2011-06-16 Tom de Vries <tom@codesourcery.com>
[official-gcc.git] / gcc / tree-ssa-loop-im.c
blob778edd49ff0ecca173d38175582f34bea85213ca
1 /* Loop invariant motion.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "output.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "cfgloop.h"
35 #include "domwalk.h"
36 #include "params.h"
37 #include "tree-pass.h"
38 #include "flags.h"
39 #include "hashtab.h"
40 #include "tree-affine.h"
41 #include "pointer-set.h"
42 #include "tree-ssa-propagate.h"
44 /* TODO: Support for predicated code motion. I.e.
46 while (1)
48 if (cond)
50 a = inv;
51 something;
55 Where COND and INV are is invariants, but evaluating INV may trap or be
56 invalid from some other reason if !COND. This may be transformed to
58 if (cond)
59 a = inv;
60 while (1)
62 if (cond)
63 something;
64 } */
66 /* A type for the list of statements that have to be moved in order to be able
67 to hoist an invariant computation. */
69 struct depend
71 gimple stmt;
72 struct depend *next;
75 /* The auxiliary data kept for each statement. */
77 struct lim_aux_data
79 struct loop *max_loop; /* The outermost loop in that the statement
80 is invariant. */
82 struct loop *tgt_loop; /* The loop out of that we want to move the
83 invariant. */
85 struct loop *always_executed_in;
86 /* The outermost loop for that we are sure
87 the statement is executed if the loop
88 is entered. */
90 unsigned cost; /* Cost of the computation performed by the
91 statement. */
93 struct depend *depends; /* List of statements that must be also hoisted
94 out of the loop when this statement is
95 hoisted; i.e. those that define the operands
96 of the statement and are inside of the
97 MAX_LOOP loop. */
100 /* Maps statements to their lim_aux_data. */
102 static struct pointer_map_t *lim_aux_data_map;
104 /* Description of a memory reference location. */
106 typedef struct mem_ref_loc
108 tree *ref; /* The reference itself. */
109 gimple stmt; /* The statement in that it occurs. */
110 } *mem_ref_loc_p;
112 DEF_VEC_P(mem_ref_loc_p);
113 DEF_VEC_ALLOC_P(mem_ref_loc_p, heap);
115 /* The list of memory reference locations in a loop. */
117 typedef struct mem_ref_locs
119 VEC (mem_ref_loc_p, heap) *locs;
120 } *mem_ref_locs_p;
122 DEF_VEC_P(mem_ref_locs_p);
123 DEF_VEC_ALLOC_P(mem_ref_locs_p, heap);
125 /* Description of a memory reference. */
127 typedef struct mem_ref
129 tree mem; /* The memory itself. */
130 unsigned id; /* ID assigned to the memory reference
131 (its index in memory_accesses.refs_list) */
132 hashval_t hash; /* Its hash value. */
133 bitmap stored; /* The set of loops in that this memory location
134 is stored to. */
135 VEC (mem_ref_locs_p, heap) *accesses_in_loop;
136 /* The locations of the accesses. Vector
137 indexed by the loop number. */
138 bitmap vops; /* Vops corresponding to this memory
139 location. */
141 /* The following sets are computed on demand. We keep both set and
142 its complement, so that we know whether the information was
143 already computed or not. */
144 bitmap indep_loop; /* The set of loops in that the memory
145 reference is independent, meaning:
146 If it is stored in the loop, this store
147 is independent on all other loads and
148 stores.
149 If it is only loaded, then it is independent
150 on all stores in the loop. */
151 bitmap dep_loop; /* The complement of INDEP_LOOP. */
153 bitmap indep_ref; /* The set of memory references on that
154 this reference is independent. */
155 bitmap dep_ref; /* The complement of DEP_REF. */
156 } *mem_ref_p;
158 DEF_VEC_P(mem_ref_p);
159 DEF_VEC_ALLOC_P(mem_ref_p, heap);
161 DEF_VEC_P(bitmap);
162 DEF_VEC_ALLOC_P(bitmap, heap);
164 DEF_VEC_P(htab_t);
165 DEF_VEC_ALLOC_P(htab_t, heap);
167 /* Description of memory accesses in loops. */
169 static struct
171 /* The hash table of memory references accessed in loops. */
172 htab_t refs;
174 /* The list of memory references. */
175 VEC (mem_ref_p, heap) *refs_list;
177 /* The set of memory references accessed in each loop. */
178 VEC (bitmap, heap) *refs_in_loop;
180 /* The set of memory references accessed in each loop, including
181 subloops. */
182 VEC (bitmap, heap) *all_refs_in_loop;
184 /* The set of virtual operands clobbered in a given loop. */
185 VEC (bitmap, heap) *clobbered_vops;
187 /* Map from the pair (loop, virtual operand) to the set of refs that
188 touch the virtual operand in the loop. */
189 VEC (htab_t, heap) *vop_ref_map;
191 /* Cache for expanding memory addresses. */
192 struct pointer_map_t *ttae_cache;
193 } memory_accesses;
195 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
197 /* Minimum cost of an expensive expression. */
198 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
200 /* The outermost loop for which execution of the header guarantees that the
201 block will be executed. */
202 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
203 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
205 static struct lim_aux_data *
206 init_lim_data (gimple stmt)
208 void **p = pointer_map_insert (lim_aux_data_map, stmt);
210 *p = XCNEW (struct lim_aux_data);
211 return (struct lim_aux_data *) *p;
214 static struct lim_aux_data *
215 get_lim_data (gimple stmt)
217 void **p = pointer_map_contains (lim_aux_data_map, stmt);
218 if (!p)
219 return NULL;
221 return (struct lim_aux_data *) *p;
224 /* Releases the memory occupied by DATA. */
226 static void
227 free_lim_aux_data (struct lim_aux_data *data)
229 struct depend *dep, *next;
231 for (dep = data->depends; dep; dep = next)
233 next = dep->next;
234 free (dep);
236 free (data);
239 static void
240 clear_lim_data (gimple stmt)
242 void **p = pointer_map_contains (lim_aux_data_map, stmt);
243 if (!p)
244 return;
246 free_lim_aux_data ((struct lim_aux_data *) *p);
247 *p = NULL;
250 /* Calls CBCK for each index in memory reference ADDR_P. There are two
251 kinds situations handled; in each of these cases, the memory reference
252 and DATA are passed to the callback:
254 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
255 pass the pointer to the index to the callback.
257 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
258 pointer to addr to the callback.
260 If the callback returns false, the whole search stops and false is returned.
261 Otherwise the function returns true after traversing through the whole
262 reference *ADDR_P. */
264 bool
265 for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
267 tree *nxt, *idx;
269 for (; ; addr_p = nxt)
271 switch (TREE_CODE (*addr_p))
273 case SSA_NAME:
274 return cbck (*addr_p, addr_p, data);
276 case MEM_REF:
277 nxt = &TREE_OPERAND (*addr_p, 0);
278 return cbck (*addr_p, nxt, data);
280 case BIT_FIELD_REF:
281 case VIEW_CONVERT_EXPR:
282 case REALPART_EXPR:
283 case IMAGPART_EXPR:
284 nxt = &TREE_OPERAND (*addr_p, 0);
285 break;
287 case COMPONENT_REF:
288 /* If the component has varying offset, it behaves like index
289 as well. */
290 idx = &TREE_OPERAND (*addr_p, 2);
291 if (*idx
292 && !cbck (*addr_p, idx, data))
293 return false;
295 nxt = &TREE_OPERAND (*addr_p, 0);
296 break;
298 case ARRAY_REF:
299 case ARRAY_RANGE_REF:
300 nxt = &TREE_OPERAND (*addr_p, 0);
301 if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
302 return false;
303 break;
305 case VAR_DECL:
306 case PARM_DECL:
307 case STRING_CST:
308 case RESULT_DECL:
309 case VECTOR_CST:
310 case COMPLEX_CST:
311 case INTEGER_CST:
312 case REAL_CST:
313 case FIXED_CST:
314 case CONSTRUCTOR:
315 return true;
317 case ADDR_EXPR:
318 gcc_assert (is_gimple_min_invariant (*addr_p));
319 return true;
321 case TARGET_MEM_REF:
322 idx = &TMR_BASE (*addr_p);
323 if (*idx
324 && !cbck (*addr_p, idx, data))
325 return false;
326 idx = &TMR_INDEX (*addr_p);
327 if (*idx
328 && !cbck (*addr_p, idx, data))
329 return false;
330 idx = &TMR_INDEX2 (*addr_p);
331 if (*idx
332 && !cbck (*addr_p, idx, data))
333 return false;
334 return true;
336 default:
337 gcc_unreachable ();
342 /* If it is possible to hoist the statement STMT unconditionally,
343 returns MOVE_POSSIBLE.
344 If it is possible to hoist the statement STMT, but we must avoid making
345 it executed if it would not be executed in the original program (e.g.
346 because it may trap), return MOVE_PRESERVE_EXECUTION.
347 Otherwise return MOVE_IMPOSSIBLE. */
349 enum move_pos
350 movement_possibility (gimple stmt)
352 tree lhs;
353 enum move_pos ret = MOVE_POSSIBLE;
355 if (flag_unswitch_loops
356 && gimple_code (stmt) == GIMPLE_COND)
358 /* If we perform unswitching, force the operands of the invariant
359 condition to be moved out of the loop. */
360 return MOVE_POSSIBLE;
363 if (gimple_code (stmt) == GIMPLE_PHI
364 && gimple_phi_num_args (stmt) <= 2
365 && is_gimple_reg (gimple_phi_result (stmt))
366 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
367 return MOVE_POSSIBLE;
369 if (gimple_get_lhs (stmt) == NULL_TREE)
370 return MOVE_IMPOSSIBLE;
372 if (gimple_vdef (stmt))
373 return MOVE_IMPOSSIBLE;
375 if (stmt_ends_bb_p (stmt)
376 || gimple_has_volatile_ops (stmt)
377 || gimple_has_side_effects (stmt)
378 || stmt_could_throw_p (stmt))
379 return MOVE_IMPOSSIBLE;
381 if (is_gimple_call (stmt))
383 /* While pure or const call is guaranteed to have no side effects, we
384 cannot move it arbitrarily. Consider code like
386 char *s = something ();
388 while (1)
390 if (s)
391 t = strlen (s);
392 else
393 t = 0;
396 Here the strlen call cannot be moved out of the loop, even though
397 s is invariant. In addition to possibly creating a call with
398 invalid arguments, moving out a function call that is not executed
399 may cause performance regressions in case the call is costly and
400 not executed at all. */
401 ret = MOVE_PRESERVE_EXECUTION;
402 lhs = gimple_call_lhs (stmt);
404 else if (is_gimple_assign (stmt))
405 lhs = gimple_assign_lhs (stmt);
406 else
407 return MOVE_IMPOSSIBLE;
409 if (TREE_CODE (lhs) == SSA_NAME
410 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
411 return MOVE_IMPOSSIBLE;
413 if (TREE_CODE (lhs) != SSA_NAME
414 || gimple_could_trap_p (stmt))
415 return MOVE_PRESERVE_EXECUTION;
417 return ret;
420 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
421 loop to that we could move the expression using DEF if it did not have
422 other operands, i.e. the outermost loop enclosing LOOP in that the value
423 of DEF is invariant. */
425 static struct loop *
426 outermost_invariant_loop (tree def, struct loop *loop)
428 gimple def_stmt;
429 basic_block def_bb;
430 struct loop *max_loop;
431 struct lim_aux_data *lim_data;
433 if (!def)
434 return superloop_at_depth (loop, 1);
436 if (TREE_CODE (def) != SSA_NAME)
438 gcc_assert (is_gimple_min_invariant (def));
439 return superloop_at_depth (loop, 1);
442 def_stmt = SSA_NAME_DEF_STMT (def);
443 def_bb = gimple_bb (def_stmt);
444 if (!def_bb)
445 return superloop_at_depth (loop, 1);
447 max_loop = find_common_loop (loop, def_bb->loop_father);
449 lim_data = get_lim_data (def_stmt);
450 if (lim_data != NULL && lim_data->max_loop != NULL)
451 max_loop = find_common_loop (max_loop,
452 loop_outer (lim_data->max_loop));
453 if (max_loop == loop)
454 return NULL;
455 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
457 return max_loop;
460 /* DATA is a structure containing information associated with a statement
461 inside LOOP. DEF is one of the operands of this statement.
463 Find the outermost loop enclosing LOOP in that value of DEF is invariant
464 and record this in DATA->max_loop field. If DEF itself is defined inside
465 this loop as well (i.e. we need to hoist it out of the loop if we want
466 to hoist the statement represented by DATA), record the statement in that
467 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
468 add the cost of the computation of DEF to the DATA->cost.
470 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
472 static bool
473 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
474 bool add_cost)
476 gimple def_stmt = SSA_NAME_DEF_STMT (def);
477 basic_block def_bb = gimple_bb (def_stmt);
478 struct loop *max_loop;
479 struct depend *dep;
480 struct lim_aux_data *def_data;
482 if (!def_bb)
483 return true;
485 max_loop = outermost_invariant_loop (def, loop);
486 if (!max_loop)
487 return false;
489 if (flow_loop_nested_p (data->max_loop, max_loop))
490 data->max_loop = max_loop;
492 def_data = get_lim_data (def_stmt);
493 if (!def_data)
494 return true;
496 if (add_cost
497 /* Only add the cost if the statement defining DEF is inside LOOP,
498 i.e. if it is likely that by moving the invariants dependent
499 on it, we will be able to avoid creating a new register for
500 it (since it will be only used in these dependent invariants). */
501 && def_bb->loop_father == loop)
502 data->cost += def_data->cost;
504 dep = XNEW (struct depend);
505 dep->stmt = def_stmt;
506 dep->next = data->depends;
507 data->depends = dep;
509 return true;
512 /* Returns an estimate for a cost of statement STMT. TODO -- the values here
513 are just ad-hoc constants. The estimates should be based on target-specific
514 values. */
516 static unsigned
517 stmt_cost (gimple stmt)
519 tree fndecl;
520 unsigned cost = 1;
522 /* Always try to create possibilities for unswitching. */
523 if (gimple_code (stmt) == GIMPLE_COND
524 || gimple_code (stmt) == GIMPLE_PHI)
525 return LIM_EXPENSIVE;
527 /* Hoisting memory references out should almost surely be a win. */
528 if (gimple_references_memory_p (stmt))
529 cost += 20;
531 if (is_gimple_call (stmt))
533 /* We should be hoisting calls if possible. */
535 /* Unless the call is a builtin_constant_p; this always folds to a
536 constant, so moving it is useless. */
537 fndecl = gimple_call_fndecl (stmt);
538 if (fndecl
539 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
540 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
541 return 0;
543 return cost + 20;
546 if (gimple_code (stmt) != GIMPLE_ASSIGN)
547 return cost;
549 switch (gimple_assign_rhs_code (stmt))
551 case MULT_EXPR:
552 case TRUNC_DIV_EXPR:
553 case CEIL_DIV_EXPR:
554 case FLOOR_DIV_EXPR:
555 case ROUND_DIV_EXPR:
556 case EXACT_DIV_EXPR:
557 case CEIL_MOD_EXPR:
558 case FLOOR_MOD_EXPR:
559 case ROUND_MOD_EXPR:
560 case TRUNC_MOD_EXPR:
561 case RDIV_EXPR:
562 /* Division and multiplication are usually expensive. */
563 cost += 20;
564 break;
566 case LSHIFT_EXPR:
567 case RSHIFT_EXPR:
568 cost += 20;
569 break;
571 default:
572 break;
575 return cost;
578 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
579 REF is independent. If REF is not independent in LOOP, NULL is returned
580 instead. */
582 static struct loop *
583 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
585 struct loop *aloop;
587 if (bitmap_bit_p (ref->stored, loop->num))
588 return NULL;
590 for (aloop = outer;
591 aloop != loop;
592 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
593 if (!bitmap_bit_p (ref->stored, aloop->num)
594 && ref_indep_loop_p (aloop, ref))
595 return aloop;
597 if (ref_indep_loop_p (loop, ref))
598 return loop;
599 else
600 return NULL;
603 /* If there is a simple load or store to a memory reference in STMT, returns
604 the location of the memory reference, and sets IS_STORE according to whether
605 it is a store or load. Otherwise, returns NULL. */
607 static tree *
608 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
610 tree *lhs;
611 enum tree_code code;
613 /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns. */
614 if (gimple_code (stmt) != GIMPLE_ASSIGN)
615 return NULL;
617 code = gimple_assign_rhs_code (stmt);
619 lhs = gimple_assign_lhs_ptr (stmt);
621 if (TREE_CODE (*lhs) == SSA_NAME)
623 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS
624 || !is_gimple_addressable (gimple_assign_rhs1 (stmt)))
625 return NULL;
627 *is_store = false;
628 return gimple_assign_rhs1_ptr (stmt);
630 else if (code == SSA_NAME
631 || (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
632 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
634 *is_store = true;
635 return lhs;
637 else
638 return NULL;
641 /* Returns the memory reference contained in STMT. */
643 static mem_ref_p
644 mem_ref_in_stmt (gimple stmt)
646 bool store;
647 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
648 hashval_t hash;
649 mem_ref_p ref;
651 if (!mem)
652 return NULL;
653 gcc_assert (!store);
655 hash = iterative_hash_expr (*mem, 0);
656 ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
658 gcc_assert (ref != NULL);
659 return ref;
662 /* From a controlling predicate in DOM determine the arguments from
663 the PHI node PHI that are chosen if the predicate evaluates to
664 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
665 they are non-NULL. Returns true if the arguments can be determined,
666 else return false. */
668 static bool
669 extract_true_false_args_from_phi (basic_block dom, gimple phi,
670 tree *true_arg_p, tree *false_arg_p)
672 basic_block bb = gimple_bb (phi);
673 edge true_edge, false_edge, tem;
674 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
676 /* We have to verify that one edge into the PHI node is dominated
677 by the true edge of the predicate block and the other edge
678 dominated by the false edge. This ensures that the PHI argument
679 we are going to take is completely determined by the path we
680 take from the predicate block.
681 We can only use BB dominance checks below if the destination of
682 the true/false edges are dominated by their edge, thus only
683 have a single predecessor. */
684 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
685 tem = EDGE_PRED (bb, 0);
686 if (tem == true_edge
687 || (single_pred_p (true_edge->dest)
688 && (tem->src == true_edge->dest
689 || dominated_by_p (CDI_DOMINATORS,
690 tem->src, true_edge->dest))))
691 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
692 else if (tem == false_edge
693 || (single_pred_p (false_edge->dest)
694 && (tem->src == false_edge->dest
695 || dominated_by_p (CDI_DOMINATORS,
696 tem->src, false_edge->dest))))
697 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
698 else
699 return false;
700 tem = EDGE_PRED (bb, 1);
701 if (tem == true_edge
702 || (single_pred_p (true_edge->dest)
703 && (tem->src == true_edge->dest
704 || dominated_by_p (CDI_DOMINATORS,
705 tem->src, true_edge->dest))))
706 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
707 else if (tem == false_edge
708 || (single_pred_p (false_edge->dest)
709 && (tem->src == false_edge->dest
710 || dominated_by_p (CDI_DOMINATORS,
711 tem->src, false_edge->dest))))
712 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
713 else
714 return false;
715 if (!arg0 || !arg1)
716 return false;
718 if (true_arg_p)
719 *true_arg_p = arg0;
720 if (false_arg_p)
721 *false_arg_p = arg1;
723 return true;
726 /* Determine the outermost loop to that it is possible to hoist a statement
727 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
728 the outermost loop in that the value computed by STMT is invariant.
729 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
730 we preserve the fact whether STMT is executed. It also fills other related
731 information to LIM_DATA (STMT).
733 The function returns false if STMT cannot be hoisted outside of the loop it
734 is defined in, and true otherwise. */
736 static bool
737 determine_max_movement (gimple stmt, bool must_preserve_exec)
739 basic_block bb = gimple_bb (stmt);
740 struct loop *loop = bb->loop_father;
741 struct loop *level;
742 struct lim_aux_data *lim_data = get_lim_data (stmt);
743 tree val;
744 ssa_op_iter iter;
746 if (must_preserve_exec)
747 level = ALWAYS_EXECUTED_IN (bb);
748 else
749 level = superloop_at_depth (loop, 1);
750 lim_data->max_loop = level;
752 if (gimple_code (stmt) == GIMPLE_PHI)
754 use_operand_p use_p;
755 unsigned min_cost = UINT_MAX;
756 unsigned total_cost = 0;
757 struct lim_aux_data *def_data;
759 /* We will end up promoting dependencies to be unconditionally
760 evaluated. For this reason the PHI cost (and thus the
761 cost we remove from the loop by doing the invariant motion)
762 is that of the cheapest PHI argument dependency chain. */
763 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE)
765 val = USE_FROM_PTR (use_p);
766 if (TREE_CODE (val) != SSA_NAME)
767 continue;
768 if (!add_dependency (val, lim_data, loop, false))
769 return false;
770 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
771 if (def_data)
773 min_cost = MIN (min_cost, def_data->cost);
774 total_cost += def_data->cost;
778 lim_data->cost += min_cost;
780 if (gimple_phi_num_args (stmt) > 1)
782 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
783 gimple cond;
784 if (gsi_end_p (gsi_last_bb (dom)))
785 return false;
786 cond = gsi_stmt (gsi_last_bb (dom));
787 if (gimple_code (cond) != GIMPLE_COND)
788 return false;
789 /* Verify that this is an extended form of a diamond and
790 the PHI arguments are completely controlled by the
791 predicate in DOM. */
792 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL))
793 return false;
795 /* Fold in dependencies and cost of the condition. */
796 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
798 if (!add_dependency (val, lim_data, loop, false))
799 return false;
800 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
801 if (def_data)
802 total_cost += def_data->cost;
805 /* We want to avoid unconditionally executing very expensive
806 operations. As costs for our dependencies cannot be
807 negative just claim we are not invariand for this case.
808 We also are not sure whether the control-flow inside the
809 loop will vanish. */
810 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
811 && !(min_cost != 0
812 && total_cost / min_cost <= 2))
813 return false;
815 /* Assume that the control-flow in the loop will vanish.
816 ??? We should verify this and not artificially increase
817 the cost if that is not the case. */
818 lim_data->cost += stmt_cost (stmt);
821 return true;
823 else
824 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
825 if (!add_dependency (val, lim_data, loop, true))
826 return false;
828 if (gimple_vuse (stmt))
830 mem_ref_p ref = mem_ref_in_stmt (stmt);
832 if (ref)
834 lim_data->max_loop
835 = outermost_indep_loop (lim_data->max_loop, loop, ref);
836 if (!lim_data->max_loop)
837 return false;
839 else
841 if ((val = gimple_vuse (stmt)) != NULL_TREE)
843 if (!add_dependency (val, lim_data, loop, false))
844 return false;
849 lim_data->cost += stmt_cost (stmt);
851 return true;
854 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
855 and that one of the operands of this statement is computed by STMT.
856 Ensure that STMT (together with all the statements that define its
857 operands) is hoisted at least out of the loop LEVEL. */
859 static void
860 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
862 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
863 struct depend *dep;
864 struct lim_aux_data *lim_data;
866 stmt_loop = find_common_loop (orig_loop, stmt_loop);
867 lim_data = get_lim_data (stmt);
868 if (lim_data != NULL && lim_data->tgt_loop != NULL)
869 stmt_loop = find_common_loop (stmt_loop,
870 loop_outer (lim_data->tgt_loop));
871 if (flow_loop_nested_p (stmt_loop, level))
872 return;
874 gcc_assert (level == lim_data->max_loop
875 || flow_loop_nested_p (lim_data->max_loop, level));
877 lim_data->tgt_loop = level;
878 for (dep = lim_data->depends; dep; dep = dep->next)
879 set_level (dep->stmt, orig_loop, level);
882 /* Determines an outermost loop from that we want to hoist the statement STMT.
883 For now we chose the outermost possible loop. TODO -- use profiling
884 information to set it more sanely. */
886 static void
887 set_profitable_level (gimple stmt)
889 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
892 /* Returns true if STMT is a call that has side effects. */
894 static bool
895 nonpure_call_p (gimple stmt)
897 if (gimple_code (stmt) != GIMPLE_CALL)
898 return false;
900 return gimple_has_side_effects (stmt);
903 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
905 static gimple
906 rewrite_reciprocal (gimple_stmt_iterator *bsi)
908 gimple stmt, stmt1, stmt2;
909 tree var, name, lhs, type;
910 tree real_one;
911 gimple_stmt_iterator gsi;
913 stmt = gsi_stmt (*bsi);
914 lhs = gimple_assign_lhs (stmt);
915 type = TREE_TYPE (lhs);
917 var = create_tmp_var (type, "reciptmp");
918 add_referenced_var (var);
919 DECL_GIMPLE_REG_P (var) = 1;
921 real_one = build_one_cst (type);
923 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR,
924 var, real_one, gimple_assign_rhs2 (stmt));
925 name = make_ssa_name (var, stmt1);
926 gimple_assign_set_lhs (stmt1, name);
928 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
929 gimple_assign_rhs1 (stmt));
931 /* Replace division stmt with reciprocal and multiply stmts.
932 The multiply stmt is not invariant, so update iterator
933 and avoid rescanning. */
934 gsi = *bsi;
935 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
936 gsi_replace (&gsi, stmt2, true);
938 /* Continue processing with invariant reciprocal statement. */
939 return stmt1;
942 /* Check if the pattern at *BSI is a bittest of the form
943 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
945 static gimple
946 rewrite_bittest (gimple_stmt_iterator *bsi)
948 gimple stmt, use_stmt, stmt1, stmt2;
949 tree lhs, var, name, t, a, b;
950 use_operand_p use;
952 stmt = gsi_stmt (*bsi);
953 lhs = gimple_assign_lhs (stmt);
955 /* Verify that the single use of lhs is a comparison against zero. */
956 if (TREE_CODE (lhs) != SSA_NAME
957 || !single_imm_use (lhs, &use, &use_stmt)
958 || gimple_code (use_stmt) != GIMPLE_COND)
959 return stmt;
960 if (gimple_cond_lhs (use_stmt) != lhs
961 || (gimple_cond_code (use_stmt) != NE_EXPR
962 && gimple_cond_code (use_stmt) != EQ_EXPR)
963 || !integer_zerop (gimple_cond_rhs (use_stmt)))
964 return stmt;
966 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
967 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
968 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
969 return stmt;
971 /* There is a conversion in between possibly inserted by fold. */
972 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
974 t = gimple_assign_rhs1 (stmt1);
975 if (TREE_CODE (t) != SSA_NAME
976 || !has_single_use (t))
977 return stmt;
978 stmt1 = SSA_NAME_DEF_STMT (t);
979 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
980 return stmt;
983 /* Verify that B is loop invariant but A is not. Verify that with
984 all the stmt walking we are still in the same loop. */
985 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
986 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
987 return stmt;
989 a = gimple_assign_rhs1 (stmt1);
990 b = gimple_assign_rhs2 (stmt1);
992 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
993 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
995 gimple_stmt_iterator rsi;
997 /* 1 << B */
998 var = create_tmp_var (TREE_TYPE (a), "shifttmp");
999 add_referenced_var (var);
1000 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1001 build_int_cst (TREE_TYPE (a), 1), b);
1002 stmt1 = gimple_build_assign (var, t);
1003 name = make_ssa_name (var, stmt1);
1004 gimple_assign_set_lhs (stmt1, name);
1006 /* A & (1 << B) */
1007 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1008 stmt2 = gimple_build_assign (var, t);
1009 name = make_ssa_name (var, stmt2);
1010 gimple_assign_set_lhs (stmt2, name);
1012 /* Replace the SSA_NAME we compare against zero. Adjust
1013 the type of zero accordingly. */
1014 SET_USE (use, name);
1015 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0));
1017 /* Don't use gsi_replace here, none of the new assignments sets
1018 the variable originally set in stmt. Move bsi to stmt1, and
1019 then remove the original stmt, so that we get a chance to
1020 retain debug info for it. */
1021 rsi = *bsi;
1022 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1023 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1024 gsi_remove (&rsi, true);
1026 return stmt1;
1029 return stmt;
1033 /* Determine the outermost loops in that statements in basic block BB are
1034 invariant, and record them to the LIM_DATA associated with the statements.
1035 Callback for walk_dominator_tree. */
1037 static void
1038 determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED,
1039 basic_block bb)
1041 enum move_pos pos;
1042 gimple_stmt_iterator bsi;
1043 gimple stmt;
1044 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1045 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1046 struct lim_aux_data *lim_data;
1048 if (!loop_outer (bb->loop_father))
1049 return;
1051 if (dump_file && (dump_flags & TDF_DETAILS))
1052 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1053 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1055 /* Look at PHI nodes, but only if there is at most two.
1056 ??? We could relax this further by post-processing the inserted
1057 code and transforming adjacent cond-exprs with the same predicate
1058 to control flow again. */
1059 bsi = gsi_start_phis (bb);
1060 if (!gsi_end_p (bsi)
1061 && ((gsi_next (&bsi), gsi_end_p (bsi))
1062 || (gsi_next (&bsi), gsi_end_p (bsi))))
1063 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1065 stmt = gsi_stmt (bsi);
1067 pos = movement_possibility (stmt);
1068 if (pos == MOVE_IMPOSSIBLE)
1069 continue;
1071 lim_data = init_lim_data (stmt);
1072 lim_data->always_executed_in = outermost;
1074 if (!determine_max_movement (stmt, false))
1076 lim_data->max_loop = NULL;
1077 continue;
1080 if (dump_file && (dump_flags & TDF_DETAILS))
1082 print_gimple_stmt (dump_file, stmt, 2, 0);
1083 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1084 loop_depth (lim_data->max_loop),
1085 lim_data->cost);
1088 if (lim_data->cost >= LIM_EXPENSIVE)
1089 set_profitable_level (stmt);
1092 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1094 stmt = gsi_stmt (bsi);
1096 pos = movement_possibility (stmt);
1097 if (pos == MOVE_IMPOSSIBLE)
1099 if (nonpure_call_p (stmt))
1101 maybe_never = true;
1102 outermost = NULL;
1104 /* Make sure to note always_executed_in for stores to make
1105 store-motion work. */
1106 else if (stmt_makes_single_store (stmt))
1108 struct lim_aux_data *lim_data = init_lim_data (stmt);
1109 lim_data->always_executed_in = outermost;
1111 continue;
1114 if (is_gimple_assign (stmt)
1115 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1116 == GIMPLE_BINARY_RHS))
1118 tree op0 = gimple_assign_rhs1 (stmt);
1119 tree op1 = gimple_assign_rhs2 (stmt);
1120 struct loop *ol1 = outermost_invariant_loop (op1,
1121 loop_containing_stmt (stmt));
1123 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1124 to be hoisted out of loop, saving expensive divide. */
1125 if (pos == MOVE_POSSIBLE
1126 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1127 && flag_unsafe_math_optimizations
1128 && !flag_trapping_math
1129 && ol1 != NULL
1130 && outermost_invariant_loop (op0, ol1) == NULL)
1131 stmt = rewrite_reciprocal (&bsi);
1133 /* If the shift count is invariant, convert (A >> B) & 1 to
1134 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1135 saving an expensive shift. */
1136 if (pos == MOVE_POSSIBLE
1137 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1138 && integer_onep (op1)
1139 && TREE_CODE (op0) == SSA_NAME
1140 && has_single_use (op0))
1141 stmt = rewrite_bittest (&bsi);
1144 lim_data = init_lim_data (stmt);
1145 lim_data->always_executed_in = outermost;
1147 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1148 continue;
1150 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1152 lim_data->max_loop = NULL;
1153 continue;
1156 if (dump_file && (dump_flags & TDF_DETAILS))
1158 print_gimple_stmt (dump_file, stmt, 2, 0);
1159 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1160 loop_depth (lim_data->max_loop),
1161 lim_data->cost);
1164 if (lim_data->cost >= LIM_EXPENSIVE)
1165 set_profitable_level (stmt);
1169 /* For each statement determines the outermost loop in that it is invariant,
1170 statements on whose motion it depends and the cost of the computation.
1171 This information is stored to the LIM_DATA structure associated with
1172 each statement. */
1174 static void
1175 determine_invariantness (void)
1177 struct dom_walk_data walk_data;
1179 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1180 walk_data.dom_direction = CDI_DOMINATORS;
1181 walk_data.before_dom_children = determine_invariantness_stmt;
1183 init_walk_dominator_tree (&walk_data);
1184 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1185 fini_walk_dominator_tree (&walk_data);
1188 /* Hoist the statements in basic block BB out of the loops prescribed by
1189 data stored in LIM_DATA structures associated with each statement. Callback
1190 for walk_dominator_tree. */
1192 static void
1193 move_computations_stmt (struct dom_walk_data *dw_data,
1194 basic_block bb)
1196 struct loop *level;
1197 gimple_stmt_iterator bsi;
1198 gimple stmt;
1199 unsigned cost = 0;
1200 struct lim_aux_data *lim_data;
1202 if (!loop_outer (bb->loop_father))
1203 return;
1205 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1207 gimple new_stmt;
1208 stmt = gsi_stmt (bsi);
1210 lim_data = get_lim_data (stmt);
1211 if (lim_data == NULL)
1213 gsi_next (&bsi);
1214 continue;
1217 cost = lim_data->cost;
1218 level = lim_data->tgt_loop;
1219 clear_lim_data (stmt);
1221 if (!level)
1223 gsi_next (&bsi);
1224 continue;
1227 if (dump_file && (dump_flags & TDF_DETAILS))
1229 fprintf (dump_file, "Moving PHI node\n");
1230 print_gimple_stmt (dump_file, stmt, 0, 0);
1231 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1232 cost, level->num);
1235 if (gimple_phi_num_args (stmt) == 1)
1237 tree arg = PHI_ARG_DEF (stmt, 0);
1238 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg),
1239 gimple_phi_result (stmt),
1240 arg, NULL_TREE);
1241 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1243 else
1245 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1246 gimple cond = gsi_stmt (gsi_last_bb (dom));
1247 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1248 /* Get the PHI arguments corresponding to the true and false
1249 edges of COND. */
1250 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1251 gcc_assert (arg0 && arg1);
1252 t = build2 (gimple_cond_code (cond), boolean_type_node,
1253 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1254 t = build3 (COND_EXPR, TREE_TYPE (gimple_phi_result (stmt)),
1255 t, arg0, arg1);
1256 new_stmt = gimple_build_assign_with_ops (COND_EXPR,
1257 gimple_phi_result (stmt),
1258 t, NULL_TREE);
1259 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1260 *((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg;
1262 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1263 remove_phi_node (&bsi, false);
1266 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1268 stmt = gsi_stmt (bsi);
1270 lim_data = get_lim_data (stmt);
1271 if (lim_data == NULL)
1273 gsi_next (&bsi);
1274 continue;
1277 cost = lim_data->cost;
1278 level = lim_data->tgt_loop;
1279 clear_lim_data (stmt);
1281 if (!level)
1283 gsi_next (&bsi);
1284 continue;
1287 /* We do not really want to move conditionals out of the loop; we just
1288 placed it here to force its operands to be moved if necessary. */
1289 if (gimple_code (stmt) == GIMPLE_COND)
1290 continue;
1292 if (dump_file && (dump_flags & TDF_DETAILS))
1294 fprintf (dump_file, "Moving statement\n");
1295 print_gimple_stmt (dump_file, stmt, 0, 0);
1296 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1297 cost, level->num);
1300 mark_virtual_ops_for_renaming (stmt);
1301 gsi_insert_on_edge (loop_preheader_edge (level), stmt);
1302 gsi_remove (&bsi, false);
1306 /* Hoist the statements out of the loops prescribed by data stored in
1307 LIM_DATA structures associated with each statement.*/
1309 static unsigned int
1310 move_computations (void)
1312 struct dom_walk_data walk_data;
1313 unsigned int todo = 0;
1315 memset (&walk_data, 0, sizeof (struct dom_walk_data));
1316 walk_data.global_data = &todo;
1317 walk_data.dom_direction = CDI_DOMINATORS;
1318 walk_data.before_dom_children = move_computations_stmt;
1320 init_walk_dominator_tree (&walk_data);
1321 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1322 fini_walk_dominator_tree (&walk_data);
1324 gsi_commit_edge_inserts ();
1325 if (need_ssa_update_p (cfun))
1326 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1328 return todo;
1331 /* Checks whether the statement defining variable *INDEX can be hoisted
1332 out of the loop passed in DATA. Callback for for_each_index. */
1334 static bool
1335 may_move_till (tree ref, tree *index, void *data)
1337 struct loop *loop = (struct loop *) data, *max_loop;
1339 /* If REF is an array reference, check also that the step and the lower
1340 bound is invariant in LOOP. */
1341 if (TREE_CODE (ref) == ARRAY_REF)
1343 tree step = TREE_OPERAND (ref, 3);
1344 tree lbound = TREE_OPERAND (ref, 2);
1346 max_loop = outermost_invariant_loop (step, loop);
1347 if (!max_loop)
1348 return false;
1350 max_loop = outermost_invariant_loop (lbound, loop);
1351 if (!max_loop)
1352 return false;
1355 max_loop = outermost_invariant_loop (*index, loop);
1356 if (!max_loop)
1357 return false;
1359 return true;
1362 /* If OP is SSA NAME, force the statement that defines it to be
1363 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1365 static void
1366 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1368 gimple stmt;
1370 if (!op
1371 || is_gimple_min_invariant (op))
1372 return;
1374 gcc_assert (TREE_CODE (op) == SSA_NAME);
1376 stmt = SSA_NAME_DEF_STMT (op);
1377 if (gimple_nop_p (stmt))
1378 return;
1380 set_level (stmt, orig_loop, loop);
1383 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1384 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1385 for_each_index. */
1387 struct fmt_data
1389 struct loop *loop;
1390 struct loop *orig_loop;
1393 static bool
1394 force_move_till (tree ref, tree *index, void *data)
1396 struct fmt_data *fmt_data = (struct fmt_data *) data;
1398 if (TREE_CODE (ref) == ARRAY_REF)
1400 tree step = TREE_OPERAND (ref, 3);
1401 tree lbound = TREE_OPERAND (ref, 2);
1403 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1404 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1407 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1409 return true;
1412 /* A hash function for struct mem_ref object OBJ. */
1414 static hashval_t
1415 memref_hash (const void *obj)
1417 const struct mem_ref *const mem = (const struct mem_ref *) obj;
1419 return mem->hash;
1422 /* An equality function for struct mem_ref object OBJ1 with
1423 memory reference OBJ2. */
1425 static int
1426 memref_eq (const void *obj1, const void *obj2)
1428 const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
1430 return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
1433 /* Releases list of memory reference locations ACCS. */
1435 static void
1436 free_mem_ref_locs (mem_ref_locs_p accs)
1438 unsigned i;
1439 mem_ref_loc_p loc;
1441 if (!accs)
1442 return;
1444 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1445 free (loc);
1446 VEC_free (mem_ref_loc_p, heap, accs->locs);
1447 free (accs);
1450 /* A function to free the mem_ref object OBJ. */
1452 static void
1453 memref_free (void *obj)
1455 struct mem_ref *const mem = (struct mem_ref *) obj;
1456 unsigned i;
1457 mem_ref_locs_p accs;
1459 BITMAP_FREE (mem->stored);
1460 BITMAP_FREE (mem->indep_loop);
1461 BITMAP_FREE (mem->dep_loop);
1462 BITMAP_FREE (mem->indep_ref);
1463 BITMAP_FREE (mem->dep_ref);
1465 FOR_EACH_VEC_ELT (mem_ref_locs_p, mem->accesses_in_loop, i, accs)
1466 free_mem_ref_locs (accs);
1467 VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop);
1469 BITMAP_FREE (mem->vops);
1470 free (mem);
1473 /* Allocates and returns a memory reference description for MEM whose hash
1474 value is HASH and id is ID. */
1476 static mem_ref_p
1477 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1479 mem_ref_p ref = XNEW (struct mem_ref);
1480 ref->mem = mem;
1481 ref->id = id;
1482 ref->hash = hash;
1483 ref->stored = BITMAP_ALLOC (NULL);
1484 ref->indep_loop = BITMAP_ALLOC (NULL);
1485 ref->dep_loop = BITMAP_ALLOC (NULL);
1486 ref->indep_ref = BITMAP_ALLOC (NULL);
1487 ref->dep_ref = BITMAP_ALLOC (NULL);
1488 ref->accesses_in_loop = NULL;
1489 ref->vops = BITMAP_ALLOC (NULL);
1491 return ref;
1494 /* Allocates and returns the new list of locations. */
1496 static mem_ref_locs_p
1497 mem_ref_locs_alloc (void)
1499 mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
1500 accs->locs = NULL;
1501 return accs;
1504 /* Records memory reference location *LOC in LOOP to the memory reference
1505 description REF. The reference occurs in statement STMT. */
1507 static void
1508 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc)
1510 mem_ref_loc_p aref = XNEW (struct mem_ref_loc);
1511 mem_ref_locs_p accs;
1512 bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1514 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1515 <= (unsigned) loop->num)
1516 VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop,
1517 loop->num + 1);
1518 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1519 if (!accs)
1521 accs = mem_ref_locs_alloc ();
1522 VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs);
1525 aref->stmt = stmt;
1526 aref->ref = loc;
1528 VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref);
1529 bitmap_set_bit (ril, ref->id);
1532 /* Marks reference REF as stored in LOOP. */
1534 static void
1535 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1537 for (;
1538 loop != current_loops->tree_root
1539 && !bitmap_bit_p (ref->stored, loop->num);
1540 loop = loop_outer (loop))
1541 bitmap_set_bit (ref->stored, loop->num);
1544 /* Gathers memory references in statement STMT in LOOP, storing the
1545 information about them in the memory_accesses structure. Marks
1546 the vops accessed through unrecognized statements there as
1547 well. */
1549 static void
1550 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1552 tree *mem = NULL;
1553 hashval_t hash;
1554 PTR *slot;
1555 mem_ref_p ref;
1556 tree vname;
1557 bool is_stored;
1558 bitmap clvops;
1559 unsigned id;
1561 if (!gimple_vuse (stmt))
1562 return;
1564 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1565 if (!mem)
1566 goto fail;
1568 hash = iterative_hash_expr (*mem, 0);
1569 slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT);
1571 if (*slot)
1573 ref = (mem_ref_p) *slot;
1574 id = ref->id;
1576 else
1578 id = VEC_length (mem_ref_p, memory_accesses.refs_list);
1579 ref = mem_ref_alloc (*mem, hash, id);
1580 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref);
1581 *slot = ref;
1583 if (dump_file && (dump_flags & TDF_DETAILS))
1585 fprintf (dump_file, "Memory reference %u: ", id);
1586 print_generic_expr (dump_file, ref->mem, TDF_SLIM);
1587 fprintf (dump_file, "\n");
1590 if (is_stored)
1591 mark_ref_stored (ref, loop);
1593 if ((vname = gimple_vuse (stmt)) != NULL_TREE)
1594 bitmap_set_bit (ref->vops, DECL_UID (SSA_NAME_VAR (vname)));
1595 record_mem_ref_loc (ref, loop, stmt, mem);
1596 return;
1598 fail:
1599 clvops = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
1600 if ((vname = gimple_vuse (stmt)) != NULL_TREE)
1601 bitmap_set_bit (clvops, DECL_UID (SSA_NAME_VAR (vname)));
1604 /* Gathers memory references in loops. */
1606 static void
1607 gather_mem_refs_in_loops (void)
1609 gimple_stmt_iterator bsi;
1610 basic_block bb;
1611 struct loop *loop;
1612 loop_iterator li;
1613 bitmap clvo, clvi;
1614 bitmap lrefs, alrefs, alrefso;
1616 FOR_EACH_BB (bb)
1618 loop = bb->loop_father;
1619 if (loop == current_loops->tree_root)
1620 continue;
1622 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1623 gather_mem_refs_stmt (loop, gsi_stmt (bsi));
1626 /* Propagate the information about clobbered vops and accessed memory
1627 references up the loop hierarchy. */
1628 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1630 lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1631 alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num);
1632 bitmap_ior_into (alrefs, lrefs);
1634 if (loop_outer (loop) == current_loops->tree_root)
1635 continue;
1637 clvi = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
1638 clvo = VEC_index (bitmap, memory_accesses.clobbered_vops,
1639 loop_outer (loop)->num);
1640 bitmap_ior_into (clvo, clvi);
1642 alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1643 loop_outer (loop)->num);
1644 bitmap_ior_into (alrefso, alrefs);
1648 /* Element of the hash table that maps vops to memory references. */
1650 struct vop_to_refs_elt
1652 /* DECL_UID of the vop. */
1653 unsigned uid;
1655 /* List of the all references. */
1656 bitmap refs_all;
1658 /* List of stored references. */
1659 bitmap refs_stored;
1662 /* A hash function for struct vop_to_refs_elt object OBJ. */
1664 static hashval_t
1665 vtoe_hash (const void *obj)
1667 const struct vop_to_refs_elt *const vtoe =
1668 (const struct vop_to_refs_elt *) obj;
1670 return vtoe->uid;
1673 /* An equality function for struct vop_to_refs_elt object OBJ1 with
1674 uid of a vop OBJ2. */
1676 static int
1677 vtoe_eq (const void *obj1, const void *obj2)
1679 const struct vop_to_refs_elt *const vtoe =
1680 (const struct vop_to_refs_elt *) obj1;
1681 const unsigned *const uid = (const unsigned *) obj2;
1683 return vtoe->uid == *uid;
1686 /* A function to free the struct vop_to_refs_elt object. */
1688 static void
1689 vtoe_free (void *obj)
1691 struct vop_to_refs_elt *const vtoe =
1692 (struct vop_to_refs_elt *) obj;
1694 BITMAP_FREE (vtoe->refs_all);
1695 BITMAP_FREE (vtoe->refs_stored);
1696 free (vtoe);
1699 /* Records REF to hashtable VOP_TO_REFS for the index VOP. STORED is true
1700 if the reference REF is stored. */
1702 static void
1703 record_vop_access (htab_t vop_to_refs, unsigned vop, unsigned ref, bool stored)
1705 void **slot = htab_find_slot_with_hash (vop_to_refs, &vop, vop, INSERT);
1706 struct vop_to_refs_elt *vtoe;
1708 if (!*slot)
1710 vtoe = XNEW (struct vop_to_refs_elt);
1711 vtoe->uid = vop;
1712 vtoe->refs_all = BITMAP_ALLOC (NULL);
1713 vtoe->refs_stored = BITMAP_ALLOC (NULL);
1714 *slot = vtoe;
1716 else
1717 vtoe = (struct vop_to_refs_elt *) *slot;
1719 bitmap_set_bit (vtoe->refs_all, ref);
1720 if (stored)
1721 bitmap_set_bit (vtoe->refs_stored, ref);
1724 /* Returns the set of references that access VOP according to the table
1725 VOP_TO_REFS. */
1727 static bitmap
1728 get_vop_accesses (htab_t vop_to_refs, unsigned vop)
1730 struct vop_to_refs_elt *const vtoe =
1731 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop);
1732 return vtoe->refs_all;
1735 /* Returns the set of stores that access VOP according to the table
1736 VOP_TO_REFS. */
1738 static bitmap
1739 get_vop_stores (htab_t vop_to_refs, unsigned vop)
1741 struct vop_to_refs_elt *const vtoe =
1742 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop);
1743 return vtoe->refs_stored;
1746 /* Adds REF to mapping from virtual operands to references in LOOP. */
1748 static void
1749 add_vop_ref_mapping (struct loop *loop, mem_ref_p ref)
1751 htab_t map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num);
1752 bool stored = bitmap_bit_p (ref->stored, loop->num);
1753 bitmap clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops,
1754 loop->num);
1755 bitmap_iterator bi;
1756 unsigned vop;
1758 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, vop, bi)
1760 record_vop_access (map, vop, ref->id, stored);
1764 /* Create a mapping from virtual operands to references that touch them
1765 in LOOP. */
1767 static void
1768 create_vop_ref_mapping_loop (struct loop *loop)
1770 bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1771 struct loop *sloop;
1772 bitmap_iterator bi;
1773 unsigned i;
1774 mem_ref_p ref;
1776 EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
1778 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
1779 for (sloop = loop; sloop != current_loops->tree_root; sloop = loop_outer (sloop))
1780 add_vop_ref_mapping (sloop, ref);
1784 /* For each non-clobbered virtual operand and each loop, record the memory
1785 references in this loop that touch the operand. */
1787 static void
1788 create_vop_ref_mapping (void)
1790 loop_iterator li;
1791 struct loop *loop;
1793 FOR_EACH_LOOP (li, loop, 0)
1795 create_vop_ref_mapping_loop (loop);
1799 /* Gathers information about memory accesses in the loops. */
1801 static void
1802 analyze_memory_references (void)
1804 unsigned i;
1805 bitmap empty;
1806 htab_t hempty;
1808 memory_accesses.refs
1809 = htab_create (100, memref_hash, memref_eq, memref_free);
1810 memory_accesses.refs_list = NULL;
1811 memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap,
1812 number_of_loops ());
1813 memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap,
1814 number_of_loops ());
1815 memory_accesses.clobbered_vops = VEC_alloc (bitmap, heap,
1816 number_of_loops ());
1817 memory_accesses.vop_ref_map = VEC_alloc (htab_t, heap,
1818 number_of_loops ());
1820 for (i = 0; i < number_of_loops (); i++)
1822 empty = BITMAP_ALLOC (NULL);
1823 VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty);
1824 empty = BITMAP_ALLOC (NULL);
1825 VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty);
1826 empty = BITMAP_ALLOC (NULL);
1827 VEC_quick_push (bitmap, memory_accesses.clobbered_vops, empty);
1828 hempty = htab_create (10, vtoe_hash, vtoe_eq, vtoe_free);
1829 VEC_quick_push (htab_t, memory_accesses.vop_ref_map, hempty);
1832 memory_accesses.ttae_cache = NULL;
1834 gather_mem_refs_in_loops ();
1835 create_vop_ref_mapping ();
1838 /* Returns true if a region of size SIZE1 at position 0 and a region of
1839 size SIZE2 at position DIFF cannot overlap. */
1841 static bool
1842 cannot_overlap_p (aff_tree *diff, double_int size1, double_int size2)
1844 double_int d, bound;
1846 /* Unless the difference is a constant, we fail. */
1847 if (diff->n != 0)
1848 return false;
1850 d = diff->offset;
1851 if (double_int_negative_p (d))
1853 /* The second object is before the first one, we succeed if the last
1854 element of the second object is before the start of the first one. */
1855 bound = double_int_add (d, double_int_add (size2, double_int_minus_one));
1856 return double_int_negative_p (bound);
1858 else
1860 /* We succeed if the second object starts after the first one ends. */
1861 return double_int_scmp (size1, d) <= 0;
1865 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1866 tree_to_aff_combination_expand. */
1868 static bool
1869 mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache)
1871 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1872 object and their offset differ in such a way that the locations cannot
1873 overlap, then they cannot alias. */
1874 double_int size1, size2;
1875 aff_tree off1, off2;
1877 /* Perform basic offset and type-based disambiguation. */
1878 if (!refs_may_alias_p (mem1, mem2))
1879 return false;
1881 /* The expansion of addresses may be a bit expensive, thus we only do
1882 the check at -O2 and higher optimization levels. */
1883 if (optimize < 2)
1884 return true;
1886 get_inner_reference_aff (mem1, &off1, &size1);
1887 get_inner_reference_aff (mem2, &off2, &size2);
1888 aff_combination_expand (&off1, ttae_cache);
1889 aff_combination_expand (&off2, ttae_cache);
1890 aff_combination_scale (&off1, double_int_minus_one);
1891 aff_combination_add (&off2, &off1);
1893 if (cannot_overlap_p (&off2, size1, size2))
1894 return false;
1896 return true;
1899 /* Rewrites location LOC by TMP_VAR. */
1901 static void
1902 rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var)
1904 mark_virtual_ops_for_renaming (loc->stmt);
1905 *loc->ref = tmp_var;
1906 update_stmt (loc->stmt);
1909 /* Adds all locations of REF in LOOP and its subloops to LOCS. */
1911 static void
1912 get_all_locs_in_loop (struct loop *loop, mem_ref_p ref,
1913 VEC (mem_ref_loc_p, heap) **locs)
1915 mem_ref_locs_p accs;
1916 unsigned i;
1917 mem_ref_loc_p loc;
1918 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1919 loop->num);
1920 struct loop *subloop;
1922 if (!bitmap_bit_p (refs, ref->id))
1923 return;
1925 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop)
1926 > (unsigned) loop->num)
1928 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num);
1929 if (accs)
1931 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1932 VEC_safe_push (mem_ref_loc_p, heap, *locs, loc);
1936 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
1937 get_all_locs_in_loop (subloop, ref, locs);
1940 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1942 static void
1943 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1945 unsigned i;
1946 mem_ref_loc_p loc;
1947 VEC (mem_ref_loc_p, heap) *locs = NULL;
1949 get_all_locs_in_loop (loop, ref, &locs);
1950 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
1951 rewrite_mem_ref_loc (loc, tmp_var);
1952 VEC_free (mem_ref_loc_p, heap, locs);
1955 /* The name and the length of the currently generated variable
1956 for lsm. */
1957 #define MAX_LSM_NAME_LENGTH 40
1958 static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1];
1959 static int lsm_tmp_name_length;
1961 /* Adds S to lsm_tmp_name. */
1963 static void
1964 lsm_tmp_name_add (const char *s)
1966 int l = strlen (s) + lsm_tmp_name_length;
1967 if (l > MAX_LSM_NAME_LENGTH)
1968 return;
1970 strcpy (lsm_tmp_name + lsm_tmp_name_length, s);
1971 lsm_tmp_name_length = l;
1974 /* Stores the name for temporary variable that replaces REF to
1975 lsm_tmp_name. */
1977 static void
1978 gen_lsm_tmp_name (tree ref)
1980 const char *name;
1982 switch (TREE_CODE (ref))
1984 case MEM_REF:
1985 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1986 lsm_tmp_name_add ("_");
1987 break;
1989 case ADDR_EXPR:
1990 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1991 break;
1993 case BIT_FIELD_REF:
1994 case VIEW_CONVERT_EXPR:
1995 case ARRAY_RANGE_REF:
1996 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
1997 break;
1999 case REALPART_EXPR:
2000 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2001 lsm_tmp_name_add ("_RE");
2002 break;
2004 case IMAGPART_EXPR:
2005 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2006 lsm_tmp_name_add ("_IM");
2007 break;
2009 case COMPONENT_REF:
2010 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2011 lsm_tmp_name_add ("_");
2012 name = get_name (TREE_OPERAND (ref, 1));
2013 if (!name)
2014 name = "F";
2015 lsm_tmp_name_add (name);
2016 break;
2018 case ARRAY_REF:
2019 gen_lsm_tmp_name (TREE_OPERAND (ref, 0));
2020 lsm_tmp_name_add ("_I");
2021 break;
2023 case SSA_NAME:
2024 ref = SSA_NAME_VAR (ref);
2025 /* Fallthru. */
2027 case VAR_DECL:
2028 case PARM_DECL:
2029 name = get_name (ref);
2030 if (!name)
2031 name = "D";
2032 lsm_tmp_name_add (name);
2033 break;
2035 case STRING_CST:
2036 lsm_tmp_name_add ("S");
2037 break;
2039 case RESULT_DECL:
2040 lsm_tmp_name_add ("R");
2041 break;
2043 case INTEGER_CST:
2044 /* Nothing. */
2045 break;
2047 default:
2048 gcc_unreachable ();
2052 /* Determines name for temporary variable that replaces REF.
2053 The name is accumulated into the lsm_tmp_name variable.
2054 N is added to the name of the temporary. */
2056 char *
2057 get_lsm_tmp_name (tree ref, unsigned n)
2059 char ns[2];
2061 lsm_tmp_name_length = 0;
2062 gen_lsm_tmp_name (ref);
2063 lsm_tmp_name_add ("_lsm");
2064 if (n < 10)
2066 ns[0] = '0' + n;
2067 ns[1] = 0;
2068 lsm_tmp_name_add (ns);
2070 return lsm_tmp_name;
2073 /* Executes store motion of memory reference REF from LOOP.
2074 Exits from the LOOP are stored in EXITS. The initialization of the
2075 temporary variable is put to the preheader of the loop, and assignments
2076 to the reference from the temporary variable are emitted to exits. */
2078 static void
2079 execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref)
2081 tree tmp_var;
2082 unsigned i;
2083 gimple load, store;
2084 struct fmt_data fmt_data;
2085 edge ex;
2086 struct lim_aux_data *lim_data;
2088 if (dump_file && (dump_flags & TDF_DETAILS))
2090 fprintf (dump_file, "Executing store motion of ");
2091 print_generic_expr (dump_file, ref->mem, 0);
2092 fprintf (dump_file, " from loop %d\n", loop->num);
2095 tmp_var = make_rename_temp (TREE_TYPE (ref->mem),
2096 get_lsm_tmp_name (ref->mem, ~0));
2098 fmt_data.loop = loop;
2099 fmt_data.orig_loop = loop;
2100 for_each_index (&ref->mem, force_move_till, &fmt_data);
2102 rewrite_mem_refs (loop, ref, tmp_var);
2104 /* Emit the load & stores. */
2105 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem));
2106 lim_data = init_lim_data (load);
2107 lim_data->max_loop = loop;
2108 lim_data->tgt_loop = loop;
2110 /* Put this into the latch, so that we are sure it will be processed after
2111 all dependencies. */
2112 gsi_insert_on_edge (loop_latch_edge (loop), load);
2114 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2116 store = gimple_build_assign (unshare_expr (ref->mem), tmp_var);
2117 gsi_insert_on_edge (ex, store);
2121 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2122 edges of the LOOP. */
2124 static void
2125 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2126 VEC (edge, heap) *exits)
2128 mem_ref_p ref;
2129 unsigned i;
2130 bitmap_iterator bi;
2132 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2134 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2135 execute_sm (loop, exits, ref);
2139 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2140 make sure REF is always stored to in LOOP. */
2142 static bool
2143 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2145 VEC (mem_ref_loc_p, heap) *locs = NULL;
2146 unsigned i;
2147 mem_ref_loc_p loc;
2148 bool ret = false;
2149 struct loop *must_exec;
2150 tree base;
2152 base = get_base_address (ref->mem);
2153 if (INDIRECT_REF_P (base)
2154 || TREE_CODE (base) == MEM_REF)
2155 base = TREE_OPERAND (base, 0);
2157 get_all_locs_in_loop (loop, ref, &locs);
2158 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
2160 if (!get_lim_data (loc->stmt))
2161 continue;
2163 /* If we require an always executed store make sure the statement
2164 stores to the reference. */
2165 if (stored_p)
2167 tree lhs;
2168 if (!gimple_get_lhs (loc->stmt))
2169 continue;
2170 lhs = get_base_address (gimple_get_lhs (loc->stmt));
2171 if (!lhs)
2172 continue;
2173 if (INDIRECT_REF_P (lhs)
2174 || TREE_CODE (lhs) == MEM_REF)
2175 lhs = TREE_OPERAND (lhs, 0);
2176 if (lhs != base)
2177 continue;
2180 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2181 if (!must_exec)
2182 continue;
2184 if (must_exec == loop
2185 || flow_loop_nested_p (must_exec, loop))
2187 ret = true;
2188 break;
2191 VEC_free (mem_ref_loc_p, heap, locs);
2193 return ret;
2196 /* Returns true if REF1 and REF2 are independent. */
2198 static bool
2199 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2201 if (ref1 == ref2
2202 || bitmap_bit_p (ref1->indep_ref, ref2->id))
2203 return true;
2204 if (bitmap_bit_p (ref1->dep_ref, ref2->id))
2205 return false;
2207 if (dump_file && (dump_flags & TDF_DETAILS))
2208 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2209 ref1->id, ref2->id);
2211 if (mem_refs_may_alias_p (ref1->mem, ref2->mem,
2212 &memory_accesses.ttae_cache))
2214 bitmap_set_bit (ref1->dep_ref, ref2->id);
2215 bitmap_set_bit (ref2->dep_ref, ref1->id);
2216 if (dump_file && (dump_flags & TDF_DETAILS))
2217 fprintf (dump_file, "dependent.\n");
2218 return false;
2220 else
2222 bitmap_set_bit (ref1->indep_ref, ref2->id);
2223 bitmap_set_bit (ref2->indep_ref, ref1->id);
2224 if (dump_file && (dump_flags & TDF_DETAILS))
2225 fprintf (dump_file, "independent.\n");
2226 return true;
2230 /* Records the information whether REF is independent in LOOP (according
2231 to INDEP). */
2233 static void
2234 record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep)
2236 if (indep)
2237 bitmap_set_bit (ref->indep_loop, loop->num);
2238 else
2239 bitmap_set_bit (ref->dep_loop, loop->num);
2242 /* Returns true if REF is independent on all other memory references in
2243 LOOP. */
2245 static bool
2246 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref)
2248 bitmap clobbers, refs_to_check, refs;
2249 unsigned i;
2250 bitmap_iterator bi;
2251 bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num);
2252 htab_t map;
2253 mem_ref_p aref;
2255 /* If the reference is clobbered, it is not independent. */
2256 clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
2257 if (bitmap_intersect_p (ref->vops, clobbers))
2258 return false;
2260 refs_to_check = BITMAP_ALLOC (NULL);
2262 map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num);
2263 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, i, bi)
2265 if (stored)
2266 refs = get_vop_accesses (map, i);
2267 else
2268 refs = get_vop_stores (map, i);
2270 bitmap_ior_into (refs_to_check, refs);
2273 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2275 aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2276 if (!refs_independent_p (ref, aref))
2278 ret = false;
2279 record_indep_loop (loop, aref, false);
2280 break;
2284 BITMAP_FREE (refs_to_check);
2285 return ret;
2288 /* Returns true if REF is independent on all other memory references in
2289 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2291 static bool
2292 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2294 bool ret;
2296 if (bitmap_bit_p (ref->indep_loop, loop->num))
2297 return true;
2298 if (bitmap_bit_p (ref->dep_loop, loop->num))
2299 return false;
2301 ret = ref_indep_loop_p_1 (loop, ref);
2303 if (dump_file && (dump_flags & TDF_DETAILS))
2304 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2305 ref->id, loop->num, ret ? "independent" : "dependent");
2307 record_indep_loop (loop, ref, ret);
2309 return ret;
2312 /* Returns true if we can perform store motion of REF from LOOP. */
2314 static bool
2315 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2317 tree base;
2319 /* Unless the reference is stored in the loop, there is nothing to do. */
2320 if (!bitmap_bit_p (ref->stored, loop->num))
2321 return false;
2323 /* It should be movable. */
2324 if (!is_gimple_reg_type (TREE_TYPE (ref->mem))
2325 || TREE_THIS_VOLATILE (ref->mem)
2326 || !for_each_index (&ref->mem, may_move_till, loop))
2327 return false;
2329 /* If it can throw fail, we do not properly update EH info. */
2330 if (tree_could_throw_p (ref->mem))
2331 return false;
2333 /* If it can trap, it must be always executed in LOOP.
2334 Readonly memory locations may trap when storing to them, but
2335 tree_could_trap_p is a predicate for rvalues, so check that
2336 explicitly. */
2337 base = get_base_address (ref->mem);
2338 if ((tree_could_trap_p (ref->mem)
2339 || (DECL_P (base) && TREE_READONLY (base)))
2340 && !ref_always_accessed_p (loop, ref, true))
2341 return false;
2343 /* And it must be independent on all other memory references
2344 in LOOP. */
2345 if (!ref_indep_loop_p (loop, ref))
2346 return false;
2348 return true;
2351 /* Marks the references in LOOP for that store motion should be performed
2352 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2353 motion was performed in one of the outer loops. */
2355 static void
2356 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2358 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
2359 loop->num);
2360 unsigned i;
2361 bitmap_iterator bi;
2362 mem_ref_p ref;
2364 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2366 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
2367 if (can_sm_ref_p (loop, ref))
2368 bitmap_set_bit (refs_to_sm, i);
2372 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2373 for a store motion optimization (i.e. whether we can insert statement
2374 on its exits). */
2376 static bool
2377 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2378 VEC (edge, heap) *exits)
2380 unsigned i;
2381 edge ex;
2383 FOR_EACH_VEC_ELT (edge, exits, i, ex)
2384 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2385 return false;
2387 return true;
2390 /* Try to perform store motion for all memory references modified inside
2391 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2392 store motion was executed in one of the outer loops. */
2394 static void
2395 store_motion_loop (struct loop *loop, bitmap sm_executed)
2397 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
2398 struct loop *subloop;
2399 bitmap sm_in_loop = BITMAP_ALLOC (NULL);
2401 if (loop_suitable_for_sm (loop, exits))
2403 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2404 hoist_memory_references (loop, sm_in_loop, exits);
2406 VEC_free (edge, heap, exits);
2408 bitmap_ior_into (sm_executed, sm_in_loop);
2409 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2410 store_motion_loop (subloop, sm_executed);
2411 bitmap_and_compl_into (sm_executed, sm_in_loop);
2412 BITMAP_FREE (sm_in_loop);
2415 /* Try to perform store motion for all memory references modified inside
2416 loops. */
2418 static void
2419 store_motion (void)
2421 struct loop *loop;
2422 bitmap sm_executed = BITMAP_ALLOC (NULL);
2424 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2425 store_motion_loop (loop, sm_executed);
2427 BITMAP_FREE (sm_executed);
2428 gsi_commit_edge_inserts ();
2431 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2432 for each such basic block bb records the outermost loop for that execution
2433 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2434 blocks that contain a nonpure call. */
2436 static void
2437 fill_always_executed_in (struct loop *loop, sbitmap contains_call)
2439 basic_block bb = NULL, *bbs, last = NULL;
2440 unsigned i;
2441 edge e;
2442 struct loop *inn_loop = loop;
2444 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2446 bbs = get_loop_body_in_dom_order (loop);
2448 for (i = 0; i < loop->num_nodes; i++)
2450 edge_iterator ei;
2451 bb = bbs[i];
2453 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2454 last = bb;
2456 if (TEST_BIT (contains_call, bb->index))
2457 break;
2459 FOR_EACH_EDGE (e, ei, bb->succs)
2460 if (!flow_bb_inside_loop_p (loop, e->dest))
2461 break;
2462 if (e)
2463 break;
2465 /* A loop might be infinite (TODO use simple loop analysis
2466 to disprove this if possible). */
2467 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2468 break;
2470 if (!flow_bb_inside_loop_p (inn_loop, bb))
2471 break;
2473 if (bb->loop_father->header == bb)
2475 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2476 break;
2478 /* In a loop that is always entered we may proceed anyway.
2479 But record that we entered it and stop once we leave it. */
2480 inn_loop = bb->loop_father;
2484 while (1)
2486 SET_ALWAYS_EXECUTED_IN (last, loop);
2487 if (last == loop->header)
2488 break;
2489 last = get_immediate_dominator (CDI_DOMINATORS, last);
2492 free (bbs);
2495 for (loop = loop->inner; loop; loop = loop->next)
2496 fill_always_executed_in (loop, contains_call);
2499 /* Compute the global information needed by the loop invariant motion pass. */
2501 static void
2502 tree_ssa_lim_initialize (void)
2504 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2505 gimple_stmt_iterator bsi;
2506 struct loop *loop;
2507 basic_block bb;
2509 sbitmap_zero (contains_call);
2510 FOR_EACH_BB (bb)
2512 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2514 if (nonpure_call_p (gsi_stmt (bsi)))
2515 break;
2518 if (!gsi_end_p (bsi))
2519 SET_BIT (contains_call, bb->index);
2522 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2523 fill_always_executed_in (loop, contains_call);
2525 sbitmap_free (contains_call);
2527 lim_aux_data_map = pointer_map_create ();
2530 /* Cleans up after the invariant motion pass. */
2532 static void
2533 tree_ssa_lim_finalize (void)
2535 basic_block bb;
2536 unsigned i;
2537 bitmap b;
2538 htab_t h;
2540 FOR_EACH_BB (bb)
2541 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2543 pointer_map_destroy (lim_aux_data_map);
2545 VEC_free (mem_ref_p, heap, memory_accesses.refs_list);
2546 htab_delete (memory_accesses.refs);
2548 FOR_EACH_VEC_ELT (bitmap, memory_accesses.refs_in_loop, i, b)
2549 BITMAP_FREE (b);
2550 VEC_free (bitmap, heap, memory_accesses.refs_in_loop);
2552 FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_in_loop, i, b)
2553 BITMAP_FREE (b);
2554 VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop);
2556 FOR_EACH_VEC_ELT (bitmap, memory_accesses.clobbered_vops, i, b)
2557 BITMAP_FREE (b);
2558 VEC_free (bitmap, heap, memory_accesses.clobbered_vops);
2560 FOR_EACH_VEC_ELT (htab_t, memory_accesses.vop_ref_map, i, h)
2561 htab_delete (h);
2562 VEC_free (htab_t, heap, memory_accesses.vop_ref_map);
2564 if (memory_accesses.ttae_cache)
2565 pointer_map_destroy (memory_accesses.ttae_cache);
2568 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2569 i.e. those that are likely to be win regardless of the register pressure. */
2571 unsigned int
2572 tree_ssa_lim (void)
2574 unsigned int todo;
2576 tree_ssa_lim_initialize ();
2578 /* Gathers information about memory accesses in the loops. */
2579 analyze_memory_references ();
2581 /* For each statement determine the outermost loop in that it is
2582 invariant and cost for computing the invariant. */
2583 determine_invariantness ();
2585 /* Execute store motion. Force the necessary invariants to be moved
2586 out of the loops as well. */
2587 store_motion ();
2589 /* Move the expressions that are expensive enough. */
2590 todo = move_computations ();
2592 tree_ssa_lim_finalize ();
2594 return todo;