1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2010, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- As a special exception, if other files instantiate generics from this --
22 -- unit, or you link this unit with other files to produce an executable, --
23 -- this unit does not by itself cause the resulting executable to be --
24 -- covered by the GNU General Public License. This exception does not --
25 -- however invalidate any other reasons why the executable file might be --
26 -- covered by the GNU Public License. --
28 -- GNAT was originally developed by the GNAT team at New York University. --
29 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 ------------------------------------------------------------------------------
33 with Atree
; use Atree
;
34 with Einfo
; use Einfo
;
35 with Namet
; use Namet
;
36 with Sinfo
; use Sinfo
;
37 with Snames
; use Snames
;
38 with Stand
; use Stand
;
40 package body Sem_Aux
is
42 ----------------------
43 -- Ancestor_Subtype --
44 ----------------------
46 function Ancestor_Subtype
(Typ
: Entity_Id
) return Entity_Id
is
48 -- If this is first subtype, or is a base type, then there is no
49 -- ancestor subtype, so we return Empty to indicate this fact.
51 if Is_First_Subtype
(Typ
) or else Typ
= Base_Type
(Typ
) then
56 D
: constant Node_Id
:= Declaration_Node
(Typ
);
59 -- If we have a subtype declaration, get the ancestor subtype
61 if Nkind
(D
) = N_Subtype_Declaration
then
62 if Nkind
(Subtype_Indication
(D
)) = N_Subtype_Indication
then
63 return Entity
(Subtype_Mark
(Subtype_Indication
(D
)));
65 return Entity
(Subtype_Indication
(D
));
68 -- If not, then no subtype indication is available
80 function Available_View
(Typ
: Entity_Id
) return Entity_Id
is
82 if Is_Incomplete_Type
(Typ
)
83 and then Present
(Non_Limited_View
(Typ
))
85 -- The non-limited view may itself be an incomplete type, in which
86 -- case get its full view.
88 return Get_Full_View
(Non_Limited_View
(Typ
));
90 elsif Is_Class_Wide_Type
(Typ
)
91 and then Is_Incomplete_Type
(Etype
(Typ
))
92 and then Present
(Non_Limited_View
(Etype
(Typ
)))
94 return Class_Wide_Type
(Non_Limited_View
(Etype
(Typ
)));
105 function Constant_Value
(Ent
: Entity_Id
) return Node_Id
is
106 D
: constant Node_Id
:= Declaration_Node
(Ent
);
110 -- If we have no declaration node, then return no constant value. Not
111 -- clear how this can happen, but it does sometimes and this is the
117 -- Normal case where a declaration node is present
119 elsif Nkind
(D
) = N_Object_Renaming_Declaration
then
120 return Renamed_Object
(Ent
);
122 -- If this is a component declaration whose entity is a constant, it is
123 -- a prival within a protected function (and so has no constant value).
125 elsif Nkind
(D
) = N_Component_Declaration
then
128 -- If there is an expression, return it
130 elsif Present
(Expression
(D
)) then
131 return (Expression
(D
));
133 -- For a constant, see if we have a full view
135 elsif Ekind
(Ent
) = E_Constant
136 and then Present
(Full_View
(Ent
))
138 Full_D
:= Parent
(Full_View
(Ent
));
140 -- The full view may have been rewritten as an object renaming
142 if Nkind
(Full_D
) = N_Object_Renaming_Declaration
then
143 return Name
(Full_D
);
145 return Expression
(Full_D
);
148 -- Otherwise we have no expression to return
155 -----------------------------
156 -- Enclosing_Dynamic_Scope --
157 -----------------------------
159 function Enclosing_Dynamic_Scope
(Ent
: Entity_Id
) return Entity_Id
is
163 -- The following test is an error defense against some syntax errors
164 -- that can leave scopes very messed up.
166 if Ent
= Standard_Standard
then
170 -- Normal case, search enclosing scopes
172 -- Note: the test for Present (S) should not be required, it defends
173 -- against an ill-formed tree.
177 -- If we somehow got an empty value for Scope, the tree must be
178 -- malformed. Rather than blow up we return Standard in this case.
181 return Standard_Standard
;
183 -- Quit if we get to standard or a dynamic scope
185 elsif S
= Standard_Standard
186 or else Is_Dynamic_Scope
(S
)
190 -- Otherwise keep climbing
196 end Enclosing_Dynamic_Scope
;
198 ------------------------
199 -- First_Discriminant --
200 ------------------------
202 function First_Discriminant
(Typ
: Entity_Id
) return Entity_Id
is
207 (Has_Discriminants
(Typ
)
208 or else Has_Unknown_Discriminants
(Typ
));
210 Ent
:= First_Entity
(Typ
);
212 -- The discriminants are not necessarily contiguous, because access
213 -- discriminants will generate itypes. They are not the first entities
214 -- either, because tag and controller record must be ahead of them.
216 if Chars
(Ent
) = Name_uTag
then
217 Ent
:= Next_Entity
(Ent
);
220 if Chars
(Ent
) = Name_uController
then
221 Ent
:= Next_Entity
(Ent
);
224 -- Skip all hidden stored discriminants if any
226 while Present
(Ent
) loop
227 exit when Ekind
(Ent
) = E_Discriminant
228 and then not Is_Completely_Hidden
(Ent
);
230 Ent
:= Next_Entity
(Ent
);
233 pragma Assert
(Ekind
(Ent
) = E_Discriminant
);
236 end First_Discriminant
;
238 -------------------------------
239 -- First_Stored_Discriminant --
240 -------------------------------
242 function First_Stored_Discriminant
(Typ
: Entity_Id
) return Entity_Id
is
245 function Has_Completely_Hidden_Discriminant
246 (Typ
: Entity_Id
) return Boolean;
247 -- Scans the Discriminants to see whether any are Completely_Hidden
248 -- (the mechanism for describing non-specified stored discriminants)
250 ----------------------------------------
251 -- Has_Completely_Hidden_Discriminant --
252 ----------------------------------------
254 function Has_Completely_Hidden_Discriminant
255 (Typ
: Entity_Id
) return Boolean
260 pragma Assert
(Ekind
(Typ
) = E_Discriminant
);
263 while Present
(Ent
) and then Ekind
(Ent
) = E_Discriminant
loop
264 if Is_Completely_Hidden
(Ent
) then
268 Ent
:= Next_Entity
(Ent
);
272 end Has_Completely_Hidden_Discriminant
;
274 -- Start of processing for First_Stored_Discriminant
278 (Has_Discriminants
(Typ
)
279 or else Has_Unknown_Discriminants
(Typ
));
281 Ent
:= First_Entity
(Typ
);
283 if Chars
(Ent
) = Name_uTag
then
284 Ent
:= Next_Entity
(Ent
);
287 if Chars
(Ent
) = Name_uController
then
288 Ent
:= Next_Entity
(Ent
);
291 if Has_Completely_Hidden_Discriminant
(Ent
) then
293 while Present
(Ent
) loop
294 exit when Is_Completely_Hidden
(Ent
);
295 Ent
:= Next_Entity
(Ent
);
300 pragma Assert
(Ekind
(Ent
) = E_Discriminant
);
303 end First_Stored_Discriminant
;
309 function First_Subtype
(Typ
: Entity_Id
) return Entity_Id
is
310 B
: constant Entity_Id
:= Base_Type
(Typ
);
311 F
: constant Node_Id
:= Freeze_Node
(B
);
315 -- If the base type has no freeze node, it is a type in Standard, and
316 -- always acts as its own first subtype, except where it is one of the
317 -- predefined integer types. If the type is formal, it is also a first
318 -- subtype, and its base type has no freeze node. On the other hand, a
319 -- subtype of a generic formal is not its own first subtype. Its base
320 -- type, if anonymous, is attached to the formal type decl. from which
321 -- the first subtype is obtained.
324 if B
= Base_Type
(Standard_Integer
) then
325 return Standard_Integer
;
327 elsif B
= Base_Type
(Standard_Long_Integer
) then
328 return Standard_Long_Integer
;
330 elsif B
= Base_Type
(Standard_Short_Short_Integer
) then
331 return Standard_Short_Short_Integer
;
333 elsif B
= Base_Type
(Standard_Short_Integer
) then
334 return Standard_Short_Integer
;
336 elsif B
= Base_Type
(Standard_Long_Long_Integer
) then
337 return Standard_Long_Long_Integer
;
339 elsif Is_Generic_Type
(Typ
) then
340 if Present
(Parent
(B
)) then
341 return Defining_Identifier
(Parent
(B
));
343 return Defining_Identifier
(Associated_Node_For_Itype
(B
));
350 -- Otherwise we check the freeze node, if it has a First_Subtype_Link
351 -- then we use that link, otherwise (happens with some Itypes), we use
352 -- the base type itself.
355 Ent
:= First_Subtype_Link
(F
);
357 if Present
(Ent
) then
365 -------------------------
366 -- First_Tag_Component --
367 -------------------------
369 function First_Tag_Component
(Typ
: Entity_Id
) return Entity_Id
is
375 pragma Assert
(Is_Tagged_Type
(Ctyp
));
377 if Is_Class_Wide_Type
(Ctyp
) then
378 Ctyp
:= Root_Type
(Ctyp
);
381 if Is_Private_Type
(Ctyp
) then
382 Ctyp
:= Underlying_Type
(Ctyp
);
384 -- If the underlying type is missing then the source program has
385 -- errors and there is nothing else to do (the full-type declaration
386 -- associated with the private type declaration is missing).
393 Comp
:= First_Entity
(Ctyp
);
394 while Present
(Comp
) loop
395 if Is_Tag
(Comp
) then
399 Comp
:= Next_Entity
(Comp
);
402 -- No tag component found
405 end First_Tag_Component
;
411 procedure Initialize
is
413 Obsolescent_Warnings
.Init
;
416 ---------------------
417 -- Is_By_Copy_Type --
418 ---------------------
420 function Is_By_Copy_Type
(Ent
: Entity_Id
) return Boolean is
422 -- If Id is a private type whose full declaration has not been seen,
423 -- we assume for now that it is not a By_Copy type. Clearly this
424 -- attribute should not be used before the type is frozen, but it is
425 -- needed to build the associated record of a protected type. Another
426 -- place where some lookahead for a full view is needed ???
429 Is_Elementary_Type
(Ent
)
430 or else (Is_Private_Type
(Ent
)
431 and then Present
(Underlying_Type
(Ent
))
432 and then Is_Elementary_Type
(Underlying_Type
(Ent
)));
435 --------------------------
436 -- Is_By_Reference_Type --
437 --------------------------
439 function Is_By_Reference_Type
(Ent
: Entity_Id
) return Boolean is
440 Btype
: constant Entity_Id
:= Base_Type
(Ent
);
443 if Error_Posted
(Ent
)
444 or else Error_Posted
(Btype
)
448 elsif Is_Private_Type
(Btype
) then
450 Utyp
: constant Entity_Id
:= Underlying_Type
(Btype
);
455 return Is_By_Reference_Type
(Utyp
);
459 elsif Is_Incomplete_Type
(Btype
) then
461 Ftyp
: constant Entity_Id
:= Full_View
(Btype
);
466 return Is_By_Reference_Type
(Ftyp
);
470 elsif Is_Concurrent_Type
(Btype
) then
473 elsif Is_Record_Type
(Btype
) then
474 if Is_Limited_Record
(Btype
)
475 or else Is_Tagged_Type
(Btype
)
476 or else Is_Volatile
(Btype
)
485 C
:= First_Component
(Btype
);
486 while Present
(C
) loop
487 if Is_By_Reference_Type
(Etype
(C
))
488 or else Is_Volatile
(Etype
(C
))
493 C
:= Next_Component
(C
);
500 elsif Is_Array_Type
(Btype
) then
503 or else Is_By_Reference_Type
(Component_Type
(Btype
))
504 or else Is_Volatile
(Component_Type
(Btype
))
505 or else Has_Volatile_Components
(Btype
);
510 end Is_By_Reference_Type
;
512 ---------------------
513 -- Is_Derived_Type --
514 ---------------------
516 function Is_Derived_Type
(Ent
: E
) return B
is
521 and then Base_Type
(Ent
) /= Root_Type
(Ent
)
522 and then not Is_Class_Wide_Type
(Ent
)
524 if not Is_Numeric_Type
(Root_Type
(Ent
)) then
528 Par
:= Parent
(First_Subtype
(Ent
));
531 and then Nkind
(Par
) = N_Full_Type_Declaration
532 and then Nkind
(Type_Definition
(Par
)) =
533 N_Derived_Type_Definition
;
541 ---------------------------
542 -- Is_Indefinite_Subtype --
543 ---------------------------
545 function Is_Indefinite_Subtype
(Ent
: Entity_Id
) return Boolean is
546 K
: constant Entity_Kind
:= Ekind
(Ent
);
549 if Is_Constrained
(Ent
) then
552 elsif K
in Array_Kind
553 or else K
in Class_Wide_Kind
554 or else Has_Unknown_Discriminants
(Ent
)
558 -- Known discriminants: indefinite if there are no default values
560 elsif K
in Record_Kind
561 or else Is_Incomplete_Or_Private_Type
(Ent
)
562 or else Is_Concurrent_Type
(Ent
)
564 return (Has_Discriminants
(Ent
)
566 No
(Discriminant_Default_Value
(First_Discriminant
(Ent
))));
571 end Is_Indefinite_Subtype
;
573 --------------------------------
574 -- Is_Inherently_Limited_Type --
575 --------------------------------
577 function Is_Inherently_Limited_Type
(Ent
: Entity_Id
) return Boolean is
578 Btype
: constant Entity_Id
:= Base_Type
(Ent
);
581 if Is_Private_Type
(Btype
) then
583 Utyp
: constant Entity_Id
:= Underlying_Type
(Btype
);
588 return Is_Inherently_Limited_Type
(Utyp
);
592 elsif Is_Concurrent_Type
(Btype
) then
595 elsif Is_Record_Type
(Btype
) then
597 -- Note that we return True for all limited interfaces, even though
598 -- (unsynchronized) limited interfaces can have descendants that are
599 -- nonlimited, because this is a predicate on the type itself, and
600 -- things like functions with limited interface results need to be
601 -- handled as build in place even though they might return objects
602 -- of a type that is not inherently limited.
604 if Is_Limited_Record
(Btype
) then
607 elsif Is_Class_Wide_Type
(Btype
) then
608 return Is_Inherently_Limited_Type
(Root_Type
(Btype
));
615 C
:= First_Component
(Btype
);
616 while Present
(C
) loop
618 -- Don't consider components with interface types (which can
619 -- only occur in the case of a _parent component anyway).
620 -- They don't have any components, plus it would cause this
621 -- function to return true for nonlimited types derived from
622 -- limited intefaces.
624 if not Is_Interface
(Etype
(C
))
625 and then Is_Inherently_Limited_Type
(Etype
(C
))
630 C
:= Next_Component
(C
);
637 elsif Is_Array_Type
(Btype
) then
638 return Is_Inherently_Limited_Type
(Component_Type
(Btype
));
643 end Is_Inherently_Limited_Type
;
645 ---------------------
646 -- Is_Limited_Type --
647 ---------------------
649 function Is_Limited_Type
(Ent
: Entity_Id
) return Boolean is
650 Btype
: constant E
:= Base_Type
(Ent
);
651 Rtype
: constant E
:= Root_Type
(Btype
);
654 if not Is_Type
(Ent
) then
657 elsif Ekind
(Btype
) = E_Limited_Private_Type
658 or else Is_Limited_Composite
(Btype
)
662 elsif Is_Concurrent_Type
(Btype
) then
665 -- The Is_Limited_Record flag normally indicates that the type is
666 -- limited. The exception is that a type does not inherit limitedness
667 -- from its interface ancestor. So the type may be derived from a
668 -- limited interface, but is not limited.
670 elsif Is_Limited_Record
(Ent
)
671 and then not Is_Interface
(Ent
)
675 -- Otherwise we will look around to see if there is some other reason
676 -- for it to be limited, except that if an error was posted on the
677 -- entity, then just assume it is non-limited, because it can cause
678 -- trouble to recurse into a murky erroneous entity!
680 elsif Error_Posted
(Ent
) then
683 elsif Is_Record_Type
(Btype
) then
685 if Is_Limited_Interface
(Ent
) then
688 -- AI-419: limitedness is not inherited from a limited interface
690 elsif Is_Limited_Record
(Rtype
) then
691 return not Is_Interface
(Rtype
)
692 or else Is_Protected_Interface
(Rtype
)
693 or else Is_Synchronized_Interface
(Rtype
)
694 or else Is_Task_Interface
(Rtype
);
696 elsif Is_Class_Wide_Type
(Btype
) then
697 return Is_Limited_Type
(Rtype
);
704 C
:= First_Component
(Btype
);
705 while Present
(C
) loop
706 if Is_Limited_Type
(Etype
(C
)) then
710 C
:= Next_Component
(C
);
717 elsif Is_Array_Type
(Btype
) then
718 return Is_Limited_Type
(Component_Type
(Btype
));
725 ---------------------------
726 -- Nearest_Dynamic_Scope --
727 ---------------------------
729 function Nearest_Dynamic_Scope
(Ent
: Entity_Id
) return Entity_Id
is
731 if Is_Dynamic_Scope
(Ent
) then
734 return Enclosing_Dynamic_Scope
(Ent
);
736 end Nearest_Dynamic_Scope
;
738 ------------------------
739 -- Next_Tag_Component --
740 ------------------------
742 function Next_Tag_Component
(Tag
: Entity_Id
) return Entity_Id
is
746 pragma Assert
(Is_Tag
(Tag
));
748 -- Loop to look for next tag component
750 Comp
:= Next_Entity
(Tag
);
751 while Present
(Comp
) loop
752 if Is_Tag
(Comp
) then
753 pragma Assert
(Chars
(Comp
) /= Name_uTag
);
757 Comp
:= Next_Entity
(Comp
);
760 -- No tag component found
763 end Next_Tag_Component
;
765 --------------------------
766 -- Number_Discriminants --
767 --------------------------
769 function Number_Discriminants
(Typ
: Entity_Id
) return Pos
is
775 Discr
:= First_Discriminant
(Typ
);
776 while Present
(Discr
) loop
778 Discr
:= Next_Discriminant
(Discr
);
782 end Number_Discriminants
;
788 procedure Tree_Read
is
790 Obsolescent_Warnings
.Tree_Read
;
797 procedure Tree_Write
is
799 Obsolescent_Warnings
.Tree_Write
;
806 function Ultimate_Alias
(Prim
: Entity_Id
) return Entity_Id
is
807 E
: Entity_Id
:= Prim
;
810 while Present
(Alias
(E
)) loop
811 pragma Assert
(Alias
(E
) /= E
);