then T1 /= Universal_Integer
4929 and then T1 /= Universal_Real
4930 and then T1 /= Any_String
4931 and then T1 /= Any_Composite
4932 then
4933 return;
4934 end if;
4936 if Valid_Comparison_Arg (T1)
4937 and then Has_Compatible_Type (R, T1)
4938 then
4939 if Found
4940 and then Base_Type (T1) /= Base_Type (T_F)
4941 then
4942 It := Disambiguate (L, I_F, Index, Any_Type);
4944 if It = No_Interp then
4945 Ambiguous_Operands (N);
4946 Set_Etype (L, Any_Type);
4947 return;
4949 else
4950 T_F := It.Typ;
4951 end if;
4953 else
4954 Found := True;
4955 T_F := T1;
4956 I_F := Index;
4957 end if;
4959 Set_Etype (L, T_F);
4960 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
4962 end if;
4963 end Try_One_Interp;
4965 -- Start of processing for Find_Comparison_Types
4967 begin
4968 -- If left operand is aggregate, the right operand has to
4969 -- provide a usable type for it.
4971 if Nkind (L) = N_Aggregate
4972 and then Nkind (R) /= N_Aggregate
4973 then
4974 Find_Comparison_Types (L => R, R => L, Op_Id => Op_Id, N => N);
4975 return;
4976 end if;
4978 if Nkind (N) = N_Function_Call
4979 and then Nkind (Name (N)) = N_Expanded_Name
4980 then
4981 Scop := Entity (Prefix (Name (N)));
4983 -- The prefix may be a package renaming, and the subsequent test
4984 -- requires the original package.
4986 if Ekind (Scop) = E_Package
4987 and then Present (Renamed_Entity (Scop))
4988 then
4989 Scop := Renamed_Entity (Scop);
4990 Set_Entity (Prefix (Name (N)), Scop);
4991 end if;
4992 end if;
4994 if not Is_Overloaded (L) then
4995 Try_One_Interp (Etype (L));
4997 else
4998 Get_First_Interp (L, Index, It);
4999 while Present (It.Typ) loop
5000 Try_One_Interp (It.Typ);
5001 Get_Next_Interp (Index, It);
5002 end loop;
5003 end if;
5004 end Find_Comparison_Types;
5006 ----------------------------------------
5007 -- Find_Non_Universal_Interpretations --
5008 ----------------------------------------
5010 procedure Find_Non_Universal_Interpretations
5011 (N : Node_Id;
5012 R : Node_Id;
5013 Op_Id : Entity_Id;
5014 T1 : Entity_Id)
5016 Index : Interp_Index;
5017 It : Interp;
5019 begin
5020 if T1 = Universal_Integer
5021 or else T1 = Universal_Real
5022 then
5023 if not Is_Overloaded (R) then
5024 Add_One_Interp
5025 (N, Op_Id, Standard_Boolean, Base_Type (Etype (R)));
5026 else
5027 Get_First_Interp (R, Index, It);
5028 while Present (It.Typ) loop
5029 if Covers (It.Typ, T1) then
5030 Add_One_Interp
5031 (N, Op_Id, Standard_Boolean, Base_Type (It.Typ));
5032 end if;
5034 Get_Next_Interp (Index, It);
5035 end loop;
5036 end if;
5037 else
5038 Add_One_Interp (N, Op_Id, Standard_Boolean, Base_Type (T1));
5039 end if;
5040 end Find_Non_Universal_Interpretations;
5042 ------------------------------
5043 -- Find_Concatenation_Types --
5044 ------------------------------
5046 procedure Find_Concatenation_Types
5047 (L, R : Node_Id;
5048 Op_Id : Entity_Id;
5049 N : Node_Id)
5051 Op_Type : constant Entity_Id := Etype (Op_Id);
5053 begin
5054 if Is_Array_Type (Op_Type)
5055 and then not Is_Limited_Type (Op_Type)
5057 and then (Has_Compatible_Type (L, Op_Type)
5058 or else
5059 Has_Compatible_Type (L, Component_Type (Op_Type)))
5061 and then (Has_Compatible_Type (R, Op_Type)
5062 or else
5063 Has_Compatible_Type (R, Component_Type (Op_Type)))
5064 then
5065 Add_One_Interp (N, Op_Id, Op_Type);
5066 end if;
5067 end Find_Concatenation_Types;
5069 -------------------------
5070 -- Find_Equality_Types --
5071 -------------------------
5073 procedure Find_Equality_Types
5074 (L, R : Node_Id;
5075 Op_Id : Entity_Id;
5076 N : Node_Id)
5078 Index : Interp_Index;
5079 It : Interp;
5080 Found : Boolean := False;
5081 I_F : Interp_Index;
5082 T_F : Entity_Id;
5083 Scop : Entity_Id := Empty;
5085 procedure Try_One_Interp (T1 : Entity_Id);
5086 -- The context of the equality operator plays no role in resolving the
5087 -- arguments, so that if there is more than one interpretation of the
5088 -- operands that is compatible with equality, the construct is ambiguous
5089 -- and an error can be emitted now, after trying to disambiguate, i.e.
5090 -- applying preference rules.
5092 --------------------
5093 -- Try_One_Interp --
5094 --------------------
5096 procedure Try_One_Interp (T1 : Entity_Id) is
5097 Bas : constant Entity_Id := Base_Type (T1);
5099 begin
5100 -- If the operator is an expanded name, then the type of the operand
5101 -- must be defined in the corresponding scope. If the type is
5102 -- universal, the context will impose the correct type. An anonymous
5103 -- type for a 'Access reference is also universal in this sense, as
5104 -- the actual type is obtained from context.
5105 -- In Ada 2005, the equality operator for anonymous access types
5106 -- is declared in Standard, and preference rules apply to it.
5108 if Present (Scop) then
5109 if Defined_In_Scope (T1, Scop)
5110 or else T1 = Universal_Integer
5111 or else T1 = Universal_Real
5112 or else T1 = Any_Access
5113 or else T1 = Any_String
5114 or else T1 = Any_Composite
5115 or else (Ekind (T1) = E_Access_Subprogram_Type
5116 and then not Comes_From_Source (T1))
5117 then
5118 null;
5120 elsif Ekind (T1) = E_Anonymous_Access_Type
5121 and then Scop = Standard_Standard
5122 then
5123 null;
5125 else
5126 -- The scope does not contain an operator for the type
5128 return;
5129 end if;
5131 -- If we have infix notation, the operator must be usable.
5132 -- Within an instance, if the type is already established we
5133 -- know it is correct.
5134 -- In Ada 2005, the equality on anonymous access types is declared
5135 -- in Standard, and is always visible.
5137 elsif In_Open_Scopes (Scope (Bas))
5138 or else Is_Potentially_Use_Visible (Bas)
5139 or else In_Use (Bas)
5140 or else (In_Use (Scope (Bas))
5141 and then not Is_Hidden (Bas))
5142 or else (In_Instance
5143 and then First_Subtype (T1) = First_Subtype (Etype (R)))
5144 or else Ekind (T1) = E_Anonymous_Access_Type
5145 then
5146 null;
5148 else
5149 -- Save candidate type for subsquent error message, if any
5151 if not Is_Limited_Type (T1) then
5152 Candidate_Type := T1;
5153 end if;
5155 return;
5156 end if;
5158 -- Ada 2005 (AI-230): Keep restriction imposed by Ada 83 and 95:
5159 -- Do not allow anonymous access types in equality operators.
5161 if Ada_Version < Ada_05
5162 and then Ekind (T1) = E_Anonymous_Access_Type
5163 then
5164 return;
5165 end if;
5167 if T1 /= Standard_Void_Type
5168 and then not Is_Limited_Type (T1)
5169 and then not Is_Limited_Composite (T1)
5170 and then Has_Compatible_Type (R, T1)
5171 then
5172 if Found
5173 and then Base_Type (T1) /= Base_Type (T_F)
5174 then
5175 It := Disambiguate (L, I_F, Index, Any_Type);
5177 if It = No_Interp then
5178 Ambiguous_Operands (N);
5179 Set_Etype (L, Any_Type);
5180 return;
5182 else
5183 T_F := It.Typ;
5184 end if;
5186 else
5187 Found := True;
5188 T_F := T1;
5189 I_F := Index;
5190 end if;
5192 if not Analyzed (L) then
5193 Set_Etype (L, T_F);
5194 end if;
5196 Find_Non_Universal_Interpretations (N, R, Op_Id, T1);
5198 -- Case of operator was not visible, Etype still set to Any_Type
5200 if Etype (N) = Any_Type then
5201 Found := False;
5202 end if;
5204 elsif Scop = Standard_Standard
5205 and then Ekind (T1) = E_Anonymous_Access_Type
5206 then
5207 Found := True;
5208 end if;
5209 end Try_One_Interp;
5211 -- Start of processing for Find_Equality_Types
5213 begin
5214 -- If left operand is aggregate, the right operand has to
5215 -- provide a usable type for it.
5217 if Nkind (L) = N_Aggregate
5218 and then Nkind (R) /= N_Aggregate
5219 then
5220 Find_Equality_Types (L => R, R => L, Op_Id => Op_Id, N => N);
5221 return;
5222 end if;
5224 if Nkind (N) = N_Function_Call
5225 and then Nkind (Name (N)) = N_Expanded_Name
5226 then
5227 Scop := Entity (Prefix (Name (N)));
5229 -- The prefix may be a package renaming, and the subsequent test
5230 -- requires the original package.
5232 if Ekind (Scop) = E_Package
5233 and then Present (Renamed_Entity (Scop))
5234 then
5235 Scop := Renamed_Entity (Scop);
5236 Set_Entity (Prefix (Name (N)), Scop);
5237 end if;
5238 end if;
5240 if not Is_Overloaded (L) then
5241 Try_One_Interp (Etype (L));
5243 else
5244 Get_First_Interp (L, Index, It);
5245 while Present (It.Typ) loop
5246 Try_One_Interp (It.Typ);
5247 Get_Next_Interp (Index, It);
5248 end loop;
5249 end if;
5250 end Find_Equality_Types;
5252 -------------------------
5253 -- Find_Negation_Types --
5254 -------------------------
5256 procedure Find_Negation_Types
5257 (R : Node_Id;
5258 Op_Id : Entity_Id;
5259 N : Node_Id)
5261 Index : Interp_Index;
5262 It : Interp;
5264 begin
5265 if not Is_Overloaded (R) then
5266 if Etype (R) = Universal_Integer then
5267 Add_One_Interp (N, Op_Id, Any_Modular);
5268 elsif Valid_Boolean_Arg (Etype (R)) then
5269 Add_One_Interp (N, Op_Id, Etype (R));
5270 end if;
5272 else
5273 Get_First_Interp (R, Index, It);
5274 while Present (It.Typ) loop
5275 if Valid_Boolean_Arg (It.Typ) then
5276 Add_One_Interp (N, Op_Id, It.Typ);
5277 end if;
5279 Get_Next_Interp (Index, It);
5280 end loop;
5281 end if;
5282 end Find_Negation_Types;
5284 ------------------------------
5285 -- Find_Primitive_Operation --
5286 ------------------------------
5288 function Find_Primitive_Operation (N : Node_Id) return Boolean is
5289 Obj : constant Node_Id := Prefix (N);
5290 Op : constant Node_Id := Selector_Name (N);
5292 Prim : Elmt_Id;
5293 Prims : Elist_Id;
5294 Typ : Entity_Id;
5296 begin
5297 Set_Etype (Op, Any_Type);
5299 if Is_Access_Type (Etype (Obj)) then
5300 Typ := Designated_Type (Etype (Obj));
5301 else
5302 Typ := Etype (Obj);
5303 end if;
5305 if Is_Class_Wide_Type (Typ) then
5306 Typ := Root_Type (Typ);
5307 end if;
5309 Prims := Primitive_Operations (Typ);
5311 Prim := First_Elmt (Prims);
5312 while Present (Prim) loop
5313 if Chars (Node (Prim)) = Chars (Op) then
5314 Add_One_Interp (Op, Node (Prim), Etype (Node (Prim)));
5315 Set_Etype (N, Etype (Node (Prim)));
5316 end if;
5318 Next_Elmt (Prim);
5319 end loop;
5321 -- Now look for class-wide operations of the type or any of its
5322 -- ancestors by iterating over the homonyms of the selector.
5324 declare
5325 Cls_Type : constant Entity_Id := Class_Wide_Type (Typ);
5326 Hom : Entity_Id;
5328 begin
5329 Hom := Current_Entity (Op);
5330 while Present (Hom) loop
5331 if (Ekind (Hom) = E_Procedure
5332 or else
5333 Ekind (Hom) = E_Function)
5334 and then Scope (Hom) = Scope (Typ)
5335 and then Present (First_Formal (Hom))
5336 and then
5337 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
5338 or else
5339 (Is_Access_Type (Etype (First_Formal (Hom)))
5340 and then
5341 Ekind (Etype (First_Formal (Hom))) =
5342 E_Anonymous_Access_Type
5343 and then
5344 Base_Type
5345 (Designated_Type (Etype (First_Formal (Hom)))) =
5346 Cls_Type))
5347 then
5348 Add_One_Interp (Op, Hom, Etype (Hom));
5349 Set_Etype (N, Etype (Hom));
5350 end if;
5352 Hom := Homonym (Hom);
5353 end loop;
5354 end;
5356 return Etype (Op) /= Any_Type;
5357 end Find_Primitive_Operation;
5359 ----------------------
5360 -- Find_Unary_Types --
5361 ----------------------
5363 procedure Find_Unary_Types
5364 (R : Node_Id;
5365 Op_Id : Entity_Id;
5366 N : Node_Id)
5368 Index : Interp_Index;
5369 It : Interp;
5371 begin
5372 if not Is_Overloaded (R) then
5373 if Is_Numeric_Type (Etype (R)) then
5374 Add_One_Interp (N, Op_Id, Base_Type (Etype (R)));
5375 end if;
5377 else
5378 Get_First_Interp (R, Index, It);
5379 while Present (It.Typ) loop
5380 if Is_Numeric_Type (It.Typ) then
5381 Add_One_Interp (N, Op_Id, Base_Type (It.Typ));
5382 end if;
5384 Get_Next_Interp (Index, It);
5385 end loop;
5386 end if;
5387 end Find_Unary_Types;
5389 ------------------
5390 -- Junk_Operand --
5391 ------------------
5393 function Junk_Operand (N : Node_Id) return Boolean is
5394 Enode : Node_Id;
5396 begin
5397 if Error_Posted (N) then
5398 return False;
5399 end if;
5401 -- Get entity to be tested
5403 if Is_Entity_Name (N)
5404 and then Present (Entity (N))
5405 then
5406 Enode := N;
5408 -- An odd case, a procedure name gets converted to a very peculiar
5409 -- function call, and here is where we detect this happening.
5411 elsif Nkind (N) = N_Function_Call
5412 and then Is_Entity_Name (Name (N))
5413 and then Present (Entity (Name (N)))
5414 then
5415 Enode := Name (N);
5417 -- Another odd case, there are at least some cases of selected
5418 -- components where the selected component is not marked as having
5419 -- an entity, even though the selector does have an entity
5421 elsif Nkind (N) = N_Selected_Component
5422 and then Present (Entity (Selector_Name (N)))
5423 then
5424 Enode := Selector_Name (N);
5426 else
5427 return False;
5428 end if;
5430 -- Now test the entity we got to see if it is a bad case
5432 case Ekind (Entity (Enode)) is
5434 when E_Package =>
5435 Error_Msg_N
5436 ("package name cannot be used as operand", Enode);
5438 when Generic_Unit_Kind =>
5439 Error_Msg_N
5440 ("generic unit name cannot be used as operand", Enode);
5442 when Type_Kind =>
5443 Error_Msg_N
5444 ("subtype name cannot be used as operand", Enode);
5446 when Entry_Kind =>
5447 Error_Msg_N
5448 ("entry name cannot be used as operand", Enode);
5450 when E_Procedure =>
5451 Error_Msg_N
5452 ("procedure name cannot be used as operand", Enode);
5454 when E_Exception =>
5455 Error_Msg_N
5456 ("exception name cannot be used as operand", Enode);
5458 when E_Block | E_Label | E_Loop =>
5459 Error_Msg_N
5460 ("label name cannot be used as operand", Enode);
5462 when others =>
5463 return False;
5465 end case;
5467 return True;
5468 end Junk_Operand;
5470 --------------------
5471 -- Operator_Check --
5472 --------------------
5474 procedure Operator_Check (N : Node_Id) is
5475 begin
5476 Remove_Abstract_Operations (N);
5478 -- Test for case of no interpretation found for operator
5480 if Etype (N) = Any_Type then
5481 declare
5482 L : Node_Id;
5483 R : Node_Id;
5484 Op_Id : Entity_Id := Empty;
5486 begin
5487 R := Right_Opnd (N);
5489 if Nkind (N) in N_Binary_Op then
5490 L := Left_Opnd (N);
5491 else
5492 L := Empty;
5493 end if;
5495 -- If either operand has no type, then don't complain further,
5496 -- since this simply means that we have a propagated error.
5498 if R = Error
5499 or else Etype (R) = Any_Type
5500 or else (Nkind (N) in N_Binary_Op and then Etype (L) = Any_Type)
5501 then
5502 return;
5504 -- We explicitly check for the case of concatenation of component
5505 -- with component to avoid reporting spurious matching array types
5506 -- that might happen to be lurking in distant packages (such as
5507 -- run-time packages). This also prevents inconsistencies in the
5508 -- messages for certain ACVC B tests, which can vary depending on
5509 -- types declared in run-time interfaces. Another improvement when
5510 -- aggregates are present is to look for a well-typed operand.
5512 elsif Present (Candidate_Type)
5513 and then (Nkind (N) /= N_Op_Concat
5514 or else Is_Array_Type (Etype (L))
5515 or else Is_Array_Type (Etype (R)))
5516 then
5518 if Nkind (N) = N_Op_Concat then
5519 if Etype (L) /= Any_Composite
5520 and then Is_Array_Type (Etype (L))
5521 then
5522 Candidate_Type := Etype (L);
5524 elsif Etype (R) /= Any_Composite
5525 and then Is_Array_Type (Etype (R))
5526 then
5527 Candidate_Type := Etype (R);
5528 end if;
5529 end if;
5531 Error_Msg_NE -- CODEFIX
5532 ("operator for} is not directly visible!",
5533 N, First_Subtype (Candidate_Type));
5534 Error_Msg_N -- CODEFIX
5535 ("use clause would make operation legal!", N);
5536 return;
5538 -- If either operand is a junk operand (e.g. package name), then
5539 -- post appropriate error messages, but do not complain further.
5541 -- Note that the use of OR in this test instead of OR ELSE is
5542 -- quite deliberate, we may as well check both operands in the
5543 -- binary operator case.
5545 elsif Junk_Operand (R)
5546 or (Nkind (N) in N_Binary_Op and then Junk_Operand (L))
5547 then
5548 return;
5550 -- If we have a logical operator, one of whose operands is
5551 -- Boolean, then we know that the other operand cannot resolve to
5552 -- Boolean (since we got no interpretations), but in that case we
5553 -- pretty much know that the other operand should be Boolean, so
5554 -- resolve it that way (generating an error)
5556 elsif Nkind_In (N, N_Op_And, N_Op_Or, N_Op_Xor) then
5557 if Etype (L) = Standard_Boolean then
5558 Resolve (R, Standard_Boolean);
5559 return;
5560 elsif Etype (R) = Standard_Boolean then
5561 Resolve (L, Standard_Boolean);
5562 return;
5563 end if;
5565 -- For an arithmetic operator or comparison operator, if one
5566 -- of the operands is numeric, then we know the other operand
5567 -- is not the same numeric type. If it is a non-numeric type,
5568 -- then probably it is intended to match the other operand.
5570 elsif Nkind_In (N, N_Op_Add,
5571 N_Op_Divide,
5572 N_Op_Ge,
5573 N_Op_Gt,
5574 N_Op_Le)
5575 or else
5576 Nkind_In (N, N_Op_Lt,
5577 N_Op_Mod,
5578 N_Op_Multiply,
5579 N_Op_Rem,
5580 N_Op_Subtract)
5581 then
5582 if Is_Numeric_Type (Etype (L))
5583 and then not Is_Numeric_Type (Etype (R))
5584 then
5585 Resolve (R, Etype (L));
5586 return;
5588 elsif Is_Numeric_Type (Etype (R))
5589 and then not Is_Numeric_Type (Etype (L))
5590 then
5591 Resolve (L, Etype (R));
5592 return;
5593 end if;
5595 -- Comparisons on A'Access are common enough to deserve a
5596 -- special message.
5598 elsif Nkind_In (N, N_Op_Eq, N_Op_Ne)
5599 and then Ekind (Etype (L)) = E_Access_Attribute_Type
5600 and then Ekind (Etype (R)) = E_Access_Attribute_Type
5601 then
5602 Error_Msg_N
5603 ("two access attributes cannot be compared directly", N);
5604 Error_Msg_N
5605 ("\use qualified expression for one of the operands",
5607 return;
5609 -- Another one for C programmers
5611 elsif Nkind (N) = N_Op_Concat
5612 and then Valid_Boolean_Arg (Etype (L))
5613 and then Valid_Boolean_Arg (Etype (R))
5614 then
5615 Error_Msg_N ("invalid operands for concatenation", N);
5616 Error_Msg_N -- CODEFIX
5617 ("\maybe AND was meant", N);
5618 return;
5620 -- A special case for comparison of access parameter with null
5622 elsif Nkind (N) = N_Op_Eq
5623 and then Is_Entity_Name (L)
5624 and then Nkind (Parent (Entity (L))) = N_Parameter_Specification
5625 and then Nkind (Parameter_Type (Parent (Entity (L)))) =
5626 N_Access_Definition
5627 and then Nkind (R) = N_Null
5628 then
5629 Error_Msg_N ("access parameter is not allowed to be null", L);
5630 Error_Msg_N ("\(call would raise Constraint_Error)", L);
5631 return;
5633 -- Another special case for exponentiation, where the right
5634 -- operand must be Natural, independently of the base.
5636 elsif Nkind (N) = N_Op_Expon
5637 and then Is_Numeric_Type (Etype (L))
5638 and then not Is_Overloaded (R)
5639 and then
5640 First_Subtype (Base_Type (Etype (R))) /= Standard_Integer
5641 and then Base_Type (Etype (R)) /= Universal_Integer
5642 then
5643 Error_Msg_NE
5644 ("exponent must be of type Natural, found}", R, Etype (R));
5645 return;
5646 end if;
5648 -- If we fall through then just give general message. Note that in
5649 -- the following messages, if the operand is overloaded we choose
5650 -- an arbitrary type to complain about, but that is probably more
5651 -- useful than not giving a type at all.
5653 if Nkind (N) in N_Unary_Op then
5654 Error_Msg_Node_2 := Etype (R);
5655 Error_Msg_N ("operator& not defined for}", N);
5656 return;
5658 else
5659 if Nkind (N) in N_Binary_Op then
5660 if not Is_Overloaded (L)
5661 and then not Is_Overloaded (R)
5662 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
5663 then
5664 Error_Msg_Node_2 := First_Subtype (Etype (R));
5665 Error_Msg_N ("there is no applicable operator& for}", N);
5667 else
5668 -- Another attempt to find a fix: one of the candidate
5669 -- interpretations may not be use-visible. This has
5670 -- already been checked for predefined operators, so
5671 -- we examine only user-defined functions.
5673 Op_Id := Get_Name_Entity_Id (Chars (N));
5675 while Present (Op_Id) loop
5676 if Ekind (Op_Id) /= E_Operator
5677 and then Is_Overloadable (Op_Id)
5678 then
5679 if not Is_Immediately_Visible (Op_Id)
5680 and then not In_Use (Scope (Op_Id))
5681 and then not Is_Abstract_Subprogram (Op_Id)
5682 and then not Is_Hidden (Op_Id)
5683 and then Ekind (Scope (Op_Id)) = E_Package
5684 and then
5685 Has_Compatible_Type
5686 (L, Etype (First_Formal (Op_Id)))
5687 and then Present
5688 (Next_Formal (First_Formal (Op_Id)))
5689 and then
5690 Has_Compatible_Type
5692 Etype (Next_Formal (First_Formal (Op_Id))))
5693 then
5694 Error_Msg_N
5695 ("No legal interpretation for operator&", N);
5696 Error_Msg_NE
5697 ("\use clause on& would make operation legal",
5698 N, Scope (Op_Id));
5699 exit;
5700 end if;
5701 end if;
5703 Op_Id := Homonym (Op_Id);
5704 end loop;
5706 if No (Op_Id) then
5707 Error_Msg_N ("invalid operand types for operator&", N);
5709 if Nkind (N) /= N_Op_Concat then
5710 Error_Msg_NE ("\left operand has}!", N, Etype (L));
5711 Error_Msg_NE ("\right operand has}!", N, Etype (R));
5712 end if;
5713 end if;
5714 end if;
5715 end if;
5716 end if;
5717 end;
5718 end if;
5719 end Operator_Check;
5721 -----------------------------------------
5722 -- Process_Implicit_Dereference_Prefix --
5723 -----------------------------------------
5725 function Process_Implicit_Dereference_Prefix
5726 (E : Entity_Id;
5727 P : Entity_Id) return Entity_Id
5729 Ref : Node_Id;
5730 Typ : constant Entity_Id := Designated_Type (Etype (P));
5732 begin
5733 if Present (E)
5734 and then (Operating_Mode = Check_Semantics or else not Expander_Active)
5735 then
5736 -- We create a dummy reference to E to ensure that the reference
5737 -- is not considered as part of an assignment (an implicit
5738 -- dereference can never assign to its prefix). The Comes_From_Source
5739 -- attribute needs to be propagated for accurate warnings.
5741 Ref := New_Reference_To (E, Sloc (P));
5742 Set_Comes_From_Source (Ref, Comes_From_Source (P));
5743 Generate_Reference (E, Ref);
5744 end if;
5746 -- An implicit dereference is a legal occurrence of an
5747 -- incomplete type imported through a limited_with clause,
5748 -- if the full view is visible.
5750 if From_With_Type (Typ)
5751 and then not From_With_Type (Scope (Typ))
5752 and then
5753 (Is_Immediately_Visible (Scope (Typ))
5754 or else
5755 (Is_Child_Unit (Scope (Typ))
5756 and then Is_Visible_Child_Unit (Scope (Typ))))
5757 then
5758 return Available_View (Typ);
5759 else
5760 return Typ;
5761 end if;
5763 end Process_Implicit_Dereference_Prefix;
5765 --------------------------------
5766 -- Remove_Abstract_Operations --
5767 --------------------------------
5769 procedure Remove_Abstract_Operations (N : Node_Id) is
5770 Abstract_Op : Entity_Id := Empty;
5771 Address_Kludge : Boolean := False;
5772 I : Interp_Index;
5773 It : Interp;
5775 -- AI-310: If overloaded, remove abstract non-dispatching operations. We
5776 -- activate this if either extensions are enabled, or if the abstract
5777 -- operation in question comes from a predefined file. This latter test
5778 -- allows us to use abstract to make operations invisible to users. In
5779 -- particular, if type Address is non-private and abstract subprograms
5780 -- are used to hide its operators, they will be truly hidden.
5782 type Operand_Position is (First_Op, Second_Op);
5783 Univ_Type : constant Entity_Id := Universal_Interpretation (N);
5785 procedure Remove_Address_Interpretations (Op : Operand_Position);
5786 -- Ambiguities may arise when the operands are literal and the address
5787 -- operations in s-auxdec are visible. In that case, remove the
5788 -- interpretation of a literal as Address, to retain the semantics of
5789 -- Address as a private type.
5791 ------------------------------------
5792 -- Remove_Address_Interpretations --
5793 ------------------------------------
5795 procedure Remove_Address_Interpretations (Op : Operand_Position) is
5796 Formal : Entity_Id;
5798 begin
5799 if Is_Overloaded (N) then
5800 Get_First_Interp (N, I, It);
5801 while Present (It.Nam) loop
5802 Formal := First_Entity (It.Nam);
5804 if Op = Second_Op then
5805 Formal := Next_Entity (Formal);
5806 end if;
5808 if Is_Descendent_Of_Address (Etype (Formal)) then
5809 Address_Kludge := True;
5810 Remove_Interp (I);
5811 end if;
5813 Get_Next_Interp (I, It);
5814 end loop;
5815 end if;
5816 end Remove_Address_Interpretations;
5818 -- Start of processing for Remove_Abstract_Operations
5820 begin
5821 if Is_Overloaded (N) then
5822 Get_First_Interp (N, I, It);
5824 while Present (It.Nam) loop
5825 if Is_Overloadable (It.Nam)
5826 and then Is_Abstract_Subprogram (It.Nam)
5827 and then not Is_Dispatching_Operation (It.Nam)
5828 then
5829 Abstract_Op := It.Nam;
5831 if Is_Descendent_Of_Address (It.Typ) then
5832 Address_Kludge := True;
5833 Remove_Interp (I);
5834 exit;
5836 -- In Ada 2005, this operation does not participate in Overload
5837 -- resolution. If the operation is defined in a predefined
5838 -- unit, it is one of the operations declared abstract in some
5839 -- variants of System, and it must be removed as well.
5841 elsif Ada_Version >= Ada_05
5842 or else Is_Predefined_File_Name
5843 (Unit_File_Name (Get_Source_Unit (It.Nam)))
5844 then
5845 Remove_Interp (I);
5846 exit;
5847 end if;
5848 end if;
5850 Get_Next_Interp (I, It);
5851 end loop;
5853 if No (Abstract_Op) then
5855 -- If some interpretation yields an integer type, it is still
5856 -- possible that there are address interpretations. Remove them
5857 -- if one operand is a literal, to avoid spurious ambiguities
5858 -- on systems where Address is a visible integer type.
5860 if Is_Overloaded (N)
5861 and then Nkind (N) in N_Op
5862 and then Is_Integer_Type (Etype (N))
5863 then
5864 if Nkind (N) in N_Binary_Op then
5865 if Nkind (Right_Opnd (N)) = N_Integer_Literal then
5866 Remove_Address_Interpretations (Second_Op);
5868 elsif Nkind (Right_Opnd (N)) = N_Integer_Literal then
5869 Remove_Address_Interpretations (First_Op);
5870 end if;
5871 end if;
5872 end if;
5874 elsif Nkind (N) in N_Op then
5876 -- Remove interpretations that treat literals as addresses. This
5877 -- is never appropriate, even when Address is defined as a visible
5878 -- Integer type. The reason is that we would really prefer Address
5879 -- to behave as a private type, even in this case, which is there
5880 -- only to accommodate oddities of VMS address sizes. If Address
5881 -- is a visible integer type, we get lots of overload ambiguities.
5883 if Nkind (N) in N_Binary_Op then
5884 declare
5885 U1 : constant Boolean :=
5886 Present (Universal_Interpretation (Right_Opnd (N)));
5887 U2 : constant Boolean :=
5888 Present (Universal_Interpretation (Left_Opnd (N)));
5890 begin
5891 if U1 then
5892 Remove_Address_Interpretations (Second_Op);
5893 end if;
5895 if U2 then
5896 Remove_Address_Interpretations (First_Op);
5897 end if;
5899 if not (U1 and U2) then
5901 -- Remove corresponding predefined operator, which is
5902 -- always added to the overload set.
5904 Get_First_Interp (N, I, It);
5905 while Present (It.Nam) loop
5906 if Scope (It.Nam) = Standard_Standard
5907 and then Base_Type (It.Typ) =
5908 Base_Type (Etype (Abstract_Op))
5909 then
5910 Remove_Interp (I);
5911 end if;
5913 Get_Next_Interp (I, It);
5914 end loop;
5916 elsif Is_Overloaded (N)
5917 and then Present (Univ_Type)
5918 then
5919 -- If both operands have a universal interpretation,
5920 -- it is still necessary to remove interpretations that
5921 -- yield Address. Any remaining ambiguities will be
5922 -- removed in Disambiguate.
5924 Get_First_Interp (N, I, It);
5925 while Present (It.Nam) loop
5926 if Is_Descendent_Of_Address (It.Typ) then
5927 Remove_Interp (I);
5929 elsif not Is_Type (It.Nam) then
5930 Set_Entity (N, It.Nam);
5931 end if;
5933 Get_Next_Interp (I, It);
5934 end loop;
5935 end if;
5936 end;
5937 end if;
5939 elsif Nkind (N) = N_Function_Call
5940 and then
5941 (Nkind (Name (N)) = N_Operator_Symbol
5942 or else
5943 (Nkind (Name (N)) = N_Expanded_Name
5944 and then
5945 Nkind (Selector_Name (Name (N))) = N_Operator_Symbol))
5946 then
5948 declare
5949 Arg1 : constant Node_Id := First (Parameter_Associations (N));
5950 U1 : constant Boolean :=
5951 Present (Universal_Interpretation (Arg1));
5952 U2 : constant Boolean :=
5953 Present (Next (Arg1)) and then
5954 Present (Universal_Interpretation (Next (Arg1)));
5956 begin
5957 if U1 then
5958 Remove_Address_Interpretations (First_Op);
5959 end if;
5961 if U2 then
5962 Remove_Address_Interpretations (Second_Op);
5963 end if;
5965 if not (U1 and U2) then
5966 Get_First_Interp (N, I, It);
5967 while Present (It.Nam) loop
5968 if Scope (It.Nam) = Standard_Standard
5969 and then It.Typ = Base_Type (Etype (Abstract_Op))
5970 then
5971 Remove_Interp (I);
5972 end if;
5974 Get_Next_Interp (I, It);
5975 end loop;
5976 end if;
5977 end;
5978 end if;
5980 -- If the removal has left no valid interpretations, emit an error
5981 -- message now and label node as illegal.
5983 if Present (Abstract_Op) then
5984 Get_First_Interp (N, I, It);
5986 if No (It.Nam) then
5988 -- Removal of abstract operation left no viable candidate
5990 Set_Etype (N, Any_Type);
5991 Error_Msg_Sloc := Sloc (Abstract_Op);
5992 Error_Msg_NE
5993 ("cannot call abstract operation& declared#", N, Abstract_Op);
5995 -- In Ada 2005, an abstract operation may disable predefined
5996 -- operators. Since the context is not yet known, we mark the
5997 -- predefined operators as potentially hidden. Do not include
5998 -- predefined operators when addresses are involved since this
5999 -- case is handled separately.
6001 elsif Ada_Version >= Ada_05
6002 and then not Address_Kludge
6003 then
6004 while Present (It.Nam) loop
6005 if Is_Numeric_Type (It.Typ)
6006 and then Scope (It.Typ) = Standard_Standard
6007 then
6008 Set_Abstract_Op (I, Abstract_Op);
6009 end if;
6011 Get_Next_Interp (I, It);
6012 end loop;
6013 end if;
6014 end if;
6015 end if;
6016 end Remove_Abstract_Operations;
6018 -----------------------
6019 -- Try_Indirect_Call --
6020 -----------------------
6022 function Try_Indirect_Call
6023 (N : Node_Id;
6024 Nam : Entity_Id;
6025 Typ : Entity_Id) return Boolean
6027 Actual : Node_Id;
6028 Formal : Entity_Id;
6030 Call_OK : Boolean;
6031 pragma Warnings (Off, Call_OK);
6033 begin
6034 Normalize_Actuals (N, Designated_Type (Typ), False, Call_OK);
6036 Actual := First_Actual (N);
6037 Formal := First_Formal (Designated_Type (Typ));
6038 while Present (Actual) and then Present (Formal) loop
6039 if not Has_Compatible_Type (Actual, Etype (Formal)) then
6040 return False;
6041 end if;
6043 Next (Actual);
6044 Next_Formal (Formal);
6045 end loop;
6047 if No (Actual) and then No (Formal) then
6048 Add_One_Interp (N, Nam, Etype (Designated_Type (Typ)));
6050 -- Nam is a candidate interpretation for the name in the call,
6051 -- if it is not an indirect call.
6053 if not Is_Type (Nam)
6054 and then Is_Entity_Name (Name (N))
6055 then
6056 Set_Entity (Name (N), Nam);
6057 end if;
6059 return True;
6060 else
6061 return False;
6062 end if;
6063 end Try_Indirect_Call;
6065 ----------------------
6066 -- Try_Indexed_Call --
6067 ----------------------
6069 function Try_Indexed_Call
6070 (N : Node_Id;
6071 Nam : Entity_Id;
6072 Typ : Entity_Id;
6073 Skip_First : Boolean) return Boolean
6075 Loc : constant Source_Ptr := Sloc (N);
6076 Actuals : constant List_Id := Parameter_Associations (N);
6077 Actual : Node_Id;
6078 Index : Entity_Id;
6080 begin
6081 Actual := First (Actuals);
6083 -- If the call was originally written in prefix form, skip the first
6084 -- actual, which is obviously not defaulted.
6086 if Skip_First then
6087 Next (Actual);
6088 end if;
6090 Index := First_Index (Typ);
6091 while Present (Actual) and then Present (Index) loop
6093 -- If the parameter list has a named association, the expression
6094 -- is definitely a call and not an indexed component.
6096 if Nkind (Actual) = N_Parameter_Association then
6097 return False;
6098 end if;
6100 if Is_Entity_Name (Actual)
6101 and then Is_Type (Entity (Actual))
6102 and then No (Next (Actual))
6103 then
6104 Rewrite (N,
6105 Make_Slice (Loc,
6106 Prefix => Make_Function_Call (Loc,
6107 Name => Relocate_Node (Name (N))),
6108 Discrete_Range =>
6109 New_Occurrence_Of (Entity (Actual), Sloc (Actual))));
6111 Analyze (N);
6112 return True;
6114 elsif not Has_Compatible_Type (Actual, Etype (Index)) then
6115 return False;
6116 end if;
6118 Next (Actual);
6119 Next_Index (Index);
6120 end loop;
6122 if No (Actual) and then No (Index) then
6123 Add_One_Interp (N, Nam, Component_Type (Typ));
6125 -- Nam is a candidate interpretation for the name in the call,
6126 -- if it is not an indirect call.
6128 if not Is_Type (Nam)
6129 and then Is_Entity_Name (Name (N))
6130 then
6131 Set_Entity (Name (N), Nam);
6132 end if;
6134 return True;
6135 else
6136 return False;
6137 end if;
6138 end Try_Indexed_Call;
6140 --------------------------
6141 -- Try_Object_Operation --
6142 --------------------------
6144 function Try_Object_Operation (N : Node_Id) return Boolean is
6145 K : constant Node_Kind := Nkind (Parent (N));
6146 Is_Subprg_Call : constant Boolean := Nkind_In
6147 (K, N_Procedure_Call_Statement,
6148 N_Function_Call);
6149 Loc : constant Source_Ptr := Sloc (N);
6150 Obj : constant Node_Id := Prefix (N);
6152 Subprog : constant Node_Id :=
6153 Make_Identifier (Sloc (Selector_Name (N)),
6154 Chars => Chars (Selector_Name (N)));
6155 -- Identifier on which possible interpretations will be collected
6157 Report_Error : Boolean := False;
6158 -- If no candidate interpretation matches the context, redo the
6159 -- analysis with error enabled to provide additional information.
6161 Actual : Node_Id;
6162 Candidate : Entity_Id := Empty;
6163 New_Call_Node : Node_Id := Empty;
6164 Node_To_Replace : Node_Id;
6165 Obj_Type : Entity_Id := Etype (Obj);
6166 Success : Boolean := False;
6168 function Valid_Candidate
6169 (Success : Boolean;
6170 Call : Node_Id;
6171 Subp : Entity_Id) return Entity_Id;
6172 -- If the subprogram is a valid interpretation, record it, and add
6173 -- to the list of interpretations of Subprog.
6175 procedure Complete_Object_Operation
6176 (Call_Node : Node_Id;
6177 Node_To_Replace : Node_Id);
6178 -- Make Subprog the name of Call_Node, replace Node_To_Replace with
6179 -- Call_Node, insert the object (or its dereference) as the first actual
6180 -- in the call, and complete the analysis of the call.
6182 procedure Report_Ambiguity (Op : Entity_Id);
6183 -- If a prefixed procedure call is ambiguous, indicate whether the
6184 -- call includes an implicit dereference or an implicit 'Access.
6186 procedure Transform_Object_Operation
6187 (Call_Node : out Node_Id;
6188 Node_To_Replace : out Node_Id);
6189 -- Transform Obj.Operation (X, Y,,) into Operation (Obj, X, Y ..)
6190 -- Call_Node is the resulting subprogram call, Node_To_Replace is
6191 -- either N or the parent of N, and Subprog is a reference to the
6192 -- subprogram we are trying to match.
6194 function Try_Class_Wide_Operation
6195 (Call_Node : Node_Id;
6196 Node_To_Replace : Node_Id) return Boolean;
6197 -- Traverse all ancestor types looking for a class-wide subprogram
6198 -- for which the current operation is a valid non-dispatching call.
6200 procedure Try_One_Prefix_Interpretation (T : Entity_Id);
6201 -- If prefix is overloaded, its interpretation may include different
6202 -- tagged types, and we must examine the primitive operations and
6203 -- the class-wide operations of each in order to find candidate
6204 -- interpretations for the call as a whole.
6206 function Try_Primitive_Operation
6207 (Call_Node : Node_Id;
6208 Node_To_Replace : Node_Id) return Boolean;
6209 -- Traverse the list of primitive subprograms looking for a dispatching
6210 -- operation for which the current node is a valid call .
6212 ---------------------
6213 -- Valid_Candidate --
6214 ---------------------
6216 function Valid_Candidate
6217 (Success : Boolean;
6218 Call : Node_Id;
6219 Subp : Entity_Id) return Entity_Id
6221 Arr_Type : Entity_Id;
6222 Comp_Type : Entity_Id;
6224 begin
6225 -- If the subprogram is a valid interpretation, record it in global
6226 -- variable Subprog, to collect all possible overloadings.
6228 if Success then
6229 if Subp /= Entity (Subprog) then
6230 Add_One_Interp (Subprog, Subp, Etype (Subp));
6231 end if;
6232 end if;
6234 -- If the call may be an indexed call, retrieve component type of
6235 -- resulting expression, and add possible interpretation.
6237 Arr_Type := Empty;
6238 Comp_Type := Empty;
6240 if Nkind (Call) = N_Function_Call
6241 and then Nkind (Parent (N)) = N_Indexed_Component
6242 and then Needs_One_Actual (Subp)
6243 then
6244 if Is_Array_Type (Etype (Subp)) then
6245 Arr_Type := Etype (Subp);
6247 elsif Is_Access_Type (Etype (Subp))
6248 and then Is_Array_Type (Designated_Type (Etype (Subp)))
6249 then
6250 Arr_Type := Designated_Type (Etype (Subp));
6251 end if;
6252 end if;
6254 if Present (Arr_Type) then
6256 -- Verify that the actuals (excluding the object)
6257 -- match the types of the indices.
6259 declare
6260 Actual : Node_Id;
6261 Index : Node_Id;
6263 begin
6264 Actual := Next (First_Actual (Call));
6265 Index := First_Index (Arr_Type);
6266 while Present (Actual) and then Present (Index) loop
6267 if not Has_Compatible_Type (Actual, Etype (Index)) then
6268 Arr_Type := Empty;
6269 exit;
6270 end if;
6272 Next_Actual (Actual);
6273 Next_Index (Index);
6274 end loop;
6276 if No (Actual)
6277 and then No (Index)
6278 and then Present (Arr_Type)
6279 then
6280 Comp_Type := Component_Type (Arr_Type);
6281 end if;
6282 end;
6284 if Present (Comp_Type)
6285 and then Etype (Subprog) /= Comp_Type
6286 then
6287 Add_One_Interp (Subprog, Subp, Comp_Type);
6288 end if;
6289 end if;
6291 if Etype (Call) /= Any_Type then
6292 return Subp;
6293 else
6294 return Empty;
6295 end if;
6296 end Valid_Candidate;
6298 -------------------------------
6299 -- Complete_Object_Operation --
6300 -------------------------------
6302 procedure Complete_Object_Operation
6303 (Call_Node : Node_Id;
6304 Node_To_Replace : Node_Id)
6306 Control : constant Entity_Id := First_Formal (Entity (Subprog));
6307 Formal_Type : constant Entity_Id := Etype (Control);
6308 First_Actual : Node_Id;
6310 begin
6311 -- Place the name of the operation, with its interpretations,
6312 -- on the rewritten call.
6314 Set_Name (Call_Node, Subprog);
6316 First_Actual := First (Parameter_Associations (Call_Node));
6318 -- For cross-reference purposes, treat the new node as being in
6319 -- the source if the original one is.
6321 Set_Comes_From_Source (Subprog, Comes_From_Source (N));
6322 Set_Comes_From_Source (Call_Node, Comes_From_Source (N));
6324 if Nkind (N) = N_Selected_Component
6325 and then not Inside_A_Generic
6326 then
6327 Set_Entity (Selector_Name (N), Entity (Subprog));
6328 end if;
6330 -- If need be, rewrite first actual as an explicit dereference
6331 -- If the call is overloaded, the rewriting can only be done
6332 -- once the primitive operation is identified.
6334 if Is_Overloaded (Subprog) then
6336 -- The prefix itself may be overloaded, and its interpretations
6337 -- must be propagated to the new actual in the call.
6339 if Is_Overloaded (Obj) then
6340 Save_Interps (Obj, First_Actual);
6341 end if;
6343 Rewrite (First_Actual, Obj);
6345 elsif not Is_Access_Type (Formal_Type)
6346 and then Is_Access_Type (Etype (Obj))
6347 then
6348 Rewrite (First_Actual,
6349 Make_Explicit_Dereference (Sloc (Obj), Obj));
6350 Analyze (First_Actual);
6352 -- If we need to introduce an explicit dereference, verify that
6353 -- the resulting actual is compatible with the mode of the formal.
6355 if Ekind (First_Formal (Entity (Subprog))) /= E_In_Parameter
6356 and then Is_Access_Constant (Etype (Obj))
6357 then
6358 Error_Msg_NE
6359 ("expect variable in call to&", Prefix (N), Entity (Subprog));
6360 end if;
6362 -- Conversely, if the formal is an access parameter and the object
6363 -- is not, replace the actual with a 'Access reference. Its analysis
6364 -- will check that the object is aliased.
6366 elsif Is_Access_Type (Formal_Type)
6367 and then not Is_Access_Type (Etype (Obj))
6368 then
6369 -- A special case: A.all'access is illegal if A is an access to a
6370 -- constant and the context requires an access to a variable.
6372 if not Is_Access_Constant (Formal_Type) then
6373 if (Nkind (Obj) = N_Explicit_Dereference
6374 and then Is_Access_Constant (Etype (Prefix (Obj))))
6375 or else not Is_Variable (Obj)
6376 then
6377 Error_Msg_NE
6378 ("actual for& must be a variable", Obj, Control);
6379 end if;
6380 end if;
6382 Rewrite (First_Actual,
6383 Make_Attribute_Reference (Loc,
6384 Attribute_Name => Name_Access,
6385 Prefix => Relocate_Node (Obj)));
6387 if not Is_Aliased_View (Obj) then
6388 Error_Msg_NE
6389 ("object in prefixed call to& must be aliased"
6390 & " (RM-2005 4.3.1 (13))",
6391 Prefix (First_Actual), Subprog);
6392 end if;
6394 Analyze (First_Actual);
6396 else
6397 if Is_Overloaded (Obj) then
6398 Save_Interps (Obj, First_Actual);
6399 end if;
6401 Rewrite (First_Actual, Obj);
6402 end if;
6404 Rewrite (Node_To_Replace, Call_Node);
6406 -- Propagate the interpretations collected in subprog to the new
6407 -- function call node, to be resolved from context.
6409 if Is_Overloaded (Subprog) then
6410 Save_Interps (Subprog, Node_To_Replace);
6412 else
6413 Analyze (Node_To_Replace);
6415 -- If the operation has been rewritten into a call, which may get
6416 -- subsequently an explicit dereference, preserve the type on the
6417 -- original node (selected component or indexed component) for
6418 -- subsequent legality tests, e.g. Is_Variable. which examines
6419 -- the original node.
6421 if Nkind (Node_To_Replace) = N_Function_Call then
6422 Set_Etype
6423 (Original_Node (Node_To_Replace), Etype (Node_To_Replace));
6424 end if;
6425 end if;
6426 end Complete_Object_Operation;
6428 ----------------------
6429 -- Report_Ambiguity --
6430 ----------------------
6432 procedure Report_Ambiguity (Op : Entity_Id) is
6433 Access_Formal : constant Boolean :=
6434 Is_Access_Type (Etype (First_Formal (Op)));
6435 Access_Actual : constant Boolean :=
6436 Is_Access_Type (Etype (Prefix (N)));
6438 begin
6439 Error_Msg_Sloc := Sloc (Op);
6441 if Access_Formal and then not Access_Actual then
6442 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6443 Error_Msg_N
6444 ("\possible interpretation"
6445 & " (inherited, with implicit 'Access) #", N);
6446 else
6447 Error_Msg_N
6448 ("\possible interpretation (with implicit 'Access) #", N);
6449 end if;
6451 elsif not Access_Formal and then Access_Actual then
6452 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6453 Error_Msg_N
6454 ("\possible interpretation"
6455 & " ( inherited, with implicit dereference) #", N);
6456 else
6457 Error_Msg_N
6458 ("\possible interpretation (with implicit dereference) #", N);
6459 end if;
6461 else
6462 if Nkind (Parent (Op)) = N_Full_Type_Declaration then
6463 Error_Msg_N ("\possible interpretation (inherited)#", N);
6464 else
6465 Error_Msg_N -- CODEFIX
6466 ("\possible interpretation#", N);
6467 end if;
6468 end if;
6469 end Report_Ambiguity;
6471 --------------------------------
6472 -- Transform_Object_Operation --
6473 --------------------------------
6475 procedure Transform_Object_Operation
6476 (Call_Node : out Node_Id;
6477 Node_To_Replace : out Node_Id)
6479 Dummy : constant Node_Id := New_Copy (Obj);
6480 -- Placeholder used as a first parameter in the call, replaced
6481 -- eventually by the proper object.
6483 Parent_Node : constant Node_Id := Parent (N);
6485 Actual : Node_Id;
6486 Actuals : List_Id;
6488 begin
6489 -- Common case covering 1) Call to a procedure and 2) Call to a
6490 -- function that has some additional actuals.
6492 if Nkind_In (Parent_Node, N_Function_Call,
6493 N_Procedure_Call_Statement)
6495 -- N is a selected component node containing the name of the
6496 -- subprogram. If N is not the name of the parent node we must
6497 -- not replace the parent node by the new construct. This case
6498 -- occurs when N is a parameterless call to a subprogram that
6499 -- is an actual parameter of a call to another subprogram. For
6500 -- example:
6501 -- Some_Subprogram (..., Obj.Operation, ...)
6503 and then Name (Parent_Node) = N
6504 then
6505 Node_To_Replace := Parent_Node;
6507 Actuals := Parameter_Associations (Parent_Node);
6509 if Present (Actuals) then
6510 Prepend (Dummy, Actuals);
6511 else
6512 Actuals := New_List (Dummy);
6513 end if;
6515 if Nkind (Parent_Node) = N_Procedure_Call_Statement then
6516 Call_Node :=
6517 Make_Procedure_Call_Statement (Loc,
6518 Name => New_Copy (Subprog),
6519 Parameter_Associations => Actuals);
6521 else
6522 Call_Node :=
6523 Make_Function_Call (Loc,
6524 Name => New_Copy (Subprog),
6525 Parameter_Associations => Actuals);
6527 end if;
6529 -- Before analysis, a function call appears as an indexed component
6530 -- if there are no named associations.
6532 elsif Nkind (Parent_Node) = N_Indexed_Component
6533 and then N = Prefix (Parent_Node)
6534 then
6535 Node_To_Replace := Parent_Node;
6536 Actuals := Expressions (Parent_Node);
6538 Actual := First (Actuals);
6539 while Present (Actual) loop
6540 Analyze (Actual);
6541 Next (Actual);
6542 end loop;
6544 Prepend (Dummy, Actuals);
6546 Call_Node :=
6547 Make_Function_Call (Loc,
6548 Name => New_Copy (Subprog),
6549 Parameter_Associations => Actuals);
6551 -- Parameterless call: Obj.F is rewritten as F (Obj)
6553 else
6554 Node_To_Replace := N;
6556 Call_Node :=
6557 Make_Function_Call (Loc,
6558 Name => New_Copy (Subprog),
6559 Parameter_Associations => New_List (Dummy));
6560 end if;
6561 end Transform_Object_Operation;
6563 ------------------------------
6564 -- Try_Class_Wide_Operation --
6565 ------------------------------
6567 function Try_Class_Wide_Operation
6568 (Call_Node : Node_Id;
6569 Node_To_Replace : Node_Id) return Boolean
6571 Anc_Type : Entity_Id;
6572 Matching_Op : Entity_Id := Empty;
6573 Error : Boolean;
6575 procedure Traverse_Homonyms
6576 (Anc_Type : Entity_Id;
6577 Error : out Boolean);
6578 -- Traverse the homonym chain of the subprogram searching for those
6579 -- homonyms whose first formal has the Anc_Type's class-wide type,
6580 -- or an anonymous access type designating the class-wide type. If
6581 -- an ambiguity is detected, then Error is set to True.
6583 procedure Traverse_Interfaces
6584 (Anc_Type : Entity_Id;
6585 Error : out Boolean);
6586 -- Traverse the list of interfaces, if any, associated with Anc_Type
6587 -- and search for acceptable class-wide homonyms associated with each
6588 -- interface. If an ambiguity is detected, then Error is set to True.
6590 -----------------------
6591 -- Traverse_Homonyms --
6592 -----------------------
6594 procedure Traverse_Homonyms
6595 (Anc_Type : Entity_Id;
6596 Error : out Boolean)
6598 Cls_Type : Entity_Id;
6599 Hom : Entity_Id;
6600 Hom_Ref : Node_Id;
6601 Success : Boolean;
6603 begin
6604 Error := False;
6606 Cls_Type := Class_Wide_Type (Anc_Type);
6608 Hom := Current_Entity (Subprog);
6610 -- Find operation whose first parameter is of the class-wide
6611 -- type, a subtype thereof, or an anonymous access to same.
6613 while Present (Hom) loop
6614 if (Ekind (Hom) = E_Procedure
6615 or else
6616 Ekind (Hom) = E_Function)
6617 and then Scope (Hom) = Scope (Anc_Type)
6618 and then Present (First_Formal (Hom))
6619 and then
6620 (Base_Type (Etype (First_Formal (Hom))) = Cls_Type
6621 or else
6622 (Is_Access_Type (Etype (First_Formal (Hom)))
6623 and then
6624 Ekind (Etype (First_Formal (Hom))) =
6625 E_Anonymous_Access_Type
6626 and then
6627 Base_Type
6628 (Designated_Type (Etype (First_Formal (Hom)))) =
6629 Cls_Type))
6630 then
6631 Set_Etype (Call_Node, Any_Type);
6632 Set_Is_Overloaded (Call_Node, False);
6633 Success := False;
6635 if No (Matching_Op) then
6636 Hom_Ref := New_Reference_To (Hom, Sloc (Subprog));
6637 Set_Etype (Call_Node, Any_Type);
6638 Set_Parent (Call_Node, Parent (Node_To_Replace));
6640 Set_Name (Call_Node, Hom_Ref);
6642 Analyze_One_Call
6643 (N => Call_Node,
6644 Nam => Hom,
6645 Report => Report_Error,
6646 Success => Success,
6647 Skip_First => True);
6649 Matching_Op :=
6650 Valid_Candidate (Success, Call_Node, Hom);
6652 else
6653 Analyze_One_Call
6654 (N => Call_Node,
6655 Nam => Hom,
6656 Report => Report_Error,
6657 Success => Success,
6658 Skip_First => True);
6660 if Present (Valid_Candidate (Success, Call_Node, Hom))
6661 and then Nkind (Call_Node) /= N_Function_Call
6662 then
6663 Error_Msg_NE ("ambiguous call to&", N, Hom);
6664 Report_Ambiguity (Matching_Op);
6665 Report_Ambiguity (Hom);
6666 Error := True;
6667 return;
6668 end if;
6669 end if;
6670 end if;
6672 Hom := Homonym (Hom);
6673 end loop;
6674 end Traverse_Homonyms;
6676 -------------------------
6677 -- Traverse_Interfaces --
6678 -------------------------
6680 procedure Traverse_Interfaces
6681 (Anc_Type : Entity_Id;
6682 Error : out Boolean)
6684 Intface_List : constant List_Id :=
6685 Abstract_Interface_List (Anc_Type);
6686 Intface : Node_Id;
6688 begin
6689 Error := False;
6691 if Is_Non_Empty_List (Intface_List) then
6692 Intface := First (Intface_List);
6693 while Present (Intface) loop
6695 -- Look for acceptable class-wide homonyms associated with
6696 -- the interface.
6698 Traverse_Homonyms (Etype (Intface), Error);
6700 if Error then
6701 return;
6702 end if;
6704 -- Continue the search by looking at each of the interface's
6705 -- associated interface ancestors.
6707 Traverse_Interfaces (Etype (Intface), Error);
6709 if Error then
6710 return;
6711 end if;
6713 Next (Intface);
6714 end loop;
6715 end if;
6716 end Traverse_Interfaces;
6718 -- Start of processing for Try_Class_Wide_Operation
6720 begin
6721 -- Loop through ancestor types (including interfaces), traversing
6722 -- the homonym chain of the subprogram, trying out those homonyms
6723 -- whose first formal has the class-wide type of the ancestor, or
6724 -- an anonymous access type designating the class-wide type.
6726 Anc_Type := Obj_Type;
6727 loop
6728 -- Look for a match among homonyms associated with the ancestor
6730 Traverse_Homonyms (Anc_Type, Error);
6732 if Error then
6733 return True;
6734 end if;
6736 -- Continue the search for matches among homonyms associated with
6737 -- any interfaces implemented by the ancestor.
6739 Traverse_Interfaces (Anc_Type, Error);
6741 if Error then
6742 return True;
6743 end if;
6745 exit when Etype (Anc_Type) = Anc_Type;
6746 Anc_Type := Etype (Anc_Type);
6747 end loop;
6749 if Present (Matching_Op) then
6750 Set_Etype (Call_Node, Etype (Matching_Op));
6751 end if;
6753 return Present (Matching_Op);
6754 end Try_Class_Wide_Operation;
6756 -----------------------------------
6757 -- Try_One_Prefix_Interpretation --
6758 -----------------------------------
6760 procedure Try_One_Prefix_Interpretation (T : Entity_Id) is
6761 begin
6762 Obj_Type := T;
6764 if Is_Access_Type (Obj_Type) then
6765 Obj_Type := Designated_Type (Obj_Type);
6766 end if;
6768 if Ekind (Obj_Type) = E_Private_Subtype then
6769 Obj_Type := Base_Type (Obj_Type);
6770 end if;
6772 if Is_Class_Wide_Type (Obj_Type) then
6773 Obj_Type := Etype (Class_Wide_Type (Obj_Type));
6774 end if;
6776 -- The type may have be obtained through a limited_with clause,
6777 -- in which case the primitive operations are available on its
6778 -- non-limited view. If still incomplete, retrieve full view.
6780 if Ekind (Obj_Type) = E_Incomplete_Type
6781 and then From_With_Type (Obj_Type)
6782 then
6783 Obj_Type := Get_Full_View (Non_Limited_View (Obj_Type));
6784 end if;
6786 -- If the object is not tagged, or the type is still an incomplete
6787 -- type, this is not a prefixed call.
6789 if not Is_Tagged_Type (Obj_Type)
6790 or else Is_Incomplete_Type (Obj_Type)
6791 then
6792 return;
6793 end if;
6795 if Try_Primitive_Operation
6796 (Call_Node => New_Call_Node,
6797 Node_To_Replace => Node_To_Replace)
6798 or else
6799 Try_Class_Wide_Operation
6800 (Call_Node => New_Call_Node,
6801 Node_To_Replace => Node_To_Replace)
6802 then
6803 null;
6804 end if;
6805 end Try_One_Prefix_Interpretation;
6807 -----------------------------
6808 -- Try_Primitive_Operation --
6809 -----------------------------
6811 function Try_Primitive_Operation
6812 (Call_Node : Node_Id;
6813 Node_To_Replace : Node_Id) return Boolean
6815 Elmt : Elmt_Id;
6816 Prim_Op : Entity_Id;
6817 Matching_Op : Entity_Id := Empty;
6818 Prim_Op_Ref : Node_Id := Empty;
6820 Corr_Type : Entity_Id := Empty;
6821 -- If the prefix is a synchronized type, the controlling type of
6822 -- the primitive operation is the corresponding record type, else
6823 -- this is the object type itself.
6825 Success : Boolean := False;
6827 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id;
6828 -- For tagged types the candidate interpretations are found in
6829 -- the list of primitive operations of the type and its ancestors.
6830 -- For formal tagged types we have to find the operations declared
6831 -- in the same scope as the type (including in the generic formal
6832 -- part) because the type itself carries no primitive operations,
6833 -- except for formal derived types that inherit the operations of
6834 -- the parent and progenitors.
6835 -- If the context is a generic subprogram body, the generic formals
6836 -- are visible by name, but are not in the entity list of the
6837 -- subprogram because that list starts with the subprogram formals.
6838 -- We retrieve the candidate operations from the generic declaration.
6840 function Is_Private_Overriding (Op : Entity_Id) return Boolean;
6841 -- An operation that overrides an inherited operation in the private
6842 -- part of its package may be hidden, but if the inherited operation
6843 -- is visible a direct call to it will dispatch to the private one,
6844 -- which is therefore a valid candidate.
6846 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean;
6847 -- Verify that the prefix, dereferenced if need be, is a valid
6848 -- controlling argument in a call to Op. The remaining actuals
6849 -- are checked in the subsequent call to Analyze_One_Call.
6851 ------------------------------
6852 -- Collect_Generic_Type_Ops --
6853 ------------------------------
6855 function Collect_Generic_Type_Ops (T : Entity_Id) return Elist_Id is
6856 Bas : constant Entity_Id := Base_Type (T);
6857 Candidates : constant Elist_Id := New_Elmt_List;
6858 Subp : Entity_Id;
6859 Formal : Entity_Id;
6861 procedure Check_Candidate;
6862 -- The operation is a candidate if its first parameter is a
6863 -- controlling operand of the desired type.
6865 -----------------------
6866 -- Check_Candidate; --
6867 -----------------------
6869 procedure Check_Candidate is
6870 begin
6871 Formal := First_Formal (Subp);
6873 if Present (Formal)
6874 and then Is_Controlling_Formal (Formal)
6875 and then
6876 (Base_Type (Etype (Formal)) = Bas
6877 or else
6878 (Is_Access_Type (Etype (Formal))
6879 and then Designated_Type (Etype (Formal)) = Bas))
6880 then
6881 Append_Elmt (Subp, Candidates);
6882 end if;
6883 end Check_Candidate;
6885 -- Start of processing for Collect_Generic_Type_Ops
6887 begin
6888 if Is_Derived_Type (T) then
6889 return Primitive_Operations (T);
6891 elsif Ekind_In (Scope (T), E_Procedure, E_Function) then
6893 -- Scan the list of generic formals to find subprograms
6894 -- that may have a first controlling formal of the type.
6896 if Nkind (Unit_Declaration_Node (Scope (T)))
6897 = N_Generic_Subprogram_Declaration
6898 then
6899 declare
6900 Decl : Node_Id;
6902 begin
6903 Decl :=
6904 First (Generic_Formal_Declarations
6905 (Unit_Declaration_Node (Scope (T))));
6906 while Present (Decl) loop
6907 if Nkind (Decl) in N_Formal_Subprogram_Declaration then
6908 Subp := Defining_Entity (Decl);
6909 Check_Candidate;
6910 end if;
6912 Next (Decl);
6913 end loop;
6914 end;
6915 end if;
6916 return Candidates;
6918 else
6919 -- Scan the list of entities declared in the same scope as
6920 -- the type. In general this will be an open scope, given that
6921 -- the call we are analyzing can only appear within a generic
6922 -- declaration or body (either the one that declares T, or a
6923 -- child unit).
6925 -- For a subtype representing a generic actual type, go to the
6926 -- base type.
6928 if Is_Generic_Actual_Type (T) then
6929 Subp := First_Entity (Scope (Base_Type (T)));
6930 else
6931 Subp := First_Entity (Scope (T));
6932 end if;
6934 while Present (Subp) loop
6935 if Is_Overloadable (Subp) then
6936 Check_Candidate;
6937 end if;
6939 Next_Entity (Subp);
6940 end loop;
6942 return Candidates;
6943 end if;
6944 end Collect_Generic_Type_Ops;
6946 ---------------------------
6947 -- Is_Private_Overriding --
6948 ---------------------------
6950 function Is_Private_Overriding (Op : Entity_Id) return Boolean is
6951 Visible_Op : constant Entity_Id := Homonym (Op);
6953 begin
6954 return Present (Visible_Op)
6955 and then Scope (Op) = Scope (Visible_Op)
6956 and then not Comes_From_Source (Visible_Op)
6957 and then Alias (Visible_Op) = Op
6958 and then not Is_Hidden (Visible_Op);
6959 end Is_Private_Overriding;
6961 -----------------------------
6962 -- Valid_First_Argument_Of --
6963 -----------------------------
6965 function Valid_First_Argument_Of (Op : Entity_Id) return Boolean is
6966 Typ : Entity_Id := Etype (First_Formal (Op));
6968 begin
6969 if Is_Concurrent_Type (Typ)
6970 and then Present (Corresponding_Record_Type (Typ))
6971 then
6972 Typ := Corresponding_Record_Type (Typ);
6973 end if;
6975 -- Simple case. Object may be a subtype of the tagged type or
6976 -- may be the corresponding record of a synchronized type.
6978 return Obj_Type = Typ
6979 or else Base_Type (Obj_Type) = Typ
6980 or else Corr_Type = Typ
6982 -- Prefix can be dereferenced
6984 or else
6985 (Is_Access_Type (Corr_Type)
6986 and then Designated_Type (Corr_Type) = Typ)
6988 -- Formal is an access parameter, for which the object
6989 -- can provide an access.
6991 or else
6992 (Ekind (Typ) = E_Anonymous_Access_Type
6993 and then Designated_Type (Typ) = Base_Type (Corr_Type));
6994 end Valid_First_Argument_Of;
6996 -- Start of processing for Try_Primitive_Operation
6998 begin
6999 -- Look for subprograms in the list of primitive operations. The name
7000 -- must be identical, and the kind of call indicates the expected
7001 -- kind of operation (function or procedure). If the type is a
7002 -- (tagged) synchronized type, the primitive ops are attached to the
7003 -- corresponding record (base) type.
7005 if Is_Concurrent_Type (Obj_Type) then
7006 if Present (Corresponding_Record_Type (Obj_Type)) then
7007 Corr_Type := Base_Type (Corresponding_Record_Type (Obj_Type));
7008 Elmt := First_Elmt (Primitive_Operations (Corr_Type));
7009 else
7010 Corr_Type := Obj_Type;
7011 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
7012 end if;
7014 elsif not Is_Generic_Type (Obj_Type) then
7015 Corr_Type := Obj_Type;
7016 Elmt := First_Elmt (Primitive_Operations (Obj_Type));
7018 else
7019 Corr_Type := Obj_Type;
7020 Elmt := First_Elmt (Collect_Generic_Type_Ops (Obj_Type));
7021 end if;
7023 while Present (Elmt) loop
7024 Prim_Op := Node (Elmt);
7026 if Chars (Prim_Op) = Chars (Subprog)
7027 and then Present (First_Formal (Prim_Op))
7028 and then Valid_First_Argument_Of (Prim_Op)
7029 and then
7030 (Nkind (Call_Node) = N_Function_Call)
7031 = (Ekind (Prim_Op) = E_Function)
7032 then
7033 -- Ada 2005 (AI-251): If this primitive operation corresponds
7034 -- with an immediate ancestor interface there is no need to add
7035 -- it to the list of interpretations; the corresponding aliased
7036 -- primitive is also in this list of primitive operations and
7037 -- will be used instead.
7039 if (Present (Interface_Alias (Prim_Op))
7040 and then Is_Ancestor (Find_Dispatching_Type
7041 (Alias (Prim_Op)), Corr_Type))
7043 -- Do not consider hidden primitives unless the type is in an
7044 -- open scope or we are within an instance, where visibility
7045 -- is known to be correct, or else if this is an overriding
7046 -- operation in the private part for an inherited operation.
7048 or else (Is_Hidden (Prim_Op)
7049 and then not Is_Immediately_Visible (Obj_Type)
7050 and then not In_Instance
7051 and then not Is_Private_Overriding (Prim_Op))
7052 then
7053 goto Continue;
7054 end if;
7056 Set_Etype (Call_Node, Any_Type);
7057 Set_Is_Overloaded (Call_Node, False);
7059 if No (Matching_Op) then
7060 Prim_Op_Ref := New_Reference_To (Prim_Op, Sloc (Subprog));
7061 Candidate := Prim_Op;
7063 Set_Parent (Call_Node, Parent (Node_To_Replace));
7065 Set_Name (Call_Node, Prim_Op_Ref);
7066 Success := False;
7068 Analyze_One_Call
7069 (N => Call_Node,
7070 Nam => Prim_Op,
7071 Report => Report_Error,
7072 Success => Success,
7073 Skip_First => True);
7075 Matching_Op := Valid_Candidate (Success, Call_Node, Prim_Op);
7077 -- More than one interpretation, collect for subsequent
7078 -- disambiguation. If this is a procedure call and there
7079 -- is another match, report ambiguity now.
7081 else
7082 Analyze_One_Call
7083 (N => Call_Node,
7084 Nam => Prim_Op,
7085 Report => Report_Error,
7086 Success => Success,
7087 Skip_First => True);
7089 if Present (Valid_Candidate (Success, Call_Node, Prim_Op))
7090 and then Nkind (Call_Node) /= N_Function_Call
7091 then
7092 Error_Msg_NE ("ambiguous call to&", N, Prim_Op);
7093 Report_Ambiguity (Matching_Op);
7094 Report_Ambiguity (Prim_Op);
7095 return True;
7096 end if;
7097 end if;
7098 end if;
7100 <<Continue>>
7101 Next_Elmt (Elmt);
7102 end loop;
7104 if Present (Matching_Op) then
7105 Set_Etype (Call_Node, Etype (Matching_Op));
7106 end if;
7108 return Present (Matching_Op);
7109 end Try_Primitive_Operation;
7111 -- Start of processing for Try_Object_Operation
7113 begin
7114 Analyze_Expression (Obj);
7116 -- Analyze the actuals if node is known to be a subprogram call
7118 if Is_Subprg_Call and then N = Name (Parent (N)) then
7119 Actual := First (Parameter_Associations (Parent (N)));
7120 while Present (Actual) loop
7121 Analyze_Expression (Actual);
7122 Next (Actual);
7123 end loop;
7124 end if;
7126 -- Build a subprogram call node, using a copy of Obj as its first
7127 -- actual. This is a placeholder, to be replaced by an explicit
7128 -- dereference when needed.
7130 Transform_Object_Operation
7131 (Call_Node => New_Call_Node,
7132 Node_To_Replace => Node_To_Replace);
7134 Set_Etype (New_Call_Node, Any_Type);
7135 Set_Etype (Subprog, Any_Type);
7136 Set_Parent (New_Call_Node, Parent (Node_To_Replace));
7138 if not Is_Overloaded (Obj) then
7139 Try_One_Prefix_Interpretation (Obj_Type);
7141 else
7142 declare
7143 I : Interp_Index;
7144 It : Interp;
7145 begin
7146 Get_First_Interp (Obj, I, It);
7147 while Present (It.Nam) loop
7148 Try_One_Prefix_Interpretation (It.Typ);
7149 Get_Next_Interp (I, It);
7150 end loop;
7151 end;
7152 end if;
7154 if Etype (New_Call_Node) /= Any_Type then
7155 Complete_Object_Operation
7156 (Call_Node => New_Call_Node,
7157 Node_To_Replace => Node_To_Replace);
7158 return True;
7160 elsif Present (Candidate) then
7162 -- The argument list is not type correct. Re-analyze with error
7163 -- reporting enabled, and use one of the possible candidates.
7164 -- In All_Errors_Mode, re-analyze all failed interpretations.
7166 if All_Errors_Mode then
7167 Report_Error := True;
7168 if Try_Primitive_Operation
7169 (Call_Node => New_Call_Node,
7170 Node_To_Replace => Node_To_Replace)
7172 or else
7173 Try_Class_Wide_Operation
7174 (Call_Node => New_Call_Node,
7175 Node_To_Replace => Node_To_Replace)
7176 then
7177 null;
7178 end if;
7180 else
7181 Analyze_One_Call
7182 (N => New_Call_Node,
7183 Nam => Candidate,
7184 Report => True,
7185 Success => Success,
7186 Skip_First => True);
7187 end if;
7189 -- No need for further errors
7191 return True;
7193 else
7194 -- There was no candidate operation, so report it as an error
7195 -- in the caller: Analyze_Selected_Component.
7197 return False;
7198 end if;
7199 end Try_Object_Operation;
7201 ---------
7202 -- wpo --
7203 ---------
7205 procedure wpo (T : Entity_Id) is
7206 Op : Entity_Id;
7207 E : Elmt_Id;
7209 begin
7210 if not Is_Tagged_Type (T) then
7211 return;
7212 end if;
7214 E := First_Elmt (Primitive_Operations (Base_Type (T)));
7215 while Present (E) loop
7216 Op := Node (E);
7217 Write_Int (Int (Op));
7218 Write_Str (" === ");
7219 Write_Name (Chars (Op));
7220 Write_Str (" in ");
7221 Write_Name (Chars (Scope (Op)));
7222 Next_Elmt (E);
7223 Write_Eol;
7224 end loop;
7225 end wpo;
7227 end Sem_Ch4;