1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
35 static void copy_loops_to (struct loop
**, int,
37 static void loop_redirect_edge (edge
, basic_block
);
38 static void remove_bbs (basic_block
*, int);
39 static bool rpe_enum_p (const_basic_block
, const void *);
40 static int find_path (edge
, basic_block
**);
41 static void fix_loop_placements (struct loop
*, bool *);
42 static bool fix_bb_placement (basic_block
);
43 static void fix_bb_placements (basic_block
, bool *, bitmap
);
45 /* Checks whether basic block BB is dominated by DATA. */
47 rpe_enum_p (const_basic_block bb
, const void *data
)
49 return dominated_by_p (CDI_DOMINATORS
, bb
, (const_basic_block
) data
);
52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
55 remove_bbs (basic_block
*bbs
, int nbbs
)
59 for (i
= 0; i
< nbbs
; i
++)
60 delete_basic_block (bbs
[i
]);
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
70 find_path (edge e
, basic_block
**bbs
)
72 gcc_assert (EDGE_COUNT (e
->dest
->preds
) <= 1);
74 /* Find bbs in the path. */
75 *bbs
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
76 return dfs_enumerate_from (e
->dest
, 0, rpe_enum_p
, *bbs
,
77 n_basic_blocks_for_fn (cfun
), e
->dest
);
80 /* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
88 fix_bb_placement (basic_block bb
)
92 struct loop
*loop
= current_loops
->tree_root
, *act
;
94 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
96 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
99 act
= e
->dest
->loop_father
;
100 if (act
->header
== e
->dest
)
101 act
= loop_outer (act
);
103 if (flow_loop_nested_p (loop
, act
))
107 if (loop
== bb
->loop_father
)
110 remove_bb_from_loops (bb
);
111 add_bb_to_loop (bb
, loop
);
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
125 fix_loop_placement (struct loop
*loop
, bool *irred_invalidated
)
129 vec
<edge
> exits
= get_loop_exit_edges (loop
);
130 struct loop
*father
= current_loops
->tree_root
, *act
;
133 FOR_EACH_VEC_ELT (exits
, i
, e
)
135 act
= find_common_loop (loop
, e
->dest
->loop_father
);
136 if (flow_loop_nested_p (father
, act
))
140 if (father
!= loop_outer (loop
))
142 for (act
= loop_outer (loop
); act
!= father
; act
= loop_outer (act
))
143 act
->num_nodes
-= loop
->num_nodes
;
144 flow_loop_tree_node_remove (loop
);
145 flow_loop_tree_node_add (father
, loop
);
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits
, i
, e
)
151 /* We may need to recompute irreducible loops. */
152 if (e
->flags
& EDGE_IRREDUCIBLE_LOOP
)
153 *irred_invalidated
= true;
154 rescan_loop_exit (e
, false, false);
164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
165 enforce condition stated in description of fix_bb_placement. We
166 start from basic block FROM that had some of its successors removed, so that
167 his placement no longer has to be correct, and iteratively fix placement of
168 its predecessors that may change if placement of FROM changed. Also fix
169 placement of subloops of FROM->loop_father, that might also be altered due
170 to this change; the condition for them is similar, except that instead of
171 successors we consider edges coming out of the loops.
173 If the changes may invalidate the information about irreducible regions,
174 IRRED_INVALIDATED is set to true.
176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177 changed loop_father are collected there. */
180 fix_bb_placements (basic_block from
,
181 bool *irred_invalidated
,
182 bitmap loop_closed_ssa_invalidated
)
184 basic_block
*queue
, *qtop
, *qbeg
, *qend
;
185 struct loop
*base_loop
, *target_loop
;
188 /* We pass through blocks back-reachable from FROM, testing whether some
189 of their successors moved to outer loop. It may be necessary to
190 iterate several times, but it is finite, as we stop unless we move
191 the basic block up the loop structure. The whole story is a bit
192 more complicated due to presence of subloops, those are moved using
193 fix_loop_placement. */
195 base_loop
= from
->loop_father
;
196 /* If we are already in the outermost loop, the basic blocks cannot be moved
197 outside of it. If FROM is the header of the base loop, it cannot be moved
198 outside of it, either. In both cases, we can end now. */
199 if (base_loop
== current_loops
->tree_root
200 || from
== base_loop
->header
)
203 auto_sbitmap
in_queue (last_basic_block_for_fn (cfun
));
204 bitmap_clear (in_queue
);
205 bitmap_set_bit (in_queue
, from
->index
);
206 /* Prevent us from going out of the base_loop. */
207 bitmap_set_bit (in_queue
, base_loop
->header
->index
);
209 queue
= XNEWVEC (basic_block
, base_loop
->num_nodes
+ 1);
210 qtop
= queue
+ base_loop
->num_nodes
+ 1;
222 bitmap_clear_bit (in_queue
, from
->index
);
224 if (from
->loop_father
->header
== from
)
226 /* Subloop header, maybe move the loop upward. */
227 if (!fix_loop_placement (from
->loop_father
, irred_invalidated
))
229 target_loop
= loop_outer (from
->loop_father
);
230 if (loop_closed_ssa_invalidated
)
232 basic_block
*bbs
= get_loop_body (from
->loop_father
);
233 for (unsigned i
= 0; i
< from
->loop_father
->num_nodes
; ++i
)
234 bitmap_set_bit (loop_closed_ssa_invalidated
, bbs
[i
]->index
);
240 /* Ordinary basic block. */
241 if (!fix_bb_placement (from
))
243 target_loop
= from
->loop_father
;
244 if (loop_closed_ssa_invalidated
)
245 bitmap_set_bit (loop_closed_ssa_invalidated
, from
->index
);
248 FOR_EACH_EDGE (e
, ei
, from
->succs
)
250 if (e
->flags
& EDGE_IRREDUCIBLE_LOOP
)
251 *irred_invalidated
= true;
254 /* Something has changed, insert predecessors into queue. */
255 FOR_EACH_EDGE (e
, ei
, from
->preds
)
257 basic_block pred
= e
->src
;
260 if (e
->flags
& EDGE_IRREDUCIBLE_LOOP
)
261 *irred_invalidated
= true;
263 if (bitmap_bit_p (in_queue
, pred
->index
))
266 /* If it is subloop, then it either was not moved, or
267 the path up the loop tree from base_loop do not contain
269 nca
= find_common_loop (pred
->loop_father
, base_loop
);
270 if (pred
->loop_father
!= base_loop
272 || nca
!= pred
->loop_father
))
273 pred
= pred
->loop_father
->header
;
274 else if (!flow_loop_nested_p (target_loop
, pred
->loop_father
))
276 /* If PRED is already higher in the loop hierarchy than the
277 TARGET_LOOP to that we moved FROM, the change of the position
278 of FROM does not affect the position of PRED, so there is no
279 point in processing it. */
283 if (bitmap_bit_p (in_queue
, pred
->index
))
286 /* Schedule the basic block. */
291 bitmap_set_bit (in_queue
, pred
->index
);
297 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
298 and update loop structures and dominators. Return true if we were able
299 to remove the path, false otherwise (and nothing is affected then). */
304 basic_block
*rem_bbs
, *bord_bbs
, from
, bb
;
305 vec
<basic_block
> dom_bbs
;
306 int i
, nrem
, n_bord_bbs
;
307 bool irred_invalidated
= false;
311 if (!can_remove_branch_p (e
))
314 /* Keep track of whether we need to update information about irreducible
315 regions. This is the case if the removed area is a part of the
316 irreducible region, or if the set of basic blocks that belong to a loop
317 that is inside an irreducible region is changed, or if such a loop is
319 if (e
->flags
& EDGE_IRREDUCIBLE_LOOP
)
320 irred_invalidated
= true;
322 /* We need to check whether basic blocks are dominated by the edge
323 e, but we only have basic block dominators. This is easy to
324 fix -- when e->dest has exactly one predecessor, this corresponds
325 to blocks dominated by e->dest, if not, split the edge. */
326 if (!single_pred_p (e
->dest
))
327 e
= single_pred_edge (split_edge (e
));
329 /* It may happen that by removing path we remove one or more loops
330 we belong to. In this case first unloop the loops, then proceed
331 normally. We may assume that e->dest is not a header of any loop,
332 as it now has exactly one predecessor. */
333 for (l
= e
->src
->loop_father
; loop_outer (l
); l
= f
)
336 if (dominated_by_p (CDI_DOMINATORS
, l
->latch
, e
->dest
))
337 unloop (l
, &irred_invalidated
, NULL
);
340 /* Identify the path. */
341 nrem
= find_path (e
, &rem_bbs
);
344 bord_bbs
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
345 auto_sbitmap
seen (last_basic_block_for_fn (cfun
));
348 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
349 for (i
= 0; i
< nrem
; i
++)
350 bitmap_set_bit (seen
, rem_bbs
[i
]->index
);
351 if (!irred_invalidated
)
352 FOR_EACH_EDGE (ae
, ei
, e
->src
->succs
)
353 if (ae
!= e
&& ae
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
354 && !bitmap_bit_p (seen
, ae
->dest
->index
)
355 && ae
->flags
& EDGE_IRREDUCIBLE_LOOP
)
357 irred_invalidated
= true;
361 for (i
= 0; i
< nrem
; i
++)
364 FOR_EACH_EDGE (ae
, ei
, rem_bbs
[i
]->succs
)
365 if (ae
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
366 && !bitmap_bit_p (seen
, ae
->dest
->index
))
368 bitmap_set_bit (seen
, ae
->dest
->index
);
369 bord_bbs
[n_bord_bbs
++] = ae
->dest
;
371 if (ae
->flags
& EDGE_IRREDUCIBLE_LOOP
)
372 irred_invalidated
= true;
376 /* Remove the path. */
381 /* Cancel loops contained in the path. */
382 for (i
= 0; i
< nrem
; i
++)
383 if (rem_bbs
[i
]->loop_father
->header
== rem_bbs
[i
])
384 cancel_loop_tree (rem_bbs
[i
]->loop_father
);
386 remove_bbs (rem_bbs
, nrem
);
389 /* Find blocks whose dominators may be affected. */
391 for (i
= 0; i
< n_bord_bbs
; i
++)
395 bb
= get_immediate_dominator (CDI_DOMINATORS
, bord_bbs
[i
]);
396 if (bitmap_bit_p (seen
, bb
->index
))
398 bitmap_set_bit (seen
, bb
->index
);
400 for (ldom
= first_dom_son (CDI_DOMINATORS
, bb
);
402 ldom
= next_dom_son (CDI_DOMINATORS
, ldom
))
403 if (!dominated_by_p (CDI_DOMINATORS
, from
, ldom
))
404 dom_bbs
.safe_push (ldom
);
407 /* Recount dominators. */
408 iterate_fix_dominators (CDI_DOMINATORS
, dom_bbs
, true);
412 /* Fix placements of basic blocks inside loops and the placement of
413 loops in the loop tree. */
414 fix_bb_placements (from
, &irred_invalidated
, NULL
);
415 fix_loop_placements (from
->loop_father
, &irred_invalidated
);
417 if (irred_invalidated
418 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS
))
419 mark_irreducible_loops ();
424 /* Creates place for a new LOOP in loops structure of FN. */
427 place_new_loop (struct function
*fn
, struct loop
*loop
)
429 loop
->num
= number_of_loops (fn
);
430 vec_safe_push (loops_for_fn (fn
)->larray
, loop
);
433 /* Given LOOP structure with filled header and latch, find the body of the
434 corresponding loop and add it to loops tree. Insert the LOOP as a son of
438 add_loop (struct loop
*loop
, struct loop
*outer
)
442 struct loop
*subloop
;
446 /* Add it to loop structure. */
447 place_new_loop (cfun
, loop
);
448 flow_loop_tree_node_add (outer
, loop
);
450 /* Find its nodes. */
451 bbs
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
452 n
= get_loop_body_with_size (loop
, bbs
, n_basic_blocks_for_fn (cfun
));
454 for (i
= 0; i
< n
; i
++)
456 if (bbs
[i
]->loop_father
== outer
)
458 remove_bb_from_loops (bbs
[i
]);
459 add_bb_to_loop (bbs
[i
], loop
);
465 /* If we find a direct subloop of OUTER, move it to LOOP. */
466 subloop
= bbs
[i
]->loop_father
;
467 if (loop_outer (subloop
) == outer
468 && subloop
->header
== bbs
[i
])
470 flow_loop_tree_node_remove (subloop
);
471 flow_loop_tree_node_add (loop
, subloop
);
475 /* Update the information about loop exit edges. */
476 for (i
= 0; i
< n
; i
++)
478 FOR_EACH_EDGE (e
, ei
, bbs
[i
]->succs
)
480 rescan_loop_exit (e
, false, false);
487 /* Multiply all frequencies in LOOP by NUM/DEN. */
490 scale_loop_frequencies (struct loop
*loop
, int num
, int den
)
494 bbs
= get_loop_body (loop
);
495 scale_bbs_frequencies_int (bbs
, loop
->num_nodes
, num
, den
);
499 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE.
500 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
501 to iterate too many times. */
504 scale_loop_profile (struct loop
*loop
, int scale
, gcov_type iteration_bound
)
506 gcov_type iterations
= expected_loop_iterations_unbounded (loop
);
510 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
511 fprintf (dump_file
, ";; Scaling loop %i with scale %f, "
512 "bounding iterations to %i from guessed %i\n",
513 loop
->num
, (double)scale
/ REG_BR_PROB_BASE
,
514 (int)iteration_bound
, (int)iterations
);
516 /* See if loop is predicted to iterate too many times. */
517 if (iteration_bound
&& iterations
> 0
518 && apply_probability (iterations
, scale
) > iteration_bound
)
520 /* Fixing loop profile for different trip count is not trivial; the exit
521 probabilities has to be updated to match and frequencies propagated down
524 We fully update only the simple case of loop with single exit that is
525 either from the latch or BB just before latch and leads from BB with
526 simple conditional jump. This is OK for use in vectorizer. */
527 e
= single_exit (loop
);
532 gcov_type count_delta
;
534 FOR_EACH_EDGE (other_e
, ei
, e
->src
->succs
)
535 if (!(other_e
->flags
& (EDGE_ABNORMAL
| EDGE_FAKE
))
539 /* Probability of exit must be 1/iterations. */
540 freq_delta
= EDGE_FREQUENCY (e
);
541 e
->probability
= REG_BR_PROB_BASE
/ iteration_bound
;
542 other_e
->probability
= inverse_probability (e
->probability
);
543 freq_delta
-= EDGE_FREQUENCY (e
);
545 /* Adjust counts accordingly. */
546 count_delta
= e
->count
;
547 e
->count
= apply_probability (e
->src
->count
, e
->probability
);
548 other_e
->count
= apply_probability (e
->src
->count
, other_e
->probability
);
549 count_delta
-= e
->count
;
551 /* If latch exists, change its frequency and count, since we changed
552 probability of exit. Theoretically we should update everything from
553 source of exit edge to latch, but for vectorizer this is enough. */
555 && loop
->latch
!= e
->src
)
557 loop
->latch
->frequency
+= freq_delta
;
558 if (loop
->latch
->frequency
< 0)
559 loop
->latch
->frequency
= 0;
560 loop
->latch
->count
+= count_delta
;
561 if (loop
->latch
->count
< 0)
562 loop
->latch
->count
= 0;
566 /* Roughly speaking we want to reduce the loop body profile by the
567 difference of loop iterations. We however can do better if
568 we look at the actual profile, if it is available. */
569 scale
= RDIV (iteration_bound
* scale
, iterations
);
570 if (loop
->header
->count
)
572 gcov_type count_in
= 0;
574 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
575 if (e
->src
!= loop
->latch
)
576 count_in
+= e
->count
;
579 scale
= GCOV_COMPUTE_SCALE (count_in
* iteration_bound
,
580 loop
->header
->count
);
582 else if (loop
->header
->frequency
)
586 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
587 if (e
->src
!= loop
->latch
)
588 freq_in
+= EDGE_FREQUENCY (e
);
591 scale
= GCOV_COMPUTE_SCALE (freq_in
* iteration_bound
,
592 loop
->header
->frequency
);
598 if (scale
== REG_BR_PROB_BASE
)
601 /* Scale the actual probabilities. */
602 scale_loop_frequencies (loop
, scale
, REG_BR_PROB_BASE
);
603 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
604 fprintf (dump_file
, ";; guessed iterations are now %i\n",
605 (int)expected_loop_iterations_unbounded (loop
));
608 /* Recompute dominance information for basic blocks outside LOOP. */
611 update_dominators_in_loop (struct loop
*loop
)
613 vec
<basic_block
> dom_bbs
= vNULL
;
617 auto_sbitmap
seen (last_basic_block_for_fn (cfun
));
619 body
= get_loop_body (loop
);
621 for (i
= 0; i
< loop
->num_nodes
; i
++)
622 bitmap_set_bit (seen
, body
[i
]->index
);
624 for (i
= 0; i
< loop
->num_nodes
; i
++)
628 for (ldom
= first_dom_son (CDI_DOMINATORS
, body
[i
]);
630 ldom
= next_dom_son (CDI_DOMINATORS
, ldom
))
631 if (!bitmap_bit_p (seen
, ldom
->index
))
633 bitmap_set_bit (seen
, ldom
->index
);
634 dom_bbs
.safe_push (ldom
);
638 iterate_fix_dominators (CDI_DOMINATORS
, dom_bbs
, false);
643 /* Creates an if region as shown above. CONDITION is used to create
647 | ------------- -------------
648 | | pred_bb | | pred_bb |
649 | ------------- -------------
653 | | ====> -------------
658 | ------------- e_false / \ e_true
660 | ------------- ----------- -----------
661 | | false_bb | | true_bb |
662 | ----------- -----------
669 | | exit_edge (result)
678 create_empty_if_region_on_edge (edge entry_edge
, tree condition
)
681 basic_block cond_bb
, true_bb
, false_bb
, join_bb
;
682 edge e_true
, e_false
, exit_edge
;
685 gimple_stmt_iterator gsi
;
687 cond_bb
= split_edge (entry_edge
);
689 /* Insert condition in cond_bb. */
690 gsi
= gsi_last_bb (cond_bb
);
692 force_gimple_operand_gsi (&gsi
, condition
, true, NULL
,
693 false, GSI_NEW_STMT
);
694 cond_stmt
= gimple_build_cond_from_tree (simple_cond
, NULL_TREE
, NULL_TREE
);
695 gsi
= gsi_last_bb (cond_bb
);
696 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
698 join_bb
= split_edge (single_succ_edge (cond_bb
));
700 e_true
= single_succ_edge (cond_bb
);
701 true_bb
= split_edge (e_true
);
703 e_false
= make_edge (cond_bb
, join_bb
, 0);
704 false_bb
= split_edge (e_false
);
706 e_true
->flags
&= ~EDGE_FALLTHRU
;
707 e_true
->flags
|= EDGE_TRUE_VALUE
;
708 e_false
->flags
&= ~EDGE_FALLTHRU
;
709 e_false
->flags
|= EDGE_FALSE_VALUE
;
711 set_immediate_dominator (CDI_DOMINATORS
, cond_bb
, entry_edge
->src
);
712 set_immediate_dominator (CDI_DOMINATORS
, true_bb
, cond_bb
);
713 set_immediate_dominator (CDI_DOMINATORS
, false_bb
, cond_bb
);
714 set_immediate_dominator (CDI_DOMINATORS
, join_bb
, cond_bb
);
716 exit_edge
= single_succ_edge (join_bb
);
718 if (single_pred_p (exit_edge
->dest
))
719 set_immediate_dominator (CDI_DOMINATORS
, exit_edge
->dest
, join_bb
);
724 /* create_empty_loop_on_edge
726 | - pred_bb - ------ pred_bb ------
727 | | | | iv0 = initial_value |
728 | -----|----- ---------|-----------
729 | | ______ | entry_edge
731 | | ====> | -V---V- loop_header -------------
732 | V | | iv_before = phi (iv0, iv_after) |
733 | - succ_bb - | ---|-----------------------------
735 | ----------- | ---V--- loop_body ---------------
736 | | | iv_after = iv_before + stride |
737 | | | if (iv_before < upper_bound) |
738 | | ---|--------------\--------------
741 | | - loop_latch - V- succ_bb -
743 | | /------------- -----------
746 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
747 that is used before the increment of IV. IV_BEFORE should be used for
748 adding code to the body that uses the IV. OUTER is the outer loop in
749 which the new loop should be inserted.
751 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
752 inserted on the loop entry edge. This implies that this function
753 should be used only when the UPPER_BOUND expression is a loop
757 create_empty_loop_on_edge (edge entry_edge
,
759 tree stride
, tree upper_bound
,
765 basic_block loop_header
, loop_latch
, succ_bb
, pred_bb
;
767 gimple_stmt_iterator gsi
;
774 gcc_assert (entry_edge
&& initial_value
&& stride
&& upper_bound
&& iv
);
776 /* Create header, latch and wire up the loop. */
777 pred_bb
= entry_edge
->src
;
778 loop_header
= split_edge (entry_edge
);
779 loop_latch
= split_edge (single_succ_edge (loop_header
));
780 succ_bb
= single_succ (loop_latch
);
781 make_edge (loop_header
, succ_bb
, 0);
782 redirect_edge_succ_nodup (single_succ_edge (loop_latch
), loop_header
);
784 /* Set immediate dominator information. */
785 set_immediate_dominator (CDI_DOMINATORS
, loop_header
, pred_bb
);
786 set_immediate_dominator (CDI_DOMINATORS
, loop_latch
, loop_header
);
787 set_immediate_dominator (CDI_DOMINATORS
, succ_bb
, loop_header
);
789 /* Initialize a loop structure and put it in a loop hierarchy. */
790 loop
= alloc_loop ();
791 loop
->header
= loop_header
;
792 loop
->latch
= loop_latch
;
793 add_loop (loop
, outer
);
795 /* TODO: Fix frequencies and counts. */
796 prob
= REG_BR_PROB_BASE
/ 2;
798 scale_loop_frequencies (loop
, REG_BR_PROB_BASE
- prob
, REG_BR_PROB_BASE
);
800 /* Update dominators. */
801 update_dominators_in_loop (loop
);
803 /* Modify edge flags. */
804 exit_e
= single_exit (loop
);
805 exit_e
->flags
= EDGE_LOOP_EXIT
| EDGE_FALSE_VALUE
;
806 single_pred_edge (loop_latch
)->flags
= EDGE_TRUE_VALUE
;
808 /* Construct IV code in loop. */
809 initial_value
= force_gimple_operand (initial_value
, &stmts
, true, iv
);
812 gsi_insert_seq_on_edge (loop_preheader_edge (loop
), stmts
);
813 gsi_commit_edge_inserts ();
816 upper_bound
= force_gimple_operand (upper_bound
, &stmts
, true, NULL
);
819 gsi_insert_seq_on_edge (loop_preheader_edge (loop
), stmts
);
820 gsi_commit_edge_inserts ();
823 gsi
= gsi_last_bb (loop_header
);
824 create_iv (initial_value
, stride
, iv
, loop
, &gsi
, false,
825 iv_before
, iv_after
);
827 /* Insert loop exit condition. */
828 cond_expr
= gimple_build_cond
829 (LT_EXPR
, *iv_before
, upper_bound
, NULL_TREE
, NULL_TREE
);
831 exit_test
= gimple_cond_lhs (cond_expr
);
832 exit_test
= force_gimple_operand_gsi (&gsi
, exit_test
, true, NULL
,
833 false, GSI_NEW_STMT
);
834 gimple_cond_set_lhs (cond_expr
, exit_test
);
835 gsi
= gsi_last_bb (exit_e
->src
);
836 gsi_insert_after (&gsi
, cond_expr
, GSI_NEW_STMT
);
838 split_block_after_labels (loop_header
);
843 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
844 latch to header and update loop tree and dominators
845 accordingly. Everything between them plus LATCH_EDGE destination must
846 be dominated by HEADER_EDGE destination, and back-reachable from
847 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
848 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
849 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
850 Returns the newly created loop. Frequencies and counts in the new loop
851 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
854 loopify (edge latch_edge
, edge header_edge
,
855 basic_block switch_bb
, edge true_edge
, edge false_edge
,
856 bool redirect_all_edges
, unsigned true_scale
, unsigned false_scale
)
858 basic_block succ_bb
= latch_edge
->dest
;
859 basic_block pred_bb
= header_edge
->src
;
860 struct loop
*loop
= alloc_loop ();
861 struct loop
*outer
= loop_outer (succ_bb
->loop_father
);
867 loop
->header
= header_edge
->dest
;
868 loop
->latch
= latch_edge
->src
;
870 freq
= EDGE_FREQUENCY (header_edge
);
871 cnt
= header_edge
->count
;
873 /* Redirect edges. */
874 loop_redirect_edge (latch_edge
, loop
->header
);
875 loop_redirect_edge (true_edge
, succ_bb
);
877 /* During loop versioning, one of the switch_bb edge is already properly
878 set. Do not redirect it again unless redirect_all_edges is true. */
879 if (redirect_all_edges
)
881 loop_redirect_edge (header_edge
, switch_bb
);
882 loop_redirect_edge (false_edge
, loop
->header
);
884 /* Update dominators. */
885 set_immediate_dominator (CDI_DOMINATORS
, switch_bb
, pred_bb
);
886 set_immediate_dominator (CDI_DOMINATORS
, loop
->header
, switch_bb
);
889 set_immediate_dominator (CDI_DOMINATORS
, succ_bb
, switch_bb
);
891 /* Compute new loop. */
892 add_loop (loop
, outer
);
894 /* Add switch_bb to appropriate loop. */
895 if (switch_bb
->loop_father
)
896 remove_bb_from_loops (switch_bb
);
897 add_bb_to_loop (switch_bb
, outer
);
899 /* Fix frequencies. */
900 if (redirect_all_edges
)
902 switch_bb
->frequency
= freq
;
903 switch_bb
->count
= cnt
;
904 FOR_EACH_EDGE (e
, ei
, switch_bb
->succs
)
906 e
->count
= apply_probability (switch_bb
->count
, e
->probability
);
909 scale_loop_frequencies (loop
, false_scale
, REG_BR_PROB_BASE
);
910 scale_loop_frequencies (succ_bb
->loop_father
, true_scale
, REG_BR_PROB_BASE
);
911 update_dominators_in_loop (loop
);
916 /* Remove the latch edge of a LOOP and update loops to indicate that
917 the LOOP was removed. After this function, original loop latch will
918 have no successor, which caller is expected to fix somehow.
920 If this may cause the information about irreducible regions to become
921 invalid, IRRED_INVALIDATED is set to true.
923 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
924 basic blocks that had non-trivial update on their loop_father.*/
927 unloop (struct loop
*loop
, bool *irred_invalidated
,
928 bitmap loop_closed_ssa_invalidated
)
933 basic_block latch
= loop
->latch
;
936 if (loop_preheader_edge (loop
)->flags
& EDGE_IRREDUCIBLE_LOOP
)
937 *irred_invalidated
= true;
939 /* This is relatively straightforward. The dominators are unchanged, as
940 loop header dominates loop latch, so the only thing we have to care of
941 is the placement of loops and basic blocks inside the loop tree. We
942 move them all to the loop->outer, and then let fix_bb_placements do
945 body
= get_loop_body (loop
);
947 for (i
= 0; i
< n
; i
++)
948 if (body
[i
]->loop_father
== loop
)
950 remove_bb_from_loops (body
[i
]);
951 add_bb_to_loop (body
[i
], loop_outer (loop
));
958 flow_loop_tree_node_remove (ploop
);
959 flow_loop_tree_node_add (loop_outer (loop
), ploop
);
962 /* Remove the loop and free its data. */
965 remove_edge (single_succ_edge (latch
));
967 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
968 there is an irreducible region inside the cancelled loop, the flags will
970 fix_bb_placements (latch
, &dummy
, loop_closed_ssa_invalidated
);
973 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
974 condition stated in description of fix_loop_placement holds for them.
975 It is used in case when we removed some edges coming out of LOOP, which
976 may cause the right placement of LOOP inside loop tree to change.
978 IRRED_INVALIDATED is set to true if a change in the loop structures might
979 invalidate the information about irreducible regions. */
982 fix_loop_placements (struct loop
*loop
, bool *irred_invalidated
)
986 while (loop_outer (loop
))
988 outer
= loop_outer (loop
);
989 if (!fix_loop_placement (loop
, irred_invalidated
))
992 /* Changing the placement of a loop in the loop tree may alter the
993 validity of condition 2) of the description of fix_bb_placement
994 for its preheader, because the successor is the header and belongs
995 to the loop. So call fix_bb_placements to fix up the placement
996 of the preheader and (possibly) of its predecessors. */
997 fix_bb_placements (loop_preheader_edge (loop
)->src
,
998 irred_invalidated
, NULL
);
1003 /* Duplicate loop bounds and other information we store about
1004 the loop into its duplicate. */
1007 copy_loop_info (struct loop
*loop
, struct loop
*target
)
1009 gcc_checking_assert (!target
->any_upper_bound
&& !target
->any_estimate
);
1010 target
->any_upper_bound
= loop
->any_upper_bound
;
1011 target
->nb_iterations_upper_bound
= loop
->nb_iterations_upper_bound
;
1012 target
->any_likely_upper_bound
= loop
->any_likely_upper_bound
;
1013 target
->nb_iterations_likely_upper_bound
1014 = loop
->nb_iterations_likely_upper_bound
;
1015 target
->any_estimate
= loop
->any_estimate
;
1016 target
->nb_iterations_estimate
= loop
->nb_iterations_estimate
;
1017 target
->estimate_state
= loop
->estimate_state
;
1018 target
->constraints
= loop
->constraints
;
1019 target
->warned_aggressive_loop_optimizations
1020 |= loop
->warned_aggressive_loop_optimizations
;
1021 target
->in_oacc_kernels_region
= loop
->in_oacc_kernels_region
;
1024 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1025 created loop into loops structure. */
1027 duplicate_loop (struct loop
*loop
, struct loop
*target
)
1030 cloop
= alloc_loop ();
1031 place_new_loop (cfun
, cloop
);
1033 copy_loop_info (loop
, cloop
);
1035 /* Mark the new loop as copy of LOOP. */
1036 set_loop_copy (loop
, cloop
);
1038 /* Add it to target. */
1039 flow_loop_tree_node_add (target
, cloop
);
1044 /* Copies structure of subloops of LOOP into TARGET loop, placing
1045 newly created loops into loop tree. */
1047 duplicate_subloops (struct loop
*loop
, struct loop
*target
)
1049 struct loop
*aloop
, *cloop
;
1051 for (aloop
= loop
->inner
; aloop
; aloop
= aloop
->next
)
1053 cloop
= duplicate_loop (aloop
, target
);
1054 duplicate_subloops (aloop
, cloop
);
1058 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1059 into TARGET loop, placing newly created loops into loop tree. */
1061 copy_loops_to (struct loop
**copied_loops
, int n
, struct loop
*target
)
1066 for (i
= 0; i
< n
; i
++)
1068 aloop
= duplicate_loop (copied_loops
[i
], target
);
1069 duplicate_subloops (copied_loops
[i
], aloop
);
1073 /* Redirects edge E to basic block DEST. */
1075 loop_redirect_edge (edge e
, basic_block dest
)
1077 if (e
->dest
== dest
)
1080 redirect_edge_and_branch_force (e
, dest
);
1083 /* Check whether LOOP's body can be duplicated. */
1085 can_duplicate_loop_p (const struct loop
*loop
)
1088 basic_block
*bbs
= get_loop_body (loop
);
1090 ret
= can_copy_bbs_p (bbs
, loop
->num_nodes
);
1096 /* Sets probability and count of edge E to zero. The probability and count
1097 is redistributed evenly to the remaining edges coming from E->src. */
1100 set_zero_probability (edge e
)
1102 basic_block bb
= e
->src
;
1104 edge ae
, last
= NULL
;
1105 unsigned n
= EDGE_COUNT (bb
->succs
);
1106 gcov_type cnt
= e
->count
, cnt1
;
1107 unsigned prob
= e
->probability
, prob1
;
1110 cnt1
= cnt
/ (n
- 1);
1111 prob1
= prob
/ (n
- 1);
1113 FOR_EACH_EDGE (ae
, ei
, bb
->succs
)
1118 ae
->probability
+= prob1
;
1123 /* Move the rest to one of the edges. */
1124 last
->probability
+= prob
% (n
- 1);
1125 last
->count
+= cnt
% (n
- 1);
1131 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1132 loop structure and dominators. E's destination must be LOOP header for
1133 this to work, i.e. it must be entry or latch edge of this loop; these are
1134 unique, as the loops must have preheaders for this function to work
1135 correctly (in case E is latch, the function unrolls the loop, if E is entry
1136 edge, it peels the loop). Store edges created by copying ORIG edge from
1137 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1138 original LOOP body, the other copies are numbered in order given by control
1139 flow through them) into TO_REMOVE array. Returns false if duplication is
1143 duplicate_loop_to_header_edge (struct loop
*loop
, edge e
,
1144 unsigned int ndupl
, sbitmap wont_exit
,
1145 edge orig
, vec
<edge
> *to_remove
,
1148 struct loop
*target
, *aloop
;
1149 struct loop
**orig_loops
;
1150 unsigned n_orig_loops
;
1151 basic_block header
= loop
->header
, latch
= loop
->latch
;
1152 basic_block
*new_bbs
, *bbs
, *first_active
;
1153 basic_block new_bb
, bb
, first_active_latch
= NULL
;
1154 edge ae
, latch_edge
;
1155 edge spec_edges
[2], new_spec_edges
[2];
1159 int is_latch
= (latch
== e
->src
);
1160 int scale_act
= 0, *scale_step
= NULL
, scale_main
= 0;
1161 int scale_after_exit
= 0;
1162 int p
, freq_in
, freq_le
, freq_out_orig
;
1163 int prob_pass_thru
, prob_pass_wont_exit
, prob_pass_main
;
1164 int add_irreducible_flag
;
1165 basic_block place_after
;
1166 bitmap bbs_to_scale
= NULL
;
1169 gcc_assert (e
->dest
== loop
->header
);
1170 gcc_assert (ndupl
> 0);
1174 /* Orig must be edge out of the loop. */
1175 gcc_assert (flow_bb_inside_loop_p (loop
, orig
->src
));
1176 gcc_assert (!flow_bb_inside_loop_p (loop
, orig
->dest
));
1179 n
= loop
->num_nodes
;
1180 bbs
= get_loop_body_in_dom_order (loop
);
1181 gcc_assert (bbs
[0] == loop
->header
);
1182 gcc_assert (bbs
[n
- 1] == loop
->latch
);
1184 /* Check whether duplication is possible. */
1185 if (!can_copy_bbs_p (bbs
, loop
->num_nodes
))
1190 new_bbs
= XNEWVEC (basic_block
, loop
->num_nodes
);
1192 /* In case we are doing loop peeling and the loop is in the middle of
1193 irreducible region, the peeled copies will be inside it too. */
1194 add_irreducible_flag
= e
->flags
& EDGE_IRREDUCIBLE_LOOP
;
1195 gcc_assert (!is_latch
|| !add_irreducible_flag
);
1197 /* Find edge from latch. */
1198 latch_edge
= loop_latch_edge (loop
);
1200 if (flags
& DLTHE_FLAG_UPDATE_FREQ
)
1202 /* Calculate coefficients by that we have to scale frequencies
1203 of duplicated loop bodies. */
1204 freq_in
= header
->frequency
;
1205 freq_le
= EDGE_FREQUENCY (latch_edge
);
1208 if (freq_in
< freq_le
)
1210 freq_out_orig
= orig
? EDGE_FREQUENCY (orig
) : freq_in
- freq_le
;
1211 if (freq_out_orig
> freq_in
- freq_le
)
1212 freq_out_orig
= freq_in
- freq_le
;
1213 prob_pass_thru
= RDIV (REG_BR_PROB_BASE
* freq_le
, freq_in
);
1214 prob_pass_wont_exit
=
1215 RDIV (REG_BR_PROB_BASE
* (freq_le
+ freq_out_orig
), freq_in
);
1218 && REG_BR_PROB_BASE
- orig
->probability
!= 0)
1220 /* The blocks that are dominated by a removed exit edge ORIG have
1221 frequencies scaled by this. */
1223 = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE
,
1224 REG_BR_PROB_BASE
- orig
->probability
);
1225 bbs_to_scale
= BITMAP_ALLOC (NULL
);
1226 for (i
= 0; i
< n
; i
++)
1228 if (bbs
[i
] != orig
->src
1229 && dominated_by_p (CDI_DOMINATORS
, bbs
[i
], orig
->src
))
1230 bitmap_set_bit (bbs_to_scale
, i
);
1234 scale_step
= XNEWVEC (int, ndupl
);
1236 for (i
= 1; i
<= ndupl
; i
++)
1237 scale_step
[i
- 1] = bitmap_bit_p (wont_exit
, i
)
1238 ? prob_pass_wont_exit
1241 /* Complete peeling is special as the probability of exit in last
1243 if (flags
& DLTHE_FLAG_COMPLETTE_PEEL
)
1245 int wanted_freq
= EDGE_FREQUENCY (e
);
1247 if (wanted_freq
> freq_in
)
1248 wanted_freq
= freq_in
;
1250 gcc_assert (!is_latch
);
1251 /* First copy has frequency of incoming edge. Each subsequent
1252 frequency should be reduced by prob_pass_wont_exit. Caller
1253 should've managed the flags so all except for original loop
1254 has won't exist set. */
1255 scale_act
= GCOV_COMPUTE_SCALE (wanted_freq
, freq_in
);
1256 /* Now simulate the duplication adjustments and compute header
1257 frequency of the last copy. */
1258 for (i
= 0; i
< ndupl
; i
++)
1259 wanted_freq
= combine_probabilities (wanted_freq
, scale_step
[i
]);
1260 scale_main
= GCOV_COMPUTE_SCALE (wanted_freq
, freq_in
);
1264 prob_pass_main
= bitmap_bit_p (wont_exit
, 0)
1265 ? prob_pass_wont_exit
1268 scale_main
= REG_BR_PROB_BASE
;
1269 for (i
= 0; i
< ndupl
; i
++)
1272 p
= combine_probabilities (p
, scale_step
[i
]);
1274 scale_main
= GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE
, scale_main
);
1275 scale_act
= combine_probabilities (scale_main
, prob_pass_main
);
1279 scale_main
= REG_BR_PROB_BASE
;
1280 for (i
= 0; i
< ndupl
; i
++)
1281 scale_main
= combine_probabilities (scale_main
, scale_step
[i
]);
1282 scale_act
= REG_BR_PROB_BASE
- prob_pass_thru
;
1284 for (i
= 0; i
< ndupl
; i
++)
1285 gcc_assert (scale_step
[i
] >= 0 && scale_step
[i
] <= REG_BR_PROB_BASE
);
1286 gcc_assert (scale_main
>= 0 && scale_main
<= REG_BR_PROB_BASE
1287 && scale_act
>= 0 && scale_act
<= REG_BR_PROB_BASE
);
1290 /* Loop the new bbs will belong to. */
1291 target
= e
->src
->loop_father
;
1293 /* Original loops. */
1295 for (aloop
= loop
->inner
; aloop
; aloop
= aloop
->next
)
1297 orig_loops
= XNEWVEC (struct loop
*, n_orig_loops
);
1298 for (aloop
= loop
->inner
, i
= 0; aloop
; aloop
= aloop
->next
, i
++)
1299 orig_loops
[i
] = aloop
;
1301 set_loop_copy (loop
, target
);
1303 first_active
= XNEWVEC (basic_block
, n
);
1306 memcpy (first_active
, bbs
, n
* sizeof (basic_block
));
1307 first_active_latch
= latch
;
1310 spec_edges
[SE_ORIG
] = orig
;
1311 spec_edges
[SE_LATCH
] = latch_edge
;
1313 place_after
= e
->src
;
1314 for (j
= 0; j
< ndupl
; j
++)
1317 copy_loops_to (orig_loops
, n_orig_loops
, target
);
1320 copy_bbs (bbs
, n
, new_bbs
, spec_edges
, 2, new_spec_edges
, loop
,
1322 place_after
= new_spec_edges
[SE_LATCH
]->src
;
1324 if (flags
& DLTHE_RECORD_COPY_NUMBER
)
1325 for (i
= 0; i
< n
; i
++)
1327 gcc_assert (!new_bbs
[i
]->aux
);
1328 new_bbs
[i
]->aux
= (void *)(size_t)(j
+ 1);
1331 /* Note whether the blocks and edges belong to an irreducible loop. */
1332 if (add_irreducible_flag
)
1334 for (i
= 0; i
< n
; i
++)
1335 new_bbs
[i
]->flags
|= BB_DUPLICATED
;
1336 for (i
= 0; i
< n
; i
++)
1339 new_bb
= new_bbs
[i
];
1340 if (new_bb
->loop_father
== target
)
1341 new_bb
->flags
|= BB_IRREDUCIBLE_LOOP
;
1343 FOR_EACH_EDGE (ae
, ei
, new_bb
->succs
)
1344 if ((ae
->dest
->flags
& BB_DUPLICATED
)
1345 && (ae
->src
->loop_father
== target
1346 || ae
->dest
->loop_father
== target
))
1347 ae
->flags
|= EDGE_IRREDUCIBLE_LOOP
;
1349 for (i
= 0; i
< n
; i
++)
1350 new_bbs
[i
]->flags
&= ~BB_DUPLICATED
;
1353 /* Redirect the special edges. */
1356 redirect_edge_and_branch_force (latch_edge
, new_bbs
[0]);
1357 redirect_edge_and_branch_force (new_spec_edges
[SE_LATCH
],
1359 set_immediate_dominator (CDI_DOMINATORS
, new_bbs
[0], latch
);
1360 latch
= loop
->latch
= new_bbs
[n
- 1];
1361 e
= latch_edge
= new_spec_edges
[SE_LATCH
];
1365 redirect_edge_and_branch_force (new_spec_edges
[SE_LATCH
],
1367 redirect_edge_and_branch_force (e
, new_bbs
[0]);
1368 set_immediate_dominator (CDI_DOMINATORS
, new_bbs
[0], e
->src
);
1369 e
= new_spec_edges
[SE_LATCH
];
1372 /* Record exit edge in this copy. */
1373 if (orig
&& bitmap_bit_p (wont_exit
, j
+ 1))
1376 to_remove
->safe_push (new_spec_edges
[SE_ORIG
]);
1377 set_zero_probability (new_spec_edges
[SE_ORIG
]);
1379 /* Scale the frequencies of the blocks dominated by the exit. */
1382 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale
, 0, i
, bi
)
1384 scale_bbs_frequencies_int (new_bbs
+ i
, 1, scale_after_exit
,
1390 /* Record the first copy in the control flow order if it is not
1391 the original loop (i.e. in case of peeling). */
1392 if (!first_active_latch
)
1394 memcpy (first_active
, new_bbs
, n
* sizeof (basic_block
));
1395 first_active_latch
= new_bbs
[n
- 1];
1398 /* Set counts and frequencies. */
1399 if (flags
& DLTHE_FLAG_UPDATE_FREQ
)
1401 scale_bbs_frequencies_int (new_bbs
, n
, scale_act
, REG_BR_PROB_BASE
);
1402 scale_act
= combine_probabilities (scale_act
, scale_step
[j
]);
1408 /* Record the exit edge in the original loop body, and update the frequencies. */
1409 if (orig
&& bitmap_bit_p (wont_exit
, 0))
1412 to_remove
->safe_push (orig
);
1413 set_zero_probability (orig
);
1415 /* Scale the frequencies of the blocks dominated by the exit. */
1418 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale
, 0, i
, bi
)
1420 scale_bbs_frequencies_int (bbs
+ i
, 1, scale_after_exit
,
1426 /* Update the original loop. */
1428 set_immediate_dominator (CDI_DOMINATORS
, e
->dest
, e
->src
);
1429 if (flags
& DLTHE_FLAG_UPDATE_FREQ
)
1431 scale_bbs_frequencies_int (bbs
, n
, scale_main
, REG_BR_PROB_BASE
);
1435 /* Update dominators of outer blocks if affected. */
1436 for (i
= 0; i
< n
; i
++)
1438 basic_block dominated
, dom_bb
;
1439 vec
<basic_block
> dom_bbs
;
1445 dom_bbs
= get_dominated_by (CDI_DOMINATORS
, bb
);
1446 FOR_EACH_VEC_ELT (dom_bbs
, j
, dominated
)
1448 if (flow_bb_inside_loop_p (loop
, dominated
))
1450 dom_bb
= nearest_common_dominator (
1451 CDI_DOMINATORS
, first_active
[i
], first_active_latch
);
1452 set_immediate_dominator (CDI_DOMINATORS
, dominated
, dom_bb
);
1456 free (first_active
);
1459 BITMAP_FREE (bbs_to_scale
);
1464 /* A callback for make_forwarder block, to redirect all edges except for
1465 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1466 whether to redirect it. */
1470 mfb_keep_just (edge e
)
1472 return e
!= mfb_kj_edge
;
1475 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1478 has_preds_from_loop (basic_block block
, struct loop
*loop
)
1483 FOR_EACH_EDGE (e
, ei
, block
->preds
)
1484 if (e
->src
->loop_father
== loop
)
1489 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1490 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1491 entry; otherwise we also force preheader block to have only one successor.
1492 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1493 to be a fallthru predecessor to the loop header and to have only
1494 predecessors from outside of the loop.
1495 The function also updates dominators. */
1498 create_preheader (struct loop
*loop
, int flags
)
1504 bool latch_edge_was_fallthru
;
1505 edge one_succ_pred
= NULL
, single_entry
= NULL
;
1508 FOR_EACH_EDGE (e
, ei
, loop
->header
->preds
)
1510 if (e
->src
== loop
->latch
)
1512 irred
|= (e
->flags
& EDGE_IRREDUCIBLE_LOOP
) != 0;
1515 if (single_succ_p (e
->src
))
1518 gcc_assert (nentry
);
1521 bool need_forwarder_block
= false;
1523 /* We do not allow entry block to be the loop preheader, since we
1524 cannot emit code there. */
1525 if (single_entry
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1526 need_forwarder_block
= true;
1529 /* If we want simple preheaders, also force the preheader to have
1530 just a single successor. */
1531 if ((flags
& CP_SIMPLE_PREHEADERS
)
1532 && !single_succ_p (single_entry
->src
))
1533 need_forwarder_block
= true;
1534 /* If we want fallthru preheaders, also create forwarder block when
1535 preheader ends with a jump or has predecessors from loop. */
1536 else if ((flags
& CP_FALLTHRU_PREHEADERS
)
1537 && (JUMP_P (BB_END (single_entry
->src
))
1538 || has_preds_from_loop (single_entry
->src
, loop
)))
1539 need_forwarder_block
= true;
1541 if (! need_forwarder_block
)
1545 mfb_kj_edge
= loop_latch_edge (loop
);
1546 latch_edge_was_fallthru
= (mfb_kj_edge
->flags
& EDGE_FALLTHRU
) != 0;
1548 dummy
= split_edge (single_entry
);
1551 edge fallthru
= make_forwarder_block (loop
->header
, mfb_keep_just
, NULL
);
1552 dummy
= fallthru
->src
;
1553 loop
->header
= fallthru
->dest
;
1556 /* Try to be clever in placing the newly created preheader. The idea is to
1557 avoid breaking any "fallthruness" relationship between blocks.
1559 The preheader was created just before the header and all incoming edges
1560 to the header were redirected to the preheader, except the latch edge.
1561 So the only problematic case is when this latch edge was a fallthru
1562 edge: it is not anymore after the preheader creation so we have broken
1563 the fallthruness. We're therefore going to look for a better place. */
1564 if (latch_edge_was_fallthru
)
1569 e
= EDGE_PRED (dummy
, 0);
1571 move_block_after (dummy
, e
->src
);
1576 dummy
->flags
|= BB_IRREDUCIBLE_LOOP
;
1577 single_succ_edge (dummy
)->flags
|= EDGE_IRREDUCIBLE_LOOP
;
1581 fprintf (dump_file
, "Created preheader block for loop %i\n",
1584 if (flags
& CP_FALLTHRU_PREHEADERS
)
1585 gcc_assert ((single_succ_edge (dummy
)->flags
& EDGE_FALLTHRU
)
1586 && !JUMP_P (BB_END (dummy
)));
1591 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1594 create_preheaders (int flags
)
1601 FOR_EACH_LOOP (loop
, 0)
1602 create_preheader (loop
, flags
);
1603 loops_state_set (LOOPS_HAVE_PREHEADERS
);
1606 /* Forces all loop latches to have only single successor. */
1609 force_single_succ_latches (void)
1614 FOR_EACH_LOOP (loop
, 0)
1616 if (loop
->latch
!= loop
->header
&& single_succ_p (loop
->latch
))
1619 e
= find_edge (loop
->latch
, loop
->header
);
1620 gcc_checking_assert (e
!= NULL
);
1624 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES
);
1627 /* This function is called from loop_version. It splits the entry edge
1628 of the loop we want to version, adds the versioning condition, and
1629 adjust the edges to the two versions of the loop appropriately.
1630 e is an incoming edge. Returns the basic block containing the
1633 --- edge e ---- > [second_head]
1635 Split it and insert new conditional expression and adjust edges.
1637 --- edge e ---> [cond expr] ---> [first_head]
1639 +---------> [second_head]
1641 THEN_PROB is the probability of then branch of the condition. */
1644 lv_adjust_loop_entry_edge (basic_block first_head
, basic_block second_head
,
1645 edge e
, void *cond_expr
, unsigned then_prob
)
1647 basic_block new_head
= NULL
;
1650 gcc_assert (e
->dest
== second_head
);
1652 /* Split edge 'e'. This will create a new basic block, where we can
1653 insert conditional expr. */
1654 new_head
= split_edge (e
);
1656 lv_add_condition_to_bb (first_head
, second_head
, new_head
,
1659 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1660 e
= single_succ_edge (new_head
);
1661 e1
= make_edge (new_head
, first_head
,
1662 current_ir_type () == IR_GIMPLE
? EDGE_TRUE_VALUE
: 0);
1663 e1
->probability
= then_prob
;
1664 e
->probability
= REG_BR_PROB_BASE
- then_prob
;
1665 e1
->count
= apply_probability (e
->count
, e1
->probability
);
1666 e
->count
= apply_probability (e
->count
, e
->probability
);
1668 set_immediate_dominator (CDI_DOMINATORS
, first_head
, new_head
);
1669 set_immediate_dominator (CDI_DOMINATORS
, second_head
, new_head
);
1671 /* Adjust loop header phi nodes. */
1672 lv_adjust_loop_header_phi (first_head
, second_head
, new_head
, e1
);
1677 /* Main entry point for Loop Versioning transformation.
1679 This transformation given a condition and a loop, creates
1680 -if (condition) { loop_copy1 } else { loop_copy2 },
1681 where loop_copy1 is the loop transformed in one way, and loop_copy2
1682 is the loop transformed in another way (or unchanged). 'condition'
1683 may be a run time test for things that were not resolved by static
1684 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1686 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1687 is the ratio by that the frequencies in the original loop should
1688 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1689 new loop should be scaled.
1691 If PLACE_AFTER is true, we place the new loop after LOOP in the
1692 instruction stream, otherwise it is placed before LOOP. */
1695 loop_version (struct loop
*loop
,
1696 void *cond_expr
, basic_block
*condition_bb
,
1697 unsigned then_prob
, unsigned then_scale
, unsigned else_scale
,
1700 basic_block first_head
, second_head
;
1701 edge entry
, latch_edge
, true_edge
, false_edge
;
1704 basic_block cond_bb
;
1706 /* Record entry and latch edges for the loop */
1707 entry
= loop_preheader_edge (loop
);
1708 irred_flag
= entry
->flags
& EDGE_IRREDUCIBLE_LOOP
;
1709 entry
->flags
&= ~EDGE_IRREDUCIBLE_LOOP
;
1711 /* Note down head of loop as first_head. */
1712 first_head
= entry
->dest
;
1714 /* Duplicate loop. */
1715 if (!cfg_hook_duplicate_loop_to_header_edge (loop
, entry
, 1,
1716 NULL
, NULL
, NULL
, 0))
1718 entry
->flags
|= irred_flag
;
1722 /* After duplication entry edge now points to new loop head block.
1723 Note down new head as second_head. */
1724 second_head
= entry
->dest
;
1726 /* Split loop entry edge and insert new block with cond expr. */
1727 cond_bb
= lv_adjust_loop_entry_edge (first_head
, second_head
,
1728 entry
, cond_expr
, then_prob
);
1730 *condition_bb
= cond_bb
;
1734 entry
->flags
|= irred_flag
;
1738 latch_edge
= single_succ_edge (get_bb_copy (loop
->latch
));
1740 extract_cond_bb_edges (cond_bb
, &true_edge
, &false_edge
);
1741 nloop
= loopify (latch_edge
,
1742 single_pred_edge (get_bb_copy (loop
->header
)),
1743 cond_bb
, true_edge
, false_edge
,
1744 false /* Do not redirect all edges. */,
1745 then_scale
, else_scale
);
1747 copy_loop_info (loop
, nloop
);
1749 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1750 lv_flush_pending_stmts (latch_edge
);
1752 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1753 extract_cond_bb_edges (cond_bb
, &true_edge
, &false_edge
);
1754 lv_flush_pending_stmts (false_edge
);
1755 /* Adjust irreducible flag. */
1758 cond_bb
->flags
|= BB_IRREDUCIBLE_LOOP
;
1759 loop_preheader_edge (loop
)->flags
|= EDGE_IRREDUCIBLE_LOOP
;
1760 loop_preheader_edge (nloop
)->flags
|= EDGE_IRREDUCIBLE_LOOP
;
1761 single_pred_edge (cond_bb
)->flags
|= EDGE_IRREDUCIBLE_LOOP
;
1766 basic_block
*bbs
= get_loop_body_in_dom_order (nloop
), after
;
1769 after
= loop
->latch
;
1771 for (i
= 0; i
< nloop
->num_nodes
; i
++)
1773 move_block_after (bbs
[i
], after
);
1779 /* At this point condition_bb is loop preheader with two successors,
1780 first_head and second_head. Make sure that loop preheader has only
1782 split_edge (loop_preheader_edge (loop
));
1783 split_edge (loop_preheader_edge (nloop
));