* gcc-interface/trans.c (Subprogram_Body_to_gnu): Initialize locus.
[official-gcc.git] / gcc / rtl.h
blob3ef687e5a371bcbf02339cc9ae8c9df3097a880d
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
37 #include "hard-reg-set.h"
39 /* Value used by some passes to "recognize" noop moves as valid
40 instructions. */
41 #define NOOP_MOVE_INSN_CODE INT_MAX
43 /* Register Transfer Language EXPRESSIONS CODES */
45 #define RTX_CODE enum rtx_code
46 enum rtx_code {
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
50 #undef DEF_RTL_EXPR
52 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
53 NUM_RTX_CODE.
54 Assumes default enum value assignment. */
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
59 /* Similar, but since generator files get more entries... */
60 #ifdef GENERATOR_FILE
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62 #endif
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
66 enum rtx_class {
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
71 RTX_COMPARE, /* 0 */
72 RTX_COMM_COMPARE,
73 RTX_BIN_ARITH,
74 RTX_COMM_ARITH,
76 /* Must follow the four preceding values. */
77 RTX_UNARY, /* 4 */
79 RTX_EXTRA,
80 RTX_MATCH,
81 RTX_INSN,
83 /* Bit 0 = 1 if constant. */
84 RTX_OBJ, /* 8 */
85 RTX_CONST_OBJ,
87 RTX_TERNARY,
88 RTX_BITFIELD_OPS,
89 RTX_AUTOINC
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
104 extern const unsigned char rtx_length[NUM_RTX_CODE];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
107 extern const char * const rtx_name[NUM_RTX_CODE];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
110 extern const char * const rtx_format[NUM_RTX_CODE];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
113 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
120 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121 extern const unsigned char rtx_next[NUM_RTX_CODE];
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align: 8;
129 /* Flags: */
130 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base: 1; /* minimum address target label is
136 after BASE. */
137 unsigned max_after_base: 1; /* maximum address target label is
138 after BASE. */
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
141 unsigned : 2;
142 unsigned scale : 8;
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 struct GTY(()) mem_attrs
150 /* The expression that the MEM accesses, or null if not known.
151 This expression might be larger than the memory reference itself.
152 (In other words, the MEM might access only part of the object.) */
153 tree expr;
155 /* The offset of the memory reference from the start of EXPR.
156 Only valid if OFFSET_KNOWN_P. */
157 HOST_WIDE_INT offset;
159 /* The size of the memory reference in bytes. Only valid if
160 SIZE_KNOWN_P. */
161 HOST_WIDE_INT size;
163 /* The alias set of the memory reference. */
164 alias_set_type alias;
166 /* The alignment of the reference in bits. Always a multiple of
167 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
168 than the memory reference itself. */
169 unsigned int align;
171 /* The address space that the memory reference uses. */
172 unsigned char addrspace;
174 /* True if OFFSET is known. */
175 bool offset_known_p;
177 /* True if SIZE is known. */
178 bool size_known_p;
181 /* Structure used to describe the attributes of a REG in similar way as
182 mem_attrs does for MEM above. Note that the OFFSET field is calculated
183 in the same way as for mem_attrs, rather than in the same way as a
184 SUBREG_BYTE. For example, if a big-endian target stores a byte
185 object in the low part of a 4-byte register, the OFFSET field
186 will be -3 rather than 0. */
188 struct GTY((for_user)) reg_attrs {
189 tree decl; /* decl corresponding to REG. */
190 HOST_WIDE_INT offset; /* Offset from start of DECL. */
193 /* Common union for an element of an rtx. */
195 union rtunion
197 int rt_int;
198 unsigned int rt_uint;
199 const char *rt_str;
200 rtx rt_rtx;
201 rtvec rt_rtvec;
202 machine_mode rt_type;
203 addr_diff_vec_flags rt_addr_diff_vec_flags;
204 struct cselib_val *rt_cselib;
205 tree rt_tree;
206 basic_block rt_bb;
207 mem_attrs *rt_mem;
208 struct constant_descriptor_rtx *rt_constant;
209 struct dw_cfi_node *rt_cfi;
212 /* Describes the properties of a REG. */
213 struct GTY(()) reg_info {
214 /* The value of REGNO. */
215 unsigned int regno;
217 /* The value of REG_NREGS. */
218 unsigned int nregs : 8;
219 unsigned int unused : 24;
221 /* The value of REG_ATTRS. */
222 reg_attrs *attrs;
225 /* This structure remembers the position of a SYMBOL_REF within an
226 object_block structure. A SYMBOL_REF only provides this information
227 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
228 struct GTY(()) block_symbol {
229 /* The usual SYMBOL_REF fields. */
230 rtunion GTY ((skip)) fld[2];
232 /* The block that contains this object. */
233 struct object_block *block;
235 /* The offset of this object from the start of its block. It is negative
236 if the symbol has not yet been assigned an offset. */
237 HOST_WIDE_INT offset;
240 /* Describes a group of objects that are to be placed together in such
241 a way that their relative positions are known. */
242 struct GTY((for_user)) object_block {
243 /* The section in which these objects should be placed. */
244 section *sect;
246 /* The alignment of the first object, measured in bits. */
247 unsigned int alignment;
249 /* The total size of the objects, measured in bytes. */
250 HOST_WIDE_INT size;
252 /* The SYMBOL_REFs for each object. The vector is sorted in
253 order of increasing offset and the following conditions will
254 hold for each element X:
256 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
257 !SYMBOL_REF_ANCHOR_P (X)
258 SYMBOL_REF_BLOCK (X) == [address of this structure]
259 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
260 vec<rtx, va_gc> *objects;
262 /* All the anchor SYMBOL_REFs used to address these objects, sorted
263 in order of increasing offset, and then increasing TLS model.
264 The following conditions will hold for each element X in this vector:
266 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
267 SYMBOL_REF_ANCHOR_P (X)
268 SYMBOL_REF_BLOCK (X) == [address of this structure]
269 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
270 vec<rtx, va_gc> *anchors;
273 struct GTY((variable_size)) hwivec_def {
274 HOST_WIDE_INT elem[1];
277 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
278 #define CWI_GET_NUM_ELEM(RTX) \
279 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
280 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
281 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
283 /* RTL expression ("rtx"). */
285 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
286 field for gengtype to recognize that inheritance is occurring,
287 so that all subclasses are redirected to the traversal hook for the
288 base class.
289 However, all of the fields are in the base class, and special-casing
290 is at work. Hence we use desc and tag of 0, generating a switch
291 statement of the form:
292 switch (0)
294 case 0: // all the work happens here
296 in order to work with the existing special-casing in gengtype. */
298 struct GTY((desc("0"), tag("0"),
299 chain_next ("RTX_NEXT (&%h)"),
300 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
301 /* The kind of expression this is. */
302 ENUM_BITFIELD(rtx_code) code: 16;
304 /* The kind of value the expression has. */
305 ENUM_BITFIELD(machine_mode) mode : 8;
307 /* 1 in a MEM if we should keep the alias set for this mem unchanged
308 when we access a component.
309 1 in a JUMP_INSN if it is a crossing jump.
310 1 in a CALL_INSN if it is a sibling call.
311 1 in a SET that is for a return.
312 In a CODE_LABEL, part of the two-bit alternate entry field.
313 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
314 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
315 1 in a SUBREG generated by LRA for reload insns.
316 1 in a REG if this is a static chain register.
317 1 in a CALL for calls instrumented by Pointer Bounds Checker.
318 Dumped as "/j" in RTL dumps. */
319 unsigned int jump : 1;
320 /* In a CODE_LABEL, part of the two-bit alternate entry field.
321 1 in a MEM if it cannot trap.
322 1 in a CALL_INSN logically equivalent to
323 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
324 Dumped as "/c" in RTL dumps. */
325 unsigned int call : 1;
326 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
327 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
328 1 in a SYMBOL_REF if it addresses something in the per-function
329 constants pool.
330 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
331 1 in a NOTE, or EXPR_LIST for a const call.
332 1 in a JUMP_INSN of an annulling branch.
333 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
334 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
335 1 in a clobber temporarily created for LRA.
336 Dumped as "/u" in RTL dumps. */
337 unsigned int unchanging : 1;
338 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
339 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
340 if it has been deleted.
341 1 in a REG expression if corresponds to a variable declared by the user,
342 0 for an internally generated temporary.
343 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
344 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
345 non-local label.
346 In a SYMBOL_REF, this flag is used for machine-specific purposes.
347 In a PREFETCH, this flag indicates that it should be considered a
348 scheduling barrier.
349 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
350 Dumped as "/v" in RTL dumps. */
351 unsigned int volatil : 1;
352 /* 1 in a REG if the register is used only in exit code a loop.
353 1 in a SUBREG expression if was generated from a variable with a
354 promoted mode.
355 1 in a CODE_LABEL if the label is used for nonlocal gotos
356 and must not be deleted even if its count is zero.
357 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
358 together with the preceding insn. Valid only within sched.
359 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
360 from the target of a branch. Valid from reorg until end of compilation;
361 cleared before used.
363 The name of the field is historical. It used to be used in MEMs
364 to record whether the MEM accessed part of a structure.
365 Dumped as "/s" in RTL dumps. */
366 unsigned int in_struct : 1;
367 /* At the end of RTL generation, 1 if this rtx is used. This is used for
368 copying shared structure. See `unshare_all_rtl'.
369 In a REG, this is not needed for that purpose, and used instead
370 in `leaf_renumber_regs_insn'.
371 1 in a SYMBOL_REF, means that emit_library_call
372 has used it as the function.
373 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
374 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
375 unsigned int used : 1;
376 /* 1 in an INSN or a SET if this rtx is related to the call frame,
377 either changing how we compute the frame address or saving and
378 restoring registers in the prologue and epilogue.
379 1 in a REG or MEM if it is a pointer.
380 1 in a SYMBOL_REF if it addresses something in the per-function
381 constant string pool.
382 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
383 Dumped as "/f" in RTL dumps. */
384 unsigned frame_related : 1;
385 /* 1 in a REG or PARALLEL that is the current function's return value.
386 1 in a SYMBOL_REF for a weak symbol.
387 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
388 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
389 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
390 Dumped as "/i" in RTL dumps. */
391 unsigned return_val : 1;
393 union {
394 /* The final union field is aligned to 64 bits on LP64 hosts,
395 giving a 32-bit gap after the fields above. We optimize the
396 layout for that case and use the gap for extra code-specific
397 information. */
399 /* The ORIGINAL_REGNO of a REG. */
400 unsigned int original_regno;
402 /* The INSN_UID of an RTX_INSN-class code. */
403 int insn_uid;
405 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
406 unsigned int symbol_ref_flags;
408 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
409 enum var_init_status var_location_status;
411 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
412 HOST_WIDE_INTs in the hwivec_def. */
413 unsigned int num_elem;
414 } GTY ((skip)) u2;
416 /* The first element of the operands of this rtx.
417 The number of operands and their types are controlled
418 by the `code' field, according to rtl.def. */
419 union u {
420 rtunion fld[1];
421 HOST_WIDE_INT hwint[1];
422 struct reg_info reg;
423 struct block_symbol block_sym;
424 struct real_value rv;
425 struct fixed_value fv;
426 struct hwivec_def hwiv;
427 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
430 /* A node for constructing singly-linked lists of rtx. */
432 class GTY(()) rtx_expr_list : public rtx_def
434 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
436 public:
437 /* Get next in list. */
438 rtx_expr_list *next () const;
440 /* Get at the underlying rtx. */
441 rtx element () const;
444 template <>
445 template <>
446 inline bool
447 is_a_helper <rtx_expr_list *>::test (rtx rt)
449 return rt->code == EXPR_LIST;
452 class GTY(()) rtx_insn_list : public rtx_def
454 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
456 This is an instance of:
458 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
460 i.e. a node for constructing singly-linked lists of rtx_insn *, where
461 the list is "external" to the insn (as opposed to the doubly-linked
462 list embedded within rtx_insn itself). */
464 public:
465 /* Get next in list. */
466 rtx_insn_list *next () const;
468 /* Get at the underlying instruction. */
469 rtx_insn *insn () const;
473 template <>
474 template <>
475 inline bool
476 is_a_helper <rtx_insn_list *>::test (rtx rt)
478 return rt->code == INSN_LIST;
481 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
482 typically (but not always) of rtx_insn *, used in the late passes. */
484 class GTY(()) rtx_sequence : public rtx_def
486 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
488 public:
489 /* Get number of elements in sequence. */
490 int len () const;
492 /* Get i-th element of the sequence. */
493 rtx element (int index) const;
495 /* Get i-th element of the sequence, with a checked cast to
496 rtx_insn *. */
497 rtx_insn *insn (int index) const;
500 template <>
501 template <>
502 inline bool
503 is_a_helper <rtx_sequence *>::test (rtx rt)
505 return rt->code == SEQUENCE;
508 template <>
509 template <>
510 inline bool
511 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
513 return rt->code == SEQUENCE;
516 class GTY(()) rtx_insn : public rtx_def
518 public:
519 /* No extra fields, but adds the invariant:
521 (INSN_P (X)
522 || NOTE_P (X)
523 || JUMP_TABLE_DATA_P (X)
524 || BARRIER_P (X)
525 || LABEL_P (X))
527 i.e. that we must be able to use the following:
528 INSN_UID ()
529 NEXT_INSN ()
530 PREV_INSN ()
531 i.e. we have an rtx that has an INSN_UID field and can be part of
532 a linked list of insns.
535 /* Returns true if this insn has been deleted. */
537 bool deleted () const { return volatil; }
539 /* Mark this insn as deleted. */
541 void set_deleted () { volatil = true; }
543 /* Mark this insn as not deleted. */
545 void set_undeleted () { volatil = false; }
548 /* Subclasses of rtx_insn. */
550 class GTY(()) rtx_debug_insn : public rtx_insn
552 /* No extra fields, but adds the invariant:
553 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
554 i.e. an annotation for tracking variable assignments.
556 This is an instance of:
557 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
558 from rtl.def. */
561 class GTY(()) rtx_nonjump_insn : public rtx_insn
563 /* No extra fields, but adds the invariant:
564 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
565 i.e an instruction that cannot jump.
567 This is an instance of:
568 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
569 from rtl.def. */
572 class GTY(()) rtx_jump_insn : public rtx_insn
574 public:
575 /* No extra fields, but adds the invariant:
576 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
577 i.e. an instruction that can possibly jump.
579 This is an instance of:
580 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
581 from rtl.def. */
583 /* Returns jump target of this instruction. The returned value is not
584 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
585 expression. Also, when the code label is marked "deleted", it is
586 replaced by a NOTE. In some cases the value is NULL_RTX. */
588 inline rtx jump_label () const;
590 /* Returns jump target cast to rtx_code_label *. */
592 inline rtx_code_label *jump_target () const;
594 /* Set jump target. */
596 inline void set_jump_target (rtx_code_label *);
599 class GTY(()) rtx_call_insn : public rtx_insn
601 /* No extra fields, but adds the invariant:
602 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
603 i.e. an instruction that can possibly call a subroutine
604 but which will not change which instruction comes next
605 in the current function.
607 This is an instance of:
608 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
609 from rtl.def. */
612 class GTY(()) rtx_jump_table_data : public rtx_insn
614 /* No extra fields, but adds the invariant:
615 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
616 i.e. a data for a jump table, considered an instruction for
617 historical reasons.
619 This is an instance of:
620 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
621 from rtl.def. */
623 public:
625 /* This can be either:
627 (a) a table of absolute jumps, in which case PATTERN (this) is an
628 ADDR_VEC with arg 0 a vector of labels, or
630 (b) a table of relative jumps (e.g. for -fPIC), in which case
631 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
632 arg 1 the vector of labels.
634 This method gets the underlying vec. */
636 inline rtvec get_labels () const;
637 inline scalar_int_mode get_data_mode () const;
640 class GTY(()) rtx_barrier : public rtx_insn
642 /* No extra fields, but adds the invariant:
643 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
644 i.e. a marker that indicates that control will not flow through.
646 This is an instance of:
647 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
648 from rtl.def. */
651 class GTY(()) rtx_code_label : public rtx_insn
653 /* No extra fields, but adds the invariant:
654 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
655 i.e. a label in the assembler.
657 This is an instance of:
658 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
659 from rtl.def. */
662 class GTY(()) rtx_note : public rtx_insn
664 /* No extra fields, but adds the invariant:
665 NOTE_P(X) aka (GET_CODE (X) == NOTE)
666 i.e. a note about the corresponding source code.
668 This is an instance of:
669 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
670 from rtl.def. */
673 /* The size in bytes of an rtx header (code, mode and flags). */
674 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
676 /* The size in bytes of an rtx with code CODE. */
677 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
679 #define NULL_RTX (rtx) 0
681 /* The "next" and "previous" RTX, relative to this one. */
683 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
684 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
686 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
688 #define RTX_PREV(X) ((INSN_P (X) \
689 || NOTE_P (X) \
690 || JUMP_TABLE_DATA_P (X) \
691 || BARRIER_P (X) \
692 || LABEL_P (X)) \
693 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
694 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
695 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
697 /* Define macros to access the `code' field of the rtx. */
699 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
700 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
702 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
703 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
705 /* RTL vector. These appear inside RTX's when there is a need
706 for a variable number of things. The principle use is inside
707 PARALLEL expressions. */
709 struct GTY(()) rtvec_def {
710 int num_elem; /* number of elements */
711 rtx GTY ((length ("%h.num_elem"))) elem[1];
714 #define NULL_RTVEC (rtvec) 0
716 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
717 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
719 /* Predicate yielding nonzero iff X is an rtx for a register. */
720 #define REG_P(X) (GET_CODE (X) == REG)
722 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
723 #define MEM_P(X) (GET_CODE (X) == MEM)
725 #if TARGET_SUPPORTS_WIDE_INT
727 /* Match CONST_*s that can represent compile-time constant integers. */
728 #define CASE_CONST_SCALAR_INT \
729 case CONST_INT: \
730 case CONST_WIDE_INT
732 /* Match CONST_*s for which pointer equality corresponds to value
733 equality. */
734 #define CASE_CONST_UNIQUE \
735 case CONST_INT: \
736 case CONST_WIDE_INT: \
737 case CONST_DOUBLE: \
738 case CONST_FIXED
740 /* Match all CONST_* rtxes. */
741 #define CASE_CONST_ANY \
742 case CONST_INT: \
743 case CONST_WIDE_INT: \
744 case CONST_DOUBLE: \
745 case CONST_FIXED: \
746 case CONST_VECTOR
748 #else
750 /* Match CONST_*s that can represent compile-time constant integers. */
751 #define CASE_CONST_SCALAR_INT \
752 case CONST_INT: \
753 case CONST_DOUBLE
755 /* Match CONST_*s for which pointer equality corresponds to value
756 equality. */
757 #define CASE_CONST_UNIQUE \
758 case CONST_INT: \
759 case CONST_DOUBLE: \
760 case CONST_FIXED
762 /* Match all CONST_* rtxes. */
763 #define CASE_CONST_ANY \
764 case CONST_INT: \
765 case CONST_DOUBLE: \
766 case CONST_FIXED: \
767 case CONST_VECTOR
768 #endif
770 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
771 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
773 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
774 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
776 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
777 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
779 /* Predicate yielding true iff X is an rtx for a double-int
780 or floating point constant. */
781 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
783 /* Predicate yielding true iff X is an rtx for a double-int. */
784 #define CONST_DOUBLE_AS_INT_P(X) \
785 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
787 /* Predicate yielding true iff X is an rtx for a integer const. */
788 #if TARGET_SUPPORTS_WIDE_INT
789 #define CONST_SCALAR_INT_P(X) \
790 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
791 #else
792 #define CONST_SCALAR_INT_P(X) \
793 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
794 #endif
796 /* Predicate yielding true iff X is an rtx for a double-int. */
797 #define CONST_DOUBLE_AS_FLOAT_P(X) \
798 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
800 /* Predicate yielding nonzero iff X is a label insn. */
801 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
803 /* Predicate yielding nonzero iff X is a jump insn. */
804 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
806 /* Predicate yielding nonzero iff X is a call insn. */
807 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
809 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
810 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
812 /* Predicate yielding nonzero iff X is a debug note/insn. */
813 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
815 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
816 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
818 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
819 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
820 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
821 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
822 /* Nonzero if DEBUG_INSN_P may possibly hold. */
823 #define MAY_HAVE_DEBUG_INSNS \
824 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
826 /* Predicate yielding nonzero iff X is a real insn. */
827 #define INSN_P(X) \
828 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
830 /* Predicate yielding nonzero iff X is a note insn. */
831 #define NOTE_P(X) (GET_CODE (X) == NOTE)
833 /* Predicate yielding nonzero iff X is a barrier insn. */
834 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
836 /* Predicate yielding nonzero iff X is a data for a jump table. */
837 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
839 /* Predicate yielding nonzero iff RTX is a subreg. */
840 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
842 /* Predicate yielding true iff RTX is a symbol ref. */
843 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
845 template <>
846 template <>
847 inline bool
848 is_a_helper <rtx_insn *>::test (rtx rt)
850 return (INSN_P (rt)
851 || NOTE_P (rt)
852 || JUMP_TABLE_DATA_P (rt)
853 || BARRIER_P (rt)
854 || LABEL_P (rt));
857 template <>
858 template <>
859 inline bool
860 is_a_helper <const rtx_insn *>::test (const_rtx rt)
862 return (INSN_P (rt)
863 || NOTE_P (rt)
864 || JUMP_TABLE_DATA_P (rt)
865 || BARRIER_P (rt)
866 || LABEL_P (rt));
869 template <>
870 template <>
871 inline bool
872 is_a_helper <rtx_debug_insn *>::test (rtx rt)
874 return DEBUG_INSN_P (rt);
877 template <>
878 template <>
879 inline bool
880 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
882 return NONJUMP_INSN_P (rt);
885 template <>
886 template <>
887 inline bool
888 is_a_helper <rtx_jump_insn *>::test (rtx rt)
890 return JUMP_P (rt);
893 template <>
894 template <>
895 inline bool
896 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
898 return JUMP_P (insn);
901 template <>
902 template <>
903 inline bool
904 is_a_helper <rtx_call_insn *>::test (rtx rt)
906 return CALL_P (rt);
909 template <>
910 template <>
911 inline bool
912 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
914 return CALL_P (insn);
917 template <>
918 template <>
919 inline bool
920 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
922 return JUMP_TABLE_DATA_P (rt);
925 template <>
926 template <>
927 inline bool
928 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
930 return JUMP_TABLE_DATA_P (insn);
933 template <>
934 template <>
935 inline bool
936 is_a_helper <rtx_barrier *>::test (rtx rt)
938 return BARRIER_P (rt);
941 template <>
942 template <>
943 inline bool
944 is_a_helper <rtx_code_label *>::test (rtx rt)
946 return LABEL_P (rt);
949 template <>
950 template <>
951 inline bool
952 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
954 return LABEL_P (insn);
957 template <>
958 template <>
959 inline bool
960 is_a_helper <rtx_note *>::test (rtx rt)
962 return NOTE_P (rt);
965 template <>
966 template <>
967 inline bool
968 is_a_helper <rtx_note *>::test (rtx_insn *insn)
970 return NOTE_P (insn);
973 /* Predicate yielding nonzero iff X is a return or simple_return. */
974 #define ANY_RETURN_P(X) \
975 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
977 /* 1 if X is a unary operator. */
979 #define UNARY_P(X) \
980 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
982 /* 1 if X is a binary operator. */
984 #define BINARY_P(X) \
985 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
987 /* 1 if X is an arithmetic operator. */
989 #define ARITHMETIC_P(X) \
990 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
991 == RTX_ARITHMETIC_RESULT)
993 /* 1 if X is an arithmetic operator. */
995 #define COMMUTATIVE_ARITH_P(X) \
996 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
998 /* 1 if X is a commutative arithmetic operator or a comparison operator.
999 These two are sometimes selected together because it is possible to
1000 swap the two operands. */
1002 #define SWAPPABLE_OPERANDS_P(X) \
1003 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1004 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1005 | (1 << RTX_COMPARE)))
1007 /* 1 if X is a non-commutative operator. */
1009 #define NON_COMMUTATIVE_P(X) \
1010 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1011 == RTX_NON_COMMUTATIVE_RESULT)
1013 /* 1 if X is a commutative operator on integers. */
1015 #define COMMUTATIVE_P(X) \
1016 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1017 == RTX_COMMUTATIVE_RESULT)
1019 /* 1 if X is a relational operator. */
1021 #define COMPARISON_P(X) \
1022 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1024 /* 1 if X is a constant value that is an integer. */
1026 #define CONSTANT_P(X) \
1027 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1029 /* 1 if X can be used to represent an object. */
1030 #define OBJECT_P(X) \
1031 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1033 /* General accessor macros for accessing the fields of an rtx. */
1035 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1036 /* The bit with a star outside the statement expr and an & inside is
1037 so that N can be evaluated only once. */
1038 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1039 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1040 const enum rtx_code _code = GET_CODE (_rtx); \
1041 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1042 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1043 __FUNCTION__); \
1044 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1045 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1046 __FUNCTION__); \
1047 &_rtx->u.fld[_n]; }))
1049 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1050 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1051 const enum rtx_code _code = GET_CODE (_rtx); \
1052 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1053 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1054 __FUNCTION__); \
1055 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1056 && GET_RTX_FORMAT (_code)[_n] != C2) \
1057 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1058 __FUNCTION__); \
1059 &_rtx->u.fld[_n]; }))
1061 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1062 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1063 if (GET_CODE (_rtx) != (C)) \
1064 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1065 __FUNCTION__); \
1066 &_rtx->u.fld[_n]; }))
1068 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1069 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1070 const enum rtx_code _code = GET_CODE (_rtx); \
1071 if (_code != (C1) && _code != (C2)) \
1072 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1073 __FUNCTION__); \
1074 &_rtx->u.fld[_n]; }))
1076 #define RTVEC_ELT(RTVEC, I) __extension__ \
1077 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1078 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1079 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1080 __FUNCTION__); \
1081 &_rtvec->elem[_i]; }))
1083 #define XWINT(RTX, N) __extension__ \
1084 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1085 const enum rtx_code _code = GET_CODE (_rtx); \
1086 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1087 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1088 __FUNCTION__); \
1089 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1090 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1091 __FUNCTION__); \
1092 &_rtx->u.hwint[_n]; }))
1094 #define CWI_ELT(RTX, I) __extension__ \
1095 (*({ __typeof (RTX) const _cwi = (RTX); \
1096 int _max = CWI_GET_NUM_ELEM (_cwi); \
1097 const int _i = (I); \
1098 if (_i < 0 || _i >= _max) \
1099 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1100 __FUNCTION__); \
1101 &_cwi->u.hwiv.elem[_i]; }))
1103 #define XCWINT(RTX, N, C) __extension__ \
1104 (*({ __typeof (RTX) const _rtx = (RTX); \
1105 if (GET_CODE (_rtx) != (C)) \
1106 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1107 __FUNCTION__); \
1108 &_rtx->u.hwint[N]; }))
1110 #define XCMWINT(RTX, N, C, M) __extension__ \
1111 (*({ __typeof (RTX) const _rtx = (RTX); \
1112 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1113 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1114 __LINE__, __FUNCTION__); \
1115 &_rtx->u.hwint[N]; }))
1117 #define XCNMPRV(RTX, C, M) __extension__ \
1118 ({ __typeof (RTX) const _rtx = (RTX); \
1119 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1120 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1121 __LINE__, __FUNCTION__); \
1122 &_rtx->u.rv; })
1124 #define XCNMPFV(RTX, C, M) __extension__ \
1125 ({ __typeof (RTX) const _rtx = (RTX); \
1126 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1127 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1128 __LINE__, __FUNCTION__); \
1129 &_rtx->u.fv; })
1131 #define REG_CHECK(RTX) __extension__ \
1132 ({ __typeof (RTX) const _rtx = (RTX); \
1133 if (GET_CODE (_rtx) != REG) \
1134 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1135 __FUNCTION__); \
1136 &_rtx->u.reg; })
1138 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1139 ({ __typeof (RTX) const _symbol = (RTX); \
1140 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1141 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1142 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1143 __FUNCTION__); \
1144 &_symbol->u.block_sym; })
1146 #define HWIVEC_CHECK(RTX,C) __extension__ \
1147 ({ __typeof (RTX) const _symbol = (RTX); \
1148 RTL_CHECKC1 (_symbol, 0, C); \
1149 &_symbol->u.hwiv; })
1151 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1152 const char *)
1153 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1154 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1155 const char *)
1156 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1157 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1158 int, const char *)
1159 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1160 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1161 int, const char *)
1162 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1163 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1164 const char *, int, const char *)
1165 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1166 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1167 bool, const char *, int, const char *)
1168 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1169 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1170 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1171 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1172 const char *)
1173 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1174 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1175 const char *)
1176 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1178 #else /* not ENABLE_RTL_CHECKING */
1180 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1181 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1182 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1183 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1184 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1185 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1186 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1187 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1188 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1189 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1190 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1191 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1192 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1193 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1194 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1196 #endif
1198 /* General accessor macros for accessing the flags of an rtx. */
1200 /* Access an individual rtx flag, with no checking of any kind. */
1201 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1203 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1204 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1205 ({ __typeof (RTX) const _rtx = (RTX); \
1206 if (GET_CODE (_rtx) != C1) \
1207 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1208 __FUNCTION__); \
1209 _rtx; })
1211 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1212 ({ __typeof (RTX) const _rtx = (RTX); \
1213 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1214 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1215 __FUNCTION__); \
1216 _rtx; })
1218 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1219 ({ __typeof (RTX) const _rtx = (RTX); \
1220 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1221 && GET_CODE (_rtx) != C3) \
1222 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1223 __FUNCTION__); \
1224 _rtx; })
1226 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1227 ({ __typeof (RTX) const _rtx = (RTX); \
1228 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1229 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1230 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1231 __FUNCTION__); \
1232 _rtx; })
1234 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1235 ({ __typeof (RTX) const _rtx = (RTX); \
1236 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1237 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1238 && GET_CODE (_rtx) != C5) \
1239 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1240 __FUNCTION__); \
1241 _rtx; })
1243 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1244 __extension__ \
1245 ({ __typeof (RTX) const _rtx = (RTX); \
1246 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1247 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1248 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1249 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1250 __FUNCTION__); \
1251 _rtx; })
1253 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1254 __extension__ \
1255 ({ __typeof (RTX) const _rtx = (RTX); \
1256 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1257 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1258 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1259 && GET_CODE (_rtx) != C7) \
1260 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1261 __FUNCTION__); \
1262 _rtx; })
1264 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1265 __extension__ \
1266 ({ __typeof (RTX) const _rtx = (RTX); \
1267 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1268 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1269 __FUNCTION__); \
1270 _rtx; })
1272 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1273 int, const char *)
1274 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1277 #else /* not ENABLE_RTL_FLAG_CHECKING */
1279 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1280 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1281 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1282 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1283 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1284 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1285 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1286 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1287 #endif
1289 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1290 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1291 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1292 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1293 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1294 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1295 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1296 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1297 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1298 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1300 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1301 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1303 /* These are like XINT, etc. except that they expect a '0' field instead
1304 of the normal type code. */
1306 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1307 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1308 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1309 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1310 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1311 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1312 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1313 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1314 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1315 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1316 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1317 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1319 /* Access a '0' field with any type. */
1320 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1322 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1323 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1324 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1325 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1326 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1327 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1328 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1329 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1330 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1331 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1333 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1334 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1336 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1339 /* Methods of rtx_expr_list. */
1341 inline rtx_expr_list *rtx_expr_list::next () const
1343 rtx tmp = XEXP (this, 1);
1344 return safe_as_a <rtx_expr_list *> (tmp);
1347 inline rtx rtx_expr_list::element () const
1349 return XEXP (this, 0);
1352 /* Methods of rtx_insn_list. */
1354 inline rtx_insn_list *rtx_insn_list::next () const
1356 rtx tmp = XEXP (this, 1);
1357 return safe_as_a <rtx_insn_list *> (tmp);
1360 inline rtx_insn *rtx_insn_list::insn () const
1362 rtx tmp = XEXP (this, 0);
1363 return safe_as_a <rtx_insn *> (tmp);
1366 /* Methods of rtx_sequence. */
1368 inline int rtx_sequence::len () const
1370 return XVECLEN (this, 0);
1373 inline rtx rtx_sequence::element (int index) const
1375 return XVECEXP (this, 0, index);
1378 inline rtx_insn *rtx_sequence::insn (int index) const
1380 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1383 /* ACCESS MACROS for particular fields of insns. */
1385 /* Holds a unique number for each insn.
1386 These are not necessarily sequentially increasing. */
1387 inline int INSN_UID (const_rtx insn)
1389 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1390 (insn))->u2.insn_uid;
1392 inline int& INSN_UID (rtx insn)
1394 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1395 (insn))->u2.insn_uid;
1398 /* Chain insns together in sequence. */
1400 /* For now these are split in two: an rvalue form:
1401 PREV_INSN/NEXT_INSN
1402 and an lvalue form:
1403 SET_NEXT_INSN/SET_PREV_INSN. */
1405 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1407 rtx prev = XEXP (insn, 0);
1408 return safe_as_a <rtx_insn *> (prev);
1411 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1413 return XEXP (insn, 0);
1416 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1418 rtx next = XEXP (insn, 1);
1419 return safe_as_a <rtx_insn *> (next);
1422 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1424 return XEXP (insn, 1);
1427 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1429 return XBBDEF (insn, 2);
1432 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1434 return XBBDEF (insn, 2);
1437 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1439 BLOCK_FOR_INSN (insn) = bb;
1442 /* The body of an insn. */
1443 inline rtx PATTERN (const_rtx insn)
1445 return XEXP (insn, 3);
1448 inline rtx& PATTERN (rtx insn)
1450 return XEXP (insn, 3);
1453 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1455 return XUINT (insn, 4);
1458 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1460 return XUINT (insn, 4);
1463 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1465 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1468 /* LOCATION of an RTX if relevant. */
1469 #define RTL_LOCATION(X) (INSN_P (X) ? \
1470 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1471 : UNKNOWN_LOCATION)
1473 /* Code number of instruction, from when it was recognized.
1474 -1 means this instruction has not been recognized yet. */
1475 #define INSN_CODE(INSN) XINT (INSN, 5)
1477 inline rtvec rtx_jump_table_data::get_labels () const
1479 rtx pat = PATTERN (this);
1480 if (GET_CODE (pat) == ADDR_VEC)
1481 return XVEC (pat, 0);
1482 else
1483 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1486 /* Return the mode of the data in the table, which is always a scalar
1487 integer. */
1489 inline scalar_int_mode
1490 rtx_jump_table_data::get_data_mode () const
1492 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1495 /* If LABEL is followed by a jump table, return the table, otherwise
1496 return null. */
1498 inline rtx_jump_table_data *
1499 jump_table_for_label (const rtx_code_label *label)
1501 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1504 #define RTX_FRAME_RELATED_P(RTX) \
1505 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1506 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1508 /* 1 if JUMP RTX is a crossing jump. */
1509 #define CROSSING_JUMP_P(RTX) \
1510 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1512 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1513 TREE_READONLY. */
1514 #define RTL_CONST_CALL_P(RTX) \
1515 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1517 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1518 DECL_PURE_P. */
1519 #define RTL_PURE_CALL_P(RTX) \
1520 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1522 /* 1 if RTX is a call to a const or pure function. */
1523 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1524 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1526 /* 1 if RTX is a call to a looping const or pure function. Built from
1527 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1528 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1529 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1531 /* 1 if RTX is a call_insn for a sibling call. */
1532 #define SIBLING_CALL_P(RTX) \
1533 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1535 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1536 #define INSN_ANNULLED_BRANCH_P(RTX) \
1537 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1539 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1540 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1541 executed if the branch is taken. For annulled branches with this bit
1542 clear, the insn should be executed only if the branch is not taken. */
1543 #define INSN_FROM_TARGET_P(RTX) \
1544 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1545 CALL_INSN)->in_struct)
1547 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1548 See the comments for ADDR_DIFF_VEC in rtl.def. */
1549 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1551 /* In a VALUE, the value cselib has assigned to RTX.
1552 This is a "struct cselib_val", see cselib.h. */
1553 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1555 /* Holds a list of notes on what this insn does to various REGs.
1556 It is a chain of EXPR_LIST rtx's, where the second operand is the
1557 chain pointer and the first operand is the REG being described.
1558 The mode field of the EXPR_LIST contains not a real machine mode
1559 but a value from enum reg_note. */
1560 #define REG_NOTES(INSN) XEXP(INSN, 6)
1562 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1563 question. */
1564 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1566 enum reg_note
1568 #define DEF_REG_NOTE(NAME) NAME,
1569 #include "reg-notes.def"
1570 #undef DEF_REG_NOTE
1571 REG_NOTE_MAX
1574 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1575 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1576 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1577 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1579 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1581 extern const char * const reg_note_name[];
1582 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1584 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1585 USE and CLOBBER expressions.
1586 USE expressions list the registers filled with arguments that
1587 are passed to the function.
1588 CLOBBER expressions document the registers explicitly clobbered
1589 by this CALL_INSN.
1590 Pseudo registers can not be mentioned in this list. */
1591 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1593 /* The label-number of a code-label. The assembler label
1594 is made from `L' and the label-number printed in decimal.
1595 Label numbers are unique in a compilation. */
1596 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1598 /* In a NOTE that is a line number, this is a string for the file name that the
1599 line is in. We use the same field to record block numbers temporarily in
1600 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1601 between ints and pointers if we use a different macro for the block number.)
1604 /* Opaque data. */
1605 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1606 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1607 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1608 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1609 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1610 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1611 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1612 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1613 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1614 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1616 /* In a NOTE that is a line number, this is the line number.
1617 Other kinds of NOTEs are identified by negative numbers here. */
1618 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1620 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1621 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1622 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1624 /* Nonzero if INSN is a debug nonbind marker note,
1625 for which NOTE_MARKER_LOCATION can be used. */
1626 #define NOTE_MARKER_P(INSN) \
1627 (NOTE_P (INSN) && \
1628 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT))
1630 /* Variable declaration and the location of a variable. */
1631 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1632 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1634 /* Initialization status of the variable in the location. Status
1635 can be unknown, uninitialized or initialized. See enumeration
1636 type below. */
1637 #define PAT_VAR_LOCATION_STATUS(PAT) \
1638 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1639 ->u2.var_location_status)
1641 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1642 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1643 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1644 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1645 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1646 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1647 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1649 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1650 location/value tracking annotation. */
1651 #define DEBUG_BIND_INSN_P(INSN) \
1652 (DEBUG_INSN_P (INSN) \
1653 && (GET_CODE (PATTERN (INSN)) \
1654 == VAR_LOCATION))
1655 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1656 source location marker. */
1657 #define DEBUG_MARKER_INSN_P(INSN) \
1658 (DEBUG_INSN_P (INSN) \
1659 && (GET_CODE (PATTERN (INSN)) \
1660 != VAR_LOCATION))
1661 /* Evaluate to the marker kind. */
1662 #define INSN_DEBUG_MARKER_KIND(INSN) \
1663 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1664 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1665 ? NOTE_INSN_BEGIN_STMT \
1666 : (enum insn_note)-1) \
1667 : (enum insn_note)-1)
1668 /* Create patterns for debug markers. These and the above abstract
1669 the representation, so that it's easier to get rid of the abuse of
1670 the mode to hold the marker kind. Other marker types are
1671 envisioned, so a single bit flag won't do; maybe separate RTL codes
1672 wouldn't be a problem. */
1673 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1674 gen_rtx_DEBUG_MARKER (VOIDmode)
1676 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1677 #define INSN_VAR_LOCATION(INSN) \
1678 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1679 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1680 #define INSN_VAR_LOCATION_PTR(INSN) \
1681 (&PATTERN (INSN))
1683 /* Accessors for a tree-expanded var location debug insn. */
1684 #define INSN_VAR_LOCATION_DECL(INSN) \
1685 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1686 #define INSN_VAR_LOCATION_LOC(INSN) \
1687 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1688 #define INSN_VAR_LOCATION_STATUS(INSN) \
1689 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1691 /* Expand to the RTL that denotes an unknown variable location in a
1692 DEBUG_INSN. */
1693 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1695 /* Determine whether X is such an unknown location. */
1696 #define VAR_LOC_UNKNOWN_P(X) \
1697 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1699 /* 1 if RTX is emitted after a call, but it should take effect before
1700 the call returns. */
1701 #define NOTE_DURING_CALL_P(RTX) \
1702 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1704 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1705 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1707 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1708 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1710 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1711 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1713 /* Codes that appear in the NOTE_KIND field for kinds of notes
1714 that are not line numbers. These codes are all negative.
1716 Notice that we do not try to use zero here for any of
1717 the special note codes because sometimes the source line
1718 actually can be zero! This happens (for example) when we
1719 are generating code for the per-translation-unit constructor
1720 and destructor routines for some C++ translation unit. */
1722 enum insn_note
1724 #define DEF_INSN_NOTE(NAME) NAME,
1725 #include "insn-notes.def"
1726 #undef DEF_INSN_NOTE
1728 NOTE_INSN_MAX
1731 /* Names for NOTE insn's other than line numbers. */
1733 extern const char * const note_insn_name[NOTE_INSN_MAX];
1734 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1735 (note_insn_name[(NOTE_CODE)])
1737 /* The name of a label, in case it corresponds to an explicit label
1738 in the input source code. */
1739 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1741 /* In jump.c, each label contains a count of the number
1742 of LABEL_REFs that point at it, so unused labels can be deleted. */
1743 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1745 /* Labels carry a two-bit field composed of the ->jump and ->call
1746 bits. This field indicates whether the label is an alternate
1747 entry point, and if so, what kind. */
1748 enum label_kind
1750 LABEL_NORMAL = 0, /* ordinary label */
1751 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1752 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1753 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1756 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1758 /* Retrieve the kind of LABEL. */
1759 #define LABEL_KIND(LABEL) __extension__ \
1760 ({ __typeof (LABEL) const _label = (LABEL); \
1761 if (! LABEL_P (_label)) \
1762 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1763 __FUNCTION__); \
1764 (enum label_kind) ((_label->jump << 1) | _label->call); })
1766 /* Set the kind of LABEL. */
1767 #define SET_LABEL_KIND(LABEL, KIND) do { \
1768 __typeof (LABEL) const _label = (LABEL); \
1769 const unsigned int _kind = (KIND); \
1770 if (! LABEL_P (_label)) \
1771 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1772 __FUNCTION__); \
1773 _label->jump = ((_kind >> 1) & 1); \
1774 _label->call = (_kind & 1); \
1775 } while (0)
1777 #else
1779 /* Retrieve the kind of LABEL. */
1780 #define LABEL_KIND(LABEL) \
1781 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1783 /* Set the kind of LABEL. */
1784 #define SET_LABEL_KIND(LABEL, KIND) do { \
1785 rtx const _label = (LABEL); \
1786 const unsigned int _kind = (KIND); \
1787 _label->jump = ((_kind >> 1) & 1); \
1788 _label->call = (_kind & 1); \
1789 } while (0)
1791 #endif /* rtl flag checking */
1793 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1795 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1796 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1797 be decremented and possibly the label can be deleted. */
1798 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1800 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1802 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1805 /* Methods of rtx_jump_insn. */
1807 inline rtx rtx_jump_insn::jump_label () const
1809 return JUMP_LABEL (this);
1812 inline rtx_code_label *rtx_jump_insn::jump_target () const
1814 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1817 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1819 JUMP_LABEL (this) = target;
1822 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1823 goes through all the LABEL_REFs that jump to that label. The chain
1824 eventually winds up at the CODE_LABEL: it is circular. */
1825 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1827 /* Get the label that a LABEL_REF references. */
1828 static inline rtx_insn *
1829 label_ref_label (const_rtx ref)
1831 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1834 /* Set the label that LABEL_REF ref refers to. */
1836 static inline void
1837 set_label_ref_label (rtx ref, rtx_insn *label)
1839 XCEXP (ref, 0, LABEL_REF) = label;
1842 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1843 be used on RHS. Use SET_REGNO to change the value. */
1844 #define REGNO(RTX) (rhs_regno(RTX))
1845 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1847 /* Return the number of consecutive registers in a REG. This is always
1848 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1849 hard registers. */
1850 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1852 /* ORIGINAL_REGNO holds the number the register originally had; for a
1853 pseudo register turned into a hard reg this will hold the old pseudo
1854 register number. */
1855 #define ORIGINAL_REGNO(RTX) \
1856 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1858 /* Force the REGNO macro to only be used on the lhs. */
1859 static inline unsigned int
1860 rhs_regno (const_rtx x)
1862 return REG_CHECK (x)->regno;
1865 /* Return the final register in REG X plus one. */
1866 static inline unsigned int
1867 END_REGNO (const_rtx x)
1869 return REGNO (x) + REG_NREGS (x);
1872 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1873 bypassing the df machinery. */
1874 static inline void
1875 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1877 reg_info *reg = REG_CHECK (x);
1878 reg->regno = regno;
1879 reg->nregs = nregs;
1882 /* 1 if RTX is a reg or parallel that is the current function's return
1883 value. */
1884 #define REG_FUNCTION_VALUE_P(RTX) \
1885 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1887 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1888 #define REG_USERVAR_P(RTX) \
1889 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1891 /* 1 if RTX is a reg that holds a pointer value. */
1892 #define REG_POINTER(RTX) \
1893 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1895 /* 1 if RTX is a mem that holds a pointer value. */
1896 #define MEM_POINTER(RTX) \
1897 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1899 /* 1 if the given register REG corresponds to a hard register. */
1900 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1902 /* 1 if the given register number REG_NO corresponds to a hard register. */
1903 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1905 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1906 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1907 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1909 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1910 elements actually needed to represent the constant.
1911 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1912 significant HOST_WIDE_INT. */
1913 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1914 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1915 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1917 /* For a CONST_DOUBLE:
1918 #if TARGET_SUPPORTS_WIDE_INT == 0
1919 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1920 low-order word and ..._HIGH the high-order.
1921 #endif
1922 For a float, there is a REAL_VALUE_TYPE structure, and
1923 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1924 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1925 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1926 #define CONST_DOUBLE_REAL_VALUE(r) \
1927 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1929 #define CONST_FIXED_VALUE(r) \
1930 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1931 #define CONST_FIXED_VALUE_HIGH(r) \
1932 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1933 #define CONST_FIXED_VALUE_LOW(r) \
1934 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1936 /* For a CONST_VECTOR, return element #n. */
1937 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1939 /* For a CONST_VECTOR, return the number of elements in a vector. */
1940 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1942 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1943 SUBREG_BYTE extracts the byte-number. */
1945 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1946 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1948 /* in rtlanal.c */
1949 /* Return the right cost to give to an operation
1950 to make the cost of the corresponding register-to-register instruction
1951 N times that of a fast register-to-register instruction. */
1952 #define COSTS_N_INSNS(N) ((N) * 4)
1954 /* Maximum cost of an rtl expression. This value has the special meaning
1955 not to use an rtx with this cost under any circumstances. */
1956 #define MAX_COST INT_MAX
1958 /* Return true if CODE always has VOIDmode. */
1960 static inline bool
1961 always_void_p (enum rtx_code code)
1963 return code == SET;
1966 /* A structure to hold all available cost information about an rtl
1967 expression. */
1968 struct full_rtx_costs
1970 int speed;
1971 int size;
1974 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1975 static inline void
1976 init_costs_to_max (struct full_rtx_costs *c)
1978 c->speed = MAX_COST;
1979 c->size = MAX_COST;
1982 /* Initialize a full_rtx_costs structure C to zero cost. */
1983 static inline void
1984 init_costs_to_zero (struct full_rtx_costs *c)
1986 c->speed = 0;
1987 c->size = 0;
1990 /* Compare two full_rtx_costs structures A and B, returning true
1991 if A < B when optimizing for speed. */
1992 static inline bool
1993 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1994 bool speed)
1996 if (speed)
1997 return (a->speed < b->speed
1998 || (a->speed == b->speed && a->size < b->size));
1999 else
2000 return (a->size < b->size
2001 || (a->size == b->size && a->speed < b->speed));
2004 /* Increase both members of the full_rtx_costs structure C by the
2005 cost of N insns. */
2006 static inline void
2007 costs_add_n_insns (struct full_rtx_costs *c, int n)
2009 c->speed += COSTS_N_INSNS (n);
2010 c->size += COSTS_N_INSNS (n);
2013 /* Describes the shape of a subreg:
2015 inner_mode == the mode of the SUBREG_REG
2016 offset == the SUBREG_BYTE
2017 outer_mode == the mode of the SUBREG itself. */
2018 struct subreg_shape {
2019 subreg_shape (machine_mode, unsigned int, machine_mode);
2020 bool operator == (const subreg_shape &) const;
2021 bool operator != (const subreg_shape &) const;
2022 unsigned int unique_id () const;
2024 machine_mode inner_mode;
2025 unsigned int offset;
2026 machine_mode outer_mode;
2029 inline
2030 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2031 unsigned int offset_in,
2032 machine_mode outer_mode_in)
2033 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2036 inline bool
2037 subreg_shape::operator == (const subreg_shape &other) const
2039 return (inner_mode == other.inner_mode
2040 && offset == other.offset
2041 && outer_mode == other.outer_mode);
2044 inline bool
2045 subreg_shape::operator != (const subreg_shape &other) const
2047 return !operator == (other);
2050 /* Return an integer that uniquely identifies this shape. Structures
2051 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2052 current mode is anywhere near being 65536 bytes in size, so the
2053 id comfortably fits in an int. */
2055 inline unsigned int
2056 subreg_shape::unique_id () const
2058 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
2059 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
2062 /* Return the shape of a SUBREG rtx. */
2064 static inline subreg_shape
2065 shape_of_subreg (const_rtx x)
2067 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2068 SUBREG_BYTE (x), GET_MODE (x));
2071 /* Information about an address. This structure is supposed to be able
2072 to represent all supported target addresses. Please extend it if it
2073 is not yet general enough. */
2074 struct address_info {
2075 /* The mode of the value being addressed, or VOIDmode if this is
2076 a load-address operation with no known address mode. */
2077 machine_mode mode;
2079 /* The address space. */
2080 addr_space_t as;
2082 /* True if this is an RTX_AUTOINC address. */
2083 bool autoinc_p;
2085 /* A pointer to the top-level address. */
2086 rtx *outer;
2088 /* A pointer to the inner address, after all address mutations
2089 have been stripped from the top-level address. It can be one
2090 of the following:
2092 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2094 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2095 points to the step value, depending on whether the step is variable
2096 or constant respectively. SEGMENT is null.
2098 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2099 with null fields evaluating to 0. */
2100 rtx *inner;
2102 /* Components that make up *INNER. Each one may be null or nonnull.
2103 When nonnull, their meanings are as follows:
2105 - *SEGMENT is the "segment" of memory to which the address refers.
2106 This value is entirely target-specific and is only called a "segment"
2107 because that's its most typical use. It contains exactly one UNSPEC,
2108 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2109 reloading.
2111 - *BASE is a variable expression representing a base address.
2112 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2114 - *INDEX is a variable expression representing an index value.
2115 It may be a scaled expression, such as a MULT. It has exactly
2116 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2118 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2119 unmutated RTX_CONST_OBJ. */
2120 rtx *segment;
2121 rtx *base;
2122 rtx *index;
2123 rtx *disp;
2125 rtx *segment_term;
2126 rtx *base_term;
2127 rtx *index_term;
2128 rtx *disp_term;
2130 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2131 of BASE_TERM, otherwise it is null. */
2132 rtx *base_term2;
2134 /* ADDRESS if this structure describes an address operand, MEM if
2135 it describes a MEM address. */
2136 enum rtx_code addr_outer_code;
2138 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2139 enum rtx_code base_outer_code;
2142 /* This is used to bundle an rtx and a mode together so that the pair
2143 can be used with the wi:: routines. If we ever put modes into rtx
2144 integer constants, this should go away and then just pass an rtx in. */
2145 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2147 namespace wi
2149 template <>
2150 struct int_traits <rtx_mode_t>
2152 static const enum precision_type precision_type = VAR_PRECISION;
2153 static const bool host_dependent_precision = false;
2154 /* This ought to be true, except for the special case that BImode
2155 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2156 static const bool is_sign_extended = false;
2157 static unsigned int get_precision (const rtx_mode_t &);
2158 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2159 const rtx_mode_t &);
2163 inline unsigned int
2164 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2166 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2169 inline wi::storage_ref
2170 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2171 unsigned int precision,
2172 const rtx_mode_t &x)
2174 gcc_checking_assert (precision == get_precision (x));
2175 switch (GET_CODE (x.first))
2177 case CONST_INT:
2178 if (precision < HOST_BITS_PER_WIDE_INT)
2179 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2180 targets is 1 rather than -1. */
2181 gcc_checking_assert (INTVAL (x.first)
2182 == sext_hwi (INTVAL (x.first), precision)
2183 || (x.second == BImode && INTVAL (x.first) == 1));
2185 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2187 case CONST_WIDE_INT:
2188 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2189 CONST_WIDE_INT_NUNITS (x.first), precision);
2191 #if TARGET_SUPPORTS_WIDE_INT == 0
2192 case CONST_DOUBLE:
2193 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2194 #endif
2196 default:
2197 gcc_unreachable ();
2201 namespace wi
2203 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2204 wide_int min_value (machine_mode, signop);
2205 wide_int max_value (machine_mode, signop);
2208 inline wi::hwi_with_prec
2209 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2211 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2214 /* Produce the smallest number that is represented in MODE. The precision
2215 is taken from MODE and the sign from SGN. */
2216 inline wide_int
2217 wi::min_value (machine_mode mode, signop sgn)
2219 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2222 /* Produce the largest number that is represented in MODE. The precision
2223 is taken from MODE and the sign from SGN. */
2224 inline wide_int
2225 wi::max_value (machine_mode mode, signop sgn)
2227 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2230 extern void init_rtlanal (void);
2231 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2232 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2233 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2234 struct full_rtx_costs *);
2235 extern unsigned int subreg_lsb (const_rtx);
2236 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2237 unsigned int);
2238 extern unsigned int subreg_size_offset_from_lsb (unsigned int, unsigned int,
2239 unsigned int);
2240 extern bool read_modify_subreg_p (const_rtx);
2242 /* Return the subreg byte offset for a subreg whose outer mode is
2243 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2244 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2245 the inner value. This is the inverse of subreg_lsb_1 (which converts
2246 byte offsets to bit shifts). */
2248 inline unsigned int
2249 subreg_offset_from_lsb (machine_mode outer_mode,
2250 machine_mode inner_mode,
2251 unsigned int lsb_shift)
2253 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2254 GET_MODE_SIZE (inner_mode), lsb_shift);
2257 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2258 unsigned int, machine_mode);
2259 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2260 unsigned int, machine_mode);
2261 extern unsigned int subreg_regno (const_rtx);
2262 extern int simplify_subreg_regno (unsigned int, machine_mode,
2263 unsigned int, machine_mode);
2264 extern unsigned int subreg_nregs (const_rtx);
2265 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2266 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2267 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2268 extern bool constant_pool_constant_p (rtx);
2269 extern bool truncated_to_mode (machine_mode, const_rtx);
2270 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2271 extern void split_double (rtx, rtx *, rtx *);
2272 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2273 extern void decompose_address (struct address_info *, rtx *,
2274 machine_mode, addr_space_t, enum rtx_code);
2275 extern void decompose_lea_address (struct address_info *, rtx *);
2276 extern void decompose_mem_address (struct address_info *, rtx);
2277 extern void update_address (struct address_info *);
2278 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2279 extern enum rtx_code get_index_code (const struct address_info *);
2281 /* 1 if RTX is a subreg containing a reg that is already known to be
2282 sign- or zero-extended from the mode of the subreg to the mode of
2283 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2284 extension.
2286 When used as a LHS, is means that this extension must be done
2287 when assigning to SUBREG_REG. */
2289 #define SUBREG_PROMOTED_VAR_P(RTX) \
2290 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2292 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2293 this gives the necessary extensions:
2294 0 - signed (SPR_SIGNED)
2295 1 - normal unsigned (SPR_UNSIGNED)
2296 2 - value is both sign and unsign extended for mode
2297 (SPR_SIGNED_AND_UNSIGNED).
2298 -1 - pointer unsigned, which most often can be handled like unsigned
2299 extension, except for generating instructions where we need to
2300 emit special code (ptr_extend insns) on some architectures
2301 (SPR_POINTER). */
2303 const int SRP_POINTER = -1;
2304 const int SRP_SIGNED = 0;
2305 const int SRP_UNSIGNED = 1;
2306 const int SRP_SIGNED_AND_UNSIGNED = 2;
2308 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2309 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2310 do { \
2311 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2312 (RTX), SUBREG); \
2313 switch (VAL) \
2315 case SRP_POINTER: \
2316 _rtx->volatil = 0; \
2317 _rtx->unchanging = 0; \
2318 break; \
2319 case SRP_SIGNED: \
2320 _rtx->volatil = 0; \
2321 _rtx->unchanging = 1; \
2322 break; \
2323 case SRP_UNSIGNED: \
2324 _rtx->volatil = 1; \
2325 _rtx->unchanging = 0; \
2326 break; \
2327 case SRP_SIGNED_AND_UNSIGNED: \
2328 _rtx->volatil = 1; \
2329 _rtx->unchanging = 1; \
2330 break; \
2332 } while (0)
2334 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2335 including SRP_SIGNED_AND_UNSIGNED if promoted for
2336 both signed and unsigned. */
2337 #define SUBREG_PROMOTED_GET(RTX) \
2338 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2339 + (RTX)->unchanging - 1)
2341 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2342 #define SUBREG_PROMOTED_SIGN(RTX) \
2343 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2344 : (RTX)->unchanging - 1)
2346 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2347 for SIGNED type. */
2348 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2349 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2351 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2352 for UNSIGNED type. */
2353 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2354 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2356 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2357 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2358 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2359 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2360 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2362 /* True if the REG is the static chain register for some CALL_INSN. */
2363 #define STATIC_CHAIN_REG_P(RTX) \
2364 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2366 /* True if the subreg was generated by LRA for reload insns. Such
2367 subregs are valid only during LRA. */
2368 #define LRA_SUBREG_P(RTX) \
2369 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2371 /* True if call is instrumented by Pointer Bounds Checker. */
2372 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2373 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2375 /* Access various components of an ASM_OPERANDS rtx. */
2377 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2378 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2379 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2380 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2381 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2382 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2383 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2384 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2385 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2386 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2387 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2388 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2389 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2390 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2391 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2392 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2393 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2394 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2396 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2397 #define MEM_READONLY_P(RTX) \
2398 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2400 /* 1 if RTX is a mem and we should keep the alias set for this mem
2401 unchanged when we access a component. Set to 1, or example, when we
2402 are already in a non-addressable component of an aggregate. */
2403 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2404 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2406 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2407 #define MEM_VOLATILE_P(RTX) \
2408 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2409 ASM_INPUT)->volatil)
2411 /* 1 if RTX is a mem that cannot trap. */
2412 #define MEM_NOTRAP_P(RTX) \
2413 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2415 /* The memory attribute block. We provide access macros for each value
2416 in the block and provide defaults if none specified. */
2417 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2419 /* The register attribute block. We provide access macros for each value
2420 in the block and provide defaults if none specified. */
2421 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2423 #ifndef GENERATOR_FILE
2424 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2425 set, and may alias anything. Otherwise, the MEM can only alias
2426 MEMs in a conflicting alias set. This value is set in a
2427 language-dependent manner in the front-end, and should not be
2428 altered in the back-end. These set numbers are tested with
2429 alias_sets_conflict_p. */
2430 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2432 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2433 refer to part of a DECL. It may also be a COMPONENT_REF. */
2434 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2436 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2437 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2439 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2440 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2442 /* For a MEM rtx, the address space. */
2443 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2445 /* For a MEM rtx, true if its MEM_SIZE is known. */
2446 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2448 /* For a MEM rtx, the size in bytes of the MEM. */
2449 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2451 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2452 mode as a default when STRICT_ALIGNMENT, but not if not. */
2453 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2454 #else
2455 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2456 #endif
2458 /* For a REG rtx, the decl it is known to refer to, if it is known to
2459 refer to part of a DECL. */
2460 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2462 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2463 HOST_WIDE_INT. */
2464 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2466 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2467 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2468 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2469 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2470 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2471 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2472 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2473 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2475 /* 1 if RTX is a label_ref for a nonlocal label. */
2476 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2477 REG_LABEL_TARGET note. */
2478 #define LABEL_REF_NONLOCAL_P(RTX) \
2479 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2481 /* 1 if RTX is a code_label that should always be considered to be needed. */
2482 #define LABEL_PRESERVE_P(RTX) \
2483 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2485 /* During sched, 1 if RTX is an insn that must be scheduled together
2486 with the preceding insn. */
2487 #define SCHED_GROUP_P(RTX) \
2488 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2489 JUMP_INSN, CALL_INSN)->in_struct)
2491 /* For a SET rtx, SET_DEST is the place that is set
2492 and SET_SRC is the value it is set to. */
2493 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2494 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2495 #define SET_IS_RETURN_P(RTX) \
2496 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2498 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2499 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2500 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2502 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2503 conditionally executing the code on, COND_EXEC_CODE is the code
2504 to execute if the condition is true. */
2505 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2506 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2508 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2509 constants pool. */
2510 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2511 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2513 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2514 tree constant pool. This information is private to varasm.c. */
2515 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2516 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2517 (RTX), SYMBOL_REF)->frame_related)
2519 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2520 #define SYMBOL_REF_FLAG(RTX) \
2521 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2523 /* 1 if RTX is a symbol_ref that has been the library function in
2524 emit_library_call. */
2525 #define SYMBOL_REF_USED(RTX) \
2526 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2528 /* 1 if RTX is a symbol_ref for a weak symbol. */
2529 #define SYMBOL_REF_WEAK(RTX) \
2530 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2532 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2533 SYMBOL_REF_CONSTANT. */
2534 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2536 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2537 pool symbol. */
2538 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2539 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2541 /* The tree (decl or constant) associated with the symbol, or null. */
2542 #define SYMBOL_REF_DECL(RTX) \
2543 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2545 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2546 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2547 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2549 /* The rtx constant pool entry for a symbol, or null. */
2550 #define SYMBOL_REF_CONSTANT(RTX) \
2551 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2553 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2554 information derivable from the tree decl associated with this symbol.
2555 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2556 decl. In some cases this is a bug. But beyond that, it's nice to cache
2557 this information to avoid recomputing it. Finally, this allows space for
2558 the target to store more than one bit of information, as with
2559 SYMBOL_REF_FLAG. */
2560 #define SYMBOL_REF_FLAGS(RTX) \
2561 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2562 ->u2.symbol_ref_flags)
2564 /* These flags are common enough to be defined for all targets. They
2565 are computed by the default version of targetm.encode_section_info. */
2567 /* Set if this symbol is a function. */
2568 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2569 #define SYMBOL_REF_FUNCTION_P(RTX) \
2570 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2571 /* Set if targetm.binds_local_p is true. */
2572 #define SYMBOL_FLAG_LOCAL (1 << 1)
2573 #define SYMBOL_REF_LOCAL_P(RTX) \
2574 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2575 /* Set if targetm.in_small_data_p is true. */
2576 #define SYMBOL_FLAG_SMALL (1 << 2)
2577 #define SYMBOL_REF_SMALL_P(RTX) \
2578 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2579 /* The three-bit field at [5:3] is true for TLS variables; use
2580 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2581 #define SYMBOL_FLAG_TLS_SHIFT 3
2582 #define SYMBOL_REF_TLS_MODEL(RTX) \
2583 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2584 /* Set if this symbol is not defined in this translation unit. */
2585 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2586 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2587 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2588 /* Set if this symbol has a block_symbol structure associated with it. */
2589 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2590 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2591 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2592 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2593 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2594 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2595 #define SYMBOL_REF_ANCHOR_P(RTX) \
2596 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2598 /* Subsequent bits are available for the target to use. */
2599 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2600 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2602 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2603 structure to which the symbol belongs, or NULL if it has not been
2604 assigned a block. */
2605 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2607 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2608 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2609 RTX has not yet been assigned to a block, or it has not been given an
2610 offset within that block. */
2611 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2613 /* True if RTX is flagged to be a scheduling barrier. */
2614 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2615 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2617 /* Indicate whether the machine has any sort of auto increment addressing.
2618 If not, we can avoid checking for REG_INC notes. */
2620 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2621 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2622 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2623 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2624 #define AUTO_INC_DEC 1
2625 #else
2626 #define AUTO_INC_DEC 0
2627 #endif
2629 /* Define a macro to look for REG_INC notes,
2630 but save time on machines where they never exist. */
2632 #if AUTO_INC_DEC
2633 #define FIND_REG_INC_NOTE(INSN, REG) \
2634 ((REG) != NULL_RTX && REG_P ((REG)) \
2635 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2636 : find_reg_note ((INSN), REG_INC, (REG)))
2637 #else
2638 #define FIND_REG_INC_NOTE(INSN, REG) 0
2639 #endif
2641 #ifndef HAVE_PRE_INCREMENT
2642 #define HAVE_PRE_INCREMENT 0
2643 #endif
2645 #ifndef HAVE_PRE_DECREMENT
2646 #define HAVE_PRE_DECREMENT 0
2647 #endif
2649 #ifndef HAVE_POST_INCREMENT
2650 #define HAVE_POST_INCREMENT 0
2651 #endif
2653 #ifndef HAVE_POST_DECREMENT
2654 #define HAVE_POST_DECREMENT 0
2655 #endif
2657 #ifndef HAVE_POST_MODIFY_DISP
2658 #define HAVE_POST_MODIFY_DISP 0
2659 #endif
2661 #ifndef HAVE_POST_MODIFY_REG
2662 #define HAVE_POST_MODIFY_REG 0
2663 #endif
2665 #ifndef HAVE_PRE_MODIFY_DISP
2666 #define HAVE_PRE_MODIFY_DISP 0
2667 #endif
2669 #ifndef HAVE_PRE_MODIFY_REG
2670 #define HAVE_PRE_MODIFY_REG 0
2671 #endif
2674 /* Some architectures do not have complete pre/post increment/decrement
2675 instruction sets, or only move some modes efficiently. These macros
2676 allow us to tune autoincrement generation. */
2678 #ifndef USE_LOAD_POST_INCREMENT
2679 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2680 #endif
2682 #ifndef USE_LOAD_POST_DECREMENT
2683 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2684 #endif
2686 #ifndef USE_LOAD_PRE_INCREMENT
2687 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2688 #endif
2690 #ifndef USE_LOAD_PRE_DECREMENT
2691 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2692 #endif
2694 #ifndef USE_STORE_POST_INCREMENT
2695 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2696 #endif
2698 #ifndef USE_STORE_POST_DECREMENT
2699 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2700 #endif
2702 #ifndef USE_STORE_PRE_INCREMENT
2703 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2704 #endif
2706 #ifndef USE_STORE_PRE_DECREMENT
2707 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2708 #endif
2710 /* Nonzero when we are generating CONCATs. */
2711 extern int generating_concat_p;
2713 /* Nonzero when we are expanding trees to RTL. */
2714 extern int currently_expanding_to_rtl;
2716 /* Generally useful functions. */
2718 #ifndef GENERATOR_FILE
2719 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2720 rather than size. */
2722 static inline int
2723 set_rtx_cost (rtx x, bool speed_p)
2725 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2728 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2730 static inline void
2731 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2733 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2736 /* Return the cost of moving X into a register, relative to the cost
2737 of a register move. SPEED_P is true if optimizing for speed rather
2738 than size. */
2740 static inline int
2741 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2743 return rtx_cost (x, mode, SET, 1, speed_p);
2746 /* Like set_src_cost, but return both the speed and size costs in C. */
2748 static inline void
2749 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2751 get_full_rtx_cost (x, mode, SET, 1, c);
2753 #endif
2755 /* A convenience macro to validate the arguments of a zero_extract
2756 expression. It determines whether SIZE lies inclusively within
2757 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2758 and the sum lies inclusively within [1, RANGE]. RANGE must be
2759 >= 1, but SIZE and POS may be negative. */
2760 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2761 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2762 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2763 - (unsigned HOST_WIDE_INT)(POS)))
2765 /* In explow.c */
2766 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2767 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2768 extern HOST_WIDE_INT get_stack_check_protect (void);
2770 /* In rtl.c */
2771 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2772 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2773 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2774 #define const_wide_int_alloc(NWORDS) \
2775 rtx_alloc_v (CONST_WIDE_INT, \
2776 (sizeof (struct hwivec_def) \
2777 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2779 extern rtvec rtvec_alloc (int);
2780 extern rtvec shallow_copy_rtvec (rtvec);
2781 extern bool shared_const_p (const_rtx);
2782 extern rtx copy_rtx (rtx);
2783 extern enum rtx_code classify_insn (rtx);
2784 extern void dump_rtx_statistics (void);
2786 /* In emit-rtl.c */
2787 extern rtx copy_rtx_if_shared (rtx);
2789 /* In rtl.c */
2790 extern unsigned int rtx_size (const_rtx);
2791 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2792 extern int rtx_equal_p (const_rtx, const_rtx);
2793 extern bool rtvec_all_equal_p (const_rtvec);
2795 /* Return true if X is some form of vector constant. */
2797 inline bool
2798 const_vec_p (const_rtx x)
2800 return VECTOR_MODE_P (GET_MODE (x)) && CONSTANT_P (x);
2803 /* Return true if X is a vector constant with a duplicated element value. */
2805 inline bool
2806 const_vec_duplicate_p (const_rtx x)
2808 return ((GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
2809 || (GET_CODE (x) == CONST
2810 && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE));
2813 /* Return true if X is a vector constant with a duplicated element value.
2814 Store the duplicated element in *ELT if so. */
2816 template <typename T>
2817 inline bool
2818 const_vec_duplicate_p (T x, T *elt)
2820 if (GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
2822 *elt = CONST_VECTOR_ELT (x, 0);
2823 return true;
2825 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE)
2827 *elt = XEXP (XEXP (x, 0), 0);
2828 return true;
2830 return false;
2833 /* Return true if X is a vector with a duplicated element value, either
2834 constant or nonconstant. Store the duplicated element in *ELT if so. */
2836 template <typename T>
2837 inline bool
2838 vec_duplicate_p (T x, T *elt)
2840 if (GET_CODE (x) == VEC_DUPLICATE)
2842 *elt = XEXP (x, 0);
2843 return true;
2845 return const_vec_duplicate_p (x, elt);
2848 /* If X is a vector constant with a duplicated element value, return that
2849 element value, otherwise return X. */
2851 template <typename T>
2852 inline T
2853 unwrap_const_vec_duplicate (T x)
2855 if (GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
2856 return CONST_VECTOR_ELT (x, 0);
2857 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE)
2858 return XEXP (XEXP (x, 0), 0);
2859 return x;
2862 /* In emit-rtl.c. */
2863 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
2865 /* Return true if X is a constant vector that contains a linear series
2866 of the form:
2868 { B, B + S, B + 2 * S, B + 3 * S, ... }
2870 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
2872 inline bool
2873 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
2875 if (GET_CODE (x) == CONST_VECTOR
2876 && GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_INT)
2877 return const_vec_series_p_1 (x, base_out, step_out);
2878 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_SERIES)
2880 *base_out = XEXP (XEXP (x, 0), 0);
2881 *step_out = XEXP (XEXP (x, 0), 1);
2882 return true;
2884 return false;
2887 /* Return true if X is a vector that contains a linear series of the
2888 form:
2890 { B, B + S, B + 2 * S, B + 3 * S, ... }
2892 where B and S are constant or nonconstant. Store B and S in
2893 *BASE_OUT and *STEP_OUT on sucess. */
2895 inline bool
2896 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
2898 if (GET_CODE (x) == VEC_SERIES)
2900 *base_out = XEXP (x, 0);
2901 *step_out = XEXP (x, 1);
2902 return true;
2904 return const_vec_series_p (x, base_out, step_out);
2907 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
2909 inline scalar_int_mode
2910 subreg_unpromoted_mode (rtx x)
2912 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
2913 return as_a <scalar_int_mode> (GET_MODE (x));
2916 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
2918 inline scalar_int_mode
2919 subreg_promoted_mode (rtx x)
2921 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
2922 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
2925 /* In emit-rtl.c */
2926 extern rtvec gen_rtvec_v (int, rtx *);
2927 extern rtvec gen_rtvec_v (int, rtx_insn **);
2928 extern rtx gen_reg_rtx (machine_mode);
2929 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2930 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2931 extern rtx gen_reg_rtx_and_attrs (rtx);
2932 extern rtx_code_label *gen_label_rtx (void);
2933 extern rtx gen_lowpart_common (machine_mode, rtx);
2935 /* In cse.c */
2936 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2938 /* In emit-rtl.c */
2939 extern rtx gen_highpart (machine_mode, rtx);
2940 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2941 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2943 /* In emit-rtl.c */
2944 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2945 extern int subreg_lowpart_p (const_rtx);
2946 extern unsigned int subreg_size_lowpart_offset (unsigned int, unsigned int);
2948 /* Return true if a subreg of mode OUTERMODE would only access part of
2949 an inner register with mode INNERMODE. The other bits of the inner
2950 register would then be "don't care" on read. The behavior for writes
2951 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
2952 chunk would be clobbered but other bits would be preserved. */
2954 inline bool
2955 partial_subreg_p (machine_mode outermode, machine_mode innermode)
2957 return GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode);
2960 /* Likewise return true if X is a subreg that is smaller than the inner
2961 register. Use read_modify_subreg_p to test whether writing to such
2962 a subreg preserves any part of the inner register. */
2964 inline bool
2965 partial_subreg_p (const_rtx x)
2967 if (GET_CODE (x) != SUBREG)
2968 return false;
2969 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
2972 /* Return true if a subreg with the given outer and inner modes is
2973 paradoxical. */
2975 inline bool
2976 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
2978 return GET_MODE_PRECISION (outermode) > GET_MODE_PRECISION (innermode);
2981 /* Return true if X is a paradoxical subreg, false otherwise. */
2983 inline bool
2984 paradoxical_subreg_p (const_rtx x)
2986 if (GET_CODE (x) != SUBREG)
2987 return false;
2988 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
2991 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
2993 inline unsigned int
2994 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
2996 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
2997 GET_MODE_SIZE (innermode));
3000 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3001 return the smaller of the two modes if they are different sizes,
3002 otherwise return the outer mode. */
3004 inline machine_mode
3005 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3007 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3010 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3011 return the mode that is big enough to hold both the outer and inner
3012 values. Prefer the outer mode in the event of a tie. */
3014 inline machine_mode
3015 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3017 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3020 /* Likewise for subreg X. */
3022 inline machine_mode
3023 wider_subreg_mode (const_rtx x)
3025 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3028 extern unsigned int subreg_size_highpart_offset (unsigned int, unsigned int);
3030 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3032 inline unsigned int
3033 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3035 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3036 GET_MODE_SIZE (innermode));
3039 extern int byte_lowpart_offset (machine_mode, machine_mode);
3040 extern int subreg_memory_offset (machine_mode, machine_mode, unsigned int);
3041 extern int subreg_memory_offset (const_rtx);
3042 extern rtx make_safe_from (rtx, rtx);
3043 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3044 addr_space_t, bool, bool);
3045 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3046 addr_space_t);
3047 #define convert_memory_address(to_mode,x) \
3048 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3049 extern const char *get_insn_name (int);
3050 extern rtx_insn *get_last_insn_anywhere (void);
3051 extern rtx_insn *get_first_nonnote_insn (void);
3052 extern rtx_insn *get_last_nonnote_insn (void);
3053 extern void start_sequence (void);
3054 extern void push_to_sequence (rtx_insn *);
3055 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3056 extern void end_sequence (void);
3057 #if TARGET_SUPPORTS_WIDE_INT == 0
3058 extern double_int rtx_to_double_int (const_rtx);
3059 #endif
3060 extern void cwi_output_hex (FILE *, const_rtx);
3061 #ifndef GENERATOR_FILE
3062 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
3063 #endif
3064 #if TARGET_SUPPORTS_WIDE_INT == 0
3065 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3066 machine_mode);
3067 #endif
3069 /* In varasm.c */
3070 extern rtx force_const_mem (machine_mode, rtx);
3072 /* In varasm.c */
3074 struct function;
3075 extern rtx get_pool_constant (const_rtx);
3076 extern rtx get_pool_constant_mark (rtx, bool *);
3077 extern fixed_size_mode get_pool_mode (const_rtx);
3078 extern rtx simplify_subtraction (rtx);
3079 extern void decide_function_section (tree);
3081 /* In emit-rtl.c */
3082 extern rtx_insn *emit_insn_before (rtx, rtx);
3083 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3084 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
3085 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
3086 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3087 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
3088 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3089 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3090 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
3091 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3092 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
3093 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
3094 extern rtx_barrier *emit_barrier_before (rtx);
3095 extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
3096 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3097 extern rtx_insn *emit_insn_after (rtx, rtx);
3098 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
3099 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
3100 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
3101 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
3102 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
3103 extern rtx_insn *emit_call_insn_after (rtx, rtx);
3104 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
3105 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
3106 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
3107 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
3108 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
3109 extern rtx_barrier *emit_barrier_after (rtx);
3110 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
3111 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3112 extern rtx_insn *emit_insn (rtx);
3113 extern rtx_insn *emit_debug_insn (rtx);
3114 extern rtx_insn *emit_jump_insn (rtx);
3115 extern rtx_insn *emit_call_insn (rtx);
3116 extern rtx_code_label *emit_label (rtx);
3117 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3118 extern rtx_barrier *emit_barrier (void);
3119 extern rtx_note *emit_note (enum insn_note);
3120 extern rtx_note *emit_note_copy (rtx_note *);
3121 extern rtx_insn *gen_clobber (rtx);
3122 extern rtx_insn *emit_clobber (rtx);
3123 extern rtx_insn *gen_use (rtx);
3124 extern rtx_insn *emit_use (rtx);
3125 extern rtx_insn *make_insn_raw (rtx);
3126 extern void add_function_usage_to (rtx, rtx);
3127 extern rtx_call_insn *last_call_insn (void);
3128 extern rtx_insn *previous_insn (rtx_insn *);
3129 extern rtx_insn *next_insn (rtx_insn *);
3130 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3131 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3132 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3133 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3134 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3135 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3136 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3137 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3138 extern rtx_insn *prev_real_insn (rtx_insn *);
3139 extern rtx_insn *next_real_insn (rtx);
3140 extern rtx_insn *prev_active_insn (rtx_insn *);
3141 extern rtx_insn *next_active_insn (rtx_insn *);
3142 extern int active_insn_p (const rtx_insn *);
3143 extern rtx_insn *next_cc0_user (rtx_insn *);
3144 extern rtx_insn *prev_cc0_setter (rtx_insn *);
3146 /* In emit-rtl.c */
3147 extern int insn_line (const rtx_insn *);
3148 extern const char * insn_file (const rtx_insn *);
3149 extern tree insn_scope (const rtx_insn *);
3150 extern expanded_location insn_location (const rtx_insn *);
3151 extern location_t prologue_location, epilogue_location;
3153 /* In jump.c */
3154 extern enum rtx_code reverse_condition (enum rtx_code);
3155 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3156 extern enum rtx_code swap_condition (enum rtx_code);
3157 extern enum rtx_code unsigned_condition (enum rtx_code);
3158 extern enum rtx_code signed_condition (enum rtx_code);
3159 extern void mark_jump_label (rtx, rtx_insn *, int);
3161 /* In jump.c */
3162 extern rtx_insn *delete_related_insns (rtx);
3164 /* In recog.c */
3165 extern rtx *find_constant_term_loc (rtx *);
3167 /* In emit-rtl.c */
3168 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3170 /* In insn-recog.c (generated by genrecog). */
3171 extern rtx_insn *split_insns (rtx, rtx_insn *);
3173 /* In simplify-rtx.c */
3174 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3175 rtx, machine_mode);
3176 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
3177 machine_mode);
3178 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3179 rtx, rtx);
3180 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
3181 rtx);
3182 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
3183 machine_mode, rtx, rtx, rtx);
3184 extern rtx simplify_const_relational_operation (enum rtx_code,
3185 machine_mode, rtx, rtx);
3186 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
3187 machine_mode, rtx, rtx);
3188 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
3189 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
3190 machine_mode);
3191 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
3192 machine_mode, rtx, rtx, rtx);
3193 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
3194 machine_mode, rtx, rtx);
3195 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
3196 unsigned int);
3197 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
3198 unsigned int);
3199 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3200 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3201 rtx (*fn) (rtx, const_rtx, void *), void *);
3202 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3203 extern rtx simplify_rtx (const_rtx);
3204 extern rtx avoid_constant_pool_reference (rtx);
3205 extern rtx delegitimize_mem_from_attrs (rtx);
3206 extern bool mode_signbit_p (machine_mode, const_rtx);
3207 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3208 extern bool val_signbit_known_set_p (machine_mode,
3209 unsigned HOST_WIDE_INT);
3210 extern bool val_signbit_known_clear_p (machine_mode,
3211 unsigned HOST_WIDE_INT);
3213 /* In reginfo.c */
3214 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3215 bool);
3216 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3218 /* In emit-rtl.c */
3219 extern rtx set_for_reg_notes (rtx);
3220 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3221 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3222 extern void set_insn_deleted (rtx);
3224 /* Functions in rtlanal.c */
3226 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3227 extern bool contains_symbol_ref_p (const_rtx);
3228 extern bool contains_symbolic_reference_p (const_rtx);
3230 /* Handle the cheap and common cases inline for performance. */
3232 inline rtx single_set (const rtx_insn *insn)
3234 if (!INSN_P (insn))
3235 return NULL_RTX;
3237 if (GET_CODE (PATTERN (insn)) == SET)
3238 return PATTERN (insn);
3240 /* Defer to the more expensive case. */
3241 return single_set_2 (insn, PATTERN (insn));
3244 extern scalar_int_mode get_address_mode (rtx mem);
3245 extern int rtx_addr_can_trap_p (const_rtx);
3246 extern bool nonzero_address_p (const_rtx);
3247 extern int rtx_unstable_p (const_rtx);
3248 extern bool rtx_varies_p (const_rtx, bool);
3249 extern bool rtx_addr_varies_p (const_rtx, bool);
3250 extern rtx get_call_rtx_from (rtx);
3251 extern HOST_WIDE_INT get_integer_term (const_rtx);
3252 extern rtx get_related_value (const_rtx);
3253 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3254 extern void split_const (rtx, rtx *, rtx *);
3255 extern bool unsigned_reg_p (rtx);
3256 extern int reg_mentioned_p (const_rtx, const_rtx);
3257 extern int count_occurrences (const_rtx, const_rtx, int);
3258 extern int reg_referenced_p (const_rtx, const_rtx);
3259 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3260 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3261 extern int commutative_operand_precedence (rtx);
3262 extern bool swap_commutative_operands_p (rtx, rtx);
3263 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3264 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3265 extern int modified_in_p (const_rtx, const_rtx);
3266 extern int reg_set_p (const_rtx, const_rtx);
3267 extern int multiple_sets (const_rtx);
3268 extern int set_noop_p (const_rtx);
3269 extern int noop_move_p (const rtx_insn *);
3270 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3271 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3272 extern const_rtx set_of (const_rtx, const_rtx);
3273 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3274 extern void record_hard_reg_uses (rtx *, void *);
3275 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3276 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3277 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3278 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3279 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3280 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3281 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3282 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3283 extern rtx find_reg_equal_equiv_note (const_rtx);
3284 extern rtx find_constant_src (const rtx_insn *);
3285 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3286 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3287 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3288 extern void add_reg_note (rtx, enum reg_note, rtx);
3289 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3290 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3291 extern rtx duplicate_reg_note (rtx);
3292 extern void remove_note (rtx_insn *, const_rtx);
3293 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3294 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3295 extern int side_effects_p (const_rtx);
3296 extern int volatile_refs_p (const_rtx);
3297 extern int volatile_insn_p (const_rtx);
3298 extern int may_trap_p_1 (const_rtx, unsigned);
3299 extern int may_trap_p (const_rtx);
3300 extern int may_trap_or_fault_p (const_rtx);
3301 extern bool can_throw_internal (const_rtx);
3302 extern bool can_throw_external (const_rtx);
3303 extern bool insn_could_throw_p (const_rtx);
3304 extern bool insn_nothrow_p (const_rtx);
3305 extern bool can_nonlocal_goto (const rtx_insn *);
3306 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3307 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3308 extern int inequality_comparisons_p (const_rtx);
3309 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3310 extern void replace_label (rtx *, rtx, rtx, bool);
3311 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3312 extern bool rtx_referenced_p (const_rtx, const_rtx);
3313 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3314 extern int computed_jump_p (const rtx_insn *);
3315 extern bool tls_referenced_p (const_rtx);
3316 extern bool contains_mem_rtx_p (rtx x);
3318 /* Overload for refers_to_regno_p for checking a single register. */
3319 inline bool
3320 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3322 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3325 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3326 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3327 NULL. The callback is passed the same opaque ARG passed to
3328 for_each_inc_dec. Return zero to continue looking for other
3329 autoinc operations or any other value to interrupt the traversal and
3330 return that value to the caller of for_each_inc_dec. */
3331 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3332 rtx srcoff, void *arg);
3333 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3335 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3336 rtx *, rtx *);
3337 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3338 rtx_equal_p_callback_function);
3340 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3341 machine_mode *);
3342 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3343 bool, hash_rtx_callback_function);
3345 extern rtx regno_use_in (unsigned int, rtx);
3346 extern int auto_inc_p (const_rtx);
3347 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3348 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3349 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3350 extern int loc_mentioned_in_p (rtx *, const_rtx);
3351 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3352 extern bool keep_with_call_p (const rtx_insn *);
3353 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3354 extern int pattern_cost (rtx, bool);
3355 extern int insn_cost (rtx_insn *, bool);
3356 extern unsigned seq_cost (const rtx_insn *, bool);
3358 /* Given an insn and condition, return a canonical description of
3359 the test being made. */
3360 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3361 int, int);
3363 /* Given a JUMP_INSN, return a canonical description of the test
3364 being made. */
3365 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3367 /* Information about a subreg of a hard register. */
3368 struct subreg_info
3370 /* Offset of first hard register involved in the subreg. */
3371 int offset;
3372 /* Number of hard registers involved in the subreg. In the case of
3373 a paradoxical subreg, this is the number of registers that would
3374 be modified by writing to the subreg; some of them may be don't-care
3375 when reading from the subreg. */
3376 int nregs;
3377 /* Whether this subreg can be represented as a hard reg with the new
3378 mode (by adding OFFSET to the original hard register). */
3379 bool representable_p;
3382 extern void subreg_get_info (unsigned int, machine_mode,
3383 unsigned int, machine_mode,
3384 struct subreg_info *);
3386 /* lists.c */
3388 extern void free_EXPR_LIST_list (rtx_expr_list **);
3389 extern void free_INSN_LIST_list (rtx_insn_list **);
3390 extern void free_EXPR_LIST_node (rtx);
3391 extern void free_INSN_LIST_node (rtx);
3392 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3393 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3394 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3395 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3396 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3397 extern rtx remove_list_elem (rtx, rtx *);
3398 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3399 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3402 /* reginfo.c */
3404 /* Resize reg info. */
3405 extern bool resize_reg_info (void);
3406 /* Free up register info memory. */
3407 extern void free_reg_info (void);
3408 extern void init_subregs_of_mode (void);
3409 extern void finish_subregs_of_mode (void);
3411 /* recog.c */
3412 extern rtx extract_asm_operands (rtx);
3413 extern int asm_noperands (const_rtx);
3414 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3415 machine_mode *, location_t *);
3416 extern void get_referenced_operands (const char *, bool *, unsigned int);
3418 extern enum reg_class reg_preferred_class (int);
3419 extern enum reg_class reg_alternate_class (int);
3420 extern enum reg_class reg_allocno_class (int);
3421 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3422 enum reg_class);
3424 extern void split_all_insns (void);
3425 extern unsigned int split_all_insns_noflow (void);
3427 #define MAX_SAVED_CONST_INT 64
3428 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3430 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3431 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3432 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3433 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3434 extern GTY(()) rtx const_true_rtx;
3436 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3438 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3439 same as VOIDmode. */
3441 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3443 /* Likewise, for the constants 1 and 2 and -1. */
3445 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3446 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3447 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3449 extern GTY(()) rtx pc_rtx;
3450 extern GTY(()) rtx cc0_rtx;
3451 extern GTY(()) rtx ret_rtx;
3452 extern GTY(()) rtx simple_return_rtx;
3453 extern GTY(()) rtx_insn *invalid_insn_rtx;
3455 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3456 is used to represent the frame pointer. This is because the
3457 hard frame pointer and the automatic variables are separated by an amount
3458 that cannot be determined until after register allocation. We can assume
3459 that in this case ELIMINABLE_REGS will be defined, one action of which
3460 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3461 #ifndef HARD_FRAME_POINTER_REGNUM
3462 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3463 #endif
3465 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3466 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3467 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3468 #endif
3470 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3471 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3472 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3473 #endif
3475 /* Index labels for global_rtl. */
3476 enum global_rtl_index
3478 GR_STACK_POINTER,
3479 GR_FRAME_POINTER,
3480 /* For register elimination to work properly these hard_frame_pointer_rtx,
3481 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3482 the same register. */
3483 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3484 GR_ARG_POINTER = GR_FRAME_POINTER,
3485 #endif
3486 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3487 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3488 #else
3489 GR_HARD_FRAME_POINTER,
3490 #endif
3491 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3492 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3493 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3494 #else
3495 GR_ARG_POINTER,
3496 #endif
3497 #endif
3498 GR_VIRTUAL_INCOMING_ARGS,
3499 GR_VIRTUAL_STACK_ARGS,
3500 GR_VIRTUAL_STACK_DYNAMIC,
3501 GR_VIRTUAL_OUTGOING_ARGS,
3502 GR_VIRTUAL_CFA,
3503 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3505 GR_MAX
3508 /* Target-dependent globals. */
3509 struct GTY(()) target_rtl {
3510 /* All references to the hard registers in global_rtl_index go through
3511 these unique rtl objects. On machines where the frame-pointer and
3512 arg-pointer are the same register, they use the same unique object.
3514 After register allocation, other rtl objects which used to be pseudo-regs
3515 may be clobbered to refer to the frame-pointer register.
3516 But references that were originally to the frame-pointer can be
3517 distinguished from the others because they contain frame_pointer_rtx.
3519 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3520 tricky: until register elimination has taken place hard_frame_pointer_rtx
3521 should be used if it is being set, and frame_pointer_rtx otherwise. After
3522 register elimination hard_frame_pointer_rtx should always be used.
3523 On machines where the two registers are same (most) then these are the
3524 same. */
3525 rtx x_global_rtl[GR_MAX];
3527 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3528 rtx x_pic_offset_table_rtx;
3530 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3531 This is used to implement __builtin_return_address for some machines;
3532 see for instance the MIPS port. */
3533 rtx x_return_address_pointer_rtx;
3535 /* Commonly used RTL for hard registers. These objects are not
3536 necessarily unique, so we allocate them separately from global_rtl.
3537 They are initialized once per compilation unit, then copied into
3538 regno_reg_rtx at the beginning of each function. */
3539 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3541 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3542 rtx x_top_of_stack[MAX_MACHINE_MODE];
3544 /* Static hunks of RTL used by the aliasing code; these are treated
3545 as persistent to avoid unnecessary RTL allocations. */
3546 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3548 /* The default memory attributes for each mode. */
3549 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3551 /* Track if RTL has been initialized. */
3552 bool target_specific_initialized;
3555 extern GTY(()) struct target_rtl default_target_rtl;
3556 #if SWITCHABLE_TARGET
3557 extern struct target_rtl *this_target_rtl;
3558 #else
3559 #define this_target_rtl (&default_target_rtl)
3560 #endif
3562 #define global_rtl \
3563 (this_target_rtl->x_global_rtl)
3564 #define pic_offset_table_rtx \
3565 (this_target_rtl->x_pic_offset_table_rtx)
3566 #define return_address_pointer_rtx \
3567 (this_target_rtl->x_return_address_pointer_rtx)
3568 #define top_of_stack \
3569 (this_target_rtl->x_top_of_stack)
3570 #define mode_mem_attrs \
3571 (this_target_rtl->x_mode_mem_attrs)
3573 /* All references to certain hard regs, except those created
3574 by allocating pseudo regs into them (when that's possible),
3575 go through these unique rtx objects. */
3576 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3577 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3578 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3579 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3581 #ifndef GENERATOR_FILE
3582 /* Return the attributes of a MEM rtx. */
3583 static inline const struct mem_attrs *
3584 get_mem_attrs (const_rtx x)
3586 struct mem_attrs *attrs;
3588 attrs = MEM_ATTRS (x);
3589 if (!attrs)
3590 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3591 return attrs;
3593 #endif
3595 /* Include the RTL generation functions. */
3597 #ifndef GENERATOR_FILE
3598 #include "genrtl.h"
3599 #undef gen_rtx_ASM_INPUT
3600 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3601 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3602 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3603 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3604 #endif
3606 /* There are some RTL codes that require special attention; the
3607 generation functions included above do the raw handling. If you
3608 add to this list, modify special_rtx in gengenrtl.c as well. */
3610 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3611 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3612 extern rtx_insn *
3613 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3614 basic_block bb, rtx pattern, int location, int code,
3615 rtx reg_notes);
3616 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3617 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3618 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3619 extern rtx gen_raw_REG (machine_mode, unsigned int);
3620 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3621 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3622 extern rtx gen_rtx_MEM (machine_mode, rtx);
3623 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3624 enum var_init_status);
3626 #ifdef GENERATOR_FILE
3627 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3628 #else
3629 static inline void
3630 PUT_MODE (rtx x, machine_mode mode)
3632 if (REG_P (x))
3633 set_mode_and_regno (x, mode, REGNO (x));
3634 else
3635 PUT_MODE_RAW (x, mode);
3637 #endif
3639 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3641 /* Virtual registers are used during RTL generation to refer to locations into
3642 the stack frame when the actual location isn't known until RTL generation
3643 is complete. The routine instantiate_virtual_regs replaces these with
3644 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3645 a constant. */
3647 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3649 /* This points to the first word of the incoming arguments passed on the stack,
3650 either by the caller or by the callee when pretending it was passed by the
3651 caller. */
3653 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3655 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3657 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3658 variable on the stack. Otherwise, it points to the first variable on
3659 the stack. */
3661 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3663 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3665 /* This points to the location of dynamically-allocated memory on the stack
3666 immediately after the stack pointer has been adjusted by the amount
3667 desired. */
3669 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3671 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3673 /* This points to the location in the stack at which outgoing arguments should
3674 be written when the stack is pre-pushed (arguments pushed using push
3675 insns always use sp). */
3677 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3679 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3681 /* This points to the Canonical Frame Address of the function. This
3682 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3683 but is calculated relative to the arg pointer for simplicity; the
3684 frame pointer nor stack pointer are necessarily fixed relative to
3685 the CFA until after reload. */
3687 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3689 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3691 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3693 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3694 when finalized. */
3696 #define virtual_preferred_stack_boundary_rtx \
3697 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3699 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3700 ((FIRST_VIRTUAL_REGISTER) + 5)
3702 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3704 /* Nonzero if REGNUM is a pointer into the stack frame. */
3705 #define REGNO_PTR_FRAME_P(REGNUM) \
3706 ((REGNUM) == STACK_POINTER_REGNUM \
3707 || (REGNUM) == FRAME_POINTER_REGNUM \
3708 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3709 || (REGNUM) == ARG_POINTER_REGNUM \
3710 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3711 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3713 /* REGNUM never really appearing in the INSN stream. */
3714 #define INVALID_REGNUM (~(unsigned int) 0)
3716 /* REGNUM for which no debug information can be generated. */
3717 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3719 extern rtx output_constant_def (tree, int);
3720 extern rtx lookup_constant_def (tree);
3722 /* Nonzero after end of reload pass.
3723 Set to 1 or 0 by reload1.c. */
3725 extern int reload_completed;
3727 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3728 extern int epilogue_completed;
3730 /* Set to 1 while reload_as_needed is operating.
3731 Required by some machines to handle any generated moves differently. */
3733 extern int reload_in_progress;
3735 /* Set to 1 while in lra. */
3736 extern int lra_in_progress;
3738 /* This macro indicates whether you may create a new
3739 pseudo-register. */
3741 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3743 #ifdef STACK_REGS
3744 /* Nonzero after end of regstack pass.
3745 Set to 1 or 0 by reg-stack.c. */
3746 extern int regstack_completed;
3747 #endif
3749 /* If this is nonzero, we do not bother generating VOLATILE
3750 around volatile memory references, and we are willing to
3751 output indirect addresses. If cse is to follow, we reject
3752 indirect addresses so a useful potential cse is generated;
3753 if it is used only once, instruction combination will produce
3754 the same indirect address eventually. */
3755 extern int cse_not_expected;
3757 /* Translates rtx code to tree code, for those codes needed by
3758 real_arithmetic. The function returns an int because the caller may not
3759 know what `enum tree_code' means. */
3761 extern int rtx_to_tree_code (enum rtx_code);
3763 /* In cse.c */
3764 extern int delete_trivially_dead_insns (rtx_insn *, int);
3765 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3766 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3768 /* In dse.c */
3769 extern bool check_for_inc_dec (rtx_insn *insn);
3771 /* In jump.c */
3772 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3773 extern bool jump_to_label_p (const rtx_insn *);
3774 extern int condjump_p (const rtx_insn *);
3775 extern int any_condjump_p (const rtx_insn *);
3776 extern int any_uncondjump_p (const rtx_insn *);
3777 extern rtx pc_set (const rtx_insn *);
3778 extern rtx condjump_label (const rtx_insn *);
3779 extern int simplejump_p (const rtx_insn *);
3780 extern int returnjump_p (const rtx_insn *);
3781 extern int eh_returnjump_p (rtx_insn *);
3782 extern int onlyjump_p (const rtx_insn *);
3783 extern int only_sets_cc0_p (const_rtx);
3784 extern int sets_cc0_p (const_rtx);
3785 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3786 extern int invert_jump (rtx_jump_insn *, rtx, int);
3787 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3788 extern int true_regnum (const_rtx);
3789 extern unsigned int reg_or_subregno (const_rtx);
3790 extern int redirect_jump_1 (rtx_insn *, rtx);
3791 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3792 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3793 extern void rebuild_jump_labels (rtx_insn *);
3794 extern void rebuild_jump_labels_chain (rtx_insn *);
3795 extern rtx reversed_comparison (const_rtx, machine_mode);
3796 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3797 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3798 const_rtx, const rtx_insn *);
3799 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3800 extern int condjump_in_parallel_p (const rtx_insn *);
3802 /* In emit-rtl.c. */
3803 extern int max_reg_num (void);
3804 extern int max_label_num (void);
3805 extern int get_first_label_num (void);
3806 extern void maybe_set_first_label_num (rtx_code_label *);
3807 extern void delete_insns_since (rtx_insn *);
3808 extern void mark_reg_pointer (rtx, int);
3809 extern void mark_user_reg (rtx);
3810 extern void reset_used_flags (rtx);
3811 extern void set_used_flags (rtx);
3812 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3813 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3814 extern int get_max_insn_count (void);
3815 extern int in_sequence_p (void);
3816 extern void init_emit (void);
3817 extern void init_emit_regs (void);
3818 extern void init_derived_machine_modes (void);
3819 extern void init_emit_once (void);
3820 extern void push_topmost_sequence (void);
3821 extern void pop_topmost_sequence (void);
3822 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3823 extern unsigned int unshare_all_rtl (void);
3824 extern void unshare_all_rtl_again (rtx_insn *);
3825 extern void unshare_all_rtl_in_chain (rtx_insn *);
3826 extern void verify_rtl_sharing (void);
3827 extern void add_insn (rtx_insn *);
3828 extern void add_insn_before (rtx, rtx, basic_block);
3829 extern void add_insn_after (rtx, rtx, basic_block);
3830 extern void remove_insn (rtx);
3831 extern rtx_insn *emit (rtx, bool = true);
3832 extern void emit_insn_at_entry (rtx);
3833 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3834 extern rtx gen_const_mem (machine_mode, rtx);
3835 extern rtx gen_frame_mem (machine_mode, rtx);
3836 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3837 extern bool validate_subreg (machine_mode, machine_mode,
3838 const_rtx, unsigned int);
3840 /* In combine.c */
3841 extern unsigned int extended_count (const_rtx, machine_mode, int);
3842 extern rtx remove_death (unsigned int, rtx_insn *);
3843 extern void dump_combine_stats (FILE *);
3844 extern void dump_combine_total_stats (FILE *);
3845 extern rtx make_compound_operation (rtx, enum rtx_code);
3847 /* In sched-rgn.c. */
3848 extern void schedule_insns (void);
3850 /* In sched-ebb.c. */
3851 extern void schedule_ebbs (void);
3853 /* In sel-sched-dump.c. */
3854 extern void sel_sched_fix_param (const char *param, const char *val);
3856 /* In print-rtl.c */
3857 extern const char *print_rtx_head;
3858 extern void debug (const rtx_def &ref);
3859 extern void debug (const rtx_def *ptr);
3860 extern void debug_rtx (const_rtx);
3861 extern void debug_rtx_list (const rtx_insn *, int);
3862 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3863 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
3864 extern void print_mem_expr (FILE *, const_tree);
3865 extern void print_rtl (FILE *, const_rtx);
3866 extern void print_simple_rtl (FILE *, const_rtx);
3867 extern int print_rtl_single (FILE *, const_rtx);
3868 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3869 extern void print_inline_rtx (FILE *, const_rtx, int);
3871 /* In stmt.c */
3872 extern void expand_null_return (void);
3873 extern void expand_naked_return (void);
3874 extern void emit_jump (rtx);
3876 /* In expr.c */
3877 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3878 unsigned int, int);
3879 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3880 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3882 /* In expmed.c */
3883 extern void init_expmed (void);
3884 extern void expand_inc (rtx, rtx);
3885 extern void expand_dec (rtx, rtx);
3887 /* In lower-subreg.c */
3888 extern void init_lower_subreg (void);
3890 /* In gcse.c */
3891 extern bool can_copy_p (machine_mode);
3892 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
3893 extern rtx fis_get_condition (rtx_insn *);
3895 /* In ira.c */
3896 extern HARD_REG_SET eliminable_regset;
3897 extern void mark_elimination (int, int);
3899 /* In reginfo.c */
3900 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3901 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3902 extern void globalize_reg (tree, int);
3903 extern void init_reg_modes_target (void);
3904 extern void init_regs (void);
3905 extern void reinit_regs (void);
3906 extern void init_fake_stack_mems (void);
3907 extern void save_register_info (void);
3908 extern void init_reg_sets (void);
3909 extern void regclass (rtx, int);
3910 extern void reg_scan (rtx_insn *, unsigned int);
3911 extern void fix_register (const char *, int, int);
3912 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3914 /* In reload1.c */
3915 extern int function_invariant_p (const_rtx);
3917 /* In calls.c */
3918 enum libcall_type
3920 LCT_NORMAL = 0,
3921 LCT_CONST = 1,
3922 LCT_PURE = 2,
3923 LCT_NORETURN = 3,
3924 LCT_THROW = 4,
3925 LCT_RETURNS_TWICE = 5
3928 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
3929 machine_mode, int, rtx_mode_t *);
3931 /* Output a library call and discard the returned value. FUN is the
3932 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
3933 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
3934 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
3935 another LCT_ value for other types of library calls.
3937 There are different overloads of this function for different numbers
3938 of arguments. In each case the argument value is followed by its mode. */
3940 inline void
3941 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
3943 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
3946 inline void
3947 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
3948 rtx arg1, machine_mode arg1_mode)
3950 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
3951 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
3954 inline void
3955 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
3956 rtx arg1, machine_mode arg1_mode,
3957 rtx arg2, machine_mode arg2_mode)
3959 rtx_mode_t args[] = {
3960 rtx_mode_t (arg1, arg1_mode),
3961 rtx_mode_t (arg2, arg2_mode)
3963 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
3966 inline void
3967 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
3968 rtx arg1, machine_mode arg1_mode,
3969 rtx arg2, machine_mode arg2_mode,
3970 rtx arg3, machine_mode arg3_mode)
3972 rtx_mode_t args[] = {
3973 rtx_mode_t (arg1, arg1_mode),
3974 rtx_mode_t (arg2, arg2_mode),
3975 rtx_mode_t (arg3, arg3_mode)
3977 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
3980 inline void
3981 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
3982 rtx arg1, machine_mode arg1_mode,
3983 rtx arg2, machine_mode arg2_mode,
3984 rtx arg3, machine_mode arg3_mode,
3985 rtx arg4, machine_mode arg4_mode)
3987 rtx_mode_t args[] = {
3988 rtx_mode_t (arg1, arg1_mode),
3989 rtx_mode_t (arg2, arg2_mode),
3990 rtx_mode_t (arg3, arg3_mode),
3991 rtx_mode_t (arg4, arg4_mode)
3993 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
3996 /* Like emit_library_call, but return the value produced by the call.
3997 Use VALUE to store the result if it is nonnull, otherwise pick a
3998 convenient location. */
4000 inline rtx
4001 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4002 machine_mode outmode)
4004 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4007 inline rtx
4008 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4009 machine_mode outmode,
4010 rtx arg1, machine_mode arg1_mode)
4012 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4013 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4016 inline rtx
4017 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4018 machine_mode outmode,
4019 rtx arg1, machine_mode arg1_mode,
4020 rtx arg2, machine_mode arg2_mode)
4022 rtx_mode_t args[] = {
4023 rtx_mode_t (arg1, arg1_mode),
4024 rtx_mode_t (arg2, arg2_mode)
4026 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4029 inline rtx
4030 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4031 machine_mode outmode,
4032 rtx arg1, machine_mode arg1_mode,
4033 rtx arg2, machine_mode arg2_mode,
4034 rtx arg3, machine_mode arg3_mode)
4036 rtx_mode_t args[] = {
4037 rtx_mode_t (arg1, arg1_mode),
4038 rtx_mode_t (arg2, arg2_mode),
4039 rtx_mode_t (arg3, arg3_mode)
4041 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4044 inline rtx
4045 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4046 machine_mode outmode,
4047 rtx arg1, machine_mode arg1_mode,
4048 rtx arg2, machine_mode arg2_mode,
4049 rtx arg3, machine_mode arg3_mode,
4050 rtx arg4, machine_mode arg4_mode)
4052 rtx_mode_t args[] = {
4053 rtx_mode_t (arg1, arg1_mode),
4054 rtx_mode_t (arg2, arg2_mode),
4055 rtx_mode_t (arg3, arg3_mode),
4056 rtx_mode_t (arg4, arg4_mode)
4058 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4061 /* In varasm.c */
4062 extern void init_varasm_once (void);
4064 extern rtx make_debug_expr_from_rtl (const_rtx);
4066 /* In read-rtl.c */
4067 #ifdef GENERATOR_FILE
4068 extern bool read_rtx (const char *, vec<rtx> *);
4069 #endif
4071 /* In alias.c */
4072 extern rtx canon_rtx (rtx);
4073 extern int true_dependence (const_rtx, machine_mode, const_rtx);
4074 extern rtx get_addr (rtx);
4075 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4076 const_rtx, rtx);
4077 extern int read_dependence (const_rtx, const_rtx);
4078 extern int anti_dependence (const_rtx, const_rtx);
4079 extern int canon_anti_dependence (const_rtx, bool,
4080 const_rtx, machine_mode, rtx);
4081 extern int output_dependence (const_rtx, const_rtx);
4082 extern int canon_output_dependence (const_rtx, bool,
4083 const_rtx, machine_mode, rtx);
4084 extern int may_alias_p (const_rtx, const_rtx);
4085 extern void init_alias_target (void);
4086 extern void init_alias_analysis (void);
4087 extern void end_alias_analysis (void);
4088 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4089 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4090 extern bool may_be_sp_based_p (rtx);
4091 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4092 extern rtx get_reg_known_value (unsigned int);
4093 extern bool get_reg_known_equiv_p (unsigned int);
4094 extern rtx get_reg_base_value (unsigned int);
4096 #ifdef STACK_REGS
4097 extern int stack_regs_mentioned (const_rtx insn);
4098 #endif
4100 /* In toplev.c */
4101 extern GTY(()) rtx stack_limit_rtx;
4103 /* In var-tracking.c */
4104 extern unsigned int variable_tracking_main (void);
4106 /* In stor-layout.c. */
4107 extern void get_mode_bounds (scalar_int_mode, int,
4108 scalar_int_mode, rtx *, rtx *);
4110 /* In loop-iv.c */
4111 extern rtx canon_condition (rtx);
4112 extern void simplify_using_condition (rtx, rtx *, bitmap);
4114 /* In final.c */
4115 extern unsigned int compute_alignments (void);
4116 extern void update_alignments (vec<rtx> &);
4117 extern int asm_str_count (const char *templ);
4119 struct rtl_hooks
4121 rtx (*gen_lowpart) (machine_mode, rtx);
4122 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4123 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4124 unsigned HOST_WIDE_INT *);
4125 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4126 unsigned int *);
4127 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4129 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4132 /* Each pass can provide its own. */
4133 extern struct rtl_hooks rtl_hooks;
4135 /* ... but then it has to restore these. */
4136 extern const struct rtl_hooks general_rtl_hooks;
4138 /* Keep this for the nonce. */
4139 #define gen_lowpart rtl_hooks.gen_lowpart
4141 extern void insn_locations_init (void);
4142 extern void insn_locations_finalize (void);
4143 extern void set_curr_insn_location (location_t);
4144 extern location_t curr_insn_location (void);
4146 /* rtl-error.c */
4147 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4148 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4149 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4150 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4152 #define fatal_insn(msgid, insn) \
4153 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4154 #define fatal_insn_not_found(insn) \
4155 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4157 /* reginfo.c */
4158 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4160 /* Information about the function that is propagated by the RTL backend.
4161 Available only for functions that has been already assembled. */
4163 struct GTY(()) cgraph_rtl_info {
4164 unsigned int preferred_incoming_stack_boundary;
4166 /* Call unsaved hard registers really used by the corresponding
4167 function (including ones used by functions called by the
4168 function). */
4169 HARD_REG_SET function_used_regs;
4170 /* Set if function_used_regs is valid. */
4171 unsigned function_used_regs_valid: 1;
4174 /* If loads from memories of mode MODE always sign or zero extend,
4175 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4176 otherwise. */
4178 inline rtx_code
4179 load_extend_op (machine_mode mode)
4181 scalar_int_mode int_mode;
4182 if (is_a <scalar_int_mode> (mode, &int_mode)
4183 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4184 return LOAD_EXTEND_OP (int_mode);
4185 return UNKNOWN;
4188 /* gtype-desc.c. */
4189 extern void gt_ggc_mx (rtx &);
4190 extern void gt_pch_nx (rtx &);
4191 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4193 #endif /* ! GCC_RTL_H */