1 /* Loop invariant motion.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "basic-block.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
37 #include "tree-pass.h"
40 #include "tree-affine.h"
41 #include "pointer-set.h"
42 #include "tree-ssa-propagate.h"
44 /* TODO: Support for predicated code motion. I.e.
55 Where COND and INV are is invariants, but evaluating INV may trap or be
56 invalid from some other reason if !COND. This may be transformed to
66 /* A type for the list of statements that have to be moved in order to be able
67 to hoist an invariant computation. */
75 /* The auxiliary data kept for each statement. */
79 struct loop
*max_loop
; /* The outermost loop in that the statement
82 struct loop
*tgt_loop
; /* The loop out of that we want to move the
85 struct loop
*always_executed_in
;
86 /* The outermost loop for that we are sure
87 the statement is executed if the loop
90 unsigned cost
; /* Cost of the computation performed by the
93 struct depend
*depends
; /* List of statements that must be also hoisted
94 out of the loop when this statement is
95 hoisted; i.e. those that define the operands
96 of the statement and are inside of the
100 /* Maps statements to their lim_aux_data. */
102 static struct pointer_map_t
*lim_aux_data_map
;
104 /* Description of a memory reference location. */
106 typedef struct mem_ref_loc
108 tree
*ref
; /* The reference itself. */
109 gimple stmt
; /* The statement in that it occurs. */
112 DEF_VEC_P(mem_ref_loc_p
);
113 DEF_VEC_ALLOC_P(mem_ref_loc_p
, heap
);
115 /* The list of memory reference locations in a loop. */
117 typedef struct mem_ref_locs
119 VEC (mem_ref_loc_p
, heap
) *locs
;
122 DEF_VEC_P(mem_ref_locs_p
);
123 DEF_VEC_ALLOC_P(mem_ref_locs_p
, heap
);
125 /* Description of a memory reference. */
127 typedef struct mem_ref
129 tree mem
; /* The memory itself. */
130 unsigned id
; /* ID assigned to the memory reference
131 (its index in memory_accesses.refs_list) */
132 hashval_t hash
; /* Its hash value. */
133 bitmap stored
; /* The set of loops in that this memory location
135 VEC (mem_ref_locs_p
, heap
) *accesses_in_loop
;
136 /* The locations of the accesses. Vector
137 indexed by the loop number. */
138 bitmap vops
; /* Vops corresponding to this memory
141 /* The following sets are computed on demand. We keep both set and
142 its complement, so that we know whether the information was
143 already computed or not. */
144 bitmap indep_loop
; /* The set of loops in that the memory
145 reference is independent, meaning:
146 If it is stored in the loop, this store
147 is independent on all other loads and
149 If it is only loaded, then it is independent
150 on all stores in the loop. */
151 bitmap dep_loop
; /* The complement of INDEP_LOOP. */
153 bitmap indep_ref
; /* The set of memory references on that
154 this reference is independent. */
155 bitmap dep_ref
; /* The complement of DEP_REF. */
158 DEF_VEC_P(mem_ref_p
);
159 DEF_VEC_ALLOC_P(mem_ref_p
, heap
);
162 DEF_VEC_ALLOC_P(bitmap
, heap
);
165 DEF_VEC_ALLOC_P(htab_t
, heap
);
167 /* Description of memory accesses in loops. */
171 /* The hash table of memory references accessed in loops. */
174 /* The list of memory references. */
175 VEC (mem_ref_p
, heap
) *refs_list
;
177 /* The set of memory references accessed in each loop. */
178 VEC (bitmap
, heap
) *refs_in_loop
;
180 /* The set of memory references accessed in each loop, including
182 VEC (bitmap
, heap
) *all_refs_in_loop
;
184 /* The set of virtual operands clobbered in a given loop. */
185 VEC (bitmap
, heap
) *clobbered_vops
;
187 /* Map from the pair (loop, virtual operand) to the set of refs that
188 touch the virtual operand in the loop. */
189 VEC (htab_t
, heap
) *vop_ref_map
;
191 /* Cache for expanding memory addresses. */
192 struct pointer_map_t
*ttae_cache
;
195 static bool ref_indep_loop_p (struct loop
*, mem_ref_p
);
197 /* Minimum cost of an expensive expression. */
198 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
200 /* The outermost loop for which execution of the header guarantees that the
201 block will be executed. */
202 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
203 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
205 static struct lim_aux_data
*
206 init_lim_data (gimple stmt
)
208 void **p
= pointer_map_insert (lim_aux_data_map
, stmt
);
210 *p
= XCNEW (struct lim_aux_data
);
211 return (struct lim_aux_data
*) *p
;
214 static struct lim_aux_data
*
215 get_lim_data (gimple stmt
)
217 void **p
= pointer_map_contains (lim_aux_data_map
, stmt
);
221 return (struct lim_aux_data
*) *p
;
224 /* Releases the memory occupied by DATA. */
227 free_lim_aux_data (struct lim_aux_data
*data
)
229 struct depend
*dep
, *next
;
231 for (dep
= data
->depends
; dep
; dep
= next
)
240 clear_lim_data (gimple stmt
)
242 void **p
= pointer_map_contains (lim_aux_data_map
, stmt
);
246 free_lim_aux_data ((struct lim_aux_data
*) *p
);
250 /* Calls CBCK for each index in memory reference ADDR_P. There are two
251 kinds situations handled; in each of these cases, the memory reference
252 and DATA are passed to the callback:
254 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
255 pass the pointer to the index to the callback.
257 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
258 pointer to addr to the callback.
260 If the callback returns false, the whole search stops and false is returned.
261 Otherwise the function returns true after traversing through the whole
262 reference *ADDR_P. */
265 for_each_index (tree
*addr_p
, bool (*cbck
) (tree
, tree
*, void *), void *data
)
269 for (; ; addr_p
= nxt
)
271 switch (TREE_CODE (*addr_p
))
274 return cbck (*addr_p
, addr_p
, data
);
277 nxt
= &TREE_OPERAND (*addr_p
, 0);
278 return cbck (*addr_p
, nxt
, data
);
281 case VIEW_CONVERT_EXPR
:
284 nxt
= &TREE_OPERAND (*addr_p
, 0);
288 /* If the component has varying offset, it behaves like index
290 idx
= &TREE_OPERAND (*addr_p
, 2);
292 && !cbck (*addr_p
, idx
, data
))
295 nxt
= &TREE_OPERAND (*addr_p
, 0);
299 case ARRAY_RANGE_REF
:
300 nxt
= &TREE_OPERAND (*addr_p
, 0);
301 if (!cbck (*addr_p
, &TREE_OPERAND (*addr_p
, 1), data
))
318 gcc_assert (is_gimple_min_invariant (*addr_p
));
322 idx
= &TMR_BASE (*addr_p
);
324 && !cbck (*addr_p
, idx
, data
))
326 idx
= &TMR_INDEX (*addr_p
);
328 && !cbck (*addr_p
, idx
, data
))
330 idx
= &TMR_INDEX2 (*addr_p
);
332 && !cbck (*addr_p
, idx
, data
))
342 /* If it is possible to hoist the statement STMT unconditionally,
343 returns MOVE_POSSIBLE.
344 If it is possible to hoist the statement STMT, but we must avoid making
345 it executed if it would not be executed in the original program (e.g.
346 because it may trap), return MOVE_PRESERVE_EXECUTION.
347 Otherwise return MOVE_IMPOSSIBLE. */
350 movement_possibility (gimple stmt
)
353 enum move_pos ret
= MOVE_POSSIBLE
;
355 if (flag_unswitch_loops
356 && gimple_code (stmt
) == GIMPLE_COND
)
358 /* If we perform unswitching, force the operands of the invariant
359 condition to be moved out of the loop. */
360 return MOVE_POSSIBLE
;
363 if (gimple_code (stmt
) == GIMPLE_PHI
364 && gimple_phi_num_args (stmt
) <= 2
365 && is_gimple_reg (gimple_phi_result (stmt
))
366 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt
)))
367 return MOVE_POSSIBLE
;
369 if (gimple_get_lhs (stmt
) == NULL_TREE
)
370 return MOVE_IMPOSSIBLE
;
372 if (gimple_vdef (stmt
))
373 return MOVE_IMPOSSIBLE
;
375 if (stmt_ends_bb_p (stmt
)
376 || gimple_has_volatile_ops (stmt
)
377 || gimple_has_side_effects (stmt
)
378 || stmt_could_throw_p (stmt
))
379 return MOVE_IMPOSSIBLE
;
381 if (is_gimple_call (stmt
))
383 /* While pure or const call is guaranteed to have no side effects, we
384 cannot move it arbitrarily. Consider code like
386 char *s = something ();
396 Here the strlen call cannot be moved out of the loop, even though
397 s is invariant. In addition to possibly creating a call with
398 invalid arguments, moving out a function call that is not executed
399 may cause performance regressions in case the call is costly and
400 not executed at all. */
401 ret
= MOVE_PRESERVE_EXECUTION
;
402 lhs
= gimple_call_lhs (stmt
);
404 else if (is_gimple_assign (stmt
))
405 lhs
= gimple_assign_lhs (stmt
);
407 return MOVE_IMPOSSIBLE
;
409 if (TREE_CODE (lhs
) == SSA_NAME
410 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
411 return MOVE_IMPOSSIBLE
;
413 if (TREE_CODE (lhs
) != SSA_NAME
414 || gimple_could_trap_p (stmt
))
415 return MOVE_PRESERVE_EXECUTION
;
420 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
421 loop to that we could move the expression using DEF if it did not have
422 other operands, i.e. the outermost loop enclosing LOOP in that the value
423 of DEF is invariant. */
426 outermost_invariant_loop (tree def
, struct loop
*loop
)
430 struct loop
*max_loop
;
431 struct lim_aux_data
*lim_data
;
434 return superloop_at_depth (loop
, 1);
436 if (TREE_CODE (def
) != SSA_NAME
)
438 gcc_assert (is_gimple_min_invariant (def
));
439 return superloop_at_depth (loop
, 1);
442 def_stmt
= SSA_NAME_DEF_STMT (def
);
443 def_bb
= gimple_bb (def_stmt
);
445 return superloop_at_depth (loop
, 1);
447 max_loop
= find_common_loop (loop
, def_bb
->loop_father
);
449 lim_data
= get_lim_data (def_stmt
);
450 if (lim_data
!= NULL
&& lim_data
->max_loop
!= NULL
)
451 max_loop
= find_common_loop (max_loop
,
452 loop_outer (lim_data
->max_loop
));
453 if (max_loop
== loop
)
455 max_loop
= superloop_at_depth (loop
, loop_depth (max_loop
) + 1);
460 /* DATA is a structure containing information associated with a statement
461 inside LOOP. DEF is one of the operands of this statement.
463 Find the outermost loop enclosing LOOP in that value of DEF is invariant
464 and record this in DATA->max_loop field. If DEF itself is defined inside
465 this loop as well (i.e. we need to hoist it out of the loop if we want
466 to hoist the statement represented by DATA), record the statement in that
467 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
468 add the cost of the computation of DEF to the DATA->cost.
470 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
473 add_dependency (tree def
, struct lim_aux_data
*data
, struct loop
*loop
,
476 gimple def_stmt
= SSA_NAME_DEF_STMT (def
);
477 basic_block def_bb
= gimple_bb (def_stmt
);
478 struct loop
*max_loop
;
480 struct lim_aux_data
*def_data
;
485 max_loop
= outermost_invariant_loop (def
, loop
);
489 if (flow_loop_nested_p (data
->max_loop
, max_loop
))
490 data
->max_loop
= max_loop
;
492 def_data
= get_lim_data (def_stmt
);
497 /* Only add the cost if the statement defining DEF is inside LOOP,
498 i.e. if it is likely that by moving the invariants dependent
499 on it, we will be able to avoid creating a new register for
500 it (since it will be only used in these dependent invariants). */
501 && def_bb
->loop_father
== loop
)
502 data
->cost
+= def_data
->cost
;
504 dep
= XNEW (struct depend
);
505 dep
->stmt
= def_stmt
;
506 dep
->next
= data
->depends
;
512 /* Returns an estimate for a cost of statement STMT. TODO -- the values here
513 are just ad-hoc constants. The estimates should be based on target-specific
517 stmt_cost (gimple stmt
)
522 /* Always try to create possibilities for unswitching. */
523 if (gimple_code (stmt
) == GIMPLE_COND
524 || gimple_code (stmt
) == GIMPLE_PHI
)
525 return LIM_EXPENSIVE
;
527 /* Hoisting memory references out should almost surely be a win. */
528 if (gimple_references_memory_p (stmt
))
531 if (is_gimple_call (stmt
))
533 /* We should be hoisting calls if possible. */
535 /* Unless the call is a builtin_constant_p; this always folds to a
536 constant, so moving it is useless. */
537 fndecl
= gimple_call_fndecl (stmt
);
539 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
540 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_CONSTANT_P
)
546 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
549 switch (gimple_assign_rhs_code (stmt
))
562 /* Division and multiplication are usually expensive. */
578 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
579 REF is independent. If REF is not independent in LOOP, NULL is returned
583 outermost_indep_loop (struct loop
*outer
, struct loop
*loop
, mem_ref_p ref
)
587 if (bitmap_bit_p (ref
->stored
, loop
->num
))
592 aloop
= superloop_at_depth (loop
, loop_depth (aloop
) + 1))
593 if (!bitmap_bit_p (ref
->stored
, aloop
->num
)
594 && ref_indep_loop_p (aloop
, ref
))
597 if (ref_indep_loop_p (loop
, ref
))
603 /* If there is a simple load or store to a memory reference in STMT, returns
604 the location of the memory reference, and sets IS_STORE according to whether
605 it is a store or load. Otherwise, returns NULL. */
608 simple_mem_ref_in_stmt (gimple stmt
, bool *is_store
)
613 /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns. */
614 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
617 code
= gimple_assign_rhs_code (stmt
);
619 lhs
= gimple_assign_lhs_ptr (stmt
);
621 if (TREE_CODE (*lhs
) == SSA_NAME
)
623 if (get_gimple_rhs_class (code
) != GIMPLE_SINGLE_RHS
624 || !is_gimple_addressable (gimple_assign_rhs1 (stmt
)))
628 return gimple_assign_rhs1_ptr (stmt
);
630 else if (code
== SSA_NAME
631 || (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
632 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
))))
641 /* Returns the memory reference contained in STMT. */
644 mem_ref_in_stmt (gimple stmt
)
647 tree
*mem
= simple_mem_ref_in_stmt (stmt
, &store
);
655 hash
= iterative_hash_expr (*mem
, 0);
656 ref
= (mem_ref_p
) htab_find_with_hash (memory_accesses
.refs
, *mem
, hash
);
658 gcc_assert (ref
!= NULL
);
662 /* From a controlling predicate in DOM determine the arguments from
663 the PHI node PHI that are chosen if the predicate evaluates to
664 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
665 they are non-NULL. Returns true if the arguments can be determined,
666 else return false. */
669 extract_true_false_args_from_phi (basic_block dom
, gimple phi
,
670 tree
*true_arg_p
, tree
*false_arg_p
)
672 basic_block bb
= gimple_bb (phi
);
673 edge true_edge
, false_edge
, tem
;
674 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
;
676 /* We have to verify that one edge into the PHI node is dominated
677 by the true edge of the predicate block and the other edge
678 dominated by the false edge. This ensures that the PHI argument
679 we are going to take is completely determined by the path we
680 take from the predicate block.
681 We can only use BB dominance checks below if the destination of
682 the true/false edges are dominated by their edge, thus only
683 have a single predecessor. */
684 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
685 tem
= EDGE_PRED (bb
, 0);
687 || (single_pred_p (true_edge
->dest
)
688 && (tem
->src
== true_edge
->dest
689 || dominated_by_p (CDI_DOMINATORS
,
690 tem
->src
, true_edge
->dest
))))
691 arg0
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
692 else if (tem
== false_edge
693 || (single_pred_p (false_edge
->dest
)
694 && (tem
->src
== false_edge
->dest
695 || dominated_by_p (CDI_DOMINATORS
,
696 tem
->src
, false_edge
->dest
))))
697 arg1
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
700 tem
= EDGE_PRED (bb
, 1);
702 || (single_pred_p (true_edge
->dest
)
703 && (tem
->src
== true_edge
->dest
704 || dominated_by_p (CDI_DOMINATORS
,
705 tem
->src
, true_edge
->dest
))))
706 arg0
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
707 else if (tem
== false_edge
708 || (single_pred_p (false_edge
->dest
)
709 && (tem
->src
== false_edge
->dest
710 || dominated_by_p (CDI_DOMINATORS
,
711 tem
->src
, false_edge
->dest
))))
712 arg1
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
726 /* Determine the outermost loop to that it is possible to hoist a statement
727 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
728 the outermost loop in that the value computed by STMT is invariant.
729 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
730 we preserve the fact whether STMT is executed. It also fills other related
731 information to LIM_DATA (STMT).
733 The function returns false if STMT cannot be hoisted outside of the loop it
734 is defined in, and true otherwise. */
737 determine_max_movement (gimple stmt
, bool must_preserve_exec
)
739 basic_block bb
= gimple_bb (stmt
);
740 struct loop
*loop
= bb
->loop_father
;
742 struct lim_aux_data
*lim_data
= get_lim_data (stmt
);
746 if (must_preserve_exec
)
747 level
= ALWAYS_EXECUTED_IN (bb
);
749 level
= superloop_at_depth (loop
, 1);
750 lim_data
->max_loop
= level
;
752 if (gimple_code (stmt
) == GIMPLE_PHI
)
755 unsigned min_cost
= UINT_MAX
;
756 unsigned total_cost
= 0;
757 struct lim_aux_data
*def_data
;
759 /* We will end up promoting dependencies to be unconditionally
760 evaluated. For this reason the PHI cost (and thus the
761 cost we remove from the loop by doing the invariant motion)
762 is that of the cheapest PHI argument dependency chain. */
763 FOR_EACH_PHI_ARG (use_p
, stmt
, iter
, SSA_OP_USE
)
765 val
= USE_FROM_PTR (use_p
);
766 if (TREE_CODE (val
) != SSA_NAME
)
768 if (!add_dependency (val
, lim_data
, loop
, false))
770 def_data
= get_lim_data (SSA_NAME_DEF_STMT (val
));
773 min_cost
= MIN (min_cost
, def_data
->cost
);
774 total_cost
+= def_data
->cost
;
778 lim_data
->cost
+= min_cost
;
780 if (gimple_phi_num_args (stmt
) > 1)
782 basic_block dom
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
784 if (gsi_end_p (gsi_last_bb (dom
)))
786 cond
= gsi_stmt (gsi_last_bb (dom
));
787 if (gimple_code (cond
) != GIMPLE_COND
)
789 /* Verify that this is an extended form of a diamond and
790 the PHI arguments are completely controlled by the
792 if (!extract_true_false_args_from_phi (dom
, stmt
, NULL
, NULL
))
795 /* Fold in dependencies and cost of the condition. */
796 FOR_EACH_SSA_TREE_OPERAND (val
, cond
, iter
, SSA_OP_USE
)
798 if (!add_dependency (val
, lim_data
, loop
, false))
800 def_data
= get_lim_data (SSA_NAME_DEF_STMT (val
));
802 total_cost
+= def_data
->cost
;
805 /* We want to avoid unconditionally executing very expensive
806 operations. As costs for our dependencies cannot be
807 negative just claim we are not invariand for this case.
808 We also are not sure whether the control-flow inside the
810 if (total_cost
- min_cost
>= 2 * LIM_EXPENSIVE
812 && total_cost
/ min_cost
<= 2))
815 /* Assume that the control-flow in the loop will vanish.
816 ??? We should verify this and not artificially increase
817 the cost if that is not the case. */
818 lim_data
->cost
+= stmt_cost (stmt
);
824 FOR_EACH_SSA_TREE_OPERAND (val
, stmt
, iter
, SSA_OP_USE
)
825 if (!add_dependency (val
, lim_data
, loop
, true))
828 if (gimple_vuse (stmt
))
830 mem_ref_p ref
= mem_ref_in_stmt (stmt
);
835 = outermost_indep_loop (lim_data
->max_loop
, loop
, ref
);
836 if (!lim_data
->max_loop
)
841 if ((val
= gimple_vuse (stmt
)) != NULL_TREE
)
843 if (!add_dependency (val
, lim_data
, loop
, false))
849 lim_data
->cost
+= stmt_cost (stmt
);
854 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
855 and that one of the operands of this statement is computed by STMT.
856 Ensure that STMT (together with all the statements that define its
857 operands) is hoisted at least out of the loop LEVEL. */
860 set_level (gimple stmt
, struct loop
*orig_loop
, struct loop
*level
)
862 struct loop
*stmt_loop
= gimple_bb (stmt
)->loop_father
;
864 struct lim_aux_data
*lim_data
;
866 stmt_loop
= find_common_loop (orig_loop
, stmt_loop
);
867 lim_data
= get_lim_data (stmt
);
868 if (lim_data
!= NULL
&& lim_data
->tgt_loop
!= NULL
)
869 stmt_loop
= find_common_loop (stmt_loop
,
870 loop_outer (lim_data
->tgt_loop
));
871 if (flow_loop_nested_p (stmt_loop
, level
))
874 gcc_assert (level
== lim_data
->max_loop
875 || flow_loop_nested_p (lim_data
->max_loop
, level
));
877 lim_data
->tgt_loop
= level
;
878 for (dep
= lim_data
->depends
; dep
; dep
= dep
->next
)
879 set_level (dep
->stmt
, orig_loop
, level
);
882 /* Determines an outermost loop from that we want to hoist the statement STMT.
883 For now we chose the outermost possible loop. TODO -- use profiling
884 information to set it more sanely. */
887 set_profitable_level (gimple stmt
)
889 set_level (stmt
, gimple_bb (stmt
)->loop_father
, get_lim_data (stmt
)->max_loop
);
892 /* Returns true if STMT is a call that has side effects. */
895 nonpure_call_p (gimple stmt
)
897 if (gimple_code (stmt
) != GIMPLE_CALL
)
900 return gimple_has_side_effects (stmt
);
903 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
906 rewrite_reciprocal (gimple_stmt_iterator
*bsi
)
908 gimple stmt
, stmt1
, stmt2
;
909 tree var
, name
, lhs
, type
;
911 gimple_stmt_iterator gsi
;
913 stmt
= gsi_stmt (*bsi
);
914 lhs
= gimple_assign_lhs (stmt
);
915 type
= TREE_TYPE (lhs
);
917 var
= create_tmp_var (type
, "reciptmp");
918 add_referenced_var (var
);
919 DECL_GIMPLE_REG_P (var
) = 1;
921 real_one
= build_one_cst (type
);
923 stmt1
= gimple_build_assign_with_ops (RDIV_EXPR
,
924 var
, real_one
, gimple_assign_rhs2 (stmt
));
925 name
= make_ssa_name (var
, stmt1
);
926 gimple_assign_set_lhs (stmt1
, name
);
928 stmt2
= gimple_build_assign_with_ops (MULT_EXPR
, lhs
, name
,
929 gimple_assign_rhs1 (stmt
));
931 /* Replace division stmt with reciprocal and multiply stmts.
932 The multiply stmt is not invariant, so update iterator
933 and avoid rescanning. */
935 gsi_insert_before (bsi
, stmt1
, GSI_NEW_STMT
);
936 gsi_replace (&gsi
, stmt2
, true);
938 /* Continue processing with invariant reciprocal statement. */
942 /* Check if the pattern at *BSI is a bittest of the form
943 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
946 rewrite_bittest (gimple_stmt_iterator
*bsi
)
948 gimple stmt
, use_stmt
, stmt1
, stmt2
;
949 tree lhs
, var
, name
, t
, a
, b
;
952 stmt
= gsi_stmt (*bsi
);
953 lhs
= gimple_assign_lhs (stmt
);
955 /* Verify that the single use of lhs is a comparison against zero. */
956 if (TREE_CODE (lhs
) != SSA_NAME
957 || !single_imm_use (lhs
, &use
, &use_stmt
)
958 || gimple_code (use_stmt
) != GIMPLE_COND
)
960 if (gimple_cond_lhs (use_stmt
) != lhs
961 || (gimple_cond_code (use_stmt
) != NE_EXPR
962 && gimple_cond_code (use_stmt
) != EQ_EXPR
)
963 || !integer_zerop (gimple_cond_rhs (use_stmt
)))
966 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
967 stmt1
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
968 if (gimple_code (stmt1
) != GIMPLE_ASSIGN
)
971 /* There is a conversion in between possibly inserted by fold. */
972 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1
)))
974 t
= gimple_assign_rhs1 (stmt1
);
975 if (TREE_CODE (t
) != SSA_NAME
976 || !has_single_use (t
))
978 stmt1
= SSA_NAME_DEF_STMT (t
);
979 if (gimple_code (stmt1
) != GIMPLE_ASSIGN
)
983 /* Verify that B is loop invariant but A is not. Verify that with
984 all the stmt walking we are still in the same loop. */
985 if (gimple_assign_rhs_code (stmt1
) != RSHIFT_EXPR
986 || loop_containing_stmt (stmt1
) != loop_containing_stmt (stmt
))
989 a
= gimple_assign_rhs1 (stmt1
);
990 b
= gimple_assign_rhs2 (stmt1
);
992 if (outermost_invariant_loop (b
, loop_containing_stmt (stmt1
)) != NULL
993 && outermost_invariant_loop (a
, loop_containing_stmt (stmt1
)) == NULL
)
995 gimple_stmt_iterator rsi
;
998 var
= create_tmp_var (TREE_TYPE (a
), "shifttmp");
999 add_referenced_var (var
);
1000 t
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (a
),
1001 build_int_cst (TREE_TYPE (a
), 1), b
);
1002 stmt1
= gimple_build_assign (var
, t
);
1003 name
= make_ssa_name (var
, stmt1
);
1004 gimple_assign_set_lhs (stmt1
, name
);
1007 t
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (a
), a
, name
);
1008 stmt2
= gimple_build_assign (var
, t
);
1009 name
= make_ssa_name (var
, stmt2
);
1010 gimple_assign_set_lhs (stmt2
, name
);
1012 /* Replace the SSA_NAME we compare against zero. Adjust
1013 the type of zero accordingly. */
1014 SET_USE (use
, name
);
1015 gimple_cond_set_rhs (use_stmt
, build_int_cst_type (TREE_TYPE (name
), 0));
1017 /* Don't use gsi_replace here, none of the new assignments sets
1018 the variable originally set in stmt. Move bsi to stmt1, and
1019 then remove the original stmt, so that we get a chance to
1020 retain debug info for it. */
1022 gsi_insert_before (bsi
, stmt1
, GSI_NEW_STMT
);
1023 gsi_insert_before (&rsi
, stmt2
, GSI_SAME_STMT
);
1024 gsi_remove (&rsi
, true);
1033 /* Determine the outermost loops in that statements in basic block BB are
1034 invariant, and record them to the LIM_DATA associated with the statements.
1035 Callback for walk_dominator_tree. */
1038 determine_invariantness_stmt (struct dom_walk_data
*dw_data ATTRIBUTE_UNUSED
,
1042 gimple_stmt_iterator bsi
;
1044 bool maybe_never
= ALWAYS_EXECUTED_IN (bb
) == NULL
;
1045 struct loop
*outermost
= ALWAYS_EXECUTED_IN (bb
);
1046 struct lim_aux_data
*lim_data
;
1048 if (!loop_outer (bb
->loop_father
))
1051 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1052 fprintf (dump_file
, "Basic block %d (loop %d -- depth %d):\n\n",
1053 bb
->index
, bb
->loop_father
->num
, loop_depth (bb
->loop_father
));
1055 /* Look at PHI nodes, but only if there is at most two.
1056 ??? We could relax this further by post-processing the inserted
1057 code and transforming adjacent cond-exprs with the same predicate
1058 to control flow again. */
1059 bsi
= gsi_start_phis (bb
);
1060 if (!gsi_end_p (bsi
)
1061 && ((gsi_next (&bsi
), gsi_end_p (bsi
))
1062 || (gsi_next (&bsi
), gsi_end_p (bsi
))))
1063 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1065 stmt
= gsi_stmt (bsi
);
1067 pos
= movement_possibility (stmt
);
1068 if (pos
== MOVE_IMPOSSIBLE
)
1071 lim_data
= init_lim_data (stmt
);
1072 lim_data
->always_executed_in
= outermost
;
1074 if (!determine_max_movement (stmt
, false))
1076 lim_data
->max_loop
= NULL
;
1080 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1082 print_gimple_stmt (dump_file
, stmt
, 2, 0);
1083 fprintf (dump_file
, " invariant up to level %d, cost %d.\n\n",
1084 loop_depth (lim_data
->max_loop
),
1088 if (lim_data
->cost
>= LIM_EXPENSIVE
)
1089 set_profitable_level (stmt
);
1092 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1094 stmt
= gsi_stmt (bsi
);
1096 pos
= movement_possibility (stmt
);
1097 if (pos
== MOVE_IMPOSSIBLE
)
1099 if (nonpure_call_p (stmt
))
1104 /* Make sure to note always_executed_in for stores to make
1105 store-motion work. */
1106 else if (stmt_makes_single_store (stmt
))
1108 struct lim_aux_data
*lim_data
= init_lim_data (stmt
);
1109 lim_data
->always_executed_in
= outermost
;
1114 if (is_gimple_assign (stmt
)
1115 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
1116 == GIMPLE_BINARY_RHS
))
1118 tree op0
= gimple_assign_rhs1 (stmt
);
1119 tree op1
= gimple_assign_rhs2 (stmt
);
1120 struct loop
*ol1
= outermost_invariant_loop (op1
,
1121 loop_containing_stmt (stmt
));
1123 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1124 to be hoisted out of loop, saving expensive divide. */
1125 if (pos
== MOVE_POSSIBLE
1126 && gimple_assign_rhs_code (stmt
) == RDIV_EXPR
1127 && flag_unsafe_math_optimizations
1128 && !flag_trapping_math
1130 && outermost_invariant_loop (op0
, ol1
) == NULL
)
1131 stmt
= rewrite_reciprocal (&bsi
);
1133 /* If the shift count is invariant, convert (A >> B) & 1 to
1134 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1135 saving an expensive shift. */
1136 if (pos
== MOVE_POSSIBLE
1137 && gimple_assign_rhs_code (stmt
) == BIT_AND_EXPR
1138 && integer_onep (op1
)
1139 && TREE_CODE (op0
) == SSA_NAME
1140 && has_single_use (op0
))
1141 stmt
= rewrite_bittest (&bsi
);
1144 lim_data
= init_lim_data (stmt
);
1145 lim_data
->always_executed_in
= outermost
;
1147 if (maybe_never
&& pos
== MOVE_PRESERVE_EXECUTION
)
1150 if (!determine_max_movement (stmt
, pos
== MOVE_PRESERVE_EXECUTION
))
1152 lim_data
->max_loop
= NULL
;
1156 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1158 print_gimple_stmt (dump_file
, stmt
, 2, 0);
1159 fprintf (dump_file
, " invariant up to level %d, cost %d.\n\n",
1160 loop_depth (lim_data
->max_loop
),
1164 if (lim_data
->cost
>= LIM_EXPENSIVE
)
1165 set_profitable_level (stmt
);
1169 /* For each statement determines the outermost loop in that it is invariant,
1170 statements on whose motion it depends and the cost of the computation.
1171 This information is stored to the LIM_DATA structure associated with
1175 determine_invariantness (void)
1177 struct dom_walk_data walk_data
;
1179 memset (&walk_data
, 0, sizeof (struct dom_walk_data
));
1180 walk_data
.dom_direction
= CDI_DOMINATORS
;
1181 walk_data
.before_dom_children
= determine_invariantness_stmt
;
1183 init_walk_dominator_tree (&walk_data
);
1184 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
1185 fini_walk_dominator_tree (&walk_data
);
1188 /* Hoist the statements in basic block BB out of the loops prescribed by
1189 data stored in LIM_DATA structures associated with each statement. Callback
1190 for walk_dominator_tree. */
1193 move_computations_stmt (struct dom_walk_data
*dw_data
,
1197 gimple_stmt_iterator bsi
;
1200 struct lim_aux_data
*lim_data
;
1202 if (!loop_outer (bb
->loop_father
))
1205 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); )
1208 stmt
= gsi_stmt (bsi
);
1210 lim_data
= get_lim_data (stmt
);
1211 if (lim_data
== NULL
)
1217 cost
= lim_data
->cost
;
1218 level
= lim_data
->tgt_loop
;
1219 clear_lim_data (stmt
);
1227 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1229 fprintf (dump_file
, "Moving PHI node\n");
1230 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1231 fprintf (dump_file
, "(cost %u) out of loop %d.\n\n",
1235 if (gimple_phi_num_args (stmt
) == 1)
1237 tree arg
= PHI_ARG_DEF (stmt
, 0);
1238 new_stmt
= gimple_build_assign_with_ops (TREE_CODE (arg
),
1239 gimple_phi_result (stmt
),
1241 SSA_NAME_DEF_STMT (gimple_phi_result (stmt
)) = new_stmt
;
1245 basic_block dom
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
1246 gimple cond
= gsi_stmt (gsi_last_bb (dom
));
1247 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, t
;
1248 /* Get the PHI arguments corresponding to the true and false
1250 extract_true_false_args_from_phi (dom
, stmt
, &arg0
, &arg1
);
1251 gcc_assert (arg0
&& arg1
);
1252 t
= build2 (gimple_cond_code (cond
), boolean_type_node
,
1253 gimple_cond_lhs (cond
), gimple_cond_rhs (cond
));
1254 t
= build3 (COND_EXPR
, TREE_TYPE (gimple_phi_result (stmt
)),
1256 new_stmt
= gimple_build_assign_with_ops (COND_EXPR
,
1257 gimple_phi_result (stmt
),
1259 SSA_NAME_DEF_STMT (gimple_phi_result (stmt
)) = new_stmt
;
1260 *((unsigned int *)(dw_data
->global_data
)) |= TODO_cleanup_cfg
;
1262 gsi_insert_on_edge (loop_preheader_edge (level
), new_stmt
);
1263 remove_phi_node (&bsi
, false);
1266 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); )
1268 stmt
= gsi_stmt (bsi
);
1270 lim_data
= get_lim_data (stmt
);
1271 if (lim_data
== NULL
)
1277 cost
= lim_data
->cost
;
1278 level
= lim_data
->tgt_loop
;
1279 clear_lim_data (stmt
);
1287 /* We do not really want to move conditionals out of the loop; we just
1288 placed it here to force its operands to be moved if necessary. */
1289 if (gimple_code (stmt
) == GIMPLE_COND
)
1292 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1294 fprintf (dump_file
, "Moving statement\n");
1295 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1296 fprintf (dump_file
, "(cost %u) out of loop %d.\n\n",
1300 mark_virtual_ops_for_renaming (stmt
);
1301 gsi_insert_on_edge (loop_preheader_edge (level
), stmt
);
1302 gsi_remove (&bsi
, false);
1306 /* Hoist the statements out of the loops prescribed by data stored in
1307 LIM_DATA structures associated with each statement.*/
1310 move_computations (void)
1312 struct dom_walk_data walk_data
;
1313 unsigned int todo
= 0;
1315 memset (&walk_data
, 0, sizeof (struct dom_walk_data
));
1316 walk_data
.global_data
= &todo
;
1317 walk_data
.dom_direction
= CDI_DOMINATORS
;
1318 walk_data
.before_dom_children
= move_computations_stmt
;
1320 init_walk_dominator_tree (&walk_data
);
1321 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
1322 fini_walk_dominator_tree (&walk_data
);
1324 gsi_commit_edge_inserts ();
1325 if (need_ssa_update_p (cfun
))
1326 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
1331 /* Checks whether the statement defining variable *INDEX can be hoisted
1332 out of the loop passed in DATA. Callback for for_each_index. */
1335 may_move_till (tree ref
, tree
*index
, void *data
)
1337 struct loop
*loop
= (struct loop
*) data
, *max_loop
;
1339 /* If REF is an array reference, check also that the step and the lower
1340 bound is invariant in LOOP. */
1341 if (TREE_CODE (ref
) == ARRAY_REF
)
1343 tree step
= TREE_OPERAND (ref
, 3);
1344 tree lbound
= TREE_OPERAND (ref
, 2);
1346 max_loop
= outermost_invariant_loop (step
, loop
);
1350 max_loop
= outermost_invariant_loop (lbound
, loop
);
1355 max_loop
= outermost_invariant_loop (*index
, loop
);
1362 /* If OP is SSA NAME, force the statement that defines it to be
1363 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1366 force_move_till_op (tree op
, struct loop
*orig_loop
, struct loop
*loop
)
1371 || is_gimple_min_invariant (op
))
1374 gcc_assert (TREE_CODE (op
) == SSA_NAME
);
1376 stmt
= SSA_NAME_DEF_STMT (op
);
1377 if (gimple_nop_p (stmt
))
1380 set_level (stmt
, orig_loop
, loop
);
1383 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1384 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1390 struct loop
*orig_loop
;
1394 force_move_till (tree ref
, tree
*index
, void *data
)
1396 struct fmt_data
*fmt_data
= (struct fmt_data
*) data
;
1398 if (TREE_CODE (ref
) == ARRAY_REF
)
1400 tree step
= TREE_OPERAND (ref
, 3);
1401 tree lbound
= TREE_OPERAND (ref
, 2);
1403 force_move_till_op (step
, fmt_data
->orig_loop
, fmt_data
->loop
);
1404 force_move_till_op (lbound
, fmt_data
->orig_loop
, fmt_data
->loop
);
1407 force_move_till_op (*index
, fmt_data
->orig_loop
, fmt_data
->loop
);
1412 /* A hash function for struct mem_ref object OBJ. */
1415 memref_hash (const void *obj
)
1417 const struct mem_ref
*const mem
= (const struct mem_ref
*) obj
;
1422 /* An equality function for struct mem_ref object OBJ1 with
1423 memory reference OBJ2. */
1426 memref_eq (const void *obj1
, const void *obj2
)
1428 const struct mem_ref
*const mem1
= (const struct mem_ref
*) obj1
;
1430 return operand_equal_p (mem1
->mem
, (const_tree
) obj2
, 0);
1433 /* Releases list of memory reference locations ACCS. */
1436 free_mem_ref_locs (mem_ref_locs_p accs
)
1444 FOR_EACH_VEC_ELT (mem_ref_loc_p
, accs
->locs
, i
, loc
)
1446 VEC_free (mem_ref_loc_p
, heap
, accs
->locs
);
1450 /* A function to free the mem_ref object OBJ. */
1453 memref_free (void *obj
)
1455 struct mem_ref
*const mem
= (struct mem_ref
*) obj
;
1457 mem_ref_locs_p accs
;
1459 BITMAP_FREE (mem
->stored
);
1460 BITMAP_FREE (mem
->indep_loop
);
1461 BITMAP_FREE (mem
->dep_loop
);
1462 BITMAP_FREE (mem
->indep_ref
);
1463 BITMAP_FREE (mem
->dep_ref
);
1465 FOR_EACH_VEC_ELT (mem_ref_locs_p
, mem
->accesses_in_loop
, i
, accs
)
1466 free_mem_ref_locs (accs
);
1467 VEC_free (mem_ref_locs_p
, heap
, mem
->accesses_in_loop
);
1469 BITMAP_FREE (mem
->vops
);
1473 /* Allocates and returns a memory reference description for MEM whose hash
1474 value is HASH and id is ID. */
1477 mem_ref_alloc (tree mem
, unsigned hash
, unsigned id
)
1479 mem_ref_p ref
= XNEW (struct mem_ref
);
1483 ref
->stored
= BITMAP_ALLOC (NULL
);
1484 ref
->indep_loop
= BITMAP_ALLOC (NULL
);
1485 ref
->dep_loop
= BITMAP_ALLOC (NULL
);
1486 ref
->indep_ref
= BITMAP_ALLOC (NULL
);
1487 ref
->dep_ref
= BITMAP_ALLOC (NULL
);
1488 ref
->accesses_in_loop
= NULL
;
1489 ref
->vops
= BITMAP_ALLOC (NULL
);
1494 /* Allocates and returns the new list of locations. */
1496 static mem_ref_locs_p
1497 mem_ref_locs_alloc (void)
1499 mem_ref_locs_p accs
= XNEW (struct mem_ref_locs
);
1504 /* Records memory reference location *LOC in LOOP to the memory reference
1505 description REF. The reference occurs in statement STMT. */
1508 record_mem_ref_loc (mem_ref_p ref
, struct loop
*loop
, gimple stmt
, tree
*loc
)
1510 mem_ref_loc_p aref
= XNEW (struct mem_ref_loc
);
1511 mem_ref_locs_p accs
;
1512 bitmap ril
= VEC_index (bitmap
, memory_accesses
.refs_in_loop
, loop
->num
);
1514 if (VEC_length (mem_ref_locs_p
, ref
->accesses_in_loop
)
1515 <= (unsigned) loop
->num
)
1516 VEC_safe_grow_cleared (mem_ref_locs_p
, heap
, ref
->accesses_in_loop
,
1518 accs
= VEC_index (mem_ref_locs_p
, ref
->accesses_in_loop
, loop
->num
);
1521 accs
= mem_ref_locs_alloc ();
1522 VEC_replace (mem_ref_locs_p
, ref
->accesses_in_loop
, loop
->num
, accs
);
1528 VEC_safe_push (mem_ref_loc_p
, heap
, accs
->locs
, aref
);
1529 bitmap_set_bit (ril
, ref
->id
);
1532 /* Marks reference REF as stored in LOOP. */
1535 mark_ref_stored (mem_ref_p ref
, struct loop
*loop
)
1538 loop
!= current_loops
->tree_root
1539 && !bitmap_bit_p (ref
->stored
, loop
->num
);
1540 loop
= loop_outer (loop
))
1541 bitmap_set_bit (ref
->stored
, loop
->num
);
1544 /* Gathers memory references in statement STMT in LOOP, storing the
1545 information about them in the memory_accesses structure. Marks
1546 the vops accessed through unrecognized statements there as
1550 gather_mem_refs_stmt (struct loop
*loop
, gimple stmt
)
1561 if (!gimple_vuse (stmt
))
1564 mem
= simple_mem_ref_in_stmt (stmt
, &is_stored
);
1568 hash
= iterative_hash_expr (*mem
, 0);
1569 slot
= htab_find_slot_with_hash (memory_accesses
.refs
, *mem
, hash
, INSERT
);
1573 ref
= (mem_ref_p
) *slot
;
1578 id
= VEC_length (mem_ref_p
, memory_accesses
.refs_list
);
1579 ref
= mem_ref_alloc (*mem
, hash
, id
);
1580 VEC_safe_push (mem_ref_p
, heap
, memory_accesses
.refs_list
, ref
);
1583 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1585 fprintf (dump_file
, "Memory reference %u: ", id
);
1586 print_generic_expr (dump_file
, ref
->mem
, TDF_SLIM
);
1587 fprintf (dump_file
, "\n");
1591 mark_ref_stored (ref
, loop
);
1593 if ((vname
= gimple_vuse (stmt
)) != NULL_TREE
)
1594 bitmap_set_bit (ref
->vops
, DECL_UID (SSA_NAME_VAR (vname
)));
1595 record_mem_ref_loc (ref
, loop
, stmt
, mem
);
1599 clvops
= VEC_index (bitmap
, memory_accesses
.clobbered_vops
, loop
->num
);
1600 if ((vname
= gimple_vuse (stmt
)) != NULL_TREE
)
1601 bitmap_set_bit (clvops
, DECL_UID (SSA_NAME_VAR (vname
)));
1604 /* Gathers memory references in loops. */
1607 gather_mem_refs_in_loops (void)
1609 gimple_stmt_iterator bsi
;
1614 bitmap lrefs
, alrefs
, alrefso
;
1618 loop
= bb
->loop_father
;
1619 if (loop
== current_loops
->tree_root
)
1622 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1623 gather_mem_refs_stmt (loop
, gsi_stmt (bsi
));
1626 /* Propagate the information about clobbered vops and accessed memory
1627 references up the loop hierarchy. */
1628 FOR_EACH_LOOP (li
, loop
, LI_FROM_INNERMOST
)
1630 lrefs
= VEC_index (bitmap
, memory_accesses
.refs_in_loop
, loop
->num
);
1631 alrefs
= VEC_index (bitmap
, memory_accesses
.all_refs_in_loop
, loop
->num
);
1632 bitmap_ior_into (alrefs
, lrefs
);
1634 if (loop_outer (loop
) == current_loops
->tree_root
)
1637 clvi
= VEC_index (bitmap
, memory_accesses
.clobbered_vops
, loop
->num
);
1638 clvo
= VEC_index (bitmap
, memory_accesses
.clobbered_vops
,
1639 loop_outer (loop
)->num
);
1640 bitmap_ior_into (clvo
, clvi
);
1642 alrefso
= VEC_index (bitmap
, memory_accesses
.all_refs_in_loop
,
1643 loop_outer (loop
)->num
);
1644 bitmap_ior_into (alrefso
, alrefs
);
1648 /* Element of the hash table that maps vops to memory references. */
1650 struct vop_to_refs_elt
1652 /* DECL_UID of the vop. */
1655 /* List of the all references. */
1658 /* List of stored references. */
1662 /* A hash function for struct vop_to_refs_elt object OBJ. */
1665 vtoe_hash (const void *obj
)
1667 const struct vop_to_refs_elt
*const vtoe
=
1668 (const struct vop_to_refs_elt
*) obj
;
1673 /* An equality function for struct vop_to_refs_elt object OBJ1 with
1674 uid of a vop OBJ2. */
1677 vtoe_eq (const void *obj1
, const void *obj2
)
1679 const struct vop_to_refs_elt
*const vtoe
=
1680 (const struct vop_to_refs_elt
*) obj1
;
1681 const unsigned *const uid
= (const unsigned *) obj2
;
1683 return vtoe
->uid
== *uid
;
1686 /* A function to free the struct vop_to_refs_elt object. */
1689 vtoe_free (void *obj
)
1691 struct vop_to_refs_elt
*const vtoe
=
1692 (struct vop_to_refs_elt
*) obj
;
1694 BITMAP_FREE (vtoe
->refs_all
);
1695 BITMAP_FREE (vtoe
->refs_stored
);
1699 /* Records REF to hashtable VOP_TO_REFS for the index VOP. STORED is true
1700 if the reference REF is stored. */
1703 record_vop_access (htab_t vop_to_refs
, unsigned vop
, unsigned ref
, bool stored
)
1705 void **slot
= htab_find_slot_with_hash (vop_to_refs
, &vop
, vop
, INSERT
);
1706 struct vop_to_refs_elt
*vtoe
;
1710 vtoe
= XNEW (struct vop_to_refs_elt
);
1712 vtoe
->refs_all
= BITMAP_ALLOC (NULL
);
1713 vtoe
->refs_stored
= BITMAP_ALLOC (NULL
);
1717 vtoe
= (struct vop_to_refs_elt
*) *slot
;
1719 bitmap_set_bit (vtoe
->refs_all
, ref
);
1721 bitmap_set_bit (vtoe
->refs_stored
, ref
);
1724 /* Returns the set of references that access VOP according to the table
1728 get_vop_accesses (htab_t vop_to_refs
, unsigned vop
)
1730 struct vop_to_refs_elt
*const vtoe
=
1731 (struct vop_to_refs_elt
*) htab_find_with_hash (vop_to_refs
, &vop
, vop
);
1732 return vtoe
->refs_all
;
1735 /* Returns the set of stores that access VOP according to the table
1739 get_vop_stores (htab_t vop_to_refs
, unsigned vop
)
1741 struct vop_to_refs_elt
*const vtoe
=
1742 (struct vop_to_refs_elt
*) htab_find_with_hash (vop_to_refs
, &vop
, vop
);
1743 return vtoe
->refs_stored
;
1746 /* Adds REF to mapping from virtual operands to references in LOOP. */
1749 add_vop_ref_mapping (struct loop
*loop
, mem_ref_p ref
)
1751 htab_t map
= VEC_index (htab_t
, memory_accesses
.vop_ref_map
, loop
->num
);
1752 bool stored
= bitmap_bit_p (ref
->stored
, loop
->num
);
1753 bitmap clobbers
= VEC_index (bitmap
, memory_accesses
.clobbered_vops
,
1758 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref
->vops
, clobbers
, 0, vop
, bi
)
1760 record_vop_access (map
, vop
, ref
->id
, stored
);
1764 /* Create a mapping from virtual operands to references that touch them
1768 create_vop_ref_mapping_loop (struct loop
*loop
)
1770 bitmap refs
= VEC_index (bitmap
, memory_accesses
.refs_in_loop
, loop
->num
);
1776 EXECUTE_IF_SET_IN_BITMAP (refs
, 0, i
, bi
)
1778 ref
= VEC_index (mem_ref_p
, memory_accesses
.refs_list
, i
);
1779 for (sloop
= loop
; sloop
!= current_loops
->tree_root
; sloop
= loop_outer (sloop
))
1780 add_vop_ref_mapping (sloop
, ref
);
1784 /* For each non-clobbered virtual operand and each loop, record the memory
1785 references in this loop that touch the operand. */
1788 create_vop_ref_mapping (void)
1793 FOR_EACH_LOOP (li
, loop
, 0)
1795 create_vop_ref_mapping_loop (loop
);
1799 /* Gathers information about memory accesses in the loops. */
1802 analyze_memory_references (void)
1808 memory_accesses
.refs
1809 = htab_create (100, memref_hash
, memref_eq
, memref_free
);
1810 memory_accesses
.refs_list
= NULL
;
1811 memory_accesses
.refs_in_loop
= VEC_alloc (bitmap
, heap
,
1812 number_of_loops ());
1813 memory_accesses
.all_refs_in_loop
= VEC_alloc (bitmap
, heap
,
1814 number_of_loops ());
1815 memory_accesses
.clobbered_vops
= VEC_alloc (bitmap
, heap
,
1816 number_of_loops ());
1817 memory_accesses
.vop_ref_map
= VEC_alloc (htab_t
, heap
,
1818 number_of_loops ());
1820 for (i
= 0; i
< number_of_loops (); i
++)
1822 empty
= BITMAP_ALLOC (NULL
);
1823 VEC_quick_push (bitmap
, memory_accesses
.refs_in_loop
, empty
);
1824 empty
= BITMAP_ALLOC (NULL
);
1825 VEC_quick_push (bitmap
, memory_accesses
.all_refs_in_loop
, empty
);
1826 empty
= BITMAP_ALLOC (NULL
);
1827 VEC_quick_push (bitmap
, memory_accesses
.clobbered_vops
, empty
);
1828 hempty
= htab_create (10, vtoe_hash
, vtoe_eq
, vtoe_free
);
1829 VEC_quick_push (htab_t
, memory_accesses
.vop_ref_map
, hempty
);
1832 memory_accesses
.ttae_cache
= NULL
;
1834 gather_mem_refs_in_loops ();
1835 create_vop_ref_mapping ();
1838 /* Returns true if a region of size SIZE1 at position 0 and a region of
1839 size SIZE2 at position DIFF cannot overlap. */
1842 cannot_overlap_p (aff_tree
*diff
, double_int size1
, double_int size2
)
1844 double_int d
, bound
;
1846 /* Unless the difference is a constant, we fail. */
1851 if (double_int_negative_p (d
))
1853 /* The second object is before the first one, we succeed if the last
1854 element of the second object is before the start of the first one. */
1855 bound
= double_int_add (d
, double_int_add (size2
, double_int_minus_one
));
1856 return double_int_negative_p (bound
);
1860 /* We succeed if the second object starts after the first one ends. */
1861 return double_int_scmp (size1
, d
) <= 0;
1865 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1866 tree_to_aff_combination_expand. */
1869 mem_refs_may_alias_p (tree mem1
, tree mem2
, struct pointer_map_t
**ttae_cache
)
1871 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1872 object and their offset differ in such a way that the locations cannot
1873 overlap, then they cannot alias. */
1874 double_int size1
, size2
;
1875 aff_tree off1
, off2
;
1877 /* Perform basic offset and type-based disambiguation. */
1878 if (!refs_may_alias_p (mem1
, mem2
))
1881 /* The expansion of addresses may be a bit expensive, thus we only do
1882 the check at -O2 and higher optimization levels. */
1886 get_inner_reference_aff (mem1
, &off1
, &size1
);
1887 get_inner_reference_aff (mem2
, &off2
, &size2
);
1888 aff_combination_expand (&off1
, ttae_cache
);
1889 aff_combination_expand (&off2
, ttae_cache
);
1890 aff_combination_scale (&off1
, double_int_minus_one
);
1891 aff_combination_add (&off2
, &off1
);
1893 if (cannot_overlap_p (&off2
, size1
, size2
))
1899 /* Rewrites location LOC by TMP_VAR. */
1902 rewrite_mem_ref_loc (mem_ref_loc_p loc
, tree tmp_var
)
1904 mark_virtual_ops_for_renaming (loc
->stmt
);
1905 *loc
->ref
= tmp_var
;
1906 update_stmt (loc
->stmt
);
1909 /* Adds all locations of REF in LOOP and its subloops to LOCS. */
1912 get_all_locs_in_loop (struct loop
*loop
, mem_ref_p ref
,
1913 VEC (mem_ref_loc_p
, heap
) **locs
)
1915 mem_ref_locs_p accs
;
1918 bitmap refs
= VEC_index (bitmap
, memory_accesses
.all_refs_in_loop
,
1920 struct loop
*subloop
;
1922 if (!bitmap_bit_p (refs
, ref
->id
))
1925 if (VEC_length (mem_ref_locs_p
, ref
->accesses_in_loop
)
1926 > (unsigned) loop
->num
)
1928 accs
= VEC_index (mem_ref_locs_p
, ref
->accesses_in_loop
, loop
->num
);
1931 FOR_EACH_VEC_ELT (mem_ref_loc_p
, accs
->locs
, i
, loc
)
1932 VEC_safe_push (mem_ref_loc_p
, heap
, *locs
, loc
);
1936 for (subloop
= loop
->inner
; subloop
!= NULL
; subloop
= subloop
->next
)
1937 get_all_locs_in_loop (subloop
, ref
, locs
);
1940 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1943 rewrite_mem_refs (struct loop
*loop
, mem_ref_p ref
, tree tmp_var
)
1947 VEC (mem_ref_loc_p
, heap
) *locs
= NULL
;
1949 get_all_locs_in_loop (loop
, ref
, &locs
);
1950 FOR_EACH_VEC_ELT (mem_ref_loc_p
, locs
, i
, loc
)
1951 rewrite_mem_ref_loc (loc
, tmp_var
);
1952 VEC_free (mem_ref_loc_p
, heap
, locs
);
1955 /* The name and the length of the currently generated variable
1957 #define MAX_LSM_NAME_LENGTH 40
1958 static char lsm_tmp_name
[MAX_LSM_NAME_LENGTH
+ 1];
1959 static int lsm_tmp_name_length
;
1961 /* Adds S to lsm_tmp_name. */
1964 lsm_tmp_name_add (const char *s
)
1966 int l
= strlen (s
) + lsm_tmp_name_length
;
1967 if (l
> MAX_LSM_NAME_LENGTH
)
1970 strcpy (lsm_tmp_name
+ lsm_tmp_name_length
, s
);
1971 lsm_tmp_name_length
= l
;
1974 /* Stores the name for temporary variable that replaces REF to
1978 gen_lsm_tmp_name (tree ref
)
1982 switch (TREE_CODE (ref
))
1985 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1986 lsm_tmp_name_add ("_");
1990 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1994 case VIEW_CONVERT_EXPR
:
1995 case ARRAY_RANGE_REF
:
1996 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
2000 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
2001 lsm_tmp_name_add ("_RE");
2005 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
2006 lsm_tmp_name_add ("_IM");
2010 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
2011 lsm_tmp_name_add ("_");
2012 name
= get_name (TREE_OPERAND (ref
, 1));
2015 lsm_tmp_name_add (name
);
2019 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
2020 lsm_tmp_name_add ("_I");
2024 ref
= SSA_NAME_VAR (ref
);
2029 name
= get_name (ref
);
2032 lsm_tmp_name_add (name
);
2036 lsm_tmp_name_add ("S");
2040 lsm_tmp_name_add ("R");
2052 /* Determines name for temporary variable that replaces REF.
2053 The name is accumulated into the lsm_tmp_name variable.
2054 N is added to the name of the temporary. */
2057 get_lsm_tmp_name (tree ref
, unsigned n
)
2061 lsm_tmp_name_length
= 0;
2062 gen_lsm_tmp_name (ref
);
2063 lsm_tmp_name_add ("_lsm");
2068 lsm_tmp_name_add (ns
);
2070 return lsm_tmp_name
;
2073 /* Executes store motion of memory reference REF from LOOP.
2074 Exits from the LOOP are stored in EXITS. The initialization of the
2075 temporary variable is put to the preheader of the loop, and assignments
2076 to the reference from the temporary variable are emitted to exits. */
2079 execute_sm (struct loop
*loop
, VEC (edge
, heap
) *exits
, mem_ref_p ref
)
2084 struct fmt_data fmt_data
;
2086 struct lim_aux_data
*lim_data
;
2088 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2090 fprintf (dump_file
, "Executing store motion of ");
2091 print_generic_expr (dump_file
, ref
->mem
, 0);
2092 fprintf (dump_file
, " from loop %d\n", loop
->num
);
2095 tmp_var
= make_rename_temp (TREE_TYPE (ref
->mem
),
2096 get_lsm_tmp_name (ref
->mem
, ~0));
2098 fmt_data
.loop
= loop
;
2099 fmt_data
.orig_loop
= loop
;
2100 for_each_index (&ref
->mem
, force_move_till
, &fmt_data
);
2102 rewrite_mem_refs (loop
, ref
, tmp_var
);
2104 /* Emit the load & stores. */
2105 load
= gimple_build_assign (tmp_var
, unshare_expr (ref
->mem
));
2106 lim_data
= init_lim_data (load
);
2107 lim_data
->max_loop
= loop
;
2108 lim_data
->tgt_loop
= loop
;
2110 /* Put this into the latch, so that we are sure it will be processed after
2111 all dependencies. */
2112 gsi_insert_on_edge (loop_latch_edge (loop
), load
);
2114 FOR_EACH_VEC_ELT (edge
, exits
, i
, ex
)
2116 store
= gimple_build_assign (unshare_expr (ref
->mem
), tmp_var
);
2117 gsi_insert_on_edge (ex
, store
);
2121 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2122 edges of the LOOP. */
2125 hoist_memory_references (struct loop
*loop
, bitmap mem_refs
,
2126 VEC (edge
, heap
) *exits
)
2132 EXECUTE_IF_SET_IN_BITMAP (mem_refs
, 0, i
, bi
)
2134 ref
= VEC_index (mem_ref_p
, memory_accesses
.refs_list
, i
);
2135 execute_sm (loop
, exits
, ref
);
2139 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2140 make sure REF is always stored to in LOOP. */
2143 ref_always_accessed_p (struct loop
*loop
, mem_ref_p ref
, bool stored_p
)
2145 VEC (mem_ref_loc_p
, heap
) *locs
= NULL
;
2149 struct loop
*must_exec
;
2152 base
= get_base_address (ref
->mem
);
2153 if (INDIRECT_REF_P (base
)
2154 || TREE_CODE (base
) == MEM_REF
)
2155 base
= TREE_OPERAND (base
, 0);
2157 get_all_locs_in_loop (loop
, ref
, &locs
);
2158 FOR_EACH_VEC_ELT (mem_ref_loc_p
, locs
, i
, loc
)
2160 if (!get_lim_data (loc
->stmt
))
2163 /* If we require an always executed store make sure the statement
2164 stores to the reference. */
2168 if (!gimple_get_lhs (loc
->stmt
))
2170 lhs
= get_base_address (gimple_get_lhs (loc
->stmt
));
2173 if (INDIRECT_REF_P (lhs
)
2174 || TREE_CODE (lhs
) == MEM_REF
)
2175 lhs
= TREE_OPERAND (lhs
, 0);
2180 must_exec
= get_lim_data (loc
->stmt
)->always_executed_in
;
2184 if (must_exec
== loop
2185 || flow_loop_nested_p (must_exec
, loop
))
2191 VEC_free (mem_ref_loc_p
, heap
, locs
);
2196 /* Returns true if REF1 and REF2 are independent. */
2199 refs_independent_p (mem_ref_p ref1
, mem_ref_p ref2
)
2202 || bitmap_bit_p (ref1
->indep_ref
, ref2
->id
))
2204 if (bitmap_bit_p (ref1
->dep_ref
, ref2
->id
))
2207 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2208 fprintf (dump_file
, "Querying dependency of refs %u and %u: ",
2209 ref1
->id
, ref2
->id
);
2211 if (mem_refs_may_alias_p (ref1
->mem
, ref2
->mem
,
2212 &memory_accesses
.ttae_cache
))
2214 bitmap_set_bit (ref1
->dep_ref
, ref2
->id
);
2215 bitmap_set_bit (ref2
->dep_ref
, ref1
->id
);
2216 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2217 fprintf (dump_file
, "dependent.\n");
2222 bitmap_set_bit (ref1
->indep_ref
, ref2
->id
);
2223 bitmap_set_bit (ref2
->indep_ref
, ref1
->id
);
2224 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2225 fprintf (dump_file
, "independent.\n");
2230 /* Records the information whether REF is independent in LOOP (according
2234 record_indep_loop (struct loop
*loop
, mem_ref_p ref
, bool indep
)
2237 bitmap_set_bit (ref
->indep_loop
, loop
->num
);
2239 bitmap_set_bit (ref
->dep_loop
, loop
->num
);
2242 /* Returns true if REF is independent on all other memory references in
2246 ref_indep_loop_p_1 (struct loop
*loop
, mem_ref_p ref
)
2248 bitmap clobbers
, refs_to_check
, refs
;
2251 bool ret
= true, stored
= bitmap_bit_p (ref
->stored
, loop
->num
);
2255 /* If the reference is clobbered, it is not independent. */
2256 clobbers
= VEC_index (bitmap
, memory_accesses
.clobbered_vops
, loop
->num
);
2257 if (bitmap_intersect_p (ref
->vops
, clobbers
))
2260 refs_to_check
= BITMAP_ALLOC (NULL
);
2262 map
= VEC_index (htab_t
, memory_accesses
.vop_ref_map
, loop
->num
);
2263 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref
->vops
, clobbers
, 0, i
, bi
)
2266 refs
= get_vop_accesses (map
, i
);
2268 refs
= get_vop_stores (map
, i
);
2270 bitmap_ior_into (refs_to_check
, refs
);
2273 EXECUTE_IF_SET_IN_BITMAP (refs_to_check
, 0, i
, bi
)
2275 aref
= VEC_index (mem_ref_p
, memory_accesses
.refs_list
, i
);
2276 if (!refs_independent_p (ref
, aref
))
2279 record_indep_loop (loop
, aref
, false);
2284 BITMAP_FREE (refs_to_check
);
2288 /* Returns true if REF is independent on all other memory references in
2289 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2292 ref_indep_loop_p (struct loop
*loop
, mem_ref_p ref
)
2296 if (bitmap_bit_p (ref
->indep_loop
, loop
->num
))
2298 if (bitmap_bit_p (ref
->dep_loop
, loop
->num
))
2301 ret
= ref_indep_loop_p_1 (loop
, ref
);
2303 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2304 fprintf (dump_file
, "Querying dependencies of ref %u in loop %d: %s\n",
2305 ref
->id
, loop
->num
, ret
? "independent" : "dependent");
2307 record_indep_loop (loop
, ref
, ret
);
2312 /* Returns true if we can perform store motion of REF from LOOP. */
2315 can_sm_ref_p (struct loop
*loop
, mem_ref_p ref
)
2319 /* Unless the reference is stored in the loop, there is nothing to do. */
2320 if (!bitmap_bit_p (ref
->stored
, loop
->num
))
2323 /* It should be movable. */
2324 if (!is_gimple_reg_type (TREE_TYPE (ref
->mem
))
2325 || TREE_THIS_VOLATILE (ref
->mem
)
2326 || !for_each_index (&ref
->mem
, may_move_till
, loop
))
2329 /* If it can throw fail, we do not properly update EH info. */
2330 if (tree_could_throw_p (ref
->mem
))
2333 /* If it can trap, it must be always executed in LOOP.
2334 Readonly memory locations may trap when storing to them, but
2335 tree_could_trap_p is a predicate for rvalues, so check that
2337 base
= get_base_address (ref
->mem
);
2338 if ((tree_could_trap_p (ref
->mem
)
2339 || (DECL_P (base
) && TREE_READONLY (base
)))
2340 && !ref_always_accessed_p (loop
, ref
, true))
2343 /* And it must be independent on all other memory references
2345 if (!ref_indep_loop_p (loop
, ref
))
2351 /* Marks the references in LOOP for that store motion should be performed
2352 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2353 motion was performed in one of the outer loops. */
2356 find_refs_for_sm (struct loop
*loop
, bitmap sm_executed
, bitmap refs_to_sm
)
2358 bitmap refs
= VEC_index (bitmap
, memory_accesses
.all_refs_in_loop
,
2364 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs
, sm_executed
, 0, i
, bi
)
2366 ref
= VEC_index (mem_ref_p
, memory_accesses
.refs_list
, i
);
2367 if (can_sm_ref_p (loop
, ref
))
2368 bitmap_set_bit (refs_to_sm
, i
);
2372 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2373 for a store motion optimization (i.e. whether we can insert statement
2377 loop_suitable_for_sm (struct loop
*loop ATTRIBUTE_UNUSED
,
2378 VEC (edge
, heap
) *exits
)
2383 FOR_EACH_VEC_ELT (edge
, exits
, i
, ex
)
2384 if (ex
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
2390 /* Try to perform store motion for all memory references modified inside
2391 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2392 store motion was executed in one of the outer loops. */
2395 store_motion_loop (struct loop
*loop
, bitmap sm_executed
)
2397 VEC (edge
, heap
) *exits
= get_loop_exit_edges (loop
);
2398 struct loop
*subloop
;
2399 bitmap sm_in_loop
= BITMAP_ALLOC (NULL
);
2401 if (loop_suitable_for_sm (loop
, exits
))
2403 find_refs_for_sm (loop
, sm_executed
, sm_in_loop
);
2404 hoist_memory_references (loop
, sm_in_loop
, exits
);
2406 VEC_free (edge
, heap
, exits
);
2408 bitmap_ior_into (sm_executed
, sm_in_loop
);
2409 for (subloop
= loop
->inner
; subloop
!= NULL
; subloop
= subloop
->next
)
2410 store_motion_loop (subloop
, sm_executed
);
2411 bitmap_and_compl_into (sm_executed
, sm_in_loop
);
2412 BITMAP_FREE (sm_in_loop
);
2415 /* Try to perform store motion for all memory references modified inside
2422 bitmap sm_executed
= BITMAP_ALLOC (NULL
);
2424 for (loop
= current_loops
->tree_root
->inner
; loop
!= NULL
; loop
= loop
->next
)
2425 store_motion_loop (loop
, sm_executed
);
2427 BITMAP_FREE (sm_executed
);
2428 gsi_commit_edge_inserts ();
2431 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2432 for each such basic block bb records the outermost loop for that execution
2433 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2434 blocks that contain a nonpure call. */
2437 fill_always_executed_in (struct loop
*loop
, sbitmap contains_call
)
2439 basic_block bb
= NULL
, *bbs
, last
= NULL
;
2442 struct loop
*inn_loop
= loop
;
2444 if (ALWAYS_EXECUTED_IN (loop
->header
) == NULL
)
2446 bbs
= get_loop_body_in_dom_order (loop
);
2448 for (i
= 0; i
< loop
->num_nodes
; i
++)
2453 if (dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
2456 if (TEST_BIT (contains_call
, bb
->index
))
2459 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2460 if (!flow_bb_inside_loop_p (loop
, e
->dest
))
2465 /* A loop might be infinite (TODO use simple loop analysis
2466 to disprove this if possible). */
2467 if (bb
->flags
& BB_IRREDUCIBLE_LOOP
)
2470 if (!flow_bb_inside_loop_p (inn_loop
, bb
))
2473 if (bb
->loop_father
->header
== bb
)
2475 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
2478 /* In a loop that is always entered we may proceed anyway.
2479 But record that we entered it and stop once we leave it. */
2480 inn_loop
= bb
->loop_father
;
2486 SET_ALWAYS_EXECUTED_IN (last
, loop
);
2487 if (last
== loop
->header
)
2489 last
= get_immediate_dominator (CDI_DOMINATORS
, last
);
2495 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
2496 fill_always_executed_in (loop
, contains_call
);
2499 /* Compute the global information needed by the loop invariant motion pass. */
2502 tree_ssa_lim_initialize (void)
2504 sbitmap contains_call
= sbitmap_alloc (last_basic_block
);
2505 gimple_stmt_iterator bsi
;
2509 sbitmap_zero (contains_call
);
2512 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2514 if (nonpure_call_p (gsi_stmt (bsi
)))
2518 if (!gsi_end_p (bsi
))
2519 SET_BIT (contains_call
, bb
->index
);
2522 for (loop
= current_loops
->tree_root
->inner
; loop
; loop
= loop
->next
)
2523 fill_always_executed_in (loop
, contains_call
);
2525 sbitmap_free (contains_call
);
2527 lim_aux_data_map
= pointer_map_create ();
2530 /* Cleans up after the invariant motion pass. */
2533 tree_ssa_lim_finalize (void)
2541 SET_ALWAYS_EXECUTED_IN (bb
, NULL
);
2543 pointer_map_destroy (lim_aux_data_map
);
2545 VEC_free (mem_ref_p
, heap
, memory_accesses
.refs_list
);
2546 htab_delete (memory_accesses
.refs
);
2548 FOR_EACH_VEC_ELT (bitmap
, memory_accesses
.refs_in_loop
, i
, b
)
2550 VEC_free (bitmap
, heap
, memory_accesses
.refs_in_loop
);
2552 FOR_EACH_VEC_ELT (bitmap
, memory_accesses
.all_refs_in_loop
, i
, b
)
2554 VEC_free (bitmap
, heap
, memory_accesses
.all_refs_in_loop
);
2556 FOR_EACH_VEC_ELT (bitmap
, memory_accesses
.clobbered_vops
, i
, b
)
2558 VEC_free (bitmap
, heap
, memory_accesses
.clobbered_vops
);
2560 FOR_EACH_VEC_ELT (htab_t
, memory_accesses
.vop_ref_map
, i
, h
)
2562 VEC_free (htab_t
, heap
, memory_accesses
.vop_ref_map
);
2564 if (memory_accesses
.ttae_cache
)
2565 pointer_map_destroy (memory_accesses
.ttae_cache
);
2568 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2569 i.e. those that are likely to be win regardless of the register pressure. */
2576 tree_ssa_lim_initialize ();
2578 /* Gathers information about memory accesses in the loops. */
2579 analyze_memory_references ();
2581 /* For each statement determine the outermost loop in that it is
2582 invariant and cost for computing the invariant. */
2583 determine_invariantness ();
2585 /* Execute store motion. Force the necessary invariants to be moved
2586 out of the loops as well. */
2589 /* Move the expressions that are expensive enough. */
2590 todo
= move_computations ();
2592 tree_ssa_lim_finalize ();