PR c/71514
[official-gcc.git] / gcc / fold-const.c
blob30c1e0d440a6b6cce82a80a827d486b88c5ac1c2
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "tm_p.h"
53 #include "tree-ssa-operands.h"
54 #include "optabs-query.h"
55 #include "cgraph.h"
56 #include "diagnostic-core.h"
57 #include "flags.h"
58 #include "alias.h"
59 #include "fold-const.h"
60 #include "fold-const-call.h"
61 #include "stor-layout.h"
62 #include "calls.h"
63 #include "tree-iterator.h"
64 #include "expr.h"
65 #include "intl.h"
66 #include "langhooks.h"
67 #include "tree-eh.h"
68 #include "gimplify.h"
69 #include "tree-dfa.h"
70 #include "builtins.h"
71 #include "generic-match.h"
72 #include "gimple-fold.h"
73 #include "params.h"
74 #include "tree-into-ssa.h"
75 #include "md5.h"
76 #include "case-cfn-macros.h"
77 #include "stringpool.h"
78 #include "tree-ssanames.h"
79 #include "selftest.h"
81 #ifndef LOAD_EXTEND_OP
82 #define LOAD_EXTEND_OP(M) UNKNOWN
83 #endif
85 /* Nonzero if we are folding constants inside an initializer; zero
86 otherwise. */
87 int folding_initializer = 0;
89 /* The following constants represent a bit based encoding of GCC's
90 comparison operators. This encoding simplifies transformations
91 on relational comparison operators, such as AND and OR. */
92 enum comparison_code {
93 COMPCODE_FALSE = 0,
94 COMPCODE_LT = 1,
95 COMPCODE_EQ = 2,
96 COMPCODE_LE = 3,
97 COMPCODE_GT = 4,
98 COMPCODE_LTGT = 5,
99 COMPCODE_GE = 6,
100 COMPCODE_ORD = 7,
101 COMPCODE_UNORD = 8,
102 COMPCODE_UNLT = 9,
103 COMPCODE_UNEQ = 10,
104 COMPCODE_UNLE = 11,
105 COMPCODE_UNGT = 12,
106 COMPCODE_NE = 13,
107 COMPCODE_UNGE = 14,
108 COMPCODE_TRUE = 15
111 static bool negate_expr_p (tree);
112 static tree negate_expr (tree);
113 static tree split_tree (location_t, tree, tree, enum tree_code,
114 tree *, tree *, tree *, int);
115 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
116 static enum comparison_code comparison_to_compcode (enum tree_code);
117 static enum tree_code compcode_to_comparison (enum comparison_code);
118 static int operand_equal_for_comparison_p (tree, tree, tree);
119 static int twoval_comparison_p (tree, tree *, tree *, int *);
120 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
121 static tree optimize_bit_field_compare (location_t, enum tree_code,
122 tree, tree, tree);
123 static int simple_operand_p (const_tree);
124 static bool simple_operand_p_2 (tree);
125 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
126 static tree range_predecessor (tree);
127 static tree range_successor (tree);
128 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
129 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
130 static tree unextend (tree, int, int, tree);
131 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
132 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
133 static tree fold_binary_op_with_conditional_arg (location_t,
134 enum tree_code, tree,
135 tree, tree,
136 tree, tree, int);
137 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
138 static bool reorder_operands_p (const_tree, const_tree);
139 static tree fold_negate_const (tree, tree);
140 static tree fold_not_const (const_tree, tree);
141 static tree fold_relational_const (enum tree_code, tree, tree, tree);
142 static tree fold_convert_const (enum tree_code, tree, tree);
143 static tree fold_view_convert_expr (tree, tree);
144 static bool vec_cst_ctor_to_array (tree, tree *);
147 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
148 Otherwise, return LOC. */
150 static location_t
151 expr_location_or (tree t, location_t loc)
153 location_t tloc = EXPR_LOCATION (t);
154 return tloc == UNKNOWN_LOCATION ? loc : tloc;
157 /* Similar to protected_set_expr_location, but never modify x in place,
158 if location can and needs to be set, unshare it. */
160 static inline tree
161 protected_set_expr_location_unshare (tree x, location_t loc)
163 if (CAN_HAVE_LOCATION_P (x)
164 && EXPR_LOCATION (x) != loc
165 && !(TREE_CODE (x) == SAVE_EXPR
166 || TREE_CODE (x) == TARGET_EXPR
167 || TREE_CODE (x) == BIND_EXPR))
169 x = copy_node (x);
170 SET_EXPR_LOCATION (x, loc);
172 return x;
175 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
176 division and returns the quotient. Otherwise returns
177 NULL_TREE. */
179 tree
180 div_if_zero_remainder (const_tree arg1, const_tree arg2)
182 widest_int quo;
184 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
185 SIGNED, &quo))
186 return wide_int_to_tree (TREE_TYPE (arg1), quo);
188 return NULL_TREE;
191 /* This is nonzero if we should defer warnings about undefined
192 overflow. This facility exists because these warnings are a
193 special case. The code to estimate loop iterations does not want
194 to issue any warnings, since it works with expressions which do not
195 occur in user code. Various bits of cleanup code call fold(), but
196 only use the result if it has certain characteristics (e.g., is a
197 constant); that code only wants to issue a warning if the result is
198 used. */
200 static int fold_deferring_overflow_warnings;
202 /* If a warning about undefined overflow is deferred, this is the
203 warning. Note that this may cause us to turn two warnings into
204 one, but that is fine since it is sufficient to only give one
205 warning per expression. */
207 static const char* fold_deferred_overflow_warning;
209 /* If a warning about undefined overflow is deferred, this is the
210 level at which the warning should be emitted. */
212 static enum warn_strict_overflow_code fold_deferred_overflow_code;
214 /* Start deferring overflow warnings. We could use a stack here to
215 permit nested calls, but at present it is not necessary. */
217 void
218 fold_defer_overflow_warnings (void)
220 ++fold_deferring_overflow_warnings;
223 /* Stop deferring overflow warnings. If there is a pending warning,
224 and ISSUE is true, then issue the warning if appropriate. STMT is
225 the statement with which the warning should be associated (used for
226 location information); STMT may be NULL. CODE is the level of the
227 warning--a warn_strict_overflow_code value. This function will use
228 the smaller of CODE and the deferred code when deciding whether to
229 issue the warning. CODE may be zero to mean to always use the
230 deferred code. */
232 void
233 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
235 const char *warnmsg;
236 location_t locus;
238 gcc_assert (fold_deferring_overflow_warnings > 0);
239 --fold_deferring_overflow_warnings;
240 if (fold_deferring_overflow_warnings > 0)
242 if (fold_deferred_overflow_warning != NULL
243 && code != 0
244 && code < (int) fold_deferred_overflow_code)
245 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
246 return;
249 warnmsg = fold_deferred_overflow_warning;
250 fold_deferred_overflow_warning = NULL;
252 if (!issue || warnmsg == NULL)
253 return;
255 if (gimple_no_warning_p (stmt))
256 return;
258 /* Use the smallest code level when deciding to issue the
259 warning. */
260 if (code == 0 || code > (int) fold_deferred_overflow_code)
261 code = fold_deferred_overflow_code;
263 if (!issue_strict_overflow_warning (code))
264 return;
266 if (stmt == NULL)
267 locus = input_location;
268 else
269 locus = gimple_location (stmt);
270 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
273 /* Stop deferring overflow warnings, ignoring any deferred
274 warnings. */
276 void
277 fold_undefer_and_ignore_overflow_warnings (void)
279 fold_undefer_overflow_warnings (false, NULL, 0);
282 /* Whether we are deferring overflow warnings. */
284 bool
285 fold_deferring_overflow_warnings_p (void)
287 return fold_deferring_overflow_warnings > 0;
290 /* This is called when we fold something based on the fact that signed
291 overflow is undefined. */
293 void
294 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
296 if (fold_deferring_overflow_warnings > 0)
298 if (fold_deferred_overflow_warning == NULL
299 || wc < fold_deferred_overflow_code)
301 fold_deferred_overflow_warning = gmsgid;
302 fold_deferred_overflow_code = wc;
305 else if (issue_strict_overflow_warning (wc))
306 warning (OPT_Wstrict_overflow, gmsgid);
309 /* Return true if the built-in mathematical function specified by CODE
310 is odd, i.e. -f(x) == f(-x). */
312 bool
313 negate_mathfn_p (combined_fn fn)
315 switch (fn)
317 CASE_CFN_ASIN:
318 CASE_CFN_ASINH:
319 CASE_CFN_ATAN:
320 CASE_CFN_ATANH:
321 CASE_CFN_CASIN:
322 CASE_CFN_CASINH:
323 CASE_CFN_CATAN:
324 CASE_CFN_CATANH:
325 CASE_CFN_CBRT:
326 CASE_CFN_CPROJ:
327 CASE_CFN_CSIN:
328 CASE_CFN_CSINH:
329 CASE_CFN_CTAN:
330 CASE_CFN_CTANH:
331 CASE_CFN_ERF:
332 CASE_CFN_LLROUND:
333 CASE_CFN_LROUND:
334 CASE_CFN_ROUND:
335 CASE_CFN_SIN:
336 CASE_CFN_SINH:
337 CASE_CFN_TAN:
338 CASE_CFN_TANH:
339 CASE_CFN_TRUNC:
340 return true;
342 CASE_CFN_LLRINT:
343 CASE_CFN_LRINT:
344 CASE_CFN_NEARBYINT:
345 CASE_CFN_RINT:
346 return !flag_rounding_math;
348 default:
349 break;
351 return false;
354 /* Check whether we may negate an integer constant T without causing
355 overflow. */
357 bool
358 may_negate_without_overflow_p (const_tree t)
360 tree type;
362 gcc_assert (TREE_CODE (t) == INTEGER_CST);
364 type = TREE_TYPE (t);
365 if (TYPE_UNSIGNED (type))
366 return false;
368 return !wi::only_sign_bit_p (t);
371 /* Determine whether an expression T can be cheaply negated using
372 the function negate_expr without introducing undefined overflow. */
374 static bool
375 negate_expr_p (tree t)
377 tree type;
379 if (t == 0)
380 return false;
382 type = TREE_TYPE (t);
384 STRIP_SIGN_NOPS (t);
385 switch (TREE_CODE (t))
387 case INTEGER_CST:
388 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
389 return true;
391 /* Check that -CST will not overflow type. */
392 return may_negate_without_overflow_p (t);
393 case BIT_NOT_EXPR:
394 return (INTEGRAL_TYPE_P (type)
395 && TYPE_OVERFLOW_WRAPS (type));
397 case FIXED_CST:
398 return true;
400 case NEGATE_EXPR:
401 return !TYPE_OVERFLOW_SANITIZED (type);
403 case REAL_CST:
404 /* We want to canonicalize to positive real constants. Pretend
405 that only negative ones can be easily negated. */
406 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
408 case COMPLEX_CST:
409 return negate_expr_p (TREE_REALPART (t))
410 && negate_expr_p (TREE_IMAGPART (t));
412 case VECTOR_CST:
414 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
415 return true;
417 int count = TYPE_VECTOR_SUBPARTS (type), i;
419 for (i = 0; i < count; i++)
420 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
421 return false;
423 return true;
426 case COMPLEX_EXPR:
427 return negate_expr_p (TREE_OPERAND (t, 0))
428 && negate_expr_p (TREE_OPERAND (t, 1));
430 case CONJ_EXPR:
431 return negate_expr_p (TREE_OPERAND (t, 0));
433 case PLUS_EXPR:
434 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
435 || HONOR_SIGNED_ZEROS (element_mode (type))
436 || (INTEGRAL_TYPE_P (type)
437 && ! TYPE_OVERFLOW_WRAPS (type)))
438 return false;
439 /* -(A + B) -> (-B) - A. */
440 if (negate_expr_p (TREE_OPERAND (t, 1))
441 && reorder_operands_p (TREE_OPERAND (t, 0),
442 TREE_OPERAND (t, 1)))
443 return true;
444 /* -(A + B) -> (-A) - B. */
445 return negate_expr_p (TREE_OPERAND (t, 0));
447 case MINUS_EXPR:
448 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
449 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
450 && !HONOR_SIGNED_ZEROS (element_mode (type))
451 && (! INTEGRAL_TYPE_P (type)
452 || TYPE_OVERFLOW_WRAPS (type))
453 && reorder_operands_p (TREE_OPERAND (t, 0),
454 TREE_OPERAND (t, 1));
456 case MULT_EXPR:
457 if (TYPE_UNSIGNED (type))
458 break;
459 /* INT_MIN/n * n doesn't overflow while negating one operand it does
460 if n is a power of two. */
461 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
462 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
463 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
464 && ! integer_pow2p (TREE_OPERAND (t, 0)))
465 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
466 && ! integer_pow2p (TREE_OPERAND (t, 1)))))
467 break;
469 /* Fall through. */
471 case RDIV_EXPR:
472 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
473 return negate_expr_p (TREE_OPERAND (t, 1))
474 || negate_expr_p (TREE_OPERAND (t, 0));
475 break;
477 case TRUNC_DIV_EXPR:
478 case ROUND_DIV_EXPR:
479 case EXACT_DIV_EXPR:
480 if (TYPE_UNSIGNED (type))
481 break;
482 if (negate_expr_p (TREE_OPERAND (t, 0)))
483 return true;
484 /* In general we can't negate B in A / B, because if A is INT_MIN and
485 B is 1, we may turn this into INT_MIN / -1 which is undefined
486 and actually traps on some architectures. */
487 if (! INTEGRAL_TYPE_P (TREE_TYPE (t))
488 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
489 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
490 && ! integer_onep (TREE_OPERAND (t, 1))))
491 return negate_expr_p (TREE_OPERAND (t, 1));
492 break;
494 case NOP_EXPR:
495 /* Negate -((double)float) as (double)(-float). */
496 if (TREE_CODE (type) == REAL_TYPE)
498 tree tem = strip_float_extensions (t);
499 if (tem != t)
500 return negate_expr_p (tem);
502 break;
504 case CALL_EXPR:
505 /* Negate -f(x) as f(-x). */
506 if (negate_mathfn_p (get_call_combined_fn (t)))
507 return negate_expr_p (CALL_EXPR_ARG (t, 0));
508 break;
510 case RSHIFT_EXPR:
511 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
512 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
514 tree op1 = TREE_OPERAND (t, 1);
515 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
516 return true;
518 break;
520 default:
521 break;
523 return false;
526 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
527 simplification is possible.
528 If negate_expr_p would return true for T, NULL_TREE will never be
529 returned. */
531 static tree
532 fold_negate_expr (location_t loc, tree t)
534 tree type = TREE_TYPE (t);
535 tree tem;
537 switch (TREE_CODE (t))
539 /* Convert - (~A) to A + 1. */
540 case BIT_NOT_EXPR:
541 if (INTEGRAL_TYPE_P (type))
542 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
543 build_one_cst (type));
544 break;
546 case INTEGER_CST:
547 tem = fold_negate_const (t, type);
548 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
549 || (ANY_INTEGRAL_TYPE_P (type)
550 && !TYPE_OVERFLOW_TRAPS (type)
551 && TYPE_OVERFLOW_WRAPS (type))
552 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
553 return tem;
554 break;
556 case REAL_CST:
557 tem = fold_negate_const (t, type);
558 return tem;
560 case FIXED_CST:
561 tem = fold_negate_const (t, type);
562 return tem;
564 case COMPLEX_CST:
566 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
567 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
568 if (rpart && ipart)
569 return build_complex (type, rpart, ipart);
571 break;
573 case VECTOR_CST:
575 int count = TYPE_VECTOR_SUBPARTS (type), i;
576 tree *elts = XALLOCAVEC (tree, count);
578 for (i = 0; i < count; i++)
580 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
581 if (elts[i] == NULL_TREE)
582 return NULL_TREE;
585 return build_vector (type, elts);
588 case COMPLEX_EXPR:
589 if (negate_expr_p (t))
590 return fold_build2_loc (loc, COMPLEX_EXPR, type,
591 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
592 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
593 break;
595 case CONJ_EXPR:
596 if (negate_expr_p (t))
597 return fold_build1_loc (loc, CONJ_EXPR, type,
598 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
599 break;
601 case NEGATE_EXPR:
602 if (!TYPE_OVERFLOW_SANITIZED (type))
603 return TREE_OPERAND (t, 0);
604 break;
606 case PLUS_EXPR:
607 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
608 && !HONOR_SIGNED_ZEROS (element_mode (type)))
610 /* -(A + B) -> (-B) - A. */
611 if (negate_expr_p (TREE_OPERAND (t, 1))
612 && reorder_operands_p (TREE_OPERAND (t, 0),
613 TREE_OPERAND (t, 1)))
615 tem = negate_expr (TREE_OPERAND (t, 1));
616 return fold_build2_loc (loc, MINUS_EXPR, type,
617 tem, TREE_OPERAND (t, 0));
620 /* -(A + B) -> (-A) - B. */
621 if (negate_expr_p (TREE_OPERAND (t, 0)))
623 tem = negate_expr (TREE_OPERAND (t, 0));
624 return fold_build2_loc (loc, MINUS_EXPR, type,
625 tem, TREE_OPERAND (t, 1));
628 break;
630 case MINUS_EXPR:
631 /* - (A - B) -> B - A */
632 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
633 && !HONOR_SIGNED_ZEROS (element_mode (type))
634 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
635 return fold_build2_loc (loc, MINUS_EXPR, type,
636 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
637 break;
639 case MULT_EXPR:
640 if (TYPE_UNSIGNED (type))
641 break;
643 /* Fall through. */
645 case RDIV_EXPR:
646 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
648 tem = TREE_OPERAND (t, 1);
649 if (negate_expr_p (tem))
650 return fold_build2_loc (loc, TREE_CODE (t), type,
651 TREE_OPERAND (t, 0), negate_expr (tem));
652 tem = TREE_OPERAND (t, 0);
653 if (negate_expr_p (tem))
654 return fold_build2_loc (loc, TREE_CODE (t), type,
655 negate_expr (tem), TREE_OPERAND (t, 1));
657 break;
659 case TRUNC_DIV_EXPR:
660 case ROUND_DIV_EXPR:
661 case EXACT_DIV_EXPR:
662 if (TYPE_UNSIGNED (type))
663 break;
664 if (negate_expr_p (TREE_OPERAND (t, 0)))
665 return fold_build2_loc (loc, TREE_CODE (t), type,
666 negate_expr (TREE_OPERAND (t, 0)),
667 TREE_OPERAND (t, 1));
668 /* In general we can't negate B in A / B, because if A is INT_MIN and
669 B is 1, we may turn this into INT_MIN / -1 which is undefined
670 and actually traps on some architectures. */
671 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t))
672 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
673 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
674 && ! integer_onep (TREE_OPERAND (t, 1))))
675 && negate_expr_p (TREE_OPERAND (t, 1)))
676 return fold_build2_loc (loc, TREE_CODE (t), type,
677 TREE_OPERAND (t, 0),
678 negate_expr (TREE_OPERAND (t, 1)));
679 break;
681 case NOP_EXPR:
682 /* Convert -((double)float) into (double)(-float). */
683 if (TREE_CODE (type) == REAL_TYPE)
685 tem = strip_float_extensions (t);
686 if (tem != t && negate_expr_p (tem))
687 return fold_convert_loc (loc, type, negate_expr (tem));
689 break;
691 case CALL_EXPR:
692 /* Negate -f(x) as f(-x). */
693 if (negate_mathfn_p (get_call_combined_fn (t))
694 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
696 tree fndecl, arg;
698 fndecl = get_callee_fndecl (t);
699 arg = negate_expr (CALL_EXPR_ARG (t, 0));
700 return build_call_expr_loc (loc, fndecl, 1, arg);
702 break;
704 case RSHIFT_EXPR:
705 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
706 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
708 tree op1 = TREE_OPERAND (t, 1);
709 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
711 tree ntype = TYPE_UNSIGNED (type)
712 ? signed_type_for (type)
713 : unsigned_type_for (type);
714 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
715 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
716 return fold_convert_loc (loc, type, temp);
719 break;
721 default:
722 break;
725 return NULL_TREE;
728 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
729 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
730 return NULL_TREE. */
732 static tree
733 negate_expr (tree t)
735 tree type, tem;
736 location_t loc;
738 if (t == NULL_TREE)
739 return NULL_TREE;
741 loc = EXPR_LOCATION (t);
742 type = TREE_TYPE (t);
743 STRIP_SIGN_NOPS (t);
745 tem = fold_negate_expr (loc, t);
746 if (!tem)
747 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
748 return fold_convert_loc (loc, type, tem);
751 /* Split a tree IN into a constant, literal and variable parts that could be
752 combined with CODE to make IN. "constant" means an expression with
753 TREE_CONSTANT but that isn't an actual constant. CODE must be a
754 commutative arithmetic operation. Store the constant part into *CONP,
755 the literal in *LITP and return the variable part. If a part isn't
756 present, set it to null. If the tree does not decompose in this way,
757 return the entire tree as the variable part and the other parts as null.
759 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
760 case, we negate an operand that was subtracted. Except if it is a
761 literal for which we use *MINUS_LITP instead.
763 If NEGATE_P is true, we are negating all of IN, again except a literal
764 for which we use *MINUS_LITP instead. If a variable part is of pointer
765 type, it is negated after converting to TYPE. This prevents us from
766 generating illegal MINUS pointer expression. LOC is the location of
767 the converted variable part.
769 If IN is itself a literal or constant, return it as appropriate.
771 Note that we do not guarantee that any of the three values will be the
772 same type as IN, but they will have the same signedness and mode. */
774 static tree
775 split_tree (location_t loc, tree in, tree type, enum tree_code code,
776 tree *conp, tree *litp, tree *minus_litp, int negate_p)
778 tree var = 0;
780 *conp = 0;
781 *litp = 0;
782 *minus_litp = 0;
784 /* Strip any conversions that don't change the machine mode or signedness. */
785 STRIP_SIGN_NOPS (in);
787 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
788 || TREE_CODE (in) == FIXED_CST)
789 *litp = in;
790 else if (TREE_CODE (in) == code
791 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
792 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
793 /* We can associate addition and subtraction together (even
794 though the C standard doesn't say so) for integers because
795 the value is not affected. For reals, the value might be
796 affected, so we can't. */
797 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
798 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
800 tree op0 = TREE_OPERAND (in, 0);
801 tree op1 = TREE_OPERAND (in, 1);
802 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
803 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
805 /* First see if either of the operands is a literal, then a constant. */
806 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
807 || TREE_CODE (op0) == FIXED_CST)
808 *litp = op0, op0 = 0;
809 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
810 || TREE_CODE (op1) == FIXED_CST)
811 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
813 if (op0 != 0 && TREE_CONSTANT (op0))
814 *conp = op0, op0 = 0;
815 else if (op1 != 0 && TREE_CONSTANT (op1))
816 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
818 /* If we haven't dealt with either operand, this is not a case we can
819 decompose. Otherwise, VAR is either of the ones remaining, if any. */
820 if (op0 != 0 && op1 != 0)
821 var = in;
822 else if (op0 != 0)
823 var = op0;
824 else
825 var = op1, neg_var_p = neg1_p;
827 /* Now do any needed negations. */
828 if (neg_litp_p)
829 *minus_litp = *litp, *litp = 0;
830 if (neg_conp_p)
831 *conp = negate_expr (*conp);
832 if (neg_var_p && var)
834 /* Convert to TYPE before negating. */
835 var = fold_convert_loc (loc, type, var);
836 var = negate_expr (var);
839 else if (TREE_CODE (in) == BIT_NOT_EXPR
840 && code == PLUS_EXPR)
842 /* -X - 1 is folded to ~X, undo that here. */
843 *minus_litp = build_one_cst (TREE_TYPE (in));
844 var = negate_expr (TREE_OPERAND (in, 0));
846 else if (TREE_CONSTANT (in))
847 *conp = in;
848 else
849 var = in;
851 if (negate_p)
853 if (*litp)
854 *minus_litp = *litp, *litp = 0;
855 else if (*minus_litp)
856 *litp = *minus_litp, *minus_litp = 0;
857 *conp = negate_expr (*conp);
858 if (var)
860 /* Convert to TYPE before negating. */
861 var = fold_convert_loc (loc, type, var);
862 var = negate_expr (var);
866 return var;
869 /* Re-associate trees split by the above function. T1 and T2 are
870 either expressions to associate or null. Return the new
871 expression, if any. LOC is the location of the new expression. If
872 we build an operation, do it in TYPE and with CODE. */
874 static tree
875 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
877 if (t1 == 0)
878 return t2;
879 else if (t2 == 0)
880 return t1;
882 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
883 try to fold this since we will have infinite recursion. But do
884 deal with any NEGATE_EXPRs. */
885 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
886 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
888 if (code == PLUS_EXPR)
890 if (TREE_CODE (t1) == NEGATE_EXPR)
891 return build2_loc (loc, MINUS_EXPR, type,
892 fold_convert_loc (loc, type, t2),
893 fold_convert_loc (loc, type,
894 TREE_OPERAND (t1, 0)));
895 else if (TREE_CODE (t2) == NEGATE_EXPR)
896 return build2_loc (loc, MINUS_EXPR, type,
897 fold_convert_loc (loc, type, t1),
898 fold_convert_loc (loc, type,
899 TREE_OPERAND (t2, 0)));
900 else if (integer_zerop (t2))
901 return fold_convert_loc (loc, type, t1);
903 else if (code == MINUS_EXPR)
905 if (integer_zerop (t2))
906 return fold_convert_loc (loc, type, t1);
909 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
910 fold_convert_loc (loc, type, t2));
913 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
914 fold_convert_loc (loc, type, t2));
917 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
918 for use in int_const_binop, size_binop and size_diffop. */
920 static bool
921 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
923 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
924 return false;
925 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
926 return false;
928 switch (code)
930 case LSHIFT_EXPR:
931 case RSHIFT_EXPR:
932 case LROTATE_EXPR:
933 case RROTATE_EXPR:
934 return true;
936 default:
937 break;
940 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
941 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
942 && TYPE_MODE (type1) == TYPE_MODE (type2);
946 /* Combine two integer constants ARG1 and ARG2 under operation CODE
947 to produce a new constant. Return NULL_TREE if we don't know how
948 to evaluate CODE at compile-time. */
950 static tree
951 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
952 int overflowable)
954 wide_int res;
955 tree t;
956 tree type = TREE_TYPE (arg1);
957 signop sign = TYPE_SIGN (type);
958 bool overflow = false;
960 wide_int arg2 = wi::to_wide (parg2, TYPE_PRECISION (type));
962 switch (code)
964 case BIT_IOR_EXPR:
965 res = wi::bit_or (arg1, arg2);
966 break;
968 case BIT_XOR_EXPR:
969 res = wi::bit_xor (arg1, arg2);
970 break;
972 case BIT_AND_EXPR:
973 res = wi::bit_and (arg1, arg2);
974 break;
976 case RSHIFT_EXPR:
977 case LSHIFT_EXPR:
978 if (wi::neg_p (arg2))
980 arg2 = -arg2;
981 if (code == RSHIFT_EXPR)
982 code = LSHIFT_EXPR;
983 else
984 code = RSHIFT_EXPR;
987 if (code == RSHIFT_EXPR)
988 /* It's unclear from the C standard whether shifts can overflow.
989 The following code ignores overflow; perhaps a C standard
990 interpretation ruling is needed. */
991 res = wi::rshift (arg1, arg2, sign);
992 else
993 res = wi::lshift (arg1, arg2);
994 break;
996 case RROTATE_EXPR:
997 case LROTATE_EXPR:
998 if (wi::neg_p (arg2))
1000 arg2 = -arg2;
1001 if (code == RROTATE_EXPR)
1002 code = LROTATE_EXPR;
1003 else
1004 code = RROTATE_EXPR;
1007 if (code == RROTATE_EXPR)
1008 res = wi::rrotate (arg1, arg2);
1009 else
1010 res = wi::lrotate (arg1, arg2);
1011 break;
1013 case PLUS_EXPR:
1014 res = wi::add (arg1, arg2, sign, &overflow);
1015 break;
1017 case MINUS_EXPR:
1018 res = wi::sub (arg1, arg2, sign, &overflow);
1019 break;
1021 case MULT_EXPR:
1022 res = wi::mul (arg1, arg2, sign, &overflow);
1023 break;
1025 case MULT_HIGHPART_EXPR:
1026 res = wi::mul_high (arg1, arg2, sign);
1027 break;
1029 case TRUNC_DIV_EXPR:
1030 case EXACT_DIV_EXPR:
1031 if (arg2 == 0)
1032 return NULL_TREE;
1033 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1034 break;
1036 case FLOOR_DIV_EXPR:
1037 if (arg2 == 0)
1038 return NULL_TREE;
1039 res = wi::div_floor (arg1, arg2, sign, &overflow);
1040 break;
1042 case CEIL_DIV_EXPR:
1043 if (arg2 == 0)
1044 return NULL_TREE;
1045 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1046 break;
1048 case ROUND_DIV_EXPR:
1049 if (arg2 == 0)
1050 return NULL_TREE;
1051 res = wi::div_round (arg1, arg2, sign, &overflow);
1052 break;
1054 case TRUNC_MOD_EXPR:
1055 if (arg2 == 0)
1056 return NULL_TREE;
1057 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1058 break;
1060 case FLOOR_MOD_EXPR:
1061 if (arg2 == 0)
1062 return NULL_TREE;
1063 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1064 break;
1066 case CEIL_MOD_EXPR:
1067 if (arg2 == 0)
1068 return NULL_TREE;
1069 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1070 break;
1072 case ROUND_MOD_EXPR:
1073 if (arg2 == 0)
1074 return NULL_TREE;
1075 res = wi::mod_round (arg1, arg2, sign, &overflow);
1076 break;
1078 case MIN_EXPR:
1079 res = wi::min (arg1, arg2, sign);
1080 break;
1082 case MAX_EXPR:
1083 res = wi::max (arg1, arg2, sign);
1084 break;
1086 default:
1087 return NULL_TREE;
1090 t = force_fit_type (type, res, overflowable,
1091 (((sign == SIGNED || overflowable == -1)
1092 && overflow)
1093 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1095 return t;
1098 tree
1099 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1101 return int_const_binop_1 (code, arg1, arg2, 1);
1104 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1105 constant. We assume ARG1 and ARG2 have the same data type, or at least
1106 are the same kind of constant and the same machine mode. Return zero if
1107 combining the constants is not allowed in the current operating mode. */
1109 static tree
1110 const_binop (enum tree_code code, tree arg1, tree arg2)
1112 /* Sanity check for the recursive cases. */
1113 if (!arg1 || !arg2)
1114 return NULL_TREE;
1116 STRIP_NOPS (arg1);
1117 STRIP_NOPS (arg2);
1119 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1121 if (code == POINTER_PLUS_EXPR)
1122 return int_const_binop (PLUS_EXPR,
1123 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1125 return int_const_binop (code, arg1, arg2);
1128 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1130 machine_mode mode;
1131 REAL_VALUE_TYPE d1;
1132 REAL_VALUE_TYPE d2;
1133 REAL_VALUE_TYPE value;
1134 REAL_VALUE_TYPE result;
1135 bool inexact;
1136 tree t, type;
1138 /* The following codes are handled by real_arithmetic. */
1139 switch (code)
1141 case PLUS_EXPR:
1142 case MINUS_EXPR:
1143 case MULT_EXPR:
1144 case RDIV_EXPR:
1145 case MIN_EXPR:
1146 case MAX_EXPR:
1147 break;
1149 default:
1150 return NULL_TREE;
1153 d1 = TREE_REAL_CST (arg1);
1154 d2 = TREE_REAL_CST (arg2);
1156 type = TREE_TYPE (arg1);
1157 mode = TYPE_MODE (type);
1159 /* Don't perform operation if we honor signaling NaNs and
1160 either operand is a signaling NaN. */
1161 if (HONOR_SNANS (mode)
1162 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1163 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1164 return NULL_TREE;
1166 /* Don't perform operation if it would raise a division
1167 by zero exception. */
1168 if (code == RDIV_EXPR
1169 && real_equal (&d2, &dconst0)
1170 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1171 return NULL_TREE;
1173 /* If either operand is a NaN, just return it. Otherwise, set up
1174 for floating-point trap; we return an overflow. */
1175 if (REAL_VALUE_ISNAN (d1))
1177 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1178 is off. */
1179 d1.signalling = 0;
1180 t = build_real (type, d1);
1181 return t;
1183 else if (REAL_VALUE_ISNAN (d2))
1185 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1186 is off. */
1187 d2.signalling = 0;
1188 t = build_real (type, d2);
1189 return t;
1192 inexact = real_arithmetic (&value, code, &d1, &d2);
1193 real_convert (&result, mode, &value);
1195 /* Don't constant fold this floating point operation if
1196 the result has overflowed and flag_trapping_math. */
1197 if (flag_trapping_math
1198 && MODE_HAS_INFINITIES (mode)
1199 && REAL_VALUE_ISINF (result)
1200 && !REAL_VALUE_ISINF (d1)
1201 && !REAL_VALUE_ISINF (d2))
1202 return NULL_TREE;
1204 /* Don't constant fold this floating point operation if the
1205 result may dependent upon the run-time rounding mode and
1206 flag_rounding_math is set, or if GCC's software emulation
1207 is unable to accurately represent the result. */
1208 if ((flag_rounding_math
1209 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1210 && (inexact || !real_identical (&result, &value)))
1211 return NULL_TREE;
1213 t = build_real (type, result);
1215 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1216 return t;
1219 if (TREE_CODE (arg1) == FIXED_CST)
1221 FIXED_VALUE_TYPE f1;
1222 FIXED_VALUE_TYPE f2;
1223 FIXED_VALUE_TYPE result;
1224 tree t, type;
1225 int sat_p;
1226 bool overflow_p;
1228 /* The following codes are handled by fixed_arithmetic. */
1229 switch (code)
1231 case PLUS_EXPR:
1232 case MINUS_EXPR:
1233 case MULT_EXPR:
1234 case TRUNC_DIV_EXPR:
1235 if (TREE_CODE (arg2) != FIXED_CST)
1236 return NULL_TREE;
1237 f2 = TREE_FIXED_CST (arg2);
1238 break;
1240 case LSHIFT_EXPR:
1241 case RSHIFT_EXPR:
1243 if (TREE_CODE (arg2) != INTEGER_CST)
1244 return NULL_TREE;
1245 wide_int w2 = arg2;
1246 f2.data.high = w2.elt (1);
1247 f2.data.low = w2.elt (0);
1248 f2.mode = SImode;
1250 break;
1252 default:
1253 return NULL_TREE;
1256 f1 = TREE_FIXED_CST (arg1);
1257 type = TREE_TYPE (arg1);
1258 sat_p = TYPE_SATURATING (type);
1259 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1260 t = build_fixed (type, result);
1261 /* Propagate overflow flags. */
1262 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1263 TREE_OVERFLOW (t) = 1;
1264 return t;
1267 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1269 tree type = TREE_TYPE (arg1);
1270 tree r1 = TREE_REALPART (arg1);
1271 tree i1 = TREE_IMAGPART (arg1);
1272 tree r2 = TREE_REALPART (arg2);
1273 tree i2 = TREE_IMAGPART (arg2);
1274 tree real, imag;
1276 switch (code)
1278 case PLUS_EXPR:
1279 case MINUS_EXPR:
1280 real = const_binop (code, r1, r2);
1281 imag = const_binop (code, i1, i2);
1282 break;
1284 case MULT_EXPR:
1285 if (COMPLEX_FLOAT_TYPE_P (type))
1286 return do_mpc_arg2 (arg1, arg2, type,
1287 /* do_nonfinite= */ folding_initializer,
1288 mpc_mul);
1290 real = const_binop (MINUS_EXPR,
1291 const_binop (MULT_EXPR, r1, r2),
1292 const_binop (MULT_EXPR, i1, i2));
1293 imag = const_binop (PLUS_EXPR,
1294 const_binop (MULT_EXPR, r1, i2),
1295 const_binop (MULT_EXPR, i1, r2));
1296 break;
1298 case RDIV_EXPR:
1299 if (COMPLEX_FLOAT_TYPE_P (type))
1300 return do_mpc_arg2 (arg1, arg2, type,
1301 /* do_nonfinite= */ folding_initializer,
1302 mpc_div);
1303 /* Fallthru. */
1304 case TRUNC_DIV_EXPR:
1305 case CEIL_DIV_EXPR:
1306 case FLOOR_DIV_EXPR:
1307 case ROUND_DIV_EXPR:
1308 if (flag_complex_method == 0)
1310 /* Keep this algorithm in sync with
1311 tree-complex.c:expand_complex_div_straight().
1313 Expand complex division to scalars, straightforward algorithm.
1314 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1315 t = br*br + bi*bi
1317 tree magsquared
1318 = const_binop (PLUS_EXPR,
1319 const_binop (MULT_EXPR, r2, r2),
1320 const_binop (MULT_EXPR, i2, i2));
1321 tree t1
1322 = const_binop (PLUS_EXPR,
1323 const_binop (MULT_EXPR, r1, r2),
1324 const_binop (MULT_EXPR, i1, i2));
1325 tree t2
1326 = const_binop (MINUS_EXPR,
1327 const_binop (MULT_EXPR, i1, r2),
1328 const_binop (MULT_EXPR, r1, i2));
1330 real = const_binop (code, t1, magsquared);
1331 imag = const_binop (code, t2, magsquared);
1333 else
1335 /* Keep this algorithm in sync with
1336 tree-complex.c:expand_complex_div_wide().
1338 Expand complex division to scalars, modified algorithm to minimize
1339 overflow with wide input ranges. */
1340 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1341 fold_abs_const (r2, TREE_TYPE (type)),
1342 fold_abs_const (i2, TREE_TYPE (type)));
1344 if (integer_nonzerop (compare))
1346 /* In the TRUE branch, we compute
1347 ratio = br/bi;
1348 div = (br * ratio) + bi;
1349 tr = (ar * ratio) + ai;
1350 ti = (ai * ratio) - ar;
1351 tr = tr / div;
1352 ti = ti / div; */
1353 tree ratio = const_binop (code, r2, i2);
1354 tree div = const_binop (PLUS_EXPR, i2,
1355 const_binop (MULT_EXPR, r2, ratio));
1356 real = const_binop (MULT_EXPR, r1, ratio);
1357 real = const_binop (PLUS_EXPR, real, i1);
1358 real = const_binop (code, real, div);
1360 imag = const_binop (MULT_EXPR, i1, ratio);
1361 imag = const_binop (MINUS_EXPR, imag, r1);
1362 imag = const_binop (code, imag, div);
1364 else
1366 /* In the FALSE branch, we compute
1367 ratio = d/c;
1368 divisor = (d * ratio) + c;
1369 tr = (b * ratio) + a;
1370 ti = b - (a * ratio);
1371 tr = tr / div;
1372 ti = ti / div; */
1373 tree ratio = const_binop (code, i2, r2);
1374 tree div = const_binop (PLUS_EXPR, r2,
1375 const_binop (MULT_EXPR, i2, ratio));
1377 real = const_binop (MULT_EXPR, i1, ratio);
1378 real = const_binop (PLUS_EXPR, real, r1);
1379 real = const_binop (code, real, div);
1381 imag = const_binop (MULT_EXPR, r1, ratio);
1382 imag = const_binop (MINUS_EXPR, i1, imag);
1383 imag = const_binop (code, imag, div);
1386 break;
1388 default:
1389 return NULL_TREE;
1392 if (real && imag)
1393 return build_complex (type, real, imag);
1396 if (TREE_CODE (arg1) == VECTOR_CST
1397 && TREE_CODE (arg2) == VECTOR_CST)
1399 tree type = TREE_TYPE (arg1);
1400 int count = TYPE_VECTOR_SUBPARTS (type), i;
1401 tree *elts = XALLOCAVEC (tree, count);
1403 for (i = 0; i < count; i++)
1405 tree elem1 = VECTOR_CST_ELT (arg1, i);
1406 tree elem2 = VECTOR_CST_ELT (arg2, i);
1408 elts[i] = const_binop (code, elem1, elem2);
1410 /* It is possible that const_binop cannot handle the given
1411 code and return NULL_TREE */
1412 if (elts[i] == NULL_TREE)
1413 return NULL_TREE;
1416 return build_vector (type, elts);
1419 /* Shifts allow a scalar offset for a vector. */
1420 if (TREE_CODE (arg1) == VECTOR_CST
1421 && TREE_CODE (arg2) == INTEGER_CST)
1423 tree type = TREE_TYPE (arg1);
1424 int count = TYPE_VECTOR_SUBPARTS (type), i;
1425 tree *elts = XALLOCAVEC (tree, count);
1427 for (i = 0; i < count; i++)
1429 tree elem1 = VECTOR_CST_ELT (arg1, i);
1431 elts[i] = const_binop (code, elem1, arg2);
1433 /* It is possible that const_binop cannot handle the given
1434 code and return NULL_TREE. */
1435 if (elts[i] == NULL_TREE)
1436 return NULL_TREE;
1439 return build_vector (type, elts);
1441 return NULL_TREE;
1444 /* Overload that adds a TYPE parameter to be able to dispatch
1445 to fold_relational_const. */
1447 tree
1448 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1450 if (TREE_CODE_CLASS (code) == tcc_comparison)
1451 return fold_relational_const (code, type, arg1, arg2);
1453 /* ??? Until we make the const_binop worker take the type of the
1454 result as argument put those cases that need it here. */
1455 switch (code)
1457 case COMPLEX_EXPR:
1458 if ((TREE_CODE (arg1) == REAL_CST
1459 && TREE_CODE (arg2) == REAL_CST)
1460 || (TREE_CODE (arg1) == INTEGER_CST
1461 && TREE_CODE (arg2) == INTEGER_CST))
1462 return build_complex (type, arg1, arg2);
1463 return NULL_TREE;
1465 case VEC_PACK_TRUNC_EXPR:
1466 case VEC_PACK_FIX_TRUNC_EXPR:
1468 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1469 tree *elts;
1471 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1472 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1473 if (TREE_CODE (arg1) != VECTOR_CST
1474 || TREE_CODE (arg2) != VECTOR_CST)
1475 return NULL_TREE;
1477 elts = XALLOCAVEC (tree, nelts);
1478 if (!vec_cst_ctor_to_array (arg1, elts)
1479 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1480 return NULL_TREE;
1482 for (i = 0; i < nelts; i++)
1484 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1485 ? NOP_EXPR : FIX_TRUNC_EXPR,
1486 TREE_TYPE (type), elts[i]);
1487 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1488 return NULL_TREE;
1491 return build_vector (type, elts);
1494 case VEC_WIDEN_MULT_LO_EXPR:
1495 case VEC_WIDEN_MULT_HI_EXPR:
1496 case VEC_WIDEN_MULT_EVEN_EXPR:
1497 case VEC_WIDEN_MULT_ODD_EXPR:
1499 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1500 unsigned int out, ofs, scale;
1501 tree *elts;
1503 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1504 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1505 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1506 return NULL_TREE;
1508 elts = XALLOCAVEC (tree, nelts * 4);
1509 if (!vec_cst_ctor_to_array (arg1, elts)
1510 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1511 return NULL_TREE;
1513 if (code == VEC_WIDEN_MULT_LO_EXPR)
1514 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1515 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1516 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1517 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1518 scale = 1, ofs = 0;
1519 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1520 scale = 1, ofs = 1;
1522 for (out = 0; out < nelts; out++)
1524 unsigned int in1 = (out << scale) + ofs;
1525 unsigned int in2 = in1 + nelts * 2;
1526 tree t1, t2;
1528 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1529 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1531 if (t1 == NULL_TREE || t2 == NULL_TREE)
1532 return NULL_TREE;
1533 elts[out] = const_binop (MULT_EXPR, t1, t2);
1534 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1535 return NULL_TREE;
1538 return build_vector (type, elts);
1541 default:;
1544 if (TREE_CODE_CLASS (code) != tcc_binary)
1545 return NULL_TREE;
1547 /* Make sure type and arg0 have the same saturating flag. */
1548 gcc_checking_assert (TYPE_SATURATING (type)
1549 == TYPE_SATURATING (TREE_TYPE (arg1)));
1551 return const_binop (code, arg1, arg2);
1554 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1555 Return zero if computing the constants is not possible. */
1557 tree
1558 const_unop (enum tree_code code, tree type, tree arg0)
1560 /* Don't perform the operation, other than NEGATE and ABS, if
1561 flag_signaling_nans is on and the operand is a signaling NaN. */
1562 if (TREE_CODE (arg0) == REAL_CST
1563 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1564 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1565 && code != NEGATE_EXPR
1566 && code != ABS_EXPR)
1567 return NULL_TREE;
1569 switch (code)
1571 CASE_CONVERT:
1572 case FLOAT_EXPR:
1573 case FIX_TRUNC_EXPR:
1574 case FIXED_CONVERT_EXPR:
1575 return fold_convert_const (code, type, arg0);
1577 case ADDR_SPACE_CONVERT_EXPR:
1578 /* If the source address is 0, and the source address space
1579 cannot have a valid object at 0, fold to dest type null. */
1580 if (integer_zerop (arg0)
1581 && !(targetm.addr_space.zero_address_valid
1582 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1583 return fold_convert_const (code, type, arg0);
1584 break;
1586 case VIEW_CONVERT_EXPR:
1587 return fold_view_convert_expr (type, arg0);
1589 case NEGATE_EXPR:
1591 /* Can't call fold_negate_const directly here as that doesn't
1592 handle all cases and we might not be able to negate some
1593 constants. */
1594 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1595 if (tem && CONSTANT_CLASS_P (tem))
1596 return tem;
1597 break;
1600 case ABS_EXPR:
1601 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1602 return fold_abs_const (arg0, type);
1603 break;
1605 case CONJ_EXPR:
1606 if (TREE_CODE (arg0) == COMPLEX_CST)
1608 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1609 TREE_TYPE (type));
1610 return build_complex (type, TREE_REALPART (arg0), ipart);
1612 break;
1614 case BIT_NOT_EXPR:
1615 if (TREE_CODE (arg0) == INTEGER_CST)
1616 return fold_not_const (arg0, type);
1617 /* Perform BIT_NOT_EXPR on each element individually. */
1618 else if (TREE_CODE (arg0) == VECTOR_CST)
1620 tree *elements;
1621 tree elem;
1622 unsigned count = VECTOR_CST_NELTS (arg0), i;
1624 elements = XALLOCAVEC (tree, count);
1625 for (i = 0; i < count; i++)
1627 elem = VECTOR_CST_ELT (arg0, i);
1628 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1629 if (elem == NULL_TREE)
1630 break;
1631 elements[i] = elem;
1633 if (i == count)
1634 return build_vector (type, elements);
1636 break;
1638 case TRUTH_NOT_EXPR:
1639 if (TREE_CODE (arg0) == INTEGER_CST)
1640 return constant_boolean_node (integer_zerop (arg0), type);
1641 break;
1643 case REALPART_EXPR:
1644 if (TREE_CODE (arg0) == COMPLEX_CST)
1645 return fold_convert (type, TREE_REALPART (arg0));
1646 break;
1648 case IMAGPART_EXPR:
1649 if (TREE_CODE (arg0) == COMPLEX_CST)
1650 return fold_convert (type, TREE_IMAGPART (arg0));
1651 break;
1653 case VEC_UNPACK_LO_EXPR:
1654 case VEC_UNPACK_HI_EXPR:
1655 case VEC_UNPACK_FLOAT_LO_EXPR:
1656 case VEC_UNPACK_FLOAT_HI_EXPR:
1658 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1659 tree *elts;
1660 enum tree_code subcode;
1662 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1663 if (TREE_CODE (arg0) != VECTOR_CST)
1664 return NULL_TREE;
1666 elts = XALLOCAVEC (tree, nelts * 2);
1667 if (!vec_cst_ctor_to_array (arg0, elts))
1668 return NULL_TREE;
1670 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1671 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1672 elts += nelts;
1674 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1675 subcode = NOP_EXPR;
1676 else
1677 subcode = FLOAT_EXPR;
1679 for (i = 0; i < nelts; i++)
1681 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1682 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1683 return NULL_TREE;
1686 return build_vector (type, elts);
1689 case REDUC_MIN_EXPR:
1690 case REDUC_MAX_EXPR:
1691 case REDUC_PLUS_EXPR:
1693 unsigned int nelts, i;
1694 tree *elts;
1695 enum tree_code subcode;
1697 if (TREE_CODE (arg0) != VECTOR_CST)
1698 return NULL_TREE;
1699 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1701 elts = XALLOCAVEC (tree, nelts);
1702 if (!vec_cst_ctor_to_array (arg0, elts))
1703 return NULL_TREE;
1705 switch (code)
1707 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1708 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1709 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1710 default: gcc_unreachable ();
1713 for (i = 1; i < nelts; i++)
1715 elts[0] = const_binop (subcode, elts[0], elts[i]);
1716 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1717 return NULL_TREE;
1720 return elts[0];
1723 default:
1724 break;
1727 return NULL_TREE;
1730 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1731 indicates which particular sizetype to create. */
1733 tree
1734 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1736 return build_int_cst (sizetype_tab[(int) kind], number);
1739 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1740 is a tree code. The type of the result is taken from the operands.
1741 Both must be equivalent integer types, ala int_binop_types_match_p.
1742 If the operands are constant, so is the result. */
1744 tree
1745 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1747 tree type = TREE_TYPE (arg0);
1749 if (arg0 == error_mark_node || arg1 == error_mark_node)
1750 return error_mark_node;
1752 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1753 TREE_TYPE (arg1)));
1755 /* Handle the special case of two integer constants faster. */
1756 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1758 /* And some specific cases even faster than that. */
1759 if (code == PLUS_EXPR)
1761 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1762 return arg1;
1763 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1764 return arg0;
1766 else if (code == MINUS_EXPR)
1768 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1769 return arg0;
1771 else if (code == MULT_EXPR)
1773 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1774 return arg1;
1777 /* Handle general case of two integer constants. For sizetype
1778 constant calculations we always want to know about overflow,
1779 even in the unsigned case. */
1780 return int_const_binop_1 (code, arg0, arg1, -1);
1783 return fold_build2_loc (loc, code, type, arg0, arg1);
1786 /* Given two values, either both of sizetype or both of bitsizetype,
1787 compute the difference between the two values. Return the value
1788 in signed type corresponding to the type of the operands. */
1790 tree
1791 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1793 tree type = TREE_TYPE (arg0);
1794 tree ctype;
1796 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1797 TREE_TYPE (arg1)));
1799 /* If the type is already signed, just do the simple thing. */
1800 if (!TYPE_UNSIGNED (type))
1801 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1803 if (type == sizetype)
1804 ctype = ssizetype;
1805 else if (type == bitsizetype)
1806 ctype = sbitsizetype;
1807 else
1808 ctype = signed_type_for (type);
1810 /* If either operand is not a constant, do the conversions to the signed
1811 type and subtract. The hardware will do the right thing with any
1812 overflow in the subtraction. */
1813 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1814 return size_binop_loc (loc, MINUS_EXPR,
1815 fold_convert_loc (loc, ctype, arg0),
1816 fold_convert_loc (loc, ctype, arg1));
1818 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1819 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1820 overflow) and negate (which can't either). Special-case a result
1821 of zero while we're here. */
1822 if (tree_int_cst_equal (arg0, arg1))
1823 return build_int_cst (ctype, 0);
1824 else if (tree_int_cst_lt (arg1, arg0))
1825 return fold_convert_loc (loc, ctype,
1826 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1827 else
1828 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1829 fold_convert_loc (loc, ctype,
1830 size_binop_loc (loc,
1831 MINUS_EXPR,
1832 arg1, arg0)));
1835 /* A subroutine of fold_convert_const handling conversions of an
1836 INTEGER_CST to another integer type. */
1838 static tree
1839 fold_convert_const_int_from_int (tree type, const_tree arg1)
1841 /* Given an integer constant, make new constant with new type,
1842 appropriately sign-extended or truncated. Use widest_int
1843 so that any extension is done according ARG1's type. */
1844 return force_fit_type (type, wi::to_widest (arg1),
1845 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1846 TREE_OVERFLOW (arg1));
1849 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1850 to an integer type. */
1852 static tree
1853 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1855 bool overflow = false;
1856 tree t;
1858 /* The following code implements the floating point to integer
1859 conversion rules required by the Java Language Specification,
1860 that IEEE NaNs are mapped to zero and values that overflow
1861 the target precision saturate, i.e. values greater than
1862 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1863 are mapped to INT_MIN. These semantics are allowed by the
1864 C and C++ standards that simply state that the behavior of
1865 FP-to-integer conversion is unspecified upon overflow. */
1867 wide_int val;
1868 REAL_VALUE_TYPE r;
1869 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1871 switch (code)
1873 case FIX_TRUNC_EXPR:
1874 real_trunc (&r, VOIDmode, &x);
1875 break;
1877 default:
1878 gcc_unreachable ();
1881 /* If R is NaN, return zero and show we have an overflow. */
1882 if (REAL_VALUE_ISNAN (r))
1884 overflow = true;
1885 val = wi::zero (TYPE_PRECISION (type));
1888 /* See if R is less than the lower bound or greater than the
1889 upper bound. */
1891 if (! overflow)
1893 tree lt = TYPE_MIN_VALUE (type);
1894 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1895 if (real_less (&r, &l))
1897 overflow = true;
1898 val = lt;
1902 if (! overflow)
1904 tree ut = TYPE_MAX_VALUE (type);
1905 if (ut)
1907 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1908 if (real_less (&u, &r))
1910 overflow = true;
1911 val = ut;
1916 if (! overflow)
1917 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1919 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1920 return t;
1923 /* A subroutine of fold_convert_const handling conversions of a
1924 FIXED_CST to an integer type. */
1926 static tree
1927 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1929 tree t;
1930 double_int temp, temp_trunc;
1931 unsigned int mode;
1933 /* Right shift FIXED_CST to temp by fbit. */
1934 temp = TREE_FIXED_CST (arg1).data;
1935 mode = TREE_FIXED_CST (arg1).mode;
1936 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1938 temp = temp.rshift (GET_MODE_FBIT (mode),
1939 HOST_BITS_PER_DOUBLE_INT,
1940 SIGNED_FIXED_POINT_MODE_P (mode));
1942 /* Left shift temp to temp_trunc by fbit. */
1943 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1944 HOST_BITS_PER_DOUBLE_INT,
1945 SIGNED_FIXED_POINT_MODE_P (mode));
1947 else
1949 temp = double_int_zero;
1950 temp_trunc = double_int_zero;
1953 /* If FIXED_CST is negative, we need to round the value toward 0.
1954 By checking if the fractional bits are not zero to add 1 to temp. */
1955 if (SIGNED_FIXED_POINT_MODE_P (mode)
1956 && temp_trunc.is_negative ()
1957 && TREE_FIXED_CST (arg1).data != temp_trunc)
1958 temp += double_int_one;
1960 /* Given a fixed-point constant, make new constant with new type,
1961 appropriately sign-extended or truncated. */
1962 t = force_fit_type (type, temp, -1,
1963 (temp.is_negative ()
1964 && (TYPE_UNSIGNED (type)
1965 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1966 | TREE_OVERFLOW (arg1));
1968 return t;
1971 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1972 to another floating point type. */
1974 static tree
1975 fold_convert_const_real_from_real (tree type, const_tree arg1)
1977 REAL_VALUE_TYPE value;
1978 tree t;
1980 /* Don't perform the operation if flag_signaling_nans is on
1981 and the operand is a signaling NaN. */
1982 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1983 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
1984 return NULL_TREE;
1986 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1987 t = build_real (type, value);
1989 /* If converting an infinity or NAN to a representation that doesn't
1990 have one, set the overflow bit so that we can produce some kind of
1991 error message at the appropriate point if necessary. It's not the
1992 most user-friendly message, but it's better than nothing. */
1993 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1994 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1995 TREE_OVERFLOW (t) = 1;
1996 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1997 && !MODE_HAS_NANS (TYPE_MODE (type)))
1998 TREE_OVERFLOW (t) = 1;
1999 /* Regular overflow, conversion produced an infinity in a mode that
2000 can't represent them. */
2001 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2002 && REAL_VALUE_ISINF (value)
2003 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2004 TREE_OVERFLOW (t) = 1;
2005 else
2006 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2007 return t;
2010 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2011 to a floating point type. */
2013 static tree
2014 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2016 REAL_VALUE_TYPE value;
2017 tree t;
2019 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
2020 t = build_real (type, value);
2022 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2023 return t;
2026 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2027 to another fixed-point type. */
2029 static tree
2030 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2032 FIXED_VALUE_TYPE value;
2033 tree t;
2034 bool overflow_p;
2036 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2037 TYPE_SATURATING (type));
2038 t = build_fixed (type, value);
2040 /* Propagate overflow flags. */
2041 if (overflow_p | TREE_OVERFLOW (arg1))
2042 TREE_OVERFLOW (t) = 1;
2043 return t;
2046 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2047 to a fixed-point type. */
2049 static tree
2050 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2052 FIXED_VALUE_TYPE value;
2053 tree t;
2054 bool overflow_p;
2055 double_int di;
2057 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2059 di.low = TREE_INT_CST_ELT (arg1, 0);
2060 if (TREE_INT_CST_NUNITS (arg1) == 1)
2061 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2062 else
2063 di.high = TREE_INT_CST_ELT (arg1, 1);
2065 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2066 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2067 TYPE_SATURATING (type));
2068 t = build_fixed (type, value);
2070 /* Propagate overflow flags. */
2071 if (overflow_p | TREE_OVERFLOW (arg1))
2072 TREE_OVERFLOW (t) = 1;
2073 return t;
2076 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2077 to a fixed-point type. */
2079 static tree
2080 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2082 FIXED_VALUE_TYPE value;
2083 tree t;
2084 bool overflow_p;
2086 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2087 &TREE_REAL_CST (arg1),
2088 TYPE_SATURATING (type));
2089 t = build_fixed (type, value);
2091 /* Propagate overflow flags. */
2092 if (overflow_p | TREE_OVERFLOW (arg1))
2093 TREE_OVERFLOW (t) = 1;
2094 return t;
2097 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2098 type TYPE. If no simplification can be done return NULL_TREE. */
2100 static tree
2101 fold_convert_const (enum tree_code code, tree type, tree arg1)
2103 if (TREE_TYPE (arg1) == type)
2104 return arg1;
2106 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2107 || TREE_CODE (type) == OFFSET_TYPE)
2109 if (TREE_CODE (arg1) == INTEGER_CST)
2110 return fold_convert_const_int_from_int (type, arg1);
2111 else if (TREE_CODE (arg1) == REAL_CST)
2112 return fold_convert_const_int_from_real (code, type, arg1);
2113 else if (TREE_CODE (arg1) == FIXED_CST)
2114 return fold_convert_const_int_from_fixed (type, arg1);
2116 else if (TREE_CODE (type) == REAL_TYPE)
2118 if (TREE_CODE (arg1) == INTEGER_CST)
2119 return build_real_from_int_cst (type, arg1);
2120 else if (TREE_CODE (arg1) == REAL_CST)
2121 return fold_convert_const_real_from_real (type, arg1);
2122 else if (TREE_CODE (arg1) == FIXED_CST)
2123 return fold_convert_const_real_from_fixed (type, arg1);
2125 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2127 if (TREE_CODE (arg1) == FIXED_CST)
2128 return fold_convert_const_fixed_from_fixed (type, arg1);
2129 else if (TREE_CODE (arg1) == INTEGER_CST)
2130 return fold_convert_const_fixed_from_int (type, arg1);
2131 else if (TREE_CODE (arg1) == REAL_CST)
2132 return fold_convert_const_fixed_from_real (type, arg1);
2134 else if (TREE_CODE (type) == VECTOR_TYPE)
2136 if (TREE_CODE (arg1) == VECTOR_CST
2137 && TYPE_VECTOR_SUBPARTS (type) == VECTOR_CST_NELTS (arg1))
2139 int len = TYPE_VECTOR_SUBPARTS (type);
2140 tree elttype = TREE_TYPE (type);
2141 tree *v = XALLOCAVEC (tree, len);
2142 for (int i = 0; i < len; ++i)
2144 tree elt = VECTOR_CST_ELT (arg1, i);
2145 tree cvt = fold_convert_const (code, elttype, elt);
2146 if (cvt == NULL_TREE)
2147 return NULL_TREE;
2148 v[i] = cvt;
2150 return build_vector (type, v);
2153 return NULL_TREE;
2156 /* Construct a vector of zero elements of vector type TYPE. */
2158 static tree
2159 build_zero_vector (tree type)
2161 tree t;
2163 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2164 return build_vector_from_val (type, t);
2167 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2169 bool
2170 fold_convertible_p (const_tree type, const_tree arg)
2172 tree orig = TREE_TYPE (arg);
2174 if (type == orig)
2175 return true;
2177 if (TREE_CODE (arg) == ERROR_MARK
2178 || TREE_CODE (type) == ERROR_MARK
2179 || TREE_CODE (orig) == ERROR_MARK)
2180 return false;
2182 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2183 return true;
2185 switch (TREE_CODE (type))
2187 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2188 case POINTER_TYPE: case REFERENCE_TYPE:
2189 case OFFSET_TYPE:
2190 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2191 || TREE_CODE (orig) == OFFSET_TYPE);
2193 case REAL_TYPE:
2194 case FIXED_POINT_TYPE:
2195 case VECTOR_TYPE:
2196 case VOID_TYPE:
2197 return TREE_CODE (type) == TREE_CODE (orig);
2199 default:
2200 return false;
2204 /* Convert expression ARG to type TYPE. Used by the middle-end for
2205 simple conversions in preference to calling the front-end's convert. */
2207 tree
2208 fold_convert_loc (location_t loc, tree type, tree arg)
2210 tree orig = TREE_TYPE (arg);
2211 tree tem;
2213 if (type == orig)
2214 return arg;
2216 if (TREE_CODE (arg) == ERROR_MARK
2217 || TREE_CODE (type) == ERROR_MARK
2218 || TREE_CODE (orig) == ERROR_MARK)
2219 return error_mark_node;
2221 switch (TREE_CODE (type))
2223 case POINTER_TYPE:
2224 case REFERENCE_TYPE:
2225 /* Handle conversions between pointers to different address spaces. */
2226 if (POINTER_TYPE_P (orig)
2227 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2228 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2229 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2230 /* fall through */
2232 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2233 case OFFSET_TYPE:
2234 if (TREE_CODE (arg) == INTEGER_CST)
2236 tem = fold_convert_const (NOP_EXPR, type, arg);
2237 if (tem != NULL_TREE)
2238 return tem;
2240 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2241 || TREE_CODE (orig) == OFFSET_TYPE)
2242 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2243 if (TREE_CODE (orig) == COMPLEX_TYPE)
2244 return fold_convert_loc (loc, type,
2245 fold_build1_loc (loc, REALPART_EXPR,
2246 TREE_TYPE (orig), arg));
2247 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2248 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2249 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2251 case REAL_TYPE:
2252 if (TREE_CODE (arg) == INTEGER_CST)
2254 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2255 if (tem != NULL_TREE)
2256 return tem;
2258 else if (TREE_CODE (arg) == REAL_CST)
2260 tem = fold_convert_const (NOP_EXPR, type, arg);
2261 if (tem != NULL_TREE)
2262 return tem;
2264 else if (TREE_CODE (arg) == FIXED_CST)
2266 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2267 if (tem != NULL_TREE)
2268 return tem;
2271 switch (TREE_CODE (orig))
2273 case INTEGER_TYPE:
2274 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2275 case POINTER_TYPE: case REFERENCE_TYPE:
2276 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2278 case REAL_TYPE:
2279 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2281 case FIXED_POINT_TYPE:
2282 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2284 case COMPLEX_TYPE:
2285 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2286 return fold_convert_loc (loc, type, tem);
2288 default:
2289 gcc_unreachable ();
2292 case FIXED_POINT_TYPE:
2293 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2294 || TREE_CODE (arg) == REAL_CST)
2296 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2297 if (tem != NULL_TREE)
2298 goto fold_convert_exit;
2301 switch (TREE_CODE (orig))
2303 case FIXED_POINT_TYPE:
2304 case INTEGER_TYPE:
2305 case ENUMERAL_TYPE:
2306 case BOOLEAN_TYPE:
2307 case REAL_TYPE:
2308 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2310 case COMPLEX_TYPE:
2311 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2312 return fold_convert_loc (loc, type, tem);
2314 default:
2315 gcc_unreachable ();
2318 case COMPLEX_TYPE:
2319 switch (TREE_CODE (orig))
2321 case INTEGER_TYPE:
2322 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2323 case POINTER_TYPE: case REFERENCE_TYPE:
2324 case REAL_TYPE:
2325 case FIXED_POINT_TYPE:
2326 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2327 fold_convert_loc (loc, TREE_TYPE (type), arg),
2328 fold_convert_loc (loc, TREE_TYPE (type),
2329 integer_zero_node));
2330 case COMPLEX_TYPE:
2332 tree rpart, ipart;
2334 if (TREE_CODE (arg) == COMPLEX_EXPR)
2336 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2337 TREE_OPERAND (arg, 0));
2338 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2339 TREE_OPERAND (arg, 1));
2340 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2343 arg = save_expr (arg);
2344 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2345 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2346 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2347 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2348 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2351 default:
2352 gcc_unreachable ();
2355 case VECTOR_TYPE:
2356 if (integer_zerop (arg))
2357 return build_zero_vector (type);
2358 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2359 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2360 || TREE_CODE (orig) == VECTOR_TYPE);
2361 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2363 case VOID_TYPE:
2364 tem = fold_ignored_result (arg);
2365 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2367 default:
2368 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2369 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2370 gcc_unreachable ();
2372 fold_convert_exit:
2373 protected_set_expr_location_unshare (tem, loc);
2374 return tem;
2377 /* Return false if expr can be assumed not to be an lvalue, true
2378 otherwise. */
2380 static bool
2381 maybe_lvalue_p (const_tree x)
2383 /* We only need to wrap lvalue tree codes. */
2384 switch (TREE_CODE (x))
2386 case VAR_DECL:
2387 case PARM_DECL:
2388 case RESULT_DECL:
2389 case LABEL_DECL:
2390 case FUNCTION_DECL:
2391 case SSA_NAME:
2393 case COMPONENT_REF:
2394 case MEM_REF:
2395 case INDIRECT_REF:
2396 case ARRAY_REF:
2397 case ARRAY_RANGE_REF:
2398 case BIT_FIELD_REF:
2399 case OBJ_TYPE_REF:
2401 case REALPART_EXPR:
2402 case IMAGPART_EXPR:
2403 case PREINCREMENT_EXPR:
2404 case PREDECREMENT_EXPR:
2405 case SAVE_EXPR:
2406 case TRY_CATCH_EXPR:
2407 case WITH_CLEANUP_EXPR:
2408 case COMPOUND_EXPR:
2409 case MODIFY_EXPR:
2410 case TARGET_EXPR:
2411 case COND_EXPR:
2412 case BIND_EXPR:
2413 break;
2415 default:
2416 /* Assume the worst for front-end tree codes. */
2417 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2418 break;
2419 return false;
2422 return true;
2425 /* Return an expr equal to X but certainly not valid as an lvalue. */
2427 tree
2428 non_lvalue_loc (location_t loc, tree x)
2430 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2431 us. */
2432 if (in_gimple_form)
2433 return x;
2435 if (! maybe_lvalue_p (x))
2436 return x;
2437 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2440 /* When pedantic, return an expr equal to X but certainly not valid as a
2441 pedantic lvalue. Otherwise, return X. */
2443 static tree
2444 pedantic_non_lvalue_loc (location_t loc, tree x)
2446 return protected_set_expr_location_unshare (x, loc);
2449 /* Given a tree comparison code, return the code that is the logical inverse.
2450 It is generally not safe to do this for floating-point comparisons, except
2451 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2452 ERROR_MARK in this case. */
2454 enum tree_code
2455 invert_tree_comparison (enum tree_code code, bool honor_nans)
2457 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2458 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2459 return ERROR_MARK;
2461 switch (code)
2463 case EQ_EXPR:
2464 return NE_EXPR;
2465 case NE_EXPR:
2466 return EQ_EXPR;
2467 case GT_EXPR:
2468 return honor_nans ? UNLE_EXPR : LE_EXPR;
2469 case GE_EXPR:
2470 return honor_nans ? UNLT_EXPR : LT_EXPR;
2471 case LT_EXPR:
2472 return honor_nans ? UNGE_EXPR : GE_EXPR;
2473 case LE_EXPR:
2474 return honor_nans ? UNGT_EXPR : GT_EXPR;
2475 case LTGT_EXPR:
2476 return UNEQ_EXPR;
2477 case UNEQ_EXPR:
2478 return LTGT_EXPR;
2479 case UNGT_EXPR:
2480 return LE_EXPR;
2481 case UNGE_EXPR:
2482 return LT_EXPR;
2483 case UNLT_EXPR:
2484 return GE_EXPR;
2485 case UNLE_EXPR:
2486 return GT_EXPR;
2487 case ORDERED_EXPR:
2488 return UNORDERED_EXPR;
2489 case UNORDERED_EXPR:
2490 return ORDERED_EXPR;
2491 default:
2492 gcc_unreachable ();
2496 /* Similar, but return the comparison that results if the operands are
2497 swapped. This is safe for floating-point. */
2499 enum tree_code
2500 swap_tree_comparison (enum tree_code code)
2502 switch (code)
2504 case EQ_EXPR:
2505 case NE_EXPR:
2506 case ORDERED_EXPR:
2507 case UNORDERED_EXPR:
2508 case LTGT_EXPR:
2509 case UNEQ_EXPR:
2510 return code;
2511 case GT_EXPR:
2512 return LT_EXPR;
2513 case GE_EXPR:
2514 return LE_EXPR;
2515 case LT_EXPR:
2516 return GT_EXPR;
2517 case LE_EXPR:
2518 return GE_EXPR;
2519 case UNGT_EXPR:
2520 return UNLT_EXPR;
2521 case UNGE_EXPR:
2522 return UNLE_EXPR;
2523 case UNLT_EXPR:
2524 return UNGT_EXPR;
2525 case UNLE_EXPR:
2526 return UNGE_EXPR;
2527 default:
2528 gcc_unreachable ();
2533 /* Convert a comparison tree code from an enum tree_code representation
2534 into a compcode bit-based encoding. This function is the inverse of
2535 compcode_to_comparison. */
2537 static enum comparison_code
2538 comparison_to_compcode (enum tree_code code)
2540 switch (code)
2542 case LT_EXPR:
2543 return COMPCODE_LT;
2544 case EQ_EXPR:
2545 return COMPCODE_EQ;
2546 case LE_EXPR:
2547 return COMPCODE_LE;
2548 case GT_EXPR:
2549 return COMPCODE_GT;
2550 case NE_EXPR:
2551 return COMPCODE_NE;
2552 case GE_EXPR:
2553 return COMPCODE_GE;
2554 case ORDERED_EXPR:
2555 return COMPCODE_ORD;
2556 case UNORDERED_EXPR:
2557 return COMPCODE_UNORD;
2558 case UNLT_EXPR:
2559 return COMPCODE_UNLT;
2560 case UNEQ_EXPR:
2561 return COMPCODE_UNEQ;
2562 case UNLE_EXPR:
2563 return COMPCODE_UNLE;
2564 case UNGT_EXPR:
2565 return COMPCODE_UNGT;
2566 case LTGT_EXPR:
2567 return COMPCODE_LTGT;
2568 case UNGE_EXPR:
2569 return COMPCODE_UNGE;
2570 default:
2571 gcc_unreachable ();
2575 /* Convert a compcode bit-based encoding of a comparison operator back
2576 to GCC's enum tree_code representation. This function is the
2577 inverse of comparison_to_compcode. */
2579 static enum tree_code
2580 compcode_to_comparison (enum comparison_code code)
2582 switch (code)
2584 case COMPCODE_LT:
2585 return LT_EXPR;
2586 case COMPCODE_EQ:
2587 return EQ_EXPR;
2588 case COMPCODE_LE:
2589 return LE_EXPR;
2590 case COMPCODE_GT:
2591 return GT_EXPR;
2592 case COMPCODE_NE:
2593 return NE_EXPR;
2594 case COMPCODE_GE:
2595 return GE_EXPR;
2596 case COMPCODE_ORD:
2597 return ORDERED_EXPR;
2598 case COMPCODE_UNORD:
2599 return UNORDERED_EXPR;
2600 case COMPCODE_UNLT:
2601 return UNLT_EXPR;
2602 case COMPCODE_UNEQ:
2603 return UNEQ_EXPR;
2604 case COMPCODE_UNLE:
2605 return UNLE_EXPR;
2606 case COMPCODE_UNGT:
2607 return UNGT_EXPR;
2608 case COMPCODE_LTGT:
2609 return LTGT_EXPR;
2610 case COMPCODE_UNGE:
2611 return UNGE_EXPR;
2612 default:
2613 gcc_unreachable ();
2617 /* Return a tree for the comparison which is the combination of
2618 doing the AND or OR (depending on CODE) of the two operations LCODE
2619 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2620 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2621 if this makes the transformation invalid. */
2623 tree
2624 combine_comparisons (location_t loc,
2625 enum tree_code code, enum tree_code lcode,
2626 enum tree_code rcode, tree truth_type,
2627 tree ll_arg, tree lr_arg)
2629 bool honor_nans = HONOR_NANS (ll_arg);
2630 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2631 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2632 int compcode;
2634 switch (code)
2636 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2637 compcode = lcompcode & rcompcode;
2638 break;
2640 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2641 compcode = lcompcode | rcompcode;
2642 break;
2644 default:
2645 return NULL_TREE;
2648 if (!honor_nans)
2650 /* Eliminate unordered comparisons, as well as LTGT and ORD
2651 which are not used unless the mode has NaNs. */
2652 compcode &= ~COMPCODE_UNORD;
2653 if (compcode == COMPCODE_LTGT)
2654 compcode = COMPCODE_NE;
2655 else if (compcode == COMPCODE_ORD)
2656 compcode = COMPCODE_TRUE;
2658 else if (flag_trapping_math)
2660 /* Check that the original operation and the optimized ones will trap
2661 under the same condition. */
2662 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2663 && (lcompcode != COMPCODE_EQ)
2664 && (lcompcode != COMPCODE_ORD);
2665 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2666 && (rcompcode != COMPCODE_EQ)
2667 && (rcompcode != COMPCODE_ORD);
2668 bool trap = (compcode & COMPCODE_UNORD) == 0
2669 && (compcode != COMPCODE_EQ)
2670 && (compcode != COMPCODE_ORD);
2672 /* In a short-circuited boolean expression the LHS might be
2673 such that the RHS, if evaluated, will never trap. For
2674 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2675 if neither x nor y is NaN. (This is a mixed blessing: for
2676 example, the expression above will never trap, hence
2677 optimizing it to x < y would be invalid). */
2678 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2679 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2680 rtrap = false;
2682 /* If the comparison was short-circuited, and only the RHS
2683 trapped, we may now generate a spurious trap. */
2684 if (rtrap && !ltrap
2685 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2686 return NULL_TREE;
2688 /* If we changed the conditions that cause a trap, we lose. */
2689 if ((ltrap || rtrap) != trap)
2690 return NULL_TREE;
2693 if (compcode == COMPCODE_TRUE)
2694 return constant_boolean_node (true, truth_type);
2695 else if (compcode == COMPCODE_FALSE)
2696 return constant_boolean_node (false, truth_type);
2697 else
2699 enum tree_code tcode;
2701 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2702 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2706 /* Return nonzero if two operands (typically of the same tree node)
2707 are necessarily equal. FLAGS modifies behavior as follows:
2709 If OEP_ONLY_CONST is set, only return nonzero for constants.
2710 This function tests whether the operands are indistinguishable;
2711 it does not test whether they are equal using C's == operation.
2712 The distinction is important for IEEE floating point, because
2713 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2714 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2716 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2717 even though it may hold multiple values during a function.
2718 This is because a GCC tree node guarantees that nothing else is
2719 executed between the evaluation of its "operands" (which may often
2720 be evaluated in arbitrary order). Hence if the operands themselves
2721 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2722 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2723 unset means assuming isochronic (or instantaneous) tree equivalence.
2724 Unless comparing arbitrary expression trees, such as from different
2725 statements, this flag can usually be left unset.
2727 If OEP_PURE_SAME is set, then pure functions with identical arguments
2728 are considered the same. It is used when the caller has other ways
2729 to ensure that global memory is unchanged in between.
2731 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2732 not values of expressions.
2734 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2735 any operand with side effect. This is unnecesarily conservative in the
2736 case we know that arg0 and arg1 are in disjoint code paths (such as in
2737 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2738 addresses with TREE_CONSTANT flag set so we know that &var == &var
2739 even if var is volatile. */
2742 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2744 /* When checking, verify at the outermost operand_equal_p call that
2745 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2746 hash value. */
2747 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
2749 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
2751 if (arg0 != arg1)
2753 inchash::hash hstate0 (0), hstate1 (0);
2754 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK);
2755 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK);
2756 hashval_t h0 = hstate0.end ();
2757 hashval_t h1 = hstate1.end ();
2758 gcc_assert (h0 == h1);
2760 return 1;
2762 else
2763 return 0;
2766 /* If either is ERROR_MARK, they aren't equal. */
2767 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2768 || TREE_TYPE (arg0) == error_mark_node
2769 || TREE_TYPE (arg1) == error_mark_node)
2770 return 0;
2772 /* Similar, if either does not have a type (like a released SSA name),
2773 they aren't equal. */
2774 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2775 return 0;
2777 /* We cannot consider pointers to different address space equal. */
2778 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2779 && POINTER_TYPE_P (TREE_TYPE (arg1))
2780 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2781 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2782 return 0;
2784 /* Check equality of integer constants before bailing out due to
2785 precision differences. */
2786 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2788 /* Address of INTEGER_CST is not defined; check that we did not forget
2789 to drop the OEP_ADDRESS_OF flags. */
2790 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2791 return tree_int_cst_equal (arg0, arg1);
2794 if (!(flags & OEP_ADDRESS_OF))
2796 /* If both types don't have the same signedness, then we can't consider
2797 them equal. We must check this before the STRIP_NOPS calls
2798 because they may change the signedness of the arguments. As pointers
2799 strictly don't have a signedness, require either two pointers or
2800 two non-pointers as well. */
2801 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2802 || POINTER_TYPE_P (TREE_TYPE (arg0))
2803 != POINTER_TYPE_P (TREE_TYPE (arg1)))
2804 return 0;
2806 /* If both types don't have the same precision, then it is not safe
2807 to strip NOPs. */
2808 if (element_precision (TREE_TYPE (arg0))
2809 != element_precision (TREE_TYPE (arg1)))
2810 return 0;
2812 STRIP_NOPS (arg0);
2813 STRIP_NOPS (arg1);
2815 #if 0
2816 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2817 sanity check once the issue is solved. */
2818 else
2819 /* Addresses of conversions and SSA_NAMEs (and many other things)
2820 are not defined. Check that we did not forget to drop the
2821 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2822 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
2823 && TREE_CODE (arg0) != SSA_NAME);
2824 #endif
2826 /* In case both args are comparisons but with different comparison
2827 code, try to swap the comparison operands of one arg to produce
2828 a match and compare that variant. */
2829 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2830 && COMPARISON_CLASS_P (arg0)
2831 && COMPARISON_CLASS_P (arg1))
2833 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2835 if (TREE_CODE (arg0) == swap_code)
2836 return operand_equal_p (TREE_OPERAND (arg0, 0),
2837 TREE_OPERAND (arg1, 1), flags)
2838 && operand_equal_p (TREE_OPERAND (arg0, 1),
2839 TREE_OPERAND (arg1, 0), flags);
2842 if (TREE_CODE (arg0) != TREE_CODE (arg1))
2844 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2845 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
2847 else if (flags & OEP_ADDRESS_OF)
2849 /* If we are interested in comparing addresses ignore
2850 MEM_REF wrappings of the base that can appear just for
2851 TBAA reasons. */
2852 if (TREE_CODE (arg0) == MEM_REF
2853 && DECL_P (arg1)
2854 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
2855 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
2856 && integer_zerop (TREE_OPERAND (arg0, 1)))
2857 return 1;
2858 else if (TREE_CODE (arg1) == MEM_REF
2859 && DECL_P (arg0)
2860 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
2861 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
2862 && integer_zerop (TREE_OPERAND (arg1, 1)))
2863 return 1;
2864 return 0;
2866 else
2867 return 0;
2870 /* When not checking adddresses, this is needed for conversions and for
2871 COMPONENT_REF. Might as well play it safe and always test this. */
2872 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2873 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2874 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
2875 && !(flags & OEP_ADDRESS_OF)))
2876 return 0;
2878 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2879 We don't care about side effects in that case because the SAVE_EXPR
2880 takes care of that for us. In all other cases, two expressions are
2881 equal if they have no side effects. If we have two identical
2882 expressions with side effects that should be treated the same due
2883 to the only side effects being identical SAVE_EXPR's, that will
2884 be detected in the recursive calls below.
2885 If we are taking an invariant address of two identical objects
2886 they are necessarily equal as well. */
2887 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2888 && (TREE_CODE (arg0) == SAVE_EXPR
2889 || (flags & OEP_MATCH_SIDE_EFFECTS)
2890 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2891 return 1;
2893 /* Next handle constant cases, those for which we can return 1 even
2894 if ONLY_CONST is set. */
2895 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2896 switch (TREE_CODE (arg0))
2898 case INTEGER_CST:
2899 return tree_int_cst_equal (arg0, arg1);
2901 case FIXED_CST:
2902 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2903 TREE_FIXED_CST (arg1));
2905 case REAL_CST:
2906 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
2907 return 1;
2910 if (!HONOR_SIGNED_ZEROS (arg0))
2912 /* If we do not distinguish between signed and unsigned zero,
2913 consider them equal. */
2914 if (real_zerop (arg0) && real_zerop (arg1))
2915 return 1;
2917 return 0;
2919 case VECTOR_CST:
2921 unsigned i;
2923 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2924 return 0;
2926 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2928 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2929 VECTOR_CST_ELT (arg1, i), flags))
2930 return 0;
2932 return 1;
2935 case COMPLEX_CST:
2936 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2937 flags)
2938 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2939 flags));
2941 case STRING_CST:
2942 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2943 && ! memcmp (TREE_STRING_POINTER (arg0),
2944 TREE_STRING_POINTER (arg1),
2945 TREE_STRING_LENGTH (arg0)));
2947 case ADDR_EXPR:
2948 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2949 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2950 flags | OEP_ADDRESS_OF
2951 | OEP_MATCH_SIDE_EFFECTS);
2952 case CONSTRUCTOR:
2953 /* In GIMPLE empty constructors are allowed in initializers of
2954 aggregates. */
2955 return (!vec_safe_length (CONSTRUCTOR_ELTS (arg0))
2956 && !vec_safe_length (CONSTRUCTOR_ELTS (arg1)));
2957 default:
2958 break;
2961 if (flags & OEP_ONLY_CONST)
2962 return 0;
2964 /* Define macros to test an operand from arg0 and arg1 for equality and a
2965 variant that allows null and views null as being different from any
2966 non-null value. In the latter case, if either is null, the both
2967 must be; otherwise, do the normal comparison. */
2968 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2969 TREE_OPERAND (arg1, N), flags)
2971 #define OP_SAME_WITH_NULL(N) \
2972 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2973 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2975 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2977 case tcc_unary:
2978 /* Two conversions are equal only if signedness and modes match. */
2979 switch (TREE_CODE (arg0))
2981 CASE_CONVERT:
2982 case FIX_TRUNC_EXPR:
2983 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2984 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2985 return 0;
2986 break;
2987 default:
2988 break;
2991 return OP_SAME (0);
2994 case tcc_comparison:
2995 case tcc_binary:
2996 if (OP_SAME (0) && OP_SAME (1))
2997 return 1;
2999 /* For commutative ops, allow the other order. */
3000 return (commutative_tree_code (TREE_CODE (arg0))
3001 && operand_equal_p (TREE_OPERAND (arg0, 0),
3002 TREE_OPERAND (arg1, 1), flags)
3003 && operand_equal_p (TREE_OPERAND (arg0, 1),
3004 TREE_OPERAND (arg1, 0), flags));
3006 case tcc_reference:
3007 /* If either of the pointer (or reference) expressions we are
3008 dereferencing contain a side effect, these cannot be equal,
3009 but their addresses can be. */
3010 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3011 && (TREE_SIDE_EFFECTS (arg0)
3012 || TREE_SIDE_EFFECTS (arg1)))
3013 return 0;
3015 switch (TREE_CODE (arg0))
3017 case INDIRECT_REF:
3018 if (!(flags & OEP_ADDRESS_OF)
3019 && (TYPE_ALIGN (TREE_TYPE (arg0))
3020 != TYPE_ALIGN (TREE_TYPE (arg1))))
3021 return 0;
3022 flags &= ~OEP_ADDRESS_OF;
3023 return OP_SAME (0);
3025 case IMAGPART_EXPR:
3026 /* Require the same offset. */
3027 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3028 TYPE_SIZE (TREE_TYPE (arg1)),
3029 flags & ~OEP_ADDRESS_OF))
3030 return 0;
3032 /* Fallthru. */
3033 case REALPART_EXPR:
3034 case VIEW_CONVERT_EXPR:
3035 return OP_SAME (0);
3037 case TARGET_MEM_REF:
3038 case MEM_REF:
3039 if (!(flags & OEP_ADDRESS_OF))
3041 /* Require equal access sizes */
3042 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3043 && (!TYPE_SIZE (TREE_TYPE (arg0))
3044 || !TYPE_SIZE (TREE_TYPE (arg1))
3045 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3046 TYPE_SIZE (TREE_TYPE (arg1)),
3047 flags)))
3048 return 0;
3049 /* Verify that access happens in similar types. */
3050 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3051 return 0;
3052 /* Verify that accesses are TBAA compatible. */
3053 if (!alias_ptr_types_compatible_p
3054 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3055 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3056 || (MR_DEPENDENCE_CLIQUE (arg0)
3057 != MR_DEPENDENCE_CLIQUE (arg1))
3058 || (MR_DEPENDENCE_BASE (arg0)
3059 != MR_DEPENDENCE_BASE (arg1)))
3060 return 0;
3061 /* Verify that alignment is compatible. */
3062 if (TYPE_ALIGN (TREE_TYPE (arg0))
3063 != TYPE_ALIGN (TREE_TYPE (arg1)))
3064 return 0;
3066 flags &= ~OEP_ADDRESS_OF;
3067 return (OP_SAME (0) && OP_SAME (1)
3068 /* TARGET_MEM_REF require equal extra operands. */
3069 && (TREE_CODE (arg0) != TARGET_MEM_REF
3070 || (OP_SAME_WITH_NULL (2)
3071 && OP_SAME_WITH_NULL (3)
3072 && OP_SAME_WITH_NULL (4))));
3074 case ARRAY_REF:
3075 case ARRAY_RANGE_REF:
3076 if (!OP_SAME (0))
3077 return 0;
3078 flags &= ~OEP_ADDRESS_OF;
3079 /* Compare the array index by value if it is constant first as we
3080 may have different types but same value here. */
3081 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3082 TREE_OPERAND (arg1, 1))
3083 || OP_SAME (1))
3084 && OP_SAME_WITH_NULL (2)
3085 && OP_SAME_WITH_NULL (3)
3086 /* Compare low bound and element size as with OEP_ADDRESS_OF
3087 we have to account for the offset of the ref. */
3088 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3089 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3090 || (operand_equal_p (array_ref_low_bound
3091 (CONST_CAST_TREE (arg0)),
3092 array_ref_low_bound
3093 (CONST_CAST_TREE (arg1)), flags)
3094 && operand_equal_p (array_ref_element_size
3095 (CONST_CAST_TREE (arg0)),
3096 array_ref_element_size
3097 (CONST_CAST_TREE (arg1)),
3098 flags))));
3100 case COMPONENT_REF:
3101 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3102 may be NULL when we're called to compare MEM_EXPRs. */
3103 if (!OP_SAME_WITH_NULL (0)
3104 || !OP_SAME (1))
3105 return 0;
3106 flags &= ~OEP_ADDRESS_OF;
3107 return OP_SAME_WITH_NULL (2);
3109 case BIT_FIELD_REF:
3110 if (!OP_SAME (0))
3111 return 0;
3112 flags &= ~OEP_ADDRESS_OF;
3113 return OP_SAME (1) && OP_SAME (2);
3115 default:
3116 return 0;
3119 case tcc_expression:
3120 switch (TREE_CODE (arg0))
3122 case ADDR_EXPR:
3123 /* Be sure we pass right ADDRESS_OF flag. */
3124 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3125 return operand_equal_p (TREE_OPERAND (arg0, 0),
3126 TREE_OPERAND (arg1, 0),
3127 flags | OEP_ADDRESS_OF);
3129 case TRUTH_NOT_EXPR:
3130 return OP_SAME (0);
3132 case TRUTH_ANDIF_EXPR:
3133 case TRUTH_ORIF_EXPR:
3134 return OP_SAME (0) && OP_SAME (1);
3136 case FMA_EXPR:
3137 case WIDEN_MULT_PLUS_EXPR:
3138 case WIDEN_MULT_MINUS_EXPR:
3139 if (!OP_SAME (2))
3140 return 0;
3141 /* The multiplcation operands are commutative. */
3142 /* FALLTHRU */
3144 case TRUTH_AND_EXPR:
3145 case TRUTH_OR_EXPR:
3146 case TRUTH_XOR_EXPR:
3147 if (OP_SAME (0) && OP_SAME (1))
3148 return 1;
3150 /* Otherwise take into account this is a commutative operation. */
3151 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3152 TREE_OPERAND (arg1, 1), flags)
3153 && operand_equal_p (TREE_OPERAND (arg0, 1),
3154 TREE_OPERAND (arg1, 0), flags));
3156 case COND_EXPR:
3157 if (! OP_SAME (1) || ! OP_SAME (2))
3158 return 0;
3159 flags &= ~OEP_ADDRESS_OF;
3160 return OP_SAME (0);
3162 case VEC_COND_EXPR:
3163 case DOT_PROD_EXPR:
3164 case BIT_INSERT_EXPR:
3165 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3167 default:
3168 return 0;
3171 case tcc_vl_exp:
3172 switch (TREE_CODE (arg0))
3174 case CALL_EXPR:
3175 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3176 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3177 /* If not both CALL_EXPRs are either internal or normal function
3178 functions, then they are not equal. */
3179 return 0;
3180 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3182 /* If the CALL_EXPRs call different internal functions, then they
3183 are not equal. */
3184 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3185 return 0;
3187 else
3189 /* If the CALL_EXPRs call different functions, then they are not
3190 equal. */
3191 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3192 flags))
3193 return 0;
3196 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3198 unsigned int cef = call_expr_flags (arg0);
3199 if (flags & OEP_PURE_SAME)
3200 cef &= ECF_CONST | ECF_PURE;
3201 else
3202 cef &= ECF_CONST;
3203 if (!cef)
3204 return 0;
3207 /* Now see if all the arguments are the same. */
3209 const_call_expr_arg_iterator iter0, iter1;
3210 const_tree a0, a1;
3211 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3212 a1 = first_const_call_expr_arg (arg1, &iter1);
3213 a0 && a1;
3214 a0 = next_const_call_expr_arg (&iter0),
3215 a1 = next_const_call_expr_arg (&iter1))
3216 if (! operand_equal_p (a0, a1, flags))
3217 return 0;
3219 /* If we get here and both argument lists are exhausted
3220 then the CALL_EXPRs are equal. */
3221 return ! (a0 || a1);
3223 default:
3224 return 0;
3227 case tcc_declaration:
3228 /* Consider __builtin_sqrt equal to sqrt. */
3229 return (TREE_CODE (arg0) == FUNCTION_DECL
3230 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3231 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3232 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3234 case tcc_exceptional:
3235 if (TREE_CODE (arg0) == CONSTRUCTOR)
3237 /* In GIMPLE constructors are used only to build vectors from
3238 elements. Individual elements in the constructor must be
3239 indexed in increasing order and form an initial sequence.
3241 We make no effort to compare constructors in generic.
3242 (see sem_variable::equals in ipa-icf which can do so for
3243 constants). */
3244 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3245 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3246 return 0;
3248 /* Be sure that vectors constructed have the same representation.
3249 We only tested element precision and modes to match.
3250 Vectors may be BLKmode and thus also check that the number of
3251 parts match. */
3252 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))
3253 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))
3254 return 0;
3256 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3257 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3258 unsigned int len = vec_safe_length (v0);
3260 if (len != vec_safe_length (v1))
3261 return 0;
3263 for (unsigned int i = 0; i < len; i++)
3265 constructor_elt *c0 = &(*v0)[i];
3266 constructor_elt *c1 = &(*v1)[i];
3268 if (!operand_equal_p (c0->value, c1->value, flags)
3269 /* In GIMPLE the indexes can be either NULL or matching i.
3270 Double check this so we won't get false
3271 positives for GENERIC. */
3272 || (c0->index
3273 && (TREE_CODE (c0->index) != INTEGER_CST
3274 || !compare_tree_int (c0->index, i)))
3275 || (c1->index
3276 && (TREE_CODE (c1->index) != INTEGER_CST
3277 || !compare_tree_int (c1->index, i))))
3278 return 0;
3280 return 1;
3282 return 0;
3284 default:
3285 return 0;
3288 #undef OP_SAME
3289 #undef OP_SAME_WITH_NULL
3292 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3293 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3295 When in doubt, return 0. */
3297 static int
3298 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3300 int unsignedp1, unsignedpo;
3301 tree primarg0, primarg1, primother;
3302 unsigned int correct_width;
3304 if (operand_equal_p (arg0, arg1, 0))
3305 return 1;
3307 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3308 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3309 return 0;
3311 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3312 and see if the inner values are the same. This removes any
3313 signedness comparison, which doesn't matter here. */
3314 primarg0 = arg0, primarg1 = arg1;
3315 STRIP_NOPS (primarg0);
3316 STRIP_NOPS (primarg1);
3317 if (operand_equal_p (primarg0, primarg1, 0))
3318 return 1;
3320 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3321 actual comparison operand, ARG0.
3323 First throw away any conversions to wider types
3324 already present in the operands. */
3326 primarg1 = get_narrower (arg1, &unsignedp1);
3327 primother = get_narrower (other, &unsignedpo);
3329 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3330 if (unsignedp1 == unsignedpo
3331 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3332 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3334 tree type = TREE_TYPE (arg0);
3336 /* Make sure shorter operand is extended the right way
3337 to match the longer operand. */
3338 primarg1 = fold_convert (signed_or_unsigned_type_for
3339 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3341 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3342 return 1;
3345 return 0;
3348 /* See if ARG is an expression that is either a comparison or is performing
3349 arithmetic on comparisons. The comparisons must only be comparing
3350 two different values, which will be stored in *CVAL1 and *CVAL2; if
3351 they are nonzero it means that some operands have already been found.
3352 No variables may be used anywhere else in the expression except in the
3353 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3354 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3356 If this is true, return 1. Otherwise, return zero. */
3358 static int
3359 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3361 enum tree_code code = TREE_CODE (arg);
3362 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3364 /* We can handle some of the tcc_expression cases here. */
3365 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3366 tclass = tcc_unary;
3367 else if (tclass == tcc_expression
3368 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3369 || code == COMPOUND_EXPR))
3370 tclass = tcc_binary;
3372 else if (tclass == tcc_expression && code == SAVE_EXPR
3373 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3375 /* If we've already found a CVAL1 or CVAL2, this expression is
3376 two complex to handle. */
3377 if (*cval1 || *cval2)
3378 return 0;
3380 tclass = tcc_unary;
3381 *save_p = 1;
3384 switch (tclass)
3386 case tcc_unary:
3387 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3389 case tcc_binary:
3390 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3391 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3392 cval1, cval2, save_p));
3394 case tcc_constant:
3395 return 1;
3397 case tcc_expression:
3398 if (code == COND_EXPR)
3399 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3400 cval1, cval2, save_p)
3401 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3402 cval1, cval2, save_p)
3403 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3404 cval1, cval2, save_p));
3405 return 0;
3407 case tcc_comparison:
3408 /* First see if we can handle the first operand, then the second. For
3409 the second operand, we know *CVAL1 can't be zero. It must be that
3410 one side of the comparison is each of the values; test for the
3411 case where this isn't true by failing if the two operands
3412 are the same. */
3414 if (operand_equal_p (TREE_OPERAND (arg, 0),
3415 TREE_OPERAND (arg, 1), 0))
3416 return 0;
3418 if (*cval1 == 0)
3419 *cval1 = TREE_OPERAND (arg, 0);
3420 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3422 else if (*cval2 == 0)
3423 *cval2 = TREE_OPERAND (arg, 0);
3424 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3426 else
3427 return 0;
3429 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3431 else if (*cval2 == 0)
3432 *cval2 = TREE_OPERAND (arg, 1);
3433 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3435 else
3436 return 0;
3438 return 1;
3440 default:
3441 return 0;
3445 /* ARG is a tree that is known to contain just arithmetic operations and
3446 comparisons. Evaluate the operations in the tree substituting NEW0 for
3447 any occurrence of OLD0 as an operand of a comparison and likewise for
3448 NEW1 and OLD1. */
3450 static tree
3451 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3452 tree old1, tree new1)
3454 tree type = TREE_TYPE (arg);
3455 enum tree_code code = TREE_CODE (arg);
3456 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3458 /* We can handle some of the tcc_expression cases here. */
3459 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3460 tclass = tcc_unary;
3461 else if (tclass == tcc_expression
3462 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3463 tclass = tcc_binary;
3465 switch (tclass)
3467 case tcc_unary:
3468 return fold_build1_loc (loc, code, type,
3469 eval_subst (loc, TREE_OPERAND (arg, 0),
3470 old0, new0, old1, new1));
3472 case tcc_binary:
3473 return fold_build2_loc (loc, code, type,
3474 eval_subst (loc, TREE_OPERAND (arg, 0),
3475 old0, new0, old1, new1),
3476 eval_subst (loc, TREE_OPERAND (arg, 1),
3477 old0, new0, old1, new1));
3479 case tcc_expression:
3480 switch (code)
3482 case SAVE_EXPR:
3483 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3484 old1, new1);
3486 case COMPOUND_EXPR:
3487 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3488 old1, new1);
3490 case COND_EXPR:
3491 return fold_build3_loc (loc, code, type,
3492 eval_subst (loc, TREE_OPERAND (arg, 0),
3493 old0, new0, old1, new1),
3494 eval_subst (loc, TREE_OPERAND (arg, 1),
3495 old0, new0, old1, new1),
3496 eval_subst (loc, TREE_OPERAND (arg, 2),
3497 old0, new0, old1, new1));
3498 default:
3499 break;
3501 /* Fall through - ??? */
3503 case tcc_comparison:
3505 tree arg0 = TREE_OPERAND (arg, 0);
3506 tree arg1 = TREE_OPERAND (arg, 1);
3508 /* We need to check both for exact equality and tree equality. The
3509 former will be true if the operand has a side-effect. In that
3510 case, we know the operand occurred exactly once. */
3512 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3513 arg0 = new0;
3514 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3515 arg0 = new1;
3517 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3518 arg1 = new0;
3519 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3520 arg1 = new1;
3522 return fold_build2_loc (loc, code, type, arg0, arg1);
3525 default:
3526 return arg;
3530 /* Return a tree for the case when the result of an expression is RESULT
3531 converted to TYPE and OMITTED was previously an operand of the expression
3532 but is now not needed (e.g., we folded OMITTED * 0).
3534 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3535 the conversion of RESULT to TYPE. */
3537 tree
3538 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3540 tree t = fold_convert_loc (loc, type, result);
3542 /* If the resulting operand is an empty statement, just return the omitted
3543 statement casted to void. */
3544 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3545 return build1_loc (loc, NOP_EXPR, void_type_node,
3546 fold_ignored_result (omitted));
3548 if (TREE_SIDE_EFFECTS (omitted))
3549 return build2_loc (loc, COMPOUND_EXPR, type,
3550 fold_ignored_result (omitted), t);
3552 return non_lvalue_loc (loc, t);
3555 /* Return a tree for the case when the result of an expression is RESULT
3556 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3557 of the expression but are now not needed.
3559 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3560 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3561 evaluated before OMITTED2. Otherwise, if neither has side effects,
3562 just do the conversion of RESULT to TYPE. */
3564 tree
3565 omit_two_operands_loc (location_t loc, tree type, tree result,
3566 tree omitted1, tree omitted2)
3568 tree t = fold_convert_loc (loc, type, result);
3570 if (TREE_SIDE_EFFECTS (omitted2))
3571 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3572 if (TREE_SIDE_EFFECTS (omitted1))
3573 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3575 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3579 /* Return a simplified tree node for the truth-negation of ARG. This
3580 never alters ARG itself. We assume that ARG is an operation that
3581 returns a truth value (0 or 1).
3583 FIXME: one would think we would fold the result, but it causes
3584 problems with the dominator optimizer. */
3586 static tree
3587 fold_truth_not_expr (location_t loc, tree arg)
3589 tree type = TREE_TYPE (arg);
3590 enum tree_code code = TREE_CODE (arg);
3591 location_t loc1, loc2;
3593 /* If this is a comparison, we can simply invert it, except for
3594 floating-point non-equality comparisons, in which case we just
3595 enclose a TRUTH_NOT_EXPR around what we have. */
3597 if (TREE_CODE_CLASS (code) == tcc_comparison)
3599 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3600 if (FLOAT_TYPE_P (op_type)
3601 && flag_trapping_math
3602 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3603 && code != NE_EXPR && code != EQ_EXPR)
3604 return NULL_TREE;
3606 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3607 if (code == ERROR_MARK)
3608 return NULL_TREE;
3610 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3611 TREE_OPERAND (arg, 1));
3612 if (TREE_NO_WARNING (arg))
3613 TREE_NO_WARNING (ret) = 1;
3614 return ret;
3617 switch (code)
3619 case INTEGER_CST:
3620 return constant_boolean_node (integer_zerop (arg), type);
3622 case TRUTH_AND_EXPR:
3623 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3624 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3625 return build2_loc (loc, TRUTH_OR_EXPR, type,
3626 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3627 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3629 case TRUTH_OR_EXPR:
3630 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3631 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3632 return build2_loc (loc, TRUTH_AND_EXPR, type,
3633 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3634 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3636 case TRUTH_XOR_EXPR:
3637 /* Here we can invert either operand. We invert the first operand
3638 unless the second operand is a TRUTH_NOT_EXPR in which case our
3639 result is the XOR of the first operand with the inside of the
3640 negation of the second operand. */
3642 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3643 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3644 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3645 else
3646 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3647 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3648 TREE_OPERAND (arg, 1));
3650 case TRUTH_ANDIF_EXPR:
3651 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3652 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3653 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3654 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3655 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3657 case TRUTH_ORIF_EXPR:
3658 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3659 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3660 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3661 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3662 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3664 case TRUTH_NOT_EXPR:
3665 return TREE_OPERAND (arg, 0);
3667 case COND_EXPR:
3669 tree arg1 = TREE_OPERAND (arg, 1);
3670 tree arg2 = TREE_OPERAND (arg, 2);
3672 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3673 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3675 /* A COND_EXPR may have a throw as one operand, which
3676 then has void type. Just leave void operands
3677 as they are. */
3678 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3679 VOID_TYPE_P (TREE_TYPE (arg1))
3680 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3681 VOID_TYPE_P (TREE_TYPE (arg2))
3682 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3685 case COMPOUND_EXPR:
3686 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3687 return build2_loc (loc, COMPOUND_EXPR, type,
3688 TREE_OPERAND (arg, 0),
3689 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3691 case NON_LVALUE_EXPR:
3692 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3693 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3695 CASE_CONVERT:
3696 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3697 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3699 /* fall through */
3701 case FLOAT_EXPR:
3702 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3703 return build1_loc (loc, TREE_CODE (arg), type,
3704 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3706 case BIT_AND_EXPR:
3707 if (!integer_onep (TREE_OPERAND (arg, 1)))
3708 return NULL_TREE;
3709 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3711 case SAVE_EXPR:
3712 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3714 case CLEANUP_POINT_EXPR:
3715 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3716 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3717 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3719 default:
3720 return NULL_TREE;
3724 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3725 assume that ARG is an operation that returns a truth value (0 or 1
3726 for scalars, 0 or -1 for vectors). Return the folded expression if
3727 folding is successful. Otherwise, return NULL_TREE. */
3729 static tree
3730 fold_invert_truthvalue (location_t loc, tree arg)
3732 tree type = TREE_TYPE (arg);
3733 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3734 ? BIT_NOT_EXPR
3735 : TRUTH_NOT_EXPR,
3736 type, arg);
3739 /* Return a simplified tree node for the truth-negation of ARG. This
3740 never alters ARG itself. We assume that ARG is an operation that
3741 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3743 tree
3744 invert_truthvalue_loc (location_t loc, tree arg)
3746 if (TREE_CODE (arg) == ERROR_MARK)
3747 return arg;
3749 tree type = TREE_TYPE (arg);
3750 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3751 ? BIT_NOT_EXPR
3752 : TRUTH_NOT_EXPR,
3753 type, arg);
3756 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3757 with code CODE. This optimization is unsafe. */
3758 static tree
3759 distribute_real_division (location_t loc, enum tree_code code, tree type,
3760 tree arg0, tree arg1)
3762 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3763 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3765 /* (A / C) +- (B / C) -> (A +- B) / C. */
3766 if (mul0 == mul1
3767 && operand_equal_p (TREE_OPERAND (arg0, 1),
3768 TREE_OPERAND (arg1, 1), 0))
3769 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3770 fold_build2_loc (loc, code, type,
3771 TREE_OPERAND (arg0, 0),
3772 TREE_OPERAND (arg1, 0)),
3773 TREE_OPERAND (arg0, 1));
3775 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3776 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3777 TREE_OPERAND (arg1, 0), 0)
3778 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3779 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3781 REAL_VALUE_TYPE r0, r1;
3782 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3783 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3784 if (!mul0)
3785 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3786 if (!mul1)
3787 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3788 real_arithmetic (&r0, code, &r0, &r1);
3789 return fold_build2_loc (loc, MULT_EXPR, type,
3790 TREE_OPERAND (arg0, 0),
3791 build_real (type, r0));
3794 return NULL_TREE;
3797 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3798 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3799 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3800 is the original memory reference used to preserve the alias set of
3801 the access. */
3803 static tree
3804 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
3805 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
3806 int unsignedp, int reversep)
3808 tree result, bftype;
3810 if (get_alias_set (inner) != get_alias_set (orig_inner))
3811 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
3812 build_fold_addr_expr (inner),
3813 build_int_cst
3814 (reference_alias_ptr_type (orig_inner), 0));
3816 if (bitpos == 0 && !reversep)
3818 tree size = TYPE_SIZE (TREE_TYPE (inner));
3819 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3820 || POINTER_TYPE_P (TREE_TYPE (inner)))
3821 && tree_fits_shwi_p (size)
3822 && tree_to_shwi (size) == bitsize)
3823 return fold_convert_loc (loc, type, inner);
3826 bftype = type;
3827 if (TYPE_PRECISION (bftype) != bitsize
3828 || TYPE_UNSIGNED (bftype) == !unsignedp)
3829 bftype = build_nonstandard_integer_type (bitsize, 0);
3831 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3832 size_int (bitsize), bitsize_int (bitpos));
3833 REF_REVERSE_STORAGE_ORDER (result) = reversep;
3835 if (bftype != type)
3836 result = fold_convert_loc (loc, type, result);
3838 return result;
3841 /* Optimize a bit-field compare.
3843 There are two cases: First is a compare against a constant and the
3844 second is a comparison of two items where the fields are at the same
3845 bit position relative to the start of a chunk (byte, halfword, word)
3846 large enough to contain it. In these cases we can avoid the shift
3847 implicit in bitfield extractions.
3849 For constants, we emit a compare of the shifted constant with the
3850 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3851 compared. For two fields at the same position, we do the ANDs with the
3852 similar mask and compare the result of the ANDs.
3854 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3855 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3856 are the left and right operands of the comparison, respectively.
3858 If the optimization described above can be done, we return the resulting
3859 tree. Otherwise we return zero. */
3861 static tree
3862 optimize_bit_field_compare (location_t loc, enum tree_code code,
3863 tree compare_type, tree lhs, tree rhs)
3865 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3866 tree type = TREE_TYPE (lhs);
3867 tree unsigned_type;
3868 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3869 machine_mode lmode, rmode, nmode;
3870 int lunsignedp, runsignedp;
3871 int lreversep, rreversep;
3872 int lvolatilep = 0, rvolatilep = 0;
3873 tree linner, rinner = NULL_TREE;
3874 tree mask;
3875 tree offset;
3877 /* Get all the information about the extractions being done. If the bit size
3878 if the same as the size of the underlying object, we aren't doing an
3879 extraction at all and so can do nothing. We also don't want to
3880 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3881 then will no longer be able to replace it. */
3882 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3883 &lunsignedp, &lreversep, &lvolatilep);
3884 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3885 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3886 return 0;
3888 if (const_p)
3889 rreversep = lreversep;
3890 else
3892 /* If this is not a constant, we can only do something if bit positions,
3893 sizes, signedness and storage order are the same. */
3894 rinner
3895 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3896 &runsignedp, &rreversep, &rvolatilep);
3898 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3899 || lunsignedp != runsignedp || lreversep != rreversep || offset != 0
3900 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3901 return 0;
3904 /* Honor the C++ memory model and mimic what RTL expansion does. */
3905 unsigned HOST_WIDE_INT bitstart = 0;
3906 unsigned HOST_WIDE_INT bitend = 0;
3907 if (TREE_CODE (lhs) == COMPONENT_REF)
3909 get_bit_range (&bitstart, &bitend, lhs, &lbitpos, &offset);
3910 if (offset != NULL_TREE)
3911 return 0;
3914 /* See if we can find a mode to refer to this field. We should be able to,
3915 but fail if we can't. */
3916 nmode = get_best_mode (lbitsize, lbitpos, bitstart, bitend,
3917 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3918 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3919 TYPE_ALIGN (TREE_TYPE (rinner))),
3920 word_mode, false);
3921 if (nmode == VOIDmode)
3922 return 0;
3924 /* Set signed and unsigned types of the precision of this mode for the
3925 shifts below. */
3926 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3928 /* Compute the bit position and size for the new reference and our offset
3929 within it. If the new reference is the same size as the original, we
3930 won't optimize anything, so return zero. */
3931 nbitsize = GET_MODE_BITSIZE (nmode);
3932 nbitpos = lbitpos & ~ (nbitsize - 1);
3933 lbitpos -= nbitpos;
3934 if (nbitsize == lbitsize)
3935 return 0;
3937 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3938 lbitpos = nbitsize - lbitsize - lbitpos;
3940 /* Make the mask to be used against the extracted field. */
3941 mask = build_int_cst_type (unsigned_type, -1);
3942 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3943 mask = const_binop (RSHIFT_EXPR, mask,
3944 size_int (nbitsize - lbitsize - lbitpos));
3946 if (! const_p)
3947 /* If not comparing with constant, just rework the comparison
3948 and return. */
3949 return fold_build2_loc (loc, code, compare_type,
3950 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3951 make_bit_field_ref (loc, linner, lhs,
3952 unsigned_type,
3953 nbitsize, nbitpos,
3954 1, lreversep),
3955 mask),
3956 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3957 make_bit_field_ref (loc, rinner, rhs,
3958 unsigned_type,
3959 nbitsize, nbitpos,
3960 1, rreversep),
3961 mask));
3963 /* Otherwise, we are handling the constant case. See if the constant is too
3964 big for the field. Warn and return a tree for 0 (false) if so. We do
3965 this not only for its own sake, but to avoid having to test for this
3966 error case below. If we didn't, we might generate wrong code.
3968 For unsigned fields, the constant shifted right by the field length should
3969 be all zero. For signed fields, the high-order bits should agree with
3970 the sign bit. */
3972 if (lunsignedp)
3974 if (wi::lrshift (rhs, lbitsize) != 0)
3976 warning (0, "comparison is always %d due to width of bit-field",
3977 code == NE_EXPR);
3978 return constant_boolean_node (code == NE_EXPR, compare_type);
3981 else
3983 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3984 if (tem != 0 && tem != -1)
3986 warning (0, "comparison is always %d due to width of bit-field",
3987 code == NE_EXPR);
3988 return constant_boolean_node (code == NE_EXPR, compare_type);
3992 /* Single-bit compares should always be against zero. */
3993 if (lbitsize == 1 && ! integer_zerop (rhs))
3995 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3996 rhs = build_int_cst (type, 0);
3999 /* Make a new bitfield reference, shift the constant over the
4000 appropriate number of bits and mask it with the computed mask
4001 (in case this was a signed field). If we changed it, make a new one. */
4002 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4003 nbitsize, nbitpos, 1, lreversep);
4005 rhs = const_binop (BIT_AND_EXPR,
4006 const_binop (LSHIFT_EXPR,
4007 fold_convert_loc (loc, unsigned_type, rhs),
4008 size_int (lbitpos)),
4009 mask);
4011 lhs = build2_loc (loc, code, compare_type,
4012 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4013 return lhs;
4016 /* Subroutine for fold_truth_andor_1: decode a field reference.
4018 If EXP is a comparison reference, we return the innermost reference.
4020 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4021 set to the starting bit number.
4023 If the innermost field can be completely contained in a mode-sized
4024 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4026 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4027 otherwise it is not changed.
4029 *PUNSIGNEDP is set to the signedness of the field.
4031 *PREVERSEP is set to the storage order of the field.
4033 *PMASK is set to the mask used. This is either contained in a
4034 BIT_AND_EXPR or derived from the width of the field.
4036 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4038 Return 0 if this is not a component reference or is one that we can't
4039 do anything with. */
4041 static tree
4042 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4043 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4044 int *punsignedp, int *preversep, int *pvolatilep,
4045 tree *pmask, tree *pand_mask)
4047 tree exp = *exp_;
4048 tree outer_type = 0;
4049 tree and_mask = 0;
4050 tree mask, inner, offset;
4051 tree unsigned_type;
4052 unsigned int precision;
4054 /* All the optimizations using this function assume integer fields.
4055 There are problems with FP fields since the type_for_size call
4056 below can fail for, e.g., XFmode. */
4057 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4058 return 0;
4060 /* We are interested in the bare arrangement of bits, so strip everything
4061 that doesn't affect the machine mode. However, record the type of the
4062 outermost expression if it may matter below. */
4063 if (CONVERT_EXPR_P (exp)
4064 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4065 outer_type = TREE_TYPE (exp);
4066 STRIP_NOPS (exp);
4068 if (TREE_CODE (exp) == BIT_AND_EXPR)
4070 and_mask = TREE_OPERAND (exp, 1);
4071 exp = TREE_OPERAND (exp, 0);
4072 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4073 if (TREE_CODE (and_mask) != INTEGER_CST)
4074 return 0;
4077 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4078 punsignedp, preversep, pvolatilep);
4079 if ((inner == exp && and_mask == 0)
4080 || *pbitsize < 0 || offset != 0
4081 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
4082 return 0;
4084 *exp_ = exp;
4086 /* If the number of bits in the reference is the same as the bitsize of
4087 the outer type, then the outer type gives the signedness. Otherwise
4088 (in case of a small bitfield) the signedness is unchanged. */
4089 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4090 *punsignedp = TYPE_UNSIGNED (outer_type);
4092 /* Compute the mask to access the bitfield. */
4093 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4094 precision = TYPE_PRECISION (unsigned_type);
4096 mask = build_int_cst_type (unsigned_type, -1);
4098 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4099 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4101 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4102 if (and_mask != 0)
4103 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4104 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4106 *pmask = mask;
4107 *pand_mask = and_mask;
4108 return inner;
4111 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4112 bit positions and MASK is SIGNED. */
4114 static int
4115 all_ones_mask_p (const_tree mask, unsigned int size)
4117 tree type = TREE_TYPE (mask);
4118 unsigned int precision = TYPE_PRECISION (type);
4120 /* If this function returns true when the type of the mask is
4121 UNSIGNED, then there will be errors. In particular see
4122 gcc.c-torture/execute/990326-1.c. There does not appear to be
4123 any documentation paper trail as to why this is so. But the pre
4124 wide-int worked with that restriction and it has been preserved
4125 here. */
4126 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4127 return false;
4129 return wi::mask (size, false, precision) == mask;
4132 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4133 represents the sign bit of EXP's type. If EXP represents a sign
4134 or zero extension, also test VAL against the unextended type.
4135 The return value is the (sub)expression whose sign bit is VAL,
4136 or NULL_TREE otherwise. */
4138 tree
4139 sign_bit_p (tree exp, const_tree val)
4141 int width;
4142 tree t;
4144 /* Tree EXP must have an integral type. */
4145 t = TREE_TYPE (exp);
4146 if (! INTEGRAL_TYPE_P (t))
4147 return NULL_TREE;
4149 /* Tree VAL must be an integer constant. */
4150 if (TREE_CODE (val) != INTEGER_CST
4151 || TREE_OVERFLOW (val))
4152 return NULL_TREE;
4154 width = TYPE_PRECISION (t);
4155 if (wi::only_sign_bit_p (val, width))
4156 return exp;
4158 /* Handle extension from a narrower type. */
4159 if (TREE_CODE (exp) == NOP_EXPR
4160 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4161 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4163 return NULL_TREE;
4166 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4167 to be evaluated unconditionally. */
4169 static int
4170 simple_operand_p (const_tree exp)
4172 /* Strip any conversions that don't change the machine mode. */
4173 STRIP_NOPS (exp);
4175 return (CONSTANT_CLASS_P (exp)
4176 || TREE_CODE (exp) == SSA_NAME
4177 || (DECL_P (exp)
4178 && ! TREE_ADDRESSABLE (exp)
4179 && ! TREE_THIS_VOLATILE (exp)
4180 && ! DECL_NONLOCAL (exp)
4181 /* Don't regard global variables as simple. They may be
4182 allocated in ways unknown to the compiler (shared memory,
4183 #pragma weak, etc). */
4184 && ! TREE_PUBLIC (exp)
4185 && ! DECL_EXTERNAL (exp)
4186 /* Weakrefs are not safe to be read, since they can be NULL.
4187 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4188 have DECL_WEAK flag set. */
4189 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4190 /* Loading a static variable is unduly expensive, but global
4191 registers aren't expensive. */
4192 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4195 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4196 to be evaluated unconditionally.
4197 I addition to simple_operand_p, we assume that comparisons, conversions,
4198 and logic-not operations are simple, if their operands are simple, too. */
4200 static bool
4201 simple_operand_p_2 (tree exp)
4203 enum tree_code code;
4205 if (TREE_SIDE_EFFECTS (exp)
4206 || tree_could_trap_p (exp))
4207 return false;
4209 while (CONVERT_EXPR_P (exp))
4210 exp = TREE_OPERAND (exp, 0);
4212 code = TREE_CODE (exp);
4214 if (TREE_CODE_CLASS (code) == tcc_comparison)
4215 return (simple_operand_p (TREE_OPERAND (exp, 0))
4216 && simple_operand_p (TREE_OPERAND (exp, 1)));
4218 if (code == TRUTH_NOT_EXPR)
4219 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4221 return simple_operand_p (exp);
4225 /* The following functions are subroutines to fold_range_test and allow it to
4226 try to change a logical combination of comparisons into a range test.
4228 For example, both
4229 X == 2 || X == 3 || X == 4 || X == 5
4231 X >= 2 && X <= 5
4232 are converted to
4233 (unsigned) (X - 2) <= 3
4235 We describe each set of comparisons as being either inside or outside
4236 a range, using a variable named like IN_P, and then describe the
4237 range with a lower and upper bound. If one of the bounds is omitted,
4238 it represents either the highest or lowest value of the type.
4240 In the comments below, we represent a range by two numbers in brackets
4241 preceded by a "+" to designate being inside that range, or a "-" to
4242 designate being outside that range, so the condition can be inverted by
4243 flipping the prefix. An omitted bound is represented by a "-". For
4244 example, "- [-, 10]" means being outside the range starting at the lowest
4245 possible value and ending at 10, in other words, being greater than 10.
4246 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4247 always false.
4249 We set up things so that the missing bounds are handled in a consistent
4250 manner so neither a missing bound nor "true" and "false" need to be
4251 handled using a special case. */
4253 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4254 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4255 and UPPER1_P are nonzero if the respective argument is an upper bound
4256 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4257 must be specified for a comparison. ARG1 will be converted to ARG0's
4258 type if both are specified. */
4260 static tree
4261 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4262 tree arg1, int upper1_p)
4264 tree tem;
4265 int result;
4266 int sgn0, sgn1;
4268 /* If neither arg represents infinity, do the normal operation.
4269 Else, if not a comparison, return infinity. Else handle the special
4270 comparison rules. Note that most of the cases below won't occur, but
4271 are handled for consistency. */
4273 if (arg0 != 0 && arg1 != 0)
4275 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4276 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4277 STRIP_NOPS (tem);
4278 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4281 if (TREE_CODE_CLASS (code) != tcc_comparison)
4282 return 0;
4284 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4285 for neither. In real maths, we cannot assume open ended ranges are
4286 the same. But, this is computer arithmetic, where numbers are finite.
4287 We can therefore make the transformation of any unbounded range with
4288 the value Z, Z being greater than any representable number. This permits
4289 us to treat unbounded ranges as equal. */
4290 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4291 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4292 switch (code)
4294 case EQ_EXPR:
4295 result = sgn0 == sgn1;
4296 break;
4297 case NE_EXPR:
4298 result = sgn0 != sgn1;
4299 break;
4300 case LT_EXPR:
4301 result = sgn0 < sgn1;
4302 break;
4303 case LE_EXPR:
4304 result = sgn0 <= sgn1;
4305 break;
4306 case GT_EXPR:
4307 result = sgn0 > sgn1;
4308 break;
4309 case GE_EXPR:
4310 result = sgn0 >= sgn1;
4311 break;
4312 default:
4313 gcc_unreachable ();
4316 return constant_boolean_node (result, type);
4319 /* Helper routine for make_range. Perform one step for it, return
4320 new expression if the loop should continue or NULL_TREE if it should
4321 stop. */
4323 tree
4324 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4325 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4326 bool *strict_overflow_p)
4328 tree arg0_type = TREE_TYPE (arg0);
4329 tree n_low, n_high, low = *p_low, high = *p_high;
4330 int in_p = *p_in_p, n_in_p;
4332 switch (code)
4334 case TRUTH_NOT_EXPR:
4335 /* We can only do something if the range is testing for zero. */
4336 if (low == NULL_TREE || high == NULL_TREE
4337 || ! integer_zerop (low) || ! integer_zerop (high))
4338 return NULL_TREE;
4339 *p_in_p = ! in_p;
4340 return arg0;
4342 case EQ_EXPR: case NE_EXPR:
4343 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4344 /* We can only do something if the range is testing for zero
4345 and if the second operand is an integer constant. Note that
4346 saying something is "in" the range we make is done by
4347 complementing IN_P since it will set in the initial case of
4348 being not equal to zero; "out" is leaving it alone. */
4349 if (low == NULL_TREE || high == NULL_TREE
4350 || ! integer_zerop (low) || ! integer_zerop (high)
4351 || TREE_CODE (arg1) != INTEGER_CST)
4352 return NULL_TREE;
4354 switch (code)
4356 case NE_EXPR: /* - [c, c] */
4357 low = high = arg1;
4358 break;
4359 case EQ_EXPR: /* + [c, c] */
4360 in_p = ! in_p, low = high = arg1;
4361 break;
4362 case GT_EXPR: /* - [-, c] */
4363 low = 0, high = arg1;
4364 break;
4365 case GE_EXPR: /* + [c, -] */
4366 in_p = ! in_p, low = arg1, high = 0;
4367 break;
4368 case LT_EXPR: /* - [c, -] */
4369 low = arg1, high = 0;
4370 break;
4371 case LE_EXPR: /* + [-, c] */
4372 in_p = ! in_p, low = 0, high = arg1;
4373 break;
4374 default:
4375 gcc_unreachable ();
4378 /* If this is an unsigned comparison, we also know that EXP is
4379 greater than or equal to zero. We base the range tests we make
4380 on that fact, so we record it here so we can parse existing
4381 range tests. We test arg0_type since often the return type
4382 of, e.g. EQ_EXPR, is boolean. */
4383 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4385 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4386 in_p, low, high, 1,
4387 build_int_cst (arg0_type, 0),
4388 NULL_TREE))
4389 return NULL_TREE;
4391 in_p = n_in_p, low = n_low, high = n_high;
4393 /* If the high bound is missing, but we have a nonzero low
4394 bound, reverse the range so it goes from zero to the low bound
4395 minus 1. */
4396 if (high == 0 && low && ! integer_zerop (low))
4398 in_p = ! in_p;
4399 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4400 build_int_cst (TREE_TYPE (low), 1), 0);
4401 low = build_int_cst (arg0_type, 0);
4405 *p_low = low;
4406 *p_high = high;
4407 *p_in_p = in_p;
4408 return arg0;
4410 case NEGATE_EXPR:
4411 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4412 low and high are non-NULL, then normalize will DTRT. */
4413 if (!TYPE_UNSIGNED (arg0_type)
4414 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4416 if (low == NULL_TREE)
4417 low = TYPE_MIN_VALUE (arg0_type);
4418 if (high == NULL_TREE)
4419 high = TYPE_MAX_VALUE (arg0_type);
4422 /* (-x) IN [a,b] -> x in [-b, -a] */
4423 n_low = range_binop (MINUS_EXPR, exp_type,
4424 build_int_cst (exp_type, 0),
4425 0, high, 1);
4426 n_high = range_binop (MINUS_EXPR, exp_type,
4427 build_int_cst (exp_type, 0),
4428 0, low, 0);
4429 if (n_high != 0 && TREE_OVERFLOW (n_high))
4430 return NULL_TREE;
4431 goto normalize;
4433 case BIT_NOT_EXPR:
4434 /* ~ X -> -X - 1 */
4435 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4436 build_int_cst (exp_type, 1));
4438 case PLUS_EXPR:
4439 case MINUS_EXPR:
4440 if (TREE_CODE (arg1) != INTEGER_CST)
4441 return NULL_TREE;
4443 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4444 move a constant to the other side. */
4445 if (!TYPE_UNSIGNED (arg0_type)
4446 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4447 return NULL_TREE;
4449 /* If EXP is signed, any overflow in the computation is undefined,
4450 so we don't worry about it so long as our computations on
4451 the bounds don't overflow. For unsigned, overflow is defined
4452 and this is exactly the right thing. */
4453 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4454 arg0_type, low, 0, arg1, 0);
4455 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4456 arg0_type, high, 1, arg1, 0);
4457 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4458 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4459 return NULL_TREE;
4461 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4462 *strict_overflow_p = true;
4464 normalize:
4465 /* Check for an unsigned range which has wrapped around the maximum
4466 value thus making n_high < n_low, and normalize it. */
4467 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4469 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4470 build_int_cst (TREE_TYPE (n_high), 1), 0);
4471 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4472 build_int_cst (TREE_TYPE (n_low), 1), 0);
4474 /* If the range is of the form +/- [ x+1, x ], we won't
4475 be able to normalize it. But then, it represents the
4476 whole range or the empty set, so make it
4477 +/- [ -, - ]. */
4478 if (tree_int_cst_equal (n_low, low)
4479 && tree_int_cst_equal (n_high, high))
4480 low = high = 0;
4481 else
4482 in_p = ! in_p;
4484 else
4485 low = n_low, high = n_high;
4487 *p_low = low;
4488 *p_high = high;
4489 *p_in_p = in_p;
4490 return arg0;
4492 CASE_CONVERT:
4493 case NON_LVALUE_EXPR:
4494 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4495 return NULL_TREE;
4497 if (! INTEGRAL_TYPE_P (arg0_type)
4498 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4499 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4500 return NULL_TREE;
4502 n_low = low, n_high = high;
4504 if (n_low != 0)
4505 n_low = fold_convert_loc (loc, arg0_type, n_low);
4507 if (n_high != 0)
4508 n_high = fold_convert_loc (loc, arg0_type, n_high);
4510 /* If we're converting arg0 from an unsigned type, to exp,
4511 a signed type, we will be doing the comparison as unsigned.
4512 The tests above have already verified that LOW and HIGH
4513 are both positive.
4515 So we have to ensure that we will handle large unsigned
4516 values the same way that the current signed bounds treat
4517 negative values. */
4519 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4521 tree high_positive;
4522 tree equiv_type;
4523 /* For fixed-point modes, we need to pass the saturating flag
4524 as the 2nd parameter. */
4525 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4526 equiv_type
4527 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4528 TYPE_SATURATING (arg0_type));
4529 else
4530 equiv_type
4531 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4533 /* A range without an upper bound is, naturally, unbounded.
4534 Since convert would have cropped a very large value, use
4535 the max value for the destination type. */
4536 high_positive
4537 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4538 : TYPE_MAX_VALUE (arg0_type);
4540 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4541 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4542 fold_convert_loc (loc, arg0_type,
4543 high_positive),
4544 build_int_cst (arg0_type, 1));
4546 /* If the low bound is specified, "and" the range with the
4547 range for which the original unsigned value will be
4548 positive. */
4549 if (low != 0)
4551 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4552 1, fold_convert_loc (loc, arg0_type,
4553 integer_zero_node),
4554 high_positive))
4555 return NULL_TREE;
4557 in_p = (n_in_p == in_p);
4559 else
4561 /* Otherwise, "or" the range with the range of the input
4562 that will be interpreted as negative. */
4563 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4564 1, fold_convert_loc (loc, arg0_type,
4565 integer_zero_node),
4566 high_positive))
4567 return NULL_TREE;
4569 in_p = (in_p != n_in_p);
4573 *p_low = n_low;
4574 *p_high = n_high;
4575 *p_in_p = in_p;
4576 return arg0;
4578 default:
4579 return NULL_TREE;
4583 /* Given EXP, a logical expression, set the range it is testing into
4584 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4585 actually being tested. *PLOW and *PHIGH will be made of the same
4586 type as the returned expression. If EXP is not a comparison, we
4587 will most likely not be returning a useful value and range. Set
4588 *STRICT_OVERFLOW_P to true if the return value is only valid
4589 because signed overflow is undefined; otherwise, do not change
4590 *STRICT_OVERFLOW_P. */
4592 tree
4593 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4594 bool *strict_overflow_p)
4596 enum tree_code code;
4597 tree arg0, arg1 = NULL_TREE;
4598 tree exp_type, nexp;
4599 int in_p;
4600 tree low, high;
4601 location_t loc = EXPR_LOCATION (exp);
4603 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4604 and see if we can refine the range. Some of the cases below may not
4605 happen, but it doesn't seem worth worrying about this. We "continue"
4606 the outer loop when we've changed something; otherwise we "break"
4607 the switch, which will "break" the while. */
4609 in_p = 0;
4610 low = high = build_int_cst (TREE_TYPE (exp), 0);
4612 while (1)
4614 code = TREE_CODE (exp);
4615 exp_type = TREE_TYPE (exp);
4616 arg0 = NULL_TREE;
4618 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4620 if (TREE_OPERAND_LENGTH (exp) > 0)
4621 arg0 = TREE_OPERAND (exp, 0);
4622 if (TREE_CODE_CLASS (code) == tcc_binary
4623 || TREE_CODE_CLASS (code) == tcc_comparison
4624 || (TREE_CODE_CLASS (code) == tcc_expression
4625 && TREE_OPERAND_LENGTH (exp) > 1))
4626 arg1 = TREE_OPERAND (exp, 1);
4628 if (arg0 == NULL_TREE)
4629 break;
4631 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4632 &high, &in_p, strict_overflow_p);
4633 if (nexp == NULL_TREE)
4634 break;
4635 exp = nexp;
4638 /* If EXP is a constant, we can evaluate whether this is true or false. */
4639 if (TREE_CODE (exp) == INTEGER_CST)
4641 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4642 exp, 0, low, 0))
4643 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4644 exp, 1, high, 1)));
4645 low = high = 0;
4646 exp = 0;
4649 *pin_p = in_p, *plow = low, *phigh = high;
4650 return exp;
4653 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4654 type, TYPE, return an expression to test if EXP is in (or out of, depending
4655 on IN_P) the range. Return 0 if the test couldn't be created. */
4657 tree
4658 build_range_check (location_t loc, tree type, tree exp, int in_p,
4659 tree low, tree high)
4661 tree etype = TREE_TYPE (exp), value;
4663 /* Disable this optimization for function pointer expressions
4664 on targets that require function pointer canonicalization. */
4665 if (targetm.have_canonicalize_funcptr_for_compare ()
4666 && TREE_CODE (etype) == POINTER_TYPE
4667 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4668 return NULL_TREE;
4670 if (! in_p)
4672 value = build_range_check (loc, type, exp, 1, low, high);
4673 if (value != 0)
4674 return invert_truthvalue_loc (loc, value);
4676 return 0;
4679 if (low == 0 && high == 0)
4680 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4682 if (low == 0)
4683 return fold_build2_loc (loc, LE_EXPR, type, exp,
4684 fold_convert_loc (loc, etype, high));
4686 if (high == 0)
4687 return fold_build2_loc (loc, GE_EXPR, type, exp,
4688 fold_convert_loc (loc, etype, low));
4690 if (operand_equal_p (low, high, 0))
4691 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4692 fold_convert_loc (loc, etype, low));
4694 if (integer_zerop (low))
4696 if (! TYPE_UNSIGNED (etype))
4698 etype = unsigned_type_for (etype);
4699 high = fold_convert_loc (loc, etype, high);
4700 exp = fold_convert_loc (loc, etype, exp);
4702 return build_range_check (loc, type, exp, 1, 0, high);
4705 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4706 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4708 int prec = TYPE_PRECISION (etype);
4710 if (wi::mask (prec - 1, false, prec) == high)
4712 if (TYPE_UNSIGNED (etype))
4714 tree signed_etype = signed_type_for (etype);
4715 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4716 etype
4717 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4718 else
4719 etype = signed_etype;
4720 exp = fold_convert_loc (loc, etype, exp);
4722 return fold_build2_loc (loc, GT_EXPR, type, exp,
4723 build_int_cst (etype, 0));
4727 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4728 This requires wrap-around arithmetics for the type of the expression.
4729 First make sure that arithmetics in this type is valid, then make sure
4730 that it wraps around. */
4731 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4732 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4733 TYPE_UNSIGNED (etype));
4735 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4737 tree utype, minv, maxv;
4739 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4740 for the type in question, as we rely on this here. */
4741 utype = unsigned_type_for (etype);
4742 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4743 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4744 build_int_cst (TREE_TYPE (maxv), 1), 1);
4745 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4747 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4748 minv, 1, maxv, 1)))
4749 etype = utype;
4750 else
4751 return 0;
4754 high = fold_convert_loc (loc, etype, high);
4755 low = fold_convert_loc (loc, etype, low);
4756 exp = fold_convert_loc (loc, etype, exp);
4758 value = const_binop (MINUS_EXPR, high, low);
4761 if (POINTER_TYPE_P (etype))
4763 if (value != 0 && !TREE_OVERFLOW (value))
4765 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4766 return build_range_check (loc, type,
4767 fold_build_pointer_plus_loc (loc, exp, low),
4768 1, build_int_cst (etype, 0), value);
4770 return 0;
4773 if (value != 0 && !TREE_OVERFLOW (value))
4774 return build_range_check (loc, type,
4775 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4776 1, build_int_cst (etype, 0), value);
4778 return 0;
4781 /* Return the predecessor of VAL in its type, handling the infinite case. */
4783 static tree
4784 range_predecessor (tree val)
4786 tree type = TREE_TYPE (val);
4788 if (INTEGRAL_TYPE_P (type)
4789 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4790 return 0;
4791 else
4792 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4793 build_int_cst (TREE_TYPE (val), 1), 0);
4796 /* Return the successor of VAL in its type, handling the infinite case. */
4798 static tree
4799 range_successor (tree val)
4801 tree type = TREE_TYPE (val);
4803 if (INTEGRAL_TYPE_P (type)
4804 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4805 return 0;
4806 else
4807 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4808 build_int_cst (TREE_TYPE (val), 1), 0);
4811 /* Given two ranges, see if we can merge them into one. Return 1 if we
4812 can, 0 if we can't. Set the output range into the specified parameters. */
4814 bool
4815 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4816 tree high0, int in1_p, tree low1, tree high1)
4818 int no_overlap;
4819 int subset;
4820 int temp;
4821 tree tem;
4822 int in_p;
4823 tree low, high;
4824 int lowequal = ((low0 == 0 && low1 == 0)
4825 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4826 low0, 0, low1, 0)));
4827 int highequal = ((high0 == 0 && high1 == 0)
4828 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4829 high0, 1, high1, 1)));
4831 /* Make range 0 be the range that starts first, or ends last if they
4832 start at the same value. Swap them if it isn't. */
4833 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4834 low0, 0, low1, 0))
4835 || (lowequal
4836 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4837 high1, 1, high0, 1))))
4839 temp = in0_p, in0_p = in1_p, in1_p = temp;
4840 tem = low0, low0 = low1, low1 = tem;
4841 tem = high0, high0 = high1, high1 = tem;
4844 /* Now flag two cases, whether the ranges are disjoint or whether the
4845 second range is totally subsumed in the first. Note that the tests
4846 below are simplified by the ones above. */
4847 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4848 high0, 1, low1, 0));
4849 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4850 high1, 1, high0, 1));
4852 /* We now have four cases, depending on whether we are including or
4853 excluding the two ranges. */
4854 if (in0_p && in1_p)
4856 /* If they don't overlap, the result is false. If the second range
4857 is a subset it is the result. Otherwise, the range is from the start
4858 of the second to the end of the first. */
4859 if (no_overlap)
4860 in_p = 0, low = high = 0;
4861 else if (subset)
4862 in_p = 1, low = low1, high = high1;
4863 else
4864 in_p = 1, low = low1, high = high0;
4867 else if (in0_p && ! in1_p)
4869 /* If they don't overlap, the result is the first range. If they are
4870 equal, the result is false. If the second range is a subset of the
4871 first, and the ranges begin at the same place, we go from just after
4872 the end of the second range to the end of the first. If the second
4873 range is not a subset of the first, or if it is a subset and both
4874 ranges end at the same place, the range starts at the start of the
4875 first range and ends just before the second range.
4876 Otherwise, we can't describe this as a single range. */
4877 if (no_overlap)
4878 in_p = 1, low = low0, high = high0;
4879 else if (lowequal && highequal)
4880 in_p = 0, low = high = 0;
4881 else if (subset && lowequal)
4883 low = range_successor (high1);
4884 high = high0;
4885 in_p = 1;
4886 if (low == 0)
4888 /* We are in the weird situation where high0 > high1 but
4889 high1 has no successor. Punt. */
4890 return 0;
4893 else if (! subset || highequal)
4895 low = low0;
4896 high = range_predecessor (low1);
4897 in_p = 1;
4898 if (high == 0)
4900 /* low0 < low1 but low1 has no predecessor. Punt. */
4901 return 0;
4904 else
4905 return 0;
4908 else if (! in0_p && in1_p)
4910 /* If they don't overlap, the result is the second range. If the second
4911 is a subset of the first, the result is false. Otherwise,
4912 the range starts just after the first range and ends at the
4913 end of the second. */
4914 if (no_overlap)
4915 in_p = 1, low = low1, high = high1;
4916 else if (subset || highequal)
4917 in_p = 0, low = high = 0;
4918 else
4920 low = range_successor (high0);
4921 high = high1;
4922 in_p = 1;
4923 if (low == 0)
4925 /* high1 > high0 but high0 has no successor. Punt. */
4926 return 0;
4931 else
4933 /* The case where we are excluding both ranges. Here the complex case
4934 is if they don't overlap. In that case, the only time we have a
4935 range is if they are adjacent. If the second is a subset of the
4936 first, the result is the first. Otherwise, the range to exclude
4937 starts at the beginning of the first range and ends at the end of the
4938 second. */
4939 if (no_overlap)
4941 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4942 range_successor (high0),
4943 1, low1, 0)))
4944 in_p = 0, low = low0, high = high1;
4945 else
4947 /* Canonicalize - [min, x] into - [-, x]. */
4948 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4949 switch (TREE_CODE (TREE_TYPE (low0)))
4951 case ENUMERAL_TYPE:
4952 if (TYPE_PRECISION (TREE_TYPE (low0))
4953 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4954 break;
4955 /* FALLTHROUGH */
4956 case INTEGER_TYPE:
4957 if (tree_int_cst_equal (low0,
4958 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4959 low0 = 0;
4960 break;
4961 case POINTER_TYPE:
4962 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4963 && integer_zerop (low0))
4964 low0 = 0;
4965 break;
4966 default:
4967 break;
4970 /* Canonicalize - [x, max] into - [x, -]. */
4971 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4972 switch (TREE_CODE (TREE_TYPE (high1)))
4974 case ENUMERAL_TYPE:
4975 if (TYPE_PRECISION (TREE_TYPE (high1))
4976 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4977 break;
4978 /* FALLTHROUGH */
4979 case INTEGER_TYPE:
4980 if (tree_int_cst_equal (high1,
4981 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4982 high1 = 0;
4983 break;
4984 case POINTER_TYPE:
4985 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4986 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4987 high1, 1,
4988 build_int_cst (TREE_TYPE (high1), 1),
4989 1)))
4990 high1 = 0;
4991 break;
4992 default:
4993 break;
4996 /* The ranges might be also adjacent between the maximum and
4997 minimum values of the given type. For
4998 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4999 return + [x + 1, y - 1]. */
5000 if (low0 == 0 && high1 == 0)
5002 low = range_successor (high0);
5003 high = range_predecessor (low1);
5004 if (low == 0 || high == 0)
5005 return 0;
5007 in_p = 1;
5009 else
5010 return 0;
5013 else if (subset)
5014 in_p = 0, low = low0, high = high0;
5015 else
5016 in_p = 0, low = low0, high = high1;
5019 *pin_p = in_p, *plow = low, *phigh = high;
5020 return 1;
5024 /* Subroutine of fold, looking inside expressions of the form
5025 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5026 of the COND_EXPR. This function is being used also to optimize
5027 A op B ? C : A, by reversing the comparison first.
5029 Return a folded expression whose code is not a COND_EXPR
5030 anymore, or NULL_TREE if no folding opportunity is found. */
5032 static tree
5033 fold_cond_expr_with_comparison (location_t loc, tree type,
5034 tree arg0, tree arg1, tree arg2)
5036 enum tree_code comp_code = TREE_CODE (arg0);
5037 tree arg00 = TREE_OPERAND (arg0, 0);
5038 tree arg01 = TREE_OPERAND (arg0, 1);
5039 tree arg1_type = TREE_TYPE (arg1);
5040 tree tem;
5042 STRIP_NOPS (arg1);
5043 STRIP_NOPS (arg2);
5045 /* If we have A op 0 ? A : -A, consider applying the following
5046 transformations:
5048 A == 0? A : -A same as -A
5049 A != 0? A : -A same as A
5050 A >= 0? A : -A same as abs (A)
5051 A > 0? A : -A same as abs (A)
5052 A <= 0? A : -A same as -abs (A)
5053 A < 0? A : -A same as -abs (A)
5055 None of these transformations work for modes with signed
5056 zeros. If A is +/-0, the first two transformations will
5057 change the sign of the result (from +0 to -0, or vice
5058 versa). The last four will fix the sign of the result,
5059 even though the original expressions could be positive or
5060 negative, depending on the sign of A.
5062 Note that all these transformations are correct if A is
5063 NaN, since the two alternatives (A and -A) are also NaNs. */
5064 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5065 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5066 ? real_zerop (arg01)
5067 : integer_zerop (arg01))
5068 && ((TREE_CODE (arg2) == NEGATE_EXPR
5069 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5070 /* In the case that A is of the form X-Y, '-A' (arg2) may
5071 have already been folded to Y-X, check for that. */
5072 || (TREE_CODE (arg1) == MINUS_EXPR
5073 && TREE_CODE (arg2) == MINUS_EXPR
5074 && operand_equal_p (TREE_OPERAND (arg1, 0),
5075 TREE_OPERAND (arg2, 1), 0)
5076 && operand_equal_p (TREE_OPERAND (arg1, 1),
5077 TREE_OPERAND (arg2, 0), 0))))
5078 switch (comp_code)
5080 case EQ_EXPR:
5081 case UNEQ_EXPR:
5082 tem = fold_convert_loc (loc, arg1_type, arg1);
5083 return pedantic_non_lvalue_loc (loc,
5084 fold_convert_loc (loc, type,
5085 negate_expr (tem)));
5086 case NE_EXPR:
5087 case LTGT_EXPR:
5088 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
5089 case UNGE_EXPR:
5090 case UNGT_EXPR:
5091 if (flag_trapping_math)
5092 break;
5093 /* Fall through. */
5094 case GE_EXPR:
5095 case GT_EXPR:
5096 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5097 break;
5098 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5099 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5100 case UNLE_EXPR:
5101 case UNLT_EXPR:
5102 if (flag_trapping_math)
5103 break;
5104 /* FALLTHRU */
5105 case LE_EXPR:
5106 case LT_EXPR:
5107 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5108 break;
5109 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5110 return negate_expr (fold_convert_loc (loc, type, tem));
5111 default:
5112 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5113 break;
5116 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5117 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5118 both transformations are correct when A is NaN: A != 0
5119 is then true, and A == 0 is false. */
5121 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5122 && integer_zerop (arg01) && integer_zerop (arg2))
5124 if (comp_code == NE_EXPR)
5125 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
5126 else if (comp_code == EQ_EXPR)
5127 return build_zero_cst (type);
5130 /* Try some transformations of A op B ? A : B.
5132 A == B? A : B same as B
5133 A != B? A : B same as A
5134 A >= B? A : B same as max (A, B)
5135 A > B? A : B same as max (B, A)
5136 A <= B? A : B same as min (A, B)
5137 A < B? A : B same as min (B, A)
5139 As above, these transformations don't work in the presence
5140 of signed zeros. For example, if A and B are zeros of
5141 opposite sign, the first two transformations will change
5142 the sign of the result. In the last four, the original
5143 expressions give different results for (A=+0, B=-0) and
5144 (A=-0, B=+0), but the transformed expressions do not.
5146 The first two transformations are correct if either A or B
5147 is a NaN. In the first transformation, the condition will
5148 be false, and B will indeed be chosen. In the case of the
5149 second transformation, the condition A != B will be true,
5150 and A will be chosen.
5152 The conversions to max() and min() are not correct if B is
5153 a number and A is not. The conditions in the original
5154 expressions will be false, so all four give B. The min()
5155 and max() versions would give a NaN instead. */
5156 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5157 && operand_equal_for_comparison_p (arg01, arg2, arg00)
5158 /* Avoid these transformations if the COND_EXPR may be used
5159 as an lvalue in the C++ front-end. PR c++/19199. */
5160 && (in_gimple_form
5161 || VECTOR_TYPE_P (type)
5162 || (! lang_GNU_CXX ()
5163 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5164 || ! maybe_lvalue_p (arg1)
5165 || ! maybe_lvalue_p (arg2)))
5167 tree comp_op0 = arg00;
5168 tree comp_op1 = arg01;
5169 tree comp_type = TREE_TYPE (comp_op0);
5171 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
5172 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
5174 comp_type = type;
5175 comp_op0 = arg1;
5176 comp_op1 = arg2;
5179 switch (comp_code)
5181 case EQ_EXPR:
5182 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
5183 case NE_EXPR:
5184 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
5185 case LE_EXPR:
5186 case LT_EXPR:
5187 case UNLE_EXPR:
5188 case UNLT_EXPR:
5189 /* In C++ a ?: expression can be an lvalue, so put the
5190 operand which will be used if they are equal first
5191 so that we can convert this back to the
5192 corresponding COND_EXPR. */
5193 if (!HONOR_NANS (arg1))
5195 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5196 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5197 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5198 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5199 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5200 comp_op1, comp_op0);
5201 return pedantic_non_lvalue_loc (loc,
5202 fold_convert_loc (loc, type, tem));
5204 break;
5205 case GE_EXPR:
5206 case GT_EXPR:
5207 case UNGE_EXPR:
5208 case UNGT_EXPR:
5209 if (!HONOR_NANS (arg1))
5211 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5212 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5213 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5214 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5215 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5216 comp_op1, comp_op0);
5217 return pedantic_non_lvalue_loc (loc,
5218 fold_convert_loc (loc, type, tem));
5220 break;
5221 case UNEQ_EXPR:
5222 if (!HONOR_NANS (arg1))
5223 return pedantic_non_lvalue_loc (loc,
5224 fold_convert_loc (loc, type, arg2));
5225 break;
5226 case LTGT_EXPR:
5227 if (!HONOR_NANS (arg1))
5228 return pedantic_non_lvalue_loc (loc,
5229 fold_convert_loc (loc, type, arg1));
5230 break;
5231 default:
5232 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5233 break;
5237 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5238 we might still be able to simplify this. For example,
5239 if C1 is one less or one more than C2, this might have started
5240 out as a MIN or MAX and been transformed by this function.
5241 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5243 if (INTEGRAL_TYPE_P (type)
5244 && TREE_CODE (arg01) == INTEGER_CST
5245 && TREE_CODE (arg2) == INTEGER_CST)
5246 switch (comp_code)
5248 case EQ_EXPR:
5249 if (TREE_CODE (arg1) == INTEGER_CST)
5250 break;
5251 /* We can replace A with C1 in this case. */
5252 arg1 = fold_convert_loc (loc, type, arg01);
5253 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
5255 case LT_EXPR:
5256 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5257 MIN_EXPR, to preserve the signedness of the comparison. */
5258 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5259 OEP_ONLY_CONST)
5260 && operand_equal_p (arg01,
5261 const_binop (PLUS_EXPR, arg2,
5262 build_int_cst (type, 1)),
5263 OEP_ONLY_CONST))
5265 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5266 fold_convert_loc (loc, TREE_TYPE (arg00),
5267 arg2));
5268 return pedantic_non_lvalue_loc (loc,
5269 fold_convert_loc (loc, type, tem));
5271 break;
5273 case LE_EXPR:
5274 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5275 as above. */
5276 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5277 OEP_ONLY_CONST)
5278 && operand_equal_p (arg01,
5279 const_binop (MINUS_EXPR, arg2,
5280 build_int_cst (type, 1)),
5281 OEP_ONLY_CONST))
5283 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5284 fold_convert_loc (loc, TREE_TYPE (arg00),
5285 arg2));
5286 return pedantic_non_lvalue_loc (loc,
5287 fold_convert_loc (loc, type, tem));
5289 break;
5291 case GT_EXPR:
5292 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5293 MAX_EXPR, to preserve the signedness of the comparison. */
5294 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5295 OEP_ONLY_CONST)
5296 && operand_equal_p (arg01,
5297 const_binop (MINUS_EXPR, arg2,
5298 build_int_cst (type, 1)),
5299 OEP_ONLY_CONST))
5301 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5302 fold_convert_loc (loc, TREE_TYPE (arg00),
5303 arg2));
5304 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5306 break;
5308 case GE_EXPR:
5309 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5310 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5311 OEP_ONLY_CONST)
5312 && operand_equal_p (arg01,
5313 const_binop (PLUS_EXPR, arg2,
5314 build_int_cst (type, 1)),
5315 OEP_ONLY_CONST))
5317 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5318 fold_convert_loc (loc, TREE_TYPE (arg00),
5319 arg2));
5320 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5322 break;
5323 case NE_EXPR:
5324 break;
5325 default:
5326 gcc_unreachable ();
5329 return NULL_TREE;
5334 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5335 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5336 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5337 false) >= 2)
5338 #endif
5340 /* EXP is some logical combination of boolean tests. See if we can
5341 merge it into some range test. Return the new tree if so. */
5343 static tree
5344 fold_range_test (location_t loc, enum tree_code code, tree type,
5345 tree op0, tree op1)
5347 int or_op = (code == TRUTH_ORIF_EXPR
5348 || code == TRUTH_OR_EXPR);
5349 int in0_p, in1_p, in_p;
5350 tree low0, low1, low, high0, high1, high;
5351 bool strict_overflow_p = false;
5352 tree tem, lhs, rhs;
5353 const char * const warnmsg = G_("assuming signed overflow does not occur "
5354 "when simplifying range test");
5356 if (!INTEGRAL_TYPE_P (type))
5357 return 0;
5359 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5360 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5362 /* If this is an OR operation, invert both sides; we will invert
5363 again at the end. */
5364 if (or_op)
5365 in0_p = ! in0_p, in1_p = ! in1_p;
5367 /* If both expressions are the same, if we can merge the ranges, and we
5368 can build the range test, return it or it inverted. If one of the
5369 ranges is always true or always false, consider it to be the same
5370 expression as the other. */
5371 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5372 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5373 in1_p, low1, high1)
5374 && 0 != (tem = (build_range_check (loc, type,
5375 lhs != 0 ? lhs
5376 : rhs != 0 ? rhs : integer_zero_node,
5377 in_p, low, high))))
5379 if (strict_overflow_p)
5380 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5381 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5384 /* On machines where the branch cost is expensive, if this is a
5385 short-circuited branch and the underlying object on both sides
5386 is the same, make a non-short-circuit operation. */
5387 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5388 && lhs != 0 && rhs != 0
5389 && (code == TRUTH_ANDIF_EXPR
5390 || code == TRUTH_ORIF_EXPR)
5391 && operand_equal_p (lhs, rhs, 0))
5393 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5394 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5395 which cases we can't do this. */
5396 if (simple_operand_p (lhs))
5397 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5398 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5399 type, op0, op1);
5401 else if (!lang_hooks.decls.global_bindings_p ()
5402 && !CONTAINS_PLACEHOLDER_P (lhs))
5404 tree common = save_expr (lhs);
5406 if (0 != (lhs = build_range_check (loc, type, common,
5407 or_op ? ! in0_p : in0_p,
5408 low0, high0))
5409 && (0 != (rhs = build_range_check (loc, type, common,
5410 or_op ? ! in1_p : in1_p,
5411 low1, high1))))
5413 if (strict_overflow_p)
5414 fold_overflow_warning (warnmsg,
5415 WARN_STRICT_OVERFLOW_COMPARISON);
5416 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5417 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5418 type, lhs, rhs);
5423 return 0;
5426 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5427 bit value. Arrange things so the extra bits will be set to zero if and
5428 only if C is signed-extended to its full width. If MASK is nonzero,
5429 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5431 static tree
5432 unextend (tree c, int p, int unsignedp, tree mask)
5434 tree type = TREE_TYPE (c);
5435 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5436 tree temp;
5438 if (p == modesize || unsignedp)
5439 return c;
5441 /* We work by getting just the sign bit into the low-order bit, then
5442 into the high-order bit, then sign-extend. We then XOR that value
5443 with C. */
5444 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5446 /* We must use a signed type in order to get an arithmetic right shift.
5447 However, we must also avoid introducing accidental overflows, so that
5448 a subsequent call to integer_zerop will work. Hence we must
5449 do the type conversion here. At this point, the constant is either
5450 zero or one, and the conversion to a signed type can never overflow.
5451 We could get an overflow if this conversion is done anywhere else. */
5452 if (TYPE_UNSIGNED (type))
5453 temp = fold_convert (signed_type_for (type), temp);
5455 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5456 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5457 if (mask != 0)
5458 temp = const_binop (BIT_AND_EXPR, temp,
5459 fold_convert (TREE_TYPE (c), mask));
5460 /* If necessary, convert the type back to match the type of C. */
5461 if (TYPE_UNSIGNED (type))
5462 temp = fold_convert (type, temp);
5464 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5467 /* For an expression that has the form
5468 (A && B) || ~B
5470 (A || B) && ~B,
5471 we can drop one of the inner expressions and simplify to
5472 A || ~B
5474 A && ~B
5475 LOC is the location of the resulting expression. OP is the inner
5476 logical operation; the left-hand side in the examples above, while CMPOP
5477 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5478 removing a condition that guards another, as in
5479 (A != NULL && A->...) || A == NULL
5480 which we must not transform. If RHS_ONLY is true, only eliminate the
5481 right-most operand of the inner logical operation. */
5483 static tree
5484 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5485 bool rhs_only)
5487 tree type = TREE_TYPE (cmpop);
5488 enum tree_code code = TREE_CODE (cmpop);
5489 enum tree_code truthop_code = TREE_CODE (op);
5490 tree lhs = TREE_OPERAND (op, 0);
5491 tree rhs = TREE_OPERAND (op, 1);
5492 tree orig_lhs = lhs, orig_rhs = rhs;
5493 enum tree_code rhs_code = TREE_CODE (rhs);
5494 enum tree_code lhs_code = TREE_CODE (lhs);
5495 enum tree_code inv_code;
5497 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5498 return NULL_TREE;
5500 if (TREE_CODE_CLASS (code) != tcc_comparison)
5501 return NULL_TREE;
5503 if (rhs_code == truthop_code)
5505 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5506 if (newrhs != NULL_TREE)
5508 rhs = newrhs;
5509 rhs_code = TREE_CODE (rhs);
5512 if (lhs_code == truthop_code && !rhs_only)
5514 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5515 if (newlhs != NULL_TREE)
5517 lhs = newlhs;
5518 lhs_code = TREE_CODE (lhs);
5522 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5523 if (inv_code == rhs_code
5524 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5525 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5526 return lhs;
5527 if (!rhs_only && inv_code == lhs_code
5528 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5529 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5530 return rhs;
5531 if (rhs != orig_rhs || lhs != orig_lhs)
5532 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5533 lhs, rhs);
5534 return NULL_TREE;
5537 /* Find ways of folding logical expressions of LHS and RHS:
5538 Try to merge two comparisons to the same innermost item.
5539 Look for range tests like "ch >= '0' && ch <= '9'".
5540 Look for combinations of simple terms on machines with expensive branches
5541 and evaluate the RHS unconditionally.
5543 For example, if we have p->a == 2 && p->b == 4 and we can make an
5544 object large enough to span both A and B, we can do this with a comparison
5545 against the object ANDed with the a mask.
5547 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5548 operations to do this with one comparison.
5550 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5551 function and the one above.
5553 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5554 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5556 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5557 two operands.
5559 We return the simplified tree or 0 if no optimization is possible. */
5561 static tree
5562 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5563 tree lhs, tree rhs)
5565 /* If this is the "or" of two comparisons, we can do something if
5566 the comparisons are NE_EXPR. If this is the "and", we can do something
5567 if the comparisons are EQ_EXPR. I.e.,
5568 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5570 WANTED_CODE is this operation code. For single bit fields, we can
5571 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5572 comparison for one-bit fields. */
5574 enum tree_code wanted_code;
5575 enum tree_code lcode, rcode;
5576 tree ll_arg, lr_arg, rl_arg, rr_arg;
5577 tree ll_inner, lr_inner, rl_inner, rr_inner;
5578 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5579 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5580 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5581 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5582 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5583 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5584 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5585 machine_mode lnmode, rnmode;
5586 tree ll_mask, lr_mask, rl_mask, rr_mask;
5587 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5588 tree l_const, r_const;
5589 tree lntype, rntype, result;
5590 HOST_WIDE_INT first_bit, end_bit;
5591 int volatilep;
5593 /* Start by getting the comparison codes. Fail if anything is volatile.
5594 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5595 it were surrounded with a NE_EXPR. */
5597 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5598 return 0;
5600 lcode = TREE_CODE (lhs);
5601 rcode = TREE_CODE (rhs);
5603 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5605 lhs = build2 (NE_EXPR, truth_type, lhs,
5606 build_int_cst (TREE_TYPE (lhs), 0));
5607 lcode = NE_EXPR;
5610 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5612 rhs = build2 (NE_EXPR, truth_type, rhs,
5613 build_int_cst (TREE_TYPE (rhs), 0));
5614 rcode = NE_EXPR;
5617 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5618 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5619 return 0;
5621 ll_arg = TREE_OPERAND (lhs, 0);
5622 lr_arg = TREE_OPERAND (lhs, 1);
5623 rl_arg = TREE_OPERAND (rhs, 0);
5624 rr_arg = TREE_OPERAND (rhs, 1);
5626 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5627 if (simple_operand_p (ll_arg)
5628 && simple_operand_p (lr_arg))
5630 if (operand_equal_p (ll_arg, rl_arg, 0)
5631 && operand_equal_p (lr_arg, rr_arg, 0))
5633 result = combine_comparisons (loc, code, lcode, rcode,
5634 truth_type, ll_arg, lr_arg);
5635 if (result)
5636 return result;
5638 else if (operand_equal_p (ll_arg, rr_arg, 0)
5639 && operand_equal_p (lr_arg, rl_arg, 0))
5641 result = combine_comparisons (loc, code, lcode,
5642 swap_tree_comparison (rcode),
5643 truth_type, ll_arg, lr_arg);
5644 if (result)
5645 return result;
5649 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5650 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5652 /* If the RHS can be evaluated unconditionally and its operands are
5653 simple, it wins to evaluate the RHS unconditionally on machines
5654 with expensive branches. In this case, this isn't a comparison
5655 that can be merged. */
5657 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5658 false) >= 2
5659 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5660 && simple_operand_p (rl_arg)
5661 && simple_operand_p (rr_arg))
5663 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5664 if (code == TRUTH_OR_EXPR
5665 && lcode == NE_EXPR && integer_zerop (lr_arg)
5666 && rcode == NE_EXPR && integer_zerop (rr_arg)
5667 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5668 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5669 return build2_loc (loc, NE_EXPR, truth_type,
5670 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5671 ll_arg, rl_arg),
5672 build_int_cst (TREE_TYPE (ll_arg), 0));
5674 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5675 if (code == TRUTH_AND_EXPR
5676 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5677 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5678 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5679 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5680 return build2_loc (loc, EQ_EXPR, truth_type,
5681 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5682 ll_arg, rl_arg),
5683 build_int_cst (TREE_TYPE (ll_arg), 0));
5686 /* See if the comparisons can be merged. Then get all the parameters for
5687 each side. */
5689 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5690 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5691 return 0;
5693 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5694 volatilep = 0;
5695 ll_inner = decode_field_reference (loc, &ll_arg,
5696 &ll_bitsize, &ll_bitpos, &ll_mode,
5697 &ll_unsignedp, &ll_reversep, &volatilep,
5698 &ll_mask, &ll_and_mask);
5699 lr_inner = decode_field_reference (loc, &lr_arg,
5700 &lr_bitsize, &lr_bitpos, &lr_mode,
5701 &lr_unsignedp, &lr_reversep, &volatilep,
5702 &lr_mask, &lr_and_mask);
5703 rl_inner = decode_field_reference (loc, &rl_arg,
5704 &rl_bitsize, &rl_bitpos, &rl_mode,
5705 &rl_unsignedp, &rl_reversep, &volatilep,
5706 &rl_mask, &rl_and_mask);
5707 rr_inner = decode_field_reference (loc, &rr_arg,
5708 &rr_bitsize, &rr_bitpos, &rr_mode,
5709 &rr_unsignedp, &rr_reversep, &volatilep,
5710 &rr_mask, &rr_and_mask);
5712 /* It must be true that the inner operation on the lhs of each
5713 comparison must be the same if we are to be able to do anything.
5714 Then see if we have constants. If not, the same must be true for
5715 the rhs's. */
5716 if (volatilep
5717 || ll_reversep != rl_reversep
5718 || ll_inner == 0 || rl_inner == 0
5719 || ! operand_equal_p (ll_inner, rl_inner, 0))
5720 return 0;
5722 if (TREE_CODE (lr_arg) == INTEGER_CST
5723 && TREE_CODE (rr_arg) == INTEGER_CST)
5725 l_const = lr_arg, r_const = rr_arg;
5726 lr_reversep = ll_reversep;
5728 else if (lr_reversep != rr_reversep
5729 || lr_inner == 0 || rr_inner == 0
5730 || ! operand_equal_p (lr_inner, rr_inner, 0))
5731 return 0;
5732 else
5733 l_const = r_const = 0;
5735 /* If either comparison code is not correct for our logical operation,
5736 fail. However, we can convert a one-bit comparison against zero into
5737 the opposite comparison against that bit being set in the field. */
5739 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5740 if (lcode != wanted_code)
5742 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5744 /* Make the left operand unsigned, since we are only interested
5745 in the value of one bit. Otherwise we are doing the wrong
5746 thing below. */
5747 ll_unsignedp = 1;
5748 l_const = ll_mask;
5750 else
5751 return 0;
5754 /* This is analogous to the code for l_const above. */
5755 if (rcode != wanted_code)
5757 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5759 rl_unsignedp = 1;
5760 r_const = rl_mask;
5762 else
5763 return 0;
5766 /* See if we can find a mode that contains both fields being compared on
5767 the left. If we can't, fail. Otherwise, update all constants and masks
5768 to be relative to a field of that size. */
5769 first_bit = MIN (ll_bitpos, rl_bitpos);
5770 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5771 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5772 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5773 volatilep);
5774 if (lnmode == VOIDmode)
5775 return 0;
5777 lnbitsize = GET_MODE_BITSIZE (lnmode);
5778 lnbitpos = first_bit & ~ (lnbitsize - 1);
5779 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5780 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5782 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5784 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5785 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5788 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5789 size_int (xll_bitpos));
5790 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5791 size_int (xrl_bitpos));
5793 if (l_const)
5795 l_const = fold_convert_loc (loc, lntype, l_const);
5796 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5797 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5798 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5799 fold_build1_loc (loc, BIT_NOT_EXPR,
5800 lntype, ll_mask))))
5802 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5804 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5807 if (r_const)
5809 r_const = fold_convert_loc (loc, lntype, r_const);
5810 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5811 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5812 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5813 fold_build1_loc (loc, BIT_NOT_EXPR,
5814 lntype, rl_mask))))
5816 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5818 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5822 /* If the right sides are not constant, do the same for it. Also,
5823 disallow this optimization if a size or signedness mismatch occurs
5824 between the left and right sides. */
5825 if (l_const == 0)
5827 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5828 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5829 /* Make sure the two fields on the right
5830 correspond to the left without being swapped. */
5831 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5832 return 0;
5834 first_bit = MIN (lr_bitpos, rr_bitpos);
5835 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5836 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5837 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5838 volatilep);
5839 if (rnmode == VOIDmode)
5840 return 0;
5842 rnbitsize = GET_MODE_BITSIZE (rnmode);
5843 rnbitpos = first_bit & ~ (rnbitsize - 1);
5844 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5845 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5847 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5849 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5850 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5853 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5854 rntype, lr_mask),
5855 size_int (xlr_bitpos));
5856 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5857 rntype, rr_mask),
5858 size_int (xrr_bitpos));
5860 /* Make a mask that corresponds to both fields being compared.
5861 Do this for both items being compared. If the operands are the
5862 same size and the bits being compared are in the same position
5863 then we can do this by masking both and comparing the masked
5864 results. */
5865 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5866 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5867 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5869 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
5870 lntype, lnbitsize, lnbitpos,
5871 ll_unsignedp || rl_unsignedp, ll_reversep);
5872 if (! all_ones_mask_p (ll_mask, lnbitsize))
5873 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5875 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
5876 rntype, rnbitsize, rnbitpos,
5877 lr_unsignedp || rr_unsignedp, lr_reversep);
5878 if (! all_ones_mask_p (lr_mask, rnbitsize))
5879 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5881 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5884 /* There is still another way we can do something: If both pairs of
5885 fields being compared are adjacent, we may be able to make a wider
5886 field containing them both.
5888 Note that we still must mask the lhs/rhs expressions. Furthermore,
5889 the mask must be shifted to account for the shift done by
5890 make_bit_field_ref. */
5891 if ((ll_bitsize + ll_bitpos == rl_bitpos
5892 && lr_bitsize + lr_bitpos == rr_bitpos)
5893 || (ll_bitpos == rl_bitpos + rl_bitsize
5894 && lr_bitpos == rr_bitpos + rr_bitsize))
5896 tree type;
5898 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
5899 ll_bitsize + rl_bitsize,
5900 MIN (ll_bitpos, rl_bitpos),
5901 ll_unsignedp, ll_reversep);
5902 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
5903 lr_bitsize + rr_bitsize,
5904 MIN (lr_bitpos, rr_bitpos),
5905 lr_unsignedp, lr_reversep);
5907 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5908 size_int (MIN (xll_bitpos, xrl_bitpos)));
5909 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5910 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5912 /* Convert to the smaller type before masking out unwanted bits. */
5913 type = lntype;
5914 if (lntype != rntype)
5916 if (lnbitsize > rnbitsize)
5918 lhs = fold_convert_loc (loc, rntype, lhs);
5919 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5920 type = rntype;
5922 else if (lnbitsize < rnbitsize)
5924 rhs = fold_convert_loc (loc, lntype, rhs);
5925 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5926 type = lntype;
5930 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5931 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5933 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5934 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5936 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5939 return 0;
5942 /* Handle the case of comparisons with constants. If there is something in
5943 common between the masks, those bits of the constants must be the same.
5944 If not, the condition is always false. Test for this to avoid generating
5945 incorrect code below. */
5946 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5947 if (! integer_zerop (result)
5948 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5949 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5951 if (wanted_code == NE_EXPR)
5953 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5954 return constant_boolean_node (true, truth_type);
5956 else
5958 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5959 return constant_boolean_node (false, truth_type);
5963 /* Construct the expression we will return. First get the component
5964 reference we will make. Unless the mask is all ones the width of
5965 that field, perform the mask operation. Then compare with the
5966 merged constant. */
5967 result = make_bit_field_ref (loc, ll_inner, ll_arg,
5968 lntype, lnbitsize, lnbitpos,
5969 ll_unsignedp || rl_unsignedp, ll_reversep);
5971 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5972 if (! all_ones_mask_p (ll_mask, lnbitsize))
5973 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5975 return build2_loc (loc, wanted_code, truth_type, result,
5976 const_binop (BIT_IOR_EXPR, l_const, r_const));
5979 /* T is an integer expression that is being multiplied, divided, or taken a
5980 modulus (CODE says which and what kind of divide or modulus) by a
5981 constant C. See if we can eliminate that operation by folding it with
5982 other operations already in T. WIDE_TYPE, if non-null, is a type that
5983 should be used for the computation if wider than our type.
5985 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5986 (X * 2) + (Y * 4). We must, however, be assured that either the original
5987 expression would not overflow or that overflow is undefined for the type
5988 in the language in question.
5990 If we return a non-null expression, it is an equivalent form of the
5991 original computation, but need not be in the original type.
5993 We set *STRICT_OVERFLOW_P to true if the return values depends on
5994 signed overflow being undefined. Otherwise we do not change
5995 *STRICT_OVERFLOW_P. */
5997 static tree
5998 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5999 bool *strict_overflow_p)
6001 /* To avoid exponential search depth, refuse to allow recursion past
6002 three levels. Beyond that (1) it's highly unlikely that we'll find
6003 something interesting and (2) we've probably processed it before
6004 when we built the inner expression. */
6006 static int depth;
6007 tree ret;
6009 if (depth > 3)
6010 return NULL;
6012 depth++;
6013 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6014 depth--;
6016 return ret;
6019 static tree
6020 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6021 bool *strict_overflow_p)
6023 tree type = TREE_TYPE (t);
6024 enum tree_code tcode = TREE_CODE (t);
6025 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
6026 > GET_MODE_SIZE (TYPE_MODE (type)))
6027 ? wide_type : type);
6028 tree t1, t2;
6029 int same_p = tcode == code;
6030 tree op0 = NULL_TREE, op1 = NULL_TREE;
6031 bool sub_strict_overflow_p;
6033 /* Don't deal with constants of zero here; they confuse the code below. */
6034 if (integer_zerop (c))
6035 return NULL_TREE;
6037 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6038 op0 = TREE_OPERAND (t, 0);
6040 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6041 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6043 /* Note that we need not handle conditional operations here since fold
6044 already handles those cases. So just do arithmetic here. */
6045 switch (tcode)
6047 case INTEGER_CST:
6048 /* For a constant, we can always simplify if we are a multiply
6049 or (for divide and modulus) if it is a multiple of our constant. */
6050 if (code == MULT_EXPR
6051 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
6053 tree tem = const_binop (code, fold_convert (ctype, t),
6054 fold_convert (ctype, c));
6055 /* If the multiplication overflowed, we lost information on it.
6056 See PR68142 and PR69845. */
6057 if (TREE_OVERFLOW (tem))
6058 return NULL_TREE;
6059 return tem;
6061 break;
6063 CASE_CONVERT: case NON_LVALUE_EXPR:
6064 /* If op0 is an expression ... */
6065 if ((COMPARISON_CLASS_P (op0)
6066 || UNARY_CLASS_P (op0)
6067 || BINARY_CLASS_P (op0)
6068 || VL_EXP_CLASS_P (op0)
6069 || EXPRESSION_CLASS_P (op0))
6070 /* ... and has wrapping overflow, and its type is smaller
6071 than ctype, then we cannot pass through as widening. */
6072 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6073 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6074 && (TYPE_PRECISION (ctype)
6075 > TYPE_PRECISION (TREE_TYPE (op0))))
6076 /* ... or this is a truncation (t is narrower than op0),
6077 then we cannot pass through this narrowing. */
6078 || (TYPE_PRECISION (type)
6079 < TYPE_PRECISION (TREE_TYPE (op0)))
6080 /* ... or signedness changes for division or modulus,
6081 then we cannot pass through this conversion. */
6082 || (code != MULT_EXPR
6083 && (TYPE_UNSIGNED (ctype)
6084 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6085 /* ... or has undefined overflow while the converted to
6086 type has not, we cannot do the operation in the inner type
6087 as that would introduce undefined overflow. */
6088 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6089 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6090 && !TYPE_OVERFLOW_UNDEFINED (type))))
6091 break;
6093 /* Pass the constant down and see if we can make a simplification. If
6094 we can, replace this expression with the inner simplification for
6095 possible later conversion to our or some other type. */
6096 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6097 && TREE_CODE (t2) == INTEGER_CST
6098 && !TREE_OVERFLOW (t2)
6099 && (0 != (t1 = extract_muldiv (op0, t2, code,
6100 code == MULT_EXPR
6101 ? ctype : NULL_TREE,
6102 strict_overflow_p))))
6103 return t1;
6104 break;
6106 case ABS_EXPR:
6107 /* If widening the type changes it from signed to unsigned, then we
6108 must avoid building ABS_EXPR itself as unsigned. */
6109 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6111 tree cstype = (*signed_type_for) (ctype);
6112 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6113 != 0)
6115 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6116 return fold_convert (ctype, t1);
6118 break;
6120 /* If the constant is negative, we cannot simplify this. */
6121 if (tree_int_cst_sgn (c) == -1)
6122 break;
6123 /* FALLTHROUGH */
6124 case NEGATE_EXPR:
6125 /* For division and modulus, type can't be unsigned, as e.g.
6126 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6127 For signed types, even with wrapping overflow, this is fine. */
6128 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6129 break;
6130 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6131 != 0)
6132 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6133 break;
6135 case MIN_EXPR: case MAX_EXPR:
6136 /* If widening the type changes the signedness, then we can't perform
6137 this optimization as that changes the result. */
6138 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6139 break;
6141 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6142 sub_strict_overflow_p = false;
6143 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6144 &sub_strict_overflow_p)) != 0
6145 && (t2 = extract_muldiv (op1, c, code, wide_type,
6146 &sub_strict_overflow_p)) != 0)
6148 if (tree_int_cst_sgn (c) < 0)
6149 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6150 if (sub_strict_overflow_p)
6151 *strict_overflow_p = true;
6152 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6153 fold_convert (ctype, t2));
6155 break;
6157 case LSHIFT_EXPR: case RSHIFT_EXPR:
6158 /* If the second operand is constant, this is a multiplication
6159 or floor division, by a power of two, so we can treat it that
6160 way unless the multiplier or divisor overflows. Signed
6161 left-shift overflow is implementation-defined rather than
6162 undefined in C90, so do not convert signed left shift into
6163 multiplication. */
6164 if (TREE_CODE (op1) == INTEGER_CST
6165 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6166 /* const_binop may not detect overflow correctly,
6167 so check for it explicitly here. */
6168 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6169 && 0 != (t1 = fold_convert (ctype,
6170 const_binop (LSHIFT_EXPR,
6171 size_one_node,
6172 op1)))
6173 && !TREE_OVERFLOW (t1))
6174 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6175 ? MULT_EXPR : FLOOR_DIV_EXPR,
6176 ctype,
6177 fold_convert (ctype, op0),
6178 t1),
6179 c, code, wide_type, strict_overflow_p);
6180 break;
6182 case PLUS_EXPR: case MINUS_EXPR:
6183 /* See if we can eliminate the operation on both sides. If we can, we
6184 can return a new PLUS or MINUS. If we can't, the only remaining
6185 cases where we can do anything are if the second operand is a
6186 constant. */
6187 sub_strict_overflow_p = false;
6188 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6189 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6190 if (t1 != 0 && t2 != 0
6191 && (code == MULT_EXPR
6192 /* If not multiplication, we can only do this if both operands
6193 are divisible by c. */
6194 || (multiple_of_p (ctype, op0, c)
6195 && multiple_of_p (ctype, op1, c))))
6197 if (sub_strict_overflow_p)
6198 *strict_overflow_p = true;
6199 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6200 fold_convert (ctype, t2));
6203 /* If this was a subtraction, negate OP1 and set it to be an addition.
6204 This simplifies the logic below. */
6205 if (tcode == MINUS_EXPR)
6207 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6208 /* If OP1 was not easily negatable, the constant may be OP0. */
6209 if (TREE_CODE (op0) == INTEGER_CST)
6211 std::swap (op0, op1);
6212 std::swap (t1, t2);
6216 if (TREE_CODE (op1) != INTEGER_CST)
6217 break;
6219 /* If either OP1 or C are negative, this optimization is not safe for
6220 some of the division and remainder types while for others we need
6221 to change the code. */
6222 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6224 if (code == CEIL_DIV_EXPR)
6225 code = FLOOR_DIV_EXPR;
6226 else if (code == FLOOR_DIV_EXPR)
6227 code = CEIL_DIV_EXPR;
6228 else if (code != MULT_EXPR
6229 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6230 break;
6233 /* If it's a multiply or a division/modulus operation of a multiple
6234 of our constant, do the operation and verify it doesn't overflow. */
6235 if (code == MULT_EXPR
6236 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6238 op1 = const_binop (code, fold_convert (ctype, op1),
6239 fold_convert (ctype, c));
6240 /* We allow the constant to overflow with wrapping semantics. */
6241 if (op1 == 0
6242 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6243 break;
6245 else
6246 break;
6248 /* If we have an unsigned type, we cannot widen the operation since it
6249 will change the result if the original computation overflowed. */
6250 if (TYPE_UNSIGNED (ctype) && ctype != type)
6251 break;
6253 /* If we were able to eliminate our operation from the first side,
6254 apply our operation to the second side and reform the PLUS. */
6255 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6256 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6258 /* The last case is if we are a multiply. In that case, we can
6259 apply the distributive law to commute the multiply and addition
6260 if the multiplication of the constants doesn't overflow
6261 and overflow is defined. With undefined overflow
6262 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6263 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6264 return fold_build2 (tcode, ctype,
6265 fold_build2 (code, ctype,
6266 fold_convert (ctype, op0),
6267 fold_convert (ctype, c)),
6268 op1);
6270 break;
6272 case MULT_EXPR:
6273 /* We have a special case here if we are doing something like
6274 (C * 8) % 4 since we know that's zero. */
6275 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6276 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6277 /* If the multiplication can overflow we cannot optimize this. */
6278 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6279 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6280 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6282 *strict_overflow_p = true;
6283 return omit_one_operand (type, integer_zero_node, op0);
6286 /* ... fall through ... */
6288 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6289 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6290 /* If we can extract our operation from the LHS, do so and return a
6291 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6292 do something only if the second operand is a constant. */
6293 if (same_p
6294 && (t1 = extract_muldiv (op0, c, code, wide_type,
6295 strict_overflow_p)) != 0)
6296 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6297 fold_convert (ctype, op1));
6298 else if (tcode == MULT_EXPR && code == MULT_EXPR
6299 && (t1 = extract_muldiv (op1, c, code, wide_type,
6300 strict_overflow_p)) != 0)
6301 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6302 fold_convert (ctype, t1));
6303 else if (TREE_CODE (op1) != INTEGER_CST)
6304 return 0;
6306 /* If these are the same operation types, we can associate them
6307 assuming no overflow. */
6308 if (tcode == code)
6310 bool overflow_p = false;
6311 bool overflow_mul_p;
6312 signop sign = TYPE_SIGN (ctype);
6313 unsigned prec = TYPE_PRECISION (ctype);
6314 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6315 wi::to_wide (c, prec),
6316 sign, &overflow_mul_p);
6317 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6318 if (overflow_mul_p
6319 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6320 overflow_p = true;
6321 if (!overflow_p)
6322 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6323 wide_int_to_tree (ctype, mul));
6326 /* If these operations "cancel" each other, we have the main
6327 optimizations of this pass, which occur when either constant is a
6328 multiple of the other, in which case we replace this with either an
6329 operation or CODE or TCODE.
6331 If we have an unsigned type, we cannot do this since it will change
6332 the result if the original computation overflowed. */
6333 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6334 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6335 || (tcode == MULT_EXPR
6336 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6337 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6338 && code != MULT_EXPR)))
6340 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6342 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6343 *strict_overflow_p = true;
6344 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6345 fold_convert (ctype,
6346 const_binop (TRUNC_DIV_EXPR,
6347 op1, c)));
6349 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6351 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6352 *strict_overflow_p = true;
6353 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6354 fold_convert (ctype,
6355 const_binop (TRUNC_DIV_EXPR,
6356 c, op1)));
6359 break;
6361 default:
6362 break;
6365 return 0;
6368 /* Return a node which has the indicated constant VALUE (either 0 or
6369 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6370 and is of the indicated TYPE. */
6372 tree
6373 constant_boolean_node (bool value, tree type)
6375 if (type == integer_type_node)
6376 return value ? integer_one_node : integer_zero_node;
6377 else if (type == boolean_type_node)
6378 return value ? boolean_true_node : boolean_false_node;
6379 else if (TREE_CODE (type) == VECTOR_TYPE)
6380 return build_vector_from_val (type,
6381 build_int_cst (TREE_TYPE (type),
6382 value ? -1 : 0));
6383 else
6384 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6388 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6389 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6390 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6391 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6392 COND is the first argument to CODE; otherwise (as in the example
6393 given here), it is the second argument. TYPE is the type of the
6394 original expression. Return NULL_TREE if no simplification is
6395 possible. */
6397 static tree
6398 fold_binary_op_with_conditional_arg (location_t loc,
6399 enum tree_code code,
6400 tree type, tree op0, tree op1,
6401 tree cond, tree arg, int cond_first_p)
6403 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6404 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6405 tree test, true_value, false_value;
6406 tree lhs = NULL_TREE;
6407 tree rhs = NULL_TREE;
6408 enum tree_code cond_code = COND_EXPR;
6410 if (TREE_CODE (cond) == COND_EXPR
6411 || TREE_CODE (cond) == VEC_COND_EXPR)
6413 test = TREE_OPERAND (cond, 0);
6414 true_value = TREE_OPERAND (cond, 1);
6415 false_value = TREE_OPERAND (cond, 2);
6416 /* If this operand throws an expression, then it does not make
6417 sense to try to perform a logical or arithmetic operation
6418 involving it. */
6419 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6420 lhs = true_value;
6421 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6422 rhs = false_value;
6424 else if (!(TREE_CODE (type) != VECTOR_TYPE
6425 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
6427 tree testtype = TREE_TYPE (cond);
6428 test = cond;
6429 true_value = constant_boolean_node (true, testtype);
6430 false_value = constant_boolean_node (false, testtype);
6432 else
6433 /* Detect the case of mixing vector and scalar types - bail out. */
6434 return NULL_TREE;
6436 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6437 cond_code = VEC_COND_EXPR;
6439 /* This transformation is only worthwhile if we don't have to wrap ARG
6440 in a SAVE_EXPR and the operation can be simplified without recursing
6441 on at least one of the branches once its pushed inside the COND_EXPR. */
6442 if (!TREE_CONSTANT (arg)
6443 && (TREE_SIDE_EFFECTS (arg)
6444 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6445 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6446 return NULL_TREE;
6448 arg = fold_convert_loc (loc, arg_type, arg);
6449 if (lhs == 0)
6451 true_value = fold_convert_loc (loc, cond_type, true_value);
6452 if (cond_first_p)
6453 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6454 else
6455 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6457 if (rhs == 0)
6459 false_value = fold_convert_loc (loc, cond_type, false_value);
6460 if (cond_first_p)
6461 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6462 else
6463 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6466 /* Check that we have simplified at least one of the branches. */
6467 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6468 return NULL_TREE;
6470 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6474 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6476 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6477 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6478 ADDEND is the same as X.
6480 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6481 and finite. The problematic cases are when X is zero, and its mode
6482 has signed zeros. In the case of rounding towards -infinity,
6483 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6484 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6486 bool
6487 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6489 if (!real_zerop (addend))
6490 return false;
6492 /* Don't allow the fold with -fsignaling-nans. */
6493 if (HONOR_SNANS (element_mode (type)))
6494 return false;
6496 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6497 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6498 return true;
6500 /* In a vector or complex, we would need to check the sign of all zeros. */
6501 if (TREE_CODE (addend) != REAL_CST)
6502 return false;
6504 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6505 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6506 negate = !negate;
6508 /* The mode has signed zeros, and we have to honor their sign.
6509 In this situation, there is only one case we can return true for.
6510 X - 0 is the same as X unless rounding towards -infinity is
6511 supported. */
6512 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6515 /* Subroutine of fold() that optimizes comparisons of a division by
6516 a nonzero integer constant against an integer constant, i.e.
6517 X/C1 op C2.
6519 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6520 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6521 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6523 The function returns the constant folded tree if a simplification
6524 can be made, and NULL_TREE otherwise. */
6526 static tree
6527 fold_div_compare (location_t loc,
6528 enum tree_code code, tree type, tree arg0, tree arg1)
6530 tree prod, tmp, hi, lo;
6531 tree arg00 = TREE_OPERAND (arg0, 0);
6532 tree arg01 = TREE_OPERAND (arg0, 1);
6533 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6534 bool neg_overflow = false;
6535 bool overflow;
6537 /* We have to do this the hard way to detect unsigned overflow.
6538 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6539 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6540 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6541 neg_overflow = false;
6543 if (sign == UNSIGNED)
6545 tmp = int_const_binop (MINUS_EXPR, arg01,
6546 build_int_cst (TREE_TYPE (arg01), 1));
6547 lo = prod;
6549 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6550 val = wi::add (prod, tmp, sign, &overflow);
6551 hi = force_fit_type (TREE_TYPE (arg00), val,
6552 -1, overflow | TREE_OVERFLOW (prod));
6554 else if (tree_int_cst_sgn (arg01) >= 0)
6556 tmp = int_const_binop (MINUS_EXPR, arg01,
6557 build_int_cst (TREE_TYPE (arg01), 1));
6558 switch (tree_int_cst_sgn (arg1))
6560 case -1:
6561 neg_overflow = true;
6562 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6563 hi = prod;
6564 break;
6566 case 0:
6567 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6568 hi = tmp;
6569 break;
6571 case 1:
6572 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6573 lo = prod;
6574 break;
6576 default:
6577 gcc_unreachable ();
6580 else
6582 /* A negative divisor reverses the relational operators. */
6583 code = swap_tree_comparison (code);
6585 tmp = int_const_binop (PLUS_EXPR, arg01,
6586 build_int_cst (TREE_TYPE (arg01), 1));
6587 switch (tree_int_cst_sgn (arg1))
6589 case -1:
6590 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6591 lo = prod;
6592 break;
6594 case 0:
6595 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6596 lo = tmp;
6597 break;
6599 case 1:
6600 neg_overflow = true;
6601 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6602 hi = prod;
6603 break;
6605 default:
6606 gcc_unreachable ();
6610 switch (code)
6612 case EQ_EXPR:
6613 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6614 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6615 if (TREE_OVERFLOW (hi))
6616 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6617 if (TREE_OVERFLOW (lo))
6618 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6619 return build_range_check (loc, type, arg00, 1, lo, hi);
6621 case NE_EXPR:
6622 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6623 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6624 if (TREE_OVERFLOW (hi))
6625 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6626 if (TREE_OVERFLOW (lo))
6627 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6628 return build_range_check (loc, type, arg00, 0, lo, hi);
6630 case LT_EXPR:
6631 if (TREE_OVERFLOW (lo))
6633 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6634 return omit_one_operand_loc (loc, type, tmp, arg00);
6636 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6638 case LE_EXPR:
6639 if (TREE_OVERFLOW (hi))
6641 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6642 return omit_one_operand_loc (loc, type, tmp, arg00);
6644 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6646 case GT_EXPR:
6647 if (TREE_OVERFLOW (hi))
6649 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6650 return omit_one_operand_loc (loc, type, tmp, arg00);
6652 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6654 case GE_EXPR:
6655 if (TREE_OVERFLOW (lo))
6657 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6658 return omit_one_operand_loc (loc, type, tmp, arg00);
6660 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6662 default:
6663 break;
6666 return NULL_TREE;
6670 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6671 equality/inequality test, then return a simplified form of the test
6672 using a sign testing. Otherwise return NULL. TYPE is the desired
6673 result type. */
6675 static tree
6676 fold_single_bit_test_into_sign_test (location_t loc,
6677 enum tree_code code, tree arg0, tree arg1,
6678 tree result_type)
6680 /* If this is testing a single bit, we can optimize the test. */
6681 if ((code == NE_EXPR || code == EQ_EXPR)
6682 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6683 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6685 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6686 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6687 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6689 if (arg00 != NULL_TREE
6690 /* This is only a win if casting to a signed type is cheap,
6691 i.e. when arg00's type is not a partial mode. */
6692 && TYPE_PRECISION (TREE_TYPE (arg00))
6693 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6695 tree stype = signed_type_for (TREE_TYPE (arg00));
6696 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6697 result_type,
6698 fold_convert_loc (loc, stype, arg00),
6699 build_int_cst (stype, 0));
6703 return NULL_TREE;
6706 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6707 equality/inequality test, then return a simplified form of
6708 the test using shifts and logical operations. Otherwise return
6709 NULL. TYPE is the desired result type. */
6711 tree
6712 fold_single_bit_test (location_t loc, enum tree_code code,
6713 tree arg0, tree arg1, tree result_type)
6715 /* If this is testing a single bit, we can optimize the test. */
6716 if ((code == NE_EXPR || code == EQ_EXPR)
6717 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6718 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6720 tree inner = TREE_OPERAND (arg0, 0);
6721 tree type = TREE_TYPE (arg0);
6722 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6723 machine_mode operand_mode = TYPE_MODE (type);
6724 int ops_unsigned;
6725 tree signed_type, unsigned_type, intermediate_type;
6726 tree tem, one;
6728 /* First, see if we can fold the single bit test into a sign-bit
6729 test. */
6730 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6731 result_type);
6732 if (tem)
6733 return tem;
6735 /* Otherwise we have (A & C) != 0 where C is a single bit,
6736 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6737 Similarly for (A & C) == 0. */
6739 /* If INNER is a right shift of a constant and it plus BITNUM does
6740 not overflow, adjust BITNUM and INNER. */
6741 if (TREE_CODE (inner) == RSHIFT_EXPR
6742 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6743 && bitnum < TYPE_PRECISION (type)
6744 && wi::ltu_p (TREE_OPERAND (inner, 1),
6745 TYPE_PRECISION (type) - bitnum))
6747 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6748 inner = TREE_OPERAND (inner, 0);
6751 /* If we are going to be able to omit the AND below, we must do our
6752 operations as unsigned. If we must use the AND, we have a choice.
6753 Normally unsigned is faster, but for some machines signed is. */
6754 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6755 && !flag_syntax_only) ? 0 : 1;
6757 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6758 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6759 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6760 inner = fold_convert_loc (loc, intermediate_type, inner);
6762 if (bitnum != 0)
6763 inner = build2 (RSHIFT_EXPR, intermediate_type,
6764 inner, size_int (bitnum));
6766 one = build_int_cst (intermediate_type, 1);
6768 if (code == EQ_EXPR)
6769 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6771 /* Put the AND last so it can combine with more things. */
6772 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6774 /* Make sure to return the proper type. */
6775 inner = fold_convert_loc (loc, result_type, inner);
6777 return inner;
6779 return NULL_TREE;
6782 /* Check whether we are allowed to reorder operands arg0 and arg1,
6783 such that the evaluation of arg1 occurs before arg0. */
6785 static bool
6786 reorder_operands_p (const_tree arg0, const_tree arg1)
6788 if (! flag_evaluation_order)
6789 return true;
6790 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6791 return true;
6792 return ! TREE_SIDE_EFFECTS (arg0)
6793 && ! TREE_SIDE_EFFECTS (arg1);
6796 /* Test whether it is preferable two swap two operands, ARG0 and
6797 ARG1, for example because ARG0 is an integer constant and ARG1
6798 isn't. If REORDER is true, only recommend swapping if we can
6799 evaluate the operands in reverse order. */
6801 bool
6802 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6804 if (CONSTANT_CLASS_P (arg1))
6805 return 0;
6806 if (CONSTANT_CLASS_P (arg0))
6807 return 1;
6809 STRIP_NOPS (arg0);
6810 STRIP_NOPS (arg1);
6812 if (TREE_CONSTANT (arg1))
6813 return 0;
6814 if (TREE_CONSTANT (arg0))
6815 return 1;
6817 if (reorder && flag_evaluation_order
6818 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6819 return 0;
6821 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6822 for commutative and comparison operators. Ensuring a canonical
6823 form allows the optimizers to find additional redundancies without
6824 having to explicitly check for both orderings. */
6825 if (TREE_CODE (arg0) == SSA_NAME
6826 && TREE_CODE (arg1) == SSA_NAME
6827 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6828 return 1;
6830 /* Put SSA_NAMEs last. */
6831 if (TREE_CODE (arg1) == SSA_NAME)
6832 return 0;
6833 if (TREE_CODE (arg0) == SSA_NAME)
6834 return 1;
6836 /* Put variables last. */
6837 if (DECL_P (arg1))
6838 return 0;
6839 if (DECL_P (arg0))
6840 return 1;
6842 return 0;
6846 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6847 means A >= Y && A != MAX, but in this case we know that
6848 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6850 static tree
6851 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6853 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6855 if (TREE_CODE (bound) == LT_EXPR)
6856 a = TREE_OPERAND (bound, 0);
6857 else if (TREE_CODE (bound) == GT_EXPR)
6858 a = TREE_OPERAND (bound, 1);
6859 else
6860 return NULL_TREE;
6862 typea = TREE_TYPE (a);
6863 if (!INTEGRAL_TYPE_P (typea)
6864 && !POINTER_TYPE_P (typea))
6865 return NULL_TREE;
6867 if (TREE_CODE (ineq) == LT_EXPR)
6869 a1 = TREE_OPERAND (ineq, 1);
6870 y = TREE_OPERAND (ineq, 0);
6872 else if (TREE_CODE (ineq) == GT_EXPR)
6874 a1 = TREE_OPERAND (ineq, 0);
6875 y = TREE_OPERAND (ineq, 1);
6877 else
6878 return NULL_TREE;
6880 if (TREE_TYPE (a1) != typea)
6881 return NULL_TREE;
6883 if (POINTER_TYPE_P (typea))
6885 /* Convert the pointer types into integer before taking the difference. */
6886 tree ta = fold_convert_loc (loc, ssizetype, a);
6887 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6888 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6890 else
6891 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6893 if (!diff || !integer_onep (diff))
6894 return NULL_TREE;
6896 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6899 /* Fold a sum or difference of at least one multiplication.
6900 Returns the folded tree or NULL if no simplification could be made. */
6902 static tree
6903 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6904 tree arg0, tree arg1)
6906 tree arg00, arg01, arg10, arg11;
6907 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6909 /* (A * C) +- (B * C) -> (A+-B) * C.
6910 (A * C) +- A -> A * (C+-1).
6911 We are most concerned about the case where C is a constant,
6912 but other combinations show up during loop reduction. Since
6913 it is not difficult, try all four possibilities. */
6915 if (TREE_CODE (arg0) == MULT_EXPR)
6917 arg00 = TREE_OPERAND (arg0, 0);
6918 arg01 = TREE_OPERAND (arg0, 1);
6920 else if (TREE_CODE (arg0) == INTEGER_CST)
6922 arg00 = build_one_cst (type);
6923 arg01 = arg0;
6925 else
6927 /* We cannot generate constant 1 for fract. */
6928 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6929 return NULL_TREE;
6930 arg00 = arg0;
6931 arg01 = build_one_cst (type);
6933 if (TREE_CODE (arg1) == MULT_EXPR)
6935 arg10 = TREE_OPERAND (arg1, 0);
6936 arg11 = TREE_OPERAND (arg1, 1);
6938 else if (TREE_CODE (arg1) == INTEGER_CST)
6940 arg10 = build_one_cst (type);
6941 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6942 the purpose of this canonicalization. */
6943 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6944 && negate_expr_p (arg1)
6945 && code == PLUS_EXPR)
6947 arg11 = negate_expr (arg1);
6948 code = MINUS_EXPR;
6950 else
6951 arg11 = arg1;
6953 else
6955 /* We cannot generate constant 1 for fract. */
6956 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6957 return NULL_TREE;
6958 arg10 = arg1;
6959 arg11 = build_one_cst (type);
6961 same = NULL_TREE;
6963 if (operand_equal_p (arg01, arg11, 0))
6964 same = arg01, alt0 = arg00, alt1 = arg10;
6965 else if (operand_equal_p (arg00, arg10, 0))
6966 same = arg00, alt0 = arg01, alt1 = arg11;
6967 else if (operand_equal_p (arg00, arg11, 0))
6968 same = arg00, alt0 = arg01, alt1 = arg10;
6969 else if (operand_equal_p (arg01, arg10, 0))
6970 same = arg01, alt0 = arg00, alt1 = arg11;
6972 /* No identical multiplicands; see if we can find a common
6973 power-of-two factor in non-power-of-two multiplies. This
6974 can help in multi-dimensional array access. */
6975 else if (tree_fits_shwi_p (arg01)
6976 && tree_fits_shwi_p (arg11))
6978 HOST_WIDE_INT int01, int11, tmp;
6979 bool swap = false;
6980 tree maybe_same;
6981 int01 = tree_to_shwi (arg01);
6982 int11 = tree_to_shwi (arg11);
6984 /* Move min of absolute values to int11. */
6985 if (absu_hwi (int01) < absu_hwi (int11))
6987 tmp = int01, int01 = int11, int11 = tmp;
6988 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6989 maybe_same = arg01;
6990 swap = true;
6992 else
6993 maybe_same = arg11;
6995 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6996 /* The remainder should not be a constant, otherwise we
6997 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6998 increased the number of multiplications necessary. */
6999 && TREE_CODE (arg10) != INTEGER_CST)
7001 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7002 build_int_cst (TREE_TYPE (arg00),
7003 int01 / int11));
7004 alt1 = arg10;
7005 same = maybe_same;
7006 if (swap)
7007 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7011 if (same)
7012 return fold_build2_loc (loc, MULT_EXPR, type,
7013 fold_build2_loc (loc, code, type,
7014 fold_convert_loc (loc, type, alt0),
7015 fold_convert_loc (loc, type, alt1)),
7016 fold_convert_loc (loc, type, same));
7018 return NULL_TREE;
7021 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7022 specified by EXPR into the buffer PTR of length LEN bytes.
7023 Return the number of bytes placed in the buffer, or zero
7024 upon failure. */
7026 static int
7027 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7029 tree type = TREE_TYPE (expr);
7030 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7031 int byte, offset, word, words;
7032 unsigned char value;
7034 if ((off == -1 && total_bytes > len)
7035 || off >= total_bytes)
7036 return 0;
7037 if (off == -1)
7038 off = 0;
7039 words = total_bytes / UNITS_PER_WORD;
7041 for (byte = 0; byte < total_bytes; byte++)
7043 int bitpos = byte * BITS_PER_UNIT;
7044 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7045 number of bytes. */
7046 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7048 if (total_bytes > UNITS_PER_WORD)
7050 word = byte / UNITS_PER_WORD;
7051 if (WORDS_BIG_ENDIAN)
7052 word = (words - 1) - word;
7053 offset = word * UNITS_PER_WORD;
7054 if (BYTES_BIG_ENDIAN)
7055 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7056 else
7057 offset += byte % UNITS_PER_WORD;
7059 else
7060 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7061 if (offset >= off
7062 && offset - off < len)
7063 ptr[offset - off] = value;
7065 return MIN (len, total_bytes - off);
7069 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7070 specified by EXPR into the buffer PTR of length LEN bytes.
7071 Return the number of bytes placed in the buffer, or zero
7072 upon failure. */
7074 static int
7075 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7077 tree type = TREE_TYPE (expr);
7078 machine_mode mode = TYPE_MODE (type);
7079 int total_bytes = GET_MODE_SIZE (mode);
7080 FIXED_VALUE_TYPE value;
7081 tree i_value, i_type;
7083 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7084 return 0;
7086 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7088 if (NULL_TREE == i_type
7089 || TYPE_PRECISION (i_type) != total_bytes)
7090 return 0;
7092 value = TREE_FIXED_CST (expr);
7093 i_value = double_int_to_tree (i_type, value.data);
7095 return native_encode_int (i_value, ptr, len, off);
7099 /* Subroutine of native_encode_expr. Encode the REAL_CST
7100 specified by EXPR into the buffer PTR of length LEN bytes.
7101 Return the number of bytes placed in the buffer, or zero
7102 upon failure. */
7104 static int
7105 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7107 tree type = TREE_TYPE (expr);
7108 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7109 int byte, offset, word, words, bitpos;
7110 unsigned char value;
7112 /* There are always 32 bits in each long, no matter the size of
7113 the hosts long. We handle floating point representations with
7114 up to 192 bits. */
7115 long tmp[6];
7117 if ((off == -1 && total_bytes > len)
7118 || off >= total_bytes)
7119 return 0;
7120 if (off == -1)
7121 off = 0;
7122 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7124 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7126 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7127 bitpos += BITS_PER_UNIT)
7129 byte = (bitpos / BITS_PER_UNIT) & 3;
7130 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7132 if (UNITS_PER_WORD < 4)
7134 word = byte / UNITS_PER_WORD;
7135 if (WORDS_BIG_ENDIAN)
7136 word = (words - 1) - word;
7137 offset = word * UNITS_PER_WORD;
7138 if (BYTES_BIG_ENDIAN)
7139 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7140 else
7141 offset += byte % UNITS_PER_WORD;
7143 else
7144 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7145 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7146 if (offset >= off
7147 && offset - off < len)
7148 ptr[offset - off] = value;
7150 return MIN (len, total_bytes - off);
7153 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7154 specified by EXPR into the buffer PTR of length LEN bytes.
7155 Return the number of bytes placed in the buffer, or zero
7156 upon failure. */
7158 static int
7159 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7161 int rsize, isize;
7162 tree part;
7164 part = TREE_REALPART (expr);
7165 rsize = native_encode_expr (part, ptr, len, off);
7166 if (off == -1
7167 && rsize == 0)
7168 return 0;
7169 part = TREE_IMAGPART (expr);
7170 if (off != -1)
7171 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7172 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7173 if (off == -1
7174 && isize != rsize)
7175 return 0;
7176 return rsize + isize;
7180 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7181 specified by EXPR into the buffer PTR of length LEN bytes.
7182 Return the number of bytes placed in the buffer, or zero
7183 upon failure. */
7185 static int
7186 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7188 unsigned i, count;
7189 int size, offset;
7190 tree itype, elem;
7192 offset = 0;
7193 count = VECTOR_CST_NELTS (expr);
7194 itype = TREE_TYPE (TREE_TYPE (expr));
7195 size = GET_MODE_SIZE (TYPE_MODE (itype));
7196 for (i = 0; i < count; i++)
7198 if (off >= size)
7200 off -= size;
7201 continue;
7203 elem = VECTOR_CST_ELT (expr, i);
7204 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7205 if ((off == -1 && res != size)
7206 || res == 0)
7207 return 0;
7208 offset += res;
7209 if (offset >= len)
7210 return offset;
7211 if (off != -1)
7212 off = 0;
7214 return offset;
7218 /* Subroutine of native_encode_expr. Encode the STRING_CST
7219 specified by EXPR into the buffer PTR of length LEN bytes.
7220 Return the number of bytes placed in the buffer, or zero
7221 upon failure. */
7223 static int
7224 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7226 tree type = TREE_TYPE (expr);
7227 HOST_WIDE_INT total_bytes;
7229 if (TREE_CODE (type) != ARRAY_TYPE
7230 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7231 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7232 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7233 return 0;
7234 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7235 if ((off == -1 && total_bytes > len)
7236 || off >= total_bytes)
7237 return 0;
7238 if (off == -1)
7239 off = 0;
7240 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7242 int written = 0;
7243 if (off < TREE_STRING_LENGTH (expr))
7245 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7246 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7248 memset (ptr + written, 0,
7249 MIN (total_bytes - written, len - written));
7251 else
7252 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7253 return MIN (total_bytes - off, len);
7257 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7258 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7259 buffer PTR of length LEN bytes. If OFF is not -1 then start
7260 the encoding at byte offset OFF and encode at most LEN bytes.
7261 Return the number of bytes placed in the buffer, or zero upon failure. */
7264 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7266 /* We don't support starting at negative offset and -1 is special. */
7267 if (off < -1)
7268 return 0;
7270 switch (TREE_CODE (expr))
7272 case INTEGER_CST:
7273 return native_encode_int (expr, ptr, len, off);
7275 case REAL_CST:
7276 return native_encode_real (expr, ptr, len, off);
7278 case FIXED_CST:
7279 return native_encode_fixed (expr, ptr, len, off);
7281 case COMPLEX_CST:
7282 return native_encode_complex (expr, ptr, len, off);
7284 case VECTOR_CST:
7285 return native_encode_vector (expr, ptr, len, off);
7287 case STRING_CST:
7288 return native_encode_string (expr, ptr, len, off);
7290 default:
7291 return 0;
7296 /* Subroutine of native_interpret_expr. Interpret the contents of
7297 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7298 If the buffer cannot be interpreted, return NULL_TREE. */
7300 static tree
7301 native_interpret_int (tree type, const unsigned char *ptr, int len)
7303 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7305 if (total_bytes > len
7306 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7307 return NULL_TREE;
7309 wide_int result = wi::from_buffer (ptr, total_bytes);
7311 return wide_int_to_tree (type, result);
7315 /* Subroutine of native_interpret_expr. Interpret the contents of
7316 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7317 If the buffer cannot be interpreted, return NULL_TREE. */
7319 static tree
7320 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7322 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7323 double_int result;
7324 FIXED_VALUE_TYPE fixed_value;
7326 if (total_bytes > len
7327 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7328 return NULL_TREE;
7330 result = double_int::from_buffer (ptr, total_bytes);
7331 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7333 return build_fixed (type, fixed_value);
7337 /* Subroutine of native_interpret_expr. Interpret the contents of
7338 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7339 If the buffer cannot be interpreted, return NULL_TREE. */
7341 static tree
7342 native_interpret_real (tree type, const unsigned char *ptr, int len)
7344 machine_mode mode = TYPE_MODE (type);
7345 int total_bytes = GET_MODE_SIZE (mode);
7346 unsigned char value;
7347 /* There are always 32 bits in each long, no matter the size of
7348 the hosts long. We handle floating point representations with
7349 up to 192 bits. */
7350 REAL_VALUE_TYPE r;
7351 long tmp[6];
7353 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7354 if (total_bytes > len || total_bytes > 24)
7355 return NULL_TREE;
7356 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7358 memset (tmp, 0, sizeof (tmp));
7359 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7360 bitpos += BITS_PER_UNIT)
7362 /* Both OFFSET and BYTE index within a long;
7363 bitpos indexes the whole float. */
7364 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7365 if (UNITS_PER_WORD < 4)
7367 int word = byte / UNITS_PER_WORD;
7368 if (WORDS_BIG_ENDIAN)
7369 word = (words - 1) - word;
7370 offset = word * UNITS_PER_WORD;
7371 if (BYTES_BIG_ENDIAN)
7372 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7373 else
7374 offset += byte % UNITS_PER_WORD;
7376 else
7378 offset = byte;
7379 if (BYTES_BIG_ENDIAN)
7381 /* Reverse bytes within each long, or within the entire float
7382 if it's smaller than a long (for HFmode). */
7383 offset = MIN (3, total_bytes - 1) - offset;
7384 gcc_assert (offset >= 0);
7387 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7389 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7392 real_from_target (&r, tmp, mode);
7393 return build_real (type, r);
7397 /* Subroutine of native_interpret_expr. Interpret the contents of
7398 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7399 If the buffer cannot be interpreted, return NULL_TREE. */
7401 static tree
7402 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7404 tree etype, rpart, ipart;
7405 int size;
7407 etype = TREE_TYPE (type);
7408 size = GET_MODE_SIZE (TYPE_MODE (etype));
7409 if (size * 2 > len)
7410 return NULL_TREE;
7411 rpart = native_interpret_expr (etype, ptr, size);
7412 if (!rpart)
7413 return NULL_TREE;
7414 ipart = native_interpret_expr (etype, ptr+size, size);
7415 if (!ipart)
7416 return NULL_TREE;
7417 return build_complex (type, rpart, ipart);
7421 /* Subroutine of native_interpret_expr. Interpret the contents of
7422 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7423 If the buffer cannot be interpreted, return NULL_TREE. */
7425 static tree
7426 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7428 tree etype, elem;
7429 int i, size, count;
7430 tree *elements;
7432 etype = TREE_TYPE (type);
7433 size = GET_MODE_SIZE (TYPE_MODE (etype));
7434 count = TYPE_VECTOR_SUBPARTS (type);
7435 if (size * count > len)
7436 return NULL_TREE;
7438 elements = XALLOCAVEC (tree, count);
7439 for (i = count - 1; i >= 0; i--)
7441 elem = native_interpret_expr (etype, ptr+(i*size), size);
7442 if (!elem)
7443 return NULL_TREE;
7444 elements[i] = elem;
7446 return build_vector (type, elements);
7450 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7451 the buffer PTR of length LEN as a constant of type TYPE. For
7452 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7453 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7454 return NULL_TREE. */
7456 tree
7457 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7459 switch (TREE_CODE (type))
7461 case INTEGER_TYPE:
7462 case ENUMERAL_TYPE:
7463 case BOOLEAN_TYPE:
7464 case POINTER_TYPE:
7465 case REFERENCE_TYPE:
7466 return native_interpret_int (type, ptr, len);
7468 case REAL_TYPE:
7469 return native_interpret_real (type, ptr, len);
7471 case FIXED_POINT_TYPE:
7472 return native_interpret_fixed (type, ptr, len);
7474 case COMPLEX_TYPE:
7475 return native_interpret_complex (type, ptr, len);
7477 case VECTOR_TYPE:
7478 return native_interpret_vector (type, ptr, len);
7480 default:
7481 return NULL_TREE;
7485 /* Returns true if we can interpret the contents of a native encoding
7486 as TYPE. */
7488 static bool
7489 can_native_interpret_type_p (tree type)
7491 switch (TREE_CODE (type))
7493 case INTEGER_TYPE:
7494 case ENUMERAL_TYPE:
7495 case BOOLEAN_TYPE:
7496 case POINTER_TYPE:
7497 case REFERENCE_TYPE:
7498 case FIXED_POINT_TYPE:
7499 case REAL_TYPE:
7500 case COMPLEX_TYPE:
7501 case VECTOR_TYPE:
7502 return true;
7503 default:
7504 return false;
7508 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7509 TYPE at compile-time. If we're unable to perform the conversion
7510 return NULL_TREE. */
7512 static tree
7513 fold_view_convert_expr (tree type, tree expr)
7515 /* We support up to 512-bit values (for V8DFmode). */
7516 unsigned char buffer[64];
7517 int len;
7519 /* Check that the host and target are sane. */
7520 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7521 return NULL_TREE;
7523 len = native_encode_expr (expr, buffer, sizeof (buffer));
7524 if (len == 0)
7525 return NULL_TREE;
7527 return native_interpret_expr (type, buffer, len);
7530 /* Build an expression for the address of T. Folds away INDIRECT_REF
7531 to avoid confusing the gimplify process. */
7533 tree
7534 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7536 /* The size of the object is not relevant when talking about its address. */
7537 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7538 t = TREE_OPERAND (t, 0);
7540 if (TREE_CODE (t) == INDIRECT_REF)
7542 t = TREE_OPERAND (t, 0);
7544 if (TREE_TYPE (t) != ptrtype)
7545 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7547 else if (TREE_CODE (t) == MEM_REF
7548 && integer_zerop (TREE_OPERAND (t, 1)))
7549 return TREE_OPERAND (t, 0);
7550 else if (TREE_CODE (t) == MEM_REF
7551 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7552 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7553 TREE_OPERAND (t, 0),
7554 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7555 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7557 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7559 if (TREE_TYPE (t) != ptrtype)
7560 t = fold_convert_loc (loc, ptrtype, t);
7562 else
7563 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7565 return t;
7568 /* Build an expression for the address of T. */
7570 tree
7571 build_fold_addr_expr_loc (location_t loc, tree t)
7573 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7575 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7578 /* Fold a unary expression of code CODE and type TYPE with operand
7579 OP0. Return the folded expression if folding is successful.
7580 Otherwise, return NULL_TREE. */
7582 tree
7583 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7585 tree tem;
7586 tree arg0;
7587 enum tree_code_class kind = TREE_CODE_CLASS (code);
7589 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7590 && TREE_CODE_LENGTH (code) == 1);
7592 arg0 = op0;
7593 if (arg0)
7595 if (CONVERT_EXPR_CODE_P (code)
7596 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7598 /* Don't use STRIP_NOPS, because signedness of argument type
7599 matters. */
7600 STRIP_SIGN_NOPS (arg0);
7602 else
7604 /* Strip any conversions that don't change the mode. This
7605 is safe for every expression, except for a comparison
7606 expression because its signedness is derived from its
7607 operands.
7609 Note that this is done as an internal manipulation within
7610 the constant folder, in order to find the simplest
7611 representation of the arguments so that their form can be
7612 studied. In any cases, the appropriate type conversions
7613 should be put back in the tree that will get out of the
7614 constant folder. */
7615 STRIP_NOPS (arg0);
7618 if (CONSTANT_CLASS_P (arg0))
7620 tree tem = const_unop (code, type, arg0);
7621 if (tem)
7623 if (TREE_TYPE (tem) != type)
7624 tem = fold_convert_loc (loc, type, tem);
7625 return tem;
7630 tem = generic_simplify (loc, code, type, op0);
7631 if (tem)
7632 return tem;
7634 if (TREE_CODE_CLASS (code) == tcc_unary)
7636 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7637 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7638 fold_build1_loc (loc, code, type,
7639 fold_convert_loc (loc, TREE_TYPE (op0),
7640 TREE_OPERAND (arg0, 1))));
7641 else if (TREE_CODE (arg0) == COND_EXPR)
7643 tree arg01 = TREE_OPERAND (arg0, 1);
7644 tree arg02 = TREE_OPERAND (arg0, 2);
7645 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7646 arg01 = fold_build1_loc (loc, code, type,
7647 fold_convert_loc (loc,
7648 TREE_TYPE (op0), arg01));
7649 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7650 arg02 = fold_build1_loc (loc, code, type,
7651 fold_convert_loc (loc,
7652 TREE_TYPE (op0), arg02));
7653 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7654 arg01, arg02);
7656 /* If this was a conversion, and all we did was to move into
7657 inside the COND_EXPR, bring it back out. But leave it if
7658 it is a conversion from integer to integer and the
7659 result precision is no wider than a word since such a
7660 conversion is cheap and may be optimized away by combine,
7661 while it couldn't if it were outside the COND_EXPR. Then return
7662 so we don't get into an infinite recursion loop taking the
7663 conversion out and then back in. */
7665 if ((CONVERT_EXPR_CODE_P (code)
7666 || code == NON_LVALUE_EXPR)
7667 && TREE_CODE (tem) == COND_EXPR
7668 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7669 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7670 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7671 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7672 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7673 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7674 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7675 && (INTEGRAL_TYPE_P
7676 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7677 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7678 || flag_syntax_only))
7679 tem = build1_loc (loc, code, type,
7680 build3 (COND_EXPR,
7681 TREE_TYPE (TREE_OPERAND
7682 (TREE_OPERAND (tem, 1), 0)),
7683 TREE_OPERAND (tem, 0),
7684 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7685 TREE_OPERAND (TREE_OPERAND (tem, 2),
7686 0)));
7687 return tem;
7691 switch (code)
7693 case NON_LVALUE_EXPR:
7694 if (!maybe_lvalue_p (op0))
7695 return fold_convert_loc (loc, type, op0);
7696 return NULL_TREE;
7698 CASE_CONVERT:
7699 case FLOAT_EXPR:
7700 case FIX_TRUNC_EXPR:
7701 if (COMPARISON_CLASS_P (op0))
7703 /* If we have (type) (a CMP b) and type is an integral type, return
7704 new expression involving the new type. Canonicalize
7705 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7706 non-integral type.
7707 Do not fold the result as that would not simplify further, also
7708 folding again results in recursions. */
7709 if (TREE_CODE (type) == BOOLEAN_TYPE)
7710 return build2_loc (loc, TREE_CODE (op0), type,
7711 TREE_OPERAND (op0, 0),
7712 TREE_OPERAND (op0, 1));
7713 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7714 && TREE_CODE (type) != VECTOR_TYPE)
7715 return build3_loc (loc, COND_EXPR, type, op0,
7716 constant_boolean_node (true, type),
7717 constant_boolean_node (false, type));
7720 /* Handle (T *)&A.B.C for A being of type T and B and C
7721 living at offset zero. This occurs frequently in
7722 C++ upcasting and then accessing the base. */
7723 if (TREE_CODE (op0) == ADDR_EXPR
7724 && POINTER_TYPE_P (type)
7725 && handled_component_p (TREE_OPERAND (op0, 0)))
7727 HOST_WIDE_INT bitsize, bitpos;
7728 tree offset;
7729 machine_mode mode;
7730 int unsignedp, reversep, volatilep;
7731 tree base
7732 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7733 &offset, &mode, &unsignedp, &reversep,
7734 &volatilep);
7735 /* If the reference was to a (constant) zero offset, we can use
7736 the address of the base if it has the same base type
7737 as the result type and the pointer type is unqualified. */
7738 if (! offset && bitpos == 0
7739 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7740 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7741 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7742 return fold_convert_loc (loc, type,
7743 build_fold_addr_expr_loc (loc, base));
7746 if (TREE_CODE (op0) == MODIFY_EXPR
7747 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7748 /* Detect assigning a bitfield. */
7749 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7750 && DECL_BIT_FIELD
7751 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7753 /* Don't leave an assignment inside a conversion
7754 unless assigning a bitfield. */
7755 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7756 /* First do the assignment, then return converted constant. */
7757 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7758 TREE_NO_WARNING (tem) = 1;
7759 TREE_USED (tem) = 1;
7760 return tem;
7763 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7764 constants (if x has signed type, the sign bit cannot be set
7765 in c). This folds extension into the BIT_AND_EXPR.
7766 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7767 very likely don't have maximal range for their precision and this
7768 transformation effectively doesn't preserve non-maximal ranges. */
7769 if (TREE_CODE (type) == INTEGER_TYPE
7770 && TREE_CODE (op0) == BIT_AND_EXPR
7771 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7773 tree and_expr = op0;
7774 tree and0 = TREE_OPERAND (and_expr, 0);
7775 tree and1 = TREE_OPERAND (and_expr, 1);
7776 int change = 0;
7778 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7779 || (TYPE_PRECISION (type)
7780 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7781 change = 1;
7782 else if (TYPE_PRECISION (TREE_TYPE (and1))
7783 <= HOST_BITS_PER_WIDE_INT
7784 && tree_fits_uhwi_p (and1))
7786 unsigned HOST_WIDE_INT cst;
7788 cst = tree_to_uhwi (and1);
7789 cst &= HOST_WIDE_INT_M1U
7790 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7791 change = (cst == 0);
7792 if (change
7793 && !flag_syntax_only
7794 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7795 == ZERO_EXTEND))
7797 tree uns = unsigned_type_for (TREE_TYPE (and0));
7798 and0 = fold_convert_loc (loc, uns, and0);
7799 and1 = fold_convert_loc (loc, uns, and1);
7802 if (change)
7804 tem = force_fit_type (type, wi::to_widest (and1), 0,
7805 TREE_OVERFLOW (and1));
7806 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7807 fold_convert_loc (loc, type, and0), tem);
7811 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7812 cast (T1)X will fold away. We assume that this happens when X itself
7813 is a cast. */
7814 if (POINTER_TYPE_P (type)
7815 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7816 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
7818 tree arg00 = TREE_OPERAND (arg0, 0);
7819 tree arg01 = TREE_OPERAND (arg0, 1);
7821 return fold_build_pointer_plus_loc
7822 (loc, fold_convert_loc (loc, type, arg00), arg01);
7825 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7826 of the same precision, and X is an integer type not narrower than
7827 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7828 if (INTEGRAL_TYPE_P (type)
7829 && TREE_CODE (op0) == BIT_NOT_EXPR
7830 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7831 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7832 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7834 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7835 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7836 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7837 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7838 fold_convert_loc (loc, type, tem));
7841 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7842 type of X and Y (integer types only). */
7843 if (INTEGRAL_TYPE_P (type)
7844 && TREE_CODE (op0) == MULT_EXPR
7845 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7846 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7848 /* Be careful not to introduce new overflows. */
7849 tree mult_type;
7850 if (TYPE_OVERFLOW_WRAPS (type))
7851 mult_type = type;
7852 else
7853 mult_type = unsigned_type_for (type);
7855 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7857 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7858 fold_convert_loc (loc, mult_type,
7859 TREE_OPERAND (op0, 0)),
7860 fold_convert_loc (loc, mult_type,
7861 TREE_OPERAND (op0, 1)));
7862 return fold_convert_loc (loc, type, tem);
7866 return NULL_TREE;
7868 case VIEW_CONVERT_EXPR:
7869 if (TREE_CODE (op0) == MEM_REF)
7871 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
7872 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
7873 tem = fold_build2_loc (loc, MEM_REF, type,
7874 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7875 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
7876 return tem;
7879 return NULL_TREE;
7881 case NEGATE_EXPR:
7882 tem = fold_negate_expr (loc, arg0);
7883 if (tem)
7884 return fold_convert_loc (loc, type, tem);
7885 return NULL_TREE;
7887 case ABS_EXPR:
7888 /* Convert fabs((double)float) into (double)fabsf(float). */
7889 if (TREE_CODE (arg0) == NOP_EXPR
7890 && TREE_CODE (type) == REAL_TYPE)
7892 tree targ0 = strip_float_extensions (arg0);
7893 if (targ0 != arg0)
7894 return fold_convert_loc (loc, type,
7895 fold_build1_loc (loc, ABS_EXPR,
7896 TREE_TYPE (targ0),
7897 targ0));
7899 return NULL_TREE;
7901 case BIT_NOT_EXPR:
7902 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7903 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7904 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7905 fold_convert_loc (loc, type,
7906 TREE_OPERAND (arg0, 0)))))
7907 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7908 fold_convert_loc (loc, type,
7909 TREE_OPERAND (arg0, 1)));
7910 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7911 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7912 fold_convert_loc (loc, type,
7913 TREE_OPERAND (arg0, 1)))))
7914 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7915 fold_convert_loc (loc, type,
7916 TREE_OPERAND (arg0, 0)), tem);
7918 return NULL_TREE;
7920 case TRUTH_NOT_EXPR:
7921 /* Note that the operand of this must be an int
7922 and its values must be 0 or 1.
7923 ("true" is a fixed value perhaps depending on the language,
7924 but we don't handle values other than 1 correctly yet.) */
7925 tem = fold_truth_not_expr (loc, arg0);
7926 if (!tem)
7927 return NULL_TREE;
7928 return fold_convert_loc (loc, type, tem);
7930 case INDIRECT_REF:
7931 /* Fold *&X to X if X is an lvalue. */
7932 if (TREE_CODE (op0) == ADDR_EXPR)
7934 tree op00 = TREE_OPERAND (op0, 0);
7935 if ((TREE_CODE (op00) == VAR_DECL
7936 || TREE_CODE (op00) == PARM_DECL
7937 || TREE_CODE (op00) == RESULT_DECL)
7938 && !TREE_READONLY (op00))
7939 return op00;
7941 return NULL_TREE;
7943 default:
7944 return NULL_TREE;
7945 } /* switch (code) */
7949 /* If the operation was a conversion do _not_ mark a resulting constant
7950 with TREE_OVERFLOW if the original constant was not. These conversions
7951 have implementation defined behavior and retaining the TREE_OVERFLOW
7952 flag here would confuse later passes such as VRP. */
7953 tree
7954 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7955 tree type, tree op0)
7957 tree res = fold_unary_loc (loc, code, type, op0);
7958 if (res
7959 && TREE_CODE (res) == INTEGER_CST
7960 && TREE_CODE (op0) == INTEGER_CST
7961 && CONVERT_EXPR_CODE_P (code))
7962 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7964 return res;
7967 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7968 operands OP0 and OP1. LOC is the location of the resulting expression.
7969 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7970 Return the folded expression if folding is successful. Otherwise,
7971 return NULL_TREE. */
7972 static tree
7973 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7974 tree arg0, tree arg1, tree op0, tree op1)
7976 tree tem;
7978 /* We only do these simplifications if we are optimizing. */
7979 if (!optimize)
7980 return NULL_TREE;
7982 /* Check for things like (A || B) && (A || C). We can convert this
7983 to A || (B && C). Note that either operator can be any of the four
7984 truth and/or operations and the transformation will still be
7985 valid. Also note that we only care about order for the
7986 ANDIF and ORIF operators. If B contains side effects, this
7987 might change the truth-value of A. */
7988 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7989 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7990 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7991 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7992 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7993 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7995 tree a00 = TREE_OPERAND (arg0, 0);
7996 tree a01 = TREE_OPERAND (arg0, 1);
7997 tree a10 = TREE_OPERAND (arg1, 0);
7998 tree a11 = TREE_OPERAND (arg1, 1);
7999 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8000 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8001 && (code == TRUTH_AND_EXPR
8002 || code == TRUTH_OR_EXPR));
8004 if (operand_equal_p (a00, a10, 0))
8005 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8006 fold_build2_loc (loc, code, type, a01, a11));
8007 else if (commutative && operand_equal_p (a00, a11, 0))
8008 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8009 fold_build2_loc (loc, code, type, a01, a10));
8010 else if (commutative && operand_equal_p (a01, a10, 0))
8011 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8012 fold_build2_loc (loc, code, type, a00, a11));
8014 /* This case if tricky because we must either have commutative
8015 operators or else A10 must not have side-effects. */
8017 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8018 && operand_equal_p (a01, a11, 0))
8019 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8020 fold_build2_loc (loc, code, type, a00, a10),
8021 a01);
8024 /* See if we can build a range comparison. */
8025 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
8026 return tem;
8028 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8029 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8031 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8032 if (tem)
8033 return fold_build2_loc (loc, code, type, tem, arg1);
8036 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8037 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8039 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8040 if (tem)
8041 return fold_build2_loc (loc, code, type, arg0, tem);
8044 /* Check for the possibility of merging component references. If our
8045 lhs is another similar operation, try to merge its rhs with our
8046 rhs. Then try to merge our lhs and rhs. */
8047 if (TREE_CODE (arg0) == code
8048 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
8049 TREE_OPERAND (arg0, 1), arg1)))
8050 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8052 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8053 return tem;
8055 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8056 && (code == TRUTH_AND_EXPR
8057 || code == TRUTH_ANDIF_EXPR
8058 || code == TRUTH_OR_EXPR
8059 || code == TRUTH_ORIF_EXPR))
8061 enum tree_code ncode, icode;
8063 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8064 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8065 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8067 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8068 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8069 We don't want to pack more than two leafs to a non-IF AND/OR
8070 expression.
8071 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8072 equal to IF-CODE, then we don't want to add right-hand operand.
8073 If the inner right-hand side of left-hand operand has
8074 side-effects, or isn't simple, then we can't add to it,
8075 as otherwise we might destroy if-sequence. */
8076 if (TREE_CODE (arg0) == icode
8077 && simple_operand_p_2 (arg1)
8078 /* Needed for sequence points to handle trappings, and
8079 side-effects. */
8080 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8082 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8083 arg1);
8084 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8085 tem);
8087 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8088 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8089 else if (TREE_CODE (arg1) == icode
8090 && simple_operand_p_2 (arg0)
8091 /* Needed for sequence points to handle trappings, and
8092 side-effects. */
8093 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8095 tem = fold_build2_loc (loc, ncode, type,
8096 arg0, TREE_OPERAND (arg1, 0));
8097 return fold_build2_loc (loc, icode, type, tem,
8098 TREE_OPERAND (arg1, 1));
8100 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8101 into (A OR B).
8102 For sequence point consistancy, we need to check for trapping,
8103 and side-effects. */
8104 else if (code == icode && simple_operand_p_2 (arg0)
8105 && simple_operand_p_2 (arg1))
8106 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8109 return NULL_TREE;
8112 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8113 by changing CODE to reduce the magnitude of constants involved in
8114 ARG0 of the comparison.
8115 Returns a canonicalized comparison tree if a simplification was
8116 possible, otherwise returns NULL_TREE.
8117 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8118 valid if signed overflow is undefined. */
8120 static tree
8121 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8122 tree arg0, tree arg1,
8123 bool *strict_overflow_p)
8125 enum tree_code code0 = TREE_CODE (arg0);
8126 tree t, cst0 = NULL_TREE;
8127 int sgn0;
8129 /* Match A +- CST code arg1. We can change this only if overflow
8130 is undefined. */
8131 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8132 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8133 /* In principle pointers also have undefined overflow behavior,
8134 but that causes problems elsewhere. */
8135 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8136 && (code0 == MINUS_EXPR
8137 || code0 == PLUS_EXPR)
8138 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8139 return NULL_TREE;
8141 /* Identify the constant in arg0 and its sign. */
8142 cst0 = TREE_OPERAND (arg0, 1);
8143 sgn0 = tree_int_cst_sgn (cst0);
8145 /* Overflowed constants and zero will cause problems. */
8146 if (integer_zerop (cst0)
8147 || TREE_OVERFLOW (cst0))
8148 return NULL_TREE;
8150 /* See if we can reduce the magnitude of the constant in
8151 arg0 by changing the comparison code. */
8152 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8153 if (code == LT_EXPR
8154 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8155 code = LE_EXPR;
8156 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8157 else if (code == GT_EXPR
8158 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8159 code = GE_EXPR;
8160 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8161 else if (code == LE_EXPR
8162 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8163 code = LT_EXPR;
8164 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8165 else if (code == GE_EXPR
8166 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8167 code = GT_EXPR;
8168 else
8169 return NULL_TREE;
8170 *strict_overflow_p = true;
8172 /* Now build the constant reduced in magnitude. But not if that
8173 would produce one outside of its types range. */
8174 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8175 && ((sgn0 == 1
8176 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8177 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8178 || (sgn0 == -1
8179 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8180 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8181 return NULL_TREE;
8183 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8184 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8185 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8186 t = fold_convert (TREE_TYPE (arg1), t);
8188 return fold_build2_loc (loc, code, type, t, arg1);
8191 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8192 overflow further. Try to decrease the magnitude of constants involved
8193 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8194 and put sole constants at the second argument position.
8195 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8197 static tree
8198 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8199 tree arg0, tree arg1)
8201 tree t;
8202 bool strict_overflow_p;
8203 const char * const warnmsg = G_("assuming signed overflow does not occur "
8204 "when reducing constant in comparison");
8206 /* Try canonicalization by simplifying arg0. */
8207 strict_overflow_p = false;
8208 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8209 &strict_overflow_p);
8210 if (t)
8212 if (strict_overflow_p)
8213 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8214 return t;
8217 /* Try canonicalization by simplifying arg1 using the swapped
8218 comparison. */
8219 code = swap_tree_comparison (code);
8220 strict_overflow_p = false;
8221 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8222 &strict_overflow_p);
8223 if (t && strict_overflow_p)
8224 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8225 return t;
8228 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8229 space. This is used to avoid issuing overflow warnings for
8230 expressions like &p->x which can not wrap. */
8232 static bool
8233 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8235 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8236 return true;
8238 if (bitpos < 0)
8239 return true;
8241 wide_int wi_offset;
8242 int precision = TYPE_PRECISION (TREE_TYPE (base));
8243 if (offset == NULL_TREE)
8244 wi_offset = wi::zero (precision);
8245 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8246 return true;
8247 else
8248 wi_offset = offset;
8250 bool overflow;
8251 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8252 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8253 if (overflow)
8254 return true;
8256 if (!wi::fits_uhwi_p (total))
8257 return true;
8259 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8260 if (size <= 0)
8261 return true;
8263 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8264 array. */
8265 if (TREE_CODE (base) == ADDR_EXPR)
8267 HOST_WIDE_INT base_size;
8269 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8270 if (base_size > 0 && size < base_size)
8271 size = base_size;
8274 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8277 /* Return a positive integer when the symbol DECL is known to have
8278 a nonzero address, zero when it's known not to (e.g., it's a weak
8279 symbol), and a negative integer when the symbol is not yet in the
8280 symbol table and so whether or not its address is zero is unknown. */
8281 static int
8282 maybe_nonzero_address (tree decl)
8284 if (DECL_P (decl) && decl_in_symtab_p (decl))
8285 if (struct symtab_node *symbol = symtab_node::get_create (decl))
8286 return symbol->nonzero_address ();
8288 return -1;
8291 /* Subroutine of fold_binary. This routine performs all of the
8292 transformations that are common to the equality/inequality
8293 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8294 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8295 fold_binary should call fold_binary. Fold a comparison with
8296 tree code CODE and type TYPE with operands OP0 and OP1. Return
8297 the folded comparison or NULL_TREE. */
8299 static tree
8300 fold_comparison (location_t loc, enum tree_code code, tree type,
8301 tree op0, tree op1)
8303 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8304 tree arg0, arg1, tem;
8306 arg0 = op0;
8307 arg1 = op1;
8309 STRIP_SIGN_NOPS (arg0);
8310 STRIP_SIGN_NOPS (arg1);
8312 /* For comparisons of pointers we can decompose it to a compile time
8313 comparison of the base objects and the offsets into the object.
8314 This requires at least one operand being an ADDR_EXPR or a
8315 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8316 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8317 && (TREE_CODE (arg0) == ADDR_EXPR
8318 || TREE_CODE (arg1) == ADDR_EXPR
8319 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8320 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8322 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8323 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8324 machine_mode mode;
8325 int volatilep, reversep, unsignedp;
8326 bool indirect_base0 = false, indirect_base1 = false;
8328 /* Get base and offset for the access. Strip ADDR_EXPR for
8329 get_inner_reference, but put it back by stripping INDIRECT_REF
8330 off the base object if possible. indirect_baseN will be true
8331 if baseN is not an address but refers to the object itself. */
8332 base0 = arg0;
8333 if (TREE_CODE (arg0) == ADDR_EXPR)
8335 base0
8336 = get_inner_reference (TREE_OPERAND (arg0, 0),
8337 &bitsize, &bitpos0, &offset0, &mode,
8338 &unsignedp, &reversep, &volatilep);
8339 if (TREE_CODE (base0) == INDIRECT_REF)
8340 base0 = TREE_OPERAND (base0, 0);
8341 else
8342 indirect_base0 = true;
8344 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8346 base0 = TREE_OPERAND (arg0, 0);
8347 STRIP_SIGN_NOPS (base0);
8348 if (TREE_CODE (base0) == ADDR_EXPR)
8350 base0
8351 = get_inner_reference (TREE_OPERAND (base0, 0),
8352 &bitsize, &bitpos0, &offset0, &mode,
8353 &unsignedp, &reversep, &volatilep);
8354 if (TREE_CODE (base0) == INDIRECT_REF)
8355 base0 = TREE_OPERAND (base0, 0);
8356 else
8357 indirect_base0 = true;
8359 if (offset0 == NULL_TREE || integer_zerop (offset0))
8360 offset0 = TREE_OPERAND (arg0, 1);
8361 else
8362 offset0 = size_binop (PLUS_EXPR, offset0,
8363 TREE_OPERAND (arg0, 1));
8364 if (TREE_CODE (offset0) == INTEGER_CST)
8366 offset_int tem = wi::sext (wi::to_offset (offset0),
8367 TYPE_PRECISION (sizetype));
8368 tem <<= LOG2_BITS_PER_UNIT;
8369 tem += bitpos0;
8370 if (wi::fits_shwi_p (tem))
8372 bitpos0 = tem.to_shwi ();
8373 offset0 = NULL_TREE;
8378 base1 = arg1;
8379 if (TREE_CODE (arg1) == ADDR_EXPR)
8381 base1
8382 = get_inner_reference (TREE_OPERAND (arg1, 0),
8383 &bitsize, &bitpos1, &offset1, &mode,
8384 &unsignedp, &reversep, &volatilep);
8385 if (TREE_CODE (base1) == INDIRECT_REF)
8386 base1 = TREE_OPERAND (base1, 0);
8387 else
8388 indirect_base1 = true;
8390 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8392 base1 = TREE_OPERAND (arg1, 0);
8393 STRIP_SIGN_NOPS (base1);
8394 if (TREE_CODE (base1) == ADDR_EXPR)
8396 base1
8397 = get_inner_reference (TREE_OPERAND (base1, 0),
8398 &bitsize, &bitpos1, &offset1, &mode,
8399 &unsignedp, &reversep, &volatilep);
8400 if (TREE_CODE (base1) == INDIRECT_REF)
8401 base1 = TREE_OPERAND (base1, 0);
8402 else
8403 indirect_base1 = true;
8405 if (offset1 == NULL_TREE || integer_zerop (offset1))
8406 offset1 = TREE_OPERAND (arg1, 1);
8407 else
8408 offset1 = size_binop (PLUS_EXPR, offset1,
8409 TREE_OPERAND (arg1, 1));
8410 if (TREE_CODE (offset1) == INTEGER_CST)
8412 offset_int tem = wi::sext (wi::to_offset (offset1),
8413 TYPE_PRECISION (sizetype));
8414 tem <<= LOG2_BITS_PER_UNIT;
8415 tem += bitpos1;
8416 if (wi::fits_shwi_p (tem))
8418 bitpos1 = tem.to_shwi ();
8419 offset1 = NULL_TREE;
8424 /* If we have equivalent bases we might be able to simplify. */
8425 if (indirect_base0 == indirect_base1
8426 && operand_equal_p (base0, base1,
8427 indirect_base0 ? OEP_ADDRESS_OF : 0))
8429 /* We can fold this expression to a constant if the non-constant
8430 offset parts are equal. */
8431 if ((offset0 == offset1
8432 || (offset0 && offset1
8433 && operand_equal_p (offset0, offset1, 0)))
8434 && (equality_code
8435 || (indirect_base0
8436 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8437 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8440 if (!equality_code
8441 && bitpos0 != bitpos1
8442 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8443 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8444 fold_overflow_warning (("assuming pointer wraparound does not "
8445 "occur when comparing P +- C1 with "
8446 "P +- C2"),
8447 WARN_STRICT_OVERFLOW_CONDITIONAL);
8449 switch (code)
8451 case EQ_EXPR:
8452 return constant_boolean_node (bitpos0 == bitpos1, type);
8453 case NE_EXPR:
8454 return constant_boolean_node (bitpos0 != bitpos1, type);
8455 case LT_EXPR:
8456 return constant_boolean_node (bitpos0 < bitpos1, type);
8457 case LE_EXPR:
8458 return constant_boolean_node (bitpos0 <= bitpos1, type);
8459 case GE_EXPR:
8460 return constant_boolean_node (bitpos0 >= bitpos1, type);
8461 case GT_EXPR:
8462 return constant_boolean_node (bitpos0 > bitpos1, type);
8463 default:;
8466 /* We can simplify the comparison to a comparison of the variable
8467 offset parts if the constant offset parts are equal.
8468 Be careful to use signed sizetype here because otherwise we
8469 mess with array offsets in the wrong way. This is possible
8470 because pointer arithmetic is restricted to retain within an
8471 object and overflow on pointer differences is undefined as of
8472 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8473 else if (bitpos0 == bitpos1
8474 && (equality_code
8475 || (indirect_base0
8476 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8477 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8479 /* By converting to signed sizetype we cover middle-end pointer
8480 arithmetic which operates on unsigned pointer types of size
8481 type size and ARRAY_REF offsets which are properly sign or
8482 zero extended from their type in case it is narrower than
8483 sizetype. */
8484 if (offset0 == NULL_TREE)
8485 offset0 = build_int_cst (ssizetype, 0);
8486 else
8487 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8488 if (offset1 == NULL_TREE)
8489 offset1 = build_int_cst (ssizetype, 0);
8490 else
8491 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8493 if (!equality_code
8494 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8495 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8496 fold_overflow_warning (("assuming pointer wraparound does not "
8497 "occur when comparing P +- C1 with "
8498 "P +- C2"),
8499 WARN_STRICT_OVERFLOW_COMPARISON);
8501 return fold_build2_loc (loc, code, type, offset0, offset1);
8504 /* For equal offsets we can simplify to a comparison of the
8505 base addresses. */
8506 else if (bitpos0 == bitpos1
8507 && (indirect_base0
8508 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8509 && (indirect_base1
8510 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8511 && ((offset0 == offset1)
8512 || (offset0 && offset1
8513 && operand_equal_p (offset0, offset1, 0))))
8515 if (indirect_base0)
8516 base0 = build_fold_addr_expr_loc (loc, base0);
8517 if (indirect_base1)
8518 base1 = build_fold_addr_expr_loc (loc, base1);
8519 return fold_build2_loc (loc, code, type, base0, base1);
8521 /* Comparison between an ordinary (non-weak) symbol and a null
8522 pointer can be eliminated since such symbols must have a non
8523 null address. In C, relational expressions between pointers
8524 to objects and null pointers are undefined. The results
8525 below follow the C++ rules with the additional property that
8526 every object pointer compares greater than a null pointer.
8528 else if (DECL_P (base0)
8529 && maybe_nonzero_address (base0) > 0
8530 /* Avoid folding references to struct members at offset 0 to
8531 prevent tests like '&ptr->firstmember == 0' from getting
8532 eliminated. When ptr is null, although the -> expression
8533 is strictly speaking invalid, GCC retains it as a matter
8534 of QoI. See PR c/44555. */
8535 && (offset0 == NULL_TREE && bitpos0 != 0)
8536 /* The caller guarantees that when one of the arguments is
8537 constant (i.e., null in this case) it is second. */
8538 && integer_zerop (arg1))
8540 switch (code)
8542 case EQ_EXPR:
8543 case LE_EXPR:
8544 case LT_EXPR:
8545 return constant_boolean_node (false, type);
8546 case GE_EXPR:
8547 case GT_EXPR:
8548 case NE_EXPR:
8549 return constant_boolean_node (true, type);
8550 default:
8551 gcc_unreachable ();
8556 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8557 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8558 the resulting offset is smaller in absolute value than the
8559 original one and has the same sign. */
8560 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8561 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8562 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8563 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8564 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8565 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8566 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8567 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8569 tree const1 = TREE_OPERAND (arg0, 1);
8570 tree const2 = TREE_OPERAND (arg1, 1);
8571 tree variable1 = TREE_OPERAND (arg0, 0);
8572 tree variable2 = TREE_OPERAND (arg1, 0);
8573 tree cst;
8574 const char * const warnmsg = G_("assuming signed overflow does not "
8575 "occur when combining constants around "
8576 "a comparison");
8578 /* Put the constant on the side where it doesn't overflow and is
8579 of lower absolute value and of same sign than before. */
8580 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8581 ? MINUS_EXPR : PLUS_EXPR,
8582 const2, const1);
8583 if (!TREE_OVERFLOW (cst)
8584 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8585 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8587 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8588 return fold_build2_loc (loc, code, type,
8589 variable1,
8590 fold_build2_loc (loc, TREE_CODE (arg1),
8591 TREE_TYPE (arg1),
8592 variable2, cst));
8595 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8596 ? MINUS_EXPR : PLUS_EXPR,
8597 const1, const2);
8598 if (!TREE_OVERFLOW (cst)
8599 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8600 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8602 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8603 return fold_build2_loc (loc, code, type,
8604 fold_build2_loc (loc, TREE_CODE (arg0),
8605 TREE_TYPE (arg0),
8606 variable1, cst),
8607 variable2);
8611 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8612 if (tem)
8613 return tem;
8615 /* If we are comparing an expression that just has comparisons
8616 of two integer values, arithmetic expressions of those comparisons,
8617 and constants, we can simplify it. There are only three cases
8618 to check: the two values can either be equal, the first can be
8619 greater, or the second can be greater. Fold the expression for
8620 those three values. Since each value must be 0 or 1, we have
8621 eight possibilities, each of which corresponds to the constant 0
8622 or 1 or one of the six possible comparisons.
8624 This handles common cases like (a > b) == 0 but also handles
8625 expressions like ((x > y) - (y > x)) > 0, which supposedly
8626 occur in macroized code. */
8628 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8630 tree cval1 = 0, cval2 = 0;
8631 int save_p = 0;
8633 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8634 /* Don't handle degenerate cases here; they should already
8635 have been handled anyway. */
8636 && cval1 != 0 && cval2 != 0
8637 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8638 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8639 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8640 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8641 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8642 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8643 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8645 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8646 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8648 /* We can't just pass T to eval_subst in case cval1 or cval2
8649 was the same as ARG1. */
8651 tree high_result
8652 = fold_build2_loc (loc, code, type,
8653 eval_subst (loc, arg0, cval1, maxval,
8654 cval2, minval),
8655 arg1);
8656 tree equal_result
8657 = fold_build2_loc (loc, code, type,
8658 eval_subst (loc, arg0, cval1, maxval,
8659 cval2, maxval),
8660 arg1);
8661 tree low_result
8662 = fold_build2_loc (loc, code, type,
8663 eval_subst (loc, arg0, cval1, minval,
8664 cval2, maxval),
8665 arg1);
8667 /* All three of these results should be 0 or 1. Confirm they are.
8668 Then use those values to select the proper code to use. */
8670 if (TREE_CODE (high_result) == INTEGER_CST
8671 && TREE_CODE (equal_result) == INTEGER_CST
8672 && TREE_CODE (low_result) == INTEGER_CST)
8674 /* Make a 3-bit mask with the high-order bit being the
8675 value for `>', the next for '=', and the low for '<'. */
8676 switch ((integer_onep (high_result) * 4)
8677 + (integer_onep (equal_result) * 2)
8678 + integer_onep (low_result))
8680 case 0:
8681 /* Always false. */
8682 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8683 case 1:
8684 code = LT_EXPR;
8685 break;
8686 case 2:
8687 code = EQ_EXPR;
8688 break;
8689 case 3:
8690 code = LE_EXPR;
8691 break;
8692 case 4:
8693 code = GT_EXPR;
8694 break;
8695 case 5:
8696 code = NE_EXPR;
8697 break;
8698 case 6:
8699 code = GE_EXPR;
8700 break;
8701 case 7:
8702 /* Always true. */
8703 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8706 if (save_p)
8708 tem = save_expr (build2 (code, type, cval1, cval2));
8709 SET_EXPR_LOCATION (tem, loc);
8710 return tem;
8712 return fold_build2_loc (loc, code, type, cval1, cval2);
8717 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8718 into a single range test. */
8719 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
8720 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
8721 && TREE_CODE (arg1) == INTEGER_CST
8722 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8723 && !integer_zerop (TREE_OPERAND (arg0, 1))
8724 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8725 && !TREE_OVERFLOW (arg1))
8727 tem = fold_div_compare (loc, code, type, arg0, arg1);
8728 if (tem != NULL_TREE)
8729 return tem;
8732 return NULL_TREE;
8736 /* Subroutine of fold_binary. Optimize complex multiplications of the
8737 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8738 argument EXPR represents the expression "z" of type TYPE. */
8740 static tree
8741 fold_mult_zconjz (location_t loc, tree type, tree expr)
8743 tree itype = TREE_TYPE (type);
8744 tree rpart, ipart, tem;
8746 if (TREE_CODE (expr) == COMPLEX_EXPR)
8748 rpart = TREE_OPERAND (expr, 0);
8749 ipart = TREE_OPERAND (expr, 1);
8751 else if (TREE_CODE (expr) == COMPLEX_CST)
8753 rpart = TREE_REALPART (expr);
8754 ipart = TREE_IMAGPART (expr);
8756 else
8758 expr = save_expr (expr);
8759 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8760 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8763 rpart = save_expr (rpart);
8764 ipart = save_expr (ipart);
8765 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8766 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8767 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8768 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8769 build_zero_cst (itype));
8773 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8774 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8776 static bool
8777 vec_cst_ctor_to_array (tree arg, tree *elts)
8779 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
8781 if (TREE_CODE (arg) == VECTOR_CST)
8783 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8784 elts[i] = VECTOR_CST_ELT (arg, i);
8786 else if (TREE_CODE (arg) == CONSTRUCTOR)
8788 constructor_elt *elt;
8790 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8791 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8792 return false;
8793 else
8794 elts[i] = elt->value;
8796 else
8797 return false;
8798 for (; i < nelts; i++)
8799 elts[i]
8800 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8801 return true;
8804 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8805 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8806 NULL_TREE otherwise. */
8808 static tree
8809 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
8811 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8812 tree *elts;
8813 bool need_ctor = false;
8815 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8816 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8817 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8818 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8819 return NULL_TREE;
8821 elts = XALLOCAVEC (tree, nelts * 3);
8822 if (!vec_cst_ctor_to_array (arg0, elts)
8823 || !vec_cst_ctor_to_array (arg1, elts + nelts))
8824 return NULL_TREE;
8826 for (i = 0; i < nelts; i++)
8828 if (!CONSTANT_CLASS_P (elts[sel[i]]))
8829 need_ctor = true;
8830 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
8833 if (need_ctor)
8835 vec<constructor_elt, va_gc> *v;
8836 vec_alloc (v, nelts);
8837 for (i = 0; i < nelts; i++)
8838 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
8839 return build_constructor (type, v);
8841 else
8842 return build_vector (type, &elts[2 * nelts]);
8845 /* Try to fold a pointer difference of type TYPE two address expressions of
8846 array references AREF0 and AREF1 using location LOC. Return a
8847 simplified expression for the difference or NULL_TREE. */
8849 static tree
8850 fold_addr_of_array_ref_difference (location_t loc, tree type,
8851 tree aref0, tree aref1)
8853 tree base0 = TREE_OPERAND (aref0, 0);
8854 tree base1 = TREE_OPERAND (aref1, 0);
8855 tree base_offset = build_int_cst (type, 0);
8857 /* If the bases are array references as well, recurse. If the bases
8858 are pointer indirections compute the difference of the pointers.
8859 If the bases are equal, we are set. */
8860 if ((TREE_CODE (base0) == ARRAY_REF
8861 && TREE_CODE (base1) == ARRAY_REF
8862 && (base_offset
8863 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8864 || (INDIRECT_REF_P (base0)
8865 && INDIRECT_REF_P (base1)
8866 && (base_offset
8867 = fold_binary_loc (loc, MINUS_EXPR, type,
8868 fold_convert (type, TREE_OPERAND (base0, 0)),
8869 fold_convert (type,
8870 TREE_OPERAND (base1, 0)))))
8871 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
8873 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8874 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8875 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8876 tree diff = build2 (MINUS_EXPR, type, op0, op1);
8877 return fold_build2_loc (loc, PLUS_EXPR, type,
8878 base_offset,
8879 fold_build2_loc (loc, MULT_EXPR, type,
8880 diff, esz));
8882 return NULL_TREE;
8885 /* If the real or vector real constant CST of type TYPE has an exact
8886 inverse, return it, else return NULL. */
8888 tree
8889 exact_inverse (tree type, tree cst)
8891 REAL_VALUE_TYPE r;
8892 tree unit_type, *elts;
8893 machine_mode mode;
8894 unsigned vec_nelts, i;
8896 switch (TREE_CODE (cst))
8898 case REAL_CST:
8899 r = TREE_REAL_CST (cst);
8901 if (exact_real_inverse (TYPE_MODE (type), &r))
8902 return build_real (type, r);
8904 return NULL_TREE;
8906 case VECTOR_CST:
8907 vec_nelts = VECTOR_CST_NELTS (cst);
8908 elts = XALLOCAVEC (tree, vec_nelts);
8909 unit_type = TREE_TYPE (type);
8910 mode = TYPE_MODE (unit_type);
8912 for (i = 0; i < vec_nelts; i++)
8914 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8915 if (!exact_real_inverse (mode, &r))
8916 return NULL_TREE;
8917 elts[i] = build_real (unit_type, r);
8920 return build_vector (type, elts);
8922 default:
8923 return NULL_TREE;
8927 /* Mask out the tz least significant bits of X of type TYPE where
8928 tz is the number of trailing zeroes in Y. */
8929 static wide_int
8930 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8932 int tz = wi::ctz (y);
8933 if (tz > 0)
8934 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8935 return x;
8938 /* Return true when T is an address and is known to be nonzero.
8939 For floating point we further ensure that T is not denormal.
8940 Similar logic is present in nonzero_address in rtlanal.h.
8942 If the return value is based on the assumption that signed overflow
8943 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8944 change *STRICT_OVERFLOW_P. */
8946 static bool
8947 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
8949 tree type = TREE_TYPE (t);
8950 enum tree_code code;
8952 /* Doing something useful for floating point would need more work. */
8953 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
8954 return false;
8956 code = TREE_CODE (t);
8957 switch (TREE_CODE_CLASS (code))
8959 case tcc_unary:
8960 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8961 strict_overflow_p);
8962 case tcc_binary:
8963 case tcc_comparison:
8964 return tree_binary_nonzero_warnv_p (code, type,
8965 TREE_OPERAND (t, 0),
8966 TREE_OPERAND (t, 1),
8967 strict_overflow_p);
8968 case tcc_constant:
8969 case tcc_declaration:
8970 case tcc_reference:
8971 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8973 default:
8974 break;
8977 switch (code)
8979 case TRUTH_NOT_EXPR:
8980 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8981 strict_overflow_p);
8983 case TRUTH_AND_EXPR:
8984 case TRUTH_OR_EXPR:
8985 case TRUTH_XOR_EXPR:
8986 return tree_binary_nonzero_warnv_p (code, type,
8987 TREE_OPERAND (t, 0),
8988 TREE_OPERAND (t, 1),
8989 strict_overflow_p);
8991 case COND_EXPR:
8992 case CONSTRUCTOR:
8993 case OBJ_TYPE_REF:
8994 case ASSERT_EXPR:
8995 case ADDR_EXPR:
8996 case WITH_SIZE_EXPR:
8997 case SSA_NAME:
8998 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9000 case COMPOUND_EXPR:
9001 case MODIFY_EXPR:
9002 case BIND_EXPR:
9003 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9004 strict_overflow_p);
9006 case SAVE_EXPR:
9007 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9008 strict_overflow_p);
9010 case CALL_EXPR:
9012 tree fndecl = get_callee_fndecl (t);
9013 if (!fndecl) return false;
9014 if (flag_delete_null_pointer_checks && !flag_check_new
9015 && DECL_IS_OPERATOR_NEW (fndecl)
9016 && !TREE_NOTHROW (fndecl))
9017 return true;
9018 if (flag_delete_null_pointer_checks
9019 && lookup_attribute ("returns_nonnull",
9020 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9021 return true;
9022 return alloca_call_p (t);
9025 default:
9026 break;
9028 return false;
9031 /* Return true when T is an address and is known to be nonzero.
9032 Handle warnings about undefined signed overflow. */
9034 static bool
9035 tree_expr_nonzero_p (tree t)
9037 bool ret, strict_overflow_p;
9039 strict_overflow_p = false;
9040 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9041 if (strict_overflow_p)
9042 fold_overflow_warning (("assuming signed overflow does not occur when "
9043 "determining that expression is always "
9044 "non-zero"),
9045 WARN_STRICT_OVERFLOW_MISC);
9046 return ret;
9049 /* Return true if T is known not to be equal to an integer W. */
9051 bool
9052 expr_not_equal_to (tree t, const wide_int &w)
9054 wide_int min, max, nz;
9055 value_range_type rtype;
9056 switch (TREE_CODE (t))
9058 case INTEGER_CST:
9059 return wi::ne_p (t, w);
9061 case SSA_NAME:
9062 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
9063 return false;
9064 rtype = get_range_info (t, &min, &max);
9065 if (rtype == VR_RANGE)
9067 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
9068 return true;
9069 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
9070 return true;
9072 else if (rtype == VR_ANTI_RANGE
9073 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
9074 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
9075 return true;
9076 /* If T has some known zero bits and W has any of those bits set,
9077 then T is known not to be equal to W. */
9078 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
9079 TYPE_PRECISION (TREE_TYPE (t))), 0))
9080 return true;
9081 return false;
9083 default:
9084 return false;
9088 /* Fold a binary expression of code CODE and type TYPE with operands
9089 OP0 and OP1. LOC is the location of the resulting expression.
9090 Return the folded expression if folding is successful. Otherwise,
9091 return NULL_TREE. */
9093 tree
9094 fold_binary_loc (location_t loc,
9095 enum tree_code code, tree type, tree op0, tree op1)
9097 enum tree_code_class kind = TREE_CODE_CLASS (code);
9098 tree arg0, arg1, tem;
9099 tree t1 = NULL_TREE;
9100 bool strict_overflow_p;
9101 unsigned int prec;
9103 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9104 && TREE_CODE_LENGTH (code) == 2
9105 && op0 != NULL_TREE
9106 && op1 != NULL_TREE);
9108 arg0 = op0;
9109 arg1 = op1;
9111 /* Strip any conversions that don't change the mode. This is
9112 safe for every expression, except for a comparison expression
9113 because its signedness is derived from its operands. So, in
9114 the latter case, only strip conversions that don't change the
9115 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9116 preserved.
9118 Note that this is done as an internal manipulation within the
9119 constant folder, in order to find the simplest representation
9120 of the arguments so that their form can be studied. In any
9121 cases, the appropriate type conversions should be put back in
9122 the tree that will get out of the constant folder. */
9124 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9126 STRIP_SIGN_NOPS (arg0);
9127 STRIP_SIGN_NOPS (arg1);
9129 else
9131 STRIP_NOPS (arg0);
9132 STRIP_NOPS (arg1);
9135 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9136 constant but we can't do arithmetic on them. */
9137 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9139 tem = const_binop (code, type, arg0, arg1);
9140 if (tem != NULL_TREE)
9142 if (TREE_TYPE (tem) != type)
9143 tem = fold_convert_loc (loc, type, tem);
9144 return tem;
9148 /* If this is a commutative operation, and ARG0 is a constant, move it
9149 to ARG1 to reduce the number of tests below. */
9150 if (commutative_tree_code (code)
9151 && tree_swap_operands_p (arg0, arg1, true))
9152 return fold_build2_loc (loc, code, type, op1, op0);
9154 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9155 to ARG1 to reduce the number of tests below. */
9156 if (kind == tcc_comparison
9157 && tree_swap_operands_p (arg0, arg1, true))
9158 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9160 tem = generic_simplify (loc, code, type, op0, op1);
9161 if (tem)
9162 return tem;
9164 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9166 First check for cases where an arithmetic operation is applied to a
9167 compound, conditional, or comparison operation. Push the arithmetic
9168 operation inside the compound or conditional to see if any folding
9169 can then be done. Convert comparison to conditional for this purpose.
9170 The also optimizes non-constant cases that used to be done in
9171 expand_expr.
9173 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9174 one of the operands is a comparison and the other is a comparison, a
9175 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9176 code below would make the expression more complex. Change it to a
9177 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9178 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9180 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9181 || code == EQ_EXPR || code == NE_EXPR)
9182 && TREE_CODE (type) != VECTOR_TYPE
9183 && ((truth_value_p (TREE_CODE (arg0))
9184 && (truth_value_p (TREE_CODE (arg1))
9185 || (TREE_CODE (arg1) == BIT_AND_EXPR
9186 && integer_onep (TREE_OPERAND (arg1, 1)))))
9187 || (truth_value_p (TREE_CODE (arg1))
9188 && (truth_value_p (TREE_CODE (arg0))
9189 || (TREE_CODE (arg0) == BIT_AND_EXPR
9190 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9192 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9193 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9194 : TRUTH_XOR_EXPR,
9195 boolean_type_node,
9196 fold_convert_loc (loc, boolean_type_node, arg0),
9197 fold_convert_loc (loc, boolean_type_node, arg1));
9199 if (code == EQ_EXPR)
9200 tem = invert_truthvalue_loc (loc, tem);
9202 return fold_convert_loc (loc, type, tem);
9205 if (TREE_CODE_CLASS (code) == tcc_binary
9206 || TREE_CODE_CLASS (code) == tcc_comparison)
9208 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9210 tem = fold_build2_loc (loc, code, type,
9211 fold_convert_loc (loc, TREE_TYPE (op0),
9212 TREE_OPERAND (arg0, 1)), op1);
9213 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9214 tem);
9216 if (TREE_CODE (arg1) == COMPOUND_EXPR
9217 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9219 tem = fold_build2_loc (loc, code, type, op0,
9220 fold_convert_loc (loc, TREE_TYPE (op1),
9221 TREE_OPERAND (arg1, 1)));
9222 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9223 tem);
9226 if (TREE_CODE (arg0) == COND_EXPR
9227 || TREE_CODE (arg0) == VEC_COND_EXPR
9228 || COMPARISON_CLASS_P (arg0))
9230 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9231 arg0, arg1,
9232 /*cond_first_p=*/1);
9233 if (tem != NULL_TREE)
9234 return tem;
9237 if (TREE_CODE (arg1) == COND_EXPR
9238 || TREE_CODE (arg1) == VEC_COND_EXPR
9239 || COMPARISON_CLASS_P (arg1))
9241 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9242 arg1, arg0,
9243 /*cond_first_p=*/0);
9244 if (tem != NULL_TREE)
9245 return tem;
9249 switch (code)
9251 case MEM_REF:
9252 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9253 if (TREE_CODE (arg0) == ADDR_EXPR
9254 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9256 tree iref = TREE_OPERAND (arg0, 0);
9257 return fold_build2 (MEM_REF, type,
9258 TREE_OPERAND (iref, 0),
9259 int_const_binop (PLUS_EXPR, arg1,
9260 TREE_OPERAND (iref, 1)));
9263 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9264 if (TREE_CODE (arg0) == ADDR_EXPR
9265 && handled_component_p (TREE_OPERAND (arg0, 0)))
9267 tree base;
9268 HOST_WIDE_INT coffset;
9269 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9270 &coffset);
9271 if (!base)
9272 return NULL_TREE;
9273 return fold_build2 (MEM_REF, type,
9274 build_fold_addr_expr (base),
9275 int_const_binop (PLUS_EXPR, arg1,
9276 size_int (coffset)));
9279 return NULL_TREE;
9281 case POINTER_PLUS_EXPR:
9282 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9283 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9284 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9285 return fold_convert_loc (loc, type,
9286 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9287 fold_convert_loc (loc, sizetype,
9288 arg1),
9289 fold_convert_loc (loc, sizetype,
9290 arg0)));
9292 return NULL_TREE;
9294 case PLUS_EXPR:
9295 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9297 /* X + (X / CST) * -CST is X % CST. */
9298 if (TREE_CODE (arg1) == MULT_EXPR
9299 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9300 && operand_equal_p (arg0,
9301 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9303 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9304 tree cst1 = TREE_OPERAND (arg1, 1);
9305 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9306 cst1, cst0);
9307 if (sum && integer_zerop (sum))
9308 return fold_convert_loc (loc, type,
9309 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9310 TREE_TYPE (arg0), arg0,
9311 cst0));
9315 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9316 one. Make sure the type is not saturating and has the signedness of
9317 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9318 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9319 if ((TREE_CODE (arg0) == MULT_EXPR
9320 || TREE_CODE (arg1) == MULT_EXPR)
9321 && !TYPE_SATURATING (type)
9322 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9323 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9324 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9326 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9327 if (tem)
9328 return tem;
9331 if (! FLOAT_TYPE_P (type))
9333 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9334 (plus (plus (mult) (mult)) (foo)) so that we can
9335 take advantage of the factoring cases below. */
9336 if (ANY_INTEGRAL_TYPE_P (type)
9337 && TYPE_OVERFLOW_WRAPS (type)
9338 && (((TREE_CODE (arg0) == PLUS_EXPR
9339 || TREE_CODE (arg0) == MINUS_EXPR)
9340 && TREE_CODE (arg1) == MULT_EXPR)
9341 || ((TREE_CODE (arg1) == PLUS_EXPR
9342 || TREE_CODE (arg1) == MINUS_EXPR)
9343 && TREE_CODE (arg0) == MULT_EXPR)))
9345 tree parg0, parg1, parg, marg;
9346 enum tree_code pcode;
9348 if (TREE_CODE (arg1) == MULT_EXPR)
9349 parg = arg0, marg = arg1;
9350 else
9351 parg = arg1, marg = arg0;
9352 pcode = TREE_CODE (parg);
9353 parg0 = TREE_OPERAND (parg, 0);
9354 parg1 = TREE_OPERAND (parg, 1);
9355 STRIP_NOPS (parg0);
9356 STRIP_NOPS (parg1);
9358 if (TREE_CODE (parg0) == MULT_EXPR
9359 && TREE_CODE (parg1) != MULT_EXPR)
9360 return fold_build2_loc (loc, pcode, type,
9361 fold_build2_loc (loc, PLUS_EXPR, type,
9362 fold_convert_loc (loc, type,
9363 parg0),
9364 fold_convert_loc (loc, type,
9365 marg)),
9366 fold_convert_loc (loc, type, parg1));
9367 if (TREE_CODE (parg0) != MULT_EXPR
9368 && TREE_CODE (parg1) == MULT_EXPR)
9369 return
9370 fold_build2_loc (loc, PLUS_EXPR, type,
9371 fold_convert_loc (loc, type, parg0),
9372 fold_build2_loc (loc, pcode, type,
9373 fold_convert_loc (loc, type, marg),
9374 fold_convert_loc (loc, type,
9375 parg1)));
9378 else
9380 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9381 to __complex__ ( x, y ). This is not the same for SNaNs or
9382 if signed zeros are involved. */
9383 if (!HONOR_SNANS (element_mode (arg0))
9384 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9385 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9387 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9388 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9389 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9390 bool arg0rz = false, arg0iz = false;
9391 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9392 || (arg0i && (arg0iz = real_zerop (arg0i))))
9394 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9395 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9396 if (arg0rz && arg1i && real_zerop (arg1i))
9398 tree rp = arg1r ? arg1r
9399 : build1 (REALPART_EXPR, rtype, arg1);
9400 tree ip = arg0i ? arg0i
9401 : build1 (IMAGPART_EXPR, rtype, arg0);
9402 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9404 else if (arg0iz && arg1r && real_zerop (arg1r))
9406 tree rp = arg0r ? arg0r
9407 : build1 (REALPART_EXPR, rtype, arg0);
9408 tree ip = arg1i ? arg1i
9409 : build1 (IMAGPART_EXPR, rtype, arg1);
9410 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9415 if (flag_unsafe_math_optimizations
9416 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9417 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9418 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9419 return tem;
9421 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9422 We associate floats only if the user has specified
9423 -fassociative-math. */
9424 if (flag_associative_math
9425 && TREE_CODE (arg1) == PLUS_EXPR
9426 && TREE_CODE (arg0) != MULT_EXPR)
9428 tree tree10 = TREE_OPERAND (arg1, 0);
9429 tree tree11 = TREE_OPERAND (arg1, 1);
9430 if (TREE_CODE (tree11) == MULT_EXPR
9431 && TREE_CODE (tree10) == MULT_EXPR)
9433 tree tree0;
9434 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9435 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9438 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9439 We associate floats only if the user has specified
9440 -fassociative-math. */
9441 if (flag_associative_math
9442 && TREE_CODE (arg0) == PLUS_EXPR
9443 && TREE_CODE (arg1) != MULT_EXPR)
9445 tree tree00 = TREE_OPERAND (arg0, 0);
9446 tree tree01 = TREE_OPERAND (arg0, 1);
9447 if (TREE_CODE (tree01) == MULT_EXPR
9448 && TREE_CODE (tree00) == MULT_EXPR)
9450 tree tree0;
9451 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9452 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9457 bit_rotate:
9458 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9459 is a rotate of A by C1 bits. */
9460 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9461 is a rotate of A by B bits. */
9463 enum tree_code code0, code1;
9464 tree rtype;
9465 code0 = TREE_CODE (arg0);
9466 code1 = TREE_CODE (arg1);
9467 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9468 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9469 && operand_equal_p (TREE_OPERAND (arg0, 0),
9470 TREE_OPERAND (arg1, 0), 0)
9471 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9472 TYPE_UNSIGNED (rtype))
9473 /* Only create rotates in complete modes. Other cases are not
9474 expanded properly. */
9475 && (element_precision (rtype)
9476 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9478 tree tree01, tree11;
9479 enum tree_code code01, code11;
9481 tree01 = TREE_OPERAND (arg0, 1);
9482 tree11 = TREE_OPERAND (arg1, 1);
9483 STRIP_NOPS (tree01);
9484 STRIP_NOPS (tree11);
9485 code01 = TREE_CODE (tree01);
9486 code11 = TREE_CODE (tree11);
9487 if (code01 == INTEGER_CST
9488 && code11 == INTEGER_CST
9489 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9490 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9492 tem = build2_loc (loc, LROTATE_EXPR,
9493 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9494 TREE_OPERAND (arg0, 0),
9495 code0 == LSHIFT_EXPR
9496 ? TREE_OPERAND (arg0, 1)
9497 : TREE_OPERAND (arg1, 1));
9498 return fold_convert_loc (loc, type, tem);
9500 else if (code11 == MINUS_EXPR)
9502 tree tree110, tree111;
9503 tree110 = TREE_OPERAND (tree11, 0);
9504 tree111 = TREE_OPERAND (tree11, 1);
9505 STRIP_NOPS (tree110);
9506 STRIP_NOPS (tree111);
9507 if (TREE_CODE (tree110) == INTEGER_CST
9508 && 0 == compare_tree_int (tree110,
9509 element_precision
9510 (TREE_TYPE (TREE_OPERAND
9511 (arg0, 0))))
9512 && operand_equal_p (tree01, tree111, 0))
9513 return
9514 fold_convert_loc (loc, type,
9515 build2 ((code0 == LSHIFT_EXPR
9516 ? LROTATE_EXPR
9517 : RROTATE_EXPR),
9518 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9519 TREE_OPERAND (arg0, 0),
9520 TREE_OPERAND (arg0, 1)));
9522 else if (code01 == MINUS_EXPR)
9524 tree tree010, tree011;
9525 tree010 = TREE_OPERAND (tree01, 0);
9526 tree011 = TREE_OPERAND (tree01, 1);
9527 STRIP_NOPS (tree010);
9528 STRIP_NOPS (tree011);
9529 if (TREE_CODE (tree010) == INTEGER_CST
9530 && 0 == compare_tree_int (tree010,
9531 element_precision
9532 (TREE_TYPE (TREE_OPERAND
9533 (arg0, 0))))
9534 && operand_equal_p (tree11, tree011, 0))
9535 return fold_convert_loc
9536 (loc, type,
9537 build2 ((code0 != LSHIFT_EXPR
9538 ? LROTATE_EXPR
9539 : RROTATE_EXPR),
9540 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9541 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9546 associate:
9547 /* In most languages, can't associate operations on floats through
9548 parentheses. Rather than remember where the parentheses were, we
9549 don't associate floats at all, unless the user has specified
9550 -fassociative-math.
9551 And, we need to make sure type is not saturating. */
9553 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9554 && !TYPE_SATURATING (type))
9556 tree var0, con0, lit0, minus_lit0;
9557 tree var1, con1, lit1, minus_lit1;
9558 tree atype = type;
9559 bool ok = true;
9561 /* Split both trees into variables, constants, and literals. Then
9562 associate each group together, the constants with literals,
9563 then the result with variables. This increases the chances of
9564 literals being recombined later and of generating relocatable
9565 expressions for the sum of a constant and literal. */
9566 var0 = split_tree (loc, arg0, type, code,
9567 &con0, &lit0, &minus_lit0, 0);
9568 var1 = split_tree (loc, arg1, type, code,
9569 &con1, &lit1, &minus_lit1, code == MINUS_EXPR);
9571 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9572 if (code == MINUS_EXPR)
9573 code = PLUS_EXPR;
9575 /* With undefined overflow prefer doing association in a type
9576 which wraps on overflow, if that is one of the operand types. */
9577 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9578 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9580 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9581 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9582 atype = TREE_TYPE (arg0);
9583 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9584 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9585 atype = TREE_TYPE (arg1);
9586 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9589 /* With undefined overflow we can only associate constants with one
9590 variable, and constants whose association doesn't overflow. */
9591 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9592 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9594 if (var0 && var1)
9596 tree tmp0 = var0;
9597 tree tmp1 = var1;
9598 bool one_neg = false;
9600 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9602 tmp0 = TREE_OPERAND (tmp0, 0);
9603 one_neg = !one_neg;
9605 if (CONVERT_EXPR_P (tmp0)
9606 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9607 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9608 <= TYPE_PRECISION (atype)))
9609 tmp0 = TREE_OPERAND (tmp0, 0);
9610 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9612 tmp1 = TREE_OPERAND (tmp1, 0);
9613 one_neg = !one_neg;
9615 if (CONVERT_EXPR_P (tmp1)
9616 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9617 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9618 <= TYPE_PRECISION (atype)))
9619 tmp1 = TREE_OPERAND (tmp1, 0);
9620 /* The only case we can still associate with two variables
9621 is if they cancel out. */
9622 if (!one_neg
9623 || !operand_equal_p (tmp0, tmp1, 0))
9624 ok = false;
9628 /* Only do something if we found more than two objects. Otherwise,
9629 nothing has changed and we risk infinite recursion. */
9630 if (ok
9631 && (2 < ((var0 != 0) + (var1 != 0)
9632 + (con0 != 0) + (con1 != 0)
9633 + (lit0 != 0) + (lit1 != 0)
9634 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9636 bool any_overflows = false;
9637 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
9638 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
9639 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
9640 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
9641 var0 = associate_trees (loc, var0, var1, code, atype);
9642 con0 = associate_trees (loc, con0, con1, code, atype);
9643 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9644 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9645 code, atype);
9647 /* Preserve the MINUS_EXPR if the negative part of the literal is
9648 greater than the positive part. Otherwise, the multiplicative
9649 folding code (i.e extract_muldiv) may be fooled in case
9650 unsigned constants are subtracted, like in the following
9651 example: ((X*2 + 4) - 8U)/2. */
9652 if (minus_lit0 && lit0)
9654 if (TREE_CODE (lit0) == INTEGER_CST
9655 && TREE_CODE (minus_lit0) == INTEGER_CST
9656 && tree_int_cst_lt (lit0, minus_lit0))
9658 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9659 MINUS_EXPR, atype);
9660 lit0 = 0;
9662 else
9664 lit0 = associate_trees (loc, lit0, minus_lit0,
9665 MINUS_EXPR, atype);
9666 minus_lit0 = 0;
9670 /* Don't introduce overflows through reassociation. */
9671 if (!any_overflows
9672 && ((lit0 && TREE_OVERFLOW_P (lit0))
9673 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
9674 return NULL_TREE;
9676 if (minus_lit0)
9678 if (con0 == 0)
9679 return
9680 fold_convert_loc (loc, type,
9681 associate_trees (loc, var0, minus_lit0,
9682 MINUS_EXPR, atype));
9683 else
9685 con0 = associate_trees (loc, con0, minus_lit0,
9686 MINUS_EXPR, atype);
9687 return
9688 fold_convert_loc (loc, type,
9689 associate_trees (loc, var0, con0,
9690 PLUS_EXPR, atype));
9694 con0 = associate_trees (loc, con0, lit0, code, atype);
9695 return
9696 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9697 code, atype));
9701 return NULL_TREE;
9703 case MINUS_EXPR:
9704 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9705 if (TREE_CODE (arg0) == NEGATE_EXPR
9706 && negate_expr_p (op1)
9707 && reorder_operands_p (arg0, arg1))
9708 return fold_build2_loc (loc, MINUS_EXPR, type,
9709 negate_expr (op1),
9710 fold_convert_loc (loc, type,
9711 TREE_OPERAND (arg0, 0)));
9713 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9714 __complex__ ( x, -y ). This is not the same for SNaNs or if
9715 signed zeros are involved. */
9716 if (!HONOR_SNANS (element_mode (arg0))
9717 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9718 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9720 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9721 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9722 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9723 bool arg0rz = false, arg0iz = false;
9724 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9725 || (arg0i && (arg0iz = real_zerop (arg0i))))
9727 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9728 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9729 if (arg0rz && arg1i && real_zerop (arg1i))
9731 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9732 arg1r ? arg1r
9733 : build1 (REALPART_EXPR, rtype, arg1));
9734 tree ip = arg0i ? arg0i
9735 : build1 (IMAGPART_EXPR, rtype, arg0);
9736 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9738 else if (arg0iz && arg1r && real_zerop (arg1r))
9740 tree rp = arg0r ? arg0r
9741 : build1 (REALPART_EXPR, rtype, arg0);
9742 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9743 arg1i ? arg1i
9744 : build1 (IMAGPART_EXPR, rtype, arg1));
9745 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9750 /* A - B -> A + (-B) if B is easily negatable. */
9751 if (negate_expr_p (op1)
9752 && ! TYPE_OVERFLOW_SANITIZED (type)
9753 && ((FLOAT_TYPE_P (type)
9754 /* Avoid this transformation if B is a positive REAL_CST. */
9755 && (TREE_CODE (op1) != REAL_CST
9756 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
9757 || INTEGRAL_TYPE_P (type)))
9758 return fold_build2_loc (loc, PLUS_EXPR, type,
9759 fold_convert_loc (loc, type, arg0),
9760 negate_expr (op1));
9762 /* Fold &a[i] - &a[j] to i-j. */
9763 if (TREE_CODE (arg0) == ADDR_EXPR
9764 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9765 && TREE_CODE (arg1) == ADDR_EXPR
9766 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9768 tree tem = fold_addr_of_array_ref_difference (loc, type,
9769 TREE_OPERAND (arg0, 0),
9770 TREE_OPERAND (arg1, 0));
9771 if (tem)
9772 return tem;
9775 if (FLOAT_TYPE_P (type)
9776 && flag_unsafe_math_optimizations
9777 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9778 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9779 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9780 return tem;
9782 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9783 one. Make sure the type is not saturating and has the signedness of
9784 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9785 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9786 if ((TREE_CODE (arg0) == MULT_EXPR
9787 || TREE_CODE (arg1) == MULT_EXPR)
9788 && !TYPE_SATURATING (type)
9789 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9790 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9791 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9793 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9794 if (tem)
9795 return tem;
9798 goto associate;
9800 case MULT_EXPR:
9801 if (! FLOAT_TYPE_P (type))
9803 /* Transform x * -C into -x * C if x is easily negatable. */
9804 if (TREE_CODE (op1) == INTEGER_CST
9805 && tree_int_cst_sgn (op1) == -1
9806 && negate_expr_p (op0)
9807 && (tem = negate_expr (op1)) != op1
9808 && ! TREE_OVERFLOW (tem))
9809 return fold_build2_loc (loc, MULT_EXPR, type,
9810 fold_convert_loc (loc, type,
9811 negate_expr (op0)), tem);
9813 strict_overflow_p = false;
9814 if (TREE_CODE (arg1) == INTEGER_CST
9815 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9816 &strict_overflow_p)))
9818 if (strict_overflow_p)
9819 fold_overflow_warning (("assuming signed overflow does not "
9820 "occur when simplifying "
9821 "multiplication"),
9822 WARN_STRICT_OVERFLOW_MISC);
9823 return fold_convert_loc (loc, type, tem);
9826 /* Optimize z * conj(z) for integer complex numbers. */
9827 if (TREE_CODE (arg0) == CONJ_EXPR
9828 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9829 return fold_mult_zconjz (loc, type, arg1);
9830 if (TREE_CODE (arg1) == CONJ_EXPR
9831 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9832 return fold_mult_zconjz (loc, type, arg0);
9834 else
9836 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9837 This is not the same for NaNs or if signed zeros are
9838 involved. */
9839 if (!HONOR_NANS (arg0)
9840 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9841 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9842 && TREE_CODE (arg1) == COMPLEX_CST
9843 && real_zerop (TREE_REALPART (arg1)))
9845 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9846 if (real_onep (TREE_IMAGPART (arg1)))
9847 return
9848 fold_build2_loc (loc, COMPLEX_EXPR, type,
9849 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9850 rtype, arg0)),
9851 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9852 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9853 return
9854 fold_build2_loc (loc, COMPLEX_EXPR, type,
9855 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9856 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9857 rtype, arg0)));
9860 /* Optimize z * conj(z) for floating point complex numbers.
9861 Guarded by flag_unsafe_math_optimizations as non-finite
9862 imaginary components don't produce scalar results. */
9863 if (flag_unsafe_math_optimizations
9864 && TREE_CODE (arg0) == CONJ_EXPR
9865 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9866 return fold_mult_zconjz (loc, type, arg1);
9867 if (flag_unsafe_math_optimizations
9868 && TREE_CODE (arg1) == CONJ_EXPR
9869 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9870 return fold_mult_zconjz (loc, type, arg0);
9872 goto associate;
9874 case BIT_IOR_EXPR:
9875 /* Canonicalize (X & C1) | C2. */
9876 if (TREE_CODE (arg0) == BIT_AND_EXPR
9877 && TREE_CODE (arg1) == INTEGER_CST
9878 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9880 int width = TYPE_PRECISION (type), w;
9881 wide_int c1 = TREE_OPERAND (arg0, 1);
9882 wide_int c2 = arg1;
9884 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9885 if ((c1 & c2) == c1)
9886 return omit_one_operand_loc (loc, type, arg1,
9887 TREE_OPERAND (arg0, 0));
9889 wide_int msk = wi::mask (width, false,
9890 TYPE_PRECISION (TREE_TYPE (arg1)));
9892 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9893 if (msk.and_not (c1 | c2) == 0)
9894 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
9895 TREE_OPERAND (arg0, 0), arg1);
9897 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9898 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9899 mode which allows further optimizations. */
9900 c1 &= msk;
9901 c2 &= msk;
9902 wide_int c3 = c1.and_not (c2);
9903 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
9905 wide_int mask = wi::mask (w, false,
9906 TYPE_PRECISION (type));
9907 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
9909 c3 = mask;
9910 break;
9914 if (c3 != c1)
9915 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
9916 fold_build2_loc (loc, BIT_AND_EXPR, type,
9917 TREE_OPERAND (arg0, 0),
9918 wide_int_to_tree (type,
9919 c3)),
9920 arg1);
9923 /* See if this can be simplified into a rotate first. If that
9924 is unsuccessful continue in the association code. */
9925 goto bit_rotate;
9927 case BIT_XOR_EXPR:
9928 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9929 if (TREE_CODE (arg0) == BIT_AND_EXPR
9930 && INTEGRAL_TYPE_P (type)
9931 && integer_onep (TREE_OPERAND (arg0, 1))
9932 && integer_onep (arg1))
9933 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
9934 build_zero_cst (TREE_TYPE (arg0)));
9936 /* See if this can be simplified into a rotate first. If that
9937 is unsuccessful continue in the association code. */
9938 goto bit_rotate;
9940 case BIT_AND_EXPR:
9941 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9942 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9943 && INTEGRAL_TYPE_P (type)
9944 && integer_onep (TREE_OPERAND (arg0, 1))
9945 && integer_onep (arg1))
9947 tree tem2;
9948 tem = TREE_OPERAND (arg0, 0);
9949 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9950 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9951 tem, tem2);
9952 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9953 build_zero_cst (TREE_TYPE (tem)));
9955 /* Fold ~X & 1 as (X & 1) == 0. */
9956 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9957 && INTEGRAL_TYPE_P (type)
9958 && integer_onep (arg1))
9960 tree tem2;
9961 tem = TREE_OPERAND (arg0, 0);
9962 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9963 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9964 tem, tem2);
9965 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9966 build_zero_cst (TREE_TYPE (tem)));
9968 /* Fold !X & 1 as X == 0. */
9969 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
9970 && integer_onep (arg1))
9972 tem = TREE_OPERAND (arg0, 0);
9973 return fold_build2_loc (loc, EQ_EXPR, type, tem,
9974 build_zero_cst (TREE_TYPE (tem)));
9977 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
9978 multiple of 1 << CST. */
9979 if (TREE_CODE (arg1) == INTEGER_CST)
9981 wide_int cst1 = arg1;
9982 wide_int ncst1 = -cst1;
9983 if ((cst1 & ncst1) == ncst1
9984 && multiple_of_p (type, arg0,
9985 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
9986 return fold_convert_loc (loc, type, arg0);
9989 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
9990 bits from CST2. */
9991 if (TREE_CODE (arg1) == INTEGER_CST
9992 && TREE_CODE (arg0) == MULT_EXPR
9993 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9995 wide_int warg1 = arg1;
9996 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
9998 if (masked == 0)
9999 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10000 arg0, arg1);
10001 else if (masked != warg1)
10003 /* Avoid the transform if arg1 is a mask of some
10004 mode which allows further optimizations. */
10005 int pop = wi::popcount (warg1);
10006 if (!(pop >= BITS_PER_UNIT
10007 && exact_log2 (pop) != -1
10008 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10009 return fold_build2_loc (loc, code, type, op0,
10010 wide_int_to_tree (type, masked));
10014 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10015 ((A & N) + B) & M -> (A + B) & M
10016 Similarly if (N & M) == 0,
10017 ((A | N) + B) & M -> (A + B) & M
10018 and for - instead of + (or unary - instead of +)
10019 and/or ^ instead of |.
10020 If B is constant and (B & M) == 0, fold into A & M. */
10021 if (TREE_CODE (arg1) == INTEGER_CST)
10023 wide_int cst1 = arg1;
10024 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10025 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10026 && (TREE_CODE (arg0) == PLUS_EXPR
10027 || TREE_CODE (arg0) == MINUS_EXPR
10028 || TREE_CODE (arg0) == NEGATE_EXPR)
10029 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10030 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10032 tree pmop[2];
10033 int which = 0;
10034 wide_int cst0;
10036 /* Now we know that arg0 is (C + D) or (C - D) or
10037 -C and arg1 (M) is == (1LL << cst) - 1.
10038 Store C into PMOP[0] and D into PMOP[1]. */
10039 pmop[0] = TREE_OPERAND (arg0, 0);
10040 pmop[1] = NULL;
10041 if (TREE_CODE (arg0) != NEGATE_EXPR)
10043 pmop[1] = TREE_OPERAND (arg0, 1);
10044 which = 1;
10047 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10048 which = -1;
10050 for (; which >= 0; which--)
10051 switch (TREE_CODE (pmop[which]))
10053 case BIT_AND_EXPR:
10054 case BIT_IOR_EXPR:
10055 case BIT_XOR_EXPR:
10056 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10057 != INTEGER_CST)
10058 break;
10059 cst0 = TREE_OPERAND (pmop[which], 1);
10060 cst0 &= cst1;
10061 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10063 if (cst0 != cst1)
10064 break;
10066 else if (cst0 != 0)
10067 break;
10068 /* If C or D is of the form (A & N) where
10069 (N & M) == M, or of the form (A | N) or
10070 (A ^ N) where (N & M) == 0, replace it with A. */
10071 pmop[which] = TREE_OPERAND (pmop[which], 0);
10072 break;
10073 case INTEGER_CST:
10074 /* If C or D is a N where (N & M) == 0, it can be
10075 omitted (assumed 0). */
10076 if ((TREE_CODE (arg0) == PLUS_EXPR
10077 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10078 && (cst1 & pmop[which]) == 0)
10079 pmop[which] = NULL;
10080 break;
10081 default:
10082 break;
10085 /* Only build anything new if we optimized one or both arguments
10086 above. */
10087 if (pmop[0] != TREE_OPERAND (arg0, 0)
10088 || (TREE_CODE (arg0) != NEGATE_EXPR
10089 && pmop[1] != TREE_OPERAND (arg0, 1)))
10091 tree utype = TREE_TYPE (arg0);
10092 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10094 /* Perform the operations in a type that has defined
10095 overflow behavior. */
10096 utype = unsigned_type_for (TREE_TYPE (arg0));
10097 if (pmop[0] != NULL)
10098 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10099 if (pmop[1] != NULL)
10100 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10103 if (TREE_CODE (arg0) == NEGATE_EXPR)
10104 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10105 else if (TREE_CODE (arg0) == PLUS_EXPR)
10107 if (pmop[0] != NULL && pmop[1] != NULL)
10108 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10109 pmop[0], pmop[1]);
10110 else if (pmop[0] != NULL)
10111 tem = pmop[0];
10112 else if (pmop[1] != NULL)
10113 tem = pmop[1];
10114 else
10115 return build_int_cst (type, 0);
10117 else if (pmop[0] == NULL)
10118 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10119 else
10120 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10121 pmop[0], pmop[1]);
10122 /* TEM is now the new binary +, - or unary - replacement. */
10123 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10124 fold_convert_loc (loc, utype, arg1));
10125 return fold_convert_loc (loc, type, tem);
10130 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10131 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10132 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10134 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10136 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10137 if (mask == -1)
10138 return
10139 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10142 goto associate;
10144 case RDIV_EXPR:
10145 /* Don't touch a floating-point divide by zero unless the mode
10146 of the constant can represent infinity. */
10147 if (TREE_CODE (arg1) == REAL_CST
10148 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10149 && real_zerop (arg1))
10150 return NULL_TREE;
10152 /* (-A) / (-B) -> A / B */
10153 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10154 return fold_build2_loc (loc, RDIV_EXPR, type,
10155 TREE_OPERAND (arg0, 0),
10156 negate_expr (arg1));
10157 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10158 return fold_build2_loc (loc, RDIV_EXPR, type,
10159 negate_expr (arg0),
10160 TREE_OPERAND (arg1, 0));
10161 return NULL_TREE;
10163 case TRUNC_DIV_EXPR:
10164 /* Fall through */
10166 case FLOOR_DIV_EXPR:
10167 /* Simplify A / (B << N) where A and B are positive and B is
10168 a power of 2, to A >> (N + log2(B)). */
10169 strict_overflow_p = false;
10170 if (TREE_CODE (arg1) == LSHIFT_EXPR
10171 && (TYPE_UNSIGNED (type)
10172 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10174 tree sval = TREE_OPERAND (arg1, 0);
10175 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10177 tree sh_cnt = TREE_OPERAND (arg1, 1);
10178 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10179 wi::exact_log2 (sval));
10181 if (strict_overflow_p)
10182 fold_overflow_warning (("assuming signed overflow does not "
10183 "occur when simplifying A / (B << N)"),
10184 WARN_STRICT_OVERFLOW_MISC);
10186 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10187 sh_cnt, pow2);
10188 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10189 fold_convert_loc (loc, type, arg0), sh_cnt);
10193 /* Fall through */
10195 case ROUND_DIV_EXPR:
10196 case CEIL_DIV_EXPR:
10197 case EXACT_DIV_EXPR:
10198 if (integer_zerop (arg1))
10199 return NULL_TREE;
10201 /* Convert -A / -B to A / B when the type is signed and overflow is
10202 undefined. */
10203 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10204 && TREE_CODE (arg0) == NEGATE_EXPR
10205 && negate_expr_p (op1))
10207 if (INTEGRAL_TYPE_P (type))
10208 fold_overflow_warning (("assuming signed overflow does not occur "
10209 "when distributing negation across "
10210 "division"),
10211 WARN_STRICT_OVERFLOW_MISC);
10212 return fold_build2_loc (loc, code, type,
10213 fold_convert_loc (loc, type,
10214 TREE_OPERAND (arg0, 0)),
10215 negate_expr (op1));
10217 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10218 && TREE_CODE (arg1) == NEGATE_EXPR
10219 && negate_expr_p (op0))
10221 if (INTEGRAL_TYPE_P (type))
10222 fold_overflow_warning (("assuming signed overflow does not occur "
10223 "when distributing negation across "
10224 "division"),
10225 WARN_STRICT_OVERFLOW_MISC);
10226 return fold_build2_loc (loc, code, type,
10227 negate_expr (op0),
10228 fold_convert_loc (loc, type,
10229 TREE_OPERAND (arg1, 0)));
10232 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10233 operation, EXACT_DIV_EXPR.
10235 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10236 At one time others generated faster code, it's not clear if they do
10237 after the last round to changes to the DIV code in expmed.c. */
10238 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10239 && multiple_of_p (type, arg0, arg1))
10240 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10241 fold_convert (type, arg0),
10242 fold_convert (type, arg1));
10244 strict_overflow_p = false;
10245 if (TREE_CODE (arg1) == INTEGER_CST
10246 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10247 &strict_overflow_p)))
10249 if (strict_overflow_p)
10250 fold_overflow_warning (("assuming signed overflow does not occur "
10251 "when simplifying division"),
10252 WARN_STRICT_OVERFLOW_MISC);
10253 return fold_convert_loc (loc, type, tem);
10256 return NULL_TREE;
10258 case CEIL_MOD_EXPR:
10259 case FLOOR_MOD_EXPR:
10260 case ROUND_MOD_EXPR:
10261 case TRUNC_MOD_EXPR:
10262 strict_overflow_p = false;
10263 if (TREE_CODE (arg1) == INTEGER_CST
10264 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10265 &strict_overflow_p)))
10267 if (strict_overflow_p)
10268 fold_overflow_warning (("assuming signed overflow does not occur "
10269 "when simplifying modulus"),
10270 WARN_STRICT_OVERFLOW_MISC);
10271 return fold_convert_loc (loc, type, tem);
10274 return NULL_TREE;
10276 case LROTATE_EXPR:
10277 case RROTATE_EXPR:
10278 case RSHIFT_EXPR:
10279 case LSHIFT_EXPR:
10280 /* Since negative shift count is not well-defined,
10281 don't try to compute it in the compiler. */
10282 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10283 return NULL_TREE;
10285 prec = element_precision (type);
10287 /* If we have a rotate of a bit operation with the rotate count and
10288 the second operand of the bit operation both constant,
10289 permute the two operations. */
10290 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10291 && (TREE_CODE (arg0) == BIT_AND_EXPR
10292 || TREE_CODE (arg0) == BIT_IOR_EXPR
10293 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10294 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10296 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10297 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10298 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10299 fold_build2_loc (loc, code, type,
10300 arg00, arg1),
10301 fold_build2_loc (loc, code, type,
10302 arg01, arg1));
10305 /* Two consecutive rotates adding up to the some integer
10306 multiple of the precision of the type can be ignored. */
10307 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10308 && TREE_CODE (arg0) == RROTATE_EXPR
10309 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10310 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10311 prec) == 0)
10312 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10314 return NULL_TREE;
10316 case MIN_EXPR:
10317 case MAX_EXPR:
10318 goto associate;
10320 case TRUTH_ANDIF_EXPR:
10321 /* Note that the operands of this must be ints
10322 and their values must be 0 or 1.
10323 ("true" is a fixed value perhaps depending on the language.) */
10324 /* If first arg is constant zero, return it. */
10325 if (integer_zerop (arg0))
10326 return fold_convert_loc (loc, type, arg0);
10327 /* FALLTHRU */
10328 case TRUTH_AND_EXPR:
10329 /* If either arg is constant true, drop it. */
10330 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10331 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10332 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10333 /* Preserve sequence points. */
10334 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10335 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10336 /* If second arg is constant zero, result is zero, but first arg
10337 must be evaluated. */
10338 if (integer_zerop (arg1))
10339 return omit_one_operand_loc (loc, type, arg1, arg0);
10340 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10341 case will be handled here. */
10342 if (integer_zerop (arg0))
10343 return omit_one_operand_loc (loc, type, arg0, arg1);
10345 /* !X && X is always false. */
10346 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10347 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10348 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10349 /* X && !X is always false. */
10350 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10351 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10352 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10354 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10355 means A >= Y && A != MAX, but in this case we know that
10356 A < X <= MAX. */
10358 if (!TREE_SIDE_EFFECTS (arg0)
10359 && !TREE_SIDE_EFFECTS (arg1))
10361 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10362 if (tem && !operand_equal_p (tem, arg0, 0))
10363 return fold_build2_loc (loc, code, type, tem, arg1);
10365 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10366 if (tem && !operand_equal_p (tem, arg1, 0))
10367 return fold_build2_loc (loc, code, type, arg0, tem);
10370 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10371 != NULL_TREE)
10372 return tem;
10374 return NULL_TREE;
10376 case TRUTH_ORIF_EXPR:
10377 /* Note that the operands of this must be ints
10378 and their values must be 0 or true.
10379 ("true" is a fixed value perhaps depending on the language.) */
10380 /* If first arg is constant true, return it. */
10381 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10382 return fold_convert_loc (loc, type, arg0);
10383 /* FALLTHRU */
10384 case TRUTH_OR_EXPR:
10385 /* If either arg is constant zero, drop it. */
10386 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10387 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10388 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10389 /* Preserve sequence points. */
10390 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10391 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10392 /* If second arg is constant true, result is true, but we must
10393 evaluate first arg. */
10394 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10395 return omit_one_operand_loc (loc, type, arg1, arg0);
10396 /* Likewise for first arg, but note this only occurs here for
10397 TRUTH_OR_EXPR. */
10398 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10399 return omit_one_operand_loc (loc, type, arg0, arg1);
10401 /* !X || X is always true. */
10402 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10403 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10404 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10405 /* X || !X is always true. */
10406 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10407 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10408 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10410 /* (X && !Y) || (!X && Y) is X ^ Y */
10411 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10412 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10414 tree a0, a1, l0, l1, n0, n1;
10416 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10417 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10419 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10420 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10422 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10423 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10425 if ((operand_equal_p (n0, a0, 0)
10426 && operand_equal_p (n1, a1, 0))
10427 || (operand_equal_p (n0, a1, 0)
10428 && operand_equal_p (n1, a0, 0)))
10429 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10432 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10433 != NULL_TREE)
10434 return tem;
10436 return NULL_TREE;
10438 case TRUTH_XOR_EXPR:
10439 /* If the second arg is constant zero, drop it. */
10440 if (integer_zerop (arg1))
10441 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10442 /* If the second arg is constant true, this is a logical inversion. */
10443 if (integer_onep (arg1))
10445 tem = invert_truthvalue_loc (loc, arg0);
10446 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10448 /* Identical arguments cancel to zero. */
10449 if (operand_equal_p (arg0, arg1, 0))
10450 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10452 /* !X ^ X is always true. */
10453 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10454 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10455 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10457 /* X ^ !X is always true. */
10458 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10459 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10460 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10462 return NULL_TREE;
10464 case EQ_EXPR:
10465 case NE_EXPR:
10466 STRIP_NOPS (arg0);
10467 STRIP_NOPS (arg1);
10469 tem = fold_comparison (loc, code, type, op0, op1);
10470 if (tem != NULL_TREE)
10471 return tem;
10473 /* bool_var != 1 becomes !bool_var. */
10474 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10475 && code == NE_EXPR)
10476 return fold_convert_loc (loc, type,
10477 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10478 TREE_TYPE (arg0), arg0));
10480 /* bool_var == 0 becomes !bool_var. */
10481 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10482 && code == EQ_EXPR)
10483 return fold_convert_loc (loc, type,
10484 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10485 TREE_TYPE (arg0), arg0));
10487 /* !exp != 0 becomes !exp */
10488 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10489 && code == NE_EXPR)
10490 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10492 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10493 if ((TREE_CODE (arg0) == PLUS_EXPR
10494 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10495 || TREE_CODE (arg0) == MINUS_EXPR)
10496 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10497 0)),
10498 arg1, 0)
10499 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10500 || POINTER_TYPE_P (TREE_TYPE (arg0))))
10502 tree val = TREE_OPERAND (arg0, 1);
10503 val = fold_build2_loc (loc, code, type, val,
10504 build_int_cst (TREE_TYPE (val), 0));
10505 return omit_two_operands_loc (loc, type, val,
10506 TREE_OPERAND (arg0, 0), arg1);
10509 /* Transform comparisons of the form X CMP X +- Y to Y CMP 0. */
10510 if ((TREE_CODE (arg1) == PLUS_EXPR
10511 || TREE_CODE (arg1) == POINTER_PLUS_EXPR
10512 || TREE_CODE (arg1) == MINUS_EXPR)
10513 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10514 0)),
10515 arg0, 0)
10516 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10517 || POINTER_TYPE_P (TREE_TYPE (arg1))))
10519 tree val = TREE_OPERAND (arg1, 1);
10520 val = fold_build2_loc (loc, code, type, val,
10521 build_int_cst (TREE_TYPE (val), 0));
10522 return omit_two_operands_loc (loc, type, val,
10523 TREE_OPERAND (arg1, 0), arg0);
10526 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
10527 if (TREE_CODE (arg0) == MINUS_EXPR
10528 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
10529 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10530 1)),
10531 arg1, 0)
10532 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
10533 return omit_two_operands_loc (loc, type,
10534 code == NE_EXPR
10535 ? boolean_true_node : boolean_false_node,
10536 TREE_OPERAND (arg0, 1), arg1);
10538 /* Transform comparisons of the form X CMP C - X if C % 2 == 1. */
10539 if (TREE_CODE (arg1) == MINUS_EXPR
10540 && TREE_CODE (TREE_OPERAND (arg1, 0)) == INTEGER_CST
10541 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10542 1)),
10543 arg0, 0)
10544 && wi::extract_uhwi (TREE_OPERAND (arg1, 0), 0, 1) == 1)
10545 return omit_two_operands_loc (loc, type,
10546 code == NE_EXPR
10547 ? boolean_true_node : boolean_false_node,
10548 TREE_OPERAND (arg1, 1), arg0);
10550 /* If this is an EQ or NE comparison with zero and ARG0 is
10551 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10552 two operations, but the latter can be done in one less insn
10553 on machines that have only two-operand insns or on which a
10554 constant cannot be the first operand. */
10555 if (TREE_CODE (arg0) == BIT_AND_EXPR
10556 && integer_zerop (arg1))
10558 tree arg00 = TREE_OPERAND (arg0, 0);
10559 tree arg01 = TREE_OPERAND (arg0, 1);
10560 if (TREE_CODE (arg00) == LSHIFT_EXPR
10561 && integer_onep (TREE_OPERAND (arg00, 0)))
10563 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10564 arg01, TREE_OPERAND (arg00, 1));
10565 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10566 build_int_cst (TREE_TYPE (arg0), 1));
10567 return fold_build2_loc (loc, code, type,
10568 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10569 arg1);
10571 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10572 && integer_onep (TREE_OPERAND (arg01, 0)))
10574 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10575 arg00, TREE_OPERAND (arg01, 1));
10576 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10577 build_int_cst (TREE_TYPE (arg0), 1));
10578 return fold_build2_loc (loc, code, type,
10579 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10580 arg1);
10584 /* If this is an NE or EQ comparison of zero against the result of a
10585 signed MOD operation whose second operand is a power of 2, make
10586 the MOD operation unsigned since it is simpler and equivalent. */
10587 if (integer_zerop (arg1)
10588 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10589 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10590 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10591 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10592 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10593 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10595 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10596 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10597 fold_convert_loc (loc, newtype,
10598 TREE_OPERAND (arg0, 0)),
10599 fold_convert_loc (loc, newtype,
10600 TREE_OPERAND (arg0, 1)));
10602 return fold_build2_loc (loc, code, type, newmod,
10603 fold_convert_loc (loc, newtype, arg1));
10606 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10607 C1 is a valid shift constant, and C2 is a power of two, i.e.
10608 a single bit. */
10609 if (TREE_CODE (arg0) == BIT_AND_EXPR
10610 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10611 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10612 == INTEGER_CST
10613 && integer_pow2p (TREE_OPERAND (arg0, 1))
10614 && integer_zerop (arg1))
10616 tree itype = TREE_TYPE (arg0);
10617 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10618 prec = TYPE_PRECISION (itype);
10620 /* Check for a valid shift count. */
10621 if (wi::ltu_p (arg001, prec))
10623 tree arg01 = TREE_OPERAND (arg0, 1);
10624 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10625 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10626 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10627 can be rewritten as (X & (C2 << C1)) != 0. */
10628 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10630 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10631 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10632 return fold_build2_loc (loc, code, type, tem,
10633 fold_convert_loc (loc, itype, arg1));
10635 /* Otherwise, for signed (arithmetic) shifts,
10636 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10637 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10638 else if (!TYPE_UNSIGNED (itype))
10639 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10640 arg000, build_int_cst (itype, 0));
10641 /* Otherwise, of unsigned (logical) shifts,
10642 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10643 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10644 else
10645 return omit_one_operand_loc (loc, type,
10646 code == EQ_EXPR ? integer_one_node
10647 : integer_zero_node,
10648 arg000);
10652 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
10653 Similarly for NE_EXPR. */
10654 if (TREE_CODE (arg0) == BIT_AND_EXPR
10655 && TREE_CODE (arg1) == INTEGER_CST
10656 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10658 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
10659 TREE_TYPE (TREE_OPERAND (arg0, 1)),
10660 TREE_OPERAND (arg0, 1));
10661 tree dandnotc
10662 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10663 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
10664 notc);
10665 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
10666 if (integer_nonzerop (dandnotc))
10667 return omit_one_operand_loc (loc, type, rslt, arg0);
10670 /* If this is a comparison of a field, we may be able to simplify it. */
10671 if ((TREE_CODE (arg0) == COMPONENT_REF
10672 || TREE_CODE (arg0) == BIT_FIELD_REF)
10673 /* Handle the constant case even without -O
10674 to make sure the warnings are given. */
10675 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10677 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10678 if (t1)
10679 return t1;
10682 /* Optimize comparisons of strlen vs zero to a compare of the
10683 first character of the string vs zero. To wit,
10684 strlen(ptr) == 0 => *ptr == 0
10685 strlen(ptr) != 0 => *ptr != 0
10686 Other cases should reduce to one of these two (or a constant)
10687 due to the return value of strlen being unsigned. */
10688 if (TREE_CODE (arg0) == CALL_EXPR
10689 && integer_zerop (arg1))
10691 tree fndecl = get_callee_fndecl (arg0);
10693 if (fndecl
10694 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10695 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10696 && call_expr_nargs (arg0) == 1
10697 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10699 tree iref = build_fold_indirect_ref_loc (loc,
10700 CALL_EXPR_ARG (arg0, 0));
10701 return fold_build2_loc (loc, code, type, iref,
10702 build_int_cst (TREE_TYPE (iref), 0));
10706 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10707 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10708 if (TREE_CODE (arg0) == RSHIFT_EXPR
10709 && integer_zerop (arg1)
10710 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10712 tree arg00 = TREE_OPERAND (arg0, 0);
10713 tree arg01 = TREE_OPERAND (arg0, 1);
10714 tree itype = TREE_TYPE (arg00);
10715 if (wi::eq_p (arg01, element_precision (itype) - 1))
10717 if (TYPE_UNSIGNED (itype))
10719 itype = signed_type_for (itype);
10720 arg00 = fold_convert_loc (loc, itype, arg00);
10722 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10723 type, arg00, build_zero_cst (itype));
10727 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10728 (X & C) == 0 when C is a single bit. */
10729 if (TREE_CODE (arg0) == BIT_AND_EXPR
10730 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10731 && integer_zerop (arg1)
10732 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10734 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10735 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10736 TREE_OPERAND (arg0, 1));
10737 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10738 type, tem,
10739 fold_convert_loc (loc, TREE_TYPE (arg0),
10740 arg1));
10743 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10744 constant C is a power of two, i.e. a single bit. */
10745 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10746 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10747 && integer_zerop (arg1)
10748 && integer_pow2p (TREE_OPERAND (arg0, 1))
10749 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10750 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10752 tree arg00 = TREE_OPERAND (arg0, 0);
10753 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10754 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10757 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10758 when is C is a power of two, i.e. a single bit. */
10759 if (TREE_CODE (arg0) == BIT_AND_EXPR
10760 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10761 && integer_zerop (arg1)
10762 && integer_pow2p (TREE_OPERAND (arg0, 1))
10763 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10764 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10766 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10767 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10768 arg000, TREE_OPERAND (arg0, 1));
10769 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10770 tem, build_int_cst (TREE_TYPE (tem), 0));
10773 if (integer_zerop (arg1)
10774 && tree_expr_nonzero_p (arg0))
10776 tree res = constant_boolean_node (code==NE_EXPR, type);
10777 return omit_one_operand_loc (loc, type, res, arg0);
10780 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10781 if (TREE_CODE (arg0) == BIT_AND_EXPR
10782 && TREE_CODE (arg1) == BIT_AND_EXPR)
10784 tree arg00 = TREE_OPERAND (arg0, 0);
10785 tree arg01 = TREE_OPERAND (arg0, 1);
10786 tree arg10 = TREE_OPERAND (arg1, 0);
10787 tree arg11 = TREE_OPERAND (arg1, 1);
10788 tree itype = TREE_TYPE (arg0);
10790 if (operand_equal_p (arg01, arg11, 0))
10791 return fold_build2_loc (loc, code, type,
10792 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10793 fold_build2_loc (loc,
10794 BIT_XOR_EXPR, itype,
10795 arg00, arg10),
10796 arg01),
10797 build_zero_cst (itype));
10799 if (operand_equal_p (arg01, arg10, 0))
10800 return fold_build2_loc (loc, code, type,
10801 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10802 fold_build2_loc (loc,
10803 BIT_XOR_EXPR, itype,
10804 arg00, arg11),
10805 arg01),
10806 build_zero_cst (itype));
10808 if (operand_equal_p (arg00, arg11, 0))
10809 return fold_build2_loc (loc, code, type,
10810 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10811 fold_build2_loc (loc,
10812 BIT_XOR_EXPR, itype,
10813 arg01, arg10),
10814 arg00),
10815 build_zero_cst (itype));
10817 if (operand_equal_p (arg00, arg10, 0))
10818 return fold_build2_loc (loc, code, type,
10819 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10820 fold_build2_loc (loc,
10821 BIT_XOR_EXPR, itype,
10822 arg01, arg11),
10823 arg00),
10824 build_zero_cst (itype));
10827 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10828 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10830 tree arg00 = TREE_OPERAND (arg0, 0);
10831 tree arg01 = TREE_OPERAND (arg0, 1);
10832 tree arg10 = TREE_OPERAND (arg1, 0);
10833 tree arg11 = TREE_OPERAND (arg1, 1);
10834 tree itype = TREE_TYPE (arg0);
10836 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10837 operand_equal_p guarantees no side-effects so we don't need
10838 to use omit_one_operand on Z. */
10839 if (operand_equal_p (arg01, arg11, 0))
10840 return fold_build2_loc (loc, code, type, arg00,
10841 fold_convert_loc (loc, TREE_TYPE (arg00),
10842 arg10));
10843 if (operand_equal_p (arg01, arg10, 0))
10844 return fold_build2_loc (loc, code, type, arg00,
10845 fold_convert_loc (loc, TREE_TYPE (arg00),
10846 arg11));
10847 if (operand_equal_p (arg00, arg11, 0))
10848 return fold_build2_loc (loc, code, type, arg01,
10849 fold_convert_loc (loc, TREE_TYPE (arg01),
10850 arg10));
10851 if (operand_equal_p (arg00, arg10, 0))
10852 return fold_build2_loc (loc, code, type, arg01,
10853 fold_convert_loc (loc, TREE_TYPE (arg01),
10854 arg11));
10856 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10857 if (TREE_CODE (arg01) == INTEGER_CST
10858 && TREE_CODE (arg11) == INTEGER_CST)
10860 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10861 fold_convert_loc (loc, itype, arg11));
10862 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10863 return fold_build2_loc (loc, code, type, tem,
10864 fold_convert_loc (loc, itype, arg10));
10868 /* Attempt to simplify equality/inequality comparisons of complex
10869 values. Only lower the comparison if the result is known or
10870 can be simplified to a single scalar comparison. */
10871 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10872 || TREE_CODE (arg0) == COMPLEX_CST)
10873 && (TREE_CODE (arg1) == COMPLEX_EXPR
10874 || TREE_CODE (arg1) == COMPLEX_CST))
10876 tree real0, imag0, real1, imag1;
10877 tree rcond, icond;
10879 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10881 real0 = TREE_OPERAND (arg0, 0);
10882 imag0 = TREE_OPERAND (arg0, 1);
10884 else
10886 real0 = TREE_REALPART (arg0);
10887 imag0 = TREE_IMAGPART (arg0);
10890 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10892 real1 = TREE_OPERAND (arg1, 0);
10893 imag1 = TREE_OPERAND (arg1, 1);
10895 else
10897 real1 = TREE_REALPART (arg1);
10898 imag1 = TREE_IMAGPART (arg1);
10901 rcond = fold_binary_loc (loc, code, type, real0, real1);
10902 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
10904 if (integer_zerop (rcond))
10906 if (code == EQ_EXPR)
10907 return omit_two_operands_loc (loc, type, boolean_false_node,
10908 imag0, imag1);
10909 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
10911 else
10913 if (code == NE_EXPR)
10914 return omit_two_operands_loc (loc, type, boolean_true_node,
10915 imag0, imag1);
10916 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
10920 icond = fold_binary_loc (loc, code, type, imag0, imag1);
10921 if (icond && TREE_CODE (icond) == INTEGER_CST)
10923 if (integer_zerop (icond))
10925 if (code == EQ_EXPR)
10926 return omit_two_operands_loc (loc, type, boolean_false_node,
10927 real0, real1);
10928 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
10930 else
10932 if (code == NE_EXPR)
10933 return omit_two_operands_loc (loc, type, boolean_true_node,
10934 real0, real1);
10935 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
10940 return NULL_TREE;
10942 case LT_EXPR:
10943 case GT_EXPR:
10944 case LE_EXPR:
10945 case GE_EXPR:
10946 tem = fold_comparison (loc, code, type, op0, op1);
10947 if (tem != NULL_TREE)
10948 return tem;
10950 /* Transform comparisons of the form X +- C CMP X. */
10951 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10952 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10953 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
10954 && !HONOR_SNANS (arg0))
10955 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10956 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
10958 tree arg01 = TREE_OPERAND (arg0, 1);
10959 enum tree_code code0 = TREE_CODE (arg0);
10960 int is_positive;
10962 if (TREE_CODE (arg01) == REAL_CST)
10963 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
10964 else
10965 is_positive = tree_int_cst_sgn (arg01);
10967 /* (X - c) > X becomes false. */
10968 if (code == GT_EXPR
10969 && ((code0 == MINUS_EXPR && is_positive >= 0)
10970 || (code0 == PLUS_EXPR && is_positive <= 0)))
10972 if (TREE_CODE (arg01) == INTEGER_CST
10973 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10974 fold_overflow_warning (("assuming signed overflow does not "
10975 "occur when assuming that (X - c) > X "
10976 "is always false"),
10977 WARN_STRICT_OVERFLOW_ALL);
10978 return constant_boolean_node (0, type);
10981 /* Likewise (X + c) < X becomes false. */
10982 if (code == LT_EXPR
10983 && ((code0 == PLUS_EXPR && is_positive >= 0)
10984 || (code0 == MINUS_EXPR && is_positive <= 0)))
10986 if (TREE_CODE (arg01) == INTEGER_CST
10987 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10988 fold_overflow_warning (("assuming signed overflow does not "
10989 "occur when assuming that "
10990 "(X + c) < X is always false"),
10991 WARN_STRICT_OVERFLOW_ALL);
10992 return constant_boolean_node (0, type);
10995 /* Convert (X - c) <= X to true. */
10996 if (!HONOR_NANS (arg1)
10997 && code == LE_EXPR
10998 && ((code0 == MINUS_EXPR && is_positive >= 0)
10999 || (code0 == PLUS_EXPR && is_positive <= 0)))
11001 if (TREE_CODE (arg01) == INTEGER_CST
11002 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11003 fold_overflow_warning (("assuming signed overflow does not "
11004 "occur when assuming that "
11005 "(X - c) <= X is always true"),
11006 WARN_STRICT_OVERFLOW_ALL);
11007 return constant_boolean_node (1, type);
11010 /* Convert (X + c) >= X to true. */
11011 if (!HONOR_NANS (arg1)
11012 && code == GE_EXPR
11013 && ((code0 == PLUS_EXPR && is_positive >= 0)
11014 || (code0 == MINUS_EXPR && is_positive <= 0)))
11016 if (TREE_CODE (arg01) == INTEGER_CST
11017 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11018 fold_overflow_warning (("assuming signed overflow does not "
11019 "occur when assuming that "
11020 "(X + c) >= X is always true"),
11021 WARN_STRICT_OVERFLOW_ALL);
11022 return constant_boolean_node (1, type);
11025 if (TREE_CODE (arg01) == INTEGER_CST)
11027 /* Convert X + c > X and X - c < X to true for integers. */
11028 if (code == GT_EXPR
11029 && ((code0 == PLUS_EXPR && is_positive > 0)
11030 || (code0 == MINUS_EXPR && is_positive < 0)))
11032 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11033 fold_overflow_warning (("assuming signed overflow does "
11034 "not occur when assuming that "
11035 "(X + c) > X is always true"),
11036 WARN_STRICT_OVERFLOW_ALL);
11037 return constant_boolean_node (1, type);
11040 if (code == LT_EXPR
11041 && ((code0 == MINUS_EXPR && is_positive > 0)
11042 || (code0 == PLUS_EXPR && is_positive < 0)))
11044 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11045 fold_overflow_warning (("assuming signed overflow does "
11046 "not occur when assuming that "
11047 "(X - c) < X is always true"),
11048 WARN_STRICT_OVERFLOW_ALL);
11049 return constant_boolean_node (1, type);
11052 /* Convert X + c <= X and X - c >= X to false for integers. */
11053 if (code == LE_EXPR
11054 && ((code0 == PLUS_EXPR && is_positive > 0)
11055 || (code0 == MINUS_EXPR && is_positive < 0)))
11057 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11058 fold_overflow_warning (("assuming signed overflow does "
11059 "not occur when assuming that "
11060 "(X + c) <= X is always false"),
11061 WARN_STRICT_OVERFLOW_ALL);
11062 return constant_boolean_node (0, type);
11065 if (code == GE_EXPR
11066 && ((code0 == MINUS_EXPR && is_positive > 0)
11067 || (code0 == PLUS_EXPR && is_positive < 0)))
11069 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11070 fold_overflow_warning (("assuming signed overflow does "
11071 "not occur when assuming that "
11072 "(X - c) >= X is always false"),
11073 WARN_STRICT_OVERFLOW_ALL);
11074 return constant_boolean_node (0, type);
11079 /* If we are comparing an ABS_EXPR with a constant, we can
11080 convert all the cases into explicit comparisons, but they may
11081 well not be faster than doing the ABS and one comparison.
11082 But ABS (X) <= C is a range comparison, which becomes a subtraction
11083 and a comparison, and is probably faster. */
11084 if (code == LE_EXPR
11085 && TREE_CODE (arg1) == INTEGER_CST
11086 && TREE_CODE (arg0) == ABS_EXPR
11087 && ! TREE_SIDE_EFFECTS (arg0)
11088 && (0 != (tem = negate_expr (arg1)))
11089 && TREE_CODE (tem) == INTEGER_CST
11090 && !TREE_OVERFLOW (tem))
11091 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11092 build2 (GE_EXPR, type,
11093 TREE_OPERAND (arg0, 0), tem),
11094 build2 (LE_EXPR, type,
11095 TREE_OPERAND (arg0, 0), arg1));
11097 /* Convert ABS_EXPR<x> >= 0 to true. */
11098 strict_overflow_p = false;
11099 if (code == GE_EXPR
11100 && (integer_zerop (arg1)
11101 || (! HONOR_NANS (arg0)
11102 && real_zerop (arg1)))
11103 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11105 if (strict_overflow_p)
11106 fold_overflow_warning (("assuming signed overflow does not occur "
11107 "when simplifying comparison of "
11108 "absolute value and zero"),
11109 WARN_STRICT_OVERFLOW_CONDITIONAL);
11110 return omit_one_operand_loc (loc, type,
11111 constant_boolean_node (true, type),
11112 arg0);
11115 /* Convert ABS_EXPR<x> < 0 to false. */
11116 strict_overflow_p = false;
11117 if (code == LT_EXPR
11118 && (integer_zerop (arg1) || real_zerop (arg1))
11119 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11121 if (strict_overflow_p)
11122 fold_overflow_warning (("assuming signed overflow does not occur "
11123 "when simplifying comparison of "
11124 "absolute value and zero"),
11125 WARN_STRICT_OVERFLOW_CONDITIONAL);
11126 return omit_one_operand_loc (loc, type,
11127 constant_boolean_node (false, type),
11128 arg0);
11131 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11132 and similarly for >= into !=. */
11133 if ((code == LT_EXPR || code == GE_EXPR)
11134 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11135 && TREE_CODE (arg1) == LSHIFT_EXPR
11136 && integer_onep (TREE_OPERAND (arg1, 0)))
11137 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11138 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11139 TREE_OPERAND (arg1, 1)),
11140 build_zero_cst (TREE_TYPE (arg0)));
11142 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11143 otherwise Y might be >= # of bits in X's type and thus e.g.
11144 (unsigned char) (1 << Y) for Y 15 might be 0.
11145 If the cast is widening, then 1 << Y should have unsigned type,
11146 otherwise if Y is number of bits in the signed shift type minus 1,
11147 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11148 31 might be 0xffffffff80000000. */
11149 if ((code == LT_EXPR || code == GE_EXPR)
11150 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11151 && CONVERT_EXPR_P (arg1)
11152 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11153 && (element_precision (TREE_TYPE (arg1))
11154 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11155 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11156 || (element_precision (TREE_TYPE (arg1))
11157 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11158 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11160 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11161 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11162 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11163 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11164 build_zero_cst (TREE_TYPE (arg0)));
11167 return NULL_TREE;
11169 case UNORDERED_EXPR:
11170 case ORDERED_EXPR:
11171 case UNLT_EXPR:
11172 case UNLE_EXPR:
11173 case UNGT_EXPR:
11174 case UNGE_EXPR:
11175 case UNEQ_EXPR:
11176 case LTGT_EXPR:
11177 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11179 tree targ0 = strip_float_extensions (arg0);
11180 tree targ1 = strip_float_extensions (arg1);
11181 tree newtype = TREE_TYPE (targ0);
11183 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11184 newtype = TREE_TYPE (targ1);
11186 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11187 return fold_build2_loc (loc, code, type,
11188 fold_convert_loc (loc, newtype, targ0),
11189 fold_convert_loc (loc, newtype, targ1));
11192 return NULL_TREE;
11194 case COMPOUND_EXPR:
11195 /* When pedantic, a compound expression can be neither an lvalue
11196 nor an integer constant expression. */
11197 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11198 return NULL_TREE;
11199 /* Don't let (0, 0) be null pointer constant. */
11200 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11201 : fold_convert_loc (loc, type, arg1);
11202 return pedantic_non_lvalue_loc (loc, tem);
11204 case ASSERT_EXPR:
11205 /* An ASSERT_EXPR should never be passed to fold_binary. */
11206 gcc_unreachable ();
11208 default:
11209 return NULL_TREE;
11210 } /* switch (code) */
11213 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11214 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11215 of GOTO_EXPR. */
11217 static tree
11218 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11220 switch (TREE_CODE (*tp))
11222 case LABEL_EXPR:
11223 return *tp;
11225 case GOTO_EXPR:
11226 *walk_subtrees = 0;
11228 /* fall through */
11230 default:
11231 return NULL_TREE;
11235 /* Return whether the sub-tree ST contains a label which is accessible from
11236 outside the sub-tree. */
11238 static bool
11239 contains_label_p (tree st)
11241 return
11242 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11245 /* Fold a ternary expression of code CODE and type TYPE with operands
11246 OP0, OP1, and OP2. Return the folded expression if folding is
11247 successful. Otherwise, return NULL_TREE. */
11249 tree
11250 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11251 tree op0, tree op1, tree op2)
11253 tree tem;
11254 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11255 enum tree_code_class kind = TREE_CODE_CLASS (code);
11257 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11258 && TREE_CODE_LENGTH (code) == 3);
11260 /* If this is a commutative operation, and OP0 is a constant, move it
11261 to OP1 to reduce the number of tests below. */
11262 if (commutative_ternary_tree_code (code)
11263 && tree_swap_operands_p (op0, op1, true))
11264 return fold_build3_loc (loc, code, type, op1, op0, op2);
11266 tem = generic_simplify (loc, code, type, op0, op1, op2);
11267 if (tem)
11268 return tem;
11270 /* Strip any conversions that don't change the mode. This is safe
11271 for every expression, except for a comparison expression because
11272 its signedness is derived from its operands. So, in the latter
11273 case, only strip conversions that don't change the signedness.
11275 Note that this is done as an internal manipulation within the
11276 constant folder, in order to find the simplest representation of
11277 the arguments so that their form can be studied. In any cases,
11278 the appropriate type conversions should be put back in the tree
11279 that will get out of the constant folder. */
11280 if (op0)
11282 arg0 = op0;
11283 STRIP_NOPS (arg0);
11286 if (op1)
11288 arg1 = op1;
11289 STRIP_NOPS (arg1);
11292 if (op2)
11294 arg2 = op2;
11295 STRIP_NOPS (arg2);
11298 switch (code)
11300 case COMPONENT_REF:
11301 if (TREE_CODE (arg0) == CONSTRUCTOR
11302 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11304 unsigned HOST_WIDE_INT idx;
11305 tree field, value;
11306 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11307 if (field == arg1)
11308 return value;
11310 return NULL_TREE;
11312 case COND_EXPR:
11313 case VEC_COND_EXPR:
11314 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11315 so all simple results must be passed through pedantic_non_lvalue. */
11316 if (TREE_CODE (arg0) == INTEGER_CST)
11318 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11319 tem = integer_zerop (arg0) ? op2 : op1;
11320 /* Only optimize constant conditions when the selected branch
11321 has the same type as the COND_EXPR. This avoids optimizing
11322 away "c ? x : throw", where the throw has a void type.
11323 Avoid throwing away that operand which contains label. */
11324 if ((!TREE_SIDE_EFFECTS (unused_op)
11325 || !contains_label_p (unused_op))
11326 && (! VOID_TYPE_P (TREE_TYPE (tem))
11327 || VOID_TYPE_P (type)))
11328 return pedantic_non_lvalue_loc (loc, tem);
11329 return NULL_TREE;
11331 else if (TREE_CODE (arg0) == VECTOR_CST)
11333 if ((TREE_CODE (arg1) == VECTOR_CST
11334 || TREE_CODE (arg1) == CONSTRUCTOR)
11335 && (TREE_CODE (arg2) == VECTOR_CST
11336 || TREE_CODE (arg2) == CONSTRUCTOR))
11338 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
11339 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
11340 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
11341 for (i = 0; i < nelts; i++)
11343 tree val = VECTOR_CST_ELT (arg0, i);
11344 if (integer_all_onesp (val))
11345 sel[i] = i;
11346 else if (integer_zerop (val))
11347 sel[i] = nelts + i;
11348 else /* Currently unreachable. */
11349 return NULL_TREE;
11351 tree t = fold_vec_perm (type, arg1, arg2, sel);
11352 if (t != NULL_TREE)
11353 return t;
11357 /* If we have A op B ? A : C, we may be able to convert this to a
11358 simpler expression, depending on the operation and the values
11359 of B and C. Signed zeros prevent all of these transformations,
11360 for reasons given above each one.
11362 Also try swapping the arguments and inverting the conditional. */
11363 if (COMPARISON_CLASS_P (arg0)
11364 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11365 arg1, TREE_OPERAND (arg0, 1))
11366 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
11368 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11369 if (tem)
11370 return tem;
11373 if (COMPARISON_CLASS_P (arg0)
11374 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11375 op2,
11376 TREE_OPERAND (arg0, 1))
11377 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11379 location_t loc0 = expr_location_or (arg0, loc);
11380 tem = fold_invert_truthvalue (loc0, arg0);
11381 if (tem && COMPARISON_CLASS_P (tem))
11383 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11384 if (tem)
11385 return tem;
11389 /* If the second operand is simpler than the third, swap them
11390 since that produces better jump optimization results. */
11391 if (truth_value_p (TREE_CODE (arg0))
11392 && tree_swap_operands_p (op1, op2, false))
11394 location_t loc0 = expr_location_or (arg0, loc);
11395 /* See if this can be inverted. If it can't, possibly because
11396 it was a floating-point inequality comparison, don't do
11397 anything. */
11398 tem = fold_invert_truthvalue (loc0, arg0);
11399 if (tem)
11400 return fold_build3_loc (loc, code, type, tem, op2, op1);
11403 /* Convert A ? 1 : 0 to simply A. */
11404 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11405 : (integer_onep (op1)
11406 && !VECTOR_TYPE_P (type)))
11407 && integer_zerop (op2)
11408 /* If we try to convert OP0 to our type, the
11409 call to fold will try to move the conversion inside
11410 a COND, which will recurse. In that case, the COND_EXPR
11411 is probably the best choice, so leave it alone. */
11412 && type == TREE_TYPE (arg0))
11413 return pedantic_non_lvalue_loc (loc, arg0);
11415 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11416 over COND_EXPR in cases such as floating point comparisons. */
11417 if (integer_zerop (op1)
11418 && code == COND_EXPR
11419 && integer_onep (op2)
11420 && !VECTOR_TYPE_P (type)
11421 && truth_value_p (TREE_CODE (arg0)))
11422 return pedantic_non_lvalue_loc (loc,
11423 fold_convert_loc (loc, type,
11424 invert_truthvalue_loc (loc,
11425 arg0)));
11427 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11428 if (TREE_CODE (arg0) == LT_EXPR
11429 && integer_zerop (TREE_OPERAND (arg0, 1))
11430 && integer_zerop (op2)
11431 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11433 /* sign_bit_p looks through both zero and sign extensions,
11434 but for this optimization only sign extensions are
11435 usable. */
11436 tree tem2 = TREE_OPERAND (arg0, 0);
11437 while (tem != tem2)
11439 if (TREE_CODE (tem2) != NOP_EXPR
11440 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11442 tem = NULL_TREE;
11443 break;
11445 tem2 = TREE_OPERAND (tem2, 0);
11447 /* sign_bit_p only checks ARG1 bits within A's precision.
11448 If <sign bit of A> has wider type than A, bits outside
11449 of A's precision in <sign bit of A> need to be checked.
11450 If they are all 0, this optimization needs to be done
11451 in unsigned A's type, if they are all 1 in signed A's type,
11452 otherwise this can't be done. */
11453 if (tem
11454 && TYPE_PRECISION (TREE_TYPE (tem))
11455 < TYPE_PRECISION (TREE_TYPE (arg1))
11456 && TYPE_PRECISION (TREE_TYPE (tem))
11457 < TYPE_PRECISION (type))
11459 int inner_width, outer_width;
11460 tree tem_type;
11462 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11463 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11464 if (outer_width > TYPE_PRECISION (type))
11465 outer_width = TYPE_PRECISION (type);
11467 wide_int mask = wi::shifted_mask
11468 (inner_width, outer_width - inner_width, false,
11469 TYPE_PRECISION (TREE_TYPE (arg1)));
11471 wide_int common = mask & arg1;
11472 if (common == mask)
11474 tem_type = signed_type_for (TREE_TYPE (tem));
11475 tem = fold_convert_loc (loc, tem_type, tem);
11477 else if (common == 0)
11479 tem_type = unsigned_type_for (TREE_TYPE (tem));
11480 tem = fold_convert_loc (loc, tem_type, tem);
11482 else
11483 tem = NULL;
11486 if (tem)
11487 return
11488 fold_convert_loc (loc, type,
11489 fold_build2_loc (loc, BIT_AND_EXPR,
11490 TREE_TYPE (tem), tem,
11491 fold_convert_loc (loc,
11492 TREE_TYPE (tem),
11493 arg1)));
11496 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11497 already handled above. */
11498 if (TREE_CODE (arg0) == BIT_AND_EXPR
11499 && integer_onep (TREE_OPERAND (arg0, 1))
11500 && integer_zerop (op2)
11501 && integer_pow2p (arg1))
11503 tree tem = TREE_OPERAND (arg0, 0);
11504 STRIP_NOPS (tem);
11505 if (TREE_CODE (tem) == RSHIFT_EXPR
11506 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11507 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
11508 tree_to_uhwi (TREE_OPERAND (tem, 1)))
11509 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11510 TREE_OPERAND (tem, 0), arg1);
11513 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11514 is probably obsolete because the first operand should be a
11515 truth value (that's why we have the two cases above), but let's
11516 leave it in until we can confirm this for all front-ends. */
11517 if (integer_zerop (op2)
11518 && TREE_CODE (arg0) == NE_EXPR
11519 && integer_zerop (TREE_OPERAND (arg0, 1))
11520 && integer_pow2p (arg1)
11521 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11522 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11523 arg1, OEP_ONLY_CONST))
11524 return pedantic_non_lvalue_loc (loc,
11525 fold_convert_loc (loc, type,
11526 TREE_OPERAND (arg0, 0)));
11528 /* Disable the transformations below for vectors, since
11529 fold_binary_op_with_conditional_arg may undo them immediately,
11530 yielding an infinite loop. */
11531 if (code == VEC_COND_EXPR)
11532 return NULL_TREE;
11534 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11535 if (integer_zerop (op2)
11536 && truth_value_p (TREE_CODE (arg0))
11537 && truth_value_p (TREE_CODE (arg1))
11538 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11539 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11540 : TRUTH_ANDIF_EXPR,
11541 type, fold_convert_loc (loc, type, arg0), arg1);
11543 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11544 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11545 && truth_value_p (TREE_CODE (arg0))
11546 && truth_value_p (TREE_CODE (arg1))
11547 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11549 location_t loc0 = expr_location_or (arg0, loc);
11550 /* Only perform transformation if ARG0 is easily inverted. */
11551 tem = fold_invert_truthvalue (loc0, arg0);
11552 if (tem)
11553 return fold_build2_loc (loc, code == VEC_COND_EXPR
11554 ? BIT_IOR_EXPR
11555 : TRUTH_ORIF_EXPR,
11556 type, fold_convert_loc (loc, type, tem),
11557 arg1);
11560 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11561 if (integer_zerop (arg1)
11562 && truth_value_p (TREE_CODE (arg0))
11563 && truth_value_p (TREE_CODE (op2))
11564 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11566 location_t loc0 = expr_location_or (arg0, loc);
11567 /* Only perform transformation if ARG0 is easily inverted. */
11568 tem = fold_invert_truthvalue (loc0, arg0);
11569 if (tem)
11570 return fold_build2_loc (loc, code == VEC_COND_EXPR
11571 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11572 type, fold_convert_loc (loc, type, tem),
11573 op2);
11576 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11577 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11578 && truth_value_p (TREE_CODE (arg0))
11579 && truth_value_p (TREE_CODE (op2))
11580 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11581 return fold_build2_loc (loc, code == VEC_COND_EXPR
11582 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11583 type, fold_convert_loc (loc, type, arg0), op2);
11585 return NULL_TREE;
11587 case CALL_EXPR:
11588 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11589 of fold_ternary on them. */
11590 gcc_unreachable ();
11592 case BIT_FIELD_REF:
11593 if (TREE_CODE (arg0) == VECTOR_CST
11594 && (type == TREE_TYPE (TREE_TYPE (arg0))
11595 || (TREE_CODE (type) == VECTOR_TYPE
11596 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
11598 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11599 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11600 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11601 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11603 if (n != 0
11604 && (idx % width) == 0
11605 && (n % width) == 0
11606 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11608 idx = idx / width;
11609 n = n / width;
11611 if (TREE_CODE (arg0) == VECTOR_CST)
11613 if (n == 1)
11614 return VECTOR_CST_ELT (arg0, idx);
11616 tree *vals = XALLOCAVEC (tree, n);
11617 for (unsigned i = 0; i < n; ++i)
11618 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
11619 return build_vector (type, vals);
11624 /* On constants we can use native encode/interpret to constant
11625 fold (nearly) all BIT_FIELD_REFs. */
11626 if (CONSTANT_CLASS_P (arg0)
11627 && can_native_interpret_type_p (type)
11628 && BITS_PER_UNIT == 8)
11630 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11631 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11632 /* Limit us to a reasonable amount of work. To relax the
11633 other limitations we need bit-shifting of the buffer
11634 and rounding up the size. */
11635 if (bitpos % BITS_PER_UNIT == 0
11636 && bitsize % BITS_PER_UNIT == 0
11637 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
11639 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11640 unsigned HOST_WIDE_INT len
11641 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
11642 bitpos / BITS_PER_UNIT);
11643 if (len > 0
11644 && len * BITS_PER_UNIT >= bitsize)
11646 tree v = native_interpret_expr (type, b,
11647 bitsize / BITS_PER_UNIT);
11648 if (v)
11649 return v;
11654 return NULL_TREE;
11656 case FMA_EXPR:
11657 /* For integers we can decompose the FMA if possible. */
11658 if (TREE_CODE (arg0) == INTEGER_CST
11659 && TREE_CODE (arg1) == INTEGER_CST)
11660 return fold_build2_loc (loc, PLUS_EXPR, type,
11661 const_binop (MULT_EXPR, arg0, arg1), arg2);
11662 if (integer_zerop (arg2))
11663 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11665 return fold_fma (loc, type, arg0, arg1, arg2);
11667 case VEC_PERM_EXPR:
11668 if (TREE_CODE (arg2) == VECTOR_CST)
11670 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
11671 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
11672 unsigned char *sel2 = sel + nelts;
11673 bool need_mask_canon = false;
11674 bool need_mask_canon2 = false;
11675 bool all_in_vec0 = true;
11676 bool all_in_vec1 = true;
11677 bool maybe_identity = true;
11678 bool single_arg = (op0 == op1);
11679 bool changed = false;
11681 mask2 = 2 * nelts - 1;
11682 mask = single_arg ? (nelts - 1) : mask2;
11683 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
11684 for (i = 0; i < nelts; i++)
11686 tree val = VECTOR_CST_ELT (arg2, i);
11687 if (TREE_CODE (val) != INTEGER_CST)
11688 return NULL_TREE;
11690 /* Make sure that the perm value is in an acceptable
11691 range. */
11692 wide_int t = val;
11693 need_mask_canon |= wi::gtu_p (t, mask);
11694 need_mask_canon2 |= wi::gtu_p (t, mask2);
11695 sel[i] = t.to_uhwi () & mask;
11696 sel2[i] = t.to_uhwi () & mask2;
11698 if (sel[i] < nelts)
11699 all_in_vec1 = false;
11700 else
11701 all_in_vec0 = false;
11703 if ((sel[i] & (nelts-1)) != i)
11704 maybe_identity = false;
11707 if (maybe_identity)
11709 if (all_in_vec0)
11710 return op0;
11711 if (all_in_vec1)
11712 return op1;
11715 if (all_in_vec0)
11716 op1 = op0;
11717 else if (all_in_vec1)
11719 op0 = op1;
11720 for (i = 0; i < nelts; i++)
11721 sel[i] -= nelts;
11722 need_mask_canon = true;
11725 if ((TREE_CODE (op0) == VECTOR_CST
11726 || TREE_CODE (op0) == CONSTRUCTOR)
11727 && (TREE_CODE (op1) == VECTOR_CST
11728 || TREE_CODE (op1) == CONSTRUCTOR))
11730 tree t = fold_vec_perm (type, op0, op1, sel);
11731 if (t != NULL_TREE)
11732 return t;
11735 if (op0 == op1 && !single_arg)
11736 changed = true;
11738 /* Some targets are deficient and fail to expand a single
11739 argument permutation while still allowing an equivalent
11740 2-argument version. */
11741 if (need_mask_canon && arg2 == op2
11742 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
11743 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
11745 need_mask_canon = need_mask_canon2;
11746 sel = sel2;
11749 if (need_mask_canon && arg2 == op2)
11751 tree *tsel = XALLOCAVEC (tree, nelts);
11752 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
11753 for (i = 0; i < nelts; i++)
11754 tsel[i] = build_int_cst (eltype, sel[i]);
11755 op2 = build_vector (TREE_TYPE (arg2), tsel);
11756 changed = true;
11759 if (changed)
11760 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
11762 return NULL_TREE;
11764 case BIT_INSERT_EXPR:
11765 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11766 if (TREE_CODE (arg0) == INTEGER_CST
11767 && TREE_CODE (arg1) == INTEGER_CST)
11769 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11770 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
11771 wide_int tem = wi::bit_and (arg0,
11772 wi::shifted_mask (bitpos, bitsize, true,
11773 TYPE_PRECISION (type)));
11774 wide_int tem2
11775 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
11776 bitsize), bitpos);
11777 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
11779 else if (TREE_CODE (arg0) == VECTOR_CST
11780 && CONSTANT_CLASS_P (arg1)
11781 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
11782 TREE_TYPE (arg1)))
11784 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11785 unsigned HOST_WIDE_INT elsize
11786 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
11787 if (bitpos % elsize == 0)
11789 unsigned k = bitpos / elsize;
11790 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
11791 return arg0;
11792 else
11794 tree *elts = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
11795 memcpy (elts, VECTOR_CST_ELTS (arg0),
11796 sizeof (tree) * TYPE_VECTOR_SUBPARTS (type));
11797 elts[k] = arg1;
11798 return build_vector (type, elts);
11802 return NULL_TREE;
11804 default:
11805 return NULL_TREE;
11806 } /* switch (code) */
11809 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11810 of an array (or vector). */
11812 tree
11813 get_array_ctor_element_at_index (tree ctor, offset_int access_index)
11815 tree index_type = NULL_TREE;
11816 offset_int low_bound = 0;
11818 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11820 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11821 if (domain_type && TYPE_MIN_VALUE (domain_type))
11823 /* Static constructors for variably sized objects makes no sense. */
11824 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11825 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11826 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11830 if (index_type)
11831 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11832 TYPE_SIGN (index_type));
11834 offset_int index = low_bound - 1;
11835 if (index_type)
11836 index = wi::ext (index, TYPE_PRECISION (index_type),
11837 TYPE_SIGN (index_type));
11839 offset_int max_index;
11840 unsigned HOST_WIDE_INT cnt;
11841 tree cfield, cval;
11843 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11845 /* Array constructor might explicitly set index, or specify a range,
11846 or leave index NULL meaning that it is next index after previous
11847 one. */
11848 if (cfield)
11850 if (TREE_CODE (cfield) == INTEGER_CST)
11851 max_index = index = wi::to_offset (cfield);
11852 else
11854 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11855 index = wi::to_offset (TREE_OPERAND (cfield, 0));
11856 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
11859 else
11861 index += 1;
11862 if (index_type)
11863 index = wi::ext (index, TYPE_PRECISION (index_type),
11864 TYPE_SIGN (index_type));
11865 max_index = index;
11868 /* Do we have match? */
11869 if (wi::cmpu (access_index, index) >= 0
11870 && wi::cmpu (access_index, max_index) <= 0)
11871 return cval;
11873 return NULL_TREE;
11876 /* Perform constant folding and related simplification of EXPR.
11877 The related simplifications include x*1 => x, x*0 => 0, etc.,
11878 and application of the associative law.
11879 NOP_EXPR conversions may be removed freely (as long as we
11880 are careful not to change the type of the overall expression).
11881 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11882 but we can constant-fold them if they have constant operands. */
11884 #ifdef ENABLE_FOLD_CHECKING
11885 # define fold(x) fold_1 (x)
11886 static tree fold_1 (tree);
11887 static
11888 #endif
11889 tree
11890 fold (tree expr)
11892 const tree t = expr;
11893 enum tree_code code = TREE_CODE (t);
11894 enum tree_code_class kind = TREE_CODE_CLASS (code);
11895 tree tem;
11896 location_t loc = EXPR_LOCATION (expr);
11898 /* Return right away if a constant. */
11899 if (kind == tcc_constant)
11900 return t;
11902 /* CALL_EXPR-like objects with variable numbers of operands are
11903 treated specially. */
11904 if (kind == tcc_vl_exp)
11906 if (code == CALL_EXPR)
11908 tem = fold_call_expr (loc, expr, false);
11909 return tem ? tem : expr;
11911 return expr;
11914 if (IS_EXPR_CODE_CLASS (kind))
11916 tree type = TREE_TYPE (t);
11917 tree op0, op1, op2;
11919 switch (TREE_CODE_LENGTH (code))
11921 case 1:
11922 op0 = TREE_OPERAND (t, 0);
11923 tem = fold_unary_loc (loc, code, type, op0);
11924 return tem ? tem : expr;
11925 case 2:
11926 op0 = TREE_OPERAND (t, 0);
11927 op1 = TREE_OPERAND (t, 1);
11928 tem = fold_binary_loc (loc, code, type, op0, op1);
11929 return tem ? tem : expr;
11930 case 3:
11931 op0 = TREE_OPERAND (t, 0);
11932 op1 = TREE_OPERAND (t, 1);
11933 op2 = TREE_OPERAND (t, 2);
11934 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
11935 return tem ? tem : expr;
11936 default:
11937 break;
11941 switch (code)
11943 case ARRAY_REF:
11945 tree op0 = TREE_OPERAND (t, 0);
11946 tree op1 = TREE_OPERAND (t, 1);
11948 if (TREE_CODE (op1) == INTEGER_CST
11949 && TREE_CODE (op0) == CONSTRUCTOR
11950 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
11952 tree val = get_array_ctor_element_at_index (op0,
11953 wi::to_offset (op1));
11954 if (val)
11955 return val;
11958 return t;
11961 /* Return a VECTOR_CST if possible. */
11962 case CONSTRUCTOR:
11964 tree type = TREE_TYPE (t);
11965 if (TREE_CODE (type) != VECTOR_TYPE)
11966 return t;
11968 unsigned i;
11969 tree val;
11970 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
11971 if (! CONSTANT_CLASS_P (val))
11972 return t;
11974 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
11977 case CONST_DECL:
11978 return fold (DECL_INITIAL (t));
11980 default:
11981 return t;
11982 } /* switch (code) */
11985 #ifdef ENABLE_FOLD_CHECKING
11986 #undef fold
11988 static void fold_checksum_tree (const_tree, struct md5_ctx *,
11989 hash_table<nofree_ptr_hash<const tree_node> > *);
11990 static void fold_check_failed (const_tree, const_tree);
11991 void print_fold_checksum (const_tree);
11993 /* When --enable-checking=fold, compute a digest of expr before
11994 and after actual fold call to see if fold did not accidentally
11995 change original expr. */
11997 tree
11998 fold (tree expr)
12000 tree ret;
12001 struct md5_ctx ctx;
12002 unsigned char checksum_before[16], checksum_after[16];
12003 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12005 md5_init_ctx (&ctx);
12006 fold_checksum_tree (expr, &ctx, &ht);
12007 md5_finish_ctx (&ctx, checksum_before);
12008 ht.empty ();
12010 ret = fold_1 (expr);
12012 md5_init_ctx (&ctx);
12013 fold_checksum_tree (expr, &ctx, &ht);
12014 md5_finish_ctx (&ctx, checksum_after);
12016 if (memcmp (checksum_before, checksum_after, 16))
12017 fold_check_failed (expr, ret);
12019 return ret;
12022 void
12023 print_fold_checksum (const_tree expr)
12025 struct md5_ctx ctx;
12026 unsigned char checksum[16], cnt;
12027 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12029 md5_init_ctx (&ctx);
12030 fold_checksum_tree (expr, &ctx, &ht);
12031 md5_finish_ctx (&ctx, checksum);
12032 for (cnt = 0; cnt < 16; ++cnt)
12033 fprintf (stderr, "%02x", checksum[cnt]);
12034 putc ('\n', stderr);
12037 static void
12038 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12040 internal_error ("fold check: original tree changed by fold");
12043 static void
12044 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12045 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12047 const tree_node **slot;
12048 enum tree_code code;
12049 union tree_node buf;
12050 int i, len;
12052 recursive_label:
12053 if (expr == NULL)
12054 return;
12055 slot = ht->find_slot (expr, INSERT);
12056 if (*slot != NULL)
12057 return;
12058 *slot = expr;
12059 code = TREE_CODE (expr);
12060 if (TREE_CODE_CLASS (code) == tcc_declaration
12061 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12063 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12064 memcpy ((char *) &buf, expr, tree_size (expr));
12065 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
12066 buf.decl_with_vis.symtab_node = NULL;
12067 expr = (tree) &buf;
12069 else if (TREE_CODE_CLASS (code) == tcc_type
12070 && (TYPE_POINTER_TO (expr)
12071 || TYPE_REFERENCE_TO (expr)
12072 || TYPE_CACHED_VALUES_P (expr)
12073 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12074 || TYPE_NEXT_VARIANT (expr)
12075 || TYPE_ALIAS_SET_KNOWN_P (expr)))
12077 /* Allow these fields to be modified. */
12078 tree tmp;
12079 memcpy ((char *) &buf, expr, tree_size (expr));
12080 expr = tmp = (tree) &buf;
12081 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12082 TYPE_POINTER_TO (tmp) = NULL;
12083 TYPE_REFERENCE_TO (tmp) = NULL;
12084 TYPE_NEXT_VARIANT (tmp) = NULL;
12085 TYPE_ALIAS_SET (tmp) = -1;
12086 if (TYPE_CACHED_VALUES_P (tmp))
12088 TYPE_CACHED_VALUES_P (tmp) = 0;
12089 TYPE_CACHED_VALUES (tmp) = NULL;
12092 md5_process_bytes (expr, tree_size (expr), ctx);
12093 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12094 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12095 if (TREE_CODE_CLASS (code) != tcc_type
12096 && TREE_CODE_CLASS (code) != tcc_declaration
12097 && code != TREE_LIST
12098 && code != SSA_NAME
12099 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12100 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12101 switch (TREE_CODE_CLASS (code))
12103 case tcc_constant:
12104 switch (code)
12106 case STRING_CST:
12107 md5_process_bytes (TREE_STRING_POINTER (expr),
12108 TREE_STRING_LENGTH (expr), ctx);
12109 break;
12110 case COMPLEX_CST:
12111 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12112 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12113 break;
12114 case VECTOR_CST:
12115 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12116 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12117 break;
12118 default:
12119 break;
12121 break;
12122 case tcc_exceptional:
12123 switch (code)
12125 case TREE_LIST:
12126 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12127 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12128 expr = TREE_CHAIN (expr);
12129 goto recursive_label;
12130 break;
12131 case TREE_VEC:
12132 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12133 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12134 break;
12135 default:
12136 break;
12138 break;
12139 case tcc_expression:
12140 case tcc_reference:
12141 case tcc_comparison:
12142 case tcc_unary:
12143 case tcc_binary:
12144 case tcc_statement:
12145 case tcc_vl_exp:
12146 len = TREE_OPERAND_LENGTH (expr);
12147 for (i = 0; i < len; ++i)
12148 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12149 break;
12150 case tcc_declaration:
12151 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12152 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12153 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12155 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12156 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12157 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12158 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12159 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12162 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12164 if (TREE_CODE (expr) == FUNCTION_DECL)
12166 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12167 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12169 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12171 break;
12172 case tcc_type:
12173 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12174 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12175 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12176 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12177 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12178 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12179 if (INTEGRAL_TYPE_P (expr)
12180 || SCALAR_FLOAT_TYPE_P (expr))
12182 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12183 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12185 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12186 if (TREE_CODE (expr) == RECORD_TYPE
12187 || TREE_CODE (expr) == UNION_TYPE
12188 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12189 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12190 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12191 break;
12192 default:
12193 break;
12197 /* Helper function for outputting the checksum of a tree T. When
12198 debugging with gdb, you can "define mynext" to be "next" followed
12199 by "call debug_fold_checksum (op0)", then just trace down till the
12200 outputs differ. */
12202 DEBUG_FUNCTION void
12203 debug_fold_checksum (const_tree t)
12205 int i;
12206 unsigned char checksum[16];
12207 struct md5_ctx ctx;
12208 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12210 md5_init_ctx (&ctx);
12211 fold_checksum_tree (t, &ctx, &ht);
12212 md5_finish_ctx (&ctx, checksum);
12213 ht.empty ();
12215 for (i = 0; i < 16; i++)
12216 fprintf (stderr, "%d ", checksum[i]);
12218 fprintf (stderr, "\n");
12221 #endif
12223 /* Fold a unary tree expression with code CODE of type TYPE with an
12224 operand OP0. LOC is the location of the resulting expression.
12225 Return a folded expression if successful. Otherwise, return a tree
12226 expression with code CODE of type TYPE with an operand OP0. */
12228 tree
12229 fold_build1_stat_loc (location_t loc,
12230 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12232 tree tem;
12233 #ifdef ENABLE_FOLD_CHECKING
12234 unsigned char checksum_before[16], checksum_after[16];
12235 struct md5_ctx ctx;
12236 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12238 md5_init_ctx (&ctx);
12239 fold_checksum_tree (op0, &ctx, &ht);
12240 md5_finish_ctx (&ctx, checksum_before);
12241 ht.empty ();
12242 #endif
12244 tem = fold_unary_loc (loc, code, type, op0);
12245 if (!tem)
12246 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
12248 #ifdef ENABLE_FOLD_CHECKING
12249 md5_init_ctx (&ctx);
12250 fold_checksum_tree (op0, &ctx, &ht);
12251 md5_finish_ctx (&ctx, checksum_after);
12253 if (memcmp (checksum_before, checksum_after, 16))
12254 fold_check_failed (op0, tem);
12255 #endif
12256 return tem;
12259 /* Fold a binary tree expression with code CODE of type TYPE with
12260 operands OP0 and OP1. LOC is the location of the resulting
12261 expression. Return a folded expression if successful. Otherwise,
12262 return a tree expression with code CODE of type TYPE with operands
12263 OP0 and OP1. */
12265 tree
12266 fold_build2_stat_loc (location_t loc,
12267 enum tree_code code, tree type, tree op0, tree op1
12268 MEM_STAT_DECL)
12270 tree tem;
12271 #ifdef ENABLE_FOLD_CHECKING
12272 unsigned char checksum_before_op0[16],
12273 checksum_before_op1[16],
12274 checksum_after_op0[16],
12275 checksum_after_op1[16];
12276 struct md5_ctx ctx;
12277 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12279 md5_init_ctx (&ctx);
12280 fold_checksum_tree (op0, &ctx, &ht);
12281 md5_finish_ctx (&ctx, checksum_before_op0);
12282 ht.empty ();
12284 md5_init_ctx (&ctx);
12285 fold_checksum_tree (op1, &ctx, &ht);
12286 md5_finish_ctx (&ctx, checksum_before_op1);
12287 ht.empty ();
12288 #endif
12290 tem = fold_binary_loc (loc, code, type, op0, op1);
12291 if (!tem)
12292 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12294 #ifdef ENABLE_FOLD_CHECKING
12295 md5_init_ctx (&ctx);
12296 fold_checksum_tree (op0, &ctx, &ht);
12297 md5_finish_ctx (&ctx, checksum_after_op0);
12298 ht.empty ();
12300 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12301 fold_check_failed (op0, tem);
12303 md5_init_ctx (&ctx);
12304 fold_checksum_tree (op1, &ctx, &ht);
12305 md5_finish_ctx (&ctx, checksum_after_op1);
12307 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12308 fold_check_failed (op1, tem);
12309 #endif
12310 return tem;
12313 /* Fold a ternary tree expression with code CODE of type TYPE with
12314 operands OP0, OP1, and OP2. Return a folded expression if
12315 successful. Otherwise, return a tree expression with code CODE of
12316 type TYPE with operands OP0, OP1, and OP2. */
12318 tree
12319 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
12320 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12322 tree tem;
12323 #ifdef ENABLE_FOLD_CHECKING
12324 unsigned char checksum_before_op0[16],
12325 checksum_before_op1[16],
12326 checksum_before_op2[16],
12327 checksum_after_op0[16],
12328 checksum_after_op1[16],
12329 checksum_after_op2[16];
12330 struct md5_ctx ctx;
12331 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12333 md5_init_ctx (&ctx);
12334 fold_checksum_tree (op0, &ctx, &ht);
12335 md5_finish_ctx (&ctx, checksum_before_op0);
12336 ht.empty ();
12338 md5_init_ctx (&ctx);
12339 fold_checksum_tree (op1, &ctx, &ht);
12340 md5_finish_ctx (&ctx, checksum_before_op1);
12341 ht.empty ();
12343 md5_init_ctx (&ctx);
12344 fold_checksum_tree (op2, &ctx, &ht);
12345 md5_finish_ctx (&ctx, checksum_before_op2);
12346 ht.empty ();
12347 #endif
12349 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12350 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12351 if (!tem)
12352 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12354 #ifdef ENABLE_FOLD_CHECKING
12355 md5_init_ctx (&ctx);
12356 fold_checksum_tree (op0, &ctx, &ht);
12357 md5_finish_ctx (&ctx, checksum_after_op0);
12358 ht.empty ();
12360 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12361 fold_check_failed (op0, tem);
12363 md5_init_ctx (&ctx);
12364 fold_checksum_tree (op1, &ctx, &ht);
12365 md5_finish_ctx (&ctx, checksum_after_op1);
12366 ht.empty ();
12368 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12369 fold_check_failed (op1, tem);
12371 md5_init_ctx (&ctx);
12372 fold_checksum_tree (op2, &ctx, &ht);
12373 md5_finish_ctx (&ctx, checksum_after_op2);
12375 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12376 fold_check_failed (op2, tem);
12377 #endif
12378 return tem;
12381 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12382 arguments in ARGARRAY, and a null static chain.
12383 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12384 of type TYPE from the given operands as constructed by build_call_array. */
12386 tree
12387 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12388 int nargs, tree *argarray)
12390 tree tem;
12391 #ifdef ENABLE_FOLD_CHECKING
12392 unsigned char checksum_before_fn[16],
12393 checksum_before_arglist[16],
12394 checksum_after_fn[16],
12395 checksum_after_arglist[16];
12396 struct md5_ctx ctx;
12397 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12398 int i;
12400 md5_init_ctx (&ctx);
12401 fold_checksum_tree (fn, &ctx, &ht);
12402 md5_finish_ctx (&ctx, checksum_before_fn);
12403 ht.empty ();
12405 md5_init_ctx (&ctx);
12406 for (i = 0; i < nargs; i++)
12407 fold_checksum_tree (argarray[i], &ctx, &ht);
12408 md5_finish_ctx (&ctx, checksum_before_arglist);
12409 ht.empty ();
12410 #endif
12412 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12413 if (!tem)
12414 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12416 #ifdef ENABLE_FOLD_CHECKING
12417 md5_init_ctx (&ctx);
12418 fold_checksum_tree (fn, &ctx, &ht);
12419 md5_finish_ctx (&ctx, checksum_after_fn);
12420 ht.empty ();
12422 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12423 fold_check_failed (fn, tem);
12425 md5_init_ctx (&ctx);
12426 for (i = 0; i < nargs; i++)
12427 fold_checksum_tree (argarray[i], &ctx, &ht);
12428 md5_finish_ctx (&ctx, checksum_after_arglist);
12430 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12431 fold_check_failed (NULL_TREE, tem);
12432 #endif
12433 return tem;
12436 /* Perform constant folding and related simplification of initializer
12437 expression EXPR. These behave identically to "fold_buildN" but ignore
12438 potential run-time traps and exceptions that fold must preserve. */
12440 #define START_FOLD_INIT \
12441 int saved_signaling_nans = flag_signaling_nans;\
12442 int saved_trapping_math = flag_trapping_math;\
12443 int saved_rounding_math = flag_rounding_math;\
12444 int saved_trapv = flag_trapv;\
12445 int saved_folding_initializer = folding_initializer;\
12446 flag_signaling_nans = 0;\
12447 flag_trapping_math = 0;\
12448 flag_rounding_math = 0;\
12449 flag_trapv = 0;\
12450 folding_initializer = 1;
12452 #define END_FOLD_INIT \
12453 flag_signaling_nans = saved_signaling_nans;\
12454 flag_trapping_math = saved_trapping_math;\
12455 flag_rounding_math = saved_rounding_math;\
12456 flag_trapv = saved_trapv;\
12457 folding_initializer = saved_folding_initializer;
12459 tree
12460 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12461 tree type, tree op)
12463 tree result;
12464 START_FOLD_INIT;
12466 result = fold_build1_loc (loc, code, type, op);
12468 END_FOLD_INIT;
12469 return result;
12472 tree
12473 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12474 tree type, tree op0, tree op1)
12476 tree result;
12477 START_FOLD_INIT;
12479 result = fold_build2_loc (loc, code, type, op0, op1);
12481 END_FOLD_INIT;
12482 return result;
12485 tree
12486 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12487 int nargs, tree *argarray)
12489 tree result;
12490 START_FOLD_INIT;
12492 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12494 END_FOLD_INIT;
12495 return result;
12498 #undef START_FOLD_INIT
12499 #undef END_FOLD_INIT
12501 /* Determine if first argument is a multiple of second argument. Return 0 if
12502 it is not, or we cannot easily determined it to be.
12504 An example of the sort of thing we care about (at this point; this routine
12505 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12506 fold cases do now) is discovering that
12508 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12510 is a multiple of
12512 SAVE_EXPR (J * 8)
12514 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12516 This code also handles discovering that
12518 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12520 is a multiple of 8 so we don't have to worry about dealing with a
12521 possible remainder.
12523 Note that we *look* inside a SAVE_EXPR only to determine how it was
12524 calculated; it is not safe for fold to do much of anything else with the
12525 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12526 at run time. For example, the latter example above *cannot* be implemented
12527 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12528 evaluation time of the original SAVE_EXPR is not necessarily the same at
12529 the time the new expression is evaluated. The only optimization of this
12530 sort that would be valid is changing
12532 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12534 divided by 8 to
12536 SAVE_EXPR (I) * SAVE_EXPR (J)
12538 (where the same SAVE_EXPR (J) is used in the original and the
12539 transformed version). */
12542 multiple_of_p (tree type, const_tree top, const_tree bottom)
12544 gimple *stmt;
12545 tree t1, op1, op2;
12547 if (operand_equal_p (top, bottom, 0))
12548 return 1;
12550 if (TREE_CODE (type) != INTEGER_TYPE)
12551 return 0;
12553 switch (TREE_CODE (top))
12555 case BIT_AND_EXPR:
12556 /* Bitwise and provides a power of two multiple. If the mask is
12557 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12558 if (!integer_pow2p (bottom))
12559 return 0;
12560 /* FALLTHRU */
12562 case MULT_EXPR:
12563 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12564 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12566 case MINUS_EXPR:
12567 /* It is impossible to prove if op0 - op1 is multiple of bottom
12568 precisely, so be conservative here checking if both op0 and op1
12569 are multiple of bottom. Note we check the second operand first
12570 since it's usually simpler. */
12571 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12572 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12574 case PLUS_EXPR:
12575 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12576 as op0 - 3 if the expression has unsigned type. For example,
12577 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12578 op1 = TREE_OPERAND (top, 1);
12579 if (TYPE_UNSIGNED (type)
12580 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
12581 op1 = fold_build1 (NEGATE_EXPR, type, op1);
12582 return (multiple_of_p (type, op1, bottom)
12583 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12585 case LSHIFT_EXPR:
12586 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12588 op1 = TREE_OPERAND (top, 1);
12589 /* const_binop may not detect overflow correctly,
12590 so check for it explicitly here. */
12591 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
12592 && 0 != (t1 = fold_convert (type,
12593 const_binop (LSHIFT_EXPR,
12594 size_one_node,
12595 op1)))
12596 && !TREE_OVERFLOW (t1))
12597 return multiple_of_p (type, t1, bottom);
12599 return 0;
12601 case NOP_EXPR:
12602 /* Can't handle conversions from non-integral or wider integral type. */
12603 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12604 || (TYPE_PRECISION (type)
12605 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12606 return 0;
12608 /* fall through */
12610 case SAVE_EXPR:
12611 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12613 case COND_EXPR:
12614 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12615 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12617 case INTEGER_CST:
12618 if (TREE_CODE (bottom) != INTEGER_CST
12619 || integer_zerop (bottom)
12620 || (TYPE_UNSIGNED (type)
12621 && (tree_int_cst_sgn (top) < 0
12622 || tree_int_cst_sgn (bottom) < 0)))
12623 return 0;
12624 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12625 SIGNED);
12627 case SSA_NAME:
12628 if (TREE_CODE (bottom) == INTEGER_CST
12629 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
12630 && gimple_code (stmt) == GIMPLE_ASSIGN)
12632 enum tree_code code = gimple_assign_rhs_code (stmt);
12634 /* Check for special cases to see if top is defined as multiple
12635 of bottom:
12637 top = (X & ~(bottom - 1) ; bottom is power of 2
12641 Y = X % bottom
12642 top = X - Y. */
12643 if (code == BIT_AND_EXPR
12644 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12645 && TREE_CODE (op2) == INTEGER_CST
12646 && integer_pow2p (bottom)
12647 && wi::multiple_of_p (wi::to_widest (op2),
12648 wi::to_widest (bottom), UNSIGNED))
12649 return 1;
12651 op1 = gimple_assign_rhs1 (stmt);
12652 if (code == MINUS_EXPR
12653 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12654 && TREE_CODE (op2) == SSA_NAME
12655 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
12656 && gimple_code (stmt) == GIMPLE_ASSIGN
12657 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
12658 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
12659 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
12660 return 1;
12663 /* fall through */
12665 default:
12666 return 0;
12670 #define tree_expr_nonnegative_warnv_p(X, Y) \
12671 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12673 #define RECURSE(X) \
12674 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12676 /* Return true if CODE or TYPE is known to be non-negative. */
12678 static bool
12679 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12681 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12682 && truth_value_p (code))
12683 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12684 have a signed:1 type (where the value is -1 and 0). */
12685 return true;
12686 return false;
12689 /* Return true if (CODE OP0) is known to be non-negative. If the return
12690 value is based on the assumption that signed overflow is undefined,
12691 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12692 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12694 bool
12695 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12696 bool *strict_overflow_p, int depth)
12698 if (TYPE_UNSIGNED (type))
12699 return true;
12701 switch (code)
12703 case ABS_EXPR:
12704 /* We can't return 1 if flag_wrapv is set because
12705 ABS_EXPR<INT_MIN> = INT_MIN. */
12706 if (!ANY_INTEGRAL_TYPE_P (type))
12707 return true;
12708 if (TYPE_OVERFLOW_UNDEFINED (type))
12710 *strict_overflow_p = true;
12711 return true;
12713 break;
12715 case NON_LVALUE_EXPR:
12716 case FLOAT_EXPR:
12717 case FIX_TRUNC_EXPR:
12718 return RECURSE (op0);
12720 CASE_CONVERT:
12722 tree inner_type = TREE_TYPE (op0);
12723 tree outer_type = type;
12725 if (TREE_CODE (outer_type) == REAL_TYPE)
12727 if (TREE_CODE (inner_type) == REAL_TYPE)
12728 return RECURSE (op0);
12729 if (INTEGRAL_TYPE_P (inner_type))
12731 if (TYPE_UNSIGNED (inner_type))
12732 return true;
12733 return RECURSE (op0);
12736 else if (INTEGRAL_TYPE_P (outer_type))
12738 if (TREE_CODE (inner_type) == REAL_TYPE)
12739 return RECURSE (op0);
12740 if (INTEGRAL_TYPE_P (inner_type))
12741 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12742 && TYPE_UNSIGNED (inner_type);
12745 break;
12747 default:
12748 return tree_simple_nonnegative_warnv_p (code, type);
12751 /* We don't know sign of `t', so be conservative and return false. */
12752 return false;
12755 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12756 value is based on the assumption that signed overflow is undefined,
12757 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12758 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12760 bool
12761 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12762 tree op1, bool *strict_overflow_p,
12763 int depth)
12765 if (TYPE_UNSIGNED (type))
12766 return true;
12768 switch (code)
12770 case POINTER_PLUS_EXPR:
12771 case PLUS_EXPR:
12772 if (FLOAT_TYPE_P (type))
12773 return RECURSE (op0) && RECURSE (op1);
12775 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12776 both unsigned and at least 2 bits shorter than the result. */
12777 if (TREE_CODE (type) == INTEGER_TYPE
12778 && TREE_CODE (op0) == NOP_EXPR
12779 && TREE_CODE (op1) == NOP_EXPR)
12781 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12782 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12783 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12784 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12786 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12787 TYPE_PRECISION (inner2)) + 1;
12788 return prec < TYPE_PRECISION (type);
12791 break;
12793 case MULT_EXPR:
12794 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12796 /* x * x is always non-negative for floating point x
12797 or without overflow. */
12798 if (operand_equal_p (op0, op1, 0)
12799 || (RECURSE (op0) && RECURSE (op1)))
12801 if (ANY_INTEGRAL_TYPE_P (type)
12802 && TYPE_OVERFLOW_UNDEFINED (type))
12803 *strict_overflow_p = true;
12804 return true;
12808 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12809 both unsigned and their total bits is shorter than the result. */
12810 if (TREE_CODE (type) == INTEGER_TYPE
12811 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12812 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12814 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12815 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12816 : TREE_TYPE (op0);
12817 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12818 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12819 : TREE_TYPE (op1);
12821 bool unsigned0 = TYPE_UNSIGNED (inner0);
12822 bool unsigned1 = TYPE_UNSIGNED (inner1);
12824 if (TREE_CODE (op0) == INTEGER_CST)
12825 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12827 if (TREE_CODE (op1) == INTEGER_CST)
12828 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12830 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12831 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12833 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12834 ? tree_int_cst_min_precision (op0, UNSIGNED)
12835 : TYPE_PRECISION (inner0);
12837 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12838 ? tree_int_cst_min_precision (op1, UNSIGNED)
12839 : TYPE_PRECISION (inner1);
12841 return precision0 + precision1 < TYPE_PRECISION (type);
12844 return false;
12846 case BIT_AND_EXPR:
12847 case MAX_EXPR:
12848 return RECURSE (op0) || RECURSE (op1);
12850 case BIT_IOR_EXPR:
12851 case BIT_XOR_EXPR:
12852 case MIN_EXPR:
12853 case RDIV_EXPR:
12854 case TRUNC_DIV_EXPR:
12855 case CEIL_DIV_EXPR:
12856 case FLOOR_DIV_EXPR:
12857 case ROUND_DIV_EXPR:
12858 return RECURSE (op0) && RECURSE (op1);
12860 case TRUNC_MOD_EXPR:
12861 return RECURSE (op0);
12863 case FLOOR_MOD_EXPR:
12864 return RECURSE (op1);
12866 case CEIL_MOD_EXPR:
12867 case ROUND_MOD_EXPR:
12868 default:
12869 return tree_simple_nonnegative_warnv_p (code, type);
12872 /* We don't know sign of `t', so be conservative and return false. */
12873 return false;
12876 /* Return true if T is known to be non-negative. If the return
12877 value is based on the assumption that signed overflow is undefined,
12878 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12879 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12881 bool
12882 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12884 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12885 return true;
12887 switch (TREE_CODE (t))
12889 case INTEGER_CST:
12890 return tree_int_cst_sgn (t) >= 0;
12892 case REAL_CST:
12893 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12895 case FIXED_CST:
12896 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12898 case COND_EXPR:
12899 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
12901 case SSA_NAME:
12902 /* Limit the depth of recursion to avoid quadratic behavior.
12903 This is expected to catch almost all occurrences in practice.
12904 If this code misses important cases that unbounded recursion
12905 would not, passes that need this information could be revised
12906 to provide it through dataflow propagation. */
12907 return (!name_registered_for_update_p (t)
12908 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
12909 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
12910 strict_overflow_p, depth));
12912 default:
12913 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
12917 /* Return true if T is known to be non-negative. If the return
12918 value is based on the assumption that signed overflow is undefined,
12919 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12920 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12922 bool
12923 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
12924 bool *strict_overflow_p, int depth)
12926 switch (fn)
12928 CASE_CFN_ACOS:
12929 CASE_CFN_ACOSH:
12930 CASE_CFN_CABS:
12931 CASE_CFN_COSH:
12932 CASE_CFN_ERFC:
12933 CASE_CFN_EXP:
12934 CASE_CFN_EXP10:
12935 CASE_CFN_EXP2:
12936 CASE_CFN_FABS:
12937 CASE_CFN_FDIM:
12938 CASE_CFN_HYPOT:
12939 CASE_CFN_POW10:
12940 CASE_CFN_FFS:
12941 CASE_CFN_PARITY:
12942 CASE_CFN_POPCOUNT:
12943 CASE_CFN_CLZ:
12944 CASE_CFN_CLRSB:
12945 case CFN_BUILT_IN_BSWAP32:
12946 case CFN_BUILT_IN_BSWAP64:
12947 /* Always true. */
12948 return true;
12950 CASE_CFN_SQRT:
12951 /* sqrt(-0.0) is -0.0. */
12952 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
12953 return true;
12954 return RECURSE (arg0);
12956 CASE_CFN_ASINH:
12957 CASE_CFN_ATAN:
12958 CASE_CFN_ATANH:
12959 CASE_CFN_CBRT:
12960 CASE_CFN_CEIL:
12961 CASE_CFN_ERF:
12962 CASE_CFN_EXPM1:
12963 CASE_CFN_FLOOR:
12964 CASE_CFN_FMOD:
12965 CASE_CFN_FREXP:
12966 CASE_CFN_ICEIL:
12967 CASE_CFN_IFLOOR:
12968 CASE_CFN_IRINT:
12969 CASE_CFN_IROUND:
12970 CASE_CFN_LCEIL:
12971 CASE_CFN_LDEXP:
12972 CASE_CFN_LFLOOR:
12973 CASE_CFN_LLCEIL:
12974 CASE_CFN_LLFLOOR:
12975 CASE_CFN_LLRINT:
12976 CASE_CFN_LLROUND:
12977 CASE_CFN_LRINT:
12978 CASE_CFN_LROUND:
12979 CASE_CFN_MODF:
12980 CASE_CFN_NEARBYINT:
12981 CASE_CFN_RINT:
12982 CASE_CFN_ROUND:
12983 CASE_CFN_SCALB:
12984 CASE_CFN_SCALBLN:
12985 CASE_CFN_SCALBN:
12986 CASE_CFN_SIGNBIT:
12987 CASE_CFN_SIGNIFICAND:
12988 CASE_CFN_SINH:
12989 CASE_CFN_TANH:
12990 CASE_CFN_TRUNC:
12991 /* True if the 1st argument is nonnegative. */
12992 return RECURSE (arg0);
12994 CASE_CFN_FMAX:
12995 /* True if the 1st OR 2nd arguments are nonnegative. */
12996 return RECURSE (arg0) || RECURSE (arg1);
12998 CASE_CFN_FMIN:
12999 /* True if the 1st AND 2nd arguments are nonnegative. */
13000 return RECURSE (arg0) && RECURSE (arg1);
13002 CASE_CFN_COPYSIGN:
13003 /* True if the 2nd argument is nonnegative. */
13004 return RECURSE (arg1);
13006 CASE_CFN_POWI:
13007 /* True if the 1st argument is nonnegative or the second
13008 argument is an even integer. */
13009 if (TREE_CODE (arg1) == INTEGER_CST
13010 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13011 return true;
13012 return RECURSE (arg0);
13014 CASE_CFN_POW:
13015 /* True if the 1st argument is nonnegative or the second
13016 argument is an even integer valued real. */
13017 if (TREE_CODE (arg1) == REAL_CST)
13019 REAL_VALUE_TYPE c;
13020 HOST_WIDE_INT n;
13022 c = TREE_REAL_CST (arg1);
13023 n = real_to_integer (&c);
13024 if ((n & 1) == 0)
13026 REAL_VALUE_TYPE cint;
13027 real_from_integer (&cint, VOIDmode, n, SIGNED);
13028 if (real_identical (&c, &cint))
13029 return true;
13032 return RECURSE (arg0);
13034 default:
13035 break;
13037 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
13040 /* Return true if T is known to be non-negative. If the return
13041 value is based on the assumption that signed overflow is undefined,
13042 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13043 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13045 static bool
13046 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13048 enum tree_code code = TREE_CODE (t);
13049 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13050 return true;
13052 switch (code)
13054 case TARGET_EXPR:
13056 tree temp = TARGET_EXPR_SLOT (t);
13057 t = TARGET_EXPR_INITIAL (t);
13059 /* If the initializer is non-void, then it's a normal expression
13060 that will be assigned to the slot. */
13061 if (!VOID_TYPE_P (t))
13062 return RECURSE (t);
13064 /* Otherwise, the initializer sets the slot in some way. One common
13065 way is an assignment statement at the end of the initializer. */
13066 while (1)
13068 if (TREE_CODE (t) == BIND_EXPR)
13069 t = expr_last (BIND_EXPR_BODY (t));
13070 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13071 || TREE_CODE (t) == TRY_CATCH_EXPR)
13072 t = expr_last (TREE_OPERAND (t, 0));
13073 else if (TREE_CODE (t) == STATEMENT_LIST)
13074 t = expr_last (t);
13075 else
13076 break;
13078 if (TREE_CODE (t) == MODIFY_EXPR
13079 && TREE_OPERAND (t, 0) == temp)
13080 return RECURSE (TREE_OPERAND (t, 1));
13082 return false;
13085 case CALL_EXPR:
13087 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13088 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13090 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13091 get_call_combined_fn (t),
13092 arg0,
13093 arg1,
13094 strict_overflow_p, depth);
13096 case COMPOUND_EXPR:
13097 case MODIFY_EXPR:
13098 return RECURSE (TREE_OPERAND (t, 1));
13100 case BIND_EXPR:
13101 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
13103 case SAVE_EXPR:
13104 return RECURSE (TREE_OPERAND (t, 0));
13106 default:
13107 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13111 #undef RECURSE
13112 #undef tree_expr_nonnegative_warnv_p
13114 /* Return true if T is known to be non-negative. If the return
13115 value is based on the assumption that signed overflow is undefined,
13116 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13117 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13119 bool
13120 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13122 enum tree_code code;
13123 if (t == error_mark_node)
13124 return false;
13126 code = TREE_CODE (t);
13127 switch (TREE_CODE_CLASS (code))
13129 case tcc_binary:
13130 case tcc_comparison:
13131 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13132 TREE_TYPE (t),
13133 TREE_OPERAND (t, 0),
13134 TREE_OPERAND (t, 1),
13135 strict_overflow_p, depth);
13137 case tcc_unary:
13138 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13139 TREE_TYPE (t),
13140 TREE_OPERAND (t, 0),
13141 strict_overflow_p, depth);
13143 case tcc_constant:
13144 case tcc_declaration:
13145 case tcc_reference:
13146 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13148 default:
13149 break;
13152 switch (code)
13154 case TRUTH_AND_EXPR:
13155 case TRUTH_OR_EXPR:
13156 case TRUTH_XOR_EXPR:
13157 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13158 TREE_TYPE (t),
13159 TREE_OPERAND (t, 0),
13160 TREE_OPERAND (t, 1),
13161 strict_overflow_p, depth);
13162 case TRUTH_NOT_EXPR:
13163 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13164 TREE_TYPE (t),
13165 TREE_OPERAND (t, 0),
13166 strict_overflow_p, depth);
13168 case COND_EXPR:
13169 case CONSTRUCTOR:
13170 case OBJ_TYPE_REF:
13171 case ASSERT_EXPR:
13172 case ADDR_EXPR:
13173 case WITH_SIZE_EXPR:
13174 case SSA_NAME:
13175 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13177 default:
13178 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13182 /* Return true if `t' is known to be non-negative. Handle warnings
13183 about undefined signed overflow. */
13185 bool
13186 tree_expr_nonnegative_p (tree t)
13188 bool ret, strict_overflow_p;
13190 strict_overflow_p = false;
13191 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13192 if (strict_overflow_p)
13193 fold_overflow_warning (("assuming signed overflow does not occur when "
13194 "determining that expression is always "
13195 "non-negative"),
13196 WARN_STRICT_OVERFLOW_MISC);
13197 return ret;
13201 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13202 For floating point we further ensure that T is not denormal.
13203 Similar logic is present in nonzero_address in rtlanal.h.
13205 If the return value is based on the assumption that signed overflow
13206 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13207 change *STRICT_OVERFLOW_P. */
13209 bool
13210 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13211 bool *strict_overflow_p)
13213 switch (code)
13215 case ABS_EXPR:
13216 return tree_expr_nonzero_warnv_p (op0,
13217 strict_overflow_p);
13219 case NOP_EXPR:
13221 tree inner_type = TREE_TYPE (op0);
13222 tree outer_type = type;
13224 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13225 && tree_expr_nonzero_warnv_p (op0,
13226 strict_overflow_p));
13228 break;
13230 case NON_LVALUE_EXPR:
13231 return tree_expr_nonzero_warnv_p (op0,
13232 strict_overflow_p);
13234 default:
13235 break;
13238 return false;
13241 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13242 For floating point we further ensure that T is not denormal.
13243 Similar logic is present in nonzero_address in rtlanal.h.
13245 If the return value is based on the assumption that signed overflow
13246 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13247 change *STRICT_OVERFLOW_P. */
13249 bool
13250 tree_binary_nonzero_warnv_p (enum tree_code code,
13251 tree type,
13252 tree op0,
13253 tree op1, bool *strict_overflow_p)
13255 bool sub_strict_overflow_p;
13256 switch (code)
13258 case POINTER_PLUS_EXPR:
13259 case PLUS_EXPR:
13260 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13262 /* With the presence of negative values it is hard
13263 to say something. */
13264 sub_strict_overflow_p = false;
13265 if (!tree_expr_nonnegative_warnv_p (op0,
13266 &sub_strict_overflow_p)
13267 || !tree_expr_nonnegative_warnv_p (op1,
13268 &sub_strict_overflow_p))
13269 return false;
13270 /* One of operands must be positive and the other non-negative. */
13271 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13272 overflows, on a twos-complement machine the sum of two
13273 nonnegative numbers can never be zero. */
13274 return (tree_expr_nonzero_warnv_p (op0,
13275 strict_overflow_p)
13276 || tree_expr_nonzero_warnv_p (op1,
13277 strict_overflow_p));
13279 break;
13281 case MULT_EXPR:
13282 if (TYPE_OVERFLOW_UNDEFINED (type))
13284 if (tree_expr_nonzero_warnv_p (op0,
13285 strict_overflow_p)
13286 && tree_expr_nonzero_warnv_p (op1,
13287 strict_overflow_p))
13289 *strict_overflow_p = true;
13290 return true;
13293 break;
13295 case MIN_EXPR:
13296 sub_strict_overflow_p = false;
13297 if (tree_expr_nonzero_warnv_p (op0,
13298 &sub_strict_overflow_p)
13299 && tree_expr_nonzero_warnv_p (op1,
13300 &sub_strict_overflow_p))
13302 if (sub_strict_overflow_p)
13303 *strict_overflow_p = true;
13305 break;
13307 case MAX_EXPR:
13308 sub_strict_overflow_p = false;
13309 if (tree_expr_nonzero_warnv_p (op0,
13310 &sub_strict_overflow_p))
13312 if (sub_strict_overflow_p)
13313 *strict_overflow_p = true;
13315 /* When both operands are nonzero, then MAX must be too. */
13316 if (tree_expr_nonzero_warnv_p (op1,
13317 strict_overflow_p))
13318 return true;
13320 /* MAX where operand 0 is positive is positive. */
13321 return tree_expr_nonnegative_warnv_p (op0,
13322 strict_overflow_p);
13324 /* MAX where operand 1 is positive is positive. */
13325 else if (tree_expr_nonzero_warnv_p (op1,
13326 &sub_strict_overflow_p)
13327 && tree_expr_nonnegative_warnv_p (op1,
13328 &sub_strict_overflow_p))
13330 if (sub_strict_overflow_p)
13331 *strict_overflow_p = true;
13332 return true;
13334 break;
13336 case BIT_IOR_EXPR:
13337 return (tree_expr_nonzero_warnv_p (op1,
13338 strict_overflow_p)
13339 || tree_expr_nonzero_warnv_p (op0,
13340 strict_overflow_p));
13342 default:
13343 break;
13346 return false;
13349 /* Return true when T is an address and is known to be nonzero.
13350 For floating point we further ensure that T is not denormal.
13351 Similar logic is present in nonzero_address in rtlanal.h.
13353 If the return value is based on the assumption that signed overflow
13354 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13355 change *STRICT_OVERFLOW_P. */
13357 bool
13358 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13360 bool sub_strict_overflow_p;
13361 switch (TREE_CODE (t))
13363 case INTEGER_CST:
13364 return !integer_zerop (t);
13366 case ADDR_EXPR:
13368 tree base = TREE_OPERAND (t, 0);
13370 if (!DECL_P (base))
13371 base = get_base_address (base);
13373 if (base && TREE_CODE (base) == TARGET_EXPR)
13374 base = TARGET_EXPR_SLOT (base);
13376 if (!base)
13377 return false;
13379 /* For objects in symbol table check if we know they are non-zero.
13380 Don't do anything for variables and functions before symtab is built;
13381 it is quite possible that they will be declared weak later. */
13382 int nonzero_addr = maybe_nonzero_address (base);
13383 if (nonzero_addr >= 0)
13384 return nonzero_addr;
13386 /* Function local objects are never NULL. */
13387 if (DECL_P (base)
13388 && (DECL_CONTEXT (base)
13389 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
13390 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
13391 return true;
13393 /* Constants are never weak. */
13394 if (CONSTANT_CLASS_P (base))
13395 return true;
13397 return false;
13400 case COND_EXPR:
13401 sub_strict_overflow_p = false;
13402 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13403 &sub_strict_overflow_p)
13404 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13405 &sub_strict_overflow_p))
13407 if (sub_strict_overflow_p)
13408 *strict_overflow_p = true;
13409 return true;
13411 break;
13413 default:
13414 break;
13416 return false;
13419 #define integer_valued_real_p(X) \
13420 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13422 #define RECURSE(X) \
13423 ((integer_valued_real_p) (X, depth + 1))
13425 /* Return true if the floating point result of (CODE OP0) has an
13426 integer value. We also allow +Inf, -Inf and NaN to be considered
13427 integer values. Return false for signaling NaN.
13429 DEPTH is the current nesting depth of the query. */
13431 bool
13432 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13434 switch (code)
13436 case FLOAT_EXPR:
13437 return true;
13439 case ABS_EXPR:
13440 return RECURSE (op0);
13442 CASE_CONVERT:
13444 tree type = TREE_TYPE (op0);
13445 if (TREE_CODE (type) == INTEGER_TYPE)
13446 return true;
13447 if (TREE_CODE (type) == REAL_TYPE)
13448 return RECURSE (op0);
13449 break;
13452 default:
13453 break;
13455 return false;
13458 /* Return true if the floating point result of (CODE OP0 OP1) has an
13459 integer value. We also allow +Inf, -Inf and NaN to be considered
13460 integer values. Return false for signaling NaN.
13462 DEPTH is the current nesting depth of the query. */
13464 bool
13465 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13467 switch (code)
13469 case PLUS_EXPR:
13470 case MINUS_EXPR:
13471 case MULT_EXPR:
13472 case MIN_EXPR:
13473 case MAX_EXPR:
13474 return RECURSE (op0) && RECURSE (op1);
13476 default:
13477 break;
13479 return false;
13482 /* Return true if the floating point result of calling FNDECL with arguments
13483 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13484 considered integer values. Return false for signaling NaN. If FNDECL
13485 takes fewer than 2 arguments, the remaining ARGn are null.
13487 DEPTH is the current nesting depth of the query. */
13489 bool
13490 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13492 switch (fn)
13494 CASE_CFN_CEIL:
13495 CASE_CFN_FLOOR:
13496 CASE_CFN_NEARBYINT:
13497 CASE_CFN_RINT:
13498 CASE_CFN_ROUND:
13499 CASE_CFN_TRUNC:
13500 return true;
13502 CASE_CFN_FMIN:
13503 CASE_CFN_FMAX:
13504 return RECURSE (arg0) && RECURSE (arg1);
13506 default:
13507 break;
13509 return false;
13512 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13513 has an integer value. We also allow +Inf, -Inf and NaN to be
13514 considered integer values. Return false for signaling NaN.
13516 DEPTH is the current nesting depth of the query. */
13518 bool
13519 integer_valued_real_single_p (tree t, int depth)
13521 switch (TREE_CODE (t))
13523 case REAL_CST:
13524 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13526 case COND_EXPR:
13527 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13529 case SSA_NAME:
13530 /* Limit the depth of recursion to avoid quadratic behavior.
13531 This is expected to catch almost all occurrences in practice.
13532 If this code misses important cases that unbounded recursion
13533 would not, passes that need this information could be revised
13534 to provide it through dataflow propagation. */
13535 return (!name_registered_for_update_p (t)
13536 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13537 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13538 depth));
13540 default:
13541 break;
13543 return false;
13546 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13547 has an integer value. We also allow +Inf, -Inf and NaN to be
13548 considered integer values. Return false for signaling NaN.
13550 DEPTH is the current nesting depth of the query. */
13552 static bool
13553 integer_valued_real_invalid_p (tree t, int depth)
13555 switch (TREE_CODE (t))
13557 case COMPOUND_EXPR:
13558 case MODIFY_EXPR:
13559 case BIND_EXPR:
13560 return RECURSE (TREE_OPERAND (t, 1));
13562 case SAVE_EXPR:
13563 return RECURSE (TREE_OPERAND (t, 0));
13565 default:
13566 break;
13568 return false;
13571 #undef RECURSE
13572 #undef integer_valued_real_p
13574 /* Return true if the floating point expression T has an integer value.
13575 We also allow +Inf, -Inf and NaN to be considered integer values.
13576 Return false for signaling NaN.
13578 DEPTH is the current nesting depth of the query. */
13580 bool
13581 integer_valued_real_p (tree t, int depth)
13583 if (t == error_mark_node)
13584 return false;
13586 tree_code code = TREE_CODE (t);
13587 switch (TREE_CODE_CLASS (code))
13589 case tcc_binary:
13590 case tcc_comparison:
13591 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13592 TREE_OPERAND (t, 1), depth);
13594 case tcc_unary:
13595 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13597 case tcc_constant:
13598 case tcc_declaration:
13599 case tcc_reference:
13600 return integer_valued_real_single_p (t, depth);
13602 default:
13603 break;
13606 switch (code)
13608 case COND_EXPR:
13609 case SSA_NAME:
13610 return integer_valued_real_single_p (t, depth);
13612 case CALL_EXPR:
13614 tree arg0 = (call_expr_nargs (t) > 0
13615 ? CALL_EXPR_ARG (t, 0)
13616 : NULL_TREE);
13617 tree arg1 = (call_expr_nargs (t) > 1
13618 ? CALL_EXPR_ARG (t, 1)
13619 : NULL_TREE);
13620 return integer_valued_real_call_p (get_call_combined_fn (t),
13621 arg0, arg1, depth);
13624 default:
13625 return integer_valued_real_invalid_p (t, depth);
13629 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13630 attempt to fold the expression to a constant without modifying TYPE,
13631 OP0 or OP1.
13633 If the expression could be simplified to a constant, then return
13634 the constant. If the expression would not be simplified to a
13635 constant, then return NULL_TREE. */
13637 tree
13638 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13640 tree tem = fold_binary (code, type, op0, op1);
13641 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13644 /* Given the components of a unary expression CODE, TYPE and OP0,
13645 attempt to fold the expression to a constant without modifying
13646 TYPE or OP0.
13648 If the expression could be simplified to a constant, then return
13649 the constant. If the expression would not be simplified to a
13650 constant, then return NULL_TREE. */
13652 tree
13653 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13655 tree tem = fold_unary (code, type, op0);
13656 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13659 /* If EXP represents referencing an element in a constant string
13660 (either via pointer arithmetic or array indexing), return the
13661 tree representing the value accessed, otherwise return NULL. */
13663 tree
13664 fold_read_from_constant_string (tree exp)
13666 if ((TREE_CODE (exp) == INDIRECT_REF
13667 || TREE_CODE (exp) == ARRAY_REF)
13668 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13670 tree exp1 = TREE_OPERAND (exp, 0);
13671 tree index;
13672 tree string;
13673 location_t loc = EXPR_LOCATION (exp);
13675 if (TREE_CODE (exp) == INDIRECT_REF)
13676 string = string_constant (exp1, &index);
13677 else
13679 tree low_bound = array_ref_low_bound (exp);
13680 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13682 /* Optimize the special-case of a zero lower bound.
13684 We convert the low_bound to sizetype to avoid some problems
13685 with constant folding. (E.g. suppose the lower bound is 1,
13686 and its mode is QI. Without the conversion,l (ARRAY
13687 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13688 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13689 if (! integer_zerop (low_bound))
13690 index = size_diffop_loc (loc, index,
13691 fold_convert_loc (loc, sizetype, low_bound));
13693 string = exp1;
13696 if (string
13697 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13698 && TREE_CODE (string) == STRING_CST
13699 && TREE_CODE (index) == INTEGER_CST
13700 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13701 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
13702 == MODE_INT)
13703 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
13704 return build_int_cst_type (TREE_TYPE (exp),
13705 (TREE_STRING_POINTER (string)
13706 [TREE_INT_CST_LOW (index)]));
13708 return NULL;
13711 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13712 an integer constant, real, or fixed-point constant.
13714 TYPE is the type of the result. */
13716 static tree
13717 fold_negate_const (tree arg0, tree type)
13719 tree t = NULL_TREE;
13721 switch (TREE_CODE (arg0))
13723 case INTEGER_CST:
13725 bool overflow;
13726 wide_int val = wi::neg (arg0, &overflow);
13727 t = force_fit_type (type, val, 1,
13728 (overflow | TREE_OVERFLOW (arg0))
13729 && !TYPE_UNSIGNED (type));
13730 break;
13733 case REAL_CST:
13734 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13735 break;
13737 case FIXED_CST:
13739 FIXED_VALUE_TYPE f;
13740 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13741 &(TREE_FIXED_CST (arg0)), NULL,
13742 TYPE_SATURATING (type));
13743 t = build_fixed (type, f);
13744 /* Propagate overflow flags. */
13745 if (overflow_p | TREE_OVERFLOW (arg0))
13746 TREE_OVERFLOW (t) = 1;
13747 break;
13750 default:
13751 gcc_unreachable ();
13754 return t;
13757 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13758 an integer constant or real constant.
13760 TYPE is the type of the result. */
13762 tree
13763 fold_abs_const (tree arg0, tree type)
13765 tree t = NULL_TREE;
13767 switch (TREE_CODE (arg0))
13769 case INTEGER_CST:
13771 /* If the value is unsigned or non-negative, then the absolute value
13772 is the same as the ordinary value. */
13773 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
13774 t = arg0;
13776 /* If the value is negative, then the absolute value is
13777 its negation. */
13778 else
13780 bool overflow;
13781 wide_int val = wi::neg (arg0, &overflow);
13782 t = force_fit_type (type, val, -1,
13783 overflow | TREE_OVERFLOW (arg0));
13786 break;
13788 case REAL_CST:
13789 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13790 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13791 else
13792 t = arg0;
13793 break;
13795 default:
13796 gcc_unreachable ();
13799 return t;
13802 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13803 constant. TYPE is the type of the result. */
13805 static tree
13806 fold_not_const (const_tree arg0, tree type)
13808 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13810 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
13813 /* Given CODE, a relational operator, the target type, TYPE and two
13814 constant operands OP0 and OP1, return the result of the
13815 relational operation. If the result is not a compile time
13816 constant, then return NULL_TREE. */
13818 static tree
13819 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13821 int result, invert;
13823 /* From here on, the only cases we handle are when the result is
13824 known to be a constant. */
13826 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13828 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13829 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13831 /* Handle the cases where either operand is a NaN. */
13832 if (real_isnan (c0) || real_isnan (c1))
13834 switch (code)
13836 case EQ_EXPR:
13837 case ORDERED_EXPR:
13838 result = 0;
13839 break;
13841 case NE_EXPR:
13842 case UNORDERED_EXPR:
13843 case UNLT_EXPR:
13844 case UNLE_EXPR:
13845 case UNGT_EXPR:
13846 case UNGE_EXPR:
13847 case UNEQ_EXPR:
13848 result = 1;
13849 break;
13851 case LT_EXPR:
13852 case LE_EXPR:
13853 case GT_EXPR:
13854 case GE_EXPR:
13855 case LTGT_EXPR:
13856 if (flag_trapping_math)
13857 return NULL_TREE;
13858 result = 0;
13859 break;
13861 default:
13862 gcc_unreachable ();
13865 return constant_boolean_node (result, type);
13868 return constant_boolean_node (real_compare (code, c0, c1), type);
13871 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13873 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13874 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13875 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13878 /* Handle equality/inequality of complex constants. */
13879 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13881 tree rcond = fold_relational_const (code, type,
13882 TREE_REALPART (op0),
13883 TREE_REALPART (op1));
13884 tree icond = fold_relational_const (code, type,
13885 TREE_IMAGPART (op0),
13886 TREE_IMAGPART (op1));
13887 if (code == EQ_EXPR)
13888 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
13889 else if (code == NE_EXPR)
13890 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
13891 else
13892 return NULL_TREE;
13895 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
13897 if (!VECTOR_TYPE_P (type))
13899 /* Have vector comparison with scalar boolean result. */
13900 bool result = true;
13901 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
13902 && VECTOR_CST_NELTS (op0) == VECTOR_CST_NELTS (op1));
13903 for (unsigned i = 0; i < VECTOR_CST_NELTS (op0); i++)
13905 tree elem0 = VECTOR_CST_ELT (op0, i);
13906 tree elem1 = VECTOR_CST_ELT (op1, i);
13907 tree tmp = fold_relational_const (code, type, elem0, elem1);
13908 result &= integer_onep (tmp);
13910 if (code == NE_EXPR)
13911 result = !result;
13912 return constant_boolean_node (result, type);
13914 unsigned count = VECTOR_CST_NELTS (op0);
13915 tree *elts = XALLOCAVEC (tree, count);
13916 gcc_assert (VECTOR_CST_NELTS (op1) == count
13917 && TYPE_VECTOR_SUBPARTS (type) == count);
13919 for (unsigned i = 0; i < count; i++)
13921 tree elem_type = TREE_TYPE (type);
13922 tree elem0 = VECTOR_CST_ELT (op0, i);
13923 tree elem1 = VECTOR_CST_ELT (op1, i);
13925 tree tem = fold_relational_const (code, elem_type,
13926 elem0, elem1);
13928 if (tem == NULL_TREE)
13929 return NULL_TREE;
13931 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
13934 return build_vector (type, elts);
13937 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13939 To compute GT, swap the arguments and do LT.
13940 To compute GE, do LT and invert the result.
13941 To compute LE, swap the arguments, do LT and invert the result.
13942 To compute NE, do EQ and invert the result.
13944 Therefore, the code below must handle only EQ and LT. */
13946 if (code == LE_EXPR || code == GT_EXPR)
13948 std::swap (op0, op1);
13949 code = swap_tree_comparison (code);
13952 /* Note that it is safe to invert for real values here because we
13953 have already handled the one case that it matters. */
13955 invert = 0;
13956 if (code == NE_EXPR || code == GE_EXPR)
13958 invert = 1;
13959 code = invert_tree_comparison (code, false);
13962 /* Compute a result for LT or EQ if args permit;
13963 Otherwise return T. */
13964 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
13966 if (code == EQ_EXPR)
13967 result = tree_int_cst_equal (op0, op1);
13968 else
13969 result = tree_int_cst_lt (op0, op1);
13971 else
13972 return NULL_TREE;
13974 if (invert)
13975 result ^= 1;
13976 return constant_boolean_node (result, type);
13979 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13980 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13981 itself. */
13983 tree
13984 fold_build_cleanup_point_expr (tree type, tree expr)
13986 /* If the expression does not have side effects then we don't have to wrap
13987 it with a cleanup point expression. */
13988 if (!TREE_SIDE_EFFECTS (expr))
13989 return expr;
13991 /* If the expression is a return, check to see if the expression inside the
13992 return has no side effects or the right hand side of the modify expression
13993 inside the return. If either don't have side effects set we don't need to
13994 wrap the expression in a cleanup point expression. Note we don't check the
13995 left hand side of the modify because it should always be a return decl. */
13996 if (TREE_CODE (expr) == RETURN_EXPR)
13998 tree op = TREE_OPERAND (expr, 0);
13999 if (!op || !TREE_SIDE_EFFECTS (op))
14000 return expr;
14001 op = TREE_OPERAND (op, 1);
14002 if (!TREE_SIDE_EFFECTS (op))
14003 return expr;
14006 return build1 (CLEANUP_POINT_EXPR, type, expr);
14009 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14010 of an indirection through OP0, or NULL_TREE if no simplification is
14011 possible. */
14013 tree
14014 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14016 tree sub = op0;
14017 tree subtype;
14019 STRIP_NOPS (sub);
14020 subtype = TREE_TYPE (sub);
14021 if (!POINTER_TYPE_P (subtype))
14022 return NULL_TREE;
14024 if (TREE_CODE (sub) == ADDR_EXPR)
14026 tree op = TREE_OPERAND (sub, 0);
14027 tree optype = TREE_TYPE (op);
14028 /* *&CONST_DECL -> to the value of the const decl. */
14029 if (TREE_CODE (op) == CONST_DECL)
14030 return DECL_INITIAL (op);
14031 /* *&p => p; make sure to handle *&"str"[cst] here. */
14032 if (type == optype)
14034 tree fop = fold_read_from_constant_string (op);
14035 if (fop)
14036 return fop;
14037 else
14038 return op;
14040 /* *(foo *)&fooarray => fooarray[0] */
14041 else if (TREE_CODE (optype) == ARRAY_TYPE
14042 && type == TREE_TYPE (optype)
14043 && (!in_gimple_form
14044 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14046 tree type_domain = TYPE_DOMAIN (optype);
14047 tree min_val = size_zero_node;
14048 if (type_domain && TYPE_MIN_VALUE (type_domain))
14049 min_val = TYPE_MIN_VALUE (type_domain);
14050 if (in_gimple_form
14051 && TREE_CODE (min_val) != INTEGER_CST)
14052 return NULL_TREE;
14053 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14054 NULL_TREE, NULL_TREE);
14056 /* *(foo *)&complexfoo => __real__ complexfoo */
14057 else if (TREE_CODE (optype) == COMPLEX_TYPE
14058 && type == TREE_TYPE (optype))
14059 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14060 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14061 else if (TREE_CODE (optype) == VECTOR_TYPE
14062 && type == TREE_TYPE (optype))
14064 tree part_width = TYPE_SIZE (type);
14065 tree index = bitsize_int (0);
14066 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
14070 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14071 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14073 tree op00 = TREE_OPERAND (sub, 0);
14074 tree op01 = TREE_OPERAND (sub, 1);
14076 STRIP_NOPS (op00);
14077 if (TREE_CODE (op00) == ADDR_EXPR)
14079 tree op00type;
14080 op00 = TREE_OPERAND (op00, 0);
14081 op00type = TREE_TYPE (op00);
14083 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14084 if (TREE_CODE (op00type) == VECTOR_TYPE
14085 && type == TREE_TYPE (op00type))
14087 tree part_width = TYPE_SIZE (type);
14088 unsigned HOST_WIDE_INT max_offset
14089 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
14090 * TYPE_VECTOR_SUBPARTS (op00type));
14091 if (tree_int_cst_sign_bit (op01) == 0
14092 && compare_tree_int (op01, max_offset) == -1)
14094 unsigned HOST_WIDE_INT offset = tree_to_uhwi (op01);
14095 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
14096 tree index = bitsize_int (indexi);
14097 return fold_build3_loc (loc,
14098 BIT_FIELD_REF, type, op00,
14099 part_width, index);
14102 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14103 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14104 && type == TREE_TYPE (op00type))
14106 tree size = TYPE_SIZE_UNIT (type);
14107 if (tree_int_cst_equal (size, op01))
14108 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14110 /* ((foo *)&fooarray)[1] => fooarray[1] */
14111 else if (TREE_CODE (op00type) == ARRAY_TYPE
14112 && type == TREE_TYPE (op00type))
14114 tree type_domain = TYPE_DOMAIN (op00type);
14115 tree min_val = size_zero_node;
14116 if (type_domain && TYPE_MIN_VALUE (type_domain))
14117 min_val = TYPE_MIN_VALUE (type_domain);
14118 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
14119 TYPE_SIZE_UNIT (type));
14120 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
14121 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14122 NULL_TREE, NULL_TREE);
14127 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14128 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14129 && type == TREE_TYPE (TREE_TYPE (subtype))
14130 && (!in_gimple_form
14131 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14133 tree type_domain;
14134 tree min_val = size_zero_node;
14135 sub = build_fold_indirect_ref_loc (loc, sub);
14136 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14137 if (type_domain && TYPE_MIN_VALUE (type_domain))
14138 min_val = TYPE_MIN_VALUE (type_domain);
14139 if (in_gimple_form
14140 && TREE_CODE (min_val) != INTEGER_CST)
14141 return NULL_TREE;
14142 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14143 NULL_TREE);
14146 return NULL_TREE;
14149 /* Builds an expression for an indirection through T, simplifying some
14150 cases. */
14152 tree
14153 build_fold_indirect_ref_loc (location_t loc, tree t)
14155 tree type = TREE_TYPE (TREE_TYPE (t));
14156 tree sub = fold_indirect_ref_1 (loc, type, t);
14158 if (sub)
14159 return sub;
14161 return build1_loc (loc, INDIRECT_REF, type, t);
14164 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14166 tree
14167 fold_indirect_ref_loc (location_t loc, tree t)
14169 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14171 if (sub)
14172 return sub;
14173 else
14174 return t;
14177 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14178 whose result is ignored. The type of the returned tree need not be
14179 the same as the original expression. */
14181 tree
14182 fold_ignored_result (tree t)
14184 if (!TREE_SIDE_EFFECTS (t))
14185 return integer_zero_node;
14187 for (;;)
14188 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14190 case tcc_unary:
14191 t = TREE_OPERAND (t, 0);
14192 break;
14194 case tcc_binary:
14195 case tcc_comparison:
14196 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14197 t = TREE_OPERAND (t, 0);
14198 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14199 t = TREE_OPERAND (t, 1);
14200 else
14201 return t;
14202 break;
14204 case tcc_expression:
14205 switch (TREE_CODE (t))
14207 case COMPOUND_EXPR:
14208 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14209 return t;
14210 t = TREE_OPERAND (t, 0);
14211 break;
14213 case COND_EXPR:
14214 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14215 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14216 return t;
14217 t = TREE_OPERAND (t, 0);
14218 break;
14220 default:
14221 return t;
14223 break;
14225 default:
14226 return t;
14230 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14232 tree
14233 round_up_loc (location_t loc, tree value, unsigned int divisor)
14235 tree div = NULL_TREE;
14237 if (divisor == 1)
14238 return value;
14240 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14241 have to do anything. Only do this when we are not given a const,
14242 because in that case, this check is more expensive than just
14243 doing it. */
14244 if (TREE_CODE (value) != INTEGER_CST)
14246 div = build_int_cst (TREE_TYPE (value), divisor);
14248 if (multiple_of_p (TREE_TYPE (value), value, div))
14249 return value;
14252 /* If divisor is a power of two, simplify this to bit manipulation. */
14253 if (divisor == (divisor & -divisor))
14255 if (TREE_CODE (value) == INTEGER_CST)
14257 wide_int val = value;
14258 bool overflow_p;
14260 if ((val & (divisor - 1)) == 0)
14261 return value;
14263 overflow_p = TREE_OVERFLOW (value);
14264 val += divisor - 1;
14265 val &= - (int) divisor;
14266 if (val == 0)
14267 overflow_p = true;
14269 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14271 else
14273 tree t;
14275 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14276 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14277 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14278 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14281 else
14283 if (!div)
14284 div = build_int_cst (TREE_TYPE (value), divisor);
14285 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14286 value = size_binop_loc (loc, MULT_EXPR, value, div);
14289 return value;
14292 /* Likewise, but round down. */
14294 tree
14295 round_down_loc (location_t loc, tree value, int divisor)
14297 tree div = NULL_TREE;
14299 gcc_assert (divisor > 0);
14300 if (divisor == 1)
14301 return value;
14303 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14304 have to do anything. Only do this when we are not given a const,
14305 because in that case, this check is more expensive than just
14306 doing it. */
14307 if (TREE_CODE (value) != INTEGER_CST)
14309 div = build_int_cst (TREE_TYPE (value), divisor);
14311 if (multiple_of_p (TREE_TYPE (value), value, div))
14312 return value;
14315 /* If divisor is a power of two, simplify this to bit manipulation. */
14316 if (divisor == (divisor & -divisor))
14318 tree t;
14320 t = build_int_cst (TREE_TYPE (value), -divisor);
14321 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14323 else
14325 if (!div)
14326 div = build_int_cst (TREE_TYPE (value), divisor);
14327 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14328 value = size_binop_loc (loc, MULT_EXPR, value, div);
14331 return value;
14334 /* Returns the pointer to the base of the object addressed by EXP and
14335 extracts the information about the offset of the access, storing it
14336 to PBITPOS and POFFSET. */
14338 static tree
14339 split_address_to_core_and_offset (tree exp,
14340 HOST_WIDE_INT *pbitpos, tree *poffset)
14342 tree core;
14343 machine_mode mode;
14344 int unsignedp, reversep, volatilep;
14345 HOST_WIDE_INT bitsize;
14346 location_t loc = EXPR_LOCATION (exp);
14348 if (TREE_CODE (exp) == ADDR_EXPR)
14350 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14351 poffset, &mode, &unsignedp, &reversep,
14352 &volatilep);
14353 core = build_fold_addr_expr_loc (loc, core);
14355 else
14357 core = exp;
14358 *pbitpos = 0;
14359 *poffset = NULL_TREE;
14362 return core;
14365 /* Returns true if addresses of E1 and E2 differ by a constant, false
14366 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14368 bool
14369 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14371 tree core1, core2;
14372 HOST_WIDE_INT bitpos1, bitpos2;
14373 tree toffset1, toffset2, tdiff, type;
14375 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14376 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14378 if (bitpos1 % BITS_PER_UNIT != 0
14379 || bitpos2 % BITS_PER_UNIT != 0
14380 || !operand_equal_p (core1, core2, 0))
14381 return false;
14383 if (toffset1 && toffset2)
14385 type = TREE_TYPE (toffset1);
14386 if (type != TREE_TYPE (toffset2))
14387 toffset2 = fold_convert (type, toffset2);
14389 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14390 if (!cst_and_fits_in_hwi (tdiff))
14391 return false;
14393 *diff = int_cst_value (tdiff);
14395 else if (toffset1 || toffset2)
14397 /* If only one of the offsets is non-constant, the difference cannot
14398 be a constant. */
14399 return false;
14401 else
14402 *diff = 0;
14404 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14405 return true;
14408 /* Return OFF converted to a pointer offset type suitable as offset for
14409 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14410 tree
14411 convert_to_ptrofftype_loc (location_t loc, tree off)
14413 return fold_convert_loc (loc, sizetype, off);
14416 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14417 tree
14418 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14420 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14421 ptr, convert_to_ptrofftype_loc (loc, off));
14424 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14425 tree
14426 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14428 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14429 ptr, size_int (off));
14432 /* Return a char pointer for a C string if it is a string constant
14433 or sum of string constant and integer constant. */
14435 const char *
14436 c_getstr (tree src)
14438 tree offset_node;
14440 src = string_constant (src, &offset_node);
14441 if (src == 0)
14442 return 0;
14444 if (offset_node == 0)
14445 return TREE_STRING_POINTER (src);
14446 else if (!tree_fits_uhwi_p (offset_node)
14447 || compare_tree_int (offset_node, TREE_STRING_LENGTH (src) - 1) > 0)
14448 return 0;
14450 return TREE_STRING_POINTER (src) + tree_to_uhwi (offset_node);
14453 #if CHECKING_P
14455 namespace selftest {
14457 /* Helper functions for writing tests of folding trees. */
14459 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14461 static void
14462 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
14463 tree constant)
14465 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
14468 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14469 wrapping WRAPPED_EXPR. */
14471 static void
14472 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
14473 tree wrapped_expr)
14475 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
14476 ASSERT_NE (wrapped_expr, result);
14477 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
14478 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
14481 /* Verify that various arithmetic binary operations are folded
14482 correctly. */
14484 static void
14485 test_arithmetic_folding ()
14487 tree type = integer_type_node;
14488 tree x = create_tmp_var_raw (type, "x");
14489 tree zero = build_zero_cst (type);
14490 tree one = build_int_cst (type, 1);
14492 /* Addition. */
14493 /* 1 <-- (0 + 1) */
14494 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
14495 one);
14496 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
14497 one);
14499 /* (nonlvalue)x <-- (x + 0) */
14500 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
14503 /* Subtraction. */
14504 /* 0 <-- (x - x) */
14505 assert_binop_folds_to_const (x, MINUS_EXPR, x,
14506 zero);
14507 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
14510 /* Multiplication. */
14511 /* 0 <-- (x * 0) */
14512 assert_binop_folds_to_const (x, MULT_EXPR, zero,
14513 zero);
14515 /* (nonlvalue)x <-- (x * 1) */
14516 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
14520 /* Run all of the selftests within this file. */
14522 void
14523 fold_const_c_tests ()
14525 test_arithmetic_folding ();
14528 } // namespace selftest
14530 #endif /* CHECKING_P */